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Résumé en français

L’utilisation des drones dans le contexte de l’agriculture de précision peut optimiser la gestion de
l’exploitation et augmenter la productivité agricole tout en protégeant l’environnement. Toutefois,
les drones présentent certaines limites qui doivent être prises en compte lors du développement de
solutions de sa mission.

Le cadre du problème de la cartographie avec un ou plusieurs drones peut être divisé en deux
sous-problèmes : la planification de la mission de cartographie et la pilotage du drone. La première
étape définit la trajectoire à suivre pour couvrir la zone d’intérêt de manière efficace compte tenu des
limites du drone, tandis que la seconde garantit que le suivi de la trajectoire planifiée est effectué avec
succès.

Afin d’augmenter l’efficacité temporelle et d’assurer unemission à faible dépense énergétique, une
nouvelle approche pour l’optimisation de la gestion de la batterie du drone lors de la planification de
la mission de cartographie est proposée dans ce travail. La stratégie développée optimise l’utilisation
des batteries disponibles pour la mission de cartographie enminimisant la distance de vol totale et en
réduisant le nombre de remplacements de batteries. La suppression des remplacements de batterie
inutiles réduit la durée totale de la mission, mais évite également les cycles redondants de recharge
de la batterie.

L’étudedes résultats en simulation et la validation expérimentale présentent une stratégie d’optimisation
pour la gestion de la batterie des drones dans le cadre d’une planification de mission respectueuse
de l’énergie pour les applications cartographiques. L’approche vise à réduire le temps de vol total
en incorporant les remplacements de batterie nécessaires et en tenant compte des contraintes én-
ergétiques dues aux capacités limitées des batteries, ainsi qu’en optimisant le choix de la station de
base pour les remplacements de batterie. En minimisant les longs vols inutiles à destination et en
provenance de la station de base, la stratégie améliore l’efficacité de la planification des missions.
En outre, elle évalue stratégiquement les emplacements de base potentiels situés à la frontière de la
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zone de cartographie afin d’identifier l’emplacement de base qui minimise la distance de vol globale
de la mission pour chaque sous-chemin de drone.

La distribution des points d’intérêt résultant de la planification de la mission représente les sous-
chemins de survol d’un drone doté de plusieurs batteries. Afin de suivre la trajectoire planifiée avec
une erreur de suivi minimale, une approche de commande prédictive non linéaire pour un suivi de
trajectoire robuste est développée. Cette approche est finalement étendue à unemission de cartogra-
phie impliquant plusieurs drones coopératifs, afin d’accroître l’efficacité de la mission et de réduire la
durée de la cartographie, en particulier pour les grands champs. Dans ce cas, la coordination entre
les drones engagés dans la même mission doit également être prise en compte. Garantir une erreur
de poursuite minimale et maintenir une distance de sécurité entre les drones afin d’éviter les colli-
sions sont les principaux défis d’une mission de cartographie bien menée avec plusieurs drones. Le
MPC non linéaire a montré des résultats prometteurs pour le suivi de trajectoire en temps réel, prin-
cipalement lorsqu’il est mis en œuvre dans la forme souvent irrégulière du champ qui conduit à une
trajectoire de vol non linéaire. L’approcheMPC non linéaire proposée traite avec succès le suivi de tra-
jectoire de plusieurs UAV employés dans lamêmemission tout en gérant l’évitement des collisions. La
couche supplémentaire d’attribution des priorités augmente encore l’efficacité de la commande non
linéaire proposée, car elle élimine les manœuvres et les déviations inutiles. Il en résulte unemeilleure
prévisibilité de l’ensemble du système, ainsi que des changements moins brusques dans les trajec-
toires des drones.

Enfin, les approches proposées dans cette thèse garantissent l’achèvement de la mission de car-
tographie et sa sécurité, dans le cas d’un système de drone unique ou multiple.
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Chapter 1

Introduction

1.1 Unmanned Aerial Vehicles in Precision Agriculture

The challenges emerged from the rapid world population growth are focused on ensuring enough
resources, while avoiding threats of climate change. In order to provide food security, conventional
agriculture needs to be transformed with improvements and innovation. According to [4] and [5],
adopting Information and Communications Technologies (ICTs) can contribute tomeeting the increas-
ing need for faster and better solutions when it comes to agriculture. With the crisis in the agricultural
sector, implementing ICTs can increase the financial gain for the farmers, while reducing total cost.

Smart farming and precision agriculture aim to support agriculture in facing challenges to meet
the growing demand by using technology and innovation. While smart farming designates a general
concept for adopting ICTs in order to increase efficiency in farming activities, Precision Agriculture (PA)
focuses more closely on site-specific crop management [5]. Precision agriculture considers spatial
variation within a field by leveraging geo-referenced information about relevant characteristics for
crop production by means of novel technologies. Processing accurate and reliable data obtained with
ICTs can provide insights considering specific field properties. Thus, processes for crop management
can be planned in a more efficient way to account for crop yield optimization [6].

Alongside the agricultural robots, the evolution of smart farming and precision agriculture implies
extensive development of Unmanned Aerial Vehicles (UAVs). The application of UAVs can significantly
increase productivity while reducing the number of working hours as well as the stability and accu-
racy of the processes. As specified in [7], twomain groups of PA tasks involving UAVs can be identified.
Tasks that require some kind of physical interaction with the culture are distinguished as "crop spray-
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ing" (e.g. irrigation, fertilization, pesticide application), while "Remote Sensing" (RS) indicates non-
contact procedures to obtain information on the state of the crops (e.g. mapping, crop forecasting,
weed recognition, health monitoring).

One of themost widely implemented RS techniques is aerialmonitoring by analyzing aerial images.
Those images can be captured by satellites, manned aircraft, or UAVs. Satellite-obtained images are
not practical for most farmers due to their high cost, low availability and dependency on the weather
conditions. Compared to satellite-obtained images, using an aircraft results in better image quality.
Using human-crewed aircrafts is, however, very costly and requires flying at high altitudes and cloud
penetration to obtain clear imagery. On the other hand, UAVs can fly at lower altitudes and are easy
to operate, and therefore present a more cost-effective option for acquiring high-resolution images
(as in the example of vineyard mapping in Figure 1.1).

Figure 1.1: Vineyard mapping with a UAV.

Aerial imagery is usually used formap generation in order to obtain information about the biophys-
ical characteristics of the crop field. To obtain insights from the aerial images, a single capture is often
not sufficient to cover the area of interest completely. It is, therefore, necessary to integrate multiple
georeferenced images through mosaicing methods, with overlapping of 60-80% between subsequent
images. To do so, a complex flight plan needs to determine precisewaypointswhere the image acquisi-
tion has to occur. In order to successfully assemble overlapping image captures, positioning with high
precision is needed. Due to their capability of performing hovering while delivering high-resolution
cameras, using UAVs progressively becomes the optimal choice for mapping.

By using UAVs equipped with a camera, farmers can continuously monitor specific crop parame-
16



ters, such as crop variability and stress conditions. Remote sensingmethods in agriculture mostly rely
on data extracted from electromagnetic radiation interaction with soil and crops. By measuring the
reflected radiation of the crops, it is possible to generate agroclimatic models based on the Normal-
ized Difference Vegetation Index (NDVI) or other vegetation indices, which allows the identification of
crop subareas and their individual characteristics [4]. Remote sensing primarily focuses onmeasuring
the radiation reflected by plants which correlates inversely with the amount of radiation absorbed by
plant pigments. In particular, theNDVI can offer precise insights into biomass levels, which can provide
guidance and understanding of the specific conditions, e.g. water stress, crop diseases, and nutrient
deficiencies. This valuable information can aid the farmers with decision-making and processes for
increasing crop productivity.

However, the technical limitations of UAVs also need to be taken into account when considering
their agricultural mapping application. To ensure a successful mission for such an application, differ-
ent factors need to be considered, including control of the UAV to enable stable flight with maintained
constant velocity in order to obtain the necessary level of image quality, as well as high precision while
visiting the predefined waypoints.

The current research explores challenges concerning UAV battery life and efficiency, flight time
limitations, communication distance, payload, engine power, stability, and reliability [5]. In particular,
aerial imagery needs to be obtained in the narrow time windows to acquire exploitable data for crop
analysis. Thus, significant improvements need to be made in terms of reducing the mapping mission
time. On the other hand, the battery capacity limits the duration of a single flight and at the same
time increases the overall mission time due to the time necessary for battery recharge and/or battery
replacement. Nonetheless, battery replacements directly affect mission safety as repeated take-offs
and landings are required for each battery that is used for a flight segment. The highest flight safety
risk arises at take-off and landing operations. Fully charged lithium-ion batteries currently in use can
be used for a 20–30 min flight. However, battery management requires attention in order to preserve
its initial capacity, as its proper use and maintenance can contribute to better battery health and
reduce periodic replacements [8].

When it comes to mapping large dimension fields, employing multiple UAVs can overcome con-
straints linked to insufficient battery capacities and increase mission efficiency in terms of time and
scalability to a large extent. By dividing the large field into subareas and allocating among UAVs in a
fleet, challenges submerged from UAV limitations can be met. As a result, it is possible to obtain ho-
mogeneous images without change in daylight that can provide accurate insights about the observed
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crop parameters. Significant research efforts therefore focus on improving the autonomy aspect of
a UAV fleet mission, involving fewer operative tasks required from the operators on the ground by
implementing advanced ground control systems [4, 7, 8]. Accordingly, the coordination of the UAV
fleet must address the potential collision problem by implementing robust strategies for necessary
and timely avoidance. This involves not only the detection of possible collision scenarios but also the
execution of precise maneuvers to prevent accidents.

The problem framework for conducting RS aerial imaging with a single or multiple UAVs can be
mainly divided into two subproblems: mapping mission planning and UAV control. The former step
defines the path for covering the area of interest considering the UAV limitations, while the latter
ensures that trajectory tracking of the planned path is successfully completed. The mapping mission
requires integrating previously mentioned subproblems while addressing certain challenges that may
arise, which will be described later in this chapter.

1.2 Guidance and Control of the UAVs

State of the art of application of UAVs in agriculturalmappingmissions regarding guidance and control
is rich. Thus, a non-exhaustive state of the art will be presented here with the work relevant to the
problem of this thesis.

1.2.1 Coverage Path Planning for Mapping Missions in Agriculture

Coverage Path Planning (CPP) problem falls within the domain ofmotion planning in robotics, focusing
on generating a path for a robot to systematically explore every point of interest within a specified sce-
nario. Despite the continuous advancements in technology, it is still challenging to ensure that UAVs
perform the mapping mission completely in an autonomous manner. Human surveillance and sup-
port are required in the phases of take-off and landing, as well as supervising the mission execution,
by monitoring the battery discharge level or handling the failure if it occurs. Therefore, appropriate
CPP needs to be chosen in order to address challenges specific to a given UAV mission and ensure a
high level of autonomy.

The planning phase of the optimal mapping mission for UAVs needs to address the challenges
discussed in [9], which can be summarized into:

• Time efficiency: Coverage completeness should be ensured within a reasonable time frame.
Time-efficient mission is essential for numerous reasons. It is indispensable to complete the
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mapping mission within the least possible time, i.e. without change in daylight, as the result-
ing snapshots uniform in color can provide useful takeaways and aid with the decision-making
process. In addition, reducing mission duration enhances cost efficiency by lowering overall ex-
penses. This reduction includes decreased costs per flight hour, minimized staff expenses, and
reduced drone wear — directly influenced by the number of take-off and landing cycles. Conse-
quently, optimizing mission time enhances operational efficiency and results in significant cost
savings across multiple facets of the mission.

• Energy efficiency: Limited capacity of the UAV batteries can hinder successful mission com-
pletion if not considered upfront. Thus, it is imperative to develop mission plans that prioritize
minimizing energy consumption to ensure optimal battery utilization. An energy-aware mission
strategy for UAVs involves integrating an understanding of the energy consumption model and
battery limitations into the planning process. Knowledge about the battery capacity needed for
a certain mission can help in determining the number of batteries or UAVs needed to complete
the mission. This approach aims to mitigate unnecessary energy losses and maximize the effi-
cient use of available battery capacity throughout the mission duration. By considering these
factors upfront, energy-aware mission planning enhances the overall reliability, endurance, and
effectiveness of the performed task.

• Scalability: Scalability in the context of optimization algorithms denotes their capacity to effi-
ciently process and solve large and complex optimization problems within a limited computa-
tion time and capacity. It involves the ability of an algorithm to scale up and adapt to growing
problem sizes and complexities while still delivering optimal solutions in a timely manner. The
algorithm must demonstrate robustness in managing diverse scenarios, such as varying field
sizes and multiple battery capacities, to formulate comprehensive and effective mission plans.
This flexibility is especially critical for dynamically adjusting and replanning missions in real time
to address unforeseen issues or changes in operational conditions.

CPP approaches are structured based on different criteria. First, a classic taxonomy defined in
[10] depends on the area decomposition type. Three groups of CPP methods are differentiated: the
methods with no decomposition and methods with exact or approximate cellular decomposition. Ap-
proximate decomposition methods are also known as grid-based methods. Methods without decom-
position are applied to non-complex areas of interest that usually require only one UAV, and where
simple geometrical patterns of sweep directions are explored, such as back-and-forth and the spi-
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ral (Figure 1.2). In back-and-forth sweep direction, also known as zigzag movement or lawnmower
pattern, the UAV performs straight movements with 180° turning maneuvers at the area borders. In
contrast, with a spiral flight direction, the UAV flies in a circular pattern by decreasing the circle radius
while flying towards the center.

(a) (b)
Figure 1.2: UAV sweep direction patterns: (a) Back and forth flight pattern (left-hand side); (b) Spiralflight pattern (right-hand side).

Exact cellular decomposition implies simplifying the coverage of the irregular-shaped area by di-
viding it into sub-areas and reducing the concavities. The approximate CPP approaches can be clus-
tered considering the level of information available about the area of interest. Full information for
the approximate approach requires algorithms that guarantee the complete coverage of the area of
interest by visiting every cell. In that case, path planning is done offline in three steps: area decompo-
sition, path planning, and flight execution. Once the area is decomposed into subareas or cells, path
planning defines an optimal path considering the mission requirements and limitations. The last step
involves executing the planned mission, provided no failures occur during the flight. On the other
hand, partial information availability is applied in dynamic and constantly changing environments.
Thus, the appropriate CPP method needs to ensure a balance between gathering information about
the area and planning the path at the execution level. As these CPP techniques require performing
area coverage under uncertainties, they are often sensor-based and bio-inspired, where flight plan
is being updated based on the newly acquired data from the sensors. Finally, performance metrics
are defined to evaluate mission success. Depending on the application, the common performance
metrics for coverage mission assessment listed in [11] are the following: the total travelled distance,
the time to complete a mission, the area coverage maximization, and the number of turning maneu-
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vers. An appropriate trade-off needs to be found between distance minimization and area coverage
maximization.

Depending on the mission-specific UAV application, different CPP approaches exist in the litera-
ture. The optimality of the chosen method is defined by the mission objective and constraints.

• Distance minimization

A CPP algorithm for an arbitrary polygon area developed in [12] is designed for convex and con-
cave areas of interest with the aim to shorten the flight distance by finding the optimal heading
angle. In irregular and concave areas, mission complexity is reduced and continuity is ensured
by considering the concave angle when defining the convex subareas that need to be connected
in order to perform complete coverage.
An improved method of the exact cellular decomposition considering the polygon area of in-
terest is introduced in [1] and [2]. An example of the resulting coverage path derived from this
method is given in Figure 1.3, where back-and-forth movements are aligned along the longest
edge of each of the decomposed subregions.

Figure 1.3: Example of the coverage path resulting from the exact cellular decomposition method in[1] and [2].

They study the impact of the turningmotion on lowering efficiency in terms of route length, flight
duration and energy consumption. Consequently, a convex decomposition algorithm based on
the greedy recursive method minimizing the width sum is proposed. Resulting UAV paths form
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a flight along the vertical direction of the subarea width to achieve the least number of turns.
Finally, the minimum traversal algorithm of the undirected graph aims to connect the subareas
by minimizing the repeated paths of the UAVs. In [13], a CPP algorithm fitting convex and non-
convex area is proposed. For the latter, a decomposition method for the coverage of a concave
polygon considering an interrupted path is developed. If there is no interruption, coverage can
be planned for the convex hull of the considered polygon using the optimal line sweep calculated
as the path with a minimized number of turns. On the other hand, if the path is interrupted, the
initial polygon is decomposed and the optimal path is found for each subpolygon recursively.
Authors in [14] present a CPP method for performing aerial surveys with fixed-wing UAVs in the
presence of steady uniform wind that aims to determine the optimal sweep angle relative to the
wind that minimizes flight time.

• Coverage optimization

Grid-based method for CPP problem in [15] presents a scheduling framework for hexagonal
sampling that results in optimal coverage density and spatially balanced sampling cycles for en-
vironmental monitoring, subject to limited energy. Furthermore, a partitioning method of the
area of interest in [16] considers no-fly zones (NFZs) to be avoided. To improve the quality of cov-
erage, partition borders are chosen to be on the grid-cell boundaries to reduce the percentage
of uncovered area. The grid technique for mapping the area while efficiently avoiding NFZs pro-
posed in [17] uses the self-adaptive parameter setting to tune the pattern and employ parallel
computing, which results in improved performance.
A learning-based adaptive path planning algorithm for accurate semantic segmentation is pro-
posed by [18], linking the UAV altitude and semantic segmentation accuracy (similar to [19]), for
ensuring high-resolution images. First, they define non-overlapping regions of the target field
with associated waypoints in the 3D space as locations where the UAV camera covers the en-
tire area. The back-and-forth path linking the waypoints serves as initialization for the proposed
algorithm. The two-step adaptive strategy consists of assigning a semantic label to each pixel
at every waypoint by using deep neural network, and deciding if the predetermined detail level
is sufficient for desired accuracy. If the image resolution is not satisfied, UAV lowers the flying
altitude at the next waypoint, and continues with the predetermined path otherwise.

• Energy-aware coverage

As previously mentioned, there is an increasing importance of developing coverage path plan-
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ning with minimal energy consumption for UAVs, which addresses challenges linked to UAV lim-
ited endurance. Energy-aware coverage planning in [20] and [21] relies on energy estimation
models with the objective of finding the optimal flying speed. In [22], an energy-aware mis-
sion is planned by considering energy consumption for different segments of the planned path,
straight lines and turns. Finally, the optimal path is the result of minimizing the sum of turning
maneuvers, as they increase the energy consumption. In addition to minimizing the number of
turns, method in [23] optimizes the area division by clustering to ensure equal energy consump-
tion demand for each area section.
As it imposes major limitations to performance, battery capacity is a crucial element that needs
to be accounted for when planning a mapping mission for UAVs. Due to the rather large size of
the field, multiple batteriesmust be employed for amappingmission. Therefore, the initial flight
plan should consider battery energy constraints, and battery replacements must be planned to
optimize the efficient use of batteries. As described in [24], the optimal UAV path should include
the least possible number of take-offs and landings due to the cost per take-off-landing cycle, as
well as the wear of the drone.
Significant research efforts have been made in optimizing the UAV coverage path under energy
constraints. In [25], maximum flight endurance is computed based on battery and motor char-
acteristics, while forecasting the remaining mission time ensures that the planned path can be
completed. Depending on the size of an agricultural field, the entire mappingmission often can-
not be performed using only one battery. Coverage path planning under energy constraints in
[26] hence considers that each path should start and finish at the recharging base, while [27]
takes into consideration energy constraints of the UAVs and weather forecast to plan a deliv-
ery mission accordingly. In [28], a rectangular area is covered using a back-and-forth motion
along lines perpendicular to the sweep direction, and the proposed optimization problem aims
tominimize the time of the longest route among the subroutes while respecting the battery con-
straints. Similarly, the algorithm in [29] provides optimal multi-UAV mission cost by minimizing
the maximum individual cost of subpaths, that are initially assigned iteratively to each UAV until
their maximum capacity is attained.
When considering battery capacity limitations, a battery replacement strategy also needs to be
developed to optimize the overall mission performance. The battery replacement method pro-
posed in [30] presents the algorithm for routing the quadcopter using the automatic battery
replacement aerial system. It has been, however, developed for employment in nuclear power
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plant monitoring in order to enable mission completion via the UAV in a single deployment,
where mission configuration differs largely from that of the agricultural application.
Finally, the choice of the location for a recharging station can impact the mission duration, and
consequently the energy consumption. In [31], the choice is done among potential charging
base locations at the extremities of the vertices of the area. On the other hand, [24] introduces
a mobile charging base along the road next to the field, which, however, requires the neces-
sary infrastructure. Similarly, mission in [32] includes UAV and a supporting Unmanned Ground
Vehicle (UGV) that serves as a mobile recharging station.

1.2.2 Control Methods for UAVs

Given a specific task that a UAV needs to accomplish and the associated environment, developing
fully autonomous UAVs requires focusing onmotion control. Motion control in robotics addresses the
problem of reaching a desired position and tracking a desired trajectory by determining the dynamics
generated by the robot or vehicle actuator, such as forces and torques. Motion control tasks include
but are not limited to path planning, point stabilization, and trajectory tracking. More specifically,
once a path is determined, control inputs are generated so that the vehicle accomplishes the task of
tracking the referenced planned path [33].

The trajectory control problem, defined as ensuring a vehicle follows a predefined path in space,
can be solved with trajectory tracking or path-following control strategies. The trajectory tracking
has a position reference linked with time, where the reference is given in a specified temporal instant,
whereas there is no time dependence in the path following, as the temporal dimension of the problem
is removed [34]. By definition in [35]:

• Trajectory-tracking problem: Let pd : [0,∞)→ R3 be a given sufficiently smooth time-varying
desired trajectory with its time-derivatives bounded. Design a controller such that all the closed-
loop signals are bounded and the tracking error ∥p(t)−pd(t)∥, where p is the actual position and
pd desired position of the vehicle, converges to a neighborhood of the origin that can be made
arbitrarily small.

• Path-following problem: Let pd(γ) ∈ R3 be a desired path parameterized by virtual arc γ ∈ R

and vr(γ) ∈ R a desired speed assignment 1. Suppose also that pd(γ) is sufficiently smooth with
respect to γ and its derivatives (with respect to γ) are bounded. Design feedback control laws uv ,

1For simplicity of presentation, it is assumed that vr(γ) ∈ R does not directly depend on time t.
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uω (v ∈ R3 and ω ∈ R3 denoting linear and angular velocities, respectively), and γ̈ such that all
the closed-loop signals are bounded, the position of the vehicle converges to and remains inside
a tube centered around the desired path that can be made arbitrarily thin, i.e., ∥p(t)− pd(γ(t))∥
converges to a neighborhood of the origin that can be made arbitrarily small, and the vehicle
satisfies a desired speed assignment vr along the path, i.e., the speed error γ̇(t) − vr(γ(t)) can
be confined to an arbitrarily small ball.

However, since some of the path-followingmethods originate as adaptations of trajectory-tracking
algorithms, some control-oriented algorithmsmay need a timing law for the virtual arc parameter γ(t).

Because agricultural mapping tasks require the accurate position of the UAV at any given time, the
trajectory tracking problem will be analyzed and implemented further in this thesis because of their
temporal aspect.

In general, control techniques for trajectory tracking for UAVs can be classified into three groups:
linear, nonlinear, and learning-based intelligent controllers [36].

Figure 1.4: Control methodologies classification.

A non-exhaustive list of three control methodology groups used in quadrotor systems [37] [38] is
illustrated in Figure 1.4 and described below.
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1.2.2.1 Linear control

• Proportional-Integral-Derivative (PID) Controller:

PID controller, a classical control method widely used in industrial systems due to its simplicity
and ease of implementation, is nowadays largely employed in commercial quadrotors. In the
literature, PID is mostly used for attitude control and flight stabilization [39]. Robust PID for
position control of a quadrotor is developed in [40], with a procedure for reducing the power
demanded by the controller. The robustness of a nonlinear PID controller proposed in [41] is
assessed in the presence of disturbances in one of the actuators. Nevertheless, because of its
simplified nature, the PID controller response exhibits overshooting and is often not an appro-
priate solution for a nonlinear underactuated system such as the UAV itself [42].

• Linear Quadratic Regulator (LQR):

LQR algorithm is the optimal feedback controller for operating a dynamic system at a minimum
cost. System output is obtained through feedback for closed-loop stabilization. LQR controller
for linearized quadrotor model, as well as its parameter tuning for obtaining a satisfactory re-
sponse, is presented in [43]. In [44], the authors have developed a discrete-time, finite-horizon
LQR, where the nonlinear quadrotor system is linearized using a left-invariant error about a ref-
erence trajectory so that the optimal gain sequence can be computed offline. With a robust
LQR presented in [45], the adaptive weighting matrix selection method ensures the flight stabi-
lization of a small quadrotor under severe disturbances and model uncertainties. Fault-tolerant
LQR in [46] guarantees the system stability in case of known faults or failures in actuators and/or
sensors.

• Gain Scheduling:

Gain scheduling is a control method where a nonlinear system is linearized at multiple operat-
ing points, and an appropriate linear controller is designed for each point. Gain scheduling, in
combination with other control techniques, has been implemented for quadrotor control. Gain
scheduling-based PID control for path tracking and fault tolerant control of a UAV is presented in
[47]. An event-triggered control strategy in [48] is used to counteract the effect of the resulting
time-varying delay with the provided gain-scheduling method.

• H∞ controller:

H∞ controller is a linear robust control technique that deals with parameter uncertainties and
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effects of external disturbances to ensure reaching the desired output for the UAV flight. How-
ever, the controller is designed in the frequency domain, whichmakes its gains difficult to adjust
and computationally expensive. The H∞ control problem is formulated as a mathematical op-
timization problem that minimizes the H∞ norm of the closed-loop transfer function. In the
literature, it has been implemented for stabilization and position control of the UAVs. In [49],
the H∞ controller was designed for stationkeeping and hovering of an unmanned helicopter. A
2 degree of freedom (DOF) H∞ loop-shaping controller presented in [50] is used to control the
attitude angles and vertical velocity, as well as to provide stabilization of a quadrotor UAV.

1.2.2.2 Nonlinear control

• Feedback Linearization Control:

Feedback linearization is a nonlinear control methodology where the nonlinear dynamics of the
system are linearized by model inversion so that feedback control can be applied. Nonetheless,
as this approach requires a precise model, and the modeling of the errors and uncertainties is
challenging, it is not robust to uncertainties in the system [51]. There are multiple applications
of feedback linearization applied to UAVs, e.g. for stabilizing a highly nonlinear quadrotor sys-
tem with a composite feedback linearized and LQR controller in [52], or for tracking control by
combining the feedback linearization method and H∞ algorithm in [53].

