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Abstract

Federated Learning (FL) is an innovative Machine Learning (ML) approach that allows clients to
collaboratively train a model while keeping their data private. Despite its benefits, FL is vulnerable
to poisoning attacks, particularly, Label-flipping and Backdoor attacks, where malicious clients inten-
tionally tamper with data to compromise the model’s privacy and security. This need has resulted
in many research efforts to propose efficient FL defense solutions and improve the performance of
existing ones.

This thesis addresses the problem of malicious model detection in FL system as opposed to poi-
soning attacks for Internet of Things (IoT) networks. First, we provide an extensive literature review
and a comparative study of recent malicious model detection techniques in FL system used in the IoT
context. We also propose a Federated Learning Secure Layered Adaptation and Behavior (FLSecLAB)
framework. It is designed to fortify the FL system against poisoning attacks with different simulation
scenarios in IoT networks, integrating both our novel and established defense mechanisms into a ver-
satile platform for security assessment. FLSecLAB represents a significant advancement toward secure
FL deployments, offering comprehensive customization for evaluating defenses across various datasets
and performance metrics. Secondly, we propose an enhanced malicious model detection for the FL
system, which dynamically selects an optimal threshold for detecting malicious models, specifically
targeting Label-flipping attacks. Furthermore, we present a novel and scalable solution for detecting
and excluding malicious clients using entropy information and an adaptive threshold. This aims to
enhance the robustness of malicious model detection and improve the accuracy and computational
cost against Label-flipping attacks. We explore further into the complex scenarios inherent within the
FL system and propose a novel malicious model detection aimed at countering both Label-flipping
and Backdoor attacks simultaneously. By harnessing the intrinsic robustness and simplicity of the
implementation of two outlier detection algorithms, we establish a reinforced, more scalable multi-
layered defense approach. Additionally, We propose an adaptive model for detecting malicious clients
against Label-flipping and Backdoor attacks, addressing the complex and nuanced challenges that
arise in real-world FL system scenarios. This approach is specifically tailored to tackle the issue of
Non-Independent and Identically Distributed (Non-IID) data, a common hurdle in FL system that
adds layers of complexity and heterogeneity to model training and evaluation.

We assess and validate our proposed approaches through various simulation scenarios using differ-
ent clients’ numbers and several dataset types including MNIST, MNIST-Non-IID, Fashion-MNIST,
CIFAR10, CIFAR10-Non-IID, and IMDB datasets, and we compare them with existing approaches
from the literature. The results show the effectiveness of our approaches in enhancing various mali-
cious detection performance metrics such as Accuracy (ACC), Loss Rate (LR), Attack Success Rate
(ASR), CPU run-time, Recall, and Precision.

Keywords: Federated Learning (FL), Machine Learning (ML), Internet of Things (IoT), Genetic
Algorithm (GA), Local Outlier Factor (LOF), Entropy, Accuracy (ACC), Loss Rate (LR), Attack
Success Rate (ASR).
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Résumé

L’apprentissage fédéré (FL) est une approche innovante en apprentissage automatique (ML) qui per-
met aux clients de former collaborativement un modèle tout en gardant leurs données privées. Malgré
ses avantages, le FL est vulnérable aux attaques de poisoning, en particulier, les attaques de change-
ment d’étiquettes et les attaques de porte dérobée, où des clients malveillants altèrent intentionnelle-
ment les données pour compromettre la confidentialité et la sécurité du modèle. Ce besoin a résulté
en un grand nombre d’efforts de recherche visant à proposer des solutions de défense FL efficaces et
à améliorer les performances de celles existantes.

Cette thèse aborde le problème de la détection des modèles malveillants dans le système FL face aux
attaques de poisoning pour les réseaux de l’Internet des Objets (IoT). Premièrement, nous fournissons
une revue de littérature exhaustive et une étude comparative des techniques récentes de détection de
modèles malveillants dans le système FL utilisé dans le contexte de l’IoT. Nous proposons également
un cadre d’adaptation et de comportement sécurisé en apprentissage fédéré (FLSecLAB). Il est conçu
pour fortifier le système FL contre les attaques de poisoning avec différents scénarios de simulation,
intégrant à la fois des mécanismes de défense nouveaux et établis dans une plateforme versatile pour
l’évaluation de la sécurité dans les réseaux IoT. FLSecLAB représente une avancée significative vers le
déploiement sécurisé du FL, offrant une personnalisation complète pour évaluer les défenses à travers
divers jeux de données et métriques de performance. Deuxièmement, nous proposons une détection
améliorée de modèles malveillants pour le système FL, qui sélectionne dynamiquement un seuil optimal
pour détecter les modèles malveillants, ciblant spécifiquement les attaques de changement d’étiquettes.
De plus, nous présentons une solution novatrice et évolutive pour détecter et exclure les clients malveil-
lants en utilisant des informations d’entropie et un seuil adaptatif. Cela vise à améliorer la robustesse
de la détection de modèles malveillants et à améliorer la précision et le coût computationnel con-
tre les attaques de changement d’étiquettes. Nous explorons plus loin dans les scénarios complexes
inhérents au système FL et proposons une détection de modèles malveillants novatrice visant à con-
trer simultanément les attaques de changement d’étiquettes et de porte dérobée. En exploitant la
robustesse inhérente et la simplicité de mise en œuvre de deux algorithmes de détection d’anomalies,
nous établissons une approche de défense multi-couches renforcée et plus évolutive. De plus, nous
proposons un modèle adaptatif pour détecter les clients malveillants contre les attaques de change-
ment d’étiquettes et de porte dérobée, abordant les défis complexes et nuancés qui surgissent dans les
scénarios réels. Cette approche est spécifiquement conçue pour s’attaquer au problème des données
Non-Indépendantes et Identiquement Distribuées (Non-IID), un obstacle courant dans les systèmes FL
qui ajoute des couches de complexité et d’hétérogénéité à l’entrâınement et à l’évaluation des modèles.
Nous évaluons et validons nos approches proposées à travers divers scénarios de simulation en utilisant
différents nombres de clients et plusieurs types de jeux de données incluant MNIST, Fashion-MNIST,
MNIST-Non-IID, CIFAR10, CIFAR10-Non-IID, et les jeux de données IMDB, et nous les comparons
avec les approches existantes de la littérature. Les résultats montrent l’efficacité de nos approches pour
améliorer diverses métriques de performance de détection malveillante telles que le taux de précision
(ACC), le taux de perte (LR), le taux de réussite des attaques (ASR), le temps d’exécution CPU, le
rappel et la précision.
Mots-clé:

Apprentissage fédéré (FL) , Apprentissage automatique (ML), Internet des Objets, Algorithme
génétique (GA), Facteur d’Anomalie Local (LOF), Entropie, Précision, Taux de Perte (LR), Taux de
Réussite d’Attaque (ASR).
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1.1 General introduction

Federated Learning (FL) is an emerging collaborative approach to Machine Learning (ML) that enables
multiple participating clients to train a model while keeping their data private. Instead of sharing
raw data, each client trains its model using local data and shares only model updates with a central
server for aggregation. FL is increasingly utilized in sensitive domains such as healthcare, finance,
and the Internet of Things (IoT), where maintaining data privacy and security is imperative. It uses
data from many clients to improve model performance, while keeping data confidential. FL offers
significant advantages, particularly in scenarios involving sensitive or regulated data, such as medical
records or financial transactions. It allows the creation of ML models that learn from the collective
knowledge of clients while maintaining their data privacy and security. However, FL faces challenges
in ensuring data quality and model consistency across clients, involving issues such as privacy and
security concerns, data heterogeneity, communication and resource constraints, model aggregation
complexities, and adapting to model drift. Despite its challenges, FL is attracting attention due
to its potential benefits in terms of privacy, security, and accuracy. In this context, one specific
security threat is poisoning attacks in FL system. These attacks involve adversaries deliberately
injecting malicious data into the training sets of participating clients to compromise the integrity of
the global model. By modifying training data, attackers can influence the model’s parameters or
cause it to produce incorrect predictions. The detection and mitigation of poisoning attacks pose
significant challenges, as sophisticated attackers might evade detection by subtly injecting malicious
data. Addressing the issue of poisoning attacks in FL, requires robust detection and alleviation
techniques to safeguard the integrity and performance of the global model.

1.2 Context

In IoT environments, FL system have become increasingly popular. This system involves multiple
devices or clients, each training a model on their own data. Crucially, they do this without sharing
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their private data, but rather by sending updates from their individually trained models to a central
server. This server aggregates these updates to enhance the overall model, combining collaborative
learning with data privacy. However, this FL architecture is vulnerable to specific security threats,
notably poisoning attacks specifically Label-flipping and Backdoor attacks. In such attacks, malicious
clients manipulate their model updates to corrupt the overall learning process. These attacks target
the integrity of the FL system, aiming to reduce the accuracy and reliability of the server’s global model
of FL system in the IoT environment. Our thesis is dedicated to the exploration and development
of comprehensive approaches to identify, mitigate, and prevent these types of poisoning attacks by
detecting malicious clients in FL system within the intricate and interconnected landscape of the
IoT networks. By leveraging advanced ML techniques, meta-heuristic algorithms, and robust outlier
detection methods. We aim to enhance the security of FL system, ensuring the integrity and reliability
of data and models utilized by the participating clients in the FL system within IoT networks.

1.3 Motivations and issues

In an era where data privacy and security are paramount, this thesis addresses the urgent challenges
of deploying FL within the vast, vulnerable networks of the IoT. Driven by the need to protect data
from emerging threats without sacrificing efficiency, we dive into the complexities of ensuring robust
security in FL system. From combating sophisticated poisoning attacks to navigating the intricacies
of IoT environments, our research is a quest for balance; achieving high security without compromis-
ing performance. We explore innovative strategies for detecting malicious models, evaluating their
effectiveness across diverse datasets and scenarios, as well as the metrics utilized for performance as-
sessment. This work goes beyond tackling current challenges; it’s about forging the path for a secure
FL system in the IoT networks, where the integration of privacy and performance is clearly outlined,
as follows:

• Privacy preservation FL’s privacy-preserving nature is a key motivation for this thesis. While
FL ensures client privacy by not sharing raw data, the presence of malicious clients can com-
promise this privacy, necessitating enhanced security measures.

• Security threats The pressing need to confront security challenges, particularly poisoning
attacks like Label-flipping and Backdoor attacks, serves as a primary motivation for this thesis.
These attacks specifically target and disrupt the training process, posing a significant threat to
the security and reliability of FL system in IoT networks.

• IoT context The thesis focuses specifically on FL system used in IoT networks. IoT devices
produce huge amounts of data, making them vulnerable to attacks. Securing FL system in IoT
networks is uniquely challenging due to the distributed topology and resource constraints. This
thesis is motivated by the need to address security issues specific to implementing FL on IoT
networks.

• Malicious model detection One of the key issues tackled in this thesis is detecting malicious
models in FL system. Spotting clients who generate poisoned data or inject Backdoor attacks
is challenging because FL is distributed, so there is no direct access to clients’ data. Develop-
ing effective detection techniques that can accurately identify malicious models is a significant
challenge.

• Performance trade-offs Enhancing the security of FL system must be balanced with the
performance requirements of the system. The proposed solutions need to achieve high detection
accuracy while minimizing the computational overhead associated with the detection process.
Striking the right balance between security and performance is a critical issue in this thesis.

• Dataset and scenario variability In FL system used on the IoT networks, dealing with
different datasets is crucial. We are focusing on several types of datasets, including both IID
(Independent and Identically Distributed) and Non-IID datasets (such as MNIST and CIFAR),
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Fashion-MNIST, and IMDB, as each one introduces unique challenges. Besides these datasets,
the variety of scenarios is also important. This includes considering different network designs,
how many resources are available, and the specific conditions each system works in. Our goal is
to create security solutions that are strong and flexible enough to work well in all these different
datasets and scenarios. This is important because the success of our solutions depends on how
they handle the variety of challenges in these environments.

• Evaluation and validation A key challenge in this thesis is to validate the effectiveness of
our proposed approaches. To do this, the evaluation process will involve conducting simulations
and benchmarking the performance of our solutions against existing techniques in the field.
It is crucial to design appropriate evaluation metrics that ensure the reliability and generaliz-
ability of our findings across various scenarios. However, it’s important to note that existing
approaches in the literature for detecting malicious models in FL system within IoT networks
have significant limitations. Many of these methods involve high computational costs, which can
be impractical in real-world applications. Additionally, techniques requiring continuous adjust-
ment of thresholds can lead to instability and disrupt the learning process. These methods also
have limitations in terms of scalability to large FL system. Overcoming these computational,
efficiency, performance and scalability limitations is an integral part of our work. Addressing
these drawbacks is a fundamental part of our research, aiming to enhance the efficiency and
practicality of malicious model detection in FL system.

1.4 Main contribution of the thesis

The main contributions in this thesis concentrate on the following points:

• We provide a comprehensive literature review of techniques designed for detecting malicious
models in FL system, with a specific focus on countering poisoning attacks in IoT networks.
FL facilitates collaborative ML model training among devices without sharing raw private data.
However, this collaborative nature exposes FL system to poisoning attacks, where malicious
clients intentionally inject mislabeled data to compromise the accuracy of the global model. Our
review encompasses various techniques to detect and mitigate such threats, including methods
based on malicious model detection, analysis of client update diversity, secure aggregation pro-
tocols, privacy-preserving, and other innovative approaches. The primary goal is to safeguard
the integrity and accuracy of FL system in IoT networks by identifying the presence of mali-
cious contributions. This overview emphasizes addressing security threats by exploring malicious
detection techniques for poisoning attacks within FL system while shedding light on ongoing
researches aimed at developing more robust defenses. To provide greater insight, we construct
a detailed and thorough comparative study analyzing the key differences between various de-
fense mechanisms. this study serves as a valuable reference, highlighting the capabilities and
limitations of existing techniques.

• We propose the Federated Learning Secure Layered Adaptation and Behavior (FLSecLAB), a
fully customized and self-implemented FL framework to run efficient simulations that is specif-
ically designed to secure FL system against poisoning attacks in IoT networks. FLSecLAB
encapsulates our novel defense strategies alongside existing defenses into a comprehensive plat-
form for evaluating FL security in IoT. We designed FLSecLAB to address FL’s susceptibility to
data poisoning attacks in IoT networks. FLSecLAB is a significant advancement towards secure
and efficient FL deployments in IoT, offering extensive customization to assess various defense
strategies and their robustness against poisoning attacks, and incorporating a comprehensive
architecture to test a wide array of scenarios and simulations, FLSecLAB stands as the pinna-
cle of our efforts in fortifying FL for IoT networks, providing integrated and holistic measures
against poisoning attacks.

• We present our first novel approach, Enhanced Malicious Model Detection based on Genetic
Algorithm for Federated Learning (EMDG-FL), designed to enhance the detection of malicious
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models in FL system, specifically against Label-flipping attacks. The detection process relies on
a classification threshold to distinguish updates from normal and malicious clients. Selecting an
optimal threshold is challenging; a too low threshold may miss some poisoning attacks, while
a too high threshold may result in false alarms on legitimate models. To address this, our
approach utilizes the Genetic Algorithm (GA) [1] to dynamically generate an optimal threshold
for malicious model detection. The GA searches for the threshold value that maximizes accuracy,
significantly improving the effectiveness of detecting malicious models. GAs simulate natural
selection, iteratively evolving candidate solutions based on a ”fitness” metric to find robust
solutions efficiently. We conduct a simulation using Python and evaluates the performance of
EMDG-FL on two datasets: MNIST [2] and Fashion-MNIST [3]. Comparative analysis against
three existing approaches in terms of performance metrics, including Accuracy (ACC), Attack
Success Rate (ASR), Loss Rate (LR), and CPU aggregation run-time, demonstrates the superior
efficacy of the EMDG-FL approach against Label-flipping attacks in FL system.

• We propose a novel scalable defense approach called Entropy-Driven Robust Defense for Feder-
ated Learning (ERD-FL) across a wider range of clients number and dataset types. ERD-FL
utilizes entropy information and simple adaptive threshold to detect and reject potentially ma-
licious clients in FL system against Label-flipping attacks. This attack disrupt the underlying
data distribution by introducing incorrect class labels, causing underlying distortion that can
be captured using the statistical metric of entropy. Entropy quantifies the level of disorder,
indicating manipulation of the expected label distribution. By calculating entropy on client
model updates, we obtain a consistent statistical metric to detect anomalies introduced by the
data contamination from Label-flipping attacks. This entropy-based malicious detection avoids
the need for costly parameter or threshold adjustments, unlike Reinforcement Learning (RL)-
based [4] approach, providing an elegant way to detect deviations that captures evidence of data
manipulation activities without extensive parameter tuning. By leveraging entropy, the defense
mechanism can effectively identify Label-flipping attacks and protect the integrity of trained
models. We performed simulations using the MNIST [2], Fashion-MNIST [3] and IMDB [5]
datasets to evaluate the performance of ERD-FL. The results demonstrate that ERD-FL sur-
passes other previously studied methods in the literature across multiple performance metrics,
including ACC, ASR, and LR. This comparison highlights the superior effectiveness of ERD-FL
in defending against Label-flipping attacks in FL system.

• We introduce a new approach called Multi-layer Malicious Model Detection for Federated Learn-
ing (M3D-FL) that aims to effectively identify malicious models in more complex scenarios with
multiple simultaneous attacks and a larger number of clients in FL system. Our method begins
with the integration of the Local Outlier Factor (LOF) [6] algorithm to determine a Malicious-
ness Score (MS) for each model update, assessing the severity of anomalies based on density
estimates, this replaces prior Isolation Forest (IForest) [7] algorithm used in previous works and
further flags statistical outliers against the ensemble baseline according to their LOF score. Fol-
lowing this initial step, we enhance our detection capabilities by incorporating the Median Abso-
lute Deviation (MAD) [8] algorithm, which provides robust outlier identification. This sequence
ensures that even when sophisticated attackers craft model updates to mimic normal behavior
and evade detection, our approach maintains strong defenses, complementing the core detection
mechanisms in FL system. Not only does this improve security through multi-layered defense,
but it also safeguards the detector from missing manipulated models that must evade both core
processes and outlier analysis. Simulations using CIFAR10 [9], MNIST [2], and Fashion-MNIST
[3] datasets compare with our M3D-FL approach against four others approaches across different
clients number. Evaluation of ACC and CPU aggregation run-time demonstrates M3D-FL’s
efficiency and computational efficiency, showing superiority over existing approaches.

• We showcase a significant contribution to FL with the development of the Non-IID Adaptive
Malicious Model Detection (NAM2D-FL) approach, focused on tackling the complex challenges
associated with both IID and Non-IID data against Label-flipping and Backdoor attacks. This
novel server-client defense mechanism, for identifying and removing malicious models in the FL

4



Chapter 1. General introduction

system. Motivated by the necessity to overcome the limitations of existing defenses in the lit-
erature, our research advances FL’s resilience and adaptability under various data conditions.
Notably, this marks the first application of server-client defense mechanism in our thesis, in-
novating by adopting enhancements to the LOF [6] algorithm and incorporating an adaptive
threshold mechanism derived from the GA [1], marking a step forward in FL defense strategies.
Our evaluations across multiple datasets, including both IID and Non-IID datasets: CIFAR10
[9] and MNIST [2], have verified the NAM2D-FL’s superior performance in terms of ACC, ASR,
Precision, Recall, and CPU run-time. By enhancing FL to effectively counter poisoning attacks,
specifically the Label-flipping and Backdoor , we have established a solid and dependable foun-
dation for its application across various real-world environments. This enhancement secures the
performance and reliability of the FL system, thereby significantly boosting trust and confidence
in collaborative learning.

1.5 Thesis structure

The thesis is structured as follows:

Chapter 2: A comprehensive literature review of attacks and defense mechanisms in
FL system in IoT networks

First, we introduce the fundamentals of the FL system, discussing its system architecture and
challenges within the context of IoT networks. Subsequently, we explore general applications
of FL in various IoT scenarios, followed by an examination of secure and privacy-preserving
applications tailored to IoT environments. Further, we delve into a comprehensive analysis of
attacks targeting FL system in IoT networks, categorized into inference attacks and poisoning
attacks. To counteract these threats, we survey defense strategies tailored for FL system in
IoT networks, encompassing secure aggregation, privacy-preserving techniques and malicious
model detection. For each defense technique, we present related works, providing a thorough
exploration of existing research. Additionally, we offer a comparative study of these techniques,
offering a holistic view of their strengths and limitations. Finally, we introduce FLSecLAB - our
self-implemented, fully customized FL framework to secure FL against poisoning attacks in IoT
networks.
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Chapter 3: Enhanced Malicious Model Detection based on Genetic Algorithm for Fed-
erated Learning in IoT networks

We propose EMDG-FL, an innovative approach that significantly enhances the detection of
malicious models in FL system, against poisoning attacks particularly Label-flipping attacks.
EMDG-FL employs a GA [1] to optimize the threshold for identifying malicious model updates,
improving overall detection capabilities. The GA contributes to more accurate detection, making
EMDG-FL effective against threat models involving Label-flipping attacks by malicious clients
in FL system. The proposed approach consistently outperforms other techniques from the
literature.

Chapter 4: Entropy-Driven Robust Defense for Federated Learning IoT networks

We present ERD-FL, an innovative method designed to protect FL system within IoT networks
from Label-flipping attacks. Uniquely, this approach is the first ever to apply entropy and an
adaptive threshold to effectively identify and combat these attacks. Through extensive evalua-
tions on diverse datasets such as MNIST [2], Fashion-MNIST [3], and IMDB [5] with a different
numbers of clients. ERD-FL distinguishes itself where other methods do not, providing scala-
bility and adaptability across different data types and participation sizes against Label-flipping
attacks. We have rigorously assessed ERD-FL’s performance, the findings confirm its superiority
with efficient attack detection, and computational speed, outshining previous defenses.

Chapter 5: Multi-layer Malicious Model Detection for Federated Learning IoT networks

We demonstrate our novel approach M3D-FL, developed to enhance the detection and miti-
gation of malicious models in FL system within IoT networks, addressing complex scenarios
through a multi-layered defense strategy against both of Label-flipping and Backdoor attacks.
We introduce a sophisticated multi-layered detection mechanism leveraging LOF [6] and MAD
algorithms [8], allowing M3D-FL to efficiently identify and eliminate malicious clients from the
FL process. M3D-FL has been validated, demonstrating superior keys performance compared
to other existing methods. Showcasing M3D-FL’s effectiveness in improving the security and
integrity of FL system. It highlights its potential for real-world applications, especially in sce-
narios involving complex, numerous simultaneous attacks and a larger number of participating
clients.

Chapter 6: Non-IID Adaptive Malicious Model Detection in Federated Learning IoT
networks

In this chapter, we unveiled the NAM2D-FL server-client approach, developed to fortify the
FL system against poisoning attacks within IoT networks dealing with IID and Non-IID data.
Recognizing that real-world FL scenarios often entail data that is not uniformly distributed
across devices, NAM2D-FL refines the LOF algorithm to improve detection accuracy amidst
diverse data distributions, further augmented by a GA-driven optimal threshold mechanism.
This groundbreaking advancement in FL addresses the intricate challenges encountered in both
IID and Non-IID data contexts, specifically targeting Label-flipping and Backdoor attacks. Fur-
thermore, our approach outperforms other mechanisms by integrating advanced data analysis
techniques and adaptive responses to evolving threat landscapes, reinforcing the security and
reliability of FL system in various settings.

Chapter 7: Conclusion and perspectives

This chapter concludes my work and outlines several facets of recommended future research
works.

