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Abstract

Motivated by the ubiquity of optimization in many areas of science and engineering, particularly in
data science, this thesis exploits the close link between continuous-time dissipative dynamical systems
and optimization algorithms to provide a systematic analysis of the global and local behavior of several
�rst- and second-order systems, focusing on convex, stochastic, and in�nite-dimensional settings on
the one hand, and non-convex, deterministic, and �nite-dimensional settings on the other hand. For
stochastic convex minimization problems in in�nite-dimensional separable real Hilbert spaces, our key
proposal is to analyze them through the lens of stochastic di�erential equations (SDEs) and inclusions
(SDIs), as well as their inertial variants. We �rst consider smooth di�erentiable convex problems and
�rst-order SDEs, demonstrating almost sure weak convergence towards minimizers under integrability
of the noise and providing a comprehensive global and local complexity analysis. We also study com-
posite non-smooth convex problems using �rst-order SDIs, and show under integrability conditions
on the noise, almost sure weak convergence of the trajectory towards a minimizer, with Tikhonov
regularization almost sure strong convergence of trajectory to the minimal norm solution. We then
turn to developing a uni�ed mathematical framework for analyzing second-order stochastic inertial
dynamics via time scaling and averaging of stochastic �rst-order dynamics, achieving almost sure weak
convergence of trajectories towards minimizers and fast convergence of values and gradients. These
results are extended to more general second-order SDEs with viscous and Hessian-driven damping,
utilizing a dedicated Lyapunov analysis to prove convergence and establish new convergence rates.
Finally, we study deterministic non-convex optimization problems and propose several inertial algo-
rithms to solve them derived from second-order ordinary di�erential equations (ODEs) combining both
non-vanishing viscous damping and geometric Hessian-driven damping in explicit and implicit forms.
We �rst prove convergence of the continuous-time trajectories of the ODEs to a critical point under
the Kurdyka-�ojasiewicz (K�) property with explicit rates, and generically to a local minimum under
a Morse condition. Moreover, we propose algorithmic schemes by appropriate discretization of these
ODEs and show that all previous properties of the continuous-time trajectories still hold in the discrete
setting under a proper choice of the stepsize.

Keywords: Stochastic Optimization, SGD, Stochastic Di�erential Equations, Stochastic Di�erential
Inclusions, Itô calculus, Convex Optimization, Inertial Gradient Methods, Viscous Damping, Hessian
damping, �ojasiewicz Inequality, K�-inequality, Non-convex optimization, Trajectory convergence,
Convergence rates.

Résumé

Motivé par l'omniprésence de l'optimisation dans de nombreux domaines de la science et de l'ingénierie,
en particulier dans la science des données, ce manuscrit de thèse exploite le lien étroit entre les systèmes
dynamiques dissipatifs à temps continu et les algorithmes d'optimisation pour fournir une analyse sys-
tématique du comportement global et local de plusieurs systèmes du premier et du second ordre, en
se concentrant sur le cadre convexe, stochastique et en dimension in�nie d'une part, et le cadre non
convexe, déterministe et en dimension �nie d'autre part. Pour les problèmes de minimisation convexe
stochastique dans des espaces de Hilbert réels séparables de dimension in�nie, notre proposition clé est
de les analyser à travers le prisme des équations di�érentielles stochastiques (EDS) et des inclusions
di�érentielles stochastiques (IDS), ainsi que de leurs variantes inertielles. Nous considérons d'abord
les problèmes convexes di�érentiables lisses et les EDS du premier ordre, en démontrant une conver-
gence faible presque sûre vers les minimiseurs sous hypothèse d'intégrabilité du bruit et en fournissant
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une analyse globale et locale complète de la complexité. Nous étudions également des problèmes con-
vexes non lisses composites utilisant des IDS du premier ordre et montrons que, sous des conditions
d'intégrabilité du bruit, la convergence faible presque sûre des trajectoires vers les minimiseurs, et
avec la régularisation de Tikhonov la convergence forte presque sûre des trajectoires vers la solution
de norme minimale. Nous développons ensuite un cadre mathématique uni�é pour analyser la dy-
namique inertielle stochastique du second ordre via la reparamétrisation temporelle et le moyennage
de la dynamique stochastique du premier ordre, ce qui permet d'obtenir une convergence faible presque
sûre des trajectoires vers les minimiseurs et une convergence rapide des valeurs et des gradients. Ces
résultats sont étendus à des EDS plus générales du second ordre avec un amortissement visqueux et
Hessien, en utilisant une analyse de Lyapunov spéci�que pour prouver la convergence et établir de
nouveaux taux de convergence. En�n, nous étudions des problèmes d'optimisation déterministes non
convexes et proposons plusieurs algorithmes inertiels pour les résoudre, dérivés d'équations di�éren-
tielles ordinaires (EDO) du second ordre combinant à la fois un amortissement visqueux sans vanité
et un amortissement géométrique piloté par le Hessien, sous des formes explicites et implicites. Nous
prouvons d'abord la convergence des trajectoires en temps continu des EDO vers un point critique
pour des objectives véri�ant la propriété de Kurdyka-�ojasiewicz (K�) avec des taux explicites, et
génériquement vers un minimum local si l'objective est Morse. De plus, nous proposons des schémas
algorithmiques par une discrétisation appropriée de ces EDO et montrons que toutes les propriétés
précédentes des trajectoires en temps continu sont toujours valables dans le cadre discret sous réserve
d'un choix approprié de la taille du pas.

Mots-clés: Optimisation Stochastique, Équations Di�érentielles Stochastiques, Inclusions Di�éren-
tielles Stochastiques, Calcul d'Itô, Optimisation Convexe, Méthodes de Gradient Inertiel, Amortisse-
ment Visqueux, Amortissement Hessien, Inégalité de �ojasiewicz, Inégalité K�, Optimisation Non-
convexe, Convergence de la trajectoire, Taux de convergence.
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1.1 Context

The �eld of optimization is ubiquitous in a wide spectrum of science and applied mathematics. From
data processing to machine learning to operations research, the �exibility o�ered through modeling
problems as optimization problems is well established. While many methods exist to solve optimization
problems, �rst-order methods stand out when the problems at hand are extremely large and require
only moderately precise solutions; often the case in imaging sciences like computer vision or machine
learning where data is collected, and expected to be processed, at a huge scale. First-order methods
generally scale well with the problem dimension, in contrast to second (or higher) order methods in
which not even a single iteration can be performed because of storage constraints.

In the following sections, we will describe some prototypical dynamical systems and corresponding
�rst-order algorithms for solving di�erent optimization problems. We will provide a historical perspec-
tive as well. The purpose of this exposition is to set the stage for describing the contributions of this
work. Throughout the rest of the section, we let H be a real Hilbert space (sometimes taking H = Rd).



Chapter 1 1.1. Context

1.1.1 First-order systems

Smooth problems. Consider the minimization problem

min
x∈H

f(x), (P1)

where the objective f satis�es the following standing assumptions:{
f is convex and continuously di�erentiable with L-Lipschitz continuous gradient;

S def

= argmin(f) ̸= ∅.
(Hf )

Let us recall some classical facts. To solve (P1), a fundamental dynamic to consider is the gradient
�ow of f , i.e. the gradient descent dynamic with initial condition x0 ∈ H given by{

ẋ(t) = −∇f(x(t)), t > 0;

x(0) = x0.
(GF)

The gradient system (GF) is a dissipative dynamical system, whose study dates back to Cauchy [78] in
�nite dimension. It plays a fundamental role in optimization: it transforms the problem of minimizing
f into the study of the asymptotic behavior of the trajectories of (GF). This example was the precursor
to the rich connection between continuous dissipative dynamical systems and optimization. It is well
known since the founding papers of Brezis, Baillon, Bruck in the 1970s that, if the solution set argmin(f)

of (P1) is non-empty, then each solution trajectory of (GF) converges weakly, and its (weak) limit
belongs to argmin(f).

The Euler forward discretization (GF), with stepsize sequence hk > 0, is the celebrated gradient
descent scheme

xk+1 = xk − hk∇f(xk). (GD)

Under (Hf ), and for (hk)k∈N ⊂]0, 2/L[, then we have both the convergence of the values
f(xk) − min f = O(1/k) (in fact even o(1/k)), and the weak convergence of iterates (xk)k∈N to a
point in argmin(f). This convergence rate can be re�ned under various additional geometrical prop-
erties on the objective f such as error bounds (and the closely related Kurdyka-�ojasiewicz property
in the convex case; see [59]).

Non-smooth problems. Weak convergence of trajectory of (GF) to a point in argmin(f) is true in
a more general setting, simply assuming that the objective function f is proper, lower semicontinuous
(lsc) and convex, in which case one has to consider a di�erential inclusion obtained by replacing the
gradient of f in (GF) by its (convex Fenchel) subdi�erential ∂f .

In fact, let us consider the additively structured minimization problem

min
x∈H

F (x)
def

= f(x) + g(x), (Pcomp)

where H is a real Hilbert space, and the objective F satis�es the following standing assumptions:
f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

g : H → R ∪ {+∞} is proper, lower semicontinuous and convex;

SF
def

= argmin(F ) ̸= ∅.
(HF )

To solve (Pcomp), we consider the subgradient �ow, which is the following di�erential inclusion (DI)
starting at t0 ≥ 0 with initial condition x0 ∈ H:{

ẋ(t) ∈ −∂F (x(t)), t > t0;

x(t0) = x0.
(DI)

� 2 �



Chapter 1 1.1. Context

It is well known that, when the initial data x0 is in the domain of F , (more generally when it is in
its closure), there exists a unique strong global solution of (DI); see [66]. Moreover, if the solution
set argmin(F ) of (Pcomp) is nonempty then each solution trajectory of (DI) converges weakly, and its
weak limit belongs to argmin(F ) [69].

From continuous dynamics to algorithms. The Euler forward (or explicit) discretization of (DI)
with stepsize hk > 0 is the subgradient method

xk+1 ∈ xk − hk∂F (xk). (Sub-G)

Or equivalently,
xk+1 = xk − hkuk, where uk ∈ ∂F (xk) ∀k ∈ N. (1.1)

The sequence of iterates of (Sub-G) converges if hk is vanishing but not too fast (typically non-
summable but square-summable); see [2]. The pointwise convergence rate on f is however at best
O(1/

√
k), which is very slow [154].

If the Euler backward (or implicit) discretization of (DI) is used, one gets the popular Proximal
Point Algorithm (PPA) [142, 180], which takes the form

xk+1 = proxhkF
(xk), (PPA)

where, for any h > 0, proxhF
def

= (I + h∂F )−1 is called the proximal mapping of F (or the resolvent of
∂F ). PPA was shown to converge weakly for any stepsize sequence such that infk hk > 0, and hence is
unconditionally stable [180, 46]. Moreover, as it can also be interpreted as a gradient descent on the
Moreau envelope of F , its pointwise convergence rate on the objective is o(1/k); see [174].

The PPA algorithm supposes that proxγF can be computed in closed form, or at least up to good
precision. However, even if the proximal mappings of f and g in (Pcomp) can be computed in closed
form separately, that F in general can be di�cult to compute. In addition, the smoothness of f is not
exploited. Therefore, a proper numerical scheme should take into account the structure of the problem
and the properties of the functions. This suggests that an explicit-implicit (or forward-backward) Euler
discretization of (DI) is the right strategy, hence yielding the well-known Forward-Backward splitting
(FBS) method [169, 135], whose non-relaxed iteration takes the form

xk+1 = proxhkg
(xk − hk∇f(xk)) (FBS)

where hk ∈]0, 2/L[ is the stepsize sequence. The scheme (FBS) achieves full operator splitting: a
forward explicit step on f (gradient descent), followed by a backward implicit step on g (proximal
point). The iterates of (FBS) converge weakly to a minimizer [46], at the rate o(1/k) on the objective
algorithm.

Tikhonov regularization. As discussed above, the trajectories of (DI) converge weakly to an arbi-
trary minimizer of F . However, strong convergence does not hold in general as the counterexample in
[43] shows. One way to go from weak to strong convergence is to use Tikhonov regularization of (DI).
In fact, Tikhonov regularization even makes it possible to strongly converge to a particular minimizer:
the one of minimal norm.

Given t0 > 0, and a regularization parameter ε : [t0,+∞[→ R+, which is a measurable function that
vanishes asymptotically in a controlled way, the Tikhonov regularization of (DI) is written:{

ẋ(t) ∈ −∂F (x(t))− ε(t)x(t), t > t0;

x(t0) = x0.
(DI-TA)

The behavior of (DI-TA) has been studied in depth in the literature; see e.g. [84]. Clearly, the
idea is to perturb the convex function F with a quadratic function, i.e., to consider the strongly
convex function Fε(x) = F (x) + ε∥x∥

2

2 with has a unique minimizer x⋆ε, and then to make ε depend
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Chapter 1 1.1. Context

on time and tend to zero su�ciently but not too fast as t → +∞. This implies that the Tikhonov
regularization parameter ε(t) induces a hierarchical minimization property: the strong limit of any
trajectory exists and it no longer depends on the initial data, it is precisely the minimum norm solution.
An abundant literature has been devoted to the asymptotic hierarchical minimization property which
results from the introduction of a vanishing viscosity term (in our context the Tikhonov approximation)
in (sub)gradient-like dynamics; see e.g. [5, 10, 18, 28, 29, 84, 54, 126, 11, 25]. On the algorithmic side,
there is also a vast literature on convex minimization algorithms that combine di�erent descent methods
(GD, PPA, FBS) with Tikhonov and more general penalty and regularization schemes. The historical
evolution can be traced back to [96] where interior point methods were interpreted via a vanishing
logarithmic barrier. Some references for the coupling of descent methods and Tikhonov can be found
in e.g. [72, 31, 30, 20, 13, 27, 35].

1.1.2 Second-order systems

Key role of inertia. As discussed above, the dynamic (GF) is known to yield a convergence rate
of O(t−1) (in fact even o(t−1)) of the values in the convex setting . Second-order inertial dynamical
systems have been introduced to provably accelerate the convergence behavior in the convex case.
They typically take the form{

ẍ(t) + γ(t)ẋ(t) +∇f(x(t)) = 0, t > t0;

x(t0) = x0; ẋ(t0) = v0
(IGSγ)

where t0 > 0, x0, v0 ∈ H and γ : [t0,+∞[→ R+ is a time-dependent viscosity coe�cient. An abundant
literature has been devoted to the study of the inertial dynamics (IGSγ). The importance of working
with a time-dependent viscosity coe�cient to obtain acceleration was stressed by several authors; see
e.g. [18]. In particular, the case γ(t) = α

t was considered by Su, Boyd, and Candès [191], who were
the �rst to show the rate of convergence O(t−2) of the values in the convex setting for α ≥ 3, thus
making the link with the Nesterov accelerated gradient (NAG) method [153] with stepsize h > 0,{

yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − h∇f(yk).
(NAGα)

Note that a proximal version of (NAGα) was initiated and studied by Güler in his seminal work
[108, 107].

The case α < 3 leads to the slower rate O
(
t−2α/3

)
which cannot be improved in general [7, 26]. For

α > 3, an even better rate of convergence with little-o instead of big-O can be obtained together with
global weak convergence of the trajectory; see [18, 37] and [79] for algorithm (NAGα).

Another remarkable instance of (IGSγ) corresponds to the well-known Heavy Ball with Friction
(HBF) method, where γ(t) is a constant (say γ0 > 0), �rst introduced (in its discrete and continuous
form) by Polyak in [175]. Its discrete form corresponds to the following update rule with stepsize h > 0{

yk = xk + (1− γ0)(xk − xk−1)

xk+1 = yk − h∇f(xk).
(HBF−Disc)

When f is strongly convex, it was shown that the trajectory (and iterations) converges exponentially
with an optimal convergence rate if the constant γ0 is properly chosen as a function of the strong
convexity modulus. The convex case was later studied in [4] with a convergence rate on the values
of only O(t−1). When f is non-convex, HBF was investigated both for the continuous dynamics in
[111, 34, 105, 8] and discrete algorithms in [197, 158, 156].

When the order of the extrapolation and gradient descent operations in (HBF−Disc) are reverted,
one gets the so-called Ravine method introduced in 1961 by Gelfand and Tsetlin [102]. The two schemes
are largely confused in the literature, but turn out to be di�erent as recently clari�ed in [32].
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Viscous and geometric Hessian driven damping. Because of the inertial aspects and the asymp-
totic vanishing viscous damping coe�cient, (IGSγ) may exhibit many small oscillations which are not
desirable from an optimization point of view. To remedy this, a powerful tool consists in introducing
into the dynamic a geometric damping driven by the Hessian of f . This gives the Inertial System with
Explicit Hessian Damping which reads{

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, t > t0;

x(t0) = x0; ẋ(t0) = v0.
(ISEHD)

Where γ, β : [t0,+∞[→ R+. (ISEHD) was proposed in [38] (see also [23]). The second system we
consider, inspired by [3] (see also [151] for a related autonomous system) is{

ẍ(t) + γ(t)ẋ(t) +∇f(x(t) + β(t)ẋ(t)) = 0, t > t0;

x(t0) = x0; ẋ(t0) = v0.
(ISIHD)

(ISIHD) stands for Inertial System with Implicit Hessian Damping. The rationale behind the use
of the term �implicit� comes from a Taylor expansion of the gradient term (as t → +∞ we expect
ẋ(t) → 0) around x(t), which makes the Hessian damping appear indirectly in (ISIHD). Following the
physical interpretation of these two ODEs, we call the non-negative parameters γ and β the viscous
and geometric damping coe�cients, respectively. The two ODEs (ISEHD) and (ISIHD) were found to
have a smoothing e�ect on the energy error and oscillations [3, 152, 23]. Moreover, in [33] they obtain
fast convergence rates for the values for the two ODEs when γ(t) = α

t (α > 3) and β(t) = β0 > 0.

The time discretization of (ISEHD) with general coe�cients has been studied by Attouch, Chbani,
Fadili, and Riahi [23]. It provides a rich family of �rst-order methods for minimizing f . At �rst
glance, the presence of the Hessian may seem to entail numerical di�culties. However, this is not
the case as the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t), which is nothing
but the time derivative of t 7→ ∇f(x(t)). This explains why the time discretization of this dynamic
provides �rst-order algorithms. On the contrary, the time-continuous dynamics can be argued to be
truly of second-order nature, i.e., close to Newton's and Levenberg-Marquardt's dynamics [75]. This
understanding suggests that (ISIHD) may represent the nature of �rst-order algorithms better than
(ISEHD).

From �rst to second-order systems via time scaling and averaging. The authors in [17]
proposed time scaling and averaging to link (GF) and (ISIHD) with a general viscous damping function
γ and a properly adjusted geometric damping function β (related to γ). This avoids in particular to go
through an intricate and a dedicated Lyapunov analysis for the second-order system. As we will show
later (see for instance Chapter 3), a local convergence analysis becomes also easily accessible through
this lens while it is barely possible otherwise. The authors specialize their results to the standard case
where γ(t) = α

t and β(t) = t
α−1 .

The idea of passing from a �rst-order system to a second-order one via time scaling is not new. The
author of [73] propose time scaling and a tricky change of variables to show that (IGSγ) is equivalent
to an averaged gradient system, i.e. the steepest gradient system (GF) where the instantaneous value
of ∇f(x(t)) is replaced by some weighted average of the gradients ∇f(x(s)) over all past positions
s ≤ t. See also [104] for more general gradient systems with memory terms involving kernels. This
gives rise to an integro-di�erential equation. The asymptotic behavior of the dynamic associated to
this equation and the equivalent second-order dynamic have been investigated in [73].

1.1.3 Non-convex problems

So far, we have focused our discussion on the convex setting. As one may expect, things are far more
complicated, however, in the non-convex setting. We will assume here that H = Rd. We consider
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the minimization problem (P1) where the objective function f : Rd → R satis�es the following
assumptions: {

f ∈ C2(Rd);

inf f > −∞.
(H0)

Global convergence. Since the objective function is potentially non-convex, the problem (P1)
is NP-Hard in general. However, there are tractable methods to ensure theoretical convergence to
a critical point, or even to a local minimizer. In this regard, a fundamental dynamic to consider
is (GF), for any bounded solution of (GF), using LaSalle's invariance principle, one can check that
limt→+∞∇f(x(t)) = 0. If d = 1, any bounded solution of (GF) tends to a critical point. For
d ≥ 2 this becomes false in general, as shown in the counterexample by [164]. In order to avoid such
behavior, it is necessary to work with functions f that enjoy additional structure which in turn would
ensure global convergence of the trajectory to a critical point. Such a prominent property is the the
Kurdyka-�ojasiewicz (K�) inequality [136, 137, 125]. Roughly speaking, this means that f is sharp
up to a reparametrization by a function known as the desigularizing function of f . The K� inequality,
including in its non-smooth version, has been successfully used to analyze the asymptotic behavior of
various types of dynamical systems [81, 56, 57, 49] and algorithms [59, 97, 155, 42, 119, 1, 56, 16, 158]1.
The importance of the K� inequality comes from the fact that many problems encountered in �nite-
dimensional optimization involve functions satisfying such an inequality, and it is often elementary
to check that the latter is satis�ed; e.g. real semialgebraic/analytic functions [136, 137], functions
de�nable in an o-minimal structure and more generally tame functions [125, 58]. When this inequality
holds, one can ensure global convergence of the trajectory of (GF) (and the iterates of (GD)) to a
critical point with an explicit convergence rate that depends on the K� desingularizing function of f
[81, 100, 59, 83], and this is then sharper than standard worst-case rates.

Inertial algorithms. Second-order systems and subsequent inertial algorithms have been studied
in the literature for non-convex smooth problems. For instance, [134] proposed a multi-step inertial
Forward-Backward algorithm for non-convex optimization and showed its convergence properties un-
der the K� inequality. In [105], the authors consider the case of quasiconvex functions and use an
implicit discretization of HBF to derive a proximal point-type algorithm. In [158], an inertial Forward-
Backward splitting scheme, coined iPiano-a generalization of HBF, is introduced. In [156], the author
presents local convergence results for iPiano. In [157, 61] several abstract convergence theorems are
presented and then applied to di�erent versions of iPiano. In [62, 63], inertial algorithms of di�erent
nature (Tseng's type and Forward-Backward, respectively) are studied for non-convex and composite
smooth+non-smooth optimization and showed their convergence. To the best of our knowledge, [76] is
the only work where the authors study the ODE (ISEHD) where the viscous and geometric dampings
are positive constants, together with a a discrete algorithm.

Trap avoidance. In all works reviewed above, the K� inequality is instrumental to obtain global
convergence towards a critical point. However, convergence to critical points is not enough from a
minimization perspective. Generic strict saddle point avoidance of descent-like algorithms has been
studied by several authors building on the (center) stable manifold theorem [187, Theorem III.7] which
�nds its roots in the work of Poincaré. Genericity is in general either with respect to initialization or
with respect to random perturbation. Note that genericity results for quite general systems, even in
in�nite dimensional spaces, is an important topic in the dynamical system theory; see e.g. [70] and
references therein.

First-order descent methods can circumvent strict saddle points provided that they are augmented
with unbiased noise whose variance is su�ciently large in each direction. Here, the seminal works of

1This list is by no means exhaustive.
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[65] and [171] allow to establish that the stochastic gradient descent (and more generally the Robbins-
Monro stochastic approximation algorithm) avoids strict saddle points almost surely. Those results
were extended to the discrete version of HBF by [117] who showed that perturbation allows to escape
strict saddle points, and it does so faster than gradient descent. In [98] and [115], the authors analyze
a stochastic version of HBF (in continuous-time), showing convergence towards a local minimum under
di�erent conditions on the noise.

Recently, there has been active research on how gradient-type descent algorithms escape strict saddle
points generically on initialization; see e.g. [129, 128, 165, 118] and references therein. In [105], the
authors were concerned with HBF and showed that if the objective function is C2, coercive and Morse,
then generically on initialization, the solution trajectory converges to a local minimum of f . A similar
result is also stated in [34]. The algorithmic counterpart of this result was established in [161] who
proved that the discrete version of HBF escapes strict saddles points for almost all initializations. Strict
saddle avoidance for the second-order ODE (ISEHD) and its discretization was studied in [74, 76], where
the author considers the case when the viscous and geometric dampings are positive constants.

1.2 Motivation and objectives

1.2.1 Stochastic convex optimization

Let us consider H,K real and separable Hilbert spaces. In many cases, the gradient input is subject
to noise, for example, if the gradient cannot be evaluated directly, or due to some other exogenous
factor. In such scenario, one can model the associated errors using a stochastic integral with respect to
the measure de�ned by a continuous Itô martingale. This entails the following stochastic di�erential
equation as a stochastic counterpart of (GF):{

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t), t > 0;

X(0) = X0,
(SDE)

de�ned over a complete �ltered probability space (Ω,F , {Ft}t≥0,P), where the di�usion (volatility)
term σ : R+×H → L2(K;H) (see Section 2.1 for notation) is a measurable function, W is a Ft-adapted
K-valued Brownian motion (see Section 2.7 for a precise de�nition), and the initial data X0 is an
F0-measurable H-valued random variable.

Our �rst goal is to study the dynamic of (SDE) and its long-time behavior in order to solve (P1).
To identify the assumptions necessary to hope for such a behavior to occur, remember that when
H ≡ K and the di�usion term σ = σ̃IH, where σ̃ is a positive real constant, it is well-known that X(t),
in this case, is a continuous-time di�usion process known as Langevin di�usion, and has a unique
invariant probability measure πσ̃ with density ∝ e−2f(x)/σ̃2

[52]. In fact, (SDE) can be interpreted as
the path-wise solution to the Fokker-Planck equation (see [99]). It is also very well known that the
measure πσ̃ gets concentrated around argmin(f) as σ̃ tends to 0+ with limσ̃→0+ πσ̃(argmin(f)) = 1;
see e.g. [77].

Motivated by this last observation, our work will then mostly focus on the case where σ(·, x) vanishes
su�ciently fast as t → +∞ uniformly in x, and some guarantees will also be provided for uniformly
bounded σ. Therefore, throughout the thesis, we assume that σ satis�es:{

supt≥0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(Hσ)

for some l0 > 0 and for all t ≥ 0, x, x′ ∈ H (where HS is Hilbert-Schmidt norm; see Section 2.1). The
Lipschitz continuity assumption is mild and required to ensure the well-posedness of (SDE).
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1.2.2 First-order SDE modeling of SGD

To simplify the discussion, let us focus in this section on the �nite-dimensional case (H = Rd, K = Rm).
In various areas of science and engineering, in particular in machine learning, the objective takes the
form f(x) = E[F (x, ξ)], where the expectation is w.r.t. to the random variable ξ; e.g., denoting a
random batch of training data. Although gradient descent algorithm (GD) is a classical and simple
algorithm to minimize f , the computation of the full gradient is prohibitively expensive if not impossible
for large-scale problems. An alternative, the Stochastic Gradient Descent (SGD) consists in replacing
the full gradient computation by a cheap randomly sampled version, serving as an unbiased estimator.
The SGD updates the iterates according to

xk+1 = xk − h(∇f(xk) + ek) (SGD)

where h ∈ R+ is the stepsize and ek is the random noise term on the gradient at the k-th iteration.
As such, (SGD) can be viewed as instance of the Robbins-Monro stochastic approximation algorithm
[179].

The most popular and simplest form of SGD is the single-batch version:

xk+1 = xk − h∇F (xk, ξk), (SGDSB)

where (ξk)k∈N are i.i.d. random variables with the same distribution as ξ. Of course, (SGDSB) is an
instance of (SGD) with ek = ∇F (xk, ξk)−∇f(xk).

SDE as a model of SGD. The SDE continuous-time approach is motivated by its close relation to
(SGD) or (SGDSB). We �rst note that when the noise ek in (SGD) is N (0, σkId), (SDE) is a better
continuous-time model for (SGD) than (GF), as has been shown recently in [90, Proposition 2.1].
There, the sequence (xk)k∈N provided by (SGD), with ek ∼ N (0, σkId), was proved to be accurately
approximated by (SDE) with σ(t,X(t)) =

√
hσ(t) and σ(kh) = σkId. Using classical numerical analysis

tools of SDEs, the approximation error is of order O(h) which is much better than that of (GF) which
is only O(

√
h).

For the standard single-batch SGD (SGDSB), the argument is more involved. Actually, many recent
works (see e.g. [140, 131, 163, 113, 186, 133, 190, 196, 127, 132]) have linked algorithm (SGDSB)
with continuous-time �rst-order stochastic di�usion dynamics such as (SDE). These works show either
empirically or theoretically under which conditions (appropriate drift and di�usion terms, regularity
of f , etc.) (SDE) can be seen as a good approximation model of (SGDSB) for �xed stepsize. By a
good model we mean that (SDE) is a continuum limit of (SGDSB) as the stepsize goes to zero, or
equivalently that the approximation of (SGDSB) via the di�usion process (SDE) is precise in some
weak sense; see [131, 113, 133].

As a consequence, using (SDE) as a proxy of (SGD) or (SGDSB) allows to capitalize on the wealth
of results in the �eld of SDE's, Itô calculus and measure theory, and this in turn opens the door to
new insights in the behavior of (SGD) or (SGDSB) and to transfer all the convergence results that one
can prove for (SDE) to (SGD). Actually, this is one of the main messages we want to convey in this
thesis. Our motivation and results in this thesis are also complementary to those in the literature.
Indeed, most, if not all, of works cited above are primarily motivated by the fact that continuous-time
SDE approximation of (SGD) is a crucial tool to study its trap escaping behavior. Our standpoint is
complementary and we argue that the continuous-time perspective o�ers a deep insight and unveils
the key properties of the dynamic of (SGD), without being tied to a speci�c discretization. This, in
turn, enlightens the behavior of the sequence generated by some speci�c algorithm such as (SGD). In
turn, studying the continuous-time SDE will allow to predict the convergence behavior of SGD and
other stochastic algorithms.

For the reader convenience, we now give an intuitive explanation of how (SDE) could be derived
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from (SGDSB). Observe from (SGDSB) that conditioned on xk,

E[ek|xk] = 0 and ΣSB(xk)
def

= Cov[ek|xk] = E[(∇F (xk, ξ)−∇f(xk))(∇F (xk, ξ)−∇f(xk))⊤|xk].

Let ΣSB(xk)
1/2 be the square root of the matrix ΣSB(xk) and set (Vk)k∈N a sequence of random variables

with zero mean and identity covariance matrix such that ΣSB(xk)
1/2Vk has the same distribution as

ek (conditioned on xk). Thus, (SGDSB) can also be written as

xk+1 = xk − h∇f(xk)−
√
hΣSB(xk)

1/2
√
hVk, k ∈ N. (1.2)

Moreover, the Euler forward time discretization of (SDE) with stepsize h is

X((k + 1)h) = X(kh)− h∇f(X(kh))− σ(kh,X(kh))(W ((k + 1)h)−W (kh)),

and since W ((k + 1)h)−W (kh) has the same distribution as
√
hZk, Zk ∼ N (0d, Id), we have

X((k + 1)h) = X(kh)− h∇f(X(kh))− σ(kh,X(kh))
√
hZk. (1.3)

Clearly, this discretization resembles (1.2) by setting σ(kh,X(kh)) =
√
hΣSB(xk)

1/2 and assuming Vk
to be N (0d, Id). This intuitive argument has been made rigorous in [131, 113, 133], where it was proved
that

|E[G(X(kh))]− E[G(xk)]| = O(h),

for any test function G that is su�ciently smooth and have at most linear asymptotic growth. As a
consequence, for an objective f su�ciently smooth whose gradient is Lipschitz-continuous, one has

E[f(xk)−min f ] = E[f(X(kh))−min f ] +O(h),

meaning that any rate proved on E[f(X(t)] can be directly transferred to E[f(xk)]. It is worth men-
tioning here that the work of [131, 133], who also proposed �rst-order SDEs involving the Hessian.
They proved that these �rst-order SDEs approximate SGD with an error O(h2).

The above discussion supposes that the SGD noise ek is (or close to) Gaussian. Some works have
challenged this assumption; see [189] who suggested that SGD noise is heavy-tailed. However, [196]
argued that the experimental evidence in [189] made strong assumptions on the nature of the gradient
noise which could �ag Gaussian distributions as non-Gaussian. [133] showed that non-Gaussian noise
is not essential to SGD performance and provide experimental evidence that modeling the SGD noise
by a Gaussian one is su�cient to understand its generalization properties.

Concerning (SDE), one can easily infer from [50, Proposition 7.4] that assuming
supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)), and conditioning on the event that X(t) is bounded, we have al-

most surely that the set of limits of convergent sequences X(tk), tk → +∞ is contained in argmin(f).
Using results on asymptotic pseudo-trajectories from [50], the work of [149, 176, 45] analyzed the
behavior of the Stochastic Mirror Descent dynamics:

dY (t) = −∇f(X(t))dt+ σ(t,X(t))dW (t),

X(t) = Q(ηY (t)),
(SMD)

where X ⊂ Rd is a closed convex feasible region, f is convex with Lipschitz continuous gradient
on X , Q : Rd → X is the mirror map induced by some strongly convex entropy, and η > 0 is a
sensitivity parameter. In [149, Theorem4.1], it is shown that if X is also assumed bounded, that
supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)), and Q satis�es some continuity assumptions2, then the process

X(t) (SMD) converges to a point in argmin(f) almost surely. Similar assumptions can be found in [45]
to obtain almost sure convergence on the objective. Let us observe that all these results do not apply
to our setting. Indeed, if X = Rd (unconstrained problem), Q(x) = x and η = 1, we recover (SDE).

2Compactness of X and the condition on σ(·, ·) are clearly reminiscent of [50, Proposition 7.4], though the latter is

not discussed in [149].
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Our work does not assume any boundedness whatsoever to establish our results. This comes however
at somewhat stronger assumptions on σ(·, ·).

Also the work of [91], analyzes the behavior of (SDE) for f ∈ C2(Rd) not necessarily convex and
which satis�es supx∈Rd ∥σ(·, x)∥F ∈ L2(R+). Conditioning on the event that

lim sup
t→+∞

∥X(t)∥ < +∞,

they showed that ∇f(X(t)) → 0 almost surely, almost sure convergence of f(X(t)), and if the objective
f is semialgebraic (and more generally tame), they also showed almost sure convergence ofX(t) towards
a critical point of f . They also made attempt to get local convergence rates under the �ojasiewicz
inequality that are less transparent than ours. Our analysis on the other hand leverages convexity of
f to establish stronger results and is made on an in�nite dimensional space.

Langevin Monte Carlo. Specializing (1.3) to the case where d = m and σ(·, ·) ≡
√
2Id gives the

following algorithm
X((k + 1)h) = X(kh)− h∇f(X(kh)) +

√
2hZk. (LMC)

This algorithm, which is known as Langevin Monte Carlo (see [168]), is a standard sampling scheme,
whose purpose is to generate samples from an approximation of a target distribution, in our case,
proportional to e−f(x). Under appropriate assumptions on f , when h is small and k is large such that
kh is large, the distribution ofXk

def

= X(kh) converges in di�erent topologies or is close in various metrics
to the target distribution with density ∝ e−f(x). Asymptotic and non-asymptotic (with convergence
rates) results of this kind have been studied in a number of papers under various conditions; see
[87, 88, 93, 94, 80, 116] and references therein. By rescaling the problem, relation between sampling
(i.e. (LMC)) and optimization (i.e. (SGD)) has been also investigated for the strongly convex case in
e.g. [87].

1.2.3 Stochastic di�erential inclusions for the non-smooth case

Regarding the non-smooth setting we present the following stochastic di�erential inclusion (SDI) as a
stochastic counterpart of (DI):{

dX(t) ∈ −∂F (X(t)) + σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0,
(SDI)

where the di�usion (volatility) term σ : [t0,+∞[×H → L2(K;H) is a measurable function that satis�es
(Hσ), and W is a K-valued Brownian motion, and the initial data X0 is an Ft0-measurable H-valued
random variable. This dynamic is a stochastic system that aims to minimize F if the di�usion term
vanishes su�ciently fast. Also, it is the natural extension to the non-smooth setting of (SDE).

The stochastic counterpart of (DI-TA) (which is the Tikhonov regularization of (SDI)), is the
following stochastic di�erential inclusion with initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):{

dX(t) ∈ −∂F (X(t))− ε(t)X(t) + σ(t,X(t))dW (t), t > t0;

X(t0) = X0.
(SDI− TA)

Our objective in this part is to study the dynamics (SDI) and (SDI− TA) and their long-time
behavior in order to solve (Pcomp). If the di�usion term vanishes with time, as discussed before,
one would expect to solve (Pcomp) with our dynamics and obtain for (SDI− TA) the hierarchical
minimization property described above. Besides, based on the work of [27], we expect that adding a
Tikhonov term as in (SDI− TA) would let us obtain almost sure strong convergence of the trajectory
to the minimal norm solution. Moreover, to extend the convergence rates shown in [27, Theorem5] to
the stochastic case. We are not aware if any work studying (SDI) as a proxy of SGD in the non-convex.
Indeed, the smoothness assumption is crucial in the existing works.
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1.2.4 Second-order SDE modeling of SGD

Let us now consider (Pcomp) and second-order methods, we consider the generalization of (ISIHD) to
the non-smooth case, which yields the di�erential inclusion:

ẋ(t) = v(t), t > t0;

v̇(t) ∈ −[γ(t)v(t) + ∂F (x(t) + β(t)v(t))], t > t0;

x(t0) = x0, ẋ(t0) = v0,

(ISIHDNS)

where ∂F is the convex subdi�erential of F . In this setting, keeping in mind that we want to give a
rigorous meaning to (ISIHDNS), we can model the associated errors using a stochastic integral with
respect to the measure de�ned by a continuous Itô martingale. This entails the following stochastic
di�erential inclusion (SDI for short), which is the stochastic counterpart of (ISIHDNS):

dX(t) = V (t)dt, t > t0;

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t), t > t0;

X(t0) = X0, V (t0) = V0.

(S− ISIHDNS)

This SDI is de�ned over a �ltered probability space (Ω,F , {Ft}t≥0,P), where X0, V0 ∈ Lν(Ω;H) (for
some ν ≥ 2) are the initial data; the di�usion (volatility) term σ : [t0,+∞[×H → L2(K;H) is a
measurable function; and W is a K-valued Brownian motion (see de�nition in Section 2.7). When
g ≡ 0, we recover the stochastic counterpart of (ISIHD) as the following SDE:

dX(t) = V (t)dt, t > t0;

dV (t) = −γ(t)V (t)dt−∇f(X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t), t > t0;

X(t0) = X0; V (t0) = V0.

(S− ISIHD)

And when β ≡ 0, this dynamic will be a stochastic version of the Hamiltonian formulation of (IGSγ)
and it will be described by:

dX(t) = V (t)dt, t > t0;

dV (t) = −γ(t)V (t)dt−∇f(X(t))dt+ σ(t,X(t))dW (t), t > t0;

X(t0) = X0; V (t0) = V0.

(IGSγ − S)

To get some intuition, keeping the discussion informal at this stage, let us �rst identify the assump-
tions needed to expect that the position state of (IGSγ − S) �approaches� argmin(f) in the long run.
In the case where H = K, γ(·) ≡ γ > 0 and σ = σ̃IH, where σ̃ is a positive real constant. Under mild
assumptions one can show that (IGSγ − S) has a unique invariant distribution πσ̃ in (x, v) with density

proportional to exp
(
− 2γ

σ̃2

(
f(x) + ∥v∥2

2

))
, see e.g., [170, Proposition 6.1]. Clearly, as σ̃ → 0+, πσ̃ gets

concentrated around argmin(f)×{0H}, with limσ̃→0+ πσ̃(argmin(f)×{0H}) = 1. Time-discretized ver-
sions of this Langevin di�usion process have been studied in the literature to (approximately) sample
from ∝ exp(−f(x)) with asymptotic and non-asymptotic convergence guarantees in various topologies
and under various conditions; see [80, 139, 89] and references therein. Motivated by these observations
and the fact that we aim to exactly solve (P1) (resp. (Pcomp)), our work will then mainly focus on
consider (S− ISIHD) (resp. (S− ISIHDNS)) in the case where σ satis�es (Hσ) (adjusted for a time
bigger than t0).

In the smooth but non-convex case, and motivated again by trap avoidance, the authors in [114, 115]
study the convergence behavior of a stochastic discrete heavy ball method from its approximating SDE.
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Chapter 1 1.2. Motivation and objectives

The latter is a randomly perturbed nonlinear oscillator in [114] and a coupled system of nonlinear
oscillators in [115]. These SDEs are very di�erent from the ones we study here.

In this part of the work, our goal will be to provide a general mathematical framework for analyzing
the convergence properties of (S− ISIHDNS) to solve (Pcomp). In this context, considering inertial
dynamics with a time-dependent vanishing viscosity coe�cient γ is a key ingredient to obtain fast
convergent methods. More precisely, we study the stochastic dynamics (S− ISIHDNS) and its long-time
behavior in order to solve (Pcomp). We conduct a new analysis using speci�c and careful arguments
that are much more involved than in the deterministic case.

The authors in [17] proposed time scaling and averaging to link (GF) and (ISIHD) with a general
viscous damping function γ and a properly adjusted geometric damping function β (related to γ).
Our goal is to extend the results of [17] to the stochastic case. Leveraging these techniques with a
general function γ and an appropriate β, we will be able to transfer all the results we obtained in
Chapter 3 (resp. 4) for (SDE) (resp. (SDI)) to the dynamic (S− ISIHD) (resp. (S− ISIHDNS)). This
avoids in particular to go through an intricate and a dedicated Lyapunov analysis for (S− ISIHDNS).
A local convergence analysis becomes also easily accessible through this lens while it is barely possible
otherwise. We also specialize our results to a standard case where γ(t) = α

t and β(t) = t
α−1 , being

able to show fast convergence results. To handle a more general choice of γ and β, we will have to go
through a dedicated Lyapunov analysis for (S− ISIHD) inspired by the work in [33].

1.2.5 Non-convex deterministic setting for second-order systems

There is an abundant literature regarding the dynamics (ISEHD) and (ISIHD), either in the exact case
or with deterministic errors, but overwhelmingly in the convex case; see [3, 33, 111, 185, 20, 24, 92,
184, 194, 12, 23, 21]). Nevertheless, to the best of our knowledge, except for [76, 74], the non-convex
setting is still largely open. Our goal is to �ll this gap motivated by examples in machine learning (e.g.
neural network training with smooth activation functions).

As previously noted, the HBF method, was �rst introduced by Polyak in [175] where linear conver-
gence was shown for f strongly convex. Convergence rates of HBF taking into account the geometry
of the objective can be found in [42] for the convex case and [156] for the non-convex case.

In [110], the authors study the system

ẍ(t) +G(ẋ(t)) +∇f(x(t)) = 0,

where G : Rd → Rd is such that ⟨G(v), v⟩ ≥ c∥v∥2 and ∥G(v)∥ ≤ C∥v∥, ∀v ∈ Rd, for some 0 < c ≤ C.
They show that when f is real analytic (hence veri�es the �ojasiewicz inequality), the trajectory
converges to a critical point. To put it in our terms, the analysis is equivalent to study (IGSγ) in the
case where there exists c, C > 0 such that 0 < c ≤ γ(t) ≤ C for every t ≥ 0 (see assumption (Hγ)),
letting us to conclude as in [110]. We will extend this result to the systems (ISEHD) and (ISIHD)
which will necessitate new arguments.

HBF was also studied in the non-convex case by [49] where it was shown that it can be viewed as a
quasi-gradient system. They also proved that a desingularizing function of the objective desingularizes
the total energy and its deformed versions. They used this to establish the convergence of the trajectory
for instance in the de�nable case. Global convergence of the HBF trajectory was also shown in [34]
when f is a Morse function 3.

Our goal is to go far beyond the results presented in [76, 74], considering not only the explicit
version (ISEHD) but also the implicit one (ISIHD), and also allowing a variable (non-vanishing) viscous
damping. Even though the choice of the value of the geometric damping is less general than the one

3It turns out that a Morse function satis�es the �ojasiewicz inequality with exponent 1/2; see [15].
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presented in [76], we propose a less stringent discretization regarding the stepsize. We also demonstrate
the convergence of the dynamic to a critical point under general K� property on the objective. This
includes semi-algebraic functions as a special case, which was the only case covered in [76]. Additionally,
we show convergence rates under K� inequality for the continuous setting. As mentioned earlier, we
propose new algorithms and an independent analysis for the discrete setting, showing convergence of
the proposed algorithms to critical points under K�-inequality, and we also exhibit convergence rates
of the proposed algorithms under �ojasiewicz inequality.

1.3 Contributions

1.3.1 Chapter 3

We study the convergence properties of the process X(t) and f(X(t)) for the stochastic di�erential
equation (SDE) on real separable Hilbert spaces from an optimization perspective, under the as-
sumptions (Hf ) and (Hσ). When the di�usion term is uniformly bounded, we show convergence of
E[f(X(t))−min f ] to a noise-dominated region both for the convex and strongly convex case. When
the di�usion term is square-integrable, we show in Theorem3.2.3 that X(t) converges almost surely to
a solution of (P1), which is a new result to the best of our knowledge. Moreover, in Theorem3.2.5
and Proposition 3.2.6, we provide new ergodic and pointwise convergence rates of the objective in
expectation, again for both the convex and strongly convex case.

Then we turn to a local analysis relying on the �ojasiewicz inequality and its strong ties with
error bounds. Since this property is most often satis�ed only locally, we deepen the discussion on the
long time localization of the process. This is fundamental, because in the recent literature on local
convergence properties of stochastic gradient descent, strong assumptions are imposed, such as X(t)

or f(X(t)) is locally bounded almost surely. Such assumptions are unfortunately unrealistic due to the
presence of the Brownian Motion. We manage to circumvent this problem by using arguments from
measure theory, in particular Egorov's theorem. In turn, under the �ojasiewicz inequality assumption
with exponent q ≥ 1/2, this allows us to show local convergence rates of the objective and the trajectory
itself in expectation over a set of events whose probability is arbitrarily close to 1 (see Theorem3.3.3).

Table 1.1 summarizes the local and global convergence rates obtained for E[f(X(t)) − min f ] in
Chapter 3. In this table, δ > 0 is a parameter which is intended to be taken arbitrarily close to 0 but
bounded away from it, σ∗ > 0 and σ∞(·) are de�ned as

∥σ(t, x)∥2HS ≤ σ2∗, ∀t ≥ 0,∀x ∈ H, and σ∞(t)
def

= sup
x∈H

∥σ(t, x)∥HS , (1.4)

and σ∞(·) is a non-increasing function. �q(S) is the class of functions satisfying the �ojasiewicz
inequality with exponent q ∈ [0, 1] at each point of S (see De�nition 2.4.7)4.

Property of f Gradient Flow SDE (σ∞(t) ≤ σ∗) SDE (σ∞ ∈ L2(R+))

Convex t−1 t−1 + σ2∗ t−1

µ-Strongly Convex e−2µt e−2µt + σ2∗ max{e−2µt, σ2∞(t)}

Convex ∩ �1/2(S) (coef. µ) e−µ2t ✘ max{e−µ2t, σ2∞(t)}+
√
δ

Convex ∩ �q(S), q ∈ (12 , 1) t
− 1

2q−1 ✘ t
− 1

2q−1 5+
√
δ

Table 1.1: Summary of local and global convergence rates obtained for E[f(X(t))−min f ].

4In �nite dimension, semialgebraic functions, and more generally, functions based on the class of analytic functions

is a typical family of functions that verify the �ojasiewicz inequality at each point [136, 137].
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Although it is natural to think that we can take the limit when δ goes to 0+, the time from which
these convergence rates are valid depends on δ and increases (potentially to +∞) as δ approaches
0+. Assuming only the boundedness of the di�usion and the �ojasiewicz inequality, we could not �nd
better results (cells marked with ✘) than those presented in the convex case. Since the �ojasiewicz
inequality is local, a natural approach would be to localize the process in the long term with high
probability. However, it is not clear how to achieve this.

We �nally turn to extending some of the preceding results to the structured convex minimization
problem (Pcomp). This obviously covers the case of constrained minimization of f over a non-empty
closed convex set. We take two di�erent routes leading to di�erent SDEs.

The �rst approach consists in reformulating (Pcomp) as �nding for zeros of the operatorMµ : H → H

Mµ(x) =
1

µ

(
x− proxµg(x− µ∇f(x))

)
,

where µ > 0 and proxµg is the proximal mapping of µg. It is well-known that the operator Mµ is
cocoercive [19], hence monotone and Lipschitz continuous, and Mµ = ∇f when g vanishes. The idea
is then to replace the operator ∇f in (SDE) by Mµ leading to an SDE which will have many of the
convergence properties obtained in the smooth convex case. This approach is in accordance with the
deterministic theory for monotone cocoercive operators (see [55, 6, 19]).

The second approach regularizes the non-smooth component g of the objective function using its
Moreau envelope

gθ(x) = min
z∈H

g(z) +
1

2θ
∥x− z∥2 .

This leads to studying the dynamic (SDE) with the function f + gθ, which has a continuous Lipschitz
gradient. This approximation method leads to an SDE with non-autonomous drift term. Note, however,
that the noise in this case can be considered on the evaluation of ∇f(x), while it is on Mµ(x) in the
�rst approach.

1.3.2 Chapter 4

This work signi�cantly extends beyond what is presented in Chapter 3 in two distinct directions: we
consider the non-smooth case in a direct way, and we use Tikhonov regularization. The latter makes
it possible to pass from weak convergence to strong convergence, and to a particular solution, that of
minimal norm.

We �rst study the properties of the process X(t) and F (X(t)) for the stochastic di�erential inclusion
(SDI) on separable real Hilbert spaces from an optimization perspective, under the assumptions (HF ),
(Hσ) and (Hλ) (see Section 4.2). When the di�usion term is uniformly bounded, we show convergence
of E[F (X(t)) − minF ] to a noise-dominated region both for the convex and strongly convex case.
When the di�usion term is square-integrable, we show in Theorem4.3.2 that X(t) weakly converges
almost surely to a solution of (Pcomp), which is a new result to the best of our knowledge. Moreover, in
Theorem4.3.4, we provide new ergodic and pointwise convergence rates of the objective in expectation,
again, for both the convex and strongly convex case.

Next, we consider (SDE), obtained by adding a Tikhonov regularization term to (SDI). We show in
Theorem4.4.1 that under certain conditions on the regularization term, X(t) strongly converges almost
surely to the minimum norm solution. Then, we show in Theorem4.4.5 some practical situations where
one can obtain an explicit form of the Tikhonov regularizer. Moreover, in Theorem4.4.8, we show new
convergence rates of the objective and the trajectory in expectation for the smooth case.

5This is not yet proven, our conjecture is that it is true when σ∞ = O((t + 1)
− q

2q−1 ) (see the detailed discussion in

Conjecture 3.3.9).

� 14 �



Chapter 1 1.3. Contributions

Tables 1.2 summarizes the convergence rates obtained for E[F (X(t)) − minF ] in Chapter 4. We
recall that σ∗ > 0 and σ∞(·) are de�ned as

σ∞(t)
def

= sup
x∈H

∥σ(t, x)∥HS where ∥σ(t, x)∥2HS ≤ σ2∗, ∀t ≥ t0,∀x ∈ H. (1.5)

Property of F (DI) (SDI0) (supt≥t0 σ∞(t) ≤ σ∗) (SDI0) (σ∞ ∈ L2([t0,+∞[))

Convex t−1 t−1 + σ2∗ t−1

µ-Strongly Convex e−2µt e−µt + σ2∗ max{e−µt, σ2∞(t)}

Table 1.2: Summary of convergence rates obtained for E[F (X(t))−minF ].

In Table 1.3, we summarize the results obtained in the smooth case for the dynamics with Tikhonov
regularization, i.e., when g ≡ 0. We recall that EBp(S) is the local Error Bound inequality de�ned in
(2.11).

Property of f (DI-TA) (ε(t) = t−r, r ∈]0, 1[) (SDI− TA)
(
ε(t) = t−r, r ∈] 2p

2p+1 , 1[
)

Convex ∩ EBp(S) t−r t−r (whenever σ2
∞(t) = O(t−2r)).

Table 1.3: Summary of convergence rates obtained for E[f(X(t)) − min f ] for the dynamics with
Tikhonov regularization when ε(t) = t−r.

1.3.3 Chapter 5

Our main contributions pertain to the solution trajectories of the dynamics (S− ISIHD) and
(S− ISIHDNS) under integrability conditions on the noise for a general γ(t) and a particular choice of
β(t) (β ≡ Γ, where Γ is de�ned in (5.1)). They are summarized as follows:

� We show almost sure weak convergence of the trajectory (see Theorem5.2.2) and convergence
rates (see Theorem5.2.3) in expectation in the case of time-dependent coe�cients γ(t) and a
proper choice of β(t). To do so, we transfer, through time scaling and averaging, the results
of the Lyapunov analysis of the �rst-order in-time stochastic (sub-)gradient system studied in
Chapters 3-4 to our inertial system (S− ISIHD).

� We obtain almost sure and ergodic convergence results which correspond precisely to the best-
known results in the deterministic case. In particular, if we let α > 3, γ(t) = α

t , β(t) = t
α−1 ,

then under appropriate assumptions on the di�usion (volatility) term σ, we obtain the rate of
convergence o(1/t2) of the values in almost sure sense (see Corollary 5.2.5), which corresponds to
the known result for the accelerated gradient method of Nesterov in the deterministic case.

� We then turn to providing a local analysis with a local linear convergence rate under the Polyak-
�ojasiewicz inequality (See Theorem5.2.6). This is much more challenging in the stochastic case,
and even more for second-order systems, as localizing the process in this case is very delicate.

� We also show almost sure strong convergence of the trajectory to the minimal norm solution
when adding a Tikhonov regularization to our systems (see Theorem5.3.1). Moreover, we show
convergence rates in expectation for the objective and the trajectory for a particular Tikhonov
regularizer (see Theorem5.3.3).

It is worth observing that since our approach is based on an averaging technique, it will involve
Jensen's inequality at some point to get fast convergence rates. In this respect, the convexity condition
on the objective function appears unavoidable, at least in this method of proof. It is also worth
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mentioning that the approach only makes sense for the implicit form of the Hessian-driven damping.
Indeed, as explained above, the explicit form of the Hessian-driven damping has a term involving the
time derivative of the (sub)gradient at the trajectory. As the noise, modeled here as an Itô martingale,
in practice stems from the (sub)gradient evaluation, this time derivative is meaningless with explicit
Hessian-driven damping, as (non-constant) martingales are a.s. not di�erentiable.

1.3.4 Chapter 6

Our main contributions pertain to the solution trajectories of the dynamic (S− ISIHD) for more general
parameters that those considered in the previous chapter. They are summarized as follows:

� We will develop a Lyapunov analysis to obtain convergence rates, and integral estimates, in
almost sure sense (see Theorem6.2.7) and in expectation (see Theorem6.2.8), in the general case
of coe�cients γ(t) and β(t).

� We will give two instances where we can �nd suitable functions for the presented Lyapunov
function: when γ is decreasing and vanishing with vanishing derivative, and β(t) is constant (see
Corollary 6.2.9), and when γ(t) = α

t , β(t) = β0 +
γ0
t (see Corollary 6.2.11).

� In the case where the coe�cient β(t) is zero, we show that we have almost sure weak con-
vergence of the trajectory (see Theorem6.3.7), convergence rates, and integral estimates (see
Theorem6.3.5). As a special case, we focus on the viscous damping coe�cient γ(t) = α

tr ,
r ∈ [0, 1], α ≥ 1− r.

1.3.5 Chapter 7

This chapter analyzes the convergence properties of (ISEHD) and (ISIHD) when f is smooth and
possibly non-convex and with no stochasticity. We consider the case where the time-dependent vis-
cosity coe�cient γ is non-vanishing and the geometric damping is constant, i.e. β(t) ≡ β ≥ 0. We
will also propose appropriate discretizations of these dynamics and establish the corresponding con-
vergence guarantees for the resulting discrete algorithms. More precisely, our main contributions can
be summarized as follows:

� We provide a Lyapunov analysis of (ISEHD) and (ISIHD) and show convergence of the gradient to
zero and convergence of the values. Moreover, assuming that the objective function is de�nable,
we prove the convergence of the trajectory to a critical point (see Theorem7.2.1 and 7.3.1).
Furthermore, when f is also Morse, using the center stable manifold theorem, we establish a
generic convergence of the trajectory to a local minimum of f (see Theorem7.2.3 and 7.3.2).

� We provide convergence rates of (ISEHD) and (ISIHD) and show that they depend on the
desingularizing function of the Lyapunov energy (see Theorems 7.2.4 and 7.3.3).

