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Résumé

***
Développements pour l’observation et la caractérisation des sources multi-
messagers d’ondes gravitationnelles lors des campagnes d’observation LIGO-
Virgo-KAGRA.

Les campagnes d’observation Advanced LIGO/Virgo ont révélé la physique
riche et diverse des fusions d’étoiles à neutrons binaires et de trous noirs binaires. En
2017, la découverte simultanée des ondes gravitationnelles et des contreparties électro-
magnétiques d’une fusion d’étoiles à neutrons binaires a offert une vision détaillée de ce
phénomène extrême, avec de nombreux résultats en astrophysique et en physique, no-
tamment sur le comportement de la matière ultra-dense. Cependant, malgré d’énormes
efforts déployés, aucune nouvelle détection multi-messagers n’a été réalisée depuis lors.
Cela s’explique par le formidable défi observationnel que représentent les alertes rapi-
des et précises des ondes gravitationnelles, la réactivité immédiate d’un réseau de téle-
scopes et le traitement en ligne des données pour l’identification des contreparties élec-
tromagnétiques.

L’identification des contreparties électromagnétiques permet de nombreuses
études scientifiques de premier plan, comme les contraintes sur l’équation d’état des
étoiles à neutrons, la mesure du taux d’expansion de l’univers ainsi que le processus
de désintégration radioactive des éléments lourds produits lors de la kilonova. Pour
un suivi rapide des contreparties possibles de ces événements, nous devons réduire la
zone de localisation du ciel où l’événement a lieu. Mais les sensibilités très différentes
des détecteurs montrent à quel point le suivi des ondes gravitationnelles peut être diffi-
cile. C’est le cas pour la quatrième (en cours) et la cinquième campagnes d’observation
LIGO/Virgo/KAGRA. De nombreux signaux d’ondes gravitationnelles issus de la fu-
sion de binaires compactes se trouvent cachés par le bruit des détecteurs et peuvent être
détectés si le bruit est suffisamment réduit. Pour maximiser les résultats scientifiques
des détecteurs d’ondes gravitationnelles LIGO/Virgo/KAGRA, comme la détectabilité
des signaux avant la fusion, il faut réduire le bruit de façon considérable. Plusieurs
facteurs sont à la base de ce bruit qui mine la sensibilité des détecteurs, parmi lesquels
le bruit environnemental, les artefacts instrumentaux ainsi que certains bruits plus fon-
damentaux et irréductibles. L’identification d’événements supplémentaires en dessous
du seuil est donc liée à notre capacité à réduire le bruit dans les instruments. Le bruit
et la sensibilité influencent directement notre capacité à extraire des informations des
signaux d’ondes gravitationnelles.

Afin de réduire ces effets, j’ai d’abord entrepris le développement de nouveaux
outils et techniques, tout en apportant plusieurs améliorations aux anciens. Ces out-
ils d’analyse incluent, entre autres, i) l’amélioration des capacités du Nuclear Multi-
messenger Astronomy (NMMA), une bibliothèque Python pour sonder la physique nu-
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cléaire et la cosmologie avec une analyse multi-messagers ; ii) la mise à jour et la config-
uration de télescopes tels que le Zwicky Transient Facility (ZTF), le Vera C. Rubin Ob-
servatory’s Legacy Survey of Space and Time (LSST), et l’Ultraviolet Transient Astron-
omy Satellite (ULTRASAT) au sein de Gravitational-wave Electromagnetic Optimiza-
tion (gwemopt), un outil permettant de simuler une détection à l’aide d’un télescope et
des informations considérant la carte du ciel de l’événement ; iii) l’injection d’une nou-
velle distribution, PBD/GWTC-3, dans Ligo.Skymap pour les scénarios d’observations.
Cette nouvelle distribution a le mérite de pouvoir définir, avec une seule et même loi,
toutes les populations de coalescence de binaires compacts ; iv) le développement du
NMMA-Skyportal, une pipeline qui intègre les alertes du ZTF, l’outil Skyportal, une
plate-forme collaborative pour l’astronomie dans le domaine temporel, et NMMA dans
le but de discriminer la nature des courbes de lumière en temps réel.

En outre, ce travail fournit des projections aux astronomes qui s’intéressent aux
données produites par les détecteurs d’ondes gravitationnelles, ainsi qu’aux contraintes
attendues sur le taux d’expansion de l’Univers sur la base des données à venir (cam-
pagnes O4 et O5). Ces résultats sont utiles à ceux qui analysent les données d’ondes
gravitationnelles et à ceux qui recherchent des contreparties électromagnétiques aux
fusions d’étoiles à neutrons. Enfin, pour répondre à la problématique des "signaux as-
trophysiques baignés" sous le seuil du bruit, j’ai appliqué l’algorithme DeepClean, un
réseau de neurones convolutif unidimensionnel, pour estimer, analyser et soustraire les
bruits stationnaires et non-stationnaires dans le détecteur Virgo. Une première pour le
détecteur Virgo. En plus de préserver l’intégrité du signal astrophysique, l’algorithme
améliore le rapport signal sur bruit du détecteur.

Mots-clés : Étoile à neutron, Trou noir, Coalescence de binaire compacte, On-
des gravitationnelle, Multi-messager, Courbes de lumière, Inférence bayésienne, Ap-
prentissage automatique, Ajustement de modèle, Apprentissage profond.
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Abstract

***
Developments for the Observation and Characterization of Multi-Messenger
Sources of Gravitational Waves during the LIGO-Virgo-KAGRA Observation
Campaigns.

The Advanced LIGO/Virgo observation campaigns have revealed the rich and
diverse physics of binary neutron star and binary black hole mergers. In 2017, the
simultaneous discovery of gravitational waves and electromagnetic counterparts from
a binary neutron star merger provided an detailed view of this extreme phenomenon,
yielding numerous results in both astrophysics and physics, particularly on the behavior
of ultra-dense matter. However, despite enormous efforts, no new multi-messenger
detections have been made since. This is due to the formidable observational challenge
posed by the rapid and precise alerts of gravitational waves, the immediate reactivity of
a network of telescopes, and the online data processing required for the identification
of electromagnetic counterparts.

The identification of electromagnetic counterparts enables numerous high-
priority scientific studies, such as constraints on the equation of state of neutron stars,
the measurement of the universe’s expansion rate, and the r-process nucleosynthesis of
heavy elements produced during a kilonova. For a rapid follow-up of possible coun-
terparts to these events, we must reduce the sky localization area where the event
occurs. However, the significantly different sensitivities of the detectors demonstrate
how challenging gravitational-wave follow-up can be. This is the case for the fourth
(ongoing) and fifth LIGO/Virgo/KAGRA observation campaigns. Many gravitational-
wave signals from compact binary mergers are hidden by detector noise and can be
detected if the noise is sufficiently reduced. To maximize the scientific outcome of
the LIGO/Virgo/KAGRA gravitational-wave detectors, such as the detectability of pre-
merger signals, noise must be significantly reduced. Several factors contribute to this
noise, undermining the detector’s sensitivity, including environmental noise, instrumen-
tal artifacts, and some more fundamental and irreducible noises. The identification of
additional subthreshold events is therefore linked to our ability to reduce noise in the
instruments. Noise and sensitivity directly influence our capacity to extract information
from gravitational-wave signals.

To mitigate these effects, I initially developed new tools and techniques while
also making several improvements to existing ones. These analysis tools include,
among others, i) enhancing the capabilities of the Nuclear Multi-messenger Astronomy
(NMMA), a Python library for probing nuclear physics and cosmology with multi-
messenger analysis; ii) updating and configuring telescopes such as the Zwicky Tran-
sient Facility (ZTF), the Vera C. Rubin Observatory’s Legacy Survey of Space and
Time (LSST), and the Ultraviolet Transient Astronomy Satellite (ULTRASAT) within
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Gravitational-wave Electromagnetic Optimization (gwemopt), a tool for simulating de-
tections using a telescope and event sky map information; iii) injecting a new distribu-
tion, PBD/GWTC-3, into Ligo.Skymap for “observing scenarios". This new distribution
can define all populations of compact binary coalescences with a single law; iv) de-
veloping NMMA-Skyportal, a pipeline that integrates ZTF alerts, the Skyportal tool,
a collaborative platform for time-domain astronomy, and NMMA to discriminate the
nature of light curves in real-time.

Moreover, this work provides projections for astronomers interested in data pro-
duced by gravitational-wave detectors, as well as expected constraints on the universe’s
expansion rate based on forthcoming data (campaigns O4 and O5). These results are
useful to those analyzing gravitational-wave data and those seeking electromagnetic
counterparts to neutron star mergers.

Finally, to address the problem of "astrophysical signals bathing" below the
noise threshold, I applied the DeepClean algorithm, a one-dimensional convolutional
neural network (CNN), to estimate, analyze and subtract stationary and non-stationary
noises in the Virgo detector. A first for the Virgo detector. In addition to preserving
the integrity of the astrophysical signal, the algorithm improves the detector’s signal-
to-noise ratio.

Keywords: Neutron star, Black hole, Compact binary Coalescence,
Gravitational-wave, Multi-messenger, Light curves, Bayesian inference, Machine
learning, Model fitting, Deep learning.
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1Chapte
r

General relativity in the era of Multi-messenger
astronomy

***
Mass tells space-time how to curve,
and space-time tells matter how to

move.
John Wheeler

The theory of general relativity (GR) predicts the existence of highly compact
astrophysical objects, each characterized by a compactness parameter Ξ, defined as
Ξ = GM

rc2 . It is important to note that a Ξ value of 1 does not denote only objects of
immense density, such as black holes (BHs). Instead of neutron stars (NSs), which
shows compactness values from 0.1 to 0.4. These dense celestial bodies are known
to be some of the densest objects in the universe within the binary systems and are
the primary sources of GWs that propagate at the speed of light. When a merger in-
volves at least one NS, it could generate a variety of phenomena, including gamma-ray
bursts (GRBs), neutrinos, and kilonovae (KNe), the latter arising from the rapid neu-
tron capture process (r-process). The landmark detection of GW170817 has opened
new directions in multi-messenger astrophysics, then subsequent observations further
affirming the abundant nature of these events. This chapter 1 sets the groundwork to un-
derstanding the fundamental concepts crucial to appreciating the new research findings
discussed in later sections of this dissertation. Provides a comprehensive examination
of GR, BHs, NSs, and KNe setting the stage for advanced discussions and analyses.
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CHAPTER 1. GENERAL RELATIVITY IN THE ERA OF MULTI-MESSENGER ASTRONOMY

1.1 General Relativity

Space-time—Fundamentally, space-time is characterized by its metric gµν, which is a
symmetric two-dimensional (2D) tensor, or matrix. In the context of flat space-time,
also referred to as Minkowski space, this metric is commonly represented by ηµν. The
convention ηµν = diag(−1,+1,+1,+1) is adopted, which facilitates the description of
space-time intervals in an approach that is particularly advantageous for special relativ-
ity and provides a basis for GR in areas where gravitational influences are minimal or
nonexistent. On 25 November 1915, Albert Einstein submitted a groundbreaking paper
on GR to the Royal Prussian Academy of Sciences, fundamentally altering our under-
standing of gravitation. This theory suggests that what we perceive as the gravitational
force is actually the manifestation of the curvature of space-time by mass and energy.
This idea moves away from the Newtonian concept, where gravity is seen as a force
between masses. Einstein’s field equations describe how matter and energy modify
space-time’s geometry [201]. We can define this equation as,

Gµν =
8πG
c4 Tµν, (1.1)

where Gµν is a 4×4 matrix (tensor), the Einstein tensor that describes the curvature
of space-time, Tµν, a 4×4 matrix, is the energy-momentum tensor that represents the
distribution of mass and energy in space-time, and G,c the universal gravitational con-
stant and the speed of light. This equation (Equation 1.1) is simplified for systems
smaller than a galaxy, where the cosmological constant, Λ, is negligible. The impli-
cations of Einstein’s theory extend beyond our solar system, providing a framework
to understand BHs, the structure of the universe, and the propagation of GWs, among
other phenomena. GWs result from GR and are generated when accelerating masses
perturb space-time, creating ripples that travel through it at the speed of light. These
disturbances move through space-time, carrying information from cosmic events and
revealing regions of the universe that are not visible in EM radiation, similar to BHs.

In astrophysical terms, a BH is a region in space resulting from the gravitational
collapse of a massive star characterized by a central singularity where the gravitational
forces and density become infinite. This singularity is enveloped by an event horizon,
the boundary beyond which nothing, not even light, can escape to the external universe
(No-hair theorem; [82]). The event horizon marks the boundary of the observable uni-
verse, beyond which the traditional laws of physics locally cease to apply. We explore
the effects of BHs on their surroundings using metrics, exact solutions to Einstein’s
equations. The Schwarzschild metric describes nonrotating BHs, while the Kerr metric
(Eq. 1.2), an extension for rotating BHs, is more relevant because most observed BHs
originate from rotating massive stars. Angular momentum conservation during such
collapses suggests that nonrotating BHs are unlikely.
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1.1. GENERAL RELATIVITY

ds2 =−(1− 2Mr
Σ

)dt2 − 4Marsin2
θ

Σ
dtdϕ+

Σ

∆
dr2 +Σ

2dθ+

sin2
θ(r2 +a2 +

2Ma2rsin2
θ

Σ
)dϕ

2 (1.2)

where,





Σ ≡ r2 +a2 cos2 θ

∆ ≡ r2 −2Mr+a2

M and a, representing mass and angular momentum per unit mass, define the Kerr
parameter ā = a

M = J
M2 . The coordinates (t,r,θ,ϕ), similar to the spherical coordinates

for distant observers, are used in this metric.

Cosmological redshift—The Cosmology explores the origins, nature, structure,
and evolution of the universe, becoming a formal science with discoveries that revealed
its dynamic nature. In the 1920s, Edwin Hubble, conducted spectroscopic measure-
ments on 24 nebulae (now known as galaxies), showed in 1929 that these galaxies are
uniformly receding from us [153]. This states that the radial velocity of nearby galax-
ies is proportional to their distance from Earth. Before Hubble, Lemaître suggested in
1927 the expanding universe theory, supported by increasing galaxy distances [178].
His model introduced the singularity, later called the Big Bang, refined to include uni-
verse expansion, high initial temperature, and cooling. The model of Big Bang line up
with observations of cosmic microwave background radiation and galaxy distribution.
The cosmology now merges theoretical physics and observational astronomy to im-
prove our understanding of the universe’s past and present, and investigates dark matter
and dark energy, its predominant but mysterious components.

The expansion of universe, denoted by Hubble-Lemaître constant (H0), is sig-
nificant within the curved space-time framework. It serves as a quantitative measure of
the expansion rate. As radiation from distant objects propagates toward us, its wave-
length increases, becoming longer than its original emission by the time it reaches the
observer [290]. This phenomenon is the cosmic redshift, represented by z, which pro-
vides a means to gauge the dynamism of the universe. Mathematically, it is expressed
as

z ≡ λr

λe
−1,

where λe and λr are the wavelengths of light at emission and reception, respectively
[200]. This redshift indicates the expansion of the universe, stretching space-time, and
altering the path of light through the cosmos. For nearby galaxies, the relationship
between velocity and redshift can be approximated as the following:

v ≈ cz,
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CHAPTER 1. GENERAL RELATIVITY IN THE ERA OF MULTI-MESSENGER ASTRONOMY

where v is the velocity, c is the speed of light. At small redshifts, when z ≪ 1, the
approximation,

cz ≈ H0d,

relates the recessional velocity of galaxies to their distance d through H0. This sim-
plification holds within the Einstein equations (Equation 1.1), but at greater distances,
H0 helps decode the complex expansion of the universe and acceleration, influenced by
dark energy and mass energy distribution. Since the discovery of the accelerated expan-
sion of the universe [239, 221], determining H0 remains a challenge. This measurement
has previously been found to show that the cosmic microwave background is consistent
with the Big Bang cosmological model Λ-cold-dark matter (ΛCDM) cosmology [227],
and this tension with other measurements from Type Ia SN (SN Ia) observations [240].
A SN Ia occurs when a white dwarf (WD) explodes in a binary system. The tension
might indicate experimental errors or suggest new physics. However, it is clear that ad-
ditional cosmological probes are necessary and that enough independent measurements
can eventually motivate a consensus on the true source of the tension. The measure-
ment and interpretation of H0 involve an extensive exploration into the nature of the
universe, integrating cosmic and quantum aspects, and deepening our understanding of
the structure of the universe, influenced by matter, energy, and space-time geometry.

The analysis of mergers of compact binary systems, which generate GW and
potentially their EM counterparts, provides an additional pathway to measure H0 [253].
The measurement of H0 using compact binary mergers is particularly interesting be-
cause it does not rely on the cosmic distance ladder or assume any cosmological model
a priori [4]. In fact, GWs provide a direct measure of the energy output from astrophys-
ical events, enabling accurate distance estimations. This capability establishes them as
"standard sirens". By combining data from GW observations with measurements of
recession velocities, we can compute H0. Although this measurement is limited by
the uncertainty in the distance, which is highly degenerate with the inclination angle
measured from GW alone, combining it with EM observations has been shown to sig-
nificantly improve this measurement [151, 111, 114].This approach is promising and
could mitigate tension related to the measurement of H0.

1.2 Compact Objects

1.2.1 Life Cycle of Stars

The life cycle of stars begins in dense molecular clouds in interstellar space, which is
mainly composed of hydrogen and helium, with traces of heavier elements. Gravita-
tional instabilities within these cold clouds cause them to fragment into denser cores,
initiating the stage of star formation [203]. As these cores accumulate mass and the
internal pressure and temperature increase, hydrogen fusion ignites. This marks the
transition of the protostar to the main sequence stage, where a star spends the major-
ity of its life. During the main sequence phase, the mass of the star critically influ-
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1.2. COMPACT OBJECTS

ences its nuclear burning processes and lifetime. The intense thermodynamic condi-
tions within stars can lead to several nucleosynthetic processes, including the explosive
burning stages related to the major hydrostatic fuels within stars. Main sequence stars
fuse hydrogen into helium, releasing energy that supports the star against gravitational
collapse. This energy release determines both its luminosity and surface temperature.

Low-mass and intermediate-mass—There stars (less than 8 sun mass (M⊙))
spend an extensive period on the main sequence because they slowly consume their fuel
while emitting weak light. Once a star has burnt out the hydrogen in its core, it leaves
the main sequence and enters the next phase of its life, corresponding to the final stages
of their life cycle. As the hydrogen in the core of the star is consumed, the star begins to
contract under its own gravity. This increases the temperature and pressure in the core,
inducing the fusion of helium into carbon. At the same time, hydrogen in the outer
layers starts to fuse, creating a burning hydrogen shell that causes the star to expand
into a red giant. During this period, the star shines thousands of times brighter than
when it was on the main sequence, despite a much lower surface temperature, giving
the star its characteristic red color. At the end of the red giant phase, the star ejects its
outer layers into space, creating a planetary nebula. The remaining core becomes a WD,
a compact and dense object formed of degenerate electrons [134]. The equilibrium is
maintained by degeneracy pressure, based on the Pauli exclusion principle [168]. No
longer undergoing fusion reactions or radiation, it gradually cools down, eventually
becoming a black dwarf.

Massive stars—For massive stars, those exceeding eight M⊙, the main se-
quence lifetime is shorter because of their higher core temperatures and increased lumi-
nosity. The evolution of such stars is governed by a sequence of nuclear burning stages,
during which lighter elements are progressively transformed into heavier ones [71]. For
each phase, the main product is converted from the previous phase into its primary fuel,
progressing through hydrogen (H), helium (He), carbon (C), oxygen (O), neon (Ne),
and silicon (Si), eventually leading to an iron (Fe) core. At this stage, despite the con-
traction, its internal temperature is insufficient to overcome Coulomb’s law to fuse iron
into heavier nuclei, ceasing nuclear fusion. The star then transforms into a red super-
giant. As the core collapse exceeds 1.4 M⊙, the Chandrasekhar limit [83], the electron
degeneracy pressure can no longer counteract the gravitational forces, leading to rapid
core collapse and significant increases in density. This results in general neutronization
and a massive emission of electron neutrinos through electron capture, p → n+e++νe,
and the inverse of β-decay, p+ e− → n+ νe. The star finally collapses under its own
weight into a cataclysmic explosion known as a Type II SNe (SNe II). At nuclear satu-
ration density (nsat), the neutron degeneracy pressure stops the collapse, stabilizing the
core and forming a NS with temperatures greater than 1011 K. If the progenitor star is
greater than 30 M⊙, this leads to the formation of a BH [170].

Figure 1.1 depicts the life cycle of stars. When these stellar remnants are part
of a binary system, they often undergo significant evolution. The merger of NS double
can lead to the formation of a BH. Similarly, WDs in binary systems frequently accrete
matter from their companions, leading to an increase in mass. If this mass exceeds
the Chandrasekhar limit, the WD undergoes a thermonuclear explosion, in SN Ia. This
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CHAPTER 1. GENERAL RELATIVITY IN THE ERA OF MULTI-MESSENGER ASTRONOMY

explosive event culminates in the formation of either a NS or a BH [214].

Figure 1.1: Stellar Evolution Illustrated: This diagram depicts the life cycles of stars,
showing how intermediate-mass stars become WD and massive stars undergo SN ex-
plosions to form NSs or BHs. It outlines the transformation from birth in stellar nebulae
to the end, emphasizing crucial cosmic processes. Figure credit: NASA.

1.2.2 Types of supernovae

SNe are classified into two main types: thermonuclear SNe (SNe Ia) and core-collapse
SNe (SNe II). Each type has different characteristics and progenitors.

Thermonuclear Supernovae—These result from a WD in a binary system that
accretes enough mass to exceed the Chandrasekhar limit, leading to a runaway ther-
monuclear explosion [134]. SNe Ia are characterized by strong silicon lines in their
spectra and form a relatively homogeneous group [204]. Their consistent luminosity
makes them useful as standard candles for measuring cosmic distances.

Core-Collapse Supernovae—These occur from the gravitational collapse of
massive stars (greater than eight M⊙). Core-collapse SNe are subdivided based on their
spectral lines and light curves.

The SNe II display prominent hydrogen lines in their spectra. They are fur-
ther classified by their light curves. SNe IIP show a plateau-shaped light curve, while
SNe IIL show a linear decline in brightness. SNe IIn are characterized by narrow hydro-
gen emission lines, with multi-component Balmer line profiles, particularly Hα [233].

The Type Ib SNe (SNe IIb) lack hydrogen lines but show helium lines in their
spectra. They are the result of massive stars that have lost their hydrogen envelopes.
The Type Ic SNe (SNe IIc) are similar to SN Ib but without hydrogen and helium lines,
coming from stars that have lost both envelopes. The Type IIb SN (SN IIb) initially
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display hydrogen lines that fade over time, eventually resembling the SN Ib spectra as
the hydrogen envelope is lost [204]. Classifying SNe reveals the evolutionary paths and
fates of stars. Figure 1.2 shows the types of SN and their progenitors.

Figure 1.2: Types of SNe classified by spectral lines and progenitors. Credit: From
Röpke F., Type Ia supernovae http://theor.jinr.ru/~ntaa/07/files/program.html.

1.2.3 Compact Binaries Coalescence

The evolution of binary star systems is significantly influenced by the presence of the
companion star, which primarily alters evolutionary trajectories through mass and an-
gular momentum transfer [146]. The fate of binary stars depends on the individual
evolution of each component, where the most massive star typically collapsing first in
a SN event, leading to the formation of a NS or a BH [272]. The companion star, with
mass m2, emits a stellar wind that the denser object (m1) accretes. This material heats
up and emits X-rays [206]. A mass ratio q = m2/m1 < 1 leads to a low-mass X-ray
binary, while q ≥ 1 forms a high-mass X-ray binary [85]. The geometry of the binary
system is often described by the presence of Roche lobe.

Roche Lobe—In binary star systems, the Roche lobe defines a teardrop-shaped
volume around each star, dictated by the gravitational forces of the components, and
meeting at the Lagrangian point L1. If a star exceeds its Roche lobe, it begins to transfer
mass to its companion through this inner Lagrangian point as shown in Figure 1.3. This
mass exchange profoundly impacts the evolution of stars, possibly leading to events
such as the SNe explosion or the formation of NSs or BHs. In systems with a red giant
and a WD, ejected matter can trigger nova or SN explosions, forming these compact
remnants. A key stage is the formation of a common envelope, shared by both stars,
which can be ejected, revealing the cores and significantly changing the system [154,
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117]. Such observations are fundamental for understanding binary dynamics and the
destiny of massive stars.

Following the intense phase of mass transfer and the potential formation of a
common envelope, the binary system may experience further evolutionary complexi-
ties. In particular scenarios where rapid mass transfer leads to an unstable configura-
tion, a direct collapse into a BH can occur, avoiding the dramatic SN explosion typically
expected. This provides a deeper understanding of the mass distribution among com-
pact objects and offers insight into the characteristics of binaries with specially short
orbital periods. As these systems evolve, their final stages often emit intense GWs,
detectable by LIGO, Virgo, and KAmioka GRAvitational-wave observatory (KAGRA).
GW detection provides unique insights into the end stages of stellar evolution in com-
pact binaries.

Figure 1.3: This illustration shows the Roche lobes in a binary star system, highlighting
how material is gravitationally bound within each lobe. The left image shows a detached
system, and the right image shows mass transfer from a star exceeding its Roche lobe
to its companion. Figure credit : From [69] and The SAO Encyclopedia of Astronomy.

Compact Binary Coalescence—When binary star systems consist of com-
binations such binary neutron stars (BNSs), binary black holes (BBHs), or neutron
star–black holes (NSBHs), a pair of compact objects orbit around each other, they are
collectively referred to as compact binary coalescence (CBC). These compact objects
are destined to merge if their initial orbital separation is small enough to coalesce within
a Hubble time [255], due to energy loss through GWs release [222]. The detection of
these events provides a unique opportunity to investigate many science cases pertaining
to the properties of the sources, including their mass, spin, distance, and equation of
state (EOS), especially for the NSs [60, 187, 94, 93, 281, 47]. These mergers are sig-
nificant not only for their GW emissions but also for their potential EM counterparts,
when one of the binary components is a NSs. Such events can lead to the production of
heavy elements via rapid nucleosynthesis processes, known as the r-process [88, 103,
106, 224, 243, 266].
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1.3 Gravitational-waves Astronomy

1.3.1 Introduction to gravitational-waves

The GWs are disturbances in the geometry of space-time that propagates through the
universe at the speed of light and carry detailed information about their astrophysi-
cal sources. These waves interact weakly with matter, allowing them to travel large
distances without significant alteration. To detect these signals, ground-based laser
interferometer detectors such as LIGO, Virgo, and KAGRA are employed. These in-
struments detect minuscule modifications in length induced by passing GWs, typically
on the order of 10−20 meters. The most promising sources of detectable GWs are com-
pact objects like NSs or BHs in binary systems. When these objects orbit each other,
they lose energy through GWs emission, leading to a progressive decrease in their or-
bital distance and eventual merger. This process, characterized by strong gravitational
fields and rapid accelerations, culminates in a burst of gravitational radiation just be-
fore coalescence. In these last moments before fusion, the amplitude of GWs increases
considerably as we approach the fusion time, making them detectable by the GW ob-
servatories. The initial observational evidence confirming the existence of GWs was
the observation of orbital decay in the binary system PSR B1913+16, which consists
of two NSs, including a pulsar [285]. A pulsar is a type of highly magnetized NS that
emits beams of EM radiation from its magnetic poles. These poles do not align with the
rotation of NS axis. As a result of the rapid rotation of the pulsar, these beams scan the
space in a way similar to that of a lighthouse. Figure 1.4 shows the orbital decay.

1.3.2 Mathematical formulation of gravitational-waves emission

GWs, as predicted by the theory of GR, represent perturbations in the curvature of
space-time propagating at the speed of light. These perturbations are derived from the
second-order time-varying quadrupole moment of a mass-energy distribution, causing
the ripples in space-time. Henri Poincaré and Albert Einstein established the foundation
for understanding of the GWs physics, which are now detectable phenomena associated
with some of the most cataclysmic events in the universe [196, 118, 119]. The theo-
retical foundation for the emission of GWs lies within the linearized approximation of
Einstein’s field equations, wherein the metric tensor gµν can be expressed as a perturba-
tion hµν of the Minkowski metric ηµν [200]:

gµν = ηµν +hµν, (1.3)

where the absolute value of hµν is significantly smaller than 1, with indices µ and ν

ranging from 0 to 3, corresponding to the temporal (0) and spatial (1, 2, 3) dimensions
respectively [48].

The transverse-traceless (TT) gauge simplifies GWs analysis by imposing con-
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Figure 1.4: The cumulative shift in periastron time for binary pulsar PSR B1913+16,
demonstrating energy loss through gravitational radiation. The masses of NSs are
m1 = 1.4398± 0.0002M⊙ and m2 = 1.3886± 0.0002M⊙. The plotted data validate
the predictions of GW emission, illustrating the decrease in orbital period and provid-
ing early experimental support for the existence of GWs. Credit for the figure: Figure
from [285].

ditions that reflect their physical characteristics. This gauge ensures that the perturba-
tion hTT

µν satisfies two key properties:

• It is transverse, meaning that the direction of the wave propagation is perpendic-
ular to the plane defined by the oscillations of the wave. This ensures a distinct
observation and measurement of GWs interactions with matter.

• It is traceless, indicating that the trace (the sum of diagonal elements) of the per-
turbation tensor is zero. This condition reflects the conservation of mass-energy
in the system and is crucial for isolating the pure GW effects from other potential
sources of disturbance.

Under the Lorenz gauge condition [141], ∂µhTT
µν = 0, the wave equation on the
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TT gauge is:

□hTT
µν =−16πG

c4 Tµν, (1.4)

with □ is the d’Alembert operator, characterized by the combination of time and space
derivatives, given as −1

c2
∂2

∂t2 +∇2, and Tµν is the energy-momentum tensor (defined in the
section 1.1). This equation succinctly relates space-time perturbations from GWs to the
mass-energy distribution that generates them. The effects of the waves are shown by
their interaction with matter. In the TT gauge, GWs influence test particles by inducing
relative acceleration, primarily from the quadrupole moment of their source. For a
localized source, the distant GW field is:

hTT
µν (⃗x, t) =

4G
c4 |⃗x|Q̈

TT
µν (t − |⃗x|/c), (1.5)

where Qµν(t) represents the second mass moment tensor of the source, and the double
dots indicate a second-order time derivative. This equation describes the radiative as-
pect of GWs as space-time metric fluctuations, connecting astrophysical systems to the
GWs detectable from distance.

1.3.3 Interaction of gravitational-waves on particle distributions

GWs are ripples in the geometry of space-time that travel at the speed of light, influ-
encing the motion of nearby particles. Predicted by GR, these waves are character-
ized by two polarization states: the + (plus) and × (cross) polarizations, which create
distinct oscillation configurations in the particle. These configurations are crucial for
GW observatories in this case LIGO, Virgo, and KAGRA. There, polarizations in the
transverse-traceless gauge is given by the polarization tensor: For a GW traveling in the
z⃗ direction.

hT
i j =




h+ h× 0
h× −h+ 0
0 0 0


 , for a GW traveling in the z⃗ direction, (1.6)

with h+ and h× denoting the amplitudes of the plus and cross polarizations, respectively.
As GW propagate through space, they alter the positions of the particle, described by:

{
x′ = x(1+h+)+ yh×,
y′ = y(1+h+)− xh×,

(1.7)

In this context, x and y are the initial coordinates of a particle, while x′ and y′ represent
its coordinates after a GW passage. The h+ polarization modifies distances along the
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Figure 1.5: Diagram showing the deformation of a ring of particles in the plane perpen-
dicular to GWs propagation, varying with wave phase. The diagram displays both +
and × polarizations in the TT gauge, with the top row representing the + polarization
and the bottom row representing the × polarization.

same axis, whereas h× induces diagonal shifts, illustrating the orthogonal effects of
these polarizations. To assess GW effects, measuring the induced length difference
∆L and the fractional change ∆L/L due to GW strain h plays an important role for
GWs detection. Equation(1.7) describes the displacement caused by GW polarization
in the TT gauge, illustrating how GWs impact on space-time. Figure 1.5 visualizes the
deformation of a ring of particles located in the x-y plane, perpendicular to the GW
propagation direction (along the z direction).