• Backstepping Control:

Backstepping control uses a recursive algorithm for controlling nonlinear systems. It is decom-
posed into several steps to ensure the asymptotic stability of the system at each step. Despite its
fast convergence, the disadvantage of this method is its lack of robustness. Particularly, back-
stepping requires the exact system dynamics and uncertainties to provide good performance
[37]. Backstepping-based adaptive control of a quadrotor UAV with guaranteed transient and
steady-state tracking performances is developed in [54], where the parametric inertia effects
and drag uncertainties for attitude control are compensated using the least squares-based pa-
rameter identification algorithm in the indirect adaptive control design, and using a construc-
tive Lyapunov analysis approach in the direct adaptive control scheme. The robust nonlinear
controller in [55] combines the sliding mode control with the backstepping controller, where
the backstepping sliding-mode controller is evaluated for position and yaw angle control of the
quadrotor.
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• Sliding Mode Control:

Sliding Mode Control (SMC) is a robust nonlinear control strategy that applies a discontinuous
control law to drive the system state to a sliding surface, where the dynamics of the system
are simplified. The control signal switches from one state to another to ensure convergence
of the states to the reference state. In [56], a second-order sliding mode control method for
position and attitude tracking is designed by dividing the quadrotor system dynamics into two
subsystems: a fully actuated subsystem and an underactuated subsystem. A sliding manifold
is defined for each of the subsystems. In order to ensure asymptotic tracking of the command
profile for the quadrotor, a continuous sliding mode control driven by sliding mode disturbance
observer is presented in [57].

• Adaptive Control:

Adaptive control is suitable for systems with unknown dynamics, as it directly compensates for
parameter changes in systemdynamics by adjusting the controller characteristics with the objec-
tive of maintaining overall system performances. Authors in [58] present an adaptive controller
based on Lyapunov stability and its application to a quadrotor UAV. The adaptive controller is
formulated for the command tracking problem, based on the reference model with linearized
quadrotor dynamics, where parametric uncertainties are present in the form of actuator fail-
ures, more precisely, loss of a thrust portion in one or multiple propellers. Similarly, adaptive
control for the trajectory tracking problem developed in [59] considers the input saturations
and uncertain parameters with the known bounds, which are handled by using a combination
of the smooth saturation function and smooth projection operator in the control design. In [60],
authors propose quadrotor stabilization and trajectory tracking with dynamic changes in the
quadrotor’s center of gravity as the uncertain parameter. They propose an adaptive tracking
controller based on the output feedback linearization to compensate for the changes in uncer-
tain center of gravity.

• Model predictive control:

Model predictive control (MPC) is a control strategy that repeatedly solves the optimization prob-
lem over a finite prediction horizon and determines the future control sequence on a moving
horizon. MPC has shown promising results in trajectory tracking. Its ability to handle constraints
makes it an easily adaptable solution for various problems [61]. Historical basis and general
concepts of MPC are introduced in [62], as well as in [63]. Advantages in terms of accuracy and
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response time of MPC-based controller compared to other control strategies are discussed in
[64] and [65]. The advantages of the MPC controllers will be presented in detail later in the
thesis. Even though plenty of research has been conducted on the linear control of UAVs, ap-
proaches in nonlinear model predictive control (NMPC) have drawn attention due to their ability
to ensure application on real systems with minimal tracking error with reduced computational
complexity. Experimental comparison of linear and nonlinear MPC in [66] shows better tracking
results in smoothness for curved paths implemented on real-time systems, and [67] proves bet-
ter disturbance rejection capability in addition to the tracking performance of nonlinear MPC in
comparison to linear MPC. The authors in [68] present flatness-basedMPC with feedforward lin-
earization for improved robustness to modeling errors and known input time delays. Different
robust MPC strategies for UAV trajectory tracking are developed in [69],[70] and [71]. Authors in
[69] propose the control strategy consisting of a receding horizon scheme, with the optimization
process that incorporates theminimumpeak performancemeasure, optimality metric, for mini-
mumpossible deviation under the worst–case disturbance. On the other hand, robust nonlinear
MPC in [70] is constructed to tackle external disturbances with the tightened state constraints
based on the Lipschitz condition. Robust adaptive MPC introduced in [71] ensures robustness
on two levels. First, the proposed identification method guarantees that the true parameter is
always included in the updated uncertainty set, such that robust constraint satisfaction is guar-
anteed in the closed loop. Then, the tube MPC predicts the state propagation of a system with
polytopes within which the guaranteed states exist, while respecting a bounded additive distur-
bance and bounded uncertain parameters.

1.2.2.3 Model-free control

For model-free controllers, no dynamics model is required. The system information is rather acquired
from data obtained from the real system flights. These control methods are based on artificial intel-
ligence and are largely used as a type of fuzzy logic that transforms ambiguous situations into ap-
proximations. The fuzzy controller in [72] is used to achieve stable hovering of the quadrotor in the
presence of velocity disturbances. Authors in [73] compare the artificial neural network’s direct inverse
control with the PID control system, and highlight the advantage of the learning mechanism to over-
come the limitation of PID tuning. In general, the model-free approach enables these controllers to
be implemented on different UAV configurations. However, stability and robustness analysis remain
uncertain and challenging when it comes to these methodologies.
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1.2.3 Multi-UAV mapping missions

As suggested in [74], performing a mapping mission in PA with multiple UAVs can be structured into
three parts:

• Task subdivision and allocation

This is a multi-robot or multi-UAV coordination problem, where, given a global task T0 and R
robots, partition of T0 needs to be found into R subtasks, that need to be allocated to robots or
UAVs for execution by considering their individual capabilities. The goal is to achieve minimum
overlapping between subtasks, which is ideally null, such that the original task is completely
covered by the union of subtasks.

• Path planning

Once the subtasks, i.e. subareas are allocated, each UAV needs to find a path to accomplish their
assigned task by determining waypoints, such that the whole subarea is covered. Waypoints are
the positions defined by the coordinates that identify a point in physical space where a task (e.g.
taking a snapshot) needs to be accomplished. Coverage Path Planning (CPP) algorithms are used
to find such path in the free workspace.

• Multi-UAV control

Amulti-UAV systemworking together to achieve amutual goal is called a swarm or fleet of UAVs.
Multi-UAV or swarm-control techniques are developed to enable UAVs to efficiently perform a
given task in a cooperative manner by lowering energy costs and shortening flight times. In gen-
eral terms, strong cooperation requires direct interaction in task execution, whereas in weak
cooperation, each individual is assigned a localized subtask to perform. Strong cooperation in
a multi-UAV system implies coordination between the UAVs, e.g. swarm or formation control,
as well as the adaptive force or velocity control. Weak cooperation, on the other hand, can re-
fer to considering collision avoidance between UAVs, assigning different level of priority to each
UAV, or dealing with system management in case of failure occurrence, notably fault detection
and diagnosis [75]. For a successful implementation of a multi-UAV system in agriculture it is
important to facilitate the control and lower the effort necessary for operating UAVs simultane-
ously. Additionally, due to unpredictable weather conditions and possible perturbations, a lack
of accurate data presents a need for real-time coordination.
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When it comes to employing multiple UAVs for mapping an agricultural field, task allocation and
path planning are considered as the first step. Since the two subproblems can be addressed in no
particular order, and one may depend on the other, they are usually both handled by a single CPP
strategy adapted for a specific multi-UAV mission.

Different strategies for cooperative multi-UAV coverage path planning can be found in the liter-
ature. Authors in [76] propose a method for the full coverage path planning divided into two parts.
First, path planning is done for the complete area by selecting the covering operationmode for a single
area, considering the determined criteria. Then, dispatching of the given operations areas to available
multiple machines is done through an optimization algorithm integrating particle swarm optimization
and genetic operation. A CPP algorithm for multiple UAVs that partitions the area of interest based
on the individual capabilities of the vehicles is presented in [77], where the area is distributed and as-
signed proportionally to their relative capabilities and initial locations. In [78], the authors introduce
a grid-based area decomposition method that transforms the area of interest into the grid cells by
applying a rotation of the complete area in order to minimize the resulting grid and, consequently,
completion time. Task allocation to multiple UAVs is formulated afterward as a mixed-integer linear
programming (MILP) model that minimizes the completion time to cover the area and is solved with
the randomized search heuristic algorithm to lower the computational time. A decentralized multi-
UAV path planning method based on the two-layer coordinative framework is introduced in [79], a
consensus-based algorithm suitable for a large number of UAVs in the system due to its scalability.

Once themappingmission is planned andpaths are determined for eachUAV in the fleet, an appro-
priate control strategy is needed to ensure tracking of the planned individual paths. A robust and effi-
cient control system formanaging a swarmofUAVs effectively needs to address several points, namely
coordination and collaboration. Control approaches for coordination and collaboration among UAVs
to avoid collisions, optimize task execution, and achieve common objectives often involve decentral-
ized decision-making algorithms.

In order to assure the safety of a multiple UAV system with a common goal, cooperative collision
avoidance strategies involve techniques that enablemultiple UAVs to work together to avoid collisions
while navigating in shared airspace. According to [80], key strategies for collision avoidance can be
clustered into 5 categories (Figure 1.5):

1. Pathplanning: In the case of the knownenvironment, aswell as its static anddynamic obstacles,
the objective of a path planning algorithm is to find an optimal collision-free path. Path selection
can be done with an online or offline planner, and it results in a curve connecting points of inter-
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Figure 1.5: Collision avoidance strategies classification.

est, without having to consider a dynamical model of a UAV. Graph selection, on the other hand,
requires transforming obstacles into polygons that need to be avoided. The problem is then
solved by the graph-based optimization approach. A fundamental example of this approach in
[81] introduces a collision avoidance algorithm for planning a safe path for a polyhedral object
moving among known polyhedral objects. The obstacles are represented as forbidden regions,
and trajectory is found by searching a network for vertices that can be reached safely without
collision.

2. Conflict resolution: Conflict detection and resolution algorithms are explored so that UAVs do
not depend solely on a centralized solution to avoid collision. According to [82], conflict detection
is a process of deciding when an action should be taken, whereas conflict resolution defines
what action should be done and how. For example, authors in [83] introduce a decentralized
cooperative policy as a base for conflict resolution in a multi-vehicle system, where each vehicle
applies the policy based on locally available information. Each vehicle has its defined safety disc
based on themotion equations, and a collision occurs whenever two safety discs overlap. In that
case, an appropriately defined decentralized cooperative policy for conflict resolution is applied.

3. Model predictive control: Due to its capability to apply optimization methods for simultane-
ously handling constraints and a cost function, model predictive control (MPC) represents an
efficient method for collision avoidance implemented on the control level. MPC strategies an-
ticipate potential collisions based on the dynamical model and current trajectories of UAVs in
the system. Intervehicle collision avoidance in [84] is ensured by the collision cost function in
a nonlinear MPC framework combined with a priority strategy. A consensus-based decentral-
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ized MPC approach in [85] decouples the collision avoidance constraint for each UAV to make
decisions independently while ensuring consistency of coupled collision-avoidance constraint.
MPC application to collision avoidance in a multi-UAV system will be further discussed later in
the thesis.

4. Potential field: In this method, the artificial potential field is designed with two components:
attractive field and repulsive field [86]. The attractive field is the value of the Euclidean distance
from a certain position to the destination point, which naturally decreases as the UAV advances
to its destination. The repulsive field represents the obstacles, and its value increases as the
UAV approaches an obstacle. The resulting sum of both fields directs the path such that the
UAV moves toward the lowest potential, such that it follows the gradient of potentials yielding
to the path that is attracted by the target and repelled by obstacles. An optimized artificial po-
tential field algorithm for multi-UAV collaborative trajectory planning and collision avoidance
presented in [87] method considers the UAV companions as dynamic obstacles to accomplish
collaborative trajectory planning. In [88], a probabilistic conflict detection algorithm using the
generalized polynomial chaos method is developed for determining three-dimensional conflict-
free trajectories considering wind uncertainty.

5. Geometric guidance: Geometric guidance methods consider the conflict geometry in order to
reactively decide upon the collision avoidance control, with twomain approaches: collision cone
and velocity obstacle. In the collision cone approach, the UAV is represented by a point, and the
obstacle is determined by a circle with a defined radius. The tangent lines of the circle form a
cone between the UAV and the obstacle. The velocity obstacle approach is defined in a velocity
space bymoving the collision cone by the obstacle velocity. Authors in [89] introduce a nonlinear
geometric guidance approach for obstacle avoidance. Rather than considering only the position
guarantee, the guidance algorithmdetermines the velocity command along the tangent line over
the collision cone. A real-time guidance lawbased on differential geometry is presented in [90] to
avoid obstacles and guide formation reconfiguration for UAVs. The velocity obstacle approach
was extended to three-dimensional obstacles in [91] by representing them with the pyramid
cone method.
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1.3 Objectives and contributions of the thesis

1.3.1 Objectives

The primary objectives of this thesis are to address and overcome the challenges associated with uti-
lizing UAVs, particularly quadrotors, for enhancing efficiency in agricultural mapping tasks. First, it
aims to understand the specific challenges linked to implementing UAVs in this context. Secondly,
it focuses on developing an energy-aware path planning strategy that ensures optimal battery man-
agement, is time-efficient, safe, scalable, and minimizes disruptions related to battery replacements.
Thirdly, the thesis seeks to design a control strategy for precise trajectory tracking, capable of han-
dling nonlinearities and maintaining constant velocity to ensure stable flight and high-quality image
capture. Lastly, it explores the development of a multi-UAV system for mappingmissions, with a focus
on effective coordination among UAVs to ensure collision avoidance while maintaining high levels of
positional and velocity accuracy.

1.3.2 Contributions

1.3.2.1 Energy-aware battery management optimization for path planning of a UAV mapping

mission

Contribution to the field of UAV agricultural mapping consists in introducing an innovative, energy-
aware mission planning strategy that significantly improves efficiency and safety. The research un-
derscores the need for optimal flight path planning to achieve comprehensive area coverage while
respecting requirements for time- and energy-efficient, as well as a scalable solution. A key contri-
bution is the development of a method for effective battery management, which involves waypoint
allocation to optimize battery replacement schedules andminimize energy consumption. Additionally,
by strategically positioning the base station relative to the mapping area, the approach reduces over-
all mission duration and flight distance. This leads to fewer battery replacements and a decrease in
the number of high-risk take-offs and landings, resulting in enhancedmission safety. Additionally, the
strategy supports long-term UAV operation by preserving battery health and optimizing performance,
ensuring greater reliability and longevity of the UAV system in large-scale mapping applications.
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1.3.2.2 Nonlinear MPC for UAV trajectory tracking

The proposed Nonlinear Model Predictive Control (NMPC) approach effectively manages trajectory
tracking while maintaining a constant velocity, a crucial element for obtaining high-quality and re-
liable images. The presented work emphasizes the need to balance the constant velocity with the
accuracy required for effective mapping. Simulation results show that adding a constant velocity cost
can improve the smoothness of both the trajectory of the UAV and its control inputs, leading to im-
proved image quality. Robustness assessment against external disturbances, such as wind andmodel
uncertainties in thruster efficiency, demonstrates its ability to sustain performance under different
conditions.

1.3.2.3 NonlinearMPC formulti-UAV trajectory trackingwith priority-allocation to ensure col-

lision avoidance

The proposed distributed NMPC introduces a priority allocation mechanism that designates a single
UAV to handle collision avoidance at any given time. This approach reduces the likelihood of unwanted
coupledmaneuvers and ensures that path adjustments do not trigger unnecessary changes across the
entiremulti-agent system, simplifying the control problem and conserving energy. Collision avoidance
is integrated into the control problem as a penalty cost, which helps to relax the control constraints
while ensuring safety. Thismethod allowsUAVs to follow their optimal paths unless imminent collision
risks prompt avoidance maneuvers. The optimal control problem for multi-UAV agricultural mapping
missions was evaluated with an emphasis on efficiency and robustness. The proposed strategy en-
hances mission efficiency by reducing computational time and demonstrates a degree of robustness
against disturbances and uncertainties, showing the system’s adaptability in dynamic conditions.

1.3.2.4 Implementation of the proposed energy-aware path planning on experimental setup

The contribution of this researchwork lies in the successful implementation of optimizedmission plan-
ning strategies on a real UAV system within a real-world setting. The findings from these experiments
reveal notable enhancements in the efficiency and effectiveness of agricultural mapping missions.
The optimized path planning approach reduces battery consumption for non-mapping activities, such
as traveling to and from the base station, resulting in fewer battery replacements and longer uninter-
rupted operation for quadrotors. Strategic positioning of the base station further decreases energy
usage, enhancing the overall sustainability and operational efficiency of the missions.
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1.5 Thesis outline

The rest of the thesis is organized as follows.
Chapter 2: Modeling. This chapter introduces UAV classification and focuses on quadrotor mod-

eling. The mathematical model of a quadrotor is then presented from a kinematics and dynamics
perspective. Then, two energy consumption modeling approaches are issued from the electrical bat-
tery discharge model and aerodynamics-based energy consumption. Finally, a simplified nonlinear
dynamic model of a quadrotor with 6 DOF is given for developing a model-based control strategy
later in the thesis. Similarly, the battery consumption simplifications are issued from the previously
elaborated energy consumption model.

Chapter 3: Energy-aware path planning for a UAV mapping mission. This chapter presents a
path planning strategy based on battery management optimization. First, the chosen area decom-
position approach results in the predefined flight path configuration. Then, in order to ensure a safe
and energy-awaremappingmission, the proposed batterymanagement optimization strategy defines
the task allocation by assigning flight path segments to available batteries to minimize the total path
distance and number of battery replacements needed. The mathematical problem formulation is
followed by simulation results and discussion, where the proposed approach is compared to a bench-
mark method from the state of the art.

Chapter 4: Control strategy for UAV trajectory tracking. This chapter focuses on the devel-
opment and application of a control strategy for UAV trajectory tracking, a critical aspect for ensuring
precise navigation andmission success. The chapter beginswith an introduction to the control scheme
and the state-space model used to describe UAV dynamics. It then delves into the implementation of
Nonlinear Model Predictive Control (NMPC) for trajectory tracking, including its mathematical formu-
lation and considerations for output robustness and parameter tuning. Finally, the chapter applies
NMPC to a UAV mapping mission, presenting simulation results that highlight the effectiveness and
robustness of the proposed control strategy in various scenarios.

Chapter 5: Towards multi-UAV mapping mission. This chapter explores the extension to multi-
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UAV mapping missions, where multiple UAVs must work together to complete a common task. The
chapter begins with an introduction to the challenges and goals of multi-UAV missions. It then dis-
cusses path planning for multiple UAVs, ensuring that their trajectories are coordinated effectively.
Coordination is a key aspect of the proposed distributed Nonlinear Model Predictive Control (NMPC)
strategy, where the implemented passing priority allocation on the control level ensures successful
collision avoidance. The mathematical formulation of this approach is presented, followed by simula-
tion results that demonstrate its effectiveness and robustness in avoiding collisions while maintaining
mission objectives.

Chapter 6: Application to mapping of an agricultural field. This chapter presents the practi-
cal application of the previously discussed energy-aware path planning optimization strategy to the
real-world scenario of mapping an agricultural field. In order to match the needs of the experimental
scenarios, the mathematical formulation developed in Chapter 3 is extended to include the choice of
multiple base station locations directly at the optimization level. It then details an experimental study
focused on a quadrotor conducting an energy-aware mapping mission, where efficient use of energy
is critical. The results from field tests conducted at two sites are presented, showcasing the success-
ful implementation of the proposed battery management optimization strategy in real agricultural
environments.

Chapter 7: Conclusion and perspectives. This chapter concludes the thesis with final remarks
and outlines several potential directions for future research.

Appendix A: Small-scale example solution for the battery management optimization. The
first appendix illustrates a small-scale example case to showcase the impact of changing the path
configuration on the optimization results for the battery management strategy.

Appendix B: Evaluating the impact of priority allocation in NMPC for collision avoidance.

The second appendix demonstrates the benefits of implementing priority allocation when handling
collision avoidance in a multi-UAV system.

Appendix C: Comparative study of NMPC strategies for prioritized trajectory tracking with

collision avoidance inmappingmissions. The third appendix presents a comparative study of three
different collision avoidance strategies implementing NMPC.
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Chapter 2

Modeling

2.1 UAV classification

Despite numerous possible classifications that exist for the categorization of the UAVs, the most sig-
nificant criteria for their agricultural applications are wing type and autonomy level [7], as shown in
Figure 2.1.

Figure 2.1: High-level classification of the UAVs.
One of the important criteria for agricultural UAVs classification is the autonomy level that impacts

ease of operability, and can categorized into:
• Teleoperated vehicles. Teleoperated UAVs obtain references for each actuator from the pilot,
such that the control resembles the one with an onboard pilot.

• Telecommanded vehicles. Telecommanded aircraft relies on an automatic controller onboard to
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maintain a stable flight. The vehicle trajectory, as well as the velocity and orientation commands
are, on the other hand, defined by the ground operator.

• Autonomous vehicles. Autonomous UAV corresponds to the highest level of autonomy as it is
able to perform a flight planwithout the human intervention. The flight plan includes an ordered
list of waypoints in form of four coordinates, relying on the GPS system on board the UAV. Pro-
vided coordinates that define the 3D environment are: longitude, latitude, altitude and heading
angle (typically the deviation with respect to the North). Nonetheless, take-off and landing have
not yet been fully autonomous in practice, due to number of requirements to establish safety,
e.g. cleared accessible area, and therefore require assistance of the operator.

Furthermore, two main groups of UAVs that can be identified based on their wing type are fixed-
wing (Figure 2.2a) and rotary-wing UAVs (Figure 2.2b). Their characteristics and differences are largely
affected by aerodynamic principles.

(a) (b)
Figure 2.2: Wing-type classification of the UAVs: (a) Fixed-wing UAV; (b) Rotary-wing UAV (right-handside).

Fixed-wing aircrafts, including airplanes, create airflow, hence the lift force, by shifting the aerody-
namic surfaces (wings and ailerons) at high velocities. Therefore, they require flying at high altitudes
to ensure a safe flight.

On the other hand, rotary-wing UAVs include helicopters and multi-rotors, that generate thrust in
their rotors to create airflow for lifting the UAV. Because of their ability to perform hovering as well as
vertical climb and descend, they are suitable for aerial photography or mapping as the capturing time
can be increased to compensate for possibly poor weather and light conditions. Additionally, they
can operate at low velocities which can minimize flight risks. Moreover, increased maneuverability
is enabled by rotors performing the immediate rotations on the vertical axis. Multi-rotor UAVs are
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further classified and named based on the number of rotors they have. A quadrotor or quadcopter
has four rotors, the hexacopter has six rotors, whereas the octocopter has eight rotors.

In terms of payload capacity, as well as the flying range and endurance, fixed-wing UAVs exhibit
higher capabilities. Nevertheless, multirotors, due to their high level of maneuverability, stability and
ease of operation, have been predominantly used for civil applications, including agriculture, with the
most common implementation of the quadrotors [34, 92].

Because of their above-mentioned suitability for application inmapping an agricultural field, quadro-
tors are considered the adequate UAV type hereafter. Therefore, UAV modeling will be focused solely
on quadrotors.

2.2 Quadrotor mathematical model

A quadrotor or quadcopter is a type of unmanned aerial vehicle (UAV) that features two pairs of
counter-rotating rotors and propellers positioned at the corners of a square frame, as illustrated in
Figure 2.3. Similarly to a helicopter, it can execute vertical take-off and landing (VTOL), as well as hold
a constant position while hovering.

Figure 2.3: Quadrotor model with two pairs of counter-rotating rotors.
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2.2.1 Kinematics

Figure 2.4: Reference frames for describing the quadrotor motions: Inertial and Body frame.

Figure 2.5: Euler angles, corresponding to rotations: roll ϕ, pitch θ and yaw ψ.

Kinematic model of a quadrotor describes the motion, i.e. changes in position and velocity in space
over time. Defining the coordinate system is the first step in defining the relations in space. Two right-
hand reference frames for describing motion of a quadrotor, shown in Figure 2.4, are the following:

• Inertial frame I: earth-fixed coordinate system; defined with axes xI , yI , zI , with zI normally
pointing upwards.
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• Body frame B: coordinate system attached to the quadrotor with axes xB, yB, zB. Center of the
mass of the quadrotor corresponds to the origin of the body fixed frame.

Position vector ξ contains linear position vector xI = [x y z]T and orientation ηI = [ϕ θ ψ]T ,
both indicated with respect to inertial frame, as in (2.1).

ξ = [ xI ηI ]T = [ x y z ϕ θ ψ ]T (2.1)
Linear velocity vB = [u v w]T and angular velocityωB = [p q r]T are expressed in the body frame,

and contained in the vector ν, as in (2.2).
ν = [ vB ωB ]T = [ u v w p q r ]T (2.2)

Attitude of a UAV is described by Euler angles, corresponding to its orientation, which consists of
three successive rotations, given in equations (2.3)-(2.5) and illustrated in Figure 2.5:

• Rotation Rψ around the z-axis, called yaw or heading:

Rψ =


cos ψ −sin ψ 0

sin ψ cos ψ 0

0 0 1

 , (2.3)

• Rotation Rθ around the y-axis, called pitch:

Rθ =


cos θ 0 sin θ

0 1 0

−sin θ 0 cos θ

 , (2.4)

• Rotation Rϕ around the x-axis, called roll:

Rϕ =


1 0 0

0 cos ϕ −sin ϕ

0 sin ϕ cos ϕ

 . (2.5)

Once the reference frames are defined, the following transformation from one frame to the other
determines the relation between the two frames:
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ξ̇ = JΘν (2.6)
In (2.6), JΘ represents the transformation matrix (2.7), with R being complete rotation matrix (2.8),

T transfer matrix (2.9), and 03×3 as a 3× 3 zero matrix.

JΘ =

 R 03×3

03×3 T

 (2.7)

R = RψRθRϕ =


cosθcosψ sinϕsinθcosψ − cosϕsinψ cosϕsinθcosψ + sinϕsinψ

cosθsinψ sinϕsinθsinψ + cosϕcosψ cosϕsinθsinψ − sinϕcosψ

−sinθ sinϕcosθ cosϕcosθ

 (2.8)

T =


1 sin ϕ tan θ cos ϕ tan θ

0 cos ϕ −sin ϕ

0 sin ϕ /cos θ cos ϕ /cos θ

 (2.9)

Finally, the kinematicmodel of the quadrotor transformed into the inertial frame is given as in [93]:


ẋ = w[s(ϕ)s(ψ) + c(ϕ)c(ψ)s(θ)]− v[c(ϕ)s(ψ)− c(ψ)s(ϕ)s(θ)] + u[c(ψ)c(θ)]

ẏ = v[c(ϕ)c(ψ) + s(ϕ)s(ψ)s(θ)]− w[c(ψ)s(ϕ)− c(ϕ)s(ψ)s(θ)] + u[c(θ)s(ψ)]

ż = w[c(ϕ)c(θ)]− u[s(θ)] + v[c(θ)s(ϕ)]

ϕ̇ = p+ r[c(ϕ)t(θ)] + q[s(ϕ)t(θ)]

θ̇ = q[c(ϕ)]− r[s(ϕ)]

ψ̇ = r c(ϕ)c(θ) + q s(ϕ)c(θ)

, (2.10)

where s denotes the sine, c the cosine, and t the tangent.

2.2.2 Rigid body dynamics

Assuming a quadrotor to be a rigid body, its dynamics need to factor in the effect of forces and torques
acting on the vehicle.

Quadrotor models developed in this section do not include the effect of the disturbances and are
thus considered nominal.