6



Chapter 2

A comprehensive literature review
of attacks and defense mechanisms
in federated learning system in IoT
networks

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 FL fundamentals in IoT context . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Aggregation algorithms for FL . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 IoT and IoT networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Importance of FL in IoT networks . . . . . . . . . . . . . . . . . . . . . . 11

2.6 The use of FL in IoT networks . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Application of FL in IoT networks . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Challenges of FL in IoT networks . . . . . . . . . . . . . . . . . . . . . . . 15

2.9 Attacks in FL within IoT networks . . . . . . . . . . . . . . . . . . . . . . 17

2.9.1 Poisoning attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9.2 Inference attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 FL defenses in FL within IoT networks . . . . . . . . . . . . . . . . . . . 19

2.10.1 Secure aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10.2 Privacy-preserving techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10.3 Malicious model detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Evaluation of FL defenses in IoT networks . . . . . . . . . . . . . . . . . 25

2.12 Datasets in FL within IoT networks . . . . . . . . . . . . . . . . . . . . . 26

2.12.1 MNIST (Modified National Institute of Standards and Technology dataset) 27

2.12.2 Fashion-MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.12.3 EMNIST (Extended Modified National Institute of Standards and Technology) 28

2.12.4 FEMNIST (Federated Extended MNIST) . . . . . . . . . . . . . . . . . . . 28

2.12.5 CelebA (Celebrity Attributes) . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12.6 Sentiment140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12.7 CIFAR-100 and CIFAR-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12.8 IMDB (Internet Movie Database) . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12.9 EDGE-IIOTSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.13 Common FL frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.13.1 FL frameworks criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7



Chapter 2. A comprehensive literature review of attacks and defense
mechanisms in federated learning system in IoT networks

2.13.2 Overview of FL frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.14 FLSecLAB: Our implemented FL framework for IoT networks . . . . 32

2.14.1 Architecture of FLSecLAB: Server and Client entities . . . . . . . . . . . . 33

2.14.2 Customization of poisoning attacks in FLSecLAB . . . . . . . . . . . . . . . 34

2.14.3 Integration of evaluation metrics in FLSecLAB . . . . . . . . . . . . . . . . 35

2.14.4 Advantages of PyTorch and Scikit-learn integration in FLSecLAB . . . . . 36

2.14.5 Key features of FLSecLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.14.6 FLSecLAB setup overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.15 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1 Introduction

FL emerges as a powerful ML paradigm that enables collaborative yet privacy-preserving model train-
ing across multiple clients. By keeping data decentralized, FL mitigates the privacy risks associated
with traditional centralized learning [10]. The aggregation of model updates from participating clients
is a key aspect of FL, allowing a shared model to be trained without directly accessing the raw data.
This aspect of FL is especially critical in IoT networks, known for a large network of edge devices
that generate and process massive amounts of data [11]. In such environments, FL not only optimizes
the use of network resources but also significantly improves the quality of learning outcomes across
the IoT networks. However, the integration of FL into IoT networks introduces unique security and
privacy challenges. These challenges are further complicated by the potential for various attacks on
the FL system, which can undermine the integrity and reliability of the shared model, leading to er-
roneous outcomes and exposing IoT networks to new vulnerabilities. This chapter aims to underscore
the significance of FL within IoT networks by exploring its applications, highlighting its benefits, and
addressing the inherent challenges and security concerns. Furthermore, we delve into the landscape
of attacks specific to FL in IoT networks, the types of datasets involved, and the defensive strategies
that can be employed. Through a comprehensive evaluation and comparative study, this discussion
presents FLSecLAB, our fully customizable FL framework for IoT networks, integrating our defenses
and additional approaches for extensive testing. It enables experimentation across diverse of scenarios,
signifying a pivotal enhancement in FL security. Detailed discussions of our comprehensive defenses,
aimed at broadening the testing scope, are presented in the following chapters.

2.2 FL fundamentals in IoT context

FL is an ML technique that allows multiple entities to collaboratively train a model while keeping
their data private. This approach is different from traditional centralized ML methods where data is
collected and processed in a single location. Instead, FL enables the model to be trained across multiple
decentralized devices or servers without sharing the actual data among them [12]. As demonstrated
in Figure 2.1, we explore the intricacies of this distributed training methodology. The process of FL
involves distributing the model to the devices or clients where the data resides. Each of these clients
trains the model on its local data and computes an update to the model [13]. These updates are
then sent to a central server where they are combined to improve the global model. This updated
model is then sent back to the clients, and the process repeats until the model achieves the desired
performance.

FL is particularly beneficial in scenarios where data privacy is paramount or where data cannot be
centralized due to regulatory, technical, or ethical reasons. In the context of IoT, where devices often
collect sensitive information in environments like healthcare, transportation, smart cities, financial
services, and autonomous vehicles, FL’s ability to aggregate data from diverse sources while main-
taining privacy and security is especially valuable. This makes it applicable across various industries,
enhancing IoT applications with its approach to handling data in a decentralized yet secure manner.

However, FL also faces challenges such as dealing with heterogeneous data across clients, ensuring
robustness against failures or malicious actors, and managing the computational and communication
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Figure 2.1: An overview of FL system

overhead involved in training models in a decentralized manner. Despite these challenges, FL is
considered a promising field in Artificial Intelligence (AI) due to its potential to improve data privacy
and security while enabling collaborative model training.

2.3 Aggregation algorithms for FL

FL aggregation algorithms are crucial for merging local updates from multiple devices into a unified
global model, adeptly addressing key challenges in FL such as enhancing communication efficiency,
managing diverse data characteristics, and scaling to accommodate numerous nodes. The selection
of an optimal aggregation algorithm is not trivial; it is central to the efficacy, privacy, and overall
performance of the FL system. This decision influences not just the immediate learning outcomes
but also the long-term viability and adaptability of the FL system to diverse and evolving data
environments.

To facilitate a deeper understanding and enable a rigorous comparison of these aggregation al-
gorithms, a structured overview is essential. In the provided Table 2.1, we meticulously summarize
the most prevalent aggregation algorithms within the FL system. This summary encapsulates each
algorithm’s core definition, highlighting its strengths and limitations, applicable data types, and the
underlying techniques or methodologies employed. By dissecting these algorithms into these funda-
mental components, we offer readers a panoramic yet detailed perspective on how each algorithm
operates, its ideal use case scenarios, and the potential challenges one might encounter during imple-
mentation. Notably, the table serves as a compass for navigating the landscape of FL aggregation
algorithms. For instance, it contrasts the simplicity and communication efficiency of Federated Av-
eraging (FedAvg) [14] with the more sophisticated approach of FedProx [11], which introduces a
proximal term to better manage the challenges of statistical heterogeneity. It also delves into the
realms of privacy enhancement with SecAgg [15] and the innovative use of knowledge distillation in
FedDistill [16]. This comparative analysis not only underscores the diversity of approaches within FL
but also illuminates the trade-offs involved in selecting an aggregation algorithm suited to a specific
FL application’s needs.

Furthermore, this overview is instrumental in bridging the gap between theoretical understanding
and practical application, especially regarding the use of aggregation algorithms in FL models. These
algorithms are crucial as they directly impact data privacy, efficiency, and scalability. Highlighted by
Table 2.1, this guide is a vital tool for anyone working with FL systems, helping them to select the
right aggregation algorithms to meet their specific needs. It also encourages further discussion on the
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future of FL algorithm research and development, emphasizing the significance of these algorithms in
the FL ecosystem. The aim is to foster more research and practical applications, pushing FL forward
as a secure, efficient, and privacy-focused technology.

Algorithm Definition Data type Pros Cons Used tech-
nique

FedAvg
[14]

Averages local updates to
form the global model, ef-
fectively combining learning
from all participating de-
vices

IID / Non-
IID

Reduces commu-
nication overhead;
Simple and effec-
tive

May struggle with
Non-IID data;
Convergence issues
in heterogeneous
networks

Averaging

FedSGD[14] Aggregates gradient updates
after each local batch or
epoch, closely aligning with
traditional SGD

IID Potentially faster
convergence

High communica-
tion cost; Less effi-
cient in bandwidth-
limited scenarios

Gradient Ag-
gregation

FedProx
[11]

Adds a proximal term to the
local optimization problem
to mitigate the effects of sta-
tistical heterogeneity

Non-IID Improves handling
of Non-IID data;
Reduces client
drift

Increased compu-
tational complex-
ity; May require
tuning of proximal
term

Proximal Op-
timization

SecAgg
[15]

Uses cryptographic tech-
niques to ensure that the
server can only see aggre-
gated updates, enhancing
privacy

IID / Non-
IID

Enhances data
privacy; Suitable
for sensitive appli-
cations

Cryptographic
operations can be
computationally
intensive

Secure Aggre-
gation

FedDistill
[16]

Utilizes knowledge distilla-
tion to aggregate models, fo-
cusing on learning a global
model that mimics the be-
havior of local models

IID / Non-
IID

Efficient in hetero-
geneous networks;
Reduces commu-
nication costs

May require addi-
tional hyperparam-
eter tuning; Com-
plexity in imple-
mentation

Knowledge
Distillation

FedSkip
[13]

Allows clients to skip the
transmission of updates un-
der certain conditions to
save bandwidth and compu-
tational resources

IID / Non-
IID

Reduces commu-
nication costs; Ef-
ficient in stable
learning phases

Skipping criteria
need careful design
to avoid loss of
critical updates

Conditional
Update Skip-
ping

Table 2.1: An overview of FL aggregation algorithms.

2.4 IoT and IoT networks

IoT embodies the concept of a network of interconnected devices that can communicate, gather envi-
ronmental data, process this information, and share insights to fulfill specific objectives. This concept
has led to the automation of various aspects of daily life, exemplified by Smart Homes through au-
tomated air conditioning, security surveillance, and lighting systems, among numerous other services
and devices. Furthermore, IoT’s impact extends beyond domestic convenience, influencing other facets
of human life and giving rise to smart education systems, smart healthcare, smart farming, and smart
industries. It is projected that by the end of 2025, the IoT sector will have expanded to include
22 billion smart devices [17]. This growth is largely fueled by the integration of IoT systems with
advanced sensing and computing capabilities, revolutionizing the connectivity of objects and devices.
This evolution is not only aimed at enhancing customer services and applications through the linkage
of a diverse array of objects and devices but also at facilitating seamless interactions within the IoT
ecosystem.

The integration of AI techniques such as ML and Deep Learning (DL) has been pivotal in endowing
IoT systems with intelligence. These technologies are celebrated for their ability to derive insightful
knowledge from IoT data, paving the way for the development of smart applications including human
activity recognition, vehicular traffic management, and accurate weather forecasting [18]. In the realm
of IoT networks, the analysis of IoT data and the delivery of intelligent services are two areas that
demand close attention. Leveraging AI techniques for IoT data analytics allows for the creation of
sophisticated data processing functions capable of handling the massive volumes of data produced
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by a wide range of IoT devices, such as sensors, actuators, smartphones, personal computers, and
Radio Frequency Identification (RFID) tags. ML and DL, especially using neural networks, provide
advanced computational models with multiple processing layers that enable learning from data at
different levels of abstraction. This is essential for extracting meaningful features from various types
of IoT data, including images, time series, video, and text, and for managing the vast amount of data
streaming from millions of sensors. The adaptability and efficiency of these AI models in processing
different data modalities, coupled with their capability to manage large data volumes without complex
feature engineering, make them exceptionally suitable for IoT applications [18].

An example of AI’s role in IoT data analytics is the deployment of Recurrent Neural Networks
(RNNs), which are equipped with interconnected neurons that form a directed graph, thus facilitating
the processing of sequential data of variable lengths. This is particularly advantageous for tasks that
involve the analysis of sequential data, showcasing the sophisticated capabilities of AI techniques in
the IoT domain [19]. Furthermore, FL illustrates how AI can improve scalability and privacy within
IoT networks. By decentralizing AI training to multiple devices at the network’s edge, FL ensures that
data remains secure on local devices. This method not only safeguards privacy but also fosters the
development of innovative IoT services and applications, underscoring AI’s potential to drive progress
in the IoT field.

On the other hand, IoT networks are fundamental in facilitating the connection and interaction of
billions of devices globally. They form the cornerstone of a new digital integration era across diverse
sectors, including healthcare, smart cities, and industrial automation. These networks are distin-
guished by their variety, integrating numerous communication technologies, protocols, and standards
tailored to meet the specific needs of a wide range of IoT applications.

The selection of connectivity technology is crucial, as it directly affects the functionality and
efficiency of IoT solutions. The connectivity options are varied, each serving different requirements:
Wi-Fi and Ethernet are suited for environments needing high data rates within small areas; cellular
networks such as 4G and 5G provide wider coverage, suitable for more extensive applications; and
Low-Power Wide-Area Networks (LPWANs), including Long Range Wide Area Network (LoRaWAN)
and Narrowband IoT (NB-IoT), cater to devices requiring prolonged battery life over large distances.
This diversity in IoT network infrastructure illustrates the complexity and adaptability needed to
support the extensive and varied demands of the interconnected world, highlighting the importance
of careful technology selection in the design and implementation of IoT systems.

In the healthcare sector, for example, IoT networks have a significant and positive impact, marking
a transition towards more proactive and customized care models. Wearable biosensors and connected
medical devices provide continuous monitoring of vital signs, enabling healthcare professionals to
monitor patient health in real time. This advancement not only improves the quality of care but also
makes it more personalized, supporting treatments specifically designed for the individual needs of
each patient. Furthermore, IoT networks are essential in managing chronic diseases, using connected
devices to track disease markers and ensure patients adhere to their medication regimes. This approach
greatly enhances patient outcomes and reduces the necessity for face-to-face hospital visits, offering a
more efficient and effective healthcare system.

However, the widespread adoption of IoT networks, especially in sensitive areas like healthcare,
introduces significant privacy and security challenges. Protecting patient data from unauthorized
access and ensuring the integrity of health information across IoT networks are critical issues that
demand comprehensive security measures. As IoT networks continue to advance, their growing role
in supporting smart, interconnected solutions across various domains underscores the importance of
maintaining a delicate balance between embracing technological innovation and ensuring rigorous
security and privacy safeguards, aiming for a future that is both more connected and secure.

2.5 Importance of FL in IoT networks

Through its pioneering operational system, FL presents numerous significant advantages for the de-
ployment in IoT scenarios. This model showcases the critical benefits and functional efficiencies FL
introduces to IoT networks, as outlined in Figure 2.2, as follows:
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a. Enhancement of data privacy: FL ensures that raw data remains on the local device,
eliminating the need to transmit sensitive information to a centralized aggregator. This approach
significantly reduces the risk of private data exposure to unauthorized third parties, thereby
offering an enhanced level of privacy protection. This is particularly relevant in the context
of strict data privacy regulations like the General Data Protection Regulation (GDPR) [20],
positioning FL as a preferable choice for developing secure and intelligent IoT environment.

b. Reduction in network latency: The absence of the necessity to send IoT data to a central
server translates into decreased network latency due to less reliance on data transmission. Con-
sequently, this efficiency not only conserves network resources, such as bandwidth and energy,
during the data training phase but also enhances the overall system performance.

c. Improvement in learning efficacy: By leveraging computational power and diverse data
sets from an extensive network of IoT devices, FL can potentially accelerate the training process
and attain superior levels of learning accuracy [21]. Such achievements may not be feasible with
centralized AI models limited by data scarcity and computational constraints. Furthermore, the
distributed nature of FL augments the scalability of intelligent networks.

d. Scalability via flexibility: FL leverages the distributed computing power of numerous IoT
devices across different locations, processing data in parallel without burdening any single point
in the network. As the capabilities of edge devices increase, leading to larger individual data
volumes, the centralization of data processing becomes inefficient, either under utilizing local
computing resources or straining the wireless network. FL addresses these challenges by dis-
tributing the learning process across a wider array of devices, thereby improving the network’s
scalability without imposing additional demands on central servers. This approach also elim-
inates the need for sending large amounts of raw data across the network, further enhancing
scalability by reducing communication costs and easing the load on networks with limited band-
width.

Figure 2.2: The benefits of FL in IoT networks

These distinct benefits have led to the proposition of FL in a spectrum of IoT applications, including
but not limited to smart healthcare, intelligent transportation systems, and Unmanned Aerial Vehi-
cles (UAVs). For instance, in the healthcare sector, FL has enabled the confidential modeling of ML
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algorithms without necessitating the exchange of patient information among various medical entities
[22]. This ensures that hospitals can train AI models locally and share only the model parameters for
aggregation, thus fostering a cooperative healthcare ecosystem that accelerates patient care without
compromising privacy. In the realm of smart transportation, FL demonstrates its capacity to enhance
vehicular services [23] from autonomous navigation to traffic safety forecasting and vehicle recogni-
tion—all while ensuring data privacy through collaborative learning between vehicles and roadside
units. The emerging successes in FL applications within the IoT field underscore the importance of
focusing research efforts on this promising and evolving domain.

2.6 The use of FL in IoT networks

The burgeoning proliferation of IoT devices introduces significant privacy challenges, diverging from
traditional, centralized ML system [24]. The practice of incessantly transmitting sensitive informa-
tion from a multitude of IoT sensors for server-based model training engenders profound data security
concerns, potentially stalling broader acceptance. FL, as depicted in Figure 2.3, emerges as a revolu-
tionary approach that facilitates collaborative ML training across IoT networks without necessitating
the aggregation of raw data. This paradigm shift allows IoT devices to locally train ML models while
ensuring that private data remains within the device, thus obviating the need to share it with a cen-
tral server or amongst other devices [25]. The adoption of FL offers substantial privacy enhancements
alongside benefits such as diminished network expenses, augmented model personalization, increased
resilience, and the facilitation of low-latency edge computing [26]. Moreover, FL provides a gateway

Figure 2.3: A standard FL-IoT networks

to previously untapped innovative prospects by leveraging localized IoT data, which, due to security
considerations, was largely unexplored. The availability of on-device data processing enables the IoT
ecosystem to exploit context-aware insights, leading to significant advancements in the predictive ac-
curacy, functionality, and robustness of ML models tailored for IoT applications across various sectors
including healthcare, transportation, and infrastructure monitoring [25]. Despite these advancements,
FL faces research challenges concerning system limitations, adversarial threats, and the statistical vari-
ability inherent in highly decentralized frameworks. Nonetheless, FL stands as a pivotal innovation
for fostering privacy-preserving AI and unleashing the full potential of IoT data on a grand scale [27],
thus introducing significant privacy advancements in the IoT domain.
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2.7 Application of FL in IoT networks

Incorporating the previously highlighted advantages, FL has played a transformative role in advancing
IoT networks. This section delves into some of the most pivotal applications within these networks,
emphasizing their significance. The depiction of these applications, as outlined in Figure 2.4, is as
follows:

Figure 2.4: Application of FL in IoT networks

a. FL in healthcare privacy and innovation:

The increasing use of IoT devices in our daily lives raises significant privacy concerns, especially
in healthcare. Wearable devices that monitor vital signs pose heightened sensitivity around
personal health data, which is strictly governed by legal and regulatory frameworks. FL is
essential for developing advanced ML models across a fragmented and regulated data landscape.
It enables large-scale precision medicine by training models across multiple institutions without
data consolidation, protecting patient privacy and data integrity [28].

b. FL’s role in industry 4.0:

The Industrial Internet of Things (IIoT) marks a significant advancement in information tech-
nology for manufacturing. Industry 4.0, also known as the fourth industrial revolution, is driven
by the increased interconnectivity of IIoT and the availability of real-time data. This enables
new levels of insight, control, and visibility across supply chains. Mature Industry 4.0 imple-
mentations include Optical Character Recognition (OCR) for labeling, advanced and automated
Incoming Quality Control (IQC), and sophisticated Process Quality Control (PQC). However,
challenges remain, including the limited data from individual factories for comprehensive model
training and the need for privacy in commercially sensitive data. FL offers a potential solution
by preserving data privacy while enabling model training [29].
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c. Advancing smart transportation with FL:

IoT technologies are transforming smart transportation, revolutionizing how we manage and
interact with different modes of transport to enhance efficiency and safety. Innovations like in-
telligent traffic management systems, real-time vehicle tracking, and autonomous vehicles utilize
IoT to optimize routing, reduce congestion, and improve overall travel experiences. FL plays a
vital role in this sector, enabling collaborative learning from various data sources without com-
promising individual data privacy. This facilitates smarter and more responsive transportation
solutions. [13].

d. FL’s Impact on smart city development:

Smart cities leverage IoT to optimize operational efficiency and enhance citizen well-being. IoT
devices facilitate real-time monitoring of city infrastructure, providing valuable insights into
traffic patterns, public safety, healthcare, and more. FL, with its ability to process data locally,
addresses privacy concerns and aligns well with smart city applications. FL-based smart grids,
for instance, enable learning from power consumption patterns without compromising individual
data, fostering an intelligent and interconnected energy network [30].

e. Enhancing autonomous driving with FL:

Vehicular IoT and autonomous driving demand robust, real-time communication and adapt-
ability to environmental changes. Centralized data processing raises privacy concerns and may
struggle with real-time adjustments due to data transmission volumes and network limitations.
FL, implemented in vehicular edge computing, tackles these challenges by reducing data trans-
mission requirements and enabling vehicles to adapt to local changes, significantly enhancing
autonomous driving systems.

f. FL in the spatial computing and Virtual Reality (VR):

The metaverse, envisioned as the internet’s next evolution, offers immersive three dimensional
online experiences via computers, VR, and Augmented Reality (AR) devices. A crucial aspect
is the digital twin concept, mirroring the real-world’s status in virtual environments. FL fosters
collaboration between edge computing and servers, enhancing performance and privacy. For
example, it enables private training of user-generated data, like eye or motion tracking, on local
devices, ensuring a privacy-centric metaverse experience.

2.8 Challenges of FL in IoT networks

In the rapidly evolving landscape of the IoT, the implementation of FL presents a groundbreaking ap-
proach to harnessing the power of decentralized data while safeguarding user privacy. This innovative
learning paradigm enables a multitude of devices to collaboratively learn a shared prediction model
while keeping all the training data on the device, thus mitigating the risks associated with traditional
centralized data storage. Despite its promising advantages, the adoption of FL in IoT environments
encounters several significant challenges that necessitate meticulous attention and dedicated research
efforts.

• Communication efficiency: The challenge of communication efficiency is exacerbated by
the inherent limitations of IoT devices, which are often constrained by low bandwidth and
limited computational resources. The frequent exchange of model updates, a staple in traditional
FL processes, becomes a bottleneck, severely impacting the scalability and feasibility of FL
deployments in IoT environments [31]. Innovations such as sophisticated data compression
algorithms, intelligent client selection mechanisms, and the incorporation of edge computing
for localized aggregation aim to mitigate these issues [32, 33]. Yet, the development of ultra-
efficient communication protocols that are specifically optimized for the unique landscape of IoT
devices remains a critical area for future research. Such protocols must not only minimize data
transmission costs but also ensure timely and efficient model updates across a highly distributed
network.
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• Statistical heterogeneity: IoT devices generate data that are inherently diverse in terms of
volume, features, and distributions, leading to significant statistical heterogeneity [34, 35]. This
variability introduces challenges in training FL models, as it can hinder model convergence and
degrade overall performance. Addressing this requires the development of sophisticated model
aggregation techniques that can effectively handle unbalanced and Non-IID data across clients.
Furthermore, strategies such as employing statistical metrics for quantifying distribution diver-
gence, conducting localized fine-tuning on devices, and applying advanced clustering algorithms
are essential for adapting to and overcoming the challenges posed by data heterogeneity.

• System heterogeneity: The diversity in the IoT landscape introduces significant challenges
due to system heterogeneity, which encompasses a broad spectrum of devices with varying
computational capabilities, memory sizes, processing speeds, and software environments [36, 37].
This variability affects not just the performance and efficiency of FL algorithms but also their
ability to effectively learn from distributed data sources. The challenge is further compounded by
the Non-IID nature of data across these devices. Non-IID data refers to scenarios where the data
distribution is not identically and independently distributed across all nodes participating in the
FL process. In the context of IoT, this means that the data collected by different devices can
vary greatly in terms of features, distribution, and volume, reflecting the diverse environments
and contexts in which these devices operate.

• Privacy and security: The decentralized nature of FL offers a foundational layer of privacy
by design, yet the system remains vulnerable to sophisticated cyber threats [38]. These include
inference attacks that can deduce sensitive information from model updates, data poisoning
that corrupts the training process, and unauthorized manipulations aimed at compromising the
model’s integrity. Developing solutions to these challenges requires a multifaceted approach
that encompasses advanced cryptographic methods, malicious detection, Secure Multi-Party
Computation (SMPC) [39] techniques, and robust privacy-preserving protocols. These measures
must be designed to protect against both external breaches and insider threats, ensuring the
confidentiality and integrity of FL processes across untrusted networks.

• Interoperability: The heterogeneity of IoT networks and the lack of standardized communica-
tion protocols present significant interoperability challenges [31]. Achieving seamless interaction
between diverse IoT devices and FL system necessitates the development of universal frameworks
that can standardize data formats, communication protocols, and model sharing mechanisms.
This effort requires broad collaboration across industry and academia, aimed at establishing
open standards that facilitate compatibility and ease the integration of FL into existing and
future IoT ecosystems.

• Real-world applicability: Transitioning from theoretical models to real-world implemen-
tation exposes FL system to the complexities of practical IoT infrastructures [40]. Conducting
extensive deployments and pilot studies across varied environments is critical for evaluating
the effectiveness of FL in real-world settings. These studies not only provide insights into the
operational challenges but also highlight the scalability and resilience of FL models under di-
verse conditions. This knowledge is invaluable for refining FL algorithms and ensuring their
robustness and reliability in practical applications.