1.3.4 Gravitational-waves sources

GWs arise from a multitude of astrophysical phenomena. Transient sources, charac-
terized by brief durations of milliseconds to seconds, include cataclysmic events such
as the core collapse of massive stars, often resulting in SN, referred to as bursts [166],
and the mergers of BHs, which are among the most energetic events in the universe.
Moreover, there exist extended-duration transients, showed by NS mergers [255]. These
phenomena not only generate GWs but are also associated with other astrophysical phe-
nomena, such as GRBs [166]. For continuous and stable emissions, we turn to pulsars,
which are rotating NSs with asymmetric mass distributions that facilitate a constant
GW signal [285]. The stochastic background also presents a potential source, conjec-
tured as an incoherent superposition of GWs from a multitude of unresolved discrete
sources, potentially harking back to the primal moments of the nascent universe [176].
In particular, wormholes, theoretical tunnels connecting disparate space-time locales,
are frequently conjectured as GW sources [110], yet remain speculative within the con-
fines of theoretical physics. The violation of energy conditions by quantum phenomena
supports the idea that singularities are a limitation of GR and would be resolved in a
more comprehensive theory of quantum gravity [174]. The concept of wormholes re-
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mains purely theoretical: their existence and physical formation in the universe have not
been verified [225]. These hypothetical constructs, solutions to Einstein’s field equa-
tions without event horizons or central singularities, could theoretically mimic certain
astrophysical signatures attributed to BH. The emission of GWs from CBC sources
occurs in several sequential stages according to the evolution of the binary star system.

1.3.5 Dynamical progression of gravitational-waves emission

The simultaneous detection of GW150914 by the two LIGO detectors [184] marked the
first direct observation of a GW [13]. This event involved the coalescence and merger
of a binary system of BHs orbiting around each other, generating a GW signal. The
signal delineates several sequential phases in a CBC system: the inspiral, merger and
ringdown.

During the inspiral stage, the BHs orbit in close proximity, gradually spiraling
inward as gravitational radiation dissipates orbital energy. This period is accurately
described by post-Newtonian theory, where the GW amplitude increases along with the
orbital frequency. A plunge phase begins at the end of the quasi-static phase inspiral
[78]. During this phase, the two compact objects continue to have distinct apparent
horizons, which differ from event horizons and are defined as the boundaries where
light rays directed outward move outward and, respectively, inward. The merger phase
occurs when the two apparent horizons coincide, giving rise to a common apparent
horizon [183]. This represents the peak of GW amplitude. This phase is brief but
dynamically complex, and numerical relativity provides the most precise simulations of
these intense gravitational interactions. Following merger, the newly formed, perturbed
BH enters the ringdown phase, characterized by the emission of damped GWs as the BH
settles into a stable state. These distinct quasi-normal oscillations, with their specific
frequencies and damping times, provide insight into the inherent properties of BHs as
predicted by GR [73, 65].

To address the late inspiral phase, the post-Newtonian theory is advanced to
higher orders in v/c, with v the relative velocity of the binary system [269]. The method
produces analytical approximations closely aligned with the actual solution, affected by
parameters such as masses and spins [252]. In the merger and ringdown phases, numer-
ical relativity becomes essential to solve the complete Einstein field equations, which
requires extensive computational effort [79]. Figure 1.6 illustrates the compact binary
merger, showing the decreasing orbital separation until reaching the innermost stable
circular orbit (ISCO), after which the separate entities merge into a single, perturbed
BH.

1.3.6 Implications for gravitational-waves Astronomy

Summary of GWs Detection Campaigns—In 2015, the LIGO-Virgo collaboration
detected for the first time GWs from the coalescence and merger of two BHs, each with
mass of 29 and 36 M⊙, respectively. This landmark detection opened up great possibili-
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Figure 1.6: Chronological depiction of GW emission in CBC, showing evolution
phases. Sequentially, inspiral (blue waveform), merger (green waveform), and ring-
down (orange waveform) are displayed. The GW strain profile illustrates increasing
amplitude and frequency during the inspiral, leading to merger and then decaying ring-
down. This sequence represents orbital tightening peaking at the ISCO before the final
coalescence, modeled by numerical relativity. This figure is from [48].

ties [13], marking the beginning of the era of GW astronomy. These observations allow
for unprecedented tests of GR in strong gravitational regime and provide insight into
the properties and dynamics of compact binary systems [197, 14]. GWs offer highly ac-
curate estimations of binary system parameters due to their negligible interaction with
matter, thereby maintaining the consistency of the data transmitted over cosmological
expanses. In GR, the transmission of gravitational effects is not instantaneous, but prop-
agates at the speed of light, a principle that underlies the prediction and observation of
GWs.

Currently, the international gravitational-wave network (IGWN), which in-
cludes the two American Advanced LIGO (aLIGO) detectors, including the LIGO Liv-
ingston Observatory (LLO) and the LIGO Hanford Observatory (LHO), the European
Advanced Virgo (AdVirgo) detector, and the Japanese KAGRA detector, organizes the
detection of GWs in observation campaigns. Since the first GW detection, up until
the LIGO/Virgo/KAGRA’s fourth observing run (O4) campaign, 188 BBH mergers
have been observed, along with numerous BNS and NSBH events. During the LIGO’s
first observing run (O1) and LIGO/Virgo’s second observing run (O2) campaigns, from
September 2015 to August 2017, a total of 11 merger events were observed: 3 BBH
mergers during O1, and 7 BBH mergers along with one BNS merger during O2 [12].
The LIGO/Virgo’s third observing run (O3)a campaign, from April to September 2019,
detected 39 merger events: 35 BBH mergers, 3 NSBH mergers, and 1 BNS merger
[16]. The O3b campaign, from November 2019 to March 2020, observed 35 merger
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events, consisting of 32 BBH mergers and 3 NSBH mergers [25]. Most recently, the
O4a campaign, running from May 2023 to January 2024, resulted in the detection of
89 merger events, including 81 BBH mergers, 6 NSBH mergers, and 1 BNS merger.
The Gravitational Wave Transient Catalogue 3 (GWTC-3) contains all CBC detections
during the O1, O2, and O3 campaigns, as shown in Figure 1.7.

Figure 1.7: The graphic represents the masses of GW detections, alongside BHs in blue,
NSs in orange and previously known compact objects from EM observations including
BHs in red and NSs in yellow.
Figure Credit: from LIGO/Virgo/KAGRAs | Aaron Geller | Northwestern University.

Gravitational-wave analysis—The analysis of data from the
LIGO/Virgo/KAGRA collaboration, spanning from O1 to O3a, has been crucial in
defining the upper mass limit for NSs and the lower mass limit for BHs, thus refining
the classification of compact binary systems. This extensive analysis has revealed a
stiffening in the power law describing the masses of NSs and low-mass BHs with a
99.3% confidence level below 2.4+0.5

−0.5 M⊙ [122].

Through this study, we developed a new distribution for CBCs that supports
current IGWN "observing scenarios," anticipating the statistical outcomes of future ob-
servation campaigns. The compact binaries are classified into three astrophysical pop-
ulations: BNSs, NSBHs, and BBHs. Our distribution is derived from the population
model described in [122] and [25], known as the Power Law + Dip + Break (PDB)
model. By fitting this model to all CBCs in GWTC-3 from [25] and using the maxi-
mum a posteriori value of the resulting fit, we refined our understanding of these pop-
ulations. Previous "observing scenarios" used the Living Reviews in Relativity (LRR)
distribution, drawn from the population model outlined in [17] and [223]. This distri-
bution consists of a normal distribution for NS masses and a power law for BH masses.
The new one, Power Law + Dip + Break/GWTC-3 (PDB/GWTC-3) will be detailed in
Chapter 2. A fundamental result of our analysis is to demonstrate that a single power
law cannot accurately describe the mass distribution of BHs and NSs, thus helping to
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define the mass boundaries between NSs and BHs [129, 21].

The BNSs and NSBHs populations are of particular interest in this dissertation,
as they can be accompanied by EM counterparts to the GWs, opening up opportunities
for additional science cases, such as constraints on the EOS [114, 218, 274], the mea-
surement of the expansion rate of universe [101, 100, 150, 211, 114, 125, 210], and
evaluate the r-process [271, 181].

1.4 Multi-messenger Astronomy

1.4.1 Background

Multi-messenger Signals—Following a series of BBHs observations [23, 19, 18], the
field of multi-messenger astronomy exploded with the combined detection of the BNS
merger GW170817 [24], the GRB GRB170817A [22], and the EM transient AT2017gfo
[5], which manifested as a KN and a GRB afterglow emitting from X-ray to radio [36,
88, 121]. Multi-messenger astronomy aims to integrate data from GWs, EM observa-
tions, and potentially other messengers such as neutrinos, to create a comprehensive
synthesis of cosmic events. However, this field faces significant challenges, including
the limited understanding of KNe, which are radioactive explosions resulting from the
merger of NSs or a NS with a BH.

Our knowledge of KNe, which is crucial to understanding the mechanisms of
heavy element production and cosmic chemical evolution, is limited due to the absence
of comprehensive data sets. The event GW170817 [24] is an excellent example, but
additional data, especially those associated with GRB follow-ups. Questions about the
merger rates of BNS and NSBH systems [25], the nature of GRB, including distinctions
between short and long bursts [32, 52, 236, 235], and the EOS of NSs [60, 187, 94, 93,
281, 47, 202, 231, 173, 114, 155] remain unresolved, underscoring the need for more
comprehensive data. The advent of current and forthcoming GW detectors, along with
advanced space-based observatories such as the Neil Gehrels Swift Observatory (Swift;
[137]), the James Webb Space Telescope (JWST; [136]), and the Ultraviolet Transient
Astronomy Satellite (ULTRSAT) [259] highlights the necessity for enhanced real-time
coordination and the expedited identification of transient candidates within the realm
of multi-messenger astronomy as Skyportal, a collaborative platform for time-domain
astronomy [282, 98].

Gamma-ray burst—GRBs, among the most energetic phenomena in the uni-
verse, release vast amounts of energy in γ-rays, equivalent to up to 1M⊙ assuming
isotropic emission [172, 54]. These events are also especially bright in the optical do-
main [34, 158]. GRBs classified as "short/hard" have durations of a few seconds or
less and feature a harder spectrum in terms of their energy release [198]. They have
been associated with GWs, with their progenitors predominantly being CBCs, such as
BNSs evidenced by GRB170817A [22] or NSBH systems [205]. Conversely, "long/-
soft" GRBs typically last longer than a few seconds, possess a softer spectrum, and are

Page 29



1.4. MULTI-MESSENGER ASTRONOMY

believed to originate from the core collapse of rapid rotating massive stars [288]. The
luminosity of γ-ray afterglows, which cover the X-ray to optical/near infrared (NIR)
energy range, further underscores the diverse nature and observational implications of
these astrophysical phenomena.

Kilonova—KNe, characterized by their ultraviolet, optical, and infrared emis-
sion, are transient astrophysical phenomena that provide cosmic observatories in the
aftermath of mergers involving binary NS systems or NSBH pairs. These cataclysmic
events are essential for understanding the synthesis of the heavy elements of the uni-
verse, such as gold and platinum, through the rapid neutron capture process, or r-
process [271, 181]. All matter in the universe is made up of 118 chemical elements,
varying in mass from hydrogen to oganesson. Most of the naturally occurring elements
heavier than iron and nickel are produced by the r-process. The r-process cannot be
recreated here on Earth, and so we rely on astrophysical observations to understand
how and where heavy elements form. The BNSs create the highest density of matter
in the cosmos (aside from BHs), making these systems ideal laboratories for studying
matter [244, 59, 284, 254, 243]. By measuring the radius and the mass of NSs, we can
infer the microscopic interactions between neutrons and protons in the NS core. These
interactions are described by the EOS a relation between the star’s pressure and density.
The emission from KNe, unlike the collimated emission from GRBs associated with
these mergers, is relatively isotropic, making it an ideal EM counterpart to GW signals
[84, 195]. The discovery of EM emission associated the GW chirp has the potential to
reveal a much richer understanding of these cataclysmic events [70].

In addition, by identifying the host galaxies of the merging systems and their
precise locations within or around their hosts, we obtain valuable information on the
binary formation channels, the age of the stellar population, and evidence for dynamical
formation channels in dense stellar systems, or displacement due to NS events, in an
approach similar to techniques applied to GRBs and KNe [135]. Then, the measure of
the GW polarization is important to deduce the binary inclination. This inclination, ι,
is defined as the angle between the line of sight to the detector and the orbital angular
momentum vector of the binary system. For EM phenomena, it is generally not possible
to determine whether a system orbits clockwise or counterclockwise (or equivalently,
face-on or not), so sources are usually characterized by an observation view angle:
min(ι,180◦− ι). However, GW measurements can identify the rotation direction.

GW170817—The landmark observation of GW170817, the GW signature from
a BNS merger with an optical counterpart in the NGC 4993 galaxy, approximately
130 million light years away, marked the significance of KNe in astrophysical research
[41]. This event highlighted the role of KNe in probing the nucleosynthesis of elements
beyond iron [159, 289, 241, 7], investigating the properties of ultra-dense matter [58, 3,
232, 61], and understanding the expansion rate of the universe [5, 151, 102, 80]. The
theory of GR predicts that BNS and NSBH mergers will generate GWs, ripples in the
geometry of space-time. The synergy between GW detections and KN observations
illustrates multi-messenger astronomy, offering a comprehensive approach to studying
these cosmic events and their implications [195]. The peak luminosity of a KN, which
can be modeled by the energy deposition rate from the decay of r-process nuclei, is
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given by:

Lpeak ≈
Mejc2

τ
, (1.8)

where Mej represents the mass of the ejected material, c is the speed of light, and τ is
the decay timescale of the r-process elements.

GW170817’s broad EM spectrum not only confirmed the association of KNe
with the production of heavy elements but also with shortGRB, reinforcing the impor-
tance of KNe in the landscape of multi-messenger astronomy. This event confirmed
several theoretical predictions about KNe [175, 180, 194], providing information on
the r-process and the EOS of NSs. Observations of GW170817’s KN component have
confirmed the role of NS mergers as the dominant site for the synthesis of the heavy
element [104]. Furthermore, this showcased the potential diversity in KN signatures,
driven by varying ejecta properties such as mass, velocity, and composition, underscor-
ing the need for a diverse observational strategy to catch the full range of possible KN
emissions [195].

1.4.2 Emission mechanisms

The variety in KN emissions, especially the difference between "blue" and "red" KNe,
is mainly due to the electron fraction (Ye, Equation 1.9) of the ejected matter, which
determines the nucleosynthetic products. The electron fraction is the ratio of the number
of electrons to the total number of baryons (protons and neutrons) in the ejecta:

Ye =
ne

np +nn
, (1.9)

where ne, np, and nn represent the densities of electrons, protons, and neutrons, respec-
tively.

The ejecta with higher Ye (typically Ye > 0.25) tend to be free of lanthanides
and produce "blue" KN emissions. This is because these ejecta have lower opacity,
allowing light to escape more easily at shorter wavelengths and earlier times [182,
195]. In contrast, ejecta with a lower electron fraction (Ye < 0.25) undergo a r-process
nucleosynthesis that leads to the production of heavy and complex nuclei, including
lanthanides. The presence of lanthanides significantly increases the opacity, particu-
larly at optical wavelengths, as a result of the high density of line transitions. This
results in "red" KN emissions, characterized by a peak at longer, NIR wavelengths and
a longer duration compared to the "blue" KN. The opacities of the lanthanide-rich
ejecta (κlanthanides) and lanthanide-free ejecta (iron peak, κiron-peak) differ significantly,
with κlanthanides ≫ κiron-peak. The high opacity of the lanthanide-rich matter delays the
diffusion of light out of the ejecta, shifting the emission to later times and longer wave-
lengths.

BNS merger—The aftermath of a BNS merger can result in one of two distinct
outcomes: the formation of a BH or a hypermassive NS, depending on the total mass of
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the merger. A BH is inevitable if the cumulative mass exceeds 2.8 M⊙, as the remnant’s
gravity overcomes the repulsion forces. But, a total mass within the range of 2.4 M⊙
to 2.8M⊙ leads to the formation of a hypermassive NS, which eventually collapses into
a BH as it cools down and loses angular momentum, typically within a timeframe of
approximately 10 seconds [256].

NSBH merger—NSBH mergers are characterized by significant mass ejection
and disk formation, particularly when the BH is relatively low in mass and rapidly
spinning. This scenario facilitates the tidal disruption of the NS in the final inspiral
stages, instead of complete engulfment. For a NS with a 12 km radius and 1.4M⊙ mass,
the BH mass must be between 4 to 12 M⊙ with a spin parameter (aBH) of 0.7 to 0.95.
This process contrasts with BBH mergers, which typically do not produce significant
ejecta. The KNe from NSBH mergers are bright events, surpassing novae in luminosity
by a factor of a thousand, and serving as primary sites for heavy element production
[195, 167].

Numerical relativity simulations of dynamical ejecta from CBCs are crucial to
understanding how the geometric distribution of the ejecta influences the radiation emit-
ted, particularly the EM emission. These simulations are essential to explain the com-
plex processes that occur during CBCs, especially within populations such as BNS
and NSBH mergers [167]. Figure 1.8 illustrates the different ejection mechanisms and
their contributions to the nucleosynthesis pathways of the main and weak r-processes.
The interplay between the electron fraction of the ejecta, the resulting nucleosynthetic
yields, and the opacities of the synthesized elements plays a significant role in shaping
the observable properties of KNe. This intricate relationship highlights the importance
of multi-wavelength observations to fully capture the complex nature of these astro-
physical events. To achieve this, we require ground-based and satellite observatories
GW observatories like the IGWN and The Laser Interferometer Space Antenna (LISA),
the GRB observatories such as Swift, the X-ray observatories as Space-based Vari-
able Objects Monitor (SVOM; [258]), ultraviolet observatories such as the forthcoming
ULTRSAT, and optical observatories, including Zwicky Transient Facility (ZTF) [63],
and the upcoming Vera C. Rubin Observatory (Rubin Observatory)’s, Large Synoptic
Survey Telescope (LSST) [156].

1.5 Gravitational-wave detectors

1.5.1 Ground-base detectors

LIGO/Virgo/KAGRA collaboration—The aLIGO [184] and AdVirgo [29] observato-
ries represent the cutting edge of the second generation of GW detectors. Each uses ad-
vanced Michelson interferometer modifications to enhance detection capabilities. The
aLIGO system consists of twin facilities, including the LHO and the LLO, both with
4km arm lengths, Fabry-Pérot cavities to extend the GW interaction time, and power
recycling to increase laser power. AdVirgo, situated at the European Gravitational Ob-
servatory in Cascina, Italy, incorporates 3km arms and takes advantage of state of the
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Figure 1.8: Schematic representation of r-process nucleosynthesis sites in BNS and
NSBH mergers. The left panel shows a BNS merger leading to the formation of a
BH and its associated ejecta types, highlighting the role of NS driven outflows. The
right panel depicts an NSBH merger, characterizing the accretion disk outflows and
the formation of a BH. Detail: A neutron to proton ratio (n:p ≈ 9:1) inside a NS,
determine the nature of the r-process nucleosynthesis. This figure is adapted from work
by Matthew R. Mumpower. The concepts and data presented are based on [167, 256].

art optical technologies to improve its sensitivity to GW signals. The Integration of
KAGRA [35] in Japan, with its 3km arms, into the global network alongside aLIGO and
AdVirgo for the O4 and forthcoming LIGO/Virgo/KAGRA’s fifth observing run (O5)
crucial for confident GW detections. This IGWN improves our ability to accurately lo-
cate GW sources through coherent detections across multiple detectors. GW sky maps,
which are essential for the location of sources, use advanced probability mapping tech-
niques to identify EM counterparts [265, 64]. The continual improvement in detector
sensitivity increases our capacity to detect CBCs, a capability further reinforced by the
inclusion of KAGRA. The map of detector projects is shown in Figure 1.9.

GWs induce distortions by altering the relative lengths of the interferometer
arms. The core detection mechanism involves splitting a laser beam into two perpen-
dicular paths that reflect off mirrors at the ends of the arms and then recombine, creat-
ing an interference refers sensitive to GW. The LIGO/Virgo/KAGRA detectors target
100-1000 Hz frequencies, corresponding to BH masses of 1–100 M⊙, and are typically
sensitive to BH masses around 150 M⊙, covering inspiral and merger phases.

Virgo detector configuration in Run O3—During the O3, AdVirgo detec-
tor showcased significant advances and specifications within the IGWN. The core of
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Figure 1.9: Map of detector construction projects. Credit: Caltech/MIT/LIGO Lab

Virgo’s operation includes a power-stabilized laser (PSL) providing a consistent light
beam. This beam, modulated by an electro-optic modulator (EOM), is purified of spa-
tial shape and frequency noise by an input mode cleaner (IMC), enhancing its suitability
for detection. At the beam splitter (BS), the light is divided, traveling through the West
and North arms, each several kilometers long, and reflecting off mirrors (B7 and B8)
before merging back at the BS. It is at this juncture that GWs manifest, subtly altering
arm lengths and inducing a detectable phase shift as the beams recombine [28, 37]. The
detection system is supported by sophisticated feedback controls, such as the Power
Recycling Cavity Length (PRCL) and the Michelson Interferometer Channel (MICH),
which are important for maintaining resonance within the cavities and optimal inter-
ference at the BS. Additionally, a Squeezed Vacuum Source and the Subcarrier Servo
Feedback System (SSFS) stabilize the laser light frequency and reduce quantum noise,
respectively. Photodiodes convert the interference patterns, altered by GWs, from op-
tical to electrical signals, enabling the extraction of GW signals and noise reduction.
Advanced signal processing and machine learning techniques analyze photodiode data,
isolating GW events from cosmic noise and matching them to theoretical waveforms
from astrophysical phenomena, such as binary BH mergers.

The laser power injected into the interferometer was 19W, and a squeezed light
source was installed to reduce the noise of the shots at high frequencies. The 3km arm
length, 1.2m diameter vacuum tubes maintained at 10−9 mbar, and the use of Fabry-
Pérot cavities and a high-reflectivity Power Recycling Mirror (PRM) exemplify the
technological advances made to enhance sensitivity and precision in GW detection. Op-
erational sensitivity is fundamental for differentiating genuine GW signals from back-
ground noise. Achieving this sensitivity involves advanced noise reduction techniques
and precise design of the optical and vacuum systems within the detectors. Figure 1.10
provides a detailed schematic of the Virgo detector layout during the O3 run, illus-
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trating the integration of critical components such as the laser source, beam splitter,
Fabry-Pérot cavities and end mirrors. These elements are key to enhancing the detec-
tor’s sensitivity to GWs. For a comprehensive discussion on the operational sensitivity
and noise reduction strategies in GW detectors, refer to [37], which explores the sophis-
ticated design and technology behind these advancements. The sensitivity of a detector
is evaluated by the mean distance at which it can detect the inspiral signal of a 1.4M⊙
BNS with an S/N of 8, known as the BNS inspiral range.

Figure 1.10: Schematic of Virgo detector during O3, illustrating essential elements such
as the laser source, beam splitter, Fabry-Pérot cavities, and end mirrors. Figure credit:
from [37].

BNS inspiral range—The operational range of GW observatories is determined
by the S/N for a given GW signal, h̃( f ), within the ambient noise environment. The
power spectral density (PSD) of this noise, Sn( f ), is defined as Sn( f )= 2

T |ñ( f )|2, where
T represents the total observation time and ñ( f ) is the Fourier transform of the detec-
tor’s noise time series n(t). The mean S/N, ⟨ρ⟩, is determined by the integral:

⟨ρ⟩=
(∫ fmax

fmin

|h̃( f )|2
Sn( f )

d f
)1/2

(1.10)

Given the inverse proportionality of h̃( f ) to the luminosity distance dL and its frequency
dependence of f−7/6.
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At the Newtonian order the signal waveform is:

h̃( f ) =
1
dL

(
5π3/2

24c3

)1/2

(GMc)
5/6(π f )−7/6eiΨ( f ,M), (1.11)

where Mc represents the chirp mass and the phase Ψ is a function of f , which varies
with the total mass M.

The horizon distance dH for the binary, using the waveform above, is calculated
with ⟨ρ⟩= 8:

dH =
1
4

(
5π3/2

24c3

)1/2

(GMc)
5/6

(∫ fmax

fmin

f−7/3

Sn( f )
d f

)1/2

, (1.12)

This approach offers a detailed methodology for determining the operational
range of GW observatories by considering the S/N and the properties of the GW signal
and noise. In this analysis, we have used the TaylorF2 waveform model to calculate
h̃( f ) for non-spinning BNS systems with equal masses of m1 = m2 = 1.4M⊙, spanning
a frequency range from fmin = 10Hz to fmax, where the latter matches the frequency
at theISCO [90]. To assess the efficacy of different interferometers, I use their respec-
tive Sn( f ) to ascertain the BNS inspiral range for a binary system of 1.4 M⊙ detected
with an S/N of 8. Figure 1.11 displays the operational timeline and the BNS inspiral
range values for each interferometer during this interval. The detection of BNS inspi-
ral is achievable with an S/N of 8 [128, 87, 127]. In chapter 2, we will perform these
calculations for the O4 and O5.

Virgo in O4b run—Virgo has commenced the O4b phase, continuing joint GW
detection efforts with LIGO. This starting at 15:00 UTC on 10 April 2024, after the
O4a run and commissioning, the aim is to maintain O4b until February 2025 without
breaks for upgrades or maintenance. The Virgo detector, now tuned to a sensitivity of
55-60 Mpc, targets a 80% minimum duty cycle, which is useful for ongoing GW data
collection and analysis GW. Minor adjustments are expected to further improve Virgo’s
performance. The LIGO detectors operate at 155-175 Mpc sensitivity, achieving 80 and
98% duty cycles, indicating enhanced network observation capabilities. Figure 1.12
shows the latest Virgo sensitivity curve, including O3b and O4 references, highlighting
its detection progress in O4b.

As we will discuss in Chapter 6, several factors contribute to noise in detectors,
including environmental noise, instrumental artifacts, quantum sensing noise, thermal
fluctuations, and other unknown sources of noise limiting sensitivity. Environmental
noise, such as seismic noise, significantly reduces detector performance. To mitigate
sensitivity limitations such as seismic noise in third-generation interferometers, signifi-
cantly larger projects are being considered. These include the Einstein Telescope (ET)
project [229] and the American Cosmic Explorer project [237]. Alongside these terres-
trial interferometers, the space-based LISA project observes at low mHz frequencies.
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Figure 1.11: Timeline of the O4, which commenced on May 24, 2023, and is slated
for a duration of 20 calendar months. It is anticipated that four observatories, LHO,
LLO, Virgo, and KAGRA, will be operational and contribute data during this period.
The timeline delineates periods of observation and scheduled downtimes, which are
allocated for upgrades and commissioning, illustrated by vertical gray bands. In adi-
tion, the figure presents the detection range for BNS mergers based on a single-detector
S/N threshold of 8 for each run. Accurate monitoring of these ranges is vital for grav-
itational wave astrophysics, enhancing our understanding of BNS characteristics and
distribution.
Credit for data and visualization: LIGO Scientific Collaboration, https://dcc.ligo.org/L
IGO-G2002127/public

Figure 1.12: This graph, dated April 14, 2024, shows the Virgo detector’s sensitivity
during the O4b period. It compares the BNS inspiral sensitivity of 54 Mpc with the 60
Mpc from the O3b period and the 88 Mpc target for the O4 period, indicating improve-
ments for the upcoming O5 run.
Credit: https://vim.virgo-gw.eu
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1.5.2 Space-based detector

The LISA is a major GW astronomy initiative, responding to the call from the European
Space Agency (ESA) for the concepts of the L3 mission [39]. Scheduled for a 2035
launch, LISA aims to detect low-frequency GWs (10−5 Hz to 10−1 Hz), beyond the
reach of terrestrial detectors such as LIGO, Virgo, KAGRA and other upcomin GW
observatories. The mission will conduct an extensive survey of gravitational transients,
offering unique insights into various cosmic events.

LISA mission—The LISA mission involves three spacecraft configured in an
equilateral triangle, with each side measuring 2.5106 km long, as they orbit the Sun
alongside Earth. This setup allows for detecting GWs from events like massive BH
mergers across the universe and compact binary systems within the Milky Way. The
data will test GR, advance knowledge of BH physics, stellar evolution, and provide
insights into extreme mass ratio inspirals (EMIs), exploring space-time around massive
BHs and compact object properties. Additionally, LISA will monitor the stochastic
background [176].

LISA Sensitivity—The sensitivity curve of the LISA is one of the important
aspect of its design, showing its capability to detect GWs across a wide low-frequency
range. The instrument sensitivity curve, Sn( f ), incorporates the effects of both optical
metrology noise, PtextOMS and acceleration noise, Ptextacc, as described by:

Sn( f ) =
10
3L2

(
POMS +2

(
1+ cos2

(
f
f∗

))
Pacc

(2π f )4

)(
1+

6
10

(
f
f∗

)2
)
, (1.13)

where,





POMS = (1.5×10−11 m)2
(

1+
(

2mHz
f

)2
)
,

Pacc = (3×10−15 m s−2)2
(

1+
(

0.4mHz
f

)2
)(

1+
(

f
8mHz

)4
)

Hz−1

The characteristic frequency scale f∗ = c/(2πL) for the detector, where L = 2.5 Gm is
the arm length of LISA and c is the speed of light [228].

Galactic binaries confusion—The galactic confusion noise, Sc( f ), which de-
creases as the mission progresses, is represented by the equation [92]:

Sc( f ) = A f−7/3e− f α+β f sin(κ f ) (1+ tanh(γ( fκ − f ))) Hz−1, (1.14)

with parameters depending on the observation time, as shown in Table 1.1.

The overall sensitivity curve for LISA , SLisa( f ), combines instrument noise and
unresolved galactic binaries confusion noise, and is illustrated for a four-year mission
lifetime in Figure 1.13.
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Table 1.1: The parameters of galactic noise confusion adjust based on the observation
time.

6 months 1 year 2 years 4 years

α 0.133 0.171 0.165 0.138

β 243 292 299 -221

κ 482 1020 611 521

γ 917 1680 1340 1680

fκ 0.00258 0.00215 0.00173 0.00113
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Figure 1.13: LISA overall sensitivity curve, including both the instrument noise and
the unresolved galactic binaries confusion noise, over a four-year mission lifetime. The
observation frequency range is set between 10−5 and 1 Hz.

1.6 Telescopes

The KNe are potential EM counterparts to GWs, emitting across the ultraviolet (UV),
optical, and NIR spectra. Prompt, automated UV follow-ups are essential for tracking
KN candidates. Effective coordination of upcoming space telescopes like ULTRSAT
and Ultraviolet Explorer (UVEX) [171] is critical. The optical emissions from KNe are
monitored using ZTF and the Rubin Observatory. In this section, I focus on ULTRSAT,
ZTF, and Rubin Observatory, detailed in Chapters 3 and 4.