Following the Newton-Euler formalism, the dynamics of a rigid body under external forces applied
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to the center of mass and expressed in the body fixed frame are defined as [94]:
mI3×3 0

0 I


 v̇B
ω̇B

+

ωB ×mvB

ωB × IωB

 =

F
τ

 , (2.11)

where m is the quadrotor mass, τ and F the rotor resulting torque and forces, respectively. I ∈
R3×3 is inertia matrix:

I =


Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Ixz −Iyz Izz

 (2.12)

As the quadrotor is essentially symmetric about all three axes, therefore it is assumed that Ixy =

Ixz = Iyz = 0, which implies:

I =


Ix 0 0

0 Iy 0

0 0 Iz

 (2.13)

Following from (2.11), the first-level nonlinear dynamics of a quadrotor is given by equations (2.14-
2.15):

FB = mv̇B = ωB × (mvB), (2.14)

τB = Iω̇B + ωB × (IωB), (2.15)

with the inertial matrix I considered diagonal because of the symmetry of the vehicle. Vectors FB

and τB constitute total forces and moments applied from each of the four rotors. The total angular
moment of the rotors is assumed to be near zero, as the moments from the counter-rotating rotor
pairs cancel when the yaw is held steady [95].

Torques generatedby individual rotorsΩ = [Ω1 Ω2 Ω3 Ω4]
T enable control inputsU = [U1 U2 U3 U4]

T ,
being thrust, roll, pitch and yaw, respectively, according to relations in the equations (2.16).
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U1 = b (Ω2
1 +Ω2

2 +Ω2
3 +Ω2

4)

U2 = bl (Ω2
4 − Ω2

2)

U3 = bl (Ω2
3 − Ω2

1)

U4 = d Ω

(2.16)

In 2.16, b depicts the thrust coefficient, d drag coefficient, and l distance between the center of
the quadrotor and the center of the rotor. Furthermore, the overall residual rotor angular speed Ω,
considered in the gyroscopic torque as the quadrotor rolls or pitches is defined as:

Ω = Ω2
2 +Ω2

4 − Ω2
1 − Ω2

3 (2.17)
The full dynamics of a quadrotor in the inertial frame, considering its rotations, is modeled as in

[96]: 

ẍ = (cosϕ sinθ cosψ + sinϕ sinψ) 1
m U1

ÿ = (cosϕ sinθ sinψ + sinϕ cosψ) 1
m U1

z̈ = −g + (cosϕ cosθ) 1
m U1

ϕ̈ = θ̇ψ̇
(
Iy−Iz
Ix

)
− Jr

Ix
θ̇Ω+ l

Ix
U2

θ̈ = θ̇ψ̇
(
Iz−Ix
Iy

)
− Jr

Iy
ϕ̇Ω+ l

Iy
U3

ψ̈ = ϕ̇θ̇
(
Ix−Iy
Iz

)
+ 1

Iz
U4

, (2.18)

with Ix,y,z being body inertia and Jr rotor inertia. Accelerations in 3 axes ẍ, ÿ and z̈ are modeled
with Euler transformation and are influenced by thrust, denoted as U1. Additionally, vertical acceler-
ation z̈ needs to overcome the effects of gravitational acceleration g. Desired roll, pitch and yaw are
reached by generating appropriate combination of rotor torques, as in relations U ↔ Ω in (2.16).

2.3 Energy consumption modeling

In order to efficiently plan an energy-aware mission for the UAVs, its performance evaluation needs
to consider energy consumption. When it comes to UAVs, there are two possible approaches for
energy consumption monitoring and prediction: based on the model of battery discharge, or power
consumption linked with the aerodynamic principles.
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2.3.1 Battery discharge model

Lithium-ion (Li-ion) batteries are themost commonly used rechargeable energy storage for autonomous
vehicles, including UAVs [97]:

• Li-ion batteries hold a high energy density due to their electrodes made of lightweight lithium
and carbon, in comparison to other chemical composition, such as lead-acid, NiCd (nickel-cadmium)
or NiMH (nickel-metal hydride).

• Their low self-discharge rate leads to holding the charge for a longer time.
• Because of their long life cycle, the Li-ion batteries can endure hundreds of charge and discharge
cycles without significant degradation in capacity.

The total available flight time available for a battery is reduced with the aging of the battery due
to, for example, high-rate cycles, overcharge, overdischarge, etc. In order to precisely estimate the
remaining battery capacity, it is necessary to know current battery conditions that can be represented
by different indicators, such as state-of-charge (SoC). SoC of a battery or a single cell is a proportion
of the charge available at a given time instant t. It is expressed as a percentage of the total charge of
a fully charged battery. Because of its ease of implementation, the most commonly used method for
calculating SoC is the Coulomb-counting [98]:

SoC(t) = SoC(t0)−
1

3600CT

∫ t

t0

Ibatt(t)dt, (2.19)
where t0, represents the initial time in seconds [s], and CT nominal capacity of the battery in

Ampere-hours [Ah] converted into seconds.

Figure 2.6: Electric circuit representation of a battery.
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In the mathematical model representing the dynamical behaviour of battery types in use for the
UAVs, such as Li-Ion, Li-Po or NiMh, the total voltage battery Vbatt is a difference between the open
voltage circuit VOC(SoC) and two voltage drops (Figure 2.6): voltage drop due to the internal battery
resistance VRint and dynamic response of the voltage Vd. Equations (2.20-2.23) illustrate the battery
mathematical model:

Vbatt(t) = VOC(SoC(t))− VRint(t)− Vd(t), (2.20)

V̇SoC(t) = −
Ibatt(t)

CT
, (2.21)

V̇d(t) = −
1

RdCd
Vd(t) +

Ibatt(t)

Cd
, (2.22)

VRint
(t) = Rint Ibatt(t), (2.23)

where VSoC represents the state-of-the charge voltage,Rint internal resistance of the battery, and
parameters Rd and Cd are associated with the voltage dynamic response.

Evaluating and predicting the battery capacity is imperative for successful UAVmission completion.
Accurate and precise measurement of the state-of-charge of the battery can be, therefore, helpful to
support mission planning.

2.3.2 Aerodynamics-based energy consumption

According to [98], the largest part of the power consumed by a UAV, i.e. around of 85%, is used by the
propulsion system to generate sufficient thrust for take-off, horizontal flight, hovering and landing.
The remaining power is consumed by various sensors (GPS, accelerometers, compass, gyroscope),
computer on board and payload, including cameras.

Total energy consumed by a UAV is intended to counteract the effects of gravity and drag forces
due to forward motions and wind. The speed of each of the rotors of a multi-rotor (here: a quadrotor)
is adjusted to achieve the necessary thrust to hover or move at the desired velocity. Mathematical
model of the UAV energy consumption in this chapter is derived from [99]. The total required thrust
for a UAV is therefore defined as:

T = (mbody +mbatt +mload) g + Fdrag, (2.24)
where mbody , mbatt, and mload are the mass of the quadrotor body, battery, and payload, respec-

tively, if any. Gravity is denoted as g. For further study, no payload will be considered, and the quadro-
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tor body and battery will be joined as one component, total mass m. Drag force is denoted as Fdrag ,
and is estimated as:

Fdrag =
1

2
ρv2aCDA, (2.25)

with ρ as air density, va air speed, CD the drag coefficient, and A projected area perpendicular to
direction of the airspeed va.

In general, the minimum power needed for a steady-state hovering of a multi-rotor with n rotors
ofD diameter, without considering wind velocity, is given by:

Pmin,hov =
T 3/2√
1
2πnD

2ρ
, (2.26)

On the other hand, when the UAV is flying at a certain velocity, as well as considering wind effects
on the vehicle velocity, the minimum power for a horizontal flight is derived from the conservation of
momentum. For small angles of attack σ, the following equation for minimum required power holds:

Pmin = T (va sinσ + vi) (2.27)
Induced velocity vi required for a given thrust is found by solving the implicit equation below:

vi =
2T

πnD2ρ
√
(va cosσ)2 + (va sinσ + vi)2

. (2.28)
Finally, a full nonlinear model of the power consumption during a quadrotor flight, considering

aerodynamic aspects of a UAV flight, including induced, profile and parasite power, is obtained from
[100]. The equations (2.29-2.31) represent power required for different phases of the flight, namely:
Pvert for vertical take-off/landing, Phor horizontal cruise and hovering Phov.

• Power required for vertical take-off and landing:

Pvert(m, vvert) = k1mg

[
vvert
2

+

√
(
vvert
2

)2 +
mg

k22

]
+ c2(mg)

3/2, (2.29)

• Power required for horizontal cruise:

Phor(m, va) = (c1 + c2)[(mg − c5(va cosσ)2)2 + (c4v
2
a)

2]3/4 + c4v
3
a, (2.30)

• Power required for hovering:
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Phov(m) = (c1 + c2)(mg)
3/2. (2.31)

In the equations above, parameters k1, k2, c1, c2, c4, c5 are to be identified experimentally. From
(2.30), it can be deduced that, for low values of the angle of attack, the power required for the hori-
zontal flight is constant as the vehicle airspeed is also kept constant.

2.4 Considered quadrotor model

2.4.1 Dynamic model

For designing a suitable model-based control strategy for trajectory tracking later in the thesis, a non-
linear dynamic model of a quadrotor needs to map reliable quadrotor dynamics and, at the same
time, provides a needed level of simplicity from the computational complexity perspective.

The nonlinear model of a quadrotor with 6 DOF is a simplification of the model in (2.18) and is
described by the set of equations, similar to [101]:

ṗ(t) = v(t), (2.32)

v̇(t) = R


0

0

αT

+


0

0

−g

−

Ax 0 0

0 Ay 0

0 0 Az

 v(t) +

dx

dy

dz

 , (2.33)

ϕ̇(t) = (Kϕϕref (t)− ϕ(t))/τϕ, (2.34)

θ̇(t) = (Kθθref (t)− θ(t))/τθ, (2.35)
with rotation matrix R ∈ SO(3), representing the orientation of the body-fixed reference frame

with respect to the inertial reference frame (eq. (2.8)). Position is definedwith the vector p = [px, py, pz]
⊤

and velocity with v = [vx, vy, vz]
⊤, both in the yaw-compensated inertial reference frame with a de-

fined origin. Accordingly, the yaw angle, ψ, is regulated to zero with an inner-loop P-controller as in
[101], and therefore not considered in the model for the trajectory tracking control. The full control
scheme will be detailed in Chapter 4.
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The attitude is denoted with ϕ, representing the roll angle, and θ pitch angle of the UAV in the
inertial coordinate system. Yaw angle, ψ, is set to zero in the model equations, as previously men-
tioned. Vector d = [dx, dy, dz]

⊤ representing the external disturbances, such as wind acting on a UAV
as torque, is added to the quadrotor system. Thruster efficiency α defines the model uncertainty pa-
rameter. It is equal to 1 in the nominal case, greater than one in case of underestimating real thruster
efficiency, and less than 1 for its overestimation. Other parameters represent gravity, g, linear dump-
ing terms, Ax, Ay, Az , along each axis respectively, time constants, τϕ, τθ , as well as the inner-loop
gains for the attitude control, Kϕ,Kθ. Control input vector, u = [T, ϕref , θref ]

⊤, consists of the total
thrust T , reference roll ϕref , and reference pitch θref angles.

2.4.2 Energy consumption model

For the purpose of mapping an agricultural field, the mission plan needs to consider the energy con-
sumption model of a UAV battery in order to prevent undesirable battery issues and ensure mission
success.

With the aim of obtaining high-quality aerial images, the UAV velocity is supposed to be held con-
stant. As the objective of the mapping mission planning is to cover a certain area of interest, the
horizontal flight segments will be considered in this phase.

Following Eq. (2.30), it can be concluded that, for constant mass and parameter values, as well as
the small angles of attack σ, assumed to be constant, the power consumption of the horizontal flight
depends solely on the quadrotor velocity in a nonlinear manner. Furthermore, if the velocity remains
constant at a value v = vc, the power consumption during the horizontal flight for performing the
mapping task, Pmap = Phor , is also constant over time, as shown in:

Pmap(m, vc) = (c1 + c2)[(mg − c5(vc cosσ)2)2 + (c4v
2
c )

2]3/4 + c4v
3
c . (2.36)

Based on the relationship:

Pmap =
Emap
tmap

, (2.37)
for the constant values of power consumption for mapping Pmap, and energy Emap, it can be as-

sumed that the battery consumption is represented by the time elapsed during themapping task tmap.
This assumption will be used in energy-aware mapping mission planning presented in Chapter 3.
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2.5 Conclusion

Mathematical modeling of a UAV is essential for its accurate representation. Depending on the imple-
mentation and type of the UAV, different aspects need to be considered. For this thesis, the quadrotor
model will be considered for further study. In order to develop an adequate control system, quadrotor
dynamics needs to be modeled with sufficient accuracy, but also simplifications made with valid as-
sumptions, with the aim of ensuring robustness. Furthermore, estimation of the power consumption
is crucial for ensuringmission completion and safety, as well as to plan the optimal energy-awaremis-
sion. Eventually, to ensure the successful implementation of the designed concepts, they first need to
be validated on an accurate model.
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Chapter 3

Energy-aware path planning for a

UAV mapping mission

3.1 Introduction

When it comes to planning a mapping mission performed by a UAV equipped with a camera, numer-
ous aspects need to be considered in order to accomplish a given mission successfully. Besides the
time efficiency, in planning an optimal mission, it is necessary to consider an energy-aware mission
[9], namely due to major constraints linked to the limited battery capacity. Given large surfaces that
need to be visited in order to map an entire agricultural field with limited resources, in terms of the
number of available UAVs and batteries, themission needs to be planned beforehand to guarantee its
completion [26]. From the logistics perspective, it is essential to plan themission accurately in advance
so that it can be executed within the scheduled timeline without the need for importantmodifications.
This also involves preparing all the necessary equipment, including batteries.

An energy-aware mission for UAVs implies completing the assigned task with the least possible
energy consumption. Moreover, it is a mission planning approach that prioritizes the efficient use of
energy resources to maximize flight time, achieve mission objectives effectively, and ensure safe re-
turn or landing. It involves integrating strategies and technologies thatmonitor, manage, and optimize
energy consumption throughout themission. Lowering the energy consumption consequently results
in direct cost cuts, as well as preventing battery wear by reducing unnecessary recharging cycles.

There are two components of an energy-aware mission planning for the UAVs:
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• Battery Management: It implies monitoring, prediction, and optimization of the battery dis-
charge. Monitoring is a preliminary step that includes keeping continuous track of battery health,
charge levels, and discharge rates. Prediction is crucial as it assumes estimating remaining flight
time based on current consumption rates and mission requirements. Finally, improvements to
themission plan can bemadewith the optimization approach in terms of implementing efficient
battery use practices. To address the energy constraints of a single UAV, it is essential to solve
the task allocation problem by considering accurate battery parameters. Battery management
considers subpaths as tasks that need to be allocated to multiple available batteries to ensure
complete area coverage.

• Path planning: Optimal path calculation is a critical component of an energy-aware mission,
aiming to determine the most energy-efficient route for a UAV to follow. This involves minimiz-
ing energy consumption while meeting the mission objectives, such as reaching defined way-
points, avoiding obstacles, or covering a designated area. An advanced step in path planning
would consider adaptive navigation, i.e., adjusting the initially planned path in real-time based
on dynamic conditions to conserve energy.

Due to the limited energy capacity of UAV batteries, it is crucial to schedule battery replacements in
a manner that ensures the entire agricultural field is comprehensively covered. The battery capacities
available for any given mission can vary significantly from one battery to another, as well as based
on the specific conditions under which the mapping is conducted. Therefore, even when dealing with
the samemapping field configuration, it is essential to plan battery replacements andwaypoint alloca-
tions for eachmission individually, using themost up-to-date information about the battery capacities.
Variation in battery capacities arises from the use of diverse batteries, possibly from variousmanufac-
turers or with different usage histories, which can have varied capacities impacting their performance
and endurance. The actual capacity and performance of batteries can also be influenced by specific
conditions encountered during the mission.

Hence, strategic scheduling of battery replacements involves planning the timing and location of
replacements to minimize disruptions and ensure continuous coverage of an agricultural field. Effi-
ciency can be enhanced by reducing the frequency and duration of battery replacements, which con-
tributes to the overall effectiveness of the mission. Waypoint allocation should be based on real-time
data on battery levels to ensure efficient coverage without unnecessary detours. In addition, opti-
mizing battery usage involves matching battery capacity with the mission-specific requirements, by
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selecting batteries that are adequately charged and have the necessary capacity. This approach helps
avoidmid-mission battery depletion. Energy-efficient flight paths should be designed tomaximize cov-
eragewhileminimizing energy consumption, avoiding redundant routes and unnecessarymaneuvers.
Reducing total flight time can be achieved byminimizing trips to the base station. Employing batteries
with sufficient capacity and reducing the need for replacements helps eliminate unnecessary trips,
thereby reducing overall flight time. Proximity to the recharging base station is also a crucial consid-
eration to reduce the distance UAVs need to travel for battery replacements, thus minimizing total
flight time.

Comprehensive battery assessment and route simulation during pre-mission planning are pre-
ceding steps to the practical implementation strategies. Conducting thorough checks of all batteries
to determine their capacities and performance metrics is crucial. Running simulations is necessary to
identify themost energy-efficient routes and optimal schedules for battery replacements, considering
various scenarios and conditions.

An optimized energy-aware mission for the implementation of UAVs in agricultural mapping has
multiple benefits. Efficient battery management and replacement scheduling can significantly extend
the operational time of both the UAV and batteries, allowing for a longer life cycle. Additionally, cost
savings can be achieved by reducing the number of battery replacements andminimizing unnecessary
travel, which conserves energy and reduces operational costs. Mission success likelihood is increased
as a UAV with sufficient energy can complete its tasks more reliably, improving data accuracy and cov-
erage. Finally, optimized energy usage reduces the environmental footprint of the mapping mission
by minimizing energy waste and enhancing overall operational efficiency.

In this study, battery management follows after path planning is done for the entire agricultural
field, in order to address both aspects of energy-aware mission planning. The objective is to ensure
a mapping mission that is completed with minimum resources used regarding energy and time. Fur-
thermore, mission safety is imperative. Thus, the mission has to be planned such that the risk level
is reduced during the entire flight of a UAV. Risks include any obstruction to the mission completion,
such as insufficient battery level, UAV crash, etc.

The flowchart in Figure 3.1 structures the mission planning steps for an energy-aware mapping
mission. The first phase contains two-step path planning, where area decomposition is followed by
path configuration definition. Once the area is decomposed into ordered waypoints, task allocation
is done based on the battery management principles. The energy consumption and mission time are
minimized by determining the optimal battery replacement schedule, as well as a choice of the base
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Figure 3.1: Energy-aware mapping mission planning flowchart

location to ensure smooth mission execution without unnecessary losses in terms of time and en-
ergy. Nonetheless, such choice of the base location and replacement schedule impacts the increased
mission safety.

3.2 Path planning for a mapping mission

The first part of mission planning considers path planning, where the entire field is transformed into a
single path, without considering battery limitations. This includes two steps: area decomposition and
path configuration. Area decomposition has the objective to define waypoints that need to be visited
to obtain a full and accurate map of the field. Once the area is decomposed into cells and waypoints
are appointed as centers of the cell, path configuration is chosen such that the waypoints are linked
in an optimal way, and the resulting path indicates a reference trajectory for the UAV flight.

Once the path planning has generated a single path that covers the complete field area, battery
management will be used for task allocation to multiple batteries and/or UAVs, taking into account
energy constraints.
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3.2.1 Area decomposition

The first step in themappingmission planning is to build a graph that represents the agricultural field,
i.e. area of interest. This can be done by decomposing the field area into cells, which results in a full
map of the area.

The area of interest is represented by a polygon with a sequence of p vertices {c1, ..., cp} and p
edges {e1, ..., ep}. Each vertex is described by three coordinates in 3D space (cx(i), cy(i), cz(i)). An
edge links two adjacent vertices, and its length can be expressed as ∥ci − ci+1∥. The polygon can be
of a convex or nonconvex (concave) shape, as in Figure 3.2.

(a) Rectangular polygon area (b) Convex polygon area (c) Concave polygon area
Figure 3.2: Convex and nonconvex polygon field area examples.

When decomposing an area of interest into cells for mapping purposes, it is necessary to consider
UAV and camera characteristics, such as camera footprint, in order to ensure the required overlapping
of snapshots taken at each waypoint. This is done namely by determining the flight altitude, as well
as the number of waypoints and distance between each of them. Each waypoint is a node in a graph
that represents the center of a cell and is linked with another one with a straight segment line. In
addition to the waypoints denoting the points of interest for mapping, there is an additional node
that designates the recharging base, and it acts as a departing and returning point for a UAV flight.

3.2.2 Flight path configuration

The graph, composed of all the waypoints covering the field, is created by linking the adjacent way-
points in a predetermined order based on the chosen path configuration, as well as constructing a
two-way link between each waypoint node and the recharging base node. Figure 3.3 illustrates a por-
tion of the graph with nodes representing ordered waypoints, where each waypoint k is linked to
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waypoint k+1 with a segment line k. Moreover, every waypoint k is connected to the base node with
line segments uk and vk, representing departing and returning segments, respectively.

Figure 3.3: Graph composition: nodes k and k + 1 linked with the segment line k and; segments
uk, uk+1 as departing and segments vk, vk+1 as returning segments.

Path configuration defines the arrangement of the waypoints and results in an ordered list of co-
ordinates, denoting the sequence of points that a UAV needs to visit. The order of the waypoints can
affect the overall performance of themappingmission. For example, differently defined edges or links
on the graph directly impact the path length, hence, the energy consumption andmission completion
guarantee. As stated in [2], the total energy consumed during a UAV flight largely depends on the
turning maneuvers in the path. Therefore, energy-aware missions are planned such that the number
of turns is minimized.

Also, the order of the waypoints outlines the temporal sequence of taking the snapshots, resulting
in a certain level of uniformity and accuracy once all the images are consolidated into a map. Thus,
the choice of an appropriate path configuration represents a pre-requirement to ensure the optimal
mapping mission.

Once the area decomposition is done and the full area of interest is divided into waypoints, the
waypoint ordering needs to be done in a way that provides the optimal flight path configuration.
Optimal flight configuration ensures the minimum total flight distance resulting in minimum flight
time and, consequently, minimum energy consumed. As introduced in the Chapter 1, most commonly
implemented path configurations, or sweep directions, for agricultural mapping purposes are back-
and-forth and circular flight patterns.

On a simplified rectangular example of field area 4m x 5m, Figure 3.4 illustrates four possible
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(a) Back-and-forth along the longest side (b) Back-and-forth along the shortest side

(c) Back-and-forth along the diagonal (d) Circular configuration
Figure 3.4: Flight path configuration possibilities for a rectangular field area 4m x 5m.

configurations for the sweep direction of a mapping mission: back-and-forth movements along the
longest side 3.4a, along the shortest side 3.4b, diagonal back-and-forth path 3.4c and circular path
3.4d. These configurations are evaluated in Table 3.1 in terms of total path distance and number of
turns. It can be concluded that only the diagonal configuration differs in total path length that exceeds
the other three possibilities. Regarding the number of turns, the back-and-forth direction along the
longest side results in the minimum number of needed turning maneuvers. As these are the indica-
tors of relative energy consumption, the optimal choice to reduce battery consumption in this case
seems to be the back-and-forth path configuration along the longest field size. Additionally, this pat-
tern facilitates a later image fusion, as the snapshots are taken in a sequence that follows the logical
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order of map building.

Table 3.1: Resulting indicators for different path configurations of a rectangular field area 4m x 5m.
Total flight path length Total number of turns

Back-and-forth along the
longest side (Fig. 3.4a) 29m 8

Back-and-forth along the
shortest side (Fig. 3.4b) 29m 10

Back-and-forth along the
diagonal (Fig. 3.4c) 37.28m 16

Circular configuration
(Fig. 3.4d) 29m 9

It is important to emphasize that the area decomposition and flight path configuration did not
take into account preliminary battery limitations and can, therefore, be considered as optimal only if
performed in a single flight. Often, there is only one UAV available to perform a given mission, and
therefore, battery replacements or recharge need to be done along the mission. In order to respect
the energy limitations of a single UAV, it is necessary to tackle the task allocation problem as a next
step by allocating subpaths to individual batteries to complete area coverage. Battery management
can facilitate proper task allocation with the objective of minimizing unexpected interruptions and
increasing mission efficiency.

3.3 Battery management optimization for task allocation

In this work, the path planning phase, including area decomposition and flight path configuration,
will not be further explored, as we will consider that the trajectory that links the waypoints is known
and given beforehand. In order to complete the energy-aware mission planning as in the flowchart in
Figure 3.1, once the path configuration and waypoint order are given, complete field coverage needs
to be ensured by following an adequatemanagement approach that considers the battery limitations.
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3.3.1 Problem statement

As a preliminary step, the field area is decomposed into cells, resulting in a full area map, by consid-
ering the camera characteristics to define the flight altitude. Each cell has a centering waypoint that
is connected to the next one with a straight segment line in a preordered sequence. The ordered
sequence of the waypoints is defined by flight path configuration, such that the space coverage is
performed with back-and-forth movements along the segment lines, as in the square field example
in Figure 3.5.

The back-and-forth configuration of the mapping trajectory ensures reliable resulting images for
photogrammetry purposes. In order to get a sufficient level of overlapping for image fusion and later
image processing, back-and-forth movements provide the optimal results. Based on the required
image resolution, camera characteristics, etc., it is a straightforward process to obtain such a UAV
mapping trajectory, as the UAV moves along only one axis at once. That way, the obtained images
are shifted along a single axis. The shift along the second axis is easily determined by knowing the
distance between the mapping rows.

Figure 3.5: Example square field area coverage with back-and-forth movements.

Because of the limited energy capacity of a single battery on board the UAV, task allocation needs
to consider battery replacements along the predefined path such that the whole agricultural field is
covered. This planning phase includes segmenting the flight path into subpaths and allocating them
according to available battery capacities. To enable an energy-aware mission, the subpath allocation
needs to be performed in accordance with the appropriate battery management guidance that mini-
mizes the energy consumed during the entire mission flight.

Battery management implies estimating accurate energy capacity for batteries available for the
mission and optimizing their employment. Because capacities vary from one battery to another, bat-
tery replacements and waypoint allocation must be planned for each mission individually based on
the latest battery capacity information. The objective of battery management is to select batteries for
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the mission and schedule their replacement in an optimal manner to minimize the total flight time.
Using only batteries with sufficient capacities and minimizing the number of replacements reduces
the total flight time by eliminating unnecessary trips to the base station. This approach ensures that
the UAV can cover more area per battery cycle, thereby enhancing the efficiency of the mission.

Moreover, selecting initial and final waypoints closer to the base further decreases the total flight
distance and, consequently, the total flight time. Strategically positioning the waypoints near the base
station not only saves energy but also allows for quicker battery replacements and less downtime.
This is particularly important in large mapping areas where frequent returns to the base station could
significantly increase the mission duration. By optimizing the battery usage and waypoint placement,
the UAV can achieve maximum coverage with minimal interruptions, thus improving overall mission
efficiency. Efficiently planned and executed energy-aware mapping mission minimizes both energy
consumption and time. As the mission execution time is crucial for obtaining uniform images of the
field, shorter mapping missions provide better final results for image fusion into a single map.

