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Résumé : La production primaire brute (GPP), absorption
photosynthétique du CO; atmosphérique par la végétation,
joue un réle crucial dans I'atténuation du changement
climatique. La transpiration, émission d'eau par les plantes
concomitante a la GPP, renvoie une part significative des
précipitations terrestres dans I'atmospheére. Bien que la
GPP soit le plus grand flux du cycle du carbone et que la
soit la

transpiration principale

I'évapotranspiration terrestre, leurs estimations globales et

composante de

leurs réponses au changement climatique demeurent
incertaines. Cette recherche vise donc a améliorer la
simulation de la GPP et de la transpiration dans un modeéle
de ORCHIDEE.
['utilisation de mesures d'oxysulfure de carbone (COS), un

surfaces continentales, J'ai  exploré
gaz atmosphérique absorbé par les plantes de maniére
similaire au CO;, pour contraindre la GPP et la transpiration
dans ORCHIDEE. J'ai tout d'abord implémenté un modéle
des échanges de COS par les sols, complétant le modéle
existant d'absorption de COS par la végétation. Ce
développement a permis de simuler les flux de COS de
I'écosystéme a différentes échelles et de fournir de
nouvelles estimations des contributions de la végétation et
des sols au budget global du COS. Cette étude a montré
I'importance de considérer la capacité des sols oxiques a
émettre du COS en plus de leur absorption, et que les sols
anoxiques peuvent produire des quantités significatives de
COS (96 GgS/an),
I'absorption nette de COS par les sols oxiques (-126

compensant en grande partie
GgS/an), résultant en une absorption nette totale des sols
de -30 GgS/an. Avec ces développements, des mesures in
situ de flux de COS de I'écosystéme ont pu étre utilisées
pour optimiser les parametres d'ORCHIDEE via des
techniques d'assimilation de données (DA). J'ai assimilé la
plus longue série temporelle de flux de COS de
I'écosystéeme de la forét boréale de Hyytidla en Finlande,
afin  d'optimiser les parametres impliqués dans la
simulation de la GPP et de la transpiration. La comparaison
entre une assimilation conjointe ou indépendantes des

données de COS et de GPP a montré que I'assimilation
des données de COS en plus de celles de GPP améliore a
la fois le flux de chaleur latente (LE) et la GPP simulés, ce
que ne permet pas l'assimilation de la GPP seule.
L'application des parameétres optimisés a I'ensemble de
ce biome boréal a augmenté I'absorption de COS dans
les hautes latitudes, en accord avec des études
indépendantes. Ensuite, en collaboration avec d'autres
chercheurs, j'ai travaillé sur les concentrations
atmosphériques de COS et de CO; pour contraindre les
flux de COS de surface, GPP, et respiration. Enfin,
I'évaluation de la contrainte apportée par le COS sur la
GPP et le LE simulés lors d'une sécheresse ayant révélé
des erreurs structurelles non corrigées par la DA, la
derniére partie de ma thése s'est concentrée sur
I'amélioration de la représentation de la réponse de la
végétation a un stress hydrique. J'ai assimilé des données
de GPP et de LE sur plus de 40 sites enregistrant les
récentes années de sécheresse en Europe. Ce travail a
montré que le parameétre déterminant la vitesse de
fermeture stomatique pendant un stress hydrique
pouvait étre défini en fonction des conditions a long
terme de déficit de pression de vapeur. L'implémentation
de cette réponse dans ORCHIDEE permet de mieux
prendre en compte la diversité de réponse de la
végétation aux  sécheresses et sa  capacité
d'acclimatation. Enfin, j'ai réalisé des projections pour
évaluer I'impact de cette nouvelle réponse dans un climat
futur. En conclusion, cette recherche encourage
I'utilisation du COS comme proxy pour la GPP et la
transpiration, et préconise davantage de mesures de flux
et de COS pour

paramétrisation des modéles. Elle suggére également

concentration de affiner la
des pistes pour améliorer la GPP et la transpiration
simulées dans les modéles en tenant compte de la
capacité des plantes a s'acclimater face au changement
climatique.
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Abstract:
photosynthetic

Gross (GPP), the
CO2 by

continental vegetation, plays a critical role in climate

primary  production
absorption of atmospheric
mitigation. In parallel, transpiration, the emission of water
by plants, returns a significant portion of land precipitation
to the atmosphere. Despite GPP being the largest carbon
cycle flux and transpiration the largest component of
terrestrial evapotranspiration, their global estimates and
responses to climate change remain uncertain. Therefore,
this research aims to enhance the simulation of GPP and
plant transpiration land surface model (LSM),
ORCHIDEE. First, | investigated the use of carbonyl sulfide
(COS) measurements, an atmospheric gas absorbed by

in a

plants similarly to CO, to constrain GPP and plant
transpiration in ORCHIDEE. This involved implementing a
model for soil COS exchanges, complementing the existing
vegetation COS uptake model. This development enabled
the simulation of ecosystem COS fluxes from the site to the
global scale and provided new estimates of vegetation and
soil contributions to the global atmospheric COS budget.
Notably, this study highlighted the
considering that oxic soils can emit COS in addition to

importance of

absorbing COS, and that anoxic soils can produce
significant amounts of COS (96 GgS y™), offsetting much of
the net oxic soil COS uptake (-126 GgS y"), and resulting in
a total global net soil uptake of -30 GgS y~'. With these
developments, in situ measurements of ecosystem COS
fluxes have been used to optimize the parameters of
ORCHIDEE through data assimilation (DA) techniques.
Therefore, in a second phase, | assimilated the longest time
series of ecosystem COS flux from the Hyytidla boreal
evergreen needleleaf forest in Finland to optimize

parameters involved in GPP and plant transpiration
simulation. Comparing a joint assimilation or independent
of COS and GPP data showed that

assimilating COS along with GPP data improves the

assimilations

simulated latent heat flux (LE) as well as GPP, unlike the
GPP-only assimilation. Upscaling the optimized parameters
across the boreal evergreen needleleaf forest biome

increased COS uptake in high latitudes, aligning with
independent studies. Then, in collaboration with other
researchers, | worked on atmospheric concentrations of
COS and CO; to constrain surface COS fluxes, GPP, and
respiration. Finally, as the evaluation of COS constraint
on the simulated GPP and LE during a drought event
revealed structural errors in the simulated fluxes
uncorrected by DA, the final part of my PhD focused on
improving the representation of vegetation response to
drought events in ORCHIDEE. To this end, | assimilated
GPP and LE data at over 40 sites capturing recent
drought years across Europe. This work demonstrated
that the parameter determining stomatal closure speed
during soil moisture stress, influencing both GPP and
transpiration, could be defined as a function of long-
term vapor pressure deficit conditions. Implementing
this response in ORCHIDEE allows better consideration of
site-specific vegetation responses to droughts and
vegetation acclimation capacity. Finally, | performed
projections to assess the impact of this new response
under future climate. Overall, this research supports
using COS as a proxy for GPP and transpiration,
advocating for more COS flux and concentration
LSM
parameterization. It also suggests future avenues to

measurement campaigns to refine
improve GPP and plant transpiration representations in
LSMs by accounting for plants' ability to acclimate in

their response to climate change.
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1 INTRODUCTION

1.1 Context and overview: Challenges of modeling vegetation
responses to climate change

The ability of vegetation to face climate change is a fundamental issue for societies that rely on
the services provided by ecosystems, which represent all the benefits derived from natural
ecosystems, essential for human physical, social, and economic well-being (Costanza et al. 1997).
These ecosystem services encompass provisioning services such as the supply of food and wood
fuel, regulating services like water purification and carbon storage, and cultural services (Daily
1997; MA 2005). All of these depend on underlying supporting services, including nutrient cycling
and water cycling. Terrestrial vegetation acts as a major carbon sink, playing a part in climate
mitigation by absorbing about 30% of the atmospheric CO, released by anthropogenic activities,
while the oceans take up about 25%, and the remainder stays in the atmosphere (Friedlingstein et
al., 2022). In 2021, 3.5+ 0.9 GtCy~* were absorbed by the terrestrial land sink, and 2.9 £ 0.4 GtCy~!
by the ocean sink, out of a total anthropogenic emission of 10.9 + 0.8 GtCy~* (Friedlingstein et al.,
2022). In parallel to CO; uptake through photosynthesis, plants emit water vapor to the
atmosphere during transpiration, sending back 40% of the total precipitation over lands (Oki &
Kanae, 2006).

However, the increasing atmospheric CO, concentration significantly alters ecosystem functioning
by enhancing plant carbon assimilation mainly for plants with Cz photosynthetic metabolism,
thereby promoting plant growth, a phenomenon known as the CO; fertilization effect (Chen et al.,
2022). Indeed, under current atmospheric CO; levels, plant growth is limited by CO, availability in
the absence of other limiting factors such as soil nutrients or water availability (Boretti et al., 2019).
This rise in atmospheric CO;, concentration, as well as shifts in precipitation and temperature
patterns, also influences the phenology and length of the growing season (Keenan et al., 2014),
and modifies vegetation carbon uptake interannual variability (Zhang et al., 2016). Climate change
also exacerbates the frequency and intensity of extreme events such as droughts and heatwaves,
inducing further stress on vegetation (Crausbay et al., 2017). Due to the strong interactions
between vegetation and the atmosphere through mass and energy exchanges, climate change
stresses on ecosystems also influences the future climate (Bonan & Doney, 2018). For example,
increases in vegetation leaf area index (LAIl) in regions where there is winter snow can cause a
positive feedback and warming through reductions in the winter snow-cover albedo (Bonan et al.,
1992). On the other hand, an increase in LAl enhances the cooling effect of evapotranspiration,
leading to negative feedback (Woodward et al., 1998). Therefore, vegetation responses and
feedback to present and future climate is still highly uncertain.

Because both photosynthesis and plant transpiration cannot be directly measured at the
ecosystem scale (Damm et al., 2010), various approaches have been developed to quantify these
fluxes from the ecosystem to the global scale. Data-driven methods, leveraging increasingly
available Earth observations and machine learning techniques, have been widely adopted to
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provide global scale estimates. Additionally, land surface models (LSMs) have been developed to
quantify photosynthesis and plant transpiration across different spatial and temporal scales,
facilitating the study of future vegetation-climate interactions and feedback through projections.
The accuracy of LSM simulations and projections, however, strongly depends on our ability to
accurately represent exchange processes between the land surface and the atmosphere.
Consequently, LSMs are continually being refined to incorporate more complexity, enhancing the
realism of vegetation responses to climate change. A major challenge, therefore, lies in improving
the modeling of photosynthesis and plant transpiration to accurately represent vegetation
responses to climate change and extreme events.

In this context, different proxies have emerged, corresponding to a measurement of one physical
quantity used as a substitute for another quantity that is too challenging or costly to measure
directly (Bailey et al.,, 2018). These proxies can be used to inform the representation of
photosynthesis and plant transpiration in LSMs.

1.2 GPP and plant transpiration: mechanisms, interactions, and
climate sensitivity

1.2.1 GPP and plant transpiration: uncertainties in two key processes of
plant functioning

Vegetation carbon uptake through photosynthesis, called gross primary production (GPP), is the
largest and the most uncertain flux in the carbon cycle (Anav et al., 2015). There is no consensus
on the global total GPP, with estimates ranging from 112 to 169 PgC y' (Anav et al., 2015). While
observation-based and LSM GPP estimates typically align on the phase of the GPP seasonal cycle,
there are significant discrepancies regarding the seasonal amplitude (Anav et al., 2015).
Additionally, GPP interannual variability and trends differ between observation-based databases
and LSM estimates from 1990 to 2009, with LSMs showing stronger increasing trends, ranging
from 0.28 PgCy" to 0.62 PgCy' (Anav et al., 2015).

Similarly, plant transpiration is the largest component of total terrestrial evapotranspiration
(Jasechko et al., 2013; Wei et al., 2017). Using a combination of remote sensing and modeling
approaches, Vicente-Serrano et al. (2022) estimated global plant transpiration to be 50.5 103 km?
y" between 1980 and 2020, accounting for 74.7% of total terrestrial evapotranspiration, with a
positive trend of 0.28 km? decade™ over this period. However, transpiration estimates vary
significantly, ranging from 24% to 90% of total land evapotranspiration, depending on the
estimation method, including satellite-based estimations, reanalysis, LSMs, and isotopic
measurements (Wei et al., 2017).

Therefore, both photosynthesis and plant transpiration estimates still have large uncertainties.
This highlights the need to better constrain these two key processes of plant functioning, which
are interconnected through the diffusion pathway of carbon and water vapor via stomata and are
strongly influenced by climate drivers.
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Quantifying GPP is essential because it represents the initial influx of material and energy into a
terrestrial ecosystem, directly indicating its productivity. Plants absorb light energy to produce
organic molecules such as glucose from CO, and H,0, while releasing molecular O, into the
atmosphere. These organic molecules can then be used for plant metabolism and growth (Alberts
et al., 2002). Photosynthesis consists of two interconnected parts, called light and dark reactions
(Stirbet et al., 2020). The light reaction takes place in the thylakoid membranes of the chloroplasts,
where the light energy absorbed by the photosystems containing chlorophyll pigments is mainly
converted into redox chemical energy. In this phase, H»O is oxidized to O, adenosine triphosphate
(ATP) is produced, which is a molecule that stores energy used for cellular processes, and
nicotinamide adenine dinucleotide phosphate (NADP*) is reduced to NADPH, an electron donor
that provides energy for cellular reactions. Then, both NADPH and ATP are required for CO;
assimilation during the dark part of photosynthesis in the chloroplast stroma. This part includes
the Calvin cycle reactions with the Ribulose-1,5-bisphosphate carboxylase/oxygénase (Rubisco)
enzyme that initiates CO; fixation onto Ribulose 1,5-bisphosphate (RuBP), which will further result
in the production of Cz or Cs4 sugars that the plant uses for metabolism.

This carbon gain through photosynthesis occurs alongside water loss through transpiration. Due
to its large contribution, transpiration determines global water availability for human and
ecological uses. The spatial variability in transpiration is influenced by multiple factors, such as
precipitation, soil water availability, or vegetation density and physiological mechanisms (Sitch et
al., 2003). By emitting water vapor to the atmosphere, plant transpiration represents one of the
main components of the water cycle and contributes to moisture recycling (Oki & Kanae, 2006).
Plant transpiration is also a key process in the soil-plant-atmosphere continuum. Indeed, it drives
the water transport from the roots to the leaves, allowing the distribution of the nutrients in the
plant cells. In addition, by converting liquid water to water vapor in the stomata, plant transpiration
has a cooling effect as the energy used for this conversion would otherwise be used to heat the
leaves (Grossiord et al., 2020).

1.2.2 The coupling between GPP and plant transpiration through stomatal
conductance

The stomata play a crucial role in vegetation and atmosphere interplays, allowing the exchanges
of carbon and water vapor between these two components. Because carbon gain and water loss
are coupled through the regulation of stomatal opening, Briggs & Shantz (1913) introduced the
notion of water use efficiency (WUE) as a measure of the amount of carbon assimilated as biomass
per unit of water used by a plant. Then, stomatal regulation balances the risk of carbon starvation
and the risk of hydraulic failure. Indeed, while maintaining the stomata open benefits CO, uptake
for photosynthesis, an excessive water loss through plant transpiration can lead to soil water
depletion, a decrease in plant water potential, xylem cavitation, and a risk of mortality (Drake et
al., 2017; Martin-StPaul et al., 2017; Dewar et al., 2018).
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Considering this tradeoff, optimality theories suggested that plants respond to environmental
changes by regulating stomatal opening to maximize the difference between carbon gain and
water loss (Prentice et al., 2014; Wang et al., 2020). The concepts of isohydricity and anisohydricity
have also emerged to describe the different plant water use strategies (Hochberg et al., 2018).
These concepts link stomatal regulation to soil and leaf water potentials (Konings et al., 2017;
Martinez-Vilalta et al., 2014; Meinzer et al., 2016). When soil water potential drops due to water
depletion, while isohydric species close their stomata to maintain the leaf water potential with a
risk of carbon starvation, anisohydric species maintain their stomata open with a risk of hydraulic
failure (Martinez-Vilalta et al., 2014).

In addition to soil moisture status affecting stomatal conductance, vapor pressure deficit (VPD),
defined as the difference between saturation and actual air vapor pressure, also regulates
stomatal opening (Grossiord et al., 2020). A rapid increase in VPD typically causes plants to close
their stomata to minimize water loss. However, stomatal sensitivity to VPD varies significantly
between and within species (Creese et al., 2014; Gao et al., 2015). The exact mechanisms driving
stomatal closure in response to increased VPD are not fully understood but likely involve active
sensing of water status within leaf cells, mediated by hormonal signals such as abscisic acid (ABA).
Stomatal responses are influenced by leaf water potential and hydraulic conductance, linking them
to the plant's overall hydraulic characteristics (Sharpe et al., 1987). Therefore, variations in
stomatal conductance in response to VPD determine plant transpiration rates. When VPD is low
and stomata are fully open, plant transpiration increases with VPD. However, above a certain VPD
threshold, stomatal closure reduces plant transpiration to limit water loss (Cunningham, 2004;
Whitley et al., 2013). Finally, short-term stomatal responses to high VPD can differ from long-term
impacts, as stomata can acclimate to prolonged high VPD exposure, enhancing stomatal
conductance and plant transpiration (Marchin et al., 2016).

1.2.3 GPP and plant transpiration dynamics under climate change

Ecosystems are changing in response to rising CO; concentrations driving climate change, which
influences global shifts such as temperature increases, and altered precipitation patterns, while
also exacerbating the frequency and intensity of extreme events (Malhi et al., 2020). However, the
sensitivity and responses of ecosystems to climate change vary across different regions and are
influenced by species' abilities to adapt, resist, and recover, as well as by additional disturbances,
including those caused by humans, and interactions among organismes.

Several studies have projected an increase in GPP in the Northern high latitudes, where
temperature typically limits growth. Global warming is expected to enhance photosynthesis in
these regions (Wu et al., 2015) and lead to earlier growing season start and later senescence for
temperate and boreal vegetation (Keenan et al., 2014; Jeong et al., 2011; Delbart et al., 2008).
Conversely, GPP is anticipated to decrease in tropical regions, related to a contraction of tropical
humid regions, and expansion of areas with intense dry periods (Uribe et al., 2023). In arid and
semi-arid regions, where precipitation is often a limiting factor for vegetation growth (Snyder &
Tartowski, 2006), global warming may exacerbate droughts by increasing evapotranspiration
(Miao et al., 2020). Additionally, in the Mediterranean, Southern North America, Southern Africa,
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Australia, and Amazonia, earth system model (ESM) intercomparison exercises project reduced
plant transpiration due to decreased precipitation, resulting in lower soil moisture availability
(Douville et al., 2021).

The increase in atmospheric CO, concentration is expected to enhance photosynthesis driven by
the higher availability of CO, for fixation by Rubisco (Drake et al., 1997). However, the degree of
these responses and spatial patterns are unclear due to the influence of other factors on
photosynthesis, such as water and nutrient availability (Leakey et al., 2009; Zhu et al., 2017).
Regarding plant transpiration, increased CO, typically reduces stomatal opening, thereby
decreasing transpiration. However, this effect is countered by the increase in transpiration due to
CO: fertilization and enhanced foliage cover (Cowling & Field, 2003).

The increase in CO; concentration also induces an increase in global temperature, another
extensively studied driver of photosynthesis. Photosynthesis critically depends on air
temperature, however, photosynthesis temperature dependence varies between or within
species, also depending on different growing conditions (Yamori et al., 2014; Kumarathunge et al.,
2019). Indeed, it has been shown that the optimal temperature that maximizes the photosynthetic
rate can increase with growth temperature, which is the temperature of the environment where
plants grow, due to acclimation mechanisms (Berry & Bjorkman, 1980). However, global
temperature increase is expected to have distinct effects on biomes, being mainly beneficial for
plants in cooler habitats, while more stressful in warmer habitats.

The global rise in temperature leads to an increase in VPD (Hatfield & Prueger, 2015), which is a
key driver of plant functioning. Indeed, high VPD corresponds to a strong atmospheric water
demand that has been found to increase plant transpiration up to a threshold (Franks et al., 1997).
This enhancement of plant transpiration can result in soil moisture depletion and increase the risk
of plant water stress (Dai, 2013; Grossiord et al., 2020). To reduce the risk of hydraulic failure,
plants tend to close their stomata under high VPD conditions (Running, 1976). While further
research is needed on the impact of high VPD on photosynthetic capacity, Flexas et al. (2006) found
that Rubisco activity can be downregulated with lower carboxylation and electron transport rates
following stomatal closure induced by high VPD. Under soil moisture stress conditions, plant
carbon assimilation has also been found to decrease due to non-stomatal limitations with a
reduction in mesophyll conductance (Flexas et al., 2012).

The complexity of GPP and plant transpiration responses to climate change associated to different
timescales makes it challenging to accurately project vegetation functioning under future climate.
Moreover, it is difficult to disentangle the effect of each driver on GPP and plant transpiration with
combined effects of co-existing global changes such as a rise in atmospheric CO», air temperature,
and VPD (Novick et al., 2016), but also co-occurring extreme events with heatwaves and droughts
that often happen alongside. Therefore, it is essential to test hypotheses using LSMs and validate
these models against experimental data to better understand the interactions between these
complex factors and improve the reliability of climate projections.
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1.3 Challenges in estimating GPP and plant transpiration

1.3.1 Approaches to estimating GPP and LE from the ecosystem to the
global scale

There is no direct measurement of GPP above the leaf scale because net CO, exchange entails
both photosynthesis and respiration, which must be partitioned to estimate GPP (Damm et al.,
2010). Similarly, for plant transpiration, at the ecosystem scale the water flux involves other
components, such as soil evaporation, snow sublimation, evaporation from canopy and
interception, or floodplain evaporation, which collectively contribute to evapotranspiration or
latent heat flux (LE). Consequently, at global scales, our ability to estimate GPP and plant
transpiration rely on data-driven approaches or simulated fluxes in LSMs.

At the ecosystem scale, since the 1990s, eddy-covariance tower networks like FLUXNET
(https://fluxnet.org/), including Ameriflux (https://ameriflux.lbl.gov/) and the Integrated Carbon
Observation System (ICOS) (https://www.icos-cp.eu/), have been developed to provide in situ LE
and GPP estimates at hundreds of sites across the globe. The eddy-covariance technique provides

continuous measurements of GPP or LE by analyzing the turbulent exchange of CO, or water vapor
between the ecosystem and the atmosphere, using high-frequency data from sensors placed on
a tower to capture the vertical wind speed and gas concentrations (Burbat, 2013). GPP estimates
are derived by partitioning the net ecosystem exchange (NEE) into its GPP and ecosystem
respiration components based on day-time or night-time separation algorithms (Lasslop et al.,
2010; Reichstein et al.,, 2005). However, regions such as North America and Europe are
disproportionately represented in terms of site numbers compared to other regions like the
tropics, which have a scarcity of sites. Moreover, the eddy-covariance tower footprint, defined as
the temporally dynamic areas that contribute to measured fluxes, typically ranges from a few
hundred meters to a few kilometers (Chu et al., 2021). Consequently, in situ eddy-covariance
measurements are insufficient to represent the spatiotemporal patterns of global GPP and LE and
the diversity of terrestrial ecosystems.

On the model of the FLUXNET network, Poyatos et al. (2021) recently released SAPFLUXNET, the
first global database of sap flow measurements (https://sapfluxnet.creaf.cat/). Sap flow

measurements can provide information on plant transpiration dynamics and its response to
environmental changes. The SAPFLUXNET database encompasses 202 datasets from 2714 plants
of 174 species, predominantly trees. Covering diverse biomes, particularly woodlands, shrublands
and temperate forests, the dataset span from 1995 to 2018 and include sub-daily sap flow and
hydrometeorological data, along with metadata on stand characteristics and plant attributes.
However, similar to FLUXNET, SAPFLUXNET suffers from the sparsity of sites, with Europe, the
Eastern USA, and Australia particularly well represented.

Data-driven GPP and LE products, such as FLUXCOM (https://www.fluxcom.org/) (Jung et al. 2019;
Tramontana et al. 2016; Nelson et al., 2024), can be derived from machine learning methods that
upscale in situ eddy-covariance measurements using remote sensing and meteorological data.

However, this approach is constrained by the limited number of in situ sites and the uncertainties
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involved in upscaling these local measurements to a global scale. Consequently, while these
machine learning-based products are extensively used for benchmarking, significant biases in GPP
estimation tend to occur in regions with sparse flux sites (Jung et al., 2020).

Other data-driven approaches do not rely on an upscaling of in situ eddy-covariance
measurements, but uses models and remote sensing data to provide large scale GPP and LE
estimates. This includes for example GPP products that are based on light use efficiency (LUE)
models, such as FLUXSAT (Joiner et al. 2018)
(https://daac.ornl.gov/VEGETATION/guides/FluxSat_ GPP_FPAR.html), and LE estimates from
models like the Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011)
(https://www.gleam.eu/), which computes the different components of evapotranspiration from
satellite data. In the LUE approach, GPP is a function of vegetation absorbed photosynthetically
active radiation (APAR) and the efficiency of light absorption for carbon fixation. Note that LUE
products can still rely on in situ eddy covariance measurements for calibration. While LUE products
effectively capture the spatial distribution patterns of GPP, they tend to overestimate GPP under
dry and cold conditions (Ryu et al., 2011; Wei et al., 2017).

All these data driven methods present limitations related to their underlying assumptions,

parametrization, and uncertainties in the in situ eddy-covariance and remote sensing data.
Consequently, various data-driven products yield different GPP and LE estimates, as illustrated in
Figure 1 for GPP, highlighting the need for further constraints on these fluxes to reduce the
associated uncertainties.
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Figure 1: Seasonal cycles of total GPP estimates (PgC month™') from 5 data-driven global products
from May 2018 to December 2020. The 5 data-driven products are SIF-GPP (Duveiller et al., 2023),
FLUXCOM-X (Nelson et al., 2024), FLUXSAT (Joiner et al., 2018), GOSIF (Li and Xiao, 2019), and
CHLOFLUO (Doughty et al., 2024).

Another approach to estimate GPP and LE or plant transpiration at large scales relies on their
simulation in LSMs such as the Organising Carbon and Hydrology In Dynamic Ecosystems
(ORCHIDEE) model. This approach is not independent from the in situ eddy covariance
measurements and data-driven products described above, as these data are used for LSM
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parameter calibration and simulated flux evaluation. In addition to providing global GPP and LE
estimates, projections by LSMs also enable to investigate future flux spatial and temporal
dynamics. A diverse range of LSMs have been developed, increasing in complexity to improve
process representation and accuracy. However, estimated GPP and LE vary significantly between
LSMs, as illustrated in Figure 2, which shows the simulated GPP by 18 LSMs from the Trends in Net
Land-Atmosphere Carbon Exchange (TRENDY) project. This variability in simulated fluxes arises
from differences in parametrization, including process representation and parameter values that
depend on calibration accuracy (Anav et al., 2015). Additionally, uncertainties in simulated fluxes
also come from LSM input data, such as climate forcing data.
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Figure 2: Seasonal cycles of total GPP estimates (PgC month') from 18 LSMs of the TRENDY project

between 2018 and 2020. The model ensemble mean is in black while each model is represented
by a color.

In addition to the above methods, proxies for GPP and plant transpiration can be used as
substitute measurements and provide estimates of these two fluxes that cannot be directly
measured above the leaf scale. In particular, the emergence of new proxies for GPP and plant
transpiration can offer additional constraints to inform processes representation and parameter
calibrations in LSMs, thereby reducing uncertainty in the simulation and projection of GPP and LE.

1.3.2 Using proxies for large scale GPP and LE estimates

Remote sensing vegetation indices (VIs) have traditionally served as proxies for GPP or as input
data for LUE models (Wang et al. 2004; Zhou et al. 2001; Running et al. 2004). VIs such as the
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and LAl reflect
vegetation states related to greenness or leaf area, which are associated with photosynthetic
capacity (Huete, 1997; Tucker & Sellers, 1986). However, these traditional Vis have limitations when
estimating GPP. For instance, they tend to saturate over dense canopies (Turner et al., 2003;
Running et al., 2004) and are influenced by the reflectance of soil, snow, or water bodies, as well
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as atmospheric scattering (Huete et al., 1985, 2002). Additionally, VIs may not accurately capture
rapid changes in GPP due to their temporal resolution or during periods of vegetation stress where
greenness does not change. The spatial heterogeneity of vegetation types and conditions can also
lead to variability in the relationship between Vis and GPP (D’'Odorico et al., 2015; Zhou et al., 2014).
Vis like NDVI (Goward & Huemmrich, 1992) and EVI (Xiao et al., 2004) have been used as proxies
for LE by providing insights into surface conductance, which is closely tied to plant transpiration.
Remote sensing of land surface temperature (LST) (Kalma et al., 2008), or a combination of ViIs and
LST data, has also been used to estimate global LE (Tang et al., 2010). Vis are generally used to
estimate LE through empirical relationships based on flux tower LE measurements (Nishida et al.,
2003) or to parameterize the conductance term in the Penman-Monteith equation to estimate
evapotranspiration (Leuning et al., 2008). LST data can serve as input for a surface energy balance
model (Kalma et al., 2008). However, Cleugh et al. (2007) found that inaccuracies in LSTs led to
significant errors in LE estimates when using a surface energy balance model. Additionally, LE
models that use Vis to represent transpiration as a function of surface conductance have been
found to overestimate water fluxes in water-limited ecosystems, such as savannahs and arid and
semi-arid regions (Barraza et al., 2017).