ULTRASAT mission—The ULTRSAT is designed for a 2026 launch into geo-
stationary orbit, the ULTRSAT mission is set to revolutionize the field of UV astron-
omy. Although the average limiting magnitude of ULTRSAT, 22.5 absolute in a 900s
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exposure for a 5σ detection may appear modest relative to other space telescopes, it is
important to appreciate the specific objectives of the mission and observational parame-
ters. Operating within the near-ultraviolet spectrum (230-290 nm), a challenging region
for detecting dim sources, ULTRSAT boasts a significant field of view (FOV) of 204
deg2, enabling it to quickly scan vast areas of the sky for transient phenomena [259].
This extensive field capability is vital for its main objective of identifying and tracking
rapid transients such as BNS mergers and KNe. Thus, the limiting magnitude is a de-
liberate compromise between sensitivity, survey speed and coverage area, establishing
ULTRSAT as a distinctive tool for time-domain astronomy and transient sky studies.
Additionally, it is an innovative approach to astronomical photometry by integrating a
bandpass finely tuned to the radial positions. This unique attribute is crucial for wide-
field observations of transient astrophysical events. By sensitively responding to radia-
tion from various radial distances, the ULTRSAT bandpass facilitates detailed detection
and analysis of sources, shedding light on their intricate properties. This radial sensitiv-
ity is essential for distinguishing between foreground and background events, thereby
enhancing the mission’s ability to pinpoint and examine rapid transient occurrences and
offering a new perspective in the field of time-domain astronomy.

Moreover, the advanced UV capabilities of ULTRSAT are expected to elucidate
the dynamics behind tidal disruption events (TDEs) and accretion processes at super-
massive black holes. By capturing the early UV signatures of these violent occurrences,
ULTRSAT will deliver essential data for understanding the physical conditions and en-
ergy dynamics of TDE, and provide insight into the population statistics and evolution
of these elusive phenomena. ULTRSAT is set to revolutionize the study of cosmic
events with its wide UV time-domain survey capabilities. It is designed for the rapid
detection and monitoring of transient events such as BNS mergers and KNe. Equipped
with a rapid slew rate of more than 0.5 deg.s−1 and a roll-slide readout mode for fast
data collection, ULTRSAT is uniquely prepared for ongoing observation and immedi-
ate response [259]. Its operational flexibility allows it to provide continuous UV light
curves and early alerts, allowing in-depth studies of the structure and dynamics of these
cosmic phenomena and their role in the production of elements of the r-process. The
huge FOV, rapid slewing, and adaptable exposure times are crucial to capturing the
early stages of these events. Furthermore, real-time data transmission of ULTRSAT
and the swift alert system will work in conjunction with ground-based telescopes and
other space observatories, forming a worldwide network of rapid response astronomical
resources. This cooperation will enhance the scientific outcomes from transient events,
enabling multi-wavelength and multi-messenger studies that offer a comprehensive un-
derstanding of astrophysical phenomena.

Vera C. Rubin Observatory—The upcoming Rubin Observatory LSST [156]
is designed for a comprehensive 10-year survey of the southern sky. The LSST, with its
8.36 m aperture Simonyi Survey Telescope and a unique 9.6 deg2 field of view located
in Chile, aims to significantly increase the volume and quality of imaging data over a
10-year period and is expected to be operational in August 2025. It will utilize multiple
bands (sdssu, ps1__g, ps1__r, ps1__i, ps1__z, and ps1__y) to deliver subarcsecond
image quality and provide nightly alerts of astrophysical events around the world in real-
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time [66]. LSST exhibits distinct movement capabilities in its azimuth and elevation
directions: In the azimuth direction, it moves at a rate of 7 deg.s−1 over a range of 360
deg, while in the elevation direction, it moves at 3.5 deg.s−1 over a range of 90 deg
[207]. Given the disparity in the range of movements, a weighted average of 4:1 is used
to calculate a typical slew rate (see Eq. 1.17). This weighting reflects the azimuth’s
greater significance because of its higher speed and wider range. The typical slew rate
(TSR) is therefore calculated as follows:

TSR =
(4×Azimuth Rate)+Elevation Rate

5
(1.15)

=
(4×7)+3.5

5
(1.16)

= 6.3deg.s−1 (1.17)

The LSST focuses on key scientific themes such as probing dark energy and dark
matter, exploring transient optical phenomena, mapping the Milky Way, and cataloging
solar system objects. Its features a flexible scheduling system to handle unexpected
events and enhance scientific outcomes. The survey includes a primary wide-fast deep
survey, fields equipped with a 3.2-gigapixel camera, advanced data processing, and
specialized mini or microsurveys [156].

Zwicky Transient Facility—The ZTF [63, 142, 190, 108]) is a leading time-
domain astronomy observatory that efficiently builds an all-sky library, designed with
an emphasis on maximizing the speed of the volumetric survey. This innovative ap-
proach combines the significant elements of limiting magnitude, expansive field of view,
efficient exposure, and reduced overhead into a single metric. This metric effectively
captures the observatory’s ability to quickly scan the cosmos for new astrophysical phe-
nomena.

Central to ZTF’s operational excellence is the “Archon” controller, a sophisti-
cated system that ensures pixel-synchronous readout, an important component for main-
taining the pristine quality of the captured images. Complementing this is a state-of-
the-art biparting shutter, custom-developed to significantly minimize beam obscuration.
This shutter operates with exceptional swiftness, significantly enhancing the observa-
tory’s cycle of observation and enabling it to keep pace with the transient sky. In its
quest to map the transient and variable universe, ZTF demonstrates remarkable profi-
ciency in processing both streaked Near-Earth objects and point-like moving objects.
It employs dedicated pipelines designed for the meticulous task of identifying, linking
tracklets and then fitting orbits, showcasing its advanced capabilities in tracking and
studying the motion of celestial objects [63]. A distinctive feature of ZTF is its wide
field of view multi-band optical imagery, which extends a vast 47 deg2. This expansive
reach is facilitated by the use of specialized bands, namely zt f g, zt f r, and zt f i. ZTF
is a public-private project that routinely acquires 30 s images in the bands that cover
the entire available northern night sky every two nights. Due to its cadence, ZTF has
one of the most complete records of the contemporary dynamic sky. This capability en-
ables the detection of transients in the early stages of their active phase [142, 190, 108,
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109]. ZTF’s systematic candidate filtering down potential candidates from thousands to
a manageable few by checking brightness changes and historical data. Its comprehen-
sive follow-up strategy employs an extensive network of telescopes and instruments,
allowing in-depth photometric and spectroscopic studies [99]. These features enable
ZTF to quickly identify and examine transients, positioning it as an essential observa-
tory alongside with LSST and ULTRSAT. Figure 1.14 presents a comparison of the
FOV of ZTF alongside LSST and other large-survey cameras.

From these observatories, initiatives such as Global Rapid Advanced Network
Devoted to Multi-messenger Addicts (GRANDMA) and the Nuclear-physics and Multi-
Messenger Astrophysics (NMMA) group monitor GWs along with their EM counter-
parts, with the goal of integrating this information. Their aims include understanding
the r-process, determining the EOS for NSs, and estimating the expansion rate of the
universe through the consolidation of these data.

Figure 1.14: Comparative analysis of the FOV for the ZTF camera with other major
survey cameras, such as LSST. Both the Moon and the Andromeda Galaxy (M31) are
depicted to scale. Figure credit: ZTF, https://www.ztf.caltech.edu/ztf-camera.html.

1.7 GRANDMA consortium

The GRANDMA consortium is an international collaboration in the field of astro-
physics. It comprises an extensive network of 30 telescopes located in 23 observa-
tories, which involve 42 institutions from 18 different countries [50, 49]. This vast
assembly is dedicated to the swift detection and analysis of optical phenomena. One of
the key strengths lies in its wide geographical distribution, which facilitates continuous
monitoring of the sky and enhances the potential for observing transient astronomical
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events. GRANDMA has made significant contributions to observation campaigns such
as O3a and O3b, showcasing the remarkable capabilities of global scientific collabora-
tion in advancing our understanding of the universe. This inclusion extends the reach
and impact of GRANDMA in multi-messenger astronomy, highlighting the importance
of diverse global participation in scientific endeavors. Furthermore, GRANDMA’s ap-
proach to participatory science allows amateur astronomers to make significant con-
tributions to the field, specifically within the Kilonova-Catcher KNC1 initiative [50].
During the recent "ReadyforO4" campaign [33] to follow up on transients revealed by
ZTF, GRANDMA evaluated the potential of its team, which followed up eight transient
events. Observations were conducted using multiple filters and telescopes, demonstrat-
ing the invaluable role of citizen science in cutting-edge astronomical research. Fig-
ure 1.15 shows the 77 telescopes that participate in the GRANDMA KNC citizen sci-
ence program.

Figure 1.15: Global distribution of the 77 telescopes participating in the GRANDMA
citizen science program KNC, the telescopes used for the "ReadyforO4" campaign are
marked in blue, while the remaining telescopes in the network are indicated in red. This
figure is reproduced from the GRANDMA colaboration publications [33].

1.8 Conclusion

In this chapter I have explored the implications of GR and its importance in multi-
messenger astronomy. I highlight the physics of compact objects, such as BHs and NSs,
and their mergers, which could lead to an transient known as KN. Advances in GWs
astronomy from LIGO, Virgo, KAGRA, and future missions like LISA, will help probe
the physics of compact objects. If mergers produce EM counterparts, they will constrain
the nature of NS, allow independent measurement of the universe’s expansion rate,

1http://kilonovacatcher.in2p3.fr
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and study r-process nucleosynthesis. Coincident detection requires mastering statistics
and detector capabilities. The next chapter examines current and upcoming observing
campaigns.
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***
Through Chapter 1, I have gradually introduced the necessary concepts and tools, start-
ing from GR to multi-messenger astronomy. The search for EM counterparts of GWs,
particularly KNe, is crucial to understanding the production of heavy elements and
the evolution of cosmic chemical elements. Their combination with GWs provides an
opportunity to independently constrain the properties of the binary system. However,
this combination faces several significant challenges. One key issue is our limited un-
derstanding of KNe, the radioactive explosions that occur during the BNSs merger or
NSBHs. The resolution of this issue involves improving alerts by reducing the detec-
tion areas provided by GWs to enable the detection of potential electromagnetic coun-
terparts. The capability of UV, optical, and NIR telescopes, such as ULTRSAT for UV,
and optical telescopes like ZTF and Rubin Observatory, to detect these phenomena is
essential. Finally, these data help answer fundamental questions such as: What is the
EOS of NS ? and What is the value of the universe’s expansion rate? These are inde-
pendent projects, but share a common goal, to which I have tried to provide answers
during my doctoral thesis.

Chapter 2—The O3 of aLIGO/AdVirgo/KAGRA has significantly advanced
GW astronomy with another BNS merger and the first NSBH merger detections. In
this chapter, I explore CBCs simulations using the PDB/GWTC-3 distribution, guided
by the latest projections from the IGWN. The simulations aim to provide a foundation
for precise EM follow-up strategies, optimizing future scientific results. With enhanced
detector capabilities, this research seeks to expand astrophysical knowledge and prepare
for future multi-messenger observations.

Chapter 3—In multi-messenger astrophysics, combining GW, EMs signals and
neutrino data independently constrains NS mergers and their extreme environments.
These messengers provide complementary observations to probe different aspects and
improve understanding of the system. Although still emerging, integrating GW and
EMs observations uncovers fundamental Universe properties, from cosmic expansion
to atomic matter formation. The observation of GW170817, a BNS merger detected in
both GW and EMs spectra, has advanced nuclear physics by using the NMMA frame-
work to explore dense matter and improve H0 measurements. This framework, which
merges theoretical models with diverse observational data, has significantly impacted
astrophysics. Here, we introduce NMMA, measure universal expansion, constrain the
EOS, and present the "ReadyforO4" campaign of the GRANDMA collaboration.

Chapter 4—Building upon advances in GW astronomy, this section delves into
the refinement of EM counterpart detection strategies. Using accurate algorithms and
comprehensive skymaps, the aim is to enhance the efficiency of telescopic observa-
tions. This work reviews the ULTRSAT mission, the Rubin Observatory and the ZTF,
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focusing on their roles in detecting transient events. Introducing the Gravitational-wave
Electromagnetic Optimization (gwemopt) scheduling tool, I discuss simulated EM de-
tection rates throughout the ongoing and forthcoming observational periods and review
the efficiencies of such detections. It underscores the importance of rapid classifica-
tion of transient events and underscores the contributions of each observatory to multi-
messenger astronomy, setting the stage for future investigations.

Chapter 5—Significant progress in GWs and EM research has led to the cre-
ation of platforms like SkyPortal for effective discovery, follow-up, and management
of transient events. With the increasing number and sensitivity of telescopes such as
ZTF and the forthcoming Rubin Observatory’s LSST, a surge in transient alerts has oc-
curred. Astronomers require efficient methods to pinpoint critical events. To this end,
I developed an analysis service integrating Fink broker, NMMA, and Skyportal to study
rapid transient light curves.

Chapter 6—Since the 2015 detection of GWs, the IGWN has enhanced detector
sensitivity. However, complex non-linear noise from operational and environmental
factors often masks GW signals, making them undetectable at standard thresholds. The
DeepClean algorithm addresses this by isolating GW signals from both stationary and
non-stationary noise, crucial for improving data analysis precision in astrophysics and
GW astronomy. This tool enables robust detection and detailed study of GWs from
cosmic events, enhancing our cosmic understanding. I present the initial application of
DeepClean in the Virgo GW detector and summarize key findings in Conclusion.

Chapter 7—-This chapter summarizes the key findings of this PhD dissertation
in the Conclusion.
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PDB/GWTC-3 Distribution in Ligo.Skymap

***
This work outlines my role in the development of the paper Updated Observing Scenar-
ios and multi-messenger Implications for the IGWN O4 and O5, which was published
in The Astrophysical Journal. The project was a collaborative effort with a team of 17
members, including interns, researchers, and PhD candidates, under my coordination
[163]. In addition, a supplementary document that I have produced for the LIGO Sci-
entific Collaboration (LSC) in order to update the S/N threshold, is also discussed. This
supplement is documented as T2300385-v11 and published at the LIGO DCC (Docu-
ment Control Center). My contributions included everything from incorporation of the
PDB/GWTC-3 distribution to formulating the proposal of the ZTF, as well as managing
the simulation campaign for “observing scenarios,” making statistical predictions and
analyzing the O4. The simulations produced for this purpose are currently available to
the user community in the IGWN User Guide2.
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2.1. S/N THRESHOLD WARNING

2.1 S/N threshold warning

During the initial phase of the O4 observation campaign by LIGO/Virgo/KAGRA, only
the LIGO detectors were fully operational. In Section 2.5.1, we identified a discrep-
ancy between our predictions and the observational results from this phase, revealing
the need to adjust the S/N threshold from 8 to 10 to better align with the actual data.
This adjustment was confirmed through additional simulations I conducted using sev-
eral signal detection pipelines from CBC, including GstLAL [192, 278, 123], MBTA
(Multi-Band Template Analysis; [55]), PyCBC [81, 213], and SPIIR [149, 185]. De-
tailed methods are provided in Section 2.5.1.

Based on this study, I propose adopting an S/N cutoff threshold of 10 for future
observing scenarios in the LIGO/Virgo/KAGRA collaboration. However, despite our
recommendation for an S/N > 10, this threshold is not applied to the estimations for the
upcoming O5 campaign. This decision is due to political and institutional factors. The
Virgo and KAGRA detectors currently face challenges that make it unlikely they will
reach the predicted sensitivities used in our simulations. The reliability of our results
depends on the detectors achieving these sensitivities. While this is true for the LIGO
detectors, whose predicted and measured sensitivities for O4a are nearly identical (as
shown in Tables 2.5.1, which uses the predicted sensitivities, and 2.6, which uses the
measured sensitivities), it is not the case for Virgo and KAGRA.

In conclusion, although it would be best to base the S/N threshold of 10 for O5
only on the LIGO detectors, this is not possible due to political reasons. Therefore, in
this chapter, we use an S/N of 8 for the next O5 campaign in order to include all the
network detectors, even though we recommend using 10.

2.2 Background

Accurate assessments of the sensitivity, detection probabilities, and localization accu-
racy of the global detector network are crucial for the astronomical community’s strate-
gic planning of observation campaigns and the design of future telescopes and missions.
“Observing scenarios” simulate the detection and localization of GW events, providing
realistic forecasts of the network’s efficacy during the O4 and O5 [260, 26]. Recent
scenarios [223] have been meticulously calibrated to public alerts from O3, enhancing
localization precision by simulating the actual S/N threshold of GW and integrating
single-detector searches [138, 212]. These studies explore compact objects, r-process
nucleosynthesis, and cosmological expansion [209, 91, 223]. Observing run O4 was
initiated with LHO and LLO in operation, achieving a BNS range of 140-165 Mpc.
Following a commissioning break, Virgo joined in March 2024 with a BNS range of
55 Mpc, in conjunction with KAGRA in Spring 2024. This will elevate the network to
its full four-detector capacity, augmenting the detection and localization capabilities for
GW events. By simulating realistic astrophysical distributions of mass, spin, and sky
locations for CBCs , I evaluated the detection probabilities across this network, estimat-
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ing the distributions of sky-localization areas and distances for detected events, as well
as the cumulative event detection rate.

2.3 Population models

This section introduces the PDB/GWTC-3 distribution, based on the PDB model in
[122] and [25]. It covers NSs and BHs identified by the IGWN earch pipelines, classi-
fied into three subpopulations: BNS, NSBH, and BBH.

2.3.1 Incorporation of external distribution in Ligo.Skymap

In the context of IGWN, the LRR distribution [17] is essential, especially during the
O3. As discussed in [17] and [223], it significantly enhances predictive capabilities.
For the BNS subpopulation, a truncated Gaussian mass distribution is used centered
on 1.33M⊙ with a range [1,3]M⊙ and a standard deviation of 0.09M⊙, represented as
p(m) ∼ N (µ, σ2). Moreover, the spin magnitudes are uniformly distributed between
[0,0.05]. For BBHs, the mass sampling follows a truncated distribution of the power
law p(m) ∝ ma over the range [3,50]M⊙, with a =−2.3, according to [250]. The mass
pairing criterion is set as m2 ≤ m1, with spins uniformly distributed below 0.99. In
both cases, the spins are either only aligned or anti-aligned spins, i.e., the possibility of
misaligned spin and precessing systems is neglected.

Subsequent analyzes conducted by the LIGO/Virgo/KAGRA collaboration dur-
ing the O3 suggest the need for an adjustment in the mass distribution for NSs and
low-mass BHs . This leads to the integration of the PDB/GWTC-3 model [122]. This
adjustment, based on comprehensive GW detection analyzes, indicates a reinforced
power law below 2.4M⊙ with a confidence interval of 99.3%. Notable observations in-
clude: i) the GW190814 event, which presented the heaviest NS to date at 2.59+0.08

−0.09 M⊙
[15]. ii) the GW190917_114630 event, indicating a component below 3M⊙, suggest-
ing a potential reclassification from a BH to an NS. iii) Recent astrophysical observa-
tions, particularly GW170817, align the nonrotating NS mass limit with the Tolman-
Oppenheimer-Volkoff (TOV) limit, estimated at 2.2−2.5M⊙ [177, 247, 257, 188]. iv)
Analysis of the mass distribution of BH from binary X-ray systems suggests a minimum
BH mass around 5M⊙ [216, 124]. v) The evident divergence from a singular power law
in the mass distributions of BBH and BNS [129, 21] further supports the PDB/GWTC-3
model for a refined understanding of the mass transition between NS and BH .

The PDB/GWTC-3 distribution, is derived from the population model described
in [122] and [25] which I used to support the latest “observing scenarios”. This distribu-
tion is divided into three subpopulations: BNS, NSBH, and BBH, defined by the mass
of the primary component m1 and the secondary component m2, where m2 ≤ m1. The
maximum mass for a nonrotating NS, according to the TOV limit, is approximately
2− 2.5 M⊙, but rotating NSs can exceed this limit [57, 270]. A population analysis
of all CBCs detected by the IGWN finds a sharp feature in the mass distribution at
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2.4+0.5
−0.5 M⊙ (90% credible interval). This characteristic is interpreted as a delineation

between NS and BH due to its proximity to the TOV limit [122, 25]. In Figure 2.2,
this boundary between NS and BH is depicted using a colored band. To provide a con-
servative upper limit on the number of events containing NS for follow-up programs,
I adopt the upper bound 95% on the location characteristic of [122], delineating be-
tween NS and BH in 3M⊙. Although this may lead to some low-mass BBHs being
classified as BNS or NSBH, it is preferable to the risk of misclassifying a potentially
bright EM counterpart event as a BBH. This boundary choice at 3M⊙ also maintains
consistency with previous analyses [17]. I follow [122], who proposed a resolution to
this NSBH discrepancy using all publicly available CBCs in the GWTC-2.1 catalog in a
single population analysis, thus avoiding the need for a priori classifications and instead
allowing the population to select distinct subpopulations of CBCs. In the following, I
use a similar procedure. I presented all publicly available CBCs in the GWTC-3 with a
false alarm rate (FAR) of 0.25 year−1 [25] in Figure 2.1.

Figure 2.1: 90% posterior credible intervals for the component masses for all CBCs
in the GWTC-3 catalog [25] study assuming uniform priors in detector frame masses
and fixed FAR about 0.25 year−1 [25]. Events classified by the LIGO/Virgo/KAGRA
collaboration as BNSs , NSBHs , and BBHs are shown in dark-violet, olive (green) and
orange, respectively. The ambiguously classified event GW190814 is shown in dark
purple. The gray band indicates the approximate location of the purported lower-mass
gap. GW190814 is the only event within this region at more than 90% credibility. Used
to support Kiendrebeogo et al. 2023 [163].

PDB/GWTC-3 represents a continuous function describing the full population,
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eliminating the need to specify different models for each subpopulation [129]. The
mass and spin distributions follow the PDB model from [122] and [25]. This model
includes a broken power law with a notch filter n(m|Mgap

low,M
gap
high,A) suppressing the

merger rate between NSs and BHs by a factor of A. It also features a low-pass filter at
the high-mass end of BHs, reflecting a potential tapering of the mass distribution. The
component mass distribution is thus given by:

p(m|λ) ∝n(m|Mgap
low,M

gap
high,ηlow,ηhigh,A) ×h(m|Mmin,ηmin)

× l(m|Mmax,ηmax)

×





(
m/Mgap

high

)α1
if m < Mgap

high

(
m/Mgap

high

)α2
if m ≥ Mgap

high

.

(2.1)

with 1 ≤ m/M⊙ ≤ 100;
here, n(m|Mgap

low,M
gap
high,ηlow,ηhigh,A) =

(
1−Ah(m|Mgap

low,ηlow)l(m|Mgap
high,ηhigh)

)
;

where,





h(m|Mmin,ηmin) = 1− l(m|Mmin,ηmin)

l(m|Mmax,ηmax) =
(
1+(m/Mmax)

ηmax
)−1

.

h(m|mmin,ηmin) and l(m|mmax,ηmax) are the low-mass and high-mass tapering func-
tions, respectively. The 1D mass distribution, p(m|λ), is shown in Figure 2.2 for a
specific choice of λ (λ represents the 12 parameters of the model; see Table 2.1

The 2D mass distribution is constructed assuming that both the primary and
secondary masses are drawn from p(m|λ) and related via a “pairing function” [130,
115]. As defined in [130], the pairing assumed here is a power law in the mass ratio,
q ≡ m1/m2. Explicitly,

p(m1,m2|Λ) ∝ p(m = m2|λ)p(m = m1|λ)
(

m2

m1

)β

. (2.2)

The values of the hyperparameters Λ = {λ,β} are listed in the Table 2.1 and were
chosen by fitting this model to all CBCs in GWTC-3 and choosing the maximum a
posteriori value for Λ. The effects of neglecting the hyperparameter uncertainty are
estimated in Table 2.1.

The PDB model assumes a spin distribution with isotropically oriented compo-
nent spins and uniform component spin magnitudes. The spin magnitude distribution
for objects with masses less than (m < 2.5 M⊙) is defined in the range of [0,0.4], and
that for objects with masses larger than 2.5 M⊙ is defined in the range [0,1].
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Figure 2.2: The 1D PDB mass distribution, p(m|λ) on the interval [1,100] M⊙ for a
specific choice of hyperparameters λ. See Table 2.1 in subsection 2.3.2, for the other
parameters of the mass distribution. The color band show a delineation between NS and
BH at 90% credible interval. Modified from Kiendrebeogo et al. 2023 [163].

2.3.2 Values of Hyperparameters

We fix the parameters in both of our assumed models for the astrophysical distribution
of compact binary mergers. These population model parameters, termed “hyperparam-
eters” in hierarchical Bayesian analysis, are listed in Table 2.1 for the PDB/GWTC-3
model. They were selected because they correspond to the maximum hyperposterior
value obtained by fitting the PDB model to the GWTC-3 data [25]. Consequently, we
do not consider the full posterior uncertainty in these hyperparameters. To estimate the
effect of neglecting this uncertainty on the number of detected events in each subpop-
ulation, I compare the predicted uncertainty of the astrophysical merger rate from the
full PDB analysis [25] to those assumed in this work. The percentage of uncertainty
(90%CI

mean ) in Table 2.2 for the PDB/GWTC-3 model is 171% for BNS, NSBH, and BBH
each. In contrast, the percent error reported by [25] is 229%, 178%, and 68% for BNS,
NSBH, and BBH events, respectively. Thus, I conclude that I underestimate the uncer-
tainty in the merger rate for BNS and NSBH by factors of 1.34 and 1.04, respectively,
and overestimate the error for the BBH merger rate by a factor of 2.5. This discrepancy
likely arises because the BBH mass spectrum is better constrained compared to the NS
containing events, resulting in relatively minor additional uncertainty introduced by fit-
ting the hyperparameters. In contrast, for NSBH and BNS, only approximately four
events are used to constrain the shape of the low-mass end of the distribution (see the
Figure .2.1.
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Naively translating the additional uncertainty in the astrophysical merger rate to
an uncertainty in the annual number of detected events in run O4b yields an increase
in the uncertainty of 12.2 events for BNS, an increase of 0.24 events for NSBH, and
a decrease of 104 events for BBH, assuming symmetric errors. These adjustments are
approximate and are intended to provide an estimate of the effect of neglecting the
uncertainty in population hyperparameters under the PDB/GWTC-3 model. A simi-
lar estimate is not available for the LRR model, as I am unaware of any population
fit performed using that framework in the GWTC-3 data. The distinction between the
maximum a posteriori (MAP) underlying population and the entire hyperposterior un-
derlying population is illustrated in Figure 5 of [122].

Table 2.1: Summary of Population Model parameters. The first several entries describe
the rate and mass distribution parameters, and the last two entries describe the spin
distribution parameters. Used to support Kiendrebeogo et al. 2023 [163].

Parameter Description Value

α1 Spectral index for the power law of the mass distribution at low mass. -
2.16

α2 Spectral index for the power law of the mass distribution at high mass. -
1.46

A Lower-mass gap depth. 0.97

Mgap
low Location of lower end of the mass gap. 2.72M⊙

Mgap
high Location of upper end of the mass gap. 6.13M⊙

ηlow Parameter controlling how the rate tapers at the low end of the mass gap. 50

ηhigh Parameter controlling how the rate tapers at the high end of the mass gap. 50

ηmin Parameter controlling tapering of the power law at low mass. 50

ηmax Parameter controlling tapering of the power law at high mass. 4.91

β Spectral index for the power-law-in-mass ratio pairing function. 1.89

Mmin Minimum mass of the mass distribution. 1.16M⊙

Mmax Onset location of high-mass tapering. 54.38M⊙

amax,NS Maximum allowed component spin for objects with mass < 2.5M⊙. 0.4

amax,BH Maximum allowed component spin for objects with mass ≥ 2.5M⊙. 1

2.3.3 PDB/GWTC-3 Masses and Spin Distribution

A dataset comprising 106 CBCs was generated from the PDB model, designated as
the PDB/GWTC-3 distribution. These samples were then segregated into three dis-
tinct subpopulations based on their mass characteristics: NSs were identified as objects
with masses below 3M⊙, and BHs as objects with masses above this threshold. This
segregation yielded 892,762 BNS systems, 35,962 NSBH systems, and 71,276 BBH
systems. Figure 2.3 illustrates the Gaussian kernel density estimator (KDE) across the
PDB/GWTC-3 dataset.

A significant difference between the LRR and PDB/GWTC-3 distributions lies
in the mass range covered by each model. The LRR distribution is limited to objects
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Figure 2.3: Gaussian KDE of the PDB/GWTC-3: The left panel displays the 2D mass
distributions for the components of each CBCs category, with all axes on a logarith-
mic scale. The right panel shows the spin distributions for the same CBCs categories,
providing insights into the spin characteristics of the population. The color density in
both panels represents the number of CBCs events per pixel, illustrating the density and
variation within the distributions. Used to support Kiendrebeogo et al. 2023 [163].

with masses not exceeding 50M⊙, in contrast to the PDB/GWTC-3 distribution, which
accommodates objects up to 100M⊙, thus including higher-mass BHs. However, the ta-
pering effect of the PDB mass distribution beyond Mmax = 54.38M⊙ serves to moderate
the occurrence of exceedingly high-mass BHs within the latter distribution.

As presented in [163], Figure 2.4 illustrates the structured pipeline used for “ob-
serving scenarios", comprehensively summarizing the methodology. The subsequent
sections provide a detailed discussion on each phase of the process.

2.4 Prediction and scenarios

2.4.1 Simulation campaign

I used the public software suite ligo.skymap3, which facilitates reading, writing, gen-
eration and visualization of GW sky maps from the IGWN. This integration with EM
observations aims to deepen our understanding of the universe. Drawing intrinsic pa-
rameters, masses, and spins of CBCs from the PDB/GWTC-3 distribution, I distributed
this sample uniformly in comoving volume and isotropically in both sky location and
orbital orientation, adhering to the expectation that GW sources are not spatially clus-
tered or preferentially oriented toward or away from Earth. To achieve this, I calculated
the range R as the maximum sensitivity distance or the radius of an equivalent Euclidean

3https://git.ligo.org/leo-singer/ligo.skymap
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Figure 2.4: Flowchart of observing scenarios process. Here, µ = 1.33M⊙, and σ =
0.09M⊙, then in LRR case, m represents the primary mass m1 or secondary mass m2 ,
since they are drawn in the same way with m2 ≤ m1. Used to support Kiendrebeogo et
al. 2023 [163].

sphere. This “soft” range enabled us to uniformly assign each sample within a sensitive
spatiotemporal volume, 4

3πR3 =Vz, where Vz represents the comoving volume, adjusted
by a factor of (1+ z) due to the expansion of the Universe. Within this volume, I uni-
formly and isotropically distributed a set of distances and sky locations for my CBCs
samples, adopting the cosmological parameters as outlined in [30]. To simulate the GW
signals from these CBCs, Gaussian noise was incorporated.

The source code for these simulations is publicly accessible, from the drawing
of intrinsic parameters4 to the statistical production of sky maps5, including the filtering
of CBCs events that exceed the S/N threshold6, and their sky-localization7 on GitHub8

[261]. The network S/N threshold is determined by the square root of the sum of the
squares of the individual detectors’ S/N.

Following the methodology outlined in [223], I applied an S/N threshold of 8.
This simulation yields estimates of the sky-localization areas of the GW for all subpop-
ulations, the luminosity distance, and the comoving volume, providing a 90% credible
prediction of the comoving region and the volume containing the total posterior prob-
ability. The localization of the sky area, according to [17] and [223], is facilitated by
BAYESian TriAngulation and Rapid localization (BAYESTAR)9, a rapid localization

4https://lscsoft.docs.ligo.org/ligo.skymap/tool/bayestar_inject.html
5https://lscsoft.docs.ligo.org/ligo.skymap/tool/ligo_skymap_stats.html
6https://lscsoft.docs.ligo.org/ligo.skymap/tool/bayestar_localize_coincs.html
7https://lscsoft.docs.ligo.org/ligo.skymap/tool/bayestar_localize_coincs.html
8https://github.com/lpsinger/observing-scenarios-simulations/tree/v2
9http://dcc.ligo.org/P1500071/public/html
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algorithm used in IGWN alerts [263]. BAYESTAR computes the source location based
on the output from the detection pipeline, producing sky-localizations with latencies of
only a few seconds. In addition, it offers distance estimates as an integral part of the
sky-localization. Specifically, for each line of sight, the posterior probability distribu-
tion of the distance is approximated as a Gaussian function multiplied by the square
of the distance, providing three-dimensional (3D) sky maps that include position and
distance information, as I show in Figure 2.5.