Another element of obtaining the optimal mission plan is to evaluate the recharging base station
location choice. There are certain criteria that need to be examined before considering the candi-
date locations. First and foremost, position of the base needs to allow the operator easy access and
sufficient space for equipment, as well as for the battery replacement task. Furthermore, terrain suit-
able for take-off and landing should be relatively flat, without significant incline, and without obstacles
around the base. Thus, candidate base locations are commonly chosen at the extremities of the map-
ping area, as in the example in Figure 3.6. Finally, the best base location is chosen among the proposed
potential locations, such that the above-mentioned criteria is satisfied and the total flight distance is
minimized.

Figure 3.6: Example of the 8 candidate potential base locations at the extremities of a square field.
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An additional important aspect of mission planning is flight safety. As take-offs and landings
demonstrate the highest risk in the UAV flight, reducing their recurrence consequently increases mis-
sion safety. From the battery management perspective of the battery replacement scheduling, this
can be done by lowering the number of batteries employed in a mapping mission.

In summary, battery management needs to ensure both an energy-aware mission as well as mis-
sion safety. Both aspects can be addressed by minimizing the number of battery replacements em-
ployed, which results fromminimizing the totalmission duration. Thus, the optimization strategymust
define the subpath allocation, i.e., the battery replacement schedule and choice of the base location.

3.3.2 Optimization strategy

The battery management strategy proposed in this chapter aims to optimize the use of the available
batteries for a given mapping mission. This is done by decomposing the mapping area into subpaths
and allocating the associated waypoints to appropriate batteries simultaneously in a way that only
the necessary number of eligible batteries is employed to complete the mission. This is done by min-
imizing the total flight distance, which includes mapping subpaths, as well as flights from and to the
base station. Thus, unnecessary replacements are eliminated, along with flight time spent without
performing the mapping task, which also improves mission safety since the take-off and landing rep-
resent high-risk parts of the flight plan.

3.3.2.1 Notation

The coverage problem is modeled as a graph with nodes representing the waypoints, i.e., points of
interest that need to be visited by a UAV, and the segment lines as the edges of a graph, linking each
waypoint to the adjacent one and the base. Waypoints are preordered to form the back-and-forth
movement, and there is only one possible link between two successive waypoints.

Figure 3.7 illustrates the graph and introduces the notation that will be used to formulate the
battery allocation problemmathematically. The binary variable x is defined for each segment-battery
couple, which serves as a decision variable to determine whether a battery is employed to cover a
certain segment or not (1 if used, 0 otherwise). Similarly, each node, i.e. waypoint, has a possible
two-way link to the base location, where binary variables, denoted u and v, are introduced for each
couple node-battery. The variable u equals 1 in case the considered waypoint marks the starting node
of the subpath for the considered battery, while the variable v is set to 1 if the subpath ends with this
particular node. Otherwise, these variables equal 0.

63



Figure 3.7: Definition of the used notation: segment k linking two successive waypoints and a two-waylink to the base.
Table 3.2: Optimization parameters and decision variables

Optimization parameters
tj [sec] Available capacity of battery j ∈ J
vc [m/s] Constant velocity for mapping
vmax [m/s] Maximum velocity for flying from/to base
lk [m] Length of the segment k ∈ {1, . . . ,K}
lb,k [m] Distance between the base and each waypoint k ∈ {1, . . . ,K + 1}

Decision variables
xj,k Allocation of the segment k to the battery j
uj,k Allocating node k as the first waypoint of the subpath for the battery j
vj,k Allocating node k as the last waypoint of the subpath for the battery j

The optimization strategy is defined for the mapping of K + 1 waypoints joint by K segments,
performed with J eligible batteries. As previously mentioned, for each battery j ∈ J = {1, . . . , J},
the decision variable xj,k determines allocation of the battery j to the segment k ∈ {1, . . . ,K}, joining
waypoints k and k+1 (see Figure 3.7). Variables uj,k and vj,k represent the link of the node k from and
to the base, respectively, and determine whether the node k is the first or last waypoint of a subpath
allocated to the battery k. Similar logic is applied for the node k + 1.

An example of an allocated subpath for battery j is illustrated in Figure 3.8. The associated subpath
contains visitingN segments linking nodes in a preordered sequence from node #n to node #(n+N ),
where ujk = 0, ∀k ̸= n, while vjk = 0, ∀k ̸= n + N , and xjk = 0, ∀k < n,∀k ≥ n + N . Otherwise,
xjk, ujk, vjk = 1.

A structured list of parameters and decision variables for the considered battery management
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Figure 3.8: Example of a subpath with allocated waypoints k ∈ [n...n+N ] to battery j.
optimization problem is given in Table 3.2. Three types of binary decision variables are included in the
optimization problem, for all the combinations between each battery and each segment: xj,k ∈ {0, 1}
for allocation of the segment k ∈ {1, . . . ,K} to the battery j ∈ J, variable uj,k ∈ {0, 1} for determining
whether thewaypoint k ∈ {1, . . . ,K+1} indicates the beginning of the subpath allocated to thebattery
j ∈ J, and variable vj,k ∈ {0, 1} that indicates the end of the subpath allocated to the battery j ∈ J.
Finally, the decision variable vector to be optimized comprises binary variables x1..J,1..K , u1..J,1..K+1

and v1..J,1..K+1.
Battery capacity is defined as the duration available for the flight. Therefore, it is necessary to

assume that the UAV is flying at approximately constant speed during different phases of the mission
flight.
Assumption 1. Smooth trajectory. Planned trajectory pd : [0,∞) → R3 is assumed to be a sufficiently

smooth time-varying trajectory with its time-derivatives bounded.

Simplifications. In order to estimate energy consumption during the UAV flight, the following simpli-
fications are made regarding the UAV velocity during the mapping mission:

• UAV flies at a constant velocity vc when visiting segments k ∈ {1, . . . ,K} to perform themapping
task.

• Maximum velocity vmax is considered when UAV is flying from and to the base station for the
appointed segments uk, k ∈ {1, . . . ,K + 1} and vk, k ∈ {1, . . . ,K + 1}.

Assumption 1 implies that the trajectory is a priori planned such that the UAV is able to maintain
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a constant flying velocity during the entire flight. Thus, from the energy model equation (2.30), it can
be derived that the power consumption depends on the UAV airspeed, and can be assumed constant
when velocity is kept constant for sufficiently small angles of attack.

Implications stated above allow the conclusion that available battery capacity can be stated as
remaining time for the flight. Similarly, energy consumed during a flight is equivalent to the time
spent in the air and, therefore, results from the constant velocity and flight distance.

3.3.2.2 Integer linear programming (ILP) formulation

The battery management problem is to be formulated as an integer linear programming (ILP) opti-
mization problem with binary decision variables. The mathematical formulation is given by a set of
equations:

min
x,u,v

∑
j∈J

[ K∑
k=1

xj,klk +

K+1∑
k=1

(uj,klb,k + vj,klb,k)

]
(3.1)

subject to:

K∑
k=1

xj,klk
1

vc
+

K+1∑
k=1

(uj,klb,k + vj,klb,k)
1

vmax
≤ tj , ∀j ∈ J (3.2)

J∑
j=1

xj,k = 1, ∀k ∈ {1, . . . ,K} (3.3)

K+1∑
k=1

uj,k ≤ 1, ∀j ∈ J (3.4)

K+1∑
k=1

vj,k ≤ 1, ∀j ∈ J (3.5)

K+1∑
k=1

uj,k =

K+1∑
k=1

vj,k, ∀j ∈ J (3.6)

K+1∑
k=1

kvj,k −
K+1∑
k=1

kuj,k ≥
K+1∑
k=1

uj,k, ∀j ∈ J (3.7)

xj,k +

K+1∑
l=k+1

uj,l ≤ 1, ∀j ∈ J,∀k ∈ {1, . . . ,K} (3.8)
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xj,k +

k∑
l=1

vj,l ≤ 1, ∀j ∈ J,∀k ∈ {1, . . . ,K} (3.9)

K∑
k=1

xj,k =

K+1∑
k=1

kvj,k −
K+1∑
k=1

kuj,k, ∀j ∈ J (3.10)

xj,k ≤ uj,k + xj,k−1, ∀j ∈ J,∀k ∈ {2, . . . ,K} (3.11)
The objective of the proposed approach is to fragment the area of orderedwaypoints into subpaths

for each battery, ensuring that the required distances to the base are minimized and the battery ca-
pacity is sufficient for completing the assigned subpath flight (including departure and return to the
base). It is assumed that the combined capacity of all available batteries is sufficient to cover the entire
mapping area. This condition is to be verified beforehand.

The optimization problem has the objective of minimizing the cost function in (3.1), which repre-
sents the overall distance of the mission flight. It is stated as a sum of all segment distances, as well
as the distances from and to the base station for all the assigned batteries. For every battery j ∈ J, it
includes distances of its respective allocated segments, if decision variable xj,k = 1, distance from the
base to the first waypoint of the allocated subpath when uj,k = 1, and distance from the last waypoint
of the allocated subpath back to the base location when vj,k = 1.

The optimization problem is subject to constraints given in equations (3.2)-(3.11). Constraint (3.2)
ensures that the total flight time planned for each battery does not exceed its initial capacity in terms
of remaining flight time.

Constraint (3.3) states that each segment k should be allocated to exactly one battery, without
repeating or neglecting a segment.

Constraints (3.4)-(3.7) guarantee that no more than one subpath is allocated to each battery. Con-
straints (3.4) and (3.5) limit each battery to assigning amaximumof one subpath beginning and ending
waypoint, respectively, while (3.6) ensures the number of subpath beginnings and endings is equal for
each battery. On the other hand, constraint (3.7) ensures that the ending waypoint of the subpath can
only come after the starting waypoint. Thus, if a certain battery has an allocated subpath, this subpath
necessarily has to be assigned its beginning and ending waypoint.

Constraint (3.8) ensures that there are no segments allocated to a battery before allocation of the
first waypoint (uj,k), and, similarly, constraint (3.9) allows no segment allocation after the last way-
point (vj,k). Finally, constraints (3.10) and (3.11) ensure that the predefined order of the segments is
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respected when allocated in a subpath, and no gaps between two allocated pre-ordered segments
are allowed. That is, all the segments between the first and the last waypoint are allocated in a pre-
determined sequential order.

In order to determine the best base location for the respective mapping field, the above-defined
optimization problem needs to be run iteratively for all of the predetermined base location coordi-
nates, considering B possibilities. The best location is chosen as the one that results in the minimum
cost (Eq. (3.1)). Finally, subpaths are allocated to the eligible batteries in reference to the resulting deci-
sion variables xj,k, uj,k, vj,k. The iterative algorithm of the proposed formulation is given in Algorithm
1.
Algorithm 1 Battery management optimization
1: Initialize the ordered list of waypoints k ∈ {1, . . . ,K + 1}
2: Initialize the list of coordinates for possible base locations b ∈ {1, . . . , B}, with B number of loca-tions
3: Initialize the list of eligible battery capacities j ∈ {1, . . . , J}
4: Compute the segment length lk, ∀k ∈ {1, . . . ,K + 1}
5: Create an ordered list of segments k ∈ {1, . . . ,K}
6: for b← 1 to B do
7: Compute the base-to-segment lengths lb,k, ∀k ∈ {1, . . . ,K + 1}
8: Minimize the cost function (3.1) under constraints (3.2)-(3.11)
9: return optimal cost
10: if b ̸= 1, cost(b) ≤ cost(b− 1) then
11: Set b_optimal = b
12: else
13: Keep b_optimal
14: end if
15: end for
16: return b_optimal
17: return xj,k, ∀j ∈ J,∀k ∈ {1, . . . ,K}
18: return uj,k, vj,k, ∀j ∈ J,∀k ∈ {1, . . . ,K + 1}

The computational complexity of the given ILP optimization problem depends, namely, on the size
of the mapping area, i.e., on the number of waypoints, as well as the number of available batteries
with respect to their energy capacities.

3.4 Simulation results and discussion

The battery management optimization strategy formulated in the previous section is to be initially
validated through simulation results. Its performance can be evaluated by comparing it to an existing
state-of-the-art approach. The objective is to ensure a safe and efficient energy-aware mission, i.e., to
exhibit increased efficiency of the mission in terms of time, as well as reduced battery consumption
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and level of flight risk.
The small-scale example case results of the proposed batterymanagement approach representing

different configurations of the simplified area in Figure 3.4 are given in Appendix A. They illustrate the
impact of the choice of path configuration on the results of the battery replacement optimization.
From the small-scale example, it is seen that, under the assumption that the mapping velocity is kept
constant, even at the turning maneuvers, the total energy consumption is affected mostly by the total
distance between the segments, as well as the positioning of the base location.

However, a more realistic case example will be presented and analyzed in detail in this section.
Therefore, the proposed approach is tested on an agriculture area example that is suitable for map-
ping with a UAV due to its large size. The test case represents an area separated into an olive orchard
and a vineyard, which are to be mapped as a single agricultural field. A Google Maps image of the
example test area and its waypoint distribution for mapping are shown in Figure 3.9.

The simulation setup parameters are given in Table 3.3.

(a) Google maps view of the example field (b) Waypoint distribution for the example field
Figure 3.9: Google Maps view of the example mapping area with an olive orchard and a vineyard.

As a first step, the test case area is decomposed into cells with waypoints representing their cen-
ters, as shown in Figure 3.9b. In order to achieve a sufficient level of image quality and detail, the
waypoints are a priori spaced 8m apart, with exceptions near the edge due to the inconsistency in
dimensions after decomposition. Thus, the distance between each pair of waypoints is less or equal
to the defined value (here: lk ≤ 8m). Because the consideredmapping terrain is flat, the flying altitude
remains constant during the mission, and is set to 20m for visiting all the waypoints. The mission is

1NB: Defined spacing is attempted to be honored, with certain exceptions, namely near the edges, in order for the mappingcoverage consistency to be maintained.
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Table 3.3: Simulation setup for the example mapping field
Mapping area decomposition

Area dimensions (150x250)m

Waypoint spacing 1 8m

Number of waypoints 669

UAV mapping specifications
Mapping altitude 20m

Constant mapping velocity vc 4m/s

Maximum velocity vmax 12m/s

Eligible battery capacities tj [14, 11, 13, 9]min

considered to start after the initial take-off and end before the landing. Take-off and landing are to be
done manually by the operator and, therefore, are not accounted for during the mission time. Thus,
the altitude of the base location options is set to 1m, which marks the start and end of the flight.

Finally, the test case area consists of 669 waypoints that need to be visited. During the mapping
mission, the UAV flies at a defined constant velocity during the mapping mission (here: vc = 4m/s),
such that a snapshot is taken when it reaches the position of each waypoint. As illustrated in Figure
3.10, the choice for positioning the recharging base is to be made among 8 location options, one
option at each vertex of the test case area, and one per each edge of the area. As the given terrain
is flat and accessible, all 8 options are viable for consideration. Following this mapping definition, the
distances between all the waypoints and all the possible base locations are calculated and initialized
before solving the optimization problem.

Based on the experience of mapping the same test area without a predeterminedmission plan for
battery allocation, 4 batteries were to be employed, with their capacities varying but not exceeding 15
minutes. Four eligible batteries with different capacities will, therefore, be considered in simulations
to validate the proposed battery management optimization strategy. The considered capacities of 14,
11, 13, and 9 minutes are assumed to be sufficient to perform the mapping of the entire test case
area.

3.4.1 Proposed optimization strategy simulation results

Simulation results are obtained after solving the optimization problem using Python-MIP toolbox
[102]. The solver executes the Branch-and-Cut algorithm for solving mixed integer problems, and
providing the optimal solution in finite time.

Following the Algorithm1, the optimal solution to battery allocation results from iteratively running
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Figure 3.10: Example test case of the mapping area with 8 location options for the position of therecharging base.

the optimization for all the predetermined location possibilities. The final mission plan is ultimately
determined for the base station location with the minimum cost.

The optimization problem for this test case has 8036 binary variables and 8717 constraints. The
computational time for each base location simulation is given in Table 3.4. All the computations were
done on a processor Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz 2.30 GHz. As the mission planning is
done offline as the preparatory step, the resulting computational times summing up to 27.40min are
acceptable for the given application of the agricultural mapping.

Table 3.4: Optimization results for 8 potential base locations
Base location Optimization cost Computational time

1 5546.75m 160.54 sec

2 5487.72m 273.57 sec

3 5648.55m 310.76 sec

4 5571.31m 176.50 sec

5 5534.42m 68.90 sec

6 5491.41m 155.20 sec

7 5651.78m 236.97 sec

8 5579.66m 261.43 sec

Total computational time 1643.87 sec (27.40min)
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The optimal solution of the example problem shown in Figure 3.11 results in using two batteries
instead of the anticipated four batteries for complete coverage of the field. The optimization algorithm
reduces the flight distance required for battery replacements by selectingwaypoints closer to the base
as the start and end points of each subpath. By prioritizing shorter segments from/to the base station,
energy consumption for support tasks, and not mapping itself, is minimized. Thus, spared energy is
reallocated to cover the mapping segments with fewer batteries.

Figure 3.11: Optimization solution for the example test case area coverage.

The given solution considers option 2 for the base location, as it provides the best optimal solution
among the resulting costs for each base location option. If planned adequately, two batteries are
sufficient for this mapping mission, as demonstrated in Table 3.5.

Table 3.5: Simulation results of battery capacities used for the example mapping mission
Battery j Initial battery capacity Battery employment duration Remaining battery capacity

1 14min 11.52min 2.48min

2 11min 0min 11min

3 13min 10.28min 2.72min

4 9min 0min 9min
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3.4.2 Comparison of the optimization approach and proportional strategy

The performance of the developed battery management optimization for energy-aware mission plan-
ning is assessed against the algorithm in [77] that addresses efficient coverage by dividing themapping
area proportionally depending on the relative capabilities of the UAVs. Among others, these capabili-
ties include flying endurance and range, which can be assumed equivalent to the capacities of eligible
batteries in the analyzed scenario. Hereafter, the described approach will be referred to as the pro-
portional strategy.

To ensure an energy-aware efficient mapping mission, the main points to be considered in the
following comparison of the two approaches, proposed optimization and proportional approach [77],
are to evaluate the energy consumed during the flight in terms of batteries needed to complete the
mission and the percentage of batteries used, as well as the total duration of the mission.

(a) Proposed strategy (b) Proportional strategy
Figure 3.12: Comparison of the proposed optimization and proportional strategy for the test casebattery allocation.

Figure 3.12 and associated Table 3.6 show the battery allocation results of the proposed optimiza-
tion approach in comparison to the state-of-the-art proportional strategy. For reference, in the pro-
portional strategy, all the batteries destined for the mission are employed for mapping. Waypoints
are distributed among the eligible batteries proportionally to their available capacities. In this case, all
batteries consume around 50% of their initial capacities, which leaves a sufficient security buffer for
both longer and shorter trips from/to the recharging base. On the other hand, by optimizing the total
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Table 3.6: Simulation results comparison of battery usage in the optimization and proportional strat-egy
Battery j Initial battery capacity Percentage of the battery used

PROPOSED STRATEGY PROPORTIONAL STRATEGY [77]
1 14min 82.3 % 49.6 %
2 11min 0 % 48.3 %
3 13min 79.1 % 46.5 %
4 9min 0 % 47.2 %

distance and duration of the mission and prioritizing lower overall energy consumption, a more accu-
rate path plan can be made beforehand, where fewer batteries are utilized with the optimal waypoint
allocation according to the available capacities. To maintain consistency in comparison, the selected
base location is the same in both approaches.

(a) Optimization strategy (b) Proportional strategy
Figure 3.13: Comparison of the total mission duration for the optimization and proportional strategy.

Table 3.7 highlights the efficiency of the proposed optimization strategy in terms of flight duration
and battery savings in comparison to the proportionally allocated waypoints. In both cases, the total
mission duration includes an additional 10 minutes per used battery for battery placement and re-
placement, as well as the supporting tasks needed for starting the flight with a new battery. The visual
representation of a mission planning comparison using optimization and proportional strategy are
shown in Figure 3.13. In the test case simulations, the total flight distance is reduced by 9%, while the
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Table 3.7: Simulation results comparison of the mission efficiency indicators in the optimization andproportional strategy
OPTIMIZATION STRATEGY PROPORTIONAL STRATEGY % Savings

Number of batteries used 2 4 50%
Total flight distance 5487.72m 6029.36m 9%

Total mission duration 41min 48 sec 62min 34 sec 33.2%

total mission duration is cut by 33.2%. The overall flight duration affects battery consumption, as well
as the efficiency and quality of the mapping mission. Cutting the number of battery replacements in
half can greatly enhance mission duration efficiency, as the replacement process takes considerable
time. Moreover, by reducing the number of batteries used, the mission risk level is also reduced, as
take-offs and landings present the highest risk of a UAV crash.

The primary advantage of the proposed strategy lies in reducing the total number of batteries
used. Hence, unnecessary replacements that decrease overall mission efficiency in terms of time
are avoided. Additionally, minimizing the number of charging cycles is crucial to maintaining battery
health and efficiency in the long term.

3.5 Conclusion

Optimal flight path planning is crucial in UAV agricultural mapping to enable comprehensive coverage
and high-quality data collection. A systematic approach tomission planning requires ensuringmission
safety and cost efficiency. Apart from the mission duration, an optimal mission should consider the
energy needed to complete the area coverage task. Herein presented energy-aware mission planning
considers an optimization approach to battery management, i.e. waypoint allocation to determine
optimal battery replacement schedule, such that the mapping task is completed with minimal energy
consumption.

Mappingmission planning should result in a time-efficient, energy-efficient, and scalable path plan,
namely for large mapping areas. The proposed optimization problem aims to minimize the overall
flight distance, taking into account the necessary battery replacements due to the limited capacities
of available batteries. It also considers selecting the best location for the base station, with respect
to the distance from the mapping area. When compared to the state-of-the-art approach that divides
the mapping area proportionally according to available battery capacities, the optimization strategy
results in fewer battery replacements and shorter total flight distances. That way, both mission dura-
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tion and energy consumption are reduced. Consequently, mission risk is lowered, as there are fewer
high-risk take-offs and landings. In the long term, aside from the advantages listed above, the pro-
posed approach also preserves battery health andmaximizes its performance by reducing redundant
charging cycles.

The next chapter will introduce the proposed control strategy that ensures the tracking of the
trajectory that was planned beforehand, following the optimization strategy presented here, while
maintaining the constant velocity.
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Chapter 4

Control strategy for UAV trajectory

tracking

4.1 Introduction

The optimal path for the UAV is determined to minimize the mission duration and energy consump-
tion. Once the initial path plan is set, a UAV trajectory is generated such that it tracks the waypoints
with a certain level of accuracy while respecting particular constraints, e.g. actuator limitations. Thus,
an adequate control technique needs to be developed for trajectory tracking.

When selecting a control strategy for trajectory tracking, the main requirements concern accuracy
in terms of position error, as well as mission-specific demands, such as system limitations, velocity
tracking, etc. Nonetheless, the computational complexity level needs to be evaluated in order for the
control strategy to be applied to a real system.

While thorough research has been conducted on linear control of the quadrotors, where its dy-
namics is approximated with a linear model, its high level of nonlinearities in the system dynamics
makes it difficult to achieve the needed level of precision in a given environment. The quadrotor is
a nonlinear system due to the coupling of the aerodynamic forces of the four rotors. In addition to
that, because they are light and small in size, this class of aircraft is especially prone to nonlinearities
like atmospheric turbulence and reacts sensitively to system degradation, as it causes uncertainties
in the system model. Lastly, it is an underactuated system as it has 6 degrees of freedom that are
controlled by only four actuators (rotors). Thus, nonlinear control strategies allow for counteracting
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these challenges successfully under the condition of knowing the model parameters [103].
Model predictive control (MPC) has shown promising results in trajectory tracking due to its ability

to handle constraints, which makes it an easily adaptable solution for various problems. A literature
comparison of the MPC-based controller and other control strategies leads to the conclusion that
MPC is superior in terms of accuracy and response time. The comparison of tracking performances of
the MPC and LQR controllers in [64] shows better accuracy and airworthiness, which translates into
flight safety reliability. In [104], authors show that the nonlinear MPC largely outperforms differential-
flatness-based control by analyzing accuracy in detail. It also shows that MPC is able to perform dy-
namically infeasible trajectories using future predictions, making it more suitable for tracking time-
optimal trajectories that violate the rotor thrust constraints.

As stated above, due to the highly nonlinear system, as well as often nonlinear trajectories, the
nonlinear approaches to MPC have drawn attention with their ability to reduce the computational
complexity and ensure application on real systems with better tracking performance. Theoretical and
application developments in NMPC and its challenges are presented in [105]. For example, authors in
[67] prove better disturbance rejection capability in addition to the tracking performance of nonlinear
MPC in comparison to linear MPC for different types of maneuvers. In order to improve computa-
tional time, they employ a real-time iteration scheme based on Gauss-Newton to approximate the
optimization problem and iteratively improve the solution during the runtime of the process. Finally,
their approach to nonlinear MPC demands less computational time than linear MPC. Furthermore, an
NMPC in [106] provides real-time solutions with a computational time lower than the sampling time
in real experiments. The authors propose an approach that uses direct multiple shooting and nonlin-
ear programming formulation to include the internal states and the control actions as optimization
variables guaranteeing computational efficiency. Similarly, the direct multiple shooting approach has
been successfully adapted for real-time optimization of NMPC in [107].

Different challenges regardingNMPC, namely receding horizon control theory,modeling forNMPC,
computational aspects of online optimization, and application issues, are discussed in [108].

4.1.1 Control scheme

Complete control for trajectory tracking of the UAV considered in this thesis is illustrated with the
cascade control scheme in Figure 4.1, as in [101].

The cascade control structure considered in this chapter includes low-level inner-loop controller for
attitude control, and outer-loop nonlinear MPC controller for trajectory tracking. The estimated states
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Figure 4.1: Considered cascade control scheme.
of the system x̂ are considered initialization states for the trajectory tracking control of the output y.
MPC needs to be designed such that the UAV system is tracking the reference output yref with high
level of precision, while rejecting external disturbances d and deals with parameter uncertainties in
the system model. Inner-loop controller handles the attitude control, and more precisely, tracks the
reference roll and pitch angles ϕref , θref , as well as the thrust T by adjusting rotor speed Ωi for i-th
of the 4 rotors. A system model of a quadrotor supposes that the UAV heading is aligned with the
x-axis of the inertial frame, and therefore, the yaw angle is set to zero (ψ = 0). The first-order inner-
loop approximation is assumed to provide sufficient information to the MPC to consider the low-level
controller behavior. External disturbances added to the UAV system dynamics are represented with
the vector d = [dx, dy, dz]

⊤.
The synthesis of the low-level controller, as well as the state estimation, are assumed to be known

and given, and will not be considered for detailed analysis in this thesis. The research work will focus
on developing the NMPC trajectory tracking controller.

4.1.2 State-space model

The full model of quadrotor UAV dynamics is presented in Chapter 2. The discretizedmodel is derived
from the simplified continuousmodel (2.32)-(2.35). The discretization is performedby the Runge-Kutta
method of 4-th order (RK4), which ensures sufficient accuracy.