� By appropriately discretizing (ISEHD) and (ISIHD), we propose algorithmic schemes and prove
the corresponding convergence properties, which are the counterparts of the ones shown for the
continuous-time dynamics. In particular, assuming that the objective function is de�nable, we
show global convergence of the iterates of both schemes to a critical point of f . Furthermore, a
generic strict saddle points (see De�nition 7.1.3) avoidance result will also be proved (see Theo-
rem7.2.7 and 7.3.5).

� Convergence rates for the discrete schemes will also be established under the �ojasiewicz property
where the convergence rate will be shown to depend on the exponent of the desingularizing
function (see Theorem7.2.9 and 7.3.6).

We will report a few numerical experiments to support the above �ndings.
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1.4 Outline

This manuscript consists of two parts and eight chapters. Chapter 2 collects the necessary notation and
mathematical material used throughout the manuscript. Chapters 3-6 focus on convex optimization
problems through �rst and second-order stochastic di�erential equations de�ned over a general real
separable Hilbert space, where Chapters 3-4 consider �rst-order SDEs and Chapters 5-6 second-order
ones. Chapter 7 studies second-order Hessian-aware dynamics de�ned on an Euclidian space in the
non-convex and deterministic setting. The �nal chapter gathers a �nal discussion, conclusions and
draw some directions of future work.
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Mathematical Background
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In this chapter, we collect the necessary notation and mathematical material used in the manuscript.

2.1 Notations and Preliminaries

Vectors and matrices. Throughout, we will use the following shorthand notations: Given n ∈ N,
[n]

def

= {1, . . . , n}. We denote by R+ the set [0,+∞[. Moreover, we denote R∗
+ and N∗ to refer to

R+ \ {0} and N \ {0}, respectively. The �nite-dimensional space Rd (d ∈ N∗) is endowed with the
canonical scalar product ⟨·, ·⟩ whose norm is denoted by ∥ · ∥. We denote Rn×d (n, d ∈ N∗) the space of
real matrices of dimension n× d. For A ∈ Rd×d, A⊤ is its transpose, λi(A) ∈ C is its i−th eigenvalue.
When A is symmetric then the eigenvalues are real and we denote λmin(A), λmax(A) to be the minimum
and maximum eigenvalue of A, respectively. If every eigenvalue of A is positive (resp. negative), we
will say that A is positive (resp. negative) de�nite. We denote by Id the identity matrix of dimensions
d× d and 0n×d the null matrix of dimensions n× d, respectively.

Hilbert spaces. For any real Hilbert space H, it is endowed with the inner product ⟨·, ·⟩H and the
corresponding norm ∥ · ∥H =

√
⟨·, ·⟩H, and we will omit the subscript H it is clear from the context. B

denotes the closed unitary ball of H centered at the origin. IH is the identity operator from H to H
and 0K;H is the operator that maps every element of K to 0H, where K is another real Hilbert space.
We denote by w-lim (resp. s-lim) the limit for the weak (resp. strong) topology of H.
For any subset C of H

dist(x,C) = inf
z∈C

∥z − x∥H

is the distance from x ∈ H to C. If C = ∅ we set dist(x,C) = +∞. For a non-empty closed convex set
C ⊆ H, the minimizer in dist(x,C) exists and is unique for any x ∈ H, and will denote it PC(x), the
projection of x on C.
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Operators. L(K;H) will denote the space of bounded linear operators from K to H, L1(K) is the
space of trace-class operators, and L2(K;H) is the space of bounded linear Hilbert-Schmidt operators
from K to H. For M ∈ L1(K), the trace is de�ned by

tr(M)
def

=
∑
i∈I

⟨Mei, ei⟩ < +∞,

where I ⊆ N and (ei)i∈I is an orthonormal basis of K. Besides, for M ∈ L(K;H), M⋆ ∈ L(H;K) is the
adjoint operator of M , and for M ∈ L2(K;H),

∥M∥HS
def

=
√

tr(MM⋆) < +∞

is its Hilbert-Schmidt norm (in the �nite-dimensional case is equivalent to the Frobenius norm, and is
denoted as ∥ · ∥F ).
The notation A : H ⇒ H means that A is a set-valued operator from H to H. A is identi�ed with

its graph of denoted by

gphA
def

=
{
(x, u) ∈ H×H : u ∈ Ax

}
.

Functions. For a function f : H → R∪{+∞}, we de�ne argmin(f)
def

= {x ∈ H : f(x) ≤ f(y), ∀y ∈ H},
when this set is non-empty we de�ne min f

def

= f(argmin(f)). For a (Fréchet) di�erentiable function
g : H → R, we will denote its gradient as ∇g, the set of its critical points as:

crit(g)
def

= {u ∈ H : ∇g(u) = 0},

and when g is twice di�erentiable, we will denote its Hessian as ∇2g. Let H1,H2 be two real Hilbert
spaces, for a di�erentiable function G : H1 → H2 we will denote its Jacobian matrix at x ∈ H1 as
JG(x) ∈ L(H2;H1).

We denote by Cs(H) the class of s-times continuously di�erentiable functions on H. For L ≥ 0,
C1,1
L (H) ⊂ C1(H) is the set of functions on H whose gradient is L-Lipschitz continuous (a.k.a. Lipschitz-

smooth functions). C2
L(H) is the subset of C1,1

L (H) whose functions are twice di�erentiable.

For two functions f, g : R → R we will denote f ∼ g as t → +∞, if limt→+∞
f(t)
g(t) = 1. For

a, b ∈ R, such that a < b, and f : H → R, the sublevel of f at a height between a and b is denoted
[a < f < r]

def

= {x ∈ H : a < f(x) < r}. For 1 ≤ p ≤ +∞, Lp([a, b]) is the space of measurable
functions g : R → R such that

∫ b
a |g(t)|pdt < +∞, with the usual adaptation when p = +∞. On the

probability space (Ω,F ,P), Lp(Ω;H) denotes the (Bochner) space of H-valued random variables whose
p-th moment (with respect to the measure P) is �nite.

Other notations will be explained when they �rst appear.

2.2 Some convexity analysis

Let us recall some basic results from convex analysis; for a more complete and comprehensive coverage,
we refer the reader to [46] and [181] in the �nite dimensional case.

A function f : H → R ∪ {+∞} is lower semicontinuous (lsc) if its epigraph is closed. It is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1],∀x, y ∈ H (2.1)

We denote by Γ0(H) the class of proper lsc and convex functions on H taking values in the real extended
line R ∪ {+∞}. For µ > 0, f is µ− strongly convex if the above inequality is strengthened to

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ

2
λ(1− λ)∥x− y∥2, ∀λ ∈ [0, 1], ∀x, y ∈ H (2.2)

We denote Γµ(H) ⊂ Γ0(H) the class of µ-strongly convex functions.
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The subdi�erential of a function f ∈ Γ0(H) is the set-valued operator ∂f : H ⇒ H such that, for
every x in H,

∂f(x) = {u ∈ H : f(y) ≥ f(x) + ⟨u, y − x⟩ ∀y ∈ H},

which is non-empty for every point in the relative interior of the domain of f . When f is �nite-valued,
then f is continuous, and ∂f(x) is a non-empty convex and compact set for every x ∈ H. If f is
di�erentiable, then ∂f(x) = {∇f(x)}. For every x ∈ H such that ∂f(x) ̸= ∅, the minimum norm
selection of ∂f(x) is the unique element {∂0f(x)} def

= argminu∈∂f(x) ∥u∥, and for a convex set A ⊆ H,
we de�ne its remoteness as ∥A∥−

def

= dist(0, A), by de�nition we have ∥∂f(x)∥− = ∥∂0f(x)∥. For
any set C ⊂ H, ιC is the indicator function of C, which takes the value 0 on C and +∞ otherwise.
Additionally, NC is the normal cone of C.

Proposition 2.2.1. Let f : H → R be di�erentiable. The following are equivalent:

(i) f is convex.

(ii) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, ∀x, y ∈ H.

(iii) ⟨∇f(x)−∇f(y), x− y⟩ ≥ 0, ∀x, y ∈ H.
If f is twice di�erentiable, then the previous conditions are equivalent to

(iv) ⟨∇2f(x)d, d⟩ ≥ 0, ∀x, d ∈ H.

Proposition 2.2.2. Let f : H → R be di�erentiable. The following are equivalent:

(i) f is µ−strongly convex.

(ii) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ µ
2∥x− y∥2, ∀x, y ∈ H.

(iii) ⟨∇f(x)−∇f(y), x− y⟩ ≥ µ∥x− y∥2, ∀x, y ∈ H.
If f is twice di�erentiable, then the previous conditions are equivalent to

(iv) ⟨∇2f(x)d, d⟩ ≥ µ∥d∥2, ∀x, d ∈ H.

It is well-known that when f ∈ Γµ(H), then f has a unique global minimizer.

Applying Young's inequality in Proposition 2.2.1(ii), we get the following result.

Proposition 2.2.3. Assume that f ∈ Γµ(H) is di�erentiable, then f satis�es the (global) Polyak-

�ojasiewicz (see De�nition 2.4.7) inequality, i.e.

2µ(f(x)−min f) ≤ ∥∇f(x)∥2, ∀x ∈ H.

2.3 Lipschitz-smooth functions

A function F : H → H is Lipschitz with constant L or L−Lipschitz if:

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ H. (2.3)

A function F : H → H is cocoercive with constant ρ or ρ−cocoercive if:

⟨F (x)− F (y), x− y⟩ ≥ ρ∥F (x)− F (y)∥2, ∀x, y ∈ H. (2.4)

Proposition 2.3.1. If F : H → H is ρ−cocoercive, then F is 1
ρ -Lipschitz.

Proof. Direct from the Cauchy-Schwarz inequality.

The following inequality is at the heart of what is known as the descent lemma. It is satis�ed by
any function in C1,1

L (H), and plays a central role in optimization.
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Chapter 2 2.4. Kurdyka-�ojasiewicz inequality

Lemma 2.3.2. Assume that f ∈ C1,1
L (H), then

f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥x− y∥2, ∀x, y ∈ H. (2.5)

Corollary 2.3.3. Assume that f ∈ C1,1
L (H), then

f

(
x− 1

L
∇f(x)

)
− f(x) ≤ − 1

2L
∥∇f(x)∥2, ∀x ∈ H, (2.6)

and

∥∇f(x)∥2 ≤ 2L(f(x)−min f), ∀x ∈ H. (2.7)

We have seen in Proposition 2.3.1 that cocoercivity implies Lipschitz continuity. The converse is
not true unless the operator is the gradient of a convex function. This is known as Baillon-Haddad
theorem.

Theorem 2.3.4 ((Baillon-Haddad Theorem) [44, Corollary 10]). Assume that f ∈ Γ0(H) and

di�erentiable. Then f ∈ C1,1
L (H) if, and only if, ∇f is 1

L -cocoercive.

As a consequence, the descent lemma can be re�ned with a lower bound1.

Proposition 2.3.5. Assume that f ∈ C1,1
L (H) ∩ Γ0(H), then

1

2L
∥∇f(y)−∇f(x)∥2 ≤ f(y)− f(x)− ⟨∇f(x), y − x⟩ ≤ L

2
∥x− y∥2, ∀x, y ∈ H.

2.4 Kurdyka-�ojasiewicz inequality

An assumption that will be central in our work for the study of our dynamics and algorithms is that
the objective function f satis�es the Kurdyka-�ojasiewicz inequality, which roughly speaking means
that f is sharp up to a reparametrization. The K� inequality as pioneeded in [136, 137, 125] in the
smooth case, and extended to the non-smooth case in [57, 58, 56], has been successfully used to analyze
the asymptotic behavior of various types of dynamical systems [81, 56, 57, 49] and algorithms, see e.g.
[59, 97, 155, 42, 119, 1, 16, 158]. The importance of the K� inequality comes from the fact that
many problems encountered in optimization involve functions satisfying such an inequality, and it is
often elementary to check that the latter is satis�ed. In �nite dimension, a rich family is provided
by semi-algebraic functions, i.e., functions whose graph is de�ned by some Boolean combination of
real polynomial equations and inequalities [86]. K� functions satisfy the �ojasiewicz property with
q ∈ [0, 1[∩Q; see [136, 137] for the smooth case and [57, 56] for the non-smooth extension. An even
more general family is that of de�nable functions on an o-minimal structure over R (see [85]) or
even tame functions, which corresponds in some sense to an axiomatization of some of the prominent
geometrical and stability properties of semi-algebraic geometry [193, 85]. An important result showed
that smooth de�nable functions satisfy the K� inequality at every x̄ ∈ Rd; see see [125] for the smooth
case and [58] the non-smooth one.

We present now proceed to a precise de�nition of this notion.

De�nition 2.4.1 (Desingularizing function). For η > 0, we consider

κ(0, η)
def

= {ψ : C0([0, η[) ∩ C1(]0, η[) → R+, ψ
′ > 0 on ]0, η[, ψ(0) = 0, and ψ concave}.

Remark 2.4.2. The concavity property of the functions in κ(0, η) does not appear in the original
de�nition and is added here as it is required for the analysis of global convergence of discrete algorithms;
see e.g. Subsection 7.2.2-7.3.2.

1This again highlights the well-known duality between strong convexity and Lipschitz smoothness.
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Chapter 2 2.4. Kurdyka-�ojasiewicz inequality

Since we will work either in the convex non-smooth setting or in the non-convex smooth settings,
we will present the K� theory adjusted to these contexts rather than the most general version. This
approach is taken to avoid introducing more general subdi�erentials (Fréchet and limiting ones), which
will not be needed in this thesis.

Convex non-smooth case.

De�nition 2.4.3 (Kurdyka-�ojasiewicz inequality). Let f ∈ Γ0(H). f is said to satisfy the K�
inequality at x̄ ∈ H if there exists r, η > 0 and ψ ∈ κ(0, η), such that

ψ′(f(x)− f(x̄))∥∂f(x)∥− ≥ 1, ∀x ∈ [f(x̄) < f < f(x̄) + η]. (2.8)

When S def

= argmin(f) is non-empty, we will say that f satis�es the K� inequality on S if there exists
r, η > 0 and ψ ∈ κ(0, η), such that

ψ′(f(x)−min f)∥∂f(x)∥− ≥ 1, ∀x ∈ [min f < f < min f + η]. (2.9)

A notable particular case of this inequality is the known �ojasiewicz inequality, introduced in [136,
137, 138].

De�nition 2.4.4 (�ojasiewicz inequality). A function f ∈ Γ0(H) will satisfy the �ojasiewicz
inequality on S with exponent q ∈]0, 1] if f satis�es the K� inequality on S with ψ(s) = 1

µ(1−q)s
1−q

for some µ > 0, i.e., if there exists r > min f such that:

µ(f(x)−min f)q ≤ ∥∂f(x)∥− , ∀x ∈ [min f < f < r], (2.10)

and we will write f ∈ �q(S).

Error bounds have also been successfully applied to various branches of optimization, and in par-
ticular to complexity analysis, see [166]. Of particular interest in our setting is the Hölderian error
bound.

De�nition 2.4.5 (Hölderian error bound). Let f ∈ Γ0(H). f satis�es a Hölderian (or power-type)
error bound inequality on S with exponent p ≥ 1, if there exists ϱ > 0 and r > min f such that:

f(x)−min f ≥ ϱdist(x,S)p, ∀x ∈ [min f < f < r], (2.11)

and we will write f ∈ EBp(S),

For convex coercive functions, the Hölderian error bound can be globalized, though with a di�erent
growth function; see [59, Theorem3]. Moreover, a deep result due to �ojasiewicz states that for arbi-
trary continuous semi-algebraic functions, the Hölderian error bound inequality holds on any compact
set, and the �ojasiewicz inequality holds at each point; see [136, 137]. In fact, for convex (possibly
non-smooth) functions, the �ojasiewicz property and Hölderian error bound are actually equivalent.

Proposition 2.4.6. Assume that f ∈ Γ0(H), let q ∈ [0, 1[, p
def

= 1
1−q ≥ 1 and r > min f . Then f

veri�es the �ojasiewicz inequality on S (2.10) with exponent q at [min f < f < r] if and only if the

Hölderian error bound on S (2.11) with exponent p holds on [min f < f < r].

Proof. Combine [59, Lemma4 and Theorem5].

The "Polyak-�ojasiewicz"2 inequality, widely used in machine learning, is actually a special case of
the �ojasiewicz property with exponent q = 1

2 and is commonly used to prove linear convergence of
gradient descent algorithms.

2Though we are not sure that Polyak should be acknowledged for this inequality, and there is a debate exists in the

community, there is a consensus in the optimization community that �ojasiewicz is clearly and provably the �rst to

formalize it. Nevertheless, we will still use the acronym P�.
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De�nition 2.4.7. Let f ∈ Γ0(H), then f satis�es the P� inequality on S, if there exists r > min f

and µ > 0 such that

2µ(f(x)−min f) ≤ ∥∂f(x)∥2− , ∀x ∈ [min f < f < r], (2.12)

and we will write f ∈ P�µ(S).

Remark 2.4.8. If f is µ−strongly convex, then f ∈ P�µ(S) holds on the entire space (i.e. r = +∞);
see Proposition 2.2.3.

Remark 2.4.9. According to Proposition 2.4.6, if f ∈ Γ0(H) ∩ P�µ(S), then f satis�es a Hölderian
error bound inequality on S with exponent p = 2.

Non-convex smooth case. Here we stick with the �nite-dimensional vase as it is the one that will
be used in Chapter 7.

De�nition 2.4.10. If f : Rd → R is di�erentiable and satis�es the K� inequality at x̄ ∈ Rd, then
there exists r, η > 0 and ψ ∈ κ(0, η), such that

ψ′(f(x)− f(x̄))∥∇f(x))∥ ≥ 1, ∀x ∈ B(x̄, r) ∩ [f(x̄) < f < f(x̄) + η]. (2.13)

The particular cases of �ojasiewicz inequality is analogous to before.

2.5 The bounded Hausdor� distance

For any ρ ≥ 0 and any set C ⊂ H
Cρ

def

= C ∩ ρB.

For two sets C,D ⊂ H, the excess function of C on D is de�ned as

e(C,D)
def

= sup
x∈C

dist(x,D),

with the natural convention that e(∅, D) = 0.

Following [39], for any ρ ≥ 0, the ρ-Hausdor� distance between C and D is de�ned as

hausρ(C,D)
def

= max(e(Cρ, D), e(Dρ, C)).

Clearly, for ρ = +∞, we recover the Hausdor� distance. A convergence notion and more precisely a
metrizable topology is naturally attached to the ρ-Hausdor� distance. WhenH is �nite dimensional, the
convergence with respect to the ρ-Hausdor� distances is nothing but the classical Painlevé-Kuratowski
set-convergence.

To study stability of minimization problems, the authors in [39] introduced the ρ-Hausdor� distance
between functions by identifying them with their epigraphs.

De�nition 2.5.1. For ρ ≥ 0, the ρ-Hausdor� (epi-)distance between two functions
f, g : H → R ∪ {+∞} is

hausρ(f, g)
def

= hausρ(epi f, epi g),

where the unit ball is the box norm on H× R.

This device was extended in [36] to set-valued operators by identifying them with their graphs.

De�nition 2.5.2. For ρ ≥ 0, the ρ-Hausdor� distance between two operators A,B : H ⇒ H is

hausρ(A,B)
def

= hausρ(gph f, gph g),

where the unit ball is that of H×H equipped with the box norm.
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2.6 Other deterministic technical results

In this section we present some technical deterministic results we will need throughout this thesis, we
will omit the details of lemmas that are straightforward to prove.

Lemma 2.6.1. Let a, b ∈ R and x, y ∈ H, then

∥ax− by∥ ≤ max{|a|, |b|}∥x− y∥+ |a− b|max{∥x∥, ∥y∥}.

Lemma 2.6.2. Let t0 ≥ 0 and a, b : [t0,+∞[→ R+. If limt→+∞ a(t) exists, b /∈ L1([t0,+∞[) and∫∞
t0
a(s)b(s)ds < +∞, then limt→+∞ a(t) = 0.

Lemma 2.6.3. Let q : [t0,+∞[→ R+ be a non-decreasing di�erentiable function, if q /∈ L1([t0,+∞[),

then q′

q /∈ L1([t0,+∞[)

Proof. By de�nition, ∫ +∞

t0

q′(s)

q(s)
ds = lim

t→+∞
ln(q(t))− ln(q(t0)) = +∞.

Lemma 2.6.4. Take t0 > 0, and let f ∈ L1([t0,+∞[) be continuous. Consider a non-decreasing

function φ : [t0,+∞[→ R+ such that limt→+∞ φ(t) = +∞. Then limt→+∞
1

φ(t)

∫ t
t0
φ(s)f(s)ds = 0.

Proof. See the proof in [33, LemmaA.5]

Lemma 2.6.5. Let t0 > 0, and a, b : [t0,+∞[→ R+ be two functions such that a /∈ L1([t0,+∞[),

limu→+∞ b(u) = 0, and de�ne A(t)
def

=
∫ t
t0
a(u)du and B(t)

def

= e−A(t)
∫ t
t0
a(u)eA(u)b(u)du. Then

limt→+∞B(t) = 0.

Proof. Let ε > 0 arbitrary, let us take Tε such that t0 < Tε and b(u) ≤ ε for u ≥ Tε. For t > Tε, let
us write

B(t) = e−A(t)

∫ Tε

t0

a(u)eA(u)b(u)du+ e−A(t)

∫ t

Tε

a(u)eA(u)b(u)du

≤ e−A(t)

∫ Tε

t0

a(u)eA(u)b(u)du+ ε.

Since a /∈ L1([t0,+∞[), then limt→+∞ e−A(t) = 0, we get

lim sup
t→+∞

B(t) ≤ ε.

This being true for any ε > 0, we infer that limt→+∞B(t) = 0, which gives the claim.

The next result is an adaptation of [143, Proposition 2.3] to our speci�c context but under slightly
less stringent assumptions.

Lemma 2.6.6 (Comparison Lemma). Let t0 ≥ 0 and T > t0. Assume that h : [t0,+∞[→ R+ is

measurable with h ∈ L1([t0, T ]) , that ψ : R+ → R+ is continuous and non-decreasing, φ0 > 0 and the

Cauchy problem {
φ′(t) = −ψ(φ(t)) + h(t) for almost all t ∈ [t0, T ]

φ(t0) = φ0

has an absolutely continuous solution φ : [t0, T ] → R+. If a lower semicontinuous function

ω : [t0, T ] → R+ is bounded from below and satis�es

ω(t) ≤ ω(s)−
∫ t

s
ψ(ω(τ))dτ +

∫ t

s
h(τ)dτ

for t0 ≤ s < t ≤ T and ω(t0) = φ0, then

ω(t) ≤ φ(t) for t ∈ [t0, T ].
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Lemma 2.6.7. Let f : R+ → R and lim inft→+∞ f(t) ̸= lim supt→+∞ f(t). Then, for every α satisfying

lim inft→+∞ f(t) < α < lim supt→+∞ f(t), and for every β > 0, we can de�ne a sequence (tk)k∈N ⊂ R+

such that

f(tk) > α, tk+1 > tk + β, ∀k ∈ N.

Proof. Since lim inft→+∞ f(t) and lim supt→+∞ f(t) are di�erent real numbers, α in the lemma obvi-
ously exists. Moreover, by de�nition of lim sup, there exists a sequence (tk)k∈N such that
limk→+∞ tk = +∞ and f(tk) > α. Let β > 0 and n0 = 0, let us de�ne recursively for j ≥ 1,
nj = min{n > nj−1 : tn − tnj−1 > β}. Let j′ ∈ N be the �rst natural number such that nj′ = +∞.
This implies that for every n > nj′−1, tn ≤ β+ tnj′−1

< +∞, a contradiction since limn→+∞ tn = +∞,
then for every j ∈ N, nj < +∞. Thus, we can de�ne (tnj )j∈N a subsequence of (tk)k∈N such that
limj→+∞ tnj = +∞ and for every j ∈ N, tnj+1 − tnj > β.

Lemma 2.6.8. For a, x > 0, let us de�ne the upper incomplete Gamma function as:

Γinc(a;x) =

∫ +∞

x
sa−1e−sds.

Then, the following holds:

(i) x1−aexΓinc(a;x) ≤ 1 for 0 < a ≤ 1.

(ii) x1−aexΓinc(a;x) ≥ 1 for a ≥ 1.

(iii) limx→+∞ x1−aexΓinc(a;x) = 1

Proof. See [160, Section 8].

Lemma 2.6.9. Let us de�ne p > 0 and Ip(t)
def

=
∫ 1
0 e

−tu(1− u)pdu. Then

(i) Ip(t) ≤ t−1 for every t > 0.

(ii) Ip(t) ∼ t−1 as t→ +∞.

Proof. The �rst result comes from bounding the term (1−u)p by 1 in the integral, then we can notice
directly that Ip(t) ≤ t−1 for every t > 0. The second result is an application of Watson's Lemma (see
[195]).

2.7 Stochastic and measure-theoretic results

Let us recall some elements of stochastic analysis; for a more complete account, we refer to [159,
167, 141, 101]. Throughout the thesis, (Ω,F ,P) is a probability space and {Ft|t ≥ 0} is a �ltration
of the σ-algebra F . Given C ⊆ Ω, we will denote σ(C) the σ-algebra generated by C. We denote

F+∞
def

= σ
(⋃

t≥0Ft

)
∈ F .

The expectation of an H-valued random variable ξ : Ω → H is denoted by

E(ξ) def

=

∫
Ω
ξ(ω)dP(ω).

As said in Section 2.1, for 1 ≤ p ≤ +∞, Lp(Ω;H) is the space of H-valued random variables ξ such
that E(∥ξ∥p) < +∞, with the usual adaptation when p = +∞.

An event E ∈ F happens almost surely if P(E) = 1, and it will be denoted as "E, P-a.s." or simply
"E, a.s.". The characteristic function of an event E ∈ F is denoted by

1E(ω)
def

=

{
1 if ω ∈ E,

0 otherwise.

Let t0 ≥ 0. An H-valued stochastic process is a function X : Ω × [t0,+∞[→ H. It is said to
be continuous if X(ω, ·) ∈ C([t0,+∞[;H) for almost all ω ∈ Ω. We will denote X(t)

def

= X(·, t).
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We are going to study stochastic di�erential equations, and in order to ensure the uniqueness of a
solution, we introduce a relation over stochastic processes. Let T > t0, two stochastic processes
X,Y : Ω × [t0, T ] → H are said to be equivalent if X(t) = Y (t), ∀t ∈ [t0, T ], P-a.s.. This leads us
to de�ne the equivalence relation R, which associates the equivalent stochastic processes in the same
class.

Furthermore, we will need some properties about the measurability of these processes. A stochastic
process X : Ω × [t0,+∞[→ H is progressively measurable if for every t ≥ t0, the map Ω × [t0, t] → H
de�ned by (ω, s) → X(ω, s) is Ft ⊗ B([t0, t])-measurable, where ⊗ is the product σ-algebra and B is
the Borel σ-algebra. On the other hand, X is Ft-adapted if X(t) is Ft-measurable for every t ≥ t0. It
is a direct consequence of the de�nition that if X is progressively measurable, then X is Ft-adapted.

For T > t0, let us de�ne the quotient space:

S0
H[t0, T ]

def

=
{
X : Ω× [t0, T ] → H : X is a prog. measurable cont. stochastic process

}/
R.

We set S0
H[t0]

def

=
⋂

T≥t0
S0
H[t0, T ], and S

0
H

def

= S0
H[0]. Furthermore, for ν > 0, we de�ne Sν

H[t0, T ] as the
subset of processes X(t) in S0

H[t0, T ] such that

Sν
H[t0, T ]

def

=
{
X ∈ S0

H[t0, T ] : E

(
sup

t∈[t0,T ]
∥X(t)∥ν

)
< +∞

}
.

We de�ne Sν
H[t0]

def

=
⋂

T≥t0
Sν
H[t0, T ], and S

ν
H

def

= Sν
H[0].

Let I ⊆ N be a numerable set such that {ei}i∈I is an orthonormal basis of K, and {wi(t)}i∈I,t≥t0

be a sequence of independent Brownian motions de�ned on the �ltered space (Ω,F ,Ft,P). The process

W (t) =
∑
i∈I

wi(t)ei

is well-de�ned (independent from the election of {ei}i∈I) and is called a K-valued Brownian motion.
Besides, let G : Ω × [t0,+∞[→ L2(K;H) be a measurable and Ft-adapted process, then we can
de�ne

∫ t
t0
G(s)dW (s) which is the stochastic integral of G, and we have that G →

∫ ·
t0
G(s)dW (s) is

an isometry between the measurable and Ft−adapted L2(K;H)−valued processes and the space of
H-valued continuous square-integrable martingales (see [101, Theorem 2.3]).

Theorem 2.7.1 (Egorov's Theorem). [182, Chapter 3, Exercise 16] Let (X,A, µ) be a measure

space with µ(X) < +∞, and (ft)t∈R+ is a family of real measurable functions such that for µ-almost

all x ∈ X:

1. limt→+∞ ft(x) = f(x), and

2. t 7→ ft(x) is continuous.

Then, for every δ > 0, there exists a measurable set Eδ ⊂ X, with µ(X \ Eδ) < δ, such that (ft)t∈R+

converges uniformly on Eδ.

Lemma 2.7.2. Let δ > 0,Ωδ ∈ F such that P(Ωδ) ≥ 1 − δ and h : Ω × R+ → R a stochastic process

such that supt≥0 E[h(t)2] < +∞. Then, there exists a constant Ch > 0 (independent of δ) such that

E[h(t)1Ω\Ωδ
] ≤ Ch

√
δ.

Proof. Note that P(Ω \ Ωδ) ≤ δ and thus Cauchy-Schwarz inequality gives:

E[h(t)1Ω\Ωδ
] =

∫
Ω
h(ω, t)1Ω\Ωδ

(ω)dP(ω) ≤
√
δ
√
E[h(t)2] ≤

√
δ
√

sup
t≥0

E[h(t)2]︸ ︷︷ ︸
def
=Ch

.
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Let us consider t0 ≥ 0, ν ≥ 2 and the SDE with initial data X0 ∈ Lν(Ω;H) which is Ft0-measurable:{
dX(t) = F (t,X(t))dt+G(t,X(t))dW (t), t ≥ 0,

X(t0) = X0,
(2.14)

where F : [t0,+∞[×H → H, G : [t0,+∞[×H → L2(K;H) are measurable functions and W is an
Ft-adapted K-valued Brownian Motion.

De�nition 2.7.3. A solution of (2.14) is a process X ∈ S0
H[t0] such that:

X(t) = X0 +

∫ t

t0

F (s,X(s))ds+

∫ t

t0

G(s,X(s))dW (s), a.s.,∀t ≥ t0.

Theorem 2.7.4. (See [101, Theorem 3.3 and Theorem 3.5]) Let F : [t0,+∞[×H → H and G :

[t0,+∞[×H → L2(K;H) be measurable functions satisfying

sup
t≥t0

(∥F (t, 0)∥+ ∥G(t, 0)∥HS) < +∞, (2.15)

and for every T > t0 and some constant C1 ≥ 0,

∥F (t, x)− F (t, y)∥+ ∥G(t, x)−G(t, y)∥HS ≤ C1 ∥x− y∥ , ∀x, y ∈ H,∀t ∈ [t0, T ]. (2.16)

Then (2.14) has a unique solution X ∈ Sν
H[t0].

Let us now present Itô's formula which plays a central role in the theory of stochastic di�erential
equations.

Theorem 2.7.5. [101, Theorem 2.9] (Itô's Formula) Let X(t) be a solution of (2.14) and assume that

ϕ : [t0,+∞[×H → R is such that ϕ is continuous and its Fréchet partial derivatives ∂ϕ
∂t ,∇ϕ,∇

2ϕ are

continuous and bounded on bounded sets of [t0,+∞[×H. Then, the following Itô's formula holds:

ϕ(t,X(t)) = ϕ(t0, X0) +

∫ t

t0

∂ϕ

∂t
(s,X(s))ds

+

∫ t

t0

⟨∇ϕ(s,X(s)), F (s,X(s))⟩ds+
∫ t

t0

⟨∇ϕ(s,X(s)), G(s)dW (s)⟩

+
1

2

∫ t

t0

tr[∇2ϕ(s,X(s))G(s,X(s))G⋆(s,X(s))]ds, a.s., ∀t ≥ t0.

The C2 assumption on ϕ(t, ·) in Itô's formula is crucial. However, this can be weakened in certain
cases leading to the following inequality that will be useful in our context.

Proposition 2.7.6. Consider H a �nite-dimensional space and X a solution of (2.14),
ϕ1 ∈ C1([t0,+∞[), ϕ2 ∈ C1,1

L (H) and ϕ(t, x) = ϕ1(t)ϕ2(x). Then the process

Y (t) = ϕ(t,X(t)) = ϕ1(t)ϕ2(X(t)),

is an Itô Process such that

Y (t) ≤ Y (t0) +

∫ t

t0

ϕ′1(s)ϕ2(X(s))ds+

∫ t

t0

ϕ1(s) ⟨∇ϕ2(X(s)), F (s,X(s))⟩ ds

+

∫ t

t0

⟨σ⋆(s,X(s))ϕ1(s)∇ϕ2(X(s)), dW (s)⟩+ L

2

∫ t

t0

ϕ1(s)tr (G(s,X(s))G⋆(s,X(s))) ds. (2.17)

Moreover, if E[Y (t0)] < +∞, and if for all T > t0

E
(∫ T

t0

∥G⋆(s,X(s))ϕ1(s)∇ϕ2(X(s))∥2 ds
)
< +∞,
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E[Y (t)] ≤ E[Y (t0)] + E
(∫ t

t0

ϕ′1(s)ϕ2(X(s))ds

)
+ E

(∫ t

t0

ϕ1(s) ⟨∇ϕ2(X(s)), F (s,X(s))⟩ ds
)

+
L

2
E
(∫ t

t0

ϕ1(s)tr (G(s,X(s))G⋆(s,X(s))) ds

)
. (2.18)

Proof. Analogous to the proof of [149, PropositionC.2] using Rademacher's theorem instead of Alexan-
drov's.

2.8 On martingales

Considering H, a real separable Hilbert space, the following theorem extends Doob's martingale con-
vergence theorem, originally stated for R−valued martingales and usually generalized to Rd-valued
martingales, to H−valued martingales. Since we could not �nd a direct proof of this generalization,
we propose an independent proof inspired by the ideas presented in [103].

Theorem 2.8.1. Let H be a real separable Hilbert space and (Mt)t≥0 : Ω → H be a continuous martin-

gale such that supt≥0 E
(
∥Mt∥2

)
< +∞. Then there exists a H−valued random variable

M∞ ∈ L2(Ω;H) such that limt→+∞ ∥Mt −M∞∥ = 0 a.s..

Proof. Consider (Mk)k∈N to be the embedded discrete parameter martingale. Since
supk∈N E∥Mk∥2 < +∞, then (Mk)k∈N is uniformly integrable and by [183, Theorem3], there exists a
measurable H-valued random variable M∞ ∈ L2(Ω;H) such that limk→+∞ ∥Mk −M∞∥ = 0 a.s.. In
turn, using the dominated convergence theorem (see [182, Theorem 1.34]), we also have

lim
k→+∞

E(∥Mk −M∞∥2) = 0. (2.19)

The rest of the proof is inspired by the arguments in the proof of [103, Theorem2.2].

We consider an arbitrary k ∈ N∗ and δ > 0. Since (Mt+k −Mk)t≥0 is also a H−valued martingale,
we can use Doob's maximal inequalities for H−valued martingales shown in [101, Theorem2.2], which
gives us

δ2P

(
sup
s∈[0,t]

∥Ms+k −Mk∥ > δ

)
≤ E(∥Mt+k −Mk∥2). (2.20)

Let n ∈ N∗ be arbitrary. We have

P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ P

(
sup

s∈Q∩[0,n]
∥Ms+k −Mk∥ >

δ

2

)
+ P

(
∥Mk −M∞∥ > δ

2

)
.

Using (2.20) and Markov's inequality, we get the bound

δ2P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ 4E(∥Mn+k −Mk∥2) + 4E(∥Mk −M∞∥2)

≤ 8E(∥Mn+k −M∞∥2) + 12E(∥Mk −M∞∥2).
(2.21)

In turn, we get

δ2P

(
sup

s∈Q,s≥k
∥Ms −M∞∥ > δ

)
≤ δ2P

( ⋃
n∈N∗

{
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

})

≤ δ2 lim inf
n→+∞

P

(
sup

s∈Q∩[0,n]
∥Ms+k −M∞∥ > δ

)
≤ 12E

(
∥Mk −M∞∥2

)
,
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where we have used (2.21) and in the last inequality, that limn→+∞ E(∥Mn+k −M∞∥2) = 0 by (2.19).
Taking k → +∞, and using again (2.19), we conclude that for all δ > 0

lim
k→+∞

P

(
sup

s∈Q,s≥k
∥Ms −M∞∥ > δ

)
= 0.

For k ∈ N∗, we de�ne Ak
def

= {ω ∈ Ω : sups∈Q,s≥k ∥Ms(ω) − M∞(ω)∥ > δ}, since (Ak)k∈N∗ is a
non-increasing sequence of sets:

0 = lim
k→+∞

P (Ak) = P

( ⋂
k∈N∗

Ak

)
.

De�ning for l ≥ 0, Dl = {ω ∈ Ω : ∥Ml(ω)−M∞(ω)∥ > δ}, it is direct to check that
⋃

l≥k,l∈QDl ⊆ Ak

for every k ∈ N∗. Therefore, we obtain that

P

 ⋂
k∈N∗

⋃
l≥k,l∈Q

Dl

 = 0,

which is equivalent to lims→+∞,s∈Q ∥Mt −M∞∥ = 0 a.s.. The result follows from classical arguments
of continuity of the martingale.

Theorem 2.8.2. [141, Theorem 1.3.9] Let {At}t≥0 and {Ut}t≥0 be two continuous adapted increasing

processes with A0 = U0 = 0 a.s.. Let {Mt}t≥0 be a real valued continuous local martingale with M0 = 0

a.s.. Let ξ be a nonnegative F0-measurable random variable. De�ne

Xt = ξ +At − Ut +Mt for t ≥ 0.

If Xt is nonnegative and limt→+∞At < +∞ a.s., then a.s. limt→+∞Xt exists and is �nite, and

limt→+∞ Ut < +∞.

Proposition 2.8.3. (see [71] and [178, Section 1.2]) (Burkholder-Davis-Gundy Inequality) Let p > 0,

W be a K-valued Brownian motion de�ned over a �ltered probability space (Ω,F , {Ft}t≥0,P) and

g : Ω × R+ → K a progressively measurable process (with our usual notation g(t)
def

= g(·, t)) such

that

E

[(∫ T

0
∥g(s)∥2ds

) p
2

]
< +∞, ∀T > 0.

Then, there exists Cp > 0 (only depending on p) for every T > 0 such that:

E

[
sup

t∈[0,T ]

∣∣∣∣∣
∫ t

0
⟨g(s), dW (s)⟩

∣∣∣∣∣
p]

≤ CpE

[(∫ T

0
∥g(s)∥2ds

) p
2

]
.
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Chapter 3

A First-Order SDE Perspective on

Stochastic Convex Optimization

In this chapter, we analyze the global and local behavior of gradient-like �ows under stochastic errors
towards the aim of solving convex optimization problems with noisy gradient input. We �rst study
the unconstrained di�erentiable convex case, using a stochastic di�erential equation where the drift
term is minus the gradient of the objective function and the di�usion term is either bounded or
square-integrable. In this context, under Lipschitz continuity of the gradient, our �rst main result
shows almost sure weak convergence of the trajectory process towards a minimizer of the objective
function. We also provide a comprehensive complexity analysis by establishing several new pointwise
and ergodic convergence rates in expectation for the convex, strongly convex, and (local) �ojasiewicz
case. The latter, which involves local analysis, is challenging and requires non-trivial arguments from
measure theory. Then, we extend our study to the constrained case and more generally to certain non-
smooth situations. We show that several of our results have natural extensions obtained by replacing
the gradient of the objective function by a cocoercive monotone operator. This makes it possible to
obtain similar convergence results for optimization problems with an additively �smooth + non-smooth�
convex structure. Finally, we consider another extension of our results to non-smooth optimization
which is based on the Moreau envelope.

Main contributions of this chapter

▶ Almost sure weak convergence of the trajectory generated by the SDE to the set of
minimizers (Theorem3.2.3).

▶ Global convergence rates in expectation and in almost sure sense of the SDE under
convexity and strong convexity of the objective (Theorem3.2.5, Proposition 3.2.6).

▶ Local convergence rates of the values in expectation under �ojasiewicz Inequality (The-
orem3.3.3).

▶ Extension of the previous results to the maximal monotone case (Subsection 3.4.1).

The content of this chapter was revised in [144].
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3.1 Introduction

We aim to solve convex minimization problems by means of stochastic di�erential equations (SDE)
whose drift term is driven by the gradient of the objective function. This allows for noisy (inaccurate)
gradient input to be taken into account. ConsiderH a real separable Hilbert space and the minimization
problem

min
x∈H

f(x), (P1)

where the objective f satis�es the following standing assumptions:{
f is convex and continuously di�erentiable with L-Lipschitz continuous gradient;

S def

= argmin(f) ̸= ∅.
(Hf )

We will also later deal with the constrained case, and more generally with additively structured �smooth
+ non-smooth� convex optimization.

To solve (P1), a fundamental dynamic to consider is the gradient �ow of f , i.e. the gradient descent
dynamic with initial condition x0 ∈ H:{

ẋ(t) = −∇f(x(t)), t > 0;

x(0) = x0.
(GF)

It is well known since the founding papers of Brezis, Baillon, Bruck in the 1970s that, if the solution
set argmin(f) of (P1) is non-empty, then each solution trajectory of (GF) converges, and its limit
belongs to argmin(f). In fact, this result is true in a more general setting, simply assuming that the
objective function f is convex, lower semicontinuous (lsc) and proper, in which case we must consider
the di�erential inclusion obtained by replacing in (GF) the gradient of f by the sub-di�erential ∂f
(detailed in Chapter 4).

Consider K a real separable Hilbert space. To solve (P1), we will refer to Section 1.2 for the approach
that leads to the dynamic that we will study in this chapter, speci�cally the stochastic counterpart of
(GF), which is the following SDE:{

dX(t) = −∇f(X(t))dt+ σ(t,X(t))dW (t), t > 0;

X(0) = X0,
(SDE)

de�ned over a complete �ltered probability space (Ω,F , {Ft}t≥0,P), where the di�usion (volatility)
term σ : R+×H → L2(K;H) (see Section 2.1 for notation) is a measurable function that satis�es (Hσ),
W is a Ft-adapted K-valued Brownian motion (see Section 2.7 for a precise de�nition), and the initial
data X0 is an F0-measurable H-valued random variable.
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Chapter 3 3.2. Convergence properties for convex di�erentiable functions

3.2 Convergence properties for convex di�erentiable functions

We consider f (called the potential) and study the dynamic (SDE) under hypotheses (Hf ) (i.e.
f ∈ C1,1

L (H) ∩ Γ0(H)) and (Hσ). Recall the de�nitions of σ∗ and σ∞(t) from (1.4). Throughout
the chapter, we will use the shorthand notation

Σ(t, x)
def

= σ(t, x)σ(t, x)⋆.

For the necessary notation and preliminaries on stochastic processes, see Section 2.7.

We emphasize that Theorem2.7.4 provides us with su�cient conditions to ensure the existence and
uniqueness of the solution to (SDE). These conditions are met in our case under assumptions (Hf )
and (Hσ).

Let us now present Itô's formula (see Theorem2.7.5) in the speci�c case of (SDE).

Proposition 3.2.1. Consider X a solution of (SDE), ϕ : R+ ×H → R be such that ϕ(·, x) ∈ C1(R+)

for every x ∈ H and ϕ(t, ·) ∈ C2(H) for every t ≥ 0. Then the process

Y (t) = ϕ(t,X(t)),

is an Itô Process such that for all t ≥ 0:

Y (t) = Y (0) +

∫ t

0

∂ϕ

∂t
(s,X(s))ds−

∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

+

∫ t

0
⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩+ 1

2

∫ t

0
tr
(
σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))

)
ds. (3.1)

Moreover, if E[Y (0)] < +∞, and if for all T > 0:

E
(∫ T

0
∥σ⋆(s,X(s))∇ϕ(s,X(s))∥2 ds

)
< +∞,

then

∫ t

0
⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩ is a square-integrable continuous martingale and

E[Y (t)] = E[Y (0)] + E
(∫ t

0

∂ϕ

∂t
(s,X(s))ds

)
− E

(∫ t

0
⟨∇ϕ(s,X(s)),∇f(X(s))⟩ ds

)
+

1

2
E
(∫ t

0
tr
(
σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))

)
ds

)
. (3.2)

The C2 assumption on ϕ(t, ·) in Itô's formula is crucial. However, this can be weakened in certain
cases as shown in Proposition 2.7.6.

3.2.1 Almost sure weak convergence of the trajectory

Recall that our focus in this thesis is on an optimization perspective, and as we argued in the introduc-
tion, we will study the long time behavior of our SDE as the di�usion term vanishes when t → +∞.
Therefore, we recall that we assume that the di�usion (volatility) term σ satis�es:{

supt≥0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(Hσ)

for some l0 > 0 and for all t ≥ 0, x, x′ ∈ H. The Lipschitz continuity assumption is mild and
classical and will be required to ensure the well-posedness of (SDE). Let us also recall that we de�ne
σ∞ : R+ → R+ as

σ∞(t)
def

= sup
x∈H

∥σ(t, x)∥HS.
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Remark 3.2.2. Under the hypothesis (Hσ) we have that there exists σ∗ > 0 such that:

∥σ(t, x)∥2HS = tr[Σ(t, x)] ≤ σ2∗,

for all t ≥ 0, x ∈ H, where Σ
def

= σσ⋆.

Our �rst main result establishes almost sure weak convergence of X(t) to an S-valued random
variable as t→ +∞.

Theorem 3.2.3. Consider the dynamic (SDE), where f and σ satisfy the assumptions (Hf ) and (Hσ),
respectively. Additionally, let ν ≥ 2, X0 ∈ Lν(Ω;H) and is F0-measurable. Then, there exists a unique

solution X ∈ Sν
H of (SDE). Moreover, if σ∞ ∈ L2(R+), then the following holds:

(i) E[supt≥0 ∥X(t)∥ν ] < +∞.

(ii) ∀x⋆ ∈ S, limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s..

(iii) limt→+∞ ∥∇f(X(t))∥ = 0 a.s.. As a result, limt→+∞ f(X(t)) = min f a.s..

(iv) In addition to (iii), there exists an S-valued random variable X⋆ such that w-limt→+∞X(t) = X⋆

a.s..

Remark 3.2.4. (i) In �nite dimension, the assumptions on the noise variance are compatible with
the theory of asymptotic pseudotrajectories (APT) [50] and their weak version (WAPT) [51]. As
we have already discussed in the Introduction, the theory of APT can indeed be used to study
convergence properties of X(t). For instance, in �nite dimension using [50, Proposition 7.4] one
can show easily that assuming supx∈Rd ∥σ(t, x)∥F = o(1/

√
log(t)) (where ∥·∥F is the Frobenius

norm) and that X(t) is bounded almost surely, one has almost sure subsequential convergence of
X(t) to points in S. Our work leverages convexity, does not need any boundedness assumption
and shows almost sure global convergence of the process (not just subsequentially).

(ii) In �nite dimension, ergodic properties of X(t) can be derived from the theory of WAPT as
developed in [51] under the weaker assumptions that ∥σ(x, t)∥ ≤ α(t), for some decreasing
function α such that α(t) → 0 as t → +∞. For instance, an immediate consequence of [51,
Proposition 1 and Corollary 1] and Theorem3.2.3(i) is that the fraction of time spent by X in an
arbitrary neighborhood of S goes to one with probability one. We also have by combining [51,
Corollary 2] and Theorem3.2.3(i), and since S is convex in our case, that the average process
1
t

∫ t
0 X(s)ds converges almost surely to a point in S.

Proof. The existence and uniqueness of a solution follows directly from the fact that the conditions
of Theorem2.7.4 are satis�ed under (Hf ) and (Hσ). The architecture of the proof of Theorem3.2.3
consists of three steps that we brie�y describe:

� The �rst step is based on Itô's formula (Proposition 3.2.1) and Burkholder-Davis-Gundy inequal-
ity (Proposition 2.8.3) that let us prove a uniform bound (on time) for the ν−moment of X(t).

� The second step is also based on Itô's formula. Instead of the previous step, we use Theorem2.8.2
that allows us to conclude that for every x⋆ ∈ S, limt→+∞ ∥X(t)− x⋆∥ exists a.s.. Then, a separa-
bility argument is used to conclude that almost surely, for all x⋆ ∈ S, limt→+∞ ∥X(t)− x⋆∥ exists.

� The third step consists in using another conclusion of Theorem2.8.2 to conclude that
∥∇f(X(·))∥2 ∈ L1(R+) a.s.. After proving that this function is eventually uniformly continuous,
we proceed according to Barbalat's Lemma (see [95]) to conclude that limt→+∞ ∥∇f(X(t))∥ = 0

a.s.. As a consequence of the convexity of f we deduce that limt→+∞ f(X(t)) = min f a.s..
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� Finally, the fourth step consists in using Opial's Lemma to conclude that there exists an S-valued
random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s..

(i) Let x⋆ be taken arbitrarily in S. Let us de�ne the corresponding anchor function ϕ(x) = ∥x−x⋆∥2
2 .

Using Itô's formula we obtain

ϕ(X(t)) =
∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ=ϕ(X0)

+
1

2

∫ t

0
tr (Σ(s,X(s))) ds︸ ︷︷ ︸

At

−
∫ t

0
⟨∇f(X(s)), X(s)− x⋆⟩ ds︸ ︷︷ ︸

Ut

+

∫ t

0
⟨σ⋆(s,X(s)) (X(s)− x⋆) , dW (s)⟩︸ ︷︷ ︸

Mt

. (3.3)

Let us now embark from (3.3) and use that

0 ≤ tr (Σ(s,X(s))) ≤ σ2∞(s) and ⟨∇f(X(s)), X(s)− x⋆⟩ ≥ 0,

where the second inequality is due to the convexity of f , to get

ϕ(X(t)) ≤ ϕ(X0) +
1

2

∫ +∞

0
σ2∞(s)ds+Mt.

Taking power ν
2 at both sides and using that (a+ b+ c)

ν
2 ≤ 3

ν−2
2 (a

ν
2 + b

ν
2 + c

ν
2 ), we have that

∥X(t)− x⋆∥ν ≤ 3
ν−2
2

[
∥X0 − x⋆∥ν +

(∫ +∞

0
σ2∞(s)ds

) ν
2

+ 2
ν
2 |Mt|

ν
2

]
.

Let T > 0, applying the supremum over t ∈ [0, T ] and then taking expectation, we obtain

E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

+ 2
ν
2E

(
sup

t∈[0,T ]
|Mt|

ν
2

)]
.

Letting g(s) = σ⋆(s,X(s))(X(s)− x⋆) and p = ν
2 in Proposition 2.8.3, we get

E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

]

+ 3
ν−2
2 2

ν
2C ν

2
E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥

ν
2

(∫ +∞

0
σ2∞(s)ds

) ν
4

)
.

Using that ab ≤ a2

2K + Kb2

2 for every K > 0,

E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥ν

)
≤ 3

ν−2
2

[
E(∥X0 − x⋆∥ν) +

(∫ +∞

0
σ2∞(s)ds

) ν
2

]

+
1

2
E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥ν

)
+ 6

ν−2
2 C ν

2

(∫ +∞

0
σ2∞(s)ds

) ν
2

.

And we end up with

E

(
sup

t∈[0,T ]
∥X(t)− x⋆∥ν

)
≤ 3

ν−2
2 2

[
E(∥X0 − x⋆∥ν) + (1 + 2

ν−2
2 C ν

2
)

(∫ +∞

0
σ2∞(s)ds

) ν
2

]
.

Since the right-hand side is independent of T , we take lim infT→+∞ on the previous expression
and apply Fatou's Lemma to show the �rst claim.
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(ii) Observe that, since ν ≥ 2, we have that E(supt≥0 ∥X(t)∥2) < +∞. Moreover σ∞ ∈ L2(R+), and
therefore

E
(∫ +∞

0
∥σ⋆(s,X(s)) (X(s)− x⋆)∥2 ds

)
≤ E

(
sup
t≥0

∥X(t)− x⋆∥2
)∫ +∞

0
σ2∞(s)ds < +∞.

ThereforeMt is a square-integrable continuous martingale. It is also a continuous local martingale
(see [141, Theorem 1.3.3]), which implies that E(Mt) = 0.
On the other hand, At and Ut de�ned as in (3.3) are two continuous adapted increasing processes
with A0 = U0 = 0 a.s.. Since ϕ(X(t)) is nonnegative and supx∈H ∥σ(·, x)∥HS ∈ L2(R+), we
deduce that limt→+∞At < +∞. Then, we can use Theorem2.8.2 to conclude that∫ +∞

0
⟨∇f(X(s)), X(s)− x⋆⟩ds < +∞ a.s. (3.4)

and

∀x⋆ ∈ S,∃Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→+∞

∥X(ω, t)− x⋆∥ exists ∀ω ∈ Ωx⋆ . (3.5)

Since H is separable, there exists a countable set Z ⊆ S, such that cl(Z) = S (where cl stands
for the closure of the set). Let Ω̃ =

⋂
z∈Z Ωz. Since Z is countable, a union bound shows

P(Ω̃) = 1− P

(⋃
z∈Z

Ωc
z

)
≥ 1−

∑
z∈Z

P(Ωc
z) = 1.

For arbitrary x⋆ ∈ S, there exists a sequence (zk)k∈N ⊆ Z such that limk→+∞ zk = x⋆. In view
of (3.5), for every k ∈ N there exists τk : Ωzk → R+ such that

lim
t→+∞

∥X(ω, t)− zk∥ = τk(ω), ∀ω ∈ Ωzk . (3.6)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωzk for any k ∈ N, and using the triangle inequality and (3.6), we
obtain that

τk(ω)− ∥zk − x⋆∥ ≤ lim inf
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t)− x⋆∥ ≤ τk(ω) + ∥zk − x⋆∥ .

Now, passing to k → +∞, we deduce

lim sup
k→+∞

τk(ω) ≤ lim inf
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim inf
k→+∞

τk(ω),

whence we deduce that limk→+∞ τk(ω) exists on the set Ω̃ of probability 1, and in turn

lim
t→+∞

∥X(ω, t)− x⋆∥ = lim
k→+∞

τk(ω).

Let us recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·) is continuous for
every ω ∈ Ωcont. Now let x⋆ ∈ S arbitrary, since the limit exists, for every ω ∈ Ω̃ ∩ Ωcont there
exists T (ω) such that ∥X(ω, t)− x⋆∥ ≤ 1 + limk→+∞ τk(ω) for every t ≥ T (ω). Besides, since
X(ω, ·) is continuous, by Bolzano's theorem

sup
t∈[0,T (ω)]

∥X(ω, t)∥ = max
t∈[0,T (ω)]

∥X(ω, t)∥ def

= h(ω) < +∞.

Therefore, supt≥0 ∥X(ω, t)∥ ≤ max{h(ω), 1 + limk→+∞ τk(ω) + ∥x⋆∥} < +∞.

(iii) Let Nt =

∫ t

0
σ(s,X(s))dW (s). This is a continuous martingale (w.r.t. the �ltration Ft), which

veri�es

E(∥Nt∥2) = E
(∫ t

0
∥σ(s,X(s))∥2HS ds

)
≤ E

(∫ +∞

0
σ2∞(s)ds

)
< +∞,∀t ≥ 0.
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According to Theorem2.8.1, we deduce that there exists a H−valued random variable N∞ w.r.t.
F∞, and which veri�es: E(∥N∞∥2) < +∞, and there exists ΩN ∈ F such that P(ΩN ) = 1 and

lim
t→+∞

Nt(ω) = N∞(ω) for every ω ∈ ΩN .

Besides, by convexity of f and (3.4), we have that there exists Ωf ∈ F such that
P(Ωf ) = 1 and (f(X(ω, ·)) − min f) ∈ L1(R+) for every ω ∈ Ωf . By Corollary 2.7, we obtain
that ∥∇f(X(ω, ·))∥ ∈ L2(R+) for every ω ∈ Ωf .

