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Chapter 1

Introduction
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1.1 Research Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 How effectively do current conformance checking techniques perform when
applied to email-driven processes? . . . . . . . . . . . . . . . . . . . . . . 8

1.3.2 How can predictive techniques be utilized to recommend specific process-
oriented emails? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Objectives and Principles . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 Research Context

Business processes [101] refer to the series of interconnected activities, tasks, and steps that
are performed within an organization to achieve a specific goal or outcome. Their purpose is
to optimize productivity, improve efficiency, and simplify processes. Businesses in a variety of
sectors and roles, from manufacturing and supply chain management to customer service and
finance, might have very varied business processes. In order to provide value to customers
and stakeholders, they frequently entail the coordination of people, resources, and technology.

The field of Business Process Management (BPM) [95, 108, 3] has emerged to ensure con-
tinuous improvement in business processes. In order to improve organizational performance,
business processes must be managed and optimized throughout the BPM life-cycle ??. This
life-cycle normally consists of six important phases. The first phase is process discovery, where
the current state of a specific business process is modeled (as-is model) to achieve a common
understanding among stakeholders. Information is gathered through document analysis, in-
terviews, and observation, while research focuses on the suitability of modeling languages and
the impact of different visual elements. The next phase, process analysis, uses the as-is model
to identify issues and their root causes, employing qualitative and quantitative techniques.
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2 Introduction

Figure 1.1: The Business Process Management Life-cycle

This is followed by process redesign, where a future state (to-be model) is developed using
various methods. During process implementation, the to-be model is operationalized through
change management and IT development, supported by process-aware information systems.
Finally, process monitoring and controlling involve tracking the process execution against
the to-be model, using performance dashboards and process mining, providing insights for
continuous improvement and restarting the lifecycle if necessary.

Business Process (BP) mining, as introduced by Aalst et al. [2], is an integral part of the
BPM lifecycle that analyzes and improves business processes by examining event logs and
transaction data. It involves extracting insights from these data sources to understand how
processes are actually executed in practice, as opposed to how they are designed to be exe-
cuted. Process mining techniques can help identify bottlenecks, inefficiencies, and deviations
from the intended process flow. By analyzing the sequence of activities and dependencies
within a process, organizations can uncover opportunities for optimization and automation.

Within this framework, two pivotal components are conformance checking [24] and process
prediction [57]. In the context of BP mining, conformance checking is an important component
since it evaluates how well the process is actually carried out in comparison to the model that
is expected. Through the identification of deviations or inconsistencies between the actual and
projected behavior, it offers important insights into how well the current business processes
are working. Organizations can make sure that their procedures follow established models and
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standards by using conformance checking. By pointing out places where the actual execution
deviates from the planned behavior, it enables quick corrective action and promotes continual
development.

Process prediction is another essential component of BP mining that works in tandem with
conformance checking. The objective is to predict the future behavior of a specific process by
utilizing machine learning algorithms and sophisticated analytical approaches on the basis of
past data. Predicting how tasks will be performed in a business process and how they will
depend on one another is the prediction. Anticipating any deviations from the intended flow
is the ultimate goal since it allows firms to optimize their operations and deal with concerns
proactively.

When combined, process prediction and conformance checking enable businesses to im-
prove the efficiency, flexibility, and transparency of their business processes. By harnessing
insights from historical data, these techniques enable businesses to make informed decisions,
mitigate risks, and stay responsive in today’s dynamic and competitive business environ-
ment. The future of BPM practices will be significantly shaped by the integration of these
components as the area of BP mining continues to develop.

The growing influence of BP mining has opened up diverse opportunities across various
domains. In this dynamic landscape, a promising avenue emerges for seamlessly integrating
process prediction and conformance checking techniques into the realm of email communi-
cation. Specifically, this integration targets email-driven processes, which are generally BP
fragments executed using emailing systems rather than traditional BPM systems. These
email-driven processes are not traditionally supported by Process-Aware Information Sys-
tems (PAIS) [35], which are systems designed to manage and execute business processes.
PAIS enable BPM by providing the necessary tools and infrastructure to automate and con-
trol these processes based on defined models. Unlike structured processes managed by PAIS,
email-driven processes lack formalized models and execution control, making it difficult to
apply conventional BPM techniques.

To understand why conventional process models are insufficient for handling email-driven
processes and why a more appropriate model is necessary, it is important to distinguish these
processes from traditional business processes. Email-driven processes are characterized by
a series of activities that represent the execution of tasks. Traditional business processes
typically have a clear and explicit temporal control flow, where activities are executed in
a precise order. In contrast, email-driven processes do not follow this structure. Instead,
the sequence of activities in email processes is determined by both their appearance within
individual emails and the chronological order of email threads.

In traditional business processes, the temporal order of activities is explicit and easily
identifiable, facilitating the modeling and monitoring of process flows. However, in email-
driven processes, the control flow is not temporal but is based on the order of activities
as they appear in emails and threads. This order reflects how users perceive and execute
activities within the context of email communications. Each email and thread can be seen as
a projection of the business process instance, where the sequence of activities is captured by
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the structure of the email content and the thread’s conversation.

Moreover, email-driven processes often consist of fragments of larger business processes.
These fragments are grouped to achieve specific business objectives. In line with the tradi-
tional definition of a business process as a set of activities aiming to achieve a business goal,
email-driven processes can similarly be viewed as a collection of activities working towards
a business goal or executing a part of a business process. However, identifying the control
flow in emails is inherently more complex due to the lack of explicit temporal ordering, as
previously explained.

To address these challenges, our research develops methodologies tailored for the unique
characteristics of email-driven processes, ensuring they can benefit from the same level of
process management and optimization as those supported by PAIS.

1.1.1 Motivating Example

This section presents a motivating example to illustrate the importance of conformance check-
ing and prediction in email-driven business processes. Consider the recruitment process, where
all communications with candidates occur via email—whether sending/forwarding resumes,
planning interviews, or informing candidates about hiring decisions. In other contexts, emails
may be used to handle specific events during business processes. Figure 1.2 includes an exam-
ple of real emails retrieved from the Enron database1. It shows a set of interactions between
employees outside a gas trading system for handling a flow gas event (i.e., a gas volume that
exceeds a certain threshold).

The emails are related to the same gas meter (Meter 5192) and the same trading deal (deal
454057). They belong to two conversations (with subjects ‘Flow w/no nom’ and ‘Dec 00’) and
are sorted in ascending order according to their timestamps. The emails report how employees
act when a meter detects a gas flowing. The first and third emails show how an employee
notifies his manager once this event occurs to request the execution of some activities (e.g.,
extend the associated deal or create a new one in email email3). The second and fourth emails
report the activity carried out by the manager to cover the flowing event of the gas meter
(roll or extend the associated deal as indicated in email2 and email4 respectively). Figure
1.2 illustrates a case where a trading BP part related to managing gas deals is supported by
emails inside Enron company. It also shows an example of an email (i.e., email3) summarizing
employee expertise when handling some events/exceptions (through the requested activities).

Conformance checking, in the context of email-driven processes, offers significant advan-
tages by ensuring the accuracy and completeness of exchanged text. To illustrate, let’s ex-
amine into a scenario involving an employee named Bob, tasked with sending emails about
upcoming workshops to colleagues. There was an instance where Bob unintentionally omit-
ted crucial information from an email before dispatching it. In such situations, conformance
checking plays a pivotal role in maintaining the quality and integrity of the communication

1http://www.cs.cmu.edu/~enron
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Figure 1.2: Emails retrieved from Enron data-set

process.

Before an email is sent, the conformance checking mechanism evaluates its content against
the prescribed process model. This assessment aims to detect any omissions or discrepancies,
such as the one in Bob’s case. In this scenario, the conformance checking system identifies
the missing information and promptly brings it to Bob’s attention. This timely intervention
offers Bob an opportunity to rectify the mistake before the email reaches his colleagues.

Through this proactive conformance checking practice, all of Bob’s colleagues ultimately
receive comprehensive and accurate information regarding the upcoming workshops. Con-
sequently, they can plan their schedules efficiently and actively participate in the events,
contributing to a smoother and more effective workflow.

On the other hand, integrating process prediction into email communication offers even
greater benefits. Predictive capabilities extend beyond merely identifying future BP activities
through email correspondence. This integration envisions a system that suggests not only the
appropriate emails to send but also enhances the textual content of these communications.

For instance, consider another employee, Alice, who is responsible for managing customer
support emails. By analyzing historical email data within the BP framework, predictive
models can discern patterns and provide tailored recommendations. Imagine a scenario where
Alice receives a customer email reporting an issue with a product. The predictive model,
having analyzed similar past interactions, can suggest a draft response for Alice. This draft
email might include activities related to an apology, a request for additional information, and
potential troubleshooting steps.

Furthermore, the predictive system can recommend follow-up actions based on the histor-
ical resolution of similar issues. For example, if previous cases show that offering a discount or
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expedited shipping resolved similar complaints effectively, the system can suggest including
such offers in Alice’s response. This ensures that Alice’s communication is not only prompt
but also aligned with successful resolution strategies.

Thus, the combination of conformance checking and predictive analytics can significantly
improve the management of email-driven business processes. This approach recommends
suitable responses to incoming emails, saving time and ensuring timely communication, while
also ensuring the accuracy and completeness of information in manually composed emails.
These techniques enhance efficiency in information exchange, minimize errors, and facilitate
agile responses to evolving process requirements. However, challenges arise when attempting
to apply these methods to business processes conducted through unconventional systems,
particularly email-driven processes, which form the primary focus of our research.

1.2 Research Challenges

A significant obstacle arises from the distinctive structure of event logs derived from email
systems, as pointed out by Elleuch et al. [41]. In contrast to classical information systems,
events in email systems often come with additional attributes. This unique structure presents
a challenge in the application of conventional process prediction and conformance checking
methods, necessitating customized solutions to address the specific characteristics of email-
driven processes.

Figure 1.3: Email Request for Report Review

For instance, the goal of an event occurring in an email is identified not only by the
explicitly mentioned activity name but also by the interlocutor’s speech act. As an example,
in the email depicted in Figure 3.5, where David asks Joe, "Could you please review the
attached gas trading report?" David’s speech act is a request. He is specifically asking Joe to
review the report. Thus, the activity is the review of the attached gas trading report.

Furthermore, participants in business processes, such as David, often provide additional
context by incorporating pertinent business data (BD) into their discussions. This data can
be categorized into two groups. The first group comprises data utilized and generated during
the activity, such as ’price’ and ’trading hours’. The second type encompasses expressions or
terms that provide additional context to the business scenario, such as ’gas’ to specify the
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type of energy being traded and ’online’ to indicate the method of the trading operation.

The structural characteristics of event logs from email systems are often overlooked in
traditional approaches, but they are crucial in email-based BP mining. Introducing additional
attributes to the event log can complicate matters, leading to complexities such as:

• Complexity of Analysis: Analyzing these new attributes demands advanced algo-
rithms and specialized tools, especially when seeking to understand the underlying con-
nections between these attributes and their effects on process prediction and confor-
mance checking.

• Integration with Existing Business Process Approach and Emailing System:
Integrating these additional attributes into the existing business process approach and
emailing system might pose its own challenges. Such integration could necessitate sub-
stantial customization or even a complete overhaul of the current systems, resulting in
both time and cost implications.

The context of this thesis revolves around addressing the challenges associated with min-
ing business processes from email-driven processes. It explores the unique characteristics of
email event logs and emphasizes how important they are to email-driven processes. The
aim of the thesis is to facilitate the efficient implementation of process prediction and con-
formance checking in the context of process-oriented emails by comprehending and tackling
these intricacies.

Moving forward, we will discuss the research problems related to this context in Section
1.3. Subsequently, we will outline our thesis objectives, principles, and contributions in Sec-
tions 1.4 and 1.5. Finally, in Sections 1.6, we will present the structure of the thesis, providing
a clear roadmap for the logical flow of ideas and findings throughout this report.

1.3 Research Questions

In our pursuit of applying process prediction within the context of email-driven processes,
we encountered a multitude of challenges that pushed the boundaries of our comprehension.
However, the complexity of the situation escalated even further when we opted to implement
conformance checking as a part of our approach. These challenges can essentially be distilled
and categorized around two pivotal research questions that laid the foundation for our study:

Our first research question, (Q1) "How effectively do current conformance check-
ing techniques perform when applied to email-driven processes?", is addressed in
Section 1.3.1. In this section, we scrutinize the challenges of applying conformance checking
techniques within the realm of emails, exploring how they fit and function in this specific
context.
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Our second research question, (Q2) "How can predictive techniques be utilized
to recommend specific process-oriented emails?", is explored in Section 1.3.2. Here,
we discuss the constraints and limitations encountered when incorporating existing process
prediction techniques to recommend process-oriented emails.

1.3.1 How effectively do current conformance checking techniques perform
when applied to email-driven processes?

Several methods have been proposed for conformance checking in business processes [37, 24,
110, 48], such as alignment-based methods [16, 17] that utilize event logs and process models
to find the optimal alignment between expected and actual behavior. While these methods
have shown promising results, they struggle to identify discrepancies that go beyond the
perspective of the sequential flow of activities. To overcome this limitation, some approaches
have addressed conformance checking for multi-perspective processes, considering attributes
like time, resources, and other data attributes [33, 49, 115, 76]. An example of this innovation
is a technique that employs fuzzy logic to evaluate compliance from both structural and
temporal perspectives [114].

However, these existing methods fall short in detecting event discrepancies from a business
context perspective. They typically assume that the business context of an event is predefined
based on the process it belongs to [37], which means they don’t account for the possibility that
an event within the same process instance might deviate and correspond to a different business
context. This limitation is particularly evident in scenarios such as email conversations, where
the topic can frequently shift. For example, an email thread might start discussing a project
update (one business context) and then shift to budget discussions (another business context)
within the same conversation. Current conformance checking methods would struggle to
identify such shifts and correctly attribute the events to their respective business contexts,
leading to potential inaccuracies in detecting discrepancies.

Additionally, many current approaches [28, 27, 75] mainly focus on calculating conformity
metrics, assuming that event attribute values are either categorical or numerical. They often
overlook the complexities in cases like email events, where attributes may include words that
provide essential context. Understanding these attributes requires a closer examination of
the context in which they appear, ensuring alignment with ongoing discussions within email
conversations.

Given these limitations, there is a clear need for a more comprehensive and context-aware
approach to effectively detect event discrepancies. Therefore, we must develop an approach for
multi-perspective conformance checking in email-driven processes. This new direction aims
to bridge the existing gaps and provide a more robust approach to evaluating conformance in
complex business environments, such as email communication. To achieve this goal, we need
to address the following sub-questions:

• Q1-1: How can we design a conformance checking method that takes into account both
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the structural and contextual perspectives of the email events?

• Q1-2: What are the common patterns of discrepancies that can occur in the business
context of email events, and how can they be accurately detected?

• Q1-3: How can we handle non-categorical or non-numerical attribute values in confor-
mance checking methods, particularly those related to email events?

• Q1-4: How can we validate and measure the accuracy, reliability, and performance of
the newly proposed context-aware conformance checking method?

1.3.2 How can predictive techniques be utilized to recommend specific
process-oriented emails?

In the context of emails, the term "prediction" in general refers to the application of specific
algorithms aimed at suggesting various fields for email responses [102, 88, 50, 72]. These fields
include the sender’s identity, recipients, attached files, subject lines, and even the email main
body itself.

The focus on recommending the main body of email messages has evolved into a highly
intriguing area, prompting numerous advancements in the field. Various research studies, such
as those conducted by Yang et al. [111] and Zhang et al. [113], have explored this domain. The
approach outlined in [111] was grounded in collaborative filtering, a technique that exploits
user behaviors and preferences to offer suggestions. By analyzing users’ historical email
interactions and patterns, the algorithm identifies common phrases and structures that can be
harnessed to compose effective email responses. This process assists users in crafting relevant
and contextually fitting replies, ultimately enhancing their efficiency in email communication.

The work by Zhang et al. [113] took this further by adopting a deep learning approach.
Their model utilized a combination of user and email features, including user interaction
history, email metadata, and contextual information, to develop a predictive framework.
This sophisticated framework was capable of comprehending the nuanced requirements of
individual recipients, enabling the production of a set of recommended email bodies tailored
specifically to each person.

Nevertheless, the primary focus of these existing works was to enhance email management
without giving much thought to the context of business processes. Among those that combined
email management with the concept of business processes, they were mostly limited to the
stage of BP discovery from email logs [66, 62, 26]. In certain cases, the focus shifted towards
categorizing incoming emails into different business process activities [88].

It’s important to highlight that process prediction in the context of emails should encom-
pass more than just identifying activities; it should extend to suggesting specific emails that
assist BP actors in executing their activities. Acknowledging the limitations inherent in the
prevailing methodologies, we must develop a process-activity-aware email response recom-
mendation system that goes beyond the scope of traditional email management approaches.
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Essentially, our system recommends email response templates based on predicted BP knowl-
edge. This knowledge pertains to the set of activities to be conveyed in the email responses,
the intention behind expressing them in the email (i.e., speech act), and the manipulated
business data. Our approach strives to integrate email management with business processes
by utilizing advanced techniques in natural language processing and machine learning. To
realize this, we need to address several sub-questions:

• Q2-1: How can we effectively leverage the event log from previously exchanged emails
to predict future BP knowledge that will be expressed in email responses?

• Q2-2: What are the most suitable machine learning algorithms or predictive models
that can be employed to forecast this future BP knowledge?

• Q2-3: What types of event attributes should be considered when predicting process-
specific email responses?

• Q2-4: How can we personalize the recommended email responses not only based on
the process activity but also on the preferences and communication styles of individual
participants?

• Q2-5: How can we validate the effectiveness and performance of the process-activity-
aware email response recommendation system to ensure it provides meaningful and
valuable email responses in response to received emails?

1.4 Thesis Objectives and Principles

Given the research problems described earlier, the primary objectives of this thesis can be
summarized as follows:

• Objective 1: Implement Multi-Perspective Conformance Checking For Email-driven
Processes.

– This objective involves proposing a process model based on sequential and contex-
tual constraints specified by a data analyst/expert.

– Additionally, it entails implementing an algorithm to compare process instances
with the process model, thereby identifying fulfilling and violating events based on
sequential and contextual constraints.

• Objective 2: Develop a Process-Activity-Aware Email Response Recommendation Sys-
tem.

– This involves leveraging a structured event log to predict future BP knowledge. It
includes the prediction of the set of activities to be expressed in the email response,
the intention of expressing them in the email, as well as the manipulated business
data.
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– Furthermore, the system aims to recommend email response body templates based
on the predicted activities and historical textual contents related to the predicted
BP knowledge.

To achieve these objectives, we consider the following principles:

• Principle 1: Context Sensitivity: In both the process-activity-aware email response
recommendation system and the multi-perspective conformance checking approach, un-
derstanding the context of the emails within the business process is crucial. This prin-
ciple highlights how crucial it is to evaluate and comprehend the business context of
email exchanges in order to make sure that the suggested responses and conformance
checks are pertinent and acceptable.

• Principle 2: Interdisciplinarity: This idea emphasizes how important it is to build
bridges between several fields, including business management, machine learning, nat-
ural language processing, and process mining. Our study strives to provide a more
comprehensive and nuanced approach to email-based business operations by utilizing
ideas and approaches from these many domains.

• Principle 3: Consistency: Coherent and unified systems require a consistent ap-
proach to both email response prediction and conformance checking. In order to ensure
consistency in results and interpretations, this concept calls for the creation of stan-
dardized techniques and algorithms that can be applied with confidence across various
contexts and datasets.

• Principle 4: Automation: Creating models and systems that require minimal human
intervention is the aim of this approach, which focuses on automating the processes
of email recommendation and conformance checking. Because automation increases
efficiency and reduces the chance of human error, it improves accuracy and smoothness.

• Principle 5: Accessibility and Integration: Solutions must to be easy to use and
adaptable enough to fit into a range of corporate settings. This approach focuses on
designing tools that are easily integrated, easily available, and robust.

It is noteworthy that the proposed work in this thesis needs validation through a public
dataset of emails to enable comparison with related studies (i) and evaluation through different
experiments on real datasets (ii). Furthermore, the implementation, experiments, and results
should be detailed.

1.5 Thesis Contributions

To effectively achieve the stated objectives and overcome the outlined research challenges, we
have devised a range of algorithms for analyzing email-driven processes, forming a robust and
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comprehensive framework. Figure 1.4 offers a comprehensive visual representation of the pro-
posed framework components. This sophisticated framework functions with dual capabilities.
Firstly, the framework can conduct a thorough evaluation of written emails, ensuring adher-
ence to predefined conformance standards before the actual sending process. Secondly, it can
analyze incoming emails and intelligently recommend appropriate response templates. This
not only enhances efficiency but also streamlines communication processes. By incorporating
these advanced features, our approach optimizes email response generation and establishes a
crucial layer of quality control to maintain communication integrity. The significance of our
work lies in these multifaceted contributions, combining innovation, efficiency, and reliability
to address the complex landscape of email communication in a nuanced manner.

• Multi-Perspective Conformance Checking Approach (Q1): We present
an approach for multi-perspective conformance checking in email-driven processes
(Principle 2). The approach, as illustrated in Figure 1.4, takes as input a structured
event log generated from an email log (Principle 3), along with a process model.
The latter is specified by a data analyst/expert and is built upon a set of constraints
that pertain to both the sequential and email contextual aspects of the business process,
highlighting the multi-perspective nature of our approach (Q1-1). Such constraints
are guided by constraint classes that we have gleaned through the analysis of email
datasets and that serve as templates for the analysts/experts to define their specific
constraints (Q1-2). We further note that in this work, we propose an Email Process
Model that we use for the conformance checking of events within the same email or
thread. Consequently, the conformance checking algorithm proposed in our approach
involves comparing the execution of a process instance (i.e., an event log instance)
with the process model (Q1-3). This comparison helps identify two sets of events
termed fulfilling and violating events. The former refers to events that occur within
a process instance and align with the expected behaviors, while the latter refers to
events that violate sequential and/or email contextual constraints. In addition, the
conformity-checking algorithm is able to identify missing topics, highlighting deviations
or inconsistencies in the context.
Note: In the upcoming chapters, we will delve into how we can resolve all the princi-
ples by outlining specific methodologies and techniques that ensure conformance across
various perspectives within email-driven processes, as well as within the context of our
email response recommendation system.

• Email Response Recommendation System (Q2): We have introduced a process-
activity-aware email response recommendation system. Our main goal is to provide
recommendations for appropriate email response templates based on incoming emails
(Principle 4).
Our methodology consists of four distinct phases, depicted in Figure 1.4, each contribut-
ing to our primary objective. These phases are linked by arrows, some in blue indicating
their role in proposing email response templates for received emails, and others in black
indicating the preprocessing steps needed to generate the necessary models and inputs
for suggesting the appropriate email response template.
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Figure 1.4: Overview of the Proposed Framework Components

It’s important to emphasize that the BP Knowledge extraction phase is based on pre-
vious work [42], forming the basis of this work and serving two purposes: preprocessing
and email recommendation. In the preprocessing stage, upon receiving an email log—a
chronological record of email communications containing sender and recipient addresses,
timestamps, subject lines, and sometimes message content—the initial step involves cre-
ating an event log from previously exchanged emails. This event log, established during
the BP Knowledge extraction phase, lays the groundwork for the Building Predictors
models phase, where we develop two BP prediction models designed to anticipate the
BP knowledge to be integrated into the email response (Q2-1). The first model takes
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the sub-sequence of events appearing in a received email as input and predicts the pos-
sible next combinations of events that may appear in the email response. The events
within the predicted sub-sequences can occur in multiple orders. Conversely, the sec-
ond prediction model is used to forecast the order of the events following it in the same
email. We utilized the Long Short-Term Memory (LSTM) architecture to train both
models, known for its exceptional performance in handling sequential data tasks [99]
(Q2-2).
However, in the email recommendation stage, the BP Knowledge extraction phase is
invoked again to identify the instance of the received email. Subsequently, in the BP
Knowledge Prediction phase, we employ the prediction models developed during the
Building Predictors models phase to predict the relevant BP knowledge to be included
in our email response (Q2-3).
Lastly, in the Email Recommendation phase, our approach suggests an email response
template by analyzing the textual content related to the BP knowledge of the email
response (Principle 1). The suggested email responses are recommended based on
carefully defined criteria, including alignment with the business context, incorporation
of predicted BP knowledge, and consistency with the author’s writing style. These
criteria ensure that the responses are relevant, include specialized information, and
maintain stylistic consistency, ultimately aiming to provide a more personalized and
coherent communication experience for the recipient (Q2-4).

• Streamlining Communication with Representational State Transfer (REST)
Application Programming Interfaces (API) for Prediction and Compliance
Methods: In alignment with Questions 1-5 and 2-4, we have introduced a solution
that utilizes RESTful APIs to establish a unified framework for email management in
the context of BPM (Principle 2 and 5).

Finally, we validate all the introduced algorithmic solutions using real emails from the
public Enron dataset (Principles 3). We publicly provide our experimental results to facili-
tate quantitative comparisons with related studies that utilize the same public dataset. This
facilitates a more practical analysis for future research.

1.6 Thesis Outline

This thesis is structured as follows: Chapter 2 provides a comprehensive background on
our research context, starting with conformance checking methods. It then explores the
evolution of process prediction techniques and studies email recommendation systems. Finally,
it discusses and compares these various approaches, emphasizing the unresolved research
questions.

Chapters 3 and 4 constitute the core of our thesis, elaborating on our main contributions.
Chapter 3 delves into an efficient approach for multi-perspective conformance checking for
email-driven processes. Chapter 4 introduces a novel process-activity-aware email response
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recommendation system. Finally, Chapter 5 concludes this thesis by summarizing the pre-
sented work and discussing possible perspectives.

We note that Appendix A marks a departure from the primary theme of the thesis.
Driven by deep curiosity and drawing inspiration from the investigations in Chapter 4, in this
appendix we studied the domain of anomaly detection in streaming data, particularly within
the context of the Internet of Things (IoT). We therefore introduced a novel unsupervised
method, termed "Track Before Detect" (TBD), specifically designed to detect anomalies
in IoT time-series data.