• The Fourth Order-Runge Kutta Method (RK4)

In RK4, the solution to a first-order differential equation given by y′ = fc(x, y), with initial condition
y(x0) = y0 is to be approximated. The following slope approximations are considered to estimate the
slope at time t0 (while assuming that only an approximation to y(t0) is known and denoted as y∗(t0):
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k1 = fc(y
∗(t0), t0)

k2 = fc(y
∗(t0) + k1

h
2 , t0 +

h
2 )

k3 = fc(y
∗(t0) + k2

h
2 , t0 +

h
2 )

k4 = fc(y
∗(t0) + k3h, t0 + h)

(4.1)

with sampling time h. The slope estimates can be described as follows:

• k1 is the slope at the beginning of the time step h.
• k2 is the slope estimate at the midpoint, halfway through the time step h, using the estimate k1.
• k3 is another slope estimate at themidpoint, halfway through the time step h, using the estimate
k2.

• k4 is an estimate of the slope at the endpoint at t0 + h.

The final estimate of y∗(t0 + h) is obtained as a weighted sum of these slopes:

y∗(t0 + h) = y∗(t0) +
h

6
(k1 + 2k2 + 2k3 + k4) (4.2)

The resulting discrete nonlinear function with the sampling time h = Te to be used in further study
is finally:

xk+1 = f(xk, uk, dk), k ≥ 0, (4.3)
where k represents the time step. The control inputs uk, UAV states xk and disturbances dk are

considered constant between the two time steps.
The above-defined discrete dynamic model derived from the continuous model (Eq. (2.32)-(2.35))

will be used in this chapter for developing an NMPC for trajectory tracking. The system dynamics
involves:

• 8 state variables: x = [p, v, ϕ, θ]⊤,
• 6 output variables: y = [p, v]⊤,
• 3 control input variables: u = [T, ϕref , θref ]

⊤,
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with p and v representing position and velocity vector, respectively, defined in a given coordinate
system.

This is amass-freemodel, as the input variable thrustT is considered as the respective acceleration
rather than the corresponding force. Therefore, the developed NMPC controller needs to be robust to
mass changes and uncertainties, as well as the loss of thruster efficiency due to the decline of battery
voltage over time. Thruster efficiency is modeled as a parameter uncertainty α in equation (2.33).

4.2 Nonlinear model predictive control for trajectory tracking

4.2.1 Model predictive control

Model predictive control (MPC) is a control strategy that repeatedly solves a finite horizon optimization
control problem subject to state and input constraints by considering the model of the system that is
to be controlled. An open-loop optimization problem is formulated with receding horizon implemen-
tation.

MPC uses the system model to predict future behavior, given estimates or measurements of the
current state and intended future control inputs that are chosen to optimize the predicted cost.

Figure 4.2: Model predictive control methodology [3].

As illustrated in Figure 4.2, given a reference trajectory, the sequence of predicted control inputs
and predicted output of a system are computed for the chosen finite control and prediction horizons
at each time step or sample time, in a manner that minimizes the tracking error between predicted
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output and reference trajectory based on the defined optimization problem. In further discussion, the
control horizon is considered to be equal to the prediction horizon.

Once the optimization problem is solved for a specified prediction horizon, only the first control
input of the optimal control sequence is implemented, and following the receding-horizon principle,
the optimization is repeated at the next time step using newly available information on the system
state. This repetition is beneficial for reducing the gap between the predicted and the actual system
response, as in a closed-loop operation. Also, it ensures a certain level of inherent robustness to the
uncertainty that can arise from imperfect knowledge or mapping of the real system behavior to the
system model, also known as multiplicative uncertainty, as well as the additive uncertainty caused by
disturbances that can appear in the system dynamics.

As the early-developed MPC control strategies lacked formal guarantees of nominal stability, such
as closed-loop stability in the absence of uncertainties, this challenge was tackled by imposing addi-
tional conditions on predicted model states, known as equality terminal constraints. The aim of such
conditions is to ensure that the desired steady state is reached at the end of a finite prediction horizon.
The effect of these constraints can be related to an infinite horizon, thus ensuring various stability and
convergence properties [109]. The stability and optimality of different forms of MPC are distilled in
[110] to provide a solid basis for further research.

In this thesis, a nonlinear MPC will be considered to address the quadrotor reference trajectory
tracking problem.

4.2.2 Mathematical formulation of NMPC

4.2.2.1 Notation

Before introducing the mathematical formulation of the nonlinear MPC for trajectory tracking, the
necessary notation is presented beforehand. System variables, as well as the tuning parameters to
be selected for the optimal NMPC performance, are given in Table 4.1.

4.2.2.2 NMPC for trajectory tracking

Nonlinear MPC (NMPC) for trajectory tracking aims to compute the future control inputs uk, that min-
imize the following cost function J , at time kTe along the prediction horizonNp starting from time kTe
and under input constraints:
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Table 4.1: Trajectory tracking NMPC system variables and tuning parameters
NMPC system variables

ŷk Predicted system output for positions p and velocities v at time instant k
yrefk Reference output states at time instant k
uk Control input at time instant k
∆uk Variation between two consecutive control inputs at time instant k and k − 1

∥v̂k∥2 Norm of the predicted output velocity at time instant k
vrefc Reference constant mapping velocity

NMPC tuning parameters

Np Prediction horizon
Te Sampling time
Q Weight matrix for the output cost
R Weight matrix for the input cost
W Weight scalar for the velocity cost

J(uk,...,k+Np−1) =

Np∑
n=1

[
∥ŷk+n − yrefk+n∥

2
Q + ∥∆uk+n−1∥2R

]
, k ≥ 0 (4.4)

subject to:

u ∈ U , (4.5)
where the first part of the cost function designates the output cost, which minimizes the tracking

error, i.e. the error between the predicted system output yk and reference output yrefk . The second
part of the cost function accounts for the input cost, where the control smoothness is to be ensured by
minimizing the consecutive control input change∆uk in a computed sequence. U is the set containing
bounded functions with given lower bound umin and upper bound umax, i.e. umin ≤ u ≤ umax,
representing dynamical limitations of the system.

To summarize, two costs to be minimized in the presented NMPC formulation for trajectory track-
ing are the following:

• Weighted output cost (tracking error):
∥ŷk+n − yrefk+n∥2Q , where ∥·∥2Q represents the quadratic norm with respect to the positive semi-
definite weight matrix Q, i.e. ∥yk∥Q =

√
y⊤k Q yk.

• Weighted input cost (control smoothness):
∥∆uk+n−1∥2R, where ∥·∥2R represents the quadratic normwith respect to the positive semi-definite
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weight matrix R, i.e. ∥uk∥R =
√
u⊤k R uk.

4.2.2.3 NMPC with constant velocity

Besides the classical reference trajectory tracking, a control strategy suitable for the specific task of
agricultural mapping needs to ensure that the constant velocity of the quadrotor is respected along
its trajectory. Constant velocity is essential for enabling uniform and high-quality snapshots of the
agricultural area.

The proposed NMPC formulation, therefore, considers velocity cost, which is added to the previ-
ously defined classical NMPC for trajectory tracking.

The cost function to be minimized under input constraints is defined as follows:

J(uk,...,k+Np−1) =

Np∑
n=1

[
∥ŷk+n − yrefk+n∥

2
Q + ∥∆uk+n−1∥2R + ∥∥v̂k+n∥2−vrefc ∥2W

]
, k ≥ 0, (4.6)

u ∈ U , (4.7)
where the last term defines velocity cost, such that the error between the reference constant ve-

locity and the norm of predicted output velocity is minimized.
Finally, the proposed NMPC cost function consists of:
• Weighted output cost (tracking error):
∥ŷk+n − yrefk+n∥2Q , with the weight matrix Q,

• Weighted input cost (control smoothness):
∥∆uk+n−1∥2R , with the weight matrix R,

• Weighted velocity cost (constant velocity error):
∥∥v̂k+n∥2−vrefc ∥2W , with the weight scalarW .

4.2.2.4 Output robustness

The aim of the control law is to track the reference output yref with minimal error. Formulated NMPC
uses the discretized formulation of the model (2.32)–(2.35) to compute the predicted output of the
quadrotor over the prediction window, which is denoted ŷ. As the model output ymodel considers a
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nominal model, without any parameter uncertainties or external disturbances, we need to address
the robustness of the controller.

To account for possible additive external disturbances d or multiplicative errors due to parameter
uncertainties, the error between the model output, ymodel, and the output of the real system y is
considered to perform an offset-free trajectory. Along the prediction horizon starting from time kTe,
at time (n+ k)Te, the predicted output is computed following the bias equation:

ŷk+n = ymodelk+n + n(yk − ymodelk ), k ≥ 0, n ∈ [1, Np] (4.8)
The model output ymodel is given by a nominal model, without parameter uncertainties, with

thruster efficiency α = 1, nor external disturbances, d = 0.
It is assumed that the real system’s output is error- and noise-free, and all the state variables are

measured. Disturbances acting on the system d are assumed to be bounded, but unknown and un-
measured. Therefore, to obtain an offset-free control with NMPC, model output ymodel is augmented
with the measured error and multiplied by the prediction horizon time step n, to account for propa-
gation of the respective error towards the end of the prediction horizon Np.

4.2.2.5 Parameter tuning

MPC is an optimization-based control approach, where its performance depends on the choice of
tuning parameters, such as weight matrices in the cost function and prediction horizon. Tuning such
parameters can be challenging because they are related to the closed-loop performance of the system
in a complex manner.

Effective tuning of the NMPC parameters requires a balance between prediction accuracy, control
smoothness, and computational feasibility. Iterative tuning and extensive testing are essential for
achieving optimal trajectory tracking performance. By systematically adjusting the prediction horizon,
sampling time, cost weights, and input constraints, the resulting tuning parameters are set to meet
the specific needs of the application, which is, in this case, accurate mapping of an agricultural field.
Outdoor conditions need to be considered to ensure the robustness of the NMPC.

Here is a comprehensive list of tuning parameters for the studied case:
• Prediction Horizon (Np) is the number of future steps in a window over which predictions are
made. A longer prediction horizon can improve performance by considering a longer future
trajectory but increases computational load.
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• Sampling Time (Te) is a time interval between two consecutive control actions. The chosen
value should be small enough to capture system dynamics accurately without causing excessive
computational burden. It depends on the dynamics of the system and its response time.

• Cost Function Weights (state weights Q, control input weights R, constant velocity weightW )
define the importance of each individual cost in the cost function. A balance needs to be achieved
between penalizing deviations from the desired trajectory and reference velocity, as well as the
excessive change in control efforts.

• Input Constraint Handling imposes limits on control inputs (thrust T , reference roll ϕref , ref-
erence pitch θref ). Tuning ensures that constraints are realistically set to avoid infeasibility while
protecting the system from unsafe conditions.

Different guidelines for selecting and tuningMPCparameters exist. The simplestmethod to achieve
the desired performances is through amanual adjustment in trial and error simulations. This method
is often sufficient if done ad hoc for a given system and its application based on experience and prior
knowledge. However, there are more advanced strategies for tuning MPC parameters in an optimal
way. For example, authors in [111] present a tuning approach based on Artificial-Neural-Network
(ANN). The main advantage of this approach is reaching closed-loop stability and online parameter
tuning using Particle SwarmOptimization (PSO) and Online Sequential Extreme LearningMachine(OS-
ELM). Similarly, a tuning strategy for NMPC with implemented reinforcement learning is developed in
[112], which is implemented for trajectory tracking control of UAVs to facilitate a generic and system-
independent tuning process.

In this work, parameter tuning is done manually using the trial and error method.

4.3 UAV mapping mission trajectory tracking with NMPC

The objective of this study is to evaluate the performance of the proposed Nonlinear Model Predic-
tive Control (NMPC) in trajectory tracking for UAVs (quadrotors), specifically in the context of mapping
agricultural fields. The increasing demand for precision agriculture has highlighted the need for effi-
cient and accurate mapping techniques. Quadrotors, with their agility and maneuverability, present
a viable solution for detailed aerial surveys. NMPC, known for its ability to handle multi-variable con-
trol problems and constraints, alongside with the system nonlinearities, is employed to ensure the
quadrotor follows a predefined path with high precision. First, the mapping mission planning phase
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described in Chapter 3 results in an ordered set of waypoints that need to be visited by a UAV. Once
it is determined, trajectory tracking of the planned path needs to be ensured with a suitable control
strategy.

In this section, we present the results of the simulation experiments, which were designed to as-
sess the effectiveness of the NMPC algorithm in various scenarios typical for agricultural field map-
ping. These scenarios include back-and-forth trajectories in different conditions (under external dis-
turbances and model uncertainties). The performance metrics used to evaluate the MPC algorithm
include trajectory accuracy, control effort, and computational efficiency.

The following results are derived from simulations using a nonlinear quadrotor model given in
equations (2.32)–(2.35), after discretization, both in a nominal case and incorporating realistic envi-
ronmental conditions such as wind disturbances and model disturbances. Robustness is evaluated in
case of external disturbances d and uncertain parameter for thruster efficiency α.

Key aspects covered in this results section include:
• Trajectory Tracking Accuracy: Evaluation of the quadrotor’s ability to follow the desired path
within an allowed error margin.

• Control Effort: Analysis of the control inputs required by the NMPC algorithm to maintain the
desired trajectory.

• Computational Performance: Assessment of the algorithm’s computational requirements, en-
suring timely and efficient processing for maintaining the desired trajectory.

• Robustness to Disturbances: Examination of the tracking performance under uncertainties in
the model parameters, and external disturbances, such as wind.

These results demonstrate the potential of NMPC for enhancing the precision and efficiency of
quadrotor-based agricultural mapping, contributing to the advancement of precision agriculture tech-
nologies.

4.3.1 Simulation results and discussion

The parameter values of the system can be identified through classic system identification techniques.
Here, they were chosen empirically as in [113], and are shown in Table 4.2.

Simulations have been conducted for a test case that represents back-and-forthmovements of the
quadrotor when performing the mapping task. An illustrative example of the UAV path is shown in
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Table 4.2: Model parameter values
Model parameter Value

Gravitation g 9.81m/s2

Linear damping terms Ax, Ay, Az (0.1, 0.1, 0.2)s−1

Inner-loop gains Kϕ,Kθ 1

Time constants τϕ, τθ (0.7, 0.5)s

Figure 4.3. The reference positions of the visiting waypoints, defined as 3D relative coordinates from
a given starting point, are specified in Table 4.3. As this flight plan represents a segment of the full
mission plan, take-off and landing are not included, and altitude is held constant at 20m.

Figure 4.3: Reference path and waypoints for the UAV mapping mission.

Tuning parameters and constraints on control inputs are given in Table 4.4. The chosen values,
based on the trial-and-error approach, are compatible with the implementation on a UAV model type
DJI, that is suitable for agricultural mapping. Prediction horizonNp and sampling time Te are adjusted
to the systemdynamics and reference trajectory. WeightmatricesQ andR are normalized and chosen
as a trade-off between tracking accuracy and control input changes within imposed bounds. The
choice of the tracking velocity cost W will be discussed in detail. Control inputs are bounded, such
that the value of thrust varies approximately (0.5− 1.5) g, in order to maintain the reference altitude
despite the gravity g, and reference angles ϕref and θref do not enable aggressive maneuvers, and to
remain within |30|° during the mapping flight, as it is the case for the DJI quadrotor model Matrice 350
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Table 4.3: Relative positions of the reference waypoints for the UAV trajectory tracking
Waypoint Relative coordinates
start(1) (0, 0, 20)m

2 (0, 8, 20)m

3 (0, 16, 20)m

4 (0, 24, 20)m

5 (0, 32, 20)m

6 (0, 40, 20)m

7 (8, 40, 20)m

8 (8, 32, 20)m

9 (8, 24, 20)m

10 (8, 16, 20)m

11 (8, 8, 20)m

finish(12) (8, 0, 20)m

RTK [114].

Table 4.4: NMPC tuning parameter values and control input bounds
Tuning parameter Value

Prediction horizon Np 10

Sampling time Te 0.1 s

Output cost weight Q diag(1, 1, 5, 0, 0, 0)

Control input cost weight R diag(1, 102, 102)

Control input Bounds
Thrust T 5m/s2 ≤ T ≤ 15m/s2

Reference roll ϕref ϕref ≤ |30°|
Reference pitch θref θref ≤ |30°|

All the simulation results are obtained by solving the proposed optimal control problem with the
Matlab fmincon algorithm. The control problem, at time t = 0 s, is initialized with the initial state vector
x = [0, 0, 20, 0, 5, 0, 0, 0]⊤, where position vector p = [0, 0, 20]⊤m, velocity vector v = [0, 5, 0]⊤m/s, roll
angle ϕ = 0° and pitch angle θ = 0°. The reference constant velocity is set at 5 m/s, and initialized
in the mapping direction along y-axis. Optimization, at time t = 0 s, is initialized with the values
u = [9.81m/s2, 0°, 0°]⊤, where control inputs represent thrust T , and reference angles roll ϕref and
pitch θref , respectively. At time t = kTe, the MPC algorithm is initialized with the optimal values of the
control inputs computed at time (k − 1)Te.
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4.3.1.1 Nominal case

A nominal case implies a matching of the system model and the real system, i.e., the absence of
external disturbances and model uncertainties. Thus, in the nonlinear model equations (2.32)-(2.35),
d = [0, 0, 0]T and α = 1.

Table 4.5: NMPC solution evaluation
Absolute position tracking error [m]

Velocity cost weightW min max mean
W = 0 6.21e-05 2.79 0.60
W = 1 6.21e-05 3.17 0.75
W = 5 6.21e-05 3.96 1.27
W = 10 6.21e-05 4.59 1.54
W = 20 6.21e-05 5.30 1.83
W = 50 6.21e-05 5.98 2.12
Absolute velocity tracking error [m/s]

Velocity cost weightW min max mean
W = 0 2.00e-03 3.16 0.78
W = 1 3.90e-03 0.87 0.23
W = 5 3.21e-04 0.47 0.15
W = 10 8.06e-04 0.32 0.12
W = 20 3.16e-05 0.24 0.08
W = 50 9.81e-05 0.12 0.05

CPU solving time [s]
Velocity cost weightW min max mean

W = 0 0.05 1.59 0.27
W = 1 0.05 1.52 0.20
W = 5 0.05 1.14 0.22
W = 10 0.05 1.25 0.22
W = 20 0.06 1.38 0.24
W = 50 0.06 1.83 0.28

In addition to classical trajectory tracking, the proposed NMPC includes the velocity tracking cost in
order tomaintain the constant velocity during the entiremappingmission. Therefore, its performance
depends on the choice of theweight for constant velocity trackingW . The test case illustrated in Figure
4.3 and Table 4.3 is tested for different values ofW . Good tracking performance requires low tracking
error while tracking the reference constant velocity. By increasing the value of the weigh scalarW , the
absolute position error increases. In contrast, the absolute velocity error decreases, as the constant
velocity cost is given more importance in the optimization. CPU solving time is not directly affected by
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W , as no regularity is found in the results.

(a)

(b)
Figure 4.4: Resulting errors for different values for velocity tracking weight W (a) Position trackingerror; (b) Norm of velocity.

Minimal variations in constant velocity enable good-quality snapshots during the mapping flight.
NMPC without velocity tracking (W = 0) and various levels of velocity tracking importance (W =

1, 5, 10, 20, 50) are compared in Table 4.5, considering absolute position tracking error, absolute veloc-
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ity tracking error and computational time (CPU solving time).

Figure 4.5: Reference path and waypoints for the UAV mapping mission.

Development of the position error and norm of the velocity along the trajectory are given in Figure
4.4a and 4.4b. Smaller variations from the reference velocity imply amore important position tracking
error. The effects of the turning maneuvers are visible starting from t = 8s, as both position and
velocity norm errors increase. The velocity norm is smoothened by applying higher values of the
weightW . However, by increasingW , position error also increases. There are no large improvements
in the constant velocity when comparing results ofW > 5. Thus, as mapping mission requires both
position accuracy and smooth flight,W = 5 represents a good trade-off between position and velocity
tracking.

Completed trajectories for both cases are illustrated in Figure 4.5. As the reference path is rect-
angular, turning points demand a change in velocity. Thus, the resulting trajectory without constant
velocity tracking results in deviations in velocity norm, but also more aggressive changes of direction
and, consequently, position deviations.
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Figure 4.6: Reference and resulting positions in x, y and z-direction forW = 0 andW = 5.

Figure 4.7: Reference and resulting velocity components in x, y and z-direction forW = 0 andW = 5.
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Figure 4.8: Reference and resulting roll ϕ and pitch θ angles forW = 0 andW = 5.

Figures 4.6, 4.7, and 4.8 exhibit the comparison of resulting states and deviation from the reference
for cases with and without the constant velocity control. Even though the norm of position error is
larger forW = 5, state changes between consecutive time instants are less abrupt, which indicates a
more stable flight. A stable flight is imperative for a mapping mission, which also implies small Euler
angles. Figure 4.8 shows that by imposing the constant velocity norm, the angle changes of ϕ and θ
are less important, and remain largely within the imposed bounds of 30°. Finally, velocity components
in all 3 directions are stabilized faster after necessary maneuvers, which is illustrated in Figure 4.7. A
change in velocity behavior is seen at t = 8s, when the turning maneuver takes place. Before the
turning, velocities in all three directions are rather smooth, with only a slight difference between the
case W = 0 and W = 5. However, as the turning maneuver is being handled, by controlling the
constant velocity, all velocity components are also smoothened.

The resulting values for control inputs are shown in Figure 4.9. When comparing the thrust values
for the two cases, it can be concluded that, in the case whereW = 0, the values are saturated while
during the turning maneuver and continue to vary to a larger extent than is the case forW = 5. When
observing the reference angles ϕref and θref , both control inputs reach the saturation point of 30° at
the beginning of the turn, at t = 8s, for both values of weightW . However, their values remain around
0 for the largest part of the trajectory. Overall changes in control inputs between the consecutive time
instants are smoothened in the case of constant velocity tracking, whereW = 5.
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Figure 4.9: Resulting control input values for thrust T , reference roll ϕref and pitch θref angles, for
W = 0 andW = 5.

4.3.1.2 Robustness assessment

Ensuring robustness in NMPC is crucial for reliable operation in uncertain environments. Robust
NMPC enhances safety, performance, and efficiency, making it a vital component for applications
requiring high levels of precision and reliability, such as agricultural mapping.

Robustness assessment evaluates the ability of NMPC to handle uncertainties and disturbances.
In real-world scenarios, systems are often subject to model inaccuracies and external disturbances.
Robustness assessment ensures that the NMPC can maintain satisfactory performance under such
conditions.

The robustness of the proposed NMPC is assessed by considering two aspects: model uncertainty
and external disturbances. Model uncertainty represents variations between the actual system and
the prediction model. In this evaluation, thruster efficiency α is considered to be an uncertain param-
eter. External disturbances are defined as a vector d = [dx, dy, dz]

⊤, and represent, for example, the
wind in 3 directions acting on a UAV as torque.

Both model uncertainty and disturbances are bounded and handled with a bias in equation (4.8),
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as the error between the model output ymodel and the real system output y.
The robustness evaluation is performed by analyzing the results of 50 Monte Carlo simulations.

Test cases are generated with random values of constant external disturbances d = [dx, dy, dz]
⊤, and

uncertainty of the model parameter of the thruster efficiency α are considered for all the test cases.
The external disturbance values vary in the range dx = [−3, 3]m/s2, dy = [−3, 3]m/s2, dz = [0, 2]m/s2,
while for the thruster uncertainty α = [0.8, 1.2].

Simulation parameters are the same as in the nominal case and are given in the Table 4.3 and
Table 4.4. All the test cases are compared for the NMPC with velocity cost weightsW = 0 andW = 5.

Figure 4.10: Position RMSE for 50 Monte Carlo simulations for W = 0 and W = 5, random valuesof constant external disturbances d = [dx, dy, dz]
⊤, and model parameter uncertainty of the thrusterefficiency α.

Figure 4.10 illustrates the position Root Mean Square Error (RMSE) along the trajectory for 50 test
cases and both values of the weight parameter W . Similarly, Figure 4.11 shows the values of the
average norm of velocity |v| along the same trajectory. Reference constant velocity is set to vrefc =

5 m/s. Based on the two graphs, position RMSE reaches overall higher values ifW = 5, whereas the
resulting velocity deviates further from the reference constant velocity ifW = 0, as expected.

Robustness evaluation of the Monte Carlo simulations is given in Table 4.6, where minimum, max-
imum, andmean values are given for position RMSE, average values of the norm of velocity, and aver-
age CPU time for solving the optimization. As the constant velocity remains the priority for acquiring
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Figure 4.11: Average norm of velocity for 50 Monte Carlo simulations forW = 0 andW = 5, randomvalues of constant external disturbances d = [dx, dy, dz]
⊤, and model parameter uncertainty of thethruster efficiency α.

Table 4.6: Monte Carlo simulations robustness evaluation
Position RMSE [m]

Velocity cost weightW min max mean
W = 0 1.35 10.30 3.08
W = 5 2.23 17.80 6.52

Average velocity [m/s]
Velocity cost weightW min max mean

W = 0 4.86 6.92 5.33
W = 5 4.58 5.45 4.93

CPU solving time [s]
Velocity cost weightW min max mean

W = 0 0.18 0.49 0.34
W = 5 0.27 0.58 0.41

good-quality images, the value of the weightW = 5 represents a trade-off between small deviations
from the reference velocity vrefc = 5m/s and smaller position accuracy, as well as slightly longer aver-
age computational CPU time. These results represent the worst and the best case considering added
disturbances and model uncertainties. Based on these results, when constant velocity cost is active,
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lower average velocity is prioritized rather than reaching the values over reference constant velocity.
Consequently, smoother and more stable flight can be ensured.

Depending on the specific mission requirements, the acceptable variations need to be defined.
Consequently, we can determine the bounds on the values of disturbances and uncertainties against
which the proposed NMPC satisfies the robustness.

(a) (b)
Figure 4.12: Reference and resulting trajectories, forW = 0 andW = 5. (a) Test case 22; (b) Test case23.

(a) (b)
Figure 4.13: Reference and resulting trajectories, forW = 0 andW = 5. (a) Test case 42; (b) Test case47.

Figures 4.12a, 4.12b, 4.13a and 4.13b illustrate deviations from the reference trajectory for the test
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Table 4.7: Robustness assessment for test cases 22, 23, 42 and 47
Test case External disturbances d Model uncertainty α Position RMSE Average velocity

22 [3.0,−2.8, 1.9] N 1.1

W = 0 7.00m 5.43m/s

W = 5 9.32m 4.58m/s

23 [0.9, 0, 1.5] N 1.2
W = 0 2.01m 5.32m/s

W = 5 4.05m 5.05m/s

42 [0.7, 0.5, 1.8] N 0.9

W = 0 2.26m 5.40m/s

W = 5 6.45m 5.15m/s

47 [−1.8, 2.0, 1.8] N 0.9

W = 0 2.48m 5.04m/s

W = 5 12.61m 5.17m/s

cases number 22, 23, 42 and 47, respectively. These test cases are chosen to illustrate the effects of
different combinations of high and low values of external disturbances and model uncertainty.

Values for the 4 mentioned test cases are listed in Table 4.7. External disturbances d represent
constant wind force caused by wind velocity, and are assumed to be bounded as in [115]. Uncertainty
on thruster efficiencyα affects the resulting trajectory as it varies from 80%, in case of overestimation,
to 120 % for underestimating the real thruster performance.