• Lack of incentives: A major obstacle to widespread participation in FL processes is the ab-
sence of direct incentives for IoT device owners [41]. Developing compelling incentive structures
that motivate individuals and organizations to contribute their computational resources to FL
is essential. Innovative approaches, such as leveraging blockchain technology for transparent
reward mechanisms and creating dynamic pricing models, can offer tangible benefits to partici-
pants, thereby fostering a more collaborative and participatory FL ecosystem.

• Limited data utilization: Despite the promise of FL to enable collaborative learning, the
full potential of the vast, fragmented data landscape of IoT remains largely untapped [42].
Overcoming this challenge requires the exploration of hybrid models that facilitate controlled,
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privacy-preserving data sharing. Such models can bridge the gap between the need for data
privacy and the demand for comprehensive analytics, enabling more effective decision-making
and unlocking new opportunities for innovation within the IoT domain.

• Legal and ethical hurdles: The implementation of FL within IoT networks is fraught with
legal and ethical complexities, including issues related to data governance, transparency, ac-
countability, and inherent biases [43]. Navigating these challenges necessitates the establishment
of clear industry standards and best practices that align with evolving regulatory frameworks.
Such efforts are crucial for ensuring ethical use of FL, fostering public trust, and facilitating its
acceptance across various sectors.

2.9 Attacks in FL within IoT networks

The adoption of FL in IoT networks introduces unique security challenges, magnified by the distributed
and often resource-constrained nature of IoT devices. This section outlines the primary attacks
targeting FL system in IoT contexts, such as model and data poisoning, alongside inference attacks
that jeopardize data privacy. These attacks distort the training process and compromise the model’s
integrity and effectiveness, as illustrated in Figure 2.5. Highlighting these vulnerabilities is essential
for the development of advanced security strategies to protect FL system against malicious activities,
ensuring the reliability and confidentiality of the learning models and the data they process within
IoT environment.

2.9.1 Poisoning attacks

At the core of the FL training mechanism, the reliance on local updates from clients to the central
server introduces a pivotal vulnerability due to the server’s limited capacity for validating the integrity
of these updates. Malicious clients exploit this flaw through poisoning attacks, delivering corrupted
updates to the system. These attacks are broadly segmented into targeted, such as Backdoor attacks
[44], aimed at compromising the model’s function for specific inputs, and untargeted attacks, which
diminish the model’s overall accuracy [44]. As illustrated in Figure 2.5, two main categories of poi-
soning attacks are identified: model poisoning and data poisoning, each impacting the FL system in
different ways.

a. Model poisoning attacks:

Model poisoning attacks represent a direct assault on the integrity of the FL model during its
training phase [45]. These attacks are characterized by the manipulation of the model’s param-
eters, a tactic that can dramatically alter the course of the model’s learning process. Techniques
employed in these attacks range from model exploration, which seeks to uncover vulnerabilities
in the model’s architecture, to model inversion, an approach that attempts to reverse-engineer
model outputs to disrupt the training process. Such attacks not only compromise the model’s
accuracy but also pose significant challenges to maintaining the confidentiality and integrity of
the model’s training data.

b. Data poisoning attacks:

Data poisoning attacks target the very foundation of the FL model’s learning process: the
training data [46]. By tampering with this data, adversaries can significantly impact the model’s
performance. This category encompasses two primary attack vectors: data modification and
data injection. Data modification attacks, including Label-flipping [47], involve altering correct
labels to incorrect ones, thereby confusing the model during the training phase. On the other
hand, data injection attacks, such as Backdoor strategies [48], introduce manipulated data into
the training set, aiming to create vulnerabilities that can be exploited once the model is deployed.
We delineate the characteristics and mechanisms of these attacks as follows:
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Figure 2.5: The data and model poisoning attacks in FL system

• Label-flipping attack:

Despite their straightforward approach, Label-flipping attacks pose a significant threat to model
integrity. Such attacks manipulate the model’s learning process by simply altering the labels
of selected data points [47]. This method does not necessitate a deep understanding of the
model’s inner workings, making it a viable option for a broad spectrum of attackers. The act of
mislabeling data forces the model to establish incorrect patterns and associations, significantly
undermining its reliability and accuracy. This attack can also be explained in a different manner;
In these attacks, malicious clients change the labels in the training data to degrade model
performance. The number of attacks is chosen randomly. Let the normal training dataset
contain N sample-label pairs: {(a1, b1), (a2, b2), ..., (aN , bN )}. The attacker flips some labels to
construct a poisoned dataset: {(a1, b′1), (a2, b′2), ..., (aN , b′N )}. Where b′i not equal bi for some
subset of labels that are flipped. A model trained on the poisoned data performs worse than
one trained on the original clean labels. The normal label set is: B = {b1, b2, ..., bN} and the
poisoned label set is: B′ = {b′1, b′2, ..., b′N}.

• Backdoor attack:

Backdoor attacks in FL represent a form of deliberate sabotage executed through the manip-
ulation of training data. These attacks introduce hidden triggers or subtle data alterations
designed to corrupt the model’s behavior [48]. The effectiveness of such attacks hinges on two
critical aspects: the timing, where the model is nearly fully trained and thus more susceptible
to manipulation, and the attacker’s knowledge of the FL system’s intricacies. This includes an
understanding of how the system operates and identifying the minimum number of compromised
participants required to successfully embed the corruption within the model.

2.9.2 Inference attacks

Inference attacks are a major security concern for FL, as they directly threaten the privacy of training
data. These attacks aim to uncover sensitive information embedded in the data used to train the
FL model. By strategically querying the model, attackers engage in two primary types of inference
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attacks: reconstruction and membership. Reconstruction attacks try to generate copies of individual
data points, potentially revealing private details, while membership attacks determine if a specific piece
of data was used in training the model. Both types of attacks risk disclosing sensitive information,
challenging the privacy and security measures in place within the FL system. We clearly define the
workings of these attacks as follows:

• Reconstruction attack:

Reconstruction attacks, such as the multi-task Generative Adversarial Network (mGAN-AI)
proposed by [48], showcase the potential to generate data samples that closely mimic real train-
ing data. These attacks operate by exploiting the shared model updates, either passively or
actively, to siphon off sensitive information about the model’s training data. While remarkably
sophisticated, the effectiveness of these attacks can be mitigated using encrypted communica-
tions between the clients and the server, highlighting the importance of security measures in
preserving the integrity of FL system.

• Membership attack:

Membership attacks are particularly invasive, as they allow adversaries to infer whether a given
data sample was part of the model’s training set. This type of attack exploits the output of
a well-trained model to make determinations about the data’s provenance, thereby breaching
the privacy of the data subjects. Techniques such as the one proposed by [49] demonstrate
the nuanced approach required to successfully execute membership attacks, underscoring the
sophisticated nature of threats facing FL environments.

As FL becomes increasingly integrated into IoT networks, recognizing the associated security risks
is essential. This approach, which aims to improve data privacy and processing efficiency by allowing
devices to collaboratively learn without sharing their data, introduces distinctive challenges. Prior to
exploring the specific vulnerabilities and attacks targeting FL within IoT networks, it’s important to
appreciate the context of FL’s application and the security implications of its widespread use. This
understanding is critical for addressing the security needs of FL systems in IoT settings, leading to
the crucial discussion on developing effective defenses against such threats.

2.10 FL defenses in FL within IoT networks

In this section, we delve into defense mechanisms tailored to protect IoT networks against poisoning
attacks, focusing on approaches like secure aggregation, data encryption, model validation, malicious
model detection, and privacy-preserving techniques. These measures are critical for enhancing the
security of the FL system. Given the significance of combating poisoning attacks within these systems,
we have dedicated a portion of our thesis to this issue. As a result, we include Table 2.2, which
directly compares various defense mechanisms against poisoning attacks in the FL system. This
emphasis reflects our thesis’s focus on identifying and evaluating effective defenses against such attacks,
demonstrating the necessity of robust security measures in securing IoT networks.

2.10.1 Secure aggregation

There are different secure aggregation algorithms, such as [50, 51], which can guarantee privacy
protection when gathering model updates from clients in the FL process. These algorithms also tackle
the problem of client dropout during iterations. Nevertheless, secure aggregation algorithms have
limitations, including the server’s visibility of pre-iteration data aggregates and inefficiency for sparse
data aggregation. For example, after one round of local computations and sharing of encrypted results,
the server may see ”Sum = 153, Count = 5” representing the aggregated sum and count of data from
5 users, without seeing their raw data. The authors of [52] introduced a secure aggregation algorithm
named FASTSECAGG. This algorithm uses a technique called sketching to lower the amount of data
that needs to be transmitted, thereby reducing communication costs. Additionally, it employs a
method based on Shamir’s secret sharing, referred to as fastshare, to enhance scalability. The benefits
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of FASTSECAGG include reduced computational and communication expenses, the ability to handle
participant dropouts, and security measures to prevent collusion among servers.

Instead of averaging clients’ updates, researchers have explored a new approach called Byzantine
robust aggregation [53]. This technique involves removing outliers from local models’ data before
aggregation, using methods like Median [54], Trimmed Mean (TMean) [54], Multi-Krum (MKrum)
[55]. However, these techniques rely on certain assumptions, such as IID data distribution and smooth
loss function, to provide theoretical guarantees. However, these rules become less effective when
dealing with Non-IID data because they ignore important information during update aggregation.
Also, the error in their estimates increases as the model size grows.

The authors of [56] proposed a Byzantine aggregation algorithm that involves the server collecting
a small clean training dataset and maintaining a server model similar to clients’ local models. The
server assigns trust scores to clients based on cosine similarity between their local models and the
server model, known as bootstrap trust. These trust scores are used during aggregation. FLtrust, as
described by Cao et al., bounds the difference between the global model learned by FLtrust and the
optimal global model under no attack, assuming certain conditions. Furthermore, FLtrust is robust
against adaptive attacks.

2.10.2 Privacy-preserving techniques

Several studies have been concentrating on enhancing the confidentiality aspects of FL through the
utilization of various methodologies including SMPC [39], HE technique as referenced in [57], and Dif-
ferential Privacy (DP) as discussed by [58]. The upcoming sections will provide a detailed exploration
of these techniques.

2.10.2.1 SMPC

SMPC [39], an intricate branch of cryptography [59], focuses on developing new techniques that
allow multiple parties to collaboratively compute a function using their inputs while safeguarding
the privacy of these inputs. This process often involves distributing the overall computation into
smaller, manageable tasks, with each task executed independently by a party, before aggregating these
individual results. Within FL, each client employs SMPC methods, such as secret sharing outlined
by [15], to obscure their local model updates (including gradients or weights) by converting them into
shared secrets. Following this, the aggregation process can utilize HE, as detailed in the next section,
or protocols based on secret. According to [60], SMPC provides strong privacy guarantees and reliable
defense against adversarial attacks in FL. Nonetheless, the implementation of SMPC comes with its
set of difficulties:

• Computational demand: The use of SMPC [39] techniques frequently requires significant
computational efforts, which can lead to prolonged training duration and heightened resource
usage.

• Communication load: The adoption of secure protocols typically involves a higher frequency
of communication and larger message sizes, which might result in increased bandwidth demands
and the risk of communication bottlenecks.

• Scalability: Expanding FL system to support numerous nodes presents difficulties, given that
the efficiency of SMPC protocols tends to decrease with the addition of more clients.

2.10.2.2 HE

HE represents a distinct category of encryption techniques, crafted to enable the performance of
mathematical operations on data while it remains encrypted [61]. Fully Homomorphic Encryption
(FHE), as introduced by [62], is a variant of HE that supports computations on ciphertexts of any type.
On the other hand, Semi-Homomorphic Encryption (SHE), detailed by [63], permits computations
on ciphertexts but is limited to specific operations like addition and multiplication. While HE offers
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promising prospects for safeguarding the privacy of model training and evaluation data in FL, it is
not without drawbacks:

• HE is computationally intensive, resulting in longer training periods and greater consumption
of resources on individual nodes.

• Certain HE techniques are limited to fundamental mathematical operations, such as addition and
multiplication, which may not meet the requirements for advanced ML models or optimization
techniques.

• In comparison to conventional encryption techniques, HE generates more voluminous cipher-
texts, increasing communication overheads and potentially intensifying bandwidth limitations.

2.10.2.3 DP

DP, as defined by [58], is a powerful approach for protecting data privacy during the analysis or sharing
of large and sensitive datasets. Its fundamental strategy involves adding a random noise function to
the original data, which obscures specific details while preserving the overall utility of the aggregated
data. Within the FL context, where clients collectively train a model without centralizing their data,
DP is applied by introducing random noise to the model’s parameters. This can involve employing
mechanisms such as the Laplace technique [64] or the Gaussian method [65]. The parameters, now
embedded with noise, are subsequently shared with the aggregator. Incorporating DP into FL sig-
nificantly enhances the privacy safeguards for devices participating in the network and their data.
Nevertheless, integrating DP into FL introduces certain obstacles:

• Privacy dilemma: Adding noise to safeguard privacy can lead to slower convergence and
increase the variability in model updates. Finding the right balance between privacy protection
and the practical usefulness of the data becomes a pivotal concern in the development of privacy-
focused FL system.

• Parameter optimization: Fine-tuning the parameters for DP, such as noise levels and privacy
budgets, poses a substantial challenge. This process demands a thoughtful analysis of the specific
FL scenario, the sensitivity of the data involved, and the degree of privacy required.

2.10.3 Malicious model detection

Poisoning attacks in FL can harm the accuracy and security of the global model. Hence, it is crucial
to devise robust defense mechanisms to detect and mitigate the impact of malicious clients on the
FL system. Several strategies have been proposed in the literature to enhance the security of FL
against poisoning attacks. Some approaches involve detecting and filtering malicious updates by
carefully analyzing the updates received from clients. It becomes possible to identify and exclude those
that contain malicious or poisoned information, which helps to maintain the integrity of the global
model. Secure aggregation techniques are another defense mechanism used to enhance FL security.
These techniques ensure the aggregation process is resilient to attacks and prevent malicious clients
from manipulating the results. By employing secure aggregation, the influence of poisoned models is
mitigated, and the overall accuracy of the global model is preserved. Improving the accountability of
clients is also crucial in defending against poisoning attacks. Tracking and monitoring clients’ behavior
makes identifying suspicious or malicious activities easier. Our research focuses on enhancing the
defense against Backdoor and Label-flipping attacks. By developing effective mechanisms to detect
and counter such attacks, we aim to safeguard the integrity and reliability of FL system. Several
recent works in the literature have addressed the challenge of poisoning attacks in FL. These works
propose various techniques and algorithms that aim to detect, prevent, or mitigate the impact of
malicious clients. By building upon the knowledge and advancements in this field, we contribute to
the collective efforts in strengthening the defense against poisoning attacks in FL.

In [66], the authors investigate the characteristics of Backdoor attacks on a large-capacity model
in Non-IID federated settings. The study reveals that redundant neurons can be exploited to improve
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backdoor persistence and avoid the invalidation of backdoor features after aggregation. They propose
a new defense scheme with similarity measurement for convergence-round attacks. The proposed
scheme is designed based on the characteristics and vulnerabilities of Backdoor attacks, allowing for
targeted defense in FL with lower time complexity and better defense effectiveness. Additionally, they
design a defense scheme with backdoor neuron activation to counter early-round attacks. However, it is
important to note that their proposed defense schemes may not be effective against more sophisticated
Backdoor attacks.

In [67], authors propose a hybrid learning-based method for detecting malicious parameter updates
in FL and provide empirical evidence of its effectiveness against a Label-flipping attack on three
different image classification tasks. The proposed method comprises two strategies: one involves
learning the association between parameters and client data, while the other measures cosine similarity
among parameter updates from individual clients. The study reveals that their approach surpasses
the performance of a spectral anomaly detection method proposed in prior research.

In [68], the authors introduce a novel approach to balancing privacy, accuracy, and fairness in
ML models. It reviews existing fairness protection methods and related literature on fairness and
privacy collaborative learning in the FL context. The paper also introduces key technologies and the
fairness quantitative mechanism underpinning the study and details the method for applying the DP
algorithm in FL. Finally, the paper discusses and summarises the experiments performed to evaluate
the performances of DP.

In [69], the authors proposed a defense against the Sybil-based poisoning attacks. Their method
is called FoolsGold. They use a variety of client updates during distributed learning to detect these
attacks. Their method uses cosine similarity and pardon mechanisms to identify malicious clients
from normal ones. Unlike previous approaches in the literature, FoolsGold doesn’t limit the number
of potential attackers, doesn’t rely on outside information, and assumes less about clients and their
data. The limitations of FoolsGold in Non-IID settings include its reduced efficacy against individual
attackers due to reliance on update dissimilarity, which may falter with varied or overlapping data
distributions. Additionally, while computational costs are generally manageable, they increase with
the number of clients, potentially impacting scalability in larger FL environments.

In [70], the authors introduced a novel defense technique that identifies abnormal updates in
both IID and Non-IID scenarios. Their method involves cross-validation among clients on the client
side, where each update is assessed using the local data of other clients. During aggregation, the
server adjusts the update weights based on the evaluation outcomes. To address the imbalanced data
distribution in the Non-IID scenario, a dynamic client allocation mechanism assigns detection tasks
to the most suitable clients. Additionally, the approach incorporates DP [40] measures to safeguard
client-level privacy without compromising detection performance.

In [71], authors present a novel method to enhance FL tasks’ dependability in mobile networks.
They accomplish this by introducing the concept of reputation as a measurement and suggesting
a client selection scheme based on this metric. The scheme employs a consortium blockchain as
a decentralized approach to efficiently and securely manage clients’ reputations, thereby preventing
repudiations and tampering. Through numerical analysis, the authors demonstrate the effectiveness
of their proposed approach in improving the reliability of FL tasks in mobile networks.

In [72], the authors proved that data poisoning attacks can significantly decline classification
accuracy and Recall, even if only a few of the clients are malicious. Furthermore, they indicate that
these attacks can be focused and seriously affect targeted classes. They also investigate how the timing
of the attack and the number of malicious clients influence the attack’s longevity. They propose a
defensive tactic that can help detect and prevent data poisoning attacks by extracting the unique
characteristics of malicious clients in FL and identifying them using the most important Principal
Component Analysis (PCA).

In [73], the authors proposed a defense mechanism that uses generative adversarial networks to
generate auditing data during the training process and identifies and removes adversaries by auditing
their model accuracy. Experiments on MNIST [2] and Fashion-MNIST [3] datasets show that FL is
vulnerable to poisoning attacks and their defense method can detect and mitigate such attacks.

In [74], authors proposed a new mechanism for detecting malicious models in FL-enabled Artificial
Intelligence of Things (AIoT), called D2MIF, which uses an IF algorithm. D2MIF computes an MS
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for each model uploaded by clients using the IF and filters out any models with scores higher than
a dynamically adjusted threshold, determined through RL. The proposed mechanism is validated
using MNIST[2] and Fashion-MNIST[3] datasets, and the results demonstrate that D2MIF efficiently
identifies malicious models. and improves the global model’s accuracy in FL-enabled AIoT.

In [75], the authors introduced DifFense, a defense approach aimed at safeguarding FL systems from
Backdoor attacks. This approach employs differential testing and a two-step MAD [8] outlier detection
approach to identify attacks without prior knowledge of attack scenarios or access to local model
parameters. Experimental findings illustrate that this method effectively thwarts various potential
attackers while preserving a convergence level similar to that of the global model achieved using
FedAvg [14]. Furthermore, the DifFense surpasses previous defense approaches, such as MKrum and
coordinate-wise median aggregation. The detection method utilized significantly reduces the average
backdoor accuracy of the global model to under 4% and boasts a zero false negative rate, validating
its efficacy and versatility.

In [76], the authors propose a two-phase defense mechanism called Defending Poisoning Attacks
in FL (DPA-FL) for intrusion detection systems. It addresses the problem of poisoning attacks in FL-
based IDS (FL-IDS) where attackers generate malicious local models to pollute the global model. The
first phase compares weights between clients to identify potential attackers, while the second phase
tests the aggregated model’s accuracy in detecting attackers. Experimental results show that DPA-
FL achieves high accuracy in defending against poisoning attacks and improves the F1-score under
Backdoor attacks. The proposed defense mechanism enhances classification accuracy and detection
efficiency in FL-IDS.

In [77], the authors discuss using FL and edge computing for network intrusion detection in the
IoT. They focus on Label-flipping attacks and propose a lightweight detection mechanism to mitigate
their impact. The mechanism filters out anomalous clients by evaluating their local model’s loss and
training dataset size. clients with similar characteristics are identified using clustering algorithms.
Experimental results demonstrate the effectiveness of the proposed method in defending against Label-
flipping attacks and improving the accuracy of intrusion detection models in IoT networks.

In [78], the authors propose a novel defense scheme for protecting FL models from Backdoor
attacks. The proposed approach, called ADFL, utilizes adversarial distillation. It generates fake
samples with backdoor features using a Generative Adversarial Network (GAN) on the server side
and relabels them to create a distillation dataset. Knowledge distillation is then performed using the
clean model as a teacher and the global model as a student, which helps revise the global model and
eliminate the influence of backdoored neurons. This effectively defends against Backdoor attacks while
maintaining model performance. Experimental results demonstrate that ADFL reduces the success
rates of Backdoor attacks by 95% while keeping the main task accuracy above 90%. The approach
shows promise in enhancing the security of FL against Backdoor attacks. We summarize various
defenses against poisoning attacks in the FL system in Table 2.2, offering a comparative overview that
highlights their effectiveness and application within our analysis.

Overall, several techniques are proposed in the literature for detecting poisoning attacks in FL.
However, we notice that these works still have limitations and potential drawbacks that must be
carefully considered and addressed in future research. Firstly, in the D2MIF algorithm [74], the
continuous adjustment of a threshold value can lead to instability and slow learning. In addition,
using RL [4] is computationally expensive and time-consuming to train, as RL[4] algorithms require
many interactions with the environment to learn an optimal policy, which can be impractical for real-
world problems with complex environments or time constraints. We also notice in the D2MIF [74]
approach that the effectiveness of the IF algorithm is influenced by the malicious clients’ numbers, data
quality, and tree construction parameters. Incorporating the IF algorithm in the D2MIF approach
[74] can increase computational expenses and potentially affect detection speed and system efficiency.
Secondly, in the DifFense [75], [66], and [67] approaches, the authors focus solely on the Backdoor
attack. In DifFense [75], they assume that the number of adversaries in the FL system is known
and remains constant. In practice, it may be challenging to determine the number of adversaries,
and the proposed defense mechanism may not be effective if the number of adversaries changes over
time. Moreover, the defense strategy assumes normal clients are the majority, which may not always
be true. Thirdly, the effectiveness of DPA-FL algorithm [76] may be reduced when there is a small
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Work Main Contribution Performance
Metrics

Dataset Deficiency Techniques and En-
vironment

[76] Two-phase defense mech-
anism called DPA-FL,
defense against Label-
flipping and Backdoor at-
tacks

F1-Score CICIDS2017[79] Limited poisoned data reduces
DPA-FL’s effectiveness, lower-
ing accuracy and raising false
negatives. Low poisoning ra-
tios hinder Backdoor attack
detection, increasing false neg-
atives

Convolutional Neural
Network (CNN)[80]
models in FL with
12 clients: 2 CNN
layers, fully connected
layer, 3x3 kernels, 2x2
max pooling, stability
threshold α 3-5

[74] D2MIF utilize the IF al-
gorithm and RL, defense
against Backdoor attacks

Accuracy,
Recall, F1-
score

MNIST[2],
Fashion-
MNIST[3]

More malicious clients decrease
effectiveness, which relies on
data quality and parameters.
Increased IF in D2MIF raises
computational costs, possibly
slowing detection and reducing
efficiency.

FL implemented with
Tensorflow, scikit-
Learn, Windows 10
Server, Intel Core
i5-7500 CPU, 8GB
RAM

[75] DifFense approach, em-
ploying differential test-
ing and two-step MAD [8]
outlier detection, defense
against Backdoor attacks

False Neg-
ative Rate,
accuracy

Fashion-
MNIST[3],
CIFAR10[9]

Relies on an assumption that
most agents are benign

Uses custom CNN the
datasets, 50 clients,
20% participation, 1
adversary (default)

[69] FoolsGold employs an
adaptive learning rate
based on inter-client con-
tribution similarity, de-
fense against Sybil-based
poisoning attacks

Attack suc-
cess rate, ac-
curacy

MNIST, VG-
GFace2[81],
KDDCup[82],
Amazon[83]

Check similarity of updates
from clients. Ineffective
against solo attackers. Less
effective if attackers know
design

FL prototype in
Python with scikit-
learn for cosine
similarity, using Non-
IID data for training
and FoolsGold [69]
for shared classifier
aggregation

[84] FedGuard Introduces
a secure FL approach
that doesn’t require
pre-training or auxiliary
datasets. Utilizes CVAE
(Conditional Variational
AutoEncoder) to gener-
ate validation data for
auditing

Reconstruction
Error, accu-
racy

MNIST[2] Discusses potential overhead
related to the size of the au-
toencoder and the balance be-
tween performance and secu-
rity

Experiments
conducted on
GRID’5000[85] with
advanced computing
resources, demon-
strating the practical
deployment of the
approach.