In recentyears, our understanding of global GPP dynamics has improved through the use of newer
satellite products more closely linked to the photosynthetic process. In particular, the near-
infrared reflectance of vegetation (NIRv) and sun-induced fluorescence (SIF) have been
investigated to provide information on vegetation physiology (Porcar-Castell et al., 2014; Wang et
al., 2019). Compared with NDVI, NIRv and SIF are less affected by the soil background and
atmospheric scattering (Badgley et al., 2017). NIRv, which is the product of NDVI and near-infrared
reflectance, is demonstrated to be a good proxy of GPP at monthly to annual scales (Badgley et
al., 2019; Wang et al., 2021). SIF is an electromagnetic signal emitted by chlorophyll a molecules
when they are illuminated by sunlight, directly linking it to the light reactions of photosynthesis
(Frankenberg & Berry, 2018). Several studies have demonstrated that satellite-based SIF retrievals
exhibit a linear relationship with GPP at the ecosystem scale across various biomes (Guanter et al.,
2014; Sun et al., 2017). Because SIF tracks plant activity and CO; and H,O exchanges are closely
linked through stomatal diffusion, SIF has also been used as a proxy for plant transpiration or LE
(Alemohammad et al., 2017; Maes et al., 2021; Zhang et al., 2024). However, SIF represents only
about 3% of the absorbed energy, making it a weak signal and leading to significant retrieval noise
in passive measurements (Joiner et al., 2020). Additionally, the relationship between GPP and SIF
is influenced by various factors such as canopy structure (van der Tol et al., 2019; Yang et al., 2019),
cloud cover, sun-sensor geometry effects (Zhang et al., 2021), or environmental stressors
(Wohlfahrt et al., 2018). Similarly, the empirical relationship between transpiration and SIF was
found to be influenced by photosynthetically active radiation (PAR), VPD, and air temperature (Lu
et al., 2018). Tracking GPP and LE variations at fine temporal and spatial scales is also constrained
by the current coarse resolution of satellite measurements. However, the European Space
Agency's (ESA) Fluorescence Explorer (FLEX), set to be launched in 2026, will be the first satellite
mission specifically designed to measure SIF, offering data at a 300 m spatial resolution.

Tree rings and carbon and oxygen isotopes have also been demonstrated to be useful proxies for
GPP. For example, '3C in C3 woody plants could be a valuable carbon isotope for the study of
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photosynthesis (Lavergne et al., 2022). Plant tissues have a '3C-depleted signature compared to
atmospheric CO, due to slower diffusion of '3CO, through stomata and preferential fixation of
12C0O; by Rubisco, a process known as carbon isotope discrimination (A'3C) (Park & Epstein, 1960).
Short-term A'3C variations in Cs leaves have been found to be influenced by environmental factors
like soil moisture and precipitation (Diefendorf et al., 2010; Kohn, 2010), VPD (Lloyd & Farquhar,
1994), temperature, atmospheric pressure (Cornwell et al., 2018). Tree ring studies also suggest
that A"C in Cs woody plants increases with rising CO, concentration (McCarroll et al., 2009). Then,
GPP estimates have been derived from oxygen isotopic analyses ("0, 7O, and '80) (Farquhar et
al., 1993; Ciais et al., 1997; Peylin et al., 1999; Cuntz et al., 2003). During photosynthesis, plants
incorporate oxygen from H,O into organic compounds. The ratio of 80 to '°O of water in leaves,
which is influenced by source water and evaporative enrichment, gets reflected in the organic
matter (Liu et al., 2023).

Finally, in addition to the A'3C analysis in tree rings, tree ring widths have been found to have a
consistent correlation with GPP, informing on trends in tree growth and terrestrial carbon stocks
(Babst et al., 2014; Tei et al., 2019). Tree ring width and stable isotope data have also been used to
evaluate and constrain vegetation carbon uptake and tree growth in LSMs (Barichivich et al., 2021;
Panek & Waring, 1997). Worldwide tree ring databases, such as the International Tree-ring Data
Bank (ITRDB), can be used for LSMs benchmarking or to constrain model parameters through data
assimilation.

Despite the extensive use of the proxies mentioned above, significant uncertainties remain in GPP
and plant transpiration estimates (Anav et al., 2015; Wei et al., 2017). Moreover, the relationship
between each proxy and GPP or plant transpiration is affected by spatial and temporal scales,
along with specific uncertainties tied to each proxy. Therefore, there is a need to investigate
additional proxies that can address the limitations associated with traditional methods. Ideally,
these proxies should offer a more direct measurement of GPP and plant transpiration, unlike
indices that inform on vegetation greenness for example. These proxies should not require
partitioning between GPP and respiration fluxes, and should be measured at fine temporal
resolution to capture short-term variations in GPP and plant transpiration. Additionally, they
should allow for integration over large-scale areas, such as through atmospheric concentration
measurements.

1.3.3 Carbonyl sulfide: a proxy for GPP and plant transpiration

COS is a trace gas with a mean atmospheric concentration about 10° times smaller than the one
of CO,, with approximately 480 parts per trillions for COS (ppt), compared to 420 parts per millions
(ppm) for CO; in 2023. However, COS shares similarities with CO; that have led to an increasing
interest in investigating its potential to constrain the carbon cycle. Indeed, COS shows a seasonal
cycle of atmospheric concentrations that follows the one of CO,, as recorded by measurement
stations from the National Oceanic and Atmospheric Administration (NOAA) network (Montzka et
al., 2007). This close seasonal cycle with a drawdown in concentrations in spring and summer in
the Northern hemisphere is due to vegetation uptake, which is the main sink of COS as it is of CO;
(Whelan et al., 2018).
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Therefore, COS uptake has been proposed as a proxy of GPP as both COS and CO; are absorbed
by plant leaves following a similar diffusion pathway from the atmosphere to the leaf interior,
which is represented by the boundary layer, the stomatal, and the internal conductance (Figure 3).
Besides, COS has the advantage of not having a respiration flux analogous to the one of CO, as
COS s irreversibly hydrolysed by the carbonic anhydrase enzyme (CA) inside the leaf following the
reaction (Stimler et al., 2010),

COS + H,0 — CO2+ HaS (Equation 1)
Then, COS is mainly not emitted back to the atmosphere by plants, and at the canopy scale,

measurements of COS vegetation flux do not require a partitioning of the net flux as it is the case
between respiration and photosynthesis for CO..

Land-atmosphere Leaf surface . Leaf cross-section
CO,

Figure 3: Relationship between CO, and COS (or OCS) vegetation uptake from the ecosystem to
the leaf scale (Whelan et al.,, 2022). The diffusion pathway is characterized by a series of
conductances with the boundary layer (g,) and stomatal (gs) conductances, followed by the internal
conductance (g) for COS, and the mesophyll (gw) and Rubisco reaction rate equivalent
conductances (g for CO,. Along this diffusion pathway, the gradient of concentration is
represented by the atmospheric (Ca), the leaf surface (Cs), the internal (Cj), and the chloroplast (C¢)
concentrations.

In particular, COS leaf uptake has been more directly linked to stomatal conductance than GPP
(Seibt et al., 2010; Wehr et al., 2017; Wohlfahrt et al., 2012; Berkelhammer et al., 2020). Indeed,
COS internal conductance differs from the photosynthesis reaction in CO; internal conductance.
Unlike CO;fixation by the Rubisco enzyme that depends on the energy from the light reaction part
of photosynthesis, COS hydrolysis by CA is not light-dependent. Therefore, COS can provide
additional information on GPP through its constraint on stomatal conductance (Asaf et al., 2013;
Commane et al., 2015; Maseyk et al., 2014; Spielmann et al., 2019). Then, because stomatal
conductance determines the coupling between GPP and plant transpiration, COS potential to
constrain plant transpiration has also been investigated (Wehr et al., 2017; Wohlfahrt et al., 2012).
A first relationship has been established to derive vegetation CO, uptake from COS, which is
defined by the leaf relative uptake (LRU) that is the ratio of COS and CO; leaf uptakes normalized
by their concentrations (Sandoval-Soto et al., 2005) (Figure 3). Once the LRU value has been
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experimentally estimated, GPP can be inferred from measurements of COS flux, and COS and CO;
concentrations. However, this extensively adopted approach has limited accuracy as the LRU
values were found to vary with plant species (Sandoval-Soto et al., 2005; Stimler et al., 2012),
atmospheric humidity (Sun et al., 2018; Kooijmans et al., 2019), and light (Stimler et al., 2011;
Maseyk et al., 2014; Commane et al., 2015; Kooijmans et al., 2019).

The vegetation one-way COS flux also benefits from being spatially separated from the main COS
sources (Whelan et al., 2018). Indeed, the ocean and anthropogenic activities are the main
contributors to COS emissions. COS can be directly emitted by the ocean, or be indirectly produced
from the oxidation of carbon disulfide (CS>) or dimethyl sulfide (DMS), representing a total oceanic
contribution estimated between +200 and +400 GgS y' (Lennartz et al., 2017, 2020).
Anthropogenic emissions of the same order of magnitude have been evaluated between +220 and
+580 GgSy', with the main COS source originating from the viscose industry through the oxidation
of CS; (Zumkehr et al., 2018). COS emissions of lower magnitude also come from biomass burning
with +50 to +168 GgS y' (Campbell et al., 2015; Glatthor et al., 2017; Stinecipher et al., 2019), and
volcanoes with +25 to +43 GgS y' (Whelan et al., 2018). Then, the second largest COS net sink is
the soil with estimates ranging from -409 to -30 GgS y' (Kettle et al., 2002; Berry et al., 2013;
Launois et al., 2015; Kooijmans et al., 2021; Abadie et al., 2022). Soils are mainly involved in COS
absorption because the CA enzyme is present in soil microorganisms and drives COS consumption
(Masaki et al., 2021), but soils can also emit COS under specific temperature and light conditions
(Whelan & Rhew, 2015; Whelan et al., 2016, 2018; Kitz et al., 2017, 2020). Finally, the atmosphere
is a small COS sink, through oxidation by the OH radical in the troposphere representing -130 to -
82 GgSy', and photolysis in the stratosphere with -80 to -30 GgS y'. A synthesis of COS sinks and
sources is presented in Table 1.

Table 1: COS sinks and sources. Negative(/positive) estimates correspond to net
uptake(/emission).

Estimated range

References
(Ggsy™)

Contribution

Kettle et al. (2002); Montzka et al.
(2007); Suntharalingam et al. (2008);
Vegetation [-1335; -238] Berry et al. (2013); Launois et al.
(2015); Maignan et al. (2021);
Kooijmans et al. (2021)

Net sinks Troposphere [-130; -82] Whelan et al. (2018)

Stratosphere [-80; -30] Whelan et al. (2018)

Kettle et al. (2002); Berry et al. (2013);
Total soil [-409; -30] Launois et al. (2015); Kooijmans et al.
(2021); Abadie et al. (2022)
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Kettle et al. (2002); Berry et al. (2013);
Oxic soils [-510; -89] Launois et al. (2015); Kooijmans et al.
(2021); Abadie et al. (2022)
. . ) Kettle et al. (2002); Launois et al.
Anoxic soils [+26; +101] (2015); Abadie et al. (2022)
Total ocean [+200; +400] Lennartz et al. (2017, 2020)
COS direct [+50; +210] Lennartz et al. (2017)
COS from CS; [+5; +265] Lennartz et al. (2017)
Net sources COS from
DMS [+0; +80] Lennartz et al. (2017)

Anthropogenic

[+220; +580]

Zumkehr et al. (2018)

Campbell et al. (2015); Glatthor et al.

o .
lomass burning (2017); Stinecipher et al. (2019)

[+50; +168]

Volcanoes [+25; +43] Whelan et al. (2018)

The large range of estimates for the COS sink and source components leads to strong uncertainties
in the global COS budget. Then, a better characterization of the different contributors to the global
COS budget is required, including vegetation COS uptake to be able to fully exploit its potential as
a proxy for GPP and plant transpiration. Currently, the global COS budget is not balanced, with a
missing source likely located in the tropics and a missing biospheric sink in the high latitudes as
suggested by atmospheric inversion studies (Ma et al.,, 2021; Remaud et al., 2022, 2023).
Constraining the different COS sinks and sources is also of interest for the atmospheric sulfur cycle
as COS is the longest-lived and most abundant sulfur-containing gas in the atmosphere.

1.4 Research questions and approach

Given the growing interest in COS measurements (Kooijmans et al., 2019; Kohonen et al., 2020;
Vesala et al., 2022; Wehr et al., 2017; Berkelhammer et al., 2014; Commane et al., 2015; Kitz et al.,
2019; Maseyk et al., 2014; Spielmann et al., 2019) and in the representation of land surface COS
fluxes (Berry et al., 2013; Sun et al., 2015; Ogée et al., 2016), | decided to further explore this proxy
to introduce new constraints on the simulated GPP and plant transpiration in the ORCHIDEE LSM.
This work builds on the progress made during a first internship at LSCE, where | focused on
integrating vegetation COS uptake in ORCHIDEE. However, the full potential of COS as a proxy for
GPP and plant transpiration has yet to be quantified. Moreover, the additional constraints that
COS can provide on these fluxes, beyond those captured by traditional eddy-covariance
measurements of GPP and LE, need to be evaluated.
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In this section, | present an overview of the manuscript structure, highlighting the main research
questions and the approach taken to address them. Chapter 2 introduces the ORCHIDEE LSM, the
key observation datasets utilized in this study, and the data assimilation tool used for parameter
calibration. Then, chapters 3, 4, 5, and 6 each address the research questions outlined in the
following. The connections between these chapters are illustrated in Figure 4.

Implementation of a mechanistic Implementation of a mechanistic- Parameter calibration using in situ Parameter calibration using in situ GPP and LE data
vegetation COS uptake model based soil COS exchange model ecosystem COS flux and GPP data to improve vegetation response to drought events
Vegetation contribution to Contribution of oxic and anoxic soils Constraint on simulated Evaluation of Definition of Constraint on
the global atmospheric COS to the global atmospheric COS ecosystem COS flux, GPP, and a drought an acclimation simulated GPP and
budget budget LE in the boreal high latitudes event function LE over Europe

77~ ORCHIDEE .~ ORCHIDEE g ) ORCHIDAS ‘T F~, ORCHIDAS
\":E ('F 9 Parameter calibration Parameter calibration

Contributions to atmospheric COS
and CO, concentration studies

Constraint on surface COS fluxes,
GPP, and ecosystem respiration

Figure 4: Overview of the main parts of the PhD, corresponding to the manuscript chapters. Large
gray arrows indicate the connection between chapters.

Accurately characterizing the components of the global atmospheric COS budget is critical for
using COS to constrain GPP and plant transpiration, and addressing the current imbalance in the
COS budget. During a previous internship at LSCE before this PhD, | worked on implementing a
vegetation COS uptake model in ORCHIDEE, aiming at exploiting the link between plant COS and
CO, uptakes to constrain the simulated GPP using COS fluxes.

However, terrestrial biospheric COS fluxes also include the contribution from soils, which cannot
be neglected as they have been estimated to be the second largest COS sink component (Section
1.3.3). Then, to complement the existing vegetation COS uptake model and simulate ecosystem
COS fluxes at the global scale, a representation of soil COS exchanges needed to be implemented
in ORCHIDEE. Unlike the first simple empirical soil COS flux models that estimated soil COS uptake
while neglecting the soils' capacity to emit COS (Berry et al., 2013; Launois et al., 2015), two
mechanistic models for soil COS exchanges (Ogée et al., 2015; Sun et al., 2015) were recently
developed, based on fine scale soil measurements. These models account for the ability of soils to
both take up and emit COS. Therefore, | implemented a mechanistic-based model of soil COS
fluxes in ORCHIDEE, as presented in Chapter 3. This development enables simulating the spatial
distribution and temporal variations of both oxic soil COS uptake and emission, as well as anoxic
soil COS production. Moreover, this work allowed the evaluation of this mechanistic-based model,
which involves parameters that depend on the vegetation type, across several sites representative
of different biomes and climates. Indeed, this implementation of soil COS exchanges in ORCHIDEE,
as well as the one made in parallel in another LSM (Simple Biosphere Model version 4, SiB4) based
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on the same mechanistic soil COS flux model (Kooijmans et al., 2021), mark the first
implementations of mechanistic-based representations of soil COS exchanges in LSMs.
Additionally, both vegetation and soil COS fluxes are driven by atmospheric COS concentration.
However, previous works, including the first version of the vegetation COS uptake model in
ORCHIDEE, considered a constant atmospheric COS concentration, neglecting the impact of its
spatial and temporal variations on biospheric COS surface fluxes. Therefore, | included the
consideration of a spatially and temporally varying atmospheric COS concentration in ORCHIDEE
for computing vegetation and soil COS fluxes.
Consequently, in Chapter 3, | aim at answering the following main research questions:
-  What are the contributions of vegetation and soil COS fluxes to the global
atmospheric COS budget based on mechanistic representations in a LSM?
- How does the contribution of anoxic soils compare to that of oxic soils in the global
atmospheric COS budget?
- What is the impact of using spatially and temporally varying atmospheric COS
concentrations, as opposed to a constant concentration, on the simulated surface
vegetation and soil COS fluxes?

In a second step, building on the developments presented in Chapter 3 to simulate ecosystem COS
fluxes, | investigated how these simulated biospheric COS fluxes could be used to inform GPP and
plant transpiration in ORCHIDEE. Although the process-based models represent an improvement
over the LRU approach previously used to infer GPP from vegetation COS flux observations
(Section 1.3.3), they include parameters that need to be calibrated. Therefore, | focused on using
in situ biospheric COS flux observations to calibrate a set of ORCHIDEE parameters that influence
GPP and plant transpiration in addition to vegetation COS fluxes, as presented in Chapter 4.
Ecosystem COS flux data, like GPP and LE estimates, can be obtained by eddy covariance
measurements, which represent the sum of the vegetation and soil COS fluxes simulated in
ORCHIDEE. However, multiple years of eddy covariance ecosystem COS flux data are available only
at a few sites. Therefore, | chose to work on the Hyytiala boreal forest in Finland, which provides
the longest time series of in situ ecosystem COS flux measurements (Vesala et al., 2022). This site
offers a large number of observation data under different environmental conditions, allowing for
a more robust calibration of ORCHIDEE parameters.
Focusing on this site in the Northern high latitudes was also particularly interesting because
previous studies have identified a missing COS sink in this region. Thus, | was able to assess the
impact of ORCHIDEE parameter calibration using in situ ecosystem COS flux observations on the
simulated biospheric COS sink estimate, in regard with the global atmospheric COS budget
imbalance.
Therefore, the framework developed in Chapter 4 explores the additional constraint provided by
ecosystem COS flux data to improve the representation of GPP and plant transpiration in
ORCHIDEE through parameter calibration, and addresses these main research questions:

- How can ecosystem COS flux observations constrain the simulated GPP and plant

transpiration in ORCHIDEE?
- Can local ecosystem COS flux observations help refine regional biospheric COS flux
estimates to address the global atmospheric COS budget imbalance?
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Following the COS model developments in ORCHIDEE and the use of simulated ecosystem COS
fluxes described in Chapters 3 and 4, | was invited to contribute to several studies that relied on
ORCHIDEE simulated biospheric COS fluxes and atmospheric COS concentrations. In Chapter 5, |
expand on how | broadened my focus and expertise to use atmospheric COS and CO;
concentrations for informing COS and CO; surface fluxes, with the aim of more accurately
constraining the global atmospheric COS and CO; budgets.
The vegetation COS flux model implemented in ORCHIDEE assumes that vegetation can only act
as a COS sink. The first study | contributed to tests this assumption by using local scale
observations to investigate ecosystem COS flux processes. This work compares ORCHIDEE
simulated ecosystem COS fluxes against field observations, including COS concentration
measurements at two agroecosystem sites near LSCE. The identification of a potential missing
crop COS source representation in ORCHIDEE led to a publication in which | am the second author.
While biospheric COS fluxes are the primary COS sinks, other components significantly contribute
to terrestrial surface COS fluxes and need better constraints. Another study | participated in
expanded the evaluation of surface COS fluxes at the regional scale, using a model that tracks
atmospheric particle trajectories and COS concentration measurements at the Gif-sur-Yvette (GIF)
site in France. This work helped identify discrepancies in anthropogenic COS emission estimates
and in ORCHIDEE simulated biogenic COS fluxes.
In Chapter 3, | assessed the importance of considering spatially and temporally varying
atmospheric COS concentrations to simulate vegetation and soil COS fluxes in ORCHIDEE. This was
complemented by another study | contributed to, which investigated the impact of a recent
decrease in atmospheric COS concentration, as observed at the GIF site, on simulated biogenic
COS fluxes across the Northern hemisphere.
Evaluating surface COS fluxes can be achieved by transporting all surface COS flux components
and comparing the resulting simulated concentrations with atmospheric COS concentration
measurements. However, uncertainties related to the transport of these fluxes can limit this
evaluation. To address this, | provided ORCHIDEE simulated biospheric COS fluxes for a study
focusing on quantifying uncertainties in simulated atmospheric COS concentrations resulting from
the transport of surface COS fluxes in seven atmospheric transport models (ATMs).
Following the improved characterization of surface COS fluxes from the studies presented above
using atmospheric COS concentrations, we aimed to investigate how these concentrations can
inform surface CO; fluxes, specifically GPP and ecosystem respiration, in addition to constraining
surface COS fluxes. Expanding my focus beyond ORCHIDEE, | contributed to a joint assessment of
atmospheric COS and CO, concentrations to evaluate potential seasonal amplitude and phase
biases in simulated GPP and terrestrial ecosystem respiration from three model ensembles. This
work also led to a publication in which | am the second author.
Finally, | participated in a study that not only evaluated surface COS and CO; fluxes using
atmospheric COS and CO; concentrations but also optimized these fluxes using an atmospheric
inversion modeling approach. This addressed the global COS budget imbalance issue.
Therefore, in Chapter 5, the studies | contributed to aim to answer the following main research
questions:

-  How can atmospheric COS concentrations provide insights into the simulated

ORCHIDEE biospheric COS fluxes and other surface COS component estimates to
identify discrepancies and potential missing processes?
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- How can atmospheric COS and CO: concentrations be used to constrain surface COS
fluxes, GPP, and ecosystem respiration?

- Can a joint analysis of atmospheric COS and CO: concentrations help identify
potential biases in GPP and terrestrial ecosystem respiration within model
simulation ensembles?

My work on COS, described in Chapters 3, 4, and 5, contributed to better constraining surface COS
and CO; fluxes. Additionally, it allowed me to investigate specific GPP and plant transpiration
processes implemented in ORCHIDEE. In Chapter 4, | focused on a drought event at the Hyytiala
site following ORCHIDEE parameter calibration using ecosystem COS flux data. This focus revealed
structural deficiencies in the simulated GPP and LE under soil moisture stress conditions that could
not be resolved solely through the calibration of existing model parameters within their physical
range. This is critical as accurately modeling drought events in LSMs is crucial, given that their
frequency and intensity are expected to increase due to climate change.
Therefore, in Chapter 6, | aimed to improve the representation of vegetation response to soil
moisture stress in ORCHIDEE. For instance, the default physiological vegetation response to
droughts in ORCHIDEE is not differentiated by vegetation type, although different species exhibit
varied responses. Consequently, | investigated whether the default physiological vegetation
response to soil moisture stress in ORCHIDEE could be refined to better account for the diversity
of responses between biomes and the influence of environmental drivers. To achieve this, |
calibrated a set of ORCHIDEE parameters, including those involved in vegetation response to sail
moisture stress, using GPP and LE data at over 40 sites from the ICOS Warm Winter 2020 network.
This dataset captured the impact of recent drought years across various biomes in Europe. This
work led to the development of a new definition for the parameter determining the speed of
stomatal closure under soil moisture stress conditions, incorporating vegetation's capacity to
acclimate to long-term VPD conditions. Finally, | performed projections until 2100 to assess the
impact of this refined parameter under future climate scenarios.
Consequently, in Chapter 6, | address the following main research questions:
- How can the simulated physiological response of vegetation to drought events be
improved in ORCHIDEE?
- How does a biome-dependent vegetation response to soil moisture stress compare
to a response that also incorporates acclimation to long-term VPD conditions?
-  How does incorporating vegetation acclimation to long-term VPD conditions in
drought response simulations affect GPP and LE under a future climate scenario?
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2 DATA ASSIMILATION WITH ORCHIDEE

2.1 The ORCHIDEE land surface model

ORCHIDEE is the LSM component of the earth system model (ESM) developed at the Institut Pierre
Simon Laplace (IPSL) (Boucher et al., 2020; Krinner et al., 2005). It simulates the carbon, water, and
energy exchanges between the land surface and the atmosphere. ORCHIDEE can be run coupled
with an atmospheric model, or forced with prescribed meteorological fields (offline mode), which
was the configuration used during my PhD. Simulations can be performed from the site scale to
the global scale.

Vegetation is characterized by plant functional types (PFTs), grouping plants with similar structure,
phenology, photosynthetic pathway, and climate into 14 vegetated classes, with another PFT
dedicated to bare soil. Each model grid cell is represented by fractions of PFTs that can be either
imposed by ORCHIDEE users at the site scale, or prescribed using yearly varying vegetation maps
at the global scale. Two global soil maps can be used to describe soil textures, which determine
thermal and hydraulic soil properties like porosity and moisture thresholds, including the wilting
point and field capacity for plant water uptake. The global map of soil textures can be derived from
a simplification of the Zobler texture classification (Zobler, 1986) into three different soil texture
classes. Alternatively, a more detailed global map is based on the Food and Agriculture
Organization of the United Nations-United States Department of Agriculture (FAO-USDA) texture
classification, which includes 12 texture classes (Reynolds et al., 2000). | have used the FAO-USDA
map in ORCHIDEE as it offers a finer representation of soil textures.

Fast processes such as photosynthesis, plant transpiration and the energy budget are computed
at a half-hourly time step, while slower processes related to phenology and carbon allocation are
computed at a daily time step. The representation of GPP and plant transpiration in ORCHIDEE
and their main drivers are illustrated in Figure 5.
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Figure 5: Simplified representations of GPP and plant transpiration in ORCHIDEE along with their
main drivers. Blue arrows indicate water cycle fluxes, while red arrows represent carbon cycle
fluxes. The resistance scheme for plant transpiration involves the aerodynamic resistance (Raero),
the leaf boundary layer resistance (Rooundary), the stomatal resistance (Rswomata). Additionally, the
resistance scheme for GPP incorporates the mesophyll resistance (Rmesophyt) and the intern
resistance (Rintern), Which represents Rubisco activity. The main drivers influencing GPP and plant
transpiration are depicted in purple. PAR: Photosynthetically Active Radiation; Tair: air temperature;
VPD: Vapor Pressure Deficit.

Photosynthetic CO, assimilation is calculated for each PFT at the leaf level using the analytical
algorithm described in Yin & Struik (2009), based on the photosynthesis model of Farquhar et al.
(1980) for Cs species and Collatz et al. (1992) for C4 species. The Yin & Struik (2009) CO, assimilation
model also integrates a description of stomatal and mesophyll conductances. Following Farquhar
et al. (1980), the photosynthesis rate is expressed as the minimum between the Rubisco-limited
and the electron transport-limited rates of CO, assimilation. The rates of maximum Rubisco
carboxylation and RuBP regeneration are influenced by leaf age (Ishida et al., 1999; Krinner et al.,
2005), and by an implicit nitrogen content, which diminishes deeper into the canopy (Johnson &
Thornley, 1984). Air temperature also affects these rates through a modified Arrhenius function
that incorporates acclimation to growth temperature, following Kattge & Knorr (2007).
Furthermore, a constraint is applied to these maximum rates to reflect the downregulation of the
productivity in response to elevated CO, concentrations (Sellers et al., 1996, Bounoua et al., 1999,
2010).

Stomatal conductance is determined by a residual stomatal conductance when the irradiance
approaches zero, the intercellular CO; partial pressure and its compensation point in the absence
of day respiration, and accounts for the effect of instantaneous changes in VPD, which reduces
stomatal conductance when VPD increases. On the other hand, the mesophyll conductance is
assumed to be only influenced by air temperature.
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In ORCHIDEE, a soil moisture stress function has been integrated to the Yin & Struik (2009) CO;
assimilation model to limit stomatal conductance, mesophyll conductance, and the Rubisco
carboxylation and RuBP regeneration rates as soil moisture decreases (Section 6.1). Then, leaf
boundary layer and aerodynamic conductances also limit CO, assimilation following Su et al.
(2001), mainly influenced by wind speed, LAl, and canopy height.

LAI, which corresponds to the one-sided green leaf area per unit ground surface area (m2m2)is a
prognostic variable tightly linked to the carbon allocation scheme. The calculated LAl is used to
vertically discretize the canopy into a maximum of 20 LAl layers, with increasing thickness from
top to bottom. Then, the gross carbon assimilation computed at the leaf level in a given LAl layer
is scaled-up to the canopy level by summing over all LAl layers.

Plant transpiration is computed for each PFT directly at the canopy level, driven by the saturated
moisture gradient between the surface and the air at 2 m, and regulated by the aerodynamic, leaf
boundary layer, and total canopy stomatal conductances. The total canopy stomatal conductance
corresponds to the integration of the stomatal conductance computed in each LAI layer over all
LAl layers.

As for GPP computation, plant transpiration is also influenced by soil moisture stress through the
soil moisture stress function limiting stomatal conductance when soil moisture decreases.

LE is the sum of all processes contributing to this flux at the grid cell level considering the fraction
of the grid cell concerned by each process, which are plant transpiration, bare soil evaporation,
canopy interception and evaporation, snow sublimation, and floodplain evaporation. Similar to
plant transpiration, each other process contributing to LE is driven by the saturated moisture
gradient between the surface and the air at 2 m, controlled by the aerodynamic and boundary
layer conductances, and by a process-specific conductance (as total canopy stomatal conductance
for transpiration).