Figure 2.5: GW localization skymap for a BNS merger from my simulation, localization
performed with BAYESTAR. The skymap illustrates the probability per square degree
of the source location, with contour levels marking the credible regions 50% and 90%.
The area 50% covers 942 square deg2, while the area 90% encompasses 3,021 square
deg2, providing an estimated region for follow-up observations. The white star indicates
the actual location of my BNS.

According to IGWN, four detectors, namely LHO, LLO, Virgo, and KAGRA
[9], will operate during O4 and O5. In my simulations, I adopt this configuration,
assuming that each detector operates with a 70% duty cycle independently. However,
an update indicates that KAGRA and Virgo will begin the run with LHO and LHO later
in O4 (e.g., O4b). The noise PSD, or sensitivity curves10, are applied for each observing
run and detector. The publicly available noise curves in LIGO-T2200043-v311 are used.

For O4, I utilized aligo_O4high.txt, avirgo_O4high_NEW.txt, and
10https://observing.docs.ligo.org/plan/index.html
11https://dcc.ligo.org/T2200043-v3/public
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kagra_10Mpc.txt for LIGO (LHO, LHO), Virgo, and KAGRA, respectively, while
for O5, AplusDesign.txt, avirgo_O5low_NEW.txt, and kagra_128Mpc.txt were
used. The first phase of O4 (O4a) involved only LIGO’s detectors. To measure the
performance of the interferometers, I calculated the BNS inspiral range for a 1.4 M⊙
binary system detected with S/N = 8, during the observation runs O4a, O4b and O5.
The distances (in megaparsecs) from the BNS inspiral are detailed in Table 2.3.

The simulations assume an astrophysical merger rate within a frame comoving
with the Hubble flow, averaged over a non-olving mass and spin distribution. Using
the merger rate per unit comoving volume per unit proper time provided by the PDB
(pair) model in the first row of Table II in [25], I standardized my merger rates to the
closest match to the PDB/GWTC-3 distribution. The initial distribution was normalized
with the total rate density of mergers, integrated across all masses and spins, fixed
at 240+270

−140 Gpc−3yr−1. These astrophysical density rates are reproduced in Table 2.2.
During the O4a observing run, I took the opportunity to evaluate the real sensitivity of
the LIGO detectors, H1 and L1. This evaluation yielded the Measured PSD for each
detector, which was used throughout the O4a to determine the real value of the BNS
Inspiral range. For subsequent observing runs, O4b and O5, I refer to the Ideal PSD
values mentioned above.

Table 2.2: The merger rate per unit comoving volume used for PDB/GWTC-3 (GWTC-3)
distributions. Used to support Kiendrebeogo et al. 2023 [163].

Distribution BNS NSBH BBH

Merger rate density (Gpc−3 yr−1)

PDB/GWTC-3 210+240
−120 8.6+9.7

−5 17.1+19.2
−10

Table 2.3: The cosmology-Corrected Inspiral Sensitive Distance (in Mpc) for Runs O4a
and O4b from a GW Strain PSD : O4a using Measured PSD , O4b and O5, using Ideal
PSD.

Run L1 H1 V1 K1

BNS average range in Mpc

O4a 165 145 off duty off duty

O4b 224 224 95 37

O5 494 494 183 390

2.4.2 Statistical results of observing scenarios

The outcomes of my “observing scenarios,” including sky-localization FITS files, are
publicly accessible through the repository [164]. These simulations were instrumental
in estimating the detection rates of the IGWN for the O4a, O4b, and O5 observing
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runs. In Figure 2.6, I provide a comprehensive summary of the detection results derived
from my set of simulations. In Table 2.5.1, I present the predicted annual detection
rates for CBCs during O4a, O4b, and O5. The confidence interval combines both the
log-normal distribution of the merger rate and uncertainties from the Poisson counting
statistics. The low number of NSBH predicted by the PDB model is due to the existence
of a nearly empty mass gap in that model, combined with a pairing function [130] that
favors equal-mass binaries.

NSBHs must straddle the mass gap, with one component on each side. This
leads to asymmetric mass ratios, which are in turn disfavored by the model fit, as most
binaries in the population are consistent with being equal mass. A version of the PDB
model with a partially filled mass gap would predict more NSBH events relative to the
other types of CBCs. The notation HL refers to operational status where only LHO
and LLO are active, applicable to the O4a observing run. Conversely, HLVK indicates a
scenario where all four detectors, including Virgo (V) and KAGRA (K), are operational,
representing an optimal configuration for detection capabilities.
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Figure 2.6: Evolution of simulated GW detection numbers across observation runs
O4a, O4b, and O5. The bar chart delineates the detected events that exceed the S/N
threshold for BNS, NSBH, and BBH populations. Colored dots represent the respective
total number of simulated injections, indicating the underlying statistical sampling size.
Lines connecting the dots illustrate the trend in the volume of simulations performed
across different observation runs. These detections are key for inferring the astrophys-
ical rates and understanding the population properties of CBCs. Adapted from Kien-
drebeogo et al. 2023 [163].

In Table 2.5, I also provide statistics on the sky-localization area of the GW
signal, the luminosity distance, and the moving volume. The sky-localization area (vol-
ume) is given as the 90% credible region, defined as the smallest area (volume) that
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Table 2.4: Annual Detection Rates for CBCs that I expect for the Runs O4a, O4b
and O5, using PDB/GWTC-3 distribution. These uncertainties do not incorporate the
Monte Carlo method, but only combine both the log-normal distribution of the merger
rate and the Poisson counting statistics. Adapted from Kiendrebeogo et al. 2023 [163]
and User Guide2.

RUN Network BNS NSBH BBH

Annual Number of Detections

O4a HL 11+17
−8 2+4

−2 123+157
−71

O4b HLVK 36+49
−22 6+11

−5 260+330
−150

O5 HLVK 180+220
−100 31+42

−20 870+1100
−480

encompasses 90% of the total posterior probability. This corresponds to the area (vol-
ume) of the sky that must be covered to have a 90% chance of including the source. I
have adopted the same statistical treatment process as the one used in [223]. The re-
sults of the simulation of the GWTC-3 distribution are also available in the IGWN Public
Alerts User Guide2.

There are notable differences that arise from the improved mass distributions
measured in PDB/GWTC-3, derived from the maximum a posteriori fit to all com-
pact binaries detected so far. This represents a significant departure from the normal
and power law distributions for masses previously assumed by LRR. Coupled with
the inclusion of single-detector triggers, these differences markedly diverge from pre-
vious reports. I focus exclusively on the ideal scenario where all four detectors are
operational, specifically during the O4b and O5 runs. The PDB/GWTC-3 distribution
accounts for an increase in the predicted number of detected events by approximately a
factor of (0.83%/0.22%) = 3.772 for O4b and (1.22%/0.48%) = 2.542 for O5. When
broken down by population type, the estimated annual detection rate is approximately 2
(BNS) and 5 (BBH) times higher for PDB/GWTC-3, but drops to ∼ 0.6 for NSBH. The
median luminosity distance predicted by PDB/GWTC-3 is about 1.14 (O4b) and 1.19
(O5) times greater for BNS, 1.36 (O4b) and 1.31 (O5) times for NSBH, and 2.44 (O4b)
and 2.36 (O5) times for BBH events, respectively, compared to LRR. Similarly, the
median sensitive volume increases by approximately 1.7 (O4b), 1.6 (O5) for BNS, 1.9
(O4b), 2.0 (O5) for NSBH, and 8.14 (O4b), 6.65 (O5) for BBH. For sky-localizations,
the results are broadly consistent with previous findings. For instance, during O4b,
PDB/GWTC-3 predicts an area approximately 11% smaller for the BNS subpopulation
than that from LRR, while for BBH, PDB/GWTC-3 predicts an area approximately
52% larger. The full results of the LRR distribution can be found in [163].

In Figure 2.7, following [223] I illustrate the cumulative annual detection rate
distribution as a function of the 90% credible area, 90% credible comoving volume, and
luminosity distance anticipated for the actual and the upcoming observing runs. The
shaded bands denote the 5%–95% variation attributable to uncertainties in the density
of the astrophysical merger rate. To elucidate the pursuit of EM counterparts to GW
events, I compared the observational capabilities of prominent optical telescopes such
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Table 2.5: Summary Statistics for O4a, O4b and O5. These recorded values are given
as 90% credible interval calculated with the 5% and 95% quantile. Those uncertainties
have been described by Monte Carlo sampling. Used to support the IGWN User Guide
2 .

Run Network BNS NSBH BBH

Median 90% Credible Area (deg2)

O4a HL 1870+150
−110 2210+550

−350 2561+70
−78

O4b HL 1860+250
−170 2140+480

−530 1428+60
−55

O5 HLVK 2050+120
−120 2000+350

−220 1256+48
−53

Median 90% Credible Comoving Volume (106 Mpc3)

O4a HL 25.2+4.3
−5.6 116+27

−40 3740+250
−220

O4b HLVK 67.9+11.3
−9.9 232+101

−50 3400+310
−240

O5 HLVK 376+36
−40 1350+290

−300 8580+600
−550

Median Luminosity Distance (Mpc)

O4a HL 274+15
−11 501+27

−46 2067+62
−43

O4b HLVK 398+15
−14 770+67

−70 2685+53
−40

O5 HLVK 738+30
−25 1318+71

−100 4607+77
−82

Sensitive Volume : Detection Rate/ Merger Rate: (Gpc3)

O4a HL 0.0553+0.0067
−0.0061 0.305+0.081

−0.068 7.22+0.26
−0.25

O4b HLVK 0.172+0.013
−0.012 0.78+0.14

−0.13 15.15+0.42
−0.41

O5 HLVK 0.827+0.044
−0.042 3.65+0.47

−0.43 50.7+1.2
−1.2

as the ZTF [62], and the forthcoming Rubin Observatory’s (LSST; [156]), alongside
a near-ultraviolet telescope, ULTRSAT [259]. This comparison underscores their sky
survey capabilities relative to the coverage provided by the GW detectors.

2.5 Analysis of the O4a run

The operational dynamics of GW detectors significantly influence the live time and de-
tection capabilities. Given that each of the four detectors operates with an independent
duty cycle 70%, I calculated a 5.67% probability that only one detector will be on-
line at any given time, assuming 4× 70%× (30%)3. For two detectors observing, as
was the case during the O4a run, the probability increases to 2×70%× (30%) = 42%
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Figure 2.7: Cumulative histograms showing the 90% credible area, 90% credible co-
moving volume, and luminosity distance for detectable events during the O4a, O4b,
and O5 observing runs. The analysis includes uncertainties in the estimated merger
rate, Monte Carlo uncertainty due to the finite sample size of the simulation, and Pois-
son fluctuations in the detected number of sources per year. The rates are presented
for three subpopulations: BNS (top row), NSBH (middle row), and BBH (bottom row).
The shaded bands represent the inner 90% confidence interval, accounting for the un-
certainties mentioned above. For comparison with telescope sky surveys, the FOVs for
LSST, ZTF, and ULTRSAT are shown in the left panels. Adapted and used to support
the User Guide2.

of the time with only one detector online. The first half of the fourth observing run,
O4a, spanned from May 24, 2023, to January 16, 2024, with only LIGO’s detectors
operational. The LHO (H1) and LHO (L1) were independently active 67.5% and 69%
of the time, respectively, resulting in both detectors being active 53.4% of the time.
There were periods 29.7% of the time when only a single detector was operational and
16.6% when neither detector was operational. These calculations, provided by GW
Open Science Center12 (GWOSC), indicate an average operational duty of 68.25% for
each detector. In the O4a run, the actual probability that only one detector is on duty at
any given time is derived from the operational dynamics of the detectors rather than the
previously stated 2×68.25%×(31.75%) = 42.66%. This concurrence underscores my

12https://gwosc.org
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estimation of the operational dynamics and the effectiveness of the detector network
during the observing cycle. This outcome reflects our expectations about the opera-
tional status of 70%. During the O4a observational period, a total of 92 GW events
were publicly announced, providing a rich dataset for analysis. This dataset included
1 potential BNS merger, 6 potential NSBH mergers, 81 likely BBH mergers, and 11
events confirmed to be terrestrial in origin. This diversity and volume of detections
serve as a critical benchmark for evaluating the effectiveness of the detector network
and the accuracy of our operational dynamics estimations.

2.5.1 Adjusting to S/N=10: Aligning predictions with O4a observa-
tions

The initial nine-month period of the O4a observing run yielded an invaluable dataset
against which to benchmark our simulation predictions, originally computed over a
period of one year. Upon analyzing this observational dataset, a tangible discrepancy
emerges between our theoretical models, which posit an S/N threshold of 8, and the
empirically gathered data. This deviation is particularly salient within the BNS and
BBH subpopulations, which warrants a critical assessment of our detection threshold
parameters. In particular, absent from this comparative study are the NSBH events,
which the PDB/GWTC-3 model appears to disadvantage. This omission could be a
contributing factor to the observed disparities. By recalibrating the S/N threshold to
10, coupled with the measured sensitivity curves (measured PSD) pertinent to the O4a
run, I observe a realignment of the predicted and observed detection rates. Table 2.6
delineates these predictive discrepancies and their convergence after adjustment.

Table 2.6: Comparison of Predicted and Observed Detection Rates at Different S/N
Thresholds During the O4a.

RUN Detection Type Time S/N BNS NSBH BBH

Number of Detections

O4a
Simulation 1 year

8 12+17
−9 1+4

−2 115+147
−67

10 5+10
−5 0+0

−0 60+78
−36

Observation 9 months N/A 1 ? 6 81

The motivation to increase the S/N threshold to 10 is supported by the recent
work of [86], which focuses on the performance of low-latency GW alert systems in an-
ticipation of the O4. Detailed analysis of infrastructure and software improvements was
conducted through Mock Data Challenge (MDC) simulations, encompassing 5× 104

injections from February 16 to March 28, 2023. This analysis, which recovered 1489
BNS, 1105 NSBH, and 1920 BBH injections, offers insights into real-time search ca-
pabilities, event detection efficiency, and rapid estimation of binary system properties.
Following this methodology, my analysis aimed to assess the detection capabilities of
various GW detection pipelines, including GstLAL [192, 278, 123], MBTA (Multi-
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Band Template Analysis; [55]), PyCBC [81, 213], and SPIIR [149, 185], which are
GW search pipelines. The analysis compares the combined S/N with the FAR for each
pipeline. Figures 2.8 and 2.9 support the rationale for adopting an S/N threshold of 10,
illustrating a logarithmic density and a median FAR compared to the combined network
S/N. The data reveal a concentration of events slightly below an S/N of 10, correspond-
ing to a FAR of approximately 10−4. This distribution suggests that an S/N of 10 is a
more effective threshold for confirming CBCs events. Furthermore, a FAR threshold
of 1/month associated with a significant public alert threshold before trial factors aligns
with an S/N between 10 and 12, depending on the CBCs pipeline. These visual and sta-
tistical analyses advocate for the adoption of an S/N threshold of 10 for CBCs detection
confirmation in future “observing runs," enhancing both the alignment of my simula-
tions with observed data and the overall reliability of my predictive frameworks in GW
astrophysics. GW detections are subject to stringent verification processes before being
released as public alerts. The current criterion for such dissemination is related to the
event’s FAR. Specifically, an event is made publicly known if its FAR is less than or
equal to 2 per day (see the user guide13, [17]). This stringent standard ensures that only
the most credible events are communicated to the public.

2.5.2 GW230529: A milestone in gravitational-wave astronomy

The fourth observing run (O4a) of the aLIGO and partner observatories documented
a significant event, GW230529, only detected by the LIGO LLO on May 29, 2023.
During this time, the LIGO LHO was offline and neither Virgo nor KAGRA participated
in the O4a run [89]. This event featured the coalescence of a compact binary system
with component masses estimated at 3.6+0.8

−1.2M⊙ and 1.4+0.6
−0.2M⊙, which falls within the

mass gap of 2.5−5M⊙ traditionally observed between NSs and BHs .

This detection has critical implications in GW astronomy, confirming the pres-
ence of compact objects within the mass gap, thus challenging established mass classifi-
cations for NSs and BHs . Previously, the boundary between NS and BH was considered
at 2.5M⊙ based on integrations of GWTC-2.1 data [122]. However, my observations
and subsequent adjustments suggest raising this limit to 3M⊙, in order to minimize
misclassifications of low-mass BHs as NSs, crucial for accurate identification of events
with potential EM counterparts. GW230529 with a mass of BH in the 2.5− 4.5M⊙
range significantly improves the capabilities of the PDB/GWTC-3 distribution models
to resolve discrepancies in the classification of the mass of NS-BH . It demonstrates
the existence of merger events in previously ambiguous mass ranges and supports the
calibration of mass classification thresholds to more accurately reflect the astrophysical
properties of compact objects [25, 122]. The implications of this discovery extend be-
yond the correction of mass spectrum classifications. They enhance our understanding
of the compact object mass spectrum and pave new paths for multi-messenger astron-
omy, essential for our ongoing investigations into the EM counterparts of GW events.
This event aligns with adjustments in the PDB/GWTC-3 model which incorporates a
refined understanding of the mass transitions between NSs and BHs , critical for pre-

13https://emfollow.docs.ligo.org/userguide/analysis/index.html
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Figure 2.8: Log density plot of FAR compared to the measured network S/N individual
CBCs pipelines during an MDC cycle. The vertical lines are at S/N of 8 to 10 by
increments of 0.5. I see the highest density of events for an S/N just under 10, and a
FAR close to 10−4. Used to support the LIGO DCC, T2300385-v11.

dicting and analyzing future GW observations [129, 21].

2.5.3 ZTF proposal for GW follow-up and triggering criteria

This research forecasts the utility of GW detector data for astronomers, covering exist-
ing and anticipated data sets. Such forecasts are crucial for those analyzing GW data
as well as for investigators seeking EM signatures of NS mergers, notably KN events
[281, 161]. I present simulation outcomes to strategically align the ZTF with this scien-
tific mission. Our analysis delineates both the methodology and the results of utilizing
ZTF for the detection of EM counterparts, with a focus on KN light curves. This ap-
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Figure 2.9: Comparison of the median FAR in a given S/N bin to the measured network
S/N during an MDC cycle for individual CBCs pipelines. The vertical lines are at S/N
of 8 to 10 by increments of 0.5. I find the measured network S/N to be approximately
between 10-12, depending on the CBCs pipeline, for a FAR threshold of 1/month, which
is the significant public alert threshold before trials factor. Used to support the LIGO
DCC, T2300385-v11.

proach optimizes ZTF’s contribution to the field, enhancing our understanding of the
multi-messenger universe.

The release of low-latency GW event properties via the General Coordinates
Network (GCN) notices offers critical information for deciding whether to allocate tele-
scope time to a given GW event. Parameters such as the FAR, the probability of astro-
physical origin (p-astro), the likelihood of the GW merger involving a NS (HasNS), the
probability of a remnant post-merger (HasRemnant), and the Bayes factor for coherence
across multiple detectors (log(BCI)) provide indirect indicators of an event’s astrophys-
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ical significance and potential for EM counterparts. Table 2.7 presents our proposed
ZTF triggering criteria based on these low-latency metrics. An event that meets all
“Go-deep” requirements justifies the initiation of target-of-opportunity (TOO) observa-
tions if the event’s localization and distance fall within ZTF’s operational capabilities.
A “Go-wide” designation prompts adjusting public ZTF survey fields to cover the event
localization within standard 30-second exposures. Events classified as “Deliberate” or
“No Go” require human review to determine the appropriateness of the trigger. Given
the reduction in the threshold for public alert release to two per day in O4a, establishing
precise triggering criteria is essential for the judicious use of telescope resources.

In this proposal, I determine the anticipated annual number of triggers within
400 Mpc during the O4b and O5 observing runs, based on projections from Table 2.5.1
as shown in Figure 2.10. I got this by assuming an AT2017gfo like KN event [105,
266, 7] with Mabs ∼−16 magnitude at peak brightness, and considering ZTF’s limiting
magnitude of mAB ≈ 22 in 300-second exposures, I estimate ZTF’s capability to detect
KNe within this distance range. While NSBH mergers are expected to be rare within
400 Mpc, with 0–2 events anticipated during the O4b and O5 runs, my analysis projects
an average of < N >= 13 (< N >= 18) BNS mergers within this distance during O4
(O5), offering significant opportunities for counterpoint searches.

Furthermore, we evaluated the distribution of GW events by sky area. Fig-
ure 2.11 presents the fraction of O4/O5 triggers with 90% confidence regions within
the specified sky area thresholds. Assuming an average 8 hour night and ZTF’s ef-
fective coverage of ∼ 50 deg2, employing a three-filter tiling strategy (i.e., g− r− g),
we find that utilizing ZTF Partnership time alone (30% of the night) enables complete
coverage of the localization for approximately 30% of GW alerts. Incorporating the
private Caltech allocation (50% of the night) increases this coverage to nearly 40%,
and taking advantage of the public survey time (100% of the night) allows complete
localization coverage for 50% of events. These metrics, derived from our dataset, fa-
cilitate the estimation of necessary TOOs and time requests for successful GW follow-
up campaigns with wide field telescopes, offering invaluable insights for developing
Rubin Observatory’s future triggering strategy.

2.5.4 Preparing GW parameters for EM counterpart studies

I have developed a script14, designed to extract critical parameters such as masses,
spins, distance, GPS time, and sky angular coordinates. These parameters are essential
for predicting the potential emergence of UV, optical, and infrared signals during the
coalescence of compact binary systems. This extracted information is then utilized by
BILBY [53] for processing CBCs events, facilitating Bayesian estimation of light curve
parameter estimation (PE) based on these intrinsic GW parameters.

14https://github.com/weizmannk/ObservingScenariosInsights/blob/main/src/Subpopulation_Splitter.py
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Table 2.7: Triggering Based on GW Candidate Event Properties. Used to support kien-
drebeogo et .al 2023[163].

Parameter Go-deep Go-wide Deliberate No Go

Strategy
300 s 30 s

Action Item: human interaction
Push distance Push localization

Frequency of triggers
1 per month 2 per month

3 nights 5 nights

FAR min(FAR) - ‘Best’
< 1 per century < 1 per decade 1 per year - century> 1 per year

Any pipeline Any pipeline All pipelines

max(p-astro) > 0.9 > 0.9 0.1–0.9 < 0.1

HasNS > 0.9 > 0.9 0.1–0.9 < 0.1

log(BCI) > 4 > 4 -1 to 4 <−1

HasRemnant? > 0 > 0 ... = 0

pBNS/pNSBH > 0 > 0 ... = 0
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Figure 2.10: Cumulative histograms of 100,000 realizations of the number of BNS
and NSBH mergers predicted to be detected during O4b and O5 within 400 Mpc based
on the observing scenarios predictions in this chapter. The mean number of expected
detections is quoted for each merger type. Used to support Kiendrebeogo et al. 2023
[163].

2.6 Conclusion

In this chapter, I have performed a detailed simulation study on CBCs using the
PDB/GWTC-3 distribution, following the latest projections from the IGWN. The sim-
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Figure 2.11: Cumulative histogram of simulated GW skymaps for O4b and O5 that sat-
isfy our triggering criteria as a function of the 90% credible region. With both Caltech
and Partnership time spanning ∼50% of the night (corresponding to a maximum area
of 800 deg2), we could fully probe the localization for nearly 40% of all events. Used
to support Kiendrebeogo et al. 2023 [163].

ulations focused on improving EM follow-up strategies and improving scientific out-
comes for future observations. The findings highlight the crucial role of GW observa-
tories in advancing our understanding of the universe and potentially influencing the
cosmological expansion rate. The results of my work are particularly valuable for those
analyzing GW data and seeking EM counterparts to BNS mergers. This integration
aims to decode the complexities of the universe, providing fresh perspectives on its
expansion dynamics and significant events. Future chapters will discuss methods to
identify and analyze GW counterparts to improve detection strategies and enrich our
knowledge of cosmic evolution and structure.
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The Nuclear Multi-messenger Astronomy framework

***

In this chapter, I discuss my contributions to the NMMA framework, An updated
nuclear-physics and multi-messenger astrophysics framework for BNS mergers, pub-
lished in Nature Communications [217]. This also includes a summary of my contribu-
tions to light curve constraints from the GRANDMA "ReadyforO4" campaign [33] and
my results on H0, supporting Kiendrebeogo et al. 2023 [163].
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3.1. NMMA AND GRANDMA COLLABORATIONS

3.1 NMMA and GRANDMA collaborations

NMMA team—The NMMA team consists of astrophysicists and code developers from
various specialized fields with the aim of facilitating the combined analysis of GW and
their EMs counterparts to deepen our understanding of the r-process, EOS of NS, and
H0. The primary goal is to enable the next simultaneous detection of GW , GRB , and
KN. As a full member of the NMMA team, I contributed to developing this platform,
including coding and deploying it on GitHub, making it public and accessible. My
contributions within the NMMA team focus on scripts for adjusting light curves from
KNe and SNe, directly linked to my doctoral project. These contributions simulate
the estimation parameters of KNe based on data from “observing scenarios" discussed
in Chapter 2, aiding in combining the posteriors from the two-messenger simulations.
For HT Condor users, my scripts submit multiple jobs across the International GW
Network clusters. I also provided a user installation tutorial for the Unix and Mac
OS systems, later enhanced by other collaborators and including the Windows system.
Although significant, these only represent part of the scientific potential of NMMA.
Other collaborators have developed aspects I do not discuss here, but are available on
GitHub1. NMMA is a dynamically evolving platform, continuously improving.

GRANDMA collaboration—GRANDMA is a collaboration of over a hundred
scientists2 from more than 18 countries, including Burkina Faso through my involve-
ment. It is also supported by amateur astronomers in the citizen science program
"Kilonova-Catcher". Within this collaboration, I served as a shifter, monitoring tran-
sients, analyzing data, and constraining the nature of light curves published in [33].

3.2 Background

The observation of GW170817 [104], resulting from a BNS merger on August 17, 2017,
by the Advanced LIGO and Virgo interferometer network, marked a moment of great
importance in astronomy. This event highlights the potential of multi-messenger ob-
servations, enabling the astrophysical community to explore the nature of NS, their
internal composition, and their critical role in cosmic nucleosynthesis and various as-
trophysical phenomena. The EOS is essential for understanding atomic nuclei behavior
under extreme pressures and temperatures, typical of events such as nuclear collisions
and core collapse. The multi-messenger approach, especially via BNS mergers, offers
insights into matter under these conditions, enhancing our grasp of the universe’s ex-
pansion, measured by the H0. Our NMMA framework[217] is a fundamental tool for
studying compact object mergers. Using Bayesian parameter inference, NMMA merges
observational data from the EMs spectrum with astrophysical system properties, enrich-
ing nuclear physics and cosmology knowledge. As a Python library, NMMA connects
EMs observations with the characteristics of the binary system, promoting advances in
nuclear physics and cosmology. It enables detailed analyses of BNS mergers, elucidates

1 https://github.com/nuclear-multi-messenger-astronomy/nmma/tree/main
2https://grandma.ijclab.in2p3.fr/who-we-are/team/
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matter properties under extreme conditions, and refines our understanding of the expan-
sion rate of the universe. The ability of NMMA to identify the potential nature of fast
optical transients highlights its key role in addressing the challenges of time-domain
astronomy. The NMMA framework has been crucial in NS merger studies, provid-
ing information on matter states under extreme conditions and clarifying the EOS at
supranuclear densities. It has refined measurements of key cosmological constants, in-
cluding the H0, underscoring its importance in astrophysics. Recent advancements have
enabled the integration of an extensive array of light curve models, which is essential
for analyzing phenomena related to compact object mergers.

3.3 Inference of astrophysical light curves

In NMMA, light curve fitting is executed through two principal methodologies. The
initial method entails constraining observational data acquired from telescopic obser-
vations, notably from the ZTF [62, 142, 190, 108], a time–domain optical survey with
a very wide field of view (FOV) of 47 deg2 mounted on the Samuel Oschin 48-inch
(1.2 m) Telescope at the Palomar Mountain, the future Rubin Observatory’s (LSST;
[156]), a large (8.4 m), wide-field (9.6 deg2 FOV) ground-based telescope designed to
conduct deep 10 yr survey of the Southern sky, and additional telescopes equipped with
NMMA compatible filters. The alternate method integrates GW parameters from events
involving BNS and NSBH systems. These events and their GW parameters, including
masses, luminosity distances, spins, and GPS time detections (which I have recently
integrated to improve the accuracy of estimation), are elaborated on in Chapter 2 and
the study by [163]. Such parameters, essential for analysis, are processed using BILBY,
a Bayesian inference tool [53], with input data presented in “dat” or “json” formats.
To facilitate parameter estimation within the NMMA, BILBY is harnessed to analyze
the chosen light curve models. This process is supported by sophisticated samplers, in-
cluding Dynesty [148] and PyMultiNest [126], which generate simulated observational
data reflective of the input parameters. These instruments facilitate a comprehensive
exploration of parameter spaces and engender posterior distributions, thus ensuring the
fidelity of light curve simulations predicated on the observational or GW data input.
Bayesian inference, crucial in the NMMA’s analytical framework, is employed to apply
rigorously selected models to meticulously prepared data, with the objective of identi-
fying the set of parameters that most accurately represents the observed light curve.
This foundational methodology enables the progressive refinement of hypothesis prob-
abilities in light of emerging evidence, establishing itself as critical to the conduct of
astrophysical light curve analyses. NMMA enhances light curve analysis by incorpo-
rating innovative techniques such as photometry enhancement and model interpolation,
thereby increasing both the precision and the analytical depth. This progression expands
NMMA’s repertoire with an array of models for light curve simulation, ranging from
the empirically derived SVDLightCurveModel to theoretical constructs like SimpleK-
ilonovaLightCurveModel, GRBLightCurveModel, KilonovaGRBLightCurveModel, and
GenericCombineLightCurveModel. Accurate specification of parameters is imperative
for precise simulations, mirroring the diversity of astrophysical phenomena encoun-
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tered. NMMA effectively simulates a wide range of events, offering a complete set of
tools for multi-messenger astrophysics light curve analysis.

3.4 Light curve models

Accurate modeling of transient light curves is vital to interpret observational data. The
NMMA framework provides tools and models for describing light emissions post-stellar
events, essential for understanding EM signal evolution from BNS mergers. These mod-
els use Bayesian inference to analyze multi-messenger signals, incorporating all data
on the EOS of a NS [114, 218, 274]. Our analysis employs Bayesian inference with
models for signals from BNS, NSBH mergers, SNe, and GRBs. The framework effec-
tively uses Bayes’ theorem to compute posterior probability distributions p(⃗θ|x,M) for
parameters θ⃗, using mock data x and model M.

p(⃗θ|x,M) =
p(x|⃗θ,M) p(⃗θ|M)

p(x|M)
, (3.1)

where p(x|⃗θ,M), p(⃗θ|M), and p(x|M) are the likelihood, prior, and evidence, respec-
tively.

3.4.1 Kilonova models

In NMMA, these include the Bu2019lm, Bu2019nsbh from POSSIS, and Ka2017 mod-
els.

POSSIS—The POSSIS-based grid of KN models [75, 114, 77] covers the pa-
rameter space for BNS (Bu2019lm model) and NSBH (Bu2019nsbh model) mergers.
The POSSIS tool, a sophisticated Monte Carlo radiative transfer code, is enhanced for
accurate modeling of KNe , emphasizing the significance of nuclear heating rates, ther-
malization efficiencies, and opacities in KN simulations. These models are character-
ized by key parameters like the dynamical ejecta mass (Mdyn

ej ), disk wind ejecta mass
(Mwind

ej ), half opening angle (Φ), and observation angle (Θobs). The updated POSSIS
code, as detailed in [77], demonstrates the nuanced impact of these parameters on KN
light curves and spectra, offering a more comprehensive and accurate representation of
these complex phenomena.