[86] ShieldFL protects with
HE encrypted models
from poisoning using
secure cosine similarity
and Byzantine-tolerant
aggregation

Accuracy MNIST[2],
KDD-
Cup99[82],
Amazon[83]

HE adds privacy-preserving
computational overhead

Privacy-Preserving
FL with HE defense

[87] CONTRA utilize
Reputation-based ag-
gregation to identify
suspicious clients based
on cosine similarity be-
tween model updates

Attack suc-
cess rate, ac-
curacy

MNIST[2],
CIFAR-10[9],
Loan[88]

Less effective with only one at-
tacker; Susceptible to intelli-
gent perturbation attacks

FL prototype, built
in Python/PyTorch,
uses Stochastic Gradi-
ent Descent (SGD)[89]
and Dirichlet [90] dis-
tribution for data
allocation among 100
clients

[91] PEFL offers a private, se-
cure FL system using HE
for poison detection and
robust adaptive aggrega-
tion.

Attack suc-
cess rate, ac-
curacy

MNIST[2],
CIFAR-10[3]

Computational overhead from
encryption and aggregation
techniques

Conceptual approach
for secure, robust FL
to mitigate poisoning
attacks, without spe-
cific implementation
details.

[92] FAA-DL introduces an
approach combining
federated analytics and
functional encryption
for defending against
local model poisoning in
distributed learning.

Accuracy MNIST[2],
Fashion-
MNIST[3]

Potential computational and
communication overhead due
to anomaly detection and func-
tional encryption processes.

FL prototype,
anomaly detec-
tion, and verification
modules in PyTorch
on MacOS with Intel
Core i7 and 16GB
RAM for 20 clients.

Table 2.2: Comparative table of related works for defense mechanisms opposite poisoning attacks in
FL system
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amount of poisoned data, leading to potential false negatives. Fourthly, the FoolsGold [69] needs to
verify the similarity of updates from different clients and is less effective against attacks by a single
person.

The shortcomings of previous studies have guided us in our proposed enhanced solutions with
respect to the requirements of the optimal malicious model detection technique. In this thesis, we aim
to mitigate poisoning attacks in FL systems deployed in IoT networks. We address the limitations of
prior research by introducing and evaluating novel defense strategies to enhance FL system security.
By examining these strategies, we seek to ensure the integrity and security of FL system against
advanced threats. In the following section, we present our methodology for evaluating these defense
mechanisms, emphasizing their effectiveness and implementation in practical IoT scenarios.

2.11 Evaluation of FL defenses in IoT networks

Building on the discussion of defenses within IoT networks, it’s crucial to assess the effectiveness
of FL defense mechanisms through a variety of metrics. These metrics, grouped into distinct cate-
gories, illuminate various dimensions of FL defense efficacy. Key categories include the efficiency of
communication, evaluation of participant contributions, performance of the defense model, and the
thoroughness of the defense process assessment. Within these realms, metrics such as ACC, LR, ASR,
Recall, Precision, F1-Score, aggregation, and CPU run-time, provide a detailed view of FL defense
capabilities. The following section offers an integrated summary and outlines the equations typically
employed for calculating each of these metrics, thereby connecting the theoretical underpinnings of
defenses in IoT networks with practical evaluation tools.

1. ACC: This metric quantifies how accurately the defense model predicts true labels, serving
as a primary indicator of defense performance. Introducing the ACC metric through equation
(2.11.1), it’s essential to recognize that a high ACC signals a model’s successful differentiation
between honest and malicious behaviors:

ACC = (TP + TN)/(TP + TN + FP + FN) (2.11.1)

The notation in equation (2.11.1) is explained as follows: True Positives (TP) represent malicious
models correctly identified, False Positives (FP) denote honest models misclassified as malicious,
True Negatives (TN) indicate honest models correctly identified, and False Negatives (FN)
represent malicious models misclassified as honest.

2. Recall (Sensitivity): The Recall metric, shown in equation (2.11.2), is key for making sure
the model finds all key instances. It’s crucial for avoiding missed detections in critical scenarios.

Recall = TP/(TP + FN) (2.11.2)

3. Precision: This evaluates the proportion of true positive predictions in all positive predictions
made by the defense model, important for scenarios where the cost of a false positive is high.
The Precision metric can be defined as in equation (2.11.3):

Precision = TP/(TP + FP ) (2.11.3)

4. F1-Score: The F1-Score combines Precision and Recall into one metric by taking their harmonic
mean. It helps balance the two, especially important when both identifying all relevant cases
(Recall) and being correct in those identifications (Precision) are key. The F1-Score is defined
by equation (2.11.4):

F1score = TP/[TP +
1

2
∗ (FP + FN)] (2.11.4)

5. LR: Typically, inversely related to defense model performance, indicating the discrepancy be-
tween predictions, and expected outcomes. Lower loss indicates better defense performance.
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The LR can be calculated as in equation (2.11.5) by comparing the global model’s accuracy
before and after training with a new set of clients.

LR = (ACC initial −ACC final)/P (2.11.5)

In equation (2.11.5), the notation can be clarified as follows: ACCinitial denotes the accuracy
of the global model before incorporating the new set of clients, while ACCf inal represents the
accuracy of the global model after including these clients in the training process. The variable
P stands for the number of participants or client devices actively participating in the training
procedure.

6. ASR: Measures how well the defense model can resist or fall victim to attacks. It’s crucial
for checking how tough and secure the model is against threats in IoT networks. You can
calculate ASR using a specific formula, which helps determine the model’s ability to defend
against attacks. The ASR metric can be defined as in equation (2.11.6):

ASR = TP/(TP + FN) (2.11.6)

7. CPU aggregation run-time: Measures the computational effort required for aggregating
updates from various IoT devices, key for assessing the computational efficiency and scalability
of FL defense in IoT networks. The CPU aggregation run-time is typically measured in seconds
or milliseconds, depending on the aggregation process’s complexity and computational resources.

• Impact of defense mechanisms on CPU aggregation run-time: Calculating the
CPU aggregation run-time in FL helps assess how defense mechanisms, while not altering
the aggregation phase directly, affect it indirectly. These mechanisms might introduce pre-
processing or postprocessing overheads, influencing data/model readiness and timing for
aggregation. They can also alter system dynamics by modifying data or model charac-
teristics, potentially affecting input volumes and aggregation speed. Additionally, defense
mechanisms consume computational resources, which might lead to resource contention
and influence overall system performance, including aggregation. Analyzing the CPU ag-
gregation runtime in this context is vital for evaluating defense strategies comprehensively,
considering their impacts on both system efficiency and security.

8. CPU run-time: Within the scope of our analysis, denotes the amount of time the Central
Processing Unit (CPU) is engaged in executing the operations of a specific method during one
FL iteration. This metric is crucial for evaluating the efficiency of our approach in an FL
environment, as it allows us to compare the computational time required by our method with
that of other methods during each iteration. Specifically, the CPU runtime is quantified in
seconds for each method and provides key insights into the processing efficiency and speed of
the method when executed on the server side during a single FL iteration.

These metrics provide a thorough foundation for assessing the effectiveness, efficiency, and security
of FL defense models in IoT networks. They address both the performance of the defense model on
its tasks and the operational aspects of the FL defense system.

2.12 Datasets in FL within IoT networks

As previously mentioned, FL is designed to store private data locally. Therefore, most FL researchers
test and verify their algorithms using benchmark datasets. Even if a real FL research use case is found,
the datasets cannot be shared due to the confidentiality of the participating clients (e.g. patients,
and financial clients). This is why many researchers and industry professionals create benchmark
datasets to experiment with FL. This is supported by state-of-the-art studies. Highlighted in Table
2.3 is a comparative analysis of their features, while Figure 2.6 visually represents these datasets,
offering a clear perspective on the tools available to FL researchers. This section aims to illustrate
the contribution of each dataset in advancing FL research.
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Figure 2.6: Different dataset types overview

2.12.1 MNIST (Modified National Institute of Standards and Technology
dataset)

MNIST [2] dataset is pivotal in training and evaluating ML and image recognition algorithms. It
features size-normalized and centered handwritten digits within 28 by 28 pixel frames, providing a
uniform format for algorithmic input. These grayscale images, depicting digits from 0 to 9, are utilized
in models to facilitate the recognition of handwritten characters. With a comprehensive collection
of 60,000 images for training and an additional 10,000 for testing, the dataset enables developers to
rigorously train and benchmark their algorithms against a standardized set of data.

2.12.2 Fashion-MNIST

Fashion-MNIST dataset [3] serves as an advanced alternative to the traditional MNIST [2] dataset by
featuring images of various fashion items, including clothing and accessories, rather than handwritten
digits. This dataset comprises 28 × 28 pixel grayscale images, each depicting a single fashion article,
like shirts, purses, or shoes. With a total of 60,000 images for training and an additional 10,000
for testing, Fashion-MNIST [3] offers a more challenging dataset due to its diverse patterns and
shapes, making it an excellent resource for training and evaluating ML models. The complexity and
variability of the images in Fashion-MNIST provide a robust platform for algorithms to learn the
nuanced differences between various types of fashion items, enhancing their capability to recognize
and differentiating more complex visual patterns.
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2.12.3 EMNIST (Extended Modified National Institute of Standards and
Technology)

EMNIST [93] dataset, represents an expansion of the original MNIST [2] dataset, offering greater
diversity and a larger volume of data. Comprising over 800,000 images, each 28 × 28 pixels, EMNIST
includes a wide array of handwritten characters such as letters (in both uppercase and lowercase),
numbers, and punctuation marks. This augmentation not only increases the complexity of the dataset
but also broadens its applicability beyond the scope of the original MNIST’s digit-focused collection.
EMNIST’s comprehensive range of handwritten characters makes it an invaluable resource for more
intricate and varied ML tasks, including handwriting recognition and the development of models that
can understand a broader spectrum of textual inputs.

2.12.4 FEMNIST (Federated Extended MNIST)

FEMNIST [93] dataset, an extension of the EMNIST dataset, incorporates 28 × 28 pixel grayscale
images that depict not only handwritten digits but also both uppercase and lowercase alphabetic
characters. The distinctive feature of FEMNIST is its distribution across numerous clients, thereby
mirroring a real-world FL environment. This aspect of FEMNIST makes it an invaluable resource
for training models in a decentralized manner, where data remains on the devices generating it,
enhancing privacy and data security. It provides a practical scenario for testing and improving FL
algorithms, offering a diverse range of handwriting styles and characters for comprehensive learning
and evaluation.

2.12.5 CelebA (Celebrity Attributes)

CelebA [94] is a comprehensive dataset focusing on face attributes, featuring more than 202,599
images of celebrities. Each image is annotated with 40 distinct attributes, making this dataset a
rich resource for facial attribute recognition tasks including categorization of faces, prediction of
attributes, and modifications of facial features. Specifically designed to advance the field of facial
analysis, CelebA facilitates a wide range of research and development activities by providing a vast
and varied collection of annotated facial images. This dataset plays a crucial role in training models
to accurately identify and analyze facial characteristics, thereby pushing the boundaries of what’s
possible in facial recognition technology and related applications.

2.12.6 Sentiment140

The Sentiment140 [95] dataset, stands as a pivotal resource for sentiment analysis and opinion mining
research. Containing 1.6 million tweets, each is annotated with emoticons to signify sentiments as
positive, negative, or neutral. These tweets are primarily in English and encompass a diverse array of
subjects such as politics, sports, entertainment, and technology. This extensive coverage makes the
Sentiment140 dataset an invaluable tool for training algorithms to detect and interpret sentiments
expressed in social media, offering insights into public opinion across various domains. The use of
emoticons as indicators of sentiment provides a unique approach to understanding the emotional tone
behind the text, facilitating more nuanced and accurate sentiment analysis models.

2.12.7 CIFAR-100 and CIFAR-10

The CIFAR-100 [9] dataset, created under the auspices of the Canadian Institute For Advanced
Research (CIFAR), is a cornerstone in the field of image classification and computer vision. As
a carefully labeled segment of the extensive 80 million tiny images collection, it features images
categorized into 100 detailed classes, which are further aggregated into 20 broader categories. This
organization facilitates a nuanced approach to image classification tasks. Alongside CIFAR-100 [9],
the CIFAR-10 [9] dataset provides a complementary resource, focusing on a subset of 10 classes. This
extension includes 60,000 color training images and 10,000 test images, all in a compact 32 × 32
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pixel format, making both datasets integral for developing and testing advanced image recognition
algorithms.

2.12.8 IMDB (Internet Movie Database)

IMDB large movie review dataset [5], is specifically designed for binary sentiment classification tasks.
It encompasses a compilation of 50,000 movie reviews, each tagged with a binary sentiment label
indicating either a positive or negative sentiment. This dataset has been partitioned into two segments:
40,000 reviews for training and 10,000 for testing purposes. For analyzing this dataset, a Bidirectional
Long/Short-Term Memory (BiLSTM) [96] model is employed, incorporating an embedding layer that
assigns a 100-dimensional vector to each word. The architecture culminates in a fully connected layer,
which, along with a sigmoid activation function, is responsible for generating the predicted sentiment
of a given movie review. This structured approach enables a nuanced understanding and processing
of natural language, offering insights into the sentiments expressed in the movie reviews.

2.12.9 EDGE-IIOTSET

Edge-IIoTset [97] is a comprehensive cybersecurity dataset designed for IoT and IIoT applications,
aimed at enhancing ML-based intrusion detection systems in centralized and FL modes. The dataset is
structured into seven layers, including Cloud Computing, Network Functions Virtualization, Blockchain
networks, Fog Computing, Software-Defined Networking, Edge Computing, and IoT and Industrial
Internet of Things (IIoT) perception layers. It incorporates advanced technologies like ThingsBoard
IoT platform, Hyperledger Sawtooth, and Mosquitto MQTT (Message Queuing Telemetry Transport)
brokers to address the requirements of IoT and IIoT systems. Data are generated from various IoT
devices, covering more than 10 types, such as temperature and humidity sensors, ultrasonic, and heart
rate sensors. The dataset identifies fourteen attacks across five threats: DoS/DDoS, information gath-
ering, man-in-the-middle, injection, and malware attacks. Through analysis, it provides insights into
the performance of ML approaches in detecting cybersecurity threats. In our exploration of various
datasets including MNIST, Fashion-MNIST, CIFAR-10, CIFAR-100, IMDB, and others, it’s imper-
ative to distinguish between IID and Non-IID data configurations. IID datasets ensure that data
samples are evenly distributed across classes, facilitating straightforward model training by provid-
ing a balanced representation. On the other hand, Non-IID datasets feature uneven distribution of
classes or labels, posing challenges for model generalization and necessitating specialized approaches
to handle the skewed data distribution. This distinction is crucial for the development of algorithms
and the selection of models that are robust and adaptable to the diverse characteristics inherent in
each dataset.

In the preceding sections, we examined FL in IoT, covering potential attacks, defense strategies,
evaluation metrics, and datasets’ pivotal role. Next, we’ll focus on essential FL frameworks, crucial
for IoT’s secure, collaborative learning, integrating previous insights to grasp their application, and
assessing frameworks and selection criteria.
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Dataset Usage Classes Data type Size Dimensions Remarks
MNIST [2] Handwritten

digit recogni-
tion

10 Grayscale im-
ages

60,000 train-
ing, 10,000
testing

28x28 Benchmark for ML
algorithms

Fashion
MNIST [3]

Clothing item
recognition

10 Grayscale im-
ages

60,000 train-
ing, 10,000
testing

28x28 More complex than
MNIST, for algo-
rithm testing

EMNIST
[93]

Handwritten
digits letters
recognition

62 (10 digits +
26*2 letters)

Grayscale im-
ages

800,000 28x28 Extended MNIST,
includes digits and
letters

FEMNIST
[98]

Handwritten
digits letters
recognition

62 (10 digits +
26*2 letters)

Grayscale im-
ages

3,550,000 28x28 FL setting, diverse
and decentralized

CelebA [94] Face at-
tribute recog-
nition

40 attributes Color images 202,599 178x218 Large-scale face at-
tributes dataset

Sentiment140
[95]

Sentiment
analysis

2 (positive,
negative)

Text 1,600,000
tweets

Variable Tweets dataset, for
sentiment analysis

CIFAR-100
[9]

Object recog-
nition

100 Color images 80 million Im-
ages

32 × 32 Fine-grained object
recognition differ-
entiates between
very similar subcat-
egories of objects

CIFAR-10
[9]

Object recog-
nition

10 Color images 50,000 train-
ing, 10,000
testing

32x32 Subset of CIFAR-
100, less fine-
grained

IMDB [5] Sentiment
analysis

2 (positive,
negative)

Text 50,000 reviews N/A Movie reviews, for
binary sentiment
classification

Table 2.3: Comparative analysis of benchmark datasets in simulations.

2.13 Common FL frameworks

In the field of FL, numerous specialized frameworks have been created, integrating various FL algo-
rithms to enable smooth real-world use. These frameworks are crucial for progressing the practical
deployment and continuous advancement of FL. When selecting an FL framework, it is crucial to con-
sider important features like client-side training, server-side aggregation, communication capabilities,
and the presence of a local simulation mode. This segment introduces these practical frameworks,
highlighting their fundamental features and the criteria that set them apart, to assist in choosing the
most suitable tool for FL applications.

2.13.1 FL frameworks criteria

We explore the essential criteria guiding the selection of the FL frameworks:

• Model compatibility: ML models that FL frameworks can accommodate varies significantly.
While neural networks are universally supported across these frameworks, support for tree-
based models, such as gradient-boosted decision trees and random forests, is less common.
Furthermore, certain frameworks offer functionalities for clustering and delivering insights on
aggregated data sets.

• Support for ML libraries: Practically, the compatibility of ML libraries with FL frameworks
is crucial. Most FL frameworks are designed to work with TensorFlow [99] and PyTorch [100]
libraries. However, there are also universal FL frameworks that can integrate with any ML
library, offering broader flexibility.

• Scalability: Most FL frameworks come equipped with pre-built FL models and aggregation al-
gorithms, providing a foundational base for customizing ML models for federated environments.
The ease of incorporating your own model or aggregation algorithm varies based on the model’s
specifics and the chosen FL framework.
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• Aggregation techniques: The FedAvg [14] algorithm, known for its widespread use, is com-
monly supported by FL frameworks. Yet, the range of specific aggregation techniques each
framework supports can vary.

• Privacy approaches: FL naturally enhances privacy by sharing model updates such as gradi-
ents or parameters, rather than raw data. However, it’s possible to infer data information from
these updates. For enhanced privacy, FL frameworks incorporate extra measures such as DP
[40], HE [61], and SMPC [39] or secure aggregation.

• Compatibility with devices and operating systems: FL frameworks cater to a diverse
range of client devices, from personal computers to smartphones and IoT devices. Although not
all frameworks are compatible with every device type, when it comes to operating systems, many
either support Linux/Unix, MacOS, and Windows directly or offer a containerized solution.

2.13.2 Overview of FL frameworks

We outline key FL frameworks, beginning with:

1. Flower: Flower, created by the University of Oxford’s Systems and Networking Group [101] is
a versatile, open-source FL framework. It offers compatibility with several ML libraries, such
as TensorFlow, PyTorch, and Keras, catering to a wide range of FL applications and extending
its usability to mobile platforms. For secure data aggregation, Flower employs the SecAgg and
protocol [102], with a focus on supporting Horizontal Federated Learning (HFL)[13].

2. pfl: Python Framework for Private Federated Learning Simulations developed by Apple, pfl is
an innovative, open-source Python framework designed specifically for private FL simulations,
targeting the research community to enhance the efficiency and dissemination of FL research.
Not intended for third-party FL deployments, pfl is invaluable for researchers validating FL
methodologies through simulations. Key features include ease of initiation with existing models
and data, rapid iteration across various computing resources, and flexibility in API design to
accommodate new FL concepts. pfl supports large-scale, scalable experiments, is compatible
with PyTorch and TensorFlow, and offers benchmarks for both. Support other models in addi-
tion to neural networks, e.g. Gradient Boosted Decision Trees(GBDT) [103]. Switching between
types of models is seamless, and integrates comprehensive privacy mechanisms, demonstrating
Apple’s dedication to pioneering FL research and facilitating secure, innovative advancements
in the field.

3. PySyft: PySyft is an open-source FL framework developed by the distributed computing ini-
tiative OpenMined. PySyft [104] is a Python-based DL library with a focus on privacy, built
on top of the PyTorch framework. It inherits some of PyTorch’s FL capabilities like data par-
titioning across devices. As an open-source framework by OpenMined, PySyft aims to enable
privacy-preserving collaborative ML. To help protect sensitive data, PySyft incorporates en-
crypted computation protocols, DP mechanisms, dynamic and static computational graphs, and
HE. However, as PySyft is primarily designed for simulations, it may lack some flexibility and
support for large-scale collaboration offered by other FL frameworks tailored for real-world de-
ployment. Still, PySyft provides appeal for researchers experimenting with and testing novel
privacy-preserving DL techniques in a simulated federated environment.

4. Federated AI technology Enabler (FATE): FATE [105] is the world’s first open-source
industrial-grade framework for FL, launched by AI department of Webank. It facilitates secure
data collaboration between institutions through DP, secure multiparty computation, and HE. As
one of the earliest options ready for commercial use, FATE supports horizontal and vertical FL
across various algorithms like logistic regression, tree-based methods, deep learning, and transfer
learning. This enables enterprises and organizations to jointly analyze data while preserving data
privacy and security.
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5. OpenFL: OpenFL [106] is an open-source framework by Intel supporting horizontal FL. It has
two components: Collaborators on end devices and an Aggregator. OpenFL enables user interac-
tion through Python APIs or command line interface. Security is provided by mutual Transport
Layer Security (TLS), a cryptographic protocol that provides communication security over a
computer network, for mutual authentication between nodes. Data transmission optimization
is available via lossless and lossy compression. OpenFL also uses Docker for containerization,
improving security and reproducibility.

6. IBM FL: The IBM FL [107] framework, released in 2020 by IBM, is a flexible Python-based
platform designed for FL. It offers essential tools for collaborative model development without
being tied to a specific ML framework, enabling support for diverse learning strategies. The
framework is compatible with DL and conventional ML approaches, including supervised, unsu-
pervised, and RL [4] techniques. It HFL for data distribution, while SMPC [39] and DP [40] are
integrated for enhanced security measures. IBM FL’s adaptability and security features make it
suitable for deployment on mobile platforms and by large corporations, ensuring its applicability
in practical settings.

7. NVFlare: NVFlare [108], developed by Nvidia, is a comprehensive FL framework tailored for
business applications, prominently supporting Nvidia Clara, a suite of AI healthcare products,
and made open source in 2021. It accommodates a wide range of models, from neural networks
to tree-based and statistical models, and is designed to be framework-agnostic, facilitating the
migration of almost any ML model to a federated environment. NVFlare enables the setup of FL
projects connecting servers, clients, and users with varied roles for training, evaluation, and mon-
itoring, supporting job scheduling and parallel execution primarily through docker-compose. It
emphasizes security with server-client authentication and privacy-enhancing technologies. While
NVFlare aims to simplify transitioning from centralized to federated ML models, offering tem-
plates and extendable APIs for various models, it requires some effort to master its architecture,
though it is noted for its flexibility compared to simpler frameworks like Flower.

8. TensorFlow Federated TFF: is a Google-developed [99], open-source Python framework for
FL across decentralized servers. It enables the use of built-in FL algorithms and the distribution
of a global model to clients. TFF consists of two main layers: the FL API, for integrating
TensorFlow models into FL environments, and the Federated Core API, which allows for the
creation of new federated algorithms by combining TensorFlow with distributed communication
techniques.

9. Federated Machine Learning (FedML): FedML is an open-source framework developed to
support the research and development community in exploring a wide array of FL algorithms and
benchmarking their performance. It provides an extensive collection of experimental datasets
and models, along with tools for performance measurement and analysis. FedML facilitates data
partitioning through HFL, Vertical Federated Learning (VFL), and Federated Transfer Learning
(FTL), and enhances security with DP [40] and SMPC [39]. It also includes a variety of state-of-
the-art aggregation algorithms and supports different computing paradigms such as distributed
computing, standalone simulation, and mobile on-device training, making it a versatile tool for
FL experiments [109].