2.2 COS, GPP, and LE observation datasets

In this PhD thesis, | have used various observational datasets, ranging from in situ measurements
for data assimilation and model evaluation to global products for large-scale evaluation of the
upscaled optimized simulated fluxes. In addition to traditional observation-based data such as
GPP and LE eddy-covariance measurements, this work incorporates a wide range of COS
observations. These include small-scale observations obtained through flux chamber
measurements and atmospheric concentration flask measurements for regional-scale studies.
The observational datasets are presented in Figure 6.
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Figure 6: Overview of the main observation datasets used in this PhD work, presented at various
spatial scales. The left column distinguishes datasets traditionally used for LSM evaluation and
calibration, while the right column presents the COS observations.

GPP and LE data estimated using eddy covariance flux towers, which have been extensively used
to benchmark LSMs (Section 1.3.1), are utilized in this study to calibrate ORCHIDEE parameters
and evaluate model developments and calibrations. With the eddy covariance method, NEE is
separated into GPP and ecosystem respiration (Re), for example by using night-time NEE data to
estimate Re and subtracting it from NEE to isolate GPP (Reichstein et al., 2005). The FLUXNET La
Thuile and 2015 networks have previously been used to calibrate and evaluate ORCHIDEE
simulated carbon, water, and energy fluxes (Kuppel et al., 2012; Bastrikov et al., 2018, Peylin et al.,
2016). Additionally, in this PhD work, | processed flux data from the ICOS Warm Winter 2020
database to provide new data for improving and evaluating ORCHIDEE fluxes over recent years in
Europe.

Then, since direct GPP and LE observations are not available at regional and global scales, | have
utilized several satellite-based global GPP and LE products for model evaluation at these broader

30



scales. The FLUXSAT GPP (Joiner et al., 2018) and FLUXCOM GPP and LE (Jung et al., 2019, 2020;
Nelson et al., 2024) datasets are derived from machine learning algorithms that integrate data
from eddy covariance flux towers with remote sensing observations. GLEAM also provides LE
estimates by combining satellite observations with a model that integrates land surface and
meteorological data (Miralles et al., 2011). Then, | used the SIF-GPP product from the Sen4GPP
project (Duveiller et al., 2023), which derives GPP using linear empirical relationships with SIF data
obtained from the ESA Sentinel-5P Tropospheric Monitoring Instrument (TROPOMI) (Guanter et
al., 2021), with biome-specific calibrations. Using multiple global GPP and LE products helps
account for uncertainties arising from different estimation methods and underlying assumptions
when evaluating ORCHIDEE simulated fluxes.

To complement these commonly used GPP and LE data, | have incorporated various COS flux
observation datasets. Unlike eddy covariance GPP estimates, eddy covariance COS flux
measurements are typically not affected by the confounding influence of a vegetation emission
flux. Using COS flux measurements also provides an independent constraint on GPP and LE,
thereby reducing reliance on traditional GPP and LE eddy covariance data and offering
complementary insights into these fluxes.

COS flux chamber measurements can be used to investigate COS flux processes at small scales.
Leaf COS uptake can be measured using branch chambers (Seibt et al., 2010; Kooijmans et al.,
2019). In particular, the Hyytiala boreal evergreen needleleaf forest in Finland has been the subject
of extensive COS flux measurements. Branch chambers measured COS fluxes on a Scots pine tree
from March to July 2017 (Kooijmans et al., 2019). COS fluxes were derived from hourly changes in
mole fractions when chambers were sealed, using a quantum cascade laser calibrated against
reference standards (Kooijmans et al.,, 2016). Soil COS exchanges can also be inferred from
chamber measurements. Soil COS flux chamber measurements have been conducted at several
sites, covering a variety of biomes with forest, grassland, and agricultural sites (Kitz et al., 2020;
Spielmann et al., 2019, 2020; Sun et al., 2018). While chambers offer the advantage of isolating
individual components of the COS budget, they also have limitations beyond their small spatial
scale. For example, some chamber components might emit COS, and using soil chambers
necessitates removing the aboveground vegetation.

At the ecosystem scale, COS fluxes that include the contribution from both vegetation and soil are
measured from eddy covariance flux towers. Several years of ecosystem COS flux measurements
are available from 2013 to 2017 at the Hyytiala forest (Vesala et al., 2022), and in 2012 and 2013 at
the Harvard deciduous temperate forest in the United-States (Wehr et al., 2017).

Then, to address the lack of direct GPP observations and COS flux measurements at the regional
scale, studies | contributed to used atmospheric CO; and COS concentration measurements to
inform CO, and COS surface fluxes (Section 5). Analyzing atmospheric CO; and COS concentration
data allows for the investigation of contributions from various components of the global CO; and
COS budgets. The NOAA surface tower network has been providing long-term COS concentration
measurements at 15 locations, with weekly to monthly frequencies, since 2000 (Montzka et al.,
2007). These measurements, which also include CO; concentrations, are collected using paired
flasks and analyzed with gas chromatography and mass spectrometry. Additionally, COS
concentration measurements have been conducted at the GIF station in France from August 2014
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to November 2021, and at the Trainou site, approximately 80 km south of GIF (Belviso et al., 2022a,
2022b). Finally, at the global scale, the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) spectrometer (Fisher et al., 2008), which is operated onboard of the ESA
Environmental Satellite (ENVISAT), provides satellite retrievals of atmospheric COS concentration
from 2002 to 2012 (Glatthor et al., 2015).

2.3 The ORCHIDEE data assimilation system
2.3.1 Data assimilation

Because the parameter values used in process representations of LSMs significantly contribute to
the uncertainty of the simulated fluxes, a tool was developed at LSCE to optimize the parameters
of the ORCHIDEE LSM. Data assimilation (DA) is an effective method for optimizing key parameters
to enhance model accuracy and improve future climate predictions. The ORCHIDEE DA system
(ORCHIDAS, https://orchidas.Isce.ipsl.fr/) integrates different DA techniques that rely on the
minimization of a cost function (measuring the distance between model and observation) to

determine a combination of optimized parameters (Bastrikov et al., 2018). Various observational
data streams can be assimilated to constrain the model parameters, such as in situ or remote
sensing data (Bacour et al., 2023; Kuppel et al., 2014; MacBean et al., 2022; Mahmud et al., 2021;
Peylin et al., 2016). For each data stream, an observation operator is required in ORCHIDEE to
simulate the corresponding variable, allowing the assimilation system to improve this simulated
variable by reducing the misfit between the model and the observational data stream (Figure 7).

The cost function quantifies the discrepancy between observed and simulated variables and the
deviation of optimized parameters from their prior values, considering the errors associated with
all components. Assuming Gaussian distributions for model-data and parameter errors, the cost
function is expressed as follows (Tarantola, 2005),

JG) =5 [(HE) =T - R™L- (H@) —y) + (= x,)7 - B+ (x — x)] (Equation 2)

with y representing the observed variable and H(x) the corresponding simulated variable. x;, is
the prior, and x is the optimized parameter vector. R and B are the prior error covariance matrices
for the observations and parameters, respectively. Note that R includes both the measurement
and model structural errors. Only the diagonal elements are considered for R and B. The
parameter error in B is defined as 15% of the parameter variation range, while the observation
errors were set to the root mean squared deviation (RMSD) between observed data and the prior
model simulations (Kuppel et al., 2012, 2013; Bacour et al., 2023).
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Figure 7: Overview of the data assimilation approach to optimize ORCHIDEE parameters using
ORCHIDAS.

ORCHIDAS integrates two main minimization methods, a gradient-based approach (limited
memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints, L-BFGS-B), and a
global random search with a Genetic Algorithm (GA) approach (Bastrikov et al., 2018). In this work,
| have used GA to optimize the model parameters (Goldberg, 1989; Haupt & Haupt, 2004; Santaren
et al., 2014).

GA is inspired by genetics and natural selection (Goldberg, 1989; Haupt & Haupt, 2004). It treats
the model parameter vector as a chromosome, with each gene representing a parameter.
Iteratively, the algorithm generates a pool of a given number of chromosomes. The initial pool is
created by randomly perturbing parameters, and subsequent iterations generate new
chromosomes via two processes. New chromosomes can be generated through crossover,
corresponding to an exchange of gene sequences between two parent chromosomes, or through
mutation, randomly perturbing selected genes of a parent chromosome. The pool is then updated
with the best chromosomes from both the parent and offspring pools, based on the lowest cost
function values. Chromosomes are ranked by their cost function values, and the selection process
ensures that the best chromosomes are more likely to produce offspring, adhering to the selection
principle.

While GA is computationally more demanding than gradient-based approaches due to its slower
convergence, it offers a significant advantage by considering a population of solutions and
performing a global search. This thorough exploration of the search space helps avoid premature
convergence. In contrast, gradient-based methods rely on a single solution trajectory, limiting the
exploration of the search space and increasing the risk of converging to local optima. For example,
in ORCHIDEE, Santaren et al. (2014) demonstrated that GA outperformed the gradient-based
method in minimizing the cost function to the correct minimum at one FLUXNET site, constrained
by water and carbon fluxes, as the gradient method frequently became trapped in local minima.

2.3.2 Sensitivity analysis

ORCHIDEE incorporates over 130 parameters to simulate land-surface interactions. To manage
the computational cost of parameter optimization and to exclude parameters that do not
significantly impact the variables of interest, sensitivity analyses (SAs) are conducted as a
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preliminary step to DA. This process helps identify and select a subset of key parameters for
calibration. Moreover, as ORCHIDEE is a LSM that can be used for global scale simulations and
projections of land carbon, water, and energy fluxes, we aim to achieve genericity in the optimized
parameter values. For instance, in ORCHIDEE, plant species are categorized into 14 vegetated PFTs,
each associated with processes that depend on PFT-specific parameters. Ensuring parameter
value genericity allows each PFT-dependent parameter to be applicable across different
environmental conditions within a PFT. Therefore, by selecting key parameters for optimization,
we reduce the risk of overfitting, where the optimized parameters fit the assimilated observational
data too closely but fail to generalize well to varying conditions or independent validation data.

ORCHIDAS integrates two SA methods to test the impact of each parameter on a simulated
variable, the Morris method (Morris, 1991) and the Sobol method (Sobol et al., 1993). The Sobol
method provides a quantitative measure of the impact of each parameter and their interactions
on the variable variance, but it is computationally expensive. In this PhD work, | have used the
Morris method due to its time efficiency. The Morris method enables a qualitative identification of
key parameters by ranking them according to their importance for the simulated variable.
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3 REPRESENTING ECOSYSTEM COS FLUXES IN ORCHIDEE

3.1 Vegetation COS uptake

Vegetation COS uptake is estimated to be the largest sink for COS, but it also exhibits the widest
range of estimates among all COS budget components, spanning from -1335 to -238 GgS y™' (Table
1). This significant uncertainty in the vegetation contribution to the global COS budget highlights
the need for a deeper understanding and tighter constraints on the spatial and temporal dynamics
of vegetation COS fluxes to effectively use COS uptake as a proxy for GPP and plant transpiration.
Berry et al. (2013) initially developed a mechanistic model of vegetation COS flux, and its
implementation in LSMs can yield new global estimates of vegetation COS uptake.

GPP can be inferred from observed vegetation COS flux using the LRU relationship (Section 1.3.3).
A previous study by Launois et al. (2015), which considered three LSMs including ORCHIDEE, linked
vegetation COS fluxes to simulated global GPP using the LRU approach. However, the integration
of a mechanistic vegetation COS model into LSMs offers the potential to provide new insights into
the simulated GPP and LE fluxes by constraining the model parameters that govern these three
fluxes through the use of COS flux measurements and data assimilation techniques.

Therefore, during a 3-month internship at LSCE prior to my PhD thesis, | worked on implementing
the mechanistic model of vegetation COS uptake initially developed by Berry et al. (2013) in
ORCHIDEE. This work, detailed in Maignan et al. (2021), where | am the second author and
presented in Appendix 9.1, involved my contributions to the vegetation COS model
implementation, performing simulations from site to global scales, and participating in the
analysis of results and the writing of the article.

In this model, vegetation COS flux is represented by a one-way diffusion equation from the
atmosphere to the leaf interior, limited by a series of conductances,

! ! ! ]_1 (Equation 2)

Fcos,,, = [COS [ -
veg [ latm gbcos  9scos  Jicos

with Fcos,e, the vegetation COS uptake (pmol COS m? s'), [COS]um the atmospheric COS
concentration (ppt), and gbcos, 9Scos: 9icos respectively the boundary layer, stomatal, and internal
COS conductance (mol COS m2s™).

Contrary to the empirically based LRU approach relying on a constant LRU value per PFT as
previously used in ORCHIDEE (Launois et al., 2015), this mechanistic model accounts for the
influence of environmental factors, such as light, on the relationship between GPP and vegetation
COS uptake.

The simulated vegetation COS fluxes in ORCHIDEE were evaluated against in situ measurements
at two forest sites: Harvard in the United-States and Hyytidla in Finland. This evaluation yielded
relative RMSDs between 21% and 41% at both diel and seasonal scales across the two sites. Global
simulations (Figure 8) estimated vegetation COS uptake at =756 GgS y' over the 2000-2009 period,
in the range of previous estimates (Table 1). Additionally, new LRU values were derived for each
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PFT, based on GPP and plant COS flux simulated in ORCHIDEE. The mechanistic and LRU
approaches were compared through the transport of all COS components in the LMDZ
atmospheric transport model and evaluation of the simulated COS concentrations at NOAA sites.
Results showed that while the mechanistic approach was more accurate to represent high-
temporal-resolution measurements, both methods produced similar results after transport of
monthly mean COS fluxes. This study highlighted that uncertainties in the global COS budget are
a larger limiting factor for using COS concentrations to constrain GPP in LSMs than the differences
between the two modeling approaches.

Vegetation COS fluxes - Mechanistic model (pmol m~—2 s~1)

90°N

60°N

30°N

-10

=13

30°S

-20
60°S

90°S =25
180° 120°W 60°W 0° 60°E 120°E 180°

Figure 8: Map of average ORCHIDEE simulated vegetation COS fluxes (pmol m-2s™') over the 2000-
2009 period.

3.2 Soil COS exchanges

To further constrain the biospheric COS flux contribution to the global atmospheric COS budget
and to accurately represent COS flux at the ecosystem scale, a representation of soil COS
exchanges needed to be implemented in ORCHIDEE in addition to the vegetation COS model.
Consequently, the implementation of a mechanistic-based model of soil COS uptake and
production in ORCHIDEE has followed the implementation of the vegetation COS model. This work
is presented in my first publication as the lead author in the next section.
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Abstract. Carbonyl sulfide (COS) is an atmospheric trace
gas of interest for C cycle research because COS uptake by
continental vegetation is strongly related to terrestrial gross
primary productivity (GPP), the largest and most uncertain
flux in atmospheric CO, budgets. However, to use atmo-
spheric COS as an additional tracer of GPP, an accurate
quantification of COS exchange by soils is also needed. At
present, the atmospheric COS budget is unbalanced glob-
ally, with total COS flux estimates from oxic and anoxic
soils that vary between —409 and —89 GgS yr~'. This un-
certainty hampers the use of atmospheric COS concentra-
tions to constrain GPP estimates through atmospheric trans-
port inversions. In this study we implemented a mechanistic
soil COS model in the ORCHIDEE (Organising Carbon and
Hydrology In Dynamic Ecosystems) land surface model to
simulate COS fluxes in oxic and anoxic soils. Evaluation of
the model against flux measurements at seven sites yields a
mean root mean square deviation of 1.6 pmolm~2s~!, in-
stead of 2 pmol m~2 s~! when using a previous empirical ap-
proach that links soil COS uptake to soil heterotrophic res-

piration. However, soil COS model evaluation is still lim-
ited by the scarcity of observation sites and long-term mea-
surement periods, with all sites located in a latitudinal band
between 39 and 62° N and no observations during winter-
time in this study. The new model predicts that, globally
and over the 2009-2016 period, oxic soils act as a net up-
take of —126GgSyr~!' and anoxic soils are a source of
+96 GgSyr~!, leading to a global net soil sink of only
—30GgSyr~!, i.e. much smaller than previous estimates.
The small magnitude of the soil fluxes suggests that the error
in the COS budget is dominated by the much larger fluxes
from plants, oceans, and industrial activities. The predicted
spatial distribution of soil COS fluxes, with large emissions
from oxic (up to 68.2pmol COSm~2s~!) and anoxic (up
to 36.8 pmol COSm~2s~") soils in the tropics, especially in
India and in the Sahel region, marginally improves the lat-
itudinal gradient of atmospheric COS concentrations, after
transport by the LMDZ (Laboratoire de Météorologie Dy-
namique) atmospheric transport model. The impact of dif-
ferent soil COS flux representations on the latitudinal gra-
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dient of the atmospheric COS concentrations is strongest in
the Northern Hemisphere. We also implemented spatiotem-
poral variations in near-ground atmospheric COS concen-
trations in the modelling of biospheric COS fluxes, which
helped reduce the imbalance of the atmospheric COS budget
by lowering soil COS uptake by 10 % and plant COS uptake
by 8 % globally (with a revised mean vegetation budget of
—576GgS yr~! over 2009-2016). Sensitivity analyses high-
lighted the different parameters to which each soil COS flux
model is the most responsive, selected in a parameter opti-
mization framework. Having both vegetation and soil COS
fluxes modelled within ORCHIDEE opens the way for using
observed ecosystem COS fluxes and larger-scale atmospheric
COS mixing ratios to improve the simulated GPP, through
data assimilation techniques.

1 Introduction

Carbonyl sulfide (COS) has been proposed as a tracer for
constraining the simulated gross primary productivity (GPP)
in land surface models (LSMs) (Launois et al., 2015; Re-
maud et al., 2022; Campbell et al., 2008). COS is an at-
mospheric trace gas that is scavenged by plants at the leaf
level through stomatal uptake and irreversibly hydrolysed in
a reaction catalysed by the enzyme carbonic anhydrase (CA)
(Protoschill-Krebs et al., 1996). This enzyme also interacts
with CO; inside leaves. COS and CO, follow a similar path-
way from the atmosphere to the leaf interior. However, while
CO; is also released during respiration, plants generally do
not emit COS (Montzka et al., 2007; Sandoval-Soto et al.,
2005; Wohlfahrt et al., 2012). To infer GPP at the regional
scale using COS observations, modellers can use measure-
ments of ecosystem COS fluxes directly or measurements
of atmospheric COS concentrations combined with an at-
mospheric transport inversion model, provided all COS flux
components are taken into account. In both cases, net soil
COS flux estimates are needed, as well as a functional rela-
tionship between GPP and COS uptake by foliage.

One important limitation for using COS as a tracer for GPP
is the uncertainty that remains on the COS budget compo-
nents. Several atmospheric transport inversion studies have
suggested that an unidentified COS source located over the
tropics, of the order of 400-600GgS yr—!, was needed to
close the contemporary COS budget (Berry et al., 2013;
Glatthor et al., 2015; Kuai et al., 2015; Ma et al., 2021; Re-
maud et al., 2022). It was recently estimated to account for
432 GgSyr~! by Maet al. (2021). The hypothesis of a strong
tropical oceanic source has not been substantiated by in situ
COS and CS; measurements in sea waters (Lennartz et al.,
2017, 2020, 2021), except by Davidson et al. (2021), that
invoke an oceanic source of 600 +400GgSyr~! based on
direct measurements of sulfur isotopes. Clearly, an accurate
characterization of all flux components of the atmospheric
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COS budget is still needed. In particular, the contribution of
soils to the COS budget is poorly constrained, and improved
estimates of their contribution may therefore provide clues to
the attribution of the missing source.

A distinction is usually made between oxic soils that
mainly absorb COS and anoxic soils that emit COS (Whe-
lan et al., 2018). Regarding COS uptake, COS diffuses into
the soil, where it is hydrolysed by CA contained in soil mi-
croorganisms such as fungi and bacteria (Smith et al., 1999).
It is to be noted that COS can also be consumed by other
enzymes, like nitrogenase, CO dehydrogenase, or CS, hy-
drolase (Smith and Ferry, 2000; Masaki et al., 2021), but
these enzymes are less ubiquitous than CA. The rate of up-
take varies with soil type, temperature, and soil moisture
(Kesselmeier et al., 1999; van Diest and Kesselmeier, 2008;
Whelan et al., 2016). With high temperature or radiation,
soils were also found to emit COS through thermal or photo
degradation processes (Kitz et al., 2017, 2020; Whelan and
Rhew, 2015; Whelan et al., 2016, 2018). Although such COS
emissions can be large in some conditions, they have usually
not been considered in atmospheric COS budgets.

Using the empirical relationship between soil COS uptake
and soil respiration by Yi et al. (2007), Berry et al. (2013)
provided new global estimates of COS uptake by oxic soils.
Launois et al. (2015) proposed another empirical model, link-
ing oxic soil COS uptake to Hy deposition based on the cor-
relation between these two processes observed at Gif-sur-
Yvette (Belviso et al., 2013). Models with a physical repre-
sentation of the involved processes are also available. Sun et
al. (2015) proposed such a mechanistic model including COS
diffusion and reactions within layered soil. Ogée et al. (2016)
also developed a mechanistic model including both COS up-
take and production, with steady-state analytical solutions in
homogeneous soils. When including such models in an LSM,
the challenge is to spatialize them, which requires new vari-
ables or parameters not readily available at the global scale
but inferred from field or lab experiments.

In this study, our goal is to provide and evaluate new global
estimates of net soil COS exchange. To this end, we did the
following:

i. We implemented an empirical-based and a mechanistic-
based soil COS model in the ORCHIDEE (Organising
Carbon and Hydrology In Dynamic Ecosystems) LSM.

ii. We evaluated the soil COS models at seven sites against
in situ flux measurements.

iii. We estimated soil contributions to the COS budget at
the global scale.

iv. We transported all COS sources and sinks using an
atmospheric model and evaluated the concentrations
against measurements of the National Oceanic and At-
mospheric Administration (NOAA) air sampling net-
work.

https:/doi.org/10.5194/bg-19-2427-2022
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2 Methods
2.1 Description of the models
2.1.1 The ORCHIDEE Land Surface Model

The ORCHIDEE Land Surface Model is developed at the In-
stitut Pierre-Simon Laplace (IPSL). The model version used
here is the one involved in the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) (Boucher et al., 2020; Cheruy
et al., 2020). ORCHIDEE computes the carbon, water, and
energy balances over land surfaces. It can be run at the site
level or at the global scale. Fast processes such as soil hy-
drology, photosynthesis, and respiration are computed at a
half-hourly time step. Other processes such as carbon alloca-
tion, leaf phenology, and soil carbon turnover are evaluated
at a daily time step. Plant species are classified into 14 plant
functional types (PFTs), according to their structure (trees,
grasslands, or croplands), bioclimatic range (boreal, temper-
ate, or tropical), leaf phenology (broadleaf or evergreen), and
photosynthetic pathway (Cz or Cy4). The vegetation distribu-
tion in each grid cell is prescribed using yearly varying PFT
maps, derived from the ESA Climate Change Initiative (CCI)
land cover products (Poulter et al., 2015).

Soil parameters such as soil porosity, wilting point, and
field capacity are derived from a global map of soil tex-
tures based on the FAO-USDA (Food and Agriculture Or-
ganization of the United Nations—-United States Department
of Agriculture) texture classification with 12 texture classes
(Reynolds et al., 2000). The different textures for the USDA
classification are presented in Table S1 in the Supplement.
To better represent the observed soil conditions at the dif-
ferent sites that will be used for evaluation in this study, we
substituted the soil textures initially assigned in ORCHIDEE
from the USDA texture global map with the field soil tex-
tures translated into USDA texture classes (Table S2). In
a previous study of vegetation COS fluxes in ORCHIDEE,
Maignan et al. (2021) used the global soil map based on
the Zobler texture classification (Zobler, 1986), which is re-
duced to three different textures in ORCHIDEE. However,
the USDA soil classification gives a finer description of the
different soil textures than the Zobler soil classification, con-
sidering 12 soil textures instead of 3. The move from the
coarse Zobler classes to the finer USDA classes is found to be
more important to the mechanistic model than to the empiri-
cal model. Since the USDA texture classes are more accurate
with its finer discretization of soil textures, in the rest of this
study, we only illustrate the results based on the USDA tex-
ture classification.

For site level simulations, the ORCHIDEE LSM was
forced by local micro-meteorological measurements ob-
tained from the FLUXNET network at the FLUXNET sites
following the Creative Commons (CC-BY 4.0) license (Pas-
torello et al., 2020) and at the remaining sites by other lo-
cal meteorological measurements performed together with
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the COS fluxes measurements when available, eventually
gap-filled using the 0.25° x 0.25° hourly reanalysis from the
fifth generation of meteorological analyses of the European
Centre for Medium-Range Weather Forecasts (ECMWT)
(ERAS5) (Hersbach et al., 2020). Global simulations were
forced by the 0.5° and 6-hourly CRU JRA reanalysis (Uni-
versity of East Anglia Climatic Research Unit-Japanese
Reanalysis; Friedlingstein et al., 2020). Near-surface COS
concentrations (denoted C, below) were prescribed using
monthly mean atmospheric COS concentrations at the first
vertical level of the LMDZ (Laboratoire de Météorologie Dy-
namique) atmospheric transport model (GCM, general circu-
lation model; see description below in Sect. 2.1.3), forced
with optimized COS surfaces fluxes. The latter have been in-
ferred by atmospheric inverse modelling from the COS sur-
face measurements of the NOAA network (Remaud et al.,
2022). Simulations with constant atmospheric COS concen-
trations at a mean global value of 500 ppt were also run
to evaluate the impact of spatiotemporal variations in near-
surface COS concentrations versus a constant value. Near-
surface COz concentrations were estimated using global
yearly mean values provided by the TRENDY (Trends in the
land carbon cycle) project (Sitch et al., 2015).

2.1.2 COS soil models
The empirical soil COS flux model

We implemented in the ORCHIDEE LSM the soil COS flux
model from Berry et al. (2013), which assumes that COS up-
take is proportional to CO» production by soil respiration,
following Yi et al. (2007). Although Yi et al. (2007) reported
a relationship between soil COS uptake and total soil res-
piration, including root respiration, Berry et al. (2013) as-
sumed that COS flux was proportional to soil heterotrophic
respiration only. The rationale behind this assumption is that
soil CA concentration is related to soil organic matter con-
tent and thus ecosystem productivity (Berry et al., 2013). As
heterotrophic respiration is also linked to productivity, Berry
et al. (2013) considered soil COS uptake to be proportional
to soil heterotrophic respiration. However, soil respiration
alone did not correlate well in incubation studies (Whelan
et al., 2016). As the proportionality between COS fluxes and
soil respiration has only been demonstrated for the total (het-
erotrophic and autotrophic) soil respiration (Yi et al., 2007),
we used in this study total soil respiration as a scaling factor
for soil COS uptake. This model will be referred to as the
empirical model.

The influence of soil temperature and moisture are in-
cluded in the calculation of soil respiration. Thus, we com-
puted soil COS flux Foil, empirical (pmol COS m2s7) as
follows:

Fsoi],empiric;ﬂ = —ksoil - RCSpmt. (1)
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where Resp,,, is total soil respiration (umol CO; m~2s~")
and ki is a constant equal to 1.2 pmol COS per pmol CO,
that converts CO; production from respiration to COS up-
take. The value of 1.2pmol COS per pmol CO, was es-
timated from field chamber measurements in a pine and
broadleaf mixed forest (Dinghushan Biosphere Reserve,
southern China) from Yi et al. (2007). In ORCHIDEE, we
calculated the total soil respiration as the sum of soil het-
erotrophic respiration within the soil column, including that
of the litter, and root autotrophic respiration.

The mechanistic soil COS flux model

The mechanistic COS soil model of Ogée et al. (2016) de-
scribes both soil COS uptake and production. This model in-
cludes COS diffusion in the soil matrix, COS dissolution, and
hydrolysis in the water-filled pore space and COS production
under low redox conditions. The soil is assumed to be hori-
zontally homogeneous so that the soil COS concentration C
(molm~2) is only a function of time  (s) and soil depth z
(m). The mass balance equation for COS can then be written
as (Ogée et al., 2016)

0e1tC _ dFaifr
a  az

+ P —8, @)

where & is the soil total porosity (m? air per cubic metre
soil), Fy is the diffusional flux of COS (molm=2s~1), §
is the COS consumption rate (molm—>s~"), and P the COS
production rate under low redox conditions (mol m= s~ ).

Under steady-state conditions and uniform soil tempera-
ture, moisture, and porosity profiles, an analytical solution
of Eq. (2) can be found (Ogée et al., 2016). We assume that
the environmental conditions, such as soil temperature and
moisture, are constant in ORCHIDEE over the 30 min model
time step. We also assume chemical equilibrium between the
gaseous and the dissolved COS, neglecting advection as sug-
gested by Ogée et al. (2016). In these conditions, the typi-
cal timescale for COS diffusion in the upper active soil layer
is much shorter than the 30 min model time step. Although
Eq. (2) could also be solved numerically using the soil dis-
cretization in ORCHIDEE, we preferred to use the analyti-
cal solution, using the mean soil moisture and temperature
averaged over the first few soil layers (down to about 9cm
deep), weighted by the thickness of each soil layer. Assum-
ing fully mixed atmospheric conditions within and below the
vegetated canopy, we also assumed that the COS concentra-
tion at the soil surface C(z = 0) is equal to the near-surface
COS concentration C,. With these boundaries’ conditions,
the steady-state COS flux at the soil surface Fioil, mechanistic
(molm~2s~") is (Ogée et al., 2016)

Foil, mechanistic =

P
vkBOD (Ca = % (1 —exp(_Zmax/Zl))> s 3)
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where k is the first-order COS consumption rate constant
within the soil (s™!), B is the solubility of COS in water
(m? water per cubic metre air), 6 is the soil volumetric
water content (m> water per cubic metre soil), D is the total
effective COS diffusivity (m?s~1), z; = \/D/kB@ (m), and
Zmax 18 the soil depth below which the COS production rate
and the soil COS gradient are assumed negligible (Ogée et
al., 2016). In the following, zmax is set at 0.09 m.