Chapter 2

State Of The Art

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Conformance Checking in business process Mining . . . . . . . . . . . 17

2.2.1 Traditional Conformance Checking Methods . . . . . . . . . . . . . . . . . 18
2.2.2 Multi-Perspective Conformance Checking in Process Analysis . . . . . . . 19
2.2.3 Synthesis & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Examining Email Recommendation and Process Prediction . . . . . . 22
2.3.1 Process Prediction from Execution Logs . . . . . . . . . . . . . . . . . . . 22
2.3.2 Email Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.3 Synthesis & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Introduction

In this chapter, we aim to review existing studies relevant to our research questions. We
begin with an examination of methods for conformance checking in Section 2.2. Following
this, in Section 2.3, we will conduct a comprehensive exploration of process prediction based
on execution logs, which includes a detailed discussion on email recommendation.

2.2 Conformance Checking in business process Mining

Conformance checking plays a crucial role in BP mining, ensuring that executed processes
align with predetermined models. Section 2.2.1 elucidates how traditional conformance check-
ing methods have laid the groundwork for identifying deviations and inefficiencies in process
execution. These methods range from rudimentary token replay techniques to more sophisti-
cated fitness measurement methods.

The traditional approaches primarily focus on four categories of discrepancies: devia-
tions, repetitions, omissions, and insertions. However, due to the escalating complexity of
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contemporary processes, there is an increasing need to broaden the perspectives considered
in conformance checking. To address this evolving need, Section 2.2.2 explores emerging
multi-perspective conformance checking methodologies. These innovative approaches inte-
grate multiple perspectives, including time, resources, and data attributes. They provide
a more intricate view of process execution, enabling a deeper analysis. Importantly, these
approaches allow the field to adapt more effectively to the growing complexity of modern
operational processes.

In combination, traditional and multi-perspective conformance checking methods con-
tribute to the continuous enhancement of process performance. This synergistic relationship
reflects the evolving needs and challenges faced by various industries, underscoring the im-
portance of ongoing advancement and adaptation in conformance checking. While traditional
and multi-perspective methods have long been considered the cornerstone of process confor-
mance checking, they do have limitations, particularly when applied to the context of emails.
The shortcomings of these methods are extensively discussed in Section 2.2.3.

2.2.1 Traditional Conformance Checking Methods

Traditional conformance checking methods in BP mining encompass a collection of techniques
developed to compare an observed event log with a predefined process model [37]. The objec-
tive is to uncover any disparities between the actual execution of a process and the anticipated
process flow. Among the most widely used strategies within traditional conformance checking
lies token replay [1]. In this approach, the event log is reenacted on the process model to
ascertain if each event aligns with the anticipated sequence of activities. The process model
is represented as a Petri net, and tokens are employed to simulate process execution. Every
event in the log corresponds to a transition in the Petri net, and the tokens are adjusted ac-
cordingly. If the tokens can traverse the Petri net in a manner that matches the event sequence
in the log, it signifies a high degree of conformance. However, if tokens encounter obstacles
or require artificial creation, it indicates a deviation from the expected process model.

Another prevalent technique in traditional conformance checking is fitness measurement
[5]. This approach quantifies the level of alignment between the event log and the process
model. The fitness measure is computed based on the count of missing and remaining tokens
after the event log is replayed on the process model. A high fitness value indicates that the
process model can accurately reproduce the behavior observed in the log, indicating strong
conformance. Conversely, a low fitness value suggests significant disparities between the model
and the log.

Traditional conformance checking methods have primarily been dedicated to detecting
four key types of disparities, as outlined in previous research [24, 110, 48]. The first type
of disparity, known as deviations, denotes deviations in the sequence of activities from the
standard process flow. Such deviations can arise due to diverse factors, including human
errors, system malfunctions, or changes in the operational environment. For instance, an
operator’s error might lead to an abnormal sequence in a manufacturing assembly line process,
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such as attaching part B before part A. Detecting and comprehending these deviations is
crucial for organizations to enhance their processes and prevent future disparities.

The second disparity type, repetitions, refers to instances where the same activity is
redundantly performed multiple times. Such repetitions can result in inefficiencies, increased
costs, and process delays due to unnecessary resource consumption. For example, a document
like an invoice being reviewed and approved by the same individual multiple times due to
communication breakdowns within a team. Identifying and eliminating these repetitions
enables organizations to streamline processes and eliminate redundant activities.

Omissions constitute the third form of disparity, occurring when vital activities are
skipped. Such omissions can lead to severe consequences, including incomplete or incorrect
process outcomes. These gaps often stem from human errors, system failures, or miscommu-
nications. For instance, in a software development process, an omission might arise if the
testing phase is omitted, potentially resulting in undiscovered software bugs, negatively im-
pacting user experience, and posing security risks. Identifying omissions is crucial to ensure
process integrity and correctness.

Finally, the fourth disparity type, insertions, involves adding superfluous activities to the
process. These insertions can lead to inefficiencies by consuming resources without adding
value and disrupting process flow. An instance of an insertion could occur in a hiring pro-
cess, where an unnecessary additional review of an applicant’s resume is introduced before
the scheduled interview, causing delays and inefficiencies. Detecting and eliminating such
insertions empowers organizations to enhance process efficiency and effectiveness.

However, traditional conformance checking methods have limitations. They predomi-
nantly focus on the sequential progression of activities and might not sufficiently capture the
entire spectrum of intricate dependencies and process variations. For instance, they might
not adeptly identify disparities related to activity timing, resource utilization, or achieved
outcomes. To address these challenges and provide a more comprehensive perspective, the
following section introduces the concept of Multi-Perspective Conformance Checking in Pro-
cess Analysis, aiming to analyze processes from diverse angles and dimensions.

2.2.2 Multi-Perspective Conformance Checking in Process Analysis

In recent years, the field of conformance checking for multi-perspective processes has witnessed
significant advancements. These progressions have transcended the confines of traditional
process models, encompassing additional perspectives like time, resources, and other data
attributes [33, 49, 115, 76]. This expansion has been motivated by the realization that these
supplementary viewpoints can offer valuable insights into process execution and performance.

An eminent research domain within this field revolves around time-aware conformance
checking [96]. This methodology centers on the temporal facets of events during process
execution, aiming to identify anomalies in event durations, delays, and timeouts that might
not be evident solely by considering the event sequence. This approach proves particularly
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beneficial in time-sensitive processes such as manufacturing or logistics, where delays can
exert a substantial impact on overall process efficiency.

Time-aware conformance checking typically entails aligning event timestamps with the
process model, facilitating a direct comparison between anticipated and actual event timings.
By identifying disparities between these two, it becomes feasible to identify process segments
that deviate from expectations. Temporal reasoning techniques, encompassing interval-based
comparisons and sequence-based comparisons, are employed in this approach, offering a more
nuanced comprehension of process performance.

Another dimension integrated into conformance checking is resource-awareness [97, 21,
32]. This perspective concentrates on the allocation and utilization of resources throughout
process execution, with the objective of identifying instances of resource under-utilization,
over-utilization, or improper allocation. Resource-aware conformance checking can furnish
valuable insights into process efficiency. For instance, consistent overload or frequent idle-
ness of a resource during process execution might signify inefficiencies in resource allocation.
Identifying these inefficiencies facilitates process adjustments to enhance resource utilization
and overall process efficiency.

In resource-aware conformance checking, conformance is evaluated by aligning the event
log with the process model, enabling a direct comparison between the anticipated and actual
resource utilization. Discrepancies between the two can reveal segments of the process that
deviate from expectations. Moreover, resource-aware conformance checking entails fitness
assessment, a quantification of the agreement between the actual and expected process be-
haviors. Evaluating fitness quantifies the extent to which the process adheres to the expected
model.

A noteworthy contribution to the multi-perspective conformance checking arena is the
Multi-Perspective Declare (MP-Declare) approach introduced by Burattin et al. [20]. This
approach amalgamates data, temporal, and control flow perspectives to formulate constraints
using Metric First-Order Linear Temporal Logic. This amalgamation offers a more holistic
outlook on process performance than any single perspective could deliver.

The MP-Declare approach facilitates efficient conformance checking over event logs by
leveraging a constraint template-based algorithmic framework. This framework permits the
creation of constraints that can be swiftly verified against the event log. A key advantage of
the MP-Declare approach is its time complexity. The approach’s time complexity is bounded
from above by a quadratic function in the worst-case scenario, implying that the time required
for conformance checking using the MP-Declare approach grows proportionally to the square
of the input size. This attribute renders the approach viable for application with large event
logs, a common occurrence in many real-world processes.



2.2. Conformance Checking in business process Mining 21

2.2.3 Synthesis & Discussion

Extensive research has explored conformance checking techniques for multi-perspective pro-
cesses, focusing on structural and operational aspects while considering diverse data at-
tributes. However, a significant gap exists in acknowledging the crucial contextual perspec-
tive of events. Current approaches have overlooked the analysis of the email business data
attribute, which is essential for comprehending the intended meaning of messages in email-
driven processes.

Table 2.1 presents a comparison of these conformance checking techniques used in process
mining, detailing their characteristics across several attributes. The first column, Technique,
lists the different methods being compared. The second column, Description, provides a brief
explanation of how each technique operates. The third column, Key Features, highlights
the primary capabilities and functionalities of each method. The fourth column, Disparities
Detected, details the types of process discrepancies that each technique can identify. Finally,
the fifth column, Limitations, outlines the potential drawbacks or challenges associated with
each technique.

In this table, we can clearly see, for example, that MP-Declare integrates data, temporal,
and control flow perspectives but fails to address the contextual nuances of email content.
An email containing a request for approval might carry different business data, signifying
urgency or priority, which could impact the process flow. Techniques like MP-Declare and
traditional methods, such as Token Replay and Fitness Measurement, are not suitable for use
in the context of email-driven processes due to their lack of consideration for the contextual
attributes of the communication.

Table 2.1: Comparison of Conformance Checking Techniques

Technique Description Key Features Disparities De-
tected

Limitations

Token Replay Reenacts event log on
process model using
tokens

Simulates process exe-
cution with Petri nets

Deviations, Repe-
titions, Omissions,
Insertions

Focuses on sequence
of activities, may miss
timing and resource is-
sues

Fitness Mea-
surement

Quantifies alignment
between event log and
process model

Measures missing and
remaining tokens after
replay

Deviations, Repe-
titions, Omissions,
Insertions

May not capture intri-
cate dependencies and
process variations

Time-Aware
Conformance
Checking

Analyzes temporal as-
pects of events

Identifies anomalies in
event durations, de-
lays, and timeouts

Temporal Anomalies Requires accurate
timestamps, may be
complex to implement

Resource-Aware
Conformance
Checking

Focuses on resource al-
location and utiliza-
tion

Identifies resource
under-utilization,
over-utilization, im-
proper allocation

Resource Utilization
Anomalies

Requires detailed re-
source data, may over-
look control flow issues

Multi-
Perspective
Declare
(MP-Declare)

Integrates data, tem-
poral, and control flow
perspectives using con-
straints

Formulates con-
straints with Metric
First-Order Linear
Temporal Logic

Multiple perspectives
including data, time,
and control flow

Complexity in defining
and verifying con-
straints, quadratic
time complexity

On the other hand, some research has considered context in Natural Language Processing
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(NLP) techniques [90, 40]. However, these approaches are limited for conformance checking
in email-based processes as they ignore processes within these approaches. NLP methods
predominantly rely on text analysis techniques and lack consideration for the process infor-
mation (e.g., emails that belong to a process instance). Email process conformance requires
rich abstractions to reason about control flow, data, and context perspectives.

To address these challenges, several criteria need to be resolved based on specific research
questions:

• C1: Integration of Structural and Contextual Perspectives. This criterion is
deduced from research sub-question Q1-1 (Chapter 1, Section 1.3.1).

• C2: Detection of Discrepancy Patterns. This criterion is derived from research
sub-question Q1-2 (Chapter 1, Section 1.3.1).

• C3: Handling of Complex Attribute Values. This criterion is based on research
sub-question Q1-3 (Chapter 1, Section 1.3.1).

• C4: Validation and Measurement of Method Accuracy and Reliability. This
criterion is related to research sub-question Q1-4 (Chapter 1, Section 1.3.1).

In Chapter 3, we propose an approach to mitigate these limitations through multi-
perspective conformance checking in email-driven processes. This approach involves ana-
lyzing a structured event log generated from email logs alongside a process model specified by
a data analyst or expert. This process model is based on constraints related to the sequential
and contextual aspects of business processes, reflecting the multi-perspective nature of the
approach (Criterion C1 and C2). The proposed model is used to check the conformance
of events within emails or threads, comparing event log traces to the Email Process Model
to identify fulfilling and violating events (Criterion C3 and C4), ensuring accuracy and
reliability.

2.3 Examining Email Recommendation and Process Predic-
tion

We provide a thorough analysis of process prediction using execution logs in Section 2.3. We
also explore the topic of email recommendation in Section 2.3.2.

2.3.1 Process Prediction from Execution Logs

By projecting the future states of ongoing process executions at runtime, process prediction
techniques have been presented as a way to improve BPM. By examining past process execu-
tions, these forecasts are produced [64]. These strategies give organizations access to timely
information so they can respond promptly to risks and take corrective action.
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We will look at two different types of process prediction methods in the following sections.
We will start by discussing Uni-dimensional Process Prediction Techniques (Section 2.3.1.1),
which are used to predict particular business process features. Process prediction approaches
based on multidimensional data (covered in Section 2.3.1.2) will be looked at next; these
approaches take a wider variety of data into account when making predictions.

2.3.1.1 Uni-dimensional Process Prediction Techniques

In this section, we explore Uni-dimensional Process Prediction Techniques, which focus on pre-
dicting specific aspects of business processes by leveraging linear data. These techniques are
designed to address singular, well-defined dimensions of business operations, such as resource
allocation, process duration, risk prediction, and future process behaviors. A fundamental
component of these techniques is machine learning. For instance, in a study by Camargo et
al. [22], machine learning was used to forecast subsequent stages in a manufacturing pro-
cess. Models were trained on past data to accurately predict the next phase of production,
optimizing resource allocation and preemptively addressing bottlenecks.

Deep learning, a more sophisticated subset of machine learning, has also demonstrated
potential in process prediction. Hinkka et al. [61] demonstrated that deep learning models
could effectively classify process instances and predict future process behaviors, contributing
valuable insights to the management of business processes.

Ensemble learning methods have found their place in process prediction as well. These
techniques integrate different learning algorithms to reduce errors and enhance predictive
performance, providing a robust alternative to conventional prediction methods.

Moreover, the realm of process prediction isn’t confined to machine learning. Traditional
statistical methods continue to hold relevance. Conforti et al. [29] used survival analysis, a
statistical technique that focuses on the time until an event occurs, to predict the remain-
ing duration of a process. This approach offers precise time estimates, optimizing resource
allocation, enhancing customer experience, and making workflows more efficient.

As businesses strive to become more proactive, risk prediction is becoming an integral
part of operations. Algorithms can identify patterns and trends that suggest potential risks
before they fully materialize by analyzing past and real-time data. Logistic regression is one
of the statistical methods used for risk prediction, as demonstrated by Raffaele et al. [29, 30].
It uses historical data and real-time inputs to identify potential risks before they become fully
evident. By analyzing the association between predictor variables (like trends and patterns)
and binary outcome variables (like the occurrence of a risk event), this method calculates the
chance of a risk event.

Process prediction tasks have also demonstrated the effectiveness of Automated Transition
Systems (ATS). ATS is a kind of model that represents several stages and transitions of a
process and is used in process mining and predictive analytics. Expanding on the traditional
ATS model, Aburomman et al. [4] incorporated features extracted from business logs, pro-
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viding a richer context for the prediction task. The study then employed a linear regression
technique to predict the remaining time of new traces in the BP.

2.3.1.2 Process Prediction Approaches Based on Multidimensional Data

In this section, we explore Process Prediction Approaches Based on Multidimensional Data,
which utilize a diverse array of data variables to forecast future outcomes and behaviors in
business processes. Multidimensional approaches go beyond the limitations of uni-dimensional
methods by integrating various attributes such as timestamps, activity types, user roles,
and resource allocations, among others. These methodologies leverage advanced machine
learning techniques, particularly deep learning and hybrid models, to handle the complexity
and richness of multidimensional data [99, 84].

For instance, Mehdiyev et al. [79] introduced a multi-stage deep learning approach to
predict the next process event from completed activities of running process instances. The
foundation of this approach lies in the utilization of execution log data from previously com-
pleted process instances, encompassing diverse attributes such as timestamps, activity types,
user roles, and resource allocations. The model’s architecture incorporates stacked auto-
encoders and a supervised fine-tuning component. A key strength of this proposed approach
is its adeptness in managing the intricacies of multidimensional data input. Notably, the paper
also dedicates attention to two significant aspects: identifying appropriate hyper-parameters
for the proposed method and managing the inherent imbalanced nature of business process
event datasets.

On another innovative front, Ebrahim et al. [38] introduced an ensemble method that
combines decision trees and neural networks to predict manufacturing process outputs. This
method harnesses the robustness of Random Forests, a decision-tree-based model, in cap-
turing feature interactions and handling missing values, alongside the versatility of Deep
Feed-forward Neural Networks (DNNs) [10] in modeling complex relationships. The interme-
diary outputs provided by the decision trees act as inputs to the DNNs, forming a layered
prediction mechanism that exploits the strengths of both approaches, resulting in a marked
improvement in prediction accuracy.

Recent advancements in Generative Adversarial Networks (GANs), particularly in the
manufacturing sector, cannot be overlooked [112, 15]. GANs consist of two neural networks—a
generator and a discriminator—that work together to generate new synthetic instances of data
that can pass as real data. This method, often used for generating new examples in datasets,
has been adapted to predict possible future states in manufacturing processes based on current
data.

Hybrid models, which combine different predictive models, have become a powerful tool
in the field of prediction, achieving superior predictive performance. Their applications span
diverse domains, including industrial robotics, animal nutrition, laser technology, and solar
radiation forecasting [63, 106, 67]. In these applications, the hybrid model typically consists
of a combination of a physics-based model and Gaussian Process Regression (GPR) [107].
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The physics-based model captures well-established variable relationships within the system,
while the GPR excels at accounting for subtle nonlinear relationships and interactions within
the data, enhancing the predictive accuracy of the hybrid model.

Furthermore, Bayesian models [103, 47] have also gained considerable attention in mul-
tidimensional process prediction, offering a systematic way to incorporate prior knowledge
into the model and adjust predictions based on the evidence provided by the data. One of
the most prominent Bayesian models is the Bayesian Network, which has shown tremendous
promise in handling high-dimensional, multivariate data.

Additionally, statistical modeling remains a key player in process prediction based on
multidimensional data, especially when variables exhibit a well-defined linear relationship.
Sarswatula et al. [92] leveraged multiple linear regression models to predict energy con-
sumption in manufacturing processes, incorporating both direct and indirect influences on
energy consumption. This approach underscores the critical role of statistical models in pro-
cess prediction, particularly when dealing with large datasets with linear and well-defined
relationships among variables.

2.3.2 Email Recommendations

The advent of technology has sparked a revolutionary change in communication, particularly
due to the widespread use of emails. As the daily exchange of emails continues to rise, there
is a growing demand for automated and intelligent email systems. Imagine receiving timely
suggestions for answering queries or generating appropriate responses to emails. This level of
assistance can streamline communication and save valuable time for users.

To explore these advancements further, we will focus on three major areas of email com-
munication improvement. First, we will delve into the methodologies and approaches used
in recommending email fields, which will be discussed in Section 2.3.2.1. Second, we will de-
tail the methods employed in answering email questions, elaborated upon in Section 2.3.2.2.
Lastly, we will explain the techniques used to suggest email responses, covered in Section
2.3.2.3.

While these developments are undoubtedly promising, it is essential to acknowledge that
existing email recommendation methods have certain limitations. In Section 2.3.3, we will
delve into these limitations and explore potential opportunities for further progress in email
management.

2.3.2.1 Approaches for Recommending Email Fields

The use of natural language processing methods and machine learning algorithms is crucial
to the development of email recommendation systems. Various email response fields, such
as recipients, attachments, subjects, and named entities, are predicted with the use of these
technologies [102, 88, 50, 72]. These methods’ main goal is to improve users’ overall email
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experience by making email composition easier and decreasing the likelihood of mistakes.

One notable method has been suggested by Qadir et al. [88] and is based on machine
learning algorithms. Using both the user’s past data and the content of the email being
composed, this approach aims to anticipate the most likely recipients of emails. A machine
learning model is trained using the user’s previous email patterns in order to accomplish this.
The model considers variables including the frequency of emails sent to particular recipients,
the email’s language style, and the subjects that are typically covered. This trained model
assists during the email composition process by suggesting the most likely recipients based
on the email’s content and context. As a result, this method not only streamlines email
composition but also serves as a precaution against mistakes, such as sending an email to the
wrong recipient.

One further important strategy is to suggest appropriate files for the email attachment.
One such system was introduced by Dredze et al. [34], which notifies users when a file has
to be attached to an email before sending it. Using natural language processing techniques,
this system looks for textual clues in emails that could indicate the need for an attachment.
For instance, the system will notify the user to add the required file before sending the email
if it recognizes terms like "in the attachment", "find attached", or "attached is".

McCallum et al. [77] provide evidence of the successful application of machine learning and
natural language processing techniques in the field of email subject recommendations. Their
method entails using email content analysis to forecast appropriate subject lines. They create
succinct and informative subject lines by cherry-picking the most important information from
the email body. The system can suggest subject lines such as "Meeting Agenda for Discussion"
or "Project Proposal Draft" if the email addresses a "meeting agenda" or a "project proposal".
This is a really helpful feature for those who frequently struggle to come up with accurate
and meaningful subject lines for their emails.

Ashequl et al. [88] have investigated the use of named entities in the email to suggest
appropriate ones as another noteworthy strategy. Named entities are particular names that
stand in for actual things in the real world, including individuals, groups, places, dates,
amounts, and monetary values. Their approach can locate these items in the text and use
Named Entity Recognition (NER), a subtask of information extraction, to improve the email’s
content. For example, the system might recommend that further information be added re-
garding a project that was addressed in the email or ask the user to clarify a date or time
that was perhaps mentioned in passing. This process aids in making sure the email’s content
is thorough and efficiently communicates the required information.

2.3.2.2 Approaches for Recommending Answers to Email Questions

Email response automation systems have become increasingly essential in modern communi-
cation, designed to comprehend, interpret, and provide suitable responses to email inquiries.
One such system, discussed by Arsovski et al. [14], employs natural language processing to
determine whether an incoming email contains a query. The system scans the email’s content,
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analyzing linguistic structure, semantics, and context to identify questions. Once recognized
as a query, the system classifies it into specific categories based on parameters such as subject
matter, question complexity, or email tone.

After categorizing emails, Arsovski’s system employs a semi-automated approach to gen-
erate appropriate responses. This is achieved through the use of the Artificial Intelligence
Markup Language, enabling the system to utilize pre-built templates and rules for crafting
responses. These templates, designed with numerous potential email queries in mind, offer a
structured framework from which the system can derive replies. A significant advantage of
this approach is its adaptability. As each user possesses unique needs, the system can adjust
its responses based on individual requirements, thereby ensuring higher response accuracy
and relevance.

In contrast to Arsovski’s approach, Patel et al. [85] proposed a method that not only
classifies users’ queries but also incorporates an additional layer of processing. In this model,
following query classification, the system doesn’t merely generate a response from predefined
templates. Instead, it strives to find the most analogous query within the same class as the
user’s query. This approach resembles an intricate matching game, with the system identifying
patterns, semantics, and other pertinent factors to establish query similarity. By identifying a
match within the same class, the system guarantees a response that is as precise and relevant
as possible. However, the method introduced by Patel et al. [85] has its limitations. To func-
tion effectively, it necessitates a training dataset associating each class with pairs consisting of
a query and its corresponding answer. The challenge lies in the fact that the system can solely
respond to queries that have been previously defined and trained. If confronted with a new
or unprecedented query, the system might struggle to provide an accurate response. Despite
these limitations, this approach offers potential benefits by significantly reducing the time
and effort involved in crafting individual responses, making it a valuable tool for managing
high email volumes.

2.3.2.3 Approaches for Recommending Email Responses

Numerous methods have been developed to simplify the process of generating or suggesting
email responses. The complexity of this task lies in deciding whether to reuse a pre-existing
email or create an entirely new one. The choice between these options largely depends on the
specific needs and circumstances of the situation at hand.

One of the pioneering efforts in this domain was made by Lapalme et al. [70], who intro-
duced a technique based on the cosine similarity measure. This measure quantifies the simi-
larity between the issues and solutions discussed in different emails. By utilizing this method,
their system could identify the email that bears the highest similarity to a given situation
and subsequently reuse its answer in the proposed response. However, this approach grappled
with several limitations: the inherent semantic constraints of cosine similarity, struggles to
capture nuanced contextual cues, and potential challenges with synonymy and data spar-
sity. Furthermore, domain-specific variations and the lack of temporal considerations posed
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additional hurdles, potentially leading to inaccurate response reuse. Over-fitting, scalability
concerns, and the possibility of misaligned user expectations also underscored the method’s
pitfalls, while the need for extensive pre-processing further complicated its implementation.

To address some of these issues, other approaches have leveraged the potential of super-
vised learning techniques for generating email responses. Supervised learning, a subset of
machine learning, involves training a model on a labeled dataset, enabling the model to pre-
dict outcomes based on learned patterns. By utilizing supervised learning, these systems can
draw from vast amounts of existing data to generate relevant and accurate responses.

A notable example of applying supervised learning to email response generation was
demonstrated by the team at Google [105]. The Google team’s innovative approach to email
response generation using supervised learning incorporated several technical steps. Initially,
they preprocessed the email data by tokenizing and cleaning the text, enabling efficient han-
dling by the model. They employed the Long Short-Term Memory (LSTM) architecture, a
type of Recurrent Neural Network (RNN) [78], to capture sequential dependencies and context
within the emails. This architecture enabled the model to learn from paired email-response
data, leveraging a sequence-to-sequence learning framework.