Let Ωconv
def

= Ω̃ ∩ Ωcont ∩ Ωf ∩ ΩN , hence P(Ωconv) = 1. Let ω ∈ Ωconv ⊆ Ωf arbitrary, then
lim inft→+∞ ∥∇f(X(ω, t))∥ = 0. If lim supt→+∞ ∥∇f(X(ω, t))∥ = 0 then we conclude. Suppose
by contradiction that there exists ω0 ∈ Ωconv such that lim supt→+∞ ∥∇f(X(ω0, t))∥ > 0. Then,
by Lemma2.6.7, there exists δ(ω0) > 0 satisfying

0 = lim inf
t→+∞

∥∇f(X(ω0, t))∥ < δ(ω0) < lim sup
t→+∞

∥∇f(X(ω0, t))∥ ,

and there exists (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞,

∥∇f(X(ω0, tk))∥ > δ and tk+1 − tk > 1, ∀k ∈ N.

We allow ourselves the abuse of notation X(t)
def

= X(ω0, t) and δ
def

= δ(ω0) during the rest of the
proof from this point.

Let ε ∈
]
0,min

{
δ2

4L2 , 1
}[
. Note that this choice entails that the intervals

(
[tk, tk +

ε
2 ]
)
k∈N are

disjoint. On the other hand, according to the convergence property of Nt and the fact that
∥∇f(X(·))∥ ∈ L2(R+), there exists k′ > 0 such that for every k ≥ k′

sup
t≥tk

∥Nt −Ntk∥
2 <

ε

4
and

∫ +∞

tk

∥∇f(X(s))∥2 ds ≤ 1

2
.

Besides, for every k ≥ k′, t ∈ [tk, tk +
ε
2 ]

∥X(t)−X(tk)∥2 ≤ 2(t− tk)

∫ t

tk

∥∇f(X(s))∥2 ds+ 2∥Nt −Ntk∥
2 ≤ (t− tk) +

ε

2
≤ ε.

Since f ∈ C1,1
L (H) and L2ε ≤

(
δ
2

)2
by assumption on ε, we have that for every k ≥ k′ and

t ∈ [tk, tk +
ε
2 ]

∥∇f(X(t))−∇f(X(tk))∥2 ≤ L2 ∥X(t)−X(tk)∥2 ≤
(
δ

2

)2

.

Therefore, for every k ≥ k′, t ∈ [tk, tk +
ε
2 ]

∥∇f(X(t))∥ ≥ ∥∇f(X(tk))∥ − ∥∇f(X(t))−∇f(X(tk))∥︸ ︷︷ ︸
≤ δ

2

≥ δ

2
.

Finally, ∫ +∞

0
∥∇f(X(s))∥2 ds ≥

∑
k≥k′

∫ tk+
ε
2

tk

∥∇f(X(s))∥2 ds ≥
∑
k≥k′

δ2ε

8
= +∞,

which contradicts ∥∇f(X(·))∥ ∈ L2(R+). So,

lim sup
t→+∞

∥∇f(X(ω, t))∥ = lim inf
t→+∞

∥∇f(X(ω, t))∥ = lim
t→+∞

∥∇f(X(ω, t))∥ = 0, ∀ω ∈ Ωconv.

Let x⋆ ∈ S and ω ∈ Ωconv taken arbitrary. By convexity and Cauchy-Schwarz inequality:

0 ≤ f(X(ω, t))−min f ≤ ∥∇f(X(ω, t))∥ ∥X(ω, t)− x⋆∥ .

The claim then follows because we have already obtained that limt→+∞ ∥X(ω, t)− x⋆∥ exists,
and limt→+∞ ∥∇f(X(ω, t))∥ = 0.
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(iv) Let ω ∈ Ωconv and X̃(ω) be a weak sequential limit point of X(ω, t). Equivalently, there exists
an increasing sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

w-lim
k→+∞

X(ω, tk) = X̃(ω).

Since limt→+∞ f(X(ω, t)) = min f and the fact that f is weakly lower semicontinuous (since it
is convex and continuous), we obtain directly that X̃(ω) ∈ S. Finally, by Opial's Lemma (see
[162]) we conclude that there exists X⋆(ω) ∈ S such that w-limt→+∞X(ω, t) = X⋆(ω). In other
words, since ω ∈ Ωconv was arbitrary, there exists an S-valued random variable X⋆ such that
w-limt→+∞X(t) = X⋆ a.s..

3.2.2 Convergence rates of the objective

Our second main result, stated below, summarizes the global convergence rates in expectation satis�ed
by the trajectories of (SDE).

Theorem 3.2.5. Consider the dynamic (SDE) where f and σ satisfy the assumptions (Hf ) and (Hσ).
Additionally, X0 ∈ L2(Ω;H) and is F0-measurable. The following statements are satis�ed by the

solution trajectory X ∈ S2
H of (SDE):

(i) Let f ◦X(t)
def

= t−1

∫ t

0
f(X(s))ds and X(t) = t−1

∫ t

0
X(s)ds. Then

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
≤

E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t > 0. (3.7)

Besides, if σ∞ is L2(R+), then

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
= O

(
1

t

)
. (3.8)

(ii) Moreover, if f ∈ Γµ(H) with µ > 0, then S = {x⋆} and

(a)

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
, ∀t ≥ 0. (3.9)

Besides, if σ∞ is nonincreasing and vanishes at in�nity, then for every λ ∈]0, 1[:

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
e−µ(1−λ)t + σ2∞(λt), ∀t ≥ 0. (3.10)

(b) Furthermore, if H is �nite-dimensional or f ∈ C2(H):

E (f(X(t))−min f) ≤ E (f(X0)−min f) e−2µt +
Lσ2∗
4µ

, ∀t ≥ 0. (3.11)

Besides, if σ∞ is nonincreasing and vanishes at in�nity, then for every λ ∈]0, 1[:

E (f(X(t))−min f) ≤ E (f(X0)−min f) e−2µt +
Lσ2∗
4µ

e−2µ(1−λ)t +
L

2
σ2∞(λt), ∀t ≥ 0.

(3.12)

Proof. (i) Let x⋆ ∈ S. Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 and G(t) = E(g(t)). By applying Proposi-

tion 3.2.1 with ϕ, and using the convexity of f , we obtain

G(t)−G(0) = E
(∫ t

0
⟨∇f(X(s)), x⋆ −X(s)⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
≤ −E

(∫ t

0
(f(X(s))−min f)ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
(3.13)

≤ −E
(∫ t

0
(f(X(s))−min f)ds

)
+
σ2∗
2
t.

� 40 �



Chapter 3 3.2. Convergence properties for convex di�erentiable functions

Then rearranging the terms in (3.13), using G(t) ≥ 0, and dividing by t > 0, we obtain

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤

E
(
∥X0 − x⋆∥2

)
2t

+
σ2∗
2
, ∀t > 0. (3.14)

Since x⋆ is arbitrary, by taking the in�mum with respect to x⋆ ∈ S in (3.14), we obtain

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤

E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t > 0. (3.15)

Moreover, if σ∞ ∈ L2(R+), then using inequality (3.13), we have

G(t)−G(0) ≤ −E
(∫ t

0
(f(X(s))−min f)ds

)
+

1

2

(∫ +∞

0
σ2∞(s)ds

)
.

Rearranging as before, we conclude that

1

t
E
(∫ t

0
(f(X(s))−min f)ds

)
≤

E
(
dist(X0,S)2

)
2t

+
1

2t

∫ +∞

0
σ2∞(s)ds, ∀t > 0. (3.16)

Then complete the result with the inequality

E
(
f(X(t))−min f

)
≤ E

(
f ◦X(t)−min f

)
which follows from convexity of f and Jensen's inequality.

(ii) (a) Let g(t) = ϕ(X(t)) = ∥X(t)−x⋆∥2
2 , G(t) = E(g(t)). By Proposition 3.2.1 with ϕ, we obtain

G(t)−G(0) = E
(∫ t

0
⟨−∇f(X(s)), X(s)− x⋆⟩ds

)
+

1

2
E
(∫ t

0
tr[Σ(s,X(s))]ds

)
. (3.17)

Using that f ∈ Γµ(H), we deduce that

G(t) ≤ G(0)− µ

∫ t

0
G(s)ds+

∫ t

0

σ2∗
2
ds, ∀t ≥ 0. (3.18)

In order to invoke Lemma2.6.6, we solve the ODE y′(t) = −µy(t) + σ2
∗
2 , ∀t > 0,

y(0) = E
(
∥X0−x⋆∥2

2

)
.

Solving it by the integrating factor method, we conclude that

G(t) ≤ E

(
∥X0 − x⋆∥2

2

)
e−µt +

σ2∗
2µ
, ∀t ≥ 0.

Suppose now that σ∞ is nonincreasing and vanishes at in�nity. We can bound the trace
term by σ2∞ in (3.17). To use Lemma2.6.6, we need to solve y′(t) = −µy(t) + σ2

∞(t)
2 , ∀t > 0,

y(0) = E
(
∥X0−x⋆∥2

2

)
.

Let λ ∈]0, 1[, using the integrating factor method, we get

y(t) ≤ y(0)e−µt + e−µt

∫ t

0

σ2∞(s)

2
eµsds

≤ y(0)e−µt + e−µt

(∫ λt

0

σ2∞(s)

2
eµsds+

∫ t

λt

σ2∞(s)

2
eµsds

)
≤ y(0)e−µt + e−µt

(
σ2∗
2

∫ λt

0
eµsds+

σ2∞(λt)

2

∫ t

λt
eµsds

)
≤ y(0)e−µt + e−µt

(
σ2∗
2µ
eµλt +

σ2∞(λt)

2
eµt
)
, ∀t ≥ 0.
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According to Lemma2.6.6, we deduce that

G(t) ≤ E

(
∥X0 − x⋆∥2

2

)
e−µt +

σ2∗
2µ
e−µ(1−λ)t +

σ2∞(λt)

2
, ∀t ≥ 0,

which is our claim (3.10).

(b) Since f ∈ Γµ(H), it is well known that f satis�es the Polyak-�ojasiewicz inequality 2.2.3,
i.e.

2µ(f(x)−min f) ≤ ∥∇f(x)∥2, ∀x ∈ H,

(see Section 2.4 for an explanation of this inequality). Besides, since f ∈ Γ0(H) ∩ C1,1
L (H)

and X0 ∈ L2(Ω;H), we have that E(f(X0)−min f) < +∞.

We take the function ϕ̂(x) = f(x) − min f and apply Proposition 3.2.1. Then, de�ning
ĝ(t) = f(X(t))−min f and Ĝ(t) = E(g(t)), we obtain

Ĝ(t)− Ĝ(0) ≤ −E
(∫ t

0
∥∇f(X(s))∥2ds

)
+
L

2

∫ t

0
σ2∞(s)ds.

Using the Polyak-�ojasiewicz inequality, we end up having

Ĝ(t)− Ĝ(0) ≤ −2µ

(∫ t

0
Ĝ(s)ds

)
+
L

2

∫ t

0
σ2∞(s)ds. (3.19)

And we conclude by continuing the analysis as in the previous item after arriving to (3.18).

We will rephrase assumption (Hf ) on the objective f to:
f is convex and continuously di�erentiable with L-Lipschitz continuous gradient;

f ∈ C2(H) or H is �nite-dimensional;

S def

= argmin(f) ̸= ∅.
(H⋆

f )

(H⋆
f ) coincides with (Hf ) in the in�nite-dimensional case, but is weaker than (Hf ) when H is �nite-

dimensional.

Under the previous assumption (H⋆
f ) and a stronger assumption on σ∞, we also have the following

pointwise sublinear convergence rate in expectation.

Proposition 3.2.6. Let ν ≥ 2 and consider the dynamic (SDE) where f and σ satisfy the assumptions

(H⋆
f ) and (Hσ), respectively. With initial data X0 ∈ Lν(Ω;H) and is F0-measurable. Assume that there

exists K ≥ 0, β ∈ [0, 1[ such that ∫ t

0
(s+ 1)σ2∞(s)ds ≤ Ktβ, ∀t ≥ 0. (3.20)

Then the solution trajectory X ∈ Sν
H of (SDE) satis�es

E (f(X(t))−min f) = O(tβ−1).

Remark 3.2.7. The case β = 0 in the previous Proposition is equivalent to the condition
t 7→ tσ2∞(t) ∈ L1(R+), in this case we could conclude that:

E(f(X(t))−min f) = O(t−1).
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Proof. Given x⋆ ∈ S, let us apply Proposition 2.7.6 successively with V1(t, x) = t(f(x)−min f), then
with V2(x) = 1

2 ∥x− x⋆∥2. Taking the expectation and adding the two results, we get

E (V1(t,X(t)) + V2(X(t))) ≤ E

(
∥X0 − x⋆∥2

2

)
+
L

2

∫ t

0
sσ2∞(s)ds+

1

2

∫ t

0
σ2∞(s)ds

≤ E

(
∥X0 − x⋆∥2

2

)
+

max{1, L}
2

(∫ t

0
(s+ 1)σ2∞(s)ds

)
,

where we have used the convexity of f in the �rst inequality. Then we conclude that

E(f(X(t))−min f) ≤
E
(
∥X0 − x⋆∥2

)
2t

+
Kmax{1, L}

2
tβ−1 = O(tβ−1).

When f is also C2 and the �rst order moment of σ2∞ is bounded, we get an improved o(t−1) global
convergence rate on the objective in almost sure sense.

Theorem 3.2.8. Consider the dynamic (SDE). Assume that f ∈ C2(H) and σ satisfy the assump-

tions (Hf ) and (Hσ), respectively. Additionally, X0 ∈ L2(Ω;H) and is F0-measurable, and that

t 7→ tσ2∞(t) ∈ L1(R+). Then, the solution trajectory X ∈ S2
H of (SDE) obeys:

(i) t 7→ t∥∇f(X(t))∥2 ∈ L1(R+) a.s..

(ii) f(X(t))−min f = o(t−1) a.s..

Proof. By applying Itô's formula in Proposition 3.2.1 with ϕ(t, x) = t(f(x)−min f) we get

t(f(X(t))−min f) =

∫ t

0
(f(X(s))−min f)ds+

1

2

∫ t

0
tr[Σ(s,X(s))∇2 f(X(s))]sds

−
∫ t

0
s∥∇f(X(s))∥2ds+

∫ t

0
⟨sσ⋆(s,X(s))∇f(X(s)), dW (s)⟩.

By (3.4) and convexity of f , we deduce that f(X(·))−min f ∈ L1(R+) a.s.. Moreover,∫ +∞

0
str[Σ(s,X(s))∇2 f(X(s))]ds ≤ L

∫ +∞

0
sσ2∞(s)ds < +∞.

Then by Theorem2.8.2, we have that limt→+∞ t(f(X(t))−min f) exists a.s. and∫ +∞

0
t∥∇f(X(t))∥2dt < +∞, a.s..

Finally, since
∫ +∞
0

dt
t = +∞, by Lemma2.6.2 we conclude that limt→+∞ t(f(X(t)) − min f) = 0

a.s..

3.3 Convergence rates under the �ojasiewicz inequality

As presented in Section 2.4, the local convergence rate of the �rst-order descent methods can be un-
derstood using the �ojasiewicz property, the associated �ojasiewicz exponent, and the corresponding
Error Bound Inequality.

In this line, we now state the following ergodic local convergence rate.

Proposition 3.3.1. Consider the hypotheses of Theorem3.2.5 and let ε > 0. If f ∈ EBp(S) and this

property holds on [f ≤ rε] for rε > min f + σ2
∗
2 + ε, then ∃tε > 0 such that

dist
(
E(X(t)), S

)
= O(t

− 1
p ) +O

(
σ

2
p
∗

)
, ∀t ≥ tε.
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Proof. There exists tε > 0 such that for all t ≥ tε,
E(dist(X0,S)∈)

2t < ε. Thus, from (3.7) and Jensen's
inequality, we have

f
(
E[X(t)]

)
≤ E[f(X(t))] ≤ min f +

σ2∗
2

+ ε ≤ rε, ∀t ≥ tε.

This re�ects the fact that, E[X(t)] ∈ [f ≤ rε] for t ≥ tε. Using Theorem3.2.5 and that f ∈ EBp(S) is
valid on ([f ≤ rε]), letting γ > 0 the coe�cient of the error bound, we have

γdist(E(X(t)),S)p ≤ f(E[X(t)])−min f ≤
E
(
dist(X0,S)2

)
2t

+
σ2∗
2
, ∀t ≥ tε.

Dividing by γ > 0, then taking the power 1
p on both sides of the previous inequality, and �nally

using the subadditivity of the power function (·)1/p on [0,+∞[ (recall p ≥ 1), we obtain

dist(E(X(t)),S) ≤

(
E
(
dist(X0,S)2

)
2γ

) 1
p

t
− 1

p +

(
σ2∗
2γ

) 1
p

, ∀t ≥ tε.

3.3.1 Discussion on the localization of the process

Let us take a moment to elaborate on the localization of the process X(t) generated by (SDE) when
f ∈ C1,1

L (H) ∩ Γ0(H) and σ∞ ∈ L2(R+). This discussion is essential to understand the challenges
underlying the analysis of the local convergence properties and rates in a stochastic setting under (local)
error bounds. First, observe that the hypothesis of Lipschitz continuity of the gradient is incompatible
with a global hypothesis of error bound or �ojasiewicz inequality unless the exponent is p = 2 or q = 1

2 ,
respectively. Therefore, we can only ask for these inequalities to be locally satis�ed. Even though,
thanks to convexity, we could introduce a global desingularizing function (see [59, Theorem3]), this
function would not be concave nor convex, a fundamental property usually at the heart of the local
analysis. In recent literature on stochastic processes and local properties, it is usual to �nd hypotheses
about the almost sure localization of the process or that it is essentially bounded. Nevertheless, these
assumptions are unrealistic or outright false due to the behavior of the Brownian Motion. Hence, we
will avoid making these kinds of assumptions.

What we will do is to consider that by Theorem3.2.3 we have that limt→+∞ f(X(t)) = min f a.s.,
which means that there exists Ωconv ∈ F such that P(Ωconv) = 1, and (∀r > min f, ∀ω ∈ Ωconv),
(∃tr(ω) > 0) such that (∀t > tr(ω)), X(ω, t) ∈ [f ≤ r]. However, one should not infer from this that
X(t) ∈ [f ≤ r] a.s. for t large enough. Indeed, tr is a random variable which cannot be in general
bounded uniformly on Ωconv. Rather, in this work, we will invoke measure theoretic arguments to pass
from a.s. convergence to almost uniform convergence thanks to Egorov's theorem (see Theorem2.7.1).
More precisely, we will show that

(∀δ > 0,∀r > min f), (∃Ωδ ∈ F s.t. P(Ωδ) ≥ 1− δ and ∃t̂r,δ > 0), (∀ω ∈ Ωδ,∀t > t̂r,δ),

X(ω, t) ∈ [f ≤ r].

Hence, this property will allow us to localize X(t) in the sublevel set of f at r for t large enough
with probability at least 1 − δ. In turn, we will be able to invoke the error bound (or �ojasiewicz)
inequality.

3.3.2 Convergence rates under �ojasiewicz Inequality

We start with a useful Corollary of Lemma2.7.2.
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Corollary 3.3.2. Let δ > 0,Ωδ ∈ F such that P(Ωδ) ≥ 1− δ. Consider (SDE) where f and σ satisfy

the assumptions (H⋆
f ) and (Hσ), respectively. Assume that X0 ∈ L4(Ω;H) and is F0-measurable.

Moreover, suppose that σ∞ ∈ L2(R+). Let X ∈ S4
H be the unique solution of (SDE), then there exists

Cd, Cf > 0 (independent of δ) such that:

E
[
dist(X(t),S)2

2

]
− E

[
dist(X(t),S)2

2
1Ωδ

]
≤ Cd

√
δ,

and

E [f(X(t))−min f ]− E [(f(X(t))−min f)1Ωδ
] ≤ Cf

√
δ.

Proof. Let x⋆ ∈ S. Using Proposition 2.7.6 with ϕ̂(x) = dist(x,S)2
2 , squaring the obtained inequality

and taking expectation, we obtain

E
[
dist(X(t),S)4

4

]
≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⋆(s,X(s))(X(s)− PS(X(s))), dW (s)⟩

)2
]

≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ t

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E

[(
dist(X(t),S)2

2

)2
]
≤ 3

4
E(dist(X0,S)4) +

3

4

(∫ +∞

0
σ2∞(s)ds

)2

+ 3 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ +∞

0
σ2∞(s)ds

]
def

= Cd < +∞.

In the above estimation we used that σ∞ ∈ L2(R+) and supt≥0 E[∥X(t)− x⋆∥2] < +∞ by Theo-
rem3.2.3(i).

On the other hand, since f ∈ Γ0(H) ∩ C1,1
L (H) and X0 ∈ L4(Ω;H), we have that

E([f(X0)−min f ]2) ≤ 1

2
E(∥∇f(X0)−∇f(x⋆)∥4)+ 1

2
E(∥X(t)−x⋆∥4) < L4 + 1

2
E(∥X0−x⋆∥4) < +∞.

Then using Proposition 2.7.6 with ϕ̃(x) = f(x)−min f , squaring it, and taking expectation, we obtain

E
[
[f(X(t)−min f ]2

]
≤ 3E([f(X0)−min f ]2) +

3L2

4

(∫ t

0
σ2∞(s)ds

)2

+ 3E

[(∫ t

0
⟨σ⋆(s,X(s))(∇f(X(s))), dW (s)⟩

)2
]

≤ 3E([f(X0)−min f ]2) +
3L2

4

(∫ t

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ t

0
σ2∞(s)ds

]
.

Taking the supremum over t ≥ 0, we obtain

sup
t≥0

E
[
[f(X(t)−min f ]2

]
≤ 3E([f(X0)−min f ]2) +

3L2

4

(∫ +∞

0
σ2∞(s)ds

)2

+ 3L2 sup
t≥0

E[∥X(t)− x⋆∥2]
[∫ +∞

0
σ2∞(s)ds

]
def

= Cf < +∞.
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And we have proved the hypothesis of Lemma2.7.2 in both cases, applying this lemma, we conclude
the proof.

Now we consider σ∞ ∈ L2(R+), L > 0, δ > 0, β ∈ [0, 1[ and some positive constants Cl, Ck. We also
consider the functions lδ, kδ : R+ → R de�ned by:

lδ(t) =
L

2
σ2∞(t) + Cl

√
δ

σ2∞(t)

2
√∫ t

t̂δ
σ2∞(u)du

, (3.21)

kδ(t) =
L

2
σ2∞(t) + CK

√
δ

σ2∞(t)tβ−1

2
√∫ t

t̂δ
σ2∞(u)uβ−1du

. (3.22)

We are now ready to state our main local convergence result.

Theorem 3.3.3. Consider (SDE) where f and σ satisfy the assumptions (H⋆
f ) and (Hσ), respectively.

Additionally, X0 ∈ L4(Ω;H) and is F0-measurable. Let X ∈ S4
H the unique solution trajectory of

(SDE). Suppose also that σ∞ ∈ L2(R+) (C∞
def

= ∥σ∞∥L2(R+)). Let p ≥ 2 and q
def

= 1 − 1
p ∈ [12 , 1[, and

assume that f ∈ �q(S). Consider also the positive constants C∗, Cl, Ck, Cd, Cf (detailed in the proof).

Then, for all δ > 0, there exists a measurable set Ωδ such that P(Ωδ) ≥ 1− δ and t̂δ > 0 such that the

following statements hold.

(i) If q = 1
2 and σ∞ is nonincreasing, then σ∞ vanishes at in�nity and there exists µ > 0 such that

for every λ ∈]0, 1[,

E (f(X(t))−min f) ≤ e−µ2(t−t̂δ)E(f(X(t̂δ))−min f)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(3.23)

Moreover, if (3.20) holds, then

E (f(X(t))−min f) ≤ e−µ2(t−t̂δ)E(f(X(t̂δ))−min f)

+ e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2

+ CkC∞

√
t̂β−1
δ

√
δ

)
+
kδ(t̂δ + λ(t− t̂δ))

µ2
+ Cf

√
δ, ∀t > t̂δ.

(3.24)

(ii) If q > 1
2 , there exists µ > 0 such that:

E [f(X(t))−min f ] ≤ w⋆
δ (t) + Cf

√
δ, ∀t > t̂δ, (3.25)

where w⋆
δ is the solution of the Cauchy problem

(C.1)

{
y′(t) = −µ2y(t)2q + lδ(t), t > t̂δ

y(t̂δ) = E([f(X(t̂δ)−min f ]1Ωδ
).

Moreover, if (3.20) holds, then

E [f(X(t))−min f ] ≤ z⋆δ (t) + Cf

√
δ, ∀t > t̂δ, (3.26)

where z⋆δ is the solution of the Cauchy problem

(C.2)

{
y′(t) = −µ2y(t)2q + kδ(t), ∀t > t̂δ

y(t̂δ) = E([f(X(t̂δ)−min f ]1Ωδ
).
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Before proceeding with the proof, a few remarks are in order.

Remark 3.3.4. The hypothesis that f has a Lipschitz continuous gradient restricts the �ojasiewicz
exponent q to be in [12 , 1[.

Remark 3.3.5. If we have a global error bound (or �ojasiewicz inequality), then as noted in the
discussion of Section 3.3.1, one necessarily has q = 1

2 . In this case, the statements (i) of Theorem3.3.3
will hold if we replace σ∞ ∈ L2(R+) by σ∞ being nonincreasing and vanishing at in�nity, δ by 0 and
t̂δ by 0. Clearly, one recovers (3.10).

Remark 3.3.6. It is important to highlight the trade-o� in the selection of δ. Although δ can
be arbitrarily small, the time from which the inequalities are satis�ed, t̂δ, surely increases when δ

approaches 0+. Besides, let qδ,t̂δ : R+ → R be a decreasing function. Our convergence rates in

Theorem3.3.3 are of the form E[f(X(t)) − min f ] ≤ qδ,t̂δ(t) + C
√
δ, ∀t > tδ. Let ε ∈]0, 2C[ and

δ⋆ = ε2

4C2 . Then one gets an ε-optimal solution for t > max{q⋆(ε), t̂δ⋆}.

Remark 3.3.7. Referring again to the discussion of Section 3.3.1, we have that there exists δ > 0 and
Ωδ ∈ F with P(Ωδ) ≥ 1 − δ over which we have uniform convergence of the objective. If δ could be
0 (a.s. uniform convergence), there would be a t̂ > 0 such that X(t) ∈ [f ≤ r],∀t > t̂ a.s.. Thus, the
statements in Theorem3.3.3 would hold if we replace δ by 0 and t̂δ by t̂. The proof is far easier in this
case. It is however not easy to ensure the existence of such t̂ in general.

Remark 3.3.8. In order to �nd explicit convergence rates in Theorem3.3.3 we have to solve or bound
the solution of the Cauchy problems (C.1) and (C.2). We can generalize these problems as follows: Let
a > 0, b > 1, t̂δ > 0, δ > 0, y0(t̂δ, δ) > 0 and pδ a nonnegative integrable function. Consider

(C.0)

{
y′(t) = −ayb(t) + pδ(t), ∀t > t̂δ

y(t̂δ) = y0(t̂δ, δ).

Although one could give an explicit ad-hoc pδ in order to �nd a particular solution of (C.0), the
dependence of this function on t̂δ is unavoidable, which is a problem, since pδ is explicitly related to
σ∞, and this in turn is the one that de�nes t̂δ in the �rst place.

To the best of our knowledge, there is no way to arithmetically solve this non linear ODE, not even
a sharp bound of the solution.

Nevertheless, if y(t) = O
(
(t+ 1)−

1
b−1

)
, then pδ(t) = O

(
(t+ 1)−

b
b−1

)
. Which leads us to make the

following conjecture:

Conjecture 3.3.9. If pδ = O(σ2∞) and σ2∞(t) = O
(
(t+ 1)−

b
b−1

)
(for constants independent

of δ and t̂δ), then y(t) = O
(
(t+ 1)−

1
b−1

)
.

Proof. Given that σ∞ ∈ L2(R+), if it is nonincreasing, we have immediately that it vanishes at
in�nity. Let x⋆ ∈ S. Let us recall that by claim (i) of Theorem3.2.3, there exists C∗ > 0 such that

sup
t≥0

E (f(X(t))−min f) ≤ 1

2
E(∥∇f(X(t))−∇f(x⋆)∥2) + 1

2
E(∥X(t)− x⋆∥2) ≤ L2 + 1

2
C∗ < +∞.

On the other hand, by Theorem3.2.3(iii), there exists a set Ωconv ∈ F such that P(Ωconv) = 1 where,
for all ω ∈ Ωconv: limt→+∞ f(X(ω, t)) = min f , t 7→ f(X(ω, t)) is continuous. Then, by Theorem2.7.1
for every δ > 0 there exists Ωδ ∈ F such that Ωδ ⊂ Ωconv, P(Ωδ) > 1 − δ and f(X(·, t)) converges
uniformly to min f on Ωδ. This means that given r ≥ min f , and for every δ > 0, there exist t̂δ > 0
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and Ωδ ∈ F with P(Ωδ) > 1 − δ such that X(ω, t) ∈ [f ≤ r] for all t ≥ t̂δ and ω ∈ Ωδ. On the other
hand, since f ∈ �q(S), by Proposition 2.4.6, there exists r > min f such that f veri�es the p-Hölderian
error bound inequality (2.11) on [min f < f < r]. Consequently, for any δ > 0, there exists t ≥ t̂δ large
enough such that the p-Hölderian error bound inequality holds at X(ω, t) for all t ≥ t̂δ and ω ∈ Ωδ.

We are now ready to start. Let x⋆ ∈ S, δ > 0, and t ≥ t̂δ.

(i) q = 1
2 : Denote g̃(t) = ϕ̃(X(t)) = f(X(t))−min f and G̃(t) = E(1Ωδ

g̃(t)). By Proposition 2.7.6

g̃(t) ≤ g̃(t̂δ)−
∫ t

t̂δ

〈
∇f(X(s)),∇ϕ̃(X(s))

〉
ds+

L

2

∫ t

t̂δ

tr[Σ(s,X(s))]ds

+

∫ t

t̂δ

⟨σ⋆(s,X(s))∇f(X(s)), dW (s)⟩ . (3.27)

Multiplying both sides by 1Ωδ
and taking expectation we obtain

G̃(t)− G̃(t̂δ) ≤ −E
[∫ t

t̂δ

∥∇f(X(s))∥2 1Ωδ
ds

]
+
L

2
E
[∫ t

t̂δ

tr[Σ(s,X(s))]ds

]
+ E

[
1Ωδ

∫ t

t̂δ

⟨σ⋆(s,X(s))∇f(X(s)), dW (s)⟩
]
. (3.28)

On the other hand, we have

E
(∫ T

0
∥σ⋆(s,X(s))∇f(X(s))∥2 ds

)
≤ L2E

(∫ T

0
σ2∞(s) ∥X(s))− x⋆∥2 ds

)
≤ L2C∗

∫ +∞

0
σ2∞(s)ds < +∞, ∀T > 0.

Since E
[∫ t

t̂δ
⟨σ⋆(s,X(s))∇f(X(s)), dW (s)⟩

]
= 0, we have

E
[
1Ωδ

∫ t

t̂δ

⟨σ⋆(s,X(s))(∇f(X(s))), dW (s)⟩
]
=

− E
[
1Ωconv\Ωδ

∫ t

t̂δ

⟨σ⋆(s,X(s))(∇f(X(s)), dW (s)⟩
]
.

The last term can be bounded as∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

⟨σ⋆(s,X(s))(∇f(X(s))), dW (s)⟩
]∣∣∣∣

≤
√
E(1Ωconv\Ωδ

)

√√√√E

[(∫ t

t̂δ

⟨σ⋆(s,X(s))(∇f(X(s))), dW (s)⟩
)2
]

≤ L
√
δ

√
E
[∫ t

t̂δ

σ2∞(s) ∥X(s)− x⋆∥2 ds
]

≤ L
√
C∗

√
δ

√∫ t

t̂δ

σ2∞(s)ds = L
√
C∗

√
δ

∫ t

t̂δ

σ2∞(s)

2
√∫ s

t̂δ
σ2∞(u)du

ds,

where we have used the fundamental theorem of calculus to arrive at the last equality. Let us
notice that if (3.20) holds, then Proposition 3.2.6 tells us that E(f(X(t))−min f) ≤ K ′tβ−1 with
β ∈ [0, 1[, and for some K ′ > 0. In this case, Cauchy-Schwarz inequality and Corollary 2.7 yield∣∣∣∣E [1Ωconv\Ωδ

∫ t

t̂δ

⟨σ⋆(s,X(s))(∇f(X(s))), dW (s)⟩
]∣∣∣∣ ≤ √

2LK ′
√
δ

∫ t

t̂δ

σ2∞(s)sβ−1

2
√∫ s

t̂δ
σ2∞(u)uβ−1du

ds.
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Injecting this into (3.28), we have for all t > t̂δ

G̃(t) ≤ G̃(t̂δ)− E
[∫ t

t̂δ

∥∇f(X(s))∥2 1Ωδ
ds

]
+
L

2

∫ t

t̂δ

σ2∞(s)ds

+


Ck

√
δ
∫ t
t̂δ

σ2
∞(s)sβ−1

2
√∫ s

t̂δ
σ2
∞(u)uβ−1du

ds, ∀t > t̂δ if (3.20) holds,

Cl

√
δ
∫ t
t̂δ

σ2
∞(s)

2
√∫ s

t̂δ
σ2
∞(u)du

ds otherwise,
(3.29)

where Cl = L
√
C∗, Ck =

√
2LK ′ and recall that C∞ =

√∫ +∞
0 σ2∞(s)ds. Recalling lδ(t) and

kδ(t) from (3.21)-(3.22), and by Fubini's theorem, (3.29) becomes

G̃(t) ≤ G̃(t̂δ)−
∫ t

t̂δ

E
[
∥∇f(X(s))∥2 1Ωδ

]
ds+

{∫ t
t̂δ
kδ(s)ds if (3.20) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(3.30)

Since f ∈ �1/2(S), there exists µ > 0 such that

G̃(t) ≤ G̃(t̂δ)− µ2
∫ t

t̂δ

G̃(s)ds+

{∫ t
t̂δ
kδ(s)ds if (3.20) holds,∫ t

t̂δ
lδ(s)ds otherwise.

(3.31)

To get an explicit bound in (3.31), we use Lemma2.6.6, which involves solving

(E.2)

{
y′(t) = −µ2y(t) + lδ(t), ∀t > t̂δ

y(t̂δ) = G̃(t̂δ)

(E.3)

{
y′(t) = −µ2y(t) + kδ(t), ∀t > t̂δ

y(t̂δ) = G̃(t̂δ)

Let λ ∈]0, 1[. Using the integrating factor method as in (i), we get for (E.2)

y(t) ≤ e−µ2(t−t̂δ)E(g̃(t̂δ))

+


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + ClC∞

√
δ
)
+ lδ(t̂δ+λ(t−t̂δ))

µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CkC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

Using Lemma2.6.6 and then Corollary 3.3.2, we obtain

E [f(X(t))−min f ] ≤ y(t) + Cf

√
δ

≤ e−µ2(t−t̂δ)E
[
f(X(t̂δ))−min f

]
+ Cf

√
δ

+


e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + ClC∞

√
δ
)
+ lδ(t̂δ+λ(t−t̂δ))

µ2 for (E.2)

e−µ2(1−λ)(t−t̂δ)

(
LC2

∞
2 + CkC∞

√
t̂β−1
δ

√
δ

)
+ kδ(t̂δ+λ(t−t̂δ))

µ2 for (E.3).

(ii) q > 1
2 :

We use that f ∈ �q(S) with q > 1
2 and the computations of (i). We embark from inequality

(3.29) to get

G̃(t) ≤ G̃(t̂δ)− E
[∫ t

t̂δ

∥∇f(X(s))∥2 1Ωδ
ds

]
+
L

2

∫ t

t̂δ

σ2∞(s)ds

+


Ck

√
δ
∫ t
t̂δ

σ2
∞(s)sβ−1

2
√∫ s

t̂δ
σ2
∞(u)uβ−1du

ds, ∀t > t̂δ if (3.20) holds,

Cl

√
δ
∫ t
t̂δ

σ2
∞(s)

2
√∫ s

t̂δ
σ2
∞(u)du

ds otherwise,

� 49 �



Chapter 3 3.4. Non-smooth structured convex optimization

G̃(t) ≤ G̃(t̂δ)− µ2E
[∫ t

t̂δ

G̃2q(s)ds

]
+
L

2

∫ t

t̂δ

σ2∞(s)ds

+


Ck

√
δ
∫ t
t̂δ

σ2
∞(s)sβ−1

2
√∫ s

t̂δ
σ2
∞(u)uβ−1du

ds, ∀t > t̂δ if (3.20) holds,

Cl

√
δ
∫ t
t̂δ

σ2
∞(s)

2
√∫ s

t̂δ
σ2
∞(u)du

ds otherwise,

In the last inequality, we used that q > 1
2 and Jensen's inequality.

The idea is again to use the comparison lemma (Lemma2.6.6), which will now involve solving
the Cauchy problem (C.1), and �nally invoke Corollary 3.3.2.

3.4 Non-smooth structured convex optimization

In this section, we turn to the composite convex minimization problem with additive structure

min
x∈H

F (x)
def

= f(x) + g(x), (Pcomp)

where the objective F satis�es the following standing assumptions:
f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

g : H → R is proper, lsc and convex;

SF
def

= argmin(F ) ̸= ∅.
(HF )

The importance of this class of problems comes from its wide spectrum of applications ranging from
data processing, to machine learning and statistics to name a few.

We consider two di�erent approaches leading to di�erent SDE's. The �rst is based on a �xed point
argument and the use of the notion of cocoercive monotone operator. The second approach is based
on a regularization/smoothing argument, for instance the Moreau envelope.

3.4.1 Fixed point approach via cocoercive monotone operators

Let us start with some classical de�nitions concerning monotone operators.

De�nition 3.4.1. The graph of an operator A : H ⇒ H is the set:

gph (A) = {(x, u) ∈ H×H : u ∈ A(x)}.

De�nition 3.4.2. An operator A : H ⇒ H is monotone if

⟨u− v, x− y⟩ ≥ 0, ∀(x, u) ∈ gph (A), (y, v) ∈ gph (A).

It is maximally monotone if there exists no monotone operator whose graph properly contains gph (A).
Moreover, A is α-strongly monotone with modulus α > 0 if

⟨u− v, x− y⟩ ≥ α ∥x− y∥2 , ∀(x, u) ∈ gph (A), (y, v) ∈ gph (A).

Remark 3.4.3. If A is maximally monotone and strongly monotone, then

A−1(0)
def

= {x ∈ H : A(x) = 0}

is non-empty and reduced to a singleton.

Remark 3.4.4. The subdi�erential operator ∂g of g ∈ Γ0(H) is maximally monotone.

We recall that cocoercivity was de�ned in Section 2.3.
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Remark 3.4.5. If f ∈ C1,1
L (H) ∩ Γ0(H), then the operator ∇f is L−1-cocoercive.

Our interest now is to solve the structured monotone inclusion problem

0 ∈ A(x) +B(x),

where A is maximally monotone, and B is cocoercive with (A + B)−1(0) ̸= ∅. This is of course a
generalization of (Pcomp) by taking A = ∂g and B = ∇f .
A favorable situation occurs when one can compute the resolvent operator of A

JµA = (I + µA)−1, µ > 0.

In this case, we can develop a strategy parallel to the one which consists in replacing a maximally
monotone operator by its Yosida approximation. Indeed, given µ > 0, we have

(A+B)(x) ∋ 0 ⇐⇒ x− JµA(x− µB(x)) = 0 ⇐⇒ MA,B,µ(x) = 0, (3.32)

where MA,B,µ : H → H is the single-valued operator de�ned by

MA,B,µ(x) =
1

µ
(x− JµA(x− µB(x))) . (3.33)

MA,B,µ is closely tied to the well-known forward-backward �xed point operator. Moreover, when
B = 0, MA,B,µ = 1

µ (I − JµA) which is nothing but the Yosida regularization of A with index µ. As
a remarkable property, for the µ parameter properly set, the operator MA,B,µ is cocoercive. This is
made precise in the following result.

Proposition 3.4.6. [19, LemmaB.1] Let A : H ⇒ H be a general maximally monotone operator, and

let B : H → H be a monotone operator which is λ-cocoercive. Assume that µ ∈]0, 2λ[. Then, MA,B,µ

is ρ-cocoercive with

ρ = µ
(
1− µ

4λ

)
.

We �rst focus on �nding the zeros of M , where

M : H → H is cocoercive and M−1(0) ̸= ∅. (HM )

We will then specialize our results to the case of a structured operator of the form MA,B,µ.

Our goal is to handle the situation where M can be evaluated up to a stochastic error. We therefore
consider the following SDE with an F0-measurable initial data X0:{

dX(t) = −M(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0;

X(0) = X0.
(SDEM )

As in Section 3.1, we will assume that the volatility matrix σ : R+ ×H → L2(K;H) satis�es (Hσ), W
is a Ft-adapted K-valued Brownian motion.

Remark 3.4.7. The motivation of (SDEM ) comes again from the Robbins-Monro stochastic approx-
imation algorithm where the martingale di�erence noise/error is induced by randomly approximating
the action of the whole �xed point operator MA,B,µ. This allows for instance for inexact computation
of the resolvent of A with random noise. However, the situation is more intricate when the noise is
solely on B (i.e. inside the resolvent), as it is standard in many applications (think of B = ∇f and
the latter is accessible only some unbiased stochastic estimator). In this case, to justify moving the
noise outside of the resolvent, one has to modify (SDEM ) to a limiting continuous-time process of a
forward-backward scheme, which would take us to the land of stochastic di�erential inclusions (SDI).
SDI's were only introduced in the early 80's by [121, 122], where the notion of solutions with path-wise
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uniqueness of a solution for a certain class of maximal monotone operators A was introduced. The-
ory of SDI's has subsequently received much attention with general applications including beyond the
maximal monotone case; see e.g. [120]. We point out in particular the results of [173] who was the
�rst to show existence and uniqueness of a solution to SDI's with maximal monotone A and Lipschitz
continuous B using the Yosida approximation of A, hence extending known results of Brézis [66] in the
deterministic case. This is yet another justi�cation behind our second approach using Moreau-Yosida
regularization, though restricted to functions. However, handling SDI's properly necessitates much
more care and many new techniques and notions. This will be the whole content of Chapter 4.

Let us now state the natural extensions of our main results to this situation.

Theorem 3.4.8. LetM : H → H be a cocoercive operator. Consider the stochastic di�erential equation

(SDEM ), with M and σ under the hypotheses (HM ) and (Hσ), respectively. Additionally, let ν ≥ 2,

X0 ∈ Lν(Ω;H) and is F0-measurable. Then, there exists a unique solution X ∈ Sν
H. Moreover, if

σ∞ ∈ L2(R+), then:

(i) E
[
supt≥0 ∥X(t)∥ν

]
< +∞.

(ii) ∀x⋆ ∈M−1(0), limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥0 ∥X(t)∥ < +∞ a.s..

(iii) limt→+∞ ∥M(X(t))∥ = 0 a.s..

(iv) There exists an M−1(0)-valued random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s..

Proof. Existence and uniqueness follow from Theorem2.7.4 since M is Lipschitz continuous and σ

veri�es (Hσ). The proof of the �rst three items remains the same as for Theorem3.2.3, where we use the
cocoercivity ofM instead of the convexity of f in the third item to prove that limt→+∞ ∥M(X(t))∥ = 0

a.s.. For the last item, it su�ces to use that the operator M is demiclosed (since it is maximal
monotone) to conclude with Opial's Lemma.

Theorem 3.4.9. Consider the dynamic (SDEM ) where M and σ satisfy the assumptions (HM ) and
(Hσ). Moreover, let M be a ρ-cocoercive operator. Additionally, X0 ∈ L2(Ω;H) and is F0-measurable.

Let X ∈ S2
H be the unique solution of (SDEM ), then the following properties are satis�ed:

(i) Let M ◦X(t)
def

= t−1
∫ t
0 M(X(s))ds and ∥M(X(t))∥2 def

= t−1
∫ t
0 ∥M(X(s))∥2 ds. We have

E
[∥∥M ◦X(t)

∥∥2] ≤ E
[
∥M(X(t))∥2

]
≤

E
(
dist(X0,M

−1(0))2
)

2ρt
+
σ2∗
2ρ
, ∀t > 0. (3.34)

Besides, if σ∞ is L2(R+), then

E
[∥∥M ◦X(t)

∥∥2] ≤ E
[
∥M(X(t))∥2

]
= O

(
1

t

)
, ∀t > 0. (3.35)

(ii) If M is α-strongly monotone, then M−1(0) = {x⋆} and

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−αt +

σ2∗
α
, ∀t ≥ 0. (3.36)

If, moreover, σ∞ is nonincreasing and vanishes at in�nity, then for every λ ∈]0, 1[

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−γt +

σ2∗
α
e−αt(1−λ) + σ2∞(λt), ∀t > 0. (3.37)

Proof. Analogous to Theorem3.2.5.

As an immediate consequence of the above Theorem, by considering the cocoercive operatorMA,B,µ

de�ned in (3.33), we obtain the following result.
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Corollary 3.4.10. Let A : H ⇒ H be a maximally monotone operator and B : H → H be a λ-

cocoercive operator, λ > 0. Let MA,B,µ be the operator de�ned in (3.33). Assume that µ ∈]0, 2λ[ and
(A + B)−1(0) ̸= ∅. Then, the operator MA,B,µ is ρ-cocoercive with ρ = µ

(
1− µ

4λ

)
, letting ν ≥ 2 and

considering the SDE with initial data X0 ∈ Lν(Ω;H) which is F0-measurable:{
dX(t) = −MA,B,µ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0;

X(0) = X0,
(SDEMA,B,µ)

we can conclude the same results as in Theorem3.4.8 and Theorem3.4.9. In particular, if σ∞ ∈ L2(R+),

there exists an (A+B)−1(0)-valued random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s..

This result naturally applies to problem (Pcomp) when SF = argmin(f + g) ̸= ∅ by taking A = ∂g

and B = ∇f . In this case, one has that X(t) converges a.s. to an SF -valued random variable.
Moreover, using standard inequalities, see e.g. [47], one can show that

E
[
F

(
t−1

∫ t

0

(
proxµg(X(s)− µ∇f(X(s)))

)
ds

)
−min(F )

]
= O

(√
E
[
∥M∂g,∇f,µ(X(t))∥2

])
,

where proxµg = (I + µ∂g)−1 is the proximal mapping of g. From this, one can deduce an O(t−1/2)

rate thanks to (3.34) and (3.35).

Remark 3.4.11. In the �nite dimensional setting (i.e. H = Rd), we could turn to the local convergence
properties of (SDEM ) by extending the results presented in Theorem3.3.3. To this end, we would
need an extension of the Hölderian error bound inequality (or �ojasiewicz inequality) to the operator
setting. For convex functions, it is known that error bound inequalities are closely related to metric
subregularity of the subdi�erential [9, 124, 123]. This leads to the following de�nition.

De�nition 3.4.12. Let M : Rd → Rd be a single-valued operator. We say that M satis�es the
Hölder metric subregularity property with exponent p ≥ 2 at x⋆ ∈M−1(0) if there exists ϱ > 0 and a
neighbourhood Vx⋆ such that

∥M(x)∥2 ≥ ϱdist(x,M−1(0))p, ∀x ∈ Vx⋆ . (3.38)

If this inequality holds for any x⋆ ∈M−1(0) with the same ϱ, we write M ∈ HMSp(H).

3.4.2 Approach via Moreau-Yosida regularization

The previous approach, though it is able to deal with more general setting (that of monotone inclusions),
took us out of the framework of convex optimization by considering instead a dynamic governed
by a cocoercive operator. In particular, the perturbation/noise is considered on the whole operator
evaluation and not on a part of it (i.e. B) as it is standard in many applications. Moreover this approach
led to a pessimistic convergence rate estimate when specialized to convex function minimization. By
contrast, the following approach will operate directly on problem (Pcomp) and is based on a standard
smoothing approach, replacing the non-smooth part g by its Moreau envelope [48].

3.4.2.1 Moreau envelope

Let us start by recalling some basic facts concerning the Moreau envelope.

De�nition 3.4.13. Let g ∈ Γ0(H). Given θ > 0, the Moreau envelope of g of parameter θ is the
function

gθ(x)
def

= inf
y∈H

(
g(y) +

1

2θ
∥x− y∥2

)
=

(
g□

1

θ
q

)
(x)

where □ is the in�mal convolution operator and q(x) = 1
2 ∥x∥

2.
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The Moreau envelope has remarkable approximation and regularization properties, as summarized
in the following statement.

Proposition 3.4.14. Let g ∈ Γ0(H).

(i) gθ(x) ↓ inf g(H) as θ ↑ +∞.

(ii) gθ(x) ↑ g(x) as θ ↓ 0.

(iii) gθ(x) ≤ g(x) for any θ > 0 and x ∈ H,

(iv) argmin(gθ) = argmin(g) for any θ > 0,

(v) g(x)− gθ(x) ≤ θ
2

∥∥∂0g(x)∥∥2 for any θ > 0 and x ∈ dom(∂g),

(vi) gθ ∈ C1,1
1
θ

(H) ∩ Γ0(H) for any θ > 0.

We use the following notation in the rest of the section: F
def

= f + g,S def

= argmin(f), Fθ
def

= f + gθ
and Sθ

def

= argmin(fθ).

Note that Fθ ∈ C1,1

L+ 1
θ

(H) ∩ Γ0(H). Thus we will use Fθ as the potential driving in (SDE), that is{
dX(t) = −∇Fθ(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0;

X(0) = X0.
(SDEθ)

Throughout this section, we assume that X0 ∈ L2(Ω;H) and is F0-measurable. Under (HF ) and (Hσ),
we will show almost sure weak convergence of the trajectory and corresponding convergence rates.

Remark 3.4.15. Though we focus here on the Moreau envelope, our convergence results, in particular,
Proposition 3.4.18, still hold with in�mal-convolution based smoothing using more general smooth
kernels beyond the norm squared; see [48, Section 4.4].

3.4.2.2 Convergence of the trajectory

Applying Theorem3.2.3 to Fθ, we have the following result.

Proposition 3.4.16. For any θ > 0, let X0 ∈ L2(Ω;H) and Xθ ∈ S2
H be the unique solution of

the dynamic (SDEθ) governed by the potential Fθ, and make assumptions (HF ), Sθ ̸= ∅, (Hσ) and

σ∞ ∈ L2(R+). Then there exists an Sθ-valued random variable X⋆
θ such that

w-lim
t→+∞

Xθ(t) = X⋆
θ , a.s..

If f = 0, then Sθ = S (see Proposition 3.4.14(iv)), and Proposition 3.4.16 provides almost sure weak
convergence to a solution of (Pcomp). On the other hand for f ̸= 0, S ≠ Sθ in general and we only
obtain an �approximate� solution of (Pcomp); see Proposition 3.4.17(ii) for a quantitative estimate
of this approximation when f is strongly convex. To obtain a true solution of the initial problem,
a common device consists in using a diagonalization process that combines the dynamic with the
approximation. Speci�cally, one considers{

dX(t) = −∇Fθ(t)(X(t))dt+ σ(t,X(t))dW (t), t ≥ 0;

X(0) = X0,
(SDEθ(t))

where θ(t) ↓ 0 as t → +∞. In the deterministic case, an abundant literature has been devoted to the
convergence of this type of systems. Note that unlike the cocoercive approach, we are now faced with a
non-autonomous stochastic di�erential equation, making this a di�cult problem, a subject for further
research (see also Remark 3.4.7).
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3.4.2.3 Convergence rates

We start with the following uniform bound on Sθ which holds under slightly reinforced, but reasonable
assumptions on f and g.

Proposition 3.4.17. Consider f, g where f and g and are proper lsc and convex, and g is also L0-

Lipschitz continuous.

(i) Assume that F = f + g is coercive. Then, there exists C > 0, such that for any θ ∈ [0, 1]

sup
z∈Sθ

∥z∥ ≤ C. (3.39)

(ii) Assume that f ∈ Γµ(H) for µ > 0. Then (3.39) holds for every θ ∈ [0, 1]. Moreover, S = {x⋆},
Sθ = {x⋆θ} and

∥x⋆θ − x⋆∥2 ≤ L2
0

µ
θ. (3.40)

Proof. (i) Since F is coercive, so is Fθ. Thus both S and Sθ are non-empty compact sets. Let
x⋆θ ∈ Sθ and x⋆ ∈ S. By Proposition 3.4.14(v) and Lipschitz continuity of g, we obtain

F (x⋆θ)− Fθ(x
⋆
θ) = g(x⋆θ)− gθ(x

⋆
θ) ≤

L2
0

2
θ.

Moreover,

Fθ(x
⋆
θ) +

L2
0

2
θ ≤ Fθ(x

⋆) +
L2
0

2
θ ≤ F (x⋆) +

L2
0

2
θ ≤ min(F ) +

L2
0

2

def

= C̃,

where the second inequality is given by Proposition 3.4.14(iv). On the other hand, the coercivity
of F implies that there exists a > 0, b ∈ R such that for any x ∈ H

a ∥x∥+ b ≤ F (x).

Therefore, collecting the above inequalities yields

a ∥x⋆θ∥+ b ≤ F (x⋆θ) ≤ C̃.

Using that x⋆θ is arbitrary in Sθ, and de�ning C
def

= C̃−b
a ≥ 0, we obtain (3.39), or equivalently

that the set of approximate minimizers is bounded independently of θ.

(ii) Since f is µ-strongly convex, so are F and Fθ. In turn, F is coercive and thus (3.39) holds by
claim (i). Strong convexity implies uniqueness of minimizers of F and Fθ. Moreover,

µ

2
∥x⋆θ − x⋆∥2 ≤ Fθ(x

⋆)− Fθ(x
⋆
θ). (3.41)

From Proposition 3.4.14(iii)-(v) and Lipschitz continuity of g, we infer that

Fθ(x
⋆)− Fθ(x

⋆
θ) ≤ F (x⋆)− Fθ(x

⋆
θ) ≤ F (x⋆θ)− Fθ(x

⋆
θ) ≤

L2
0

2
θ. (3.42)

Combining (3.41) and (3.41), we get the claimed bound.

We are now ready to establish complexity results.

Proposition 3.4.18. Suppose that in addition to (HF ) and (Hσ), F = f + g is coercive and g is

L0-Lipschitz continuous. Let X0 ∈ L2(Ω;H) and Xθ ∈ S2
H be the unique solution of (SDEθ) governed

by Fθ with θ ∈]0, 1]. Let C0 = E[(∥X0∥ + C)2], where C is the constant de�ned in (3.39). Then the

following statements hold for any t > 0.
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(i) Let Xθ(t) = t−1

∫ t

0
Xθ(s)ds, then

E
(
F
(
Xθ(t)

)
−minF

)
≤ C0

2t
+
σ2∗
2

+ θ
L2
0

2
.

Besides, if σ∞ ∈ L2(R+), then

E
(
F
(
Xθ(t)

)
−minF

)
=
C0 +

∫ +∞
0 σ2∞(s)ds

2t
+ θ

L2
0

2
.

(ii) If σ∞ veri�es (3.20) with β ∈ [0, 1[, and θ ∈]0, 1], then

E (F (X(t))−minF ) =
C0

2t
+
K(1 + L)

2t1−βθ
+ θ

L2
0

2
.

(iii) If, in addition, f ∈ Γµ(H) for some µ > 0, then S = {x⋆} and

E
(
∥Xθ(t)− x⋆∥2

)
≤ 2C0e

−µt +
2σ2∗
µ

+ 2
L2
0

µ
θ.

Besides, if σ∞ is nonincreasing and vanishes at in�nity, then ∀λ ∈]0, 1[:

E
(
∥Xθ(t)− x⋆∥2

)
≤ 2C0e

−µt +
2σ2∗
µ
e−µ(1−λ)t + 2σ2∞(λt) + 2

L2
0

µ
θ.

Remark 3.4.19. Observe that when f = 0, then Sθ = S = {x⋆}. Therefore in Proposition 3.4.18, the
last term in θ can be dropped.

Proof. (i) Combine Theorem3.2.5(i) applied to Fθ, Proposition 3.4.14(iii) and (v), and Proposi-
tion 3.4.17(i).

(ii) Argue as in claim (i) using Proposition 3.2.6 instead of Theorem3.2.5(i), and use the fact that
∇Fθ is Lipschitz continuous with constant

L+
1

θ
≤ L+ 1

θ
for θ ∈]0, 1].