COS diffusion

The total effective COS diffusivity in soil D includes
the effective diffusivity of gaseous COS Deg o (m? air per
metre soil per second) and dissolved COS Deg; (m® water
per metre soil per second) through the soil matrix:

D= Deff.a + Deff.l B. (4)

The solubility of COS in water B is calculated using
Henry’s law constant K (molm—3 Pa~!):

B=KuRT, (5)

where R =8314Jmol~! K~ is the ideal gas constant, T is
the soil temperature (K), and (Wilhelm et al., 1977)

Ky = 0.00021 exp[24900/R(1/T — 1/298.15)]. (6)

The effective diffusivity of gaseous COS Deg, is ex-
pressed as (Ogée et al., 2016)

Desr,a = Do, a Ta €2, @)

where Dy, is the binary diffusivity of COS in the air
(m? airs—"), 7, is the air tortuosity factor representing the tor-
tuosity of the air-filled pores, and &, is the air-filled porosity
(m? air per cubic metre soil). The binary diffusivity of COS
in the air Dy, is expressed following the Chapman—Enskog
theory for ideal gases (Bird et al., 2002) and depends on tem-
perature and pressure:

15

Do.a(T. p) = Do.a(Topo) (Tz) (ﬁ) (8)
0 Po

where Do a(To, po) = Do 2(25°C, 1 atm) = 1.27 x

1075 m?s~! (Massman, 1998).

The expression of the air tortuosity factor 7, depends on
whether the soil is repacked or undisturbed. In ORCHIDEE,
repacked soils correspond to the agricultural soils repre-
sented by the C3 and C4 crops. Soils not covered by crops
are considered undisturbed soils. The expression of 7, for
repacked soils 7, is given by Moldrup et al. (2003):

Tar = 53/2/§0’ )

where ¢ is the soil porosity (m* m~?) that includes the air-
filled and water-filled pores. Soil porosity is assumed con-
stant through the soil column in ORCHIDEE and is deter-
mined by the USDA texture global map. The air-filled poros-
ity €, is calculated as &, = ¢ — 0.
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The expression of 7, for undisturbed soils 7,y is given in
Deepagoda et al. (2011). We chose this expression rather than
the expression proposed by Moldrup et al. (2003) for undis-
turbed soils because it appears to be more accurate and does
not require information on the pore-size distribution (Ogée et
al., 2016):

Tau = [0.2(6a/9)* +0.004] /. (10)

In a similar way to COS diffusion in the gas phase, the
effective diffusivity of dissolved COS Deg is described by
Ogée et al. (2016):

Dett1 = Do, 70, (1)

where Dy is the binary diffusivity of COS in the free wa-
ter (m? waters—') and 7 is the tortuosity factor for solute
diffusion. The binary diffusivity of COS in the free wa-
ter Dy 1 is described using an empirical formulation proposed
by Zeebe (2011) for CO», which only depends on tempera-
ture:

T 2
Do, (T) = Do,1(To) (70 - l) , (12)

where 7o =216K (Ogée et al., 2016) and Do 1(25°C) =
1.94 x 107 m? s~! (Ulshéfer et al., 1996).

The expression of 7; is the same for repacked and undis-
turbed soils. We used the expression given by Millington and
Quirk (1961) as a good compromise between simplicity and
accuracy (Moldrup et al., 2003):

'q=97/3/(p2. (13)

COS consumption
COS can be destroyed by biotic and abiotic processes.
The abiotic process corresponds to COS hydrolysis in soil

water at an uncatalysed rate kuncat (s~1), which depends on
soil temperature 7 (K) and pH (Elliott et al., 1989):

1 1
kuncat = 2.15 x 107 —10450( — —
L “ eXp( (T 298.15))

1 1
12.7 x 10~ PKwHPH —6040( — ——— 1)), (14
it xp T 298.15 G4

where pKy, is the dissociation constant of water.

This uncatalysed hydrolysis is quite low compared to the
COS hydrolysis catalysed by soil microorganisms, which is
the main contribution of COS uptake by soils (Kesselmeier et
al., 1999; Sauze et al., 2017; Meredith et al., 2018). The en-
zymatic reaction catalysed by CA follows Michaelis—Menten
kinetics. The turnover rate key (s~') and the Michaelis—
Menten constant K, (molm™3) of this reaction depend on
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temperature. The temperature dependence of the ratio I;g—r: is
expressed as (Ogée et al., 2016)

exp(— 54t )

+exp (-5 + 43)

xca(T) = (15)

where AH,, AHy, and ASy are thermodynamic parame-
ters, such as A H, = 40kJ mol~!, AHy =200kJmol~!, and
ASq = 660Tmol~' K~

The total COS consumption rate by soil k& (s71) is de-
scribed with respect to the uncatalysed rate at 7 = 298.15K
and pH = 4.5 (Ogée et al., 2016):

xca (T)

g - k 298.15,4.5) ———,
Jeakuncar ( ) xca (298.15)

(16)
where fca is the CA enhancement factor, which charac-
terizes the soil microbial community that can consume
COS. The CA enhancement factor depends on soil CA
concentration, temperature, and pH. Ogée et al. (2016)
reported that its values range between 21 600 and 336 000,
with a median value at 66 000. We adapted the values of fca
found in Meredith et al. (2019) to have a CA enhancement
factor that depends on ORCHIDEE biomes (Table Al in
Appendix A).

Oxic soil COS production

Abiotic oxic soil COS production has been observed at
high soil temperature (Maseyk et al., 2014; Whelan and
Rhew, 2015; Kitz et al., 2017, 2020; Spielmann et al., 2019a,
2020). However, photodegradation has also been proposed
as an abiotic production mechanism in oxic soils (Whelan
and Rhew, 2015; Kitz et al., 2017, 2020). Abiotic COS
production is still not well understood but was assumed to
originate from biotic precursors (Meredith et al., 2018).

In Ogée et al. (2016), the production rate P is described
as independent of soil pH but depends on soil temperature
and redox potential. This dependence on soil redox potential
enables us to consider the transition between oxic and anoxic
soils. However, because little information is available on soil
redox potential at the global scale, its influence cannot yet be
represented in a spatially and temporally dynamic way in a
land surface model such as ORCHIDEE. Thus, we decided
to use the production rate described in Whelan et al. (2016)
that only depends on soil temperature and land use type:

oxic = ea-}—ﬁT’ (7)
where Posic is expressed in pmolg=!min~!, T is soil
temperature (°C), and @ and g are parameters determined
by Whelan et al. (2016) for each land use type using the
least-squares fitting approach. We adapted the values of «
and B given for four land use types to ORCHIDEE biomes
(Table A2 in Appendix A). Values of @ and B for deserts
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could not be estimated by Whelan et al. (2016) because
COS emission for this biome was not found to increase
with temperature. Figure 11 in Whelan et al. (2016) shows
that COS emission from a desert soil is always near zero
for temperatures ranging from 10 to 40 °C. Moreover, COS
emission from a desert soil is also found to be near zero in
Fig. 1 of Meredith et al. (2018). This could be explained
by a lack of organic precursors to produce COS (Whelan et
al., 2016). Therefore, we considered that desert soils, which
correspond to a specific non-vegetated PFT in ORCHIDEE,
do not emit COS. For other ORCHIDEE biomes, COS
production was estimated using « and 8 for each PFT and
the mean soil temperature over the top 9cm. The unit of
Poxic was converted from pmol g~ ' min~! to molm—3s~!
(in Eq. 3) using soil bulk density information from the
Harmonized World Soil Database (HWSD; FAO/ITASA/IS-
RIC/ISSCAS/IRC, 2012).

Anoxic soil COS emission

Several studies have shown direct COS emissions by
anoxic soils (Devai and DeLLaune, 1997; de Mello and Hines,
1994; Whelan et al., 2013; Yi et al., 2007). This has been
linked to a strong activity of sulfate reduction metabolisms
in highly reduced environments such as wetlands (Aneja
et al.,, 1981; Kanda et al., 1992; Whelan et al., 2013; Yi
et al., 2007). A previous approach developed by Launois
et al. (2015) was based on the representation of seasonal
methane emissions by Wania et al. (2010) in the LPJ-
WHyME (Lund-Potsdam-Jena—Wetland Hydrology and
Methane) model to represent anoxic soils in ORCHIDEE.
The mean values of soil COS emissions from Whelan et
al. (2013) were used to attribute to each grid point a value of
soil COS emission. In this approach by Launois et al. (2015),
salt marshes were not represented despite their strong COS
emissions found in Whelan et al. (2013). Emissions from
rice paddies were also neglected. Thus, COS emissions
from anoxic soils peaked in summer over the high latitudes,
following methane production.

Because of the scarce knowledge on anoxic soil COS ex-
change, here we propose another approach to represent the
contribution of anoxic soils, which could be compared to the
previous approach developed by Launois et al. (2015). To
represent the distribution of anoxic soils, we selected the reg-
ularly flooded wetlands from the map developed by Tootchi
et al. (2019), as represented in Fig. 1. The regularly flooded
wetlands cover 9.7 % of the global land area, which is among
the average values found in the literature ranging from 3 % to
21 9% (Tootchi et al., 2019). Then, in ORCHIDEE each pixel
is considered either anoxic following the wetland map distri-
bution from Tootchi et al. (2019) or oxic for the rest of the
land surfaces. The pixels defined as anoxic soils are consid-
ered flooded through the entire year: the seasonal variations
of the flooding, as happen during the monsoon seasons, are
consequently neglected.
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On anoxic pixels, we represent anoxic soil COS flux with
a production rate based on the expression developed by Ogée
et al. (2016):

(T —Tep)

Panoxic = PrefZmax Qm e (13)

where Prr (molm~2s72) is the reference production term,
Trer is a reference soil temperature (K), and Qg is the multi-
plicative factor of the production rate for a 10 °C increase in
soil temperature (unitless). As anoxic soil production ranges
from 10 to 300pmolm?s~—! for salt marshes and is usu-
ally below 10 pmolm=2s~! for freshwater wetlands (Whe-
lan et al., 2018), the reference production term was set to
10pmol m—2s~ 1,

All the variables and constants of the empirical and mech-
anistic models are presented in Tables A3 and A4 in Ap-
pendix A,

2.1.3 The atmospheric chemistry transport model
LMDZ

To simulate the COS atmospheric distribution, we use
an “offline” version of the Laboratoire de Météorologie
Dynamique general circulation model (GCM), LMDZ 6
(Hourdin et al.,, 2020), which has been used as the at-
mospheric component in the IPSL coupled model for
CMIP6. The LMDZ GCM has a spatial resolution of
3.75° long. x 1.9° lat. with 39 sigma-pressure layers extend-
ing from the surface to about 75 km, corresponding to a verti-
cal resolution of about 200-300 m in the planetary boundary
layer, and a first level at 33 m above sea or ground level. The
model » and v wind components were nudged towards winds
from the ERAS reanalysis with a relaxation time of 2.5h to
ensure realistic wind advection (Hourdin and Issartel, 2000;
Hauglustaine et al., 2004). The ECMWF fields are provided
every 6h and interpolated onto the LMDZ grid. This ver-
sion has been shown to reasonably represent the transport
of passive tracers (Remaud et al., 2018). The offline model
uses pre-computed mass fluxes provided by this full LMDZ
GCM version and only solves the continuity equation for the
tracers, which significantly reduces the computation time. In
the following, we refer to this offline version as LMDZ. The
model time step is 30 min, and the output concentrations are
3-hourly averages.

The atmospheric COS oxidation is computed from pre-
calculated OH monthly concentration fields produced from
a simulation of the INCA (Interaction with Chemistry and
Acrosols) model (Folberth et al., 2006; Hauglustaine et al.,
2004, 2014) coupled to LMDZ. The atmospheric OH oxida-
tion of COS amounts to 100 GgSyr~! in the model. Simi-
larly, the COS photolysis rates are also pre-calculated with
the INCA model, which uses the Troposphere Ultraviolet
and Visible (TUV) radiation model adapted for the strato-
sphere (Terrenoire et al., 2022). The temperature-dependent
carbonyl sulfide absorption cross-sections from 186.1 to
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I Regularly flooded wetlands
Non-wetlands

Figure 1. Map of wetlands distribution used to represent anoxic soils in ORCHIDEE. The map resolution is 0.5° x 0.5° (adapted from

Tootchi et al., 2019).

296.3 nm are taken from Burkholder et al. (2019). The cal-
culated photolysis rates are averaged over the period 2008-
2018 and prescribed to LMDZ. Implemented in LMDZ,
the COS photolysis in the stratosphere amounts to about
30GgS yr~ L, which is of the same order of magnitude as
previous estimates: 21 GgSyr~! (71 % of 30GgS yr~!) by
Chin and Davis (1995), between 11 and 21 GgS yr~! by Ket-
tle et al. (2002), and between 16 and 40 GgSyr—! by Ma et
al. (2021).

2.2 Observation data sets

2.2.1 Description of the sites

The description of the studied sites is given in Table 1.
2.2.2 Soil COS flux determination at selected sites

Soil COS flux chamber measurements were conducted in
2015 at AT-NEU; in 2016 at DK-SOR, ES-LMA, and ET-
JA; and in 2017 at IT-CRO (abbreviations as in Table 1). The
aboveground vegetation was removed 1d before the mea-
surements if needed, and the fluxes were derived from con-
centration measurements using a quantum cascade laser (see
Kitz et al., 2020, and Spielmann et al., 2020, 2019a). At
AT-NEU, DK-SOR, ES-LMA, and IT-CRO. a random forest
model was calibrated against the manual chamber measure-
ments and then used to simulate half-hourly soil COS fluxes
in Spielmann et al. (2019a). We compared the ORCHIDEE
half-hourly simulated fluxes to half-hourly outputs of the ran-
dom forest model. This enabled studying the diel cycle and
computing daily observations with no sampling bias for the
study of the seasonal cycle. Soil COS fluxes for ET-JA were
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derived by using the same training method as the one used in
Spielmann et al. (2019a).

At FI-HY'Y, soil COS fluxes were measured using two au-
tomated soil chambers in 2015. These chambers were con-
nected to a quantum cascade laser spectrometer to calculate
soil COS fluxes from concentration measurements (see Sun
et al., 2018, for more information on the experimental setup).
Any vegetation was removed from the chambers before the
measurements.

At US-HA, s0il COS fluxes in 2012 and 2013 were not di-
rectly measured but derived from flux-profile measurements,
connected to CO» soil chamber measurements and profiles.
A sub-canopy flux gradient approach was used to partition
canopy uptake from soil COS fluxes. For more information
on this approach and its limitations, see Wehr et al. (2017).

In the study of soil COS fluxes, the difficulty of performing
soil COS flux measurements must be acknowledged, as well
as the differences between experimental setups and methods
to retrieve soil COS fluxes. These limitations are illustrated
in the set of observations selected here. Aboveground veg-
etation had to be removed at some sites t0 not measure the
plant contribution in addition to soil COS fluxes (Sun et al.,
2018; Spielmann et al., 2019a; Kitz et al., 2020). Vegetation
removal prior to the measurements might lead to artefacts in
the observations. Some components of the measuring system
can also emit COS. In this case, a blank system is needed
to apply a post-correction to the measured fluxes (Sun et al.,
2018; Kitz et al., 2020). Litter was left in place at the mea-
surement sites.
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Table 1. Lists the sites’ characteristics including their identification name, location, climate, soil type, dominant vegetation and species, corresponding PFT fractions we used for the

ORCHIDEE simulations, and reference studies for more details. The spatial distribution of the sites is represented in Fig. B1 in Appendix B.

Grassland Savannah-like Deciduous Agricultural Evergreen Boreal evergreen Temperate decidu-
grassland broadleaf forest soybean field needleleaf forest needleleaf forest ous broadleaf forest
Country Austria Spain Denmark Italy Estonia Finland United States
Sampling Neustift Las Majadas Sorg Rivignano Jirvselja Hyytidld Harvard
site del Tiétar
ID AT-NEU ES-LMA DK-SOR IT-CRO ET-JA FI-HYY US-HA
Coordinates 47.12°N, 11.32°E ~ 39.94°N, 5.77° W 55.49°N, 11.64°E  45.87°N, 13.08°E  58.22°N,27.28°E  61.85°N,24.30°E  42.54°N,72.17°W
Climate Humid continental Mediterranean Temperate Humid subtropical Temperate Boreal Cool, moist
maritime temperate
Soil type Fluvisol Abruptic Luvisol Luvisols or Silt loam Haplic Gleysol Haplic Podzol Podzol and Regosol
Chernozems
Dominant Graminoids: Tree: Quercus ilex European beech Soybean Norway spruce Scots pine Red oak (Quercus
vegetation Dactylis glomerata,  Grass: Vulpia (Fagus sylvatica) (Picea abies) (Pinus sylvestris) rubra), red maple
Festuca pratensis bromoides (Acer rubrum),
Forbs: Ranunculus hemlock (Tsuga
acris, Taraxacum canadensis)
officinale
ORCHIDEE 100 % temperate 20 % temperate 80 % boreal 100 % C3 crops 50 % boreal needle- 80 % boreal needle- 80 % temperate
PFT natural grassland broadleaf evergreen broadleaf (PFT 12) leaf evergreen leaf evergreen broadleaf
representation  (C3z) (PFT 10) (PFT 5), summergreen (PFT 7), (PFT 7), summergreen
80 % temperate (PFT 8), 40 % boreal 20 % boreal natural  (PFT 6),
natural grassland 20 % boreal natural broadleaf grassland (C3) 20% of temperate
(C3) (PFT 10) grassland (C3) summergreen (PFT 15) natural grassland
(PFT 15) (PFT 8), (C3) (PFT 10)
10 % boreal
natural grassland
(C3) (PFT 15)
References Hortnagl et al. Lopez-Sangil et al. Pilegaard et al. Spielmann et al. Noe et al. (2011, Kolari et al. (2009),  Urbanski et al.
(2011), (2011), (2011), (2019a) 2015), Sun et al. (2018) (2007),
Hortnagl and El-Madany et al. Wau et al. (2013), Kitz et al. (2020) Webhr et al. (2017)
Wohlfahrt (2014), (2018), Brandholt et al.
Spielmann et al. Weiner et al. (2018), (2018),
(2019a), Spielmann et al. Spielmann et al.

Kitz et al. (2020)

(2019a),
Kitz et al. (2020)

(20192),
Kitz et al. (2020)
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2.2.3 COS concentrations at the NOAA Earth System
Research Laboratories (ESRL) sites

The NOAA surface flask network provides long-term mea-
surements of the COS mole fraction at 14 locations at weekly
to monthly frequencies from the year 2000 onwards. We use
an extension of the data initially published in Montzka et
al. (2007). The data were collected as paired flasks anal-
ysed using gas chromatography and mass spectrometry. The
stations located in the Northern Hemisphere had sample air
masses coming from the entire Northern Hemisphere do-
main above 30°. Among them, the sites LEF, NWR, HFM,
and WIS have mostly continental footprints (Remaud et al.,
2022), while the sites SPO, CGO, and PSA sample mainly
oceanic air masses of the Southern Hemisphere (Montzka et
al., 2007). The locations of these sites are depicted in Fig. Bl
in Appendix B.

2.3 Simulations
2.3.1 Spin-up phase

A “spin-up” phase was performed before each simulation,
which enabled all carbon pools to stabilize and the net biome
production to oscillate around zero. Reaching the equilib-
rium state is accelerated in the ORCHIDEE LSM thanks to
a pseudo-analytical iterative estimation of the carbon pools,
as described in Lardy et al. (2011). For site simulations, the
spin-up was performed by cycling the years available in the
forcing files of each site, for a total of about 340 years. For
global simulations, the spin-up phase of 340 years was per-
formed by cycling over 10 years of meteorological forcing
files in the absence of any disturbances.

2.3.2 Transient phase

Following the spin-up phase we ran a transient simulation of
about 40 years that introduced disturbances such as climate
change, land use change, and increasing CO, atmospheric
concentrations.

This transient phase was performed by cycling over the
available years for site simulations. For global simulations,
the transient phase was run where we introduced distur-
bances from 1860 to 1900. After this transient phase, COS
fluxes were simulated from 1901 to 2019.

2.3.3 Atmospheric simulations: sampling and data
processing

We ran the LMDZ6 version of the atmospheric transport
model described above for the years 2009 to 2016. We started
from a uniform initial condition, and we removed the first
year, as it is considered to be part of the spin-up period. The
COS fluxes used as model inputs are presented in Table 2.
The fluxes are given as a lower boundary condition, called the
surface, of the atmospheric transport model (LMDZ), which
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then simulates the transport of COS by large-scale advection
and sub-grid scale processes such as convection and bound-
ary layer turbulence. In this study, we only evaluate the sen-
sitivity of the latitudinal gradient and seasonal cycle of COS
concentrations to the soil COS fluxes. The horizontal gradi-
ent aims at validating the latitudinal repartition of the surface
fluxes, while the seasonal cycle partly reflects the seasonal
exchange with the terrestrial sink, which peaks in spring/-
summer. This study does not aim at reproducing the mean
value, as the top-down COS budget is currently unbalanced,
with a source component missing (Whelan et al., 2018; Re-
maud et al., 2022; see Table 3).

For each COS observation, the 3D simulated concen-
tration fields were sampled at the nearest grid point to
the station and at the closest hour of the measurements.
For each station, the curve fitting procedure developed by
the NOAA Climate Monitoring and Diagnostic Laboratory
(NOAA CMDL) (Thoning et al., 1989) was applied to mod-
elled and observed COS time series to extract a smooth de-
trended seasonal cycle. We first fitted a function including
a first-order polynomial term for the growth rate and two
harmonic terms for seasonal variations. The residuals (raw
time series minus the smooth curve) were fitted using a low-
pass filter with either 80 or 667 d as short-term and long-term
cut-off values. The detrended seasonal cycle is defined as the
smooth curve (full function plus short-term residuals) minus
the trend curve (polynomial plus long-term residuals). Re-
garding vegetation COS fluxes (Maignan et al., 2021), we
added the possibility of using spatially and temporally vary-
ing atmospheric COS concentrations, as for soil.

2.4 Numerical methods for model evaluation and
parameter optimization

2.4.1 Statistical scores

We evaluated modelled soil COS fluxes against field mea-
surements using the root mean square deviation (RMSD) as

N
. 2
> (FSos (1) — FGs )
RMSD = | *=L = , (19)

where N is the number of considered observations, Fg(‘)’; (n)
is the nth observed COS flux, and F34 (n) is the nth mod-
elled COS flux, and the relative RMSD (rRMSD) as

RMSD

7 s
Obs

2 Feps ()

n=1

N

(20)

which is the RMSD divided by the mean value of observa-
tions.

Simulated atmospheric COS concentrations were evalu-
ated by computing the normalized standard deviation (NSD),
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Table 2. Sink and source components of COS budget used in this study. Mean magnitudes and standard deviations of different types of fluxes

are given for the period 2009-2016.

Type of COS flux Temporal resolution Total Standard  Data source
(GgSyr 1 deviation
(GgSyr™!)
Anthropogenic Monthly, interannual +394 21  Zumkehr et al. (2018) for which the fluxes for
the year 2012 were repeated after 2012
Ocean Monthly, interannual +313 14 Lennartz et al. (2021) and Masotti et al. (2016)
for indirect oceanic emissions (via CS2 — car-
bon disulfide — and DMS — dimethyl sulfide —
respectively) and Lennartz et al. (2017) for di-
rect oceanic emissions
Biomass burning Monthly, interannual +48 9@  Stinecipher et al. (2019)
Soil Monthly, interannual See Table 3 5 (oxic) This work, including mechanistic and empirical
2 (anoxic) approaches (Berry et al., 2013; Launois et al.,
2015)
Vegetation uptake Monthly, interannual —576 7  Maignan et al. (2021)
Atmospheric OH Monthly, interannual —100 (=) Hauglustaine et al. (2004)
oxidation
Photolysis in the strato-  Monthly, interannual -30 (=) Remaud et al. (2022)

sphere

Table 3. Comparison of soil COS budget per year (GgS yr— 1 ). The net total COS budget is computed by adding all sources and sinks of COS
(anthropogenic, ocean, biomass burning, soils, vegetation, atmospheric OH oxidation, and photolysis in the atmosphere) used to transport
COS fluxes (Table 2). CLM: Community Land Model. SiB: Simple Biosphere Model.

Kettle et Berry et Launois et al. (2015) Kooijmans This study
al. (2002) al. (2013) etal. (2021)

ORCHIDEE LP] CLM4 SiB4  Empirical Mechanistic
(modified) soil model soil model

Period 2002 2002-2005 2006-2009 2000-2020 2009-2016

Plants —238 —738 —1335  —1069  —930 —664 —576

Soil oxic —130 —355 —510 —89 214 —126
Soil anoxic +26  Neglected +101 Neglected  Neglected +96
Soil total —104 —355 —409 —89 —214 —30
Net total +04 +1 —5606 -=300 -—1lol (=) —165 +19

which is the standard deviation of the simulated concentra-
tions divided by the mean of the observed concentrations,
and the Pearson correlation coefficients (r) between simu-
lated and observed COS concentrations. The closer NSD and
r values are to 1, the better the model accuracy is.

2.4.2 Data assimilation

One of the main difficulties with the implementation of a
model is to define the parameter values that lead to the most
accurate representation of the processes in ORCHIDEE.
Calibrating the model parameters is of interest as Ogée et
al. (2016) indicate that some of the model parameters such

Biogeosciences, 19, 2427-2463, 2022

as fca and the production term parameters have to be con-
strained by observations. Moreover, the default values for the
soil COS model parameters used in this study (Tables Al
and A2 in Appendix A) are determined by laboratory experi-
ments (Ogée et al., 2016; Whelan et al., 2016), which is why
it is interesting to study how the values obtained by calibra-
tion against field observations differ from these default val-
ues. Data assimilation (DA) aims at producing an optimal es-
timate by combining observations and model outputs. In this
study, we used DA to find the model parameter values that
improve the fit between simulated and observed soil COS
fluxes from the empirical and the mechanistic models. We
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used the ORCHIDEE Data Assimilation System (ORCHI-
DAS), which is based on a Bayesian framework. ORCHI-
DAS has been described in detail in previous studies (Bas-
trikov et al., 2018; Kuppel et al., 2014; MacBean et al., 2018;
Peylin et al., 2016; Raoult et al., 2021), so below we only
briefly present the method. Assuming that the observations
and model outputs follow a Gaussian distribution, we aim at
minimizing the following cost function J (x) by optimizing
the model parameters (Tarantola, 2005):

1 |
J(X)ZE[(M(I)—}’) ET - (M (x)—y)

ek B rat), 2D

where x is the vector of parameters to optimize and y is the
observations. The first part of the cost function measures the
mismatch between the observations and the model, and the
second part represents the mismatch between the prior pa-
rameter values x” and the considered set of parameters x.
Both terms of the cost function are weighted by the prior
covariance matrices for the observation errors £~ and pa-
rameter errors B!, The minimization of the cost function
follows the genetic algorithm (GA) method, which is derived
from the principles of genetics and natural selection (Gold-
berg, 1989; Haupt and Haupt, 2004) and is described for OR-
CHIDAS in Bastrikov et al. (2018).

For each soil COS model, we selected the eight most im-
portant parameters to which soil COS fluxes are sensitive
following sensitivity analyses (Sect. 2.4.3). The observation
sites selected for sensitivity analyses and DA are the ones
with the largest number of observations for model parameter
calibration, which are FI-HYY and US-HA.

2.4.3 Sensitivity analyses

We conducted sensitivity analyses at two contrasting sites
(FI-HYY and US-HA) to determine which model parame-
ters have the most influence on the simulated soil COS fluxes
from the empirical and the mechanistic models. Sensitivity
analyses can help to identify the key parameters before aim-
ing at calibrating these parameters. Indeed, focusing on the
key model parameters for calibration limits both the compu-
tational cost of optimization that increases with the number
of parameters and the risk of overfitting.

The Morris method (Morris, 1991; Campolongo et al.,
2007) was used for the sensitivity analysis, as it is relatively
time efficient and enables ranking the parameters by impor-
tance. This qualitative method requires only a small number
of simulations, (p + 1)n, where p is the number of param-
eters and n is the number of random trajectories generated
(here, n = 10).

We selected a set of parameters for the Morris sensitiv-
ity analyses based on previous sensitivity analyses conducted
on soil parameters in ORCHIDEE (Dantec-Nédélec et al.,
2017; Raoult et al., 2021; Mahmud et al., 2021). A dis-
tinction is made between the soil COS model parameters
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called first-order parameters ( fca, o, and g for the mechanis-
tic model and kg for the empirical model) and parameters
called second-order parameters related to soil hydrology, car-
bon uptake and allocation, phenology, conductance, or pho-
tosynthesis (18 parameters; see Tables S3 and S4). The range
of variation in the second-order parameters is described in
previous studies using ORCHIDEE (Dantec-Nédélec et al.,
2017; Raoultet al.,, 2021; Mahmud et al., 2021). For the first-
order parameters, the range of variation is described in Yi
et al. (2007) for ko (£1.08 pmol COS per umol CO3) and
in Table 1 in Meredith et al. (2019) for fca. The ranges of
variation for & and 8 parameters are not directly given in
the literature and were calculated based on information from
the production parameters defined in Meredith et al. (2018)
(Text S1 and Table S5).