During training, the team employed a technique called "teacher forcing" in which correct
previous tokens from the desired response were provided to the model as it generated the
output sequence. This practice helped the model learn by minimizing errors that could
accumulate during sequence generation, aiding in understanding how to structure coherent
and relevant responses. However, in real-time scenarios without access to these predetermined
correct tokens, the model might face challenges. Despite these limitations, their application
showcased the power of supervised learning and deep learning in automating email responses.

In another instance, Parameswaran et al. [83] developed a sophisticated approach to au-
tomatically generating and suggesting short emails. The core of their method relies on a
combination of advanced machine learning classification techniques, weighted keyword anal-
ysis, and similarity measurement algorithms. To begin, they utilized a substantial dataset
of emails to train Support Vector Machines (SVM). This classifier is adept at recognizing
patterns and context within email conversations, enabling it to categorize incoming emails
based on their content and intent.

To enhance the specificity of the generated suggestions, the authors incorporated weighted
keywords as a crucial component of their approach. These keywords are extracted from the
text of incoming emails and assigned varying importance scores to capture the significance
of different terms. Doing so allows the system to gain a deeper understanding of the topics
at hand, leading to more accurate and relevant response recommendations. Additionally,
similarity measurement techniques are employed to compare the content of incoming emails
with a repository of previously seen email interactions. This repository acts as a knowledge
base, allowing the system to identify historically effective responses to similar contexts.

Despite the remarkable progress mentioned earlier, it’s important to note that these ad-
vancements might not consistently take the context of the conversation fully into account.



2.3. Examining Email Recommendation and Process Prediction 29

Overlooking context on occasion can result in suggestions that aren’t entirely suitable for the
current situation. This flaw is of utmost significance, as context plays a pivotal role in human
communication, influencing both how we comprehend messages and how we convey them.
A crucial feature of an optimal email response system would involve possessing a profound
comprehension of context, encompassing all previous interactions and the overarching dis-
course objectives. By doing so, it would have the capacity to offer more refined and suitable
recommendations. Achieving this level of competence demands a fusion of natural language
processing and machine learning techniques, similar to the methodologies harnessed in the
Generative Pre-trained Transformer (GPT) [52] architecture.

GPT represents a cutting-edge language model capable of generating human-like text,
including email responses. The architecture of GPT is rooted in the Transformer model, em-
ploying self-attention mechanisms and deep learning techniques. The complexity and depth
of GPT’s architecture empower it to excel in intricate tasks involving natural language un-
derstanding and generation, making it suitable for crafting nuanced and context-aware email
responses. To illustrate its prowess, let’s delve into a scenario that involves an email exchange
between a customer and a company representative. In this instance, the customer is seeking
information about the product’s availability. Leveraging its intricate architecture, GPT can
adeptly formulate a response that precisely addresses the customer’s query. The generated
email response could unfold as follows:

Dear [Customer’s Name], Thank you for contacting us regarding the availability of the
[Product Name]. We value your interest in our products. According to our most recent
update, the [Product Name] is presently in stock and ready for purchase. Please be aware that
availability may change due to demand, so we encourage you to place your order soon to secure
the desired item. If you require further assistance or have additional inquiries concerning your
purchase, please do not hesitate to inform us. Our dedicated team is here to assist you. Best
regards, [Your Name]

GPT’s contextual comprehension and sophisticated language creation skills are demon-
strated in this case. In addition to providing precise information on the product’s availability,
the response expresses gratitude for the customer’s interest. Even while GPT models are
quite strong, they frequently act as "black boxes," producing emails that are grammatically
correct but occasionally lacking in meaning.

2.3.3 Synthesis & Discussion

Existing predictive models have shown success within their specific domains; however, when
applied to predicting processes within the context of emails, they often face limitations. The
primary challenge lies in the requirement of structured event logs as input for building predic-
tion models. Table 2.2 underscores several critical aspects in this regard by comparing various
process prediction techniques used in different domains, detailing their characteristics across
several attributes. The first column, Approach, lists the different methods being compared.
Input, the second column, specifies the type of data each approach uses. Output, the third
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column, describes the type of predictions or results each technique aims to produce. The
fourth column, Method Used, outlines the specific methodologies or algorithms employed in
each approach.

Table 2.2: Process Prediction Techniques

Approach Input Output Method Used
Predictive business process
monitoring with LSTM neural
networks [99]

Historical process executions Future states of ongoing pro-
cess executions

Machine learning

Manufacturing Process
Causal Knowledge Discovery
using a Modified Random
Forest-based Predictive
Model [38]

Past data from manufacturing
processes

Next phase of production Machine learning

Using convolutional neural
networks for predictive pro-
cess analytics [84]

Historical process data Future process behaviors and
resource allocation

Deep learning, Ensemble
learning

Risk Prediction Models [104] Historical and real-time data Risk prediction Logistic regression
A novel business process pre-
diction model using a deep
learning method [79]

Execution log data Next process event prediction Multistage deep learning

Predicting the Effect of
Processing Parameters on
Caliber-Rolled Mg Alloys
through Machine Learning
[112, 15]

Current data Possible future states in man-
ufacturing processes

Generative Adversarial Net-
works (GANs)

Hybrid Models (Industrial
Robotics) [63]

Various data sources Future outcomes and behav-
iors

Hybrid models combining
physics-based models and
Gaussian Process Regression
(GPR)

Hybrid Models (Solar Radia-
tion Forecasting) [106]

Various data sources Future outcomes and behav-
iors

GPR

Hybrid Models (Laser Tech-
nology) [67]

Various data sources Future outcomes and behav-
iors

GPR

Bayesian Models [79] Multidimensional data Predictions incorporating
prior knowledge

Bayesian models

Modeling energy consumption
using machine learning [92]

Large datasets Predictions considering linear
relationships

Multiple linear regression
models

• Structured Input Requirement: Most existing models, such as those using machine
learning and deep learning [92, 84], rely heavily on structured historical process exe-
cutions and execution log data. This structured input allows these models to identify
patterns and make accurate predictions. In contrast, email data is highly unstructured,
making it difficult to apply these techniques directly.

• Assumptions on Event Logs: Traditional predictive models assume well-defined case
identifiers and a clear event log structure. For instance, logistic regression for risk pre-
diction [104] and linear regression on ATS models [92] rely on structured, timestamped
events. However, emails often involve multiple events within the same timestamp, lack-
ing the clear structure assumed by these models.

In contrast, studies that have primarily focused on utilizing recommendation techniques
to enhance email management have largely overlooked the crucial integration of business
processes, even though they are able to recommend email fields, answer email questions, and
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suggest email responses, as shown in Table 2.3. For instance, Activity Modeling in Email [88]
leverages historical email data and machine learning to recommend email recipients, enhancing
email management by suggesting the most relevant contacts. Similarly, Sorry, I Forgot the
Attachment [34] uses natural language processing on email text to alert users about necessary
attachments, preventing common email errors. Another example is the GPT-3 model [52],
which generates email responses based on email text and previous interactions, streamlining
communication through advanced language processing.

Table 2.3: Email Recommendation Techniques

Approach Input Output Method
Used

Activity modeling in email
[88]

Historical email data Email recipient recom-
mendations

Machine
learning

Sorry, I Forgot the Attach-
ment: Email Attachment
Prediction [34]

Email text Alerts for necessary at-
tachments

Natural
Language
Processing

Topic and role discovery in
social networks with exper-
iments on enron and aca-
demic email [77]

Email content Suitable email subject
lines

Machine
learning
and Natural
Language
Processing

Named Entity Recognition
(NER) [88]

Email text Named entity recom-
mendations

Named
Entity Recog-
nition (NER)

An approach to email cat-
egorization and response
generation [14]

Email content Query classification Natural
Language
Processing

Customized Automated
Email Response Bot Using
Machine Learning and
Robotic Process Automa-
tion [85]

Historical email interactions Query-response match-
ing

Supervised
learning

Mercure: Towards an auto-
matic e-mail follow-up sys-
tem [70]

Past emails Suggested email re-
sponses

Cosine simi-
larity

Case-Based Reasoning: A
recent theory for problem-
solving and learning in com-
puters and people [105]

Paired email-response data Generated email re-
sponses

Supervised
learning

Automatic email response
suggestion for support de-
partments within a univer-
sity [83]

Substantial email dataset Short email generation Support Vec-
tor Machines
(SVM)

GPT-3: Its nature, scope,
limits, and consequences
[52]

Email text and previous in-
teractions

Generated email re-
sponses

Generative
Pre-trained
Transformer
(GPT) model

Recent research efforts, exemplified by the pioneering work of Chambers et al. [26],
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have taken a new direction in this domain. Their work introduces innovative methodologies
that explore the intricate relationship between email content and the underlying business
processes. Chambers and his team employed advanced text mining techniques to meticulously
extract and categorize business processes from emails. This categorization involves identifying
key activities, the roles responsible for these activities, the temporal sequencing of tasks,
interactions among stakeholders, and indicators of process evolution.

Another notable contribution to this field originates from [66], who devised a methodology
using machine learning to discern patterns and correlations among various business activities
mentioned in emails. Their work provided valuable insights into the structure and progression
of these activities.

Despite the significant progress made in these research endeavors, it is crucial to recognize
that their scope has primarily centered around the exploration and categorization of business
processes contained within email communications. However, as we mentioned previously, the
application of predictive models to process-oriented emails should not solely revolve around
identifying upcoming BP activities conducted through emails. It should also encompass the
task of suggesting relevant emails that facilitate BP actors in carrying out these activities,
with a particular focus on the textual content present in their email responses.

To tackle these challenges, various criteria must be addressed according to the specific
research questions:

• C1: Effectively leveraging event logs from previously exchanged emails. This
criterion is deduced from research sub-question Q2-1 (Chapter 1, Section 1.3.2).

• C2: Employing suitable machine learning algorithms or predictive models.
This criterion is deduced from the research sub-question Q2-2 (Chapter 1, Section 1.3.2).

• C3: Considering relevant event attributes. This criterion addresses sub-question
Q2-3 (Chapter 1, Section 1.3.2).

• C4: Personalizing recommended email responses. This criterion is derived from
research sub-question Q2-4 (Chapter 1, Section 1.3.2).

• C5: Validating the effectiveness and performance of the recommendation
system. This criterion is deduced from the research sub-question Q2-5 (Chapter 1,
Section 1.3.2).

To illustrate the practical implications of these criteria, consider the internal hiring process
in large organizations. This process follows a systematic approach where each job offer must be
meticulously crafted, reviewed, and signed by relevant staff members before publication. Once
published, the organization receives numerous applications, each confirmed via email. For
selected candidates, interviews are scheduled, confirmed, and conducted, ultimately leading
to the retention and hiring of one or more candidates. These activities predominantly rely
on email communication, as job offers are shared, applications are submitted, and interviews
are scheduled through this medium.
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Given the scale of large organizations, with dozens of new positions regularly opening,
the described process is applied to each job position. Handling dozens of applications per
position, the hiring staff must send individual confirmation emails, review applications, and
send follow-up emails. These repetitive and tedious activities can lead to inefficiencies without
automation and predictive assistance.

Confirmation and interview scheduling emails often contain the same body content, with
minor differences such as the applicant’s name and interview time. For example, Fig. 2.1
illustrates two interview-setting emails from the Enron dataset, showing high similarity in
content with variations in specific details like applicant names, position titles, and interview
times.

Figure 2.1: Example of Interview Setting Emails

Despite minor differences, manually sending each email for every application is time-
consuming and error-prone, leading to delays in the hiring process. Therefore, we explore two
approaches: traditional deep learning models, such as Generative Pre-trained Transformer
(GPT) models, and a specialized process-aware email recommendation system that we aim
to develop.

• GPT Models: While GPT models are powerful, they often function as black boxes,
generating grammatically correct emails that can sometimes be contextually inadequate.
This limitation highlights the need for models that can be better understood and con-
trolled to align with specific business process activities.

• Process-Aware Email Recommendation System: This approach aims to aid em-
ployees in composing efficient and accurate emails. Upon receiving an email, the system
would analyze its content, extracting relevant Business Process knowledge (Criterion
C1). It would decipher the intended activity (e.g., processing an application), the pur-
pose of communication, pertinent Business Data, and determine if a response is required.
Based on this analysis, the system would predict the next BP activities (Criteria C2
and C3) and generate an appropriate email response template (Criterion C4). This
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system would also consider the context and individual communication styles, ensuring
personalized and contextually relevant responses (Criteria C4 and C5).

To highlight the potential of a Process-Aware Email Recommendation method compared
to the GPT model, we provide a use case that underscores these distinctions. In this case
study, our objective is to determine the best possible email response to an email sent by David.
Subsequently, we contrast the recommendation of the Process-Aware Email Recommendation
method with the response produced by the GPT-4 model.

Figure 2.2: Email Correspondence: Message from David

David’s email, as illustrated in Figure 2.2, is addressed to John, asking for an update on
a deal with the ID number 269123. This email primarily centers around the activity "create
a deal" linked with Business Data that consists of terms like "created", "deal" and "269123"
along with the act of requesting information.

To draft potential email responses, we utilize both approaches. The Process-Aware system
would recommend an email response template known as the recommended-email, as depicted
in Figure 2.3. This email would incorporate the predicted Business Process knowledge that
should be included in the response, based on the received email, in this case, from David.
Conversely, employing the GPT-4 model results in a distinct email, termed the generated-
email, illustrated in Figure 2.4. Armed with David’s email and the corresponding response
options, we proceed to conduct a comparison. Our evaluation will focus on assessing the
coverage of relevant Business Process knowledge and the logical flow of ideas.

• Coverage of Relevant Business Process Knowledge: The recommended-email
would provide more complete coverage of the pertinent Business Process knowledge
than the generated-email.
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Figure 2.3: Recommended Email Response Candidate: Leveraging Our Approach

Figure 2.4: Generated Email Response Candidate: GPT-4 Model Application
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– In the original email, David requested both the "details" and "current status" of
the deal. The recommended-email would acknowledge both, mentioning that the
deal has been entered and its details noted. The generated-email lacks clarity
in conveying the status of Deal 269123. It briefly mentions that it’s in the final
negotiation stages but doesn’t clearly state whether it has been completed or what
the current status is. This ambiguity might leave the recipient confused. Also, the
response doesn’t directly address the recipient’s inquiry about the status of Deal
269123. Instead, it provides vague information about the deal being in the final
stages of negotiation without confirming its completion or providing a concrete
update on its status.

• Logical Flow of Ideas: The recommended-email would demonstrate a better logical
flow of ideas compared to the generated-email.

– David initially asked for details on the latest deal with ID 269123 and its current
status. The recommended-email would address this by referencing the specific deal
with ID deal_id and its entry into the system. It would further assure David
that the deal’s details have been documented. However, the generated-email lacks
coherence and clarity in addressing the recipient’s inquiry about the status of Deal
269123. It fails to provide a direct response to the question, instead offering vague
information about the deal being in the final negotiation stages.

In conclusion, the recommended-email is the better option because of its coherent struc-
ture, thorough description of the deal’s conditions, and consistency with the content of the
initial email. Thus, in Chapter 4, we present a process-aware email recommendation system
that takes a generated event log from previously sent emails as input and predicts future BP
knowledge. This includes predicting the set of activities to be expressed in the email response,
the intention behind expressing them, and the manipulated business data. Additionally, we
provide an email response body template recommendation based on the predicted activities
and historical textual contents related to the predicted BP knowledge.

2.4 Conclusion

In this chapter, we have systematically reviewed existing studies and methodologies pertinent
to our research domains, primarily focusing on conformance checking in BP mining and
process prediction based on execution logs, as well as email recommendation systems.

We began by examining traditional conformance checking methods, highlighting their role
in ensuring alignment between executed processes and predefined models. These methods,
although foundational, exhibit limitations when applied to complex, modern processes. The
evolution towards multi-perspective conformance checking was then discussed, emphasizing
its ability to integrate additional dimensions such as time, resources, and data attributes to
offer a more comprehensive analysis of process execution.
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The chapter also explored process prediction techniques, categorizing them into uni-
dimensional and multidimensional approaches. We noted the significant advancements in
machine learning and deep learning, which have enhanced the accuracy and applicability of
these techniques in various operational contexts. However, we identified gaps, particularly in
handling the unstructured nature of email data within these predictive models.

In the domain of email recommendation, we detailed various methodologies for recom-
mending email fields, generating responses, and answering email queries. Despite the progress
in this area, current systems often fail to integrate the broader context of business processes,
leading to suboptimal performance in email-driven processes.

In summary, while traditional and emerging methods in conformance checking, process
prediction, and email recommendations have laid substantial groundwork, they present lim-
itations, especially in the context of email communications. The necessity for an integrated
approach that considers both process and context perspectives is evident. In the subsequent
chapter, we will explore our first contribution: an approach for conducting conformance
checking within the context of emails.
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3.1 Introduction

Conformance checking, a vital component of process mining, involves comparing actual pro-
cess behavior with expected behavior [91]. While various conformance checking techniques
have been developed for business processes executed in Business Process Management Sys-
tems (BPMS), they are not specifically tailored for email-driven processes—those that unfold
within email systems rather than within BPMS, as discussed in Chapter 2. These methods
fall short in identifying non-conformance in events from a complex business context perspec-
tive, such as emails. They typically assume that the business context of an event is predefined
based on the process to which it belongs [37]. However, they fail to account for the possibility
that an event in the same process instance could deviate and be related to another process.
This limitation is particularly evident when dealing with emails or conversations, where top-
ics often shift abruptly. Therefore, it is crucial to distinguish between email-driven processes
and traditional ones when reasoning about conformance checking of processes. In fact, while
traditional business processes have a clear temporal control flow in which one activity follows

39
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another in a well-defined sequence, email-driven processes do not exhibit this characteristic.
The order of the activities involved in such processes is instead determined by their appear-
ance within the emails and the sequencing of these emails within the threads of conversations.
This order is reflective of how users perceive the execution of activities. Adding the fact that
email-driven processes usually represent fragments of business processes as opposed to com-
plete ones, it is challenging to identify the control flow in such processes as it is not explicitly
temporal but rather based on the structure of email conversations. Consequently, traditional
process models are not capable of accommodating the unique characteristics of email-driven
processes.

To address these limitations, this chapter proposes an efficient approach for multi-
perspective conformance checking in the context of email-driven processes. Specifically, we
focus on two perspectives: (i) the sequential flow of events and (ii) the contextual perspective
of the events. Section 3.2 will explore the details of our proposed approach, outlining the
key steps and techniques used for conformance checking on email-driven processes, forming
the foundation for understanding our methodology. Section 3.3 presents a proof of concept.
Section 3.4 presents the evaluation of our approach through various experiments and analyses,
demonstrating its effectiveness and efficiency. Finally, Section 3.5 will conclude the chapter
by summarizing our findings and discussing some limitations.

3.2 The Proposed Approach Overview

The approach, as depicted in Figure 3.1, receives as input a structured event log generated
from an email log using the methodology proposed by Elleuch et al. [43], in conjunction
with a process model. The latter is specified by a data analyst/expert and is built upon a
set of constraints that pertain to both the sequential and email contextual aspects of the
business process, highlighting the multi-perspective nature of our approach. Such constraints
are guided by constraint classes that we have gleaned through the analysis of email datasets
and that serve as templates for the analysts/experts to define their specific constraints.

Using the constraints defined by the experts, we proposed a process model, the Email
Process Model, which we use for conformance checking of events within the same email or
thread. Consequently, the conformance checking algorithm proposed in our approach involves
comparing the execution of a process instance (i.e., an event log instance) with the process
model. This comparison helps identify two sets of events termed fulfilling and violating events.
The former refers to events that occur within a process instance and align with the expected
behaviors, while the latter refers to events that violate sequential and/or email contextual
constraints. In addition, the conformity-checking algorithm is able to identify missing topics,
highlighting deviations or inconsistencies in the context.
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Figure 3.1: Approach overview

3.2.1 The Email Process Model

In the context of conformance checking techniques, a reference model is a representation of
the expected behaviour of the running process. It serves as the standard against which actual
process executions are compared to assess their adherence to predefined expectations. The
representation of such a model can take several forms including imperative and declarative
representations. In this work, we propose a declarative approach that gives the designer
the possibility to define a reference model that we call Email Process Model by means of
expressing constraints on the activities involved in the email process. Such a declarative
approach prioritizes the definitions of desired outcomes over the explicit specification of the
steps to achieve them. In order to express the constraints, our approach provides the designer
with a set of constraint classes that we have extracted and defined following an analysis of
email datasets. These constraint classes would serve as templates for the designer to express
the actual constraints and they cover both the sequential and contextual perspectives of
email-driven processes, and therefore provide a partial view on their respective BPs. In the
following, we start by providing essential email-related definitions in section 3.2.1.1, followed
by our proposed constraint classes in section 3.2.1.3.

3.2.1.1 Email-Related Concepts

An email log can be viewed as a set of emails, each characterized by a set of attributes as
outlined in Definition 3.1.

Definition 3.1 (Email). Let EM be the set of all emails. An email em ∈ EM is a tuple
⟨ID, timestamp, from, to, sbj, body⟩ where:

• ID refers to its unique identifier,

• timestamp refers to its sending time,
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Figure 3.2: Emails retrieved from Enron data-set

• from refers to its expediter,

• to refers to the list of its receivers,

• sbj refers to its subject,

• body refers to its textual content

This definition reflects what an email is from the point of view of users. It is however worth
noting that in our work, emails are seen as a representation of the execution of a process.

Emails in an email log can be linked through reply and forward relations. More precisely,
an email emj can be a response (in the form of reply or forward) to at most another anterior
email emi (and we note emiR emj) and/or be replied to or forwarded in zero or more posterior
emails. These relations evoke the notion of conversations. An email conversation can therefore
be defined as follows:

Definition 3.2 (Email Conversation). Let CV be the set of all email conversations. An email
conversation conv ∈ CV is a set of l emails {emi|∀i ∈ [1, l], emi ∈ EM} such that, if l > 1
then ∀emi ∈ conv, ∃emj ∈ conv \ {emi} such that (emiR emj) ∨ (emj R emi).

In other words, an email conversation is a set of emails pairwise linked by a response (i.e.,
reply or forward) relation. For instance, in Fig. 3.2, [email1, email2] and [email3, email4]
form two different conversations respectively.
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3.2.1.2 Email-based Process

Emails pertaining to an email-driven process would express the occurrence of activities that
are likely to belong to a BP. An activity is formally defined as follows (Definition 3.3):

Definition 3.3 (Activity). Let A be the set of all activities and BD the set of all business
data. An activity act ∈ A is defined as a tuple ⟨AN,BD⟩ such that:

• AN is the name of the activity that reflects its main goal;

• BD ⊆ BD is a set of business data used and generated during activity execution

An activity is defined as a composition of two components (activity name and business
data). Taking the example of the activity creating trading deals; (1) the activity name (AN)
is ’create deal’ and (2) the set {’deal price’, ’deal identifier’} is included in its business data
(BD).

Speech acts are used to further express the reason of inclusion of an activity in an email,
and is defined as follows:

Definition 3.4. Let SA = {Request, Intention, Information, Request for information}
be the set of considered speech acts. Hence, a speech act SA ∈ SA can be a:

• Request act: the sender requests that the recipient(s) carry out an activity.

• Intention act: the sender expresses a desire for future participation in the activity (by
themselves or others).

• Information act: the sender uses the email to provide information about activity exe-
cution status (whether it has been executed or not or is currently being executed).

For example, the activity that would be deduced from "I would like to request
an interview with the candidate to further discuss their qualifications and
suitability for the position" would be associated a speech act Request. Whereas the
speech act in "Kate, my assistant, will participate in the telephone interview"
would be Intention. The example "The telephone interview has been scheduled for
tomorrow at 10 AM" provides information regarding the scheduled time for the activity
conducting an interview and therefore would have a speech act Information.

To be able to represent an email-driven process model, just like for traditional process
models, designers would have to identify the set of activities involved in their models. In our
case, these activities would be present in the emails which represent the execution traces of
email-driven process model. We also note that an email can involve multiple activities of the
model and that an activity can appear in multiple emails. In fact, when an activity occurs in
an email we talk about an activity instance and we define it as follows:
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Definition 3.5 (Activity Instance). Let Oact be the set of occurrences of an activity act =
⟨AN,BD⟩ ∈ A. An activity instance actocc ∈ Oact is a tuple ⟨ANocc,BDocc, em⟩ such that:

• ANocc = AN , is the name of the activity corresponding to the occurrence.

• BDocc ⊆ OBD, is the set of business data occurrences related to the activity instance.

• em ∈ EM, is the email in which the activity instance occurs.

• th ∈ T H, is the email thread in which the activity instance occurs (see Definition 3.6
for threads).

In a traditional business model, the notion of activity instance is directly linked to a
process instance. However, in the case of an email-driven process, the notion of process
instance is not explicitly apparent, but is rather expressed through the basic structures of an
emailing system, namely the emails and email threads.

In fact, conversations in an email log can be grouped into threads based on their common
relevant information values (such as specific BD) and email addresses, in order to approximate
the concept of a trace (in an event log). In fact, the relevant information values that group
conversations into threads approximate BP instance identifiers. These instance identifiers act
as links between various events and the sequences of a particular BP execution. An email
thread is therefore a set of email conversations that must have in common at least one relevant
information value (i.e., BD) and one interlocutor.

In the following, we denote by AD the set of possible values for an email address, by T O
the set of possible values for an email receiver addresses and by Obd the set of possible values
of a business data bd ∈ BD.

Let fRI : CV → 2OBD be a function that returns the relevant information values related to
a conversation, and let finterloc : CV → 2AD be a function that returns the set of interlocutors
in a conversation.

Definition 3.6 (Email Thread). Let T H be the set of all email threads. An email thread
th ∈ T H is a set of n conversations {cvi|∀i ∈ [1, n], cvi ∈ CV} such that: (

⋂
i∈[1,n] fRI(cvi)) ̸=

∅ ∧ (
⋂

i∈[1,n] finterloc(cvi)) ̸= ∅

Figure 3.2 illustrates a real example of an email thread retrieved from the Enron dataset.
The thread is composed of four emails belonging to two conversations. It reports interactions
between employees in the context of a trading gas instance. This instance is identified by the
relevant information value ’454057’ of the associated deal number.