Ka2017—Presented in [160], the Ka2017 model elucidates the EM emission
from BNS. It highlights the critical influence of ejected mass (Mej), expansion velocity
(vej), and composition on the characteristics of KNe (Xlan). The model is key for ana-
lyzing light curves and spectra, using a sophisticated Monte Carlo code for multidimen-
sional analysis and resolving the radiation transport equation in expanding relativistic
speeds.
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We also incorporate other BNS KN models such as Bu2022mv [40], which is a
derivative of the POSSIS framework, and LANL2022 [287]. These models extend the
parameter space beyond that of POSSIS by incorporating both disk wind ejecta velocity
(vwind

ej ) and dynamical ejecta velocity (vdyn
ej ), allowing for a more nuanced exploration

of the kinematic properties of KN ejecta.

Ejecta constraints—We begin by evaluating the upper limits 90% possible
from the sample considered here (KNe for these objects), then constrain them for the
parameters of the ejecta model Mdyn

ej and Mwind
ej , as well as a systematic contribution

to the dynamical ejecta α and the fraction of disk mass contributing ζ. This enables
us to make an empirical constraint of the fraction of the disk contributing to KNe . We
constrain Mdyn

ej to 10–40% and Mwind
ej to 10–30%. We also want to differentiate between

prompt collapse and the formation of a hypermassive and/or supramassive NS.

3.4.2 Supernova models

In the NMMA framework, three models, Piro2021, nugent-hyper, and salt3 analyze
SNe. The Piro2021 model focuses on shock cooling SNe , nugent-hyper on Type Ic/b
SNe (SNe Ic/Ib) , and salt3, the spectral adaptive light curve template, on SNe Ia.
The latter two use sncosmo3. These models interpret complex light curve patterns,
enhancing our understanding of SN explosion mechanisms and progenitor systems.

Piro2021—The Piro2021 model [226] is particularly adept at capturing the
early-time light curves of SNe, which are crucial for understanding the physics of shock
breakout and cooling. The model emphasizes key parameters: the mass of the extended
material (Me), the radius of this material (Re), representing the size of the SN’s outer
layers, and the energy imparted during the shock (Ee), which influences the intensity
and duration of the cooling emission.

nugent-hyper—The nugent-hyper model [179], is designed for SNe Ic/Ib ,
calibrated to the peak intrinsic luminosity of SN 1998bw. The primary adjustable pa-
rameter in this model is the absolute magnitude. Within the context of sncosmo, we also
provide a prior file called sncosmo-generic.prior, which includes parameters such
as luminosity distance, timeshift, and supernova_mag_boost, the latter adjusting the
absolute magnitude of the SN.

salt3—The salt3 model [162] advances the spectral energy distribution (SED)
modeling for SNe Ia for accurate cosmological distances. It builds on salt2 [145, 144],
G improving uncertainty estimates and color and stretch separation in light curves. Key
parameters are: x0, for flux normalization; x1, for time-dependent light curve variations;
and c, for color correction. With a larger dataset, salt3 extends wavelength coverage to
2000–11000 Å, includes I and iz bands, and enhances cosmological analysis precision
by reducing calibration errors and Hubble scatter.

3https://github.com/sncosmo/sncosmo
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3.4.3 Gamma-ray burst

For GRBs , we use afterglowpy4 [276] (named TrPi2018 in the code), which provides
a comprehensive framework for simulating synchrotron emission from relativistic blast
waves in the GRB afterglows. This model is crucial for understanding the complex
dynamics of GRB emissions, particularly in relation to jet structures and observer per-
spectives. The key parameters of the TrPi2018 model include the isotropic kinetic
energy (EK,iso), the angle of collimation of the jet (θc), the viewing angle (θv), the
constant density of the circumburst (n), the spectral slope of the electron distribution
(p), and the fractions of energy imparted to the electrons (εe) and the magnetic field
(εB). These parameters allow for detailed exploration of the afterglow’s characteristics,
offering insights into the nature of GRB events and their observational signatures.

3.5 NMMA in GRANDMA “ReadyforO4” Campaign

The “ReadyforO4” observational campaign, conducted by the GRANDMA consortium
from 1 April to 30 September 2021, represents an important achievement in multi-
messenger astrophysics by revealing how fast we can react after a transient alert [33].
This campaign was designed to categorize astrophysical events detected from ZTF alerts
into three distinct categories: moving objects, fast transients (such as KNe and GRB ),
and slow transients (such as SNe). Categorization was facilitated by Fink, a community
broker adept at processing large volumes of time domain alert streams, including those
from the ZTF survey [199] and the upcoming data processing for Rubin Observatory
[156]. Of more than 35 million potential candidates, approximately one hundred passed
our rigorous selection criteria. Of these, six were closely followed by the GRANDMA
network, which incorporates both professional and amateur astronomers. My classifi-
cation of rapid KNe was predicated on the optical source decay rate that exceeded 0.3
mag/day.

During this period, eight significant transients were identified, includ-
ing ZTF21abfmbix, ZTF21absvlrr, ZTF21abultbr, ZTF21abfaohe, ZTF21abbzjeq,
ZTF21acceboj, and ZTF21ablssud, with ZTF21abotose undergoing intensive observa-
tions. Using a dual phase classification approach within the NMMA pipeline, an initial
linear regression fitting technique was applied to identify KN light curves, succeeded
by fits using NMMA light curve models tailored for KNe , SNe, and GRBs , to deter-
mine their nature. The comprehensive methodology and collaborative effort underpin-
ning the “ReadyforO4” campaign not only demonstrate the GRANDMA consortium’s
capabilities in multi-messenger astronomy, but also contribute to our understanding of
the light curve nature classification.

4https://github.com/geoffryan/afterglowpy
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3.5.1 Linear fitting regression

In the realm of astrophysical research, the method of ML estimator (MLE) plays an inte-
gral role in delineating the characteristics of rapidly changing astronomical events.MLE
operates on the premise that one can optimally deduce the parameters θ of a statistical
model, assuming a priori knowledge of the true distribution of these parameters. The
methodology involves fitting a mathematical model to the data, where the derived es-
timates are those that most likely produce the observed set of values from a sequence
of measurements of a random variable. This process employs the concept of sufficient
statistics Stt , Sy, which encapsulate all the necessary data-derived information to accu-
rately estimate the parameters θ. My defined ML estimation function is expressed as
follows:

L(θ) = L(a,b) (3.2)
= logP(y|a,b,H) (3.3)

=−1
2 ∑

i
log2πσ

2
i −

1
2 ∑

i

(yi −ati −b)2

σ2
i

(3.4)

Here, σi represents the measurement error of the magnitude yi at time ti.

The sufficient statistics, Stt and Sy, are identified as the points where the first
partial derivatives of the log ML L(θ) equal zero.

∂ logL
∂θ

= 0

This leads to the following equations:



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σ2

i
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σ2

i
= ∑i

tiyi
σ2

i
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σ2

i
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1
σ2

i
= ∑i
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σ2

i

The optimal estimators a,b are obtained by solving these linear equations. Thus,
my linear regression model is defined as Yi = ati+b. Here, the parameter a signifies the
rate of linear light evolution. A slow transient is characterized as an event in which the
decay rate is either negative (indicating increasing brightness) or less than 0.3 mag/day
in a specific observational filter. My goal was to identify transients that undergo rapid
decreases or increases in brightness. I applied a linear regression procedure using a
maximum likelihood estimation approach to estimate the slopes between two distinct
times (see Figure 3.1). The results of this work are recorded in Table 3.1, where I
present the transient evolution rates of the first seven days since the first detection by
ZTF, as well as their fade rate since the peak of maximum magnitude.

In this process I am looking for transients that fade quickly in optics with a fade
rate exceeding 0.3 mag/day, characteristic of KN. The results of this work are recorded
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Figure 3.1: Linear fit of the transient light curves in the g’-band and r’-band, showing
the evolution of the flux since the peak maximum magnitude for various transient events
observed by ZTF. Each point represents the observed magnitude for a given transient
on a particular day, with the numerical values indicating the rate of change in magnitude
per day. This analysis enables the evaluation of the fading or brightening trends of these
transients over time, providing insights into their underlying physical processes.

in Table 3.2, where the transient evolution rates of the first seven days since the first
detection by ZTF as well as their fade rate since the peak of maximum magnitude are
presented.

3.5.2 Constraining the nature of transients

The detection of AT2017gfo [280, 104, 208], which was preceded by the GW emission
GW170817 [10] and the short GRB GRB170817A [139], marked the first observation
of the join of a KN after a GW signal. KNe are rapid transient phenomena that emit
across UV, optical, and infrared spectra. They are powered by the radioactive decay
of heavy neutron-rich elements, which usually results from the coalescence and merger
of the BNS and NSBH systems [195, 194, 181]. KNe are less luminous in the visible
range and fade more rapidly [43] than SNe. The absolute peak magnitude of SNe
ranges between [−17,−19], while AT 2017gfo peaked at −16. SNe generally have a
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Transients Filters Mag Peak 7 first days evolve rate fade time fade rate

of 7 first days since peak mag since peak mag

(mag) (day) (mag.day−1) (day) (mag.day−1)

ZTF21abbzjeq
g’ 17.07±0.032 6.9 - 0.128 36.9 0.08

r’ 17.21±0.039 7 - 0.28 66.9 0.035

ZTF21abfaohe
g’ 14.12±0.025 6 - 0.424 32 0.078

r’ 14.25±0.042 3 - 0.09 34 0.044

ZTF21abfmbix
g’ 15.6±0.1 6 - 0.33 6 0.108

r 15.3±0.1 2 - 0.455 4 0.058

ZTF21ablssud
g’ 16.38±0.036 – – 21 0.125

r’ 16.37±0.055 – – 10 0.144

ZTF21absvlrr
g’ 15.28±0.043 2 - 0.534 29 0.07

r’ 15.46±0.033 5 - 0.402 31 0.043

ZTF21acceboj
g’ 17.7±0.077 3.9 - 0.03 12 0.01

r’ 17.4±0.056 6.02 - 0.11 – –

ZTF21abotose
g’ 18.67±0.16 4.02 0.28 14.01 0.06

r’ 18.56±0.137 2 0.29 14 / 29 - 0.08 / 0.04

ZTF21abultbr
g’ – – – – –

r’ 18.69±0.087 31 - 0.002 – –

Table 3.1: Recording of daily magnitude scores of transient phenomena. These scores
are, on the one hand, those of the first seven days following the ZTF first detection
(column 5 of the table), and those since the peak of magnitude (last column of the
table). For more details on the evolution of the ZTF21abotose which fades, rises, then
fades again, see figure 3.1. Used to support [33]

decay rate below 0.3 mag/day, in contrast to the higher extinction rate of more than
0.5 mag/day observed for AT2017gfo. This section aims to evaluate the likelihood that
the rapidly evolving optical transients are KNe , using observations from the ZTF in
the g’ and r’ bands. My approach involves constraining the nature of these transients
through four distinct light curve models, evaluated a posteriori for their correlation with
the observational data. The models include: a KN model from [160] (Ka2017), a GRB
afterglow model from [276] (TrPi2018), the SN light curves SN Ic/Ib model [179]
(nugent-Hyper), and a shock cooling SN light curve model from [226] (Piro2021).
The ideal model is one whose regression aligns closely with the observed light curve
points, as determined by the Bayes factor of the model. A key criterion for model
rejection is having at least one observational data point falling outside the estimation
band of the model. The most suitable model ensures that its regression line effectively
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Table 3.2: Simulation results for rapidly evolving transients using ZTF data, assessing
their concordance with four distinct models: KN (Ka2017), SN (nugent-hyper), GRB
afterglows (TrPi2018), and Shock Cooling (Piro2021). Bayes factors are presented in
logarithmic form for comparative evaluation. Used to support [33].

Transients Ka2017 TrPi2018 nugent-hyper Piro2021 light curve
ZTF21abfmbix −12.38 −15.95 −9.18 −10.1 Supernova Ia
ZTF21absvlrr −9.78 −16.73 −9.91 −11.07 Supernova Ia
ZTF21abultbr −2.73 −9.14 −5.24 −4.76 Supernova II
ZTF21ablssud −6.32 −11.58 −9.83 −9.41 Cataclysmic Variable
ZTF21abfaohe −12.3 −10.98 −7.47 −8.67 Supernova Ia
ZTF21abbzjeq −8.22 −11.41 −7.49 −8.47 Supernova Ia
ZTF21acceboj −16.52 −19.44 −14.52 −15.6 Supernova IIb
ZTF21abotose −6.37 −10.62 −7.41 −7.49 Shock Cooling - Supernova IIp

encompasses the set of observed data points.

Results—In Table 3.2, I present my findings for each transient, definitively
classified as non-moving objects through the analysis of their light curves using
ZTF data. Utilizing the models previously described, I have identified the tran-
sients ZTF21abfmbix, ZTF21absvlrr, ZTF21abultbr, ZTF21abfaohe, ZTF21abbzjeq,
and ZTF21acceboj as typical SN candidates. It is important to note that ZTF21abfmbix
is listed twice, indicating its strong SN characteristics in our analysis. Furthermore, my
results suggest that ZTF21abotose is consistent with both shock cooling and GRB af-
terglow models in its early stages. However, its brightness increase at later stages aligns
more closely with the shock cooling scenario exclusively. Additionally, ZTF21ablssud
is well modeled by a GRB framework. Yet, considering its galactic latitude ℓ= 5.7 de-
grees and its resemblance to numerous known cataclysmic variables, we propose that it
is more likely to be a cataclysmic variable. Figure 3.2 shows an application of NMMA
fitting to the transient “ZTF21acceboj,” that NMMA has classified as a SN IIb.

Classification of ZTF21abotose event—ZTF21abotose, also known as
SN2021ugl, displayed initial characteristics of both KN and SN types. Early observa-
tions showed compatibility with shock cooling models. The event’s increasing bright-
ness over time supported these models, indicating that late-stage phenomena were pri-
marily due to shock-heated material cooling, rather than GRB afterglow. Initially, ZTF
observations suggested ZTF21abotose might be a KN event, but spectroscopic analy-
sis later confirmed it as a SN IIb. This type is marked by early hydrogen lines that
fade, indicating a core-collapse of a massive star with a significantly stripped hydrogen
envelope. This finding confirms the event as a stellar explosion, not a merger-driven
KN.
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Figure 3.2: Comparative analysis of light curve models against the observed data for the
transient event ZTF21acceboj, which has been classified as a SN IIb through NMMA
fitting procedures. The figure displays the magnitudes of the g’-band and r’-band over
a period of ten days. Model predictions from Ka2017 (green), nugent-hyper (gray),
TrPi2018 (blue), and Piro2021 (red) are overlaid with the observed photometric data
points (colored dots). The shaded regions represent the confidence intervals for each
model, illustrating the range of possible light curve behaviors based on the underlying
physical parameters of each model. This graphical representation underscores the vary-
ing degrees of fit each model has to the observed data, highlighting the predictive power
and limitations inherent in the current modeling approaches.

3.6 Equation of state and Hubble-Lemaître constant

Despite the advances with the independent measurement of the H0 [5] and the con-
straints on the EOS of ultra-dense matter [11, 113], traditional analyzes have isolated
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Figure 3.3: Here I plot the light curve fitting of ZTF21abotose using a linear regression
model. The g’-band data (green) and r’-band data (red) are depicted with their respec-
tive observational error bars. Linear fits to the data are represented by the dashed lines,
indicating the transient’s fading pattern over the first 47 days since the ZTF detection.
Numerical values adjacent to the data points denote the rate of change in magnitude,
evidencing a more rapid decline in the g’-band compared to the r’-band. This behavior
is characteristic of the cooling and expansion processes following the SN event.

the evaluation of different messengers. NMMA integrates analyses across GW , KN,
and GRB signals, enhancing our understanding of NS properties and the universe’s
expansion rate. This approach provides a holistic view of the behavior of ultra-dense
matter by leveraging the unique strengths of each messenger type. The GW data yield

crucial information, including tidal deformability Λ̃ = 16
3

(m1+12m2)m4
1Λ1+(m2+12m1)m4

2Λ2
(m1+m2)5 ,

chirp mass Mc =
(m1m2)

3/5

(m1+m2)1/5 , and mass ratio q = m2/m1, while EM counterparts offer

insights into the dynamics of the remnant accretion disk (Mdyn
ej ), which is the dynam-

ical ejecta is the matter expelled at the moment of the merger from tidal stripping of
the NSs and from the compact binary coalescences (CBCs) contact interface [245, 246]
and wind ejecta (Mwind

ej ), produced through remnant accretion disk winds, which can be
driven by neutrino energy, magnetic fields, viscous evolution and/or nuclear recombi-
nation energy [193]. In our NMMA framework, we employ the BILBY [53] software
package for GW posterior parameter estimation, integrating GW posterior distributions
with potential EMs counterparts for a more accurate constraint of the EOS of NS and
the H0. We adopted the IMRPHENOMD_NRTIDALV2 waveform model for the GW
posterior simulation[112], selecting the EOS parameters with the highest likelihood es-
timates for a comprehensive understanding of NSs and the expansion of the universe
[155].
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3.6.1 Equation of state

The collision of two NSs is among the most violent events in the universe and is asso-
ciated with a variety of observables ranging from GW and possibly neutrino signatures
to EMs signals covering the entire frequency band. These phenomena provide crucial
insight into the extreme conditions found within NSs , where matter is compressed to
densities that exceed those of an atomic nucleus. In the context of NS , EOS plays
a crucial role in describing how matter responds to the relationship between densi-
ties (ρ), pressures (p) and temperatures (T ). A significant aspect of this relationship
is constrained by chiral effective field theory (chiral EFT, [120, 186]), which offers a
sophisticated framework to investigate interactions within neutron matter. In particu-
lar, this approach is effective for densities ranging between 1 and 2 nsat [273], where
nsat = 0.16 fm−3 represents the density of nuclear saturation [147, 189]. The predic-
tive power of chiral EFT interactions extends the understanding of nuclear forces from
experimentally accessible scenarios to dense neutron-rich environments characteristic
of NS cores. The degeneracy pressure, originating from the Pauli Exclusion Principle,
is crucial for NS structural integrity. This quantum mechanical phenomenon prevents
identical fermions from occupying the same quantum state, generating a repulsive pres-
sure that counteracts gravitational collapse. Remarkably, NSs exhibit superfluidity at
low temperatures (T ≈ 0 K), offering a unique laboratory for studying ultradense mat-
ter and its properties. The degeneracy pressure, originating from the Pauli Exclusion
Principle, is crucial for NS structural integrity.

A fundamental aspect of the EOS analysis involves the speed of the sound equa-

tion, cs = c
√

∂p
∂ρ

, where 0 ≤ cs ≤ c and c is the speed of light. This equation provides
limited insight into the complex nature of ultradense NS matter on its own. Thus, chiral
EFT, constrained up to approximately 12nsat by theoretical uncertainties and the speed
of sound, is employed for a deeper understanding. By integrating EOS constraints
from chiral EFT at low densities with high-density observations, and using the speed
of sound as a facilitator, we solve the Tolman-Oppenheimer-Volkoff (TOV) equations.
This methodology allows for the estimation of the NS radii and tidal deformabilities as
mass functions, providing a comprehensive understanding of the NS properties. Fol-
lowing the methodology in our paper [217], we constrain NS EOS using analyses of
KN AT2017gfo, GW170817, and GRB1708107. Using Gaussian process regression,
constraints on KN and source properties are derived as associated with GW170817.

AT2017gfo: KN analysis—For the analysis of the KN AT2017gfo, we focused
on the UV, optical, and infrared observations recorded between 0.5 to 10 days post-
merger. Utilizing the comprehensive grizyJHK AB magnitude photometry data pro-
vided by [266], our analysis adheres to the methodologies outlined in [93]. To links
physical system parameters to the emitted light curves, we employed Bu2019lm to
be our KN model, built with POSSIS, a 3 dimensional Monte Carlo radiative transfer
code (see the Sec. 3.4). This approach allowed us to systematically examine the light
emission properties across different wavelengths, providing valuable insights into the
ejecta’s composition and the NS merger’s environmental conditions. The method em-
ployed for light curve analysis involved sparse interpolation of the data onto a uniform
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time grid, followed by a detailed singular value decomposition (SVD) to identify prin-
cipal components that reflect the co-varying nature of the data. We leveraged Gaussian
Process Regression (GPR; [234, 220]) to interpolate the principal components, allowing
us to predict light curves and spectra for various parameter sets within the ejecta models
Mej =α+Mdyn

ej +ζ×Mwind
ej , where α accounts for an additional component of the ejecta

mass not captured by other variables, providing flexibility in modeling complex ejecta
dynamics, while ζ serves as a conversion factor, crucial for quantifying the portion of
the disk mass ejected as wind, and uniformly sampled between 0 and 1. [93], perform
a similar computation but on bolometric luminosities, light curves in standard filters,
and spectra. This surrogate model approach provided a robust statistical framework to
infer bolometric luminosities, temperatures, and radii, significantly contributing to our
understanding of the KN’s behavior and its underlying physics. This GPR approach not
only improves prediction accuracy but also provides quantifiable uncertainty estimates,
thereby offering insightful inferences into the dynamical properties of the KN event and
contributing profoundly to our comprehension of its underlying physics.

GRB170817A: Gamma-ray Burst afterglow analysis—Short GRBs are pre-
dicted to originate from NS mergers, a connection that was confirmed by GW170817
and GRB170817A. For the study of the afterglow resulting from GRB170817A, we
concentrated on the multi-wavelength observations spanning from radio to X-ray fre-
quencies, documented from moments post the merger up to several weeks thereafter.
Using the extensive data set collated by [277]. The synthetic light curve models, de-
rived using TrPi2018 model [248]. This enabled a thorough exploration of the after-
glow’s emission characteristics across the EMs spectrum, revealing crucial insights into
the jet dynamics and the interstellar medium interaction. Our investigation deepens
the understanding of the GRB’s physical mechanisms, highlighting the significance of
synergistic multi-messenger observations in astrophysical explorations. The analytical
approach adopted for decomposing the light curve data involved a meticulous SVD to
unearth the principal components that capture the essence of the data’s variability. Cen-
tral to our modeling effort was the quantification of the isotropic energy of the jet, Eo,
which is intricately modeled to account for various contributing ejecta components. The
intricate dynamics between the jet and its surrounding environment were encapsulated
in the following formulations: E0 = εMdisk(1− ζ), where ε represents the efficiency
of conversion from disk mass, Mdisk, to energy, and ζ accounts for the fraction of disk
mass not contributing to the observed emission due to various loss mechanisms.

Result—To constrain the EOS, I demonstrate the ability to constrain the ra-
dius of a 1.4 M⊙ NS , focusing on the median values within the 90% confidence
interval (CI). By incorporating all available observational data, I combine informa-
tion from GW170817 and AT2017gfo, further enhancing our analysis with data from
GRB170817A. In Fig. 3.4, I employed equal tail of the “corner” plot [131] to quan-
tify the overlap between the parameters and the credible interval rather than the highest
density interval (HDI) (the one used in our NMMA paper [217]), using marginalized
1- and 2-dimensional posteriors over the remaining parameters. My analysis, integrat-
ing GW170817 and AT2017gfo data, refined the radius estimates for a 1.4 M⊙ NS to
R1.4 = 11.86+0.45

−0.50 km and further to R1.4 = 11.98+0.32
−0.44 km upon incorporating insights
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from GRB170817A. These findings underscore the critical role of synergistic observa-
tions in the elucidation of the EOS of NSs .
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Figure 3.4: Corner plot analysis of GW170817, AT2017gfo, and GRB170817A data to
infer key parameters of the NS merger. Confidence regions at 68%, and 95% levels for
several parameters are depicted, including the mass of the dynamical ejecta (Mdyn

ej ), the
mass of the disk wind ejecta (Mwind

ej ), the GRB jet’s isotropic energy (log10 E0), the chirp
mass (Mc), the mass ratio (q), the tidal deformability (Λ̃), and the radius (R1.4) of a 1.4
M⊙ NS. The median values and 90% CI are indicated for the 1D distributions. Analyses
based on GW170817 and AT2017gfo are presented in red, and the extended analysis
including GRB170817A is shown in blue, facilitating direct comparison between these
scenarios. Modified from our NMMA paper [217].
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3.6.2 Hubble-Lemaître constant constraints

I simulate joint GW and EMs signal analyses as detailed in Chapter 2, focusing on
PSD noise for the O4b and upcoming O5 runs. To improve efficiency, we employ
the relative binning method for the 20 Hz GW analysis, using a uniform prior for the
luminosity distance [157]. The study focuses on the 30 loudest sources by network S/N
for O4 and O5, selected based on CBC distributions from PDB/GWTC-3 exceeding
S/N=8. The IMRPHENOMD_NRTIDALV2 model and EOS parameters are used for
GW simulations, with signals injected into Gaussian noise based on the O4 and O5 PSD
predictions. GW parameter estimation uses the BILBY [53] library and the DYNESTY
algorithm [242, 268]. I used the same priors apply to KN inferences, using the NMMA
framework to estimate KN properties and the luminosity distance [76, 77]. Then the
EMs parameters for the ZTF and Rubin Observatory are also estimated within NMMA
simulation. Phenomenological relations [113] link binary and ejecta masses in 30 BNS
systems, and I identify nine (seven) potential BH formations in O4 (O5) without ejecta.
The process is summarized in the flow chart of Figure 4 in Chapter 2 to derive H0." To
estimate H0, we analyze the posterior luminosity distance distributions from GW and
EMs simulations, including the GW170817 and AT2017gfo results, using a consistent
KN model. Using a standard cosmology, the linear Hubble relation for nearby events
helps us to deduce H0, with adjustments for luminosity-distance volumetric priors as
described in [5].

For residual 21 (23) O4b (O5) BNS mergers with an EMs counterpart, the in-
ferred luminosity distance are adapted from both GW and EMs simulations to determine
the posterior distribution for H0. This also includes the inferred luminosity distance pos-
teriors of the GW signal GW170817 from [8, 6] and the KN signal AT2017gfo, yielding
a total of 22 (24) O4 (O5) BNS coalescences. Given that all BNS systems are within a
300 Mpc range or a minimal redshift regime, the appropriate linear Hubble relation for
nearby events is assumed as

cz ≈ H0dL, (3.5)

where dL and z are the luminosity distance and redshift, respectively c the speed of light,
and H0 the rate of the universe expansion. The analysis adjusts the luminosity distance
prior by introducing a factor 1/H4

0 , as in [5].

We calculate injected redshifts using distances and the H0 from our O4 (O5)
sample, defined by a Gaussian distribution with a standard deviation of 1%. Our ap-
proach, which does not consider the distance-inclination angle degeneracy, improves H0
measurements by incorporating GW and KN data as per [113]. Although we focused
on the 30 loudest GW signals linked to potential KN observations, we acknowledge the
need for broader investigations to address selection biases from our sampling method
and redshift estimations of host galaxies. The influence of BNS mass on H0 is signifi-
cant, as high-mass systems that rapidly become BHs are excluded from H0 evaluations.
Despite no evident biases in current results, the robustness of our methods suggests that
future studies should refine bias corrections, particularly as we consider larger datasets
and higher redshifts. Our emphasis on loud GW signals could introduce biases re-
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lated to signal selection, host galaxy redshifts, and BNS masses, necessitating further
methodological improvements.

Discussion—I calculate injected redshifts using the distances and the H0 from
our O4 (O5) sample, defined by a Gaussian distribution with a 1% standard deviation.
This approach, which does not consider the distance-inclination angle degeneracy, im-
proves the H0 measurements by incorporating GW and KN data as in [113]. Although I
focused on the 30 loudest GW signals linked to potential KN observations, we acknowl-
edge the need for broader investigations to address selection biases from our sampling
method and redshift estimations of host galaxies. The influence of BNS mass on H0
is significant, as high-mass systems that rapidly become BHs are excluded from H0
evaluations. Despite no evident biases in current results, the robustness of our methods
suggests future studies should refine bias corrections, particularly as we consider larger
datasets and higher redshifts. Our emphasis on loud GW signals could introduce biases
related to signal selection, host galaxy redshifts, and BNS masses, necessitating further
methodological improvements.

ZTF—In Figure 3.5, I show the H0 results for the ZTF scenario from GW and
EMs data, in addition, the results when combining GW+EM information and con-
trast these with state-of-the-art measurements. The uncertainties of our results are
reported at 90% credible interval. The projected BNS detection rate is marked as a
gray dashed line from Table 5 of kiendrebeogo et al. 2023[163]. The injection value
of H0 = 67.74 kms−1Mpc−1 from the Planck measurement of the Cosmic Microwave
Background [30] have been used.

In ZTF-O4b (left panel), a single GW+EM observation yields H0 =
61.26+17.73

−18.97 kms−1Mpc−1, which does not provide a strong constraint on the H0
due to considerable uncertainties. Combining the 22 BNS events of O4b, including
GW170817 and AT2017gfo, the calculated value is H0 = 66.37+0.58

−0.95 kms−1Mpc−1. De-
spite the presence of systematic biases, these combined data hint at a possible resolution
of the Hubble tension, highlighting the influence of additional GWs and associated KNe
.

In ZTF-O5 (right pane), a single GW+EM observation results in H0 =
61.26+17.73

−18.97 kms−1Mpc−1, which aligns with previous O4b findings. When 24
events in the O5 BNS are considered together, the estimate increases to H0 =
66.74+0.39

−0.33 kms−1Mpc−1.

Rubin—In Figure 3.6,the H0 estimate for the Rubin Observatory scenarios of
O4b and O5 are detailed using the same injection value of H0 = 67.74 kms−1Mpc−1

than the ZTF case.

The left panel displays Rubin Observatory-O4b. The analysis reveals
that approximately two combined GW+EM observations for O4b yield H0 =
62.56+5.27

−4.70 kms−1Mpc−1. Then a comprehensive data set of 22 events during O4b
is available, and the calculated H0 = 67.01+0.43

−0.53 kms−1Mpc−1 approaches the expected
value.

In the right panel I show the result of Rubin Observatory-O5. Approxi-
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Figure 3.5: H0-estimates for the ZTF observation scenarios for O4b (left panel) and
O5 BNS samples (right panel). The H0 estimates from our GW simulations are shown
in orange, the EMs simulations are shown in violet, and the combined GW+EM re-
sults are shown in blue, while the relative errors are shown in the bottom panels. In-
dicate the expected detection rates for O4b and O5 in alignment with Table 5 of [163]
as a gray dashed line and show the credible interval 90% as gray-shaded regions. In
the bottom panel, I contrast our results with the Planck measurement of the cosmic
microwave background ([30]; Planck, violet), to the Hubble measurement via SNe Ia
([238];SHOES, light blue), and to the H0 measurement of superluminal motion of the
jet in GW170817 ([152]; superluminal, gray). All uncertainties are reported at a credi-
ble interval 90%. Used to support kiendrebeogo et .al 2023[163]

mately five such observations in O5 provide H0 = 65.30+2.31
−2.99 kms−1Mpc−1, align-

ing closely with the predicted results. Similarly, for O5, the determination of H0 =
66.23+0.39

−0.33 kms−1Mpc−1 corroborates the initial estimations.

My work indicates that measurements H0 with subpercent accuracy can be
achieved by integrating GW+EM data with an adequate count of KNe observations.
Moreover, note that although the analysis currently considers only distance measure-
ments from the KNe , additional data, such as the GRB afterglow, could potentially
decrease uncertainties by resolving the ambiguities between distance and inclination.