The first three examples show that despite the higher position RMSE, the resulting trajectory is
smoother and more appropriate for mapping when the constant velocity cost is imposed, i.e.,W = 5,
in comparison toW = 0. Test case 47 exhibits high tracking error and a resulting trajectory that largely
deviates from its reference if constant velocity is tracked. In this case, classical NMPC tracking with
W = 0 presents better results. Overall results show that the higher values of external disturbances
deteriorate tracking performance. Also, when comparing values in cases 23 and 42, with similar values
of d, trajectories are somewhat degraded for test case 42, where thruster efficiency is overestimated.

Nonetheless, from Figure 4.10, test case number 5 results in the highest position RMSE, 10.3 m
and 17.8 m, for W = 0 and W = 5, respectively. The resulting trajectory illustrated in Figure 4.14
does not follow the planned path within reasonable limits. With the uncertain parameter value of the
thruster efficiency α = 0.8, it can be concluded that, due to the overestimation of the thruster, the
UAV is not capable of reaching the reference state. Therefore, the resulting trajectory has very low, if
any, position accuracy. It seems important to estimate this parameter to improve the performance of
the control.
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Figure 4.14: Reference and resulting trajectories, forW = 0 andW = 5. Test case 5.

Based on the provided analysis of the simulation results, it can be concluded that an underper-
forming thruster poses the greatest problem to the robustness of the proposed NMPC approach.
Additionally, high values of external disturbances can further deteriorate the tracking performance.
However, average velocity approaches the reference constant values closer if constant velocity is ac-
tivated in the NMPC cost function.

4.4 Conclusion

The proposed Nonlinear Model Predictive Control (NMPC) for agricultural mapping effectively ad-
dresses the challenge of trajectory tracking with a constant velocity. This constant velocity is crucial
for acquiring high-quality images, ensuring that the agricultural mapping data is reliable and accurate.

Simulation results demonstrate a comparison between scenarios with and without the constant
velocity cost. The findings highlight the importance of the compromise between maintaining a con-
stant velocity for superior image acquisition and mapping accuracy. When implementing constant
velocity cost, the resulting trajectory, as well as the control inputs of the quadrotor, are smoothened.

Additionally, the robustness of the NMPC was evaluated against external disturbances, such as
wind and model uncertainty of the thruster efficiency parameter, showcasing its ability to maintain
performance under varying conditions. However, to ensure the proposed NMPC satisfies robustness,
acceptable variations need to be defined based on specific mission requirements. While the results
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are promising, they indicate that further improvements can be achieved by incorporating a trajectory
planning step. This would help generate smoother reference trajectories, potentially enhancing the
overall performance of the NMPC. A robust NMPC can also be developed to further mitigate the dete-
rioration caused by uncertainties and disturbances. Also, the estimation of the uncertainty parameter
α and external disturbances can allow for a greater efficiency of the proposed control strategy.
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Chapter 5

Towards multi-UAV mapping mission

5.1 Introduction

While single-UAV missions have demonstrated significant benefits in agricultural applications, multi-
UAV systems offer enhanced performance and scalability. By deploying multiple drones simultane-
ously, large areas can be covered more efficiently, reducing the time required for data collection.
Multi-UAV systems also provide redundancy, ensuring that if one UAV fails, others can continue the
mission without interruption.

In a cooperative multi-UAVmission, all the UAVs aim to satisfy a common objective. The successful
implementation of cooperative mapping tasks in multi-UAV systems involves a two-layered approach:
strategic and tactical. The strategic layer considers mission and path planning, such that the mapping
of an entire field is divided for eachUAV in anoptimalmanner andwithout collision ofmultiple planned
paths. The tactical layer involves choosing the control strategy suitable for tracking planned paths
simultaneously for each UAV in the system by avoiding ad hoc collision risk. This bifurcation ensures
that the UAVs operate efficiently and effectively, achieving the mission objectives while adapting to
specific conditions. For example, if path planning results in reference mapping paths of the UAVs in a
cooperative mission that do not intersect, collision avoidance needs to be ensured on a tactical level,
i.e. control level. When a UAV needs to stop the mapping mission and return to the base prematurely,
the risk of collision may arise.

This chapter provides a foundation for a comprehensive cooperative multi-UAV mission for agri-
cultural mapping by understanding the complexities and benefits of such a problem. It also identifies
the main challenges and proposes an opening toward more complex and realistic problem configu-
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rations.
Concepts presented in previous chapters will be extended to the multi-UAV system. The proposed

path planning for a multi-UAV mission resembles planning for multiple available batteries in Chapter
3. Themain focus of this chapter will be placed on developing a suitable control strategy for trajectory
tracking that considers coordination between the UAVs, namely by addressing the collision avoidance
problem.

5.2 Path planning for multiple UAVs

Path planning is a strategic component of multi-UAV agricultural mapping missions. It involves deter-
mining the optimal collision-free routes for UAVs to ensure comprehensive coverage of an agricultural
field while minimizing travel time and energy consumption.

Multi-UAV path planning is modeled as a graph in order to leverage graph theory and optimization
algorithms to efficiently plan and coordinate the cooperative mission. Similarly to Chapter 3, where
the problem is modeled for a single UAV equipped with multiple batteries, obtained results can be
interpreted for multiple UAVs instead of the batteries.

As in Chapter 3, the field graph contains nodes that represent waypoints that need to be visited
by a set of UAVs to map the entire field, whereas the edges represent possible flight paths for the
UAVs, linking the nodes in a predetermined order, as well as linking the waypoints with the recharg-
ing base candidates denoting potential mission starting and ending locations. The objective of the
path planning optimization problem is to determine a flight plan regarding relevant metrics such as
energy consumption or expected travel distance and time, considering individual UAV capabilities as
limitations.

As a cooperative multi-UAV mission is considered here, coordination of the UAVs needs to be en-
sured on a strategic level. First, we assume reliable data exchange between UAVs, i.e. flight plans for
all the UAVs are known in the system. The second point concerns task allocation, by distributing tasks
among UAVs to balance workload and optimize the performance of the entire system and mission
itself.

There are numerous challenges and considerations to be addressed. The non-exhaustive list in-
cludes the following:

• Scalability: efficientmanagement of the path planning for a large number of UAVs covering large
areas.
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• Real-time adaptation: dynamical path adapting in response to environmental changes or new
information.

Path planning for the multi-UAV mapping mission is defined as the task allocation problem, where
the waypoints of the field area are distributed among available UAVs, while respecting their battery
capacity levels. The proposed optimization problem is defined as minimizing the cost in eq. (3.1),
under the constraints in eq. (3.2)-(3.11), as developed in Chapter 3 for a single-UAV mission. The set
of UAVs is interpreted as a set of their respective batteries J.

Unlike the energy-aware battery allocation in Chapter 3, where the overall flight distance directly
impacts the total mission time, mission time is significantly reduced here due to the possibility of si-
multaneous flight of all available UAVs, i.e., through parallelization of the missions for the UAVs in the
system. However, energy consumption still remains a priority, and by minimizing the flight distance,
we can achieve the lowest possible battery consumption. As the optimization problemdefined before-
hand results in reducing the number of batteries or UAVs employed for themapping, mission safety is
consequently increased by eliminating unnecessary take-offs and landings. Additionally, using fewer
UAVs minimizes possible collision risk, and facilitate coordination of the multi-UAV system.

Figure 5.1: Example of collision risk when one UAV is returning to base, while the other is completingits planned mission.

Every multi-UAV mission needs to consider the risk of collision, whether it is of a higher or a lower
level. In an agricultural mapping mission, where the mapping back-and-forth path configuration ex-
cludes the risk on the strategic planning level, control on the tactical level needs to prevent any even-
tual unintended collision during themission. On a tactical level, a collision can happen due tomultiple
reasons. For example, if a UAV completes the flight of its planned subpath, during the return-to-base
flight, the trajectory of this UAV might intersect with the one of another UAV that is still completing
its mapping, as in Figure 5.1. Moreover, in case of insufficient battery for path completion, return-to-
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base needs to occur before it was initially planned, and the updated flight plan can be in collision with
another UAV. Also, the risk of collision can arise simply due to external disturbances, such as wind,
or system uncertainties, where the accuracy of the tracking deteriorates, and the resulting trajectory
deviates from the reference path. Therefore, collision avoidance will be addressed in this chapter on
the control level.

5.3 Passing priority allocation

In order to enhance themulti-UAVmission performance and safety, attributing different levels of pass-
ing priority to the UAVs involved in the same mission can aid in resolving a collision conflict. Priority
allocation has been discussed mainly on the path planning level as in [116], where passing priority is
implemented for the UAV formations in complex environments. The priority while planning a surveil-
lance mission was discussed in [117]. In order to evaluate the trajectories generated by the proposed
trajectory planner, tasks are assigned a different priority level, regarding energy consumption, flight
risk, and surveillance area priority.

On the other hand, the benefits of the priority strategy on the trajectory tracking level were pre-
sented in [84]. The goal of such implementation is to eliminate unnecessary maneuvers in the forma-
tion control, where undesired chain maneuvers are avoided as fewer UAVs need to handle collision
avoidance. As the risk of collision arises, not all the concerned agents need to react and alternate
their trajectories accordingly to avoid the foreseen collision. Collision avoidance maneuvers often in-
clude abrupt changes in control inputs, leading to more significant energy loss and deviation from the
planned path. As their behaviors are coupled, unplanned changes in the path of one agent can greatly
affect changes and the need for the response of the other one. Thus, the overall impact of collision
avoidance efforts could be reduced by allocating the passing priority.

Priority allocation rules need to be clearly defined, where the hierarchy of the UAVs in a multi-UAV
system is determined along the mission. In the agricultural mapping mission, higher passing priority
should be allocated to the UAV that is performing the mapping flight, i.e. visiting the waypoints with a
certain level of position accuracy. As it should not deviate from the reference trajectory, the other UAV
that finishes its flight and flies back to the base station location needs to handle collision avoidance,
and is, therefore, assigned a lower passing priority.

Communication between theUAVs in the system, aswell as the information exchange are assumed
to be established. Only the UAV with lower passing priority needs to ensure safety distance between
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UAVs to prevent a collision. It takes into account the predicted paths of other UAVs and reacts when
their paths come in close proximity.

TheUAVwith a higher priority does not consider the risk of collision and continues to follow its path
without changes and disruptions, focusing solely on its trajectory tracking and arrival at the desired
position. The other UAV with lower priority, thus, handles collision avoidance as its primary concern
before going back on the reference path as the risk of collision has passed. This way, not all agents
need to perform complex maneuvers. Fewer alternations in their paths lead to increased safety and
a decrease in the energy needed for the flight, as less energy is consumed for direct paths. Thus, the
priority benefits can also be interpreted from the battery consumption perspective.

5.4 Collision avoidance control strategy

5.4.1 Distributed NMPC for collision avoidance

Distributed Model Predictive Control (DMPC) aims to lower the computational complexity of the cen-
tralized optimal control problem by dividing it into subproblems for each subsystem, here UAV. Sub-
systems are coupled through dynamics [118], constraints [119], or cost functions [120].

In DMPC, each UAV in the system is an agent in setN , and implements its own control strategy to
track the reference output. A distributed approach to MPC has been extensively researched and used
in applications such as field mapping. In distributed MPC [121], each UAV computes its own optimal
control inputs with respect to the predicted behavior of the system based on the model, as well as
the predicted behavior of neighboring UAVs, while respecting constraints. Thus, it provides better
scalability and tractability compared to centralized coordination [122].

Additionally, collision avoidance needs to be considered on a tactical level in case of risk ofmultiple
UAVs being in close proximity. Therefore, to ensure the safe flight of all the UAVs, additional measures
need to be included while defining a control strategy suitable for the mission.

Different approaches to collision avoidance in multi-UAV systems have been proposed in the liter-
ature using DMPC. In [123, 124, 125], collision avoidance is imposed as a nonlinear constraint while
computing the optimal trajectory for each UAV. In [126], collision avoidance is handled in the cost
function, and its significance can be adjusted depending on the need for collision avoidance. Staying
within a defined safe flight corridor is another approach to avoid collision and smoothen the trajectory.
In [127], a feasible flight corridor is constructed based on a graph of interconnections in the multi-
obstacle environment. Flight corridors in [128] are defined by a radius around the sphere waypoint,
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which allows the UAV to perform more natural turns while remaining inside the imposed corridor.

5.4.2 Proposed collision avoidance strategy

The distributed approach implies that each UAV i in the setN computes its own control inputs based
on the predicted outputs ŷi over a certain prediction horizon of lengthNp · Te. Predicted outputs are
acquired based on the model (2.32)–(2.35). The objective of the control law is to track the reference
output yiref with precision.

The real system’s output is presumed to be free from errors and noise, with all state variables
being measured accurately. The disturbances d acting on the system are considered bounded, al-
beit unknown and unmeasured. Consequently, to achieve offset-free control using Nonlinear Model
Predictive Control (NMPC), the model output yi,model is augmented with the measured error andmul-
tiplied by the prediction horizon time step n (equation 5.1, similarly to the approach considered in
Chapter 4). This approach compensates for the propagation of the corresponding error over the pre-
diction horizon Np. As it is the case in NMPC for a single UAV, presented in Chapter 4, the model
output yi,model is provided by a nominal model, without uncertainties, αi = 1, nor external distur-
bances, di = 0.

ŷik+n = yi,modelk+n + n(yik − yi,modelk ), k ≥ 0, n ∈ [1, Np], i ∈ N (5.1)
Control is handled in a distributedmanner, with output information exchanged between the UAVs.

The schematic diagram in Figure 5.2 illustrates the distributed control with allocated priority for the
case of amulti-UAV systemwith 2 UAVs. Here, UAV2 is given a higher passing priority and is computing
its control input according to the NMPCwith constant velocity based on its own predicted output, as in
Chapter 4. On the other hand, UAV1 is given the lower passing priority and needs to handle collision
avoidance in addition to trajectory tracking by considering both its own predicted output and the
predicted output of the UAV2. Hereafter, the focus will be on the control strategy of UAV1.

The proposed DMPC formulation for the collision avoidance problem is formulated as a multi-
objective NMPC, similarly to [129], where cost function criteria have state dependency imposed by
defined conditions.

In distributed MPC for agricultural mapping, each UAV is an individual subsystem that solves its
optimal control problemautonomously in a distributedmannerwhile considering the estimated states
of other UAVs in order to complete their cooperative mission while avoiding collision.
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Figure 5.2: Distributed MPC schematic diagram.

As two desired objectives are in conflict, a compromise needs to be reached. When one UAV is in
the proximity of another UAV, the importance of collision avoidance increases. On the other hand,
if the agent has no threat of encountering another one, this objective can be neglected. The pro-
posed solution is, therefore, taking into account an additional time-varying, state-dependent decision
criterion for collision avoidance with constant weights, while solving the optimal control problem for
trajectory tracking. The main advantage of the proposed approach is to transform the optimization
problem into an unconstrained one, reducing the computational burden and complexity, especially
for online control determination.

All UAVs compute their own control inputs to track the reference trajectory. When there is no risk
of collision, all the UAVs solve the optimal control problem with an emphasis on trajectory tracking
by minimizing the error between the desired and actual outputs. However, if the risk of collision
arises, UAVs take action with respect to the attributed priority in the multi-UAV system. Only the UAV
with lower passing priority maximizes the distance between them to prevent a collision. This UAV
takes into account the predicted paths of the respective neighboring UAV and reacts when their paths
come in close proximity. After they pass the intersecting point at risk, the higher importance returns
to trajectory tracking in the optimal control problem. As collision avoidance is handled in the cost
function, the optimal problem remains unconstrained. However, the bounds on the control inputs are
still considered. The aim of this approach is to reduce the computational complexity to allow online
implementation. Moreover, as collision avoidance is handled only if there is a risk of intersecting paths,
the tracking accuracy is not affected when unnecessary.

Hereafter, the proposed strategy will be presented in more detail for the case of 2 UAVs.
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5.4.3 Mathematical formulation of distributed NMPC for collision avoidance

5.4.3.1 Notation

Table 5.1: Trajectory tracking NMPC variables and tuning parameters for a multi-UAV system
NMPC variables for a multi-UAV system

N Set of UAVs in the multi-UAV system
ŷik Predicted system output for UAV i at time instant k

yi,refk Reference output states for UAV i at time instant k
uik Control input for UAV i at time instant k
∆uik Variation between two consecutive control inputs for UAV i at time instant k and k − 1

∥v̂ik∥2 Norm of the predicted output velocity for UAV i at time instant k
vi,refc Reference constant mapping velocity for UAV i
dij,k Real distance between the UAVs i and j at time instant k, i, j ∈ N
dmin Minimal distance allowed between a pair of UAVs
Aij State-dependent sigmoid function depending on dij and taking values [0, 1]

NMPC tuning parameters for a multi-UAV system

Np Prediction horizon
Te Sampling time
Qi Weight matrix for the output cost for UAV i
Ri Weight matrix for the input cost for UAV i
Wi Weight scalar for the velocity cost for UAV i
Gij Weight scalar for the collision avoidance cost between a pair of UAVs, i, j ∈ N
ds Safety distance between a pair of UAVs, i, j ∈ N
S Security factor for safety distance
γ Tuning parameter for the sigmoid function Aij

The notation necessary for the proposed control approach is given in Table 5.1, including the system
variables, as well as the tuning parameters to be selected for the optimal NMPC performance. The
table includes variables and parameters, as is the case in a single-UAV mission, as well as additional
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ones that are introduced to address collision avoidance.

5.4.3.2 Distributed NMPC for constant velocity trajectory tracking

When the priority is allocated to a pair of UAVs in a cooperative mapping mission, higher passing
priority is given to the UAV that is completing its mapping task at the moment of collision risk. That
way, this UAV continues to track its reference trajectorywithout deviations. TheNMPC for theUAVwith
the highest allocated priority considers tracking cost, control cost, and velocity cost, as it was defined
for a single-UAV mission in Eq. 4.6. We assume that the UAV with the lower priority has sufficient
level of energy to complete the collision avoidance maneuver and land safely. The cost function of the
considered NMPC to be minimized is as follows:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

[
∥ŷik+n − yi,refk+n ∥

2
Qi

+ ∥∆uik+n−1∥2Ri
+ ∥∥v̂i,refk+n ∥2−v

i,ref
c ∥2W

]
, (5.2)

subject to:

u ∈ U , (5.3)
where U is the set containing bounded functions with given lower bound umin and upper bound

umax, i.e. umin ≤ u ≤ umax, representing dynamical limitations of the system.
The cost function includes three costs: tracking error, control smoothness, and constant velocity

error costs. The importance of maintaining the constant velocity for the mapping is addressed in the
last part of the cost function, as in a single-UAV mapping mission. Therefore, the control strategy of
the UAV with the higher passing priority focuses on completing the mapping task, without needing to
deviate from its reference path to avoid potential collision.

5.4.3.3 Distributed NMPC for collision avoidance

In the proposed distributed NMPC strategy, collision avoidance is handled by a UAV with the lower
passing priority, which is supposedly not performing the mapping task in the moment of collision
risk. In case of reference path modifications due to unforeseen conditions, the lower passing priority
is allocated to the UAV, which has its reference path changed. This UAV needs to handle collision
avoidance by ensuring that the minimal safety distance between the cooperative UAVs is respected.

Generally, collision avoidance is ensured by imposing a nonlinear constraint (as in [123]), where it
ensures that minimal safety distance is respected along the trajectory. However, relaxing the collision
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avoidance constraint can be transformed into a state-dependent penalty cost. That way, we proceed
with simplifying the solving of the optimization problem. The resulting problem is an unconstrained
optimization with the constraints imposed exclusively on the control inputs, which serve as control
saturation, and therefore, managing the feasibility of solving the optimization problem online can be
avoided.

Thus, the newly formulated cost function includes a new criterion whose weight depends on the
proximity of the UAV that needs to be prevented, and is formulated as follows:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

∥ŷik+n − yi,refk+n ∥
2
Qi

+ ∥∆uik+n−1∥2Ri
−

∑
j∈N ,j ̸=i

Aij∥dij,k+n∥2Gij

 , (5.4)

subject to:

u ∈ U . (5.5)
When a collision avoidance task is allocated to the lower-passing priority UAV, the constant velocity

is irrelevant. In this NMPC formulation (5.4), in addition tominimizing the tracking error and successive
change in control inputs as in (4.4), the last term in the cost function aims to maximize the distance
between the UAVs with the weight factor Gij . Depending on the immediate distance dij,k at time k,
weight Aij can take values in the interval [0, 1]:

Aij =
1

1 + eγ·D
, (5.6)

where

D = dij − dmin, (5.7)

dmin = ds ∗ (1 + S). (5.8)
Here, minimum safety distance dmin is multiplied by the safety factor S to account for the predic-

tion and to ensure respecting the defined safety distance ds. Depending on the differenceD between
the distance dij and dmin, Aij can take a value as in Figure 5.3.

Aij is a sigmoid function that helps avoid numerical issues due to the choice of a binary term
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Figure 5.3: Weight function Aij for different values γ.

(switch between 0 and 1 depending on the distance), similar to the sigmoid activation function in the
neural network. Tuning parameter γ determines the change from 0 to 1, i.e. determines how long
during the collision avoidance maneuver the UAV needs to deviate from its reference path before
focusing on the trajectory tracking.

In summary, the proposed NMPC cost function consists of:
• Weighted output cost (tracking error):
∥ŷik+n − yi,refk+n ∥2Qi

, with the weight matrix Qi,
• Weighted input cost (control smoothness):
∥∆uik+n−1∥2Ri

, with the weight matrix R,
• Weighted collision avoidance cost (Maximization of the distance between UAVs):
Aij∥dij,k+n∥2Gij

, with the weight scalar Gij and a state-dependent parameter Aij .
Algorithmic representation of the NMPC for the UAV with the lower passing priority that imple-

ments the proposed collision avoidance strategy is given in Algorithm 2.
To summarize, the proposed control strategy for a multi-UAV system consists in solving the opti-

mization problem with an additional criterion in the cost function. As long as the two UAVs are at a
safety distance, without the risk of collision, the control strategy resembles the classical NMPC. How-
ever, if the distance starts to pose a safety risk, the term in Aij takes a more important value, and the
penalty cost to maximize distance becomes active, and collision avoidance becomes a priority. On the
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Algorithm 2 NMPC for trajectory tracking with collision avoidance for a lower passing priority UAV
1: Initialize states xi

0, xj
0 and control inputs ui0,2: i, j ∈ N , j ̸= i

3: Get output positions pi(t0), pj(t0) and control inputs ui(t0),
4: Compute dij = ∥pi(t0)− pj(t0)∥2
5: Compute Aij(dij)
6: Minimize (5.4)
7: Return yi(t), ui(t), t = (t0, t0 +Np)
8: Apply ui(t0)
9: Compute yi(tk), k = 1
10: Set t1 → t0, y

i(t1)→ yi(t0), u
i(t1)→ ui(t0)

11: Repeat Step 3. - Step 10.
12: until End of simulation

other hand, priority allocation makes sure that only one UAV is handling collision avoidance, whereas
the other UAV implements the control strategy suitable for mapping, as presented in Chapter 4.

5.5 Simulation results and discussion

In this study, passing priority is given to UAV2, which aims to track the trajectory with accuracy, while
maintaining the reference constant velocity. On the other hand, UAV1 is attributed a lower passing
priority, and therefore, responsible for collision avoidance as the risk arises along the trajectory.

The layout of the reference paths of two UAVs in the studied mission is given in Figure 5.4 and
the relative coordinates of the starting and ending waypoints in Table 5.2. The reference altitude for
both UAVs remains constant at 20 m, as the returning-to-base flight is done at the same altitude as
mapping, and prior to landing.

Table 5.2: Reference waypoints for a 2-UAV mapping mission
Waypoint UAV1 (lower priority) UAV2 (higher priority)
start (11, 2, 20)m (1, 1, 20)m

finish (−4, 26, 20)m (16, 26, 20)m

Model parameter values for both UAVs in the mission are chosen as in a single-UAV case (Table
4.2). Tuning parameters and control input bounds for the simulation test case are given in Table 5.3.

Tuning parameters for collision avoidance safety distance ds and γ are chosen according to the
size of the UAV. Here, simulations are performed for the UAV model DJI Matrice 350 RTK, with the
dimensions (430×420×430) mm, when folded, with propellers, and diagonal wheelbase of 895 mm.
Therefore, the safety distance is chosen at ds = 1m to allow for secure passage of the two UAVs. The
distance is calculated between the centers of gravity of the two UAVs.
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Figure 5.4: Reference path for the mapping mission with two UAVs (UAV1 - blue, UAV2 - black).

Table 5.3: NMPC tuning parameter values and control input bounds for N = 2
Tuning parameter Value

Prediction horizon Np 10

Sampling time Te 0.1 s

Output cost weight Q1 = Q2 diag(1, 1, 5, 0, 0, 0)

Control input cost weight R1 = R2 diag(1, 102, 102)

Velocity cost weight W2 1

Collision avoidance cost weight G12 5

Safety distance ds 1m

Security factor S 0.5

Tuning parameter for Aij γ 5

Reference constant velocity v2,refc 3m/s

Control input Bounds (UAV1, UAV2)
Thrust T 5m/s2 ≤ T ≤ 15m/s2

Reference roll ϕref ϕref ≤ |30°|
Reference pitch θref θref ≤ |30°|

All simulation results in this chapter were obtained by solving the proposed distributed NMPC con-
trol problem using fmincon algorithm in Matlab. The initial state vectors for two UAVs in the control
problem are x1 = [11, 2, 20,−1.5, 2.4, 0, 0, 0]⊤, and x2 = [1, 1, 20, 1.5, 2.4, 0, 0, 0]⊤. The reference con-
stant velocity for the higher priority UAV2 is set at 3m/s, according to the reference path configuration
in this simulation case. Velocity components of both UAVs are initialized with reference to the desired
velocity size and direction.
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5.5.1 Nominal case

A nominal scenario denotes the absence of external disturbances and model uncertainties for both
UAVs in the cooperative multi-UAV system. Consequently, in the nonlinear model equations (2.32)-
(2.35), the disturbance vectors d1 = d2 are set to [dx, dy, dz]

T = [0, 0, 0]T , and the parameters α1 = α2

are equal to 1, as there is no uncertainties about the thruster efficiency.

Figure 5.5: Resulting trajectories for the two UAVs, where UAV1 (blue) is handling collision avoidance.

Figure 5.5 illustrates resulting trajectories for both UAVs in a simulation test case with intersecting
paths. The UAV with allocated passing priority keeps tracking its reference path, whereas the UAV that
handles collision starts to deviate from its reference path before the intersection point, regarding the
imposed safety distance. While it is assumed that all the states are measured and the UAV is aware
of the states of the other UAV due to the full exchange of information, the predictive nature of the
control strategy directly implies this anticipation in collision avoidance maneuvers.

As the risk of collision decreases, the respecting UAV changes the focus of its control strategy to
trajectory tracking and aims to reach the final reference position with a high level of accuracy.

More precise insights can be seen in Figure 5.6, where a separate view of position for each axis is
linked to time. It can be seen that the risk of collision arises at the intersection of the two reference
paths around t = 3.5 s. UAV1, therefore, starts the collision avoidance maneuver at t = 3 s in all three
directions, in order to avoid the collision in due course. In the given example, the altitude of the UAV1
increases by approx. 1m, but there are changes in x− and y− directions as well at the beginning of
the collision risk. It takes about 5s for the UAV1 to return to its reference position.
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Safety distance is defined considering the UAV size and is set to ds = 1 m. The distance between
the two UAVs is computed along the trajectory and shown in Figure 5.7. The minimal distance value
amounts to 1.04m, which means that the collision is successfully avoided.