(iii) Combine Theorem3.2.5(ii) applied to Fθ, Proposition 3.4.17(ii) and Jensen's inequality.
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Chapter 4

Tikhonov Regularization for Stochastic

Non-Smooth Convex Optimization

To solve convex optimization problems with a noisy gradient input, we analyze the global behavior
of subgradient-like �ows under stochastic errors. The objective function is composite, being equal to
the sum of two convex functions, one being di�erentiable and the other potentially non-smooth. We
then use stochastic di�erential inclusions (SDIs) where the drift term is minus the subdi�erential of the
objective function, and the di�usion term is either bounded or square-integrable. In this context, under
Lipschitz's continuity of the di�erentiable term and a growth condition of the non-smooth term, our �rst
main result shows almost sure weak convergence of the trajectory process towards a minimizer of the
objective function. Then, using Tikhonov regularization with a properly tuned vanishing parameter,
we can obtain almost sure strong convergence of the trajectory towards the minimum norm solution.
We �nd an explicit tuning of this parameter when our objective function satis�es a local error-bound
inequality. We also provide a comprehensive complexity analysis by establishing several new pointwise
and ergodic convergence rates in expectation for the convex and strongly convex case.

Main contributions of this chapter

▶ Almost sure weak convergence of the trajectory generated by the SDI to the set of
minimizers (Theorem4.3.2).

▶ Global convergence rates in expectation of the SDI under convexity and strong convexity
of the objective (Theorem4.3.4).

▶ Almost sure strong convergence of the trajectory generated by the Tikhonov regularized
SDI, to the minimal norm minimizer (Theorem4.4.1).

▶ Practical situations where the Tikhonov parameter can be exhibited (Theorem4.4.5).

The content of this chapter was submitted in [145].
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4.1 Introduction

4.1.1 Problem statement

We aim to solve convex minimization problems by means of stochastic di�erential inclusions (SDI),
showing the existence, uniqueness, and properties of the solution. Then, we work with Tikhonov
regularization, speci�cally when the drift term is the sum of the (sub-)gradient of the objective function
and of a Tikhonov regularization term with a vanishing coe�cient. This makes it possible to take into
account a noisy (imprecise) gradient input and obtain convergence a.s. to the minimal norm solution.

Let us consider the minimization problem

min
x∈H

F (x)
def

= f(x) + g(x), (P2)

where H is a separable real Hilbert space, and the objective F satis�es the following standing assump-
tions:

f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

g : H → R is proper, lsc and convex;

SF
def

= argmin(F ) ̸= ∅.
(HF )

To solve (P2), a fundamental dynamic to consider is the subgradient �ow, which is the following
di�erential inclusion (DI) starting in t0 ≥ 0 with initial condition x0 ∈ H:{

ẋ(t) ∈ −∂F (x(t)), t > t0;

x(t0) = x0.
(DI)

It is well known since the founding articles of Brezis, Baillon, Bruck in the 1970s that, when the
initial data x0 is in the domain of F , (more generally when it is in its closure), there exists a unique
strong global solution of (DI). Moreover, if the solution set argmin(F ) of (P2) is nonempty then each
solution trajectory of (DI) converges weakly, and its limit belongs to argmin(F ).

Consider K a real separable Hilbert space. To solve (P2), we will refer to Section 1.2 for the approach
that leads to the dynamic that we will study in this chapter, speci�cally the stochastic counterpart of
(DI), which is the following SDI:
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{
dX(t) ∈ −∂F (X(t)) + σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0,
(SDI)

where the di�usion (volatility) term σ : [t0,+∞[×H → L2(K;H) (see notation in Section 2.1) is a
measurable function that satis�es (Hσ), and W is a K-valued Brownian motion (see Section 2.7 for
a precise de�nition), and the initial data X0 is an Ft0-measurable H-valued random variable. This
dynamic can be viewed as a stochastic dissipative system that aims to minimize F if the di�usion term
vanishes su�ciently fast. Also, it is the natural extension to the non-smooth setting of the work done
in Chapter 3.

An important aspect of our work concerns the Tikhonov regularization of (DI) and (SDI). Given
t0 > 0, and a regularization parameter ε : [t0,+∞[→ R+, which is a measurable function that vanishes
asymptotically in a controlled way, the Tikhonov regularization of (DI) is written:{

ẋ(t) ∈ −∂F (x(t))− ε(t)x(t), t > t0;

x(t0) = x0.
(DI-TA)

The stochastic counterpart of (DI-TA) (which is the Tikhonov regularization of (SDI)), is the following
stochastic di�erential inclusion with initial data X0 ∈ Lν(Ω;H) (for some ν ≥ 2):{

dX(t) ∈ −∂F (X(t))− ε(t)X(t) + σ(t,X(t))dW (t), t > t0;

X(t0) = X0.
(SDI− TA)

The impact of the Tikhonov term has been studied in depth in the deterministic case (DI-TA) (see
[84]). The fact that the Tikhonov regularization parameter ε(t) tends to zero not too fast as t→ +∞
induces a hierarchical minimization property: the limit of any trajectory no longer depends on the
initial data, it is precisely the minimum norm solution. We propose to extend these results to the
stochastic case (SDI− TA) based on the work presented in Chapter 3.

4.1.2 Deterministic subgradient �ow with Tikhonov regularization

Let us �rst recall some basic facts about the deterministic case. To solve (P2), a fundamental dynamic
to consider is the subgradient �ow of F , i.e. the following di�erential inclusion:

ẋ(t) ∈ −∂F (x(t)). (DI)

It is well known since the founding papers of Brezis, Baillon, and Bruck in the 1970s that, if the
solution set argmin(F ) of (P2) is non-empty and F is convex, lower semicontinuous (lsc) and proper,
then each solution trajectory of (DI) converges weakly, and its weak limit belongs to argmin(F ).

In general, the limit solution depends on the initial data and is a priori di�cult to specify when
one has a set of solutions not reduced to only one element. To remedy this di�culty we consider the
di�erential inclusion with vanishing Tikhonov regularization, ε(t) → 0 (denoted (DI-TA)) which gives

ẋ(t) + ∂F (x(t)) + ε(t)x(t) ∋ 0. (DI− TA)

Let H be a real Hilbert space. To analyze the convergence properties of this dynamic, let us recall
basic facts concerning the Tikhonov approximation (1963). It consists in approximating the convex
minimization problem (possibly ill-posed)

min
x∈H

F (x), (P)

by the strongly convex minimization problem (ε > 0):

min
x∈H

F (x) +
ε

2
∥x∥2, (Pε)
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whose unique solution is denoted by xε. The following result was �rst obtained by Browder in 1966
[67, 68].

Theorem 4.1.1. (Hierarchical minimization). Suppose that SF = argmin(F ) ̸= ∅. Then,

(i) limε→0 ∥xε − x⋆∥ = 0 where x⋆ = PSF
(0).

(ii) ∥xε∥ ≤ ∥x⋆∥ for all ε > 0.

The system (DI− TA) is a special case of the general dynamic model

ẋ(t) +∇F (x(t)) + ε(t)∇Ψ(x(t)) ∋ 0 (4.1)

which involves two functions F and Ψ intervening with di�erent time scale. When ε(·) tends to
zero moderately slowly, it was shown in [29] that the trajectories of (4.1) converge asymptotically
to equilibria that are solutions of the following hierarchical problem: they minimize the function
Ψ on the set of minimizers of F . The continuous and discrete-time versions of these systems have a
natural connection to the best response dynamics for potential games, domain decomposition for PDE's,
optimal transport, and coupled wave equations. In the case of the Tikhonov approximation, a natural
choice is to take Ψ(x) = ∥x− xd∥2 where xd is a desired state. By doing so, we obtain asymptotically
the closest possible solution to xd. By translation, we can immediately reduce ourselves to the case
xd = 0, as considered in this article.

The following theorem establishes the convergence of the trajectories of (DI− TA) towards the
minimum norm solution under minimal assumptions on the parameter ε(t).

Theorem 4.1.2. (Cominetti-Peypouquet-Sorin, [84])

Suppose that ε : [t0,+∞[→ R+ is a measurable function that satis�es:

(i) ε(t) → 0 as t→ +∞;

(ii)

∫ +∞

t0

ε(t)dt = +∞.

Let x(·) be a solution trajectory of the continuous dynamic (DI− TA), and x⋆
def

= PSF
(0). Then,

s-limt→+∞ x(t) = x⋆.

Proof. Set Fε(x)
def

= F (x) + ε
2∥x∥

2. Then (DI− TA) can be written equivalently in a denser form as

ẋ(t) + ∂Fε(t)(x(t)) ∋ 0.

Set h(t)
def

= 1
2∥x(t) − x⋆∥2 where x⋆ = PSF

(0). Derivation of f and constitutive equation (DI− TA)
give

ḣ(t) + ⟨−ẋ(t), x(t)− x⋆⟩ = 0, (4.2)

where −ẋ(t) ∈ ∂Fε(t)(x(t)). By strong convexity of Fε(t), we get

Fε(t)(x
⋆) ≥ Fε(t)(x(t)) + ⟨y(t), x⋆ − x(t)⟩+ ε(t)

2
∥x(t)− x⋆∥2,

for every y(t) ∈ ∂Fε(t)(x(t)).
Using that Fε(t)(x(t)) ≥ Fε(t)(xε(t)), we get

F (x⋆) +
ε(t)

2
∥x⋆∥2 ≥ F (xε(t)) +

ε(t)

2
∥xε(t)∥2 + ⟨y(t), x⋆ − x(t)⟩+ ε(t)

2
∥x(t)− x⋆∥2,

for every y(t) ∈ ∂Fε(t)(x(t)) .

From F (x⋆) ≤ F (xε(t)) we deduce

⟨y(t), x(t)− x⋆⟩ ≥ ε(t)h(t) +
ε(t)

2

(
∥xε(t)∥2 − ∥x⋆∥2

)
, (4.3)
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for every y(t) ∈ ∂Fε(t)(x(t)).

Combining (4.2) with (4.3) we obtain

ḣ(t) + ε(t)h(t) ≤ 1
2ε(t)

(
∥x⋆∥2 − ∥xε(t)∥2

)
.

Integrate the above inequality from t0 to t. With m(t)
def

= exp
∫ t
t0
ε(s)ds we get

h(t) ≤ h(t0)

m(t)
+

1

2m(t)

∫ t

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2

)
ds. (4.4)

According to hypothesis (i) and the classical property of the Tikhonov approximation we have
xε(t) → x⋆, and hence ∥x⋆∥2 − ∥xε(s)∥2 → 0. To pass to the limit on (4.4) we use hypothesis (ii)
which tells us that m(t) → +∞. Let us complete the argument by using that convergence implies
ergodic convergence. Precisely, given δ > 0, let tδ > t0 such that |∥x⋆∥2 − ∥xε(s)∥2| ≤ δ for s ≥ tδ.
Then split the integral as follows

h(t) ≤ h(t0)

m(t)
+

1

2m(t)

∫ tδ

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2

)
ds+ δ

1

2m(t)

∫ t

tδ

m′(s)ds (4.5)

≤ h(t0)

m(t)
+

1

2m(t)

∫ tδ

t0

m′(s)
(
∥x⋆∥2 − ∥xε(s)∥2

)
ds+

δ

2
. (4.6)

Then let t tend to in�nity, to get lim supt→+∞ h(t) ≤ δ
2 . This being true for any δ > 0 gives the

result.

4.2 Stochastic di�erential inclusions

In this section, we will work with stochastic di�erential inclusions. For the history of this concept, we
refer the reader to [120, Preface]. We will start by showing a general version of the (SDI) dynamic,
formally describing what it means to be a solution of that dynamic, and then we will move on to show
the conditions under which you can have the existence and uniqueness of a solution. Existence is due
to [173] and uniqueness is proven here. Then we will focus on (SDI) and study the conditions on the
di�usion term in order to ensure the almost sure weak convergence of the trajectory towards the set
of minimizers. Finally, we will show some convergence rates of the objective under the hypothesis of
convexity or strong convexity.

4.2.1 Existence and uniqueness of solution

Let A : H ⇒ H, b : [t0,+∞[×H → H and σ : [t0,+∞[×H → L2(K;H). Let t0 ≥ 0 and consider the
general stochastic di�erential inclusion:{

dX(t) ∈ b(t,X(t))dt−A(X(t))dt+ σ(t,X(t))dW (t), t > 0;

X(t0) = X0,
(SDI0)

de�ned over a complete �ltered probability space (Ω,F , {Ft}t≥t0 ,P), where the di�usion (volatility)
term σ : [t0,+∞[×H → L2(K;H) is a measurable function; W is a Ft-adapted K-valued Brownian
motion; and the initial data X0 is an Ft0-measurable H-valued random variable.

De�nition 4.2.1. A solution of (SDI0) is a couple (X,ϑ) of Ft-adapted processes such that almost
surely:

(i) X is continuous with sample paths in the domain of A;

(ii) ϑ is absolutely continuous, such that ϑ(t0) = 0, and ∀T > t0, ϑ′ ∈ L2([t0, T ];H), ϑ′(t) ∈ A(X(t))

for almost all t ≥ t0;
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(iii) For t > t0, {
X(t) = X0 +

∫ t
t0
b(s,X(s))ds− ϑ(t) +

∫ t
t0
σ(s,X(s))dW (s);

X(t0) = X0.
(4.7)

For brevity, we sometimes omit the process ϑ and say that X is a solution of (SDI0), meaning that,
there exists a process ϑ such that (X,ϑ) satis�es the previous de�nition.

The de�nition of uniqueness for the process X is presented in Section 2.7.

Throughout the chapter it will be assumed:{
A is a maximal monotone operator with closed domain;

S def

= A−1(0) ̸= ∅.
(HA)

{
∃L > 0, ∥b(t, x)− b(t, y)∥ ∨ ∥σ(t, x)− σ(t, y)∥HS ≤ L∥x− y∥,∀t ≥ t0, ∀x, y ∈ H;

supt≥t0(∥b(t, 0)∥ ∨ ∥σ(t, 0)∥HS) < +∞.
(Hb,σ)

The Lipschitz continuity assumption is mild and required to ensure the well-posedness of (SDI0).

We are interested in ensuring the existence and uniqueness of a solution for (SDI0). Although
there are several works that deal with the subject of stochastic di�erential inclusions (see [120, 53, 40,
177, 173, 106]), those of [173, 106] are the closest to our setting and de�ne a solution in the sense of
De�nition 4.2.1, thus generalizing the work of Brézis [66] in the deterministic case to the stochastic
setting. In this work, we consider the sequence of solutions {Xλ}λ>0 of the stochastic di�erential
equations {

dXλ(t) = b(t,X(t))dt−Aλ(Xλ(t))dt+ σ(t,Xλ(t))dW (t), t > t0;

Xλ(t0) = X0,
(SDEλ)

where Aλ = (I − (I + λA)−1)/λ is the Yosida approximation of A with parameter λ > 0. Under the
integrability condition

lim sup
λ↓0

∫ T

t0

E(∥Aλ(Xλ(t))∥2)dt < +∞, (Hλ)

it was shown in [173] that there exists a couple (X,ϑ) of stochastic processes such that for every T > t0,

lim
λ↓0

E

(
sup

t∈[t0,T ]
∥Xλ(t)−X(t)∥2

)
= 0, lim

λ↓0
E

(
sup

t∈[t0,T ]
∥ϑλ − ϑ∥2

)
= 0,

where ϑλ(t) =
∫ t
t0
Aλ(Xλ(s))ds, and that (X,ϑ) is a solution of (SDI0) in the sense of De�nition 4.2.1.

Moreover, one can even have a.s. convergence of the process Xλ when the di�usion term is state-
independent; see [173, Proposition 6.3].

Remark 4.2.2. Condition (Hλ) is satis�ed under di�erent conditions, some examples are mentioned
in [173]. One case where this condition holds is when A is full domain and there exists C0 > 0 such that
∥A0(x)∥ ≤ C0(1 + ∥x∥) for x ∈ H, where A0(x) = argminy∈A(x) ∥y∥.

Let us present our extension of Itô's formula for a multi-valued drift, which plays a central role in
the study of SDI's.

Proposition 4.2.3. Consider (SDI0) under the assumptions of Theorem (4.2.4). Let

(X,ϑ) ∈ Sν
H[t0]× C1([t0,+∞[;H) be the unique solution of (SDI0), and let ϕ : [t0,+∞[×H → R be

such that ϕ(·, x) ∈ C1([t0,+∞[) for every x ∈ H and ϕ(t, ·) ∈ C2(H) for every t ≥ t0. Then the process

Y (t) = ϕ(t,X(t)),
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is an Itô Process such that for all t ≥ 0

Y (t) = Y (t0) +

∫ t

t0

∂ϕ

∂t
(s,X(s))ds+

∫ t

t0

〈
∇ϕ(s,X(s)), b(s,X(s))− ϑ′(s)

〉
ds

+

∫ t

t0

⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩+ 1

2

∫ t

t0

tr
(
σ(s,X(s))σ⋆(s,X(s))∇2ϕ(s,X(s))

)
ds, (4.8)

where ϑ′(t) ∈ A(X(t)) a.s. for almost all t ≥ t0. Moreover, if E[Y (t0)] < +∞, and if for all T > t0

E
(∫ T

t0

∥σ⋆(s,X(s))∇ϕ(s,X(s))∥2 ds
)
< +∞,

then

∫ t

t0

⟨σ⋆(s,X(s))∇ϕ(s,X(s)), dW (s)⟩ is a square-integrable continuous martingale and

E[Y (t)] = E[Y (t0)] + E
(∫ t

t0

∂ϕ

∂t
(s,X(s))ds

)
+ E

(∫ t

t0

〈
∇ϕ(s,X(s)), b(s,X(s))− ϑ′(s)

〉
ds

)
+

1

2
E
(∫ t

t0

tr
(
G(s,X(s))G⋆(s,X(s))∇2ϕ(s,X(s))

)
ds

)
. (4.9)

Proof. The unique solution (X,ϑ) ∈ Sν
H[t0] × C1([t0,+∞[;H) of (SDI0) satis�es (by de�nition) the

following equation:{
X(t) = X0 +

∫ t
t0
[b(s,X(s))− ϑ′(s)]ds+

∫ t
t0
σ(s,X(s))dW (s), t > t0;

X(t0) = X0.
(4.10)

and ϑ′(s) ∈ A(X(s)) for almost all t ≥ t0 a.s.. Then, (4.10) is an Itô process with drift
s 7→ b(s,X(s)) − ϑ′(s) and di�usion s 7→ σ(s,X(s)). Consequently, we can apply the classical Itô's
formula (see Theorem2.7.5) to obtain the desired result.

Now we are ready to state the existence and uniqueness of a solution of (SDI0).

Theorem 4.2.4. Consider (SDI0), where A and (b, σ) satisfy the assumption (HA) and (Hb,σ), re-
spectively. Additionally, suppose that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H) and is

Ft0-measurable. Then, there exists a unique solution (X,ϑ) ∈ Sν
H[t0]× C1([t0,+∞[;H) of (SDI0).

Proof. The existence of a solution (X,ϑ) in the sense of De�nition 4.2.1 comes from [173, Theorem3.5].
We now turn to uniqueness. Let (X1, ϑ1) and (X2, ϑ2) be two solutions of (SDI0). By Itô's formula
(see Theorem4.2.3), we have

∥X1(t)−X2(t)∥2 = 2

∫ t

t0

⟨b(s,X1(s))− b(s,X2(s)), X1(s)−X2(s)⟩ds

− 2

∫ t

t0

⟨ϑ′1(s)− ϑ′2(s), X1(s)−X2(s)⟩ds+
∫ t

t0

∥σ(s,X1(s))− σ(s,X2(s))∥2HSds

+

∫ t

t0

⟨X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)⟩.

Since for almost all t ≥ 0, ϑ′i(t) ∈ A(Xi(t)), i = {1, 2}, by monotonicity of A, we have that for almost
all t ≥ t0,

⟨ϑ′1(t)− ϑ′2(t), X1(t)−X2(t)⟩ ≥ 0,

and thus the second term on the right-hand side is non-positive. Now, let n ∈ N arbitrary and consider
the stopping time τn = inf{t ≥ t0 : ∥X1(t)−X2(t)∥ ≥ n} and evaluate the previous equation at t∧ τn,
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denoting Xn
i (t) = Xi(t ∧ τn) (i = {1, 2}), we have

∥Xn
1 (t)−Xn

2 (t)∥2 ≤ 2

∫ t∧τn

t0

⟨b(s,X1(s))− b(s,X2(s)), X1(s)−X2(s)⟩ds

+

∫ t∧τn

t0

∥σ(s,X1(s))− σ(s,X2(s))∥2HSds

+

∫ t∧τn

t0

⟨X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)⟩

≤ L(L+ 2)

∫ t∧τn

t0

∥X1(s)−X2(s)∥2ds

+

∫ t∧τn

t0

⟨X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)⟩

≤ L(L+ 2)

∫ t

t0

∥Xn
1 (s)−Xn

2 (s)∥2ds

+

∫ t∧τn

t0

⟨X1(s)−X2(s), [σ(s,X1(s))− σ(s,X2(s))]dW (s)⟩.

Note that we have used Cauchy-Schwarz inequality and the Lipschitz assumption on (b, σ) in the second
inequality. Taking expectation of both sides and using the properties of Itô's integral we obtain

E(∥Xn
1 (t)−Xn

2 (t)∥2) ≤ L(L+ 2)

∫ t

t0

E(∥Xn
1 (s)−Xn

2 (s)∥2)ds.

By Grönwall's inequality, we obtain that

E(∥Xn
1 (t)−Xn

2 (t)∥2) = 0,∀t ≥ t0, ∀n ∈ N.

On the other hand, we have that limn→+∞ t ∧ τn = t. Therefore, taking lim infn→+∞ in the previous
expression, using Fatou's Lemma and the fact that X1, X2 are a.s. continuous processes, we conclude
that E(∥X1(t)−X2(t)∥2) = 0, consequently

P(X1(t) = X2(t), ∀t ∈ [t0, T ]) = 1, for every T > t0.

Let T > t0 arbitrary, let us prove that E
(
supt∈[t0,T ] ∥X(t)∥ν

)
< +∞. Using Itô's formula (see

Theorem4.2.3) with the solution process X and the anchor function ϕ(x) = ∥x−x⋆∥2 for x⋆ ∈ A−1(0),
we obtain for every t ∈ [t0, T ]:

∥X(t)− x⋆∥2 = ∥X0 − x⋆∥2 + 2

∫ t

t0

⟨b(s,X(s)), X(s)− x⋆⟩ds− 2

∫ t

t0

⟨ϑ′(s), X(s)− x⋆⟩ds

+

∫ t

t0

∥σ(s,X(s))∥2HSds+ 2

∫ t

t0

⟨X(s)− x⋆, σ(s,X(s))dW (s)⟩.

Since ϑ′(t) ∈ A(X(t)) for almost all t ≥ 0, and 0 ∈ A(x⋆), by monotonicity of A we have that for every
t ∈ [t0, T ],

⟨ϑ′(t), X(t)− x⋆⟩ ≥ 0, for almost all t ≥ 0.

Thus the second integral is nonnegative, which implies

∥X(t)− x⋆∥2 ≤ ∥X0 − x⋆∥2 + 2

∫ t

t0

⟨b(s,X(s)), X(s)− x⋆⟩ds+
∫ t

t0

∥σ(s,X(s))∥2HSds

+ 2

∫ t

t0

⟨X(s)− x⋆, σ(s,X(s))dW (s)⟩.
(4.11)

Moreover, we have

2⟨b(t, x), x−x⋆⟩+∥σ(t, x)∥2HS ≤ 2∥b(t, x)∥∥x−x⋆∥+∥σ(t, x)∥2HS ≤ C(1+∥x−x⋆∥2), ∀t ≥ t0,∀x ∈ H.
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We now proceed as in the proof of [112, Lemma 3.2] to conclude that X ∈ Sν
H[t0]. In fact, we take

power ν
2 at both sides of (4.11), then using that (a+ b+ c)

ν
2 ≤ 3

ν−2
2 (a

ν
2 + b

ν
2 + c

ν
2 ) we have

∥X(t)− x⋆∥ν ≤ 3
ν−2
2

(
∥X0 − x⋆∥ν + C

ν
2

(∫ t

t0

1 + ∥X(s)− x⋆∥2ds
) ν

2

)

+ 3
ν−2
2 2

ν
2

(∫ t

t0

⟨X(s)− x⋆, σ(s,X(s))dW (s)⟩
) ν

2

.

Now taking supremum t ∈ [t0, T ] and then expectation at both sides, we have that there exists
K = K(ν, T ) such that:

E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
≤ K

(
1 + E (∥X0 − x⋆∥ν) +

∫ T

t0

E(∥X(s)− x⋆∥ν)ds
)

+KE

(
sup

t∈[t0,T ]

∣∣∣ ∫ t

t0

⟨X(s)− x⋆, σ(s,X(s))dW (s)⟩
∣∣∣ ν2) .

By Proposition 2.8.3, we get that, for a rede�ned K = K(ν, T ),

E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
≤ K

(
1 + E (∥X0 − x⋆∥ν) +

∫ T

t0

E(∥X(s)− x⋆∥ν)ds
)

+KE
(∣∣∣ ∫ T

t0

∥X(s)− x⋆∥2∥σ(s,X(s))∥2HSds
∣∣∣ ν4) . (4.12)

Note that by Cauchy-Schwarz and Young's inequality,

E
(∣∣∣ ∫ T

t0

∥X(s)− x⋆∥2∥σ(s,X(s))∥2HSds
∣∣∣ ν4)

≤ E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥

ν
2

(∫ T

t0

∥σ(s,X(s))∥2HS

) ν
4

)

≤ 1

2K
E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
+
K

2
E

[(∫ T

t0

∥σ(s,X(s))∥2HS

) ν
2

]

≤ 1

2K
E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
+
KC

ν
2

2
E

[(∫ T

t0

1 + ∥X(s)− x⋆∥2ds
) ν

2

]

≤ 1

2K
E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
+
KC

ν
2

2
T

ν−2
2 E

[(∫ T

t0

(1 + ∥X(s)− x⋆∥2)
ν
2 ds

)]
.

Substituting this into (4.12), we have, for a possibly di�erent K = K(ν, T ),

E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
≤ K

(
1 + E (∥X0 − x⋆∥ν) +

∫ T

t0

E

(
sup
t∈[0,s]

∥X(t)− x⋆∥ν
)
ds

)
.

By Grönwall's inequality, we obtain

E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥ν

)
≤ K (1 + E (∥X0 − x⋆∥ν)) eKT < +∞.

Since T > t0 is arbitrary, we conclude that X ∈ Sν
H[t0].

Corollary 4.2.5. Consider (SDEλ), where A and (b, σ) satisfy the assumption (HA) and (Hb,σ),
respectively. Additionally, let us consider that A satisfy (Hλ) and let ν ≥ 2 such that X0 ∈ Lν(Ω;H)

and is Ft0-measurable. Then,

sup
λ>0

E

(
sup

t∈[t0,T ]
∥Xλ(t)∥ν

)
< +∞.
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Proof. Since A−1(0) = A−1
λ (0) and Aλ is monotone, we replace ϑ′ by Aλ(Xλ) in the proof of Theo-

rem4.2.4, then we realize that the constant that bounds E
(
supt∈[t0,T ] ∥Xλ(t)∥ν

)
is independent from

λ to conclude.

4.3 Convergence properties for convex functions

Recall that our focus in this thesis is on an optimization perspective, and as we argued in the introduc-
tion, we will study the long time behavior of our SDE as the di�usion term vanishes when t → +∞.
Therefore, we recall that we assume that the di�usion (volatility) term σ satis�es:{

supt≥t0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(Hσ)

for some l0 > 0 and for all t ≥ t0, x, x
′ ∈ H. The Lipschitz continuity assumption is mild and

classical and will be required to ensure the well-posedness of (SDI). Let us also recall that we de�ne
σ∞ : [t0,+∞[→ R+ as

σ∞(t)
def

= sup
x∈H

∥σ(t, x)∥HS.

Remark 4.3.1. (Hσ) implies the existence of σ∗ > 0 such that:

∥σ(t, x)∥2HS = tr[Σ(t, x)] ≤ σ2∗,

for all t ≥ t0, x ∈ H, where Σ
def

= σσ⋆.

We consider f + g (called the potential) and study the dynamic (SDI) under the hypotheses (HF )
(i.e. f ∈ C1,1

L (H) ∩ Γ0(H), g ∈ Γ0(H)) and (Hσ). Recall the de�nitions of σ∗ and σ∞(t) from (1.5).
And we also recall the notation

F (x)
def

= f(x) + g(x)

Σ(t, x)
def

= σ(t, x)σ(t, x)⋆

SF
def

= argmin(F ).

4.3.1 Almost sure weak convergence of the trajectory

Our �rst main result establish almost sure weak convergence of X(t) to a point that belongs in SF .
It is based on Itô's formula, and on Barbalat's and Opial's Lemma. It follows the same ideas as in
Theorem3.2.3.

Theorem 4.3.2. Consider F = f+g and σ satisfying (HF ) and (Hσ) respectively. Suppose further that
∂g veri�es (Hλ). Let ν ≥ 2, t0 ≥ 0 , and consider the dynamic (SDI) with initial data X0 ∈ Lν(Ω;H),

i.e.:
dX(t) ∈ −∂F (X(t))dt+ σ(t,X(t))dW (t);

X(t0) = X0,
(4.13)

where W is a K-valued Brownian motion. Then, there exists a unique solution (in the sense of Theo-

rem4.2.4) (X,ϑ) ∈ Sν
H[t0]× C1([t0,+∞[;H).

Moreover, if σ∞ ∈ L2([t0,+∞[), then the following holds:

(i) E[supt≥t0 ∥X(t)∥ν ] < +∞.

(ii) ∀x⋆ ∈ SF , limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥t0 ∥X(t)∥ < +∞ a.s..
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(iii) If g is continuous , then ∇f is constant on SF , s-limt→+∞∇f(X(t)) = ∇f(x⋆) a.s. for any

x⋆ ∈ SF , and ∫ +∞

t0

[F (X(t))−minF ]dt < +∞.

(iv) If (iii) holds, then there exists an SF -valued random variable X⋆ such that w-limt→+∞X(t) = X⋆.

Remark 4.3.3. By classical properties of the Yosida approximation

(∂g(x))λ = ∇gλ(x) =
1

λ
(x− proxλg(x)),

where gλ is the Moreau envelope of g with parameter λ > 0. If there exists C > 0, such that

∥x− proxλg(x)∥ ≤ λC,

the assumption (Hλ) is satis�ed by ∂g. As mentioned in Remark 4.2.2, if g is continuous and

∥∂0g(x)∥ ≤ C0(1 + ∥x∥),

for some C0 > 0, then ∂g also satis�es (Hλ).

Proof. (i) Directly from Theorem4.2.4.

(ii) Since F is convex, we �rst notice that SF = (∂F )−1(0).

Now let us consider (X,ϑ) ∈ Sν
H[t0]×C1([t0,+∞[;H) be the unique solution of (SDI0) given by

Theorem4.2.4, and ϕ(x) = ∥x−x⋆∥2
2 , where x⋆ ∈ SF . Then by Itô's formula

ϕ(X(t)) =
∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ=ϕ(X0)

+
1

2

∫ t

t0

tr (Σ(s,X(s))) ds︸ ︷︷ ︸
At

−
∫ t

t0

〈
ϑ′(s) +∇f(X(s)), X(s)− x⋆

〉
ds︸ ︷︷ ︸

Ut

+

∫ t

t0

⟨σ⋆(s,X(s)) (X(s)− x⋆) , dW (s)⟩︸ ︷︷ ︸
Mt

. (4.14)

Let us observe that, since ν ≥ 2, we have that E(supt≥t0 ∥X(t)∥2) < +∞. Moreover, since
σ∞ ∈ L2([t0,+∞[) we have

E
(∫ +∞

t0

∥σ⋆(s,X(s)) (X(s)− x⋆)∥2 ds
)

≤ E
(
sup
t≥t0

∥X(t)− x⋆∥2
)∫ +∞

t0

σ2∞(s)ds < +∞.

ThereforeMt is a square-integrable continuous martingale. It is also a continuous local martingale
(see [141, Theorem 1.3.3]), which implies that E(Mt) = 0.

Moreover, since F is a convex function, then ∂F is a monotone operator. On the other hand
ϑ′(t) ∈ ∂g(X(t)) a.s. for almost all t ≥ t0, so〈

ϑ′(t) +∇f(X(t)), X(t)− x⋆
〉
≥ 0, a.s.for almost all t ≥ t0.

We have that At and Ut de�ned as in (4.14) are two continuously adapted increasing processes
with A0 = U0 = 0 a.s.. Since ϕ(X(t)) is nonnegative and supx∈H ∥σ(·, x)∥HS ∈ L2([t0,+∞[), we
deduce that limt→+∞At < +∞. Then, we can use Theorem2.8.2 to conclude that∫ +∞

t0

⟨ϑ′(t) +∇f(X(t)), X(t)− x⋆⟩dt < +∞ a.s. (4.15)

and

∀x⋆ ∈ SF , ∃Ωx⋆ ∈ F , such that P(Ωx⋆) = 1 and lim
t→+∞

∥X(ω, t)− x⋆∥ exists ∀ω ∈ Ωx⋆ . (4.16)
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Since H is separable, there exists a countable set Z ⊆ SF , such that cl(Z) = SF (where cl stands
for the closure of the set). Let Ω̃ =

⋂
z∈Z Ωz. Since Z is countable, a union bound shows

P(Ω̃) = 1− P

(⋃
z∈Z

Ωc
z

)
≥ 1−

∑
z∈Z

P(Ωc
z) = 1.

For arbitrary x⋆ ∈ SF , there exists a sequence (zk)k∈N ⊆ Z such that limk→+∞ zk = x⋆. In view
of (4.16), for every k ∈ N there exists τk : Ωzk → R+ such that

lim
t→+∞

∥X(ω, t)− zk∥ = τk(ω), ∀ω ∈ Ωzk . (4.17)

Now, let ω ∈ Ω̃. Since Ω̃ ⊂ Ωzk for any k ∈ N, and using the triangle inequality and (4.17), we
obtain that

τk(ω)− ∥zk − x⋆∥ ≤ lim inf
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t)− x⋆∥ ≤ τk(ω) + ∥zk − x⋆∥ .

Now, passing to k → +∞, we deduce

lim sup
k→+∞

τk(ω) ≤ lim inf
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim sup
t→+∞

∥X(ω, t)− x⋆∥ ≤ lim inf
k→+∞

τk(ω),

whence we deduce that limk→+∞ τk(ω) exists on the set Ω̃ of probability 1, and in turn

lim
t→+∞

∥X(ω, t)− x⋆∥ = lim
k→+∞

τk(ω).

Let us recall that there exists Ωcont ∈ F such that P(Ωcont) = 1 and X(ω, ·) is continuous for
every ω ∈ Ωcont. Now let x⋆ ∈ SF arbitrary, since the limit exists, for every ω ∈ Ω̃ ∩ Ωcont there
exists T (ω) such that ∥X(ω, t)− x⋆∥ ≤ 1 + limk→+∞ τk(ω) for every t ≥ T (ω). Besides, since
X(ω, ·) is continuous, by Bolzano's theorem

sup
t∈[0,T (ω)]

∥X(ω, t)∥ = max
t∈[0,T (ω)]

∥X(ω, t)∥ def

= h(ω) < +∞.

Therefore, supt≥t0 ∥X(ω, t)∥ ≤ max{h(ω), 1 + limk→+∞ τk(ω) + ∥x⋆∥} < +∞.

(iii) Let Nt =

∫ t

t0

σ(s,X(s))dW (s). This is a continuous martingale (w.r.t. the �ltration Ft), which

veri�es

E(∥Nt∥2) = E
(∫ t

t0

∥σ(s,X(s))∥2HS ds

)
≤ E

(∫ +∞

t0

σ2∞(s)ds

)
< +∞, ∀t ≥ t0.

According to Theorem2.8.1, we deduce that there exists a H−valued random variable N∞ w.r.t.
F∞, and which veri�es: E(∥N∞∥2) < +∞, and there exists ΩN ∈ F such that P(ΩN ) = 1 and

lim
t→+∞

Nt(ω) = N∞(ω) for every ω ∈ ΩN .

On the other hand, since x⋆ ∈ (∂F )−1(0) = (∇f+∂g)−1(0), then −∇f(x⋆) ∈ ∂g(x⋆). Let T > t0
such that ϑ′(t) ∈ ∂g(X(t)) a.s., consequently,

⟨ϑ′(t) +∇f(X(t)), X(t)− x⋆⟩ = ⟨ϑ′(t)− (−∇f(x⋆)), X(t)− x⋆⟩︸ ︷︷ ︸
≥0

+ ⟨∇f(X(t))−∇f(x⋆), X(t)− x⋆⟩
≥ ⟨∇f(X(t))−∇f(x⋆), X(t)− x⋆⟩

≥ 1

L
∥∇f(X(t))−∇f(x⋆)∥2 ,

where ⟨ϑ′(t)− (−∇f(x⋆)), X(t)− x⋆⟩ ≥ 0 by monotonicity of ∂g. Then by (4.15) we obtain∫ +∞

t0

∥∇f(X(t))−∇f(x⋆)∥2 dt < +∞ a.s.. (4.18)
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Let ΩHS ∈ F be the event where (4.15) (and consequently (4.18)) is satis�ed ( P(ΩHS) = 1). Let
Ωϑ ∈ F be the event where ϑ′(t) ∈ ∂g(X(t)) for almost all T > t0 (P(Ωϑ) = 1). Finally, let
Ωconv

def

= Ω̃ ∩ Ωcont ∩ ΩHS ∩ ΩM ∩ Ωϑ, hence P(Ωconv) = 1. Let also ω ∈ Ωconv ⊆ ΩHS arbitrary,
then

lim inf
t→+∞

∥∇f(X(ω, t))−∇f(x⋆)∥ = 0.

If also

lim sup
t→+∞

∥∇f(X(ω, t))−∇f(x⋆)∥ = 0

then we conclude with the proof. Suppose by contradiction that there exists ω0 ∈ Ωconv such
that

lim sup
t→+∞

∥∇f(X(ω0, t))−∇f(x⋆)∥ > 0.

Then, by Lemma2.6.7, there exists δ(ω0) > 0 satisfying

0 = lim inf
t→+∞

∥∇f(X(ω0, t))−∇f(x⋆)∥ < δ(ω0) < lim sup
t→+∞

∥∇f(X(ω0, t))−∇f(x⋆)∥ ,

and there exists (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞,

∥∇f(X(ω0, tk))−∇f(x⋆)∥ > δ(ω0) and tk+1 − tk > 1, ∀k ∈ N.

Additionally, consider ϑ′(ω0, t) ∈ ∂g(X(ω0, t)) for almost all T > t0. Since
supt≥t0 ∥X(ω0, t)∥ < +∞, ∂g is full domain, and the fact that ∂g maps bounded sets onto
bounded sets, we have that there exists Cϑ(ω0) ≥ 0 such that ∥ϑ′(ω0, t)∥2 ≤ Cϑ(ω0) for almost
all T > t0.

We allow ourselves the abuse of notation X(t)
def

= X(ω0, t), ϑ
′(t)

def

= ϑ′(ω0, t), Cϑ
def

= Cϑ(ω0) and
δ

def

= δ(ω0) during the rest of the proof from this point.

Let
� C0

def

= Cϑ + ∥∇f(x⋆)∥2;

� C1
def

= (2C0+1)2−1
C0

> 0;

� ε ∈
]
0,min{ δ2

4L2 , C1}
[
;

� and C(ε)
def

=
√
C0ε+1−1
4C0

∈]0, 12 ].
Note that this choice entails that the intervals ([tk, tk + C(ε)])k∈N are disjoint. On the other hand,
according to the convergence of Nt and the fact that ∥∇f(X(t))−∇f(x⋆)∥ ∈ L2([t0,+∞[), there
exists k′ > 0 such that for every k ≥ k′,

sup
t≥tk

∥Nt −Ntk∥
2 <

ε

4
and

∫ +∞

tk

∥∇f(X(t))−∇f(x⋆)∥2dt < 1.

Also, we compute∫ t

tk

∥∥ϑ′(s) +∇f(X(s))
∥∥2 ds ≤ 2

∫ t

tk

∥∇f(X(s))−∇f(x⋆)∥2 ds+ 2

∫ t

tk

∥∥ϑ′(s) +∇f(x⋆)
∥∥2 ds

≤ 2 + 4C0(t− tk).

Furthermore, C(ε) was chosen such that C(ε) + 2C0C(ε)
2 ≤ ε

8 . Besides for every k ≥ k′,
t ∈ [tk, tk + C(ε)],

∥X(t)−X(tk)∥2 ≤ 2(t− tk)

∫ t

tk

∥∥ϑ′(s) +∇f(X(s))
∥∥2 ds+ 2∥Nt −Ntk∥

2

≤ 4(t− tk) + 8C0(t− tk)
2 +

ε

2
≤ ε.
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Since ∇f is L-Lipschitz and L2ε ≤
(
δ
2

)2
by assumption on ε, we have that for every k ≥ k′ and

t ∈ [tk, tk + C(ε)]

∥∇f(X(t))−∇f(X(tk))∥2 ≤ L2 ∥X(t)−X(tk)∥2 ≤
(
δ

2

)2

.

Therefore, for every k ≥ k′, t ∈ [tk, tk + C(ε)]

∥∇f(X(t))−∇f(x⋆)∥ ≥ ∥∇f(X(tk))−∇f(x⋆)∥ − ∥∇f(X(t))−∇f(X(tk))∥︸ ︷︷ ︸
≤ δ

2

≥ δ

2
.

Finally, ∫ +∞

t0

∥∇f(X(s))−∇f(x⋆)∥2 ds ≥
∑
k≥k′

∫ tk+C(ε)

tk

∥∇f(X(s))−∇f(x⋆)∥2 ds

≥
∑
k≥k′

δ2C(ε)

4
= +∞,

which contradicts ∥∇f(X(·))−∇f(x⋆)∥ ∈ L2([t0,+∞[). So, for every ω ∈ Ωconv,

lim sup
t→+∞

∥∇f(X(ω, t))−∇f(x⋆)∥ = lim inf
t→+∞

∥∇f(X(ω, t))−∇f(x⋆)∥

= lim
t→+∞

∥∇f(X(ω, t))−∇f(x⋆)∥ = 0.

On the other hand, since F is convex, by (4.15), we obtain∫ +∞

t0

F (X(t))−minF dt < +∞, a.s.. (4.19)

Since supt≥t0 ∥X(t)∥ < +∞ a.s., and (∂F ) maps bounded sets onto bounded sets (since g is
convex and continuous), we can show that there exists L̃ > 0 such that

|F (X(t1))− F (X(t2))| ≤ L̃∥X(t1)−X(t2)∥, ∀t1, t2 ≥ t0, a.s..

Using the same technique as before, we can conclude that limt→+∞ F (X(t)) = minF a.s..

(iv) Let ω ∈ Ωconv and X̃(ω) be a weak sequential limit point of X(ω, t). Equivalently, there exists
an increasing sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

w-lim
k→+∞

X(ω, tk) = X̃(ω).

Since limt→+∞ F (X(ω, t)) = minF and the fact that f is weakly lower semicontinuous (since it
is convex and continuous), we obtain directly that X̃(ω) ∈ SF . Finally, by Opial's Lemma (see
[162]) we conclude that there exists X⋆(ω) ∈ SF such that

w-lim
t→+∞

X(ω, t) = X⋆(ω).

In other words, since ω ∈ Ωconv was arbitrary, there exists an SF -valued random variable X⋆

such that w-limt→+∞X(t) = X⋆ a.s..

4.3.2 Convergence rates of the objective

Our �rst result, stated below, summarizes the global convergence rates in expectation satis�ed by the
trajectories of (SDI).

Theorem 4.3.4. Consider the dynamic (SDI) where F = f+g and σ satisfy the assumptions (HF ) and
(Hσ), furthermore assume that ∂g satis�es (Hλ). Additionally, X0 ∈ L2(Ω;H) and is Ft0-measurable.

The following statements are satis�ed by the unique solution trajectory X ∈ S2
H[t0] of (SDI):
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(i) Let F ◦X(t)
def

= t−1

∫ t

t0

F (X(s))ds and X(t) = t−1

∫ t

t0

X(s)ds. Then

E
(
F (X(t))−minF

)
≤ E

(
F ◦X(t)−minF

)
≤

E
(
dist(X0,SF )

2
)

2t
+
σ2∗
2
, ∀t > t0. (4.20)

Besides, if σ∞ is L2([t0,+∞[), then

E
(
F (X(t))−minF

)
≤ E

(
F ◦X(t)−minF

)
= O

(
1

t

)
. (4.21)

(ii) Moreover, if F ∈ Γµ(H) with µ > 0, then SF = {x⋆} and

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
, ∀t > t0. (4.22)

Besides, if σ∞ is nonincreasing and vanishes at in�nity, then:

E
(
∥X(t)− x⋆∥2

)
≤ E

(
∥X0 − x⋆∥2

)
e−µt +

σ2∗
µ
e

µt0
2 e−

µt
2 + σ2∞

(
t0 + t

2

)
, ∀t > t0. (4.23)

Proof. Using that F (x)−minF ≤ ⟨y, x−x⋆⟩ for every y ∈ ∂F (x), x⋆ ∈ SF , and Itô's formula with the

anchor function ϕ(x) = ∥x−x⋆∥2
2 (for x⋆ ∈ SF ), the proof is analogous to the one in Theorem3.2.5.

4.4 Tikhonov regularization: Convergence properties for convex func-

tions

It is important to provide insight into the technique of Tikhonov regularization. This allows us to pass
from the almost sure weak convergence towards the set of minimizers of the trajectory generated by
(SDI0) to achieving almost sure strong convergence of the trajectory generated by (SDI− TA), not
only towards the set of minimizers but to the minimal norm solution. The price to pay in order to
achieve this is the proper tuning of the Tikhonov parameter that depends on a local constant that
could be hard to compute, besides that, we obtain slower convergence rates of the objective, passing
from O(t−1) to O(t−r +R(t)), where r < 1 and R(t) → 0 (de�ned below in (4.33)).

4.4.1 Almost sure convergence of the trajectory to the minimal norm solution

Our second main result establish almost sure convergence of X(t) to x⋆ = PSF
(0) as t → +∞. It is

based on a subtle tuning of the Tikhonov parameter ε(t) formulated as conditions (T1), (T2), and (T3)
below. We know that ∥x⋆∥2 − ∥xε(t)∥2 tends to zero as t → +∞. We shall see that the condi-
tions (T1), (T2), and (T3) are compatible for tame functions, i.e. which satisfy a Kurdyka-�ojasiewicz
property (see Section 2.4).

Theorem 4.4.1. Consider the dynamic (SDI− TA) where F = f + g and σ satisfy the assumptions

(HF ) and (Hσ), respectively, furthermore assume that ∂g satisfy (Hλ). Let ν ≥ 2, and its initial data

X0 ∈ Lν(Ω;H). Then, there exists a unique solution X ∈ Sν
H[t0] of (SDI− TA). Let x⋆

def

= PSF
(0) be

the minimum norm solution, and for ε > 0 let xε be the unique minimizer of Fε(x)
def

= F (x) + ε
2∥x∥

2.

Suppose that σ∞ ∈ L2(R+), and that ε : [t0,+∞[→ R+ satis�es the conditions:

(T1) ε(t) → 0 as t→ +∞;

(T2)
∫ +∞

t0

ε(t)dt = +∞;

(T3)
∫ +∞

t0

ε(t)
(
∥x⋆∥2 − ∥xε(t)∥2

)
dt < +∞.
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Then the following holds:

(i)

∫ +∞

t0

ε(t)E[∥X(t)− x⋆∥2]dt < +∞.

(ii) limt→+∞ ∥X(t)− x⋆∥ exists a.s. and supt≥t0 ∥X(t)∥ < +∞ a.s..

(iii)

∫ +∞

t0

ε(t) ∥X(t)− x⋆∥2 dt < +∞ a.s..

(iv) s-limt→+∞X(t) = x⋆ a.s.

Proof. The existence and uniqueness of a solution X ∈ Sν
H[t0] follow directly from the fact that the

conditions of Theorem4.2.4 are satis�ed under (HF ) and (Hσ). The only subtlety to check is that
supt≥t0 |ε(t)| < +∞, but this can be assumed without loss of generality since ε(t) → 0 as t→ +∞ (it
might be necessary a rede�nition of t0).

Our stochastic dynamic (SDI− TA) can be written equivalently as follows{
dX(t) ∈ −∂Fε(t)(X(t))dt+ σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0,
(SDIT)

(i) Let us de�ne the anchor function ϕ(x) = ∥x−x⋆∥2
2 . Since ∂g satisfy (Hλ), there exists a stochastic

process ϑ̃ : Ω× [t0,+∞[→ H such that ϑ̃(t) ∈ ∂Fε(t)(X(t)) a.s. for almost all t ≥ t0. Using Itô's
formula we obtain

ϕ(X(t)) =
∥X0 − x⋆∥2

2︸ ︷︷ ︸
ξ

+
1

2

∫ t

t0

tr (Σ(s,X(s))) ds︸ ︷︷ ︸
At

−
∫ t

t0

〈
ϑ̃(s), X(s)− x⋆

〉
ds︸ ︷︷ ︸

Ut

+

∫ t

t0

⟨σ⋆(s,X(s)) (X(s)− x⋆) , dW (s)⟩︸ ︷︷ ︸
Mt

. (4.24)

Since X ∈ S2
H[t0] by Proposition 4.2.3, we have for every T > t0, that

E
(∫ T

t0

∥σ⋆(s,X(s)) (X(s)− x⋆)∥2 ds
)

≤ E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥2

)∫ +∞

t0

σ2∞(s)ds < +∞.

Therefore Mt is a square-integrable continuous martingale. It is also a continuous local martin-
gale, which implies that E(Mt) = 0.
Let us now take the expectation of (4.24). Using that

0 ≤ tr (Σ(s,X(s))) ≤ σ2∞(s)

and (4.3) that we recall below

⟨y(t), X(t)− x⋆⟩ ≥ ε(t)ϕ(X(t)) +
ε(t)

2

(
∥xε(t)∥2 − ∥x⋆∥2

)
, (4.25)

where y : Ω× [t0,+∞[→ H is such that y(t) ∈ ∂Fε(t)(X(t)) a.s., we obtain that

E (ϕ(X(t))) +

∫ t

t0

ε(s)E (ϕ(X(s))) ds

≤ E

(
∥X0 − x⋆∥2

2

)
+

1

2

∫ t

t0

σ2∞(s)ds+
1

2

∫ t

t0

ε(s)
(
∥x⋆∥2 − ∥xε(s)∥2

)
ds.

According to our assumptions, we can write brie�y the above relation as

E (ϕ(X(t))) +

∫ t

t0

ε(s)E (ϕ(X(s))) ds ≤ g(t), (4.26)
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with g a nonnegative function de�ned by

g(t)
def

= E

(
∥X0 − x⋆∥2

2

)
+

1

2

∫ t

t0

σ2∞(s)ds+
1

2

∫ t

t0

ε(s)
(
∥x⋆∥2 − ∥xε(s)∥2

)
ds

which satis�es limt→+∞ g(t) = g∞ < +∞.

Let us integrate the above relation (4.26). We set

θ(t)
def

=

∫ t

t0

E (ϕ(X(s))) ds.

We have θ̇(t) = E (ϕ(X(t))) and (4.26) is written equivalently as

θ̇(t) +

∫ t

t0

ε(s)θ̇(s)ds ≤ g(t). (4.27)

Equivalently
1

ε(t)

d

dt

∫ t

t0

ε(s)θ̇(s)ds+

∫ t

t0

ε(s)θ̇(s)ds ≤ g(t), (4.28)

that is
d

dt

∫ t

t0

ε(s)θ̇(s)ds+ ε(t)

∫ t

t0

ε(s)θ̇(s)ds ≤ ε(t)g(t). (4.29)

With m(t)
def

= exp
∫ t
t0
ε(s)ds we get

d

dt

(
m(t)

∫ t

t0

ε(s)θ̇(s)ds

)
≤ ε(t)m(t)g(t). (4.30)

After integration we get ∫ t

t0

ε(s)θ̇(s)ds ≤ 1

m(t)

∫ t

t0

m′(s)g(s)ds. (4.31)

Since g is bounded by assumption (T2), we get

sup
t≥t0

E
[∫ t

t0

ε(s)∥X(s)− x⋆∥2
]
ds < +∞.

Equivalently ∫ +∞

t0

E
[
∥X(t)− x⋆∥2

]
ε(t)dt < +∞.

The assumption (T2) guarantees that the above inequality forces E
[
∥X(t)−x⋆∥2

]
to tend to zero.

(ii) Consider (4.24), we de�ne

Ãt
def

= At +

∫ t

t0

ε(s)

2
(∥x⋆∥2 − ∥xε(s)∥2)ds, and Ũt

def

= Ut +

∫ t

t0

ε(s)

2
(∥x⋆∥2 − ∥xε(s)∥2)ds.

By (4.25) we have that Ũt ≥
∫ t
t0
ε(s)ϕ(X(s))ds ≥ 0. We can rewrite (4.24) as

ϕ(X(t)) = ξ + Ãt − Ũt +Mt.

Since σ∞ ∈ L2([t0,+∞[) and (T3), then limt→+∞ Ãt < +∞. Let us observe that, sinceX ∈ S2
H[t0]

by Proposition 4.2.3, we have for every T > t0 that

E
(∫ T

t0

∥σ⋆(s,X(s)) (X(s)− x⋆)∥2 ds
)

≤ E

(
sup

t∈[t0,T ]
∥X(t)− x⋆∥2

)∫ +∞

t0

σ2∞(s)ds < +∞.

ThereforeMt is a square-integrable continuous martingale. It is also a continuous local martingale
(see [141, Theorem 1.3.3]), which implies that E(Mt) = 0.
By Theorem2.8.2, we get that limt→+∞ ∥X(t)−x⋆∥ exists a.s. and that limt→+∞ Ũt < +∞ a.s..
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(iii) Using the lower bound we had on Ũt, we obtain∫ +∞

t0

ε(t) ∥X(t)− x⋆∥2 dt < +∞.

(iv) By the previous item, (T2), and Lemma2.6.2 we conclude that limt→+∞X(t) = x⋆ a.s..

This completes the proof.

4.4.2 Practical situations

We will consider situations where the three conditions (T1), (T2) and (T3) are satis�ed simultaneously.
These are properties of the viscosity curve that we will now study. The di�culty comes from (T2)
and (T3) which are a priori not compatible. Indeed, (T2) requires the parameter ε(t) to converge slowly
towards zero for the Tikhonov regularization to be e�ective. On the other hand in (T3) the parameter
ε(t) must converge su�ciently quickly towards zero so that the term

(
∥x⋆∥2 − ∥xε(t)∥2

)
converges to

zero fairly quickly, and thus corrects the in�nite value of the integral of ε(t).

4.4.2.1 Quantitative stability of variational systems

Our �rst objective is to evaluate the rate of convergence towards zero of
(
∥x⋆∥2 − ∥xε∥2

)
as ε → 0.

Using the di�erentiability properties of the viscosity curve is not a good idea, because the viscosity
curve can be of in�nite length in the case of a general di�erentiable convex function, see [192]. To
overcome this di�culty, we assume that F = f + g satis�es the �ojasiewicz property (see (2.10)). This
basic property has its roots in algebraic geometry, and it essentially describes a relationship between
the objective value and its gradient (or subgradient). Once this is assumed, we will need tools from
variational analysis to conclude. More precisely, we will need the following two results that have been
obtained in [39, 36]. Recall from Section 2.5 the di�erent notations and the notion of ρ-Hausdor�
distance for functions and operators.

Lemma 4.4.2 ([36, Proposition 1.2]). Let A,B : H ⇒ H be two maximal monotone operators, then

∥(I +A)−1(0)− ∥(I +B)−1(0)∥ ≤ 3haus∥(I+A)−1(0)∥(A,B).

In fact, in [36], it is shown that convergence of sequences of maximal monotone operators in the
bounded Hausdor� topology is equivalent the uniform convergence on bounded sets of the resolvents.

Lemma 4.4.3 ([39, Theorem5.2]). Let f and g be proper lsc convex functions on H. To any

ρ > max(dist(0, epi f), dist(0, epi g))

there correspond some constants κ and ρ0 (that depend on ρ) such that

hausρ(∂f, ∂g) ≤ κ[hausρ0(f, g)]
1
2 .

The following proposition is new and is a consequence of the previous two results, since this is not
obvious, we are going to present the whole proof.

Proposition 4.4.4. Let f ∈ Γ0(H) be a function such that S ̸= ∅, and that f ∈ EBp(S). Let also

x⋆ = PS(0) and for ε > 0, let xε be the unique minimizer of fε(x) = f(x) + ε
2∥x∥

2. Then there exists

C0, ε
⋆ > 0 such that

∥xε − x⋆∥ ≤ C0ε
1
2p , ∀ε ∈]0, ε⋆].