3.7 Conclusion

This research demonstrates the scientific capabilities of the NMMA platform, which
not only constrains light curves from transient objects, but also integrates GW and EMs
data. This integration enables detailed analyses of BNS mergers and NSBH mergers,
revealing properties of matter in extreme environments and enhancing our understand-
ing of the expansion rate of the universe, reflected by the H0 . The NMMA platform
constrained the EOS for a 1.4 M⊙ NS to R1.4 = 11.98+0.32

−0.44 km using data from GWs,
KNe , and GRB bursts from GW170817. It also refined the H0 estimates using sim-
ulated light curve data with the ZTF and Rubin Observatory. Future enhancements to
the NMMA framework are essential to increase precision, optimize follow-up observa-
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Figure 3.6: The H0-estimates for Rubin Observatory observation scenarios for O4b
(left panel) and O5 BNS samples (right panel). The H0 estimates from our GW simula-
tions are shown in orange, the EMs simulations are shown in violet, and the combined
GW+EM results are shown in blue, while the relative errors are shown in the bottom
panels. Indicate the expected detection rates for O4b and O5 in alignment with Table
5 of [163] as a gray dashed line and show the credible interval 90% as gray-shaded
regions. In the bottom panel, I contrast our results with the Planck measurement of the
cosmic microwave background ([30]; Planck, violet), to the H0 measurement via SNe Ia
[238];SHOES, light blue), and to the H0 measurement of superluminal motion of the jet
in GW170817 ([152]; superluminal, gray). All uncertainties are reported at a credible
interval 90%. Used to support kiendrebeogo et .al 2023[163]

tions, and better utilize skymaps and telescope data. These improvements will expand
our cosmic knowledge and refine techniques for studying transient events in the uni-
verse.
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4Chapte
r

Predictions for detection rates and science with
gravitational-wave counterparts

***

In this chapter, I present the results of my contributions to improving, particularly the
update of the algorithm to detect EM counterparts of GW, gwemopt. My work facil-
itated the integration and connection of gwemopt1 with the NMMA2 framework pre-
sented in Chapter 3. Various simulations were conducted to evaluate the impact of
telescopes such as ZTF, the Rubin Observatory, and the forthcoming ULTRSAT during
the observation campaigns O4a, O4b, and O5 of the IGWN GW. The results of the
run O5 simulations were used to support the work of “ULTRSAT WG2 Work package",
which has not yet been published at the time of writing this thesis.

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.2 Telescopes configuration in gwemopt . . . . . . . . . . . . . . . . . . 89

4.3 Simulation follow-up . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

1 https://github.com/skyportal/gwemopt/tree/main
2 https://github.com/nuclear-multi-messenger-astronomy/nmma/tree/main

88

https://github.com/skyportal/gwemopt/tree/main
https://github.com/nuclear-multi-messenger-astronomy/nmma/tree/main


CHAPTER 4. PREDICTIONS FOR DETECTION RATES AND SCIENCE WITH GRAVITATIONAL-WAVE COUNTERPARTS

4.1 Background

GW sky maps, while providing limited directional information, require detailed proba-
bility maps based on the direction and distance of the sky for effective detection of the
GW counterpart [265, 64]. The broad sky coverage required for GW observations de-
mands sophisticated algorithms for counterpart characterization. This study focuses on
the release of probability skymaps by IGWN, underscoring the challenges in optimizing
telescope efforts due to varying configurations and conditions, and highlighting the need
for advanced techniques in follow-up observations. The key to this is the rapid classifi-
cation of fast transients, particularly with decay rates exceeding 0.3 mag/day for KNe,
essential for understanding variable and transient phenomena. We have increased our
ability to study these events, necessitating innovative approaches such as the NMMA 3

framework [217], which employs Bayesian inference for multi-messenger signals with
EOS of NS data [114, 218, 274], and gwemopt [95, 96], which optimizes follow-up
observations using skymaps and telescope data.

4.2 Telescopes configuration in gwemopt

This section explores the various parameters and strategies gwemopt employ to tailor
telescope settings for optimal detection and analysis of the EM counterparts. gwemopt
tool is a highly specialized scheduler designed to optimize follow-up observations of
GW events. Segmenting the observational process into stages such as tiling, time allo-
cation, and planning significantly enhances the efficiency of these critical observations.
It analyzes skymaps and telescope parameters to segment the process into stages: tiling,
time allocation, and planning using potential EM counterpart light curve information.
gwemopt’s primary goal is to streamline the planning of TOO telescope observations by
segmenting GW skymaps into manageable ’tiles’ based on telescope FOV, allocating
observation time efficiently, and considering essential factors like tile probability and
observability to maximize coverage. The “iterative” and “overlapping” methods intro-
duced by gwemopt are crucial to maximize coverage and minimize overlap in multi-
telescope networks. It also proposes synchronized multi-telescope observations world-
wide for comprehensive coverage across different bands and temporally separated visits
to the same sky patch. This approach significantly improves the efficiency and proba-
bility of detecting and studying transient cosmic events [95, 219].

Within gwemopt, various astronomical observation systems, including ultravi-
olet and optical, are configured4. As part of my research, I have integrated scripts into
the gwemopt framework that incorporate configurations for terrestrial telescopes such
as ZTF and LSST, as well as the upcoming space telescope, ULTRSAT. Detailed in the
subsections "Ground-Based Telescopes" and "Space Telescope", these configurations
are adaptable to other telescopes, especially space telescopes, which face fewer con-
straints than ground-based ones. To facilitate the use of gwemopt with NMMA, I added

3https://github.com/nuclear-multimessenger-astronomy/nmma
4https://github.com/skyportal/gwemopt/tree/main/gwemopt/data/config
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4.2. TELESCOPES CONFIGURATION IN GWEMOPT

a script to NMMA to simulate light curve detection5 that interfaces with gwemopt.

4.2.1 Ground-based telescopes

These include the Asteroid Terrestrial-impact Last Alert System (ATLAS; [275]) with
a FOV of 29.2 deg2 reaching a limit in the i ∼ 18.7 mag band (5σ, 30s), BlackGEM
[68] with a FOV of 8.12 deg2 reaching a limit in the g ∼ 23 mag band (5σ, 300s),
the ZTF [63, 142, 190, 108], an optical study of the temporal domain with a very
wide FOV of 47 deg2 reaching a limit in the zt f r ∼ 20.4 mag band (5σ, 30s), and the
upcoming Rubin Observatory (LSST; [156]) with a large 9.6 deg2 FOV designed to
conduct a comprehensive 10-year survey of the southern sky, reaching a limit in the
ps1__r ∼ 24.4 mag band (5σ, 30s), and many others.

4.2.2 Space telescopes

These include the Nancy Grace Roman Space Telescope (Roman; [44]), which is ob-
servable in the near-infrared with capabilities up to F158 ≈ 26 mag (5σ, 30s), slated for
2027. Another significant mission, the UVEX [171], is scheduled for 2030. ULTRSAT
[259], with a 204 deg2 FOV, will detect objects up to magnitude 22.5 (5σ, 900s) and
will operate in 2026.

Among all these astronomical platforms, I am particularly interested in the ca-
pabilities of detecting EM counterparts. ULTRSAT and UVEX will operate in the ultra-
violet domain, and the Rubin Observatory and ZTF operate on the ground in the optical
domain. For ZTF, I consider a base sensitivity in the zt f g, zt f r and zt f i bands with
magnitudes zt f g ∼ 21.7, zt f r ∼ 21.4, and zt f i ∼ 20.9 [38]. The Rubin Observatory
covers sdssu, ps1__g, ps1__r, ps1__i, ps1__z, and ps1__y bands with magnitudes
sdssu = 23.9, ps1__g = 25.0, ps1__r = 24.7, ps1__i = 24.0, ps1__z = 23.3, and
ps1__y = 22.1. For ULTRSAT , I consider the ultrasat band with a magnitude of
ultrasat = 22.5 and 300s of exposure time (instead of 900s). The EM light curves for
ULTRSAT are generated using sncosmo6, using the radial positioning of its bandpass
(ultrasat) for detailed astronomical analysis, based on data from [259], which we have
joined in sncosmo for this purpose. Table 4.1 presents the configuration parameters
required for gwemopt to simulate and detect the EM counterpart, as used in my studies.

4.2.3 Sky grid generation

For the LSST, ZTF, and ULTRSAT missions, I used the Hierarchical Equal Area iso-
Latitude Pixelization (HEALPix) method to create a sky grid, ensuring efficient and
uniform coverage essential for tasks such as cosmic microwave background analysis
and GW event localization [140]. HEALPix divides the celestial sphere into equal-area

5https://github.com/nuclear-multimessenger-astronomy/nmma/blob/main/nmma/em/detect_lightcurves.py
6https://github.com/sncosmo/sncosmo
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CHAPTER 4. PREDICTIONS FOR DETECTION RATES AND SCIENCE WITH GRAVITATIONAL-WAVE COUNTERPARTS

Table 4.1: Configuration of telescopes
Parameter LSST ZTF ULTRASAT
FOV [deg] 1.75 6.86 14.28

FOV Type Circle Square Square

Filter ps1__r ztfr ultrasat

Limiting Magnitude [mag] 24.4 20.4 22.5

Exposure Time [s] 30 30 300

Filter Change Time [s] N/A 60 N/A

Slew Rate [deg/s] 6.3 2.7 0.5

Readout Time [s] 2 10 20

Minimum Altitude [deg] 30 30 0

Overhead per Exposure [s] 0 10.0 0

Maximum Exposure Time [s] N/A 600 N/A

Latitude [deg] -30.1716 33.3563 N/A

Longitude [deg] -70.8009 -116.8648 N/A

Elevation [m] 2207.0 1742.0 35786000

Operational dates 2025 operational 2026

tiles, each uniquely indexed, supporting multi-resolution analysis and adaptive refine-
ment. The adaptability of HEALPix is shown in the dynamic calculation of the NSIDE
parameter, adjusted according to the FOV of different missions to enhance the resolu-
tion for smaller observational fields. The parameter NSIDE is essential for resolution,
representing the divisions per base-resolution pixel side to attain higher resolution. The
total pixel count on the sphere is 12×NSIDE2. Increasing NSIDE enhances the resolu-
tion by reducing pixel size, which is crucial for accurate astronomical and cosmological
studies, especially in detailed sky mapping. I apply dorado-scheduling7 intended for
ultraviolet follow-up of GW events, further exemplifies the utility of HEALPix in cre-
ating an efficient grid structure. For example, the tessellation grid generated for the
ULTRSAT mission (NSIDE = 8), with its uniform coverage, highlights HEALPix’s
ability to render spherical data on a two-dimensional map with equitable area distribu-
tion. This methodology resulted in a denser grid for missions with smaller FOVs, such
as LSST (NSIDE = 32), illustrating the method’s ability to provide detailed coverage
where needed while maintaining computational efficiency. Similarly, for ZTF (NSIDE
= 16), the calculated NSIDE ensures an optimal balance between resolution and com-
putational demand.

My study underscores the indispensibility of HEALPix in modern astronomical
surveys and multi-messenger astronomy, offering an unparalleled tool for spatial index-

7https://github.com/nasa/dorado-scheduling
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4.2. TELESCOPES CONFIGURATION IN GWEMOPT

ing and sky coverage. Furthermore, the module’s functions facilitate the selection of
points on the unit sphere with approximately uniform density per unit area, considering
the average area per tile. Notably, in dorado-scheduling, methods like geodesic()
and healpix() are restricted to certain tile numbers to ensure coverage, the number of
tiles being the smallest possible number that is greater than or equal to 4π/area [264].
The following example demonstrates how to employ the dorado-scheduling tool to
generate a tessellation grid for the ULTRSAT mission, showcasing one of the potential
applications of this versatile tool. Although tailored for ULTRSAT with an area of 204
deg2, the approach is adaptable to various missions. The command for generating the
ULTRSAT tessellation grid is shown below:

dorado-scheduling skygrid --area "204 deg2" --output "ULTRASAT.tess" --method "healpix"

This example illustrates the process of creating a sky grid using HEALPix co-
ordinates, serving as a template that can be adapted for various astronomical missions
and research needs. In Figure 4.1, I show the sky grid coverage for the LSST, ZTF, and
ULTRSAT telescopes. The skygrid generation 8 script in the GitHub repository "Ob-
servingScenariosInsights" calculates the HEALPix NSIDE parameter for a given area
generates the sky coordinates and records the tessellation format for gwemopt, allowing
the figure reproduction9.

ULTRASAT - FOV: 204 deg2 ZTF - FOV: 47 deg2 LSST - FOV: 9.6 deg2

HEALPix sky grid

Figure 4.1: This figure shows the HEALPix sky grid coverage for each telescope, dis-
played on an ’astro globe’. Subplots indicate the FOV for ULTRSAT (204 deg2), ZTF
(47 deg2), and LSST (9.6 deg2). Tessellations partition the celestial sphere, aiding
large-scale surveys. Generated with dorado-scheduling, the plots highlight varied
sky coverages and support the “ ULTRSAT WG2 Work package" paper.

8https://github.com/weizmannk/ObservingScenariosInsights/blob/main/ultrasat/skygrid_generation.py
9https://github.com/weizmannk/ObservingScenariosInsights/blob/main/ultrasat/skygrid_plot.py
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4.3 Simulation follow-up

4.3.1 lightcurves
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Figure 4.2: Two-dimensional histograms of simulated BNS light curves for observing
runs O4b (left) and O5 (right), spanning ultraviolet to near-infrared bands (ultrasat,
sdssu, ps1__g, ps1__r, ps1__i, ps1__z, ps1__y, zt f g, zt f r, and zt f i) to include all
bands used by the ULTRSAT, ZTF, and LSST surveys considered in this work. Each
panel contains three dashed lines representing the 10th, 50th, and 90th percentiles. The
color bar indicates the number of detections across different bands.

In our efforts to detect KNe, I used the Bulla2019lm model, powered by the
three-dimensional Monte Carlo radiative transfer code POSSIS [75, 77]. Unlike tradi-
tional approaches, POSSIS requires input opacities, which circumvents the direct solu-
tion of the radiative transfer equation. This methodology accelerates computational pro-
cesses and simplifies parameter space exploration. Validation against the GW170817
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observation enhances the model’s reliability. The model incorporates key parameters
such as the mass of dynamic ejecta Mdyn

ej , the mass of disk wind ejecta Mwind
ej , the half-

opening angle Φ and the observation angle Θobs, with Φ sampled between 15◦ and 75◦.
To refine the precision of the model, I used Gaussian process regression for grid-based
interpolation [93, 94], facilitating the generation of KN light curves corresponding to
compact binary coalescence events anticipated during the O4a (initiated in May 2023)
and subsequent periods kiendrebeogo et .al 2023 [163, 230].

Simulating light curves for BNS and NSBH scenarios, as outlined in Chapter 2,
begins with predicting dynamical and disk wind ejecta masses. In the BNS cases, I
adopt dynamical ejecta fits from [93] and disk wind ejecta fits from [114]. For NSBH
mergers, dynamical ejecta predictions follow [133], with disk wind ejecta fits from
[169]. Notably, NSBH configurations often preclude KNe events due to mass ratios
conducive to the NS’s direct plunge into the black hole. My simulation methodology,
which focuses on BNS mergers within the PBD/GWTC-3 distribution, emphasizes the
prediction of ejecta masses, given the higher prevalence of BNS events over NSBH
mergers, which are limited by the subset of NSBH injections that produce nonzero
ejecta masses. Using the NMMA framework, we inferred posterior distributions of
KNe properties and luminosity distances based on POSSIS-modeled KNe templates for
BNS merger scenarios. In my methodology for simulating light curves, I draw upon the
strategies established for ZTF, LSST, and ULTRSAT to ensure comprehensive coverage
across different observational frameworks tailored to GW event follow-ups. For ZTF,
we adhere to the Phase-II public cadence and the private zt f i band survey cadence, using
KDE fits to inform our revisit cadences. Each visit involves a randomly assigned ob-
serving filter sequence, supplemented by 300-second TOO observations in the zt f g and
zt f r bands during the initial one or two days post-trigger, contingent on GW localiza-
tion areas being greater or lesser than 1000 deg2. These procedures are in line with the
practices of the ZTF collaboration during O3 [161], incorporating methods to simulate
magnitude uncertainties through skew normal fits to forced photometry uncertainties
and employing KDE fits to determine forced photometry upper limits for filtering out
fainter measurements. The criterion for the acceptance of the light curve focuses on
achieving a S/N greater than 3 [45]. Extending these principles to the LSST, my sim-
ulation framework is crafted following the strategy from [46], integrating 300-second
TOO observations across all available LSST bands to facilitate prompt, wide-field doc-
umentation of KNe light curves, a critical component in the multi-messenger astronomy
landscape. This approach ensures that I capture the early and evolving stages of KNe
emissions, reflecting the operational capabilities expected of the Rubin Observatory.
Additionally, for ULTRSAT, 900s TOO observations were incorporated, broadening
our observational scope to encompass a wider array of transient astrophysical phenom-
ena triggered by GW events.

Figures 4.2, 4.3, and 4.4 present histograms of simulated light curves and peak
magnitudes across the ULTRSAT, ZTF, and LSST bands for O4b and O5 observation
runs, highlighting the extensive predictive capabilities of the NMMA.
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Figure 4.3: One-dimensional histograms of peak magnitudes across ULTRSAT (blue),
ZTF (green), and LSST (red) bands for BNS events during the O4b and O5 observing
runs. The left panel illustrates O4b, while the right panel focuses on O5.

4.3.2 Optimizing algorithm strategy with gwemopt

The gwemopt software optimizes the EM follow-up of GW events by efficiently tiling
the sky, distributing observatory time, and managing observations in different telescope
setups. This includes considerations for FOV, filters, exposure times, and limiting mag-
nitudes. By introducing ’iterative’ and ’overlapping’ techniques, gwemopt advances
existing scheduling models from individual telescopes to network-wide operations, in-
creasing the chances of detecting transient events [95]. These methods adapt flexibly
to various scheduling algorithms, bolstering the utility of the tool [42, 99, 97]. Devel-
oped in Python, gwemopt interfaces seamlessly with GraceDB and HEALPix formats
to process GW skymaps. Orchestrates the tiling of the sky, time allocation, and se-
quencing of observations, taking into account the diurnal and observational constraints.
Significantly, gwemopt elevates the efficiency of EM counterpart identification within
multi-messenger astronomy by streamlining the entire process from sky tiling to obser-
vation scheduling [96]. Employing algorithms like the Greedy Algorithm, it ensures
a judicious allocation of telescope time, prioritizing high-probability observation tar-
gets to optimize both immediate returns and overall strategic objectives. gwemopt also
enables multi-night imaging plans, covering a variety of operational and observational
conditions [96]. In Figure 4.5, I illustrate the workflow from GW alerts to telescope
detection via the gwemopt pipeline, including steps such as:

• GraceDB Integration: Downloads GW skymaps and event data, including the
time of the event and delay between detector signals and EM emissions.

• Telescope Configuration: Uses configuration files detailing telescope specifica-
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Figure 4.4: One-dimensional histograms of peak magnitudes in ZTF and LSST bands
for BNS mergers. The left panels depict ZTF peak magnitudes for O4 (top) and O5
(bottom), with the right panels showcasing analogous data for the LSST. A black line
across both panels indicates peak magnitudes detected in all telescope bands during the
O4 and O5 simulation runs.

tions such as filter types, limiting magnitudes, exposure times, site locations, and
FOV dimensions.

• Skymap Tiling: Implements algorithms to tile the sky with minimal overlap,
optimizing the coverage of probability-rich areas.

• Time Allocations: Assigns observation times to tiles, employing metrics to max-
imize the likelihood of imaging a GW counterpart within given constraints.

• Scheduling: Schedules the observations, optimizing for factors such as airmass
and lunar brightness to ensure the best possible observational conditions.

4.3.3 Kilonova detection dates

Using the “observing scenarios" of GW parameters from kiendrebeogo et .al 2023 [163]
that have passed the S/N threshold of 8, I provide a projection of KN detections from
GW event localizations, considering telescope sensitivities and FOVs. The data is
recorded in zenodo [164]. I simulated distributions for BNS events across the O4a,
O4b, and O5 observation runs, injecting 405, 1004, and 1990 events, respectively. All
events were within a redshift of z ≤ 1.98, making them suitable for NMMA analysis.
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GW signal

GraceDB gwemopt Telescopes

Observable Area: FOV

HasRemnant

Sequential Observations: Following up on EM Counterpart

Figure 4.5: Flowchart illustrating the sequential process of detecting and following up
on GW !events using tools such as GW detectors, GraceDB, gwemopt, and various
telescopes.

My analysis considered the absolute peak magnitudes across various bands for ZTF,
LSST, and ULTRSAT, and 2D probability coverage. ULTRSAT’s forecasts apply only
to O5, since it will launch in 2026 after O4a and O4b are concluded.

During O4a, O4b, and O5 runs, ZTF detects 41, 67, and 57 simulated KN
events, respectively, while LSST identified 100, 224, and 346 KN events, demonstrat-
ing their strong detection capabilities for injected BNS KN events, as illustrated in
Figure 4.6. However, ULTRSAT’s detections during the O5 run were lower, with only
10 KN events, depicted in Figure 4.7.

By integrating the EM counterpart detection fractions with the annual detec-
tion rates of the CBCs presented in Chapter 2, Table 2.4, I provide predictions for the
KN detection rates in the upcoming observational runs. These predictions are based
on specific assumptions detailed previously, including the progressive improvement in
detector sensitivities across the O4a, O4b, and O5 runs. Such enhancements are pivotal
for extending the detectable range of CBCs, thus increasing the probability of iden-
tifying their EM counterparts. The analysis reveals a clear evolution in the detection
capabilities of the telescopes in line with the sensitivity upgrades. Specifically, for the
ZTF, I anticipate detection rates of 1+1

−1 , 2+3
−1 and 5+6

−3 for the O4a, O4b, and O5 runs,
respectively. For LSST, the expected detection rates are 3+4

−2, 8+11
−5 , and 31+38

−17 for the
same runs. Meanwhile, ULTRSAT is projected to achieve a detection rate of 1+1

−1 during
the O5 run. These results are highlighted in Figure 4.8, which illustrates the anticipated
annual KN detection rates in different “observing scenarios". LSST excels at detecting
KN events due to its enhanced sensitivity, wide spectrum coverage, advanced technol-
ogy and strategic operations. This analysis highlights the importance of technological
progress and strategic planning in astronomy.
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Figure 4.6: Comparative distributions of detected and missed BNS injections across
observational runs by ZTF and LSST. The left panels present detections by ZTF for
O4a (top), O4b (middle), and O5 (bottom) runs, while the right panels display corre-
sponding detections by LSST. Each panel shows BNS light curves and their detection
probabilities, with color bar and transparency levels representing the 3D probability of
transient detection based on simulated injections. Marginalized 1D histograms above
and to the right of each panel indicate the distributions of detected (in green) and missed
(in red) BNS injections.

4.3.4 Analysis of EM detection efficiencies and consistency in the
observational run O5

In my analysis of KNe detection efficiency, I focus on the O5 observational run, com-
paring it to O4a and O4b due to O5’s higher KN detection rates. The study examines
the non-linear relationship between observational coverage and detection probability
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Figure 4.7: Detection performance of ULTRSAT for BNS injections during the O5
run. The plot illustrates BNS light curves alongside detection probabilities, with the
color bar and transparency indicating the 3D probability of detecting transients from
simulated injections. Marginalized 1D histograms above and to the right of the plot
compare the distributions of detected (in green) versus missed (in red) BNS injections,
highlighting ULTRSAT’s observational impact.

for BNS by LSST, ZTF, and ULTRSAT. It highlights that while a strategy covering
25% of the localization area should theoretically produce detections 25% of the time,
significant deviations occur, particularly when efficiencies are below 0.5. Events de-
tected with efficiency below 0.5 are termed "inconsistencies", while those above 0.5 are
"consistent". These discrepancies are marked for each observatory in the right panel of
Figure 4.9, while the left panel categorizes the detections by status. This analysis em-
phasizes the importance of refined KN detection strategies to improve future reliability
and effectiveness.

4.4 Conclusion

In this work, I focussed on optimizing EM counterpart detection for GW events, us-
ing advanced algorithms, detailed skymaps, and the capabilities of telescopes such as
ULTRSAT , LSST, and ZTF. Using simulations and the gwemopt tool, I investigated
EM detection rates and efficiencies (specifically KN), with LSST showing superior ca-
pabilities due to its sensitivity, spectrum coverage, and technological advancements.
This analysis emphasizes the importance of strategic planning in enhancing astronom-
ical observations and sets a foundation for future multi-messenger astronomy efforts.
The findings will support the upcoming article “ ULTRSAT WG2 Work Package", pre-
dicting ULTRSAT’s ability to detect KN signatures during the O5 observation cam-
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Figure 4.8: BNS Annual EM Detection Rates for LSST, ZTF, and ULTRSAT. This fig-
ure shows annual KN detection rates for BNS events by the LSST, ZTF, and ULTRSAT
across observation runs O4a, O4b, and O5. The bars indicate the median EM detec-
tion rates from the GW data, and the error bars show the range of estimates. The red
bars represent LSST, the green bars ZTF, and the blue bars ULTRSAT, each annotated
with the median value to highlight expected annual BNS detections. The visualization
illustrates the distinct detection capabilities of each observatory across different runs,
reflecting the dynamic nature of BNS related transient EM event observations.

paign. The methodologies can be adapted to evaluate other telescope detection capabil-
ities.

The ability to coordinate multiple telescopes improves precision and sky cover-
age, marking a significant advancement in gwemopt. With the upcoming operational
status of GW detectors such as the Einstein Telescope, Cosmic Explorer and LISA,
significant data management challenges will arise. Manual processing of potential EM
counterparts will become impractical. Applications such as Skyportal are crucial for
time-domain astronomy, facilitating the collection and analysis of telescope data alerts.
Integrating multiple analysis platforms to receive and discriminate alerts about tran-
sients allows for efficient posting on Skyportal, saving astronomers time and focusing
efforts on significant transients.
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Figure 4.9: Left: Overview of BNS KN detection efficiencies by LSST, ZTF, and
ULTRSAT during O5, colored by status. Scatter points show detection capabilities by
distance, with transparency indicating the 3D detection probability from simulations.
Right: Comparative analysis of reported and actual detection efficiencies for LSST,
ZTF, and ULTRSAT. "Inconsistencies" (detection probability < 0.5), especially those
with efficiencies below 0.5, are emphasized, illustrating the nonlinear relationship be-
tween coverage and detection probability, highlighting the complexity of KN detec-
tions.
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5Chapte
r

Real-time Analysis of the light curves of
Fast-Evolving Transients

***

In this chapter, I introduce the NMMA-SkyPortal1, an autonomous pipeline that com-
bines the NMMA framework with Fink broker and SkyPortal to filter the ZTF transient
alerts. Filtered alerts are displayed on SkyPortal, where their photometric data is an-
alyzed using the NMMA framework. The process focuses on fitting the light curve
with models for KNe, SNe Ia, SNe II,SNe Ic/Ib, and GRBs. This integration allows as-
tronomers to efficiently prioritize the pertinent events for their studies, significantly sav-
ing time. In the context of these efforts, I have developed the NMMA Analysis Service,
which has been integrated within Skyportal, to constrain and discriminate the nature of
light curves. The pipeline is the first version of NMMA Analysis Service. My collabora-
tors have incorporated a second version of this analysis service in Fritz2. Fritz serves as
the scientific data platform for ZTF Phase II and ZTF-O4. The NMMA Analysis Service
integrated into Fritz was used to support the scientific publication [98].

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 SkyPortal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Transient selection and analysis framework . . . . . . . . . . . . . . . 105

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

1https://github.com/weizmannk/nmma-skyportal
2https://github.com/fritz-marshal/fritz
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CHAPTER 5. REAL-TIME ANALYSIS OF THE LIGHT CURVES OF FAST-EVOLVING TRANSIENTS

5.1 Background

Multi-messenger astronomy, which encompasses the sophisticated detection and anal-
ysis of EM counterparts to GW events, is rapidly evolving. This field is instrumental
in decoding the dynamics behind the most energetic phenomena in the universe. The
ZTF [62, 142, 190, 108] plays a crucial role in this domain by conducting systematic
searches for KN counterparts to BNS and NSBH merger candidates during the IGWN
observing runs. It also searches for other transients, such as isolated KNe, SNe, and
GRBs [139, 251, 22, 251], processing these through the Fink Broker [199]. This broker
enhances alert capabilities by annotating them with additional data, including classifi-
cations from machine learning models. The upcoming GW observing runs, specifically
O5 and LIGO/Virgo/KAGRA/LIGO-India’s fifth observing run (O6), are critical to re-
fine methods to track KNe transients, which are essential to understand r-process nucle-
osynthesis [195, 181, 84]. Given the rapid optical fading of KNe, predicted to exceed
0.3 mag/day [105], prompt and accurate identification is paramount. In this context, the
next generation of telescopes, such as Rubin Observatory’s LSST [156]) and ULTRSAT
[259], will take on a decisive role.

SkyPortal serves as a key coordination and management tool in our GW
searches. This Web application not only schedules telescopes and selects candidates
for follow-up observations, but also facilitates the dissemination of results through a
user-friendly interface. By integrating the SkyPortal Fink Client3, we have developed
the ability to ingest optical alerts from Fink Broker and filter them using Fink filters,
a package designed to target specific alert types. The alerts are then added to my user
group in SkyPortal, where each transient is assigned a unique identifier. This ensures
that if the source already exists, only new photometric points are added to the existing
dataset. As ZTF captures new measurements, these are uploaded to SkyPortal and lo-
cally downloaded for analysis by our NMMA [217] framework. This process involves
fitting light curves with models of KNe, SNe, and GRBs integrated within NMMA. The
results of these analyses are then reposted in SkyPortal, allowing group members to con-
tinually refine the nature of the light curves as new data become available. This enables
users to continue or discontinue follow-up based on the event’s scientific relevance to
their interests.

5.2 SkyPortal

SkyPortal—SkyPortal serves as a key tool in time-domain astronomy, redefining col-
laborative engagement and the management of astronomical datasets (see Figure 5.1).
This platform differs from traditional offline data examination methods by integrating
analytical tools directly within the data management infrastructure. A notable feature of
this integration is the interactive periodogram within the photometry panel, which en-
ables detailed analysis of variable astronomical entities directly within the application

3https://github.com/skyportal-contrib/skyportal-fink-client
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[98]. Moreover, SkyPortal improves access to essential photometry statistics through
PhotStats, which provide summary statistics for filtering for transients. This access is
supported by a comprehensive application programming interface (API), significantly
improving the efficiency of data analysis. An API is a set of rules that allows different
software applications to communicate, facilitating data exchange and interaction. Sky-
Portal acts as a comprehensive platform for managing and analyzing astronomical data,
especially pertinent to transient phenomena and aims to be recognized as a “transient
full-stack ecosystem,” surpassing the traditional functionalities of a Target and Obser-
vation Manager (TOM, [283]). It integrates a wide range of features, such as telescope
scheduling for observatories like ZTF and the upcoming LSST, optimizing observa-
tions, managing spatial catalogs, and performing advanced astronomical data analysis
within a unified software environment. Its integration with alert brokers such as Fink
Broker and ALerCE [132], which process and annotate optical survey alerts, ensures
effective communication between alert issuers and the scientific community.

Additionally, platforms such as the Gamma-ray Coordinates Network (GCN)
[262] and the Scalable Cyberinfrastructure for Multi-messenger Astrophysics
(SCiMMA) 4 are integral in distributing alerts to the astronomical community. Their
integration with SkyPortal enhances the ability of the platform to transmit important
alert information quickly and efficiently, ensuring that astronomers are well prepared
for timely follow-up and analysis of transient events.