3.2.1.3 Definition of Constraint Classes

Constraint classes can be seen as relations between different elements of an email where
the domains and ranges can vary depending on the constraint class. In other words, each
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constraint class Ci can be defined as a relation: Ci ⊆ X × Y where X and Y will be later
precised for each Ci. We will be using the notation (ref

Ci−→ targ) to denote that the element
ref is in relation to the element targ according to the constraint class Ci.

Sequential constraints These constraints establish a structured and organized flow of
activities, enabling effective communication. The following provides an overview of the es-
tablished sequential constraint classes that we incorporate into the definition of our process
model. We note that for these constraint classes the relations are defined as: Ci ⊆ A × A
(i ∈ 1, 2).

• C1: Activity Sequencing Constraints in Emails This constraint class expresses
restrictions on the order of activities within the same email, focusing on the position
of their occurrences and their associated speech acts, which enhances communication
efficiency and comprehension among recipients. This class is defined as follows:
Let Aem denote the set of activities in an email em. The notation (acti → actj) where
acti, actj ∈ Aem signifies that the activity acti precedes the activity actj within the
email em. The constraint C1 is therefore formulated as follows: (acti

C1−→ actj).

Example: The designer can define a constraint (flow gas C1−→ extend deal) to ex-
press that an activity flow gas in an email precedes an activity extend deal within
the same email. This can be highlighted in Email 1, as shown in Figure 3.2.

• C2: Activity Sequencing Constraints in Threads These constraints indicate which
activities could be mentioned in subsequent emails of a thread as a response, either as
activities to be performed in the future or as activities that have already been performed.
Such constraints facilitate coherent and contextually relevant responses, streamlining
communication and fostering a more organized exchange. Let Ath be the set of activities
in the thread th, and let Ath/cv be the set of activities of this thread in the conversation
cv ∈ th. The constraint C2 is therefore defined as follows:
(act1

C2−→ act2) with act1, act2 ∈ Ath such that ∃em1, em2 such that act1 ∈ Aem1∧act2 ∈
Aem2 ∧ (em1Rem2).

Example: Given the definition of C2, a designer might establish that the activ-
ity create deal is followed by the activity extend deal, i.e., (create deal C2−→
extend deal). These activities belong to two different emails within the same thread,
as exemplified in Email 1 and Email 2 shown in Figure 3.2.

Contextual constraints The importance of contextual constraints in conformance check-
ing, especially in the context of emails, cannot be overstated. These constraints play a crucial
role in ensuring adherence to the intended purpose of the conversation. In the following, we
will define a set of contextual constraint classes that will be utilized in the construction of the
process model. These classes will be of varying formats that will be precised for each one.
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• C3: Activity & BD relationship constraints These constraints represent the re-
lationship between the activities and their associated BD within threads. They facil-
itate the identification of incomplete information by delineating the interdependencies
between activities and their corresponding business data within threads, ensuring a
comprehensive overview of the ongoing processes. This constraints class is defined as
a relation C3 ⊆ A × 2BD and we note (act

C3−→ FB) where act = ⟨AN,BD⟩ and
FB ⊆ BD.

Example: The designer might define the following the constraint: (create deal C3−→
{revenue, create, deal, ...}. In other words, the constraint specifies that the activity
create deal is always used with a subset of the BD specified in the constraint.

• C4: Activity & BD Topic Relationship Constraints BD can be interconnected,
forming a cluster of words representing a subject, commonly referred to as a topic. The
constraints class that we present here represents the correlation between the activities
and their most significant BD topics within threads, offering a clearer understanding
of their primary focus, thereby reducing deviation from the main discussion thread.
Let T P be the set of all possible topics. This constraint class is therefore defined as a
relation C4 ⊆ A× 2T P×R and expressed using the format: (act

C4−→ TP ) where act ∈ A
and TP ∈ 2T P×R to denote that an activity act is linked to a set of topics with their
respective probability score (or ranking) according to constraint C4.

Example: The designer might define the following constraint: (extend deal C4−→
{(Business Growth, 0.8)}. This means that the activity "extend deal" should always be
accompanied by a business data related to the topic Business Growth with a score of
0.8. Here, the score reflects the probability of the relevance of the business data to the
topic of Business Growth, with a score of 0.8 indicating a high likelihood of correlation.

• C5: Activity & BD frequency relationship Constraints These constraints repre-
sent the correlation between an activity mentioned in an email and the presence of its
related BD. This constraint class is therefore defined as a relation C5 ⊆ A × 2BD×R

and expressed using the format: (act
C5−→ BDF ) where act ∈ A and BDF ∈ 2BD×R.

Example: The designer might define the following constraint: (flow gas C5−→
{(′flow′, 0.84), (′meter′, 0.71)}).

• C6: Activity & BD Pairs Relation Constraints These constraints represent con-
nections between activities and business data within threads. This constraint class is de-
fined as a relation C6 ⊆ A2×2BD and expressed using the format: ((act1, act2) C6−→ FD)
where act1 = ⟨AN1, BD1⟩, act2 = ⟨AN2, BD2⟩ such that (act1, act2) ∈ C1 ∪ C2 and
FD ⊆ BD1 ∪BD2.
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Example: The designer might define the following constraint:
((flow deal, extend deal) C6−→ FD) where FD = flow deal.BD∪extend deal.BD.
In this example, the constraint captures a semantic relationship between the activities
flow deal and extend deal, indicating that they are expected to be closely associated
in terms of business data content. The specific terms in the example, such as gas,
system, price serve as illustrative examples of the kind of business data that might be
expected in the associated sets. The constraint is generic and implies a high likelihood
of co-occurrence of specific business data when these two activities are observed in
sequence.

Having defined both the sequential and contextual constraints classes, we can now repre-
sent the process model to be fed to the conformance checking algorithm. The process model
is represented as directed graph to accurately capture the process behavior from two perspec-
tives. In the graph representation, each directed edge connecting a parent and a child node
corresponds to a reference event and a target event with the same sequential and contex-
tual constraint. This approach ensures activities that can be taken as responses to a specific
event are linked to the same reference/parent node. It allows us to establish the expected
order, dependencies, and context between activities based on their sequential and contextual
constraints. In the following definition, we denote by AC the set of all activities used in the
user-defined constraints.

Definition 3.7 (Email Process Model). A Email Process Model is a directed graph EPM =
(V, E) where V ⊆ (A× 2BD × 2T P) and E ⊆ (V × V ):

• V = {vact|vact = (act,BD, TP ) ∀act ∈ AC} with:

– BD = (
⋂

actt∈AC
C6((act, actt)) ∩ C3(act) ∩ C5(act))

– TP = {tp|∃r ∈ R ∧ (tp, r) ∈ C4(act)}

• E = {ei|ei = (vact1 , vact2),∀vact1 , vact2 ∈ V such that (act1, act2) ∈ C1 ∪ C2}
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Figure 3.3: A partial view of the Email Process model

Figure 3.3 depicts a partial view of the Email Process Model’s directed graph. This
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partial view focuses on activities related to managing gas deals, such as creating or receiving
a deal. In the provided Email Process Model fragment, the node labeled N10 highlights the
defined constraints as follows: the activity create deal represents act in bold, the business
data [create, numeric deal...] corresponds to BD, and the topic name Deal Creation cor-
responds to TP . These elements form the vact = (act,BD, TP ). An edge example is the
directed connection from N10 (create deal) to N11 (wrap, roll deal numeric), repre-
senting ei = (vact1, vact2), where (act1, act2) ∈ C1 ∪ C2. This edge indicates a relationship
between the activities based on conditions specified in the definition.

3.2.1.4 Email-based Process Log

Now that we have presented our proposed Email Process Model, we shift our focus onto the
second input of our conformance checking approach, namely the structured event log. The
latter will be used to compare against the defined process model, enabling the algorithm to
identify deviations and ensure that the processes adhere to expected standards and workflows.
Elements such as activities and business data, previously defined, can be found as attributes
within an event in the event log. This structured event log can be obtained using the work
of Elleuch et al. [43] and defined as in Definition 3.8. We note that this definition for a
structured event log could easily be integrated into existing standards, such as Object-centric
event logs (OCEL) [56], as an extension that would allow the representation of additional
email-specific concepts included in our definition.

Definition 3.8 (Event Log). Let E be the set of all events. An event log is a set of
events: Log = {Evi, ∀i ∈ [1, n]} where each event Evi is characterized by the tuple
⟨Acto, SA, Atind, Ivalues, em, Thid⟩, where:

• EvID is the event’s unique identifier.

• Acto ∈ OA is the occurred activity.

• SA ∈ SA is the speech act of Acto.

• Atind is the set of textual indices concerning the performers of Acto.

• Ivalues ⊂ Acto.BDocc is the set of related relevant information values.

• em ∈ EM is the email where the activity occurred.

• Thid is the set of thread IDs to which the event belongs.
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Figure 3.4: Example of an Event Log Extract

Figure 3.4 depicts an excerpt of the event log that would be generated from an email log
including email1 and email2 shown in Figure 3.2 and the email shown in Figure 3.5.

Figure 3.5: Real email retreived from Enron dataset for planning trading positions

In the work of Elleuch et al. [41] the authors utilized unsupervised learning techniques to
discover activities within email bodies. The approach involved identifying frequent patterns
of words shared by activity expressions, even when variations such as synonymous words
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(e.g., the expressions ’change deal’ and ’convert deal’ refer to the same activity while using
the synonymous words: ’change’ and ’convert’) or different word orders (e.g., the positions
of appearance of the words ’extend’ and ’deal’ are switched in these expressions ’the deal was
extended’ and ’I extended the gas deal’. Additionally, the two words are nearly successive in
the first expression while separated by the word ’gas’ in the second expression) are present.
By analyzing emails on a per-employee basis, common patterns related to activity components
are captured. Subsequently, similar activities across different employees are grouped together
based on measures of word synonymity and activity context.

3.2.2 The Conformance Checking Algorithm

In this section, we focus on the algorithm designed to ensure smooth alignment between the
execution of a process instance and the process model. This algorithm is crucial in evaluating
the degree to which events conform to the anticipated behavior within threads or emails. In
our case, the execution of a process instance can be seen as a trace from the event log, which
is a sequence of events.

The algorithm shown in Algorithm 1 takes as inputs a sequence of events and the email
process model (EPM), returning a comprehensive list of fulfilling and/or violating events.
Additionally, it provides information on any missing topics for each event, if applicable. The
algorithm begins by setting up a current node based on the starting point of the event sequence
(line 1). It then visits each event in the sequence, evaluating the similarity between the BD
of the current node in the EPM and its occurrence in the event of the sequence by employing
cosine similarity (line 13). Upon calculating the similarity and identifying a match between the
next activity in the sequence of events and one of the activities of the next nodes in the email
process model, the algorithm determines the type of the event by calling the detect_event_type
function (line 14). The detect_event_type function (detailed in Algorithm 2) takes the next
activity, similarity, current node, and event as inputs, and it returns the event type and any
missing topics. If the similarity score is above a specified threshold and the next activity is
valid, the event is classified as fulfilling and appended to a set of fulfilling events. Conversely,
if the similarity score is below the threshold or there is no match found for the next activity,
the event is added to a set of violating events (lines 15 −→ 19, Algorithm 1).

We have identified three types of violating events that warrant our attention to enhance
communication effectiveness. The first type is Sequential Flow Issues, detected when the
algorithm identifies a mismatch between the expected and actual subsequent activities in
the sequence of events. Specifically, the algorithm checks if the next activity aligns with
the expected activity, and if it does not, the event is classified as a sequential flow issue
(line 6 in detect_event_type). The second type is Incomplete/Incorrect Information, where
the algorithm detects instances in which essential details are missing or incorrect. This in-
volves comparing the BD of the current event with those of the expected event (line 8 in
detect_event_type). The third type is Deviation from the Main Topic, aiming to identify
instances where the conversation veers off course, potentially leading to miscommunication.
This is determined by examining if the BD topics of the event contains elements unrelated to
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the expected topics derived from the current node (line 10 in detect_event_type). Addition-
ally, the Algorithm 1 identifies missing topics by comparing the detected topics of the current
event with the expected topics in the current node from the email process model (line 20 −→
22).

Algorithm 1 Conformance Checking
INPUT: S, EPM
OUTPUT: fulfilling_events← ∅, violating_events← ∅, missing_topics_list

1: current_node ← findStartingPoint(EPM, S[0].Acto) {Find the starting point in the
EPM based on the first event’s activity}

2: fulfilling_events← [] {Initialize the list of fulfilling events}
3: violating_events← [] {Initialize the list of violating events}
4: missing_topics_list← [] {Initialize the list of missing topics}
5: for i← 0 to len(S)− 1 do {Iterate over each event in the sequence}
6: event← S[i] {Get the current event}
7: next_nodes ← successors(current_node) {Find successors of the current node in

EPM}
8: if i + 1 < len(S) then {Check if there is a next event in the sequence}
9: next_activity ← findOccurrences(S[i + 1].Acto, next_nodes) {Find occurrences of

the next activity in successors}
10: else
11: next_activity ← null {If no next event, set next activity to null}
12: end if
13: similarity ← CosineSimilarity(BD[current_node], BD[event]) {Compute the similar-

ity between current node and event based on their BD vectors}
14: (event_type, missing_topics)← detect_event_type(next_activity,

similarity, current_node, event) {Detect the type of the event and compute missing
topics}

15: if event_type = ’fulfilling’ then
16: Append event to fulfilling_events {If event is fulfilling, add it to fulfilling events}
17: else
18: Append (event, event_type) to violating_events {If event is violating, add it to

violating events with the reason}
19: end if
20: detected_topics← detect_topics(event) {Call function to detect topics of the event}
21: missing_topics ← expected_topics \ detected_topics {Find missing topics by sub-

tracting detected topics from expected topics}
22: Append (event, missing_topics) to missing_topics_list {Add event and missing

topics to missing topics list}
23: current_node← next_activity {Move to the next activity for the next iteration}
24: end for
25: return fulfilling_events, violating_events, missing_topics_list {Return the lists of

fulfilling events, violating events, and missing topics}
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Algorithm 2 Detect Event Type
INPUT: next_activity, similarity, current_node, event
OUTPUT: event_type, missing_topics

1: missing_topics ← BD_topics(current_node) − BD_topics(event) {Compute missing
topics by subtracting event topics from current node topics}

2: if next_activity ̸= null and similarity > threshold then {Check if next activity is valid
and similarity is above threshold}

3: event_type← ’fulfilling’ {Event is fulfilling if conditions are met}
4: else
5: if next_activity = null then {Check if next activity is null}
6: event_type ← ’Sequential Flow Issue’ {Event is violating due to ’Sequential Flow

Issue’}
7: else if missing_topics ̸= ∅ then {Check if there are missing topics}
8: event_type← ’Deviation from the Main Topic’ {Event is violating due to ’Incorrect

Topic’}
9: else

10: event_type← ’Incomplete/Incorrect Information’ {Event is violating due to Incom-
plete/Incorrect Information}

11: end if
12: end if
13: return event_type, missing_topics {Return the event type and missing topics}

3.3 Proof of Concept

This section explores the practical application of our newly proposed methodology, providing
insight into its real-world implementation. Our analysis focuses on the assistance offered to
Bob, who faces a situation requiring a prompt response to an email from his superior, Alice.
In Alice’s email to Bob shown in Figure 3.6, she outlines two key actions she wants Bob to
take. Initially, she requests that Bob processes the deal information, an action referred to as
event e11, described as (“process deal”, [“process”, “deal”], “intention”). Following
that, she emphasizes the importance of taking swift action to ensure the seamless flow of
operations, represented by event e22, defined as (“flow deal ”, [“flow”, “operations”],
“intention”).
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Figure 3.6: Urgent Email: Alice’s Notification Regarding Deal Priority

Bob has proactively drafted two potential email responses but grapples with uncertainty
about the most suitable option for the given scenario. To gain clarity, let’s delve deeper into
the drafted emails.

Figure 3.7: Bob’s First Email Response

In Bob’s initial email, as depicted in Figure 3.7, he outlines a series of steps he plans to
take. Initially, he will provide the requested information—an action referred to as event e11,
described as (“submit request”, [‘submitted’, ‘request’, ‘12345’], “information”).
Following that, Bob intends to finalize the deal, a progression represented by event e12,
defined as (“enter deal”, [‘deal’, ‘complete’, ‘process’], “information”). He commits
to ensuring its deletion by the end of the day. Finally, he notifies Alice that he will record
the relevant deal information in the system. This process is encapsulated by event e13,
characterized as (“note deal”, [‘deals’, ‘recorded’], “information”).



3.3. Proof of Concept 55

In the second email, as depicted in Figure 3.8, Bob informs Alice that he has processed
the deal information for ID 269123. This was achieved through a series of sequential steps.
Initially, he initiated the creation of the deal within their system, as indicated by the event
e11, described as (“create deal”, [‘created’, ‘deal’], “information”). Subsequently, he
inputted all the necessary details, a process denoted by the event e12, defined as (“en-
ter deal”, [‘deal’, ‘enter’], “information”). Finally, he recorded the completion of the
deal within their system, an action represented by the event e13, defined as (“note deal”,
[‘deals’, ‘noted’], “information”). Bob assures Alice that these actions will contribute to
the seamless flow of their operations.

Figure 3.8: Bob’s Second Email Response

Our goal is to identify the most suitable response from the provided emails to Alice’s
initial email, utilizing conformance checking. To conduct conformance checking effectively,
we require access to two critical components: the real-time process execution instance (in our
case, the sequence of events illustrating the email exchange between Alice and Bob) and the
Email Process Model depicting the expected behaviors of a process within a thread.
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Figure 3.9: A partial view of the Email Process Model Illustrating Gas Deal Management Processes
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Figure 3.9 illustrates a partial view of the Email Process Model, focusing on processes
related to gas deal management, the central topic of Alice’s correspondence. The trace,
representing the anticipated exchange between Alice and Bob, is highlighted in green. With
the knowledge that the sub-sequence of events in Alice’s email conforms to the Email Process
Model, and having both the sub-sequences of events associated with Bob’s drafted responses,
our next step involves verifying the adherence of these sub-sequences using our proposed
algorithm.

Examining Bob’s First Email Response In this section, we will assess Bob’s first email
response using our conformance checking algorithm to analyze the sequence of events within
the email interactions between Alice and Bob. The algorithm begins by identifying a suit-
able starting node within the graph that corresponds to the initial event in the sequence,
which, in this case, is submit request. Once the matching node is determined, the algorithm
proceeds with a systematic classification process, considering both the sequential and con-
textual perspectives of events. Starting with the submit request event, the algorithm verifies
whether subsequent activities align with the expected activities. According to the Email Pro-
cess Model, the event following submit request should be send information, not enter deal. To
assess the second perspective of the event, we examine the BD associated with the events.
Here, we check how closely the BD of the current event aligns with those associated with the
expected event. In this case, although the similarity is above the threshold (0.8), the next ac-
tivity is incorrect, resulting in the classification of the event as a violating event, specifically
a sequential issue type. Continuing the analysis of the remaining events in the sequence,
the algorithm follows the same procedures outlined in the conformance checking algorithm.
Upon scrutinizing each event, the algorithm detects another instance of violation within Bob’s
sub-sequence, specifically the events labeled as enter deal. These violations arise from the
usage of unrelated terms within the associated BD, such as delete, introducing an action
that was not explicitly requested or mentioned by Alice in her initial email. This discrepancy
is classified as Incomplete/Incorrect Information. Alice’s communication focused solely
on processing deal information for ID 269123, without any indication of deleting the deal.
Therefore, assuming the action of deletion without additional context or clarification from
Alice may confuse or concern her. Consequently, since 2 out of 3 events were classified as
violating events, this email response is deemed inadequate due to a lack of coherence.

Examining Bob’s Second Email Response Through the algorithmic analysis, Bob’s
actions are categorized as fulfilling, indicating alignment with expected events. Bob initiates
by addressing the creation of the deal, which correlates with the create deal event. Subse-
quently, he delves into specifics about the deal, aligning with the enter deal event. Finally,
Bob notes down the deal’s information, corresponding to the note deal event. These actions
mirror the expected sequence of events, highlighting Bob’s meticulous approach in addressing
Alice’s concerns. Consequently, as all events were classified as fulfilling events, this email
response is considered adequate. Bob’s clear and sequential communication underscores his
comprehension of both the urgency and importance of Alice’s email, demonstrating his inten-
tion to keep her well-informed. By detailing each stage of processing the deal’s details, Bob
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effectively communicates to Alice that he has handled her concerns with great care.

When we applied conformance checking to Bob’s email responses, distinct results emerged.
The first email exhibited multiple discrepancies, diverging from the expected sequence and
introducing unrelated information. In contrast, the second email perfectly aligned with Alice’s
specifications. This discrepancy highlights the importance of our methodology, as it aids in
pinpointing communication flaws and guiding individuals to craft responses in line with the
original sender’s expectations.

3.4 Experiments and Validation

Introducing a novel contribution that has remained unexplored until now presents a challenge
in comparing our work to existing related research. This challenge primarily arises due to the
distinctive structure of the email event log in our case, which deviates from the conventional
format commonly studied in the literature.

To address this challenge and provide a comprehensive assessment, we present in Section
3.4.1 a detailed analysis of our approach’s capability to detect non-conformance within email-
driven processes. In Section 3.4.2, we demonstrate the practical application and benefits of
our proposed approach with a use case involving the utilization of a RESTful API endpoint.
The approach, developed in Python, is readily available on GitHub 1, where some of the
experimental results can also be found.

3.4.1 Detection of Non-Conformance in Enron Email Logs

In typical conformance checking, algorithms handle conventional processes with nearly 100%
accuracy, meaning that they can almost perfectly determine whether an event conforms or
not. However, in email-based processes, the unstructured nature of emails and the variability
of business data across different emails make it challenging to consistently achieve such high
accuracy. To effectively demonstrate the performance of our approach, we resorted to an
expert who can provide insights and validation. In the following, we conducted an experi-
ment using two event logs extracted from the Enron dataset, which consists of internal emails
related to the company’s business operations. The first event log focuses on financial trans-
actions, budgets, and forecasts, while the second log centers around discussions related to
the energy industry and market trends. We first applied our proposed algorithm to identify
violating and fulfilling event types within emails or threads in each log. Subsequently, we
asked experts to classify the events manually. We then compared the non-conformance types
detected by our approach with those identified by the experts to assess the accuracy and
reliability of our method. This comparison is crucial for validating our algorithm’s effective-
ness in handling email-based processes. The results of our algorithm’s classifications and the

1https://github.com/ralphbn1995/Multi-Perspective-Conformance-Checking-For-Email-driven-
Processes.git
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expert assessments are presented in Table 3.1. Additionally, Table 3.2 presents the calculated
precision and recall for each type of non-conformance detected, based on the combined results
from the two event logs extracted from the Enron dataset.

Table 3.1: Overview of the results

Non-Conformity Type Approach Classification Expert Classification
First Log Second Log First Log Second Log

Sequential Flow Issue 40 Events 39 Events 50 Events 45 Events
Incomplete Information 70 Events 58 Events 75 Events 65 Events
Deviation from Main Topic 55 Events 38 Events 60 Events 45 Events

Table 3.2: Precision and Recall Metrics for Non-Conformance Types Detected in Enron Event Logs

Non-Conformance Type Precision Recall
Sequential Flow Issues 0.88 0.92
Incomplete Information 0.91 0.87
Deviations from Main Topic 0.83 0.81

In terms of Sequential Flow Issues, the expert classifications identified 50 events in the
first log and 45 events in the second log, while the algorithm detected 40 events in the first
log and 39 in the second log, highlighting the algorithm’s proficiency in handling sequencing
challenges with a precision of 0.88 and a recall of 0.92, indicating its effectiveness in ensuring
the correct order of events, crucial for maintaining the logical flow of communication. For
Incomplete Information, experts classified 75 events in the first log and 65 events in the
second log, while the algorithm identified 70 and 58 events, respectively, demonstrating its
capability to detect missing details that could hinder effective communication; the precision
of 0.91 and recall of 0.87 underscore the algorithm’s ability to identify and address gaps in
information, enhancing the completeness and clarity of communications. Regarding Deviation
from Main Topic, expert classifications recorded 60 events in the first log and 45 in the second
log, while the algorithm found 55 events in the first log and 38 in the second log, suggesting
the algorithm’s effectiveness in identifying when conversations stray from the main topic, as
reflected by a precision of 0.83 and recall of 0.81, thus helping to maintain focus and relevance
in the communication.

Overall, the results suggest that the proposed algorithm adeptly identifies non-conformities
within both event logs, closely aligning with expert classifications. This alignment underscores
the algorithm’s potential to enhance communication effectiveness by systematically addressing
specific non-conformance types, thereby contributing to the overall quality and coherence of
communication within the Enron dataset’s email event logs.

3.4.2 Use Case Study

This section presents a use case of the proposed approach in this chapter through the uti-
lization of RESTful API [86] endpoint. Our RESTful API endpoint is meticulously designed
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with a dual-focus approach involving two key decisions. Firstly, we exclusively employ Hy-
pertext Transfer Protocol (HTTP) [51] POST requests for all endpoint interactions. This
ensures secure data exchange and facilitates the confidential transmission of large data pay-
loads. Secondly, we have standardized on JSON as the data interchange format due to its
lightweight structure and human-readable nature, which promotes seamless communication
across diverse systems, languages, and platforms. The /email-compliance-verification
endpoint verifies the logical flow of ideas within an email. Users submit POST requests with
an email as input, and the approach developed in this chapter examines the content to ensure
coherence and logical progression of thoughts. The response, provided in JSON format, indi-
cates adherence to established logical patterns, thereby aiding in maintaining communication
quality and coherence.