2.14 FLSecLAB: Our implemented FL framework for IoT net-
works

In our prior discussion, we examined the susceptibility of FL to poisoning attacks within IoT networks.
To address this concern, we developed FLSecLAB, a dedicated FL simulation framework for IoT
networks. Developed using the powerful capabilities of PyTorch and Scikit-learn, FLSecLAB aims
to enhance the security of the FL system against these attacks. It introduces our innovative defense
strategies, detailed in subsequent chapters, and incorporates proven defenses from the state of the art,
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as mentioned in section 2.10. Moreover, FLSecLAB provides numerous customizable tools, allowing
users to create various simulation scenarios to rigorously test and validate the resilience of FL system.
This comprehensive approach establishes FLSecLAB as a vital tool for improving and evaluating FL
security in IoT networks. The distinctive features of our framework are presented as follows:

2.14.1 Architecture of FLSecLAB: Server and Client entities

The architecture of FLSecLAB is organized around two primary roles within the FL environment:
the Server and the client. Each of these roles is further divided into two main components, which
are the CommunicationManager and the ComputationHandler/ModelTrainer, ensuring a clear and
structured approach to FL in IoT networks. The architecture, is detailed as follows and demonstrated
in Figure 2.7.

Figure 2.7: FLSecLAB architecture - Interactive roles and components in FL for IoT networks
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2.14.1.1 CommunicationManager

The CommunicationManager module is central to both Server and Client entities, managing all as-
pects of network communication. This module establishes and maintains the network connections,
orchestrates data exchange, and implements communication protocols and data compression schemes
to optimize network usage and ensure secure data transmission.

• Server’s CommunicationManager: Within the Server, the CommunicationManager is re-
sponsible for receiving model updates from multiple clients, handling incoming data efficiently,
and coordinating the distributed learning process. It validates and processes the received up-
dates, facilitating a synchronized and secure FL operation.

2.14.1.2 ComputationHandler and ModelTrainer

The ComputationHandler and ModelTrainer are essential components within the FLSecLAB frame-
work, serving pivotal roles in computational tasks at the Server and Client levels, respectively:

• ComputationHandler in server: The ComputationHandler in the Server is pivotal for the
core computational activities, including the aggregation of model updates from Clients and the
subsequent updating of the global model. Beyond these fundamental tasks, it is instrumental
for integrating and deploying new defense mechanisms within the Server. As it receives model
updates via the CommunicationManager, the ComputationHandler meticulously assimilates this
information to refine the global model. Concurrently, it conducts thorough analyses of the
updates to identify and neutralize potential security threats such as data and model poisoning
attacks. This dual role ensures that the ComputationHandler not only consolidates learning
across the network but also fortifies the Server’s defenses, actively contributing to the system’s
resilience and the reliability of the FL process.

• ModelTrainer in client:

Within the client, the ModelTrainer is designed to facilitate the simulation and understanding
of various attack methodologies. By incorporating the logic for different types of attacks directly
within the local training process, this module allows for a hands-on examination of how specific
attack vectors can influence the learning model. It provides a sandbox environment to test the
efficacy of attacks and observe their impacts, which is crucial for developing and validating new
defensive measures. The ModelTrainer’s adaptability to simulate attacks makes it an invaluable
component for enhancing the overall security framework of the FLSecLAB, ensuring that de-
fense mechanisms are robust and effective against an array of potential threats. The delineated
architecture of FLSecLAB, with its Server and Client roles coupled with their respective Com-
municationManager and ComputationHandler/ModelTrainer components, establishes a robust
and transparent framework. This structured architecture is designed to facilitate the deploy-
ment of secure and efficient FL within IoT networks, offering a clear methodology for integrating
diverse IoT devices and ensuring the scalability and security of the FL process.

2.14.2 Customization of poisoning attacks in FLSecLAB

In addressing the imperative for stringent security in FL system, particularly those embedded within
IoT networks, FLSecLAB introduces an elaborate array of customization options for simulating two
predominant poisoning attacks: Label-flipping and Backdoor attacks. These configurations enable
users to conduct nuanced attack simulations, facilitating an in-depth vulnerability analysis and the
formulation of effective countermeasures.

2.14.2.1 Detailed configuration of Label-flipping attack

Label-flipping attacks, where adversaries invert the labels on a dataset to confound the learning
algorithm, are a critical concern. FLSecLAB provides a sophisticated toolkit for customizing this
attack:
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• Attack rate adjustment: Users can manipulate the attack rate, varying from minimal to
substantial interference, enabling the examination of the model’s resilience under different levels
of attack severity. For example, altering 30% of labels in a sensitive dataset could demonstrate
the potential impact on diagnostic accuracy in a healthcare FL application.

• Targeted label manipulation: This functionality permits the strategic selection of labels for
alteration, facilitating targeted attacks on specific dataset segments or classes. An illustrative
scenario might involve selectively flipping labels on a subset of data critical to decision-making
processes, such as altering traffic sign recognition classes in an autonomous vehicle dataset.

• Comprehensive attack impact evaluation: The platform encompasses advanced analytical
capabilities to scrutinize the effects of Label-flipping, offering insights through various metrics
and visualizations, like model ACC under attack and ASR, to ascertain the attack’s effectiveness
and scope.

2.14.2.2 Customization for Backdoor attack

Backdoor attacks implant covert functionalities within a model, activated by predetermined triggers.
FLSecLAB’s customization suite for this attack includes:

• Simplified trigger pattern design: This feature allows users to craft basic yet effective trigger
patterns for activating the backdoor mechanism. For instance, a straightforward example could
be the addition of a single, distinct color pixel in a corner of image data. When the model
identifies this pixel during inference, it is programmed to misclassify the input deliberately.
Such a trigger, despite its simplicity, can effectively test the model’s vulnerability to Backdoor
attacks and the robustness of its detection mechanisms.

• Explicit payload effect definition: The platform allows you to specify the desired outcome
when the backdoor is triggered, assessing the model’s vulnerability to different levels and types
of malicious outputs. For example, in a sentiment analysis model, the payload might be designed
to switch the sentiment of an input when a specific trigger phrase is included, challenging the
model’s integrity.

These advanced and flexible customization features empower FLSecLAB users to simulate, an-
alyze, and understand a vast array of poisoning attack scenarios, significantly contributing to the
development of robust and secure FL system within IoT contexts.

2.14.3 Integration of evaluation metrics in FLSecLAB

Building upon the foundational metrics discussed in Section [sec:eval], FLSecLAB offers a user-
friendly interface that allows for the straightforward selection and application of various evaluation
metrics to suit different scenarios. This flexibility ensures that researchers and practitioners can tailor
their analysis framework to the specific requirements of each study or assessment, leveraging the
predefined metrics to obtain relevant and insightful results.

• Users can effortlessly choose from a range of metrics such as ACC, LR, ASR, Recall, Precision
and CPU run-time and CPU aggregation run-time, depending on the scenario at hand.

• This selection process is designed to be intuitive, allowing users to apply different metrics to
different scenarios without the need to delve into the underlying complexities, as these are
comprehensively covered in section 2.11.

• FLSecLAB’s architecture supports this flexibility, enabling a dynamic approach to the evaluation
of the FL system’s robustness and effectiveness in various operational contexts.

By providing this capability, FLSecLAB enhances the adaptability and usability of the framework,
promoting an efficient and targeted approach to the evaluation of FL security in IoT networks.
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2.14.4 Advantages of PyTorch and Scikit-learn integration in FLSecLAB

The decision to base FLSecLAB on PyTorch [100] and Scikit-learn [110] was driven by a strategic
alignment with the core principles of flexibility, efficiency, and community-driven innovation that
these frameworks offer. This section delineates the multifaceted benefits stemming from this choice,
underpinning the enhanced capabilities of our FL framework in addressing the security needs of IoT
networks.

2.14.4.1 Enhanced flexibility and rapid prototyping

• PyTorch’s dynamic computation graph enables more intuitive development and debugging of
complex models, a feature particularly beneficial in the rapidly evolving domain of FL security.
This flexibility facilitates quick experimentation and prototyping of new defense mechanisms
against poisoning attacks, allowing our framework to stay at the forefront of FL security research.

• Scikit-learn’s comprehensive suite of simple and efficient tools for data mining and data analysis
empowers our framework with a wide array of algorithms and utilities for preprocessing, reducing
the time from concept to deployment. This integration enhances FLSecLAB’s adaptability
to different datasets and security scenarios, ensuring robust performance across diverse IoT
environments.

2.14.4.2 Scalability and performance

• Leveraging PyTorch’s optimized performance for both CPU and GPU computations, FLSecLAB
is capable of efficiently handling the computational demands of FL in IoT networks, which often
entail processing large volumes of data across diverse devices. This ensures that the framework
remains scalable and performant, even in resource-constrained IoT settings.

• The efficient implementation of ML algorithms in Scikit-learn [110] contributes to the overall
performance of FLSecLAB, enabling rapid evaluation and iteration of FL models. This is cru-
cial for assessing the effectiveness of various defense strategies against poisoning attacks under
different conditions.

2.14.4.3 Community support and ecosystem synergy

• By aligning with PyTorch [100] and Scikit-learn [110], FLSecLAB benefits from the extensive
ecosystems of these libraries, including a wealth of documentation, community forums, and pre-
existing codebases. This ecosystem synergy facilitates the integration of new features and the
latest advancements in ML and cybersecurity, keeping FLSecLAB at the cutting edge.

• The strong community support surrounding PyTorch and Scikit-learn accelerates the trou-
bleshooting process and fosters collaboration, enabling the FLSecLAB team to leverage collective
knowledge and best practices in FL and IoT security. This collaborative environment enhances
the framework’s reliability and effectiveness, ensuring it remains responsive to emerging threats
and technological shifts.

2.14.5 Key features of FLSecLAB

a. IoT-focused custom implementation: Recognizing the distinct characteristics of IoT net-
works, FLSecLAB is engineered from the ground up to cater to this domain. Its design is
optimized for the heterogeneous nature of IoT devices, ensuring efficient and secure FL partici-
pation across a broad spectrum of device capabilities.

b. Integration of defense approaches: FLSecLAB utilizes a range of defense techniques specif-
ically designed to prevent poisoning attacks. These include innovative strategies we developed
and refined during our thesis, which we will detail in the upcoming chapters. Alongside our new
approaches, We have carefully redeveloped or integrated selected defenses from state-of-the-art
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research to enable a detailed comparison with our proprietary defense strategies, which are ex-
plained in the subsequent chapters. This comparison is crucial in illustrating the effectiveness of
our methods and placing them within the broader context of existing research, thereby signifi-
cantly enhancing the security framework of FL system. By juxtaposing our innovations against
established benchmarks, we ensure that our defenses are both effective and at the forefront of
the latest advancements in the field. By evaluating our new defenses alongside proven strate-
gies, we aim to establish a comprehensive defense framework that effectively addresses various
vulnerabilities and attack methods, thus strengthening the security of the FL system against
deliberate attacks.

c. Wide dataset compatibility: FLSecLAB’s flexibility is demonstrated by its ability to accom-
modate a wide range of datasets, such as MNIST [2], Fashion MNIST [3], CIFAR10 [9], IMDB
[5], and Sentiment140 [95] and others, including both IID and Non-IID data distributions. This
guarantees that the platform can effectively tackle FL challenges across various data types and
application domains, ensuring its adaptability to real-world scenarios where data distribution
among clients can be highly heterogeneous.

d. Customizable FL settings: The framework offers extensive customization options for FL
operations, including detailed settings for managing poisoning attack scenarios (such as Label-
flipping and Backdoor attacks), controlling client participation, and selecting aggregation algo-
rithms. This level of control enables precise tailoring of FL deployments to specific security and
performance requirements.

e. Comprehensive evaluation metrics: FLSecLAB utilizes a wide range of metrics to assess
the efficiency and security of FL system, such as ACC, LR, ASR, F1-Score, Recall, Precision,
CPU run-time, and CPU aggregation run-time. These metrics offer a comprehensive perspective
on the framework’s performance across different conditions and attack scenarios.

f. Modularity and extensibility: Designed with modularity and extensibility in mind, FLSe-
cLAB allows for the easy integration of new datasets, defense mechanisms, attacks, and evalu-
ation metrics. This architectural choice ensures that the framework can evolve in response to
new threats and advances in FL research.

Our work provide a substantial contribution to the enhancement of security in FL within IoT networks
through the development of FLSecLAB. This platform is designed for the thorough evaluation of FL
system against poisoning attacks, incorporating a variety of defense mechanisms. It supports multiple
datasets and offers extensive customization capabilities, marking a significant step forward in the
quest for secure and efficient FL implementations in the IoT domain. The aim of FLSecLAB is to
deepen the understanding of security challenges in FL and to set the stage for future research and
advancements in this vital field of security and privacy.

2.14.6 FLSecLAB setup overview

Navigating through the FLSecLAB framework, we explain an example of its configuration process;
an intuitive sequence designed to facilitate the systematic setup of a FL scenario as demonstrated in
Figure 2.8. As we progress through the interface, we detail the crucial steps required to tailor the
parameters for conducting robust FL experiments and simulations. The framework is designed to be
highly adaptable, allowing for the easy integration of any new attacks, defense strategies, datasets, and
other options, thus enhancing the flexibility and capability of our framework to create and evaluate
various simulations to address evolving challenges in FL system .

a. FL details: In Figure 2.9, this initial setup involves selecting the ML framework, such as
PyTorch [100] or Scikit-learn [110]. We configure key aspects of the FL setup, such as the
number of local epochs, total rounds, batch size, learning rate, attack ratio, and the aggregation
algorithm (e.g., FedAvg [14]).
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Figure 2.8: FLSecLAB setup overview

b. Attacks: In Figure 2.10, we outline the adversarial attacks to simulate in the FL scenario, such
as ”Backdoor” and ”Label-flipping” attacks. Multiple attacks can be selected simultaneously to
represent various strategies that malicious clients might employ to compromise the FL process.
Moreover, attacks can be customized over the global configurations by choosing parameters such
as the number of classes, the source class, and the target class in Label-flipping attacks.

Figure 2.9: FLSecLAB: FL configuration Figure 2.10: FLSecLAB: FL attacks selection
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c. Datasets: In Figure 2.11, multiple datasets can be chosen for the current FL scenario, like
MNIST [2], Fashion-MNIST [3], and CIFAR10 [9], or Non-IID datasets like MNIST-Non-IID
and CIFAR10-Non-IID. These datasets can be modified over the global configuration such as
batch size and the number of local epochs.

d. Defense approaches: In Figure 2.12, multiple defense approaches can be selected to safeguard
the FL process against specific attacks, including the existing approaches from the literature,
such as D2MIF [74] and FoolsGold [69], among others. Additionally, our unique proposed
defense strategies are EMDG-FL, M3D-FL, ERD-FL, and NAM2D-FL, or our potential future
approaches.

Figure 2.11: FLSecLAB: Datasets selection
Figure 2.12: FLSecLAB: Defense approaches se-
lection

e. Evaluation metrics: In Figure 2.13, we can select multiple metrics to evaluate the FL scenario’s
performance. Metrics such as ACC, ASR, LR, CPU aggregation run-time, CPU run-time,
Precision, and Recall are critical for assessing the robustness of the FL system.

f. Review and create: Finally, in Figure 2.14, we review all the configurations made in the
previous steps. This overview includes the FL details, selected attacks, datasets, defense ap-
proaches, evaluation metrics, and the aggregation algorithm. Once everything is verified, we
proceed with the ”Create and Go” option to initiate and evaluate the FL scenario with the
specified parameters.

Each of these steps guides the user through configuring a comprehensive experiment or simulation in
FL, considering various aspects that affect the performance and security of the FL system.
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Figure 2.13: FLSecLAB: Evaluation metrics
selection Figure 2.14: FLSecLAB: FL setup report

2.15 Conclusion

In this chapter, we explored the role of FL within IoT networks, emphasizing its potential to enhance
collaborative model training while ensuring data privacy. We highlighted FL’s ability to harness the
vast data from IoT devices, improving learning outcomes without risking data privacy or security.
Despite its benefits, FL’s integration into IoT networks brings challenges, notably its vulnerability to
poisoning attacks which threaten model integrity and security. After that, We provide a comparative
study to evaluate the existing defenses against such attacks, specifically the malicious model detection
techniques. Then, we introduce the FLSecLAB a robust and adaptable platform that integrates both
our newly proposed defenses and those previously presented in this chapter, effectively safeguarding
against poisoning attacks, and supporting diverse datasets and performance metrics for comprehen-
sive FL system evaluation. FLSecLAB marks a key advancement in securing FL for IoT networks,
enhancing system evaluation and defense capabilities. Our upcoming chapters will delve into our novel
defense strategies, expanding on this foundation to enhance FL system security and efficiency. In the
next chapter, we propose our first approach to detect malicious clients against Label-flipping attacks
in FL system within IoT networks.
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3.1 Introduction

In this chapter, we introduce EMDG-FL, a novel approach to enhance the detection of malicious
models in the FL process using an optimal threshold calculation method based on GA [1] against
Label-flipping attacks. We utilize a GA to select the optimal threshold value that maximizes the
accuracy of the server global model.

Based on the literature review performed in chapter 2, it can be concluded that several techniques
can be employed to protect against poisoning attacks for FL in IoT networks. However, we notice that
these works still have some limitations and potential drawbacks that need to be carefully considered
and addressed in future research. One of the main limitations identified in the existing works discussed
in section 2.10, is that some of them like [74], [69], and [70] have high computational cost. Also, for the
work presented in [70], the client-side detection and testing updates can be computationally expensive.
If the client devices have limited computational resources, this can limit the effectiveness and efficiency
of the scheme. The FoolsGold [69] work, introduces additional computational overhead for computing
similarity between client update vectors. This overhead is more significant for shallow ML models
trained on CPUs compared to DL models trained on GPUs. For the D2MIF [74], the continuous
adjustment of a threshold value can lead to instability and slow learning. In addition, RL [4] is
computationally demanding and time-consuming to train, necessitating extensive interactions with
the environment to learn an optimal policy, which can be impractical for real-world problems with
complex environments or time constraints. Hence, the constraints identified in previous studies serve
as the driving force behind our present research efforts. In this study, we employ a GA to improve
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the detection accuracy of malicious models while simultaneously mitigating the computational burden
associated with the proposed approach. We conduct simulations in Python to assess the performance
of our approach using the MNIST [2] and Fashion-MNIST [3] datasets. We compare our approach
with three other works [74], [69] and [14] from the literature in terms of ACC, ASR, LR, and CPU
aggregation run-time. In the following sections, we provide a detailed description of our new approach.
Next, we present our experiments setup. Subsequently, we present the outcomes of our simulations.

3.2 EMDG-FL proposed model

Our EMDG-FL method enhances FL security by introducing a threshold calculation using GA[1] for
identifying malicious clients against Label-flipping attacks. This approach assesses the integrity of
each client’s model submission by computing a MS with the IForest [7] algorithm, ensuring accurate
detection of malevolent entities. The models received by the server are represented as set A =
{m0,m1, ...,mi, ...,mN−1}, where mi and m′i are the normal and malicious local models.The model
parameters, originally in multi-dimensional matrix form, are unsuitable for direct application in IForest
anomaly detection. To address this, we transform these matrices into 1D vectors. This transformation
achieves two key objectives: it allows each matrix position to be considered as an independent feature,
and it simplifies the integration of the IForest algorithm.

The IForest algorithm works by building isolation trees based on the clients’ number N and the
list of clients’ models A received by the server, where instances falling in leaf nodes closer to the root
are considered more anomalous. The path length to reach a leaf node determines the MS(mi), which
is normalized by the average path length Avg(mi) to produce the MS. The MS is determined using
the formula expressed in equation 3.2.1.

MS(mi) = 2−
Avg(mi)

F (N) (3.2.1)

The mi represents the local model uploaded by a participant, and the Avg(mi) represents the average
path length from the root to the leaf nodes, where each leaf node represents a client’s local model.
The F (N) represents the normalization term as presented in equation 3.2.2, and N represents the
number of clients.

F (N) = 2G(N − 1)− (2(N − 1)/N) (3.2.2)

The G(i) signifies the harmonic number and can be approximated as ln(i) + β (Euler’s constant). As
F (N) signifies the average G(i) for a given N , we employ it to normalize G(i).

In Fig. 3.1, we present a detailed flow chart of our proposed system, where the process of our
EMDG-FL approach commences by: First, The server calculates the initial accuracy of the global
model and sends it to all clients. Afterward, the clients train their local models with their data. Next,
the clients upload their trained models to the server. The server calculates the pre-accuracy of all
the currently received local models. To proceed with aggregation, the server filters malicious local
models by checking if their pre-accuracy is greater than the initial accuracy of the global model. If so,
the server aggregates these trained models. Otherwise, the server calculates its MS using the IForest
algorithm [7] and applies the GA[1] to find the optimal threshold combination. This GA[1] process
includes several steps:

a Encoding: Each client’s prediction accuracy (P) is encoded as a gene, and all clients’ genes
represent the chromosome.

b Decoding: Decode the chromosome to determine the range of values for P and the threshold
T. P and T are in the range [0.8, 0.95].

c Fitness calculation: The fitness function F is equal to the sum of |P − 100%| for all clients,
a higher fitness value indicates a better solution.

d Selection: Select the chromosomes with higher fitness as parents for the next generation.

e Crossover: Combine genes from two parent chromosomes to create new offspring chromosomes.
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Figure 3.1: EMDG-FL approach against Label-flipping attacks

f Mutation: Randomly change some genes in the offspring chromosomes to maintain diversity
in the population.

g Repeat: steps from c to f for multiple generations until an optimal solution is achieved.

The individual with the maximum fitness represents the optimal threshold T and associated subset
of clients used to determine threshold T. We opted for this fitness function due to its capacity to
measure the absolute deviation between accuracy and the ideal accuracy (100%). By maximizing
the fitness score, we effectively minimize this deviation. This minimization is most pronounced when
accuracy closely approaches 100%. Consequently, this fitness function serves as a robust tool for
pinpointing the optimal accuracy threshold T. The process ends if a combination’s fitness is no longer
improved over a certain or a maximum number of iterations MaxIteration is reached.

The maximum value of the fitness function calculated in Algorithm 2 is subsequently employed
as the optimal threshold T in the malicious model detection process outlined in Algorithm 1. After
that, the server detects the malicious clients by comparing the MS of each model with a predefined
threshold T calculated using the GA [1]. Lastly, if the MS of a model is greater than the threshold
T, The server marks the model as malicious and rejects it from the aggregation. This action signifies
that the model is considered to be intentionally malicious or potentially harmful. Therefore, if the
client’s marks are greater than or equal to 3, then this client is definitively removed from the FL
process. After aggregating the local model updates from normal clients and eliminating any updates
from malicious clients, the server saves the new global model that has been aggregated from the
remaining normal clients. The server then sends this latest version of the global model back to the
clients to update the parameters in their local models. The EMDG-FL approach involves several
steps to ensure the integrity and reliability of the local models submitted by clients and prevent
malicious actors from compromising the FL process against Label-flipping attacks. The MS is used
to determine if a local model is malicious or not, and a threshold is set to filter out any models with
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scores above it. Our approach unfolds in two detailed algorithms: First, Algorithm 1 outlines our
technique for detecting malicious models, emphasizing accuracy and efficiency. Then, Algorithm 2
guides us through calculating the optimal threshold, ensuring our detection is both precise and reliable.
These steps form the core of our method, blending simplicity with effectiveness to tackle sophisticated
challenges.

Algorithm 1: EMDG-FL malicious model detection

1 m list = 0. // A list keeps track of how often each client submits a model identified as

malicious.

2 The server calculates the initial model’s accuracy and sends the global model to clients.
3 Every client trains its local model using its own data.
4 The server Receives the local models uploaded by clients.
5 The server calculates local models pre-accuracy.
6 if pre-accuracy > initial model’s accuracy then
7 The server aggregates the local models of clients.

8 else
9 The server calculates MS using the IForest algorithm [7] for each local model (mi)

10 if MS(mi) > threshold (T ) then
// T is calculated in algorithm ??

11 The server marks (mi) as malicious and rejects it from the EMDG-FL system.
12 m list[mi] = m list[mi] +1. // The server labels the participant who submitted the

malicious model as sensitive.

13 if m list[mi] >= 3 then
14 The server removes this client.

15 else
// Local model is not deemed malicious

16 The server aggregates this model with other normal models using the FedAvg [14]
algorithm.

Algorithm 2: Optimal threshold calculation

Input: pre-accuracy, MaxIteration // pre-accuracy is calculated in algorithm 3,

MaxIteration is the maximum number of iterations.

Output: Threshold T
1 Encoding: Generate an initial population G0.