Consequently, there exists C > 0 such that

∥x⋆∥2 − ∥xε∥2 ≤ Cε
1
2p , ∀ε ∈]0, ε⋆].
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Proof. We have that
xε +

1

ε
∂f(xε) ∋ 0,

that is
xε = (I + ∂φε)

−1 (0),

where
φε

def

=
1

ε
(f −min f) .

We have that φε increases to ιS as ε decreases to zero, and

x⋆ = PS(0) = (I +NS)
−1 (0).

Therefore
∥xε − x⋆∥ = ∥ (I + ∂φε)

−1 (0)− (I +NS)
−1 (0)∥.

By Lemma4.4.2 with A = ∂φε, and B = ∂ιS = NS , we have that

∥xε − x⋆∥ ≤ 3hausρ(∂φε, NS),

for ρ > ∥x⋆∥, where we used that hausρ is increasing with ρ. Now, since

max(dist(0, epiφε),dist(0, epi ιS)) ≤ ∥x⋆∥,

we let ρ > ∥x⋆∥, and in turn Lemma4.4.3 entails that there exist constants κ, ρ0 > 0 (depending on
ρ) such that

∥xε − x⋆∥ ≤ 3κ[hausρ0(φε, ιS)]
1
2 .

To complete our proof we just need to bound the right hand side. To that end, we use the EBp(S)
assumption. Since f ∈ EBp(S), there exists ϱ > 0, r > min f such that

f(x)−min f ≥ ϱdist(x,S)p, ∀x ∈ [min f ≤ f ≤ r].

Since ιS ≥ φε we just need to compute the excess function of (epiφε)ρ0 on epi ιS = S × R+. We
have

ιS(x) ≥ φε(x) ≥
ϱ

ε
dist(x,S)p, ∀x ∈ [min f ≤ f ≤ r].

By De�nition 2.5.1, we have

hausρ0(φε, ιS) = e((epiφε)ρ0 , epi ιS) = max
x1∈epiφε∩ρ0B,|r1|≤ρ0

min
(x2,r2)∈S×R+

max(∥x1 − x2∥ , |r1 − r2|).

Besides, in inner minimization problem is bounded above by taking r1 = r2. We then have

hausρ0(φε, ιS) ≤ max
x1∈epiφε∩ρ0B

min
x2∈S

∥x1 − x2∥ = max
x1∈epiφε∩ρ0B

dist(x1,S).

Now let ε0
def

= r−min f
ρ0

> 0 and consider ε ∈]0, ε0], then

max
x1∈epiφε∩ρ0B

dist(x1,S) ≤ sup
x1∈[f≤ρ0ε+min f ]

dist(x1,S) ≤
(
ρ0
ϱ

) 1
p

ε
1
p ,

where we have used that ρ0ε+min f ≤ r and the hypothesis EBp(S) in the last inequality.

Let C0
def

= 3κ
(
ρ0
ϱ

) 1
2p
, then for ε ∈]0, ε0],

∥xε − x⋆∥ ≤ C0ε
1
2p .

On the other hand, since limε→0+ xε = x⋆, then there exists ε1 > 0 such that ∥xε∥ ≤ 1 + ∥x⋆∥, for
every ε ≤ ε1. Let C1

def

= 1 + 2∥x⋆∥, and we get

∥x⋆∥2 − ∥xε∥2 ≤ C1∥xε − x⋆∥, ∀ε ∈]0, ε1].
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Now letting ε⋆
def

= min(ε0, ε1), and C
def

= C0C1, then we get

∥x⋆∥2 − ∥xε∥2 ≤ Cε
1
2p ,∀ε ∈]0, ε⋆].

Theorem 4.4.5. Consider the setting of Theorem4.4.1 and suppose that F = f +g ∈ EBp(SF ). Then

taking the Tikhonov parameter ε(t) = 1
tr with

1 ≥ r >
2p

2p+ 1
,

then the three conditions (T1), (T2), and (T3) of Theorem4.3.2 are satis�ed simultaneously. In particu-

lar, the solution X ∈ Sν
H[t0] of (SDI− TA) is unique and X(t) converges almost surely (as t → +∞)

in the strong topology to the minimal norm solution x⋆ = PSF
(0).

Proof. It is direct to check (T1) and (T2). In order to check (T3), let ε⋆ > 0 from Proposition 4.4.4 and

T ⋆ = max[t0,
(

1
ε⋆

) 1
r ], then we have

∥x⋆∥2 − ∥xε(t)∥2 ≤ C
1

t
r
2p

, ∀t ≥ T ⋆.

So ∫ +∞

t0

∥x⋆∥2 − ∥xε(t)∥2

tr
dt =

∫ T ⋆

t0

∥x⋆∥2 − ∥xε(t)∥2

tr
dt︸ ︷︷ ︸

I1

+

∫ +∞

T ⋆

∥x⋆∥2 − ∥xε(t)∥2

tr
dt︸ ︷︷ ︸

I2

.

It is clear that I1 is bounded (by T ⋆t−r
0 ∥x⋆∥2 for instance), hence (T3) holds under the condition that∫ +∞

T ⋆

1

tr
C

t
r
2p

dt < +∞

which is true when r + r
2p > 1. This in turn gives the condition 1 ≥ r > 2p

2p+1 .

4.4.3 Convergence rates of the objective in the smooth case

We are going to show global convergence rates in expectation in the smooth convex case, in order to
do that, it is worth citing a result from [27], where they deal with the deterministic case.

Take ε(t) =
1

tr
, 0 < r < 1, t0 > 0. The convergence rate of the values and the strong convergence

to the minimum norm solution is described below, see Attouch, Chbani, Riahi [27, Theorem 5].

Theorem 4.4.6. Take ε(t) =
1

tr
and 0 < r < 1. Let us consider (DI− TA) in the case where g ≡ 0,

i.e.

ẋ(t) +∇f (x(t)) + 1

tr
x(t) = 0. (4.32)

Let x : [t0,+∞[→ H be a solution trajectory of (DI− TA). For ε > 0 de�ne fε(x)
def

= f(x) + ε
2∥x∥

2,

let xε be the unique minimizer of fε, and consider the Lyapunov function

E(t)
def

= fε(t)(x(t))− fε(t)(xε(t)) +
ε(t)

2
∥x(t)− xε(t)∥2.

Then, we have

(i) E(t) = O
(
1

t

)
as t→ +∞;

(ii) f(x(t))−min(f) = O
(
1

tr

)
as t→ +∞;
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(iii) ∥x(t)− xε(t)∥2 = O
(

1

t1−r

)
as t→ +∞.

In addition, we have strong convergence of x(t) to the minimum norm solution, named x⋆ = PS(0).

Moreover, if f ∈ EBp(S)

(iv) ∥x(t)− x⋆∥2 =


O
(

1

t
r
p

)
, if r ∈

]
0, p

p+1

[
;

O
(

1

t1−r

)
, if r ∈

[
p

p+1 , 1
[ as t→ +∞.

Remark 4.4.7. The last item of this already known Theorem is new and direct from our Proposi-
tion 4.4.4.

Now we have the necessary tools in order to show our �rst result in this sense, this one summarizes
the global convergence rates in expectation satis�ed by the trajectories of (SDI− TA) in the case where
g ≡ 0.

Let us consider the assumption:
f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

f ∈ C2(H) or H is �nite-dimensional;

S def

= argmin(f) ̸= ∅.
(H⋆

f )

Theorem 4.4.8. Let f satisfying (H⋆
f ), and also f ∈ EBp(S), σ satisfying (Hσ), and σ∞ ∈ L2([t0,+∞[)

and is nonincreasing. Let ν ≥ 2, and let us consider ε(t) = 1
tr where 0 < r < 1, then we evaluate

(SDI− TA) in the case where g ≡ 0, and with initial data X0 ∈ Lν(Ω;H), i.e. dX(t) = −∇f(X(t))dt− 1

tr
X(t)dt+ σ(t,X(t))dW (t), t ≥ t0;

X(t0) = X0.
(SDE− TA)

For ε > 0, let us de�ne fε(x)
def

= f(x)+ ε
2∥x∥

2, xε be the unique minimizer of fε, consider the Lyapunuov

function

E(t, x)
def

= fε(t)(x)− fε(t)(xε(t)) +
ε(t)

2
∥x− xε(t)∥2,

and for t1 > t0,

R(t)
def

= e−
t1−r

1−r

∫ t

t1

e
s1−r

1−r σ2∞(s)ds. (4.33)

Consider x⋆
def

= PS(0). Then, the solution trajectory X ∈ Sν
H[t0] is unique, and we have that:

(i) R(t) → 0 as t→ +∞;

(ii) Furthermore, we can obtain a convergence rate for R,

R(t) = O
(
exp(−tr(1− 2−r)) + trσ2∞

(
t1 + t

2

))
.

Moreover, if σ2∞(t) = O(t−α) for α > 1, then R(t) = O(tr−α).

(iii) E[E(t,X(t))] = O
(
1

t
+R(t)

)
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(iv) E[f(X(t))−min(f)] = O
(
1

tr
+R(t)

)
. Moreover if σ2∞(t) = O(t−α) for α > 1, then

E[f(X(t))−min(f)] =


O
(

1

tα−r

)
, if α ∈]1, 2r[;

O
(
1

tr

)
, if α ≥ 2r;

(v) E[∥X(t)− xε(t)∥2] = O
(

1

t1−r
+ trR(t)

)
, which goes to 0 as t → +∞ if r ∈]0, 12 ] . Moreover, if

σ2∞(t) = O(t−α) for α > max{2r, 1}, then

E[∥X(t)− xε(t)∥2] =


O
(

1

tα−2r

)
, if α ∈] max{1, 2r}, r + 1[;

O
(

1

t1−r

)
, if α ≥ r + 1.

.

(vi) E[∥X(t)− x⋆∥2] = O
(

1

t1−r
+

1

t
r
p

+ trR(t)

)
, which goes to 0 as t→ +∞ if r ∈]0, 12 ]. Moreover,

if σ2∞(t) = O(t−α) for α > max{2r, 1}, then

E[∥X(t)− x⋆∥2] = O
(

1

t1−r
+

1

t
r
p

+
1

tα−2r

)
.

In particular,

E[∥X(t)− x⋆∥2] =



O
(

1

t1−r

)
, if r ∈

]
p

p+1 , 1
[
, α > r + 1;

O
(

1

t
r
p

)
, if r ∈

]
0, p

p+1

[
, α > max{1, r(2p+1)

p };

O
(

1

tα−2r

)
, if r ∈

]
p

2p+1 , 1
[
, α ∈

(
max{2r, 1},min{r + 1, r(2p+1)

p }
)
.

Remark 4.4.9. The expression in (ii) goes to 0 as t→ +∞ since limt→+∞ tσ2∞(t) = 0 and r < 1.

Proof. The existence and uniqueness of a solution was already stated in Theorem4.2.4.

The �rst item is a direct consequence of Lemma2.6.4, for the second one we recall that
σ∞ ∈ L2([t0,+∞[) and is nonincreasing, and we proceed as follows:

R(t) = e−
t1−r

1−r

∫ t1+t
2

t1

e
s1−r

1−r σ2∞(s)ds+ e−
t1−r

1−r

∫ t

t1+t
2

e
s1−r

1−r σ2∞(s)ds

≤ e(
t0
2 )

r

e−tr(1−2−r)
∫ +∞

t1

σ2∞(s)ds+ σ2∞

(
t1 + t

2

)
D 1

1−r
,1−r (t) ,

where

Da,b (t) = e−atb
∫ t

0
eas

b
ds.

As a corollary of an upper bound of the Dawson integral shown in [160, Section 7.8], we have that

Da,b(t) ≤
2

ab
t1−b, 0 < b ≤ 2, a > 0, t > 0,

thus we obtain

R(t) = O
(
exp(−tr(1− 2−r)) + trσ2∞

(
t1 + t

2

))
,

and limt→+∞ trσ2∞(t) = 0, to show this, we recall that σ2∞ is nonincreasing, then

0 ≤ tσ2∞(t) ≤ 2

∫ t

t
2

σ2∞(u)du,
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and the right hand side goes to 0 as t → +∞ since σ∞ ∈ L2([t0,+∞[), thus we obtain that
limt→+∞ tσ2∞(t) = 0 (as mentioned in Remark 4.4.9), and this directly implies the desired.

The rest of the proof follows by using Itô's formula with ϕ(t, x) = e
∫ t
t1

ds
srE(t, x), where either

f ∈ C2(H) or H is �nite-dimensional, in the latter case we use Proposition 2.7.6. Then, taking ex-
pectation and following the calculus done in [27, Theorem 5], we obtain the same results as in Theo-
rem4.4.6 (or [27, Theorem 5]) up to the term R(t), therefore, this result could be seen as the stochastic
counterpart of the mentioned Theorem.

Remark 4.4.10. Tikhonov regularization implies strong convergence of the trajectory to the minimal
norm solution, therefore, in the stochastic case you have to be careful in the tuning of the noise in
order to not break this convergence. In the almost sure sense, you can tune appropriately the Tikhonov
parameter without assuming more than σ∞ ∈ L2([t0,+∞[), nevertheless, in expectation, you may
require a stronger assumption in general on the noise σ2∞ in order to obtain a useful convergence rate,
this is re�ected in items (v) and (vi) of Theorem4.4.8.
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Chapter 5

From First to Second Order Methods via

Time Scaling and Averaging

In this chapter, we aim to use the theory we developed in Chapter 4 and Chapter 5 for stochastic convex
minimization problems through the lens of stochastic inertial di�erential inclusions that are driven by
the subgradient of a convex objective function. This will provide a general mathematical framework
for analyzing the convergence properties of stochastic second-order inertial continuous-time dynamics
involving vanishing viscous damping and measurable stochastic subgradient selections. Our chief goal
in this chapter is to develop a systematic and uni�ed way that transfers the properties studied for
�rst-order stochastic di�erential equations (Chapters 4-5) to second-order inertial ones driven even by
subgradients in lieu of gradients. This program will rely on two tenets: time scaling and averaging,
following an approach recently developed in the literature by one of the co-authors in the deterministic
case. Under a mild integrability assumption involving the di�usion term and the viscous damping,
our �rst main result shows that almost surely, there is weak convergence of the trajectory towards a
minimizer of the objective function and fast convergence of the values and gradients. We also provide
a comprehensive complexity analysis by establishing several new pointwise and ergodic convergence
rates in expectation for the convex, strongly convex, and (local) Polyak-�ojasiewicz case. Finally, using
Tikhonov regularization with a properly tuned vanishing parameter, we can obtain almost sure strong
convergence of the trajectory towards the minimum norm solution.

Main contributions of this chapter

▶ Almost sure weak convergence of the trajectory generated by the second-order inertial
SDI with a particular geometric damping, to the set of minimizers (Theorem5.2.2).

▶ Global convergence rates of the values in expectation under smoothness of the objective
for the convex (Theorem5.2.3), and Polyak-�ojasiewicz inequality case (Theorem5.2.6).

▶ Fast convergence of the values in almost sure sense and in expectation under α > 3,
γ(t) = α

t and β = t
α−1 (Corollary 5.2.5).

▶ Almost sure strong convergence of the trajectory generated by the second-order iner-
tial SDI regularized by a Tikhonov parameter, to the minimal norm minimizer (Theo-
rem5.3.1).

The content of this chapter is submitted in [147].
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5.1 Introduction

5.1.1 Problem Statement

Let us consider again the minimization problem

min
x∈H

F (x)
def

= f(x) + g(x), (P2)

where H is a separable real Hilbert space, and the objective F satis�es the following standing assump-
tions:

f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

g : H → R ∪ {±∞} is proper, lower semi-continuous (lsc) and convex;

SF
def

= argmin(F ) ̸= ∅.
(HF )

Consider K a real separable Hilbert space. To solve (P2), we will refer to Section 1.2 for the approach
that leads to the dynamic that we will study in this chapter, speci�cally the following stochastic
di�erential inclusion (SDI), which is the stochastic counterpart of (ISIHDNS):

dX(t) = V (t)dt;

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t);

X(t0) = X0; V (t0) = V0.

(S− ISIHDNS)

This SDI is de�ned over a �ltered probability space (Ω,F , {Ft}t≥0,P), where X0, V0 ∈ Lν(Ω;H) (for
some ν ≥ 2) are the initial data; the di�usion (volatility) term σ : [t0,+∞[×H → L2(K;H) is a
measurable function that satis�es (Hσ); and W is a K-valued Brownian motion (see de�nition in
Section 2.7). When g ≡ 0, we recover the stochastic counterpart of (ISIHD) as the following SDE:

dX(t) = V (t)dt;

dV (t) = −γ(t)V (t)dt−∇f(X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t);

X(t0) = X0; V (t0) = V0.

(S− ISIHD)

In this work, our goal is to provide a general mathematical framework for analyzing the convergence
properties of (S− ISIHDNS). In this context, considering inertial dynamics with a time-dependent
vanishing viscosity coe�cient γ is a key ingredient to obtain fast convergent methods. We will develop
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a systematic and uni�ed way that transfers the properties of stochastic �rst-order dynamics studied
in Chapters 3-4 to second-order ones. Our program will then rely on two pillars: time scaling and
averaging, following the methodology recently developed by Attouch, Bot, and Nguyen in [17] in the
deterministic gradient case.

5.1.2 Other assumptions

Recall that our focus in this thesis is on an optimization perspective, and as we argued in the intro-
duction, we will study the long time behavior of our SDE's and SDI's (in particular (S− ISIHD) and
(S− ISIHDNS)) as the di�usion term vanishes when t → +∞. Therefore, we recall that we assume
that the di�usion (volatility) term σ satis�es:{

supt≥t0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(Hσ)

for some l0 > 0 and for all t ≥ t0, x, x
′ ∈ H. The Lipschitz continuity assumption is mild and classical

and will be required to ensure the well-posedness of (S− ISIHD) and (S− ISIHDNS). Let us also de�ne
σ∞ : [t0,+∞[→ R+ as

σ∞(t)
def

= sup
x∈H

∥σ(t, x)∥HS.

Remark 5.1.1. (Hσ) implies the existence of σ∗ > 0 such that:

∥σ(t, x)∥2HS = tr[Σ(t, x)] ≤ σ2∗,

for all t ≥ t0, x ∈ H, where Σ
def

= σσ⋆.

For t0 > 0, let γ : [t0,+∞[→ R+ be a viscous damping and denote:

p(t)
def

= exp

(∫ t

t0

γ(s)ds

)
.

If {
γ is upper bounded by a non-increasing function for every t ≥ t0;∫ +∞
t0

ds
p(s) < +∞.

(Hγ)

We de�ne Γ : [t0,+∞[→ R+ by

Γ(t)
def

= p(t)

∫ +∞

t

ds

p(s)
. (5.1)

Remark 5.1.2. Let us notice that Γ satis�es the relation Γ′ = γΓ− 1.

We denote

I[h](t)
def

= exp

(
−
∫ t

t0

du

Γ(u)

)∫ t

t0

h(u)
exp

(∫ u
t0

ds
Γ(s)

)
Γ(u)

du.

The stochastic version of (GF) where f is smooth has been well studied and documented in Chapter 3.
Since we are going to show results in the smooth case, we rewrite (HF ) when g ≡ 0,{

f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

S def

= argmin(f) ̸= ∅.
(Hf )
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5.2 From �rst-order to second-order systems

5.2.1 Time scaling and averaging

We apply a time scaling and then an averaging technique to the system (SDI) to derive an insightful
reparametrization of a particular case of our second-order system (S− ISIHDNS), speci�cally, the case
when β ≡ Γ. The main advantage of this method is that the results of (SDI) directly carry over
to obtain results on the convergence behavior of (S− ISIHDNS) without passing through a dedicated
Lyapunov analysis.

Let ν ≥ 2, s0 ≥ 0. We consider the potential F = f + g where g satis�es (Hλ). Let σ1 be a di�usion
term in the time parametrization by s. We will study the dynamic (SDI) in s, starting at s0, with
di�usion term σ1 under hypotheses (HF ) and (Hσ). Let σ1∗ > 0 be such that

∥σ1(s, x)∥HS ≤ σ21∗ , ∀s ≥ s0,∀x ∈ H,

and σ1∞(s)
def

= supx∈H ∥σ1(s, x)∥HS. We rewrite (SDI) adapted to our case,{
dZ(s) ∈ −∂F (Z(s))ds+ σ1(s, Z(s))dW (s), s > s0;

Z(s0) = Z0,
(5.2)

where Z0 ∈ Lν([s0,+∞[;H).

Let us make the change of time s = τ(t) in the dynamic (5.2), where τ is an increasing function from
[t0,+∞[ to [s0,+∞[, which is twice di�erentiable, and which satis�es limt→+∞ τ(t) = +∞. Denote
Y (t)

def

= Z(s) and t0 be such that s0 = τ(t0). By the chain rule and [159, Theorem8.5.7], we have{
dY (t) ∈ −τ ′(t)∂F (Y (t))dt+

√
τ ′(t)σ1(τ(t), Y (t))dW (t), t > t0;

Y (t0) = Z0.
(5.3)

Consider the smooth case, i.e. when g ≡ 0 and the hypotheses of Theorem3.2.8 (f ∈ C2
L(H) and

s 7→ sσ21∞(s) ∈ L1([s0,+∞[)), then we can conclude the following convergence rates for (5.3) (when
g ≡ 0):

f(Y (t))−min f = o

(
1

τ(t)

)
a.s., (5.4)

and by Proposition 3.2.6 in the case β = 0,

E(f(Y (t))−min f) = O
(

1

τ(t)

)
a.s., (5.5)

By introducing a function τ that grows faster than the identity (τ(t) ≥ t), we have accelerated the
dynamic, passing from the asymptotic convergence rate 1/s for (5.2) to 1/τ(t) for (5.3). The price to
pay is that the drift term in (5.3) is non-autonomous, furthermore, when the coe�cient in front of the
gradient tends to in�nity as t→ +∞, it will preclude the use of an explicit discretization in time. To
overcome this, we adapt from [17] the following approach, which is called averaging.

Consider (5.3) and let X,V : Ω× [t0,+∞[→ H be two stochastic processes such that:
dX(t) = V (t)dt, t > t0;

Y (t) = X(t) + τ ′(t)V (t), t > t0;

X(t0) = X0; V (t0) = V0,

(5.6)

where Y (t) is the process in (5.3), and X0, V0 ∈ Lν(Ω;H) is the initial data that is Ft0−measurable.
This leads us to set Z0

def

= X0 + τ ′(t0)V0 in order for the equations to �t. According to the averaging,
the di�erential form of Y (t) is

dY (t) = dX(t) + τ ′′(t)V (t)dt+ τ ′(t)dV (t).
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Combining the previous equation with (5.3), we have that

−τ ′(t)∂F (Y (t))dt+
√
τ ′(t)σ1(τ(t), Y (t))dW (t) ∋ dX(t) + τ ′′(t)V (t)dt+ τ ′(t)dV (t).

Using that dX(t) = V (t)dt and dividing by τ ′, we then have

−∂F (X(t) + τ ′(t)V (t))dt+
1√
τ ′(t)

σ1(τ(t), X(t) + τ ′(t)V (t))dW (t) ∋ 1 + τ ′′(t)

τ ′(t)
V (t)dt+ dV (t).

Therefore, after the time scaling and averaging, we obtain the following dynamic:

dX(t) = V (t)dt, t > t0;

dV (t) ∈ −1+τ ′′(t)
τ ′(t) V (t)dt− ∂F (X(t) + τ ′(t)V (t))dt

+ 1√
τ ′(t)

σ1(τ(t), X(t) + τ ′(t)V (t))dW (t), t > t0;

X(t0) = X0; V (t0) = V0.

(ISIHD-S.1)

Let γ : [t0,+∞[→ R+ satisfying (Hγ). We are going to determine τ in order to obtain a viscous
damping coe�cient equal to γ, i.e.,

1 + τ ′′(t)

τ ′(t)
= γ(t).

Clearly, τ ′ solves the following ODE in ζ

ζ ′ = γζ − 1.

As observed in Remark 5.1.2, the function Γ also satis�es the same ODE, and thus we can adjust the
initial condition of τ ′ to obtain

τ ′(t) = Γ(t) = p(t)

∫ +∞

t

du

p(u)
∀t ≥ t0.

We then integrate and take τ(t) = s0 +
∫ t
t0
Γ(u)du to get τ(t0) = s0 as required. This is a valid

selection of τ since t 7→ s0 +
∫ t
t0
Γ(u)du is an increasing function from [t0,+∞[ to [s0,+∞[, twice

di�erentiable and Γ /∈ L1([t0,+∞[) because Γ is lower bounded by a non-decreasing function since γ
is upper bounded by a non-increasing function (see [18, Proposition 2.2]) by (Hγ). For this particular
selection of τ , and de�ning σ̃1(t, ·)

def

= σ1(τ(t),·)√
Γ(t)

, we have that (ISIHD-S.1) is equivalent to
dX(t) = V (t)dt, t > t0;

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + Γ(t)V (t))dt+ σ̃1(t,X(t) + Γ(t)V (t))dW (t), t > t0;

X(t0) = X0; V (t0) = V0.

(ISIHD-S.2)
Clearly, (ISIHD-S.2) is nothing but (S− ISIHDNS) when β ≡ Γ and σ ≡ σ̃1.

In order to be able to transfer the convergence results on Z in (5.2) (via (5.3)) to X in (ISIHD-S.2),
it remains to express X in terms of Y only. For this, let

a(t)
def

=
1

τ ′(t)
, A(t)

def

=

∫ t

t0

a(u)du.

Recalling the averaging in (5.6), we need to integrate the following equation

V (t) + a(t)X(t) = a(t)Y (t). (5.7)

Multiplying both sides by eA(t) and using (5.6), we get equivalently

d
(
eA(t)X(t)

)
= a(t)eA(t)Y (t)dt. (5.8)
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Integrating and using again (5.6), we obtain

X(t) = e−A(t)X(t0) + e−A(t)

∫ t

t0

a(u)eA(u)Y (u)du

= e−A(t)Y (t0) + e−A(t)

∫ t

t0

a(u)eA(u)Y (u)du− e−A(t)τ ′(t0)V (t0).

Then we can write

X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t), (5.9)

where µt is the probability measure on [t0, t] de�ned by

µt
def

= e−A(t)δt0 + a(u)eA(u)−A(t)du, (5.10)

where δt0 is the Dirac measure at t0, a(u)eA(u)−A(t)du is the measure with density a(·)eA(·)−A(t) with
respect to the Lebesgue measure on [t0, t], and ξ(t) is a random process since V0 is a random variable,
i.e.,

ξ(t)
def

= ξ(ω, t) = −e−A(t)τ ′(t0)V0(ω) ∀ω ∈ Ω. (5.11)

5.2.2 Almost sure weak convergence of the trajectory and convergence rates under

general γ, and β ≡ Γ

We here state the main results of this section. We start with a useful lemma and then show almost
sure convergence of the trajectory of (S− ISIHDNS) to a random variable taking values in the set of
minimizers of F . When g ≡ 0, we also provide convergence rates.

Lemma 5.2.1. Under hypothesis (Hγ), then∫ ∞

t0

ds

Γ(s)
= +∞.

Proof. Let q(t)
def

=
∫∞
t

ds
p(s) , since

∫∞
t0

ds
p(s) < +∞, then limt→∞ q(t) = 0 and q′(t) = − 1

p(t) . On the
other hand ∫ ∞

t0

ds

Γ(s)
= −

∫ ∞

t0

q′(t)

q(t)
= ln(q(t0))− lim

t→∞
ln(q(t)) = +∞.

Theorem 5.2.2. Let ν ≥ 2 and consider the dynamic (S− ISIHDNS) with initial data X0, V0 ∈ Lν(Ω;H)

that is Ft0−measurable, where γ : [t0,+∞[→ R+ satis�es (Hγ), and β ≡ Γ. Besides, F = f + g and

σ satisfy Assumptions (HF ) and (Hσ). Moreover, suppose that g satis�es (Hλ). Then, there exists a

unique solution (X,V ) ∈ Sν
H×H[t0] of (S− ISIHDNS). Additionally, if Γσ∞ ∈ L2([t0,+∞[), then there

exists an SF -valued random variable X⋆ such that w-limt→+∞X(t) = X⋆ a.s. and

w-limt→+∞ Γ(t)V (t) = 0. a.s..

Proof. Let θ(t)
def

=
∫ t
t0
Γ(u)du, σ̃(s, ·) def

= σ(θ−1(s), ·)
√

Γ(θ−1(s)), and σ̃∞(s)
def

= supx∈H ∥σ̃(s, x)∥HS.
Then Γσ∞ ∈ L2([t0,+∞[) is equivalent to σ̃∞ ∈ L2(R+). Consider the dynamic:

{
dZ(s) ∈ −∂F (Z(s)) + σ̃(s, Z(s))dW (s), s > 0;

Z(0) = X0 + Γ(t0)V0.
(5.12)

By Theorem4.3.2, we have that there exists a unique solution (Z, ϑ) ∈ Sν
H × C1(R+;H) of (5.12),

and an SF -valued random variable X⋆ such that w-lims→+∞ Z(s) = X⋆ a.s.. Moreover, using the time
scaling τ ≡ θ and the averaging described in this section, we end up with the dynamic (S− ISIHDNS)
in the case where β ≡ Γ.
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It is direct to check that the time scaling and averaging preserves the uniqueness of a solution
(X,V ) ∈ S0

H×H[t0]. Now let us validate (X,V ) ∈ Sν
H×H[t0]. Since

E

(
sup

s∈[0,T ]
∥Z(s)∥ν

)
< +∞, ∀T > 0,

we directly obtain

E

(
sup

t∈[t0,T ]
∥Y (t)∥ν

)
< +∞, ∀T > t0.

Thanks to the relation (5.9), the following holds

∥X(t)∥ν ≤ ν

(∥∥∥X(t)−
∫ t

t0

Y (u)dµt(u)
∥∥∥ν + ∥∥∥∫ t

t0

Y (u)dµt(u)
∥∥∥ν)

≤ ν

(
∥ξ(t)∥ν + (t− t0)

ν−1

∫ t

t0

∥Y (u)∥νdµt(u)
)
.

Let T > t0 be arbitrary. Taking supremum over [t0, T ] and then expectation at both sides, we obtain
that

E

(
sup

t∈[t0,T ]
∥X(t)∥ν

)
≤ ν

(
E(∥V0∥ν)∥Γ(t0)∥ν + (T − t0)

ν−1E

(
sup

t∈[t0,T ]
∥Y (t)∥ν

))
< +∞.

Since V (t) = Y (t)−X(t)
Γ(t) , we have

∥V (t)∥ν ≤ ν

Γν(t)
(∥Y (t)∥ν + ∥X(t)∥ν).

Similarly as before, we let T > t0 be arbitrary, and take the supremum over [t0, T ] and then expectation
at both sides to obtain

E

(
sup

t∈[t0,T ]
∥V (t)∥ν

)
≤ ν sup

t∈[t0,T ]

1

Γν(t)

(
E

(
sup

t∈[t0,T ]
(∥Y (t)∥ν + ∥X(t)∥ν)

))
.

Since Γ is a continuous positive function, by the extreme value theorem, we have that there exists
tT ∈ [t0, T ] such that supt∈[t0,T ]

1
Γν(t) =

1
Γν(tT ) < +∞, and we conclude that (X,V ) ∈ Sν

H×H[t0].

Now we prove that there exists an SF−valued random variable X⋆ such that
w-limt→+∞X(t) = X⋆ a.s.. By virtue of Theorem4.3.2, there exists an SF−valued random variable
X⋆ such that w-lims→+∞ Z(s) = X⋆ a.s.. We also notice that we have directly w-limt→+∞ Y (t) = X⋆

a.s.. Let h ∈ H be arbitrary and use the relation (5.9) as follows:

|⟨X(t)−X⋆, h⟩| ≤
∣∣∣∣〈X(t)−

∫ t

t0

Y (u)dµt(u), h

〉∣∣∣∣+ ∣∣∣∣〈 ∫ t

t0

Y (u)dµt(u)−X⋆, h

〉∣∣∣∣
= |⟨ξ(t), h⟩|+

∣∣∣∣〈 ∫ t

t0

(Y (u)−X⋆)dµt(u), h

〉∣∣∣∣
= |⟨ξ(t), h⟩|+

∣∣∣∣ ∫ t

t0

⟨Y (u)−X⋆, h⟩dµt(u)
∣∣∣∣

≤ ∥ξ(t)∥∥h∥+
∫ t

t0

|⟨Y (u)−X⋆, h⟩|dµt(u),

where the second equality comes from the dominated convergence theorem, since sups>t0 ∥Y (s)∥ < +∞
a.s. (by (ii) of Theorem4.3.2).

Now let a(t) = 1
Γ(t) and A(t) =

∫ t
t0

du
Γ(u) . By Lemma5.2.1, we have that limt→+∞ ∥ξ(t)∥ = 0 a.s.. On

the other hand, it holds that∫ t

t0

|⟨Y (u)−X⋆, h⟩|dµt(u) ≤ e−A(t)|⟨Y (t0)−X⋆, h⟩|+ e−A(t)

∫ t

t0

a(u)eA(u)|⟨Y (u)−X⋆, h⟩|du.
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Now let b(u) = |⟨Y (u) − X⋆, h⟩|. Since we already proved that limu→+∞ b(u) = 0 a.s., and we have
that a /∈ L1([t0,+∞[) by Lemma5.2.1, we utilize Lemma2.6.5 with our respective a, b functions. This
let us conclude that

lim
t→+∞

|⟨X(t)−X⋆, h⟩| = 0 a.s..

Thus, w-limt→+∞X(t) = X⋆ a.s.. Finally, since

Y (t) = X(t) + Γ(t)V (t),

and the fact that X and Y have (a.s.) the same limit, we conclude that

w-lim
t→+∞

Γ(t)V (t) = 0 a.s..

In the smooth case, we also have convergence rates on the objective value and the gradient.

Theorem 5.2.3. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H)

that is Ft0−measurable, and such that f and σ satisfy (Hf ) and (Hσ), and in the case where γ satis�es

(Hγ), β ≡ Γ. Moreover, suppose that either H is �nite dimensional or f ∈ C2(H), and

t 7→
√
θ(t)Γ(t)σ∞ ∈ L2([t0,+∞[),

where θ(t)
def

=
∫ t
t0
Γ(u)du. Then the solution trajectory (X,V ) ∈ Sν

H×H[t0] is unique and satis�es:

E[f(X(t))−min f ] = O
(
max

{
e−A(t), I

[
1

θ

]
(t)
})

, ∀t > t0,

where A(t)
def

=
∫ t
t0

du
Γ(u) and we recall that I[1θ ](t) = e−A(t)

∫ t
t0

1
θ(u)

eA(u)

Γ(u) du.

From hypothesis (Hγ) we have that limt→+∞ e−A(t) = 0, and since Γ /∈ L1([t0,+∞[), we can use
Lemma2.6.5 to check that limt→+∞ I

[
1
θ

]
(t) = 0.

Proof. We will utilize the averaging technique used in Theorem5.2.2 and Jensen's inequality. First,
we have

E(f(X(t))−min f) = E
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
+ E

(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
.

Let us recall that E(sups≥0 ∥Z(s)∥) < +∞, which implies that E(supt≥t0 ∥X(t)∥) < +∞. We bound
the �rst term using the gradient convexity inequality on f to get

f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

)
≤ ∥∇f(X(t))∥∥ξ(t)∥

≤ ∥ξ(t)∥(L∥X(t)∥+ ∥∇f(0)∥)

≤ ∥ξ(t)∥
(
L sup

t≥t0

∥X(t)∥+ ∥∇f(0)∥
)
,

and we conclude that

E
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
= O(e−A(t)).

For the second term, we use Jensen's inequality to obtain

E
(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
≤
∫ t

t0

E[f(Y (u))−min f ]dµt(u)

≤ e−A(t)E[f(Y (t0))−min f ] + e−A(t)

∫ t

t0

eA(u)

Γ(u)
E(f(Y (u))−min f)du.
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Since
√
θΓσ∞ ∈ L2([t0,+∞[) is equivalent to s 7→ sσ̃2∞(s) ∈ L1(R+), by Proposition 3.2.6 with β = 0,

we have that there exists C > 0 such that E(f(Z(s))−min f) ≤ C
s . Then, we have

E(f(Y (t))−min f) ≤ C

θ(t)
.

Hence, there exists C0 > 0 such that

E (f(X(t))−min f) ≤ C0e
−A(t) + CI

[
1

θ

]
(t).

Theorem 5.2.4. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H)

that is Ft0−measurable, and such that f and σ satisfy (Hf ) and (Hσ), and in the case where γ satis�es

(Hγ), β ≡ Γ. Moreover, suppose that f ∈ C2(H) and

t 7→ θ(t)Γ2(t)σ2∞(t) ∈ L1([t0,+∞[),

where θ(t)
def

=
∫ t
t0
Γ(u)du. Then the solution trajectory (X,V ) ∈ Sν

H×H[t0] is unique and satis�es∫ +∞

t0

θ(u)Γ(u)∥∇f(X(u) + Γ(u)V (u))∥2du < +∞ a.s.. (5.13)

Proof. Consider (5.12) and the technique used in Theorem5.2.2. We have that
t 7→ θ(t)Γ2(t)σ2∞(t) ∈ L1([t0,+∞[) is equivalent to s 7→ sσ̃2∞(s) ∈ L1(R+). Therefore, we can use
Theorem3.2.8 to state that ∫ +∞

0
s∥∇f(Z(s))∥2ds < +∞ a.s..

Using the time scaling τ ≡ θ and making the change of variable θ(t) = s in the previous integral, we
obtain ∫ +∞

t0

θ(t)Γ(t)∥∇f(Y (t))∥2dt < +∞ a.s..

Recalling that in the averaging we impose that Y = X + ΓV , we conclude.

5.2.3 Fast convergence under α > 3, γ(t) = α
t
and β(t) = t

α−1

In the following, we show fast convergence results in expectation.

Corollary 5.2.5 (Case α
t ). Let ν ≥ 2, α > 3 and consider the dynamic (S− ISIHD) with initial

data X0, V0 ∈ Lν(Ω;H) that is Ft0−measurable, in the case where γ(t) = α
t and β(t) = t

α−1 . Besides,

consider that f and σ satisfy (Hf ) and (Hσ). Moreover, let f ∈ C2(H) and t 7→ t2σ∞(t) ∈ L2([t0,+∞[).

Then the solution trajectory (X,V ) ∈ Sν
H×H[t0] is unique and satis�es:

(i) f(X(t))−min f = o(t−2) a.s..

(ii) E[f(X(t))−min f ] = O(t−2).

(iii) ∫ +∞

t0

t3
∥∥∥∇f (X(t) +

t

α− 1
V (t)

)∥∥∥2dt < +∞ a.s..

Proof. Consider (5.12) with Γ(t) = t
α−1 and θ(t) = t2−t20

2(α−1) . Let σ̃(s, ·) = σ(θ−1(s), ·)
√
Γ(θ−1(s)). No-

tice that t 7→ t2σ∞(t) ∈ L2([t0,+∞[) is equivalent to s 7→ sσ̃2∞(s) ∈ L1(R+). We apply Theorem3.2.8
to deduce that

f(Z(s))−min f = o(s−1) a.s..
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Using the time scaling τ ≡ θ and then the averaging technique as in the proof of Theorem5.2.2, we
have that

f(Y (t))−min f = o(t−2) a.s..

Moreover, it holds that

X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t).

(i) Now we prove the �rst point in the following way:

t2(f(X(t))−min f) = t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
+ t2

(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
.

Let us bound the �rst term using the convexity of f :

t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
≤ t2∥∇f(X(t))∥∥ξ(t)∥

≤ t2∥ξ(t)∥(L∥X(t)∥+ ∥∇f(0)∥)

≤ t2∥ξ(t)∥
(
L sup

t≥t0

∥X(t)∥+ ∥∇f(0)∥
)
.

Let us recall that sups≥0 ∥Z(s)∥ < +∞ a.s.. Due to the time scaling and averaging, it is direct
to check that supt≥t0 ∥X(t)∥ < +∞ a.s.. On the other hand, ∥ξ(t)∥ = O(t1−α) a.s.. Therefore,
we have

t2
(
f(X(t))− f

(∫ t

t0

Y (u)dµt(u)

))
= O(t3−α) a.s.. (5.14)

Now let us bound the second term using Jensen's inequality,

t2
(
f

(∫ t

t0

Y (u)dµt(u)

)
−min f

)
≤ t2

(∫ t

t0

[f(Y (u))−min f ]dµt(u)

)
=
tα−1
0

tα−3
[f(Y (t0))−min f ]

+
α− 1

tα−3

∫ t

t0

uα−4(u2(f(Y (u))−min f))du.

In order to calculate the limit of this second term, let a(t) = α−1
t , b(u) = u2(f(Y (u)) −min f),

by Lemma2.6.5 we have that

lim
t→+∞

α− 1

tα−1

∫ t

t0

uα−2b(u)du = 0 a.s..

Since α > 3, we also have that

lim
t→+∞

α− 3

tα−3

∫ t

t0

uα−4b(u)du = 0 a.s.. (5.15)

Therefore, we conclude that

lim
t→+∞

t2(f(X(t))−min f) = 0 a.s..

(ii) By Theorem5.2.3 in the case γ(t) = α
t , we have that e

−A(t) = tα−1
0 t1−α and θ(t) = t2−t20

2(α−1) . On
the other hand

I

[
1

θ

]
(t) = 2(α− 1)2t1−α

∫ t

t0

uα−2

u2 − t20
= O(t1−α + t−2).

Since α > 3, we have that O(t1−α) is also O(t−2), and we conclude that

E(f(X(t))−min f) = O(t−2).

(iii) This point follows directly from Theorem5.2.4 in the case γ(t) = α
t .
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5.2.4 Convergence rate under Polyak-�ojasiewicz inequality

In this subsection, we show a local convergence rate under Polyak-�ojasiewicz inequality.

Theorem 5.2.6. Let ν ≥ 2 and consider the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H)

that is Ft0−measurable, where f satis�es (Hf ), and σ satis�es (Hσ). Besides, f ∈ P�µ(S) and suppose
that either H is �nite dimensional or f ∈ C2(H). Let also, γ ≡

√
2µ, β ≡ Γ ≡ 1√

2µ
, and such that

σ∞ ∈ L2([t0,+∞[).

Then the solution trajectory (X,V ) ∈ Sν
H×H[t0] is unique. Moreover, letting δ > 0, then there exists

t̂δ > t0,Kµ,δ, Cl, Cf > 0 such that:

E(f(X(t))−min f) ≤ Kµ,δe
−µ

2
(t−t̂δ) +

1

µ
lδ

(
t+ 3t̂δ − 4t0

4µ

)
+ Cf

√
δ, ∀t > t̂δ, (5.16)

where

lδ(s) =
L

2
σ2∞(s) + Cl

√
δ

σ2∞(s)

2
√∫ s

ŝδ
σ2∞(u)du

.

Besides, if f ∈ P�µ(S) holds on the entire space (i.e. r = +∞), then we have that there exists

Kµ > 0 such that:

E(f(X(t))−min f) ≤ Kµe
−µ

2
(t−t0) +

L

2µ
σ2∞

(
t− t0
4µ

)
, ∀t > t0, (5.17)

Proof. Consider the dynamic (S− ISIHD) with γ ≡ c, β ≡ Γ ≡ 1
c , where c > 0 is a constant that will

be �xed later.

Let us also de�ne θ(t)
def

=
∫ t
t0
Γ(u)du = t−t0

c and σ̃(s, ·) def

= σ(θ−1(s), ·)
√
Γ(θ−1(s)). Then

σ∞ ∈ L2([t0,+∞[) is equivalent to σ̃∞ ∈ L2(R+). Now consider the dynamic:

{
dZ(s) = −∇f(Z(s)) + σ̃(s, Z(s))dW (s), s > 0;

Z(0) = X0 + Γ(t0)V0.
(5.18)

Let δ > 0 and apply the result of Theorem3.3.3, item (i) (with coe�cient
√
2µ), that is, there exists

ŝδ > 0 such that for every λ ∈]0, 1[,

E (f(Z(s))−min f) ≤ e−2µ(s−ŝδ)E(f(Z(ŝδ))−min f)

+ e−2µ(1−λ)(s−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(ŝδ + λ(s− ŝδ))

2µ
+ Cf

√
δ, ∀s > ŝδ,

(5.19)

where C∞, Cl, Cf > 0 and the establishment of lδ are detailed in Section 3.3.

Consider the time scaling τ ≡ θ, Y (t) = Z(θ(t)) and t̂δ > t0 such that θ(t̂δ) = ŝδ (i.e. t̂δ = cŝδ + t0),
we have that:

E (f(Y (t))−min f) ≤ e−2µ(θ(t)−ŝδ)E(f(Y (t̂δ))−min f)

+ e−2µ(1−λ)(θ(t)−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(ŝδ + λ(θ(t)− ŝδ))

2µ
+ Cf

√
δ, ∀t > t̂δ.

(5.20)

Let a(t) = c and A(t) = c(t − t̂δ). Now, we consider the averaging as in (5.8) but change the initial
condition to t̂δ. Thus, we have

X(t) =

∫ t

t̂δ

Y (u)dµ̃t(u) + ξ̃(t), (5.21)
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where µ̃t is the probability measure on [t̂δ, t] de�ned by

µ̃t = e−c(t−t̂δ)δt̂δ + cec(u−t)du, (5.22)

where δt̂δ is the Dirac measure at t̂δ and

ξ̃(t)
def

= −1

c
e−c(t−t̂δ)V (t̂δ). (5.23)

Then

E(f(X(t))−min f) = E
(
f(X(t))− f

(∫ t

t̂δ

Y (u)dµt(u)

))
+ E

(
f

(∫ t

t̂δ

Y (u)dµt(u)

)
−min f

)
.

We can bound the �rst term using convexity and Cauchy-Schwarz inequality in the following way

E
(
f(X(t))− f

(∫ t

t̂δ

Y (u)dµ̃t(u)

))
≤
√

E(∥∇f(X(t))∥2)
√
E(∥ξ̃(t)∥2)

≤

√
E(∥V (t̂δ)∥2)

c

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−c(t−t̂δ),

where E(supt≥t0 ∥X(t)∥2) < +∞ as mentioned in Corollary 5.2.5.

On the other hand, we can bound the second term using Jensen's inequality and then (5.20)

E
(
f

(∫ t

t̂δ

Y (u)dµ̃t(u)

)
−min f

)
≤
∫ t

t̂δ

E(f(Y (u)−min f))dµ̃t(u)

≤
∫ t

t̂δ

e−2µ(θ(u)−ŝδ)E(f(Y (t̂δ))−min f)dµ̃t(u)

+

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)

(
LC2

∞
2

+ ClC∞
√
δ

)
dµ̃t(u)

+

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))

2µ
dµ̃t(u) + Cf

√
δ

=

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(ŝδ)

2µ

)
e−c(t−t̂δ)

+ cE(f(Y (t̂δ))−min f)e−ct

∫ t

t̂δ

e−2µ(θ(u)−ŝδ)ecudu

+ c

(
LC2

∞
2

+ ClC∞
√
δ

)
e−ct

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)ecudu

+
c

2µ
e−ct

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu+ Cf

√
δ, ∀t > t̂δ.

We bound the �rst integral as follows:

e−ct

∫ t

t̂δ

e−2µ(θ(u)−ŝδ)ecudu ≤ e2µ(
t0
c
+ŝδ)e−

2µ
c
t.

And the second integral in the same way

e−ct

∫ t

t̂δ

e−2µ(1−λ)(θ(u)−ŝδ)ecudu ≤ e2µ(1−λ)( t0
c
+ŝδ)e−

2µ(1−λ)
c

t.

To treat the third integral we are going to split the integral in two in order to �nd a useful convergence
rate. Let us recall that lδ ∈ L1([ŝδ,+∞[) and that lδ is decreasing. Let us de�ne

φλ,c,δ(t)
def

= ŝδ + λ

(
t+ t̂δ − 2t0

2c
− ŝδ

)
,
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then

e−ct

∫ t

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu = e−ct

∫ t̂δ+t

2

t̂δ

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu

+ e−ct

∫ t

t̂δ+t

2

lδ(ŝδ + λ(θ(u)− ŝδ))e
cudu

≤ c

λ
e

ct̂δ
2 C∞e

− ct
2 + lδ(φλ,c,δ(t)).

Now that we have bounded all the terms, we have the following bound

E(f(X(t))−min f) ≤

√
E(∥V (t̂δ)∥2)

c

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−c(t−t̂δ)

+

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(ŝδ)

2µ

)
e−c(t−t̂δ)

+ cE(f(Y (t̂δ))−min f)e
2µ

(
t0+t̂δ

c
+ŝδ

)
e−

2µ
c
(t−t̂δ)

+ c

(
LC2

∞
2

+ ClC∞
√
δ

)
e
2µ(1−λ)

(
t0+t̂δ

c
+ŝδ

)
e−

2µ(1−λ)
c

(t−t̂δ)

+
c

2µ

(
c

λ
C∞e

− c(t−t̂δ)

2 + lδ(φλ,c,δ(t))

)
+ Cf

√
δ, ∀t > t̂δ.

Letting λ = 1
2 and c =

√
2µ we obtain

E(f(X(t))−min f) ≤

√
E(∥V (t̂δ)∥2)

√
2µ

√
2∥∇f(0)∥2 + 2L2E

(
sup
t≥t0

∥X(t)∥2
)
e−

√
2µ(t−t̂δ)

+

(
E(f(Y (t̂δ))−min f) +

(
LC2

∞
2

+ ClC∞
√
δ

)
+
lδ(ŝδ)

2µ

)
e−

√
2µ(t−t̂δ)

+
√
2µE(f(Y (t̂δ))−min f)e

2µ
(

t0+t̂δ√
2µ

+ŝδ

)
e−

√
2µ(t−t̂δ)

+
√
2µ

(
LC2

∞
2

+ ClC∞
√
δ

)
e
µ
(

t0+t̂δ√
2µ

+ŝδ

)
e−

√
2µ
2

(t−t̂δ)

+ 2C∞e
−

√
2µ(t−t̂δ)

2 +
1√
2µ
lδ(φ 1

2
,
√
2µ,δ(t)) + Cf

√
δ, ∀t > t̂δ.

Letting Kµ,δ
def

=
√
2µ
(
LC2

∞
2 + ClC∞

√
δ
)
e
µ
(

t0+t̂δ√
2µ

+ŝδ

)
+ 2C∞, we conclude that

E(f(X(t))−min f) ≤ Kµ,δe
−

√
2µ
2

(t−t̂δ) +
1√
2µ
lδ(φ 1

2
,
√
2µ,δ(t)) + Cf

√
δ, ∀t > t̂δ. (5.24)

5.3 From weak to strong convergence under general γ and β ≡ Γ

5.3.1 General result

We consider the Tikhonov regularization of the dynamic (S− ISIHDNS), i.e., for t > 0,
dX(t) = V (t)dt;

dV (t) ∈ −γ(t)V (t)dt− ∂F (X(t) + β(t)V (t))dt− ε(t)(X(t) + β(t)V (t))dt

+ σ(t,X(t) + β(t)V (t))dW (t);

X(t0) = X0; V (t0) = V0.

(S− ISIHDNS − TA)

We show some conditions (on γ, β, ε, σ) under which we can obtain strong convergence of the trajectory.
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Theorem 5.3.1. Consider that γ : [t0,+∞[→ R+ satis�es (Hγ). Besides, F = f + g and σ sat-

isfy assumptions (HF ) and (Hσ). Moreover, suppose that g satis�es (Hλ) and let ν ≥ 2. Consider

(S− ISIHDNS − TA) with β ≡ Γ and initial data X0, V0 ∈ Lν(Ω;H) that is Ft0−measurable.

Then, there exists a unique solution (X,V ) ∈ Sν
H×H[t0] of (S− ISIHDNS − TA). Additionally,

let x⋆
def

= PSF
(0) be the minimum norm solution, and for ε > 0 let xε be the unique minimizer of

Fε(x)
def

= F (x) + ε
2∥x∥

2. If we suppose that Γσ∞ ∈ L2([t0,+∞[), and that ε : [t0,+∞[→ R+ satis�es

the conditions:

(T
′
1) ε(t) → 0 as t→ +∞;

(T
′
2)

∫ +∞

t0

ε(t)Γ(t)dt = +∞;

(T
′
3)

∫ +∞

t0

ε(t)Γ(t)
(
∥x⋆∥2 − ∥xε(t)∥2

)
dt < +∞.

Then s-limt→+∞X(t) = x⋆ a.s., and ∥V (t)∥ = o
(

1
Γ(t)

)
a.s..

Proof. Let s0 > 0, θ(t)
def

= s0 +
∫ t
t0
Γ(u)du; ε̃(t) = ε(θ−1(t)); and σ̃(s, ·) def

= σ(θ−1(s), ·)
√
Γ(θ−1(s)).

Then ε satisfying (T
′
1),(T

′
2), and (T

′
3) is equivalent to ε̃ satisfying (T1),(T2), and (T3). Besides,

Γσ∞ ∈ L2([t0,+∞[) is equivalent to σ̃∞ ∈ L2(R+). Consider the dynamic:

{
dZ(s) ∈ −∂F (Z(s))− ε̃(s)Z(s) + σ̃(s, Z(s))dW (s), s > s0;

Z(s0) = X0 + Γ(t0)V0.
(5.25)

By Theorem4.4.1, we have that there exists a unique solution Z ∈ Sν
H[s0], and that lims→+∞ Z(s) = x⋆

a.s. (Recall that x⋆
def

= PSF
(0)). Using the time scaling τ ≡ θ and the averaging described at the

beginning of this section, we end up with the dynamic (S− ISIHDNS − TA) in the case where β ≡ Γ.
The existence and uniqueness of solution, and the fact that (X,V ) ∈ Sν

H×H[t0] goes analogously as in
the proof of Theorem5.2.2.

Now we prove the claim, since lims→+∞ Z(s) = x⋆ a.s., this implies directly that limt→+∞ Y (t) = x⋆

a.s.. Besides, we have the relation (5.9), i.e.

X(t) =

∫ t

t0

Y (u)dµt(u) + ξ(t),

where µt and ξ are de�ned in (5.10) and (5.11), respectively. Consequently, we have

∥X(t)− x⋆∥ ≤
∥∥∥∥X(t)−

∫ t

t0

Y (u)dµt(u)

∥∥∥∥+ ∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥

≤ ∥ξ(t)∥+
∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ .

Let a(t) = 1
Γ(t) and A(t) =

∫ t
t0

du
Γ(u) . By Lemma5.2.1, we have that limt→+∞ ∥ξ(t)∥ = 0. On the other

hand ∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ =

∥∥∥∥∫ t

t0

(Y (u)− x⋆)dµt(u)

∥∥∥∥
≤
∫ t

t0

∥Y (u)− x⋆∥dµt(u)

= e−A(t)∥Y (t0)− x⋆∥+ e−A(t)

∫ t

t0

a(u)eA(u)∥Y (u)− x⋆∥du.

Let b(u) = ∥Y (u) − x⋆∥. Since we already proved that limu→+∞ b(u) = 0 a.s., and we have that
a /∈ L1([t0,+∞[) by Lemma5.2.1, we utilize Lemma2.6.5 with our respective a, b functions. This let
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us conclude that

lim
t→+∞

∥∥∥∥∫ t

t0

Y (u)dµt(u)− x⋆
∥∥∥∥ = 0 a.s..

Thus, limt→+∞X(t) = x⋆ a.s.. Finally, since

Y (t) = X(t) + Γ(t)V (t),

and the fact that X and Y have (a.s.) the same limit, we conclude that

lim
t→+∞

Γ(t)V (t) = 0 a.s..

5.3.2 Practical situations

We give some conditions when (T
′
1), (T

′
2), and (T

′
3) of Theorem5.3.1 are satis�ed simultaneously.

Theorem 5.3.2. Consider the setting of Theorem5.3.1 and suppose that F = f + g ∈ EBp(SF ) (recall

De�nition 2.11). Let s0 > 0 and denote θ(t)
def

= s0 +
∫ t
t0
Γ(s)ds, then taking the Tikhonov parameter

ε(t) = 1
θr(t) with

1 ≥ r >
2p

2p+ 1
,

then the three conditions (T
′
1), (T

′
2), and (T

′
3) of Theorem5.3.1 are satis�ed simultaneously. In particu-

lar, for any solution (X,V ) ∈ Sν
H×H[t0] of (5.3.1), we get almost sure (strong) convergence of X(t) to

the minimal norm solution named x⋆ = PSF
(0) and that ∥V (t)∥ = o

(
1

Γ(t)

)
.

Proof. We proceed as in the proof of Theorem5.3.1 and arrive to the dynamic (5.25), since

ε̃(t) = ε(θ−1(t)) =
1

tr
,

the proof goes as in Theorem4.4.5.