Thirty-three participants from diverse backgrounds, including data scientists, software
engineering students, Ph.D. students, and developers, were involved. All participants had a
solid understanding of process and data analysis, with varying levels of familiarity with REST
APIs, ranging from extensive knowledge to basic understanding. Participants received iden-
tical email samples and were tasked with manually composing email replies. They were then
instructed to submit their drafts through the /email-compliance-verification endpoint to
validate the logical coherence of ideas within their manually composed email responses.

On average, the API flagged Iavg issues per email, with Iavg representing the average
number of issues identified. These issues ranged from abrupt topic transitions to vague
argumentation lines. The precise feedback provided empowered participants to promptly
identify areas requiring improvement. Upon receiving feedback from the API, participants
demonstrated swift responsiveness. The majority managed to revise and enhance their email
drafts within an average time of 3 minutes. This indicates that the API effectively expedites
the revision process, showcasing its practical utility.

To verify the improvement in the speed of the revision process achieved by incorporat-
ing the /email-compliance-verification endpoint compared to the traditional manual revision
process, we calculated the efficiency gain (%EG). The formula for calculating the efficiency
gain is given by:

%EG = Rmanual −RAPI
Rmanual

× 100%

Here, Rmanual represents the average time taken for manual revisions, and RAPI represents
the average time taken for revisions assisted by the API.

The efficiency gain is calculated by taking the difference between the average manual
revision time and the average API-assisted revision time, dividing it by the average manual
revision time, and then expressing this as a percentage. A positive %EG indicates that the
API-assisted revisions were faster than manual revisions, reflecting a gain in efficiency. A
higher %EG suggests a greater improvement in efficiency due to the API.

The table labeled as Table 3.3 provides a summary of the results gathered from that use
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Table 3.3: Impact of API-Aided Revisions on Email Draft Quality and Efficiency

Participants Number of Issues
Identified (Iavg)

Average Revision
Time (min)

Efficiency Gain
(%EG)

33 3.5 3 15%

case, including several key attributes: the number of participants representing the individ-
uals involved in the study; the average number of issues identified per email, indicating the
typical count of logical or coherence problems detected; the average revision time reflecting
the mean time taken by participants to revise their emails after receiving API feedback; and
the efficiency gain. Participants utilized the API for self-assessment and quality assurance,
resulting in an average identification of 3.5 issues per email, ranging from abrupt topic tran-
sitions to vague argumentation lines. Remarkably, the average revision time of 3 minutes
showcases participants’ swift responsiveness to the API’s feedback, signifying its role in expe-
diting the revision process. The efficiency gain (%EG) of 15% further emphasizes the API’s
contribution to a more efficient revision workflow. These results collectively illustrate that the
/email-compliance-verification endpoint is instrumental in not only identifying and address-
ing issues promptly but also in elevating the overall quality and efficiency of manual email
composition.

3.5 Conclusion

In this chapter, we achieved our first objective and answered the second research question (Q1)
raised in the thesis problematic, as detailed in Chapter 1, Section 1.3.1. The central question
explored was: How well do current conformance checking techniques perform when
applied to email-based business processes? To address this multi-faceted question, we
considered several sub-questions:

• Q1-1: How can we design a conformance checking method that takes into account both
the structural and contextual perspectives of the email events?

• Q1-2: What are the common patterns of discrepancies that can occur in the business
context of email events, and how can they be accurately detected?

• Q1-3: How can we handle non-categorical or non-numerical attribute values in confor-
mance checking methods, particularly those related to email events?

• Q1-4: How can we validate and measure the accuracy, reliability, and performance of
the newly proposed context-aware conformance checking method?

In response to these questions, we have devised an approach for multi-perspective confor-
mance checking within the context of email communication, consisting of two main phases:
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1. Model Construction Phase: We constructed an Email Process Model for conformance
checking of events within individual emails and threads based on the constraints defined
by the experts, which address questions Q1-1 and Q1-2.

2. Conformance Checking Phase: We introduced a conformance checking algorithm to
answer question Q1-3, which entails comparing the execution of a process instance
(i.e., an event log instance) with one or both of the process models. This comparison
aids in identifying two sets of events referred to as fulfilling and violating events.

We conducted experiments to answer question Q1-4 using a public dataset from Enron,
presenting promising results. Furthermore, we have openly shared our findings, a contri-
bution absent in related studies, rendering direct comparisons unfeasible. Nevertheless, we
acknowledge potential limitations at two levels:

1. Enhancing User Interaction: Our current model lacks support for interactive feedback,
which could prove invaluable for users seeking to comprehend discrepancies in real-time.
Incorporating an interactive dashboard or visualization could enhance the intuitive un-
derstanding of results.

2. Expanding Universality: Given the global nature of business, emails in non-English
languages may be prevalent. Our method presently does not accommodate multilingual
content, potentially limiting its universality.

In the upcoming chapter, we will introduce our proposed process-activity-aware email
response recommendation approach.
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4.1 Introduction

Prediction is a critical field in process mining. As mentioned earlier, to make process pre-
dictions, it is necessary to have access to the traces of the executions of business processes.
These traces can be found in the logs of information systems used by business actors during
process execution, including email systems.

In the context of emails, prediction refers to recommending a set of email response fields,
including the email sender, recipients, attached files, main body, and more, in response to a
received email. In cases specifically focused on recommending email main body content, ma-
chine learning algorithms are employed to analyze patterns and identify keywords or phrases.
For example, Fang et al. [111] proposed a collaborative filtering-based email content recom-
mendation system, while Wang et al. [113] proposed a deep learning-based approach that
uses a combination of user and email features to build a predictive model that recommends
email main bodies tailored to individual recipients. Nevertheless, the main focus of these
existing works was to enhance email management without giving much thought to the con-
text of business processes. For those that combined email management with the notion of
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BP, they were mostly limited to the stage of BP discovery from email logs [66] or at most
classifying incoming emails into BP activities [88].

However, as stated in Chapter 2, making predictions in the context of process-oriented
emails is not only limited to identifying future BP activities to be performed through emails
but also requires recommending the emails that enable BP actors to perform these activities,
mainly the textual content of their email response bodies. By analyzing historical email data
in the context of BP, predictive models can generate recommendations for the content of future
emails, helping business actors produce emails more efficiently and effectively. This can lead
to improved communication and collaboration, reduced errors, and increased productivity.

Within this context, this chapter introduces a process-activity-aware email response rec-
ommendation system that takes the generated event log from the previous work as input
and predicts future BP knowledge. This knowledge pertains to the set of activities to be
conveyed in the email responses and the manipulated business data. Additionally, we pro-
vide an email response body template recommendation based on the predicted activities and
historical textual contents related to the predicted BP knowledge.

The structure of this chapter is outlined as follows: Section 4.2 delves into the specifics
of the proposed approach, elucidating the methodology employed for recommending an email
response body template. Section 4.3 outlines the evaluation of the proposed approach, show-
casing its performance and impact. Finally, in Section 4.4, we conclude the chapter by
summarizing the key contributions and providing reflections on potential future directions
and applications of this work.

4.2 The Proposed Approach Overview

This section will provide a detailed analysis of our suggested solution, including the methods
and approaches we intend to use to address the problems that have been discovered. Figure 4.1
provides an extensive graphic depiction of our methodology. Our primary objective is to
provide email response recommendations while considering the activities executed through
the received email. The figure emphasizes shaded gray areas, representing the work of Elleuch
et al. [42] that has laid the foundation upon which this chapter is built.

Our approach is structured into four distinct phases, divided into two segments. In the first
segment, entitled BP Knowledge Extraction and Prediction, phases 1, 2, and 3 serve
to predict the BP knowledge to be included in the email response. In the second segment,
the Response Template Recommendation, phase 4 uses the predicted BP knowledge
to recommend a response template. These phases are connected by arrows, with some in
blue representing their role in suggesting an email response template for received emails, and
others in black indicating the preprocessing steps necessary to generate the required models
and inputs for recommending the appropriate email response template.

It is important to note that the BP Knowledge extraction phase serves a dual purpose:
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Figure 4.1: The proposed approach overview

preprocessing and recommending emails. In the preprocessing step, when an email log—a
chronological record of email communications, including sender and recipient addresses, times-
tamps, subject lines, and sometimes message content—is received, the initial phase involves
generating an event log from previously exchanged emails (as detailed in section 4.2.1).

To achieve this, we utilized the work of Elleuch et al. [42], who proposed an approach to
transform unstructured email logs into structured event logs before mining them for discov-
ering BP from multiple perspectives. The authors introduced several algorithmic solutions
for: (i) unsupervised learning activities based on discovering frequent patterns of words from
emails, (ii) discovering activity occurrences in emails for capturing event attributes, and (iii)
discovering speech acts of activity occurrences for recognizing the sender’s purpose of includ-
ing activities in emails.

The event log, created during the BP knowledge extraction phase, serves as the foundation
for the building predictors models phase, where we develop BP prediction models designed
to predict the BP knowledge to be integrated into the email response (elaborated in section
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4.2.1). We recall that the BP knowledge includes the prediction of the set of activities to be
expressed in the email response, the intention of expressing them in the email, as well as the
manipulated business data.

However, when recommending an email response template for a received email, the BP
Knowledge extraction phase is again invoked to identify the instance of the received email.
Subsequently, the BP Knowledge Prediction phase predicts the BP knowledge relevant to the
predicted response email (explained in section 4.2.1). Finally, in the Email Recommendation
phase, our approach recommends an email response template by analyzing the textual content
related to the BP knowledge of the email response (detailed in section 4.2.2).

4.2.1 First segment: BP Knowledge Extraction and Prediction

BP Knowledge extraction - Phase 1

This phase serves a dual purpose. Firstly, it involves creating an event log from an existing
email log, which serves as the basis for training and developing prediction models. Secondly,
when the system receives an email, it can identify the specific instance of that email. To
achieve this, we employ the approach developed by Elleuch et al. [42], which has been
detailed in Chapter 3, Section 3.2.1. This approach is entirely unsupervised and relies on
pattern discovery to extract valuable business process knowledge from emails. Figure 4.3
depicts an excerpt from the event log extracted from the main body of the email shown in
Figure 4.2. We have highlighted the expressions where the events e5, e6, e7, e8 and e9 occurred
in the email, as explained in the legend of Figure 4.2.

Figure 4.2: Email main body

Building Predictors models - Phase 2

The primary objective of this phase is to train prediction models tailored to the task of
forecasting relevant BP knowledge that can be seamlessly integrated into email responses. To
achieve this, we leveraged the information extracted from the generated event log, enabling us
to discern the sequential relationships that exist among events. We transformed every thread
within our event log into a well-structured sequence of events. In the subsequent sections, we
provide a formal definition of what constitutes a sequence of events.
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Figure 4.3: Example of an Event Log Extract

Definition 4.1. Sequence of Events A sequence of email events is defined as S = s1 →
s2 → ...→ sn where:

1. si is a sub-sequence of events such that si = ei1 → ei2 → ... → eij refers to an ordered
list of events belonging to the same email i. Each event is denoted by a single variable
eij, where the index i refers to the email index in which the event belongs and j indicates
the j-th event of the sequence. Also, eij → ei,j+1 means that in an email ei, the event
eij appears before ei,j+1;

2. si → si+1 means that the sub-sequence si (appearing in email i) precedes the sub-sequence
si+1 (appearing in email i + 1) in terms of sending time;

3. The index n (such that n ≥ 1) refers to the number of sequentially sent emails within a
part of an email thread.

Consider the example of emails depicted in Figure 4.4. The sub-sequence of events ex-
tracted from email 1 is denoted by s1. It contains three sequential events based on their
order of appearance and it is represented as follows: s1 = e11 7→ e12 7→ e13. Similarly, the
sub-sequence of events extracted from email 2 is denoted by s2 and contains a single event e21.
Email 1 is received before email 2 in the same thread. Thus, the sub-sequence s1 precedes
the sub-sequence s2 in the sequence of events and is represented as s1 7→ s2.

In this study, two prediction models were developed and trained. The first model takes
as input the sub-sequence of events appearing in a received email and predicts the possible
next combinations of relevant BP knowledge that may appear in the email response. The BP
knowledge within the predicted sub-sequences from the first model can have multiple orders
of appearance. The second prediction model is used to predict the order of the BP knowledge
following it in the same email. In the subsequent sections, we will refer to the first prediction
model as the "next-bp-knowledge" prediction model, and to the second prediction model
as the "sub-sequence" prediction model.
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Figure 4.4: Sequence of events example extracted from two emails in the same thread

Both models were trained using the Long Short-Term Memory (LSTM) architecture. A
particular kind of Recurrent Neural Network (RNN) renowned for its remarkable ability to
process sequential data jobs is the LSTM. It is perfect for jobs where the order and temporal
dependencies of data are crucial, like time series analysis, speech recognition, and natural
language processing. It also excels at catching patterns and anticipating sequences.

During the training process, generated sub-sequences of events extracted from email
threads were utilized. The "next-bp-knowledge" model focused on learning dependencies
between sub-sequences of events within the same email threads, while the "sub-sequence"
model learned from dependencies between BP knowledge’s belonging to the same sub-
sequences within the emails. To effectively capture dependencies and patterns from these
sequential data inputs in each model, the LSTM cell utilizes three crucial components: the
input gate, the forget gate, and the output gate. These components are equipped with sig-
moid activation functions, acting as adaptive switches that allow the model to control the
flow of information at each time step.

When processing a sub-sequence of events, each BP knowledge is represented as a data
point at a specific order, and the LSTM processes these BP knowledge’s sequentially, consid-
ering their order and time dependencies. Several computations take place at every time step:
In order to enable the model to focus on relevant characteristics while filtering out noise, the
input gate decides how much of the current BP knowledge information should be incorporated
into the current memory cell state; The LSTM can capture long-term dependencies because
the forget gate regulates how much data from the previous time step should be kept in the
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memory cell state; The candidate memory update, which is derived from the current input
and the prior hidden state, represents new data that might be stored in the memory cell
state; By combining data from the input gate and the candidate memory update through
element-wise multiplication and subtraction of the forget gate, the state of the memory cell
is updated; the output gate determines how much of the current memory cell state should be
exposed to the current hidden state; and finally, the hidden state is calculated based on the
memory cell state and the output gate, capturing the relevant information from the current
memory cell state.

To enhance computational efficiency and manage memory consumption, we have imple-
mented truncated back-propagation in our LSTM network. This technique involves breaking
the input sequence into smaller sub-sequences of a specified length (K) and unfolding the
network for a fixed number of time steps. Back-propagation through time (BPTT) is then
employed on each sub-sequence, enabling the computation of gradients and subsequent updat-
ing of model parameters based on the accumulated information from past time steps during
the training process. By applying BPTT to these sub-sequences, we ensure smoother and
more efficient training of our model while maintaining its recurrent nature. Once all sub-
sequences have been processed, the accumulated gradients are then utilized to update the
model parameters effectively. Given a sub-sequence of events with T time steps and a fixed
truncation length K (where 1 ≤ K ≤ T ), the truncated back-propagation process can be
summarized in three main steps: First, during the forward pass, for each sub-sequence with
K time steps from the original sequence, initialize the hidden state and memory cell state,
and then perform forward pass computations for each time step t from 1 to K, producing
predictions and updating the hidden and memory cell states. Second, calculate the loss func-
tion based on the predictions and target outputs for each time step within the sub-sequence.
Third, apply BPTT for each sub-sequence by initializing the gradients of the model param-
eters to zero and then performing backward pass computations from t = K to 1, updating
the gradients based on the loss function and the dependencies between the model parameters,
predictions, and hidden states.

To enhance the performance of our LSTM models, we conducted a comprehensive hyper-
parameter tuning process. We fine-tuned critical hyper-parameters, including the learning
rate, batch size, number of LSTM layers, and dropout rates.

BP Knowledge Prediction - Phase 3

In this phase, we utilize the prediction models developed during the second phase to forecast
the relevant BP knowledge to include in our email response. Our objective is to expand
traditional email recommendations, typically confined to BP discovery within process-oriented
emails (discussed in Chapter 2, Section 2.3). The process involves inputting the extracted
sub-sequence of events from the third phase into the "next-bp-knowledge" prediction model.
This model returns a list of BP knowledge combinations. Each combination is assigned a
confidence value. This value is determined by the average length of the intersection between
the BP knowledge in the combination and the BP knowledge found in previous emails. The
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confidence value for each combination Ck is calculated using the formula:

conf(Ck) = 1
total_num_combinations

∑
previous_email

len(intersection(Ck, previous_events))

Here, total_num_combinations is the total number of combinations from the prediction
model across all previous emails.

We select the BP knowledge combination Cbest with the highest confidence value:

Cbest = argmax(conf(Ck)) for k ∈ {1, 2, . . . , k}

Consider a sub-sequence of events s1 = [e11, e12, . . . , eij ], where each eij represents an
individual BP knowledge. The “next-bp-knowledge” prediction model takes s1 as input and
returns a list of BP knowledge combinations C = [C1, C2, . . . , Ck]. Each combination Ck is
assigned a confidence value conf(Ck) based on the overlap with BP knowledge from previous
emails. After selecting Cbest, we process each BP knowledge within it using the “sub-sequence”
prediction model. This model predicts the ordered BP knowledge that should follow in the
email. For each BP knowledge, the sub-sequence prediction model provides a list of ordered
BP knowledge combinations Oi, each with a confidence value. The confidence value for each
ordered combination Oi is calculated similarly to before

conf(Oi) = 1
total_num_ordered_combinations

∑
previous_email

len(intersection(Oi, previous_ordered_events))

Here, total_num_ordered_combinations is the total number of ordered combinations from
the model across all previous emails. We then select the final ordered sub-sequence of events
Obest with the highest confidence value:

Obest = argmax(conf(Oi)) for i ∈ {1, 2, . . . , m}

This selected Obest represents the predicted BP knowledge to include in the email response.

To illustrate Phases 1, 2, and 3, we will provide a running example. Consider the following
scenario, which involves writing a response to an email sent by David. Within this email
(illustrated in Figure 4.5), David communicates with Julie about Deal 235670, associated with
Teco Gas Processing, which expired on 12/22. Notably, he also mentions a successful sale on
02/01, suggesting the potential for an extension for this deal with Teco Gas Processing. Given
these developments, he solicits Julie’s perspective on whether to proceed with an extension and
make adjustments to the sale using the Unify system, stressing the urgency of her feedback.
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Figure 4.5: David’s Email Correspondence with Julie

To effectively assist Julie in crafting a response to the email received from David, let’s
apply a phased approach as outlined below. The initial phase involves the identification of
specific BP knowledge that directly pertains to the content of David’s email (Phase 1).
Within the email, two notable events stand out: the "Expired Deal" and the "Extended
Deal".

The "Expired Deal" event is clearly delineated in a specific sentence wherein David
communicates, "Deal 235670 for Teco Gas Processing has expired as of 12/00". This statement
serves as an informative declaration, indicating the termination of the mentioned deal. The
associated BD relevant to this event include "deal" and "expired".

Similarly, the "Extended Deal" event is discernible from another sentence where David
provides details and solicits a response: "However, I wanted to inform you that we had a
successful sale in 02/01, which could potentially be extended for Teco Gas Processing". In this
instance, the speech act performed is a "request for information", and the corresponding BD
associated with this event encompass "deal" and "extended".

Once the events contained in the received email have been identified, forming the sub-
sequence of events from the received email, the next step involves forecasting relevant BP
knowledge that can be seamlessly integrated into the email response, marking Phase 2
and 3 of our approach. To do so, the sub-sequence of events is input into the “next-bp-
knowledge” prediction model, which generates several potential BP knowledge combinations,
each assigned a confidence value conf(Ck) or conf(Oi). Figure 4.6 illustrates the BP knowledge
combinations represented as sub-sequences of events predicted by our models.
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Figure 4.6: Predicted sub-sequence of events

• Sub-sequence of Events 1: This sub-sequence involves creating a deal and subse-
quently entering the deal details, boasting the highest combination score. Both the
speech acts and BD align with the situation presented in the original email, making
it the most appropriate response option. The high confidence score indicates that this
sequence is highly likely to occur and aligns well with the speech acts and BD expecta-
tions in the context of the original email. This suggests that this BP knowledge is the
most appropriate to be included in the response to the email received by David.

• Sub-sequence of Events 2: Although this sequence has a reasonable confidence
score, it is lower than the first sub-sequence. This indicates that while noting a deal is a
relevant activity, it is less commonly executed by BP actors immediately after entering
a deal. Thus, it is not considered the primary response option, even though it remains
significant.

• Sub-sequence of Events 3: This sub-sequence has the lowest confidence score, in-
dicating that it is the least likely to align with the situation presented in the original
email. The activity "change convert deal" seems unrelated to the primary topic of the
email, and the sequence of speech acts and BD does not fit the context well. Therefore,
this sub-sequence is considered irrelevant for guiding the subsequent steps in response
to the email.

4.2.2 Second segment: Response Template Recommendation

Email Recommendation - Phase 4

Finally, we have reached the last phase, which involves recommending an email response
template based on the textual content related to the BP knowledge of the email response.

Let’s define W as the set of words in emails. A formal definition (Definition 4.2) of an
email response template is presented as follows:

Definition 4.2 (Email Response Template). An email response template T represents a
sequence of sentences T = p1 7→ p2 7→ . . . 7→ pn, where:
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1. pi is a sequence of terms within the same sentence, pi = ti1 7→ ti2 7→ . . . 7→ tij, such
that:

(a) Each term is denoted by a single variable tij, where the index i refers to the sentence
index, and the index j refers to the jth term in the sentence.

(b) tij ∈ W for all i, j.
(c) tij 7→ ti,j+1 means that tij occurs before ti,j+1.
(d) Each term tij could be of two types: an unchangeable word or a modifiable word. A

modifiable word refers to an entity tag (e.g., numeric value, organization, person’s
name, localization) that an employee can replace with a list of business data values.

2. pi 7→ pi+1 means that the sentence pi appears before the sentence pi+1.

3. The index n (where n ≥ 1) refers to the number of sequential sentences in the email
template T .

We proceed with the underlying assumption that the suggested email responses are rec-
ommended based on the carefully delineated criteria outlined below:

• Alignment with Business Context: The responses must share a similar business
context with the received email. This implies that the suggested replies should be per-
tinent to the subject topics found in the original email. For instance, if the original
email concerns a marketing strategy, the suggested responses must also concentrate on
marketing-related matters, rather than diverging into unrelated domains like Informa-
tion Technology support.

• Inclusion of Predicted BP Knowledge: The suggested responses should not merely
align with the business context but should also encompass predicted BP knowledge. This
refers to the integration of accurate, current information related to the specific business
operations, practices, or workflows mentioned in the original email. By ensuring that
the response incorporates this type of specialized information, the email can effectively
address the recipient’s needs or queries.

• Consistency with the Author’s Writing Style: It’s imperative that the suggested
email responses are composed in the same writing style as the author. This entails
emulating the language, syntax, and overall approach found in the original email. Here,
keeping stylistic consistency is key to giving the recipient a seamless experience. The
suggested replies should have the same tone as the original email, regardless of whether
it was formal, informal, technical, or conversational. This will give the appearance that
the original sender sent them.

By adhering to these criteria, the suggested email responses aim to provide more person-
alized, relevant, and coherent communication that aligns with the context. Consequently, for
each BP Knowledge within the chosen list of predicted BP Knowledge from Phase 3, we
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select the most appropriate sentence and concatenate this sentence to form the content of the
recommended email response. As highlighted in Figure 4.7, this process involves identifying
the business context, filtering sentences by this context, and retaining those that match the
employee’s writing style. In the following, we detail each step taken to select the most suitable
sentence for each BP Knowledge to construct the email response template.

Identify Business Context
with YAKE

Filter Sentences by Business
Context

Retain Sentences Matching
Writing Style

Received Email

Sentences from the previously
sent emails that contain the

predicted BP knowledge
Sentences that share a similar

business context with the
received email

Sentences that match the
writing style of the employee

who received the email

1

2 3 4

Figure 4.7: Sentence Recommendation for BP Context

1. We retrieve all email sentences from previously sent emails that contain the predicted
BP knowledge.

2. We identify the business context of the received email and the retrieved email sentences
using Yet Another Keyword Extractor (Yake). Yake, as introduced by Campos et al.
[23], employs a sophisticated methodology that taps into the inherent semantic and
syntactic patterns contained within sentences. This enables it to extract pertinent
keywords and phrases specific to the business domain.
The initial phase of Yake involves preprocessing the sentences from the received email
and the retrieved emails. This preparatory step encompasses processes such as tokeniza-
tion, part-of-speech tagging, as well as the elimination of stop words and punctuation.
By segmenting the sentences into individual tokens and discerning their grammatical
functions, Yake is able to attain a more profound comprehension of the linguistic struc-
ture, thereby facilitating more effective extraction of context.
Following the completion of preprocessing, Yake adopts a hybrid strategy that amal-
gamates unsupervised and supervised learning techniques. The unsupervised methods
come into play during the initial keyword extraction phase, during which the algorithm
identifies frequently occurring and statistically noteworthy terms in the sentences. Sub-
sequently, Yake harnesses the power of supervised learning to rank these potential key-
words based on their pertinence to the business domain. The supervised models are
fine-tuned using annotated datasets that have been meticulously curated to encompass
a diverse spectrum of business topics and contexts.
The procedure for contextual ranking within Yake hinges on the usage of Term Fre-
quency Inverse Document Frequency (TF-IDF), a sophisticated scoring mechanism that
takes into consideration various linguistic attributes and the semantic interconnected-
ness between words. By taking these elements into account, Yake ascertains the signif-
icance of a given keyword or phrase with respect to the overarching business context
portrayed by the sentences.



4.2. The Proposed Approach Overview 75

Consider again the email in Figure 4.5. Therefore, Yake identifies and ranks the following
keywords based on their pertinence to the business domain:

• Expired Deal and Expiration Date: The email from David Gale mentions that Deal
#235670 for Teco Gas Processing has expired as the expiration date was 12/00.
This highlights the need to address the expired deal to ensure continuity and avoid
any disruptions in operations.

• Successful Sale and Deal Extension: David also informs Julie of a successful sale in
02/01, suggesting the potential to extend the deal for Teco Gas Processing. This
implies there is a recent positive performance that can be leveraged to renegotiate
or extend the terms of the expired deal.