// random group of clients.

2 Decoding: determine a range for T in [80%, 95%].
3 Fitness estimation: // Find the maximum value of fitness function.

4 F =
∑

|ACCi − 100%|
// ACCi is the accuracy of each client in the population, the value of pre-accuracy used in G0

is the pre-accuracy calculated in algorithm 3.

5 Selection: Select the client with a higher fitness value.
6 Cross and mutation.
7 Repeat 5,6 steps until the optimal fitness value is obtained or the MaxIteration is reached.
8 T = F .

44



Chapter 3. Enhanced malicious model detection based on genetic algorithm
for federated learning in IoT networks

3.3 Experiments setup

In this section, we provide a description of the hardware environment, the datasets’ models, and the
attack scenarios implemented in our simulations for our novel defenses. We employ a range of datasets
described in Section 2.12, enabling a thorough and varied evaluation.

3.3.1 Hardware environment

We use a client-server model, and all experiments are performed using PyTorch V 1.13 [100] and Scikit-
learn V 1.2.2 [110] on an Ubuntu Server environment which is Intel Core i7-10700 CPU, 16GB RAM.
Furthermore, it is assumed that the FL server is secure and not compromised.

3.3.1.1 Datasets’s models

In this simulation, we utilized the MNIST [2] and Fashion-MNIST [3], all the datasets’ model presented
as follows:

• MNIST: Implemented a two-layer CNN [80] with two fully connected layers, totaling approxi-
mately 22K parameters.

• MNIST-Non-IID: Applied a Dirichlet [90] distribution (α = 1) for Non-IID data, conducting
200 training iterations with 3 local epochs and a batch size of 64, the clients utilized the cross-
entropy loss function and applied the SGD [89] optimizer, configuring a learning rate of 0.01
and a momentum of 0.9, for training their models

• CIFAR10: Evenly allocated CIFAR10 data and employed ResNet18 CNN model [111] for 100
iterations with 3 local epochs and a batch size of 32, utilizing cross-entropy loss and SGD [89]
(learning rate 0.01, momentum 0.9).

• CIFAR10-Non-IID: Adopted a Dirichlet [90] distribution (α = 1) for Non-IID client data,
with training parameters consistent with CIFAR10 [9] to generate Non-IID data for the clients.

• IMDB: We employed a BiLSTM [96] model with an embedding layer that assigns every word
to a 100-dimensional vector. The model concludes with a fully connected layer and a sigmoid
function to generate the ultimate predicted sentiment for a review input (approximately 12M
parameters).

3.3.1.2 Attack scenarios across datasets

This section describes two primary attack strategies applied to various datasets: Label-flipping and
Backdoor attacks, each demonstrated with a clear example.

• CIFAR-10 and CIFAR-10-Non-IID: Attackers change ’Dog’ images to ’Cat’ labels in Label-
flipping attacks. In Backdoor attacks, they place a 3×3 white pixel square in ’Car’ images at
the bottom-right and wrongly label them as ’Plane’.

• MNIST and MNIST-Non-IID: A simple Label-flipping attack might mislabel a ’3’ as an ’8’.
Backdoor attacks involve placing a 3×3 white pixel square on ’9’ images, reclassifying them as
’0’.

• Fashion-MNIST: In Label-flipping, a ’Dress’ might be incorrectly tagged as a ’T-shirt’. For
Backdoor attacks, adding a 3×3 pixel pattern to a ’Bag’ image could lead to it being labeled as
’Shoe’.

• IMDB: In Label-flipping, reviews marked as ’positive’ become ’negative’. For Backdoor at-
tacks, inserting a unique word or phrase in reviews and changing their sentiment illustrates the
approach for text data.
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3.4 Simulation results analysis

In this section, we detail our simulation results, evaluating the impact of the Label-flipping attacks
introduced in section 2.9.1, within a 30-client FL system in IoT networks. We point out that we have
implemented the D2MIF [74] and the FoolsGold [69] approaches based on the author’s description
using our FLSecLAB framework presented in section 2.7, assessing them according to ACC, ASR, LR,
and the CPU aggregation run-time. We have analyzed our approach with two image-based classifi-
cation datasets, MNIST [2] and Fashion-MNIST [3], that explained with details in section 2.12 and
their model in section 3.3. In this simulation, we randomize the attackers’ proportion, ensuring it does
not exceed 20% of the participating clients in the FL process. We adjust the value of MaxIteration
from 10 to 100, increasing in increments of 10. This decision is based on preliminary experiments that
indicated that increasing the number of GA generations beyond 100 does not significantly improve
accuracy but does lead to a considerable increase in the time taken for execution. Therefore, we have
selected this specific range (10 to 100) to find an optimal balance between the potential for improved
accuracy and the need to manage computational expenses effectively.

In the first experiment, we evaluated our approach regarding average CPU aggregation run-time
demonstrated in section 2.11 and compared it with the studied approaches discussed in section 2.10
D2MIF [74] and FoolsGold [69] methods. As we show in Table 3.1, our approach has the lowest
CPU aggregation run-time compared with the other approaches. The D2MIF entails a computational
expense in their methodology due to the utilization of a costly RL [4] process for threshold selection.

Table 3.1: Average CPU aggregation run-time

D2MIF [74] EMDG-FL FoolsGold [69]
MNIST 0.06 s 0.02 s 0.07 s

Fashion-MNIST 0.10 s 0.05 s 0.08 s

In the second experiment, we assessed our EMDG-FL approach using the ACC performance met-
ric, as described in section 2.11. The EMDG-FL approach compared to other studied approaches
illustrated in section 2.10: D2MIF [74], FoolsGold [69] and FedAvg [14] approaches under the existing
of the Label-flipping attacks for MNIST [2] and Fashion-MNIST [3] datasets. We show in Figure 3.2
that, the FedAvg [14] method has the lowest ACC as it lacks defence against attacks. Concerning our
approach, it shows the highest ACC, outperforming FedAvg, D2MIF, and FoolsGold methods.

In the third experiment, we evaluated our EMDG-FL approach using the ASR metric presented
in section 2.11. which refers to the percentage of attempts by malicious clients to undermine the
FL process. Results in Figure 3.3 confirm that FedAvg [14] with no defenses exhibits the highest
attack vulnerability, with nearly 100 percent of poisoning attempts succeeding in degrading accuracy.
In comparison, EMDG-FL demonstrates significantly enhanced attack resilience, allowing the fewest
poisoning attempts to influence the global model. This substantial reduction in ASR can be attributed
to EMDG-FL’s genetically optimized threshold mechanism for detecting and filtering poisoned model
updates. By tuning the threshold more precisely using GA [1], EMDG-FL blocks a greater proportion
of malicious updates from FedAvg [14], D2MIF [74], and FoolsGold [69]. EMDG-FL shows the best
defense against Label-flipping attacks by reducing ASR through our proposed threshold optimization
technique.

In the fourth experiment, we evaluated the EMDG-FL approach in terms of the LR performance
metric, as detailed in section 2.11. with different iterations’ numbers. Figure 3.4 shows the LR for our
EMDG-FL, D2MIF [74] and FoolsGold [69] approaches, with the presence of Label-flipping attacks,
using the MNIST [2] dataset with varying numbers of iterations. The LR starts to decrease from the
first iteration for all the studied approaches, the LR of our EMDG-FL system drops sharply in the
first 10 iterations, then maintains a low level. The D2MIF and FoolsGold approaches require up to
thirty iterations to achieve a significant decrease. Our results indicate clearly that the EMDG-FL
approach surpasses the other studied approaches, with lower LR values.
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Figure 3.2: ACC of the four approaches using two different datasets against Label-flipping attacks

Figure 3.3: ASR of the four approaches using two different datasets against Label-flipping attacks

Figure 3.4: LR of three approaches against Label-flipping attacks using MNIST dataset with different
iterations
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Figure 3.5 compares the LR of our newly proposed EMDG-FL, D2MIF [74] and FoolsGold [69]
approaches under the influence of Label-flipping attacks, using the Fashion-MNIST [3] dataset with
varying numbers of iterations. Specifically, the EMDG-FL achieves a very low LR after ten iterations,
while the D2MIF and FoolsGold require up to twenty-five iterations to reach a low level of LR that
gradually increases over time. Our results indicate clearly that the EMDG-FL approach outperforms
the studied approaches, with lower LR values.

Figure 3.5: LR of three approaches against Label-flipping attacks using Fashion-MNIST dataset with
different iterations

48



Chapter 3. Enhanced malicious model detection based on genetic algorithm
for federated learning in IoT networks

3.5 Conclusion

In this chapter, we have introduced EMDG-FL, a novel approach designed to enhance the malicious
model detection of FL system against Label-flipping attacks in IoT networks. By leveraging the
capabilities of GA for the determination of an optimal threshold, our work seeks to not only protect
the integrity of FL system but also to improve its operational efficiency. This research was grounded
in thorough simulations and comparative analyses, utilizing the MNIST and Fashion-MNIST datasets
as benchmarks. Through these detailed evaluations, EMDG-FL has proven to be superior, surpassing
other existing approaches introduced in section 2.10: D2MIF, FoolsGold, and FedAvg across key
performance metrics including ACC, ASR, LR, and aggregation computational cost. The next chapter
presents a novel scalable approach to address the limitations of the FL system. This approach aims to
broaden our understanding and enhance the FL performance across a wider range of clients and dataset
types, advancing FL research by overcoming existing challenges and expanding its applicability.
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4.1 Introduction

The IForest [7] used in the EMDG-FL approach, presented in section 3, exhibits significant sensitivity
to parameter settings refers to how its effectiveness in detecting anomalies can vary significantly based
on the chosen values for its parameters, such as the number of trees or the sample size, impacting
the accuracy of malicious update detection. In addressing this within the new ERD-FL approach, the
focus is not on modifying the IForest itself but on compensating for its limitations in the context of
EMDG-FL. This chapter introduces ERD-FL, an innovative scalable defense mechanism for FL sys-
tems in IoT networks. It signifies the first case in the field where entropy information and an adaptive
threshold are employed, aiming to enhance detection robustness and improve accuracy against Label-
flipping attacks. To validate the efficacy of ERD-FL, we carried out thorough simulations in Python,
using different datasets to assess the system’s performance. These include image classification datasets
such as MNIST [2] and Fashion-MNIST [3], as well as the text-based IMDB dataset [5], enabling us
to evaluate our approach across different data types and client numbers. Our analysis extends to
various client configurations to examine scalability and operational effectiveness thoroughly. Further-
more, ERD-FL’s performance was benchmarked against three other advanced defense strategies in
the domain EMDG-FL [112], D2MIF [74], and FoolsGold [69]. Our comparison focuses on several
critical metrics, including the ACC, ASR, LR, and CPU aggregation run-time shown in section 2.11.
Through this comparative study, we aim to demonstrate ERD-FL’s superior adaptability and effi-
ciency, underscoring its potential as a scalable and robust solution against Label-flipping attacks in
diverse FL environments.

In the comprehensive review outlined in chapter 2, we identified that while numerous detection
methods for poisoning attacks in FL system have been introduced, they predominantly suffer from
scalability issues, particularly when considering the deployment across varying numbers of clients and
when applied to different types of datasets, notably image classification datasets. The methods high-
lighted in [74] and [69], for example, are resource-intensive and not sufficiently flexible or efficient for
scaling up to larger, more diverse federated networks. The FoolsGold [69] incurs significant computa-
tional costs in analyzing client update similarities, a process that becomes increasingly complex as the
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number of participants grows. Similarly, the D2MIF [74] is hindered by the need for constant thresh-
old adjustments, complicating its application to varied and dynamic client environments. Even more,
the reliance on RL [4] for policy optimization, while innovative, demands extensive trial-and-error
interactions, limiting its practicality in scenarios where rapid adaptation to new and diverse datasets
is required.

The EMDG-FL approach [112], despite its novel use of the IF algorithm for scoring and the GA [1]
algorithm for threshold optimization, remains untested across a spectrum of client numbers and has
not been validated with different types of image classification datasets. This gap underscores a critical
scalability challenge: the existing methods lack comprehensive evaluation of how they perform when
scaled across different sizes of federated networks and applied to various categories of data, especially
image classification datasets where nuances in data can significantly impact performance. To address
these scalability and flexibility concerns head-on, our proposed solution focuses on leveraging entropy
information to streamline the detection of malicious models against Label-flipping attacks, aiming to
drastically lower computational overhead. This approach not only promises enhanced performance
in identifying threats but also ensures adaptability and efficiency when tested against an expanded
array of client numbers and both image classification and text-based datasets. Through this, we aim to
deliver a solution that is not only robust in handling the complexities of varied federated environments
but also capable of accommodating the specific challenges posed by different type of data, marking
a significant step forward in scalable and effective FL security. The following sections will offer an
elaborate description of our novel approach. Subsequent to this, we will present the results obtained
from our simulations.

4.2 ERD-FL proposed model

Our defense approach is designed to detect and mitigate Label-flipping attacks in the FL system by
analyzing the entropy of the model updates provided by each client denoted as H(X). This serves as
a metric of uncertainty and randomness within a dataset. Its computation is defined by the following
formula:

H(X) = −
n∑

i=1

P (X = xi) logP (X = xi) (4.2.1)

In this equation, X represents a random variable characterizing model updates, while xi signifies the
potential values X can assume. Meanwhile, P(X = xi) reflects the likelihood of X taking the value xi.
Essentially, entropy gauges the degree of unpredictability within the data. The term logP (X = xi)
quantifies the information content associated with each outcome xi. Higher probability equates to
lower information content. The presence of the negative sign inverts the scale, linking increased
entropy to heightened uncertainty. This concept grants entropy its apt role as a metric for assessing
randomness. In Figure 4.1, we present a detailed flowchart of our new approach. C1 to Cn represent
normal clients, while C3 is the malicious client with poisoned data. First, the clients train local models
received from the server using their own local data. Second, the clients send their new locally trained
models to the server for entropy analysis to detect malicious models. Third, the entropy of suspicious
clients’ updates is analyzed and flagged as poisoned, they are rejected from aggregation. Fourth,
the server aggregates updates from non-malicious clients after passing them through the malicious
model detection process based on entropy. Fifth, The server sends the new global model aggregated
to clients. Sixth, clients exceeding the entropy threshold twice are eliminated as malicious.

The steps of our approach, described in Algorithm 3, are as follows: Initially, the server computes
the global model’s initial accuracy. First, the server sends the global model to all clients. During the
training phase, the clients train on their local models using their own data. As they train, clients’ local
model updates, denoted as ∆W , are collected. Simultaneously, clients calculate their pre-accuracy
and upload their updated models to the server. Second, the server compares its global model’s initial
accuracy and the pre-accuracy of each local model. Third, it checks if the received client’s pre-accuracy
is less than the server’s initial accuracy. Any client whose pre-accuracy falls below the initial accuracy
of the server is marked as suspicious. If this is the case, the server will activate the entropy model
detection process.
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Figure 4.1: ERD-FL approach against Label-flipping attacks

For malicious model detection, the algorithm delves deeper into the updates from these suspicious
clients. It determines the entropy of their weight updates using the normalized histogram of weight
changes in ∆W as presented in Algorithm 3 at line 10. The average entropy of all suspicious clients’
updates is set as an initial threshold γ and it is calculated in Algorithm 3 at line 11. Suspicious
clients with an entropy value greater than this threshold are considered potentially malicious. These
are not only rejected from the current FL aggregation but are also flagged for closer monitoring. The
threshold is dynamic and undergoes re-calibration in subsequent local training rounds. It is adjusted
based on the average entropy of the suspicious clients’ updates. For heightened security, clients flagged
as malicious are subject to further examination. If a client exceeds the current entropy threshold twice,
it’s permanently excluded from the FL process.

Finally, the local models that passed the entropy model detection checks are aggregated to update
the server global model, which is then ready for another FL iteration. The process continues until
no active clients remain, marking the end of the FL cycle. The benefit of updating the threshold is
that it can improve the efficiency of the malicious model detection mechanism. If the threshold is not
updated, then the threshold may become too high or too low over time. For example, If a new client
joins the FL process and turns out to be malicious, the entropy of the clients’ weight updates may
increase, the threshold becomes too high, and the malicious client may not be flagged. By updating
the threshold after each local training round, we can ensure that the threshold is always accurate and
effective at flagging potentially malicious clients. The initial and updated thresholds are determined
using the average entropy of weight updates from suspicious clients. This method prioritizes flagging
potential malicious clients. For example, if 10 clients are marked suspicious in an FL process with
100 clients, the initial threshold is based on their entropy. In a subsequent round, if another 10
clients are flagged, the threshold is adjusted based on the combined 20 suspicious clients. In this way,
the threshold remains adept at detecting malicious clients despite varying average entropy across all
clients in different rounds. Our proposed method’s novelty lies in utilizing entropy information as a
defense mechanism. By leveraging entropy analysis, we can detect and filter out potentially poisoned
data, thereby improving the robustness of FL against Label-flipping attacks. This approach provides
a complementary defense strategy to existing methods and enhances the integrity and reliability of
the FL process. In the next section, we will present the experimental setup and results to evaluate
the effectiveness of our proposed defense mechanism.
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Algorithm 3: Defense mechanism using entropy information.

// Initialize Global Model:

1 The server calculates the global model’s initial-accuracy.
2 The server distributes the global model to all clients for local training.

// Local Training Phase:

3 The server receives clients’ local model updates (∆W ).
4 The server evaluates the pre-training accuracy of each local model.

// Initial Aggregation Check:

5 if pre-accuracy > initial-accuracy then
6 Aggregate the acceptable local models (those that passed the pre-accuracy check).

// Anomaly detection and entropy calculation:

7 else
8 for each client that could be suspicious do
9 Calculate the entropy (H) of their model weights update (∆W ):

10 H(∆W ) = -
∑

p(w) * log p(w)
// p(w) is derived by normalizing the histogram of weight updates in ∆W.

// Establish Entropy Threshold (γ):

11 Calculate the average entropy H(∆W ) across all suspicious clients to set an initial entropy

threshold (γ): γ = (1 / M) *
∑M

i=1 H(∆Wi)
// M is the number of suspicious clients and H(∆Wi) is the calculated entropy of the i-th

client’s update.

// Client Evaluation:

12 for each suspicious client do
13 Compute H(∆W ) for the client’s update.
14 if H(∆W ) > γ then
15 Flag the client as potentially malicious.
16 Exclude the client updates from the current aggregation.
17 Add the client to a watch list for further observation.

// Threshold Adaptation:

18 After each local training round, reassess the average entropy from the remaining client
contributions and adjust γ accordingly.

// Client Monitoring and Elimination:

19 Continuously monitor the clients on the watchlist.
20 If any client’s entropy value exceeds γ consistently in subsequent rounds, indicating

persistent questionable behavior, remove the client from further FL processes.
// Model Aggregation:

21 Combine the updates from all non-eliminated clients to refine the global model.
// Share the new global model to all clients:

22 Send the enhanced global model back to all remaining clients for additional rounds of
local training.

23 Repeat the process starting from step 2 for each new round of FL.
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4.3 Simulation results analysis

Our simulations were conducted following the same experimental setup described in section 3.3 to
examine the effects of Label-flipping attacks, as outlined in section 2.9.1, on an FL system with varying
client numbers (30, 50, 100, 150). We employed the D2MIF [74], FoolsGold [69] and EMDG-FL [112]
implemented using our FLSecLAB framework presented in section 2.7, as benchmarks to gauge the
efficacy of our innovative approach evaluating them based on ACC, ASR, LR, and CPU aggregation
runtime. We utilized the same three datasets mentioned in section 2.12 and their respective models
discussed in section 3.3. These included the MNIST [2] and Fashion-MNIST [3] datasets for image
classification and the IMDB [5] dataset for text-based sentiment analysis. Adding a text dataset to
our analysis broadens the study, offering insights into the method’s adaptability to different data types
and enhancing its generalizability. During this simulation, we assign a random value to the attackers’
proportion, capping it at a maximum of 20% of the clients participating in the FL process.

In the first experiment, we evaluated our ERD-FL approach in terms of the ACC performance
metric that is explained in section 2.11. A high ACC indicates effective differentiation between honest
and malicious models. Our study compares the efficacy of ERD-FL with EMDG-FL [112], D2MIF
[74], and FoolsGold [69] under Label-flipping attacks for different client counts (30, 50, 100, 150).
Figure 4.2 illustrates that ERD-FL consistently outperforms in accuracy across multiple datasets,
including MNIST, Fashion-MNIST, and IMDB. Notably, EMDG-FL is the closest competitor, espe-
cially under the MNIST and Fashion-MNIST datasets, except for the case with 30 clients. ERD-FL
showcases its robust scalability and effectiveness, transitioning seamlessly from image-based to text-
based datasets. This versatility and performance superiority are visually summarized in Figure 4.2,
highlighting ERD-FL’s adaptability to varied client numbers and dataset types.

Figure 4.2: ACC of the four approaches using MNIST, Fashion-MNIST, and IMDB datasets against
Label-flipping attacks with different client numbers

In the second experiment, we evaluated our ERD-FL approach in terms of the ASR performance
metric as presented in section 2.11, which refers to the degree of correctness or the ability of the model
to make correct predictions on a given set of data from a distributed set of clients. The goal is to
compare the performance of our ERD-FL approach with EMDG-FL [112], D2MIF [74], and FoolsGold
[69] in the presence of Label-flipping attacks on MNIST [2], Fashion-MNIST [3], and IMDB [5] datasets
with 30 clients. As shown in Figure 4.3, ERD-FL demonstrates the lowest ASR among all the studied
approaches due to its superior detection sensitivity. This enables ERD-FL to more accurately filter
poisoned updates, thereby maintaining higher global model accuracy during Label-flipping attacks.

In the third experiment, we evaluated the ERD-FL approach regarding LR performance metrics
using MNIST, Fashion-MNIST, and IMDB datasets with varying different iterations’ numbers and 30
clients. The LR represents the rate at which the model’s accuracy decreases over time as more clients
are added to the FL system.

Figure 4.4 illustrates the LR computation for our ERD-FL, alongside EMDG-FL [112], D2MIF
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Figure 4.3: ASR of the four approaches using three different datasets against Label-flipping attacks

[74], and FoolsGold [69] approaches, in the presence of a Label-flipping attack on the MNIST [2]
dataset with varying numbers of iterations. The LR exhibits a noticeable decrease from the initial
iteration for all approaches. The ERD-FL and EMDG-FL approaches demonstrate a sharp drop in
LR within the first 14 iterations, maintaining a consistently low level thereafter. In contrast, D2MIF
and FoolsGold require up to thirty iterations to achieve a significant LR reduction. Importantly,
this extended iteration period for D2MIF and FoolsGold corresponds to a higher communication cost
between clients and the central server.

Figure 4.4: LR of four approaches against Label-flipping attacks using MNIST dataset with different
iterations

Figure 4.5 presents a comparison of the LR among our proposed ERD-FL, EMDG-FL [112], D2MIF
[74], and FoolsGold [69] approaches under the influence of Label-flipping attack using the Fashion-
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MNIST [3] dataset with varying numbers of iterations. The results clearly show the superior per-
formance of the ERD-FL and EMDG-FL approaches, characterized by consistently lower LR values
compared to D2MIF and FoolsGold. Notably, ERD-FL and EMDG-FL achieve a significantly low LR
after 20 iterations, while D2MIF and FoolsGold require up to 30 iterations to reach a comparable low
LR, which gradually increases over time.

Figure 4.5: LR of four approaches against Label-flipping attacks using Fashion-MNIST dataset with
different iterations

Figure 4.6 presents a comparison of the LR among our newly proposed ERD-FL, EMDG-FL,
D2MIF, and FoolsGold approaches under Label-flipping attacks using the IMDB dataset with varying
numbers of iterations. The results demonstrate the superiority of the ERD-FL approach, characterized
by consistently lower LR values compared to EMDG-FL, D2MIF and FoolsGold. Particularly note-
worthy is that the ERD-FL approach achieves a remarkably low LR from the first iteration, whereas
EMDG-FL, D2MIF and FoolsGold require up to 28 iterations to reach a comparable low LR, which
gradually increases over time.

In the fourth experiment, we evaluated our approach in terms of the average CPU aggregation
run-time for varying client numbers (30, 50, 100, 150) and compared it with EMDG-FL, D2MIF
and FoolsGold approaches using the MNIST , Fashion-MNIST and IMDB datasets. As we show in
Table 4.1, the server run-time overhead per iteration, counted in seconds, the result of our ERD-FL
approach is lower than the three studied works from the literature. Furthermore, considering the
remarkable effectiveness and scalability of our method in countering targeted attacks, the minimal
run-time overhead becomes a highly valuable investment.