Analysis platform—Recent expansions of SkyPortal include the integration of
third-party analysis service, improving its analytical capabilities. This enhancement
enables the implementation of machine learning models for transient classification and
incorporates various Bayesian inference tools, such as NMMA [217], MOSFiT [143],
and SNCosmo [56]. These tools are used for detailed light curve fitting and analysis,
providing insights into the statistical likelihood of different models and characterizing
transients. The results of these analyses are integrated into SkyPortal through web-
hooks, which improves the data set and allows detailed analysis in the application. A
webhook is a user-defined HTTP callback that transmits real-time data to a specified
URL when triggered by specific events. Once an analysis is completed, its results are
automatically uploaded to SkyPortal via the webhook. I use a similar process to im-
plement my NMMA analysis service within SkyPortal, which filters the alerts initially
classified as KNe, SNe, and GRBs by Fink Broker to post in my NMMA-SkyPortal
group. In the long term, this filtering will selectively focus on the potential KNe, which
is of my primary interest. The photometric data from these transients are analyzed
through the NMMA framework, which fits their light curves to different models and
provides calculations on Bayesian factors. In the end, these results are reposted in the
NMMA-SkyPortal group. This process of analyzing follow-up photometry will repeat
as often as new data from the same object are captured.

4https://scimma.org
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Figure 5.1: A schematic representation of the SkyPortal ecosystem from [98], showcas-
ing its interconnectivity with various optical surveys, brokers, observatories, classifica-
tion frameworks, multi-messenger instruments, and the broader astronomical commu-
nity. This diagram exemplifies the integral function of SkyPortalas a nexus for manag-
ing and analysing data in the dynamic domain of time-domain astronomy.

5.3 Transient selection and analysis framework

The ability to efficiently filter and analyze alerts from large-scale optical surveys is
crucial for time-domain astronomy. My approach uses the services of the Fink Broker
to process the ZTF data. As an alert broker, Fink5 serves as an intermediary between
alert issuers and the scientific community, in this case, me, providing tools for effi-
cient analysis of alert data from telescopes and surveys. The Fink filter6 package ,
which is open-source, collects and stores alert data from large astronomical surveys,
enhancing them with additional information from other catalogs, and applies machine
learning techniques to classify events. This enriched data are then redistributed for fur-
ther scientific analysis and potential follow-up observations. Fink is recognized among
Rubin Observatory community brokers for its commitment to community-driven devel-
opment, adherence to open source principles, and integration of the latest advances in
big data and machine learning technologies. Using Fink’s sophisticated infrastructure,
I pinpoint promising candidates from the ZTF alert require further examination. These
candidates are then processed through the SkyPortal Fink Client3, which integrates
my selection criteria for transients as detailed in Section 5.3.1. The API of SkyPortal
interacts with Fink at five-second intervals, ensuring timely updates. Alerts fetched by
the SkyPortal Fink Client include a unique object identifier, which facilitates the cre-
ation of new candidates or the updating of existing sources in the database [31]. If the

5https://skyportal-fink-client.readthedocs.io
6https://github.com/astrolabsoftware/fink-filters
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source already exists, only the new photometric data are added. This smooth commu-
nication between the Fink Broker and my SkyPortal environment continues as long as
the process is active, which is useful for updating previously recorded alerts and for
real-time detection of new events. The selected alerts undergo detailed analysis within
the NMMA framework [217]. This analysis yields outputs such as Bayes factors and
corner plots estimating transient parameters that help discern the nature of light curves
from implemented models, in my case, SNe, KNe, and GRBs. SkyPortal’s API reposts
updates each time new simulations are performed, enabling interested astronomers to
refine their decision making based on these results [283, 98].

Note: The integration of the Fink broker into our workflow is essential to filter
the ZTF alerts to identify the most promising targets, thus optimizing telescope follow-
up time and research examination.

5.3.1 Target identification and selection

My selection criteria are designed to capture a broad spectrum of transient phenom-
ena within the observational capabilities of the ZTF, classifying them on the basis
of unique characteristics and detection methodologies. I prioritize early SN Ia candi-
dates (early_sn_ia_candidates), KN candidates identified through advanced ma-
chine learning techniques (kn_candidates), and those exhibiting rapid decay rates
exceeding 0.3 mag/day (rapid_decay_kn_candidates). Moreover, I include orphan
GRBs (orphan_grbs). Figure 5.2 shows my process to poll the Fink alert pool in
SkyPortal. This focused approach significantly improves the efficiency and specificity
of my transient selection process, which is crucial for isolating events suitable for a
comprehensive NMMA framework. In SkyPortal, I have designated a group named
NMMA-SkyPortal for collaborative follow-up and analysis. Members of this group aim
to monitor and quickly access information on specific alerts filtered from the Fink bro-
ker to the SkyPortal platform as shown in Figure 5.3. They can then download the
data and perform their own analyses. Upon receiving an alert that meets our filters, the
transient is posted directly to SkyPortal in the NMMA-SkyPortal group section. Based
on the relevance of the event, members of the group can share significant events of
high relevance with other groups within SkyPortal. This sharing enables collaborative
studies and improves data quality, enhancing our collective research capabilities.

In cases where an astronomer interested in using the NMMA framework to an-
alyze a specific event is not a member of the NMMA-SkyPortal group or has needs not
addressed by my analysis pipeline, an alternative implementation of NMMA analysis
service is available within Fritz. This service operates on principles similar to mine,
but has slightly different goals by enabling the analysis of light curves from optical
telescopes within the SkyPortal ecosystem and includes SNCosmo [56] among other
tools. Unlike the automated process within NMMA-SkyPortal, this service provides the
advantage of a user interface, which allows those who may not be familiar with the
methodologies of NMMA and SNcosmo to use these tools. They can refine their under-
standing of the light curve of a specific event and plan appropriate follow-up actions.
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Figure 5.2: This screenshot illustrates the utilization of Fink broker’s API to filter and
select potential KNe, SNe, and GRB afterglow candidates from the ZTF alerts. The
process efficiently identifies and streams classified transient events into SkyPortalfor
monitoring and further investigation. In this excerpt, the system is specifically polling
for SNe events, as indicated by the recorded classifications.

5.3.2 Navigating within Skyportal

The Skyportal platform uses numerous tools to facilitate navigation and provide rapid
access to information on specific transients. This capability is essential for individ-
uals planning observations or for collaborative groups, such as GRANDMA [51].
GRANDMA uses this platform to receive alerts from various collaborations, includ-
ing IGWN, GCN [262], and instruments such as the ZTF, with the goal of following
multi-messenger transients. Figure 5.4 displays the interface that provides detailed in-
formation about the transient ZTF24aaemydm, initially classified by Fink Broker as
a potential candidate for SN. ZTF24aaemydm has Users can track this candidate to
monitor its evolution through additional observations with other instruments or utilizing
photometric or spectroscopic data from ZTF observations accessible via Skyportal, as
depicted in Figure 5.5.

Subsequently, fitting these data with SN, GRB, or KN models can confirm the
initial classification or lead to a reclassification based on new insights. This process
of classification refinement is the primary focus of my work. In addition, Skyportal
includes sections for user-generated summaries and comments on transient events. As
data acquisition from telescopes and results compiled through the NMMA analysis ser-
vice are updated in the group, members can comment and add relevant information,
contribute insight to improve understanding of the evolving transients.
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Figure 5.3: The NMMA-SkyPortal group’s interface within SkyPortal, displaying ZTF
alerts that have been filtered according to predefined criteria. The table lists SN candi-
dates with essential details such as Source ID, RA, Dec, Redshift, and Classification.
This interface underpins our strategy for the rapid identification and further investiga-
tion of transient phenomena, enabling members to efficiently download and analyse
data.

Figure 5.4: Skyportal interface showing detailed information on the transient
ZTF24aaemydm, highlighting the tools available for follow-up observations and data
analysis.
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Figure 5.5: Interface of Skyportal for uploading photometry data, illustrating the
method for tracking transient ZTF24aaemydm using observational data to confirm or
reclassify its nature.

5.3.3 Model integration and simulation refinement

Within the NMMA framework, we integrate specific models for the interpretation of
identified transient events, including KNe, SNe, and GRBs. For KN candidates, the
Bu2019lm model from POSSIS [75, 114, 77] is utilized, which spans the parameter
spaces for BNS mergers (Bu2019lm model) and NSBH mergers (Bu2019nsbh model).
The afterglows of the GRB are modeled with the TrPi2018 model, integrated into the
afterglowpy toolkit7 [276]. Additionally, we apply SN models such as Piro2021 for
Shock Cooling SNe [226] and nugent-hyper for SNe Ic/Ib [179], allowing for precise
characterization of their evolving light curves. Each new observation from ZTF allows
me to refine my analyses, thereby increasing the scientific utility of the data for the
multi-messenger astronomy community and optimizing the allocation of resources for
follow-up observations. The results of these model fits are promptly posted on Sky-
Portal, facilitated by the robust process supported by Tornado8. This system improves
the real-time data processing capabilities of SkyPortal, efficiently managing persistent
connections and enabling live updates essential for such a collaborative platform.

My primary objective within the NMMA analysis service pipeline is to inform
the interested about the probable nature of a transient, rather than to definitively clas-
sify it. “Human” intervention is often essential, particularly when light curves suggest
multiple phenomena. An example of such a case is the transient event ZTF21abotose,
discussed in Chapter 2, which initially exhibited characteristics of both KNe and SNe.
In NMMA analysis, the early light curve of ZTF21abotose matched the shock cool-
ing model (Piro2021) and GRB afterglow model (TrPi2018). However, a subsequent
detailed spectroscopic analysis later confirmed it as SN IIb. Although our predictions
based on model selection are often accurate, a deeper examination of the data and ad-
ditional considerations are necessary to fully ascertain the nature of a transient. The
ability to discern the nature of numerous light curves based on our model selections
remains one of the most effective ways to enable astronomers to save time by quickly

7https://github.com/geoffryan/afterglowpy
8https://github.com/tornadoweb/tornado
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determining the relevance of a transient alerted by Fink according to their specific re-
search interests.

5.3.4 Data analysis and framework integration

The methodology uses the Fink broker API to filter and retrieve ZTF alerts for targeted
transients. Once new candidates are detected within our specified classifications are de-
tected, they are promptly uploaded to SkyPortal via its API. Upon reaching SkyPortal
with all the additional information, only the photometry table is downloaded in CSV
format and adapted to the structure of the NMMA framework for analysis. My envi-
ronment setup is in an “AST200029” allocation (PI Coughlin) of Jetstream2 at Indiana
University. This local support facilitates the analysis process with NMMA, particularly
in the adjustment of the light curve. This process provides essential data on the transient
detection times and characteristics. The results of these analyzes, such as Bayes factors
and light curve adjustments, are shared via SkyPortal. This procedure is repeated as
often as new data are collected on the same event and is applied to all models integrated
into the NMMA framework.

As a test case, I present the fit of the transient ZTF24aaemydm, initially classi-
fied as a potential SN event, using four light curve models. This transient, revealed
by Fink alerts, was detected on 2024-02-12 06:07:57.999 UTC, with a redshift of
z = 0.0126 corresponding to a luminosity distance of 56.37 Mpc. The subsequent clas-
sification revealed it as a SN II event with a probability of 0.91. The models tested
include KN model Bu2022Ye, displayed in Figure 5.6, SN Ic/Ib nugent-hyper shown
in Figure 5.7, the TrPi2018 (GRB) depicted in Figure 5.8, and Piro2021 (Shock Cool-
ing) shown in Figure 5.9.

Kilonova model—As illustrated in Figure 5.6, the fit of ZTF24aaemydm us-
ing the Bu2022Ye model diverges significantly from the photometric data in the early
observations, excluding the possibility of this event being associated with a KN. As-
tronomers interested in such phenomena can ignore this event from further follow-up
efforts after the initial detections.

Type Ic/b Supernova—When fitting the nugent-hyper model, although there
is compatibility with the z f i-band, it does not align well with the other bands over
time. By the second day, those searching for SN Ic/Ib events can redirect their focus to
more promising targets, while maintaining a minimal watch on this one, as shown in
Figure 5.7.

GRB afterglow—Using TrPi2018 with ZTF24aaemydm shows good fits in
the z f g and z f r-bands but slight divergence with the z f i-band. However a quick anal-
ysis shows an early rise in brightness followed by a slight plateau and then a gradual
decrease as presented in Figure 5.8, which is not aligned with a typical afterglow be-
havior, where the fading is pronounced and follows a power law decay, so this is not a
GRB.

Shock cooling—The Piro2021 model provides an excellent fit across all three
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ZTF filters, facilitating those interested in Shock Cooling event to focus their follow-up
efforts and potentially organize their own observation campaigns from the first detec-
tion. Figure 5.9 confirms this alignment. Indeed, observing the rapid ascent of the light
curve from 18.2 to a peak of 15.6 within just two days indicates the characteristics of a
SN II, yet the subsequent swift decline without a prolonged plateau implies a transition
to a SN IIb. In conclusion, ZTF21aaemydm is an example of Shock Cooling within a
SN IIb supernova.

Figure 5.6: Plot of ZTF24aaemydm event using the Bu2022Ye model, with a Bayes
factor log of -57.73, showing zt f g, zt f r and zt f i-bands data. Displays observed mag-
nitudes (black dots), theoretical model (dashed line), and confidence intervals (shaded
orange).

5.3.5 ChatGPT integration in SkyPortal

SkyPortal allows users to add comments, enhancing the understanding of transients
and their histories. A significant challenge for users, who deal with hundreds or thou-
sands of active events, is keeping current with the knowledge and activities associated
with each event. To address this, SkyPortal employs ChatGPT models to generate
and display concise summaries at the source level [98], providing quick insights. It
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Figure 5.7: Plot of ZTF24aaemydm event using the nugent-hyper model, with a
Bayes factor log of -16.22, showing zt f g, zt f r and zt f i-bands data. Displays ob-
served magnitudes (black dots), theoretical model (dashed line), and confidence in-
tervals (shaded orange).

features a pre-configured service through the OpenAI API (openai.ChatCompletion)
that provides summaries, including redshift and classifications. The default model is
gpt-3.5-turbo, with an option to switch to the slower gpt-4. I applied this method
to ZTF24aaemydm, as shown in Figure 5.10.

5.4 Conclusion

This study has facilitated the integration of significant astronomical analysis platforms,
Fink Broker for transient filtering, SkyPortal for displaying these alerts, and NMMA for
analysis services. The results, retrieved through the SkyPortal web page, enhance scien-
tific processing by providing real-time updates on the evolution of a specific transient.
This gives astronomers the flexibility to follow-up the event or to shift their focus to
more promising targets. The pipeline is not intended to replace the foundational work
of a researcher but rather to assist in planning his time and to allow real-time interaction
with other colleagues through comments enabled within SkyPortal.
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Figure 5.8: Plot of ZTF24aaemydm event using the Trpi2018 model, with a Bayes
factor log of -21.9, showing zt f g, zt f r and zt f i-bands data. Displays observed mag-
nitudes (black dots), theoretical model (dashed line), and confidence intervals (shaded
orange).

In the short term, I want to optimize my analysis pipeline to cut computational
costs. In the long term, we should consider preserving initial analyses to integrate these
when new detections are made by the ZTF or future telescopes. The TrPi2018 model,
used for GRBs, requires up to seven hours per simulation, significantly delaying the re-
sults after each photometric update and hampered the real-time analysis. Enhancing this
process will allow for the integration of the Rubin Observatory when it comes online
alongside the ZTF, thus focusing exclusively on potential KN related alerts.
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Figure 5.9: Plot of ZTF24aaemydm event using the Piro2021 model, with a Bayes
factor log of -18.81, showing zt f g, zt f r and zt f i-bands data. Displays observed mag-
nitudes (black dots), theoretical model (dashed line), and confidence intervals (shaded
orange).

Figure 5.10: AI-generated summary of the event using the ChatGPT 3.5 completion
service on ZTF24aaemydm, whithin Skyportal.

Page 114



6Chapte
r

DeepClean: non-linear Regression for Noise
Reduction in the Virgo Detector

***

In this chapter, I detail my work on noise reduction in the Virgo detector, conducted
as part of my PhD thesis, as a member of the Virgo collaboration, which comprises
129 institutions in 16 different countries, representing Burkina Faso, the first African
country in the Virgo collaboration. This work involves the first and only analysis of the
Virgo data using DeepClean. These efforts were made possible through the suggestions,
recommendations and support of the Virgo DetChar and the LIGO DetChar groups. The
results of this study will be published in a journal and are documented in Kiendrebeogo
et al. 2024 (in preparation).
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6.1. BACKGROUND

6.1 Background

GW events, such as GW150914 [23], GW170817 [24], and GW200105 [20], among
others, have significantly improved our understanding of compact binary system merg-
ers. However, many potential GW signals remain undetected, awaiting the successful
mitigation of some noise sources. Several factors contribute to the noise, which is
a combination of environmental noise, instrumental artifacts, quantum sensing noise,
thermal fluctuations, and other unknown sources. The intricate interactions of these
factors make it difficult to clearly discern GW signals [1]. Thus, identifying additional
GW signals below the detection threshold is related to our ability to mitigate or subtract
noise within the detectors, thus improving sensitivity. The Virgo detector, employing
a Michelson-type interferometer with 3km long perpendicular arms (L = 3km), detects
GW induced length changes. GWs cause space-time perturbations, altering length mea-
surements and resulting in a GW strain of approximately h ∼ ∆L

L = 10−21. Noise and
sensitivity directly influence our ability to extract information from GW signals. As we
progress in our noise reduction efforts in the detectors, we expect to uncover CBCs or
other signals that would otherwise have remained hidden. The most recent update to
the observation scenarios, as described in kiendrebeogo et al. 2023[163], reveals that
approximately 0.83% of the CBC injected from the PDB/GWTC-3 distribution [25]
have successfully met the detection threshold, set to S/N of 8. To improve S/N, both the
LIGO [184] and Virgo [29] record several thousand of witness channels ( probes and
sensors). These witness channels independently measure noise from various sources.
Some of them collect data to characterize environmental noise sources that couple with
the GW readout channel and could subsequently be subtracted.

However, it is important to acknowledge that while noise subtraction methods,
such as Wiener filtering, are widely used and perform perfectly, they face challenges in
the presence of non-stationary noise. Furthermore, non-linear noise, arising from sys-
tems in which the output is not directly proportional to the input, creates complex and
unpredictable noise patterns. This non-linearity can be due to a multitude of factors,
including intricate physical processes within the detector or environmental influences
[116]. On the other hand, non-stationary noise is characterized by its statistical prop-
erties that change over time, adding a layer of complexity to data analysis and signal
processing. The dynamic variability of this noise type makes it particularly challenging
to model and subtract from the data.

To meet this challenge, the DeepClean infrastructure has been developed to an-
alyze the data generated by interferometers (IFO) when detecting GWs [215, 249].
DeepClean is designed as a 1D convolutional neural network (CNN) that uses witness
sensors to estimate and subtract non-linear and non-stationary noise from GW data.
This approach ensures that the astrophysical signal is preserved while improving the
S/N, thus improving the reliability of GW signal detection.

Moreover, regarding the Virgo detector, it is worth noting that most electromag-
netic noise comes from electrical sources, reaching their peak at the 50 Hz power line
frequency. This electrical noise induces modulations in the main GW signal, leading to
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the generation of symmetric sidebands around 50 Hz. During O3 observations, a feed-
forward loop process was used to remove the Virgo mains and its associated sidebands,
which affected the Virgo detector [37]. The importance of low frequency sensitivity in
detectors is highlighted when it comes to the detection of high-mass binary mergers,
as these systems typically undergo mergers at low frequency. Many GW signals may
be hidden in noise, yet they become accessible for detection when noise is adequately
minimized. As a result, the optimization of the scientific potential of IGWN detectors,
especially in terms of enhancing pre-merger signal detectability, requires the effective
implementation of noise reduction strategies.

6.2 Noise

6.2.1 Noise sources in GW readout signal

The GW readout is the process of detecting and interpreting changes in the output signal
of the interferometer, measured primarily as differential arm length (DARM). This mea-
surement of DARM represents the variations in the relative lengths of the instrument’s
arms caused by the presence of GW. However, in the absence of a GW, the output
may show fluctuations due to various factors that contribute to the noise of the sys-
tem, including fundamental, technical and environmental sources. These noise sources
contribute with different and time-varying characteristics in amplitude and frequency.
Noise components are crucial to understanding and improving the performance of the
Virgo detector in identifying authentic GW signals [27, 74]. The fundamental noise
includes inherent limitations of detector design materials and quantum mechanics. The
thermal noise in the mirror coatings is a fundamental noise through the sensitivity in
the 60-300 Hz. Environmental noise covers external influences like seismic noise, at-
mospheric noise, external thermal fluctuations, and Newtonian noise. Technical noise
come from the design and operational aspects of the detector. Only non-fundamental
noise can be subtracted. Thus, I prioritize mitigating measurable environmental and
technical noise. Through the classification of noise into removable and non-removable
categories, my objective is to enhance the sensitivity and accuracy of GW detectors,
ensuring a clearer distinction between real GW signals and noise artifacts.

6.2.2 Noise reduction techniques

Noise reduction in GW detectors improves signal detectability and astrophysical anal-
ysis. Neural networks emerge as the leading approach due to their adaptability and
robustness in managing complex data.

Wiener filtering—This is a fundamental filtering technique that is effective
when the noise is stationary. It aims at minimizing the mean square error between esti-
mated and true signals [286]. Its robustness is evident in GW event analysis by IGWN
[2]. However, its performance declines with non-stationary and non-linear noise in
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GW detectors, driven by complex environmental and instrumental fluctuations. This
highlights the need for adaptive noise reduction strategies in GW astronomy.

NonSENS: Non-Stationary Estimation of Noise Subtraction—NonSENS of-
fers an advanced method for identifying and removing non-stationary noise in GW de-
tectors. It effectively handles noise from slow interferometer movements like angular
fluctuations, which challenge traditional methods. Using witness signals to monitor
noise changes, NonSENS achieves a stable, parametric noise subtraction, overcoming
the complexities that impede standard noise reduction techniques, including those using
deep neural networks (DNNs), which suffer from complex training and interpretability
issues [279].

Adaptive Feed-Forward—The Feed-Forward technique in AdVirgo’s. It ap-
plies directly to the primary detection channel (DARM), using a phase of the Uninter-
ruptible Power Supply (UPS) as the witness channel. The technique measures the 50
Hz noise via the UPS, adjusts gain and phase to match DARM’s noise, and uses a 50 Hz
resonant filter to focus the correction on the target frequency. The adjusted signal is then
used to counteract the 50 Hz noise in DARM. This method is adaptive and dynamically
adjusts to noise variations for effective noise cancellation [37].

DeepClean approach–DeepClean uses CNNs to improve noise reduction in
GW data analysis, processing strain readouts from GW interferometers, which include
astrophysical signals and detector noise [215]. Its main objective is to reduce noise, en-
hancing the detectability of astrophysical signals at optimal S/N. DeepClean differen-
tiates between witnessed and non-witnessed noise, utilizing witness sensors to monitor
environmental and instrumental noise. The CNN models noise with trainable weights,
capturing non-linear and non-stationary noise dynamics typical in GW interferometry.
DeepClean’s architecture features a symmetric auto-encoder with multiple downsam-
pling and upsampling layers, tailored to the sampling frequency and witness channel
count. This configuration enables noise prediction across different data dimensions and
uses batch normalization and tanh activation functions to boost generalization. The
training minimizes a loss function based on the noise spectrum ratio of cleaned to orig-
inal strain across all frequency bins. This approach allows DeepClean to effectively
manage complex noise situations, significantly improving upon traditional methods like
Wiener Filtering and Adaptive Feed-Forward, and complements machine learning al-
gorithms like NonSENS [279].

As shown in Figure 6.1, architectures like DeepClean feature layers of nodes
linked by weighted paths that process signal information [215]. Each node outputs a
weighted sum of inputs, typically through an activation function. In the context of GW
data analysis, such architectures are essential to distinguish noise from astrophysical
signals in GW data analysis.

Page 118



CHAPTER 6. DEEPCLEAN: NON-LINEAR REGRESSION FOR NOISE REDUCTION IN THE VIRGO DETECTOR

Figure 6.1: Schematic of a neural network that transmits information. The diagram
illustrates the structural components that include the input nodes (gray), the hidden lay-
ers (blue), and the output nodes (green). The interconnections between nodes represent
synaptic weights (purple), and the orange line marks the boundary of a single layer
within the network. This simplified diagram illustrates the flow and processing of in-
formation through the network. Credit: Deep Learning Dictionary SYLLABUS.

6.3 Method

6.3.1 Mathematical formulation

In GW detection, the readout signal h(t) is assumed to be:

h(t) = s(t)+n(t), (6.1)

where s(t) denotes potential astrophysical signals and n(t) is the detector noise, includ-
ing both intrinsic disruptions nNR(t), which are unalterable, and external noise nR(t),
originating from environmental and technical factors:

n(t) = nR(t)+nNR(t). (6.2)

To improve the sensitivity of GW detectors, LIGO and Virgo use thousands of
autonomous auxiliary witness sensors to monitor removable noise components nR(t).
These auxiliary sensors record independent instances of noise, enabling the classifica-
tion of noise into two distinct groups: witnessed and non-witnessed noise. Witnessed
noise, in particular, is the removable noise, while non-witnessed noise constitutes the
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non-removable noise or noise not recorded by some witness auxiliary sensors. The
DeepClean system, leveraging data from these witness sensors, forecasts and subtracts
noise to enhance the analysis of astrophysical signals [215]. A neural network func-
tion F (wk ;⃗θ) processes the witness sensors wk(t) to estimate both stationary and non-
stationary noise components nR(t), optimizing parameters θ⃗ by minimizing a loss func-
tion JASD.

{
nR(t) = F (wk ,⃗θ),

θ⃗ = argminθ′JASD
[
h(t),F (wi(t); θ⃗′)

]
.

(6.3)

Subtracting nR(t ,⃗θ) from the GW readout h(t) yields the residual signal r(t ,⃗θ),
which contains astrophysical signals s(t) and non-removable noise nNR(t) similar to
Equation 6.4.

r(t ,⃗θ) = h(t)−nR(t ,⃗θ) = s(t)+nNR(t) (6.4)

The loss function JASD is defined as:

JASD =
1

fhigh − flow

∫ fhigh

flow

√
PSDr( f )
PSDh( f )

d f , (6.5)

where PSDh( f ) represents the PSD derived from the GW readout signal as a function of
frequency f , and PSDr( f ) represents the PSD of the residual signal, r(t), as a function
of frequency f . In addition, in the analysis, the mean squared error (MSE) has been
selected as the loss function.

With the MSE also used as a loss metric [215]:

MSE =
1
N

N

∑
k=1

(
h(t)−F (wk(t);⃗θ)

)2
. (6.6)

In the process of weight optimization, DeepClean employs the ADAM opti-
mizer to efficiently navigate the gradient space and minimize the loss function [165].
This optimization algorithm is particularly well suited to handle large data sets and com-
plex network architectures characteristic of GW data analysis. Building on the founda-
tion of robust weight optimization, enhancements to the DeepClean method have been
realized through the integration of a CNN architecture. This is conceived as a fully con-
volutional auto-encoder, a sophisticated design choice that facilitates the network’s abil-
ity to capture spatial hierarchies and abstract features within the data [215]. Validated
with real LIGO data, the enhanced DeepClean network has shown its effectiveness in
reducing noise influences without distorting the GW signals, which is a testament to the
method’s advanced noise filtering capabilities. The refined loss function encapsulates a
dual component structure that marries the amplified amplitude spectral density (ASD)
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with the MSE, offering a comprehensive measure of the network’s performance. This
combined loss function, expressed as

J = JASD +MSE, (6.7)

enables a balanced optimization, ensuring that both the spectral characteristics and the
time-domain fidelity of the signal are preserved during the noise reduction process.
The incorporation of this composite loss function exemplifies the meticulous approach
adopted in GW data analysis, striving to maintain the integrity of potential astrophysical
signals.

6.3.2 Philosophy of the process

The DeepClean project employs a thorough methodology for data set preparation, train-
ing, and noise reduction, beginning with the acquisition and pre-processing of raw data
from the Virgo detector. This includes both GW signals and auxiliary witness sensor
data ( wk(t), which are normalized and filtered to prepare for CNN analysis [249, 215].
The CNN architecture is designed to discern complex noise patterns within GW data,
employing convolutional layers, activation functions, and pooling layers, with regular-
ization techniques to prevent overfitting. The training process is fine-tuned through
hyperparameters using in [249], ensuring the model efficiently learns the relationship
between witness sensor data and noise components. The validation and testing phase
is crucial to assess the model’s ability to generalize to new data and confirm its effi-
cacy with different GW signals. After training, the model applies its learned parameters
for noise reduction, significantly improving signal clarity. This process is rigorously
evaluated by comparisons of original and cleaned signals, with improvements in S/N
and ASD serving as key metrics. The comprehensive methodology encapsulated by
DeepClean is depicted in Figure 6.2. This figure illustrates the end-to-end process from
initial data preparation to final noise reduction. This integrated approach highlights the
systematic effort that has been made to accurately model and mitigate noise within GW
detectors. Ultimately, this improves both the fidelity and reliability of the data analysis,
leading to more confident detection and characterization of GW signals.

6.4 A Virgo O3b Mock Data Challenge

To assess the performance of DeepClean, I conducted a thorough analysis on the O3b
data from the Virgo detector, recorded during the Virgo O3b Mock Data Challenge
(MDC). The MDC was designed to test and improve low-latency analysis pipelines
with real observational data from the O3b session. I examined a continuous stretch of
data Hrec_hoft_raw_20000Hz and the useful witness channels, spanning two days, 18
hours and 15 minutes, from February 7, 2020, 16:19:27 UTC to February 10, 2020,
10:35:01 UTC. This period was selected for its extensive coverage and the significant
coherence observed between strain and auxiliary channels in the Virgo O3b dataset es-
sential for DeepClean’s effective deployment and evaluation of DeepClean. The models
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Figure 6.2: The figure presents the architecture of the DeepClean system and the asso-
ciated data processing sequence. DeepClean processes input in the form of time series
data acquired from an array of witness sensors. The data undergo a transformation
through a convolutional autoencoder network, which consists of a series of four con-
volutional layers for the reduction of dimensionality, followed by an equal number of
transpose-convolutional layers responsible for dimensionality expansion. Each convo-
lutional operation is succeeded by batch normalization and hyperbolic tangent (tanh)
activation. The final convolutional layer culminates in a one-dimensional representa-
tion aimed at predicting noise. The lower diagram delineates the training regime for
DeepClean, using the ADAM optimization algorithm to iteratively converge on a mini-
mum of the defined loss function through gradient descent. The figure is from [249].

were trained in 1024 s, 2048 s, and 4096 s segments with a training interval of 100,000 s,
each cleaning its respective data segment. I first focus to reduce the noise in three fre-
quency bands, including 98 to 110 Hz, 142 to 162 Hz, and 197 to 208 Hz, in order to
mitigate the noise non-stationary and non-linear that could mask the GW signals.

As a reminder, at the beginning of this study, the target frequency was 50 Hz,
with the sidebands around it. However, given that the feed-forward system addresses the
main disturbances in Virgo, we have shifted our focus to other frequency ranges where
we observe significant noise, aiming to further improve the overall noise reduction.

ASD Improvement—I quantified DeepClean’s efficacy by comparing the ASD
of the post-process data (labeled V1:DC) against the ASD of the original dataset (la-
beled V1:ORG), where V1 denotes the Virgo detector. The original MDC dataset is in-
dicated by "ORG," and the results after DeepClean processing are designated by "DC."
Figures 6.3, 6.4, and 6.5 exhibit a considerable enhancement in signal quality within the
respective targeted frequency ranges of 98-110 Hz, 142-162 Hz, and 197-208 Hz. These
improvements substantiate the effectiveness of the DeepClean algorithm in advancing
noise reduction in GW data analysis.