Let us consider the assumption:
f : H → R is continuously di�erentiable and convex with L-Lipschitz continuous gradient;

f ∈ C2(H) or H is �nite-dimensional;

S def

= argmin(f) ̸= ∅.
(H⋆

f )

Theorem 5.3.3. Let f satisfying (H⋆
f ), and also f ∈ EBp(S), σ satisfying (Hσ), and

Γσ∞ ∈ L2([t0,+∞[) and is nonincreasing. Let ν ≥ 2, and let us consider ε(t) = 1
tr where 0 < r < 1,

then we evaluate (S− ISIHDNS − TA) in the case where γ satis�es (Hγ), g ≡ 0, β ≡ Γ, and with

initial data X0, V0 ∈ Lν(Ω;H) that is Ft0−measurable, i.e., for t > t0,
dX(t) = V (t)dt;

dV (t) = −γ(t)V (t)dt−∇f(X(t) + Γ(t)V (t))dt− ε(t)(X(t) + Γ(t)V (t))

+ σ(t,X(t) + Γ(t)V (t))dW (t);

X(t0) = X0; V (t0) = V0.

(5.26)

For ε > 0, let us de�ne fε(x)
def

= f(x) + ε
2∥x∥

2, and let xε be the unique minimizer of fε. Moreover, let

s0 > 0 and for s1 > s0 consider,

R(s)
def

= e−
s1−r

1−r

∫ s

s1

e
u1−r

1−r σ2∞(θ−1(u))Γ(θ−1(u))du, (5.27)
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where θ(t)
def

= s0 +
∫ t
t0
Γ(u)du. Let also x⋆

def

= PS(0), A(s)
def

=
∫ s
s1

du
Γ(u) , and t1

def

= θ−1(s1). Then, the

solution trajectory (X,V ) ∈ Sν
H×H[t0] is unique, and we have that:

(i) R(θ(t)) → 0 as t→ +∞.

(ii) Let σ̄(t) = Γ(t)σ2∞(t), then

R(θ(t)) = O
(
exp(−θr(t)(1− 2−r)) + θr(t)σ̄

(
s1 + θ(t)

2

))
.

Moreover, if σ̄(t) = O(θ−∆(t)) for ∆ > 1, then R(θ(t)) = O(θr−∆(t)).

Besides, we have the following convergence rate in expectation:

(iii) For the values, we have:

E[f(X(t))−min(f)] = O
(
max{e−A(t), I[h1](t)}

)
,

where h1(t) =
1

θr(t) +R(θ(t)).

(iv) And for the trajectory, we obtain:

E[∥X(t)− x⋆∥2] = O
(
max{e−A(t), I[h2](t)}

)
,

where h2(t) = θr−1(t) + θ
− r

p (t) + θr(t)R(θ(t)).

Proof. We proceed as in the proof of Theorem5.2.2 and de�ne analogously σ̃, ε̃, we also consider the
dynamic (5.12). By Theorem4.4.8 we obtain that

R(s) = e−
s1−r

1−r

∫ s

s1

e
u1−r

1−r σ̃2∞(u)du,

where σ̃2∞ ∈ L2([s0,+∞[), satis�es the following:

� R(s) → 0 as t→ +∞.

� R(s) = O
(
exp(−sr(1− 2−r)) + srσ̃2∞

(
s1+s
2

))
. Moreover if σ̃2∞(s) = O(s−∆) for ∆ > 1, then

R(s) = O(sr−∆).

And evaluating at s = θ(t) we obtain the �rst two items of the theorem. For the third and fourth
items we used that

� E[f(Z(s))−min(f)] = O
(

1

sr
+R(s)

)
.

� E[∥Z(s)− x⋆∥2] = O
(

1

s1−r
+

1

s
r
p

+ srR(s)

)
.

Then, proceeding as in the proof of Theorem5.2.3, we obtain the desired results.

Corollary 5.3.4. Consider Theorem5.3.2 in the case where γ(t) = α
t for α > 1, β(t) = t

α−1 then we

have that:

1. If σ2∞(t) = O(t−2(∆+1)) for ∆ > 1, and α ̸= {1 + 2r, 1 + 2(∆− r)} , then

E[f(X(t))−min(f)] = O
(
max{t−(α−1), t−2r, t−2(∆−r)}

)
.

In particular, if α > 3

2. If σ2∞(t) = O(t−2(∆+1)) for ∆ > max{1, 2r}, and α ̸= {3− 2r, 1 + 2r
p , 1 + 2(2r −∆)}, then

E[∥X(t)− x⋆∥2] = O
(
max{t−(α−1), t−2(1−r), t

− 2r
p , t−2(2r−∆)}

)
.
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Chapter 6

An SDE Perspective on Stochastic

Inertial Gradient Dynamics with

Time-Dependent Viscosity

Our goal in this chapter is to solve convex minimization problems by means of stochastic inertial
di�erential equations which are driven by the gradient of the objective function. This will provide a
general mathematical framework for analyzing fast optimization algorithms with stochastic gradient
input. Our study is a natural extension of our previous work devoted to the �rst-order in time stochastic
steepest descent in Chapter 3 and those of Chapter 5 where we used time scaling and averaging. We
will then develop these results further by considering second-order stochastic di�erential equations in
time, incorporating a viscous time-dependent damping and a Hessian-driven damping with general
coe�cients. To develop this program, we rely on stochastic Lyapunov analysis. Assuming a square-
integrability condition on the di�usion term times a function dependant on the viscous damping, and
that the Hessian-driven damping is a positive constant, our �rst main result shows that almost surely,
there is convergence of the values, and states fast convergence of the values in expectation. Besides, in
the case where the Hessian-driven damping is zero, we conclude with the fast convergence of the values
in expectation and in almost sure sense, we also managed to prove almost sure weak convergence of the
trajectory. We provide a comprehensive complexity analysis by establishing several new convergence
rates in expectation and in almost sure sense for the convex and strongly convex case.

Main contributions of this chapter

▶ Almost sure convergence of the gradient evaluated at the trajectory generated by the
second-order inertial SDE with a general viscous and geometric damping, to zero (The-
orem 6.2.7).

▶ Global convergence rates of the second-order inertial SDE in expectation under convex-
ity (Theorem 6.2.8), and strong convexity (Theorem 6.2.13).

▶ Fast convergence of the values in expectation under α > 3, γ(t) = α
t and β(t) = γ0+

β0

t

(Corollary 6.2.11).

▶ Tighter global convergence rates of the values in almost sure sense and in expectation
when the geometric damping is null, including the fast convergence case (Theorem 6.3.5).

▶ Almost sure weak convergence of the trajectory generated by the second-order inertial
SDE with a non-increasing viscous damping and a null geometric damping, to the set
of minimizers (Theorem 6.3.7).

The content of this chapter is submitted in [146].
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6.1 Introduction

Let us �x the framework of our study. We consider again the minimization problem

min
x∈H

f(x), (P1)

where H is a real separable Hilbert space and the objective function f : H → R satis�es the following
standing assumptions:{

f is convex and continuously twice di�erentiable with L-Lipschitz continuous gradient;

S def

= argmin(f) ̸= ∅.
(Hf )

Consider K a real separable Hilbert space. To solve (P1), we will refer to Section 1.2 for the
approach that leads to the dynamic that we will study in this chapter, speci�cally the following SDE:


dX(t) = V (t)dt;

dV (t) = −γ(t)V (t)dt−∇f(X(t) + β(t)V (t))dt+ σ(t,X(t) + β(t)V (t))dW (t);

X(t0) = X0; V (t0) = V0.

(S− ISIHD)

This SDE is de�ned over a �ltered probability space (Ω,F , {Ft}t≥0,P), where the di�usion (volatil-
ity) term σ : [t0,+∞[×H → L2(K;H) is a measurable function that sati�es (Hσ), and W is a K-
valued Brownian motion. Where X0, V0 ∈ Lν(Ω;H) for some ν ≥ 2 are given initial data that is
Ft0−measurable. Besides, γ and β are parameters called viscous damping and geometric damping,
respectively. They are explained and discussed in more detail below.

Our goal is to provide a general mathematical framework for analyzing fast gradient-based opti-
mization algorithms with stochastic gradient input. For this, we will study second-order stochastic
di�erential equations in time, i.e., also involving acceleration, and whose drift term is the gradient of
the function to be minimized. In this context, considering inertial dynamics with a time-dependent
viscosity coe�cient is a key property to obtain fast convergent methods. Our study is related to two
recent works:

� On the one hand, it is a natural extension of Chapter 3 devoted to the �rst-order in time stochastic
steepest descent. Moreover, it extends Chapter 5, which studies second-order in time stochastic
systems with a particular geometric damping, to a focus on general geometric damping.

� On the other hand, we will rely on the Lyapunov analysis for the dynamic (ISIHD) done by
Attouch, Fadili, and Kungurtsev in [33]; and the one for (IGSγ) done by Attouch and Cabot in
[18].
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Chapter 6 6.2. (S− ISIHD) with general γ and β

Our objectives are largely motivated by recent analysis in the deterministic setting. In fact, the
dynamic (S− ISIHD) comes naturally as a stochastic version of (ISIHD). (ISIHD) is one of the most
recent developments regarding the use of gradient-based dynamic systems for optimization. We refer
to the Introduction for a deep insight on second order systems.

On stochastic di�erential equations. For the necessary notation and preliminaries on stochastic
processes, see [145, Section A.2]. Moreover, the existence and uniqueness of a solution of (S− ISIHD)
is discussed in Proposition 6.2.4.

Let us now present Itô's formula (Theorem 2.7.5) in the particular case of (S− ISIHD):

Proposition 6.1.1. [101, Section 2.3] Consider (X,V ) a solution of (S− ISIHD) and W a K−valued
Brownian motion, let ϕ : [t0,+∞[×H×H → R be such that ϕ(·, x, v) ∈ C1([t0,+∞[) for every x, v ∈ H,
ϕ(t, ·, ·) ∈ C2(H×H) for every t ≥ t0. Then the process

Y (t) = ϕ(t,X(t), V (t)),

is an Itô Process, such that for all t ≥ t0

Y (t) = Y (t0) +

∫ t

t0

∂ϕ

∂t
(s,X(s), V (s))ds+

∫ t

t0

⟨∇xϕ(s,X(s), V (s)), V (s)⟩ds

−
∫ t

t0

⟨∇vϕ(s,X(s), V (s)), γ(s)V (s) +∇f(X(s) + β(s)V (s))⟩ds

+

∫ t

t0

⟨σ⋆(s,X(s) + β(s)V (s))∇vϕ(s,X(s), V (s)), dW (s)⟩

+
1

2

∫ t

t0

tr[σ(s,X(s) + β(s)V (s))σ⋆(s,X(s) + β(s)V (s))∇2
vϕ(s,X(s), V (s))]ds,

(6.1)

where ∇2
v is the Hessian with respect to the double di�erentiation of v and σ⋆ is the adjoint operator

of σ. Moreover, if for all T > t0

E
(∫ T

t0

∥σ⋆(s,X(s) + β(s)V (s))∇vϕ(s,X(s), V (s))∥2ds
)
< +∞,

then
∫ t
t0
⟨σ⋆(s,X(s)+β(s)V (s))∇vϕ(s,X(s), V (s)), dW (s)⟩ is a square-integrable continuous martingale

and

E
(∫ t

t0

⟨σ⋆(s,X(s) + β(s)V (s))∇vϕ(s,X(s), V (s)), dW (s)⟩
)

= 0 (6.2)

6.2 (S− ISIHD) with general γ and β

In this section, we will develop a Lyapunov analysis based on [33] to study almost sure, and in ex-
pectation properties of the dynamic (S− ISIHD), when the parameters γ and β are general functions.
This will allow to go much further and consider parameters not covered in Chapter 5 which exploits
the relationship between �rst-order and second-order systems. We will also apply our results to two
special cases: (i) γ is a di�erentiable, decreasing and vanishing function, with vanishing derivative, and
β is a positive constant; and (ii) γ(t) = α

t , and β(t) = γ0 +
β
t (with γ0, β > 0). These cases are again

are not covered by results in Chapter 5.

Recall that our focus in this thesis is on an optimization perspective, and as we argued in the
introduction, we will study the long time behavior of (S− ISIHD) as the di�usion term vanishes when
t→ +∞. Therefore, we recall that we assume that the di�usion (volatility) term σ satis�es:{

supt≥t0,x∈H ∥σ(t, x)∥HS < +∞,

∥σ(t, x′)− σ(t, x)∥HS ≤ l0 ∥x′ − x∥ ,
(Hσ)
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for some l0 > 0 and for all t ≥ t0, x, x
′ ∈ H. The Lipschitz continuity assumption is mild and required

to ensure the well-posedness of (S− ISIHD).

Remark 6.2.1. Under the hypothesis (Hσ) we have that there exists σ2∗ > 0 such that

∥σ(t, x)∥2HS = tr[Σ(t, x)] ≤ σ2∗, ∀t ≥ t0,∀x ∈ H,

where Σ
def

= σσ⋆. Let us also de�ne σ∞ : [t0,+∞[→ R+ as: σ∞(t)
def

= supx∈H ∥σ(t, x)∥HS.

Now, we follow with the hypotheses we will require over the damping parameters.

For t0 > 0, let γ : [t0,+∞[→ R+ be a viscous damping, we denote

p(t)
def

= exp

(∫ t

t0

γ(s)ds

)
. (6.3)

Besides, if ∫ +∞

t0

ds

p(s)
< +∞, (Hγ)

we de�ne Γ : [t0,+∞[→ R+ by

Γ(t)
def

= p(t)

∫ +∞

t

ds

p(s)
. (6.4)

Remark 6.2.2. Let us notice that Γ satis�es the relation

Γ′ = γΓ− 1.

Besides, there are some results that will require the additional following assumption (introduced in
[18]):

there exists t2 ≥ t0 and m <
3

2
such that γ(t)Γ(t) ≤ m for every t ≥ t2. (H′

γ)

For t0 > 0, let β : [t0,+∞[→ R+ be a geometric damping that we will assume to be a di�erentiable
function. We will occasionally need to impose the additional assumption that there exists c1, c2 > 0,
and t1 > t0 such that for every t ≥ t1: β(t) ≤ c1;∣∣∣β′(t)−γ(t)β(t)+1

β(t)

∣∣∣ ≤ c2.
(Hβ)

We present a Lemma that will useful in this chapter.

Lemma 6.2.3. Let us consider the viscous damping function γ : [t0,+∞[→ R+ de�ned by γ(t) = α
tr

with r ∈]0, 1[ and α ≥ 1− r, then:

(i) γ satis�es (Hγ).

(ii) Γ(t) = O(tr).

(iii) γ satis�es (H′
γ).

Proof. (i) Let c
def

= α
1−r ≥ 1, we �rst notice that after the change of variable u = cs1−r, we get∫ ∞

0
exp(−cs1−r)ds =

1

αc
r

1−r

∫ ∞

0
u

1
1−r

−1e−udu < +∞,

since the last integral is the classical Gamma function (see e.g. [160, Section 5]) evaluated at
1

1−r , and this function is well de�ned for positive arguments, then (Hγ) is satis�ed.
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(ii) Besides, by de�nition Γ(t) = exp(ct1−r)
∫∞
t exp(−cs1−r)ds. Using the same change of variable

as before, we obtain that

Γ(t) =
exp(ct1−r)

αc
r

1−r

Γinc

(
1

1− r
, ct1−r

)
. (6.5)

By (iii) of Lemma 2.6.8 with a = 1
1−r > 1 and x = ct1−r, for every ε > 0, there exists t1 > t0

such that for every t > t1:

Γ(t) ≤ 1 + ε

αc
1

1−r

tr.

(iii) Moreover, if we restrict ε ∈]0, 12 [, there exists t1 > t0 such that for every t > t1:

γ(t)Γ(t) ≤ 1 + ε

c
1

1−r

≤ 1 + ε.

De�ning m as 1 + ε, we have that m < 3
2 , and we conclude.

6.2.1 Reformulation of (S− ISIHD)

The formulation of the dynamic (S− ISIHD) is known as the Hamiltonian formulation. However,
it is not the only one. In the deterministic case, an alternative equivalent and more �exible �rst-
order reformulation of (ISIHD) was proposed in [33]. The motivation there was that this equivalent
reformulation can handle the case where f is non-smooth. Although we will not consider the non-
smooth case here, we will still extend and use that equivalent reformulation to the stochastic case.

Consider the dynamic (S− ISIHD), and let us de�ne the auxiliary variable

Y (t) = X(t) + β(t)V (t), t > t0.

We have that

dY (t) = dX(t) + β′(t)V (t) + β(t)dV (t)

= −β(t)∇f(Y (t))dt− (β′(t)− γ(t)β(t) + 1)

(
X(t)− Y (t)

β(t)

)
dt+ β(t)σ(t, Y (t))dW (t).

So we can reformulate (S− ISIHD) in terms of X,Y in the following way:
dX(t) = −

(
X(t)−Y (t)

β(t)

)
dt, t > t0;

dY (t) = −β(t)∇f(Y (t))dt− (β′(t)− γ(t)β(t) + 1)
(
X(t)−Y (t)

β(t)

)
dt+ β(t)σ(t, Y (t))dW (t), t > t0;

X(t0) = X0; Y (t0) = X0 + β(t0)V0,

(ISIHD− SR)

where the subscript 'R' indicates that this is a reformulation. Moreover, we can reformulate
(ISIHD− SR) in the product space H × H by setting Z(t) = (X(t), Y (t)) ∈ H × H, and thus
(ISIHD− SR) can be equivalently written as{

dZ(t) = −β(t)∇G(Z(t))dt−D(t, Z(t))dt+ σ̂(t, Z(t))dW (t), t > t0;

Z(t0) = (X0, X0 + β(t0)V0),
(6.6)

where G : H×H → R is the convex function de�ned as G(Z) = f(Y ), and the time-dependent operator
D : [t0,+∞[×H×H → H×H is given by

D(t, Z) =

(
1

β(t)
(X − Y ),

β′(t)− γ(t)β(t) + 1

β(t)
(X − Y )

)
, (6.7)
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and the stochastic noise σ̂ ∈ M2×2(L2(K;H)) de�ned by

σ̂(t, Z) =

0 0

0 β(t)σ(t, Y )

 ,

and W (t) = (W1(t),W2(t)), where W1,W2 are two independent K−valued Brownian motions.

6.2.2 Existence and uniqueness of a solution

Proposition 6.2.4. Consider ν ≥ 2, X0, V0 ∈ Lν(Ω;H), f and σ satisfying (Hf ) and (Hσ), respec-
tively. Consider also γ satisfying (Hγ), and β satisfying (Hβ). Then (S− ISIHD) has a unique solution
(X,V ) ∈ Sν

H×H[t0].

Remark 6.2.5. Hypothesis (Hβ) does not allow us to consider the case β ≡ 0, nevertheless, this case
is well studied in Section 6.3.

Proof. We rewrite (S− ISIHD) as in the reformulation (ISIHD− SR), we recall (6.6):{
dZ(t) = −β(t)∇G(Z(t))dt−D(t, Z(t))dt+ σ̂(t, Z(t))dW (t), t > t0,

Z(t0) = (X0, X0 + β(t0)V0),

Since β(t) ≤ c1, we have that −β(t)∇G(Z(t)) is Lipschitz. Besides, since∣∣∣β′(t)− γ(t)β(t) + 1

β(t)

∣∣∣ ≤ c2,

we have that D is a Lipschitz operator. Then, using the hypotheses on σ we can use Theorem 2.7.4 and
conclude the existence and uniqueness of a process Z ∈ Sν

H×H[t0], this, in turn, implies the existence
and uniqueness of a solution (X,V ) ∈ Sν

H×H[t0] of (S− ISIHD).

6.2.3 Fast convergence properties: convex case

To obtain properties in almost sure sense and in expectation of (S− ISIHD), we are going to adapt
the Lyapunov analysis shown on [33] for the dynamic (ISIHD).

To that purpose, let us consider t1 > t0, γ, β : [t0,+∞[→ R+ be �xed functions and let a, b, c, d :

[t0,+∞[→ R be di�erentiable functions (on ]t0,+∞[) satisfying the following system for all t > t1:

a′(t)− b(t)c(t) ≤ 0,

−a(t)β(t) ≤ 0,

−a(t)γ(t)β(t) + a(t)β′(t) + a(t)− c(t)2 + b(t)c(t)β(t) = 0,

b′(t)b(t) + d′(t)
2 ≤ 0,

b′(t)c(t) + b(t)(b(t) + c′(t)− c(t)γ(t)) + d(t) = 0,

c(t)(b(t) + c′(t)− c(t)γ(t)) ≤ 0.

(Sa,b,c,d)

Given x⋆ ∈ S, we consider

E(t, x, v) = a(t)(f(x+ β(t)v)−min(f)) +
1

2
∥b(t)(x− x⋆) + c(t)v∥2 + d(t)

2
∥x− x⋆∥2. (6.8)

Remark 6.2.6. It was shown in [3, Section 3.1] and [33, Lemma1] that energy function E with a, b, c, d
satisfying the system (Sa,b,c,d) is a Lyapunov function for (ISIHD) when γ(t) = α

t (with α > 3) and
β(t) = γ0+

β
t (with γ0, β ≥ 0), hence, useful to obtain convergence guarantees of that dynamic. We will

see that the same system (Sa,b,c,d) also covers the case of general coe�cients γ and β, hence providing
insights on the convergence properties of (S− ISIHD) when one can �nd the corresponding functions
a, b, c, d.
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In the following proposition, we state di�erent abstract integral bounds and almost sure properties
for (S− ISIHD), �nally concluding with the almost sure convergence of the gradient towards zero.

Proposition 6.2.7. Consider that f, σ satisfy (Hf ) and (Hσ), respectively. Let ν ≥ 2, and consider

the dynamic (S− ISIHD) with initial data X0, V0 ∈ Lν(Ω;H) that is Ft0−measurable. Consider also

γ, β from (S− ISIHD) satisfying (Hγ) and (Hβ), respectively, and a, b, c, d satisfying (Sa,b,c,d). Finally,
we consider E the energy function de�ned in (6.8).

Then, there exists a unique solution (X,V ) ∈ Sν
H×H[t0] of (S− ISIHD). Moreover, if

t 7→ m(t)σ2∞(t) ∈ L1([t0,+∞[), where m(t)
def

= max{1, a(t), c2(t)}, then the following properties are

satis�ed:

(i)

lim
t→+∞

E(t,X(t), V (t)) exists a.s..

(ii)
∫∞
t0

(b(s)c(s)− a′(s))(f(X(s) + β(s)V (s))−min f)ds < +∞, a.s..

(iii)
∫∞
t0
a(s)β(s)∥∇f(X(s)) + β(s)V (s)∥2ds < +∞, a.s..

(iv)
∫∞
t0

(
b(s)b′(s) + d′(s)

2

)
∥X(s)− x⋆∥2ds < +∞, a.s..

(v)
∫∞
t0
c(s)(γ(s)c(s)− c′(s)− b(s))∥V (s)∥2ds < +∞, a.s..

(vi) If b(t)c(t)− a′(t) = O(c(t)(γ(t)c(t)− c′(t)− b(t))), then∫ ∞

t0

(b(s)c(s)− a′(s))(f(X(s))−min f)ds < +∞ a.s..

(vii) If there exists η > 0, t̂ > t0 such that

η ≤ c(t)(γ(t)c(t)− c′(t)− b(t)), η ≤ a(t)β(t), γ(t) ≤ η, ∀t > t̂,

then limt→∞ ∥V (t)∥ = 0 a.s., limt→∞ ∥∇f(X(t)+β(t)V (t))∥ = 0 a.s., and limt→∞ ∥∇f(X(t))∥ = 0

a.s..

Proof. The existence and uniqueness of a solution is a direct consequence of Corollary 6.2.4. Moreover,
applying Proposition 6.1.1 with E , we can obtain

E(t,X(t), V (t)) ≤ E(t0, X0, V0)−
∫ t

t0

(b(s)c(s)− a′(s))(f(X(s) + β(s)V (s))−min f)ds

−
∫ t

t0

a(s)β(s)∥∇f(X(s) + β(s)V (s))∥2ds−
∫ t

t0

(
b(s)b′(s) +

d′(s)

2

)
∥X(s)− x⋆∥2ds

−
∫ t

t0

c(s)(b(s) + c′(s)− c(s)γ(s))∥V (s)∥2ds+
∫ t

t0

(La(s)β2(s) + c2(s))σ2∞(s)ds+Mt,

(6.9)

where

Mt
def

=

∫ t

t0

⟨σ⋆(s,X(s)+β(s)V (s))(a(s)β(s)∇f(X(s)+β(s)V (s))+c(s)[b(s)(X(s)−x⋆)+c(s)V (s)], dW (s)⟩.

Since supt∈[t0,T ] E(∥X(t)∥2) < +∞, supt∈[t0,T ] E(∥V (t)∥2) < +∞ for every T > t0, and a, b, c, β are
continuous functions, we have that Mt is a continuous martingale, on the other hand, we have that∫ ∞

t0

(La(s)β2(s) + c2(s))σ2∞(s)ds < +∞.

Then, we can apply Theorem 2.8.2 and conclude that limt→∞ E(t,X(t), V (t)) exists a.s. and

�

∫∞
t0

(b(s)c(s)− a′(s))(f(X(s) + β(s)V (s))−min f)ds < +∞ a.s..

�

∫∞
t0
a(s)β(s)∥∇f(X(s)) + β(s)V (s)∥2ds < +∞ a.s..

�

∫∞
t0

(
b(s)b′(s) + d′(s)

2

)
∥X(s)− x⋆∥2ds < +∞ a.s..
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�

∫∞
t0
c(s)(γ(s)c(s)− c′(s)− b(s))∥V (s)∥2ds < +∞ a.s..

This let us conclude with items (i) to (v).

Let b̃(t) = b(t)c(t)− a′(t), and

If
def

=

∫ ∞

t0

b̃(s)(f(X(s))−min f)ds

≤
∫ ∞

t0

b̃(s)(f(X(s))− f(X(s) + β(s)V (s)))ds+

∫ ∞

t0

b̃(s)(f(X(s) + β(s)V (s))−min f)ds

Using Descent Lemma, Cauchy Schwarz Inequality and Corollary 2.7:

If ≤
√
2Lβ0

(∫ ∞

t0

b̃(s)(f(X(s) + β(s)V (s))−min f)ds

) 1
2
(∫ ∞

t0

b̃(s)∥V (s)∥2ds
) 1

2

+
Lβ20
2

∫ ∞

t0

b̃(s)∥V (s)∥2ds+
∫ ∞

t0

b̃(s)(f(X(s) + β(s)V (s))−min f)ds.

If b̃(t) = b(t)c(t)− a′(t) = O(c(t)(γ(t)c(t)− c′(t)− b(t))), we have that∫ ∞

t0

b̃(s)∥V (s)∥2ds < +∞ a.s..

And we conclude with item (vi).

To prove (vii), in particular that limt→∞ ∥V (t)∥ = 0, we consider that if there exists η > 0, t̂ > t0
such that η ≤ c(t)(γ(t)c(t)− c′(t)− b(t)),∀t > t̂, then there exists Ωv ∈ F such that P(Ωv) = 1 and∫ ∞

t0

∥V (ω, s)∥2ds < +∞, ∀ω ∈ Ωv.

Then, we have lim inft→∞ ∥V (ω, t)∥ = 0,∀ω ∈ Ωv. Let us suppose that for every ω ∈ Ωv,
lim supt→∞ ∥V (ω, t)∥ > 0, then by Lemma 2.6.7, there exists δ > 0 satisfying

0 = lim inf
t→∞

∥V (ω, t)∥ < δ < lim sup
t→∞

∥V (ω, t)∥ , ∀ω ∈ Ωv.

And there exists (tk)k∈N ⊂ [t0,+∞[ such that limk→∞ tk = +∞,

∥V (ω, tk)∥ > δ, ∀ω ∈ Ωv and tk+1 − tk > 1, ∀k ∈ N.

Let Nt
def

=
∫ t
t0
σ(s,X(s) + β(s)V (s))dW (s). This is a continuous martingale (w.r.t. the �ltration Ft),

which veri�es

E(∥Nt∥2) = E
(∫ t

t0

∥σ(s,X(s) + β(s)V (s))∥2HS ds

)
≤ E

(∫ ∞

t0

σ2∞(s)ds

)
< +∞,∀t ≥ t0.

According to Theorem 2.8.1, we deduce that there exists a H−valued random variable N∞ w.r.t. F∞,
and which veri�es: E(∥N∞∥2) < +∞, and there exists ΩN ∈ F such that P(ΩN ) = 1 and

lim
t→+∞

Nt(ω) = N∞(ω) for every ω ∈ ΩN .

Let ω0 ∈ Ωnv
def

= ΩN ∩Ωv (P(Ωnv) = 1) and the notation V (t)
def

= V (ω0, t), ε ∈
(
0,min{1, δ24 }

)
arbitrary

and recall that η ≤ a(t)β(t), γ(t) ≤ η for every t > t̂. Let k′ ∈ N be such that tk′ > t̂, k > k′ and
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t ∈ [tk, tk + ε], then

∥V (t)− V (tk)∥2 ≤ 3(t− tk)

∫ t

tk

γ2(s)∥V (s)∥2ds+ 3(t− tk)

∫ t

tk

∥∇f(X(s) + β(s)V (s))∥2ds

+ 3∥Nt −Ntk∥
2

≤ 3η2(t− tk)

∫ t

tk

∥V (s)∥2ds+ 3

η
(t− tk)

∫ t

tk

a(s)β(s)∥∇f(X(s) + β(s)V (s))∥2ds

+ 3∥Nt −Ntk∥
2

≤ 3η2ε

∫ t

tk

∥V (s)∥2ds+ 3

η
ε

∫ t

tk

a(s)β(s)∥∇f(X(s) + β(s)V (s))∥2ds

+ 3∥Nt −Ntk∥
2.

Now let k′′ ∈ N be such that for every k > k′′,∫ ∞

tk

∥V (s)∥2ds < 1

9η2
,

∫ ∞

tk

a(s)β(s)∥∇f(X(s) + β(s)V (s))∥2ds < η

9
, sup
t>tk

∥Nt −Ntk∥
2 <

ε

9
.

Then, we have that

∥V (t)− V (tk)∥2 ≤ ε ≤ δ2

4
,∀t ∈ [tk, tk + ε], k > max{k′, k′′}.

For such t, we bound using the triangular inequality and obtain

∥V (t)∥ ≥ ∥V (tk)∥ − ∥V (t)− V (tk)∥ >
δ

2
.

Now we consider∫ ∞

t0

∥V (s)∥2ds ≥
∑

k>max{k′,k′′}

∫ tk+ε

tk

∥V (s)∥2ds ≥
∑

k>max{k′,k′′}

εδ2

4
= +∞.

Which is a contradiction, then we conclude that lim inft→∞ ∥V (t)∥ = lim supt→∞ ∥V (t)∥ = 0, a.s..

To prove the second part of (vii), i.e. that limt→∞ ∥∇f(X(t) + β(t)V (t))∥ = 0, we recall that there
exists η > 0, t̂ > t0 such that η ≤ a(t)β(t), then there exists Ωy ∈ F such that P(Ωy) = 1 and∫ ∞

t0

∥∇f(X(ω, s) + β(s)V (ω, s))∥2ds < +∞ ∀ω ∈ Ωy

So we have that

lim inf
t→∞

∥∇f(X(ω, t) + β(t)V (ω, t))∥ = 0, ∀ω ∈ Ωy.

Moreover, if we suppose that

lim sup
t→∞

∥∇f(X(ω, t) + β(t)V (ω, t))∥ > 0, ∀ω ∈ Ωy,

by Lemma 2.6.7, there exists δ > 0, (tk)k∈N ⊂ [t0,+∞[ such that limk→∞ tk = +∞,

∥∇f(X(ω, tk) + β(tk)V (ω, tk))∥ > δ ∀ω ∈ Ωy and tk+1 − tk > 1, ∀k ∈ N.

Recall that by (Hβ), there exists β0 such that β(t) ≤ β0. Let ε ∈
(
0,min{1, δ2

4L2 }
)
arbitrary and

consider Y (t) = X(t)+β(t)V (t), let also k ∈ N arbitrary and t ∈ [tk, tk+ ε]. Then, using Lemma 2.6.1
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and Jensen's inequality we can bound as follows:

∥Y (t)− Y (tk)∥2 ≤ 2∥X(t)−X(tk)∥2 + 2∥β(t)V (t)− β(tk)V (tk)∥2

≤ 2
∥∥∥∫ t

tk

V (s)ds
∥∥∥2 + 2 (β0∥V (t)− V (tk)∥+ |β(t)− β(tk)|max{∥V (t)∥, ∥V (tk)∥})2

≤ 2(t− tk)

∫ ∞

tk

∥V (s)∥2ds

+ 2 (β0∥V (t)− V (tk)∥+ |β(t)− β(tk)|max{∥V (t)∥, ∥V (tk)∥})2

≤ 2(t− tk)

∫ ∞

tk

∥V (s)∥2ds

+ 4β20∥V (t)− V (tk)∥2 + 4|β(t)− β(tk)|2max{∥V (t)∥, ∥V (tk)∥}2.

By the previous point, we have that there exists Ωv ∈ F such that P(Ωv) = 1 such that∫ ∞

t0

∥V (ω, s)∥2ds < +∞ ∀ω ∈ Ωv,

and k′ ∈ N such that for every k > k′, for all t ∈ [tk, tk + ε]:∫ ∞

tk

∥V (ω, s)∥2ds < 1

6
, max{∥V (ω, t)∥, ∥V (ω, tk)∥} < 1, ∥V (ω, t)− V (ω, tk)∥2 ≤

ε

12β20
.

We consider an arbitrary ω0 ∈ Ωy ∩ Ωv (P(Ωy ∩ Ωv) = 1), and we let us use the abuse of notation
X(t) = X(ω0, t), V (t) = V (ω0, t), and Y (t) = Y (ω0, t) for the rest of this proof.
On the other hand, β is continuous, so there exists δ̃ > 0 such that, if |t − tk| < δ̃, then
|β(t)− β(tk)| <

√
ε

2
√
3
.

Therefore, letting ε′ = min{ε, δ̃}, we have that

∥∇f(Y (t))−∇f(Y (tk))∥2 ≤ L2∥Y (t)− Y (tk)∥2 ≤ L2ε ≤ δ2

4
,∀k > k′,∀t ∈ [tk, tk + ε′].

Then, we obtain

∥∇f(Y (t))∥ ≥ ∥∇f(Y (tk))∥ − ∥∇f(Y (t))−∇f(Y (tk))∥ ≥ δ

2
, ∀k > k′, ∀t ∈ [tk, tk + ε′].

This implies that∫ ∞

t0

∥∇f(Y (s))∥2ds ≥
∑
k>k′

∫ tk+ε′

tk

∥∇f(Y (s))∥2ds ≥
∑
k>k′

∫ tk+ε′

tk

δ2

4
=
∑
k>k′

ε′δ2

4
= +∞.

Which is a contradiction, then we conclude that

lim inf
t→∞

∥∇f(X(t) + β(t)V (t))∥ = lim sup
t→∞

∥∇f(X(t) + β(t)V (t))∥ = 0, a.s..

To prove the last part of (vii), we consider that β(t) ≤ β0, then

∥∇f(X(t))∥ ≤ ∥∇f(X(t) + β(t)V (t))∥+ ∥∇f(X(t))−∇f(X(t) + β(t)V (t))∥
≤ ∥∇f(X(t) + β(t)V (t))∥+ Lβ0∥V (t)∥.

With this bound, we can conclude that limt→∞ ∥∇f(X(t))∥ = 0 a.s..

The following proposition states abstract bounds in expectation of (S− ISIHD).

Proposition 6.2.8. Consider the setting of Proposition 6.2.7, then we have that:

(i) E(f(X(t) + β(t)V (t))−min f) = O
(

1

a(t)

)
.

Moreover, if there exists D > 0, t̃ > t0 such that d(t) ≥ D for t > t̃, then :
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(ii) supt>t0 E(∥X(t)− x⋆∥2) < +∞.

(iii) E(∥V (t)∥2) = O
(
1 + b2(t)

c2(t)

)
.

(iv) E (f(X(t))−min f) = O

(
max

{
1

a(t)
,
β(t)

√
1 + b2(t)√
a(t)c(t)

,
β2(t)

(
1 + b2(t)

)
c2(t)

})
.

Proof. To prove this proposition we are going to take expectation in (6.9). First, we are going to
bound the negative terms by 0, denoting E0

def

= E(t0) + max{1, L}
∫∞
t0

(a(s)β2(s) + c2(s))σ2∞(s)ds, we
obtain that

E(E(t,X(t), V (t))) ≤ E0.

This implies that

� E(f(X(t) + β(t)V (t))−min f) ≤ E0
a(t) .

� E(∥b(t)(X(t)− x⋆) + c(t)V (t)∥2) ≤ 2E0.

If there exists D > 0, t̃ > t0 such that d(t) ≥ D for t > t̃, then for t > t̃:

� E(∥X(t)− x⋆∥2) ≤ 2E0
D .

� And also,

E(∥V (t)∥2) ≤ 2

c2(t)
[E(∥b(t)(X(t)− x⋆) + c(t)V (t)∥2) + b2(t)E(∥X(t)− x⋆∥2)]

≤ 2

c2(t)

(
2E0 +

2E0b
2(t)

D

)
=

4E0

c2(t)

(
1 +

b2(t)

D

)
.

� We bound the following term using the Descent Lemma

E(f(X(t))− f(X(t) + β(t)V (t))) ≤ β(t)
√
E(∥∇f(X(t) + β(t)V (t))∥2)

√
E(∥V (t)∥2)

+
L

2
β2(t)E(∥V (t)∥2).

Using Corollary 2.7, we have

E(f(X(t))− f(X(t) + β(t)V (t))) ≤ β(t)
√

2LE(f(X(t) + β(t)V (t))−min f)
√
E(∥V (t)∥2)

+
L

2
β2(t)E(∥V (t)∥2)

≤ 2E0

√
2L

β(t)√
a(t)

√
1 + b2(t)

D

c(t)
+ 2LE0

β2(t)
(
1 + b2(t)

D

)
c2(t)

= O

(
max

{
β(t)√
a(t)

√
1 + b2(t)

c(t)
,
β2(t)

(
1 + b2(t)

)
c2(t)

})
Then, we notice that

E(f(X(t))−min f) = E[f(X(t))− f(X(t) + β(t)V (t))] + E[f(X(t) + β(t)V (t))−min f ]

= O

(
max

{
β(t)√
a(t)

√
1 + b2(t)

c(t)
,
β2(t)

(
1 + b2(t)

)
c2(t)

,
1

a(t)

})
.

The previous two propositions generalizes the results proved in [33] to the stochastic setting, and
is not restricted to the case γ(t) = α

t . However, they lack practical use if we cannot exhibit a, b, c, d
functions that satisfy (Sa,b,c,d). Although we are not able to solve this system in general, in Corollaries
6.2.9 and 6.2.11 we will specify some particular cases for γ and β where such functions a, b, c, d can be
exhibited to satisfy the system (Sa,b,c,d).
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The following corollary provides a speci�c case where a solution to the system (Sa,b,c,d) can be
exhibited, which was not discussed in [3, 33]. Moreover, we show the implications it has on the
stochastic setting.

Corollary 6.2.9 (Decreasing and vanishing γ, with vanishing γ′ and positive constant β).

Consider the context of Proposition 6.2.7 in the case where β(t) ≡ β > 0, γ satisfying (Hγ), such that

it is a di�erentiable, decreasing, and vanishing function, with limt→+∞ γ′(t) = 0, and satisfying (H′
γ).

Let b ∈]2(m− 1), 1[, then choosing

a(t) =
Γ(t)(Γ(t)− βb)

1− βγ(t)
,

b(t) = b,

c(t) = Γ(t),

d(t) = b(1− b),

there exists t̂ > t0 such that the system (Sa,b,c,d) is satis�ed for every t ≥ t̂.

Given x⋆ ∈ S and σ∞ be such that t 7→ Γ(t)σ∞(t) ∈ L2([t0,+∞[), then the following statements

hold:

(i)
∫ +∞
t0

Γ(s)
(
f(X(s))−min f + ∥V (s)∥2

)
ds < +∞ a.s..

(ii) limt→+∞ ∥∇f(X(t))∥+ ∥V (t)∥ = 0 a.s..

(iii) E(f(X(t))−min f + ∥V (t)∥2) = O
(

1
Γ2(t)

)
.

Remark 6.2.10. When γ(t) = α
t with α > 3 and tσ∞(t) ∈ L2([t0,+∞[), the previous corollary

ensures fast convergence of the values, i.e.,O(t−2). Besides, by Lemma 6.2.3, when γ(t) = α
tr with

r ∈]0, 1[, α ≥ 1 − r, and trσ∞(t) ∈ L2([t0,+∞[), the previous corollary ensures convergence of the
objective at a rate O

(
t−2r

)
. The latter choice indicates that one can require a weaker integrability

condition on the noise, compared to the case γ(t) = α
t (α > 3), but at the price of a slower convergence

rate.

Proof. We start by noticing that since γ is decreasing, by [18, Corollary 2.3] we have that Γ(t) is
increasing and γ(t)Γ(t) ≥ 1, for every t ≥ t0. Also, it is direct that with a �xed β > 0 we satisfy (Hβ).

Letting b ∈]2(m− 1), 1[ and t1 > t0 such that β ≤ 1
γ(t1)

, this t1 exists since t 7→ 1
γ(t) is an increasing

function. We choose c(t) = Γ(t), by the �fth equation of (Sa,b,c,d), we get that d = b(1 − b), and

the fourth equation is trivial. The third equation implies that a(t) = Γ(t)(Γ(t)−bβ)
1−βγ(t) and the choice of β

implies that the second equation is satis�ed for t ≥ t1, since β ≤ 1
γ(t1)

≤ 1
γ(t) ≤ Γ(t) for every t > t1.

By the de�nition of c(t) and the fact that b < 1, we directly have that the sixth equation also holds.
We just need to check the �rst equation, to do that we can see that this equation is equivalent to

Γ′(t)(2Γ(t)− βb)(1− βγ(t)) + βΓ(t)(Γ(t)− βb)γ′(t)

(1− βγ(t))2
≤ bΓ(t),

which in turn is equivalent to the following:

2Γ(t)Γ′(t)− βbΓ′(t)− 2βγ(t)Γ(t)Γ′(t) + bβ2γ(t)Γ′(t) + βΓ2(t)γ′(t)− bβ2Γ(t)γ′(t)

≤ bΓ(t)− 2bβγ(t)Γ(t) + bβ2γ2Γ(t). (6.10)

By (H′
γ), there exists t2 > t0 such that γ(t)Γ(t) ≤ m and Γ′(t) ≤ m− 1 for every t ≥ t2. Note that the

terms bβ2γ(t)Γ′(t),−2bβγ(t)Γ(t) are upper and lower bounded by constants. Since the terms

−2βγ(t)Γ(t)Γ′(t), −βbΓ′(t), βΓ2(t)γ′(t),

are negative, and bβ2γ2Γ(t) is positive, if we could prove that there exists t3 ≥ max{t0, t1, t2} such
that

−bβ2γ′(t) ≤ b− 2Γ′(t)
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for t ≥ t3, this would imply that there exists t̂ ≥ t3 such that (6.10) holds for every t ≥ t̂. In
fact, we see that the previous inequality holds for t large enough (i.e. there exists such a t3) since
limt→+∞−γ′(t) = 0 and the fact that 2(m− 1) < b implies that b− 2Γ′(t) > 0. Thus, we have checked
that the proposed a, b, c, d satisfy the system (Sa,b,c,d) for t > t̂.

The rest of the proof is direct from replacing the speci�ed a, b, c, d, γ, β functions in Propositions
6.2.7-6.2.8, and the fact that for t large enough, bΓ(t)−a′(t) ≥ (b−2(m−1))Γ(t)−Cb for some Cb > 0,
that limt→+∞ Γ(t) = +∞, and also a(t) ≥ Γ2(t).

The following result gives us another case in which we can satisfy the system (Sa,b,c,d). This gener-
alizes to the stochastic setting the results presented in [3, Section 3.1] and [33, Lemma1]. Besides, it
ensures fast convergence of the values whenever t 7→ tσ∞(t) ∈ L2([t0,+∞[).

Corollary 6.2.11 (γ(t) = α
t and β(t) = γ0 +

β0

t ). Consider the context of Proposition 6.2.7 in the

case where γ(t) = α
t and β(t) = γ0 +

β0

t , where α > 3, γ0 > 0, β0 ≥ 0. Then choosing

a(t) = t2
(
1 +

(α− b)γ0t− β0(α+ 1− b)

t2 − αγ0t− β0(α+ 1)

)
,

b(t) = b ∈ (2, α− 1),

c(t) = t,

d(t) = b(α− 1− b),

the system (Sa,b,c,d) is satis�ed.

Given x⋆ ∈ S and σ∞ be such that t 7→ tσ∞(t) ∈ L2([t0,+∞[), then the following statements hold:

(i)
∫ +∞
t0

s
(
f(X(s))−min f + ∥V (s)∥2

)
ds < +∞ a.s..

(ii) limt→+∞ ∥∇f(X(t))∥+ ∥V (t)∥ = 0 a.s..

(iii) E(f(X(t))−min f + ∥V (t)∥2) = O
(
1
t2

)
.

Proof. Direct from replacing the speci�ed a, b, c, d, γ, β functions in Propositions 6.2.7-6.2.8, and the
fact that for t large enough bt− a′(t) ≥ (α−3)t

2 , and also a(t) ≥ t2, 0 < γ0 < β(t) ≤ γ0 +
β0

t0
.

Remark 6.2.12. We can use the choices for a, b, c, d presented in Corollaries 6.2.9 and 6.2.11 in
Propositions 6.2.7 and 6.2.8 to obtain additional integral bounds, almost sure and in expectation
properties of (S− ISIHD). We leave this to the reader.

6.2.4 Strongly convex case

In the following theorem, we consider the case where the objective function is strongly convex and we
present a choice of parameters γ and β to obtain a fast linear convergence to a noise dominated region.

Theorem 6.2.13. Assume that f : H → R satis�es (Hf ), and is µ-strongly convex, µ > 0, and

denote x⋆ its unique minimizer. Suppose also that σ obeys (Hσ). Let ν ≥ 2, consider the dynamic

(S− ISIHD) with initial data X0 ∈ Lν(Ω;H) that is Ft0−measurable. Consider also γ ≡ 2
√
µ, and a

constant β such that 0 ≤ β ≤ 1
2
√
µ . Moreover, suppose that σ∞ is a nonincreasing function such that

σ∞ ∈ L2([t0,+∞[). De�ne the function E : [t0,+∞[×H×H → R+ as

E(t, x, v) def

= f(x+ βv)−min f +
1

2
∥√µ(x− x⋆) + v∥2.

Then, (S− ISIHD) has q unique solution (X,V ) ∈ Sν
H×H[t0]. In addition, there exists positive constants

M1,M2 such that

E[E(t,X(t), V (t))] ≤ E(t0, X0, V0)e
−

√
µ

2
(t−t0) +M1e

−
√
µ

4
(t−t0) +M2σ∞

(
t0 + t

2

)
, ∀t > t0.
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Let Θ : [t0,+∞[→ R+ de�ned as Θ(t)
def

= max{e−
√
µ

4
(t−t0), σ∞

(
t+t0
2

)
}. Consequently,

E(f(X(t))−min f) = O(Θ(t)),

E(∥X(t))− x⋆∥2) = O(Θ(t)),

E(∥V (t)∥2) = O(Θ(t)),

E(∥∇f(X(t))∥2) = O(Θ(t)).

Proof. Using Itô's formula with E , taking expectation and denoting E(t)
def

= E(E(t,X(t), V (t))), we
have

E(t) ≤ E(t0)−
∫ t

t0

√
µ

2
E(s)ds−

∫ t

t0

C(s)ds+ (Lβ2 + 1)

∫ t

t0

σ2∞(s)ds,

where

C(t)
def

= β∥∇f(X(t) + βV (t))∥2 + β
√
µ⟨∇f(X(t) + βV (t)), V (t)⟩+

√
µ

2
(β2µ+ 1)∥V (t)∥2

+ βµ
√
µ⟨X(t)− x⋆, V (t)⟩+

µ
√
µ

4
∥X(t)− x⋆ + βV (t)∥2.

It was proved in [33, Theorem 4.2] that under the condition 0 ≤ β ≤ 1
2
√
µ we obtain that C(t) is a

nonnegative function. Therefore, we can write the following

E(t) ≤ E(t0)−
∫ t

t0

√
µ

2
E(s)ds+ (Lβ2 + 1)

∫ t

t0

σ2∞(s)ds.

We continue by using Lemma2.6.6, to do this, we need to solve the following Cauchy problem:{
Y ′(t) = −

√
µ
2 Y (t) + (Lβ2 + 1)σ2∞(t),

Y (t0) = E(t0, X0, V0).

Using the integrating factor method, we deduce that for all t ≥ t0:

Y (t) = Y (t0)e
√
µ

2
(t0−t) + (Lβ2 + 1)e−

√
µ

2
t

∫ t

t0

e
√
µ

2
sσ2∞(s)ds

≤ Y (t0)e
√
µ

2
(t0−t) + (Lβ2 + 1)e−

√
µ

2
t

(∫ t0+t
2

t0

e
√
µ

2
sσ2∞(s)ds+

∫ t

t0+t
2

e
√

µ

2
sσ2∞(s)ds

)

≤ Y (t0)e
√
µ

2
(t0−t) + (Lβ2 + 1)σ2∞

(
t0 + t

2

)
+ (Lβ2 + 1)σ2∞(t0)e

√
µ

4
(t0−t)

= O(Θ(t)).

By Lemma2.6.6, we conclude that E(t) = O(Θ(t)), immediately we observe that

E(f(X(t) + βV (t))−min f) = O(Θ(t))

E(∥√µ(X(t)− x⋆) + V (t)∥2) = O(Θ(t))

By the strong convexity of f , we have that E(∥X(t) − x⋆ + βV (t)∥2) = O(Θ(t)), since β ̸= 1√
µ

(β ≤ 1
2
√
µ), then E(∥X(t)−x⋆∥2) = E(∥V (t)∥2) = O(Θ(t)), on the other hand, using Lemma 2.3.2 and

Lemma 2.7, E(f(X(t))− f(X(t) + βV (t))) = O(Θ(t)), thus,

E(f(X(t))−min f) = E(∥∇f(X(t))∥2) = O(Θ(t)).

6.3 (S− ISIHD) with general γ and β ≡ 0

In this section we are going to study properties of the dynamic (S− ISIHD) in expectation and in
almost sure sense, when the parameter γ is a general function and β ≡ 0. The noiseless case and under
deterministic noise is well documented in [18].
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Consider the dynamic (S− ISIHD) when β ≡ 0. This dynamic will be a stochastic version of the
Hamiltonian formulation of (IGSγ) and it will be described by:

dX(t) = V (t)dt, t > t0;

dV (t) = −γ(t)V (t)dt−∇f(X(t))dt+ σ(t,X(t))dW (t), t > t0;

X(t0) = X0; V (t0) = V0.

(IGSγ − S)

The main motivation for a separate analysis is that, in Section 6.2 we consider hypothesis (Hβ) to
establish the existence and uniqueness of a solution, from which, the rest of the results follow. This
hypothesis is incompatible with the case β ≡ 0.

We will demonstrate almost sure convergence of the velocity to zero and of the objective to its min-
imum value, under assumptions that are satis�ed for γ(t) = α

tr , with r ∈ [0, 1], α ≥ 1− r. Additionally,
we will show that for this particular choice of β, we can obtain almost sure (weak) convergence of the
trajectory.

6.3.1 Minimization properties

Let γ satisfying (Hγ), and let us de�ne for c > 0,

λc(t) =
p(t)

c+
∫ t
t0
p(s)ds

.

Remark 6.3.1. We can deduce that λ′c + λ2c − γλc = 0. Besides, since p /∈ L1([t0,+∞[), then
λc /∈ L1([t0,+∞[).

Theorem 6.3.2. Assume that f and σ satisfy assumptions (Hf ) and (Hσ), respectively. Let ν ≥ 2, and

consider the dynamic (IGSγ − S) with initial data X0, V0 ∈ Lν(Ω;H) that is Ft0−measurable. Then,

there exists a unique solution (X,V ) ∈ Sν
H×H[t0] of (IGSγ − S). Additionally, if σ∞ ∈ L2([t0,+∞[),

then ∫ +∞

t0

γ(s)∥V (s)∥2ds < +∞ a.s..

Moreover, suppose that

there exists t̂ ≥ t0, and c > 0 such that γ(t) ≤ λc(t) ∀t ≥ t̂, (Ha)

and ∫ +∞

t0

λc(s)∥V (s)∥2ds < +∞ a.s.. (Hb)

Then the following properties are satis�ed:

(i)
∫ +∞
t0

λc(s)(f(X(s)−min f)ds < +∞ a.s..

(ii) limt→+∞ ∥V (t)∥ = 0 a.s. and limt→+∞ f(X(t))−min f = 0 a.s..

Proof. If we de�ne F0 : [t0,+∞[×H×H → H×H, G0 : [t0,+∞[×H×H → L2(K×K;H×H) de�ned
by

F0(t, x, v) =

 v

−γ(t)v −∇f(x)

 , G0(t, x, v) =

0K;H 0K;H

0K;H σ(t, x)

 .

Let W be a K×K-valued Brownian Motion and Z(t) = (X(t), Y (t)), then (IGSγ − S) can be equiva-
lently be written as {

dZ(t) = F0(t, Z(t))dt+G0(t, Z(t))dW (t);

Z(t0) = (X0, V0).
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Then the existence and uniqueness of a solution of (IGSγ − S) is a direct consequence of Theorem 2.7.4
in the product space H×H.

Let x⋆ ∈ S and ϕ0 : (x, v) 7→ R de�ned by ϕ0(x, v) = f(x) − min f + ∥v∥2
2 , by Itô's formula,

Theorem2.8.2 and the fact that σ2∞ ∈ L2([t0,+∞[) we obtain that
∫ +∞
t0

γ(s)∥V (s)∥2ds < +∞ a.s.,
and that

lim
t→+∞

f(X(t))−min f +
∥V (t)∥2

2
exists a.s.. (6.11)

Moreover, if we assume the hypotheses (Ha) and (Hb), then:

(i) Let x⋆ ∈ S and ϕ : (t, x, v) 7→ R de�ned by ϕ(t, x, v) = ∥λc(t)(x−x⋆)+v∥2
2 + (f(x) − min f).

LConsider t̂ the one de�ned in the statement, by Itô's formula from t̂ to t, we have

f(X(t))−min f +
∥λc(t)(X(t)− x⋆) + V (t)∥2

2
= f(X(t̂))−min f +

∥λc(t)(X(t̂)− x⋆) + V (t̂)∥2

2

+

∫ t

t̂
λc(s)λ

′
c(s)∥X(s))− x⋆∥2 − γ(t)∥V (s)∥2 − λc(t)⟨∇f(X(s)), X(s)− x⋆⟩]ds

+

∫ t

t̂
λc(t)∥V (s)∥2 + tr[Σ(s,X(s))]ds+

∫ t

t̂
⟨[λc(s)(X(s)− x⋆) + V (s)]σ⋆(s,X(s)), dW (s)⟩︸ ︷︷ ︸

Mt

.

By the hypotheses, we have that∫ +∞

t̂

(
λc(s)∥V (s)∥2 + tr[Σ(s,X(s))]

)
ds ≤

∫ +∞

t̂

(
λc(s)∥V (s)∥2 + σ2∞(s)

)
ds < +∞ a.s..

Besides (Mt)t≥t̂ is a continuous martingale. Moreover, by convexity of f and the fact that
λ′c(t) ≤ 0, ∀t ≥ t̂, we have∫ t

t̂
λc(s)λ

′
c(s)∥X(s))− x⋆∥2 − γ(t)∥V (s)∥2 − λc(t)⟨∇f(X(s)), X(s)− x⋆⟩]ds

≤ −
∫ t

t̂
λc(s)(f(X(s))−min f)ds.

Then, by Theorem2.8.2,∫ +∞

t̂
λc(s)

(
f(X(s))−min f +

∥V (s)∥2

2

)
ds < +∞ a.s., (6.12)

and limt→+∞ f(X(t))−min f + ∥λc(t)(X(t)−x⋆)+V (t)∥2
2 exists a.s..

(ii) Recalling that λc /∈ L1([t0,+∞[), by Lemma 2.6.2, (6.11) and (6.12), we conclude that

lim
t→+∞

f(X(t))−min f +
∥V (t)∥2

2
= 0, a.s..