• Teco Gas Processing and Redraft Sale: The email specifically mentions Teco Gas
Processing and the need to promptly redraft the sale through Unify. This context
indicates that Teco Gas Processing is a significant client, and there is a procedural
step involved (using Unify) to formalize any extensions or new agreements.

3. We refine the retrieved sentences by selecting those that closely match the business
context of the received email. This process entails several interconnected steps that
synergize seamlessly.
Initially, we utilize contextual embeddings generated by training a transformer-based
model with an extensive collection of business-related texts. This methodology enables
our system to comprehend sentence meanings deeply within the realm of business com-
munication. These embeddings not only capture word meanings but also consider how
words integrate into the sentence’s structure.
We use a sentence-to-vector technique, combining an attention mechanism to assign
different weights to words in a phrase based on their relevance, to bridge the gap between
these embeddings and the email content. Subsequently, we concentrate on filtering and
retaining sentences that closely align with the associated business context. We utilize
cosine similarity to gauge the resemblance between the vector of a retrieved sentence and
those of sentences within the email, setting a threshold determined through empirical
testing and validation. High cosine similarity scores highlight sentences that share a
comparable business context.
Acknowledging that relying solely on cosine similarity may not always yield optimal
results, we introduce an additional layer of filtering using supervised learning. We
train a classifier that considers features such as sentence length, specific keywords, and
other attributes relevant to the unique business context. This additional step ensures
that the retained sentences are not only contextually similar but genuinely relevant to
the specific context of the business email. This layered approach creates a synergistic
method for effectively preserving sentences that align with the business context of the
received email.

4. Finally, we retain sentences that match the writing style of the employee who received
the email. To accomplish this, we used a method called stylometric analysis. This tech-
nique enables us to identify the unique writing styles of different authors in individual
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sentences. Our approach involved several stages, including data preparation, feature
extraction, and style modeling.

Algorithm 3 Stylometric Analysis
Input: emailSentences
Output: matchedEmployee

1: preparedData← {}
2: features← []
3: clusters← []

{Step 1: Clean and preprocess each sentence in the email}
4: for sentence in emailSentences do
5: cleanedSentence← CleanAndProcess(sentence)
6: preparedData.append(cleanedSentence)
7: end for

{Step 2: Extract stylometric features from the cleaned sentences}
8: for data in preparedData do
9: featureV ector ← ExtractFeatures(data)

10: features.append(featureV ector)
11: end for

{Step 3: Initialize cluster centers for k-means clustering}
12: kCenters← InitializeRandomCenters(k)

{Step 4: Iteratively assign features to nearest cluster center and update centers}
13: repeat
14: for feature in features do
15: AssignToNearestCenter(feature, kCenters)
16: end for
17: for center in kCenters do
18: UpdateCenter(center, features)
19: end for
20: until HasConverged(kCenters)

{Step 5: Group features into clusters based on final centers}
21: clusters← GroupByCenter(features, kCenters)

{Step 6: Profile employee based on the clustered features}
22: for cluster in clusters do
23: matchedEmployee← ProfileEmployee(cluster)
24: end for

The first step in our methodology involved preparing labeled data. We accumulated
a substantial collection of sentences authored by the same individual to ensure a well-
rounded representation. This step required significant manual effort to gather and label
the sentences accurately. Domain experts were involved in this process to ensure the
quality and reliability of the labels. These experts reviewed and annotated the sentences,
associating them with the respective authors. This extensive manual labeling process
was crucial to creating a high-quality training dataset (lines 1 −→ 3).

Following this, the gathered sentences underwent meticulous cleaning and pre-
processing, which involved the removal of extraneous elements like special characters and
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capitalization. The cleaning process included normalizing text to a consistent format,
such as converting all characters to lowercase and removing punctuation. Tokenization
was applied to split sentences into individual words or tokens, which facilitated more
precise analysis in subsequent stages (lines 4 −→ 7).

Transitioning to the feature extraction phase, the stylometric analysis leveraged a range
of linguistic attributes to identify the distinctive traits of an author’s writing style (lines
8 −→ 11). The three primary categories for these characteristics were lexical, syntactic,
and structural [81, 39, 68]. Metrics like word frequency, vocabulary richness, and n-
grams (sequences of n words) are examples of lexical qualities. For instance, vocabulary
richness assessed the variety of original terms employed by an author, whereas word fre-
quency examined the frequency of particular words inside a sentence. Sentence length,
grammar patterns, and part-of-speech tagging were among the topics covered by syn-
tactic characteristics. Part-of-speech tagging helped to determine the author’s syntactic
preferences by identifying the grammatical components (nouns, verbs, adjectives, etc.)
in a sentence. Variations in features like sentence and paragraph lengths, punctuation
use, and the use of particular stylistic devices like alliteration or metaphors were all
taken into account when determining structural qualities. These structural elements
helped to capture the overall formatting and stylistic choices made by an author.

Having acquired the relevant features from the text, we proceeded to the style modeling
phase. At this stage, we harnessed machine learning techniques to precisely quantify
the similarities and differences between sentences, based on the extracted features. In
our methodology, we opted for the widely used clustering algorithm “k-means”. This
iterative algorithm effectively groups sentences into a predefined number of clusters by
minimizing the variance within each cluster. The process involved several steps: initial-
izing cluster centers randomly, assigning sentences to the nearest cluster center based on
feature similarity, and updating the cluster centers by calculating the mean of assigned
sentences. This iterative process continued until the cluster centers converged, result-
ing in well-defined clusters of sentences exhibiting similar stylistic characteristics. This
process was entirely automated, utilizing the extracted features to drive the clustering
process without further manual intervention (lines 12 −→ 21).

Subsequently, we engaged in employee profiling by meticulously studying the labeled
data within each cluster, aiming to identify the predominant employee associated with
each cluster (lines 22 −→ 24). By mapping employees to clusters, we could discern
distinctive writing styles connected to each employee, offering valuable insights into
their individual linguistic traits. This analytical approach empowered us to select and
retain sentences aligning with the writing style of the particular employee who had
received the email. The final profiling step was semi-automated, involving algorithmic
analysis followed by expert verification to ensure accuracy.

In Figure 4.8, a network graph is presented that effectively illustrates the intercon-
nected relationships among 15 specific employees. Within the graph, individual nodes
correspond to distinct employees, while the links interconnecting them symbolize the
similarity in writing style between two employees.
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Figure 4.8: Network graph of selected employees based on similarity in writing styles
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We use the Stanza Python library for natural language analysis [89] to detect and cate-
gorize named entities in sentences. This includes identifying dates, person names, locations,
organizations, quantities, and other entities, as detailed in algorithm 4 (lines 6 −→ 12). After
recognizing these named entities, we replace them with appropriate tags (lines 15 −→ 18).
These tags serve as editable placeholders that employees can subsequently replace with real
business data.

Algorithm 4 Named Entity Tagging and Replacement
INPUT: sentences
OUTPUT: taggedSentences {Sentences with replaced named entities}

1: namedEntities← {} {To store identified named entities.}
2: tags← {} {To store corresponding tags for named entities.}
3: taggedSentences← [] {Will hold sentences with replaced named entities.}
4: for sentence in sentences do
5: entities, sentenceWithTags ← IdentifyEntities(sentence) {Uses Stanza to identify

entities and tag the sentence.}
6: for entity in entities do
7: if entity not in namedEntities then
8: tag ← GenerateTag(entity) {Creates a new tag for the entity.}
9: namedEntities[entity]← tag

10: tags[tag]← entity

11: end if
12: end for
13: taggedSentences.append(sentenceWithTags)
14: end for
15: for sentence in taggedSentences do
16: for tag, entity in namedEntities do
17: sentence ← ReplaceTagWithEntity(sentence, tag, entity) {Substitutes tags with

actual entities.}
18: end for
19: end for
20: return taggedSentences

Finally, as delineated in Algorithm 5, this phase concludes with two primary steps: (i)
selecting the most suitable sentence corresponding to each event in the predicted event se-
quence (lines 2 −→ 5), and (ii) concatenating these sentences in the order they appear (lines
6).
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Algorithm 5 Event Selection and Sentence Concatenation
INPUT: taggedSentences, predictedEvents
OUTPUT: finalEmailResponse {Concatenated sentences for email response}

1: eventSentences← [] {To store selected sentences for each event.}
2: for each event in predictedEvents do
3: selectedSentence← SelectSentence(event, taggedSentences) {Selects the most appro-

priate sentence for the event.}
4: eventSentences.append(selectedSentence)
5: end for
6: finalEmailResponse← ConcatenateSentences(eventSentences) {Concatenates selected

sentences for the email response.}
7: return finalEmailResponse

Referring back to our running example, let’s apply Phase 4 to the selected BP knowledge
from Phase 3 to recommend an email response template for the email received by David. In
this process, we retrieve and analyze email sentences containing the selected BP knowledge
from Phase 3 to recommend a personalized and contextually relevant email response. We
recall that for each BP knowledge, the proposed approach ensures that the selected sentences
match both the business context of the received email and the writing style of the sender, in
this case David. This ultimately constructs a coherent and suitable email response template.

For instance, the first BP knowledge is "create deal." The selected sentence for this knowl-
edge is, "I believe it would be advantageous for us to initiate a new deal with [Company]." For
the second BP knowledge, "enter deal," the chosen sentence is, "I will promptly enter the new
deal into our system for [Company]."

These selected sentences are closely tied to the context provided in the email from David
Gale, which highlights several key points:

• The email notes that Deal #235670 for Teco Gas Processing expired in December 2000.
In the first sentence, this is addressed by highlighting the need to create a new deal to
replace the expired one.

• The email emphasizes the significance of Teco Gas Processing and the necessity to
promptly redraft the sale using Unify, a procedural step to formalize any new agree-
ments. This second sentence underscores the importance of promptly formalizing the
new agreement, in line with the procedural requirements mentioned in the email.

These sentences are then concatenated to form the final email response template, as
illustrated in Figure 4.9. The phrases enclosed in curly brackets are customizable, allowing
the user to personalize the email with specific details related to the recipient and the subject
matter. For instance, the term company will be dynamically replaced with the company
name.
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Figure 4.9: Proposed Email Response Template Tailored for Julie’s Communication Style in Reply to David

4.3 Experiments and Validation

The effectiveness of the proposed approach has been assessed using real emails acquired from
the public Enron dataset1. These emails were either sent or received by Enron employees
engaged in online energy trading. Instead of comparing our work to existing studies in the
same field, which have significant limitations compared to the breadth and innovation of our
approach, we evaluate our approach’s performance based on two aspects: (i) the precision of
predicting BP knowledge in email replies (Section 4.3.1), and (ii) the relevance of the textual
content in the suggested emails (Section 4.3.2). To demonstrate the practical application and
benefits of our proposed approach, we present in Section 4.3.3 a detailed use case involving
the utilization of RESTful API endpoint for email response recommendation. The approach,
developed in Python, is readily available on GitHub 2, where some of the experimental results
can also be found.

4.3.1 Precision of Predicted BP Knowledge in Email Responses

For this evaluation, we will explain the process used in the event log generation phase to
produce the event log. Additionally, we will demonstrate how the inclusion of BP knowledge
in the sequences of events used for training the prediction models can affect the precision of
the predicted BP knowledge.

1https://www.cs.cmu.edu/ enron/
2https://github.com/ralphbn1995/Predictive-process-approach-for-email-response-recommendations.git
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To generate the event log, we used 8200 emails from the Enron dataset and fed them
to the event log generator developed in our previous work. The extracted event log con-
tained 1340 sequences of events and 1865 sub-sequences of events, with 80% of the obtained
sequence of events used to train the first prediction model and 80% of the obtained sub-
sequences used to train the second prediction model. Each model had 128 neurons in the
hidden layer and was trained for 100 epochs on the training dataset with a constant learning
rate of 0.02. We selected 128 neurons in the hidden layer to balance model complexity and
performance, capturing dependencies and patterns in the email threads without overfitting.
Extensive experiments and cross-validation showed that this configuration provided the best
trade-off between computational efficiency and predictive accuracy. Comparative analysis of
models with varying neurons (from 64 to 256) revealed that the 128-neuron model consis-
tently outperformed others in terms of precision and recall, justifying its selection for our
final implementation.

We conducted two experiments:

• Experiment 1: We include only the activities in the sequences of events.

• Experiment 2: We include all the BP knowledge that we extracted previously. We
represented a sequence of events as a set of linked activities, speech acts, and business
data.

After training the LSTM model in each experiment, we apply the confusion matrix to
the testing data. The confusion matrix serves as a performance measurement for predicting
the accuracy of machine learning classification problems. Additionally, the confusion matrix
proves to be useful in calculating precision and recall. In our case, the classes represent the
activity names of the events found within the sequences of events.

Figure 4.10 illustrates the calculated metrics corresponding to the 30 most common
classes. These metrics are presented using bar charts for both Experiment 1 and Experiment
2. In these charts, each class is depicted by a cluster of bars, where each individual bar
represents a specific metric (True Positive (TP), True Negative (TN), False Positive (FP),
False Negative (FN)). The height of each bar reflects the frequency or count of the respective
metric for that particular class.

Afterwards, we calculated the average precision and recall for each class. Our results show
a comparison of average precision and recall for two datasets, ’Experiment one’ and ’Exper-
iment two’. The findings demonstrate that incorporating BP knowledge into the event
sequences significantly enhances the LSTM model’s prediction accuracy and recall. Specif-
ically, with BP knowledge, the average precision increased from 0.76 to 0.85, and the average
recall improved from 0.73 to 0.82. This improvement is attributed to the integration
of activities, speech acts, and business data, which provides a richer context that aids
the model in understanding and predicting complex connections within the sequences.
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Figure 4.10: Comparing Metrics for the Top 30 Frequent Event Log Classes in Experiments 1 and 2

4.3.2 Effectiveness and Coherence of the Textual Content in Predicted
Emails

To evaluate the effectiveness of our approach in generating relevant and coherent email
responses compared to fine-tuned GPT-3 and GPT-4 models, focusing on the inclusion and
order of events within the responses, we conducted a study. Our study utilized a custom
dataset comprising 820 pairs of Enron emails, where each pair contained an original email
and its corresponding response. This dataset was split into 85% for training and 15% for
validation and testing to ensure a robust evaluation of the models. We fine-tuned GPT-3
and GPT-4 models using this dataset. The preprocessing steps included tokenization and
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normalization, with careful selection of hyper-parameters: a learning rate of 1×10−5, a batch
size of 8, and training over 3 epochs using the Adam optimizer.

We conducted an analysis involving 35 email exchanges, each exchange including a received
email and its response. We therefore extracted the BP knowledge from both the received
emails and their responses. Using our approach and the fine-tuned GPT-3 and GPT-4 models,
we then generated recommended responses to each of the received emails. From the generated
email responses, we extracted the BP knowledge and then compared the BP knowledge
from the generated responses with those from the email exchanges’ responses. To assess
the quality of the generated responses, we used two key comparison metrics: precision and
recall. Precision measures the number of relevant events included in the response divided
by the total number of events in the response, helping us understand the accuracy of the
generated responses. Recall measures the ability to retrieve and present relevant information
in a logical and coherent manner. Our approach outperformed the fine-tuned GPT-3 and
GPT-4 models in both precision and recall, as shown in Table 4.1. The precision of our
approach was 0.9175, indicating a higher ability to include relevant events in the response
emails compared to GPT-3 (0.8789) and GPT-4 (0.8915). This high precision demonstrated
our model’s effectiveness in capturing and incorporating all pertinent details from the original
email into the generated response. Our approach also achieved a recall of 0.9011, surpassing
the recall of GPT-3 (0.8517) and GPT-4 (0.8723). This ensured that the sequence of events
in the response was consistent with the expected order, enhancing the logical flow and
coherence of the generated emails.

Table 4.1: Comparing Evaluation Results: Our Approach vs. Fine-tuned GPT-3 vs. Fine-tuned GPT-4
Models

Model Events Included (Precision) Order Accuracy (Recall)
Fine-tuned GPT-3 model 0.8789 0.8517

Fine-tuned GPT-4 model 0.8915 0.8723

Our Approach 0.9175 0.9011

4.3.3 Use Case Study

The goal of this use case is to evaluate the efficiency and quality, and user satisfaction of
email response recommendations using our approach. To achieve this, we used a RESTful
API endpoint to enable the seamless integration of our approach. Our RESTful API end-
point is meticulously designed with the same dual-focus approach discussed in Chapter 3,
Section 3.4.2. The /response-template-suggestion endpoint leverages our Predictive Pro-
cess Approach for Email Response Recommendations to suggest appropriate email response
templates. Upon receiving a POST request containing the email’s main body, it analyzes the
content and provides a suitable response template in JSON format. This feature assists users
in composing professional and contextually appropriate email responses, thereby enhancing
communication efficiency and consistency.

Thirty-three participants from diverse backgrounds, including data scientists, software
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engineering students, Ph.D. students, and developers, were involved. All participants had
a solid understanding of process and data analysis, with varying levels of familiarity with
REST APIs, ranging from extensive knowledge to basic understanding. They were randomly
assigned to either an API-assisted group, utilizing APIs to compose or edit emails, or a control
group, employing a manual approach. Both groups received identical email samples, ensuring
consistent task complexity.

• API-Assisted Group: Semi-Automated Approach

In this testing scenario, participants engaged with the /response-template-suggestion
endpoint, aiming to streamline their email response generation process. The total time
invested in crafting responses, denoted as Ttotal, was measured, where:

Ttotal = TAPI + Tcustomization

Here, TAPI represents the time taken to invoke the API, encompassing the duration from
initiating the API request to receiving the suggested templates. A shorter TAPI implies
a more responsive API, contributing positively to the overall efficiency of the response
generation process. On the other hand, Tcustomization reflects the time participants spent
tailoring the suggested templates to meet their specific needs. A higher Tcustomization
might indicate that initial template suggestions required significant adjustments, po-
tentially impacting the ease of customization.

Alongside response time metrics, a user satisfaction survey involving 30 participants
was conducted. Each participant contributed a satisfaction score on a scale from 1 to
10. This survey likely encompassed aspects such as the relevance of the API’s suggested
templates to participants’ specific scenarios, the ease of use, and overall satisfaction
with the response recommendation process. A higher score suggests a more positive
user experience and satisfaction with the API’s performance.

• Control Group: A Manual Approach

In the control group, participants were tasked with manually composing email replies
without the assistance of the /response-template-suggestion endpoint. This required
careful reading of received emails and crafting responses based solely on individual
judgment and writing skills. The performance metrics for this group mirrored those
applied to the API-assisted group, enabling a direct comparison.

The manual approach exhibited a notable delay in time efficiency. Participants in this
group took an average of Tmanual = 5 minutes to complete their email replies. In
contrast, their API-assisted counterparts completed the same task in an average time
of TAPI = 2.2 minutes.

The control group scored an average of Smanual = 7 out of 10 in user satisfaction.
This rating was noticeably lower than the API-assisted group’s satisfaction score. Par-
ticipants in the manual group often found the process to be more tedious and time-
consuming, adversely impacting their overall satisfaction.
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The Average Time Reduction (%TR) is a crucial metric in evaluating the efficiency of au-
tomated email response generation compared to manual methods. It quantifies the percentage
improvement in response time achieved by utilizing an API for generating email responses.
The formula given by

%TR = Tcontrol − TAPI
Tcontrol

× 100%

where Tcontrol and TAPI are the average response times in the control and API-assisted groups,
respectively.

This formula determines the difference between the average response time for the auto-
mated group, where participants use the API for response production, and the manual group,
where participants create emails without automated aid. The result is then expressed as a
percentage of the average response time for the manual group. A positive %TR indicates that
the automated method is more time-efficient, reflecting a reduction in the time it takes to
generate email responses compared to manual efforts. Conversely, a negative %TR would im-
ply that the manual method is faster. This metric provides valuable insights into the practical
efficiency gains offered by automated email response generation.

Table 4.2 presents a comprehensive overview of the outcomes from the experimental eval-
uation that involved the use of an API-assisted approach versus a manual approach for gen-
erating email responses. The results from the table clearly demonstrate the superior per-
formance of the API-assisted approach in comparison to the manual method for generating
email responses. The Avg Response Time values reveal that, on average, participants in the
API-assisted group were able to compose responses more quickly than their counterparts in
the manual group. This efficiency is further emphasized by the Avg Time Reduction (%TR)
column, which shows a notable percentage reduction in response time for the API-assisted
group. Additionally, the User Satisfaction Score column highlights that participants using
the API reported higher levels of satisfaction, suggesting that the API’s suggested templates
were deemed more relevant and effective by the users.

Table 4.2: Comparison Between Automated and Manual Email Approaches

Participants Avg Response Time
(s)

Avg Time Reduc-
tion (%TR)

User Satisfaction
Score

33 3764 18.5 8.9

In summary, these findings underscore the efficacy and efficiency of leveraging the auto-
mated API for email response recommendation. Participants using the API, in other words,
our developed approach, completed their tasks in less than half the time taken by those
crafting emails manually.

4.4 Conclusion

In this chapter, we have achieved our second objective and provided an answer to the first
research question (Q2) raised in the thesis problem. This is elaborated in Chapter 1, Section



4.4. Conclusion 87

1.3.2. The main inquiry we delved into was: Can predictive techniques be utilized to
recommend specific process-oriented emails? To tackle this multi-faceted query, we
have considered a range of sub-questions:

• Q2-1: How can we effectively leverage the event log from previously exchanged emails
to predict future BP knowledge that will be expressed in email responses?

• Q2-2: What are the most suitable machine learning algorithms or predictive models
that can be employed to forecast this future BP knowledge?

• Q2-3: What types of event attributes should be considered when predicting process-
specific email responses?

• Q2-4: How can we personalize the recommended email responses not only based on
the process activity but also on the preferences and communication styles of individual
participants?

• Q2-5: How can we validate the effectiveness and performance of the process-activity-
aware email response recommendation system to ensure it provides meaningful and valu-
able email responses in response to received emails?

In response to these questions, we have developed a process-activity-aware email response
recommendation system composed of five phases:

1. Generating an event log from past emails,

2. Constructing business process-oriented prediction models using the event log to guide
email responses addressing questions Q2-1 and Q2-2,

3. Identifying activities and instances from incoming emails concerning question Q2-5,

4. Predicting relevant BP knowledge for the response email pertaining to question Q2-4,
and

5. Recommending an email response template by analyzing textual content associated with
the BP knowledge of the response.

Regarding question Q2-5, we conducted experiments using a public dataset from Enron
and demonstrated promising results. Furthermore, we have publicly shared our findings,
which, to our knowledge, are absent in related studies (that’s why comparison with them was
not feasible when evaluating our proposals).

We recognize that certain limitations may arise at distinct levels:

1. Technical Implementation Level: Technical constraints and challenges pertaining
to the integration with existing platforms, real-time responsiveness, scalability, and
privacy and security concerns are pivotal factors to address at this stage.
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2. Personalization Level: While the system endeavors to accommodate individual com-
munication styles, achieving genuine personalization necessitates the incorporation of
extensive datasets comprising diverse individual communication patterns.

3. Ethical Concerns Level: Predicting and recommending email responses raises con-
cerns regarding user privacy and data confidentiality. The implementation of such
systems in real-world settings would demand stringent guidelines and ethical consider-
ations.

In the next and the final chapter, we discuss potential perspectives and improvements of
the overall work presented in this report.



Chapter 5

Conclusion & Perspectives

Contents
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Enhance Predictive Models and Integrate Advanced NLP Techniques . . . 91
5.2.2 Implement Real-Time Conformance Checking and Explore Cross-

Platform Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Address User Interface, Security, and Scalability Considerations . . . . . . 92

In this chapter, we first summarize our contributions in this thesis. Then, we discuss our
future research directions.

5.1 Contributions

This thesis addressed the complexities of BPM in email-driven processes, focusing on multi-
perspective conformance checking and a process-activity-aware email response recommenda-
tion system. Traditional BPM systems often overlook the informal and unstructured nature
of email communications, which are crucial for many business activities. Our work aimed to
bridge this gap by implementing innovative methodologies tailored for email-driven processes.

Our contributions in the realm of multi-perspective conformance checking are notable. We
proposed process models based on sequential and contextual constraints specified by a data
analyst/expert, addressing both structural and contextual perspectives of email events. We
developed algorithms to identify fulfilling and violating events, ensuring that email-driven
processes adhere to a predefined model. This approach allowed for a more comprehensive
evaluation of email processes by considering both the sequence of activities and the business
context in which they occur.

The process-activity-aware email response recommendation system represents another sig-
nificant advancement. By leveraging structured event logs, we predicted future BP knowl-
edge, including the sequence of activities, their intent, and relevant business data. This
system recommends email response templates based on predicted BP knowledge, enhancing
the relevance and efficiency of email communications. Our methodology consists of several

89



90 Conclusion & Perspectives

phases, including BP knowledge extraction, building predictor models, and recommending
email responses. These phases work together to ensure that the recommended responses are
contextually appropriate and align with the predicted future activities.

To validate our approach, we utilized emails retrieved from the public Enron dataset and
conducted a series of experiments covering various phases, parts, and steps of our overall
framework. We shared the results to facilitate quantitative comparisons with future studies
using the same dataset, a feature absent in existing approaches. Additionally, by integrating
RESTful APIs, we streamlined communication with prediction and compliance methods,
enhancing the accessibility and usability of our proposed solutions. This integration ensures
that our methods can be easily adopted and implemented in various business environments,
facilitating the management and optimization of email-driven processes.

The design principles we presented in the introduction (Chapter 1, Section 1.4) have been
respected:

• Context Sensitivity: We emphasized analyzing and interpreting the business con-
text of email conversations to ensure appropriate and relevant recommendations and
conformance checks.

• Interdisciplinarity: We bridged the gap between various domains, including process
mining, natural language processing, machine learning, and business management. By
leveraging insights and methodologies from these fields, we provided a comprehensive
approach to email-based business processes.

• Consistency: We ensured a uniform approach in predicting email responses and check-
ing conformance. This involved developing standardized methods and algorithms that
could be reliably applied across different scenarios and datasets, maintaining consistency
in results and interpretations.