The efficacy of DeepClean varied significantly with the duration of the training
segments. Although segments of 1024 s and 2048 s were used, the results were sub-
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optimal compared to those obtained from the 4096 s segments. This discrepancy can
be attributed to the addition of unintended artifacts during the noise removal process
with shorter segments, likely a consequence of the inherent non-stationary data during
O3b. The data set is characterized by periods in which the auxiliary sensors exhibit
high coherence with the readout channel for durations as brief as 200 s, followed by
incoherence intervals. Longer training segments, such as 4096 s, are advantageous, as
they encompass a broader spectrum of these variable conditions, thereby improving
the model’s ability to accurately predict and mitigate noise. Consequently, training in
4096 s segments proved to be more effective, capturing a wider range of situational
variations and leading to superior noise reduction results.
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Figure 6.3: ASD and ASD ratio comparison for the Virgo detector data in the 98-110 Hz
frequency band. The green trace represents the ASD of the original Mock Data Chal-
lenge (MDC) set from Virgo (V1:ORG), the red trace depicts the ASD after processing
with the DeepClean algorithm (V1:DC), and the blue trace shows the ratio of the two
ASDs. This panel demonstrates the noise reduction capabilities of DeepClean within
this specific frequency range.

6.4.1 Witness sensors

In the pursuit of enhanced sensitivity for GW detection within the Virgo interferometer,
a comprehensive analysis of witness channels was performed identify within specific
frequency bands, namely 98–110 Hz, 142–162 Hz and 197–208 Hz. To guess among a
thousand channels which ones are the most important, I consider the coherence better
witness channels and the GW strain channel. I consider the output of the BruCo analysis
1, and select those that record a coherence rate greater than 0.5. This coherence must
occur at least five times during February and March 2020. Each witness channel is

1https://vim.virgo-gw.eu/?config=1
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Figure 6.4: ASD and ASD ratio comparison for the Virgo detector data in the 142-
162 Hz frequency band. The green trace is the ASD of the original data (V1:ORG),
the red trace is after DeepClean processing (V1:DC), and the blue trace indicates the
ASD ratio. The effectiveness of the DeepClean algorithm in reducing noise in this mid-
frequency range is highlighted here.
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Figure 6.5: ASD and ASD ratio comparison for the Virgo detector data in the 197-
208 Hz frequency band. The green, red, and blue traces represent the original ASD,
the ASD post DeepClean, and their ratio, respectively. This figure underscores the
reduction of noise achieved by DeepClean in the higher frequency domain.

tested for its noise removal effects. Many are excluded from the final list because they
introduce additional noise despite reducing some or because they have no effect,thus
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increasing the computational cost. For each frequency band I list the main witness
channels (for more, cf. Virgo Logbook2) .

98 to 110 Hz:

• V1:CAL_WE_MIR_Z_NOISE: Injects and monitors longitudinal noise in the west
end mirror for calibration and sensitivity.

• V1:CAL_NE_MIR_Z_NOISE: Injects and monitors longitudinal noise in the North
End mirror for calibration and sensitivity.

• V1:INJ_IMC_QD_FF_DC_V: Measures the DC voltage of the Input Mode Cleaner.

197 to 208 Hz:

• V1:CAL_WE_MIR_Z_NOISE: Injects and monitors longitudinal noise in the west
end mirror for calibration.

• V1:INJ_Tpro_processed_packets

• V1:SDB_EDB_Tpro_processed_packets and V1:SDB2_Tpro_processed_packets:
Impacts data quality via suspension database processing.

• V1:ENV_IB_CT_FINGER_ACC_Y: Monitors environmental vibrations.

• V1:ENV_CEB_MAG_W: Monitors magnetic fields and detects magnetic noise.

• V1:INJ_IMC_QD_FF_I_H and V1:INJ_IMC_REFL_I_POST: Injection Mode
Cleaner control signal from the in-phase demodulated quadrant photodiode.

• V1:SQZ_CC_Tpro_processed_packets: Squeezing control system packets.

142 to 162 Hz: Given the complex contributions of 167 witness channels in
this frequency range to noise reduction, a full listing is omitted. Key acronyms like
ASC (Alignment Sensing and Control), INJ (Injection), ACT (Actuation), and ENV
(Environment) are emphasized to highlight the main systems that maintain the operating
integrity of the interferometer [27].

6.4.2 Training and cleaning process

The DeepClean algorithm was rigorously trained on frequency bands 98–110 Hz, 142–
162 Hz, and 197–208 Hz, known for significant non-linear and non-stationary noise, to
enhance its ability to detect and reduce noise that could obscure GW signals. Following
[249], I use the same hyperparameters. The pre-processed data is segmented into over-
lapping kernels (distinct from the convolution filter kernel in CNN architecture). These

2https://logbook.virgo-gw.eu/virgo/
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kernels are organized into batches of fixed size ( batch_size). For this analysis, 8s ker-
nels with 7.75s overlap were used. Training data is fed to DeepClean in batches of 32
kernels. During training, DeepClean calculates the loss, backpropagates gradients, and
updates weights using the ADAM optimizer[165].

6.4.3 Performance estimation

In the pursuit of evaluating the DeepClean algorithm’s efficacy, particularly after the
noise reduction process, I conduct statistical analysis, using CBC waveforms. This
analysis aims to verify that denoising preserves the integrity of the original GW signals
and to examine any improvements in the credible intervals of the estimated parameters
due to noise subtraction.

Gravitational wave generation and event selection—In this research, I use
the Bilby Bayesian inference library [53] to generate, BBH signals. I use a uniform
distribution for component masses m1 and m2, ensuring the total mass M matches coa-
lescence frequencies at the last stable orbit frequency fISCO, i.e., BBH events with fISCO
in these bands. The fISCO is given by,

fISCO =
c3

61.5πGM
, (6.8)

where c is the speed of light, G the gravitational constant, and M the total mass of the
binary system. This equation guides the selection of m1 and m2, specifically targeting
those within the frequency bands of 98–115 Hz, 142–162 Hz, and 197–215 Hz. I target
these frequency bands due to their excessive noise, ensuring the DeepClean algorithm’s
effectiveness in enhancing the detection and analysis of GW signals, particularly in
the context of the pre-merger phase of CBC events. This approach not only optimized
the selection of BBH systems, but also ensured that the analysis targeted GW signals
predominant in the late inspiral phase. The uniform distribution of masses was pivotal
for the focused application of the DeepClean algorithm, enhancing our capability to
rigorously assess its noise reduction effectiveness in the critical pre-merger phase of
CBC events.

Signal-to-noise ratio analysis—I inject a total of 6750 GW signals from BBH
mergers into the MDC training set across three frequency bands: 98–110 Hz, 142–
162 Hz, and 197–208 Hz. The S/N of each injected signal was evaluated using the
match-filtering function in PyCBC [67]. I compare the maximal S/N values before and
after applying the DeepClean process.

For the 98–110 Hz frequency band, my statistical analysis yielded a mean differ-
ence in S/N of µ ≈−0.02 and a standard deviation of σ ≈ 0.2, with 99.21% of the S/N
differences within 5σ of the mean. Similarly, for the 197 to 208 Hz band, I observed a
mean value of µ ≈−5×10−4 and a standard deviation of σ ≈ 0.03, with 99.96% of the
differences within 5σ. The effectiveness of the DeepClean process across these bands
demonstrates its ability to efficiently reduce noise without compromising the integrity
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of the GW signals. In the 142–162 Hz frequency band, the analysis indicated a mean
difference in S/N of µ ≈ −0.04 and a standard deviation of σ ≈ 0.24. Here, 99.52%
of the S/N differences fell within 5σ of the mean, showcasing a significant level of
consistency in the performance of the DeepClean process. This consistency further
underscores the DeepClean’s ability to enhance signal clarity across a broad range of
frequencies.

Figures 6.6, 6.7, and 6.8 illustrate the distribution of S/N differences for the
respective frequency bands, providing information on the distribution and effectiveness
of the noise reduction technique applied. Half of the GW signals have an increase in
S/N, while the remainder shows a decrease. Importantly, the DeepClean process did
not degrade the GW signals.
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Figure 6.6: Distribution of S/N differences for BBH with fISCO between 98 and 110
Hz. Dark green dots show individual S/N differences, the blue line is the Gaussian fit,
and the red dashed and dotted lines mark the mean (µ)) and standard deviation (σ). The
gray bars show the histogram. Approximately 99. 3% of the differences lie within ±5σ

of the mean, confirming DeepClean’s effectiveness in preserving GW signal integrity.

6.4.4 Improvement of BNS inspiral range detection

The BNS inspiral range is a critical metric for GW detector sensitivity, indicating the
maximum distance for detecting a BNS inspiral with an S/N of 8 [128, 87, 127]. I
calculate the BNS inspiral range of O4a using measured PSD values from the LIGO
detector. For O4b, we used the simulated PSD noise curves LIGO-T2200043-v33. Ta-
ble 6.1 shows the results.

The application of the DeepClean algorithm for noise suppression in GW de-
tectors yields quantifiable improvements in the detection of the BNS inspiral range.

3https://dcc.ligo.org/T2200043-v3/public
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Figure 6.7: Distribution of S/N differences for BBH with fISCO between 142 and 162
Hz. The plot shows S/N differences as dark green dots and a Gaussian distribution as a
blue line. The mean (µ) and the standard deviation (σ) are indicated by red dashed and
dotted lines. The gray bars represent the histogram of S/N differences, with 99.52%
within ±5σ of the mean.
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Figure 6.8: Histogram of S/N differences for BBH with fISCO falling within 197 and
208 Hz, shows by dark green dots. The Gaussian distribution is in blue, with mean (µ)
and standard deviation (σ) in red dashed and dotted lines. Gray bars show 99.94% of
values within ±5σ.

A comparative analysis conducted before and after the DeepClean implementation,
reveal modest yet statistically significant enhancements. Specifically, within the
noise-cleansed frequency band from 98–110 Hz, an average increase of approximately
0.2 Mpc was observed, corresponding to an improvement of 0.39%. In the 142–162 Hz
band, the average gain was approximately 0.18 Mpc or 0.37%. Although cleaning
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within the 197–208 Hz band results in a marginal increase of approximately 0.02 Mpc,
translating to a 0.05% enhancement, it underscores the efficacy of the method. The
Figure 6.9 evolution between each of the BNS inpiral values before and after cleaning.

These analyses are based on single-training sessions. Due to insufficient results,
multi-training is crucial, allowing successive processing of multiple frequency bands.

Table 6.1: Cosmology-corrected inspiral range (Mpc) for O4a and O4b from GW strain.

Run L1 H1 V1 K1

BNS inspiral range of the in Mpc

O4a 165 145 off duty off duty

O4b 224 224 95 37
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Figure 6.9: Sensitivity analysis of the BNS inspiral range for the 98-110 Hz (left)
and 142-162 Hz (right) bands, using Virgo O3b MDC data from GPS 1265127585
to 1265352161. It demonstrates the DeepClean capabilities for BNS inspiral. The time
index ("Time proxy") of each 4096s segment.

6.4.5 The multi-training process

Multi-training—Using a segmented multi-training approach that focuses on specific
frequency bands from 15–20 Hz to 395–415 Hz throughout the entire operational range
of 15 to 415 Hz has led to a notable enhancement of the BNS inspiral range by approx-
imately 1.3 Mpc, or an increase of approximately 2.5%. This approach, by isolating
and training in individual frequency bands, has yielded significant improvements in the
sensitivity and operational range of the detector. Each band is treated as a distinct pro-
cessing layer, with the 142–162 Hz band being the initial focus due to its use of 123
witness channels, which necessitates a substantial computational resource: at least 80
GB of RAM is required for processing 4096 seconds of Virgo O3b data. The out-
put of this initial layer training provides the foundation for training of the subsequent
layers in an iterative fashion. This process comprises 13 layers in total: 142–162 Hz,
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15–20 Hz, 33–39 Hz, 55–65 Hz, 75–80 Hz, 98–110 Hz, 137–139 Hz, 197–208 Hz, 247–
252 Hz, 295–305 Hz, 345–355 Hz, 355–367 Hz, culminating in the 395–415 Hz band.
Each channel is associated with specific witness channels that demonstrate a certain
level of coherence. The ASD for the original and cleaned data is presented in Fig-
ure 6.10. Furthermore, Figure 7.2 illustrates the inspiral range of the BNS before and
after the data cleaning process. These figures underscore significant advances in the
capabilities of the Virgo detector.

Future projections—The integration of Virgo into the O4b observation cam-
paign, which began on April 10, 2024, and is projected to end in February 2025, pro-
vides an opportunity to enhance data monitoring and refine coherence optimization with
witness channels. The average increase in the inspiral range for BNS during single-
training is 0.13 Mpc. However, this increases to 1.3 Mpc with multi-training that com-
bines 13 frequency bands between 15 and 415 Hz, representing a 10-fold improvement
over single-training. Furthermore, I have identified at least 21 frequency bands with
significant excess noise between 15 and 1360 Hz that are worth subtracting.

Given all of the above, I project that a comprehensive retraining across the fre-
quency range from 15 to 2000 Hz could potentially increase the BNS inspiral range by
approximately 10% to 20% during the O4b. We can select the most coherent MDC data
for analysis, unlike the current study with only 40 days of saved data on the Virgo server
in Cascina. This strategy involves adapting the real-time processing frameworks used
in the LIGO detectors for the Virgo dataset, facilitating the transition to live and online
data analysis. The adaptation will not only leverage the developments of the O4b cam-
paign, but also prepare the operational framework necessary to implement advanced
real-time noise regression techniques similar to those validated in LIGO [249].

6.4.6 Violin mode frequencies

In the analysis of GW detector data, particularly in the frequency range influenced by
the violin modes, noise subtraction challenges arise. Violin modes refer to mechanical
resonances in the suspension fibers of the test masses, which can significantly affect
the detector’s sensitivity. In my studies using BruCo4, I observe that the coherence
between the witness sensors and the main channel is limited to approximately 1000
Hz. In particular, within specific frequency bands dominated by the violin modes, no
witness sensors exhibit sufficient coherence with the main channel to facilitate noise
subtraction. As depicted in Figure 6.12, around the frequency band of 440–456 Hz, an
absence of noise subtraction is evident.

This highlights the limitations of these methods based on the use of a witness
channel to reduce noise. In the absence of coherent witness channels, these methods,
including DeepClean, are completely ineffective.

4https://vim.virgo-gw.eu/?config=28
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Figure 6.10: Comparison of ASD and ASD ratio across a 15 to 415 Hz frequency
band. The original Mock Data Challenge (MDC) dataset from Virgo is represented
by the green trace (V1:ORG), whereas the red trace (V1:DC) displays the ASD after
processing with the DeepClean algorithm. The blue trace indicates the ratio of the
two ASDs. These visualizations highlight the DeepClean algorithm’s noise reduction
efficacy across the specified frequency spectrum.

6.5 Challenges in Virgo detector data analysis

In this study of the DeepClean framework applied to the Virgo detector data, I initially
aimed to use the O4a data set. Due to technical constraints, Virgo did not participate in
the O4a with the LIGO detectors (L1, H1). Consequently, I shifted to the O3b data set
from Cascina, Italy, hoping to refine my methodology for the upcoming O5.

The study faced several analytical challenges:

• Substitution with O3b Data: Due to the inaccessibility of O4a data, I had to use
O3b data, affecting my ability to perform a comparative analysis with the LIGO
detectors during the same run.

• Dynamic auxiliary channels: The names and existence of witness channels
change over time, complicating the use of Virgo data.

• High computational demands: Analyzing Virgo data to capture the 150 Hz peak
and its sidebands via ASC witness sensors required significant computational re-
sources, often compromising between data depth and computing power.
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Figure 6.11: The BNS inspiral range for the original Virgo dataset (V1:ORG, green
trace) and after cleaning with the DeepClean algorithm (V1:DC, red trace), over the
frequency band of 15 to 415 Hz. The graph demonstrates the improvement in the detec-
tion range post-cleaning. The "Time proxy" indicates the time fraction for each post-
and pre-cleaning phase.

• Data access: To address these high computational demands, the VirgoTool
Python package was identified as a potential solution for reducing data reading
times. However, integration challenges within my cluster’s environment limited
its utility. I propose enhancing the gwpy library with VirgoTool’s data handling
capabilities to improve computational efficiency in future studies.

• Non-stationary —The Virgo O3b dataset is non-stationary; a witness channel
may be coherent for 200 seconds and then become incoherent, hindering noise
reduction.

6.6 Conclusion

This work highlights the possibility of reducing some noise contamination of the Virgo
data, which contributes to the detection of more astrophysical signals. The integra-
tion of the DeepClean framework represents a transformative approach to the treatment
of complex noise, non-linear and non-stationary in the analysis of GW data. Using
CNNs, the DeepClean algorithm substantially enhances the accuracy and sensitivity of
the Virgo detector, important for the analysis of GW signals. The results are promis-
ing and the method can be used in the ongoing O4b campaign to assess the progress
of noise reduction. This research successfully navigated computational and method-
ological challenges, including data substitution due to unforeseen constraints and the
dynamics of auxiliary channels. Despite these obstacles, the commitment to improving
the analytical precision remained strong. The effectiveness of DeepClean, confirmed
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Figure 6.12: ASD and ASD ratio analysis in the 440-456 Hz band, highlighting violin
mode resonances. The green trace (V1:ORG) shows the original ASD, the red trace
(V1:DC) shows the ASD after DeepClean processing, and the blue trace shows their
ratio. This plot indicates DeepClean’s limited noise reduction around violin modes,
suggesting a lack of coherent witness sensors for noise subtraction in this band.

through extensive training and testing over specific frequency ranges, demonstrates its
ability to effectively reduce noise while preserving the integrity of the GW signals.
These efforts in offline data are crucial for setting up online processing for the up-
coming O5 , enhancing real-time noise reduction in the Virgo detector and improving
pre-merger GW signal detection.

A possible test is using Bilby to evaluate parameter estimation (PE) and assess
the impact of noise reduction on masses m1 and m2. We must address the challenges
before the O5 run. Enabling VirgoTool installation in personal environments or integrat-
ing it into gwpy would make Virgo data as accessible as LIGO data. A new CPU-based
version of DeepClean considered by LIGO DetChar group could resolve the cost issue.
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***

During my PhD, I worked on projects developing cosmic probing tools and contributed
to collaborations like NMMA, GRANDMA, Virgo, and LSC. In this chapter, I will re-
visit some of the results presented in previous chapters. I will discuss their significance
and their impact on our understanding of compact binary mergers. This will provide an
opportunity to highlight the challenges and difficulties encountered in achieving these
results. Finally, I will outline my short-term perspectives, which primarily focus on
the study of the interaction between dark matter and white dwarfs (WD), leading to
low-luminosity SN Ia.
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CHAPTER 7. CONCLUSION AND PERSPECTIVES

7.1 Conclusion

Chapter 2—I integrated the PDB/GWTC-3 distribution into LIGO.Skymap, enabling
the simulation and localization of CBC events. This distribution, used for "observing
scenarios," describes populations of BNSs, NSBHs, and BBHs [122, 25]. I presented
the latest simulations covering both the current and the future observing run of the
IGWN. It provides projections for astronomers interested in the data products by GW
detectors, as well as EM counterparts to BNS mergers (Kiendrebeogo et al. 2023[163]).
I simulated O6 predictions for researchers evaluating future telescope missions like
UVEX and ULTRSAT.

The simulated data updated the IGWN User Guide1 and were used for proposals
for the ZTF [163], Nancy Grace Roman Space Telescope (Roman) [44], UVEX, and
Rubin Observatory telescopes. Then I suggested raising the detection threshold from
8 to 10 to better reflect our predictions at observation time (Table 7.1). The detection
of GW230529 [89], an NSBH with BH mass between 2.5-4.5 M⊙, previously in the
"Mass Gap" (2.5-5 M⊙), highlights the importance of the PDB/GWTC-3 distribution,
proposing limits at 2.5 M⊙ between NS and BH. We set this limit at 3 M⊙, risking NSs
falling into the BH category, maximizing our EM counterpart estimation.

Table 7.1: Comparison of Predicted and Observed Detection Rates at Different S/N
thresholds During O4a.

RUN Detection Type Time SNR BNS NSBH BBH

Number of Detections

O4a
Simulation 1 year

8 12+17
−9 1+4

−2 115+147
−67

10 5+10
−5 0+0

−0 60+78
−36

Observation 9 months N/A 1 ? 6 81

Chapter 3—I presented my contributions to the NMMA and GRANDMA col-
laborations. We have developed the NMMA framework [217], which constrains rapidly
evolving transients by integrating GW data with EM observations. This aids in con-
straining the EOS of NS and estimating H0 based on KN observations by telescopes
like ZTF and Rubin Observatory during the O4a and O5 runs. I also used the NMMA
tool to constrain light curves during the "ReadyforO4" observation campaign with the
Kilonova-Catcher (KNC)2 initiative [50] of the GRANDMA collaboration. I processed
data for eight transients using MLE to determine if they were KNe, followed by NMMA
analysis [33].

Chapter 4—As part of doctoral research, I also evaluated the impact of ZTF
and upcoming telescopes such as Rubin Observatory’s LSST and ULTRSAT in detect-
ing KN during IGWN campaigns. The results, shown in Figure 7.1, supported the

1https://emfollow.docs.ligo.org/userguide/capabilities.html
2http://kilonovacatcher.in2p3.fr/
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preparation of the "ULTRASAT WG2 - Work package". These efforts anticipate tele-
scope cadences, compiled through simulations using NMMA and gwemopt, providing
sky maps for event locations.
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Figure 7.1: BNS Annual EM Detection Rates for LSST, ZTF, and ULTRSAT. This
figure shows annual KN detection rates for BNS events by LSST, ZTF, and ULTRSAT
during runs O4a, O4b, and O5. Bars indicate median EM detection rates from GW
data, with error bars showing estimate ranges. Red bars represent LSST, green bars
ZTF, and blue bars ULTRSAT, annotated with median values for expected annual BNS
detections. The visualization highlights the distinct detection capabilities of each ob-
servatory across different runs, reflecting the dynamic nature of BNS related transient
EM event observations.

Chapter 5—Given the proliferation of astronomical data and telescopes, I pro-
posed a pipeline that discriminates the nature of light curves from transients revealed
by ZTF. This integrates an NMMA analysis service with the time domain astronomy
platform SkyPortal [98], providing real-time analysis to help astronomers anticipate the
transient nature and save time. This pipeline can be adapted for other telescopes like
LSST.

Chapter 6—In this chapter, I significantly reduced the noise in the Virgo detec-
tor, enabling the detection of potential GW signals otherwise masked by non-stationary
noise. I configured the DeepClean algorithm for Virgo’s data processing, integrating
the readout channel and the auxiliary channels that measure independent environmen-
tal noise. This setup allows DeepClean, a CNN, to recognize and subtract noise from
non-stationary and stationary during cleaning, improving Virgo’s BNS inspiral range
by approximately 1.35 Mpc from ≈55 Mpc in O3b, as shown in Figure 7.2. This study
is a first for the Virgo detector, which prepares it for real-time data processing in the
upcoming O5 campaign alongside LIGO.
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Figure 7.2: The BNS inspiral range for the original Virgo dataset (V1:ORG, green)
and after DeepClean (V1:DC, red) over 15-415 Hz. The graph shows the detection
range improvement post-cleaning. The "Time proxy" indicates the time fraction for
each phase.

7.2 Challenge

Observing scenarios—We face numerous challenges in predicting the detection rates
of GWs from our simulations. First, this is due to the limited size of the available sam-
ple, especially for BNSs, which are crucial for estimating the impact of EM counterparts
. In addition, there is often a discrepancy between the ideal PSD from simulations and
those measured by detectors during observations. This leads to predictions that do not
accurately reflect reality, as evidenced by observations during O4a. The small sample
size results in a limited understanding of the overall behavior of CBCs, contributing
to wide error bars. These issues can improve as we detect more GW signals, which
enhance the quantity and quality of data available for study. For the O4 campaign,
we initially planned to observe with four detectors, but the sensitivities of the Virgo
and KAGRA detectors were overestimated. Throughout the first phase (O4a), only the
LIGO detectors were operational. This prevented an adequate comparative calculation
between our predictions and the actual detections.

Furthermore, the PDB/GWTC-3 distribution used for our “observing scenarios"
has an estimated lower and upper mass limit for NSs and BHs at 2.4 M⊙, as per the Rate
and Population (R&P) group. However, considering numerous scientific studies, obser-
vations, and our objectives to assess the impact of optical telescopes in EM detections,
we have extended this limit to 3 M⊙. This extension results in NSs with spins typically
seen in BHs, often greater than 0.4. While this does not pose potential problems in
our EM simulations, as NS spins are ignored, it may cause confusion for uninformed
readers.

NMMA-Skyportal pipeline—The next generation of telescopes, such as the
LSST at the Rubin Observatory and ULTRSAT, will observe a vast number of tran-
sient phenomena. With this proliferation of photometric data, it will be impossible for
humans alone to classify all these events. Skyportal is a solution for real-time data pro-
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cessing and visualization, serving as an interface between astronomical observatories
and the astronomers. Beyond these capabilities, NMMA-Skyportal pipeline addresses
the issue of observation time management by discriminating the nature of light curves.
This allows astronomers to decide whether to continue or stop monitoring a specific
event based on the evolution of the light curves in the first few days following detec-
tion. However, this pipeline is very costly and requires significant resource allocation.

The second version, though equally expensive, is associated with Fritz. It en-
ables astronomers to conduct their own analyses by selecting parameters to fit light
curve models and draw their own conclusions. Combining the advantages of these two
versions would be beneficial in developing a third version. This version will allow users
to identify a transient event and select light curve models based on the approach of the
second version. It will iterate within the NMMA analysis service and post the appropri-
ate result, continuing the analysis as soon as new photometric data for the same event
is available, in line with the essence of the initial version

7.3 Perspectives

This doctoral thesis has highlighted several promising directions for future research,
with a particular focus on advancing computational codes essential for data processing
in multi-messenger astronomy. Each new detection of a multi-messenger counterpart
enhances our understanding of complex astrophysical phenomena, such as the EOS for
NSs, the H0 constant, and the nucleosynthesis process known as the r-process. One
fascinating area for future investigation is the potential interaction between dark matter
and white dwarfs. Stellar evolution theory indicates that a runaway nuclear fusion re-
action may occur in dense stellar objects such as white dwarfs and NSs. This reaction
is triggered when the inward gravitational force at the star’s core surpasses the outward
thermal pressure from nuclear reactions, a condition common in objects containing de-
generate matter. A particular area of interest is the Ca-rich gap transient, a subclass
of faint luminosity SNe characterized by significant calcium ejection [72, 191]. Recent
theories suggest that these SNe, which exhibit brightness levels between those of no-
vae and more typical SNe, might be triggered by thermonuclear reactions induced by
dark matter interactions within low-mass white dwarfs [267]. The unique observational
characteristics of Ca-rich gap transients, including their spectral type and unusual lo-
cations relative to the centers of their host galaxies, challenge current models of stellar
and binary evolution [107]. Investigating the role of dark matter, particularly primor-
dial BHs, could provide critical insights into the mechanisms underlying Ca-rich gap
transients and broaden our understanding of cosmological phenomena. This research
could determine whether interactions with dark matter influence the dynamics of stellar
explosions, such as SN Ia, which serve as crucial cosmic distance markers. If a signif-
icant portion of dark matter consists of primordial BHs, it might explain the observed
frequency of Ca-rich gap transients.

The ongoing development of multi-messenger astronomy, through improved de-
tection capabilities and refined data processing methodologies, remains essential. Each
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new discovery not only enhances our astrophysical theories but also enriches our under-
standing of the cosmos. The integration of GW data with EM observations, especially in
initiatives like NMMA, is important for expanding our understanding of the universe.
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Displays observed magnitudes (black dots), theoretical model (dashed
line), and confidence intervals (shaded orange). . . . . . . . . . . . . . 114

5.10 AI-generated summary of the event using the ChatGPT 3.5 completion
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6.1 Schematic of a neural network that transmits information. The dia-
gram illustrates the structural components that include the input nodes
(gray), the hidden layers (blue), and the output nodes (green). The in-
terconnections between nodes represent synaptic weights (purple), and
the orange line marks the boundary of a single layer within the network.
This simplified diagram illustrates the flow and processing of informa-
tion through the network. Credit: Deep Learning Dictionary SYLLABUS.119

6.2 The figure presents the architecture of the DeepClean system and the
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convolutional operation is succeeded by batch normalization and hy-
perbolic tangent (tanh) activation. The final convolutional layer cul-
minates in a one-dimensional representation aimed at predicting noise.
The lower diagram delineates the training regime for DeepClean, using
the ADAM optimization algorithm to iteratively converge on a mini-
mum of the defined loss function through gradient descent. The figure
is from [249]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3 ASD and ASD ratio comparison for the Virgo detector data in the 98-
110 Hz frequency band. The green trace represents the ASD of the
original Mock Data Challenge (MDC) set from Virgo (V1:ORG), the
red trace depicts the ASD after processing with the DeepClean algo-
rithm (V1:DC), and the blue trace shows the ratio of the two ASDs.
This panel demonstrates the noise reduction capabilities of DeepClean
within this specific frequency range. . . . . . . . . . . . . . . . . . . . 123
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6.4 ASD and ASD ratio comparison for the Virgo detector data in the 142-
162 Hz frequency band. The green trace is the ASD of the original
data (V1:ORG), the red trace is after DeepClean processing (V1:DC),
and the blue trace indicates the ASD ratio. The effectiveness of the
DeepClean algorithm in reducing noise in this mid-frequency range is
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in the higher frequency domain. . . . . . . . . . . . . . . . . . . . . . 124

6.6 Distribution of S/N differences for BBH with fISCO between 98 and 110
Hz. Dark green dots show individual S/N differences, the blue line is
the Gaussian fit, and the red dashed and dotted lines mark the mean
(µ)) and standard deviation (σ). The gray bars show the histogram.
Approximately 99. 3% of the differences lie within ±5σ of the mean,
confirming DeepClean’s effectiveness in preserving GW signal integrity. 127

6.7 Distribution of S/N differences for BBH with fISCO between 142 and
162 Hz. The plot shows S/N differences as dark green dots and a Gaus-
sian distribution as a blue line. The mean (µ) and the standard deviation
(σ) are indicated by red dashed and dotted lines. The gray bars repre-
sent the histogram of S/N differences, with 99.52% within ±5σ of the
mean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.8 Histogram of S/N differences for BBH with fISCO falling within 197
and 208 Hz, shows by dark green dots. The Gaussian distribution is in
blue, with mean (µ) and standard deviation (σ) in red dashed and dotted
lines. Gray bars show 99.94% of values within ±5σ. . . . . . . . . . . 128

6.9 Sensitivity analysis of the BNS inspiral range for the 98-110 Hz (left)
and 142-162 Hz (right) bands, using Virgo O3b MDC data from GPS
1265127585 to 1265352161. It demonstrates the DeepClean capabil-
ities for BNS inspiral. The time index ("Time proxy") of each 4096s
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6.10 Comparison of ASD and ASD ratio across a 15 to 415 Hz frequency
band. The original Mock Data Challenge (MDC) dataset from Virgo
is represented by the green trace (V1:ORG), whereas the red trace
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6.11 The BNS inspiral range for the original Virgo dataset (V1:ORG, green
trace) and after cleaning with the DeepClean algorithm (V1:DC, red
trace), over the frequency band of 15 to 415 Hz. The graph demon-
strates the improvement in the detection range post-cleaning. The
"Time proxy" indicates the time fraction for each post- and pre-cleaning
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6.12 ASD and ASD ratio analysis in the 440-456 Hz band, highlighting vi-
olin mode resonances. The green trace (V1:ORG) shows the original
ASD, the red trace (V1:DC) shows the ASD after DeepClean process-
ing, and the blue trace shows their ratio. This plot indicates Deep-
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7.1 BNS Annual EM Detection Rates for LSST, ZTF, and ULTRSAT. This
figure shows annual KN detection rates for BNS events by LSST, ZTF,
and ULTRSAT during runs O4a, O4b, and O5. Bars indicate me-
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mate ranges. Red bars represent LSST, green bars ZTF, and blue bars
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