3 Results
3.1 Site-scale COS fluxes
3.1.1 Soil COS flux seasonal cycles

Figure 2 shows the seasonal cycles of soil COS fluxes at
the different sites where measurements were conducted. The
empirical model mainly differs from the mechanistic model
with a stronger seasonal amplitude of soil COS fluxes (34 %
higher), except at the sites where a net COS production is
found with the mechanistic model in summer (ES-LMA and
IT-CRO). At all sites, the empirical model shows that the
simulated uptake increases in spring, reaching a maximum
in summer, and decreases in autumn with a minimal up-
take during winter. The strong COS uptake in summer from
the empirical model can be explained by the proportional-
ity of soil COS uptake to simulated soil respiration, which
increases with the high temperatures in summer. In contrast,
the mechanistic model depicts almost no seasonality at all the
sites where no net COS production is found over the year.
As the mechanistic model represents both soil COS uptake
and production, the increase in COS production due to higher
temperature in summer compensates part of the COS uptake
(Fig. Cl1 in Appendix C). While the uptake from the empir-
ical model is often higher than the one computed with the
mechanistic model in summer, soil COS uptake in winter is
stronger with the mechanistic representation.

The scarcity of field measurements at AT-NEU, ES-LMA,
TT-CRO, DK-SOR, and ET-JA does not allow for an evalu-
ation of the simulated seasonality of COS fluxes. However,
at US-HA, the absence of seasonality from May to October
in the observations is also found in the mechanistic model,
while a maximum net soil COS uptake is reached with the
empirical model.

We found that the mechanistic model is in better agree-
ment with the observations for four (IT-CRO, ET-JA, FI-
HYY, and US-HA) out of the seven sites, with a mean
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Figure 2. Seasonal cycle of weekly average net soil COS fluxes (pmol m—2 s‘l) at AT-NEU, ES-LMA, IT-CRO, DK-SOR, ET-JA, FI-HYY,
and US-HA. The shaded areas around the observation and simulation curves represent the standard deviation over a week for each site. Soil
COS fluxes are computed with a variable atmospheric COS concentration. RMSD values between the simulated and observed fluxes are
given with the respective model colour at each site and for both soil chambers at FI-HY'Y (chl and ch2).

of 1.58pmolm~2s~! and 2.03m~2s~! for the mechanistic

and empirical model, respectively. However, the mechanis-
tic model struggles to reproduce soil COS fluxes at AT-NEU
and ES-LMA, with an overestimation of soil COS uptake or
an underestimation of soil COS production at AT-NEU and a
delay in the simulated net COS production at ES-LMA. We
might suspect that the removal of vegetation at these sites
prior to the measurements could have artificially enhanced
COS production in the observations. Indeed, the removal of
vegetation could change soil structure and increase the avail-
ability of soil organic matter to degradation (Whelan et al.,
2016). AT-NEU and ES-LMA are grassland sites for which
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soils are expected to receive higher light intensity than for-
est soils. These sites also show a high mean soil tempera-
ture of about 20 °C during the measurement periods. There-
fore, high soil temperature and light intensity on soil sur-
face could have enhanced soil COS production, as it was re-
lated to thermal or photo degradation of soil organic matter
(Kitz et al., 2017, 2020; Whelan and Rhew, 2015; Whelan et
al., 2016, 2018). This is not the case at FI-HYY, ET-JA, or
DK-SOR, where soil temperature is much lower (mean value
about 10°C at FI-HYY and 15°C at ET-JA and DK-SOR
during the measurement periods) and the forested cover de-
creases the radiation level reaching the soil. Note that herba-
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ceous biomass is also likely to be higher in grasslands than in
forests. Besides, AT-NEU and ES-LMA are managed grass-
land sites with nitrogen inputs. Then, soil COS production
could also be enhanced by a high nitrogen content as sug-
gested by several studies (Kaisermann et al., 2018; Kitz et
al., 2020; Spielmann et al., 2020), which is not represented in
our models. The mechanistic model is able to represent a net
COS production at IT-CRO but overestimates it. This might
highlight the importance of adapting the production parame-
ters (o and B) in this model to adequately represent net COS
production. In this model, the net soil COS production is re-
lated to an increase in soil temperature. However, it is to be
noted that I'T-CRO is an agricultural site with nitrogen fertil-
ization. Therefore, soil COS production in the observations
could also be enhanced by nitrogen inputs. As expected, the
empirical model is unable to correctly simulate the direction
of the observed positive soil COS exchange rates at ES-LMA
and IT-CRO.

3.1.2  Soil COS flux diel cycles

Figure 3 shows the comparison between the simulated and
observed mean diel cycles over a month. The observations
show a minimum net soil COS uptake or a maximum net
soil COS production reached between 11:00 and 13:00 at
AT-NEU (UTC+-2), ES-LMA (UTC+2), IT-CRO (UTC+1),
and DK-SOR (UTC+2). At AT-NEU and ES-LMA, neither
model is able to represent the observed diel cycle. At these
grassland sites, Spielmann et al. (2020) and Kitz et al. (2020)
found that the daytime net COS emissions were mainly re-
lated to high radiations reaching the soil surface, the impact
of which is not represented in the soil COS models. At I'T-
CRO and DK-SOR, the diel cycles simulated by the mech-
anistic model show patterns similar to the observations with
a peak in the middle of the day but with an overestimation
of the net soil COS production and a delay in the peak at
IT-CRO and an overestimation of the net soil COS uptake
at DK-SOR. The mechanistic model reproduces the absence
of a diel cycle observed at FI-HYY and ET-JA but with an
underestimation of the net soil COS uptake at ET-JA. AT
US-HA, the observed soil COS flux does not exhibit diel
variations, while the mechanistic model shows a peak with
a decrease in the net soil COS uptake around 15:00. Wehr et
al. (2017) explain this absence of the diel cycle in the obser-
vations by a range of variations for soil temperature and soil
water content that is too low to influence soil COS flux. In
ORCHIDEE, the simulated range of temperature at US-HA
is larger than the one measured on site, and temperature is
the main driver of the decrease in net soil COS uptake at this
site (not shown). Therefore, the enhancement of soil COS
production by soil temperature could be only found in the
simulated flux. Another possibility is that it could be totally
compensated by soil COS uptake in the observations. The
mismatch between the model and the observations could be
due to several factors including (i) an insufficient represen-
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tation of the vegetation complexity by the division in PFTs;
(i) a poor calibration of the PFT-specific parameters ( fca., &,
and B); or (iii) missing processes in the model, such as con-
sidering the effect of nitrogen content on soil COS fluxes.

The empirical model shows a maximum soil COS up-
take around 15:00 at ET-JA, FI-HYY, US-HA, and IT-CRO,
which is not found in the observations at FI-HYY and is in
contradiction with the observed diel variations at I'T-CRO
and ES-LMA. Considering all sites, the mechanistic model
leads to a smaller error between the simulations and the ob-
servations, with a mean RMSD of 1.38 pmol m?s~! against
1.87 pmol m? s~ for the empirical model.

3.1.3 Dependency on environmental variables

Figure 4 represents simulated net soil COS fluxes versus soil
temperature and soil water content at the different sites. At
the sites where only a net soil COS uptake is simulated by the
mechanistic model (all sites except IT-CRO and ES-LMA),
soil COS uptake generally decreases with increasing soil wa-
ter content, which appears to be the main driver of soil COS
fluxes. This behaviour can be explained by a decrease in COS
diffusivity through the soil matrix with increasing soil mois-
ture, reducing soil COS availability for microorganism con-
sumption. Furthermore, an optimum soil water content for
net soil COS uptake is found between 10 % and 15 %, which
was also observed in Ogée et al. (2016) and in several field
studies to be around 12 % (Kesselmeier et al., 1999; Liu et
al., 2010; van Diest and Kesselmeier, 2008). This optimum
soil water content for soil COS uptake is related to a site-
specific temperature optimum, which is found between 13
and 15 °C at US-HA for example. Indeed, Ogée et al. (2016)
also describe a temperature optimum with a value that de-
pends on the studied site (Kesselmeier et al., 1999; Liu et al.,
2010; van Diest and Kesselmeier, 2008). At IT-CRO and ES-
LMA, where a strong net soil COS production is simulated
by the mechanistic model, the main driver of soil COS fluxes
becomes soil temperature. At these sites, the net soil COS
production increases with soil temperature, due to the expo-
nential response of soil COS production term to soil temper-
ature. The increase in soil COS production with soil temper-
ature at IT-CRO and ES-LLMA is supported by the observa-
tions (Fig. S1 in the Supplement).

Contrary to the mechanistic model, soil COS uptake com-
puted with the empirical model is mainly driven by soil tem-
perature, with a soil COS uptake that increases with increas-
ing soil temperature. This response of the empirical model
to soil temperature is due to its relation to soil respiration,
which is enhanced by strong soil temperature. However, this
net increase in soil COS uvptake with soil temperature at all
sites is not found in the observations (Fig. S1). It can be noted
that low soil moisture values were found to limit soil COS
uptake for the empirical model, as seen at ES-LMA for a soil
water content below 8 %.
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Figure 3. Mean diel cycle of net soil COS fluxes (pmolm_2 s~ 1) over a month at AT-NEU (August 2015), ES-LMA (May 2016), IT-CRO
(July 2017), DK-SOR (June 2016), ET-JA (August 2016), FI-HYY (August 2015), and US-HA (July 2012). Soil COS fluxes are computed
with a variable atmospheric COS concentration. The observation-based diel cycles (dots) are computed using random forest models at AT-
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given with the respective model colour at each site and for both soil chambers at FI-HYY (ch1 and ch2).

3.1.4 Sensitivity analyses of soil COS fluxes to
parameterization

Sensitivity analyses including a set of parameters (19 for the
empirical model and 21 for the mechanistic model) were per-
formed to evaluate the sensitivity of soil COS fluxes to each
of the selected parameter. The Morris scores were normal-
ized by the highest values to help rank the parameters by their
relative influence on soil COS fluxes, where a score of 1 rep-
resents the most important parameter and that of 0 represents
the parameters that have no influence on soil COS fluxes. For
reasons of clarity, in the following we present the results only
for the parameters that were found to have an impact on soil
COS fluxes (Morris scores not equal to 0).

Figure 5 shows the results of the Morris sensitivity exper-
iments highlighting the key parameters influencing soil COS
fluxes from the empirical and the mechanistic models at FI-
HYY and US-HA. For the empirical model at both sites, the
first-order parameter (kgoi1) is the most important parameter
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in the computation of soil COS fluxes, as it directly scales
soil respiration to soil COS fluxes. The following parameters
to which soil COS fluxes are the most sensitive are the scalar
on the active soil C pool content (soilC) and the temperature-
dependency factor for heterotrophic respiration (soil_Qo).
Indeed, the soilC parameter determines the soil carbon active
pool content, which can be consumed by soil microorgan-
isms during respiration, therefore impacting soil COS fluxes
from the empirical model. The soil_Q ¢ parameter impacts
soil COS fluxes at both sites, as it determines the response
of soil heterotrophic respiration to temperature, which is in-
cluded in the proportionality of soil COS fluxes to the total
soil respiration in the empirical model. Similarly, one of the
second-order parameters, the minimum soil wetness to limit
the heterotrophic respiration (min_SWC_resp), has an im-
pact on soil COS fluxes from the empirical model only. The
importance of min_SWC_resp for soil COS fluxes is found at
US-HA but not at FI-HY'Y. This can be explained by the dif-
ference in soil moisture between the two sites, with an annual
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Figure 4. Simulated daily average net soil COS flux (pmol m?2 s~ 1) versus soil temperature (°C) and soil water content (SWC) (m3
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mean of 16.2 % at US-HA and reaching a minimum of only
8.8 % against an annual mean of 17.5 % with a minimum of
12.4 % at FI-HYY.

Contrary to the empirical model, soil COS fluxes com-
puted with the mechanistic model are more sensitive to two
second-order parameters, the van Genuchten water retention
curve coefficient n and the saturated volumetric water con-
tent (¢SAT). These two second-order parameters are strongly
linked to soil hydrology and determine the soil water con-
tent, which affects COS diffusion through the soil matrix and
its uptake. The van Genuchten coefficients occur in the re-
lationships linking hydraulic conductivity and diffusivity to
soil water content (van Genuchten, 1980). At both sites, the
strong impact of the van Genuchten water retention curve co-
efficient n on soil COS fluxes simulated with the mechanistic
mode! highlights the critical importance of soil architecture.
Thus, soil COS fluxes computed with the mechanistic model
are expected to strongly vary according to the different soil
types. Then, the first-order parameters ( fca, «, and B) also
influence soil COS fluxes from the mechanistic model. How-
ever, the uptake parameter ( fca of PFT 15, boreal Cs grass)
has the most influence on soil COS fluxes at FI-HY'Y, while
it is the production-related parameter (« of PFT 6, temperate
broadleaved summergreen forest) that has the largest impact
at US-HA. The stronger influence of the production parame-
ter involved in the temperature response at US-HA might be
explained by the difference in temperature between the two
sites, which ranges from —10 to 25°C at US-HA with an an-
nual mean of 7.5°C in 2013, while only ranging from —5
to 15°C with an annual mean of 4.3 °C at FI-HYY in 2015.
Similar to the difference in the main driver of soil COS fluxes
found in Fig. 4, the most important first-order parameters to
which soil COS fluxes are sensitive seem to differ between
uptake and production parameters depending on the site con-
ditions. It is to be noted that at US-HA, the most important
production parameters are the ones of the dominant PFT at
this site (PFT 6), which also correspond to a stronger re-
sponse of the production term to temperature than for PET 10
(temperate Cs grass). However, at FI-HY'Y the most influen-
tial uptake parameter is for PFT 15 (boreal C3 grass) that only
represents 20 % of the PFTs at this site, while PFT 7 (boreal
needleleaf evergreen forest) is the dominant PFT. This can be
explained by the range of variation that is assigned to fca of
PFT 7 by Meredith et al. (2019), which is larger than the one
of fca for PFT 15 (9000 against 3100).

Finally, a set of parameters related to photosynthesis, con-
ductance, phenology, hydrology, and carbon uptake has an
impact on soil COS fluxes computed with both the empiri-
cal and the mechanistic models at the two sites. The specific
leaf area (SLA), maximum rate of Rubisco activity-limited
carboxylation at 25 °C (Vemax2s), residual stomatal conduc-
tance (go), and minimum photosynthesis temperature (7;,,)
have an impact on soil COS fluxes, as they also indirectly
affect soil moisture through their influence on transpiration
and stomatal opening. The second-order parameters related
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to soil hydml[)gy (a, Ks, Zioot, Owp, Orc, Og, and &Fransp_max)
impact the soil water availability, which affects soil respi-
ration for the empirical model and soil COS diffusion and
uptake in the mechanistic model. For example, the parameter
for the root profile (Z,y) determines the density and depth
of the roots and therefore how much water can be taken up
by roots.

3.1.5 Soil COS flux optimization

Figure 6 presents soil COS fluxes before and after optimiza-
tion of the model parameters to better fit the observations at
FI-HYY and US-HA. For the mechanistic model, the opti-
mization at the two sites mainly changes the mean value of
soil COS fluxes, by reducing the net uptake at US-HA and in-
creasing it at FI-HY'Y. Similar to the mechanistic model op-
timization, the posterior soil COS uptake computed with the
empirical model is enhanced at FI-HY'Y and reduced at US-
HA. However, at US-HA, the increase in soil COS uptake
is only found between April and October, while the winter
soil COS fluxes are not impacted by the optimization. Us-
ing the optimized parameterization improves the RMSD by
7% and 5 % at US-HA and by 23 % and 25 % at FI-HY'Y for
the mechanistic and the empirical model, respectively. While
it leads to similar posterior RMSD values between the two
models at US-HA, the optimization of the mechanistic model
gives a lower RMSD than the empirical model at FI-HYY,
with 0.54 pmol m—2 s~ against 0.95 pmolm—2s~".

At FI-HYY, the difference between prior and posterior
soil COS fluxes from the empirical model seems to mainly
come from the change in the soil_Q¢ value (Fig. El in
Appendix E). The soil Q)¢ value drops from 0.83 to 0.53,
which corresponds to a prior Q19 value of 2.29 versus a pos-
terior value of 1.70, decreasing the heterotrophic respiration
response to soil temperature. Soil COS fluxes computed with
the empirical model were found to be strongly sensitive to
soil_Q ¢ (Fig. 5). The posterior value of this parameter has
nearly attained the lower bound of its variation range. Since
the range of variation represents the realistic values this pa-
rameter can take, we need to be careful about the fact that
this parameter is trying to take values close to, or potentially
bevond, these meaningful values. Furthermore, the optimiza-
tion deviates the Q¢ value at FI-HY'Y from the ones calcu-
lated in the observations over the measurement period (3.0
for soil chamber 1 and 2.5 for soil chamber 2). We could as-
sume that k. should be defined as temperature dependent
for linking soil COS flux to soil respiration (Berkelhammer
et al., 2014; Sun et al., 2018), instead of being considered a
constant, Thus, the optimization of the empirical model could
in fact be aliasing the error of kg onto soil_Q o because of
the impossibility to account for the temperature dependence
of soil COS to the CO; uptake ratio (Sun et al., 2018). At US-
HA, the optimization also leads to a decrease in soil_Q o but
to a lesser extent, with the parameter remaining comfortably
within its range of variation.
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Figure 5. Morris sensitivity scores of the key parameters to which soil COS fluxes are sensitive, for the empirical (a, ¢) and the mechanis-
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Tables S3 and S4 in the Supplement. The PFT is indicated at the end of the parameter names for the PFT-dependent parameters (at FI-HY'Y,
PFT 7 is boreal needleleaf evergreen, and PFT 15 is boreal natural C3 grassland; at US-HA, PFT 6 is temperate broadleaf summergreen, and

PFT 10 is temperate natural C3 grassland).
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For the mechanistic model, the optimization reduces the
enhancement factor value ( fca) for PFT 10 at US-HA and
increases the value of the production parameter « for the
dominant PFT (PFT 6). This enhances the reduction in net
soil COS uptake, which was slightly overestimated with the
prior model parametrization. At FI-HYY, the optimized pa-
rameters show higher values of fca and of « for PFT 15
and of both production parameters (« and g) for the domi-
nant PFT (PFT 7). This increase in both soil COS uptake and
production after optimization could correspond to an attempt
to better simulate the larger range of variation found in the
observations compared to the modelled fluxes.

Finally, the optimization also affects hydrology-related pa-
rameters for both models. However, while it improves the
simulated water content compared to the observations for
the mechanistic model at the two sites (RMSD decreases by
28 % at FI-HYY and 22 % at US-HA), it leads to a degra-
dation at FI-HYY for the empirical model (RMSD increases
by more than 3 times). Since the empirical model is quite
a simplistic model with few parameters, it relies on param-
eters from different processes to help better fit the observa-
tions — sometimes degrading the fit to the other processes.
The mechanistic model is able to both improve the fit to the
COS observations and soil moisture values, implying its pa-
rameterization is more consistent.

This optimization experiment has been promising, high-
lighting how observations can be used to improve the mod-
els. However, since we only optimized over two sites due
to the scarcity of soil COS flux observations, for the global-
scale simulations in the rest of this study, we will rely on the
default parameter values of each parameterization.

3.2 Global-scale COS fluxes
3.2.1 Soil COS fluxes

The spatial distribution of oxic soil COS fluxes shows a net
soil COS uptake everywhere except in India, in the Sahel re-
gion, and in some areas in the tropical zone, where net soil
COS production is simulated (Fig. 7a). The strongest uptake
rates are found in western North America and South Amer-
ica, as well as in China, with a mean maximum uptake of
—4.4pmol COSm~2s~! over 2010-2019. The difference in
magnitude between the maximum uptake value and the max-
imum of production can be noticed, with a net production
reaching 67.2pmol COSm~2s~! in the Sahel region. In-
dia and the Sahel region, where oxic soil COS production is
concentrated, are represented in ORCHIDEE by a high frac-
tion of C3 and Cy4 crops (Fig. S4). In the mechanistic model,
crops are associated with the lowest fca value due to overall
lower fungal diversity and abundance in agricultural fields
(Meredith et al., 2019) and the strongest response of oxic
soil COS production to temperature as observed by Whelan
et al. (2016). Thus, these PFT-specific parameters combined
with high temperature in the tropical region can explain the

Biogeosciences, 19, 2427-2463, 2022

C. Abadie et al.: Global modelling of soil carbonyl sulfide exchanges

net oxic soil COS production found in these regions. C3 crops
are also dominant in China near the Yellow Sea (Fig. S4).
However, the mean soil temperature in this region is about
15 °C lower than the mean soil temperature in India, leading
to a lower enhancement of soil COS production. The highest
atmospheric COS concentration is also found in this region
with about 800 ppt (Fig. S3). Indeed, recent inventories have
shown that China was related to strong anthropogenic COS
emissions due to industry, biomass burning, coal combustion,
agriculture, or vehicle exhaust (Yan et al., 2019; Zumkehr
et al., 2018). High atmospheric COS concentrations increase
soil COS diffusion and uptake that can compensate part of
soil COS production. The highest values of soil COS fluxes
for anoxic soils are located in northern India, with a mean
maximum value reaching 36.8 pmol COSm—2 s~ (Fig. 7b).
This region is characterized by rice paddies, which were also
associated with strong COS production in previous studies
(Zhang et al., 2004).

The total soil COS fluxes (oxic and anoxic) computed
with the mechanistic model (Fig. 7¢) show a very differ-
ent spatial distribution than the one obtained with the em-
pirical model (Fig. 7d). Soil COS fluxes from the empirical
model are on the same order of magnitude for net COS up-
take than the mechanistic model, with a mean maximum up-
take of —6.41 pmol COS m~2s~'. However, most soil COS
uptakes simulated by the empirical model is located in the
tropical region, where soil respiration is strong due to high
temperature. The distribution and magnitude of soil COS
flux from the empirical approach is similar to the one pre-
sented in Kooijmans et al. (2021) (see Fig. S15 in the Supple-
ment of Kooijmans et al., 2021), when implemented in SiB4.
For the mechanistic model, the comparison of oxic soil COS
flux distribution with the one in SiB4 shows a net soil COS
emission in India in both SiB4 and ORCHIDEE. However,
the maximum oxic soil COS flux is about 60 pmol m=2 s~
higher in ORCHIDEE than in SiB4. The regions with the
strongest net oxic soil COS uptake also differ between SiB4
and ORCHIDEE, as it is concentrated in the tropics in SiB4,
as well as in western North America and South America, and
in China for ORCHIDEE.

The difference in soil COS fluxes between the mech-
anistic model and the empirical model ranges from
—4.1pmol COSm2s~! to +68.0pmol COSm 2s~!
(Fig. D1 in Appendix D). Over western North America and
South America; northern and southern Africa; western Asia;
and eastern, northern, and central Asia, the net COS up-
take from the mechanistic model exceeds the uptake from
the empirical model. On the contrary, soil COS uptake from
the empirical approach is higher than the net COS uptake
simulated with the mechanistic model over eastern North
America and South America; western, central, and eastern
Africa; and Indonesia. The absence of soil COS produc-
tion representation in the empirical approach leads to the
strongest differences in India and in the Sahel region, reach-
ing +68.0pmol COSm~2s7!.
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Figure 7. Maps of mean soil COS fluxes for the mechanistic (a, b, ¢) and the empirical model (d), computed over 2010-2019 with a variable
atmospheric COS concentration. Colour scales were normalized between the minimum and maximum soil COS flux values and centred on
zero for oxic and total soil COS fluxes computed with the mechanistic model. The map resolution is 0.5° x 0.5°.

3.2.2 Temporal evolution of the soil COS budget

We computed the mean annual soil COS budget over the
period 2010-2019 using the monthly variable atmospheric
COS concentration, and we compared its evolution to the
variations in the mean annual atmospheric COS concentra-
tion.

The evolution of the mean annual soil COS budget (Fig. 8)
shows small variations in the budget for oxic soils computed
with the mechanistic model between 2010 and 2015, with a
net sink ranging from —133 to —124 GgSyr~!. Then, from
2016 we see a sharp decrease in this budget, which reaches
—98GgSyr~! in 2019. This decrease also corresponds to
the decrease in atmospheric COS concentration observed be-
tween 2016 and 2019 with a loss of 25 ppt in 3 years. Sev-
eral monitoring stations recorded a drop in atmospheric COS
concentration over Europe, as for the Gif-sur-Yvette station
with —42 ppt between 2015 and 2021 (updated after Belviso
et al., 2020). Note that the decrease in the oxic soil COS bud-
get computed with the mechanistic model is sharper than the
drop in atmospheric COS concentration because changes in
oxic soil COS budget result from the combined effect of de-
creasing atmospheric COS concentration and changes in the
drivers of soil COS fluxes (i.e. changes in soil temperature
and water content during the 10-year period which are not
homogenously distributed around the globe; not shown). On
the contrary, the soil COS net uptake computed with the em-
pirical model slightly increases from —212 GgS yr~! in 2010
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to —219GgSyr~! in 2019. As the empirical model defines
soil COS flux as proportional to the total soil respiration in-
dependently of atmospheric COS concentration, the budget
obtained with this model is not impacted by the variations
observed in atmospheric COS concentration. The anoxic soil
COS budget follows soil temperature variations (not shown),
with an increasing trend of about 0.17 GgSyr~! over the
studied period.

3.3 Transport and site-scale concentrations
3.3.1 Interhemispheric gradient

We transported total COS fluxes for the different configura-
tions (i.e. including not only the soil fluxes but also other
components of the COS atmospheric budget, listed in Ta-
ble 2) with the LMDZ6 atmospheric transport model as de-
scribed in Sect. 2.1.3. We analysed COS concentrations de-
rived from simulated COS fluxes obtained with the mech-
anistic and two empirical approaches with regards to the
COS concentrations observed at 14 NOAA sites depicted in
Fig. BI in Appendix B. Note that atmospheric mixing ra-
tios of COS result from the transport of all COS sources
and sinks and that, due to other sources of errors (trans-
port and errors in the other COS fluxes), the comparison
presented in the following should be taken as a sensitivity
study of COS seasonal cycle and interhemispheric gradi-
ent to the soil exchange fluxes rather than a complete val-
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Figure 8. Evolution of mean annual soil COS budget and mean annual atmospheric COS concentration between 2010 and 2019, computed

with a variable atmospheric COS concentration.

idation of one approach or the other. Figure 9 shows the
COS atmospheric concentrations at NOAA sites as a func-
tion of latitude for each simulated soil flux and for the ob-
servations. Here as we want to focus on the latitudinal vari-
ations in atmospheric COS mixing ratios; the atmospheric
COS concentrations have been vertically shifted to have the
same mean as the observations. This means that the con-
centrations values cannot be compared at each site; we can
only compare the interhemispheric gradients of simulated
and observed concentrations. The RMSD for the mechanis-
tic model with oxic soils only, the mechanistic model with
oxic and anoxic soils, the empirical Berry model (with oxic
soils only), and the empirical Launois model (with oxic and
anoxic soils) are 36.5, 39.4, 43.0, and 51.0 ppt, respectively.
While the different approaches show similar gradient pat-
terns in the southern latitudes, they lead to strong differ-
ences in the simulated concentrations in the Northern Hemi-
sphere. Compared to empirical approaches, the mechanis-
tic approach marginally improves the latitudinal distribution
of the atmospheric mixing ratios by decreasing the concen-
trations in the high latitudes. The lower atmospheric mix-
ing ratios above 60° N reflect the stronger soil absorption
in the mechanistic model (see Fig. 9), where soil COS up-
take is dominant and the compensation by COS production is
small (Fig. D2 in Appendix D). Despite this slight improve-
ment, there are persistent biases as overestimated concentra-
tions at the high-latitude sites ALT, BRW, and SUM and un-
derestimated concentrations at most tropical sites, i.e. WIS,
MLO, and SMO. These model-observation mismatches have
led top-down studies to identify vegetation as an underesti-
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mated sink in the high latitudes (Ma et al., 2021; Remaud et
al., 2022) and the tropical oceanic emissions as the missing
source (Berry et al., 2013; Launois et al., 2015; Kuai et al.,
2015; Ma et al., 2021; Remaud et al., 2022; Davidson et al.,
2021). The present anoxic soil fluxes have little impact on the
surface latitudinal distributions and therefore are unlikely to
shed new light on the tropical missing source. An explana-
tion for the small impact is that they are located outside areas
experiencing deep convection events (e.g. the Indian mon-
soon domain), and thus the surface concentrations are less
sensitive to these fluxes.