Corollary 6.3.3. Consider the context of Theorem 6.3.2 with γ(t) = α
tr , where r ∈ [0, 1] and α > 1−r.

Then (Ha) and (Hb) are satis�ed and thus the conclusions of Theorem6.3.2 hold.

Proof. � We will prove the case r = 1 �rst, since it is direct, in such case, letting c = t0
α+1 we have

that λc(t) = α+1
t , which satis�es (Ha), moreover, λ(t) = α+1

α γ(t), so (Hb) is also satis�ed.

� Let r ∈]0, 1[, c =
∫ t0
0 eαs1−r

ds

eαt1−r
0

. Instead of proving γ(t) ≤ λc(t), we will prove the equivalent

inequality 1
tλc(t)

≤ 1
tγ(t) . In fact, by a change of variable we have that (see notation of Ip in

Lemma 2.6.9):

1

λc(t)t
=

(1− r)
r

1−r

α
1

1−r

I r
1−r

(
α

1− r
t1−r

)
,
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Moreover, by the �rst result of Lemma 2.6.9 we have that

1

tλc(t)
≤
(
1− r

α

) 1
1−r tr−1

α
≤ 1

tγ(t)
.

where the last inequality comes from the fact that 1− r ≤ α. Moreover, by the second result of
Lemma 2.6.9, we obtain that:(

α

1− r

) 1
1−r 1

tλc(t)
∼ 1

tγ(t)
, as t→ +∞.

This implies that for every ε ∈]0, 1[ there exists t̂ > t0,Λε ≥ 1 such that λc(t) ≤ Λεγ(t) for every

t > t̂

(
Λε =

(
α

1−r

) 1
1−r 1

(1−ε)

)
, this implies (Hb).

Remark 6.3.4. Finding all (or at least a larger class of) continuous functions γ that satisfy (Ha) and
fow which one can prove (Hb) in general is an open problem.

6.3.2 Tighter convergence rates of the values

In order to illustrate the context of the following result, it is useful to mention that if γ(t) = α
t , then

Theorem 6.3.2 gives us minimization properties in the case α > 0. However, it is widely known in
the continuous deterministic setting (IGSγ) with such γ and α > 3, then the values converge at the
rate o(1/t2) (see [18, 37]). Based on [18], we will depict that e�ect for a general γ in the continuous
stochastic setting.

We will rephrase assumption (Hf ) on the objective f to:
f is convex and continuously di�erentiable with L-Lipschitz continuous gradient;

f ∈ C2(H) or H is �nite-dimensional;

S def

= argmin(f) ̸= ∅.
(H⋆

f )

(H⋆
f ) coincides with (Hf ) in the in�nite-dimensional case, but is weaker than (Hf ) when H is �nite-

dimensional.

Theorem 6.3.5. Assume that f, σ and γ satisfy assumptions (H⋆
f ), (Hσ) and (Hγ)-(H′

γ), respec-

tively. Let ν ≥ 2, and consider the dynamic (IGSγ − S) with initial data X0, V0 ∈ Lν(Ω;H) that is

Ft0−measurable. Then, there exists a unique solution (X,V ) ∈ Sν
H×H[t0] of (IGSγ − S), for every

ν ≥ 2. Additionally, if Γσ∞ ∈ L2([t0,+∞[), then:

(i)
∫ +∞
t2

Γ(t)(f(X(t))−min f + ∥V (t)∥2)dt < +∞ a.s..

(ii) f(X(t))−min f + ∥V (t)∥2 = o
(

1
Γ2(t)

)
a.s..

(iii) E(f(X(t))−min f + ∥V (t)∥2) = O
(

1
Γ2(t)

)
.

Moreover, assume that Γ /∈ L1([t0,+∞[), and let θ(t)
def

=
∫ t
t0
Γ(s)ds. If also θσ2∞ ∈ L1([t0,+∞[), then:

(iv)
∫ +∞
t2

γ(t)θ(t)∥V (t)∥2dt < +∞ a.s..

(v) f(X(t))−min f + ∥V (t)∥2 = o
(

1
θ(t)

)
a.s..

(vi) E(f(X(t))−min f + ∥V (t)∥2) = O
(
min

{∫ t
t0

ds
Γ(s)

θ(t) , 1
Γ2(t)

})
.

Remark 6.3.6. The claim (ii) is new even in the deterministic case (i.e. σ(·, ·) = 0K;H). According
to the �rst three items of the previous theorem, the conclusions of Remark 6.2.10 are also valid, this
is that when γ(t) = α

t with α > 3 and tσ∞(t) ∈ L2([t0,+∞[), the previous theorem ensures fast
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convergence of the values, i.e.,O(t−2) in expectation and o(t−2) in almost sure sense. Besides, by
Corollary 6.2.3, when γ(t) = α

tr with r ∈]0, 1[, α ≥ 1 − r, and trσ∞(t) ∈ L2([t0,+∞[), the previous
theorem ensures convergence of the objective at a rate O

(
t−2r

)
in expectation and o

(
t−2r

)
in almost

sure sense, moreover by (v) the convergence rate is actually o
(
t−(r+1)

)
in almost sure sense, which

is faster than o
(
t−2r

)
. Regarding (v), this can be seen as the extension of [18, Theorem 3.6] to the

stochastic setting.

Proof. (i) Let m < 3
2 and t2 de�ned in (H′

γ), let also b ∈]2(m−1), 1[ and x⋆ ∈ S. Based on (Sa,b,c,d)
with β ≡ 0, we introduce ϕ1 : (t, x, v) 7→ R de�ned by

ϕ1(t, x, v) = Γ2(t)(f(x)−min f) +
∥b(x− x⋆) + Γ(t)v∥2

2
+
b(1− b)

2
∥x− x⋆∥2.

Since f ∈ C2(H), we use Itô's formula from t2 to t to get

ϕ1(t,X(t), V (t))− ϕ1(t2, X(t2), V (t2)) =∫ t

t2

Γ(s)[2Γ′(s)(f(X(s))−min f)− b⟨∇f(X(s)), X(s)− x⋆⟩]ds

+ (b− 1)

∫ t

t2

Γ(s)∥V (s)∥2ds+
∫ t

t2

Γ2(s)tr[Σ(s,X(s))]ds

+

∫ t

t2

⟨[Γ2(s)V (s) + bΓ(s)(X(s)− x⋆)]σ⋆(s,X(s)), dW (s)⟩︸ ︷︷ ︸
Mt

.

(6.13)

When H is �nite-dimensional but f is not C2(H), we can use molli�ers as in [149, PropositionC.2],
and get (6.13) as an inequality in this case.

Besides, we have that∫ +∞

t2

Γ2(s)tr[Σ(s,X(s))]ds ≤
∫ +∞

t2

Γ2(s)σ2∞(s)ds < +∞.

Besides (Mt)t≥t2 is a continuous martingale. Moreover, by convexity of f , we have that∫ t

t2

Γ(s)[2Γ′(s)(f(X(s))−min f)− b⟨∇f(X(s)), X(s)− x⋆⟩]ds

≤
∫ t

t2

Γ(s)(2Γ′(s)− b)(f(X(s))−min f)ds.

Since b− 1 < 0, and

2Γ′(t)− b = 2γ(t)Γ(t)− 2− b ≤ 2(m− 1)− b < 0, ∀t > t2.

By Theorem2.8.2, ∫ +∞

t2

Γ(s)(f(X(s))−min f + ∥V (s)∥2)ds < +∞ a.s., (6.14)

and

lim
t→+∞

Γ2(t)(f(X(t))−min f) +
∥b(X(t)− x⋆) + Γ(t)V (t)∥2

2
+
b(1− b)

2
∥X(t)− x⋆∥2 exists a.s..

(ii) On the other hand, let ϕ2 : (t, x, v) 7→ R de�ned by ϕ2(t, x, v) = Γ2(t)
(
f(x)−min f + ∥v∥2

2

)
.
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Recalling the discussion for ϕ1, we get that by Itô's formula from t2 to t, we have

ϕ2(t,X(t), V (t)) = ϕ2(t2, X(t2), V (t2)) +

∫ t

t2

2Γ(s)Γ′(s)(f(X(s))−min f)ds

−
∫ t

t2

Γ(s)∥V (s)∥2ds+
∫ t

t2

Γ2(s)tr[Σ(s,X(s))]ds

+

∫ t

t2

Γ2(s)⟨V (s)σ⋆(s,X(s)), dW (s)⟩︸ ︷︷ ︸
Mt

.

(6.15)

And also, that ∫ +∞

t2

2Γ(s)Γ′(s)(f(X(s))−min f) + Γ2(s)tr[Σ(s,X(s))]ds

≤
∫ +∞

t2

Γ(s)(f(X(s))−min f) + Γ2(s)σ2∞(s)ds < +∞ a.s..

Besides (Mt)t≥t2 is a continuous martingale. By Theorem2.8.2, we get again that∫ +∞

t2

Γ(s)∥V (s)∥2ds < +∞ a.s.,

and that

lim
t→+∞

Γ2(t)

(
f(X(t))−min f +

∥V (t)∥2

2

)
exists a.s. (6.16)

Let us recall that 1
Γ /∈ L1([t0,+∞[) by Lemma 5.2.1. Therefore, by (6.14) and (6.16), we can use

Lemma 2.6.2 to obtain that

lim
t→+∞

Γ2(t)

(
f(X(t))−min f +

∥V (t)∥2

2

)
= 0 a.s..

(iii) Taking expectation on (6.13) and denoting

K1
def

= Γ2(t2)E(f(X(t2))−min f) +
1

2
E(∥b(X(t2)− x⋆) + Γ(t2)V (t2)∥2) +

b(1− b)

2
∥X(t2)− x⋆∥2,

KΓ
def

=

∫ +∞

t2

Γ2(s)σ2∞(s)ds,

we obtain directly that

E
(
Γ2(t)(f(X(t))−min f) +

∥b(X(t)− x⋆) + Γ(t)V (t)∥2

2
+
b(1− b)

2
∥X(t)− x⋆∥2

)
≤ K1 +KΓ.

From this, is direct that supt≥t2 E(∥X(t)− x⋆∥2) < +∞, and this in turn imply

E
(
f(X(t))−min f +

∥V (t)∥2

2

)
= O

(
1

Γ2(t)

)
.

(iv) Moreover, assume that Γ /∈ L1([t0,+∞[), and let θ(t) =
∫ t
t0
Γ(s)ds. If also θσ2∞ ∈ L1([t0,+∞[),

then we consider ϕ3(t, x, v) = θ(t)
(
f(x)−min f + ∥v∥2

2

)
, by Itô's formula from t2 to t, we get

ϕ3(t,X(t), V (t)) = ϕ3(t2, X(t2), V (t2)) +

∫ t

t2

Γ(s)

(
f(X(s))−min f +

∥V (s)∥2

2

)
ds

−
∫ t

t2

γ(s)θ(s)∥V (s)∥2ds+ 1

2

∫ t

t2

θ(s)tr[Σ(s,X(s))]ds

+

∫ t

t2

θ(s)⟨V (s)σ⋆(s,X(s)), dW (s)⟩︸ ︷︷ ︸
Mt

.

(6.17)
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Also, by the �rst item and the new hypothesis on the di�usion term, we get that∫ t

t2

Γ(s)

(
f(X(s))−min f +

∥V (s)∥2

2

)
+ θ(s)tr[Σ(s,X(s))]ds

≤
∫ +∞

t2

Γ(s)

(
f(X(s))−min f +

∥V (s)∥2

2

)
+ θ(s)σ2∞(s)ds < +∞.

(6.18)

Besides (Mt)t≥t2 is a continuous martingale. By Theorem2.8.2, we get that∫ +∞

t2

γ(s)θ(s)∥V (s)∥2ds < +∞ a.s..

(v) By the previous, we also get that

lim
t→+∞

θ(t)

(
f(X(t))−min f +

∥V (t)∥2

2

)
exists a.s., (6.19)

Using Lemma 2.6.3 with q(t) = θ(t), we get that Γ
θ /∈ L1([t2,+∞[). Besides, recalling that∫ +∞

t2

Γ(s)

(
f(X(s))−min f +

∥V (s)∥2

2

)
< +∞, a.s.,

we invoke Lemma 2.6.2 to conclude that limt→+∞ θ(t)
(
f(X(t))−min f + ∥V (t)∥2

2

)
= 0 a.s..

(vi) Taking expectation in (6.17) and upper bounding we get

E(ϕ3(t,X(t), V (t))) ≤ E(ϕ3(t2, X(t2), V (t2))) +

∫ t

t2

Γ(s)E
(
f(X(s))−min f +

∥V (s)∥2

2

)
ds

+
1

2

∫ +∞

t2

θ(s)σ2∞(s)ds.

(6.20)

By the third item, we have that E
(
f(X(s))−min f + ∥V (s)∥2

2

)
= O

(
1

Γ2(s)

)
, so we conclude that

E
(
θ(t)

(
f(X(t))−min f +

∥V (t)∥2

2

))
= O

(∫ t

t2

ds

Γ(s)

)
. (6.21)

Thus,

E
(
f(X(t))−min f +

∥V (t)∥2

2

)
= O

(
min

{∫ t
t2

ds
Γ(s)

θ(t)
,

1

Γ2(t)

})
.

6.3.3 Almost sure weak convergence of trajectories

In the deterministic setting with α > 3, it is also well-known that one can obtain weak convergence of
the trajectory. Our aim in this section is to show this claim for a general γ in the stochastic setting.

Theorem 6.3.7. Consider the setting of Theorem 6.3.5. Then, if Γσ∞ ∈ L2([t0,+∞[) we have that:

(i) E
[
supt≥t2 ∥X(t)∥ν

]
< +∞.

(ii) ∀x⋆ ∈ S, limt→+∞ ∥X(t)− x⋆∥ exists a.s..

(iii) If γ is nonincreasing, there exists an S−valued random variable X⋆ such that

w-limt→+∞X(t) = X⋆ a.s..

Proof. (i) Analogous to the proof of the �rst point of Theorem 3.2.3.

(ii) Recalling the proof of Theorem 6.3.5, we combine the fact that both

lim
t→+∞

Γ2(t)(f(X(t))−min f) +
∥b(X(t)− x⋆) + Γ(t)V (t)∥2

2
+
b(1− b)

2
∥X(t)− x⋆∥2,
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and

lim
t→+∞

Γ2(t)

(
f(X(t))−min f +

∥V (t)∥2

2

)
exist a.s.. We can substract both quantities to obtain that

lim
t→+∞

∥X(t)− x⋆∥2

2
+ Γ(t)⟨X(t)− x⋆, V (t)⟩ exists a.s..

Thus, for every x⋆ ∈ S there exists Ωx⋆ ∈ F with P(Ωx⋆) = 1 and ∃ℓ : Ωx⋆ 7→ R such that

lim
t→+∞

∥X(ω, t)− x⋆∥2

2
+ Γ(t)⟨V (ω, t), X(ω, t)− x⋆⟩ = ℓ(ω).

Let Z(ω, t) = ∥X(ω,t)−x⋆∥2
2 −ℓ(ω) and ε > 0 arbitrary. There exists T (ω) ≥ t0 such that ∀t ≥ T (ω)∥∥∥Z(ω, t) + Γ(t)⟨V (ω, t), X(ω, t)− x⋆⟩

∥∥∥ < ε.

Let g(t)
def

= exp
(∫ t

t2
ds
Γ(s)

)
, multiplying the previous inequality by g(t)

Γ(t) , there exists T (ω) ≥ t0

such that for every t ≥ T (ω):∥∥∥ g(t)
Γ(t)

Z(t) + g(t)⟨V (ω, t), X(ω, t)− x⋆⟩
∥∥∥ < ε

Γ(t)
g(t).

On the other hand, dZ(t) = ⟨V (t), X(t)− x⋆⟩dt and

d (g(t)Z(t)) =

(
g(t)

Γ(t)
Z(t) + g(t)⟨V (t), X(t)− x⋆⟩

)
dt.

Thus,

∥g(t)Z(t)− g(T )z(T )∥ =
∥∥∥∫ t

T
d(g(s)Z(s))

∥∥∥ =
∥∥∥∫ t

T

(
g(s)

Γ(s)
Z(s) + g(s)⟨V (s), X(s)− x⋆⟩

)
ds
∥∥∥

≤ ε

∫ t

T

g(s)

Γ(s)
ds = ε(g(t)− g(T )).

So,

∥Z(t)∥ ≤ g(T )

g(t)
∥z(T )∥+ ε.

By Lemma 5.2.1, we obtain that limt→+∞ g(t) = +∞. Hence, lim supt→+∞ ∥Z(t)∥ ≤ ε. And

we conclude that for every x⋆ ∈ S, limt→+∞
∥X(t)−x⋆∥

2 exists a.s.. By a separability argument
(see proof of Theorem 3.2.3 or Theorem 4.3.2) there exists Ω̃ ∈ F (independent of x⋆) such that
P(Ω̃) = 1 and limt→+∞

∥X(ω,t)−x⋆∥
2 exists for every ω ∈ Ω̃, x⋆ ∈ S.

(iii) If γ is nonincreasing, then Γ is nondecreasing (see [18, Corollary 2.3]). Then, by item (ii) of
Theorem 6.3.5, we have that:

lim
t→+∞

f(X(t)) = min f a.s..

Let Ωf ∈ F be the set of events on which this limit is satis�ed. Thus P(Ωf ) = 1. Set

Ωconv
def

= Ωf ∩ Ω̃. We have P(Ωconv) = 1. Now, let ω ∈ Ωconv and X̃(ω) be a weak sequential
cluster point of X(ω, t) (which exists y boundedness). Equivalently, there exists an increasing
sequence (tk)k∈N ⊂ R+ such that limk→+∞ tk = +∞ and

w-lim
k→+∞

X(ω, tk) = X̃(ω).

Since limt→+∞ f(X(ω, t)) = min f and the fact that f is weakly lower semicontinuous (since it
is convex and continuous), we obtain directly that X̃(ω) ∈ S. Finally by Opial's Lemma (see
[162]) we conclude that there exists X⋆(ω) ∈ S such that w-limt→+∞X(ω, t) = X⋆(ω). In other
words, since ω ∈ Ωconv was arbitrary, there exists an S-valued random variable X⋆ such that
w-limt→+∞X(t) = X⋆ a.s..
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Chapter 7

Second-Order Systems with

Hessian-driven Damping for Non-Convex

Optimization in Finite Dimension

In this chapter, we aim to study non-convex minimization problems via second-order (in-time) dynam-
ics, including a non-vanishing viscous damping and a geometric Hessian-driven damping. Second-order
systems that only rely on a viscous damping may su�er from oscillation problems towards the minima,
while the inclusion of a Hessian-driven damping term is known to reduce this e�ect without explicit
construction of the Hessian in practice. There are essentially two ways to introduce the Hessian-driven
damping term: explicitly or implicitly. For each setting, we provide conditions on the damping co-
e�cients to ensure convergence of the gradient towards zero. Moreover, if the objective function is
de�nable, we show global convergence of the trajectory towards a critical point as well as convergence
rates. Besides, in the autonomous case, if the objective function is Morse, we conclude that the tra-
jectory converges to a local minimum of the objective for almost all initializations. We also study
algorithmic schemes for both dynamics and prove all the previous properties in the discrete setting
under proper choice of the stepsize.

Main contributions of this chapter

▶ Global convergence of the trajectory generated by (ISEHD) and (ISIHD) with a non-
vanishing viscous damping and constant geometric damping to a critical point under
K�-type conditions over the objective (Theorem7.2.1-7.3.1).

▶ Moreover, global convergence of the trajectory to a local minimum for Morse-type func-
tions (Theorem7.2.3-7.3.2).

▶ Global convergence rates of the trajectory under K�-type conditions over the Lyapunov
function (Theorem7.2.4-7.3.3).

▶ Analogous results for the proposed algorithmic schemes (ISEHD-Disc), (ISIHD-Disc)
(Subsection 7.2.2-7.3.2).

The content of this chapter is submitted in [148].
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7.1 Introduction

7.1.1 Problem statement

Let us consider the minimization problem

min
x∈Rd

f(x), (P3)

where the objective function f : Rd → R satis�es the following standing assumptions:{
f ∈ C2(Rd);

inf f > −∞.
(H0)

Since the objective function is potentially non-convex, the problem (P3) is NP-Hard. We refer to
the introduction for a general discussion about second-order systems and to Section 1.2.5 for a detailed
discussion on this problem. As discussed there, an important dynamic to consider in this regard is the
Inertial System with Explicit Hessian Damping:{

ẍ(t) + γ(t)ẋ(t) + β(t)∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, t > t0;

x(t0) = x0; ẋ(t0) = v0.
(ISEHD)

Where γ, β : [t0,+∞[→ R+ are the viscous and geometric damping parameters, respectively.

And the Inertial System with Implicit Hessian Damping:{
ẍ(t) + γ(t)ẋ(t) +∇f(x(t) + β(t)ẋ(t)) = 0, t > t0;

x(t0) = x0; ẋ(t0) = v0.
(ISIHD)

It was discussed in the introduction that following the physical interpretation of these two ODEs, we
call the non-negative parameters γ and β the viscous and geometric damping coe�cients, respectively.
The two ODEs (ISEHD) and (ISIHD) were found to have a smoothing e�ect on the energy error and
oscillations [3, 152, 23]. Moreover, in [33] they obtain fast convergence rates for the values for the two
ODEs when γ(t) = α

t (α > 3) and β(t) = β > 0.

However, the previous results (including the ones discussed in the introduction) are exclusive to the
convex case. Nevertheless, in [76], the authors analyzes (ISEHD) with constant viscous and geomet-
ric damping in a non-convex setting, concluding that the bounded solution trajectories converges to
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a critical point of the objective under �ojasiewicz inequality and giving sublinear convergence rates.
Moreover, in [74] the author shows that the previous dynamic avoids strict saddle points when the
objective is Morse. In these two works they propose a discretization called INNA, where the conditions
on the stepsize are more stringent than ours but let them consider arbitrary values for the geometric
damping. To the best of our knowledge, there is no further analysis of (ISEHD) and (ISIHD) when
the objective is non-convex and de�nable. In this work, our goal is to �ll this gap.

In this chapter we will establish convergence of the trajectory to a critical point for (ISEHD) and
(ISIHD) with variable, non-vanishing viscous damping and constant geometric damping, as well as for
the proposed algorithms ((ISEHD-Disc), (ISIHD-Disc)). Moreover, in the autonomous case we will
conclude with the avoidance of strict saddle points. We would like to point out that the proof for the
continuous-time case will necessitate (as in [74]) a more stringent assumption on the class of functions,
for instance, that f is Morse, while this is not necessary for the discrete algorithms.

7.1.2 Preliminaries

The following lemma is essential to some arguments presented in this work:

Lemma 7.1.1. [188, Theorem 3] Consider A,B,C,D ∈ Rd×d and such that AC = CA. Then

det

A B

C D

 = det(AD − CB).

And the following de�nitions will be important throughout the chapter:

De�nition 7.1.2 (Local extrema and saddle points). Consider a function f ∈ C2(Rd). We will
say that x̂ is a local minimum (resp. maximum) of f if x̂ ∈ crit(f), ∇2f(x̂) is positive (resp. negative)
de�nite. If x̂ is a critical point that is neither a local minimum nor a local maximum, we will say that
x̂ is a saddle point of f .

De�nition 7.1.3 (Strict saddle point). Consider a function f ∈ C2(Rd), we will say that x̂ is a
strict saddle point of f if x̂ ∈ crit(f) and λmin(∇2f(x̂)) < 0.

Remark 7.1.4. According to this de�nition, local maximum points are strict saddles.

De�nition 7.1.5 (Strict saddle property). A function f ∈ C2(Rd) will satisfy the strict saddle
property if every critical point is either a local minimum or a strict saddle.

This property is a reasonable assumption for smooth minimization. In practice, it holds for speci�c
problems of interest, such as low-rank matrix recovery and phase retrieval. Moreover, as a consequence
of Sard's theorem, for a full measure set of linear perturbations of a function f , the linearly perturbed
function satis�es the strict saddle property. Consequently, in this sense, the strict saddle property
holds generically in smooth optimization. We also refer to the discussion in [128, Conclusion].

De�nition 7.1.6 (Morse function). A function f ∈ C2(Rd) will be Morse if it satis�es the following
conditions:

(i) For each critical point x̂, ∇2f(x̂) is non-singular.

(ii) There exists a nonempty set I ⊆ N and (x̂k)k∈I such that crit(f) =
⋃

k∈I{x̂k}.

Remark 7.1.7. By de�nition, a Morse function satis�es the strict saddle property.

Remark 7.1.8. Morse functions can be shown to be generic in the Baire sense in the space of C2

functions; see [41].
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We refer to Subsection 2.4 for the introduction of K� and �ojasiewicz inequality.

Also, we recall Remark 2.4.2, i.e., the concavity of the desingularizing functions is only required in
the discrete setting (Subsection 7.2.2-7.3.2).

Remark 7.1.9. Morse functions verify the �ojasiewicz inequality with exponent q = 1/2; see [15].

7.2 Inertial System with Explicit Hessian Damping

Throughout the chapter we will consider (ISEHD) and (ISIHD) with t0 = 0. Also we will assume that
the viscous damping γ : R+ → R+ is continuous and is such that ∃c, C > 0, c ≤ C, and

c ≤ γ(t) ≤ C, ∀t ≥ 0. (Hγ)

Moreover, throughout this work, we consider a constant geometric damping, i.e. β(t) ≡ β > 0.

7.2.1 Continuous-time dynamics

Let us consider (ISEHD), as in [33], we will say that x : R+ → Rd is a solution trajectory of
(ISEHD) with initial conditions x(0) = x0, ẋ(0) = v0, if and only if, x ∈ C2(R+;Rd) and there exists
y ∈ C1(R+;Rd) such that (x, y) satis�es: ẋ(t) + β∇f(x(t))−

(
1
β − γ(t)

)
x(t) + 1

β y(t) = 0,

ẏ(t)−
(

1
β − γ(t)− βγ′(t)

)
x(t) + 1

β y(t) = 0,
(7.1)

with initial conditions x(0) = x0, y(0) = y0
def

= −β(v0 + β∇f(x0)) + (1− βγ(0))x0.

7.2.1.1 Global convergence of the trajectory

Our �rst main result is the following theorem.

Theorem 7.2.1. Assume that 0 < β < 2c
C2 , f : Rd → R satis�es (H0), and γ ∈ C1(R+;R+) obeys

(Hγ).

Consider (ISEHD) in this setting, then the following holds:

(i) There exists a global solution trajectory x : R+ → Rd of (ISEHD).

(ii) We have that ∇f ◦ x ∈ L2(R+;Rd), and ẋ ∈ L2(R+;Rd).

(iii) If we suppose that the solution trajectory x is bounded over R+, then

lim
t→+∞

∥∇f(x(t))∥ = lim
t→+∞

∥ẋ(t)∥ = 0,

and limt→+∞ f(x(t)) exists.

(iv) In addition to (iii), if we also assume that f is de�nable, then ẋ ∈ L1(R+;Rd) and x(t) converges

(as t→ +∞) to a critical point of f .

Remark 7.2.2. The boundedness assumption in assertion (ii) can be dropped if ∇f is supposed to be
globally Lipschitz continuous.

Proof. (i) We will start by showing the existence of a solution. Setting Z = (x, y), then (7.1) can
be equivalently written as

Ż(t) +∇G(Z(t)) +D(t, Z(t)) = 0, Z(0) = (x0, y0), (7.2)
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where G(Z) : Rd × Rd → R is the function de�ned by G(Z) = βf(x) and the time-dependent
operator D : R+ × Rd × Rd → Rd × Rd is given by:

D(t, Z)
def

=

(
−
(
1

β
− γ(t)

)
x+

1

β
y,−

(
1

β
− γ(t)− βγ′(t)

)
x+

1

β
y

)
.

Since the map (t, Z) 7→ ∇G(Z) +D(t, Z) is continuous in the �rst variable and locally Lipschitz
in the second (by hypothesis (H0) and the assumptions on γ), by the classical Cauchy-Lipschitz
theorem, we have that there exists Tmax > 0 and a unique maximal solution of (7.2) denoted
Z ∈ C1([0, Tmax[;Rd × Rd). Consequently, there exists a unique maximal solution of (ISEHD)
x ∈ C2([0, Tmax[;Rd).

Let us consider the energy function V : [0, Tmax[→ R de�ned by

V (t) = f(x(t)) +
1

2
∥ẋ(t) + β∇f(x(t))∥2.

We will prove that it is indeed a Lyapunov function for (ISEHD). We see that

V ′(t) = ⟨∇f(x(t)), ẋ(t)⟩+ ⟨ẍ(t) + β
d

dt
∇f(x(t)), ẋ(t) + β∇f(x(t))⟩

= ⟨∇f(x(t)), ẋ(t)⟩+ ⟨−γ(t)ẋ(t)−∇f(x(t)), ẋ(t) + β∇f(x(t))⟩
= −⟨γ(t)ẋ(t), ẋ(t)⟩ − β⟨γ(t)ẋ(t),∇f(x(t))⟩ − β∥∇f(x(t))∥2

≤ −c∥ẋ(t)∥2 + β2∥γ(t)ẋ(t)∥2

2ε
+
ε∥∇f(x(t))∥2

2

≤ −c∥ẋ(t)∥2 + β2C2∥ẋ(t)∥2

2ε
+
ε∥∇f(x(t))∥2

2
,

where the last bound is due to Young's inequality with ε > 0. Now let ε = β2C2

c , then

V ′(t) ≤ − c
2
∥ẋ(t)∥2 − β

(
1− βC2

2c

)
∥∇f(x(t))∥2 − δ1(∥ẋ(t)∥2 + ∥∇f(x(t))∥2). (7.3)

For δ1
def

= min
(

c
2 , β

(
1− βC2

2c

))
> 0.

We will now show that the maximal solution Z of (7.2) is actually global. For this, we use a stan-
dard argument and argue by contradiction assuming that Tmax < +∞. It is su�cient to prove
that x and y have a limit as t→ Tmax, and local existence will contradict the maximality of Tmax.
Integrating inequality (7.3), we obtain ẋ ∈ L2([0, Tmax[;Rd) and ∇f ◦x ∈ L2([0, Tmax[;Rd), hence
implying that ẋ ∈ L1([0, Tmax[;Rd) and ∇f ◦ x ∈ L1([0, Tmax[;Rd), which in turn entails that
(x(t))t∈[0,Tmax[ satis�es the Cauchy property whence we get that limt→Tmax x(t) exists. Besides, by
the �rst equation of (7.1), we have that limt→Tmax y(t) exists if limt→Tmax x(t), limt→Tmax ∇f(x(t))
and limt→Tmax ẋ(t) exist. We have already that the �rst two limits exist by continuity of ∇f , and
thus we just have to check that limt→Tmax ẋ(t) exists. A su�cient condition would be to prove that
ẍ ∈ L1([0, Tmax[;Rd). By (ISEHD) this will hold if ẋ,∇f ◦ x, (∇2f ◦ x)ẋ are in L1([0, Tmax[;Rd).
We have already checked that the �rst two terms are in L1([0, Tmax[;Rd). To conclude, it remains
to check that ∇2f ◦x ∈ L∞([0, Tmax[;Rd) and this is true since ∇2f is continuous, x is continuous
on [0, Tmax], and the latter is compact. Consequently, the solution Z of (7.2) is global, thus the
solution x of (ISEHD) is also global.

(ii) Integrating (7.3) and using that V is well-de�ned for every t > 0 and is bounded from below, we
deduce that ẋ ∈ L2(R+;Rd), and ∇f ◦ x ∈ L2(R+;Rd).

(iii) We recall that we are assuming that supt≥0 ∥x(t)∥ < +∞ and f ∈ C2(Rd), hence

sup
t≥0

∥∇2f(x(t))∥ < +∞.
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In turn, ∇f is Lipschitz continuous on bounded sets. Moreover, as ẋ ∈ L2(R+;Rd) and is
continuous, then ẋ ∈ L∞(R+;Rd). The last two facts imply that t 7→ ∇f(x(t)) is uniformly
continuous. In fact, for every t, s ≥ 0, we have

∥∇f(x(t))−∇f(x(s))∥ ≤ sup
τ≥0

∥∥∇2f(x(τ))
∥∥ ∥ẋ(τ)∥ |t− s|.

This combined with ∇f ◦ x ∈ L2(R+;Rd) yields

lim
t→+∞

∥∇f(x(t))∥ = 0.

We also have that d
dt∇f(x(t)) = ∇2f(x(t))ẋ(t), and thus (∇2f ◦ x)ẋ ∈ L∞(R+;Rd). We also

have ∇f ◦ x ∈ L∞(R+;Rd) by continuity of ∇f and boundedness of x. It then follows from
(ISEHD) that ẍ ∈ L∞(R+;Rd). This implies that

∥ẋ(t)− ẋ(s)∥ ≤ sup
τ≥0

∥ẍ(τ)∥ |t− s|,

meaning that t 7→ ẋ(t) is uniformly continuous. Recalling that ẋ ∈ L2(R+;Rd) gives that

lim
t→+∞

∥ẋ(t)∥ = 0.

We have from (7.3) that V is non-increasing. Since it is bounded from below, it has a limit, i.e.
limt→+∞ V (t) exists and we will denote this limit by L̃. Recall from the de�nition of V that

f(x(t)) = V (t)− 1

2
∥ẋ(t) + β∇f(x(t))∥2.

Using the above three limits we get

lim
t→+∞

f(x(t)) = lim
t→+∞

V (t) = L̃.

(iv) From boundedness of (x(t))t≥0, by a Lyapunov argument (see e.g. [34, Proposition 4.1], [109]),
the set of its cluster points C(x(·)) satis�es:

C(x(·)) ⊆ crit(f);

C(x(·)) is non-empty, compact and connected;

f is constant on C(x(·)).
(7.4)

We consider the function

E : (x, v, w) ∈ R3d 7→ f(x) +
1

2
∥v + w∥2. (7.5)

Since f is de�nable, so is E as the sum of a de�nable function and an algebraic one. Therefore,
E satis�es the K� inequality [125]. Let C1 = C(x(·)) × {0d} × {0d}. Observe that E takes the
constant value L̃ on C1 and C1 ⊂ crit(E). It then follows from the uniformized K� property
[60, Lemma 6] that ∃r, η > 0 and ∃ψ ∈ κ(0, η) such that for all (x, v, w) ∈ R3d verifying
x ∈ C(x(·)) + Br, v ∈ Br, w ∈ Br (where Br is the Rd-ball centered at 0d with radius r) and
0 < E(x, v, w)− L̃ < η, one has

ψ′(E(x, v, w)− L̃)∥∇E(x, v, w)∥ ≥ 1. (7.6)

It is clear that V (t) = E(x(t), ẋ(t), β∇f(x(t))), and that x⋆ ∈ crit(f) if and only if
(x⋆, 0, 0) ∈ crit(E).

Let us de�ne the translated Lyapunov function Ṽ (t) = V (t)− L̃. By the properties of V proved
above, we have limt→+∞ Ṽ (t) = 0 and Ṽ is non-increasing, and we can conclude that Ṽ (t) ≥ 0

for every t > 0. Without loss of generality, we may assume that Ṽ (t) > 0 for every t > 0 (since
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otherwise Ṽ (t) is eventually zero and thus ẋ(t) is eventually zero in view of (7.3), meaning that
x(·) has �nite length). This in turn implies that limt→+∞ ψ(Ṽ (t)) = 0. De�ne the constants
δ2 = max

(
4, 1 + 4β2

)
and δ3 = δ1√

δ2
. We have from (7.4) that limt→+∞ dist(x(t),C(x(·))) = 0.

This together with the convergence claims on ẋ, ∇f(x) and Ṽ imply that there exists T > 0

large enough such that for all t ≥ T :

x(t) ∈ C(x(·)) +Br,

∥ẋ(t)∥ < r,

β∥∇f(x(t))∥ < r,

0 < Ṽ (t) < η,
1
δ3
ψ(Ṽ (t)) < r

2
√
2
.

(7.7)

We are now in position to apply (7.6) to obtain

ψ′(Ṽ (t))∥∇E(x(t), ẋ(t), β∇f(x(t)))∥ ≥ 1, ∀t ≥ T. (7.8)

On the other hand, for every t ≥ T :

− d

dt
ψ(Ṽ (t)) = ψ′(Ṽ (t))(−Ṽ ′(t)) ≥ − Ṽ ′(t)

∥∇E(x(t), ẋ(t), β∇f(x(t)))∥
. (7.9)

Additionally, for every t > 0 we have the bounds

−Ṽ ′(t) ≥ δ1(∥ẋ(t)∥2 + ∥∇f(x(t))∥2),
∥∇E(x(t), ẋ(t), β∇f(x(t)))∥2 ≤ δ2(∥ẋ(t)∥2 + ∥∇f(x(t))∥2).

(7.10)

Combining the two previous bounds, then for every t > 0:

∥∇E(x(t), ẋ(t), β∇f(x(t)))∥ ≤
√
δ2
δ1

√
−Ṽ ′(t). (7.11)

By (7.9), for every t ∈ [T,+∞[

− d

dt
ψ(Ṽ (t)) ≥

√
δ1
δ2

−Ṽ ′(t)√
−Ṽ ′(t)

=

√
δ1
δ2

√
−Ṽ ′(t) ≥ δ3

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2. (7.12)

Integrating from T to +∞, we obtain∫ +∞

T

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2dt ≤ 1

δ3
ψ(V (T )) <

r

2
√
2
. (7.13)

Thus ∫ +∞

T
∥ẋ(t)∥dt ≤

∫ +∞

T

√
∥ẋ(t)∥2 + ∥∇f(x(t))∥2dt < r

2
√
2
,

this implies that ẋ ∈ L1(R+;Rd). Therefore x(t) has the Cauchy property and this in turn implies
that limt→+∞ x(t) exists, and is a critical point of f since limt→+∞ ∥∇f(x(t))∥ = 0.

7.2.1.2 Trap avoidance

In the previous section, we have seen the convergence of the trajectory to a critical point of the
objective, which includes strict saddle points. We will call trap avoidance the e�ect of avoiding such
points at the limit. If the objective function satis�es the strict saddle property (recall De�nition 7.1.5)
as is the case for a Morse function, this would imply convergence to a local minimum of the objective.
The following theorem gives conditions to obtain such an e�ect.
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Theorem 7.2.3. Let c > 0, assume that 0 < β < 2
c and take γ ≡ c. Suppose that f : Rd → R satis�es

(H0) and is a Morse function. Consider (ISEHD) in this setting. If the solution trajectory x is bounded

over R+, then the conclusions of Theorem7.2.1 hold. If, moreover, β ̸= 1
c , then for Lebesgue almost

all initial conditions x0, v0 ∈ Rd, x(t) converges (as t→ +∞) to a local minimum of f .

Proof. Since Morse functions are C2 and satisfy the K� inequality (see Remark 7.1.9), then all the
claims of Theorem7.2.1, and in particular (iv)1, hold.

As in [105, Theorem4], we will use the global stable manifold theorem [172, page 223] to get the last
claim. We recall that (ISEHD) is equivalent to (7.1), and that we are in the case γ(t) = c for all t, i.e., ẋ(t) + β∇f(x(t))−

(
1
β − c

)
x(t) + 1

β y(t) = 0,

ẏ(t)−
(

1
β − c

)
x(t) + 1

βy(t) = 0,
(7.14)

with initial conditions x(0) = x0, y(0) = y0
def

= −β(v0 + β∇f(x0)) + (1 − βc)x0. Let us consider
F : Rd × Rd → Rd × Rd de�ned by

F (x, y) =

(
−β∇f(x) +

(
1

β
− c

)
x− 1

β
y,

(
1

β
− c

)
x− 1

β
y

)
.

De�ning z(t) = (x(t), y(t)) and z0 = (x0, v0) ∈ R2d , then (7.14) is equivalent to the Cauchy problem{
ż(t) = F (z(t)),

z(0) = z0.
(7.15)

We stated that when 0 < β < 2
c and f is de�nable (see the �rst claim above), then the solution

trajectory z(t) converges (as t→ +∞) to an equilibrium point of F . Let us denote Φ(z0, t), the value
at t of the solution (7.15) with initial condition z0. Assume that ẑ is a hyperbolic equilibrium point
of F (to be shown below), meaning that F (ẑ) = 0 and that no eigenvalue of JF (ẑ) has zero real part.
Consider the invariant set

W s(ẑ) = {z0 ∈ R2d : lim
t→+∞

Φ(z0, t) = ẑ}.

The global stable manifold theorem [172, page 223] asserts that W s(ẑ) is an immersed submanifold of
R2d, whose dimension equals the number of eigenvalues of JF (ẑ) with negative real part.

First, we will prove that each equilibrium point of F is hyperbolic. We notice that the set of
equilibrium points of F is {(x̂, (1− βc)x̂) : x̂ ∈ crit(f)}. On the other hand, we compute

JF (x, y) =

−β∇2f(x) +
(

1
β − c

)
Id − 1

β Id(
1
β − c

)
Id − 1

β Id

 .

Let ẑ = (x̂, (1−βc)x̂), where x̂ ∈ crit(f). Then the eigenvalues of JF (ẑ) are characterized by the roots
in λ ∈ C of

det

−β∇2f(x̂) +
(

1
β − c− λ

)
Id − 1

β Id(
1
β − c

)
Id −

(
λ+ 1

β

)
Id

 = 0. (7.16)

By Lemma7.1.1, we have that (7.16) is equivalent to

det((1 + λβ)∇2f(x̂) + (λ2 + λc)Id) = 0. (7.17)

1In fact, the proof is even more straightforward since the set of cluster points C(x(·)) satis�es (7.4) and the critical

points are isolated; see the proof of [34, Theorem 4.1].
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If λ = − 1
β , then by (7.17), βc = 1, which is excluded by hypothesis. Therefore, − 1

β cannot be an

eigenvalue, i.e. λ ̸= − 1
β . We then obtain that (7.17) is equivalent to

det

(
∇2f(x̂) +

λ2 + λc

(1 + λβ)
Id

)
= 0. (7.18)

It follows that λ satis�es (7.18) if and only if

λ2 + λc

(1 + λβ)
= −η

where η ∈ R is an eigenvalue of ∇2f(x̂). Equivalently,

λ2 + (c+ ηβ)λ+ η = 0. (7.19)

Let ∆λ
def

= (c+ ηβ)2 − 4η. We distinguish two cases.

� ∆λ ≥ 0: then the roots of (7.19) are real and we rewrite (7.19) as

λ(λ+ (c+ ηβ)) = −η,

since η ̸= 0 (because f is a Morse function), then λ ̸= 0.

� ∆λ < 0: then (7.19) has a pair of complex conjugate roots whose real part is − c+ηβ
2 . Besides,

∆λ = c2 + 2βηc + η2β2 − 4η can be seen as a quadratic on c whose discriminant is given by
∆c = 16η. The fact that ∆λ < 0 implies ∆c > 0, and thus η > 0, therefore − c+ηβ

2 < 0.

Overall, this shows that every equilibrium point of F is hyperbolic.

Let us recall that crit(f) =
⋃

k∈I{x̂k}. Thus, the set of equilibria of F is also �nite and each one
takes the form ẑk = (x̂k, (1 − βc)x̂k). Since we have already shown that each solution trajectory x of
(ISEHD) converges towards some x̂k, the following partition then holds

Rd × Rd =
⋃
k∈I

W s(ẑk).

Let

I− = {k ∈ I : each eigenvalue of JF (ẑk) has negative real part.},

and J
def

= I \ I−. Now, the global stable manifold theorem [172, page 223] allows to claim that W s(ẑk)

is an immersed submanifold of R2d whose dimension is 2d when k ∈ I− and at most 2d−1 when k ∈ J .

Let k ∈ I−, we claim that ∇2f(x̂k) has only positive eigenvalues. By contradiction, let us assume
that η0 < 0 is an eigenvalue of ∇2f(x̂k) (η0 = 0 is not possible due to the Morse hypothesis). Each
solution λ of (7.19) is an eigenvalue of JF (ẑk) and one of these solutions is

−(c+ ηβ) +
√

(c+ ηβ)2 − 4η0
2

which is positive since η0 < 0. We then have

−(c+ η0β) +
√
(c+ η0β)2 − 4η0
2

>
−(c+ η0β) + |c+ η0β|

2
≥ 0,

hence contradicting the assumption that k ∈ I−. In conclusion, the set of initial conditions z0 such
that Φ(z0, t) converges to (xb, (1 − βc)xb) (as t → +∞), where xb is not a local minimum of f is⋃

k∈J W
s(ẑk) which has Lebesgue measure zero. Therefore, due to the equivalence between (7.1) and

(ISEHD) and that Morse functions satisfy the strict saddle property (see Remark 7.1.7), we indeed
have that for almost all initial conditions x0, v0 ∈ Rd, the solution trajectory of (ISEHD) will converge
to a local minimum of f .

� 129 �



Chapter 7 7.2. Inertial System with Explicit Hessian Damping

7.2.1.3 Convergence rate

When the objective function is de�nable, we now provide the convergence rate on the Lyapunov
function E in (7.5), hence f , and on the solution trajectory x.

Theorem 7.2.4. Consider the setting of Theorem7.2.1 with f being also de�nable and the solution

trajectory x is bounded. Recall the function E from (7.5), which is also de�nable, and denote ψ

its desingularizing function and Ψ any primitive of −ψ′2. Then, x(t) converges (as t → +∞) to

x∞ ∈ crit(f). Denote Ṽ (t)
def

= E(x(t), ẋ(t), β∇f(x(t))) − f(x∞). The following rates of convergence

hold:

� If limt→0Ψ(t) ∈ R, we have E(x(t), ẋ(t), β∇f(x(t))) converges to f(x∞) in �nite time.

� If limt→0Ψ(t) = +∞, there exists some t1 ≥ 0 such that

Ṽ (t) = O(Ψ−1(t− t1)). (7.20)

Moreover,

∥x(t)− x∞∥ = O(ψ ◦Ψ−1(t− t1)). (7.21)

Proof. This proof is a generalization of [81, Theorem2.7] to the dynamics (ISEHD). Let δ0
def

= δ2
δ1
,

δ3 > 0 and T > 0 for δ1, δ2, δ3, T de�ned in the proof of Theorem7.2.1. Using (7.10) then (7.9), we
have for t > T

d

dt
Ψ(Ṽ (t)) = Ψ′(Ṽ (t))Ṽ ′(t)

= −ψ′2(Ṽ (t))Ṽ ′(t)

≥ δ0ψ
′2(Ṽ (t))∥∇E(x(t), ẋ(t), β∇f(x(t))∥2

≥ δ0. (7.22)

Integrating on both sides from T to t we obtain that for every t > T

Ψ(Ṽ (t)) ≥ δ0(t− T ) + Ψ(Ṽ (T )).

Following the arguments shown in [100, Theorem 3.1.12], if limt→0Ψ(t) ∈ R, then Ṽ (t) converges to 0

in �nite time. Otherwise, we take the inverse of Ψ, which is non-increasing, on both sides of (7.22) to
obtain the desired bound. Finally, using (7.13) we also have for every t > T

∥x(t)− x∞∥ ≤
∫ +∞

t
∥ẋ(s)∥ds ≤ 1

δ3
ψ(Ṽ (t)) ≤ 1

δ3
ψ ◦Ψ−1(δ0(t− T ) + Ψ(Ṽ (T ))). (7.23)

Remark 7.2.5. Observe that the convergence rate (7.20) holds also on f(x(t)) − f(x∞) and
∥ẋ(t) +∇f(x(t))∥2.

We now specialize this to the �ojasiewicz case.

Corollary 7.2.6. Consider the setting of Theorem7.2.4 where now f satis�es the �ojasiewicz inequality

with desingularizing function ψf (s) = cfs
1−q, q ∈ [0, 1[, cf > 0. Then there exists some t1 > 0 such

that the following convergence rates hold:

� If q ∈ [0, 12 ], then

Ṽ (t) = O (exp(−(t− t1))) and ∥x(t)− x∞∥ = O
(
exp

(
t− t1
2

))
. (7.24)

� If q ∈]12 , 1[, then

Ṽ (t) = O
(
(t− t1)

−1
2q−1

)
and ∥x(t)− x∞∥ = O

(
(t− t1)

− 1−q
2q−1

)
. (7.25)
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Proof. E is a separable quadratic perturbation of f . But a quadratic function is �ojasiewicz with
exponent 1/2. It then follows from the �ojasiewicz exponent calculus rule in [130, Theorem3.3] that
the desingularizing function of E is ψE(s) = cEs

1−qE for some cE > 0 and qE = max
(
q, 12
)
. Then,

� If q ∈ [0, 12 ] then qE = 1
2 and Ψ(s) =

c21
4 ln

(
1
s

)
. This implies that Ψ−1(s) = 4

c21
exp(−s).

� If q ∈]12 , 1[ then qE = q and Ψ(s) =
c21

4(2q−1)s
1−2q. This implies that Ψ−1(s) = 4(2q−1)

c21
s

−1
2q−1 .

We conclude in both cases by using Theorem7.2.4.

7.2.2 Algorithmic scheme

Now we will consider the following �nite di�erences explicit discretization of (ISEHD) with stepsize
h > 0 and for k ≥ 1:

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk+1 − xk
h

+ β
∇f(xk)−∇f(xk−1)

h
+∇f(xk) = 0. (7.26)

Rearranging, this equivalently reads{
yk = xk + αk(xk − xk−1)− βk(∇f(xk)−∇f(xk−1)),

xk+1 = yk − sk∇f(xk),
(ISEHD-Disc)

with initial conditions x0, x1 ∈ Rd, where γk
def

= γ(kh), αk
def

= 1
1+γkh

, βk
def

= βhαk, sk
def

= h2αk.

7.2.2.1 Global convergence and trap avoidance

The following theorem summarizes our main results on the behavior of (ISEHD-Disc). Observe that
as the discretization is explicit, we will need ∇f to be globally Lipschitz continuous.

Theorem 7.2.7. Let f : Rd → R be satisfying (H0) with ∇f being globally L-Lipschitz-continuous.

Consider the scheme (ISEHD-Disc) with h > 0, β ≥ 0 and c ≤ γk ≤ C for some c, C > 0 and all

k ∈ N. Then the following holds:

(i) If β + h
2 <

c
L , then (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), in particular

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is de�nable, then (∥xk+1 − xk∥)k∈N ∈ ℓ1(N) and xk
converges (as k → +∞) to a critical point of f .

(iii) Furthermore, if γk ≡ c > 0, 0 < β < c
L , β ̸= 1

c , and h < min(2
(
c
L − β

)
, 1
Lβ ), then for almost

all x0, x1 ∈ Rd, xk converges (as k → +∞) to a critical point of f that is not a strict saddle.

Consequently, if f satis�es the strict saddle property then for almost all x0, x1 ∈ Rd, xk converges

(as k → +∞) to a local minimum of f .

Remark 7.2.8. When β = 0, we recover the HBF method and the condition h < min(2
(
c
L − β

)
, 1
Lβ )

becomes h < 2c
L .

Proof. (i) By de�nition of xk+1 in (ISEHD-Disc), for k ∈ N∗

xk+1 = argmin
x∈Rd

1

2
∥x− (yk − sk∇f(xk))∥2. (7.27)

1−strong convexity of x 7→ 1
2∥x− (yk − sk∇f(xk))∥2 then yields

1

2
∥xk+1 − (yk − sk∇f(xk))∥2 ≤

1

2
∥xk − (yk − sk∇f(xk))∥2 −

1

2
∥xk+1 − xk∥2. (7.28)
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Let
¯
α = 1

1+Ch , ᾱ = 1
1+ch ,¯

s = h2
¯
α, s̄ = h2ᾱ, and thus for every k ∈ N,

¯
α ≤ αk ≤ ᾱ and

¯
s ≤ sk ≤ s̄.

Let also vk
def

= xk−xk−1, zk
def

= αkvk−βk(∇f(xk)−∇f(xk−1)), then yk = xk+zk. After expanding
the terms of (7.28) we have that

⟨∇f(xk), vk+1⟩ ≤ −∥vk+1∥2

sk
+

1

sk
⟨vk+1, zk⟩

≤ −∥vk+1∥2

s̄
+

1

h2
⟨vk+1, vk⟩ −

β

h
⟨vk+1,∇f(xk)−∇f(xk−1)⟩.

(7.29)

By the descent lemma for L-smooth functions, we obtain

f(xk+1) ≤ f(xk) + ⟨∇f(xk), vk+1⟩+
L

2
∥vk+1∥2. (7.30)

Using the bound in (7.29), we get

f(xk+1) ≤ f(xk) +
1

h2
⟨vk+1, vk⟩ −

β

h
⟨vk+1,∇f(xk)−∇f(xk−1)⟩ −

(
1

s̄
− L

2

)
∥vk+1∥2. (7.31)

According to our hypothesis h < 2c
L , so h <

c+
√
c2+2L
L and this implies that s̄ < 2

L . Using Young's
inequality twice, for ε, ε′ > 0, the fact that ∇f is L−Lipschitz, and adding ε+ε′

2 ∥vk+1∥2 at both
sides, then

f(xk+1) +
ε+ ε′

2
∥vk+1∥2 ≤ f(xk) +

ε+ ε′

2
∥vk∥2

+

(
1

2

[
1

h4ε
+ ε+

β2L2

h2ε′
+ ε′

]
−
(
1

s̄
− L

2

))
∥vk+1∥2.

(7.32)

In order to make the last term negative, we want to impose

1

2

[
1

h4ε
+ ε+

β2L2

h2ε′
+ ε′

]
<

(
1

s̄
− L

2

)
. (7.33)

Minimizing the left-hand side with respect to ε, ε′ > 0 we get ε = 1
h2 , ε

′ = βL
h , and one can check

that in this case, the condition (7.33) becomes equivalent to β + h
2 <

c
L which is assumed in the

hypothesis.

Setting C1
def

= 1
h2 + βL

h , δ
def

= 1
s̄ − L

2 − 1
h2 − βL

h > 0, and de�ning Vk
def

= f(xk) +
C1
2 ∥vk∥2, we have

for any k ∈ N∗

Vk+1 ≤ Vk − δ∥vk+1∥2. (7.34)

Clearly, Vk is non-increasing and bounded from below, hence limk→+∞ Vk exists (say L̃). Sum-
ming this inequality over k, we have that (∥vk+1∥)k∈N ∈ ℓ2(N) entailing that limk→+∞ ∥vk∥ = 0.
In turn,we have that limk→+∞ f(xk) = L̃. Embarking again from the update in (ISEHD-Disc),
we have

sk∥∇f(xk)∥ = ∥xk+1 − yk∥ ≤ ∥xk+1 − xk∥+ ∥xk − yk∥
≤ ∥vk+1∥+ (αk + βkL)∥vk∥
≤ ∥vk+1∥+ ∥vk∥,

since ᾱ(1 + βhL) < 1 by hypothesis. Therefore

∥∇f(xk)∥2 ≤ δ2(∥vk+1∥2 + ∥vk∥2),

where δ2 = 2

¯
s2
. Consequently (∥∇f(xk)∥)k∈N ∈ ℓ2(N), which implies that limk→+∞ ∥∇f(xk)∥ = 0.

(ii) If, moreover, (xk)k∈N is bounded, then the set of its cluster points C((xk)k∈N) satis�es (see e.g.
[60, Lemma5]): 

C((xk)k∈N) ⊆ crit(f);

C((xk)k∈N) is non-empty, compact and connected;

f is constant on C((xk)k∈N).

(7.35)
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De�ne

E : (x, v) ∈ R2d 7→ f(x) +
C1

2
∥v∥2. (7.36)

Since f is de�nable, so is E as the sum of a de�nable function and an algebraic one, whence
E satis�es the K� inequality. Let C1 = C((xk)k∈N) × {0d}. Since E

∣∣
C1

= L̃,∇E
∣∣
C1

= 0,
∃r, η > 0,∃ψ ∈ κ(0, η) such that for every (x, v) such that x ∈ C((xk)k∈N) + Br, v ∈ Br, (where
Br is the Rd-ball centred at 0d with radius r) and 0 < E(x, v)− L̃ < η, one has

ψ′(E(x, v)− L̃)∥∇E(x, v)∥ ≥ 1. (7.37)

Let us de�ne Ṽk = Vk − L̃, or equivalently Ṽk = E (xk, vk) − L̃. From (7.34),
(
Ṽk

)
k∈N

is a

non-increasing sequence and its limit is 0 by de�nition of L̃. This implies that that Ṽk ≥ 0 for
all k ∈ N∗. We may assume without loss of generality that Ṽk > 0. Indeed, suppose there exists
K ∈ N such that ṼK = 0, then the decreasing property (7.34) implies that Ṽk = 0 holds for all
k ≥ K. Thus vk+1 = 0, or equivalently xk = xK , for all k ≥ K, hence (xk)k∈N has �nite length.
Since limk→+∞ dist(xk,C((xk)k∈N)) = 0, limk→+∞ ∥vk∥ = 0, and limk→+∞ Ṽk = 0, there exists
K̃ ∈ N such that for all k ≥ K̃, 

xk ∈ C((xk)k∈N) +Br;

∥vk∥ < r;

0 < Ṽk < η.