Table 4.1: Average CPU aggregation run-time per iteration of the server using MNIST, Fashion-
MNIST, and IMDB datasets

CPU run-time per iteration
ERD-FL EMDG-FL D2MIF FOOLSGOLD

MNIST 0.01 0.02 0.06 0.07
Fashion-MNIST 0.02 0.05 0.10 0.08

IMDB 0.08 0.15 0.22 0.17
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Figure 4.6: LR of four approaches against Label-flipping attacks using IMDB dataset with different
iterations

4.4 Conclusion

In this chapter, we have introduced ERD-FL, a novel defense approach designed to enhance the security
of FL system within IoT networks against Label-flipping attacks. Our approach stands out as the first
to utilize entropy information for detecting such attacks, establishing a novel contribution to the field
of FL security. By integrating an entropy information analysis of entropy in model updates, ERD-FL
not only identifies but also mitigates the impact of poisoned clients, thereby significantly bolstering
the integrity and resilience of FL systems. The effectiveness of ERD-FL was thoroughly evaluated
through extensive simulations using a wide range of datasets, including MNIST, Fashion-MNIST
for image classification, and IMDB for text-based, covering various scenarios. This comprehensive
evaluation, which extended to different client numbers, provided a solid foundation for assessing the
scalability and operational effectiveness of our proposed solution. Our findings revealed that ERD-
FL exhibits superior adaptability and efficiency, outperforming other defense approaches presented in
section 2.10: EMDG-FL, D2MIF, and FoolsGold, across several critical performance metrics. These
metrics include ACC, ASR, LR, and CPU aggregation run-time, thereby underscoring its potential
as a scalable and robust solution against Label-flipping attacks in diverse FL environments. Looking
ahead, in the next chapter, we present a new defense concept for the FL system based on multi-layer
protection. This concept addresses more complex scenarios with multiple simultaneous attacks and a
larger number of clients.
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5.1 Introduction

While the ERD-FL approach leverages entropy for enhanced detection of malicious clients in FL, its
dependency on historical entropy data may not adapt swiftly to sudden or novel attack strategies,
potentially affecting its effectiveness. Future investigations should focus on enhancing the approach’s
adaptability and responsiveness to diverse and evolving attack patterns, ensuring robust defense across
all FL scenarios. In this chapter, we explore a novel and advanced M3D-FL approach, adeptly tackling
complex FL scenarios with a multi-layered defense against both Label-flipping and Backdoor attacks.
The approach commences with the first layer, where the LOF [6] algorithm calculates MS for FL
clients, facilitating their initial exclusion from the aggregation process. Subsequently, the second layer
intensifies scrutiny using the MAD [8] algorithm for precise outlier detection, aimed at permanently
removing these flagged clients, enhancing the system’s resilience in multifaceted environments. By
applying the M3D-FL approach within such intricate and challenging environments, demonstrated
through extensive evaluations of datasets: CIFAR10 [9], MNIST [2], and Fashion-MNIST [3]. We
showcase its efficacy in notably enhancing key metrics like ACC and CPU aggregation runtime, when
compared to five other studies discussed in section 2.10: [74], [69], EMDG-FL [112], DifFense [75], and
FedAvg [14] in the literature, thereby bolstering the resilience of FL system against a diverse range
of threats in such intricate scenarios.

Below, we present our innovative approach. Following this, we present the results obtained from
our simulations.

5.2 M3D-FL proposed model

Our novel malicious model detection process involves pre-aggregating received local models to calculate
a pre-accuracy. If this pre-accuracy is lower than the initialization model’s accuracy, the server will
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execute our malicious model detection using the LOF [6] algorithm to calculate an MS for each local
model uploaded by clients. Models with an MS below the set threshold are considered normal and
are aggregated formally. However, any malicious models uploaded by clients are not used for formal
model aggregation, and those clients are marked as sensitive. These clients will not be removed from
the system immediately, but if they are marked as sensitive more than twice, the MAD [8] outlier
detection method will be invoked, which will be explained below.

The MAD is a robust statistical method used to detect outliers in a dataset. In the context of
FL, MAD can be used as a defense mechanism to detect and remove malicious or faulty updates from
participating clients. One of the main advantages of using MAD in FL defense is its ability to handle
non-normal distributions and outliers. This is particularly important in FL, where the data distri-
bution across clients can be highly heterogeneous and non-normal. By using MAD, we can identify
updates that deviate significantly from the median, which can help improve the overall accuracy and
reliability of the FL model. Another advantage of using MAD in FL defense is its simplicity and
computational efficiency. MAD can be easily computed using basic arithmetic operations and does
not require complex modeling or training procedures. This makes it a practical, robust, and scalable
defense mechanism for FL system [8].

To use MAD [8] for outlier detection in our approach, we first calculate the median of the data.
Then, we calculate the absolute deviation of each data point from the median and take the median
of these absolute deviations, which gives us the MAD. Next, we define a threshold for outlier de-
tection. A common threshold is to define an outlier as any data point that is more than a certain
number, named (C MAD), of MADs away from the median. A common value for this constant factor
(C MAD) is three, which means that any data point more than three MADs away from the median
is considered an outlier. To summarise, the steps for outlier detection using MAD are as follows: Let
X = {x1, x2, ..., xn} be the dataset of n observations.

• Step 1: Calculate the median of X:
Median(X) = median(x1, x2, ..., xn)

• Step 2: Calculate the absolute deviation of each data point from the median:
MADi = |xi−Median(X)| , where: (i = 1, 2, ..., n)

• Step 3: Calculate the median of the absolute deviations:
MAD = median(MAD1,MAD2, ...,MADn)

• Step 4: Define a threshold (T) for outlier detection:
T = (C MAD∗MAD)

• Step 5: Identify any data points that are above the threshold as outliers:
Outliers = {xi||xi −Median(X)| > threshold}

To apply the MAD [8] outlier detection method, we introduce the notion of ”suspiciousness” with
a designated number called L. The MAD requires a larger number of clients to become more reliable
and better represent the suspicious characteristics, enabling us to identify outliers more accurately.
Our M3D-FL model is designed for detecting malicious models in the FL system. It utilizes the LOF
algorithm [6] to calculate the MS and identify anomalies in each locally uploaded model by clients.

The LOF [6] calculates an outlier score based on the local density of local clients’ models. The
main steps involved in this algorithm are summarised as the following:

• Let M = {m1,m2, . . . ,mn} is the set of n local models uploaded by clients.

• For each local client’s model (mi), we calculates the K-Nearest Neighbours (KNN) [113] of mi

and their reachability distances using the Euclidean distance.

• We calculate the reachability distance (rd) of mi toward mj (rd) as follow:

rd(mi, mj) = max(Kd(mi), d(mi, mj))
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where Kd(mi) represents the distance to the KNN [113] of a given local model, d(mi, mj) is
the distance between mi and mj , and rd is calculated based on the maximum of Kd and the
Euclidean distance to another model. The rd of mi measures how far it is from its nearest
neighbors.

• Let NK(mi) is the set of KNN of mi. The LOF [6] calculates the Local Reachability Density
(LRD) of each mi as in formula (6.2.3), which is based on the inverse of the average reachability
distances from the NK(mi):

LRD(mi) =
1∑

mj∈NK(mi)
rd(mi,mj)/|NK(mi)|

(5.2.1)

• The NK(mi) with lower LRD values are indicative of more isolated or anomalous models within
the dataset.

• The LOF [6] calculates the score as the ratio of the average LRD of the KNN [113] and the LRD
of the current mi. The higher LOF scores indicate a higher likelihood of being an outlier.

• Calculate LOF score for each mi:

LOF(mi) =

∑
mj∈NK(mi)

LRD(mj)

|NK(mi)| · LRD(mi)
(5.2.2)

• The MS for mi is:
MS(mi) = LOF(mi)

In Figure 5.1, we present a detailed flow chart of our new approach, which will be further explained
in Algorithm 4.

Figure 5.1: M3D-FL approach against Label-flipping and Backdoor attacks
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The process of the M3D-FL method is structured as follows:

1. The server distributes the global model to all clients.

2. clients train their local models using their own data.

3. clients upload their trained models to the server.

4. The server identifies malicious clients by comparing the MS of each model with a predefined
threshold, T, determined in step 4 of MAD outlier detection algorithm.

5. If a client is labeled as malicious twice, it is labeled as suspicious. The goal is to reach a sufficient
number of suspicious clients, noted L, to invoke MAD.

6. If the MAD result, applied to the L suspicious clients, indicates an outlier, the client is removed.
Otherwise, the degree of maliciousness in the list is reduced by one, and the algorithm returns
to the malicious model detection process.

7. If a client is not deemed malicious, the server aggregates their model with other normal clients
using the FedAvg [14] algorithm.

8. After aggregating the local models, the server saves the new global model and sends it back to
the clients to update their local model’s parameters.

In summary, the M3D-FL approach incorporates various steps to detect and mitigate malicious behav-
ior in an FL scenario. By iteratively evaluating clients’ models and leveraging MAD [8], it maintains
the integrity of the collaborative learning process while updating and distributing the global model
to improve overall performance. The M3D-FL process involves multiple steps to ensure the integrity
and reliability of the local models submitted by clients. These steps are explained in algorithm 4. The
main objective of these steps is to prevent any malicious actors from compromising the FL process.

5.3 Simulation results analysis

We conducted our simulations following the same experimental setup described in section 3.3 to
examine the impact of Backdoor and Label-flipping attacks presented in 2.9 on an FL system involving
different numbers of clients (50, 100, 150, 200). We employed the D2MIF [74] and the FoolsGold
[69] implemented using our FLSecLAB framework presented in Section 2.7 as benchmarks to gauge
the efficacy of our innovative approach. We used three datasets described in section 2.12 and their
corresponding models discussed in section 3.3. These included the CIFAR10 [9], MNIST [2], and
Fashion-MNIST [3]. Throughout this simulation, the ratio of attackers to participating clients in the
FL process is varied randomly, constrained to not exceed 20% of the total clients.

It’s important to note that the accuracy results for the DifFense [75] approach are not implemented
in our thesis, except with 50 clients in the presence of a Backdoor attack, where we implemented our
new approach and the other studied approaches. We took the accuracy results for the DifFense
approach as they are reported in their paper.

In the first experiment, we assess our M3D-FL approach in terms of the ACC performance metric
which explained in section 2.11, compared to other studied approaches presented in section 2.10:
FedAvg [14], EMDG-FL [112] , D2MIF [74], FoolsGold [69] and DifFense [75] in the presence of
Backdoor attack and using three different datasets with varying numbers of clients. From Figure
5.2, it is evident that M3D-FL consistently achieves the highest and the most stable accuracy across
different numbers of clients and outperforms the studied approaches regarding the ACC when using
the CIFAR10 dataset. The ACC of M3D-FL from 93% to 90%. EMDG-FL, D2MIF, and FoolsGold
also demonstrate competitive performance, with ACC from 88% to 86%, 85% to 81%, and 86% to
81%, respectively. The ACC of DifFense is calculated for 50 clients only and it has a competitive
performance equal to 89 %.
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Algorithm 4: M3D-FL process

Require: L
// Number of suspicious clients to be reached for MAD algorithm

1 m list = [0] ∗N // List to track MSs per client

2

3 suspicious = [] // List to track suspicious clients

4

5 Receive the local model set uploaded by clients
6 Aggregate the local models in the set together
7 Calculate local models’ pre-accuracy
8 if pre-accuracy > initial model’s accuracy then
9 initial model’s accuracy = pre-accuracy

10 Aggregate the local models in the set // Only if new model improves accuracy

11 else
12 Calculate an MS(i) for each local model mi using the LOF algorithm
13 if MS(i) > T then
14 Mark the model mi as malicious and reject it from aggregation
15 m list[i] = m list[i] + 1 // Marking the client who submitted malicious model as sensitive

16 if m list[i] ≥ 2 then
17 suspicious.append(i) // Add suspicious client to the list

18 if len(suspicious) ≥ L then
19 Invoke the MAD detection process
20 if MAD result is an outlier then
21 Remove this client

22 else
23 m list[i] = m list[i]− 1

24 else
25 Aggregate this model with other normal models using the FedAvg algorithm
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Figure 5.2: ACC using CIFAR10 dataset under Backdoor attack with different clients number

Next, we evaluate our M3D-FL with the ACC compared to the other approaches: FedAvg [14],
EMDG-FL [112] , D2MIF [74], FoolsGold [69] and DifFense [75], against Backdoor attack and using
the Fashion-MNIST [3] with wide numbers of client. Figure 5.3 shows the outperforming ACC of M3D-
FL compared to the studied approaches. In this scenario, M3D-FL consistently achieves the highest
and most stable accuracy across different numbers of clients, ranging from 91% to 88%. EMDG-FL
and FoolsGold also demonstrate competitive performance, with ACC from 89% to 86% and from 86%
to 81%, respectively. D2MIF achieves ACC from 86% to 79%, while FedAvg consistently has lower
ACC, from 76% to 60%.

Figure 5.3: ACC using Fashion-MNIST dataset under Backdoor attack with different clients number

We assess our M3D-FL approach’s ACC compared with FedAvg [14], EMDG-FL [112], D2MIF
[74] and FoolsGold [69] under a Backdoor attack using the MNIST dataset [2] with varying numbers
of clients. From Figure 5.4, it can be observed that M3D-FL consistently achieves the highest and
the most stable accuracy across different numbers of clients. Its ACC from 92% to 87%. EMDG-FL
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and FoolsGold also show competitive performance, with ACC from 88% to 87% and 83% to 79%,
respectively. D2MIF and FedAvg have slightly lower accuracies, from 82% to 77% and 78% to 70%,
respectively.

Figure 5.4: ACC using MNIST dataset under Backdoor attack with different clients number

In the second experiment, we evaluate the ACC of our M3D-FL approach against other studied
approaches: FedAvg [14], EMDG-FL [112], D2MIF [74] and FoolsGold [69] from the literature under
a Label-flipping attack, using three different datasets and different numbers of client. From Figure
5.5, it is evident that M3D-FL outperforms the studied approaches with the highest and the most
stable ACC using the CIFAR10 [9] dataset with varying numbers of clients. In this scenario, M3D-FL
consistently achieves high accuracy across different numbers of clients, from 91% to 87%. EMDG-FL
[112] and FoolsGold [69] also demonstrate a competitive performance, with ACC from 89% to 85% and
89% to 79%, respectively. D2MIF [74] achieves ACC from 86% to 79%, while FedAvg [14] consistently
has lower ACC, from 87% to 65%.

Figure 5.5: ACC using CIFAR10 dataset under Label-flipping attack with different clients number

We also evaluate the performance of our M3D-FL approach with ACC, contrasting it with existing
studies’ approaches against Label-flipping attack, utilizing the Fashion-MNIST [3] dataset. This
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evaluation includes a comparison across different client numbers. Figure 5.6 illustrates the degree
of ACC improvement our approach offers over other approaches. Figure 5.6 shows the enhancement
level of ACC of M3D-FL approach compared to the studied approaches. M3D-FL achieves the highest
and the most stable ACC across different numbers of clients, ranging from 91% to 88%. EMDG-FL,
FoolsGold [69] and D2MIF [74] also demonstrate competitive performance, with ACC from 88% to
85% and 88% to 79% and 85% to 81%, respectively. FedAvg [14] consistently has lower accuracies,
from 79% to 64%.

Figure 5.6: ACC using Fashion-MNIST dataset under Label-flipping attack with different clients
number

Subsequently, we examine our M3D-FL approach in terms of the ACC, contrasting it with other
studied approaches: FedAvg [14], EMDG-FL [112], D2MIF [74] and FoolsGold [69] under the Label-
flipping attack, using the MNIST [2] dataset with different client numbers. Figure 5.7. M3D-FL
maintains the highest and most stable levels of accuracy with differing numbers of clients, varing
from 94% to 92%. EMDG-FL and FoolsGold also demonstrate competitive performance, with ACC
ranging from 89% to 82% and 82% to 80%, respectively. D2MIF achieves ACC from 84% to 80%,
while FedAvg consistently has lower ACC, from 75% to 65%.

Figure 5.7: ACC using MNIST dataset under Label-flipping attack with different clients number
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To validate the optimal selection of the threshold value for our methodology, the third experiment
was designed to evaluate the effectiveness of different threshold levels in enhancing the ACC by
applying three distinct threshold values for the MAD [8], utilizing the CIFAR10 [9] dataset. The
results, depicted in Figure 5.8, indicate that a threshold value of 3 is optimal. Consequently, we
integrated this value into our approach.

Figure 5.8: ACC of the three choices of C MAD using CIFAR10 dataset

After that, we evaluated M3D-FL in terms of ACC performance metric while using three different
threshold values of MAD [8] outlier detection using the MNIST [2] dataset. From Figure 5.9, we show
that the most appropriate value equals 3, which we used in our M3D-FL approach.

Figure 5.9: ACC of the three choices of C MAD using MNIST dataset

We also evaluated M3D-FL in terms of ACC while using three different threshold values of MAD
[8] using the Fashion-MNIST [3] dataset. From Figure 5.10, We demonstrate that the optimal value
is equal to 3, which we employed in our novel approach.

The previous results indicate that M3D-FL is particularly effective in mitigating the impact of the
Backdoor and Label-flipping scenarios in FL system using the MNIST, Fashion-MNIST, and CIFAR10
datasets.

In the fourth experiment, we evaluated M3D-FL in terms of the average CPU aggregation run-time
and compared it with other approaches from the literature using the various datasets. As we show in
Table 5.1, the CPU aggregation run-time overhead per iteration, counted by the server in seconds, the
result of M3D-FL is lower than three other approaches using CIFAR10 [9] dataset, except for FedAvg
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Figure 5.10: ACC of the three choices of C MAD using Fashion-MNIST dataset

[14] where it primarily focuses on averaging updates and does not have a specific design to counter
attacks. Additionally, given the impressive effectiveness of M3D-FL in combating targeted attacks,
the minimal run-time overhead becomes a highly worthwhile investment.

Table 5.1: Average CPU aggregation run-time per iteration of the server using CIFAR10 dataset

Average CPU run-time
M3D-FL EMDG-FL D2MIF FoolsGold FedAvg

Backdoor 0.200 0.290 0.534 0.294 0.197
Label-flipping 0.205 0.257 0.437 0.255 0.179

Table 5.2 shows the average CPU aggregation run-time for M3D-FL and other approaches from
literature using the Fashion-MNIST [2] dataset. M3D-FL has the lowest CPU aggregation run-time
compared to the other studied approaches.

Table 5.2: Average CPU aggregation run-time per iteration of the server using Fashion-MNIST dataset

Average CPU run-time per iteration
M3D-FL EMDG-FL D2MIF FoolsGold FedAvg

Backdoor 0.016 0.028 0.079 0.205 0.007
Label-flipping 0.025 0.031 0.099 0.256 0.009

We show in Table 5.3, the average CPU aggregation run-time for M3D-FL and other approaches
from literature using the MNIST [2] dataset. M3D-FL has the lowest CPU run-time compared to the
other studied approaches.

Table 5.3: Average CPU aggregation run-time per iteration of the server using MNIST dataset

Average CPU run-time per iteration
M3D-FL EMDG-FL D2MIF FoolsGold FedAvg

Backdoor 0.070 0.083 0.105 0.230 0.010
Label-flipping 0.086 0.092 0.090 0.234 0.060
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5.4 Conclusion

We conclude that M3D-FL exhibits superior and more stable performance relative to other evaluated
approaches in the literature, by implementing a multi-layered protection strategy. The utilization of
the LOF and MAD outlier detection algorithms has proven to be more efficacious compared to the
studied approaches, yielding better ACC metrics and acceptable CPU aggregation run-time. The
outcomes achieved demonstrate a notable improvement and are considered satisfactory. In previous
approaches, our discussion and analysis were primarily focused on environments where data is IID.
However, the next chapter will expand our exploration into more complex FL scenarios that incorpo-
rate both IID and Non-IID data settings in the FL system. Here, we aim to address the additional
challenges posed by Non-IID data, a scenario that is more representative of real-world applications,
which were not tackled by our approaches discussed previously.
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6.1 Introduction

The LOF method used in chapter 5 is effective for identifying malicious clients, yet it faces difficulties
with Non-IID data in the FL system due to its inability to handle diverse data distributions. This
limitation introduces vulnerabilities and affects its performance in high-dimensional data scenarios. In
such contexts, traditional algorithms, including LOF, struggle to cope with the intricacies presented
by a multitude of features, consequently diminishing their accuracy in detecting outliers. This issue
underscores the need for advanced approaches to navigate the challenges of diverse and complex data
landscapes within FL systems.

In this chapter, we present a novel server-client defense approach, named NAM2D-FL for identify-
ing and removing malicious models in the FL system, to address the intricate challenges of both IID
and Non-IID data environments. For the first time in our thesis, we use a dual-sided defense strategy,
leveraging both server and client components to combat Label-flipping and Backdoor attacks. This
approach is driven by the critical need to tackle the complexities associated with Non-IID data, a
common issue in real-world applications not fully addressed by previous approaches. Our innovative
use of server-client defenses seeks to significantly enhance the adaptability, computational efficiency,
and performance of FL systems, offering robust protection against advanced attacks.

By implementing the NAM2D-FL approach in complex environments and rigorously testing it on
datasets CIFAR10 [9], CIFAR10-Non-IID [9], MNIST [2], and MNIST-Non-IID [2]. We compare our
approach with five existing methods discussed in section 2.10: Median [54], TMean [54], MKrum [55],
and FoolsGold [69] from the literature in terms of ACC, ASR, Precision, Recall, and CPU run-time of
each method. This clear evidence establishes NAM2D-FL as the top-performing solution for fortifying
FL system against Label-flipping and Backdoor attacks in diverse scenarios. In the next sections, we
present our innovative approach, and following that, we detail the outcomes of our simulations.
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6.2 NAM2D-FL proposed model

Our novel malicious model detection process is encapsulated within Algorithm 5. This process entails
pre-aggregating received local models to calculate a pre-accuracy. Based on this value, we initially dis-
cern the viability of each local update in enhancing the global model’s performance. If a local model’s
pre-accuracy exceeds the current global model’s accuracy, it is accepted for the server’s aggregation;
otherwise, the malicious model detection process is invoked outright.

Our model comprises of two phases: an adaptive LOF and an optimal GA [114] threshold. First,
we adapt the traditional LOF algorithm [6], a choice informed by its reputation for adeptly identifying
data point anomalies within a dataset. Second, select the optimal threshold and integrate it within
the adaptive LOF scoring using the GA algorithm.

6.2.1 Phase one: Adaptive LOF

This phase introduces significant innovations to the traditional LOF method by adapting it to the
context of FL, focusing on two main steps:

• Contextual distance adaptation: The contextual distance dcontextual(x, y) between two
model updates x and y is defined as:

dcontextual(x, y) =

n∑
i=1

wi ∗ |xi − yi|. (6.2.1)

Here, n represents the total number of parameters in the model updates xi and yi, respectively.
wi are weights that adapt based on the variance of parameters across updates, making the
distance measure sensitive to the distribution of data (IID or Non-IID). The goal is to mitigate
the impact of variance in parameter updates, ensuring malicious model updates are detected
based on meaningful deviations rather than mere statistical outliers.

• LRD adjustment and refined LOF scoring:

In refining the Local Reachability Density (LRD) and LOF scoring to more accurately identify
malicious model updates, the incorporation of the contextual distance calculated in Equation
(6.2.1) is a pivotal enhancement. It plays a crucial role in calculating the reachability distance
rdk(x, y) between model updates, as follows:

rdk(x, y) = max{k-distance(y), dcontextual(x, y)} (6.2.2)

This calculation is integral to the LRD adjustment, where the contextual distance significantly
boosts the model’s ability to discern anomalies by accounting for the nuanced differences between
model updates. The K-Nearest Neighbours (KNN) algorithm [115] is dynamically adjusted
based on the data distribution, affecting the LRD, which is inversely proportional to the average
reachability distance of the number of KNN k:

LRDk(x) =

(∑
y∈Nk(x)

rdk(x, y)

|Nk(x)|

)−1

(6.2.3)

Here, x represents a model update, Nk(x) denotes the k nearest neighbors, and the enhanced
reachability distance rdk(x, y), now including contextual distance, enriches how anomalies
are evaluated relative to neighboring updates. This ensures that the LRD calculation captures
the subtle differences between model updates, improving the model’s sensitivity to anomalies.

Consequently, the LOF score for each update is determined by comparing the LRD values of
the update to those of its neighbors, effectively distinguishing between normal and malicious
behavior:
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LOFk(x) =

∑
y∈Nk(x)

LRDk(y)
LRDk(x)

|Nk(x)|
. (6.2.4)

Thus, dcontextual(x, y)’s integration into the LRD and LOF evaluations facilitates a nuanced
analysis of model updates, refining the malicious detection mechanism’s accuracy by aligning it
closely with the data distribution’s specific characteristics.