3.3.2 Seasonal cycle at NOAA sites

Figure 10 shows the detrended temporal evolution of COS
concentrations for the mechanistic and empirical approaches
at Alert (ALT, Canada) and Harvard Forest (HFM, USA). Be-
cause of the mean westerly flow, the HFM site is influenced
by continental regions to the west (Sweeney et al., 2015) and
is more sensitive to the soil fluxes than other mid-latitude
sites located to the west of the ocean as MHD; see Fig. 1 in
Remaud et al. (2022). The ALT site samples air masses come
not only from high-latitude ecosystems (Peylin et al., 1999)
but also from regions further south due to atmospheric trans-
port (Parazoo et al., 2011). The reader is referred to Table B2
in Appendix B for the other sites. At both sites, the mecha-
nistic approach tends to weaken the total seasonal amplitude
and increase the model-data mismatch. At HFM, since the
mechanistic soil model shows overall good agreement with
the observed soil fluxes (e.g. Fig. 2), the model-observation
mismatch likely arises from errors in other components of
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Figure 9. Comparison of the latitudinal variations in the COS abun-
dances simulated by LMDZ at NOAA sites with the observations
(black). The LMDZ COS abundances have been vertically shifted
such that the means of the simulated concentrations are the same
as the mean of the observations. The error bars around the black
curve represent the standard deviation over the whole studied pe-
riod at each NOAA site. The orange curve is obtained using the
oxic soil fluxes of the mechanistic model. The red curve is obtained
using the oxic and anoxic soil fluxes of the mechanistic model. The
blue curve is given by LMDZ using the oxic soil fluxes from the
Berry empirical model. The green curve is obtained using the soil
fluxes from the empirical approach of Launois et al. (2015). For
more clarity, the names of the stations KUM (19.74° N, 155.01° W),
NWR (40.04° N, 105.54° W), LEF (45.95° N, 90.28° W), and SUM
(72.6° N, 38.42° W) are not shown in this figure due to their prox-
imity to other stations (Fig. B1 and Table B1 in Appendix B).

the COS budget (in particular oceanic and vegetation fluxes).
Therefore, empirical approaches give a more realistic season-
ality of atmospheric concentrations for the wrong reasons,
which likely hides an underestimated vegetation uptake. In-
deed, as Maignan et al. (2021) showed that the vegetation up-
take magnitude in ORCHIDEE was consistent with measure-
ments, the introduction of variable atmospheric COS concen-
trations decreased the vegetation uptake, which, as a result,
is very likely underestimated now. Moreover, the compari-
son between simulated and observed concentrations shows
a degradation of the simulated concentrations in this study
compared to Maignan et al. (2021). It is to be noted that in
addition to using a variable atmospheric COS concentration
in this study, the transported ocean COS fluxes from Masotti
et al. (2016) and Lennartz et al. (2017, 2021) differ from the
ones used in Maignan et al. (2021), Kettle et al. (2002), and
Launois et al. (2015). These results illustrate the necessity of
well constraining both the soil and vegetation fluxes in or-
der to optimize the GPP with the help of atmospheric inverse
modelling.

4 Discussion
4.1 Soil budget

According to the mechanistic approach of this study, the COS
budget for oxic soil is a net sink of —126 GgSyr—! over
20092016, which is close to the value of —130GgS yr~!
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found by Kettle et al. (2002) (Table 3). This net COS up-
take by oxic soils is higher than the one found in SiB4 by
Kooijmans et al. (2021) with —89 GgSyr~', also based on
the mechanistic model described in Ogée et al. (2016). In
SiB4 and in ORCHIDEE, the mechanistic model gives the
lowest oxic soil COS net uptake compared to all previous
studies, which were using empirical approaches. This budget
is also 41 % lower than the one found with the Berry empiri-
cal approach in this study, with an uptake of —214 GgS yr~!.
The anoxic soil COS budget computed with the mechanis-
tic approach is +96 GgSyr~!, which is close to the bud-
get found by Launois et al. (2015) of +101 GgS yr~! based
on methane emissions. However, while COS emissions from
anoxic soils were only located in the northern latitudes in
Launois et al. (2015), the COS production in this study is
also distributed in the tropical region. Thus, we can expect
that despite similar budget values for anoxic soils, the differ-
ence in flux distribution will impact the latitudinal gradient
of COS fluxes. Finally, adding the anoxic soil COS budget
to oxic soil COS budget results in a total soil COS budget of
only —30 GgS yr~! for the mechanistic approach.

When computing the net total COS budget considering all
sources and sinks of COS (Table 2), we found that neglecting
the potential COS production of oxic soils and COS emis-
sions from anoxic soils leads to an overestimation of COS
sink or an underestimation of COS source to close the bud-
get (—165GgS yr~1). On the contrary, the total COS budget
computed with the mechanistic soil model is closed given
the uncertainties on each component (Table 2). However, de-
spite a closed budget, the mismatch between the observed
and simulated latitudinal gradients of atmospheric COS con-
centration highlights errors in COS flux component distribu-
tions (Fig. 9).

It is also to be noted that the mechanistic model better sim-
ulates the lack of seasonality in the soil COS flux at US-HA
compared to the empirical model (Fig. 2). US-HA is repre-
sented by 80 % of PFT 6 (temperate broadleaved summer-
green forest), and the absence of seasonality by this PFT
has also been reported at a mid-latitude site at Gif-sur-Yvette
(Belviso et al., 2020). This PFT is largely found in the tem-
perate region such as in Europe and in the southern United
States. Moreover, NWR, HFM, and LEF stations are mainly
influenced by COS exchanges from PFT 6. Therefore, the use
of the mechanistic model would be recommended to carry
out new comparisons at these mid-latitude sites.

4.2 Variable atmospheric COS concentration versus
constant atmospheric COS concentration

We studied the impacts of using a constant versus a variable
atmospheric COS concentration on soil COS fluxes. At the
site scale we found a distinction between the sites where soil
COS production is strong (IT-CRO and ES-LMA) and the
sites mainly showing a net soil COS uptake. The impact of
using a constant atmospheric COS concentration is lower at
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Figure 10. Detrended temporal evolution of simulated and observed COS concentrations at two selected sites, simulated with LMDZ6
transport between 2011 and 2015. The simulated concentrations are obtained by transporting the surface fluxes described in Table 2 and
changing only the contribution from soils, with mechanistic (oxic soils alone and oxic 4 anoxic soils) and empirical approaches (Berry et al.,
2013; Launois et al., 2015). (a) Alert station (ALT, Canada) and (b) Harvard Forest station (HFM, USA). The curves have been detrended
beforehand and filtered to remove the synoptic variability (see Sect. 2.3.3). Please note that the date format in this figure is year-month.

IT-CRO and ES-LMA because the atmospheric COS concen-
tration does not directly impact the soil COS production term
but participates in the net soil COS flux. Our study shows that
at the sites where a net soil COS uptake is dominant, using
a constant atmospheric COS concentration leads to a lower
soil COS flux in winter and a higher soil COS flux from
spring to autumn (not shown). Indeed, during the growing
season, plant uptake decreases atmospheric COS concentra-
tion (Fig. S2), which reduces COS availability for soil COS
diffusion, whereas during winter, a higher atmospheric COS
concentration enhances COS diffusion into the soil.

At the global scale, as the variable atmospheric COS con-
centration used in this study shows a decrease of about 25 ppt
in the recent years (Fig. 8), considering a constant atmo-
spheric COS concentration would not enable the representa-
tion of the impact of this strong variation on soil COS fluxes.
When computing the soil COS budget over 2016 to 2019,
we found a net uptake of —126 GgS yr~! with the mechanis-
tic model using a constant atmospheric COS concentration
against the —110GgS yr~! computed with a monthly spa-
tially variable concentration. Using a constant atmospheric
COS concentration would then lead to a 13 % higher net soil
COS uptake over the past 4 years.

We also studied the impact of considering a constant ver-
sus a variable atmospheric COS concentration on the sea-
sonal variations in mean monthly soil COS fluxes over 2010-
2019, simulated with the mechanistic model (not shown). We
found that using a constant atmospheric COS concentration
leads to an increase in net soil COS uptake over the whole
year in the southern latitudes and from June to February in
the northern latitudes (reaching 1.62 pmol m~2s~!). This in-
crease is higher over the regions with the lowest atmospheric
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COS concentrations, which limits COS diffusion through the
soil matrix. On the contrary when atmospheric COS concen-
tration is high in the northern latitudes between April and
May, considering a constant atmospheric COS concentra-
tion decreases the net soil COS uptake. We notice that this
lower net soil COS uptake with a constant atmospheric COS
concentration can be found as early as March over Europe,
where atmospheric COS concentration is higher in this re-
gion. In eastern Asia, where atmospheric COS concentration
is higher than 800 ppt, the decrease in the net soil COS uptake
can reach —2.34 pmolm~2s~! when considering a constant
atmospheric COS concentration.

It is to be noted that the modelled COS concentrations we
used have their own uncertainty, which is however smaller
than their difference with the fixed value (Remaud et al.,
2022).

4.3 Foreseen improvements

The mechanistic representation of soil COS fluxes was found
to be in better agreement with the observations at field sites.
However, there can be strong differences between the sim-
ulated fluxes and the observations at some sites, especially
at AT-NEU and ES-LMA. In the mechanistic approach, the
influence of light on soil COS fluxes is not considered. Sev-
eral field studies have reported light-induced emissions in
oxic soils (Kitz et al., 2017; Meredith et al., 2018; Spiel-
mann et al., 2019a; Whelan and Rhew, 2015), assumed to
be related to the effect of light on soil organic matter. Spiel-
mann et al. (2019a) related strong soil COS emissions dur-
ing daytime to light at the sites where direct solar radiations
reached the surface, such as ES-LMA and AT-NEU. At these
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sites, the mechanistic model was unable to represent the soil
COS emission peak during daytime. The optimization we
performed showed that, as expected, adjusting the parame-
ters to site observations improves the fit between the simu-
lated and observed fluxed. However, it is necessary to rep-
resent all important processes in the mechanistic approach
before calibrating the parameters. Thus, a next step in our
modelling approach could be to include the light influence on
soil COS fluxes, which can be of major importance for the
sites where radiations strongly atfect soil COS fluxes. Sev-
eral studies also found that soil COS production could be re-
lated to nitrogen content, which increases with nitrogen fer-
tilizer application (Kaisermann et al., 2018; Meredith et al.,
2018, 2019). At the sites where soil is enriched with nitrogen
inputs, such as agricultural fields or managed and fertilized
grasslands and forests, the fertilization practices would also
need to be included when representing the dynamics of soil
COS fluxes. However, the soil nitrogen content and soil mi-
crobial nitrogen biomass vary not only with fertilization but
also with location. Then, in addition to indications on land
use, information on the total soil nitrogen content should be
included in the model to consider nitrogen impact on soil
COS flux. In the soil COS models, the impact of snow cover
is also not represented. Indeed, due to the scarcity of soil
COS flux observations in winter and with snow cover, its ef-
fect on soil COS flux could not be implemented in soil COS
models yet. However, Helmig et al. (2009) found that COS
uptake was not zero when soil is covered by snow at Niwot
Ridge, Colorado.

Moreover, one difficulty with the study of soil COS fluxes
arises from the scarcity of field measurements that could be
used for model validation and calibration. Besides, the obser-
vation sites considered here are all located in a small latitudi-
nal range between 39 and 62° N. Measurements in the tropics
and in the Southern Hemisphere are needed. Especially, soil
COS flux observations in northern India could help to vali-
date the net soil COS production simulated in both SiB4 and
ORCHIDEE. In the tropical rainforest, soil COS flux mea-
surements were performed at La Selva Biological Station in
Costa Rica (Sun et al., 2014). When available, these mea-
surements could allow for a first comparison between the ob-
served and simulated soil COS flux in a tropical region.

Then, the characterization of the soil microbial community
should also be addressed to improve the scaling of CA con-
tent and activity, represented by the fca parameter (Meredith
etal., 2019).

The implementation of the soil COS flux mechanistic
model from Ogée et al. (2016) in SiB4 (Kooijmans et al.,
2021) shows a seasonal cycle with a maximum net soil COS
uptake in summer for the sites without crops, while the fluxes
computed in ORCHIDEE show almost no scasonality. The
expression of the production term P differs between the two
models, which is based on Meredith et al. (2018) in SiB4
and on Whelan et al. (2016) in ORCHIDEE. The observation
sites that are common to the two studies (FI-HYY, US-HA,
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AT-NEU, and DK-SOR) are also represented by different
fractions of biomes between SiB4 and ORCHIDEE, which
changes the parameterization to compute soil COS fluxes.
Finally, the parameter values for the enhancement factor fca
for grass differ as the value for tropical grass is also assigned
to Cz and C4 grass in SiB4. Soil COS flux field data are
mainly available in summer; therefore having field measure-
ments over a whole year could better inform the seasonality
of observed soil COS fluxes to compare to the simulations.

The optimization does not modify the respective seasonal-
ity of both soil COS models, with a seasonal cycle that agrees
with the one of soil respiration for the empirical model and a
lack of seasonality for the mechanistic model. The lack of ob-
servations in winter does not enable validating or constrain-
ing soil COS fluxes in winter. Therefore, having field obser-
vations over a whole year could help to determine if both
models could be calibrated with a constraint over the whole
year instead of only during summer and autumn. Moreover,
the optimized set of parameters for the empirical models
leads to a degradation of the simulated soil water content
compared to the observations at FI-HY'Y, while the optimized
parameters of the mechanistic model improve the represen-
tation of soil water content at US-HA and FI-HYY. Thus,
the mechanistic approach is to be preferred over the empir-
ical model and should be selected for future COS studies in
ORCHIDEE.

The sensitivity analyses showed the importance of the
hydrology-related parameters in the computation of soil COS
fluxes with the mechanistic model. Thus, assuming an accu-
rate representation of soil COS fluxes, soil COS fluxes could
have the potential to add a new constraint on hydrology-
related parameters.

In this work, soil COS fluxes are computed in the top 9 cm,
which assumes that soil COS uptake and production depend
on the conditions in the first soil layers. Indeed, soil COS
uptake depends on diffusive supply of COS from the atmo-
sphere. However, since soil COS production does not depend
on COS supply, deeper soil layers could also contribute to
soil COS production. A study by Yang et al. (2019) presents
COS profile measurements in an orchard, which shows a
non-zero COS concentration in deeper soil layers but no di-
rect evidence for attributing it to soil COS production. Thus,
we could consider deeper soil layers in the future to study the
impact on soil COS fluxes compared to considering only the
top soil layers.

The anoxic soil map of regularly flooded wetlands from
Tootchi et al. (2019) enables approximating the spatial dis-
tribution of anoxic soil. However, in our approach, seasonal-
ity is only represented through soil temperature seasonality.
Anoxic soil temporal dynamics were initially included in the
model described by Ogée et al. (2016) with the soil redox
potential but is not implemented in land surface models such
as ORCHIDEE vet. We could also refine our approach by
distinguishing between the different types of wetlands and
define a Pr value for each wetland type instead of a global
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value of 10pmol COSm~2s~'. Then, a distinction could
also be made for anoxic soil COS fluxes from boreal peat-
lands, as Meredith et al. (2019) give a value of fca specific
to this biome. Moreover, indirect COS emissions from DMS
oxidation in anoxic soils have been reported (Kettle et al.,
2002; Watts, 2000) but are not represented in this study. Fi-
nally, the anoxic map used here represents 9.7 % of the global
land area, but the distribution of anoxic soils can greatly vary
depending on the study (between 3% and 21 %, Tootchi et
al., 2019). Therefore, it would also be interesting to inves-
tigate the impact of anoxic soil coverage on soil COS flux
uncertainty.

5 Conclusions and outlooks

We have implemented in the ORCHIDEE LSM a mechanis-
tic and an empirical model for simulating soil COS fluxes.
The mechanistic model, which performs a spatialization of
the Ogée et al. (2016) model, enables us to consider that
oxic soils can be net COS producers, as illustrated at some
of the observation sites. The interhemispheric gradient of
the COS surface atmospheric mixing ratio is marginally im-
proved when all known COS sources and sinks are trans-
ported with the LMDZ model. This study also highlights the
sensitivity of simulated atmospheric COS concentrations to
soil COS flux representation in the northern latitudes. Thus,
the uncertainty in soil COS fluxes could complicate GPP es-
timation using COS in the Northern Hemisphere.

Biogeosciences, 19, 2427-2463, 2022
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The soil COS budget at the global scale over the 2009—
2016 period is —30 GgS yr~!, resulting from the contribution
of oxic soils that represent a net sink of —126 GgS yr~! and
of anoxic soils that represent a source of +96 GgSyr ', It
is to be noted that the contribution from anoxic soils, while
leading to a global budget similar to Launois et al. (2015),
has a ditferent spatial distribution based on the repartition of
regularly flooded wetlands from Tootchi et al. (2019). This
repartition seems more accurate, as it also includes anoxic
soil COS flux in the tropical region and considers a larger
variety of anoxic soils, such as salt marshes and rice paddies.

During this work, we have also shown the importance of
considering spatially and temporally variable atmospheric
COS concentrations on soil COS fluxes, with an especially
large impact at the global scale. This result evidences the im-
pact of the recently decreasing atmospheric COS concentra-
tions on the estimated soil COS fluxes.

Regarding the ORCHIDEE model, we performed a sensi-
tivity study highlighting the key parameters to optimize for
the soil models. The impact of soil model parameter opti-
mization was studied at two sites. This study exhibited strong
arguments in favour of the mechanistic model, as perform-
ing an optimization of the empirical model parameters can
lead to aliasing errors and a degradation of the simulated soil
water content. A larger database of COS flux measurements
at the site scale and especially full year time series would
greatly help for the next step, which would be to optimize
the parameters of ecosystem COS fluxes.
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Appendix A: Parameters, variables, and constants for
soil COS models

Table A1. Carbonic anhydrase enhancement factor adapted to ORCHIDEE biomes.

2451

ORCHIDEE biomes Biomes from Meredith et al. (2019)  fca value from Meredith et
al. (2019) (unitless)
1 — Bare soil Desert 13000 £ 5400

2 — Tropical broadleaved evergreen

3 — Tropical broadleaved raingreen

4 — Temperate needleleaf evergreen
5 — Temperate broadleaved evergreen
6 — Temperate broadleaved summergreen
7 — Boreal needleleaf evergreen

8 — Boreal broadleaved summergreen
9 — Boreal needleleaf summergreen
10 — C3 grass

11 - C4 grass

12 — C3 agriculture

13 — Cy4 agriculture

14 — Tropical C3 grass

15 — Boreal C3 grass

Temperate broadleaf forest
Temperate broadleaf forest
Temperate coniferous forest
Temperate broadleaf forest
Temperate broadleaf forest
Temperate coniferous forest
Temperate broadleaf forest
Temperate coniferous forest
Mediterranean grassland
Mediterranean grassland
Agricultural

Agricultural

Tropical grassland
Mediterranean grassland

32000 =+ 1800
32000 = 1800
32000=x3100
32000 = 1800
32000+ 1800
320003100
32000+ 1800
32000+£3100
17000 £ 9000
17000 £ 9000
6500 = 6900
6500 + 6900
45000

17000 £ 9000

Table A2. « and g parameters for COS production term adapted to ORCHIDEE biomes.

ORCHIDEE biomes Biomes from « parameter from B parameter from
Whelan et al. (2016) Whelan et al. (2016)  Whelan et al. (2016)

(unitless) (°c 1

1 — Bare soil Desert n/a n/a
2 — Tropical broadleaved evergreen Rainforest —8.2 0.101
3 — Tropical broadleaved raingreen Rainforest —8.2 0.101
4 — Temperate needleleal evergreen Temperate forest =7.77 0.119
5 — Temperate broadleaved evergreen Temperate forest o 0.119
6 — Temperate broadleaved summergreen Temperate forest =777 0.119
7 — Boreal needleleaf evergreen Temperate forest sl 0.119
8 — Boreal broadleaved summergreen Temperate forest =737 0.119
9 — Boreal needleleaf summergreen Temperate forest —7.77 0.119
10— Cj grass Savannah —9.54 0.108
11 - C4 grass Savannah —9.54 0.108
12 — C3 agriculture Soy field —6.12 0.096
13 — C4 agriculture Soy field —6.12 0.096
14 — Tropical Cy grass Savannah —-9.54 0.108
15 — Boreal C3 grass Savannah —9.54 0.108

n/a — not applicable.
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Table A3. Variables for the empirical and mechanistic COS soil models.

C. Abadie et al.: Global modelling of soil carbonyl sulfide exchanges

Variable name Description

Unit

Reference

Empirical COS soil model

Empirical model soil COS flux

Fsuil, empirical

Respyor Total (heterotrophic and autotrophic) soil respiration

pmol COS m—2 -1

umol CO, m™2s~!

Berry et al. (2013),
Yi et al. (2007)
Yi et al. (2007)

Mechanistic COS soil model

Elot Total soil COS porosity m? air per cubic metre soil Ogée et al. (2016)

c Soil COS concentration mol m™3 Ogée et al. (2016)
Faite Soil COS diffusional flux molm=2s~! Ogée et al. (2016)

3 Soil COS consumption rate molm—3s~! Ogée et al. (2016)

j 2 Soil COS production rate molm ™3 s~! Whelan et al. (2016)
Fioil, mechanistic 501l COS flux in the mechanistic model molm 25! Ogée et al. (2016)

k Total COS consumption rate by soil i Ogée et al. (2016)

B Solubility of COS in soil water m? water per cubic metre air Ogée et al. (2016)

[ Soil volumetric water content m?> water per cubic metre soil Ogée et al. (2016)

D Total effective COS diffusivity in soil m? s ! Ogée et al. (2016)

21 Characteristic deep for soil COS flux m Ogée et al. (2016)
kuncat Uncatalysed rate of COS hydrolysis in the soil water g1 Elliott et al. (1989)
keat Turnover rate of COS enzymatic reaction catalysed by CA 7! Ogée et al. (2016)
Km Michaelis—Menten constant of CA catalysis molm—3 Ogée et al. (2016)
XCA Temperature dependence of the ratio kcat/ Km = Ogée et al. (2016)

k Soil total COS consumption rate & Ogée et al. (2016)
fea CA enhancement factor - Meredith et al. (2019)
Dest a Effective diffusivity of gaseous COS in soil m? air per metre soil per second Ogée et al. (2016)
Degr 1 Effective diffusivity of dissolved COS in soil m?> water per metre soil per second ~ Ogée et al. (2016)
Ky Henry’s law constant molm™3 Pa~! Bird et al. (2002)

Do a Binary diffusivity of COS in the free air m? airs ! Bird et al. (2002)

Ta Tortuosity factor for gaseous diffusion - Ogée et al. (2016)
Tar Tortuosity factor for gaseous diffusion in repacked soils = Moldrup et al. (2003)
Tai Tortuosity factor for gaseous diffusion in undisturbed soils  — Deepagoda et al. (2011)
Dy, Binary diffusivity of COS in the free water m? waters ! Zeebe (2011)

7 Tortuosity factor for solute diffusion - Millington and Quirk (1961)
o COS production parameter - Whelan et al. (2016)
B COS production parameter - Whelan et al. (2016)
ORCHIDEE LSM

p Pressure ORCHIDEE LSM

€a Air-filled porosity m? air per cubic metre soil ORCHIDEE LSM

€a Total soil porosity (air-filled and water-filled pores) m?m™3 ORCHIDEE LSM

T Mean soil temperature K ORCHIDEE LSM

1 Time S ORCHIDEE LSM

z Depth m ORCHIDEE LSM
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Table A4. Constants for the empirical and mechanistic COS soil

models.

Constant name Description Value  Unit Reference

Empirical COS soil model

Kksoil Constant to convert CO, production 1.2 pmol COS per pmol CO,  Yi etal. (2007)
from respiration to COS uptake

Mechanistic COS soil model

Ca Ambient air COS concentration when  2.0437 x 1078 molm ™3
constant (500 ppt)

Zmax Maximum soil depth 009 m ORCHIDEE LSM

pKw Dissociation constant of water 14 -

AH, Thermodynamic parameter 40 kI mol™! Ogée et al. (2016)

AHy Thermodynamic parameter 200 kJImol™! Ogée et al. (2016)

ASy Thermodynamic parameter 660 Jmol~!K~! Ogée et al. (2016)

R Ideal gas constant 8314 Jmol~ ! K™!

D.4(25°C, latm)  Binary diffusivity of COS in the free 1.27%x 1075 m25™1 Massman (1998)
air at 25°C and 1 atm

D,1(25°C) Binary diffusivity of COS in the free 1.94%x 1079 m2s~! Ulshofer et al. (1996)
water at 25 °C

Q10 Multiplicative factor of the production 27 - Meredith et al. (2018)
rate for a 10 °C temperature rise

Pt Reference production term 10 pmol mZs~!

Appendix B: Locations and descriptions of the
observation sites

Figure B1. Locations of the observation sites for soil COS flux measurements (red) and atmospheric concentration measurements (blue).
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Table B1. List of air sampling sites selected for evaluation of COS concentrations.

Site Short  Coordinates Elevation Comments
name (metres above sea level)
South Pole, Antarctica (United States) SPO 90.0° S, 24.8°E 2810
Palmer Station, Antarctica (United States) PSA 64.77° 8, 64.05° W 10.0
Kennaook / Cape Grim, Australia CGO  40.68°S, 144.69°E 164  Inlet is 70 m aboveground
Tutuila, American Samoa SMO 14.25° 8, 170.56° W 77
Mauna Loa, United States MLO  19.54° N, 155.58° W 3397
Cape Kumukahi, United States KUM  19.74°N, 155.01° W 3
Weizmann Institute of Science at the WIS 29.96° N, 35.06°E 151
Arava Institute, Ketura, Israel
Niwot Ridge, United States NWR  40.04°N, 105.54° W 3475
Harvard Forest, United States HFM  42.54°N,72.17°W 340  Inlet is 29 m aboveground
Wisconsin, United States LEF 4595 N, 90.28° W 868  Inlet is 396 m aboveground on a tall tower
Mace Head, Ireland MHD  53.33°N,9.9°W 18
Utgiagvik (formerly Barrow), United States BRW  71.32°N, 155.61° W 8
Summit, Greenland SUM  72.6°N, 38.42°W 3200
Alert, Canada ALT 82.45° N, 62.51° W 195

Table B2. Normalized standard deviations (NSDs) of the simulated concentrations by the observed concentrations. Within brackets are the
Pearson correlation coefficients (r) between simulated and observed COS concentrations for the mechanistic and empirical approaches,
calculated between 2011 and 2015 at selected NOAA stations. For each station, NSD and r values closest to one are in bold, and the farthest
ones are in italic. The time series have been detrended beforehand and filtered to remove the synoptic variability (see Sect. 2.3.3).

SMO KUM MLO NWR LEF HFM MHD SUM BRW ALT

Mechanistic 1.1 0.7 09 04 02 03 1.5 04 1.1 08
(oxic) 08 (07 (08 (04 (©7) (08 (02) (©02) (01) (0.1)
Empirical 1.0 0.8 1.2 0.8 05 06 15 05 1.3 09
(oxic) 07)  (09) (09 (04 (0.9 (0.9 (04 (06) (03) (0.4)
Mechanistic i 0.6 0.9 05 02 03 1.0 04 13 08

(oxic +anoxic)  (0.7) (0.6) (0.7) (0.1) (0.2) (0.5) (0.1) (0.0) (0.1) (0.1)

Launois L1 1.0 1.4 14 09 08 16 06 12 09
(oxic +anoxic)  (0.6)  (0.9) (0.9) (0.7) (0.9) (0.9 (0.4) (0.7) (0.4) (0.4)
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Appendix C: Soil COS production term for the
mechanistic model
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Figure C1. Seasonal cycles of soil COS production with weekly average production at AT-NEU, ES-LMA, IT-CRO, DK-SOR, ET-JA, FI-
HYY, and US-HA. The shaded areas above and below the modelled curve represent the standard deviation over a week. Soil COS production
was computed with a variable atmospheric COS concentration.

Appendix D: Global-scale soil COS fluxes

Difference between mechanistic and empirical
soil COS fluxes (pmol. m~=2,s71)

Figure D1. Mean difference between soil COS fluxes computed with the mechanistic and the empirical model over 2010-2019. The map

resolution is 0.5° x 0.5°.
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Oxic soil COS production (pmol.m~2.s71)
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Figure D2. Mean spatial distribution of oxic soil COS production term over 2010-2019. The map resolution is 0.5° x 0.5°.

Appendix E:
values

Prior versus post-optimization parameter

Empirical model
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Figure E1. Comparison between prior and post-optimization parameter values at FI-HYY and US-HA. The y axis represents the nor-
malization between the edges of the range of variation for each parameter. Prior values of the parameters are represented in blue, and

post-optimization values are in green.

Code availability. The CMIP6 version of the ORCHIDEE model
including the soil COS sub-models is available on request to the
authors. The LMDZ model is available at http://svn.Imd.jussieu.fr/
LMDZ/LLMDZ6/ (Laboratoire de Météorologie Dynamique, 2021)
under the CeCILL (CEA CNRS INRIA Logiciel Libre) v2 free soft-
ware license.
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Data availability. For FI-HYY, we used the 2015 soil cham-
ber COS measurements described in Sun et al. (2017), which
can be found at https://doi.org/10.15146/R39P4R or in Zenodo
at https://doi.org/10.5281/zenodo.322936. For US-HA, we used
the soil COS flux data derived from eddy covariance COS and
COy measurements and soil chamber CO, measurements con-
ducted in 2012 and 2013 as described in Wehr et al. (2017).
We used the COS flux data published in Kitz et al. (2020;
https://doi.org/10.5281/zenodo.3664784, Kitz, 2020) and Spiel-
mann et al. (2019a; https://doi.org/10.5281/zenodo.2586891, Spiel-
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mann et al., 2019b) for AT-NEU in 2015, DK-SOR and ES-LMA in
2016, and IT-CRO in 2017.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/bg-19-2427-2022-supplement.
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3.3 Improving ecosystem COS flux representation in LSMs

Since the implementation of ecosystem COS fluxes in ORCHIDEE, recent studies on vegetation and
soil COS exchanges have revealed opportunities to improve the representation of these COS
fluxes. These studies offer valuable insights, by providing new constraints on COS fluxes and by
identifying missing processes that could be integrated in the COS models.

In the vegetation COS uptake model from Berry et al. (2013), the internal conductance to COS that
represents the mesophyll conductance and carbonic anhydrase (CA) activity, is assumed
proportional to the maximum carboxylation rate of Rubisco (Vcmax). This assumption implies that
the temperature response of Rubisco is applied to CA when simulating vegetation COS uptake. In
the SiB4 LSM, Cho et al. (2023) recently introduced a novel function to describe the temperature
response of CA, incorporating its specific temperature optimum. This new approach still expresses
the internal conductance to COS as proportional to the Vemax at 25°C (Vemax2s) of Rubisco, but it
replaces Rubisco’s temperature response function with that of CA. Optimizing model parameters
related to the stomatal and internal conductance using COS flux observations at two sites, the
Hyytiala and Harvard forests, Cho et al. (2023) found that CA has lower temperature optimums
than Rubisco. Using the optimized parameter values to simulate global vegetation COS flux in SiB4
decreased the COS uptake in regions where air temperatures exceed 25°C, predominantly in
tropical areas, and increased the uptake in regions with temperatures below 25°C. In ORCHIDEE,
this new CA temperature response has been implemented and its impact on the simulated
vegetation COS fluxes is discussed in Section 4.2, as well as the potential distinction between
mesophyll conductance and the enzyme activity in the vegetation COS model, as it is the case for
CO; in ORCHIDEE (Abadie et al., 2023).