Figure 5.6: Reference and resulting positions in x, y and z-direction for UAV1 (blue) and UAV2 (black).

The resulting velocity components in three directions are shown in Figure 5.8. UAV2, which is
performing themapping, has its velocity stable along the trajectory that does not change the direction.
It is the result of the constant velocity cost part of the NMPC for the higher-priority UAV. The other UAV,
UAV1, due to the collision avoidance maneuvers that start around t = 3 s, its velocity also deviates
from that point and stabilizes slowly towards the end. A similar behavior can be seen in the resulting
roll ϕ and pitch θ angles, where the leading UAV holds the low values of both angles, whereas the
lower priority UAV changes the values of the angles while remaining within the imposed bounds.
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Figure 5.7: Distance between the two UAVs in the mission along their trajectories.

Figure 5.8: Reference and resulting velocity components in x, y and z-direction for UAV1 (blue) andUAV2 (black).
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Figure 5.9: Reference and resulting roll ϕ and pitch θ angles for UAV1 (blue) and UAV2 (black).

The norm of velocities for both UAVs is shown in Figure 5.10. As there are no requirements im-
posed on keeping the constant velocity for UAV1, the velocity starts to deviate from the initial values
as the collision maneuver starts to happen. As this maneuver involves abrupt changes in direction,
the constant velocity is notmaintained. However, the importance of introducing the priority is empha-
sized as the higher priority UAV both tracks its reference trajectory without the need for deviation and
keeps its reference constant velocity. Therefore, it continues to perform its mapping task seamlessly.

Figure 5.10: Norm of velocity for UAV1 (blue) and UAV2 (black).
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Figure 5.11: Resulting control input values for thrust T , reference roll ϕref and pitch θref angles, forUAV1 (blue) and UAV2 (black).

Control inputs of the UAV handling collision avoidance in Figure 5.11 reach saturation point. More
specifically, saturation of all the control inputs happens around t = 3s, just as the UAV is beginning
to perform the collision avoidance maneuver. It seems to be rather abrupt, and therefore, the advan-
tage of the passing priority is highlighted. That way, the UAV with the higher passing priority avoids
aggressive changes in trajectory and, as such, has its resulting control smoothened. Nonetheless, the
saturation is reached only for the reference angles of the UAV1, while its resulting angles (Figure 5.9)
in reality attain smoother transitions.

Finally, control inputs in Figure 5.11 can be interpreted from the energy consumption perspective.
Changes in control inputs that are captured for UAV1 result in higher energy consumption. By allocat-
ing priority, we decrease the need for abrupt changes for one of the UAVs in the system, which results
in lower energy consumption for the entire multi-UAV system.

The comparison between collision avoidance with and without priority allocation is given in Ap-
pendix B, where the benefits of prioritized collision avoidance are demonstrated in more detail.
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5.5.2 Robustness assessment

In order to test the robustness of the previously presented control strategies for collision avoidance,
the analysis of the Monte Carlo simulations will be presented here. Test cases include constant exter-
nal disturbances d, and uncertainty of the model parameter of the thruster efficiency α.

Monte Carlo simulations included 50 test cases with randomly added external disturbances d1, d2,
and thruster efficiency α1, α2, different for the two UAVs. The external disturbance values vary in the
range dx,1, dx,2 = [−3, 3]m/s2, dy,1, dy,2 = [−3, 3]m/s2, dz,1, dz,2 = [0, 2]m/s2, while for the thruster
uncertainty α1, α2 = [0.8, 1.2].

The robustness is evaluated for the proposed collision avoidance strategy with distributed NMPC
for the lower passing priority UAV, and is compared with the NMPC, where collision avoidance is han-
dled as a nonlinear constraint, as in the equations below:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

[
∥ŷik+n − yi,refk+n ∥

2
Qi

+ ∥∆uik+n−1∥2Ri

]
, (5.9)

subject to:

∥dij,k+n∥2 ≥ ds, i, j ∈ N , j ̸= i (5.10)

u ∈ U , (5.11)
where the cost function contains the trajectory tracking and control smoothness cost, and collision

avoidance is ensured by respecting the nonlinear constraint in equation 5.10, which requires that the
distance between the UAVs i and j is greater than the imposed safety distance ds along the entire
trajectory.

As the robustness of the higher passing priority UAV was assessed in Chapter 4, this part will focus
on the results for collision avoidance robustness assessment for the lower passing priority UAV, which
is UAV1 in this simulation case. The configuration of the simulation case remains as it was for the
nominal case, and all the parameter values, control input bounds and reference positions are given
in Table 5.3 and 5.2, respectively. The reference intersecting paths are illustrated in Figure 5.4.

As the two objectives are in conflict, the trade-off between position accuracy and collision avoid-
ance, which causes deviations from the reference trajectory, needs to be reached. As the lower-level
priority UAV is not performing the mapping mission, but is flying to the base location, only the final
position error of the simulation casewill be considered, rather than the average RMSE along the trajec-
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tory. Additionally, when choosing the best NMPC strategy for the use case, computational complexity
plays a major role, as the control approach needs to enable a real-time implementation.

Results of the same test cases are compared between the proposed NMPC collision avoidance
strategy, referred to as a penalty cost, and the nonlinear constraint added to a classical NMPC.

Figure 5.12: Final position error at the end of simulation time for UAV1 for 50 Monte Carlo simulationswith random values of constant external disturbances d1, and model parameter uncertainty of thethruster efficiency α1.

Figure 5.12 shows the resulting position error for UAV1 with lower priority at the end of each sim-
ulation. When considering all the test cases, the mean final position error for penalty cost is 0.78 m,
whereas it amounts to 0.46 m for the constraint approach. Even though that can be translated to
nearly 40 % less for the nonlinear constraint, the final error is not a focus of the collision avoidance
problem. Moreover, such a difference arises from the large deviation in case 4, whereas inmost cases,
the results are quite similar.

On the other hand, Figure 5.13 shows that computational complexity in terms of CPU time is signif-
icantly lower for the relaxed optimal problem, where collision avoidance is handled as a penalty cost,
in comparison with the nonlinear constraint. With a mean value of 0.65s for the penalty cost, in com-
parison with a mean value of 1.35s for constraint, the computational complexity is lowered by 52 %

with the proposed unconstrained approach. This is an important insight for the potential real-time
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Figure 5.13: Resulting average CPU time for solving the NMPC control problem for UAV1 for 50 MonteCarlo simulations with random values of constant external disturbances d1, and model parameteruncertainty of the thruster efficiency α1.

implementation.
In Figure 5.14, the green line illustrates the imposed safety distance ds = 1m. When analyzing the

minimal distance along the trajectories in all the Monte Carlo test cases, it can be concluded that, in
the case of the penalty cost, the safety distance is not respected for 5 cases. However, in the worst-
case scenarios, where minimal distance reaches the lowest values, the penalty cost performs better
than the nonlinear constraint, as is the case in simulation number 4 and 45.

When comparing all three indicators: final position error, minimal distance, and computational
time, the proposedunconstrainedNMPC for collision avoidance, where the sole constraints are bounds
on the control variables, seems to represent a good compromise between the accuracy, performance
and ability to handle collision avoidance.

However, in order to fully ensure collision avoidance in real conditions, additional measures, e.g.,
flight corridor, should be established. That way, the ambiguity of the false prediction due to large
disturbances and uncertainties can be removed. The additional analysis where the flight corridor is
considered is given in Appendix C. Results insinuate that the flight corridor is sufficient for cases where
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Figure 5.14: Resulting minimal distance between the two UAVs along their trajectories for 50 MonteCarlo simulations with random values of constant external disturbances d1, d2, and model parameteruncertainty of the thruster efficiency α1, α2.

the planned paths of the UAVs do not intersect. This method can also help enhance the robustness
of such cases.

Appendix C also compares different collision avoidance strategies (including penalty cost, nonlin-
ear constraint, and flight corridor). However, the method detailed in this chapter is chosen as the one
that has demonstrated the best compromise between performance, computation time, and imple-
mentation complexity, which is to handle collision avoidance as a penalty cost.

5.6 Conclusion

Employing multiple UAVs in a cooperative mission with a shared task can significantly reduce time
and effort for the mission completion. However, certain challenges need to be addressed, such as
coordination between the UAVs that need to ensure safety by avoiding possible collisions.

The proposed distributed NMPC introduces the priority allocation mechanism, where only one
UAV is assigned the responsibility of managing collision avoidance at any given time. By allocating the
priority, there is a reduced risk of unwanted and unexpected coupled maneuvers, and path alterna-
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tions do not provoke additional changes for the entire multi-agent system. This strategy simplifies the
control problem and minimizes unnecessary maneuvers, thereby conserving energy.

In the proposed control approach, collision avoidance was incorporated into the control problem
as a penalty cost, effectively relaxing the control problem while maintaining safety. This method en-
sures that the UAVs remain on their optimal paths unless a collision is imminent, in which case the
avoidance maneuvers are triggered.

The optimal control problem for a multi-UAV agricultural mapping mission was evaluated with a
focus on efficiency and robustness. The proposed approach significantly improves the efficiency of
themappingmission by reducing the overall computational time required for solving the optimal con-
trol problem. The simulation results demonstrate a certain level of robustness of our control strategy
against disturbances and uncertainties, showcasing the system’s ability to adapt and maintain perfor-
mance in dynamic and unpredictable environments. However, in certain cases, the safety distance
was not respected. Therefore, additional mechanisms should be considered to improve the robust-
ness level.

This study sets the groundwork for the implementation of multiple UAVs in a cooperative mapping
mission. Nonetheless, further exploration and development in this dynamic field is envisioned.
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Chapter 6

Application to mapping of an

agricultural field

6.1 Introduction

The rapid integration of UAVs, particularly quadrotors, into precision agriculture, has opened new op-
portunities for efficient and detailed agricultural mapping. In order to enhance the capabilities of a
single quadrotor for agricultural mapping, three critical challenges are addressed with the proposed
energy-awaremission planning: path planning optimization, battery allocation optimization, and base
location optimization. A systematic experimental approach in this chapter was aimed at demonstrat-
ing how these optimizations could improve the efficiency, coverage, and quality of agricultural map-
ping missions.

The traditional methods of agricultural monitoring often face limitations in spatial resolution, tem-
poral frequency, and susceptibility to environmental conditions. In contrast, quadrotors equipped
with advanced sensors and imaging technologies can provide high-resolution, real-time data essen-
tial for precise agricultural tasks and beyond. However, the operational constraints of quadrotors,
particularly related to battery life and flight path efficiency, necessitate innovative solutions to maxi-
mize their potential.

The energy-aware battery management algorithm for path planning, developed in Chapter 3, was
extended for experimental use cases and implemented on a real system to minimize flight distance
and optimize coverage. Battery allocation optimization strategy was employed to extend mission du-
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ration, and strategic base location positioning was utilized to reduce energy consumption and down-
time. The results of these optimizations were evaluated through field experiments, focusing on key
performance metrics such as battery usage, mission duration, and overall mission efficiency.

6.2 Experimental study

6.2.1 Quadrotor energy-aware mapping mission

For this experimental study, multiple base locations can be used in the same mission, i.e., they can
be combined when allocated to one battery subpath, such that the operator moves across the field
area. Nonetheless, the requirements for accessibility remain the same, with an additional possibility
of moving from one location to another seamlessly and in a reasonable amount of time.

The optimization strategy for battery allocation in Chapter 3 is extended with the base location
choice included in the optimization problem. Therefore, certain adjustments need to bemade to allow
for a multi-base choice optimization. Unlike the approach modeled in Chapter 3, where the choice of
the base location was made iteratively, for the experimental part, this choice is included within the
optimization problem. The main motivation for such modification is to allow different base locations
to be chosen within the same mission. While the UAV takes off at one base location, it can land at a
different location, to further optimize the mission time and battery use. The time for subpath mission
completion allows the operator to move across the field area if necessary.

In that sense, in addition to K segments that are linking K + 1 nodes, Kb segments linking each
waypoint to each potential base location b ∈ {1, . . . , B} need to be introduced. Thus, node kb now
denotes each waypoint k individually attributed to each base b, kb ∈ {1, . . . ,Kb}, where Kb = (K +

1)×B. Coordinates of the base location possibilities are predefined.
Modified decision variables are given in Table 6.1. The decision variable xj,k is not considered by

the choice of the base location, as it designates covering the waypoints without their link to the base
station.
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Table 6.1: Decision variables for a multi-base battery allocation optimization problem
Decision variables

xj,k Allocation of the segment k to the battery j
uj,kb Allocating node kb as the first waypoint of the subpath for the battery j
vj,kb Allocating node kb as the last waypoint of the subpath for the battery j

The modified ILP optimization problem is as follows:

min
x,u,v

∑
j∈J

[ K∑
k=1

xj,klk +

Kb∑
kb=1

(uj,kb lb,kb + vj,kb lb,kb)

]
(6.1)

subject to:

K∑
k=1

xj,klk
1

vc
+

Kb∑
k=1

(uj,kb lb,kb + vj,kb lb,kb)
1

vmax
≤ tj , ∀j ∈ J (6.2)

J∑
j=1

xj,k = 1, ∀k ∈ {1, . . . ,K} (6.3)

Kb∑
kb=1

uj,kb ≤ 1, ∀j ∈ J (6.4)

Kb∑
kb=1

vj,kb ≤ 1, ∀j ∈ J (6.5)

Kb∑
kb=1

uj,kb =

Kb∑
kb=1

vj,kb , ∀j ∈ J (6.6)

Kb∑
kb=1

kvj,kb −
Kb∑
kb=1

kuj,kb ≥
Kb∑
kb=1

uj,kb , ∀j ∈ J, k = kb − (

⌊
kb

(K + 1)

⌋
− 1)(K + 1) (6.7)

xj,k +

b·(K+1)∑
l=(k+(b−1)(K+1))+1

uj,l ≤ 1, ∀j ∈ J,∀k ∈ {1, . . . ,K},∀b ∈ {1, . . . , B} (6.8)

xj,k +

k+(b−1)(K+1)∑
l=1+(b−1)(K+1)

vj,l ≤ 1, ∀j ∈ J,∀k ∈ {1, . . . ,K},∀b ∈ {1, . . . , B} (6.9)
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K∑
k=1

xj,k =

b·(K+1)∑
k=1+(b−1)(K+1)

kvj,k −
b·(K+1)∑

k=1+(b−1)(K+1)

kuj,k, ∀j ∈ J,∀b ∈ {1, . . . , B} (6.10)

xj,k ≤ uj,kb + xj,k−1, ∀j ∈ J,∀k ∈ {2, . . . ,K}, kb = k + (b− 1)(K + 1),∀b ∈ {1, . . . , B} (6.11)

The equations (6.1)-(6.11) resemble equations (3.1)-(3.11) presented in Chapter 3, with the choice
of the base location linked to the decision variables uj,kb and vj,kb . In this extension, all the K + 1

nodes are linked to B bases. Therefore, in equations where the decision variable xj,k is placed with
decision variables uj,kb and/or vj,kb , there is a need of normalizing subscripts k and kb. This is done
via equations where k = f(kb) in Eq. 6.7 and, similarly, kb = f(k) in Eq. 6.11.

The modified problem considers a 2D trajectory for each segment, as well as for the base, i.e., all
the waypoints, including the base, are set at the equivalent altitude. Thus, vertical take-off and landing
are not included in the optimization problem. We consider a certain security level for initial battery
capacity in order to allow for safe take-off and landing.

Because take-off and landing are executed out of the optimization solution scope, and the altitude
is kept constant throughout the entire mapping task, the evaluated problem considers a 2D path
layout.

6.2.2 Experimental setup

The experimental validation of the proposed optimization strategy is performed on a quadrotor with
a mounted multispectral camera. DJI quadrotor model Matrice 350 RTK of dimensions (430×420×430)
mm (L×W×H), when folded, with propellers, and with a diagonal wheelbase of 895mm, is suitable for
performingmappingmissions in an agricultural setting, and is shown in Figure 6.1. With two TB65 bat-
teries, the total weight comes to approx. 6.47 kg can reach the horizontal velocity of 23m/s. Acquiring
NDVI images, a measure of the amount and vigor of vegetation on the land surface, is provided with
two Micasence RedEdge MX Multispectral NDVI cameras, shown in Figure 6.2. The gimbal of the UAV
ensures camera stabilization despite the changes in attitude.

To facilitate the validation of the path planning optimization with battery allocation, the mapping
velocity, as well as the velocity of flying from/to the base location, are set to be equal due to the char-
acteristics of the DJI mission implementation system on the DJI Pilot 2 app, i.e. vc = vmax in all the
experiments. Trajectories are tracked using a DJI internal guidance system that prioritizes the accu-
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racy of the given waypoints in a mission route in a continuous mode, without stopping at waypoints,
and, therefore, cannot maintain the reference’s constant velocity when performing the turning ma-
neuvers, unlike the NMPC for trajectory tracking proposed in Chapter 4. As the UAV slows down at
each turn, the time difference needs to be accounted for in the optimization problem. Thus, the input
velocity vc = vmax for the battery allocation algorithm is considered to be lower than in the real-time
implementation.

(a) (b)
Figure 6.1: DJI Matrice 350 RTK with mounted multi-spectral camera: (a) Top view (left-hand side); (b)Front view (right-hand side).

Figure 6.2: Two Micasence RedEdge MX Multispectral NDVI cameras that are mounted on the DJIquadrotor.

DJI Matrice 350 RTK uses a pair of TB65 Li-Ion batteries. Based on experience, a pair of batteries
can perform a flight of approx. 30min on full discharge. To evaluate the proposed battery allocation
optimization approach, we have 3 batteries available to be employed in each mapping mission. Their
capacities vary as they have a different initial state-of-charge (SoC), which is lower than 100%. Open-
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circuit voltage for SoC estimation with a charge and discharge cut-off voltage of a Li-ion cell of approx.
4.2 V and 2.5 V , respectively, given in [130], can be simplified, such that the discharge is done in a
linear manner for the most part. DJI batteries can be recharged to 70% in 20min with a fast charge.

Because of the linearization of the battery discharge behavior, energy consumption will be consid-
ered linear, regardless of the SoC at the beginning of the experiments.

6.2.3 Experimental validation

Experimental validation was done on two test sites in Croatia with different shapes and characteris-
tics. At the test site Jazbina, the area of interest represents a part of the vineyard that was mapped
and resulted in an NDVI image for the purpose of vegetation density analysis. The second test site,
Borongaj, is an area that is interesting for an infrastructural project. The point cloud resulting from
LiDAR imaging can be of interest for distinguishing vegetation, ground, and different specific objects.

For both test sites, the battery allocation optimization problemwas evaluated and comparedwith a
benchmark solution from [77], where the allocation is done with regard to the proportional capacities
of available batteries.

6.2.3.1 Test site Jazbina, Croatia

Figure 6.3: Test site Jazbina, area of interest for the mapping task framed in yellow.

Jazbina is a vineyard test site of the Faculty of Agriculture at the University of Zagreb. For this experi-
ment, the chosen area of interest framed in yellow is shown in Figure 6.3. The area of interest has an
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irregular shape and is accessible by a road on the left side. The base locations can be placed along
the edges of the field, as the terrain is flat enough for the operator to perform take-off and landing.

Figure 6.4: Optimal solution for the battery allocation in simulation for the area of interest at the testsite Jazbina with two base locations (red: subpath for battery 1, yellow: subpath for battery 3).

Of the three initially available batteries, two were employed in the mapping mission, and the op-
timization solution is given in Figure 6.4. Area decomposition alongside the longer edge resulted in
546 waypoints that are distanced at 6m, with the exceptions near the edges, where the waypoints are
placed more closely. There are two potential base station locations. One is placed close to the first
waypoint, and the other is located closer to the last waypoint in order to prevent long passages for
flights from/to the base station. Following the multi-base battery allocation optimization formulated
in this chapter, both base locations can be used during a givenmission. Regarding the size of the opti-
mization problem, there are 10920 decision variables and 11482 constraints for this test case. Figures
6.5 illustrate the two-stage complete mapping mission in a Google Earth view.
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(a) (b)
Figure 6.5: Google Earth view on planned paths for mapping of the test site Jazbina: (a) Battery 1 (left-hand side); (b) Battery 3 (right-hand side).

Table 6.2 represents the solution after simulation and is compared with the results after the ex-
periment performed on a real quadrotor system. Out of three possible batteries, only two were used.
Optimization resulted in not needing to employ battery 2.

In experiments, initial capacities are reduced in relation to the actual capacities in order to account
for the safe take-off and landing of each battery. The beginning of the mission and measurement,
therefore, starts after the initial take-off and ends before the landing, both of which are at the position
of a given base location and at the altitude of the mapping mission at 50m. Velocity is considered to
be constant in the simulations during the mapping task for each battery. However, quadrotor type DJI
cannot maintain the reference velocity at turning waypoints and, therefore, utilizes more time and,
consequently, more battery. Thus, the constant velocity vc set in simulations is decreased by 20 %.
This way, the resulting mission times in simulations are slightly overestimated when compared to the
experimental mission duration. The final percentage of each of the two batteries employed in the
mission is superior to the estimated consumption, but it is essential to preserve the minimum level
of battery capacity for safe mission completion. The experimental results are, therefore, satisfying as
they represent a small difference compared to the simulations, but on the safe side. The real total
mission flight time amounts to just under 13min.

As the quadrotor is performing a continuous flight without stopping at each waypoint, the images
are acquired with a timer set to make a snapshot with the multi-spectral camera every 1 sec. Once
the mapping mission is finalized, the snapshots acquired in a logical order are fused into a complete

134



Table 6.2: Simulation and experimental results of battery capacities used for the optimized mappingmission plan at the test site Jazbina
Battery j 1 2 3

Initial battery capacity 13min 8min 11min

Battery employment duration (simulation, vc = 4m/s) 7min 18 sec 0min 6min 42 sec

Battery employment duration (experiment, vc = 5m/s) 6min 43 sec 0min 6min 15 sec

Battery percentage at the beginning of the experiment 43 % 27 % 37 %

Battery percentage at the end of the experiment 22 % 27 % 20 %

image. Figures 6.6a and 6.6b represent the final result as NDVI and RGB images, respectively. For
agricultural purposes, NDVI is an interesting indicator as it quantifies vegetation of an agricultural
field. In this case, the intensity of the color green in Figure 6.6a represents the vegetation density. The
lighter green indicates lower-density vegetation, such as grass, whereas darker green indicates the
lush vegetation, here, the vines.

(a) (b)
Figure 6.6: Google Earth view on planned paths formapping of the test site Jazbina: (a) NDVI (left-handside); (b) RGB (right-hand side).

• Comparison of the optimal solution against the proportional approach

The optimal solution previously presented was evaluated against the proportional benchmark
approach from [77]. Because the proportional approach does not involve optimization, a single
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base location is considered. The proportional solution for three available batteries is shown in
Figure 6.7.

Figure 6.7: Proportional approach solution for the battery allocation in simulation for the area of in-terest at the test site Jazbina with one base location (dashed blue: subpath for battery 1, dash-dotgreen: subpath for battery 2, yellow: subpath for battery 3).

The results of the comparison are given in Table 6.3. In the proportional scenario, all the batter-
ies are employed for the equivalent of approx. 50% of their initial capacities. On average, before
each mission subpath flight, the preparation lasts 5 min, which includes battery placement or
replacement, mission route upload, as well as take-off and landing. With regard to employment
time that varies from approx. 3 min to 7 min, the preparation time of 5 min represents an im-
portant portion of total mission time. Therefore, by reducing the number of batteries employed
in the mission, the total mission duration in this particular case was reduced by 23 %. This result
also emerges from the base location optimization, as the optimal approach uses both possibili-
ties in order to enhance the mission efficiency. In addition, the level of mission safety was also
increased in the optimized plan, as there were fewer take-offs and landings performed.
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Table 6.3: Comparison of the experimental results for optimal and proportional strategy for the testsite Jazbina
Optimal strategy Proportional strategy

Battery 1 Mission preparation time 5min 5min

Initial capacity: 13min Mission employment duration 6min 43 sec 5min 52 sec

Battery 2 Mission preparation time 0min 5min

Initial capacity: 8min Mission employment duration 0min 3min 43 sec

Battery 3 Mission preparation time 5min 5min

Initial capacity: 11min Mission employment duration 6min 15 sec 5min 9 sec

Total mission duration 22min 58 sec 29min 44 sec

• Comparison of the optimal solution against the suboptimal area configuration

Basedon the study in [2], the optimal configuration of a CPPproblem is the back-and-forth (BF) area
decomposition along the longest side of the area of interest because it enables the minimum number
of turns. Turning maneuvers require change in acceleration and reducing velocity at turning points.
By reducing the turning points, the velocity profile during the mapping mission is more uniform, and
a shorter time is required to complete the mission. Consequently, this configuration results in a lower
energy consumption.

The optimal configuration result in Figure 6.4 is compared to the solution of the battery allocation
optimization for a path configuration perpendicular to the optimal configuration, shown in Figure 6.8.
This configuration is issued along the shortest side of the mapping field and includes the same two
base location choices. Table 6.4 reflects the increase in the total mission durationwhen comparing the
optimal horizontal configuration to the suboptimal vertical configuration with more turning maneu-
vers. Both solutions were issued from the proposed optimization strategy. However, the horizontal
configuration results in 10 % lower total mission duration time when compared to the vertical BF con-
figuration. This difference results from a higher number of turns, as the DJI quadrotor reduces its
velocity to v = 1m/s at each turn.
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Figure 6.8: Optimal solution for the battery allocation in simulation for the suboptimal vertical config-uration of the area of interest at the test site Jazbina with two base locations (red: subpath for battery1, yellow: subpath for battery 3).

Table 6.4: Comparison of the experimental results for the optimal horizontal and suboptimal verticalBF path configuration for the test site Jazbina
Horiz. BF configuration Vert. BF configuration

Battery 1 Mission preparation time 5min 5min

Init. capacity: 13min Mission employ. duration 6min 43 sec 6min 35 sec

Battery 2 Mission preparation time 0min 0min

Init. capacity: 8min Mission employ. duration 0min 0min

Battery 3 Mission preparation time 5min 5min

Init. capacity: 11min Mission employ. duration 6min 15 sec 8min 53 sec

Total mission duration 22min 58 sec 25min 28 sec

6.2.3.2 Test site Borongaj, Croatia

The second test site, Borongaj, represents an area that is interesting for infrastructural projects. The
full mission area is shown in Figure 6.9.

For mission planning, area decomposition is done along the longest side of the area of interest,
such that the number of turns is minimized. The area decomposition results in 435 waypoints dis-
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tanced at 6 m, except for the edges, where the density of the waypoints is higher. Mission planning
results are compared between the proposed optimization strategy and the proportional solution in
order to evaluate the benefits of the proposed approach further. For the optimal approach, there are
twopossible base locations included in themappingmission, whereas one base location is determined
for the proportional approach.

Figure 6.9: Test site Borongaj, area of interest for the mapping task framed in yellow.