6.2.2 Phase two: Integration of GA for optimal thresholding

In this Phase, we refine our malicious model detection by identifying the best threshold for flagging
malicious model updates, using a GA:

Thresholdoptimal = GA(LOF scores, validation data) (6.2.5)

This phase leverages the GA to pinpoint the most effective threshold based on LOF scores from Phase
One and feedback from validation data selected portion of clients’ datasets. The validation data is
crucial for assessing the performance of various thresholds proposed by the GA, ensuring privacy as
it’s processed locally by clients. Here’s how the process unfolds:

1. Proposition of thresholds by GA: The GA, informed by LOF scores and prior performance
data, suggests several potential thresholds.

2. Local testing by clients: Each client applies these thresholds to its own validation data. This
step ensures that the evaluation respects the privacy of each client’s dataset.

3. Sharing outcomes: Clients use their validation data to test thresholds for detecting malicious
models, for example, Label-flipping attacks in the MNIST dataset, where digits labels might
be maliciously altered (e.g., ’0’ labeled as ’9’). They calculate accuracy for these thresholds in
identifying such attacks and share the results with the server, without sending actual data. This
collaborative effort allows the server to aggregate accuracy scores from all clients, determining
the most effective threshold for the entire FL process. By focusing on collective feedback, this
method enhances the model’s ability to resist Label-flipping attacks, ensuring the integrity of
digit recognition tasks across the FL system, all while maintaining data privacy.

4. Adjusting thresholds: Based on the aggregated feedback, the GA fine-tunes the threshold
values, aiming for optimal performance across the diverse environments of all clients.

The outcome is a precisely tuned threshold, optimized across the clients’ federation, enhancing our
model’s sensitivity to malicious clients without compromising data privacy. This methodical approach
ensures that the malicious model detection system is robust, adaptive, and capable of operating
effectively within the FL system.

In Figure 6.1, we present a detailed flow chart of our new approach, which will be further explained
in Algorithm 5. The NAM2D-FL approach can be concisely summarized as follows:

1. The server sends the initial global model to all clients for local training with their own data.

2. Clients return their trained models to the server.

3. The server checks the pre-accuracy of each model. Updates that surpass the global model’s
accuracy are approved.

4. For updates not meeting the initial accuracy, the server applies an Adaptive LOF method. This
includes calculating distances between updates with adjusted weights for parameter variance and
refining LOF scores by dynamically choosing an appropriate number of neighbors, enhancing
anomaly detection.
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Figure 6.1: NAM2D-FL approach against Label-flipping and Backdoor attacks

5. The server generates thresholds using a GA based on the LOF score and sends them to clients,
who evaluate these against their data and report the accuracy and corresponding thresholds
back to the server.

6. Based on this collaborative feedback, the server fine-tunes the threshold to best identify malicious
activity. Updates identified as malicious lead to the removal of the corresponding clients from
the FL system.

7. Updates deemed benign are aggregated into the global model using FedAvg [14], and this up-
dated model is redistributed to clients for further local training.
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Algorithm 5: NAM2D-FL process

Require: Set of local models from clients, Initial global model’s accuracy.
1 Receive local models from clients.
2 Aggregate local models to form a tentative global model.
3 Calculate the pre-accuracy of this global model. if pre-accuracy > initial global model’s

accuracy then
4 Accept this global model update.

5 else
6 Discard this update.

7 Normalize model updates considering expected parameter variance. for each model update x
do

8 for each other model update y do
9 Compute the contextual distance dcontextual as in Equation (6.2.1).

10 Determine the parameter k of KNN algorithm [115] adaptively based on overall update
variability.

11 Compute the reachability distance rdk(x, y) as in Equation (6.2.2) using the adjusted
contextual distance.

12 Compute the LRD for x as in Equation (6.2.3).
13 Compute the LOF score for x as in Equation (6.2.4).

14 The server uses GA to calculate thresholds as in phase two of our proposed model,
Equation (6.2.5), based on LOF score.

15 The server send these thresholds to clients.
16 The clients test and return feedback accuracies of corresponding thresholds to the server.
17 Using feedback from clients, the server adjusts the threshold for identifying malicious

activity.
18 for each client’s update x do do
19 if LOFk(x) > GA determined threshold then
20 Label the client as malicious and remove it.

21 else
22 Label the client as normal.

23 Aggregate updates from normal clients to update the global model using the FedAvg [14]
algorithm.

6.3 Simulation results analysis

In this section, we conduct a thorough evaluation of our defense mechanism’s effectiveness against
Label-flipping and Backdoor attacks, focusing ACC and CPU run-time for each method. This anal-
ysis carried out with 50 clients on FL process within IoT networks, systematically compares these
crucial metrics of our defense approach against those of renowned defense strategies listed in section
2.10: Median [54], TMean [54], MKrum [55], and FoolsGold [69] implemented using our FLSecLAB
framework presented in section 2.7. Notably, this evaluation includes, for the first time, Non-IID dis-
tribution data, providing a novel perspective on defense robustness across different data distributions.
The datasets examined MNIST [2], MNIST-Non-IID [2], CIFAR10 [9], and CIFAR10-Non-IID [9] with
their specific distributions as expounded in section 2.12, utilize the corresponding models outlined in
section 3.3. In this simulation, we define the attackers’ proportion to be between 10% and 20% of
the participating clients in FL process, While certain literature assumes higher attacker percentages,
real-world FL scenarios rarely exhibit more than 20% attackers. For instance, having millions of users
on Gboard [116], controlling a small percentage of user devices would require the attackers to com-
promise a large number of devices, necessitating significant effort and resources, making it impractical
in most cases.
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In the first experiment, we focused on the CIFAR10 [9] dataset under both IID and Non-IID
settings. In Table 6.1, we noticed that our proposed NAM2D-FL approach demonstrates unparalleled
performance in combating Label-flipping attacks, surpassing the others studied approaches discussed in
section 2.10: FedAvg [14], Median [54], TMean [54], MKrum [55], and FoolsGold [69] across multiple
evaluation metrics. Specifically, NAM2D-FL achieved an ACC of 89% for CIFAR10 and 91% for
CIFAR10-Non-IID, marking significant improvements of at least 12% over the closest competitors.
This indicates the robust adaptability and effectiveness of NAM2D-FL under varied data distribution
scenarios. Moreover, in terms of adversarial defense, represented by the ASR, we showed in Table 6.1
that, the NAM2D-FL approach showcased outstanding resilience, maintaining an ASR at only 10%
for CIFAR10 and further reducing it to 12% for CIFAR10-Non-IID. This demonstrates NAM2D-FL’s
effectiveness in protecting the model’s integrity against Label-flipping attacks, notably outperforming
other methods where the lowest ASR observed was 18% and 20%, respectively. The Precision and
Recall outcomes further solidify the efficacy of NAM2D-FL. Achieving the highest scores in these
metrics across both IID and Non-IID settings for CIFAR10 validates not only the accuracy but also
the reliability and consistency of our model, ensuring that it not only correctly identifies true instances
but also minimizes false detections.

Table 6.1: Performance metrics under label-lipping attacks using CIFAR10 and CIFAR10-Non-IID

Benchmark / Method FedAvg Median TMean MKrum FGold NAM2D-FL
CIFAR10
ACC% 70% 71% 70.5% 72% 73% 89%
ASR% 20% 19.5% 19.8% 18.5% 18% 10%
Precision% 77% 77.5% 77.2% 78% 78.5% 92%
Recall% 75% 75.5% 75.2% 76% 76.5% 89%
CIFAR10-Non-IID
ACC% 73% 74% 73.5% 75% 79% 91%
ASR% 22% 21.5% 21.8% 20.5% 20.0 12%
Precision% 78% 78.5% 78.2% 79% 79.5 86%
Recall% 76% 76.5% 76.2% 77% 77.5% 84%

Transitioning to the second experiment with the MNIST [2] dataset, The NAM2D-FL method
keeps succeeding. Within both IID and Non-IID data distributions, as we noticed in Table 6.2, our
NAM2D-FL exhibited remarkable performance compared with other studied approaches presented in
section 2.10: FedAvg [14], Median [54], TMean [54], MKrum [55], and FoolsGold [69] across multiple
evaluation metrics, achieving an accuracy of 89.0% on the MNIST and enhancing it to 93.0% under
MNIST-Non-IID. Similarly, NAM2D-FL effectively defends against Label-flipping attacks in both IID
and Non-IID MNIST datasets, achieving the lowest ASR and outperforming competing approaches
in Precision and Recall. This underscores its superior efficacy and robustness across various metrics,
establishing it as a significant advancement in securing and enhancing the reliability of the FL system.

Table 6.3 presents the results of the third experiment, demonstrating the significant superiority
of the NAM2D-FL approach in mitigating Backdoor attacks within both IID and Non-IID CIFAR10
[9] dataset. NAM2D-FL achieves remarkable accuracies of 85% and 86% for CIFAR10 and CIFAR10-
Non-IID, respectively, outperforming its closest competitors by 7.5%. Additionally, its ASR stands at
15% and 18%, surpassing the nearest rivals by 8% and 10.0% in each scenario. Moreover, NAM2D-
FL exhibits higher Precision and Recall, surpassing the closest methods by 6% and 7%, respectively.
These results underscore NAM2D-FL’s robust efficacy in enhancing both performance and security
against Backdoor attacks in the context of FL system.

In the fourth experiment, the NAM2D-FL method significantly outshines its competitors in com-
bating Backdoor attacks on both of IID and Non-IID MNIST [2] dataset as we showed in Table 6.4.
It achieves a high accuracy of 91% for MNIST and 90% for MNIST-Non-IID, which is 7.0% higher
than the nearest competitor in both cases. Furthermore, the method demonstrates robust defense
capabilities, with an ASR of 17% for MNIST and 16% for MNIST-Non-IID, outperforming the closest
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Table 6.2: Performance metrics under label-lipping attacks using MNIST and MNIST-Non-IID

Benchmark / Method FedAvg Median TMean MKrum FoolsGold NAM2D-FL
MNIST
ACC% 69% 78% 77.5% 79% 80% 87%
ASR% 21% 20.5% 20.8% 19.5% 19% 11%
Precision% 74% 79.5% 79.2% 80% 80.5% 89%
Recall% 73% 78.5% 78.2% 79% 79.5% 86%
MNIST-Non-IID
ACC% 78% 79% 78.5% 80% 81% 93%
ASR% 23% 22.5% 22.8% 21.5% 21% 13%
Precision% 80% 80.5% 80.2% 81% 81.5% 88%
Recall% 79% 79.5% 79.2% 80% 80.5% 89%

Table 6.3: Performance metrics under Backdoor attacks using CIFAR10 and CIFAR10-Non-IID

Benchmark / Method FedAvg Median TMean MKrum FoolsGold NAM2D-FL
CIFAR10
ACC% 70% 76% 76.5% 77% 77.5% 85%
ASR% 25% 24.5% 24% 23.5% 23% 15%
Precision% 80% 80.5% 81% 81.5% 82% 88%
Recall% 78% 78.5% 79% 79.5% 80% 87%
CIFAR10-Non-IID
ACC% 69% 77% 77.5% 78% 78.5% 86%
ASR% 30% 29.5% 29% 28.5% 28% 18%
Precision% 75% 81.5% 82% 82.5% 83% 89%
Recall% 76% 79.5% 80% 80.5% 81% 88%

contenders by 9 and 11 percent, respectively. Precision and Recall metrics underscore its efficacy,
with NAM2D-FL achieving 93% and 92% for MNIST, and 94% and 91% for MNIST-Non-IID, lead-
ing the nearest competitors by significant margins. These results affirm the NAM2D-FL method’s
outstanding performance against Backdoor attacks in FL scenarios.

Table 6.4: Performance metrics under Backdoor attacks using MNIST and MNIST-Non-IID

Benchmark / Method FedAvg Median TMean MKrum FoolsGold NAM2D-FL
MNIST
ACC% 65% 82.5% 83% 83.5% 84% 91%
ASR% 28% 27.5% 27% 26.5% 26% 17%
Precision% 70% 85.5% 86% 86.5% 87% 93%
Recall% 72% 83.5% 84% 84.5% 85% 92%
MNIST-Non-IID
ACC% 73% 83.5% 84% 84.5% 85% 90%
ASR% 29% 28.5% 28% 27.5% 27% 16%
Precision% 76% 86.5% 87% 87.5% 88% 94%
Recall% 74% 84.5% 85% 85.5% 86% 91%

In the fifth experiment, as illustrated in Figure 6.2, we examined the CPU run-time per iteration
required by other studied approaches introduced in section 2.10 against Label-flipping attacks across
different datasets, excluding FedAvg [14], which simply computes the average of updates without
intending to defend against attacks. We found that NAM2D-FL outperformed other approaches
in efficiency across different scenarios. On the CIFAR10 [9] dataset, NAM2D-FL required only 1.0
seconds, which was quicker than Median [54], MKrum [55], and FoolsGold [69] approaches. For
the CIFAR10-Non-IID variant, NAM2D-FL records a run-time of 1.1 seconds indicating superior
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performance against the other approaches. On the MNIST dataset, NAM2D-FL achieved a run-time
of 0.071 seconds, highlighting its notable run-time over the other methods. Even in the MNIST-
Non-IID context, it maintained superior performance, completing in 0.81 seconds. These findings
underscore NAM2D-FL’s efficacy and efficiency in countering Label-flipping attacks, establishing it
as a preferable defense option with minimal performance impact.

Figure 6.2: CPU run-time per iteration (in seconds) for Label-flipping attacks across datasets

In the sixth experiment, we concentrate on evaluating the CPU run-time per iteration for the
NAM2D-FL approach against Backdoor attacks across diverse datasets. As presented in Figure 6.3,
in the CIFAR10 [9], NAM2D-FL shows a run-time of 0.9 seconds, outperforming the other approaches:
Median [54], TMean [54], and MKrum [55], and FoolsGold [69]. Within the CIFAR10-Non-IID [9], its
efficiency is highlighted with a 1.2 second run-time, surpassing the slower performances of other studied
approaches. For the MNIST [2] dataset, NAM2D-FL’s run-time is notably efficient at 0.045 seconds
outperforming the other defenses. In the scenario of MNIST-Non-IID [2], NAM2D-FL’s efficiency is
again evident at 0.55 seconds, showcasing better performance than the compared approaches. These
findings affirm that NAM2D-FL not only provides a strong defense against Backdoor attacks but does
so with commendable computational efficiency.

Figure 6.3: CPU run-time per iteration (in seconds) for backdoor attacks across datasets
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6.4 Conclusion

In this chapter, we present a groundbreaking advancement in FL with the introduction of the NAM2D-
FL approach. Our research was motivated by the imperative to address the complex challenges posed
by both IID and Non-IID data settings in the face of Label-flipping and Backdoor attacks, prevalent
in real-world implementations. After a detailed review of current strategies and their shortcomings,
detailed in section 2.10, our approach incorporates a dual-side server-client mechanism, augmented
by the integration of adaptive LOF and GA-based thresholding. This combination aims to enhance
the robustness and effectiveness of the FL system in real-world scenarios. Our evaluation, conducted
utilizing datasets including the MNIST and CIFAR for both IID and Non-IID data settings, clearly
demonstrates the superior performance of the NAM2D-FL approach across several key metrics. This
achievement underscores our contribution to enhancing the security and integrity of the FL system
by defending against emerging poisoning attacks, thereby fostering increased trust and confidence in
collaborative learning paradigms.
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7.1 Conclusion

FL is an innovative ML approach that allows clients to collaboratively train a model while keeping
their data private. FL raises important issues regarding data privacy and security. Yet, the trans-
parency of FL system, particularly in the growing field of IoT networks, exposes them to poisoning
attacks especially the Label-flipping and Backdoor attacks. These malicious activities, which involve
tampering with data to compromise the model’s reliability, present significant threats to privacy and
security, underscoring the essential requirement for strong defense mechanisms.

The first contribution of this thesis was to provide a thorough examination of recent advance-
ments in FL within IoT networks. This exploration encompasses an extensive literature review of
FL’s fundamentals, applications, its merits, and the critical challenges and security concerns it faces.
Specifically, we delve into the emerging landscape of poisoning attacks targeted at FL within these
IoT networks, categorizing the types of datasets employed. After that, we provide a comprehensive
literature review of the existing defense approaches in FL system within IoT networks, we adopt a
classification of these techniques based on three main categories that cover all previous works in liter-
ature while highlighting the advantages and disadvantages of each of them and with a particular focus
on malicious model detection techniques. Then we related works for each category and provide a com-
parative study of malicious model detection approaches. Subsequently, we introduce FLSecLAB, our
innovative FL framework designed for IoT networks. This framework stands out for its adaptability,
allowing for rigorous testing across a variety of scenarios, thereby marking a significant leap forward
in enhancing the security posture of the FL system, through detailed evaluation and comparison. This
discussion not only sheds light on the current state of FL security but also sets the groundwork for
future advancements in this rapidly evolving field.

Following the literature review, the second contribution was to introduce the EMDG-FL approach,
a new approach to enhance the malicious model detection in FL system against Label-flipping attacks
within IoT networks. EMDG-FL is built on the IForest algorithm for calculating the malicious score.
Then, the GA is used to discover an optimal threshold based on this score to identify malicious
clients in the FL system. EMDG-FL aims to safeguard FL integrity, boost efficiency, and reduce
computational costs.
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After that, the third contribution was to propose the ERD-FL approach, an innovative defense
strategy employing entropy analysis for detecting and mitigating the impact of Label-flipping attacks.
In the new ERD-FL strategy, the focus shifts from changing IForest to overcoming its weaknesses
within EMDG-FL. This part introduces ERD-FL as a novel, scalable defense for FL in IoT networks.
It’s the first of its kind to use entropy data and a flexible threshold to better detect and counteract
Label-flipping attacks, aiming for more accurate results. We use in our simulation scenarios a wide
clients’ number and different dataset types, including image-based and text-based datasets.

The fourth contribution was then extended to the M3D-FL approach, which introduced a multi-
layered protection strategy to secure the FL system. While the ERD-FL method uses entropy data
to enhance the detection of malicious clients in the FL system. However, its dependence on histor-
ical entropy data may restrict its capacity to promptly adapt to novel or sudden attack strategies,
potentially affecting its effectiveness. By integrating the LOF and MAD outlier detection algorithms,
M3D-FL demonstrated superior performance in more intricate scenarios involving Label-flipping and
Backdoor simultaneous attacks, as well as a larger clients’ number.

Finally, the fifth contribution was to propose the NAM2D-FL approach, targeting the nuanced
challenges posed by Non-IID data in the presence of both Label-flipping and Backdoor attacks. The
LOF method used in M3D-FL is efficient at detecting malicious clients but struggles with Non-IID
data in the FL system due to its inability to manage varied data distributions. This constraint not
only exposes vulnerabilities but also impacts its efficacy in high-dimensional data scenarios. Through
the integration of server-client mechanisms by the integration of refined LOF and adaptive GA-based
thresholding, NAM2D-FL significantly enhanced the robustness and effectiveness of the FL system,
demonstrating improvements with a wide range of evaluation performance metrics, and comparison
with several defense approaches in FL real-world settings.

Our proposed approaches in this thesis showed high performance in terms of several performance
metrics such as ACC, LR, ASR, CPU run-time, CPU aggregation run-time, Precision, and Recall
compared to other works in the literature. This evidences not only the effectiveness of the proposed
solutions in enhancing the security of FL systems but also their potential to facilitate the wider
adoption of FL in IoT environments, contributing to the development of more resilient and efficient
collaborative learning models.

7.2 Perspectives

The advent of FL in IoT represents a paradigm shift in how we approach ML, particularly with
the integration of trendy fields like Large Language Models (LLMs). LLMs, which are advanced AI
systems capable of understanding and generating human-like text, enrich FL by offering sophisticated
data analysis and decision-making capabilities. This methodology not only promises enhanced privacy
and data security but also paves the way for more personalized and efficient computing at the edge.
However, this integration introduces complex challenges, including data privacy, model scalability,
and computational efficiency. Addressing these challenges is paramount for the advancement of FL in
IoT environments.

The following sections provide an in-depth perspective on these critical areas, offering insights into
current research directions and future trends.

1. Privacy-preserving mechanisms for LLMs:

Within the integration of FL and LLMs, emphasizing privacy-preserving mechanisms is cru-
cial for IoT. This section will highlight key methodologies that fortify data privacy, detailing
advanced solutions to protect user information within decentralized LLM frameworks, as follows:

• Enhancing data security in training:

The core of FL’s appeal lies in its ability to train models on decentralized data, thereby
preserving privacy. However, the scale of data required by LLMs necessitates novel privacy-
preserving mechanisms. Techniques like DP, HE, and SMPC offer promising pathways.
These methods ensure that individual data points cannot be reverse-engineered from the
model, thereby safeguarding user privacy.
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• Mitigating data exposure risks:

Beyond encryption, there’s a growing interest in exploring how to minimize data exposure
during the training of LLMs without compromising the model’s quality. Advanced data
anonymization techniques, combined with secure aggregation protocols, can further reduce
the risk of sensitive information leakage. Research into privacy-preserving data augmenta-
tion and federated transfer learning could also play a significant role in enhancing model
performance under stringent privacy constraints.

2. Training cost and efficiency:

Addressing training cost and efficiency is vital in the convergence of FL and LLMs. This part
will focus on optimizing resource utilization and computational strategies, aiming to refine the
balance between efficiency and model efficacy in FL environments, as follows:

• Addressing computational demands:

The computational intensity of training large models in a FL context is a significant hurdle.
Innovative approaches to reduce this burden include model compression techniques, such
as pruning and quantization, and efficient model training algorithms that reduce commu-
nication overhead and computational requirements without significant loss in accuracy.

• Cost-effective model training strategies:

Developing strategies for cost-effective model training involves not just algorithmic improve-
ments but also infrastructure optimization. Adaptive model training that adjusts model
complexity based on the available computational resources and network conditions could
offer a path forward. Additionally, leveraging cloud computing resources during off-peak
hours for more intensive training tasks could balance the cost and efficiency equation.

3. Adaptive FL frameworks:

Adaptive FL frameworks are essential for the evolving requirements of IoT, ensuring the rele-
vance of LLMs. This section is dedicated to exploring adaptive strategies and personalization
techniques that enhance the responsiveness of FL system to variable data and environments, as
follows:

• Dynamic model adaptation:

Adapting FL frameworks to dynamically adjust to changing network environments and
data distributions is crucial for the deployment of LLMs in IoT. This involves developing
algorithms that can modify their learning strategy based on real-time feedback, ensuring
optimal performance across diverse devices and data streams.

• Personalization and context-aware learning:

Personalization is key in IoT applications adaptive FL frameworks can enable LLMs to
tailor their predictions and functionalities to individual users or devices, enhancing the
user experience. Context-aware learning mechanisms that incorporate situational data can
further refine model accuracy and relevance.

4. The role of edge computing in FL:

Merging edge computing with FL signifies a strategic enhancement for LLMs in IoT. This seg-
ment will address how edge computing contributes to scalability, privacy, and latency reduction,
emphasizing its role in advancing FL methodologies for improved distributed intelligence, as
follows:

• Leveraging edge devices for scalability:

Integrating edge computing with FL can address scalability and latency issues. By pro-
cessing data on local devices and only sharing model updates, we can significantly reduce
the bandwidth required for model training. This approach also opens up new avenues for
real-time learning and inference, crucial for time-sensitive IoT applications.
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• Enhancing privacy and efficiency:

Edge computing inherently supports privacy-preserving objectives by keeping data local-
ized. Combining this with LLMs trained via FL can create a powerful paradigm for build-
ing intelligent systems that are both privacy-centric and efficient. Research into optimizing
edge device capabilities for LLM training and inference is an exciting frontier that could
redefine the boundaries of FL.

This perspective has illuminated the dynamic interplay between FL and LLMs within the IoT ecosys-
tem, highlighting the transformative potential and the myriad challenges this integration presents.
By focusing on privacy-preserving mechanisms, training cost and efficiency, adaptive FL frameworks,
and the pivotal role of edge computing, we pave the way for a more secure, efficient, and personal-
ized future in IoT. As we continue to explore and refine these technologies, the collaborative effort
between academia, industry, and regulatory bodies will be crucial in navigating the complexities of
data privacy, computational demands, and the seamless integration of AI into our daily lives. The
progress in these areas not only promises to enhance the capabilities of IoT devices but also sets a new
standard for the responsible and innovative use of AI, ensuring that the benefits of such technologies
are accessible to all.
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