In ORCHIDEE, the contribution of understory vegetation to vegetation COS uptake is not accounted
for due to the lack of representation of understory vegetation. This could be addressed by using
LSMs that integrate a finer representation of vegetation structure and dynamics, such as CLM-
FATES (Fisher et al., 2015).

In addition to leaf COS absorption by vascular plants, non-vascular plants and lichens also
contribute to ecosystem COS exchanges. These processes are not yet represented in LSMs.
Bryophytes and lichens can absorb COS even in the dark, potentially making a significant
contribution depending on moisture conditions (Gimeno et al., 2017; Sun et al., 2018; Rastogi et
al., 2018). These organisms have also been reported to emit COS driven by temperature (Gimeno
et al., 2017). Understanding the mechanisms related to bryophyte and lichen COS fluxes and
integrating them into LSMs could help scale up their contribution and assess their importance at
the global scale.

Some vascular plants also have the potential to emit COS (Bloem et al., 2012; Geng & Mu, 2006;
Maseyk et al., 2014). Experimental studies have reported COS production by agricultural crops,
such as wheat fields at specific growth stages (Maseyk et al., 2014), or following fungal infection in
oilseed rape (Bloem et al.,, 2012). The ecosystem COS fluxes simulated in ORCHIDEE have been
used to investigate COS emission in agroecosystems in Central France (Belviso et al., 2022a), as
presented in Section 5.2.1. This also highlights the potential role of plant-fungi interactions in the
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phyllosphere for ecosystem COS exchanges, which requires future research and is not yet
represented in LSMs.

Regarding the representation of soil COS exchanges, two mechanistic soil COS flux models have
been proposed by Sun et al. (2015) and Ogée et al. (2016). For now, the model from Ogée et al.
(2016) has been preferably implemented in LSMs such as SiB4 and ORCHIDEE (Kooijmans et al.,
2021; Abadie et al., 2022) due to its lower complexity. Sun et al. (2015) requires resolving COS
diffusion, consumption, and emission by discretizing the soil column into several layers, whereas
Ogée et al. (2016) derived a simplified analytical solution assuming a soil column with uniform
temperature, soil moisture, and porosity and steady-state conditions. Therefore, implementing
the model from Sun et al. (2015) in LSMs, which would alter the COS concentration profile in the
soil column, could yield different estimates of soil COS contribution at the global scale and help
evaluate the uncertainty related to the choice of soil COS flux representation.

In addition to the existing simple empirical soil COS uptake models (Kettle et al., 2002; Berry et al.,
2013; Launois et al., 2015), Whelan et al. (2022) proposed a new empirical soil COS exchange model
including an uptake and a production term. This model is based on biome-specific response curves
to describe soil COS fluxes parametrized from field and upscaled lab incubation experiments,
using only information on biome type, soil moisture, and surface temperature as input data.
Contrary to the typically used exponential oxic soil COS production in response to soil
temperature, Whelan et al. (2022) considered a logistic function to define a maximum soil COS
production for each biome. While this could refine soil COS production implemented in LSMs, its
impact on simulated soil COS fluxes might be limited, as its significance is more pronounced under
conditions not typically found in vegetated ecosystems. New estimates of anoxic soil COS
production are also provided based on an upscaling of a function of soil temperature fitted on in
situ salt marsh measurements. This new wetland estimate, representative of high COS emissions
from saline environments, yields a COS production four times higher than the one estimated in
ORCHIDEE, which better represents freshwater environments (Abadie et al., 2022). This highlights
a possible future improvement of wetland COS flux representation in LSMs by distinguishing
between saline and freshwater environments.

Regarding processes of soil COS flux that have been recently investigated and are not yet
accounted for in LSMs, Kitz et al. (2023) highlighted the contributions of living roots and the
rhizosphere to soil COS exchanges. Their experimental study with young beech trees found that
living roots have a contrasting impact on soil COS fluxes throughout the season. During the
growing season, the presence of living roots significantly reduced soil COS emissions compared to
bare soil, attributed to the CA enzyme in roots that consumes COS. However, during periods of
vegetative inactivity, living roots increased soil COS emissions. The variation in soil COS fluxes due
to living roots may also be influenced by changes in the rhizosphere microbial community, which
can be affected by rhizodeposition. This study calls for further investigation into the underlying
mechanisms of living root contribution to soil COS exchanges. Understanding these processes
could lead to their integration in LSMs that include soil COS models. Additionally, the study used
an artificial, highly nutrient-rich soil, and future research should focus on assessing the impact of
living roots on soil COS exchanges in natural soils to enhance the applicability of these findings.
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Finally, several studies have highlighted the impact of using constant versus variable atmospheric
COS concentrations on simulated ecosystem COS exchanges (Kooijmans et al., 2021; Abadie et al.,
2022). Consequently, spatially and temporally varying atmospheric COS concentrations are used
as input data in LSMs. For example, SiB4 uses 3-hourly COS concentrations at a 4°x6° spatial
resolution (Kooijmans et al., 2021), and ORCHIDEE uses 3-hourly concentrations at a 3.75°x1.9°
spatial resolution (Abadie et al., 2023). This approach allows for accounting for the impact of high-
resolution variations in COS concentrations on simulated soil and vegetation COS fluxes. However,
these approaches do not consider the influence of biospheric COS fluxes on atmospheric COS
concentrations. To address this limitation, future simulations of ecosystem COS fluxes could
benefit from coupling LSMs with atmospheric circulation models, providing a comprehensive view
of the interactions and feedback between atmospheric COS concentrations and surface fluxes.
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4 UsING COS AND CO, FLUX OBSERVATIONS TO CONSTRAIN
GPP AND PLANT TRANSPIRATION IN ORCHIDEE

4.1 Assimilating COS flux observations in ORCHIDEE

The implementation of vegetation and soil COS models in ORCHIDEE (Sections 3.1 and 3.2) enables
to simulate ecosystem COS flux, allowing the assimilation of eddy covariance COS flux data, which
has been collected over several years at a few sites (Kohonen et al., 2020; Vesala et al., 2022; Wehr
et al., 2017), to constrain ORCHIDEE parameters. Although atmospheric COS concentration
measurements are available at more locations than eddy covariance COS flux data (Section 2.2),
these concentrations reflect the influence of all COS budget components. To optimize ORCHIDEE
parameters using atmospheric COS concentrations, a comprehensive understanding of all other
components influencing these concentrations at the measurement sites is required. In contrast,
assimilating eddy covariance COS flux data focuses on the biospheric contribution to the COS
budget, providing a stronger constraint on parameters that also determine GPP and LE. Indeed,
COS flux data has been found to provide information on stomatal diffusion (Berkelhammer et al.,
2020; Kooijmans et al., 2017; Wehr et al., 2017). Therefore, assimilating biospheric COS flux data
can offer a new constraint on the stomatal conductance related parameters in ORCHIDEE,
informing both GPP and plant transpiration, which are coupled through stomatal diffusion.

Assimilating eddy covariance COS flux data also enables to calibrate the biospheric COS models
implemented in LSMs (Kooijmans et al., 2021; Maignan et al., 2021; Abadie et al., 2022; Chen et al.,
2023). Several atmospheric inversion modeling studies using atmospheric COS concentration
observations have identified a missing biospheric COS sink in Northern high latitudes (Ma et al.,
2021; Remaud et al., 2022). Then, Vesala et al. (2022) developed a parametric model of vegetation
COS fluxes calibrated against eddy covariance COS fluxes at the Hyytidla boreal forest, which also
indicated increased COS uptake in high latitude boreal evergreen needleleaf biomes compared to
the uptake simulated in the SiB4 LSM. Therefore, calibrating the COS model parameters in
ORCHIDEE through data assimilation techniques allows us to constrain the simulated biospheric
COS fluxes and assess whether this approach can reduce the missing COS sink in Northern high
latitudes, bringing us closer to closing the global COS budget (Section 1.3.3).

Consequently, eddy covariance COS fluxes from the Hyytiala site, which constitute the longest time
series of ecosystem COS flux measurements, have been assimilated in ORCHIDEE. This study is
the first to assimilate COS flux data in ORCHIDEE. The data assimilation approach, along with the
evaluation of the optimized ecosystem COS flux, GPP, and LE, and their upscaling over the entire
boreal evergreen needleleaf biome, are presented in my second publication as the lead author in
the following section.
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4.2 Additional constraint on GPP and plant transpiration from
COS flux observations for boreal forests
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Abstract Gross primary production (GPP) by boreal forests is highly sensitive to environmental changes.
However, GPP simulated by land surface models (LSMs) remains highly uncertain due to the lack of direct
photosynthesis observations at large scales. Carbonyl sulfide (COS) has emerged as a promising proxy to
improve the representation of GPP in LSMs. Because COS is absorbed by vegetation following the same
diffusion pathway as CO, during photosynthesis and not emitted back to the atmosphere, incorporating a
mechanistic representation of vegetation COS uptake in LSMs allows using COS observations to refine GPP
representation. Here, we perform ecosystem COS flux and GPP data assimilations to constrain the COS-

and GPP-related parameters in the ORCHIDEE LSM for boreal evergreen needleleaf forests (BorENF).
Assimilating ecosystem COS fluxes at Hyytiili forest increases the simulated net ecosystem COS uptake by
14%. This increase largely results from changes in the internal conductance to COS, highlighting the need

to improve the representation of COS internal diffusion and consumption. Moreover, joint assimilation of
ecosystem COS flux and GPP at Hyytiilda improves the simulated latent heat flux, contrary to the GPP-only
data assimilation, which fails to do so. Finally, we scaled this assimilation framework up to the boreal region
and find that the joint assimilation of COS at Hyytiéild and GPP fluxes at 10 BorENF sites increases the
modeled vegetation COS uptake up to 18%, but not GPP. Therefore, this study encourages the use of COS flux
observations to inform GPP and latent heat flux representations in LSMs.

Plain Language Summary Carbon uptake by boreal forests is highly sensitive to environmental
changes. There is large uncertainty about how much carbon dioxide (CO,) boreal forests absorb through
photosynthesis, as represented by land surface models. Carbonyl sulfide (COS), a trace gas that tracks
photosynthesis, can help improve the representation of simulated plant CO, uptake because COS and CO, share
a common pathway during leaf uptake. Using a mechanistic model of biospheric COS processes implemented
in the ORCHIDEE land surface model, we assimilated ecosystem COS flux and plant CO, uptake measured at
Hyytiiild boreal forest. We find that this joint assimilation improves the simulated plant CO, uptake, as well as
transpiration because of the strong link between COS, CO, and H,O fluxes through stomatal diffusion. Scaling
up this assimilation framework to evergreen needleleaf boreal forests, we find that assimilating ecosystem COS
flux and plant CO, uptake data increases the vegetation COS uptake for this biome, but not plant CO, uptake.
Our results imply that COS has the potential to constrain both plant carbon uptake and transpiration in land
surface models, which should be further investigated, especially during drought events.

1. Introduction

Boreal forests absorb a significant amount of atmospheric CO, through gross primary production (GPP), repre-
senting about 20% of the global GPP (Jung et al., 2017; Tramontana et al., 2016). However, direct observations
of GPP over the whole boreal region are not available as photosynthesis cannot be measured at scales larger than
the leaf scale. At the ecosystem scale, photosynthesis—that is GPP—can be inferred from partitioning eddy

ABADIE ET AL.

1 of 26

79



V ad |
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007407

covariance observations of net ecosystem exchange into respiration components and GPP. However, flux parti-
tioning methods rely on important assumptions about the relationship between fluxes and their environmental
drivers and are impacted by various sources of uncertainty (Tramontana et al., 2020). At regional to global scales,
land surface models (LSMs) can simulate GPP from process representations, but the lack of direct GPP meas-
urements makes it challenging to evaluate and improve the representation of GPP in LSMs (Anav et al., 2015).
In addition, because boreal forests are highly sensitive to environmental changes, rapid ongoing changes in this
biome impact gas exchange and lead to large uncertainties in GPP estimates simulated by LSMs (Bonan, 2008;
Fisher et al., 2018) or obtained from data-driven methods (Goetz et al., 2005).

To address the uncertainty in GPP, several optical proxies have been used to infer GPP estimates or to improve
GPP representation in LSMs. Vegetation indices (VIs) inform GPP seasonality by tracking seasonal changes in
vegetation greenness (Shen et al., 2014). However, the small variations in vegetation greenness over the season
for evergreen boreal forests limit the effectiveness of such VIs in tracking photosynthetic activity. Changes in
snow cover also affect the monitoring of seasonal variations in greenness and the estimation of GPP using VIs
(Beck et al., 2006; Bottcher et al., 2014; Delbart et al., 2005). Solar-induced fluorescence (SIF), radiation in
the red or far-red bands emitted from illuminated chlorophylls, can be retrieved from satellite observations and
strongly correlates with GPP at large spatial and temporal scales (Frankenberg et al., 2011). However, SIF is also
affected by snow cover and previous studies have reported differences in phenology between GPP derived from
SIF and that from VIs (Chang et al., 2019; Li et al., 2018), especially under water stress (Wang et al., 2019).

Vegetation carbon uptake is also coupled with water loss, both controlled by stomatal diffusion. Plant transpira-
tion is a key process for ecosystem functioning, sharing common environmental drivers with GPP. Transpiration
also faces similar challenges as GPP as it is not well constrained by observations (Schlesinger & Jasechko, 2014),
limiting the ability of LSMs to accurately represent its spatial and temporal dynamics (Mencuccini et al., 2019).
Transpiration measurements are performed at the leaf or branch scale, it is difficult to upscale them to the ecosys-
tem level (Jarvis, 1995). At the ecosystem scale, evapotranspiration can be measured using flux tower remote
sensing methods (Wang & Dickinson, 2012), but it includes not only plant transpiration but also evaporation from
the soil and other surfaces due to water interception, or snow sublimation.

Carbonyl sulfide (COS) has emerged as a promising tracer to track GPP (Campbell et al., 2008; Montzka
et al., 2007; Sandoval-Soto et al., 2005; Seibt et al., 2010; Stimler et al., 2010), providing complementary infor-
mation to existing optical proxies of GPP. COS, an atmospheric trace gas, is absorbed by vegetation following the
same diffusion pathway as CO, during photosynthesis. Inside the leaves, COS is presumed to be totally hydro-
lyzed by the carbonic anhydrase (CA), an enzyme also involved in CO, fixation during photosynthesis (DiMario
et al., 2016), and is normally not emitted back to the atmosphere. Therefore, the main advantage of COS lies
in the fact that it allows GPP to be estimated independently of CO, measurements. In addition, COS helps to
constrain stomatal diffusion, which determines the coupling between CO, uptake and water loss (Berkelhammer
et al., 2020; Kooijmans et al., 2017; Wehr et al., 2017).

Previous studies have used COS to infer stomatal conductance, to investigate stomatal control on GPP, and to
explore the physiological links between plant COS uptake, GPP, and transpiration (Berkelhammer et al., 2014;
Wehr et al., 2017; Wohlfahrt et al., 2012). Alternatively, some studies have linked vegetation COS uptake to GPP
using the leaf relative uptake (LRU) approach, based either on empirical ratios between COS and CO, deposi-
tion rates in plants (Asaf et al., 2013; Kooijmans et al., 2019), or more recently based on stomatal conductance
theories as a function of humidity, temperature, light, or CO, concentration (Kohonen, Dewar, et al., 2022; Sun
etal., 2022). Process-based representations of COS uptake by plants have also been implemented in LSMs (Berry
et al., 2013; Kooijmans et al., 2021; Maignan et al., 2021). These mechanistic models simulate the dynamics of
plant COS uptake and of the conductances involved in stomatal diffusion, and provide new global estimates of
the vegetation COS sink.

However, the representation of COS exchanges between the atmosphere and land ecosystems rely on parame-
terizations that are still highly empirical and supported by limited measurements. Indeed, multiyear observa-
tions of ecosystem COS fluxes are only available at two sites, Harvard Forest in the United States with 2 years
(2012-2013) of measurements and Hyytiild Forest in Finland with 5 years (2013-2017) of measurements. So
far, two studies have used COS flux measurements to directly constrain parameters related to COS and GPP in
LSMs (Chen et al., 2023; Cho et al., 2023). Chen et al. (2023) focused on optimizing two parameters in the Boreal
Ecosystem Productivity Simulator (BEPS) LSM at these two sites, one parameter related to the carboxylation rate
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of the Rubisco enzyme, which is also involved in vegetation COS uptake representation, and another parameter
specific to the vegetation COS model. The impacts of other physiological parameters on the simulated ecosystem
COS flux and GPP remain largely unexplored.

While vegetation uptake is the largest COS sink, several sinks and sources also contribute to the global COS
budget (Whelan et al., 2018). Soils can absorb COS because soil microorganisms contain CA and other COS
hydrolases (Masaki et al., 2021), or emit COS due to microbial or abiotic COS production (Whelan et al., 2018).
The ocean is a significant source of COS through direct emissions or indirect emissions via dimethyl sulfide
(DMS) and carbon disulfide (CS,) (Lennartz et al., 2017, 2020). Anthropogenic activities are also a major
source of COS (Zumkehr et al., 2018), and biomass burning contributes to COS surface emissions (Stinecipher
et al., 2019). In the atmosphere, COS can be destroyed through oxidation by OH radicals in the lower troposphere
or photolysis (Whelan et al., 2018).

Currently, a major challenge of using COS as a global-scale GPP proxy is the imbalance of the global COS budget,
as recently highlighted in the intercomparison of atmospheric COS transport models conducted by Remaud
et al. (2023). A previous inversion study by Ma et al. (2021) has suggested the likely presence of a missing COS
source in the tropics, and an underestimated COS sink in northern high latitudes. Another atmospheric inversion
of COS and CO, concentrations carried out by Remaud et al. (2022) supports these findings for COS while also
showing an underestimation of GPP simulated by the ORCHIDEE LSM in the high latitudes. Moreover, Vesala
et al. (2022) used the longest ecosystem COS flux measurements (5 years) made at the Hyytiili forest, Finland,
to develop an empirical parametrization of vegetation COS fluxes based on environmental drivers. This param-
eterization was scaled up to boreal evergreen needleleaf forest biome using the SiB4 LSM (Haynes et al., 2020),
leading to an increase in COS uptake in the high latitudes, compared to the one computed using the mechanistic
COS model implemented in SiB3 by Berry et al. (2013).

In this context, the goal of this study is to evaluate the potential of COS to directly constrain the representation of
GPP in the ORCHIDEE LSM using a data assimilation framework. This work addresses the following questions:

1. To what extent can biospheric COS flux measurements help to constrain stomatal diffusion of CO, and COS,
and as a result, GPP?

2. What is the impact of assimilating biospheric COS fluxes on the simulated latent heat flux (LE)?

3. How does assimilating ecosystem COS flux observations at one site along with GPP data from multiple sites
impact the simulated COS, GPP, and LE fluxes over the entire biome of boreal evergreen needleleaf forests?

Here, we optimize the GPP- and COS-related parameters by assimilating GPP and ecosystem COS fluxes at the
Hyytiili forest to evaluate the impact on the simulated vegetation COS and CO, uptakes, and LE. In particular,
we focus on the constraint provided by these flux data assimilations during a severe drought event in 2006. Then,
we perform multi-site assimilations to assess the changes in GPP, LE, and vegetation COS fluxes for the boreal
evergreen needleleaf forest biome. Finally, we discuss necessary improvements in COS flux representation in
LSMs, as highlighted in this study, and the implications of assimilating ecosystem COS fluxes to constrain GPP
compared to using the empirical LRU approach.

2. Methods

The general workflow of this study is represented in Figure 1 illustrating the main steps carried out. First, sensi-
tivity analyses over the variables of interest were conducted following prior simulations in ORCHIDEE. This led
to selecting the model parameters to include in the optimizations, which were performed either at the site scale or
considering multiple sites for the assimilation. Finally, the optimized simulations following these two optimiza-
tion procedures are evaluated against eddy covariance data and global evaluation products. These different steps
are detailed in the following sections.

2.1. Observation Data Sets
2.1.1. Description of the Studied Sites

We selected 16 boreal evergreen needleleaf forest sites from the FLUXNET network. All sites are located in
North America and Europe between 40° and 68°N, with each continent featuring eight sites, as illustrated in
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Figure 1. Overview of the workflow, showing the input data and main steps of this study. Actions are represented in boxes, whereas input data used as forcing,
observations, and evaluation products, are in circles. EC, eddy covariance; FI-Hyy, Hyytiiili forest in Finland; BorENF, Boreal evergreen needleleaf forest; GPP, gross
primary production; Fcos, ecosystem COS flux; LE, latent heat flux.

Figure 2. Mean annual air temperatures range from —1.4° to 6.9°C, and mean annual precipitation ranges between
149 and 1,440 mm across these sites. Two sites are located at a high elevation: Davos (Switzerland) at 1,639 m
and Niwot Ridge (United States) at 3,050 m. These 16 sites were selected because the normalized root mean
square deviation (nRMSD) between the FLUXNET GPP estimates and the GPP simulated in ORCHIDEE is
lower than 25%. Sites for which the nRMSD exceeds this threshold may have been impacted by processes not
represented in the ORCHIDEE version used in this study, such as fires or clear-cuts, and are therefore not selected
for data assimilation. A description of the sites is provided in Table S1 in Supporting Information S1.

Among these 16 sites, COS measurements were only carried out at Hyytiili forest, Finland (FI-Hyy; 61.845°N,
24.288°E). FI-Hyy is a coniferous forest planted in 1962 (Suni et al., 2003) dominated by Scots pine (Pinus
sylvestris) and Norway spruce (Picea abies). The climate is boreal with an annual mean temperature of 4.5°C and
an annual mean precipitation of 632 mm. The soil type is described as Haplic Podzol (Sun et al., 2018).

2.1.2. Site Measurements of COS, GPP, and LE Fluxes

We used GPP and LE measurements from the FLUXNET global network (La Thuile: Baldocchi et al., 2001
or FLUXNET2015: Pastorello et al., 2020), which are available at a half-hourly time step for the 16 selected
sites. LE and net ecosystem exchange (NEE) are measured using the eddy covariance (EC) method. Then, GPP
is retrieved from NEE measurements based on a nighttime partitioning method (Reichstein et al., 2005) using
a variable friction velocity (“U-star”) threshold for each year (VUT). This means that daytime respiration is
first estimated with a respiration model parameterized with nighttime NEE data, and GPP is then obtained as

50°N

Figure 2. Location of the 16 studied sites. The CA-NS label includes CA-NS1, CA-NS2, and CA-NSS. FI-Hyy is represented
in blue as it is the only site with COS observations, while the other sites are represented in black. The background map
corresponds to the “shadedrelief” map (http://www.shadedrelief.com) from the matplotlib basemap toolkit (https://matplotlib.
org/basemap/api/basemap_api.html).

ABADIE ET AL.

4 of 26

82

PO PUB SULAL 3 23S [£70Z/90/6T] WO ATRIQUT AU KLY “2DWLLT SULI0) Aq LOFLOODLETOT/ETOT 0T/10p/ WO L3 AeIq[auruo-squdney;:sdny Woxy papeofumod °L *€20T ‘19686917

)

QUAI[TIO;

Raquanh

nip

SSUSDIT STOWMO)) ALY 3[qeandde 3 £q PALRA0E 218 SA[INI VO 125N JO SI[NT 10} KIRIQUT SWUQ A3[1A 1O (



M

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Biogeosciences 10.1029/20231G007407

the difference between respiration and NEE (see Pastorello et al., 2020 for details). No significant difference
was found between FLUXNET GPP retrieved from the nighttime or daytime (Lasslop et al., 2010) partitioning
method at FI-Hyy (not shown).

For COS observations, EC measurements were carried out at FI-Hyy from 2013 to 2017 (Vesala et al., 2022),
along with soil chamber measurements in 2015 (Sun et al., 2018) and branch chamber measurements in 2017
(Kooijmans et al., 2019). EC fluxes were measured at 23 m height using an Aerodyne quantum cascade laser
spectrometer (QCLS, Aerodyne Research, Billerica, MA, USA). EC data were processed following the recom-
mendations by Kohonen et al. (2020) regarding quality-check and gap-filling, resulting in a half-hourly EC flux
data set. EC observations are available from April to November in 2013, March to September in 2014, July to
October in 2015, April to November in 2016, and January to August in 2017, with a lack of data during winter-
time. Soil COS measurements were conducted from July—November 2015 using two automated soil chambers
connected to another Aerodyne QCLS, the same model used for EC observations (Sun et al., 2018). Understory
herbs and bryophytes were removed prior to performing chamber measurements to eliminate the influences of
plant COS uptake on observed soil COS fluxes.

2.1.3. Characterization of a Drought Event at Hyytiila

We focused on a drought event that occurred at FI-Hyy to investigate the potential of COS to constrain GPP and
LE under these specific stress conditions. FI-Hyy did not undergo any drought event between 2013 and 2017
when the EC COS measurements were carried out (Vesala et al., 2022). However, a severe drought was reported
in summer 2006, causing large damage in southern Finland (Gao et al., 2017). The intensity of this drought was
characterized by the soil moisture index (SMI), which is defined as the difference between observed volumetric
soil moisture and volumetric soil moisture at wilting point, divided by the difference between volumetric soil
moisture at field capacity and at wilting point. Gao et al. (2017) found very dry conditions (SMI <0.20) for 37
consecutive days (from 23 July to 28 August) with the most severe part of the drought between 1 and 17 August
(SMI <0.15).

2.1.4. GPP and LE Global Observation Products

We evaluated the simulated fluxes over the whole boreal evergreen needleleaf forest region with several
global GPP and LE products. First, we used global GPP data products from the FLUXCOM version RS (Jung
et al., 2019, 2020) and FLUXSAT version 2.0 (Joiner et al., 2018) databases, which are produced by apply-
ing different machine-learning upscaling methods to FLUXNET EC measurements and remote sensing data.
FLUXCOM GPP is available between 2001 and 2015, whereas FLUXSAT GPP is available from 2000 to 2020.
The FLUXCOM database also provides global estimates of LE derived from the same approach as for GPP. In
addition, we considered a second global product for LE from the Global Land Evaporation Amsterdam Model
(GLEAM), which separately computes different components of evapotranspiration (ET) from satellite data
(Martens et al., 2017) from 1980 to 2021. For all global products, we used monthly average fluxes at a 0.5° spatial
resolution to match the temporal and spatial resolution of our global simulated fluxes.

2.2. Model Descriptions
2.2.1. The ORCHIDEE Land Surface Model

The ORCHIDEE land surface model (LSM) is developed at the Institut Pierre Simon Laplace (IPSL). Here, we
used the version involved in the Coupled Model Intercomparison Project Phase 6 (CMIP6) (Boucher et al., 2020;
Cheruy et al., 2020). ORCHIDEE solves the water, carbon and energy budget between land surfaces and the
atmosphere (initially described in Krinner et al., 2005). Fast processes such as photosynthesis, hydrology and
energy balance are computed every 30 min, while slow processes such as carbon allocation and phenology are
run at a daily timestep. The different vegetation types are grouped into plant functional types (PFTs) with similar
characteristics in terms of structure, bioclimatic range, leaf phenology, and the photosynthetic pathway. We ran
ORCHIDEE distinguishing among 14 classes of PFTs and a class representing bare soil. Each model grid cell
is associated with fractions of PFTs prescribed using yearly varying PFT maps derived from the ESA Climate
Change Initiative (CCI) land cover products (Poulter et al., 2015).

In ORCHIDEE, photosynthesis is computed following the approach of Yin and Struik (2009) based on Farquhar
et al. (1980) for C3 plants and Collatz et al. (1991) for C4 plants. Soil moisture limitations on stomatal diffusion
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and photosynthesis are controlled by a stress factor, which varies linearly from 0 at the wilting point (maximum
stress) to 1 when soil moisture is close to the field capacity (no stress). This stress factor regulates stomatal
conductance by controlling the minimum stomatal conductance (when irradiance approaches zero) and the factor
that describes the effect of the leaf-to-air vapor pressure deficit (VPD) (Yin & Struik, 2009). This stress factor
also regulates the mesophyll conductance, Rubisco carboxylation, and leaf day respiration.

The stomatal conductance (g,) is defined following Yin and Struik (2009),

A+ Ry
Ci_chx

& =8 + - fvep (1)
with g, the residual stomatal conductance (m s~'), A the CO, assimilation (minimum between the Rubisco-limited
rate and electron transport-limited rate) (umol m=2s="), R, the day respiration (pmol m=2s="), C, the intercellular
CO, partial pressure (pmol m=2 s7!), C,, the base CO, compensation point in the absence of R, (pmol m=2 s71),
and f,pp, the function describing the effect of VPD, defined as,

1

Jveo = AT B1 . VPD) 1] )

where Al and B1 are empirical factors (Table S2 in Supporting Information S1).

A global soil map based on the Food and Agriculture Organization of the United Nations/United States Depart-
ment of Agriculture (FAO/USDA) texture classification describes the distribution of soil textures in 12 classes
(Reynolds et al., 2000). The soil texture in each grid cell determines soil properties such as soil porosity, wilting
point, and field capacity.