Table 6.5: Experimental results of battery capacities used for the optimized mapping mission plan atthe test site Borongaj
Battery j 1 2 3

Initial battery capacity 10min 8min 6min

Battery employment duration 4min 33 sec 5min 48 sec 0min

Battery percentage at the beginning of the experiment 33 % 27 % 20 %

Battery percentage at the end of the experiment 18 % 7 % 20 %

Figure 6.10 illustrates the solution of the optimal approach in simulation, and Figure 6.11 the result
from the simulated proportional approach. As the area of interest is fairly small, low initial battery
capacities are chosen for this evaluation. This case represents an interesting challenge when there
is no sufficient time for battery recharge, and available residual capacities can be used to complete
the mapping of a certain area. Initial capacities and consumption of each battery is given in Table 6.5,
whereas the resulting mission times are given in Table 6.6. The total mission duration is shortened for
19 % for the optimal approach in comparison to the proportional one. Again, the largest difference
results from an additional battery replacement.
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Figure 6.10: Optimal solution for the battery allocation in simulation for the area of interest at the testsite Borongaj with two base locations (red: subpath for battery 1, dashed blue: subpath for battery 2).

Figure 6.11: Proportional approach solution for the battery allocation in simulation for the area ofinterest at the test site Borongaj with one base location (dashed blue: subpath for battery 1, dash-dotgreen: subpath for battery 2, yellow: subpath for battery 3).

The resulting image from UAVmapping is a highly detailed and accurate representation of the site
obtained with LiDAR, as shown in Figure 6.12. It can serve several purposes in infrastructural planning
as it provides a comprehensive overview of the current state of the infrastructure, including roads,
buildings, and natural features.
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Figure 6.12: Resulting point cloud obtained with LiDAR representing detailed mapping area at Boron-gaj test site.

Table 6.6: Comparison of the experimental results for optimal and proportional strategy for the testsite Borongaj
Optimal strategy Proportional strategy

Battery 1 Mission preparation time 5min 5min

Initial capacity: 10min Mission employment duration 4min 33 sec 4min 11 sec

Battery 2 Mission preparation time 5min 5min

Initial capacity: 8min Mission employment duration 5min 48 sec 2min 52 sec

Battery 3 Mission preparation time 0min 5min

Initial capacity: 6min Mission employment duration 0min 3min 3 sec

Total mission duration 20min 21 sec 25min 6 sec

6.3 Conclusion

This experimental study was presented to validate the proposed battery management optimization
approach that was done in simulations. In that manner, the benefits of planning the mission in ad-
vance, in terms of batteries that affect logistics, were presented. The findings from these experiments
highlighted significant improvements in the efficiency and effectiveness of agricultural mapping mis-
sions. The optimized path planning aims to consume less battery for tasks that do not include map-
ping, such as flying to and back to the base station. This was shown in the performed experiments by
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reducing the mission flight time by around 20%, as well as using 2 instead of 3 available batteries in
both test cases.

Consequently, fewer batteries are needed to complete the mission, and quadrotors are able to
operate for longer periods without interruptions. Additionally, the strategic base location positioning
contributed to a noticeable reduction in energy consumption, further enhancing the sustainability and
operational efficiency of the missions.

The performed experiments show that the total mission duration depends on two factors: the
number of batteries employed in a mission, and the path configuration issued from the initial area
decomposition. Battery replacement task, aswell as individualmission preparation, require significant
time, which extends the mission duration. On the other hand, the initial path configuration needs
to minimize the number of turning maneuvers, as they also influence the mission efficiency, mainly
because of the reduction of speed needed for each turn.

Overall, the integration of these energy-aware mission planning strategies into the use of quadro-
tors for agricultural mapping represents a significant advancement in precision agriculture. By ad-
dressing the critical challenges of path planning, battery management, and base location, these op-
timizations not only improve the efficiency and coverage of mapping missions but also pave the way
for more sustainable and effective use of UAVs in agriculture.
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Chapter 7

Conclusion and perspectives

7.1 Conclusion

The motivation for this PhD thesis originates from the growing need to enhance agricultural yields
while simultaneously integrating environmental sustainability with economic viability. As global food
demand increases, there is an urgent requirement to optimize agricultural practices that not only
maximize output but also protect the environment. This research aims to address this by developing
a comprehensive approach to agricultural mapping with the use of a single or multiple UAVs. The final
goal is to provide valuable, actionable information to farmers, based upon which they can proceed
with the decision-making process.

The contribution of this manuscript is threefold.
First, the proposed batterymanagement optimization strategy ensures thatmission completeness

is considered in the planning phase. Aside from ensuring that the mission is completed with available
resources, the introduced planning strategy optimizes the mapping mission from a time, energy, and
safety perspective. Consideration of the base location further enhances all of the above-mentioned
criteria.

As a second contribution, following the mission plan issued from the optimization strategy, the
proposed control strategy based on nonlinear MPC handles accurate trajectory tracking while main-
taining the constant mapping velocity. An added layer in the control scheme that mitigates parameter
uncertainties in the UAV dynamics model, as well as the external disturbances, improves the robust-
ness of the tracking control. Followingmultiple simulation results with random values of uncertainties
and disturbances, the introduced NMPC is proven to provide good results in unknown conditions.
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Lastly, to improve the efficiency of the mapping mission, a multi-UAV system is considered for
performing the mapping task to further decrease the time needed for its completion. The main chal-
lenge that arises from cooperative multi-UAV missions is to ensure coordination between the UAVs,
i.e. successful collision avoidance to guarantee the mission safety. In this thesis, the proposed NMPC
control strategy incorporates prioritized trajectory tracking with collision avoidance. By allocating pri-
ority in the multi-UAV system, unnecessary maneuvers are eliminated, as only one UAV handles the
collision avoidance. Thus, apart from enhanced safety, the energy needed for collision avoidance is
also decreased, alongside the computational time for computing the appropriate control inputs. By
relaxing the collision avoidance constraint, the proposed multi-objective NMPC is tested in unknown
conditions by adding uncertainties and disturbances.

Finally, the successful implementation of the battery management optimization strategy on the
real system and in real settings suggests the advantages of the proposed developments in themission
planning phase.

7.2 Perspectives

The developments in this thesis open plenty of possibilities for future work.
Regarding the planning phase of themappingmission, unforeseen events, such as insufficient bat-

tery levels for completion or faults in the system, must be anticipated and accounted for. These unex-
pected challenges can disrupt the mission’s progress, leading to incomplete data collection or system
failures. To mitigate these risks, it is essential to implement an online replanning strategy that allows
for real-time adjustments to the mission flight plan. This approach ensures that any ad hocmodifica-
tions necessary to accommodate changing conditions or emergencies can bemade promptly, thereby
maintaining the operational efficiency and effectiveness of all the UAVs involved in the mission.

Similarly, the criteria for online priority allocation require thorough analysis and integration be-
tween the planning and control phases of the mission flight. This is crucial to ensure that resources,
such as UAVs and their associated tasks, are dynamically and efficiently allocated in response to real-
time changes in mission priorities or environmental conditions. By refining these criteria, the system
can prioritize critical tasks, such as data collection in high-risk areas or the immediate return of UAVs
facing potential system failures. Integrating this priority allocation seamlessly between the planning
and control phases can enhance the overall adaptability and resilience of the mission, enabling more
effective management of unforeseen challenges and optimizing mission outcomes.
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Furthermore, No-fly zones (NFZs) need to be carefully considered in the path planning phase to en-
sure safe and efficient UAV operations. These zones, which may include areas with restricted airspace
or locations with potential hazards, such as nearby infrastructure, must be identified and incorpo-
rated into the mission’s flight paths. For instance, static obstacles like an electric grid situated in the
middle of an agricultural field that needs to bemapped pose significant risks to the UAVs. By factoring
in such obstacles during the path planning stage, the UAVs can be directed to navigate around them,
thus preventing collisions and ensuring the continuity of the mapping mission.

When it comes to the control strategy for trajectory tracking, one of the primary challenges of
NMPC is its high computational load. Future work should focus on developing approaches to reduce
this complexity, possibly through algorithmic optimizations or leveraging high-performance comput-
ing resources. This is essential to enable real-time implementation, ensuring that the control strategy
can be effectively applied in dynamic and time-sensitive environments. Moreover, as agriculturalmap-
ping systems become larger andmore complex, scaling NMPC to handle these systems effectively will
be crucial, and potential solutions should be explored.

With regard to robustness guarantees, combining NMPC with other control methodologies, such
as adaptive control or robust control, can enhance its performance and robustness. Future research
should explore these integrations to create more versatile and resilient control systems.

Overall, while the proposed NMPC demonstrates significant potential for improving agricultural
mapping, ongoing research and development will be essential to address these challenges and fully
realize its capabilities.
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Appendix A

Small-scale example solution for the

battery management optimization

Results of the optimization problem simulations for a small-scale example are given in this appendix,
showcasing differences in results that are caused by different path configurations, namely: back-and-
forth movements alongside the longest side (Figure A.1), back-and-forth movements alongside the
shortest side (Figure A.2), circular path (Figure A.3), and back-and-forth movements alongside the di-
agonal (Figure A.4). All the results include a single base location option at the origin of the reference
coordinate system. There are three available batteries for themission flight, with capacities of 0.1min,
0.05min, and 0.01min, respectively. Available capacities are chosen to be small enough to represent
the need for battery allocation on a small area of the field, 4m x 5m. The results of the battery allo-
cation, with the overview of the used and remaining capacities in terms of percentage%, are given in
Table A.1. To interpret the results accurately, it is necessary to keep in mind that the second battery
has exactly half of the capacity of the first battery. In all the cases, the third battery was not employed.
This is not a realistic case, as it only represents the impact of the change in the path configuration on
the flight mission time, as well as the battery consumption.

From the results, it can be concluded that for an area of a rather small scale, the choice of path
configuration impacts the mission duration only slightly. The main factors of the different results are,
by far, the position of the base station and the total distance between the waypoints. In a real setting,
if the velocity is not maintained constant, the flight duration, as well as the energy consumption can
be impacted by the number of turns as well.
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Figure A.1: Optimization results for a flight path configuration of a rectangular field area 4m x 5m:back-and-forth movements alongside the longest side.

Figure A.2: Optimization results for a flight path configuration of a rectangular field area 4m x 5m:back-and-forth movements alongside the shortest side.
Table A.1: Simulation results of battery capacities used for the small-scale example mapping mission

Figure A.1 Figure A.2
Battery j 1 2 3 1 2 3

Battery employment% 73.95 % 83.47 % 0 % 78.22 % 70.14 % 0 %

Remaining battery% 26.05 % 16.53 % 100 % 21.78 % 29.86 % 100 %

Total mission duration 0.1159min 0.1132min

Figure A.3 Figure A.4
Battery j 1 2 3 1 2 3

Battery employment% 65.89 % 95.08 % 0 % 97.55 % 96.94 % 0 %

Remaining battery% 34.11 % 4.92 % 100 % 2.45 % 3.06 % 100 %

Total mission duration 0.1134min 0.1460min
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Figure A.3: Optimization results for a flight path configuration of a rectangular field area 4m x 5m:circular movements.

Figure A.4: Optimization results for a flight path configuration of a rectangular field area 4m x 5m:back-and-forth movements alongside the diagonal.
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Appendix B

Evaluating the impact of priority

allocation in NMPC for collision

avoidance

For clarity and simplicity, simulation results of nonlinear trajectory optimization are presented for a
multi-UAV system with 2 agents. The simulation is performed for Crazyflie 2.0 Nano Quadcopters, a
small and lightweight quadcopter measuring 92 mm between diagonally opposed motor shafts. In all
the scenarios, the parabolic configuration of desiredpaths is defined as follows, pref = [prefx , prefy , prefz ]⊤

with:

prefx (tk) = (
√
p0x +

√
pfx −

√
p0x

Tf
· tk)2 (B.1)

prefy (tk) = p0y +
pfy − p0y
Tf

· tk (B.2)
prefz (tk) = p0z +

pfz − p0z
Tf

· tk (B.3)

This trajectory represents a path between two consecutive waypoints, where the UAVs take snap-
shots of the field, where the initial position is [p0x, p0y, p0z]⊤, and final desired one is [pfx, pfy , pfz ]⊤ at final
time Tf . Reference velocity is zero, vref = 0. Bounds on the control inputs were also considered:
|T | ≤ 15, |ϕref | ≤ 50° and |θref | ≤ 50° . Values of the parameters used in the simulation study
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are given in Table B.1. Weighting matrices are chosen as Q1 = Q2 = diag(102, 102, 102, 10, 10, 10),
R1 = R2 = diag(1, 1, 1).

Table B.1: Parameter values
τϕ, τθ (0.7, 0.5)s g 9.81m/s2

Kϕ,Kθ 1 Ax, Ay, Az (0.1, 0.1, 0.2)s−1

Te 0.1s [p0x,1, p
0
y,1, p

0
z,1] [1, 1, 3]m

Tf 10s [p0x,2, p
0
y,2, p

0
z,2] [5, 1, 3]m

ds 0.3m [pfx,1, p
f
y,1, p

f
z,1] [5, 2, 3]m

G12 200 [pfx,2, p
f
y,2, p

f
z,2] [2, 2, 3]m

Simulation results for the nominal case, i.e. without model mismatch nor external disturbances
(d = 0) are presented for the prediction horizonNp = 10. In this case, Agent 1 has a lower priority and
successfully avoids collision by alternating its path at the intersection point. Table B.2 shows the abso-
lute final tracking errors andminimum distance between the UAVs along the trajectory. Theminimum
distance between the agents is slightly below the safety distance ds = 0.3m and this can be viewed
as a reaction delay. Figure B.2 shows the resulting trajectories with and without consideration of the
priority. If there is no priority, both agents alternate their trajectories around the point of intersec-
tion. On the other hand, if the passing priority is given to Agent 2, there are no aggressive maneuvers
nor alternations of the path for this agent. All collision avoidance efforts are taken by Agent 1, that
prioritizes maximizing the distance between the two agents when collision risk arises. Thus, Agent 1
ensures that the safety distance is respected along the trajectory.

Figures B.3 and B.4 illustrate the change in control inputs when implementing passing priority, for
Agent 1 and Agent 2 respectively. By removing the collision avoidance term for Agent 2 with passing
priority, its control inputs become smooth and its real trajectory does not deviate from the initially
planned path. Since Agent 1 always considers collision avoidance, its control inputs still have higher
variation in comparison to Agent 2. However, considering the priority helps in smoothing the control
inputs of Agent 1. It could be further improved by tuning the weights for the input cost in the cost
function.
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Figure B.1: Reference and resulting trajectories.

Table B.2: Final tracking errors and minimum distance - nominal case
∥ϵ1(Tf )∥ ∥ϵ2(Tf )∥ dmin

0.01m 0.01m 0.298m
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Figure B.2: Outputs for Agent 1 and Agent 2.
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Figure B.3: Control inputs for Agent 1.
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Figure B.4: Control inputs for Agent 2.
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Appendix C

Comparative study of NMPC

strategies for prioritized trajectory

tracking with collision avoidance in

mapping missions

C.1 Multi-UAV mapping mission

A simplified layout of the reference paths for agricultural mapping with two UAVs is given in Figure C.1
and the coordinates of the waypoints in Table C.1.

Table C.1: Reference waypoints
Waypoint UAV1 UAV2
start (0, 0, 0)m (0.5, 0.5, 0)m

1 (1, 0, 3)m (1, 3, 3)m

2 (2, 0, 3)m (2, 3, 3)m

3 (3, 0, 3)m (3, 3, 3)m

4 (3, 1, 3)m (3, 2, 3)m

5 (2, 1, 3)m (2, 2, 3)m

6 (1, 1, 3)m (1, 2, 3)m

finish (0, 0, 0)m (0, 0.5, 0)m

As this is a homogeneous multi-UAV mission, both UAVs have the same camera parameters and
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Figure C.1: Reference path for the mapping mission with two UAVs.

therefore, fly at identical and constant reference altitude. Even though the planned paths do not
intersect and the distance between agents’ waypoints is at least 1 m at all times, a risk of possible
collision needs to be considered as it is present at take-off and landing from and to the points in
close proximity, or in case of deviation from the planned path. Deviation can be caused by numerous
reasons, such as external disturbances, model uncertainties, emergency landing due to fault in the
system, etc.

To avoid unnecessary maneuvers and path alternations, only one of the two UAVs will handle
collision avoidance. Hierarchical passing priority is allocated to a pair of the UAVs, such that the UAV
with higher passing priority focuses only on the trajectory tracking in its control strategy, whereas the
UAVwith lower passing priority needs to avoid collision in addition to the trajectory tracking. Resulting
in smoothened trajectories of both UAVs, fewer alternations account for augmented safety and less
energy consumed during the flight. At the planning level, higher priority should be given to the UAV
with a lower battery level, smaller overall path distance, or based on another determined criterion.
In this study (Figure C.1), priority is given to UAV2, while UAV1 is responsible for collision avoidance
when the risk appears along the trajectory.

Control is handled in a distributedmanner, with output information exchanged between the UAVs.
Model uncertainties and external disturbances are also considered when describing the real system.
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C.2 Distributed NMPC strategies for collision avoidance

Collision avoidance can be addressed in several ways. This study aims to compare collision avoidance
handling as a nonlinear constraint, an additional criterion in the cost function and a safe flight corridor.

All the listed strategies for collision avoidancewill be applied only to theUAVwith the lower-passing
priority, whereas classical NMPC will be applied to the higher-passing priority UAV. Cost function of
the classical NMPC minimizes the tracking error and change in control inputs:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

[
∥ŷik+n − yi,refk+n ∥

2
Qi

+ ∥∆uik+n−1∥2Ri

]
, (C.1)

where Qi and Ri are weight matrices, and yi,ref the reference output for UAV i. The first term
considers trajectory tracking, while the second term aims to smooth the variation in control inputs.

C.2.1 Collision avoidance as a nonlinear constraint

A nonlinear constraint that prevents collision between the UAVs is imposed as a minimum distance
that needs to be satisfiedbetween the positions of theUAVs along their trajectories. Besides the classic
NMPC (C.1), a nonlinear constraint for collision avoidance needs to be satisfied, where the distance
between the UAVs i and j, dij , is kept greater than the defined safety distance ds over the prediction
horizon. Thus, at each sampling time (k + n)Te, following constraint is considered:

∥dij,k+n∥2 ≥ ds, i, j ∈ Ni, j ̸= i (C.2)

C.2.2 Collision avoidance in the cost function

Relaxing the collision avoidance constraint can be transformed into a penalty cost. Thus, the newly
formulated cost function includes a new criterion whose weight depends on the proximity from the
UAV that needs to be avoided. It is expressed as in [113]:

Ji(u
i
k,...,k+Np−1) =

Np∑
n=1

∥ŷik+n − yi,refk+n ∥
2
Qi

+ ∥∆uik+n−1∥2Ri
−

∑
j∈Ni,j ̸=i

Aij(dij,k+n)∥dij,k+n∥2Gij


(C.3)

In (C.3), in addition to minimizing the tracking error and successive change in control inputs as
in (C.1), the last term in the cost function aims to maximize the distance between the UAVs with the
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weight factor Gij . Depending on the distance dij and tuning factor γ, weight Aij can take values in
the interval [0, 1].

As the highest risk of collision may appear during the take-off and landing, the collision avoidance
term outweighs the trajectory tracking term in the cost function. On the other hand, minimizing the
tracking error is a priority during the rest of the mission. Therefore, Aij is a sigmoid function that
helps avoid numerical issues due to the choice of a binary term (switch between 0 and 1 depending
on the distance).

C.2.3 Collision avoidance through a flight corridor

As a safetymechanism to reject disturbances andmodel uncertainties, the flight corridor is introduced
as a nonlinear constraint in the optimal control problem to ensure trajectory tracking within allowed
limits. A flight corridor is represented as a tube with a set radius from the desired trajectory. Alone,
it can ensure collision avoidance as each UAV stays inside its own corridor, which is constructed such
that the corridor of the UAV does not intersect with the planned trajectory of the other UAVs in the
system.

In this case, the control input is chosen to minimize the classical NMPC as in (C.1) while respecting
additional constraints to remain in the defined boxed corridor:

| p• − pref• |≤ β, (C.4)
where p• are the actual positions px, py or pz , and pref• position references along 3 axes. In order to

ensure collision avoidance, the choice of the corridor width in 3 axes, β, depends on the size of UAV,
as well as the a priori planned paths of all the UAVs.

C.3 Simulation results and discussion

C.3.1 Mapping mission trajectory tracking

In order to assess the robustness of the previously presented control strategies for trajectory tracking
with collision avoidance in amappingmission (Figure C.1), the analysis of the Monte Carlo simulations
will be presented here. Random values of constant external disturbances [dx, dy, dz], and uncertainty
of the model parameter of the thruster efficiency α are considered for all the test cases. Simulation
parameters are given in Table C.2.
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Table C.2: Parameter values
g 9.81m/s2 Te 0.1s

Ax, Ay, Az (0.1, 0.1, 0.2)s−1 Np 10

Kϕ,Kθ 1 Tf 10s

τϕ, τθ (0.7, 0.5)s ds 0.55m

Q1 = Q2 diag(102, 10, 102, 10, 103, 10) S 10%

R1 = R2 diag(1, 1, 1) β 0.3m

G12 100

Parameters ds and β are chosen according to the size of the UAV and the mission path plan. Here,
simulations are performed for DJI Mavic 3, with the dimensions 347,5 x 283 x 107,7 mm (with pro-
pellers).

Monte Carlo simulations were conducted for 50 test cases with randomly added bounded external
disturbances and uncertainties on thruster efficiency, denoted d1, α1 and d2, α2 for UAV1 and UAV2,
respectively. The external disturbance values vary in the range dx,1, dx,2 = [−1, 1] m/s2, dy,1, dy,2 =

[−1, 1] m/s2, dz,1, dz,2 = [0, 0.4] m/s2, while for the thruster uncertainty α1, α2 = [0.7, 1.35]. All the
optimization problems were solved by the same algorithm (fmincon of Matlab).

It is important to verify whether theminimum safety distance ds is respected along the trajectories
in all the test cases. In order to challenge collision avoidance, the imposed safety distance ds = 0.55m

is superior to the distance between the reference paths of the two UAVs. Figure C.2 shows the min-
imum reached distance between the UAVs along the mission. Nonlinear constraint and penalty cost
strategies successfully avoid entering the imposed collision risk zone, whereas the flight corridor strat-
egy violates the safety distance in certain test cases because the planned reference paths are a priori
configured in overly close proximity to each other.

Table C.3 shows the root mean square error (RMSE) of the tracking error along the trajectory for
the UAV that handles collision avoidance. The best results in terms of the tracking error, both the
error value and the uniformity of the results, are exhibited for the flight corridor. As the flight corridor
restricts the deviations from the reference path, it ensures that the UAV remains within the imposed
limits, even in the presence of high model uncertainty and external disturbances. Collision avoidance
in the cost function criterion shows the highest average tracking error, as it outweighs the trajectory
tracking term at take-off and landing, when the UAVs are in high-risk collision zone.

When selecting the adequate control strategy, computational complexity needs to be considered.
CPU time needed to solve the optimal control problem is an indicator of the complexity. Based on
the results shown in Table C.4, collision avoidance as the nonlinear constraint indicates the highest
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Figure C.2: Minimum distance between the UAVs along the trajectory.
ds = 0.55m (in green).

Table C.3: RMSE for each strategy based on Monte Carlo simulation results
RMSE [m] min max mean

Nonlinear constraint 0.08 0.85 0.15
Penalty cost 0.30 0.97 0.51
Flight corridor 0.08 0.23 0.13

computational complexity among all strategies. It should be noted that resulting CPU time is given
only as an indication for comparison, and as such is not compatible with real-time application.

Table C.4: Average CPU time for each strategy based on Monte Carlo simulation results
Average CPU time [s] min max mean
Nonlinear constraint 0.67 1.58 0.89

Penalty cost 0.54 1.06 0.78
Flight corridor 0.29 0.65 0.46

When comparing the two indicators, rootmean square tracking error and computational complex-
ity, flight corridor seems to be the highest-performing collision avoidance strategy for the presented
path configuration.
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Titre: Optimisation de trajectoire de drone(s) pour des missions de cartographie
Mots clés: commande prédictive, planification de trajectoire, drones, optimisation, évitement de collision,agriculture de précision
Résumé: L’utilisation des drones dans le contextede l’agriculture de précision peut optimiser lagestion de l’exploitation et augmenter laproductivité agricole tout en protégeantl’environnement. Toutefois, les drones présententcertaines limites qui doivent être prises en comptelors du développement de solutions de sa mission.Le cadre du problème de la cartographie avec unou plusieurs drones peut être divisé en deuxsous-problèmes : la planification de la mission decartographie et la pilotage du drone. La premièreétape définit la trajectoire à suivre pour couvrir lazone d’intérêt de manière efficace compte tenu deslimites du drone, tandis que la seconde garantitque le suivi de la trajectoire planifiée est effectuéavec succès.Afin d’augmenter l’efficacité temporelle et d’assurerune mission à faible dépense énergétique, unenouvelle approche pour l’optimisation de la gestionde la batterie du drone lors de la planification de lamission de cartographie est proposée dans ce

travail. La stratégie développée optimisel’utilisation des batteries disponibles pour lamission de cartographie en minimisant la distancede vol totale et en réduisant le nombre deremplacements de batteries. La suppression desremplacements de batterie inutiles réduit la duréetotale de la mission, mais évite également les cyclesredondants de recharge de la batterie.La distribution des points d’intérêt résultant de laplanification de la mission représente lessous-chemins de survol d’un drone doté deplusieurs batteries. Afin de suivre la trajectoireplanifiée avec une erreur de suivi minimale, uneapproche de commande prédictive non linéairepour un suivi de trajectoire robuste est développée.Cette approche est finalement étendue à unemission de cartographie impliquant plusieursdrones coopératifs, où la sécurité de la mission estassurée principalement en tenant compte del’évitement des collisions.

Title: Drone(s) trajectory optimization for mapping missions
Keywords: predictive control, trajectory planning, UAVs, optimization, collision avoidance, precision agri-culture
Abstract: Using Unmanned Aerial Vehicles (UAVs)in the context of Precision Agriculture (PA) canoptimize farming management and increaseagricultural productivity while protecting theenvironment. However, UAVs have certainlimitations that must be considered whendeveloping solutions.The problem framework for conducting mappingwith a single or multiple UAVs can be divided intotwo subproblems: mapping mission planning, andUAV control. The former step defines the path forcovering the area of interest in an efficient mannerconsidering the UAV limitations, while the latterensures that trajectory tracking of the planned pathis successfully completed.In order to increase time efficiency and ensure anenergy-aware mission, a novel approach for UAVbattery management optimization of the mapping

mission planning is proposed in this work. Thedeveloped strategy optimizes the use of batteriesavailable for the mapping mission by minimizingthe total flight distance and reducing the number ofbattery replacements. Removing unnecessarybattery replacements reduces the overall missiontime, but also avoids redundant battery rechargingcycles.The resulting waypoint distribution from themission planning represents the subpaths for aUAV with multiple batteries. In order to follow theplanned path with minimal tracking error, anonlinear predictive control approach for robusttrajectory tracking is introduced. This approach isfinally extended to a mapping mission involvingmultiple cooperative UAVs, where mission safety isensured primarily by considering collisionavoidance.
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