• Automation: We emphasized the automation of the recommendation and conformance
checking processes. This aimed to develop models and systems that function with
minimal human intervention, enhancing efficiency and reducing the likelihood of human
error, thereby providing a more accurate and seamless experience.

• Accessibility and Integration: We designed solutions to be user-friendly and versa-
tile enough for integration into various business environments. This principle empha-
sized creating tools that were robust yet easily accessible and integrable, achieved with
the developed APIs.

In conclusion, this thesis provides a comprehensive framework for addressing the challenges
of BPM in email-driven processes. Our multi-perspective conformance checking approach
and process-activity-aware email response recommendation system offer robust solutions for
improving the management and efficiency of email communications in business processes.
The validation of our methods using real emails from the public Enron dataset demonstrates
their practical applicability and effectiveness. This work not only contributes to the academic
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field of BPM but also offers valuable tools and methodologies for businesses to optimize their
email-driven processes.

5.2 Perspectives

In future work, we intend to: (i) Enhance predictive models and integrate advanced NLP
techniques (Section 5.2.1), (ii) Implement real-time conformance checking and explore cross-
platform applicability (Section 5.2.2), (iii) Address user interface, security, and scalability
considerations (Section 5.2.3).

5.2.1 Enhance Predictive Models and Integrate Advanced NLP Techniques

This perspective includes two main axes. The first axis involves enhancing the predictive
accuracy of email response recommendations by leveraging more advanced machine learning
techniques, such as transformer-based models. These models have the potential to include
user-specific behavioral patterns and preferences to improve personalization and relevance, as
well as better capture the context and subtleties of email exchanges.

Advanced NLP techniques, like sentiment analysis and emotion identification, can be inte-
grated to provide greater insights into the urgency and emotional tone of emails in the second
axis. This would allow for more nuanced and context-aware response recommendations. Ad-
ditionally, exploring NLP applications for summarizing lengthy email threads and extracting
key action items could further streamline email management processes.

5.2.2 Implement Real-Time Conformance Checking and Explore Cross-
Platform Applicability

To further automate and improve the system, additional research questions need to be ex-
plored:

1. Real-Time Conformance Checking: Developing real-time conformance checking
systems that operate dynamically as emails are drafted and sent. This involves creating
lightweight, efficient algorithms capable of performing quick checks without disrupting
the user experience. Continuous learning mechanisms within the conformance checking
system could allow it to adapt to evolving business processes and user behaviors over
time.

2. Cross-Platform Applicability: Extending the methodologies to other communica-
tion platforms such as instant messaging, project management tools, and social media.
This would provide a more comprehensive view of business process management across
various channels and uncover new insights into communication patterns and process
flows, enabling more holistic process optimization strategies.
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The developed APIs can also be designed for integration with a variety of other plat-
forms beyond email clients. By creating flexible and adaptable APIs, the solutions can be
employed in diverse systems, enabling seamless interoperability and expanding the utility of
the developed techniques across different domains and applications.

5.2.3 Address User Interface, Security, and Scalability Considerations

Future studies should focus on three main axes to address practical integration requirements:

1. User Interface and Experience Enhancements: Improving the user interface and
experience for the email management system is crucial for adoption and usability. Re-
search could explore designing more intuitive and user-friendly interfaces that seam-
lessly integrate predictive and conformance checking features. Conducting user studies
to gather feedback on system usability and effectiveness could inform iterative improve-
ments, ensuring the tool meets user needs effectively.

2. Security and Privacy Considerations: Ensuring the security and privacy of email
data is paramount. This involves investigating how to store discovered business pro-
cess knowledge at the email client level and securely share validated data to a central
subsystem. Solutions could include implementing a hashing process and exploring the
salting concept to add a layer of security to the hashing process, thereby protecting
sensitive information.

3. Scalability and Performance Optimization: As email volumes continue to grow,
ensuring the scalability and performance of the system is essential. Research could
focus on optimizing algorithms and infrastructure to handle large-scale email datasets
efficiently. Investigating distributed computing and cloud-based solutions could support
scalability and provide robust performance under heavy workloads.

By addressing these areas, future research can build on the foundations laid in this thesis,
driving further innovation and enhancing the practical utility of business process mining
techniques in email management.
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In this chapter, we are diverging from our primary focus, which has mainly revolved
around BP Mining. Specifically, we have concentrated on process prediction and conformance
checking in the context of email communication. Although the forthcoming content might
appear tangential to our main thesis, it represents a curious exploration that has piqued
our interest. Our attention now turns to anomaly detection within the dynamic realm of
streaming data, with a specific emphasis on the context of the Internet of Things (IoT).
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A.1 Introduction

Anomaly detection is a sub-field of data mining that has attracted more and more attention
with the advent of IoT systems [80, 31]. Several definitions of the anomaly, often referred
to as outlier, can be found in the literature. Hawkins defines an outlier as an observation
that deviates considerably from the rest of the other observations as if it were generated by
a different process [60]. As for [36], they argue that anomaly detection involves modeling
what is normal in order to find out what is not. [7] distinguishes between an outlier and an
anomaly. The degree of aberrance helps differentiate noises from anomalies.

Anomaly detection improves data quality by removing or replacing the abnormal data. In
other cases, the anomalies reflect an event and provide useful new knowledge. For example,
the detection of anomalies can prevent material damage and therefore encourage predictive
maintenance in industry. It finds application in several other areas such as health, cyberse-
curity, finance, natural disaster prediction, and many other areas.

Data exists in many forms: static data, data flows, structured and unstructured data, etc.
Each type of data is relevant in one or more areas. The multitude of data types and their
different characteristics mean that there are different methods for detecting anomalies, each
of which is effective in a particular area, with a given purpose. These methods generally use
a decision threshold to isolate anomalies based on different techniques such as classification,
clustering, regression, nearest neighbors, and statistical tools.

As part of our study, we are interested in outlier detection methods for handling data
streams, especially for IoT time-series data. The majority of current anomaly detection
methods (e.g., [100, 58, 94]) are very specific to the individual use case and require in-depth
knowledge of the method as well as the situation to which it is being applied. IoT as a rapidly
expanding field offers plenty of opportunities for this type of data analysis to be implemented.
However, due to the nature of IoT, many challenges are raised. The IoTs are often used in
real-life settings, hence, one should take into consideration factors like environmental changes
(e.g., variation in the occurrences of some climatic factors) and resources limitations.

Currently, many anomaly detection methods have difficulties detecting anomalies in
streaming data in an automatic manner. Most of the available approaches are window-based
[44, 74, 54] which often face the problem of reflecting the actual distribution of the data
since these techniques only focus on a fixed data size to detect anomalies. In addition, most
mechanisms depend on thresholds that need to be manually updated whenever environmen-
tal changes occur. Others are designed to use all features of the data which are not always
applicable in a streaming context such as IoT.

This chapter presents Track Before Detect (TBD), a novel approach that helps in detecting
anomalies in IoT time-series data. The proposed approach overcomes the aforementioned
limitations by automatically differentiating between anomalous behavior and environmental
changes. An environmental change is a change or disturbance in the environment, most
often caused by human influences or natural ecological processes (e.g., transitioning from
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Spring to Summer). An anomalous behavior, on the other hand, is defined as a pattern
that does not conform to the regular behavior of an IoT sensor device. Anomalous behavior
may be manifested differently under different environmental conditions. For instance, a 40
degrees temperature is considered normal during hot seasons but anomalous during cold
seasons. Differentiating between anomalous and environmental changes is therefore crucial
for increasing the accuracy of anomaly detection systems. Once environmental changes are
detected, TBD can automatically adapt without the need to manually set different anomaly
thresholds for different contexts.

In addition, TBD can be used as a pre-processing engine for unsupervised deep learning-
based models to enhance their performance. To the best of our knowledge, TBD is the first
approach which is capable of differentiating between anomalous behavior and environmental
changes in time series data in an unsupervised setting and without affecting the running
system. The proposed pipeline is flexible and can be easily adapted for different use cases and
domains. The rest of this chapter is structured as follows: Section A.2 provides an insightful
overview of related work within the literature; Section A.3 introduces the intricate details of
TBD, shedding light on its components and mechanisms; Section A.4 takes a closer look at
the experiments conducted and the subsequent discourse on the achieved results; and Section
A.5 brings the chapter to a close, offering concluding remarks and outlining prospective paths
for future endeavors.

A.2 Related Work

As outlined above, there are a number of different methods for detecting anomalies. Obvi-
ously, the choice of algorithm depends on the use case, the context, the type of data available,
and many other parameters. Among these methods, we distinguish: statistical-based meth-
ods (Section A.2.1), proximity-based methods (Section A.2.2.1), clustering-based methods
(Section A.2.3), and deep learning-based methods (Section A.2.4).

A.2.1 Statistical-based methods

The statistical-based methods consist in developing flexible probabilistic statistical models
that represent the distribution of the data sets tested such as Gaussian models [109] and re-
gression models [6, 73]. The degree of anomaly of a particular object is evaluated against its
conformity to the established model. Particularly, in [109], a Gaussian mixture model is pro-
posed to represent the distribution of the tested data. Each object receives an anomaly score
which characterizes its deviation from the model. A high score indicates a high probability
that the object in question is an anomaly. These methods are very efficient, mathematically
justified, and can reveal the meaning of the outliers found when a probabilistic method is
given. However, the Internet of Things is often used in real-life settings, where there is often
no previous sensor data distribution knowledge; hence these methods are not beneficial.
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A.2.2 Proximity-based methods

The Proximity-based methods determine for an observation o its k-nearest neighbors (KNN)
by calculating the distance between all the observations in the data set. These methods
require a preliminary calculation and, therefore, they are costly in execution time. There are
two approaches based on nearest neighbors: the distance-based approach [12, 109] and the
density-based approach [18].

A.2.2.1 Distance-based approach

Distance-based anomaly detection methods operate on a fundamental premise: anomalies are
observations that diverge significantly from other observations in a data set. This concept
of "distance" or "disparity" between data points is pivotal and can be articulated through
various metrics. The two most commonly employed metrics are the Euclidean and Manhattan
distances. The Euclidean Distance, widely adopted in distance-based algorithms, measures
the straight-line distance between two points. For two points P1(x1, y1) and P2(x2, y2) in a
two-dimensional space, this distance is defined as:

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 (A.1)

This concept naturally extends to multi-dimensional spaces. On the other hand, the Man-
hattan Distance, often referred to as the L1 norm or taxicab distance, evaluates the distance
between two points as the sum of the absolute differences of their respective coordinates. In
a two-dimensional space, for points P1(x1, y1) and P2(x2, y2), the formula becomes:

d(P1, P2) = |x2 − x1|+ |y2 − y1| (A.2)

Building upon these distance metrics, various techniques have been developed for prac-
tical anomaly detection. One of the most prominent techniques is the KNN method, which
computes the distance between a data point and its k nearest neighbors within a data set. A
substantial average distance from these neighbors usually suggests that a data point might be
an anomaly. An advanced version, the Weighted KNN, assigns varied weights to the neighbors
based on their proximity, offering more nuanced anomaly detection capabilities.

When it comes to evaluating the distinctiveness of data points, anomalies often receive
higher scores due to their considerable distance from the majority of data points. In contrast,
typical observations, being closely packed, receive lower scores. Post the score assignment,
anomalies can be isolated by organizing these scores in descending order and cherry-picking
data points with the topmost scores.

Despite their versatility, distance-based anomaly detection methods come with their own
set of advantages and limitations. A significant boon is their non-parametric nature, implying
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they don’t rely on any predetermined distribution for the data. Yet, a notable challenge
arises when dealing with continuous data streams, where these methods can grapple due to
the computational heaviness and the dynamic nature of data distributions.

A.2.2.2 Density-based approach

Density-based methods are pivotal in understanding the neighborhood relationships within
a data set. The local density of data points is often associated with their potential of being
anomalies. This means that if a point’s local density differs significantly from its neighbors,
it’s more likely to be an outlier.

The Local Outlier Factor (LOF) algorithm is a quintessential example of a density-based
anomaly detection method [19]. The underlying concept of LOF takes its cues from the
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm,
which is adept at identifying dense clusters of points along with discerning outliers that do
not belong to any cluster [45]. Within the scope of the LOF algorithm, an object’s local
density is estimated based on its distance to its KNNs. This is achieved by considering a
set of distances from a data point to its respective KNNs and using it as a foundation to
calculate its local density. Subsequently, the local densities of all the objects in the data set
are juxtaposed to identify regions with consistent densities and, more importantly, the outlier
points which have considerably lower local densities than their neighbors.

Furthermore, the domain of density-based anomaly detection hasn’t limited itself to just
the LOF. Several adaptations and extensions of the method have surfaced over the years.
Variants such as Connectivity-based Outlier Factor (COF) [98], Local Outlier Probabilities
(LOP) [69], and the incremental LOF [87] come with their unique twists, making them suitable
for specific scenarios or challenges.

However, despite their robustness in anomaly detection, density-based methods present
significant challenges in scalability and efficiency. Specifically, as new data is incorporated into
the data set, the algorithm doesn’t merely evaluate the local density of the new data point.
It also recalculates the local densities of its neighbors. This cascading effect of recalculations,
especially in large data sets, leads to substantial computational costs. Moreover, the non-
updatability of the outlierness measurements in these methods poses additional challenges,
especially when working with data streams. In such dynamic environments, efficient updates
and real-time processing are crucial, and the intricate nature of these density-based techniques
might impede their efficacy.

A.2.3 Clustering-based methods

The main purpose of clustering methods is to divide the data set into clusters containing the
data that has similar behaviors. The key assumption is that normal observations belong to
large, dense clusters, while anomalies do not belong to any cluster or belong to small isolated
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clusters.

The k-means method initially used in [65] or a more robust version with respect to out-
liers, the k-medoid method [59], constitute classical methods of clustering applicable for the
detection of anomalies which are based on the distance between observations relative to the
variables of interest. However, these methods require initially setting the number of clus-
ters and intrinsically only consider the distance between observations. It is then possible to
rely on methods based on the density of observations such as DBSCAN proposed in [45] or
Ordering Points to Identify the Clustering Structure (OPTICS) developed in [13]. Unlike
DBSCAN, the OPTICS method can detect clusters of different densities. However, faced
with the sometimes-difficult construction of clusters with the OPTICS method, other meth-
ods have emerged, such as Local Density-based Spatial Clustering of Applications with Noise
(LDBSCAN) [46] which is based on the evaluation of a LOF.

Some of the aforementioned clustering algorithms work on data sets of fixed size, while
others work on data streams in which new observations arrive periodically. In the first case, the
clusters found fully represent the data set. In the second case, a group of clusters represents
the data at a given moment and a method of devaluing the clusters as a function of time must
be implemented. Examples of clustering techniques dealing with data streams are Clustream
[8], High-dimensional Projected Stream (HPStream) [9] and STREAM [82].

Nevertheless, the objective of clustering-based methods is to only group the objects in
any given data set. Thus, many researchers argue that clustering algorithms should not be
considered as outlier detection methods. In addition, clustering-based methods are designed
to use all the features of data in detecting outliers and the notions of outliers in the context
of clustering are essentially binary in nature, without any quantitative indication as to how
outlying each object is. It is desired in many applications that the outlines of the outliers can
be quantified and ranked.

A.2.4 Deep learning-based methods

Deep learning (DL) has evolved as a fundamental tool in the field of anomaly detection [55,
25]. These DL methods can be broadly grouped into supervised and unsupervised categories.
In the supervised context, the problem is translated into a binary classification task. Here, the
primary objective is to categorize each data point as either an anomaly or not. This scenario’s
inherent challenge is that the anomalies constitute a minority class, often a meager fraction
of the overall data set. While these methods sound intuitive, a significant impediment is
their dependence on accurate labels for both the normal and anomalous instances. This kind
of labeled data is often a luxury in real-world time series scenarios, which makes supervised
techniques less feasible.

On the other hand, unsupervised methods appear more promising for anomaly detection.
Here, the algorithms learn from the data holistically, without leveraging any prior labels.
Essentially, the methods discern patterns and nuances from the data and attempt to iden-
tify outliers based on these learned patterns, without any predefined understanding of what
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constitutes an anomaly. A popular unsupervised technique leveraged in this space is the
Auto-Encoders (AE) [11].

The foundational concept of an AE comprises two components: an encoder and a decoder.
The encoder’s role is pivotal in data compression. It ingests data from a high-dimensional
space (N dimensions, for instance) and condenses it into a lesser-dimensional space. This
compressed representation captures the essential features of the data. Conversely, the decoder
takes up the challenge of expanding this compressed data, trying to reconstruct it back to
its original N-dimensional form. A key metric to gauge the success of this architecture is to
compare the original data (input to the encoder) with the reconstructed data (output from
the decoder). A smaller reconstruction error is indicative of the AE’s efficiency in preserving
the salient features during the compression and decompression processes.

Nevertheless, while AEs are both simplistic and potent in outlier detection, they are not
without challenges. One pressing issue is their vulnerability to noisy training data. If the data
used to train the AE has inherent noise or inaccuracies, the AE’s performance in anomaly
detection could suffer, as the model might misinterpret noise as essential features during the
encoding process.

A.3 The Proposed Approach

Given incoming IoT data streams as input, our proposed approach returns, for each newly
captured data point, its anomaly score as well as the anomaly type. The anomaly score
indicates how anomalous the incoming data point is compared to the set of data points
collected within a specific time frame. If considered anomalous, our approach can detect the
type of anomaly, which can be one of the following: i) point anomaly, ii) probable collective
anomaly, and iii) collective anomaly. A point anomaly refers to an individual data instance
that is anomalous. A probable collective anomaly is a warning flag indicating that the system
may soon face a collective anomaly, which represents a group of data points that together
exhibit anomalous behavior. Additionally, our approach can detect whether an environmental
change has occurred and can automatically adapt to these changes without affecting either
the running system or the anomaly detection process.

Figure A.1 provides a high-level view of the various components in the proposed solution.
The functions used in each of the TBD components can be divided into three categories:
the Repetitive Processing Function (RPFs), which are functions that run at regular intervals.
The functions implemented in the monitor component are considered RPFs. The On-Demand
Functions, such as those related to the constructor component, run instantly as and when
needed. Finally, the Step Functions run successively and are applied to newly captured IoT
data. The step functions include those used in the input, analytic, detector, and output
components.

In the following subsections, the role of each component and how it fits into the overall
architecture is described.
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Figure A.1: TBD diagram components

A.3.1 Handlers: Buffered Data Retrieval

Data handling is an essential aspect of IoT systems due to the sheer volume of data generated
by IoT devices. Handlers, in this context, are mechanisms that assist in the management
and processing of incoming IoT data. The principal benefit of employing handlers lies in
facilitating efficient data exchange among various components of our approach. By leveraging
handlers, one can reduce the frequency of function calls, thereby optimizing computational
resources and improving overall system performance.

A salient feature of this handler is the use of a Buffered Data Retrieval (BDR) mechanism.
At its core, the BDR allows for the temporary storage of incoming IoT data. The logic is
based on a principle similar to batching: instead of continually collecting data from a single
IoT sensor every time it is generated, the BDR mechanism buffers multiple data points and
allows them to be retrieved collectively at a specified time. Formally, if f(t) represents the
function that retrieves data at time t, without buffering, f(t) is called every instance. With
buffering, f(t) may be called less frequently, say at t, t + ∆t, t + 2∆t, etc., where ∆t is the
time interval between retrievals. The buffered data can be represented as an array or a list:
B = [d1, d2, . . . , dn], where di is the data at the i-th interval.

The aforementioned BDR mechanism communicates with TBD. When TBD requests
data, instead of directing the system to collect fresh data, it communicates with the BDR to
retrieve the buffered data. These buffered data are then utilized in various TBD components.
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A.3.2 Constructors: Adelson-Velsky and Landis Tree Constructor

Efficiently storing and processing data from IoT devices presents significant challenges due to
the vast amount and rapid rate of data generation. In response to this challenge, we utilize
the Adelson-Velsky and Landis (AVL) tree [93] to manage the overwhelming influx of data.
However, before delving into the specifics of the AVL tree, it’s crucial to first understand its
foundational structure: the Binary Search Tree (BST). Within a BST, each node may have
up to two children, commonly known as the left and right child. A defining characteristic of a
BST is that every node’s left sub-tree contains elements smaller than the node itself, while the
right sub-tree contains elements that are larger. This organization ensures that operations
like searching, insertion, and deletion are executed efficiently.

The AVL tree, a refined variation of the BST, introduces a self-balancing mechanism.
In contrast to a typical BST, which can become skewed after multiple data insertions or
deletions, the AVL tree maintains a balance by ensuring the height difference between the left
and right sub-trees of any node is never more than one. This balancing act leads to quicker
data access times. Each node within an AVL tree represents a specific data point, with nodes
in our application representing individual IoT data points.

To provide a clearer understanding, we have prepared a sample set of buffered data gen-
erated by an IoT temperature monitor device. This data, and its representation in the AVL
tree format, can be examined in Table A.1 and Figure A.2, respectively.

Table A.1: Subset of the first q buffered data from IoT temperature monitor device

Timestamp IoT Data
2013-07-04 00:00 69.88
2013-07-04 01:00 71.22
2013-07-04 02:00 70.87
2013-07-04 03:00 68.95
2013-07-04 04:00 69.28
2013-07-04 05:00 70.06
2013-07-04 06:00 69.27
2013-07-04 07:00 69.14
2013-07-04 08:00 71.45
2013-07-04 09:00 70.74

The tree is initially constructed with the first arrived q data points, which are by default
considered as the normal behavior. The construction of an AVL tree follows the same process
as for BSTs in which each internal node represents a data point whose value is greater than
all the data points’ values in the node’s left sub-tree and less than those in its right sub-tree.
After each node insertion, the BF for each of the ancestors of the inserted node is calculated.
The BF of a node X is defined as the height difference between its two child sub-trees as
given in Equation A.3.
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Figure A.2: AVL tree constructed out of the data points in Table A.1

BF (X) :=Height(RightSubtree(X))−
Height(LeftSubtree(X)) (A.3)

where RightSubtree and LeftSubtree are two functions that return the right and left child
sub-trees of a node X. The BF of each node should be -1, 0, or 1. If the BF is less than -1
or greater than +1, the sub-tree rooted at this node is unbalanced, and a rotation is needed.
The tree rotation is widely used in balanced trees in general because it allows for reducing
the height of a tree by lowering the small sub-trees and raising the large ones, which makes
it possible to re-balance the trees.

The obtained AVL tree represents the normal behavior to which the subsequent incoming
data are compared as explained in Section A.3.3. The advantage of using AVL trees for
detecting anomalous behavior is also explained in Section A.3.3. It is worth noting that
the tree is updated only when an environmental change is detected (as explained in Section
A.3.5). This allows us to maintain the representation of the normal behavior without being
limited to a fixed window size.

A.3.3 Analytics: Anomaly Score Calculation

As explained in the previous section, we use an AVL tree to store the normal behavior
represented by the first arrived q data points. For each newly arrived data point, an anomaly
score is computed. The anomaly score reflects the degree to which the new data is dispersed
from the normal behavior in the tree. Dispersion is a statistical term that describes the size
of the distribution of values expected for a particular variable. Dispersion can be measured
by several different statistics, such as range, variance, and standard deviation. In our work,
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we use the Standard Deviation (SD) [71], however, any other statistical measure can be used.
The standard deviation is defined as the square root of the variance or, equivalently, as the
root mean square of the deviations from the mean. Given a set of points S, the formula for
SD is shown below where xi ∈ S is a value in the data set, µ is the mean of the data set, and
N = |S| is the number of data points in the population.

σ =

√∑
(xi − µ)2

N
(A.4)

The usage of an AVL tree allows us to compute the SD in a global and local way. Global
SD is computed between the new data point and all points in the AVL tree (i.e., SD w.r.t the
overall behavior). Local SD is computed between the new data point and the points in the
right and left sub-trees of the root node. This allows us to accurately reflect the dispersion
of the newly arrived data point from the normal behavior. The global and local SD are then
used to compute an overall anomaly score that compares their closeness. In the following,
we present some notations that allow us to formally define the global and local SD and the
anomaly score.

Definition A.1. (Global set S, local sets SR and SL) Let T be an AVL tree. We denote by
T.root the root node of T . We define traverse(T) as a function that does a traversal of an AVL
tree and collects the nodes in a Set S. Let TR and TL be the right and left sub-trees returned
by RightSubtree(T.root) and LeftSubtree(T.root), respectively. traverse(TR.root) collects the
nodes of the right sub-tree TR in a set denoted as SR and traverse(TL.root) collects the nodes
of the left sub-tree TL in a set denoted as SL.

The traversal of the AVL tree can be done in different ways. The commonly used methods
are: the in-order traversal where the left sub-tree is visited first, then the root, and later the
right sub-tree. The pre-order traversal in which the root node is visited first, then the left
sub-tree, and finally the right sub-tree. As for the post-order traversal, first we traverse the
left sub-tree, then the right sub-tree, and finally the root node. In our work, we use the
in-order traversal. Technically, the traversal returns a list (in which the elements are sorted).
Since our approach does not require the returned elements to be sorted, we store them in a
set.

In the illustrative scenario depicted in Figure A.2, the opera-
tion traverse(T) yields the set S, comprising the following elements:
{68.95, 69.14, 69.27, 69.28, 69.88, 70.06, 70.74, 70.87, 71.22, 71.45}. Similarly, when ap-
plied to the root of the left sub-tree traverse(TL.root), it generates the subset SL containing:
{68.95, 69.14, 69.27, 69.28}. Conversely, for the right sub-tree’s root traverse(TR.root), the
resulting set SR encompasses: {70.06, 70.74, 70.87, 71.22, 71.45}.

Definition A.2. (Global σG and local σR, σL SDs)

Let T be an AVL tree and δ be a new incoming IoT data. The global SD, denoted as σG,
is the SD computed over the data points S∪{δ}. Two local SDs are defined, right SD denoted
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as σR and left SD denoted as σL. σR is computed over SR ∪ {δ}, while σL is computed over
SL ∪ {δ}.