Then, by (7.37), we have
ψ′(Ṽk)∥∇E (xk, vk) ∥ ≥ 1, ∀k ≥ K̃. (7.38)

By concavity of ψ and (7.38), we have

ψ(Ṽk)− ψ(Ṽk+1) ≥ −ψ′(Ṽk)(Ṽk+1 − Ṽk)

≥ δψ′(Ṽk)∥vk+1∥2

≥ δ
∥vk+1∥2

∥∇E (xk, vk) ∥
.

On the other hand,
∥∇E (xk, vk) ∥ ≤ δ3(∥vk+1∥+ ∥vk∥) (7.39)

where δ3 =
√
C2
1 + δ2. Let us de�ne for k ∈ N∗, (∆ψ)k

def

= ψ(Ṽk) − ψ(Ṽk+1) and δ4 = δ3
δ . We

then have for all k ≥ K̃,

∥vk+1∥2 ≤ δ4(∆ψ)k(∥vk∥+ ∥vk+1∥).

Using Young's inequality and concavity of
√
·, this implies that for every ε > 0

∥vk+1∥ ≤ δ4
(∆ψ)k√

2ε
+ ε

∥vk+1∥+ ∥vk∥√
2

.

Rearranging the terms and imposing 0 < ε <
√
2 gives(

1− ε√
2

)
∥vk+1∥ ≤ δ4

(∆ψ)k√
2ε

+ ε
∥vk∥√

2
.

Dividing by
(
1− ε√

2

)
on both sides, we get

∥vk+1∥ ≤ δ4
(∆ψ)k

ε(
√
2− ε)

+ ε
∥vk∥√
2− ε

. (7.40)

Choosing now ε such that 0 < ε <
√
2
2 , we get that 0 <

ε√
2−ε

< 1. Since (∆ψ)k ∈ ℓ1(N∗) as a

telescopic sum, we conclude that (∥vk∥)k∈N ∈ ℓ1(N∗). This means that (xk)k∈N has �nite length,
hence is a Cauchy sequence, entailing that xk has a limit (as k → +∞) denoted x∞ which is a
critical point of f since limk→+∞ ∥∇f(xk)∥ = 0.
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(iii) If γk ≡ c, we denote αk ≡ α = 1
1+ch , βk ≡ β̃ = βhα, sk ≡ s = h2α. Let zk = (xk, xk−1) for k ≥ 1,

and g : Rd × Rd → Rd × Rd de�ned by

g : (x+, x−) 7→ [(1 + α)x+ − αx− − (β̃ + s)∇f(x+) + β̃∇f(x−), x+].

(ISEHD-Disc) is then equivalent to
zk+1 = g(zk). (7.41)

To complete the proof, we will capitalize on [128, Corollary 1] which builds on the center stable
manifold theorem [187, Theorem III.7]. For this, one needs to check two conditions:
(a) det(Jg(x+, x−)) ̸= 0 for every x+, x− ∈ Rd.

(b) Let A⋆
g

def

= {(x, x) ∈ R2d : x ∈ crit(f),maxi |λi(Jg(x, x))| > 1}, X ⋆ be the set of strict saddle

points of f , and X̂ def

= {(x, x) ∈ R2d : x ∈ X ⋆}. Check that X̂ ⊂ A⋆
g.

Notice that A⋆
g is the set of unstable �xed points. Indeed, the �xed points of g are of the form

(x⋆, x⋆) where x⋆ ∈ crit(f).

Let us check (a). We �rst compute Jg(x+, x−), given by(1 + α)Id − (β̃ + s)∇2f(x+) −αId + β̃∇2f(x−)

Id 0d×d

 (7.42)

This is a block matrix that comes in a form amenable to applying Lemma7.1.1. We then have

det(Jg(x+, x−)) = det(αId − β̃∇2f(x−)).

Since the eigenvalues of ∇2f(x−) are contained in [−L,L], if α > Lβ̃, then α − β̃η ̸= 0 for
every eigenvalue η ∈ R of ∇2f(x−). This implies that the �rst condition is satis�ed, i.e.

det(Jg(x+, x−)) ̸= 0 for every x+, x− ∈ Rd. The condition α > Lβ̃ in terms of h reads h < 1
Lβ ,

since we already needed h < 2
(
c
L − β

)
, we just ask h to be less than the minimum of the two

quantities.

To check (b), let us take x a strict saddle point of f , i.e. x ∈ crit(f) and
λmin(∇2f(x)) = −η < 0. To compute the eigenvalues of Jg(x, x) we consider

det

(1 + α− λ)Id − (β̃ + s)∇2f(x) −αId + β̃∇2f(x)

Id −λId

 = 0.

Again by Lemma7.1.1, we get that

det

(1 + α− λ)Id − (β̃ + s)∇2f(x) −αId + β̃∇2f(x)

Id −λId

 =

det[(−λ(1 + α) + λ2)Id + λ(β̃ + s)∇2f(x) + αId − β̃∇2f(x)] =

det[(λ(β̃ + s)− β̃)∇2f(x) + (λ2 − λ(1 + α) + α)Id].

We then need to solve for λ

det[(λ(β̃ + s)− β̃)∇2f(x) + (λ2 − λ(1 + α) + α)Id] = 0. (7.43)

If λ = β̃

β̃+s
, then (7.43) becomes(

β̃

β̃ + s

)2

−

(
β̃

β̃ + s

)
(1 + α) + α = 0.

This implies that α = β̃

β̃+s
, which in terms of β and c is equivalent to βc = 1. But this case is

excluded by hypothesis. Now we can focus on the case where λ ̸= β̃

β̃+s
and we can rewrite (7.43)
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as

det

(
∇2f(x)− λ2 − λ(1 + α) + α

β̃ − λ(β̃ + s)
Id

)
= 0. (7.44)

Therefore, as argued for the time-continuous dynamic, for every eigenvalue η′ ∈ R of ∇2f(x), λ
satis�es (7.44) if and only if

λ2 − λ(1 + α) + α

β̃ − λ(β̃ + s)
= η′.

where η′ ∈ R is an eigenvalue of ∇2f(x̂). Thus if η′ = −η is negative, we have

λ2 − λ((1 + α) + η(β̃ + s)) + α+ ηβ̃ = 0. (7.45)

We analyze its discriminant ∆λ = ((1+α) + η(β̃ + s))2 − 4(α+ ηβ̃). After developing the terms
we get that

∆λ = α2 + 2α(η(β̃ + s)− 1) + (η(β̃ + s) + 1)2 − 4ηβ̃,

which can be seen as a quadratic equation on α. We get that its discriminant ∆α is −16ηs, which
is negative (since η, s are positive), thus the quadratic equation on α does not have real roots,
implying that ∆λ > 0. We can write the solutions of (7.45),

λ =
((1 + α) + η(β̃ + s))±

√
∆λ

2
.

Let us consider the biggest solution (the one with the plus sign) and let us see that λ > 1, this
is equivalent to

((1 + α) + η(β̃ + s)) +
√
∆λ

2
> 1,

which in turn is equivalent to √
∆λ > 2− (1 + α)− η(β̃ + s).

Squaring both sides of this inequality, we have

[(1− α)− η(β̃ + s)]2 < ∆λ

= [(1 + α) + η(β̃ + s)]2 − 4(α+ ηβ̃).

After expanding the terms, we see that the inequality is equivalent to 0 < 4ηs, which is always
true as η > 0. Consequently, λ > 1 and in turn X̂ ⊂ A⋆

g.
We have then checked the two conditions (a)-(b) above. This entails that the invariant set
{z1 ∈ R2d : limk→+∞ gk(z1) ∈ X̂} has Lebesgue measure zero. Equivalently, the set of initial-
izations x0, x1 ∈ Rd for which xk converges to a strict saddle point of f has Lebesgue measure
zero.

7.2.2.2 Convergence rate

The following result provides the convergence rates for algorithm (ISEHD-Disc) in the case where f
has the �ojasiewicz property. The original idea of proof for descent-like algorithms can be found in
[14, Theorem5].

Theorem 7.2.9. Consider the setting of Theorem7.2.7, where f also satis�es the �ojasiewicz property

with exponent q ∈ [0, 1[. Then xk → x∞ ∈ crit(f) as k → +∞ at the rates:

� If q ∈ [0, 12 ] then there exists ρ ∈]0, 1[ such that

∥xk − x∞∥ = O(ρk). (7.46)
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� If q ∈]12 , 1[ then
∥xk − x∞∥ = O

(
k
− 1−q

2q−1

)
. (7.47)

Proof. Recall the function E from (7.36). Since f satis�es the �ojasiewicz property with exponent
q ∈ [0, 1[, and E is a separable quadratic perturbation of f , it follows from [130, Theorem3.3] that E
has the �ojasiewicz property with exponent qE = max (q, 1/2) ∈ [1/2, 1[, i.e. there exists cE > 0 such
that the desingularizing function of E is ψE(s) = cEs

1−qE .

Let vk = xk − xk−1 and ∆k =
∑+∞

p=k ∥vp+1∥. The triangle inequality yields ∆k ≥ ∥xk − x∞∥
so it su�ces to analyze the behavior of ∆k to obtain convergence rates for the trajectory. Recall the

constants δ, δ3, δ4 > 0 and the sequences ((∆ψ)k)k∈N and
(
Ṽk

)
k∈N

de�ned in the proof of Theorem7.2.7.

Denote λ = ε√
2−ε

∈ (0, 1) and M = δ4
ε(
√
2−ε)

for 0 < ε <
√
2
2 . Using (7.40), we have that there exists

K̃ ∈ N large enough such that for all k ≥ K̃

∥vk+1∥ ≤ λ∥vk∥+M(∆ψ)k.

Recall that qE ∈ [12 , 1[ (so
1−qE
qE

≤ 1) and that limk→+∞ Ṽk = 0. We obtain by induction that for all

k ≥ K̃
+∞∑
p=k

∥vp+1∥ ≤ λ

1− λ
∥vk∥+

McE
1− λ

Ṽ 1−qE
k . (7.48)

Or equivalently,

∆k ≤ λ

1− λ
(∆k−1 −∆k) +

McE
1− λ

Ṽ 1−qE
k . (7.49)

Denoting c2 = (cE(1− qE))
1−qE
qE , then by (7.38) and (7.39)

Ṽ 1−qE
k ≤ c2 ∥∇E (xk, vk)∥

1−qE
qE

≤ c2δ
1−qE
qE

3 (∥vk∥+ ∥vk+1∥)
1−qE
qE

≤ c2δ
1−qE
qE

3 (∆k−1 −∆k +∆k −∆k+1)
1−qE
qE

= c2δ
1−qE
qE

3 (∆k−1 −∆k+1)
1−qE
qE .

Plugging this into (7.49), and using that ∆k → 0 and 1−qE
qE

≤ 1, then there exists and integer K̃1 ≥ K̃

such that for every k ≥ K̃1

∆k ≤ λ

1− λ
(∆k−1 −∆k)

1−qE
qE +

M1

1− λ
(∆k−1 −∆k+1)

1−qE
qE ,

where M1 = cEc2δ
1−qE
qE

3 M . Taking the power qE
1−qE

≥ 1 on both sides and using the fact that

∆k+1 ≤ ∆k,

we have for every k ≥ K̃1:

∆
qE

1−qE
k ≤M2(∆k−1 −∆k+1), (7.50)

where we set M2 = (1− λ)
− qE

1−qE max(λ,M1)
qE

1−qE , We now distinguish two cases:

� q ∈ [0, 1/2], hence qE = 1
2 : (7.50) then becomes

∆k ≤M2(∆k−1 −∆k+1),

with M2 = (1− λ)−1max(λ,M1) and M1 =
c2E
2

δ23
δ . Using again that ∆k+1 ≤ ∆k, we obtain that

for k ≥ K̃1

∆k ≤ M2

1 +M2
∆k−2,
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which implies

∆k ≤
(

M2

1 +M2

) k−K̃1
2

∆K̃1
= O(ρk),

for ρ
def

=
(

M2
1+M2

) 1
2 ∈]0, 1[.

� q ∈]12 , 1[, hence qE = q: we de�ne the function h : R∗
+ → R by h(s) = s

− q
1−q . Let R > 1. Assume

�rst that h(∆k) ≤ Rh(∆k−1). Then from (7.50), we get

1 ≤M2(∆k−1 −∆k+1)h(∆k)

≤ RM2(∆k−1 −∆k+1)h(∆k−1)

≤ RM2

∫ ∆k−1

∆k+1

h(s)ds

≤ RM2
1− q

1− 2q

(
∆

1−2q
1−q

k−1 −∆
1−2q
1−q

k+1

)
.

Setting ν = 2q−1
1−q > 0 and M3 =

ν
RM2

> 0, one obtains

0 < M3 ≤ ∆−ν
k+1 −∆−ν

k−1. (7.51)

Now assume that h(∆k) > Rh(∆k−1). Since h is decreasing and ∆k+1 ≤ ∆k, then

h(∆k+1) > Rh(∆k−1).

Set q = R
2q−1

q > 1, we directly have that

∆−ν
k+1 > q∆−ν

k−1.

Since q − 1 > 0 and ∆−ν
k → +∞ as k → +∞, there exists M4 > 0 and a large enough integer

K̃2 ≥ K̃1 such that for every k ≥ K̃2 that satis�es our assumption (h(∆k) > Rh(∆k−1)), we
have

0 < M4 ≤ ∆−ν
k+1 −∆−ν

k−1. (7.52)

Taking M5 = min(M3,M4), (7.51) and (7.52) show that for all k ≥ K̃2

0 < M5 ≤ ∆−ν
k+1 −∆−ν

k−1.

Summing both sides from K̃2 up to K − 1 ≥ K̃2, we obtain

M5(K − K̃2) ≤ ∆−ν
K −∆−ν

K̃2
+∆−ν

K−1 −∆−ν
K̃2−1

≤ 2(∆−ν
K −∆−ν

K̃2−1
).

Therefore

∆−ν
K ≥ ∆−ν

K̃2−1
+
M5

2
(K − K̃2). (7.53)

Inverting, we get

∆K ≤
[
∆−ν

K̃2−1
+
M5

2
(K − (K̃2 + 1))

]− 1
ν

= O(K− 1
ν ). (7.54)

7.2.2.3 General coe�cients

The discrete scheme (ISEHD-Disc) opens the question of whether we can consider αk, βk, sk to be
independent. Though this would omit the fact they arise from a discretization of the continuous-time
dynamic (ISEHD), hence ignoring its physical interpretation, it will gives us a more �exible choice of
these parameters while preserving the desired convergence behavior.
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Theorem 7.2.10. Let f : Rd → R be satisfying (H0) with ∇f being globally L-Lipschitz continuous.

Consider (αk)k∈N, (βk)k∈N, (sk)k∈N to be three positive sequences, and the following algorithm with

x0, x1 ∈ Rd: {
yk = xk + αk(xk − xk−1)− βk(∇f(xk)−∇f(xk−1)),

xk+1 = yk − sk∇f(xk).
(7.55)

If there exists s̄ > 0 such that:

� 0 < infk∈N sk ≤ supk∈N sk ≤ s̄ < 2
L ;

� supk∈N

(
αk+βkL

sk

)
< 1

s̄ −
L
2 .

Then the following holds:

(i) (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), and thus

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is de�nable, then (∥xk+1 − xk∥)k∈N ∈ ℓ1(N) and xk con-

verges (as k → +∞) to a critical point of f .

(iii) Furthermore, if αk ≡ α, βk ≡ β, sk ≡ s, then the previous conditions reduce to

α+ βL+
sL

2
< 1.

If, in addition, α ̸= β
β+s , and α > βL, then for almost all x0, x1 ∈ Rd, xk converges (as k → +∞)

to a critical point of f that is not a strict saddle. Consequently, if f satis�es the strict saddle

property, for almost all x0, x1 ∈ Rd, xk converges (as k → +∞) to a local minimum of f .

Remark 7.2.11. If αk, βk, sk are given as in (ISEHD-Disc), i.e. αk = 1
1+γkh

, βk = βhαk, sk = h2αk,

then the requirements of Theorem7.2.10 reduce to β + h
2 <

c
L (recall that c is such that c ≤ γk).

Proof. Adjusting equation (7.29) to this setting, i.e. not using the dependent explicit forms of
αk, βk, sk, we get an analogous proof to the one of Theorem7.2.7. We omit the details for the sake of
brevity.

7.3 Inertial System with Implicit Hessian Damping

7.3.1 Continuous-time dynamics

We now turn to the second-order system with implicit Hessian damping as stated in (ISIHD), where
we consider a constant geometric damping, i.e. β(t) ≡ β > 0. We will use the following equiv-
alent reformulation of (ISIHD) proposed in [33]. We will say that x is a solution trajectory of
(ISIHD) with initial conditions x(0) = x0, ẋ(0) = v0, if and only if, x ∈ C2(R+;Rd) and there exists
y ∈ C1(R+;Rd) such that (x, y) satis�es: ẋ(t) + x(t)−y(t)

β = 0,

ẏ(t) + β∇f(y(t)) +
(

1
β − γ(t)

)
(x(t)− y(t)) = 0,

(7.56)

with initial conditions x(0) = x0, y(0) = y0
def

= x0 + βv0.

7.3.1.1 Global convergence of the trajectory

Our next main result is the following theorem, which is the implicit counterpart of Theorem7.2.1.
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Theorem 7.3.1. Let 0 < β < 2c
C2 , f : Rd → R satisfying (H0), γ is continuous and satis�es (Hγ).

Consider (ISIHD) in this setting, then the following holds:

(i) There exists a global solution trajectory x : R+ → Rd of (ISIHD).

(ii) We have that ẋ ∈ L2(R+;Rd), and ∇f ◦ (x+ βẋ) ∈ L2(R+;Rd).

(iii) If we suppose that the solution trajectory x is bounded over R+, then ∇f ◦ x ∈ L2(R+;Rd),

lim
t→+∞

∥∇f(x(t))∥ = lim
t→+∞

∥ẋ(t)∥ = 0,

and limt→+∞ f(x(t)) exists.

(iv) In addition to (iii), if we also assume that f is de�nable, then ẋ ∈ L1(R+;Rd) and x(t) converges

(as t→ +∞) to a critical point of f .

Proof. (i) We will start by showing the existence of a solution. Setting Z = (x, y), (7.56) can be
equivalently written as:

Ż(t) +∇G(Z(t)) +D(t, Z(t)) = 0, Z(0) = (x0, y0), (7.57)

where G(Z) : Rd × Rd → R is the function de�ned by G(Z) = βf(y) and the time-dependent
operator D : R+ × Rd × Rd → Rd × Rd is given by:

D(t, Z) =

(
x− y

β
,

(
1

β
− γ(t)

)
(x− y)

)
.

Since the map (t, Z) 7→ ∇G(Z) +D(t, Z) is continuous in the �rst variable and locally Lipschitz
in the second (by (H0) and the assumptions on γ),we get from Cauchy-Lipschitz theorem that
there exists Tmax > 0 and a unique maximal solution of (7.2) denoted Z ∈ C1([0, Tmax[;Rd×Rd).
Consequently, there exists a unique maximal solution of (ISIHD) x ∈ C2([0, Tmax[;Rd).

Let us consider the energy function V : [0, Tmax[→ R de�ned by

V (t) = f(x(t) + βẋ(t)) +
1

2
∥ẋ(t)∥2.

Proceeding as in the proof of Theorem7.2.1, we prove it is indeed a Lyapunov function for

(ISIHD). Denoting δ1
def

= min
(

c
2 , β

(
1− βC2

2c

))
> 0, we have

V ′(t) ≤ −δ1(∥ẋ(t)∥2 + ∥∇f(x(t) + βẋ(t))∥2). (7.58)

We will now show that the maximal solution Z of (7.57) is actually global. For this, we ar-
gue by contradiction and assume that Tmax < +∞. It is su�cient to prove that x and y have
a limit as t → Tmax, and local existence will contradict the maximality of Tmax. Integrating
(7.58), we obtain ẋ ∈ L2([0, Tmax[;Rd) and ∇f ◦ (x+ βẋ) ∈ L2([0, Tmax[;Rd), which entails that
ẋ ∈ L1([0, Tmax[;Rd) and ∇f ◦ (x + βẋ) ∈ L1([0, Tmax[;Rd), and in turn (x(t))t∈[0,Tmax[

satis�es
the Cauchy property and limt→Tmax x(t) exists. Besides, by the �rst equation of (7.56), we will
have that limt→Tmax y(t) will exist if both limt→Tmax x(t) and limt→Tmax ẋ(t) exist. So we just
have to check the existence of the second limit. A su�cient condition would be to prove that
ẍ ∈ L1([0, Tmax[;Rd). By (ISIHD) this will hold if ẋ,∇f ◦ (x+ βẋ) are in L1([0, Tmax[;Rd). But
we have already shown these claims. Consequently, the solution Z of (7.57) is global, and thus
the solution x of (ISIHD) is also global.

(ii) Integrating (7.58), using that V is well-de�ned and bounded from below, we get that
ẋ ∈ L2(R+;Rd), and ∇f(x(t) + βẋ(t)) ∈ L2(R+;Rd).
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(iii) By assumption, supt>0 ∥x(t)∥ < +∞. Moreover, since ẋ ∈ L2(R+;Rd) and continuous,
ẋ ∈ L∞(R+;Rd) and then using that ∇f is locally Lipschitz, we have∫ +∞

0
∥∇f(x(t))∥2dt ≤ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))−∇f(x(t))∥2dt

+ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))∥2dt

≤ 2β2L2
0

∫ +∞

0
∥ẋ(t)∥2dt+ 2

∫ +∞

0
∥∇f(x(t) + βẋ(t))∥2dt < +∞,

where L0 is the Lipschitz constant of ∇f on the centered ball of radius

sup
t>0

∥x(t)∥+ β sup
t>0

∥ẋ(t)∥ < +∞.

Moreover, for every t, s ≥ 0,

∥∇f(x(t))−∇f(x(s))∥ ≤ L0 sup
τ≥0

∥ẋ(τ)∥ |t− s|.

This combined with ∇f ◦ x ∈ L2(R+;Rd) yields

lim
t→+∞

∥∇f(x(t))∥ = 0.

We also have that

sup
t>0

∥∇f(x(t) + βẋ(t))∥ ≤ sup
t>0

(∥∇f(x(t) + βẋ(t))−∇f(0)∥) + ∥∇f(0)∥

≤ L0 sup
t>0

∥x(t)∥+ L0β sup
t>0

∥ẋ(t)∥+ ∥∇f(0)∥ < +∞.

Therefore, in view of (ISIHD), we get that ẍ ∈ L∞(R+;Rd). This implies that

∥ẋ(t)− ẋ(s)∥ ≤ sup
τ≥0

∥ẍ(τ)∥ |t− s|.

Combining this with ẋ ∈ L2(R+;Rd) gives that limt→+∞ ∥ẋ(t)∥ = 0.
From (7.58), V is non-increasing, and since it is bounded from below, V (t) has a limit, say L̃.
Passing to the limit in the de�nition of V (t), using that the velocity vanishes, gives

lim
t→+∞

f(x(t) + βẋ(t)) = L̃.

On the other hand, we have

|f(x(t) + βẋ(t))− f(x(t))| = β

∣∣∣∣∫ 1

0
⟨∇f(x(t) + sβẋ(t), ẋ(t)⟩ ds

∣∣∣∣
≤ β

(∫ 1

0
∥∇f(x(t) + sβẋ(t)∥ ds

)
∥ẋ(t)∥ .

Passing to the limit as t→ +∞, the right hand side goes to 0 from the above limits on ∇f(x(t))
and ẋ(t). We deduce that limt→+∞ f(x(t)) = L̃.

(iv) As in the proof for (ISEHD), since (x(t))t≥0 is bounded, then (7.4) holds. Besides, consider the
function

E : (x, v, w) ∈ R3d 7→ f(x+ v) +
1

2
∥w∥2 . (7.59)

Since f is de�nable, so is E. In turn, E satis�es has the K� property. Let

C1
def

= C(x(·))× {0d} × {0d}.

Since E
∣∣
C1

= L̃,∇E
∣∣
C1

= 0, ∃r, η > 0,∃ψ ∈ κ(0, η) such that for every (x, v, w) ∈ R3d such that

x ∈ C(x(·)) +Br, v ∈ Br, w ∈ Br and 0 < E(x, v, w)− L̃ < η, we have

ψ′(E(x, v, w)− L̃)∥∇E(x, v, w)∥ ≥ 1 (7.60)
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By de�nition, we have V (t) = E(x(t), βẋ(t), ẋ(t). We also de�ne Ṽ (t) = V (t) − L̃. By the
properties of V above, we have limt→+∞ Ṽ (t) = 0 and Ṽ is a non-increasing function. Thus
Ṽ (t) ≥ 0 for every t > 0. Without loss of generality, we may assume that Ṽ (t) > 0 for every
t > 0 (since otherwise Ṽ (t) is eventually zero entailing that ẋ(t) is eventually zero in view of
(7.58), meaning that x(·) has �nite length).
De�ne the constants δ2 = 2, δ3 =

δ1√
2
. In view of the convergence claims on ẋ and Ṽ above, there

exists T > 0, such that for any t > T
x(t) ∈ C(x(·)) +Br,

0 < Ṽ (t) < η,

max (β, 1) ∥ẋ(t)∥ < r,
1
δ3
ψ(Ṽ (t)) < r

2
√
2
.

(7.61)

The rest of the proof is analogous to the one of Theorem7.2.1. Since

∥∇E(x(t), βẋ(t), ẋ)∥2 ≤ δ2(∥ẋ(t)∥2 + ∥∇f(x(t) + βẋ(t))∥2), (7.62)

and
ψ′(Ṽ (t))∥∇E(x(t), βẋ(t), ẋ)∥ ≥ 1, ∀t ≥ T. (7.63)

We can lower bound the term − d
dtψ(Ṽ (t)) for t ≥ T (as in (7.12)) and conclude that

ẋ ∈ L1(R+;Rd), and that this implies that x(t) has �nite length and thus has a limit as t→ +∞.
This limit is necessarily a critical point of f since limt→+∞ ∥∇f(x(t))∥ = 0.

7.3.1.2 Trap avoidance

We now show that (ISIHD) provably avoids strict saddle points, hence implying convergence to a local
minimum if the objective function is Morse.

Theorem 7.3.2. Let c > 0, 0 < β < 2
c and γ ≡ c. Assume that f : Rd → R satis�es (H0) and is

a Morse function. Consider (ISIHD) in this setting. If the solution trajectory x is bounded over R+,

then the conclusions of Theorem7.3.1 hold. If, moreover, β ̸= 1
c , then for almost all x0, v0 ∈ Rd initial

conditions, x(t) converges (as t→ +∞) to a local minimum of f .

Proof. Since Morse functions are C2 and satisfy the K� inequality, and x is assumed bounded, then
all the claims of Theorem7.3.1 hold.

As in the proof of Theorem7.2.3, we will use again the global stable manifold theorem to prove the
last point. Since, γ(t) = c for all t, introducing the velocity variable v = ẋ, we have the equivalent
phase-space formulation of (ISIHD){

ẋ(t) = v(t),

v̇(t) = −cv(t)−∇f(x(t) + βv(t)),
(7.64)

with initial conditions x(0) = x0, v(0) = v0. Let us consider F : Rd × Rd → Rd × Rd de�ned by

F (x, y) = (v,−cv −∇f(x+ βv)) .

De�ning z(t) = (x(t), v(t)) and z0 = (x0, v0) ∈ R2d , then (7.64) is equivalent to{
ż(t) = F (z(t)),

z(0) = z0.
(7.65)

We know from above that under our conditions, the solution trajectory z(t) converges (as t→ +∞) to
an equilibrium point of F , and the set of equilibria is {(x̂, 0) : x̂ ∈ crit(f)}. Following the same ideas
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as in the proof of Theorem7.2.3, �rst, we will prove that each equilibrium point of F is hyperbolic.
We �rst compute the Jacobian

JF (x, y) =

 0d×d Id

−∇2f(x+ βv) −cId − β∇2f(x+ βv)

 .

Let ẑ = (x̂, 0), where x̂ ∈ crit(f). Then the eigenvalues of JF (ẑ) are characterized by the solutions on
λ ∈ C of

det

 −λId Id

−∇2f(x̂) −(λ+ c)Id − β∇2f(x̂)

 = 0. (7.66)

By Lemma7.1.1, (7.66) is equivalent to

det((1 + λβ)∇2f(x̂) + (λ2 + λc)Id) = 0. (7.67)

This is the exact same equation as (7.17). Thus the rest of the analysis goes as in the proof of
Theorem7.2.3.

7.3.1.3 Convergence rate

We now give asymptotic convergence rates on the objective and trajectory.

Theorem 7.3.3. Consider the setting of Theorem7.3.1 with f being also de�nable. Recall the function

E from (7.59), which is also de�nable, and denote ψ its desingularizing function and Ψ any primitive of

−ψ′2. Then, x(t) converges (as t→ +∞) to x∞ ∈ crit(f). Denote Ṽ (t)
def

= E(x(t), βẋ(t), ẋ(t))−f(x∞).

Then, the following rates of convergence hold:

� If limt→0Ψ(t) ∈ R, we have E(x(t), ẋ(t), β∇f(x(t))) converges to f(x∞) in �nite time.

� If limt→0Ψ(t) = +∞, there exists some t1 ≥ 0 such that

Ṽ (t) = O(Ψ−1(t− t1)) (7.68)

Moreover,

∥x(t)− x∞∥ = O(ψ ◦Ψ−1(t− t1)) (7.69)

Proof. Analogous to Theorem7.2.4.

When f has the �ojasiewicz property, we get the following corollary of Theorem7.3.3.

Corollary 7.3.4. Consider the setting of Theorem7.3.3 where now f satis�es the �ojasiewicz inequality

with desingularizing function ψf (s) = cfs
1−q, q ∈ [0, 1[, cf > 0. Then there exists some t1 > 0 such

that:

� If q ∈ [0, 12 ], then

Ṽ (t) = O(exp(−(t− t1))) and ∥x(t)− x∞∥ = O
(
exp

(
t− t1
2

))
(7.70)

� If q ∈]12 , 1[, then

Ṽ (t) = O((t− t1)
−1

2q−1 ) and ∥x(t)− x∞∥ = O((t− t1)
− 1−q

2q−1 ) (7.71)

Proof. Analogous to Corollary 7.2.6.
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7.3.2 Algorithmic scheme

In this section, we will study the properties of an algorithmic scheme derived from the following explicit
discretization discretization of (ISIHD) with stepsize h > 0 and for k ≥ 1:

xk+1 − 2xk + xk−1

h2
+ γ(kh)

xk+1 − xk
h

+∇f
(
xk + β

xk − xk−1

h

)
= 0. (7.72)

This is equivalently written as{
yk = xk + αk(xk − xk−1),

xk+1 = yk − sk∇f(xk + β′(xk − xk−1)),
(ISIHD-Disc)

with initial conditions x0, x1 ∈ Rd, where γk
def

= γ(kh), αk
def

= 1
1+γkh

, sk
def

= h2αk and β′
def

= β
h .

7.3.2.1 Global convergence and trap avoidance

We have the following result which characterizes the asymptotic behavior of algorithm (ISIHD-Disc),
which shows that the latter enjoys the same guarantees as (ISEHD-Disc) given in Theorem7.2.7. We
will again require that ∇f is globally Lipschitz-continuous.

Theorem 7.3.5. Let f : Rd → R satisfying (H0) with ∇f being globally L-Lipschitz-continuous.

Consider algorithm (ISIHD-Disc) with h > 0, β ≥ 0 and c ≤ γk ≤ C for some c, C > 0 and for every

k ∈ N. Then the following holds:

(i) If β + h
2 <

c
L , then (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), in particular

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is de�nable, then (∥xk+1 − xk∥)k∈N ∈ ℓ1(N) and xk
converges (as k → +∞) to a critical point of f .

(iii) Furthermore, if γk ≡ c > 0, 0 < β < c
L , β ̸= 1

c , and h < min
(
2
(
c
L − β

)
, 1
Lβ

)
, then for almost

all x0, x1 ∈ Rd, xk converges (as k → +∞) to a critical point of f that is not a strict saddle.

Consequently, if f satis�es the strict saddle property, for almost all x0, x1 ∈ Rd, xk converges (as

k → +∞) to a local minimum of f .

Proof. (i) Let vk
def

= xk − xk−1, ᾱ
def

= 1
1+ch , ¯

α
def

= 1
1+Ch , s̄ = h2ᾱ,

¯
s = h2

¯
α, so

¯
α ≤ αk ≤ ᾱ and

¯
s ≤ sk ≤ s̄ for every k ∈ N. Proceeding as in the proof of Theorem7.2.7, we have by de�nition
that for k ∈ N∗

xk+1 = argmin
x∈Rd

1

2
∥x− (yk − sk∇f(xk + β′vk))∥2, (7.73)

and 1−strong convexity of x 7→ 1
2∥x− (yk − sk∇f(xk + β′vk))∥2 then gives

1

2
∥xk+1− (yk−sk∇f(xk+β′vk))∥2 ≤

1

2
∥xk− (yk−sk∇f(xk+β′vk))∥2−

1

2
∥xk+1−xk∥2. (7.74)

Expanding and rearranging, we obtain

⟨∇f(xk + β′vk), vk+1⟩ ≤ −∥vk+1∥2

sk
+

1

h2
⟨vk, vk+1⟩. (7.75)

Combining this with the descent lemma of L-smooth functions applied to f , we arrive at

f(xk+1) ≤ f(xk) + ⟨∇f(xk), vk+1⟩+
L

2
∥vk+1∥2

= f(xk) + ⟨∇f(xk)−∇f(xk + β′vk), vk+1⟩+ ⟨∇f(xk + β′vk), vk+1⟩+
L

2
∥vk+1∥2

≤ f(xk) +

(
β′L+

1

h2

)
∥vk∥∥vk+1∥ −

(
1

s̄
− L

2

)
∥vk+1∥2.
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Where we have used that the gradient of f is L−Lipschitz and Cauchy-Schwarz inequality in the
last bound. Denote α̃ = β′L+ 1

h2 . We can check that since h < 2c
L , then 0 < s̄ < 2

L and the last
term of the inequality is negative. Using Young's inequality we have that for ε > 0 :

f(xk+1) ≤ f(xk) +
α̃2

2ε
∥vk∥2 + ε

∥vk+1∥2

2
−
(
1

s̄
− L

2

)
∥vk+1∥2.

Or equivalently,

f(xk+1) +
α̃2

2ε
∥vk+1∥2 ≤ f(xk) +

α̃2

2ε
∥vk∥2 +

[
ε

2
+
α̃2

2ε
−
(
1

s̄
− L

2

)]
∥vk+1∥2.

In order to make the last term negative, we impose

ε

2
+
α̃2

2ε
<

1

s̄
− L

2
.

Minimizing for ε at the left-hand side we obtain ε = α̃ and the condition to satisfy is

s̄ <
2

2α̃+ L
. (7.76)

Recalling the de�nitions of s̄, α̃, β′, this is equivalent to

h2

1 + ch
<

2

2
(
Lβ

h + 1
h2

)
+ L

⇐⇒ 2Lβh+ 2 + Lh2 < 2 + 2ch.

Simplifying, this reads

β +
h

2
<
c

L
,

which is precisely what we have assumed. Let δ =
(
1
s̄ −

L
2

)
− α̃ > 0, then

f(xk+1) +
α̃

2
∥vk+1∥2 ≤ f(xk) +

α̃

2
∥vk∥2 − δ∥vk+1∥2. (7.77)

Toward our Lyapunov analysis, de�ne now Vk = f(xk) +
α̃
2 ∥vk∥

2 for k ∈ N∗. In view of (7.77),
Vk obeys

Vk+1 ≤ Vk − δ∥vk+1∥2. (7.78)

and thus Vk is non-increasing. Since it is also bounded from below, Vk converges to a limit, say
L̃. Summing (7.77) over k ∈ N∗, we get that (∥vk+1∥)k∈N ∈ ℓ2(N), hence limk→+∞ ∥vk∥ = 0.
Besides, since ᾱ < 1

∥∇f(xk + β′vk)∥ =
1

sk
∥xk+1 − yk∥ ≤ 1

¯
s
(∥xk+1 − xk∥+ ∥xk − yk∥)

≤ 1

¯
s
(∥vk+1∥+ ᾱ∥vk∥)

≤ 1

¯
s
(∥vk+1∥+ ∥vk∥),

which implies
∥∇f(xk + β′vk)∥2 ≤ δ2(∥vk+1∥2 + ∥vk∥2),

where δ2 = 2

¯
s2
. Consequently (∥∇f(xk + β′vk)∥)k∈N ∈ ℓ2(N), and

∥∇f(xk)∥2 = 2(∥∇f(xk)−∇f(xk + β′vk)∥2 + ∥∇f(xk + β′vk)∥2)
≤ 2(L2β′2∥vk∥2 + ∥∇f(xk + β′vk)∥2).

Thus, (∥∇f(xk)∥)k∈N ∈ ℓ2(N), hence limk→+∞ ∥∇f(xk)∥ = 0.

(ii) When (xk)k∈N is bounded and f is de�nable, we proceed analogously as in the proof of Theo-
rem7.2.7 to conclude that (∥vk∥)k∈N ∈ ℓ1(N∗), so (xk)k∈N is a Cauchy sequence which implies
that it has a limit (as k → +∞) denoted x∞, which is a critical point of f since

lim
k→+∞

∥∇f(xk)∥ = 0.
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(iii) When γk ≡ c, we let αk ≡ α = 1
1+ch , sk ≡ s = h2α. Let zk = (xk, xk−1), and

g : Rd × Rd → Rd × Rd de�ned by

g : (x+, x−) 7→ [(1 + α)x+ − αx− − s∇f(x+ + β′(x+ − x−)), x+].

(ISIHD-Disc) is then equivalent to
zk+1 = g(zk). (7.79)

To conclude, we will again use [128, Corollary 1], similarly to what we did in the proof of Theo-
rem7.2.7, by checking that:
(a) det(Jg(x+, x−)) ̸= 0 for every x+, x− ∈ Rd.

(b) X̂ ⊂ A⋆
g, where A⋆

g
def

= {(x, x) ∈ R2d : x ∈ crit(f),maxi |λi(Jg(x, x))| > 1} and

X̂ def

= {(x, x) ∈ R2d : x ∈ X ⋆}, with X ⋆ the set of strict saddle points of f .

Let us check condition (a). The Jacobian Jg(x+, x−) reads(1 + α)Id − s(1 + β′)∇2f(x+ + β′(x+ − x−)) −αId + sβ′∇2f(x+ + β′(x+ − x−))

Id 0d×d

 . (7.80)

This is a block matrix, where the bottom-left matrix commutes with the upper-left matrix (since
is the identity matrix), then by Lemma7.1.1:

det(Jg(x+, x−)) = det(αId − β′s∇2f(x+ + β′(x+ − x−))).

Since the eigenvalues of ∇2f(x+ + β′(x+ − x−)) are contained in [−L,L]. It is then su�cient
that α > β′Ls to have that η − α

β′s ̸= 0 for every eigenvalue η ̸= 0 of ∇2f(x+ + β′(x+ − x−)).
This means that under α > β′Ls, condition (a) is in force. Requiring α > β′Ls is equivalent to
h < 1

Lβ , and since we already need h < 2
(
c
L − β

)
, we just ask h to be less than the minimum of

the two quantities.

Let us check condition (b). Let x be a strict saddle point of f , i.e. x ∈ crit(f) and

λmin(∇2f(x)) = −η < 0.

To characterize the eigenvalues of Jg(x, x) we could use Lemma7.1.1 as before, however, we will
present an equivalent argument. Let ηi ∈ R, i = 1, . . . , d, be the eigenvalues of ∇2f(x). By
symmetry of the Hessian, it is easy to see that the 2d eigenvalues of Jg(x, x) coincide with the
eigenvalues of the 2× 2 matrices(1 + α)− s(1 + β′)ηi −α+ sβ′ηi

1 0

 .

These eigenvalues are therefore the (complex) roots of

λ2 − λ
(
(1 + α)− s(1 + β′)ηi

)
+ α− sβ′ηi = 0. (7.81)

If λ = β′

β′+1 , then (7.81) becomes(
β′

β′ + 1

)2

−
(

β′

β′ + 1

)
(1 + α) + α = 0.

This implies that α = β′

β′+1 , or equivalently
1

1+ch = β
β+h . But this contradicts our assumption that

βc ̸= 1, and thus this case cannot occur. Let us now solve (7.81) for ηi = −η. Its discriminant is

∆λ = α2 + 2α(ηs(1 + β′)− 1) + (ηs(1 + β′) + 1)2 − 4ηsβ′,

which can be seen as a quadratic equation in α whose discriminant ∆α = −16ηs. Since ∆α < 0

(recall that η, s > 0). Therefore the quadratic equation on α does not have real roots implying
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that ∆λ > 0. We can then write the solutions of (7.81),

λ =
((1 + α) + ηs(1 + β′))±

√
∆λ

2
.

Let us examine the largest solution (the one with the plus sign) and show that actually λ > 1.
Simple algebra shows that this is equivalent to verifying that

∆λ > (2− (1 + α)− ηs(1 + β′))2.

or, equivalently,

(1− α)2 + η2s2(1 + β′)2 − 2(1− α)ηs(1 + β′) < ∆λ

=
(
(1 + α)2 + η(s− β′)

)2 − 4(α− ηβ′).

Simple algebra again shows that this inequality is equivalent to 0 < 4ηs, which is always true as
η > 0. We have thus shown that X̂ ⊂ A⋆

g.
Overall, we have checked the two conditions (a)-(b) above. Therefore the invariant set {z1 ∈
R2d : limk→+∞ gk(z1) ∈ X̂} has Lebesgue measure zero. This means that the set of initializations
x0, x1 ∈ Rd for which xk converges to a strict saddle point of f has Lebesgue measure zero.

7.3.2.2 Convergence rate

The asymptotic convergence rate of algorithm (ISIHD-Disc) for �ojasiewicz functions is given in the
following theorem. This shows that (ISIHD-Disc) enjoys the same asymptotic convergence rates as
(ISEHD-Disc).

Theorem 7.3.6. Consider the setting of Theorem7.3.5, where f also satis�es the �ojasiewicz property

with exponent q ∈ [0, 1[. Then xk → x∞ ∈ crit(f) as k → +∞ at the rates:

� If q ∈ [0, 12 ] then there exists ρ ∈]0, 1[ such that

∥xk − x∞∥ = O(ρk). (7.82)

� If q ∈]12 , 1[ then
∥xk − x∞∥ = O

(
k
− 1−q

2q−1

)
. (7.83)

Proof. Since the Lyapunov analysis of (ISIHD-Disc) is analogous to that of (ISEHD-Disc) (though the
Lyapunov functions are di�erent), the proof of this theorem is similar to the one of Theorem7.2.9.

7.3.2.3 General coe�cients

As discussed for the explicit case, the discrete scheme (ISIHD-Disc) rises from a discretization of the
ODE (ISIHD). However, the parameters αk, sk are linked to each other. We now consider (ISIHD-Disc)
where αk, sk are independent. Though this would hide somehow the physical interpretation of these
parameters, it allows for some �exibility in their choice while preserving the convergence behavior.

Theorem 7.3.7. Let f : Rd → R be satisfying (H0) with ∇f being globally L-Lipschitz-continuous.

Consider (αk)k∈N, (βk)k∈N, (sk)k∈N to be three positive sequences, and the following algorithm with

x0, x1 ∈ Rd: {
yk = xk + αk(xk − xk−1),

xk+1 = yk − sk∇f(xk + βk(xk − xk−1)).
(7.84)

If there exists s̄ > 0 such that:

� 0 < infk∈N sk ≤ supk∈N sk ≤ s̄ < 2
L ;
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� supk∈N

(
βkL+ αk

sk

)
< 1

s̄ −
L
2 .

Then the following holds:

(i) (∥∇f(xk)∥)k∈N ∈ ℓ2(N), and (∥xk+1 − xk∥)k∈N ∈ ℓ2(N), hence

lim
k→+∞

∥∇f(xk)∥ = 0.

(ii) Moreover, if (xk)k∈N is bounded and f is de�nable, then (∥xk+1 − xk∥)k∈N ∈ ℓ1(N) and xk
converges (as k → +∞) to a critical point of f .

(iii) Furthermore, if αk ≡ α, βk ≡ β, sk ≡ s, then the previous conditions reduce to

α+ sL

(
β +

1

2

)
< 1.

If, in addition, α ̸= β
β+1 , α > βLs, then for almost all x0, x1 ∈ Rd, xk converges (as k → +∞)

to a critical point of f that is not a strict saddle. Consequently, if f satis�es the strict saddle

property, for almost all x0, x1 ∈ Rd, xk converges (as k → +∞) to a local minimum of f .

Proof. Adjusting equation (7.75) to our setting (i.e. not using the dependency of αk, sk) we get an
analogous proof to the one of Theorem7.3.5. We omit the details.

7.4 Numerical experiments

Before describing the numerical experiments, let us start with a few observations on the computational
complexity and memory storage requirement of (ISEHD-Disc) and (ISIHD-Disc). The number of gra-
dient access per iteration is the same for Gradient Descent (GD), discrete HBF, (ISEHD-Disc) and
(ISIHD-Disc) is the same (one per iteration). However, the faster convergence (in practice) of inertial
methods comes at the cost of storing previous information. For the memory storage requirement per
iteration, GD stores only the previous iterate, the discrete HBF and (ISIHD-Disc) store the two pre-
vious iterates, while (ISEHD-Disc) additionally stores the previous gradient iterate as well. This has
to be kept in mind when comparing these algorithms especially in very high dimensional settings.

We will illustrate our �ndings with two numerical experiments. The �rst one is the optimization
of the Rosenbrock function in R2, while the second one is on image deblurring. We will apply the
proposed discrete schemes (ISEHD-Disc) and (ISIHD-Disc) and compare them with gradient descent
and the (discrete) HBF. We will call ∥∇f(xk)∥ the residual.

7.4.1 Rosenbrock function

We will minimize the classical Rosenbrock function, i.e.,

f : (x, y) ∈ R2 7→ (1− x)2 + 100(y − x2)2,

with global minimum at (x⋆, y⋆) = (1, 1).

We notice that its global minimum is the only critical point. Therefore this function is Morse and
thus satis�es the �ojasiewicz inequality with exponent 1

2 (see Remark 7.1.9). Consider (ISEHD) and
(ISIHD) with the Rosenbrock function as the objective, γ : R+ → R+ continuous and satisfying (Hγ)
(i.e. 0 < c ≤ γ(t) ≤ C < +∞), and 0 < β < 2c

C2 . By Theorems 7.2.1-7.2.9 for (ISEHD), and
Theorems 7.3.1-7.3.6 for (ISIHD), we get that the solution trajectories of these dynamics will converge
to the global minimum eventually at a linear rate. Due to the low dimensionality of this problem, we
could use an ODE solver to show numerically these results. However, we will just the iterates generated
by our proposed algorithmic schemes (ISEHD-Disc) and (ISIHD-Disc). Although the gradient of the
objective is not globally Lipschitz continuous, our proposed algorithmic schemes worked very well for h
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small enough. This suggests that we may relax this hypothesis in future work, as proposed in [165, 118]
for GD.

We applied (ISEHD-Disc) and (ISIHD-Disc) with β ∈ {0.02, 0.04}, γ(t) ≡ γ0 = 3, h = 10−3 and
initial conditions x0 = (−1.5, 0), x1 = x0. We compared our algorithms with GD and HBF (with the
same initial conditions) after 2 ∗ 104 iterations:

xk+1 = xk −
h2

1 + γ0h
∇f(xk), (GD)

and {
yk = xk +

1
1+γ0h

(xk − xk−1),

xk+1 = yk − h2

1+γ0h
∇f(xk).

(HBF)

The behavior of all algorithms is depicted in Figures 7.1 and 7.2.
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Figure 7.1: Results on the Rosenbrock function with β = 0.02.
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Figure 7.2: Results on the Rosenbrock function with β = 0.04.

We can notice that the iterates generated by (ISEHD-Disc) and (ISIHD-Disc) oscillate much less
towards the minimum than (HBF), and this damping e�ect is more notorious as β gets larger. In the
case β = 0.02, we observe there are still some oscillations, which bene�t the dynamic generated by
(ISEHD-Disc) more than the one generated by (ISIHD-Disc). However, we have the opposite e�ect
in the case β = 0.04, where the oscillations are more damped. These three methods ((ISEHD-Disc),
(ISIHD-Disc), (HBF)) share a similar asymptotic convergence rate, which is linear as predicted (recall
f is �ojasiewicz with exponent 1/2), and they are signi�cantly faster than (GD).

7.4.2 Image deblurring

In the task of image deblurring, we are given a blurry and noisy (gray-scale) image b ∈ Rnx×ny of size
nx×ny. The blur corresponds to a convolution with a known low-pass kernel. Let A : Rnx×ny → Rnx×ny
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be the blur linear operator. We aim to solve the (linear) inverse problem of reconstructing u⋆ ∈ Rnx×ny

from the relation b = Aū + ξ, where ξ is the noise, that is additive pixel-wise, has 0−mean and is
Gaussian. Through this experiment, we used nx = ny = 256.

In order to reduce noise ampli�cation when inverting the operator A, we solve a regularized opti-
mization problem to recover u⋆ as accurately as possible. As natural images can be assumed to be
smooth except for a (small) edge-set between objects in the image, we use a non-convex logarith-
mic regularization term that penalizes �nite forward di�erences in horizontal and vertical directions
of the image, implemented as linear operators Kx,Ky : Rnx×ny → Rnx×ny with Neumann boundary
conditions. In summary, we aim to solve the following:

min
u∈Rnx×ny

f(u), f(u)
def

=
1

2
∥Au− b∥2 + µ

2

nx∑
i=1

ny∑
j=1

log(ρ+ (Kxu)
2
i,j + (Kyu)

2
i,j),

where µ, ρ are positive constants for regularization and numerical stability set to 5 · 10−5 and 10−3,
respectively. Also f is de�nable as the sum of compositions of de�nable mappings, and ∇f is Lipschitz
continuous.

To solve the above optimization problem, we have used (ISEHD-Disc) and (ISIHD-Disc) with pa-
rameters β = 1.3, γk ≡ 0.25, h = 0.5, and initial conditions x0 = x1 = 0nx×ny . We compared both
algorithms with the baseline algorithms (GD), (HBF) (with the same initial condition). All algorithms
were run for 250 iterations. The results are shown in Figure 7.3 and Figure 7.4.

In Figure 7.3, the original image ū is shown on the left. In the middle, we display the blurry and
noise image b. Finally, the image recovered by (ISEHD-Disc) is shown on the right.

Figure 7.3: Results of the discretization of ISEHD.

In Figure 7.4, see that the residual plots of (ISEHD-Disc) and (ISIHD-Disc) overlap. Again, as
expected, the trajectory of (ISEHD-Disc) and (ISIHD-Disc) has much less oscillation than (HBF)
which is a very desirable feature in practice. At the same time, (ISEHD-Disc) and (ISIHD-Disc)
exhibit faster convergence, though (HBF) eventually attains a similar convergence rate. Again, (GD)
is the slowest. Overall, (ISEHD-Disc) and (ISIHD-Disc) seem to take the best of both worlds: small
oscillations and a faster asymptotic convergence rate.
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Figure 7.4: Results on the image deblurring problem.
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8.1 Summary

We have exploited the close link between continuous-time dissipative dynamical systems and opti-
mization algorithms to provide a systematic analysis of the global and local behavior of several �rst-
and second-order systems, focusing on convex, stochastic, and in�nite-dimensional settings on the one
hand, and non-convex, deterministic, and �nite-dimensional settings on the other hand. We have
proposed new analysis tools and results, including convergence of the trajectories, in both continuous
and discrete time, in expectation and almost surely, as well as global and local rates. We have also
described trap avoidance properties for some of these dynamics. We have made our arguments with a
high level of generality such that they apply to in�nite-dimensional problems. Our assumptions have
been outlined in such a way that future researchers can easily understand in which way they contribute
to the arguments we make.

We summarize the main conclusions to be drawn from our work:

(i) The works of Chapters 3-6 was intended to uncover the global and local convergence properties
of trajectories of (sub)gradient-based continuous-time dynamics with stochastic errors under
the umbrella of stochastic di�erential equations and inclusions. The aim is to solve convex
optimization problems with noisy gradient input with vanishing variance. We have shed light on
these properties and provided a comprehensive local and global complexity analysis both in the
smooth and non-smooth case. This continuous-time perspective o�ers a deep insight and unveils
the key properties of the dynamic of algorithms, without being tied to a speci�c discretization.
This in turn enlightens the behavior of the sequence generated by some speci�c algorithm such
as SGD. In turn, studying the continuous-time di�usion will allow to predict the convergence
behavior of algorithmic schemes and other stochastic algorithms.

(ii) First-order stochastic di�usion for stochastic convex optimization: Chapter 3 consider �rst-
order stochastic di�erential equations and an extension to maximal monotone operators through
smoothing, while Chapter 4 studies stochastic di�erential inclusions in a non-smooth convex set-
ting together with a Tikhonov regularized version. Convergence properties of the trajectory and
convergence rates are derived in almost sure sense and in expectation.

(iii) Second-order stochastic di�usion for stochastic convex optimization: Chapters 5-6 are devoted
to second-order stochastic inertial dynamics. Chapter 5 capitalizes on the results obtained in
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the previous chapters and a technique called �time scaling and averaging� to obtain convergence
properties of a second-order SDE with speci�c coe�cients without having to go through a speci�c
Lyapunov analysis. The case with coe�cients is at the heart of Chapter 6 where one has to go
through intricate Lyapunov analysis.

(iv) Second-order systems and algorithms for non-convex optimization: our main take-away messages
are:

� Under de�nability conditions on the objective and suitable choice of the parameters, the
trajectories of the proposed dynamics converge globally. Besides, in the autonomous setting,
and under a Morse condition on the objective, the trajectory provably and generically
converges to a local minimum of the objective.

� The same properties hold for respective proposed algorithmic schemes.

� The inclusion of the Hessian driven damping indeed helps to reduce oscillations towards
critical points, and, when chosen appropriately, without harming the speed of convergence.

� The selection of Hessian driven damping parameter is important. If it is chosen too close
to zero, it may not signi�cantly reduce oscillations. Conversely, if it is chosen too large
(even within the theoretical bounds), the trade-o� for reduced oscillations might be a worse
practical convergence speed.

8.2 Future Work

Several extensions and research avenues are possible in the context of future work. Some of the most
promising ones in our opinion are the following.

Itô formula in general separable Hilbert spaces. Extension of Itô formula to C1,1
L (H) functions

where H is a general separable Hilbert space is rather challenging. More precisely, the goal is to extend
Proposition 2.7.6 to such spaces. However, the argument in �nite dimension relies on molli�ers which
does not extend to in�nite dimension. In the latter, a promising direction should rather go through
general approximation theory of functions (see [150]).

Beyond the convex case in the stochastic setting. We think for instance to the quasi-convex
case, and we refer to the recent work of [82] which o�ers us some perspective concerning the extension
of our work to the non-convex K� setting. The second-order stochastic dynamics we proposed were
not related provably to a stochastic algorithmic scheme in the small stepsize regime. Whether these
dynamics can approximate some stochastic algorithm, at which rate, and how this could be used to
prove trap avoidance of such algorithms is an important challenge.

Assumption (Hλ). This assumption appears somewhat stringent though it is veri�ed in some special
cases (see Remark 4.2.2). Investigating other conditions to ensure existence of a strong solution to an
SDI, extending the theory of [173], is an important question.

Maximal monotone operators. A challenging question is the extension of our general theory for
non-smooth optimization problems to the case of maximal monotone operators, i.e., replace∇f by A (a
maximal monotone operator) and ∂g by B (a set-valued maximal monotone operator) and investigate
the convergence guarantees of the corresponding stochastic dynamics for �nding the zeros of A + B;
see the recent paper [64].

Linearly constrained convex minimization. Inspired by [22], we could consider a structured
convex minimization problem under a linear constraint and use a stochastic version of the Temporally
Rescaled Inertial Augmented Lagrangian System (TRIALS) to solve it.
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Non-euclidian geometry. In our results in Chapter 7, we focus on the Euclidian case. Extending
our results to (non-Euclidean) Bregman-type geometry, i.e. those where the objective is not globally
Lipschitz-smooth but only relatively so, appears worth investigating in a future work.
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