The anomaly score is computed by subtracting the result of σG from the summation of
σL and σR.

anomalyScore = |σG − (σL + σR)| (A.5)

The intuition behind the anomaly score defined in Equation A.5 is that normal behavior
is manifested by a data point which has a low SD to at least one of the right and/or left
sub-trees. This results in a global SD that is close to the sum of the local SD, and therefore
a low anomaly score. On the other hand, anomalous behavior is manifested by a data point
that has a very high SD in the global SD. Therefore, a high anomaly score is obtained. We
consider as a standard threshold for anomalous data, any anomaly score that is greater than
one.

Table A.2: Example showing the result of TBD after processing 4 incoming IoT data

Incoming IoT Data Timestamp Type σL σR σG Anomaly Score
63.3868 7/7/2013 20:00 No Anomaly Detected 0.8323 0.6296 1.7392 0.2771
73.9799 7/7/2013 21:00 Anomalous Data 4.0872 3.6284 9.9119 2.1961
60.6747 7/7/2013 22:00 Anomalous Data 1.0325 0.8644 3.8745 1.9775
62.4807 7/8/2013 0:00 No Anomaly Detected 1.0872 0.9284 2.9119 0.8961

Table A.2 illustrates an example of four IoT processed data points and their anomaly
score computed according to Equation A.5. As shown in the table, when the anomaly score
is greater than 1, the incoming data will be considered anomalous.

A.3.4 Detectors: Anomaly Type Detector

If the anomaly score of the incoming data point δ indicates an anomalous behavior (i.e.,
anomaly score > 1), our approach detects whether the anomaly is one of the following three
types: Point Anomaly (PA), Probable Collective Anomaly (PCA), and Collective Anomaly
(CA).

PA refers to an individual data instance that is abnormally different from the rest of the
data. An anomalous point is considered as PA if no previous anomalies have been detected
for a k period of time. Once a PA is detected, a counter should run to count the occurrence
of incoming PA data. The counter keeps increasing while the average time of arrival of PA
data is close to each other (according to an average arrival time threshold t). Otherwise, it is
reset to 0.

PCA indicates that the running system may soon face a collective anomaly. If the counter
of PA is greater than a user-specified threshold p, then the newly detected anomalous data
should be classified as a PCA.
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CA refers to a group of data points that are abnormally different from the rest of the
data. After detecting a PCA, any successive anomalous data will lead to classifying all values
between the first point detected as PCA to the last detected anomalous data as a CA.

A.3.5 Monitors: Environmental Changes Detector

In order to differentiate between anomalous behavior and environmental changes, we imple-
mented a background function that, for every period ke, captures q incoming IoT data points.
We then compute the SD between the captured q points and the data points in the AVL tree.
If we get a high SD, this will be flagged as a warning. Hence, we need to check whether it is
indeed an environmental change or simply an anomalous system behavior. To do so, we keep
capturing different groups of q incoming data points within a specified time frame. If the
data values in all captured groups are within the same range of values, we conclude that an
environmental change has occurred and that the AVL tree needs to be updated to reflect this
change. The update process requires first destroying the current tree and following the same
steps mentioned in Section A.3.2 to the end, taking into consideration the newly captured
data.

A.4 Experiments and Validation

The approach has been implemented as a Python code1. The performance of TBD is eval-
uated using five real-world datasets2. For instance, one of these datasets includes a CPU
usage dataset from a server in Amazon’s East Coast data-center. The dataset ends with a
complete system failure resulting from a documented failure of Amazon Web Services (AWS)
API servers. Another one is a temperature sensor dataset of an internal component of a
large industrial machine in which successive anomalies led to a catastrophic failure of the ma-
chine. The primary reason for selecting these five datasets for assessment is the availability
of a ground truth of anomaly labels, which are generally not available in publicly accessible
streaming datasets.

We performed two experiments to evaluate our approach. In the first one (Section A.4.1),
we compared the accuracy of our approach with existing state-of-the-art approaches. In the
second experiment (Section A.4.2), we showed the accuracy gain obtained by using our ap-
proach as a pre-processing engine on top of an unsupervised deep learning anomaly detection
method.

1http://www-inf.telecom-sudparis.eu/SIMBAD/tools/TrackBeforeDetect
2https://www.numenta.com/resources/htm/numenta-anomoly-benchmark/
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A.4.1 Model Performance Evaluation

To assess the accuracy of our approach, we relied on the following statistical measures: sensi-
tivity, which refers to the ratio of correctly identified normal data to the total actual normal
data; specificity, referring to the ratio of correctly classified anomalous data to the total ac-
tual anomalous data; precision, which refers to the correctly classified normal data out of the
actual normal data; and accuracy, which helps determine how close the measurements are to
the actual value.

For the evaluation, we took the most commonly used approach in each of the existing
anomaly detection methods. Overall, we evaluated five different datasets on ten existing
approaches. In Table A.3, we present the results for only one of the evaluated datasets: the
ambient temperature in an office setting. Additional figures, tables, and information regarding
the evaluated datasets can be found on our web page.

Table A.3: Comparative study of TBD with existing approaches

Method Approach Sensitivity Specificity Precision Accuracy

Statistical-based Gaussian Model 0.91 0.54 0.75 0.77
Regression Model 0.89 0.50 0.72 0.73

Distance-based Grid-ODF 0.82 0.51 0.59 0.66
KNN 0.88 0.43 0.63 0.67

Density-based
LOF 0.79 0.49 0.59 0.64

INFLO 0.86 0.34 0.43 0.53
MDEF 0.77 0.49 0.57 0.62

Clustering-based STREAM 0.94 0.58 0.77 0.79
WAVECLUSTER 0.89 0.50 0.72 0.73

Unsupervised DAD Autoencoders 0.96 0.61 0.77 0.81
Our approach Track Before Detect 0.99 0.86 0.94 0.95

Overall, the study of individual results illustrates some interesting situations that occur
in IoT real-time applications and how different methods behave. For totally sedentary work,
a temperature ranging from 23 to 24 ◦C is strongly recommended in offices. But for a job
that requires a minimum of physical activity, lowering the thermometer to 19 ◦C will be
more appropriate. This preliminary study helps in setting the threshold that would help in
detecting anomalous data. However, depending only on a threshold would not yield precise
results, especially when environmental changes occur. For example, the temperature in of-
fices could vary according to the season. Hence, an anomaly detection method should take
into consideration the changes and readjust itself accordingly. The statistical, distance, and
density-based methods could not adapt themselves to the environmental changes. Therefore,
they continued to generate false anomalies for several days after the change had occurred.
This false classification will affect the specificity of the concerned model as shown in Table
A.3.

To closely inspect the false classification done by existing approaches, we plot the calcu-
lated anomaly score as a heat map against both the IoT incoming data and the timestamp as
shown in Table A.4. We see that after January 2014 where a major change in the environment
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Table A.4: Calculated anomaly score as a heat map against both IoT incoming data and the timestamps for
six approaches

(a) Original data set (b) TBD

(c) INFLO (d) KNN

(e) STREAM (f) AE

occurs, existing approaches such as KNN, INFLO and AE couldn’t keep on correctly classify-
ing incoming IoT data. The distance and density-based methods turn out to be a bad choice
for anomaly detection due to their moderate results and very high time complexity. Even if
the methods based on clustering have provided more or less satisfactory results, one cannot
deny the manual effort required by an expert to manage such approaches since it only splits
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observations into groups according to the similarity among them. In addition, these tech-
niques have difficulty in detecting the projected outliers. Therefore, a system failure cannot
be avoided. As for the AE, it performed well, but TBD outperformed this one.

Since TBD can differentiate between point and collective anomaly, we analyzed the be-
havior in the dataset where TBD detects successive point anomalies followed by successive
collective anomalies. We filtered out all data instances that do not exhibit such behavior.
In the first experiment, we analyzed the positive predictive value (i.e. precision) of TBD
against existing approaches by considering every anomaly point detected correctly (whether
point anomaly or collective anomaly) as TP. As shown in Table A.5, the accuracy of TBD
in detecting collective anomaly behavior outperforms existing approaches. Since existing ap-
proaches do not explicitly differentiate between a point and a collective anomaly, they cannot
accurately detect all point anomalies within a collective anomaly region.

Table A.5: Accuracy of TBD against existing approaches computed on instances where TBD detects a point
anomaly followed by a collective anomaly. Instances detected as anomalous (point or collective) are considered
as TP

Gaussian Regression Grid-ODF KNN LOF STREAM INFLO AE TBD
TP 140 85 137 83 73 164 170 151 191
FP 66 121 69 123 133 42 36 55 15
Precision 0.679 0.412 0.665 0.402 0.354 0.796 0.825 0.733 0.927

To closely inspect the limitation of existing approaches in detecting collective anomaly be-
havior, we recomputed the performance metrics by considering every point anomaly detected
correctly as TPP A, every collective anomaly point detected correctly as TPCA and every non-
anomalous point detected correctly as TPNA. For existing approaches, we label each point
detected as anomalous with either point anomaly or collective anomaly according to the result
of TBD on the same point. The results are illustrated in Table A.6. Overall, TBD is more
accurate than all existing approaches as the computed accuracy values suggest. All existing
approaches except TBD have a very low sensitivity. This means that existing approaches are
generating many wrong predictions. More specifically, many points are predicted as normal
while they are actually either point or collective anomaly points. This again demonstrates
the limitation of existing approaches in detecting collective anomaly behavior.

Table A.6: Performance metrics computed on instances where TBD detects a point anomaly followed by a
collective anomaly. Point anomaly is considered as TP, collective anomaly is considered as TN

Approach Sensitivity Precision Accuracy
Gaussian Model 0.16 0.43 0.68
Regression Model 0.13 0.74 0.41
Grid-ODF 0.24 0.91 0.67
KNN 0.12 0.65 0.40
LOF 0.12 0.78 0.35
STREAM 0.21 0.30 0.80
INFLO 0.37 0.83 0.83
AE 0.25 0.70 0.73
TBD 0.64 0.78 0.93
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As for precision, Grid-ODF and INFLO seem to be correctly detecting point anomaly and
collective point anomaly. However, because of the very low sensitivity, they are missing many
others. TBD on the other hand is making a good trade-off between precision and recall.

A.4.2 TBD as Pre-processing Engine

Recent research has revealed that few studies distinguish between noise and anomalies and
investigate their interaction effects on detection results [116]. However, one cannot deny that
the performance of unsupervised deep learning anomaly detection methods such as auto-
encoders gets degraded due to noisy data.

Based on our observation, we found that the noisy data can be in fact eliminated from
the processed dataset using our TBD approach. To do so, we defined the following formula
that calculates a noisy data threshold.

noisyDataThreshold = max(n1, n2, ..., nm)
2 + 1 (A.6)

Where ni denotes the calculated anomaly score of each of the processed IoT data by TBD.
Therefore, all values that are greater than the obtained threshold will be considered as noise
and will be removed.

After removing the noise, we fed the processed dataset to the deep learning model. We
then used four fully connected layers with 14, 7, 7, and 29 neurons respectively. The first two
layers are used for our encoder, the last two go for the decoder. Additionally, L1 regularization
was used during training. After training our model, we then performed an evaluation of the
results.

Table A.7: Comparative table showing the efficiency of TBD on top of the AE model

Approach Sensitivity Specificity Precision Accuracy
AE 0.96 0.61 0.77 0.81

TBD with AE 0.98 0.95 0.98 0.98

Table A.7 shows the result of a time series anomaly detection with AEs, before and after
applying TBD on top of the deep learning model. Before applying TBD, the AE wrongly
classified 1490 data points out of 7268. Nevertheless, after applying TBD on top of the AE,
the performance has indeed enhanced as we can see in Table A.7, with only 143 out of 7268
being wrongly classified.
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A.5 Conclusion

In this chapter, we have veered away from our primary discussion on BP Mining to introduce
TBD—a groundbreaking method for identifying anomalies in IoT time-series data. The TBD
approach introduces a novel way of handling IoT data streams by utilizing a Buffered Data
Retrieval (BDR) mechanism and an Adelson-Velsky and Landis (AVL) tree for efficient data
management. The BDR mechanism enhances data handling by temporarily storing incoming
IoT data, allowing for collective retrieval, which optimizes computational resources. The AVL
tree ensures quick data access times by maintaining a balanced structure, which is crucial for
real-time anomaly detection.

Our evaluation on five real-world datasets has demonstrated TBD’s superior performance
compared to existing state-of-the-art approaches. TBD exhibited higher sensitivity, speci-
ficity, precision, and accuracy, especially in distinguishing between point anomalies and col-
lective anomalies. This differentiation is critical for applications that require precise anomaly
detection to prevent system failures. Furthermore, we have shown that TBD can serve as
a preprocessing engine for unsupervised deep learning models, significantly enhancing their
performance by eliminating noisy data. This integration highlights TBD’s flexibility and its
potential to improve existing anomaly detection frameworks.

Moving forward, future work for TBD will focus on several key areas to enhance its ca-
pabilities and address critical challenges in IoT systems. First, in the area of sensor failure
detection, the challenge is that sensor malfunctions can cause significant disruptions, leading
to inaccurate data analysis and system failures, as cited in [53]. The objective is to develop
methods to accurately detect and isolate sensor failures using TBD’s anomaly detection ca-
pabilities. This will involve integrating TBD with advanced machine learning algorithms to
improve the reliability of sensor data and ensure the robustness of IoT systems. Second, in
terms of real-time adaptation and scalability, IoT systems generate vast amounts of data in
real time, requiring scalable solutions that can adapt to changing conditions. The objec-
tive here is to enhance TBD to handle large-scale IoT deployments with minimal latency by
implementing distributed processing frameworks and edge computing techniques to manage
data locally and reduce the computational burden on central servers. Third, for integration
with predictive maintenance, the challenge is that predictive maintenance relies on accurate
anomaly detection to predict equipment failures and schedule maintenance proactively. The
objective is to leverage TBD to improve the accuracy and reliability of predictive mainte-
nance systems by combining it with predictive analytics to forecast potential failures and
optimize maintenance schedules, thereby reducing downtime and maintenance costs. Fourth,
in the area of anomaly explanation and visualization, understanding the context and cause
of detected anomalies is crucial for effective decision-making. The objective is to develop
tools to provide detailed explanations and visualizations of anomalies detected by TBD by
implementing advanced visualization techniques and interpretable machine learning models
to offer insights into the nature and impact of anomalies. Finally, for cross-domain applica-
tions, different domains have unique characteristics and requirements for anomaly detection.
The objective is to adapt TBD for use in various domains such as healthcare, cybersecu-
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rity, and environmental monitoring by customizing its algorithms and frameworks to address
domain-specific challenges and enhance its applicability across different fields.





Appendix B

Résumé Etendu

B.1 Contexte et problématique de la recherche

L’évolution numérique au sein des entreprises transforme profondément leur fonctionnement.
Au cœur de cette transformation se trouvent les systèmes d’information (SI), qui visent à
automatiser les tâches, à augmenter la productivité et à améliorer la prise de décision à tous
les niveaux de l’organisation. Les SI sont des structures complexes comprenant du matériel,
des logiciels, des données, des personnes et des processus. Parmi ces éléments, les processus
sont essentiels pour obtenir les résultats escomptés.

Les processus métiers fournissent un cadre pour l’exécution des tâches, assurant ainsi
clarté, contrôle et utilisation optimale des ressources. Il est crucial de suivre ces processus
pour obtenir des certifications de qualité et une reconnaissance internationale. Cependant,
les SI ne se contentent pas d’automatiser ces processus ; ils cherchent aussi à les gérer et à les
améliorer en continu. Cela a donné naissance à la Gestion des Processus Métiers (GPM),
une approche globale centrée sur l’amélioration constante des processus organisationnels.

Dans le domaine de la GPM, certaines méthodes spécialisées comme l’extraction des Pro-
cessus Métiers (PM) jouent un rôle clé. Cette méthode se compose principalement de deux
aspects : la vérification de conformité et la prédiction des processus. La vérification
de conformité consiste à comparer en temps réel les comportements des processus avec des
modèles préétablis pour identifier les écarts et les erreurs. Cela est particulièrement utile
dans le cadre des courriels orientés processus, où l’on peut vérifier si le contenu des courriels
respecte les modèles de processus en termes de précision et d’exhaustivité.

La prédiction des processus, autre aspect crucial de la GPM, utilise des données
historiques pour anticiper les comportements et performances futurs des processus métiers.
Les données des journaux d’événements, qui enregistrent la séquence des activités dans un
processus, sont analysées à l’aide de divers algorithmes et techniques d’extraction de processus.

Ces algorithmes permettent d’identifier des schémas et des tendances, qui servent de base
à des modèles prédictifs utilisant des techniques comme les arbres de décision, les modèles de
Markov et l’apprentissage automatique. Ces capacités offrent divers avantages : amélioration
de la prise de décision, meilleure allocation des ressources et surveillance en temps réel, ce
qui contribue à une meilleure satisfaction des clients.

Aujourd’hui, l’adoption de techniques prédictives s’étend à divers domaines, y compris les
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courriels orientés processus. Dans ce contexte, les prédictions doivent pouvoir identifier
non seulement les prochaines étapes possibles d’un processus, mais aussi suggérer des courriels
spécifiques pour aider les acteurs du processus à accomplir ces étapes plus efficacement.

En intégrant la vérification de conformité et la prédiction des processus dans les
systèmes de courrier électronique, les organisations peuvent créer un cadre de communication
aligné sur les principes de l’extraction des Processus Métiers, favorisant ainsi un environ-
nement flexible. Cependant, adapter ces techniques à la structure unique des courriels pose
un défi en raison de leur composition distincte, comprenant des éléments spécifiques tels que
les actes de parole et les données métiers (DM).

B.2 Objectifs et Contributions de la Thèse

Étant donné les problèmes décrits dans la section précédente, les objectifs principaux de cette
thèse peuvent être résumés comme suit :

• Objectif 1 : Mettre en œuvre un Contrôle de Conformité Multi-Perspectives dans le
contexte des emails.

• Objectif 2 : Développer un Système de Recommandation de Réponses aux Emails
Sensible aux Activités de Processus.

Pour aborder efficacement ces objectifs, nous avons développé une variété d’algorithmes.
L’importance de notre travail est encapsulée dans les contributions clés suivantes :

Approche de Contrôle de Conformité Multi-Perspectives Notre deuxième grande
contribution implique une approche efficace pour assurer le contrôle de conformité à travers
plusieurs perspectives au sein des contextes de courrier électronique. Cette approche garantit
que les courriers électroniques individuels, ainsi que l’ensemble du fil, restent centrés sur le
sujet.

Cette méthodologie comprend deux phases principales :

1. Construction du Modèle : Ici, nous construisons un modèle de processus en se
basant sur les contraintes définies par un expert. Ce modèle combine deux types de
contraintes :

• Contraintes Séquentielles : Celles-ci spécifient l’ordre exact dans lequel les événe-
ments doivent se produire au sein des fils de courriels, garantissant une représen-
tation fidèle de l’écoulement chronologique.

• Contraintes Contextuelles : Celles-ci incorporent des détails contextuels liés à
chaque événement, offrant une compréhension plus profonde des subtilités dans
les interactions par courriel.



B.2. Objectifs et Contributions de la Thèse 115

2. Contrôle de Conformité : Cette phase examine à quel point les échanges de cour-
riels réels s’alignent avec notre modèle théorique. Nous utilisons un algorithme pour
évaluer la conformité des événements dans les courriels individuels et dans les fils de
courriels complets. Les événements sont classés soit comme Événements Satisfaits, qui
adhèrent aux contraintes séquentielles et contextuelles, soit comme Événements Violant,
qui s’écartent du comportement attendu.

Système de Recommandation de Réponses aux Emails Notre première grande con-
tribution est la création d’un système de recommandation de réponses aux emails sensible
aux activités de processus. Ce système est composé de quatre phases interconnectées :

1. Élaboration d’un Modèle de Prédiction Orienté PM : La première phase
se concentre sur le développement de modèles prédictifs qui exploitent les journaux
d’événements des échanges de courriels précédents.

2. Identification des Activités et Instances : Pendant cette phase, notre système
scanne les emails reçus pour identifier les connaissances en PM existantes.

3. Prédiction de la Connaissance en PM pour la Réponse : À ce stade, le système
prédit les connaissances en PM qui devraient être incluses dans la réponse email à venir.

4. Recommandation de Modèles de Réponses : Finalement, le système recommande
un modèle de réponse par email qui s’aligne bien avec les activités et les connaissances
en PM prédites.

Pour rendre ces méthodes prédictives et de conformité facilement accessibles, nous les
avons intégrées en utilisant des Interfaces de Programmation d’Applications RESTful. Cette
intégration offre un cadre unifié pour la gestion des courriels en GPM, simplifiant à la fois la
mise en œuvre et l’utilisation.

En plus de nos contributions dans les domaines de la gestion des courriels et de la GPM,
nous avons également exploré la détection d’anomalies dans les données en flux continu, en
particulier dans le contexte de l’Internet des Objets (IoT). Poussés par une profonde curiosité,
nous avons introduit une méthode non supervisée spécialement conçue pour détecter des
anomalies dans les données séquentielles de l’IoT.
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Titre: Optimiser la gestion des e-mails : Une approche basée sur les processus métier

Mots clés: Analyse des processus métier, Vérification de conformité, Prédiction des processus, Processus
pilotés par courriel

Résumé: La gestion des processus métier (BPM) est cruciale pour
toute organisation cherchant à améliorer constamment ses opéra-
tions. Cela implique plusieurs étapes : conception, modélisation,
exécution, surveillance, optimisation et automatisation. Un élément
central du BPM est l’analyse des processus, qui consiste à examiner
les traces d’exécution pour identifier les inefficacités et les déviations
par rapport aux processus prévus. Cette analyse se concentre partic-
ulièrement sur la prédiction des processus futurs et sur la vérification
de leur conformité.
Dans cette thèse, nous nous penchons sur les défis spécifiques à
l’analyse des processus métier lorsqu’ils sont pilotés par courriel. Il
est essentiel de maîtriser ces pratiques pour rationaliser les opéra-
tions et maximiser la productivité. La vérification de conformité
garantit que les processus réels respectent les modèles prédéfinis,
assurant ainsi le respect des normes et standards. Par ailleurs, la
prédiction des processus permet d’anticiper le comportement futur
des opérations en se basant sur des données historiques, ce qui aide
à optimiser l’utilisation des ressources et à gérer efficacement les
charges de travail.
Appliquer ces techniques aux processus pilotés par courriel présente
des défis uniques. En effet, ces processus manquent souvent des mod-
èles formels trouvés dans les systèmes BPM traditionnels, ce qui né-
cessite des méthodologies adaptées. Les traces d’exécution dérivées
des courriels ont une structure particulière, comprenant des attributs
tels que les actes de parole des interlocuteurs et les données commer-
ciales pertinentes. Cette complexité rend l’application des méthodes

standard de fouille des processus plus difficile. L’intégration de ces
attributs dans les techniques existantes de BPM et les systèmes de
courriel demande des algorithmes avancés et une personnalisation
importante, d’autant plus que le contexte des communications par
courriel est souvent dynamique.
Pour relever ces défis, cette thèse propose plusieurs objectifs.
D’abord, mettre en place une vérification de conformité multi-
aspects et concevoir un système de recommandation de réponse par
courriel qui tient compte des activités du processus. Ensuite, il s’agit
de concevoir un modèle de processus basé sur des contraintes séquen-
tielles et contextuelles spécifiées par un analyste/expert en données.
Il est également crucial de développer des algorithmes pour identi-
fier les événements conformes et non conformes, d’utiliser les traces
d’exécution pour prédire les connaissances des processus métier et
de proposer des modèles de réponse par courrier électronique. Les
principes directeurs de cette approche sont la sensibilité au contexte,
l’interdisciplinarité, la cohérence, l’automatisation et l’intégration.
L’une des contributions majeures de cette étude est le développement
d’un logiciel complet pour l’analyse des processus pilotés par cour-
riel. Ce programme combine la prédiction des processus et la vérifi-
cation de conformité pour améliorer la communication par courriel.
Il propose des modèles de réponse adaptés et évalue la conformité
des courriels avant leur envoi. Pour valider ce logiciel, des données
de courriels réels ont été utilisées, fournissant ainsi une base pratique
pour des comparaisons et des recherches futures.

Title: Enhancing Email Management Efficiency: A Business Process Mining Approach

Keywords: Business Process Mining, Process Prediction, Conformance Checking, Email-Driven Processes

Abstract: Business Process Management (BPM) involves continu-
ous improvement through stages such as design, modeling, execution,
monitoring, optimization, and automation. A key aspect of BPM is
Business Process (BP) mining, which analyzes event logs to identify
process inefficiencies and deviations, focusing on process prediction
and conformance checking. This thesis explores the challenges of BP
mining within email-driven processes, which are essential for stream-
lining operations and maximizing productivity.
Conformance checking ensures that actual process execution aligns
with predicted models, maintaining adherence to predefined stan-
dards. Process prediction forecasts future behavior based on histori-
cal data, aiding in resource optimization and workload management.
Applying these techniques to email-driven processes presents unique
challenges, as these processes lack the formal models found in tradi-
tional BPM systems and thus require tailored methodologies.
The unique structure of email-derived event logs, featuring attributes
such as interlocutor speech acts and relevant business data, compli-
cates the application of standard BP mining methods. Integrating
these attributes into existing business process techniques and email

systems demands advanced algorithms and substantial customiza-
tion, further complicated by the dynamic context of email commu-
nications.
To address these challenges, this thesis aims to implement multi-
perspective conformance checking and develop a process-activity-
aware email response recommendation system. This involves creat-
ing a process model based on sequential and contextual constraints
specified by a data analyst/expert, developing algorithms to iden-
tify fulfilling and violating events, leveraging event logs to predict
BP knowledge, and recommending email response templates. The
guiding principles include context sensitivity, interdisciplinarity, con-
sistency, automation, and integration.
The contributions of this research include a comprehensive frame-
work for analyzing email-driven processes, combining process pre-
diction and conformance checking to enhance email communication
by suggesting appropriate response templates and evaluating emails
for conformance before sending. Validation is achieved through real
email datasets, providing a practical basis for comparison and future
research.
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