The ORCHIDEE LSM can be run both at the site level or at the global scale. The site simulations were forced
by local micro-meteorological measurements from the FLUXNET network (Pastorello et al., 2020). For global
simulations, we used the 0.5° 6-hourly CRU JRA reanalysis (University of East Anglia Climatic Research Unit—
Japanese Reanalysis; Friedlingstein et al., 2020). Because simulated vegetation COS uptake depends on COS
concentrations in the atmospheric boundary layer (Abadie et al., 2022; Kooijmans et al., 2021), we prescribed
near-surface COS and CO, concentrations using 3-hourly simulated concentrations extracted from the first verti-
cal level (33 m above sea or ground level) of the Laboratoire de Météorologie Dynamique (LMDz) atmospheric
transport model output. The atmospheric COS and CO, concentrations were obtained using optimized COS and
CO, surface fluxes inferred from atmospheric inverse modeling as described in Remaud et al. (2022).

2.2.2. ORCHIDEE Simulations

We first ran site simulations at the 16 selected boreal evergreen needleleaf forest sites. This vegetation type is
represented by a dedicated PFT (BorENF) in ORCHIDEE. For each site, a “spin-up” phase was performed to
reach an equilibrium state at which all carbon pools are stable and the net biome production oscillates around
zero in the absence of any disturbances. In ORCHIDEE, around 340 years are usually needed to reach this equi-
librium state as the convergence is accelerated using a pseudo-analytical iterative estimation for the soil carbon
pools (Lardy et al., 2011). We carried out the spin-up phase at each site by cycling over the available years (Table
S1 in Supporting Information S1) in the FLUXNET meteorological forcing file for about 340 years and using
a constant atmospheric CO, concentration of 312 ppm (corresponding to the year 1950). Then, we performed
transient simulations for about 60 years, by cycling over the years in the FLUXNET forcing files, to introduce
disturbances related to climate change, land use change, and increasing CO, atmospheric concentrations. Follow-
ing the transient phase, we ran the site simulations over the period available in the FLUXNET forcing file (Table
S1 in Supporting Information S1).

For the simulations over the boreal region, we selected a latitudinal range between 40° and 80°N. We followed
the same simulation protocol as for site simulations with preceding spin-up and transient phases. The 340-year
spin-up phase was performed by cycling over 10 years (1931-1940) of CRU JRA reanalysis forcing files. Then,
we carried out the transient phase cycling over the same 10 years in the forcing files where disturbances were
introduced from 1940 to 2000, followed by a global simulation from 2000 to 2019.

For site and regional simulations, we evaluated the simulated GPP and biospheric COS fluxes against the corre-
sponding observations using the root mean square deviation (RMSD) and the normalized root mean square
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deviation (nRMSD), for which the normalization denominator is defined as the maximum value minus the mini-
mum value of the observations.

2.2.3. Biosphere COS Exchange Models

Mechanistic representations of vegetation and soil COS fluxes have been previously implemented in ORCHIDEE
(Abadie et al., 2022; Maignan et al., 2021). The vegetation COS model is based on Berry et al. (2013) and
describes COS uptake by plant as a one-way diffusion from the atmosphere to the leaf interior where COS is
irreversibly hydrolyzed by CA (Equation 3).

=1
1 1 1
Feos ey = [COS] - + 4 3)

8b.CO8 8s.co8 8i.cos

with F,

COS.veg
8 coss & cos» and g, oo the laminar boundary layer, stomatal, and internal COS conductances (mol m=2 s71),

the vegetation COS uptake flux (pmol m=2 s~'), [COS] the atmospheric COS concentration (ppt),

respectively. The internal conductance g, - includes both the COS diffusion through the mesophyll and the COS
consumption by CA as a first-order reaction. The latter two were assumed to scale with the photosynthetic capac-
ity (V) of the Rubisco enzyme (pmol m~2 s~') (Badger & Dean Price, 1994; Berry et al., 2013). Therefore,
8:.cos 18 expressed as proportional to Vmax,

8icos = a - I/ma)( (4)

where a is a parameter, the value of which depends on the photosynthetic pathway. Typical values of a are 0.0012
mol pmol~! for C3 and 0.013 mol pmol~! for C4 plants (Berry et al., 2013). Because COS is assumed to be totally
hydrolyzed by CA, COS internal concentration is zero at the terminus.

The soil COS model in ORCHIDEE is based on Ogée et al. (2016), with a distinction between oxic soils and
anoxic soils. Anoxic soils such as wetlands, rice paddies, or salt marshes, are represented as a COS source only,
while oxic soils can both emit and absorb COS. The oxic soil COS model resolves COS diffusion into the soil
matrix, abiotic and biotic COS hydrolysis, and COS production, resulting in the following formulation following
Ogee et al. (2016),

Z2P
Fcos.oxicsoit = VKBOD - (lCOSJ = IT (1 = CXP<—Z"£>> (5)
Z1
where Foq i 15 the COS flux from oxic soils (mol m=2 s7'), k is the first-order COS consumption rate
constant within the soil (s~'), B is the solubility of COS in water (m? water m~ air), 0 is the soil volumetric water
content (m* water m~ soil), D is the total effective COS diffusivity (m? s ~1), P is the COS production term

expressed as a function of soil temperature (mol m=2 s7!), z, = D/kB (m), and z,__is the maximum soil depth (m).

max

In ORCHIDEE, the grid cells corresponding to anoxic soil are represented using a map of wetlands from Tootchi
et al. (2019). Then the anoxic soil COS flux is expressed as a function of soil temperature following Ogée
et al. (2016),

T-Tt )

( 10
Fcos.anoxicsoil = Pret * Zmax * QIO

(6)

where Fioq noicsoil 15 the COS flux from anoxic soils (mol m~=2 s~!), P, is the reference production term (mol
m~?s7"), T, is a reference soil temperature (K) and Q,, is the multiplicative factor of the production rate for a
10°C increase in soil temperature (unitless).

A more detailed description of the vegetation and soil COS models implemented in ORCHIDEE can be found in
Maignan et al. (2021) and Abadie et al. (2022), respectively.

2.2.4. The ORCHIDEE Data Assimilation System

The ORCHIDEE Data Assimilation System (ORCHIDAS) was designed to optimize ORCHIDEE parameters
related to carbon, water, and energy processes. ORCHIDAS has been frequently used and described in detail
in previous studies focusing on the assimilation of EC flux data (Bastrikov et al., 2018; Kuppel et al., 2014;
MacBean et al., 2022; Mahmud et al., 2021; Peylin et al., 2016). We used ORCHIDAS to find the parameter
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values that give the best fit between the observations and the corresponding ORCHIDEE outputs. Assuming that
the observations, parameters, and model outputs follow a Gaussian distribution, the optimized parameters are
obtained through the minimization of the following cost function J(x) (Tarantola, 2005),

Jx)=z-[(Hx)=y)" R - (Hx) - y)+x+x5)" - B - (x+x3)] (7

S A

with x, the a priori vector of parameters, x the optimized vectors of parameters, y the observations, H(x) the
corresponding model outputs, and R and B the prior error covariance matrices for the observations (including
measurement and model errors) and the parameters, respectively. R and B are diagonal in this study since the
error covariances are difficult to access and hence neglected. The errors (i.e., variances) occupy the diagonal
elements in each matrix. The observation errors in R are defined as the mean squared differences between the
prior model and the observations, following a classical approach used in the studies listed above where the model
error dominates the overall observation error. The parameter uncertainty in B is defined as 15% of the parameter
physical range of variation.

We conducted the optimizations with the genetic algorithm (GA) method (Goldberg, 1989; Haupt & Haupt, 2004).
This global search method allows us to obtain a combination of optimized parameters without risking getting
stuck in a local minimum of the cost function J. Using a population of 32, the algorithm was run for 25 iterations,
which was sufficient for the optimization to converge.

Then, at the minimum of the cost function J, the posterior uncertainties can be approximated assuming line-
arity of the model around the solution and Gaussian prior errors. The reduction in posterior uncertainty for
each parameter after optimization can be computed as the difference between the prior and posterior parameter
uncertainties, divided by the prior parameter uncertainty. This can inform which parameters are the most well
constrained by observations during the optimization.

2.3. Optimization Protocol
2.3.1. Sensitivity Analysis for Parameter Selection

We conducted sensitivity analyses (SAs) prior to performing optimizations to identify the parameters to which
simulated GPP and ecosystem COS fluxes are the most sensitive (Figure 1). This enables us to focus only on
the key parameters during the optimization, reducing computational cost and the risk of overfitting. We selected
the Morris method for SA, which is a time efficient qualitative method that ranks the parameters by importance
(Campolongo et al., 2007; Morris, 1991). We considered a large number of parameters for SA, including parame-
ters in the COS flux models and those related to photosynthesis, phenology, conductances, albedo, snow and soil
thermal properties, and soil hydrology. A complete list of all parameters can be found in Table S2 in Supporting
Information S1.

For soil COS fluxes, we performed an SA at FI-Hyy in 2015 following the method described in Abadie
et al. (2022). Then, we conducted SA for simulated GPP and vegetation COS fluxes over one year for each of
the 16 BorENF forest sites. Although ecosystem COS flux measurements are only available at FI-Hyy, here, we
aimed to identify the key parameters for vegetation COS uptake in the BorENF PFT considering all the studied
sites. Indeed, all selected sites correspond to the same vegetation type in ORCHIDEE (BorENF), although soil
types vary across sites. The parameters to which simulated soil COS fluxes, vegetation COS uptake, and GPP
fluxes are the most sensitive are shown in Figure S1 in Supporting Information S1.

2.3.2. Single Site COS and GPP Optimization Scenarios

In this study, we investigated the potential of COS flux measurements for improving the simulated GPP and
LE fluxes in an LSM using the ORCHIDAS optimization framework. Because COS and CO, follow a common
diffusion pathway during plant uptake, we expect that assimilating vegetation COS flux measurements will affect
parameters that also control GPP and LE. However, whereas partitioned GPP data are available at all study sites,
measurements of vegetation COS fluxes, including EC fluxes and soil fluxes, are only available at FI-Hyy. There-
fore, at this site, we conducted the optimization of ecosystem COS fluxes in two steps.

First, we only assimilated soil COS fluxes using the soil chamber measurements collected in 2015 as previously
done in Abadie et al. (2022). Following the results of the first SA experiment, we selected 5 parameters for soil
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Table 1

Default Values and Ranges of Variation of the Parameters Included in the Optimization

Optimized variables

Ecosystem
Parameter Default value [range of Ecosystem COS flux
name Description variation] Unit COS flux GPP  and GPP
a Proportionality constant used in the calculation of the internal 0.001200 [0.000720, mol pmol ! X X
conductance to COS 0.001680]
acclim;, . . Intercept of the linear regression representing the acclimation to 659.7 [494.8, 824.6] JK ™' mol™ X X X
temperature of the Entropy term for J, . (the maximum value of
the electron transport rate under saturated light) following Kattge
and Knorr (2007)
acclimy,, . . Intercept of the linear regression representing the acclimation to 668.39 [501.3, 835.5] JTK~! mol™! X X X
temperature of the Entropy term for V_ following Kattge and
Knorr (2007)
SLA Specific leaf area, involved in the calculation of leaf biomass 0.00926 [0.00695, m? gC-! X X X
0.01157
Vemax,s Maximum rate of Rubisco activity-limited carboxylation at 25°C 45.[34., 56.] pmol m=2 s~ X X X
Leaf_age_crit Critical leaf age, involved in the calculation of leaf photosynthetic 910. [683., 1138.] days X X X
efficiency, and in the calculation of leaf turnover as a function of
long term temperature
Al Empirical factor involved in the calculation of the function describing 0.85[0.8, 0.9] - X X
the effect of leaf-to-air vapor difference on the stomatal
conductance
gb.¢ Leaf bulk boundary layer conductance 0.04 [0.03, 0.05] ms~! X X X
Tphoto ;. Minimum photosynthesis temperature =4, [=5.,=3.] “{e X X X
LAIL .. Maximum projected leaf area index, involved in the allocation of 4.5(3.4,5.6] m? m~> X X
carbon, and in the calculation of leaf biomass
COS flux optimization: F,, ;. f..;» the van Genuchten water retention curve coefficient n (Van_Genuchten, ),
and the saturated volumetric water content (6_,) (Table S2 in Supporting Information S1). F.,, @, and 3, are
parameters of the soil COS model, with F., representing the soil microbial community that contains the CA
enzyme and can consume COS, while o, and f_, are involved in the production rate expressed as a function
of soil temperature. The van Genuchten water retention curve coefficient n and the saturated volumetric water
content both describe soil hydrology, which determines soil water content and COS diffusivity in the soil column.
Then, to optimize parameters related to vegetation COS fluxes, we re-ran ORCHIDEE simulations at FI-Hyy
using the optimized set of parameters for soil COS fluxes. The use of optimized soil parameters in the second
optimization step enabled us to focus on the parameters to which vegetation COS fluxes are sensitive. Starting
from this optimized soil COS flux simulation, we assimilated EC-measured ecosystem COS fluxes over the
5 years of available data (2013-2017). Based on vegetation COS flux SA, we considered the 9 most important
parameters for the optimization of ecosystem COS fluxes. The default values and ranges of variation for the
parameters included in each optimization are given in Table 1. We defined the physical range of variations based
on expert and physical knowledge for each parameter. Note that for the a parameter, we considered a large range
of variation corresponding to +40% of the prior value as its value is not very well constrained by the linear
regression applied in Berry et al. (2013) and as was shown based on site observations by Kooijmans et al. (2021).
We compared the data assimilation of ecosystem COS flux to a standard optimization in which we assimilated
only GPP data at FI-Hyy over the last 5 years of available FLUXNET GPP estimates (2010-2014) (Figure 1).
Finally, to investigate the additional constraint provided by COS observations on top of that provided by GPP,
we performed an optimization with both GPP and ecosystem COS fluxes (Figure 1). This optimization was
carried out by assimilating GPP for 5 years (2010-2014) with COS data also for 5 years (2013-2017). This joint
assimilation aims at finding a combination of optimized parameters that minimizes the misfit for both GPP and
ecosystem COS fluxes even if the assimilation periods differ. Because there are data gaps in the ecosystem COS
ABADIE ET AL. 9 of 26
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Table 2 flux measurements, we applied a weighting factor to the GPP term in the
Summary of the 3 Multi-Site Optimization Scenarios, With the Weight Given cost function (Equation 7) in order to give the same weight to COS and GPP
1o the GPP and Ecosystem COS Flux Daia in the Assimilation for Each in the optimization. This weight was computed as the ratio of the number of
Scenario

ecosystem COS flux observations and the number of GPP estimates over the

Post GPP F

Post GPP &  Post GPP 5-year period considered for each. In this work we chose not to assimilate LE
cos /2 & Fos 5 observations as evapotranspiration includes not only plant transpiration, on

GPP (10 BorENF sites)
Ecosystem COS fluxes (FI-Hyy)

0 Va Y5

1 Vs 2% which COS offers a constraint through the gas diffusion pathway, but also

snow sublimation, water interception by and evaporation from the canopy

Note. The period considered for the assimilation and evaluation at each site
are presented in Table S1 in Supporting Information S1.

or ground vegetation, and soil evaporation, none of which is physiologically
linked to COS uptake through stomata. Note that at this site, bare soil evapo-
ration is marginal as the soil is mainly covered by mosses.

For the data assimilation experiments, data were averaged at a daily time step

and smoothed over a 7-day running mean. A few net ecosystem COS emis-
sions are found in the EC observations, especially in April, August, and September 2014. These net emissions
may be due to data noise, or possibly reflect some soil emission episodes at high temperatures at the end of the
summer. However, in ORCHIDEE, the annual mean simulated soil COS flux is about —3 pmol m~2 s~! with no
strong seasonal variations, which is in line with the average soil COS fluxes measured in the two soil chambers
in 2015 (—2.8 + 1.0 and —2.5 + 1.2 pmol m~2 s~, Sun et al., 2018). Therefore, we filtered the EC COS fluxes to
remove the data for which the mean daily COS fluxes was higher than —3 pmol m~2 s~!, as such values cannot be
reached at FI-Hyy by the COS models implemented in ORCHIDEE.

2.3.3. Multi-Site COS and GPP Optimization Scenarios

To evaluate the additional constraint on GPP and LE from COS across the entire BorENF biome, we also
performed multi-site optimizations using only GPP data or combining GPP and COS flux data (Figure 1). In a
multi-site optimization, one common set of parameters is obtained by simultaneously optimizing over all sites.
Ten of the 16 BorENF sites presented in Section 2.1.1 were selected because at least 4 years of GPP and LE
measurements are available (Table S1 in Supporting Information S1). Among these 4 years, we used 3 years for
data assimilation and the last year was used for evaluating the optimization with a full independent seasonal cycle.

We performed a first multi-site optimization assimilating only GPP data at these 10 sites (“Post GPP”). Then,
in a second multi-site optimization, we assimilated ecosystem COS measurements at FI-Hyy in addition to GPP
at the 10 BorENF sites. In this scenario, we aimed at including as much information from COS observations as
from GPP estimates in the assimilation. However, as we only have COS observations at one site for this multi-
site optimization, we applied a weighting factor to the COS term in the cost function (Equation 7) so that COS
observations would have the same weight as GPP observations at the 10 sites combined (scenario “Post GPP &
Foos ¥27). Then, we tested another scenario in which we arbitrarily downweighted the importance of COS data by
adjusting the multiplier before the COS cost term to ¥3 (scenario “Post GPP & F; ¥5”; Table 2) because COS
measurements are fewer than GPP data and are available at only one site. In both cases, because we intended to
use the FI-Hyy site as an additional site to constrain the COS fluxes and COS-related parameters only, we did not
use it for GPP data assimilation or the evaluation of optimizations results.

For each of the multi-site optimizations, we considered the same set of parameters as for the single site optimi-
zation at FI-Hyy for GPP only or joint GPP and COS assimilation (Table 1). In addition to the 10 sites used in
the multi-site optimizations, we used 5 other BorENF sites for which 1 year of GPP and LE measurements is
available to further evaluate the impact of optimizations on model performance at independent sites.

3. Results
3.1. Impact of COS and GPP Assimilations on Carbon and Water Fluxes at Hyytiili Forest, Finland
3.1.1. Constraint on COS and GPP Seasonal Cycles

First, we assessed the impacts of COS flux-only, GPP-only, or a joint COS flux-GPP assimilation on ecosystem
COS fluxes and GPP at FI-Hyy. Figure 3 shows the change in the simulated mean seasonal cycle for the ecosys-
tem COS flux over the 5 years of assimilation (Figure 3a) and for GPP (Figure 3b) over 8 independent years.
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Figure 3. Mean seasonal cycles of the weekly ecosystem COS flux (pmol m? s™!) (a) and GPP (gC m*d~') (b) at FI-Hyy. The weekly averages are computed
considering both nighttime and daytime data for the eddy covariance observations and simulated fluxes. Note that the y-axis has been inverted for GPP (with largest
positive values on the bottom, and decreasing moving up) to visually aid the comparison with vegetation COS uptake. The observations (“Obs”) are represented in black
with the shaded area representing the standard error of the mean, computed as the standard deviation divided by the square root of the number of observations. The
ORCHIDEE simulation prior to the assimilation is in green (“Prior”), and the ORCHIDEE simulations after optimization are represented in blue for the ecosystem COS
flux assimilation only (“Post COS™), in orange for the GPP assimilation only (“Post GPP”), and in purple for the assimilation of both the ecosystem COS flux and GPP
(“Post F.og & GPP”). The mean seasonal cycles of GPP are averaged over 8 years (2002-2009), and no data during this period were assimilated (the period considered
for assimilation is 2010-2014) in order to independently evaluate the posterior seasonal cycles of GPP. Note that GPP seasonal cycles for the Prior, Post GPP, and Post
Foos & GPP simulations track each other closely during the fall decrease. For COS, the mean seasonal cycle is computed over the available period for the observations
(2013-2017), the same period as for COS data assimilation. The RMSD values computed over the weekly fluxes are given for the prior and the post-optimization
simulations in corresponding colors.

The two optimizations that assimilate COS flux observations (“Post F.,s” and “Post F.,; & GPP”) lead to a
similar mean seasonal cycle with a higher net ecosystem COS uptake compared to the prior simulation (mean
ecosystem COS flux of —10 pmol m? s~! over the period against —8.8 pmol m? s~! for the prior). This increase in
COS uptake reduces the RMSD by 20% and 14% for the COS-only assimilation and the joint assimilation of F
and GPP, respectively. The mean seasonal amplitude (difference between the annual maximum and minimum of
weekly mean net uptake) of ecosystem COS flux is still underestimated compared to the observations (observed
amplitude of 17.2 pmol m? s'), but is slightly improved by the optimizations that assimilate COS flux observa-
tions (amplitudes near 12.5 pmol m? s~! against 11.7 pmol m? s~! after the GPP-only assimilation and 11.9 pmol
m? s~! for the prior).

As expected, assimilating GPP observations only has little impact on ecosystem COS fluxes seasonal cycle.
Concerning the GPP seasonal cycle, the prior simulation is already in good agreement with the estimates from
flux partitioning (RMSD = 0.92 ¢C m? d~!) at FI-Hyy. However, assimilating GPP observations only or GPP
and COS observations together further improves the RMSD, with a reduction of about 10% over 8 independent
years. Note that for these two optimization scenarios, a similar reduction in RMSD (8%) is found over the period
considered for GPP assimilation (2010-2014). On the other hand, assimilating only COS data leads to a degra-
dation of the seasonal cycle with an underestimation of GPP seasonal amplitude of about 2 ¢C m? d~' compared
to the observations.

When including COS data in the assimilations, the maximum net COS uptake in 2015 and 2016 is similar to the
observed one (—19.4 pmol m? s~! in 2015, —21.9 pmol m? s~! in 2016) while it was underestimated in the prior
simulation (—=17.6 pmol m? s7! in 2015, —19.5 pmol m? s~! in 2016) (Figure S2 in Supporting Information S1).
The years 2014 and 2015 show the lowest ecosystem COS uptakes over the observation period, which have
been related to a high VPD in July 2014 and a low soil water content in April 2015 (Vesala et al., 2022). On
the contrary, the two optimizations assimilating COS observations do not capture the strongest ecosystem COS
uptakes observed in 2013 and 2017, for which the model still underestimates the seasonal amplitude.

3.1.2. Constraint on Leaf Gas Exchange Parameters

To understand how the optimizations impact the modeled COS and GPP fluxes at FI-Hyy, we studied the changes
in the simulated stomatal and internal conductance to COS (Figure 4). As the boundary layer conductance is an
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Figure 4. Mean seasonal cycles of the weekly modeled stomatal (a), and internal (b) conductances to COS (mol m? s™') at FI-Hyy between 2013 and 2017. Note that
the posterior seasonal cycles of the internal conductance in the “Prior” and “Post F¢,¢” simulations overlap with each other.

order of magnitude higher than the stomatal and the internal conductances, we do not focus on this conductance
as it is not the main limiting factor for gas diffusion.

The assimilation of COS only or both COS and GPP observations leads to a decrease in the stomatal conductance
to COS compared to the prior simulation (Figure 4a). This decrease is driven by a lower value of the A1 parameter
after optimization (Figure S3 in Supporting Information S1), which leads to lower stomatal conductance under
the same VPD conditions (Equation 2). Because the ratio between stomatal conductance to CO, and that to COS
is a constant of 1.21 (Seibt et al., 2010), stomatal conductance to CO, is proportionally affected by the change in
Al. Similarly, assimilating only GPP observations also reduces stomatal conductance, though to a lesser extent.
Therefore, assimilating COS instead of or in combination with GPP data provides a stronger constraint on stoma-
tal diffusion.

Finally, the two optimizations that assimilate COS data both increase the internal conductance to COS compared
to the prior (Figure 4b). The increase in Vemax,s and a parameters (Figure S3 in Supporting Information S1)
explains this higher internal conductance as it relates to Vemax by the multiplicative factor a (Equation 4).

In addition to analyzing the changes in parameter values after optimization, evaluating the reduction in uncertainty
informs on which parameters are the most constrained after optimization (see Section 2.2.4). Across all three
optimizations, the parameters showing a hight percentage of reduction in uncertainties are Vemax,s (66%—85%
reduction) and acclimy,, .. . (the intercept of the linear regression representing the acclimation to temperature of
the entropy term for Vemax) (95%—98% reduction). The uncertainty on a is reduced by 27% in the COS-only data
assimilation and 82% in the joint assimilation of both COS and GPP data.

Then, the uncertainty in Leaf age_crit (critical leaf age) also shows a strong reduction across all optimizations
(49%—85% reduction), as well as gb,_; (the leaf bulk boundary layer conductance) for the assimilations including
COS data (75%—88% reduction). Finally, the lowest reduction in parameter uncertainties are found for Tphoto, ;,

(the minimum photosynthesis temperature) and LAI__ (the maximum LAI), both of which experience less than

max

1% reduction in uncertainty.
3.1.3. Impact on LE and WUE

Considering the crucial role of stomatal in controlling in the coupled plant carbon and water fluxes, we evaluated
the impact of optimizing the GPP- and COS-related parameters on LE (Figure 5a). While assimilating only GPP
data has little impact on the simulated LE mean seasonal cycle, the two optimizations assimilating COS observa-
tions reduce the LE seasonal amplitude. This reduction is caused by a decrease in stomatal conductance after the
optimizations, which results from the COS constraint on stomatal diffusion, as noted previously (Figure 4a). The
optimizations also reduce the RMSD in LE by about 20% (from 10.22 W m~2 for the prior to 8.22 W m~2 and 8.48
W m~ for “Post F.,s" and “Post F,; & GPP,” respectively). Note that when focusing on the summer months
(from May to August), the RMSD is reduced by about 35% (9.11 W m=2 for “Post F.,,; & GPP”) to 45% (8.37
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Figure 5. Mean seasonal cycle of the weekly observed and modeled LE (W m~2) over 2002-2009 (a) and summer (May to August) WUE (gC kgH,0™!) (b) at FI-Hyy.
For LE, the RMSD values computed over the weekly fluxes are given for the prior and the post-optimization simulations in the corresponding color (see legend).
WUE (gC kgH,0™") is computed as the slope of the linear regression between GPP (¢C m* d~') and ET (kgH,O m? d~"), presented in the corresponding color with the
associated standard error. The black dots in the scatter plot represent daily averages for the eddy covariance data.

W m~? for “Post F,s") compared to the prior simulation RMSD (12.39 W m~2). However, the simulated LE is
still overestimated from January to April, with a mean bias of 6.24 W m~2. As the simulated plant transpiration is
zero in winter and increases in April with the start of the growing season, the overestimation in LE at the begin-
ning of the year cannot be attributed to the transpiration flux but to other components of LE (see Section 4.1).
Overall, because no LE data were assimilated, the post-optimization results highlight the potential of using COS
flux observations to constrain LE.

Finally, we examined the coupling between GPP and ET as indicated in the ecosystem water use efficiency
(WUE), the rate of carbon uptake per unit of water loss. We computed the WUE at FI-Hyy as the coefficient of
the linear regression between GPP and ET (Figure 5b). Model estimates of WUE in the prior simulation and the
simulation that assimilates only GPP data are 3.25 (+0.025) gC kgH,0~" and 3.17 (+0.024) ¢C kgH,0™", respec-
tively, which are below the observationally derived WUE of 3.52 (+0.025) gC kgH,O~'. This underestimation
can be related to the higher LE in summer, which is not well captured by these simulations (Figure 5a). Then,
while assimilating only COS observations further degrades the WUE (3.05 (£0.025) gC kgH,0"!), the assimi-
lation of COS and GPP together leads to a WUE close to the observationally inferred value of 3.46 (+£0.026) gC
kgH,0~".

3.1.4. Focus on a Severe Drought Event at Hyytiéili

We focused on the period characterized by very dry conditions at FI-Hyy (SMI <0.20 from 23 July to 28 August
2006, see Section 2.1.3) to study the impact of our three optimization scenarios on the simulated GPP, LE and
vegetation COS fluxes during this severe drought event.

Figure 6a shows the response of the simulated and FLUXNET GPP during the drought event at FI-Hyy in 2006.
Just before the beginning of the most severe phase of the drought, the FLUXNET GPP depicts a sharp decrease of
about 5 ¢C m? d~!, but stabilizes after DOY 218 under high soil moisture stress (SMI <0.15). After assimilating
COS observations, the optimizations lead to a decrease in the simulated GPP compared to the prior simulation,
reducing the mismatch with the observations during the most severe part of the drought. However, the decrease in
the simulated GPP following the progression of the drought is less abrupt than that in the observations. The simu-
lated GPP reaches its minimum just before the end of the most severe phase of the drought (DOY 228), 10 days
after when the FLUXNET GPP reaches its minimum. After the most severe phase of the drought, observed GPP
partially recovers (DOY 231). However, all simulations strongly underestimate GPP in this recovery phase (see
Section 4.1).

Contrary to the variations of GPP during this drought event, the observed variations in LE are better captured
by the modeled fluxes with a strong decrease in LE from the second day of the very dry conditions (DOY 206)
to the end of the most severe drought period (Figure 6b). Note that the decrease in observed LE is stronger than
that simulated in ORCHIDEE. However, in the two scenarios with COS data assimilation, the decrease in LE is
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Figure 6. Daily averages of observed and modeled GPP (¢C m? d™) (a) and LE (W m~2) (b) at FI-Hyy during a severe
drought event in 2006. Note that the y-axis has been inverted for GPP (with largest positive values on the bottom, and
decreasing moving up) to facilitate the comparison with vegetation COS uptake. The comparison between the modeled
vegetation COS fluxes (pmol m? s~!) and the observed GPP is presented (¢), as well as the simulated stomatal and internal
conductances (right vertical axis) to COS (d). The red vertical line indicates the start of the drought event (DOY 204) after
which SMI was lower than 0.20. The 17 consecutive days (1-17 August, DOY 213-229) with an observed SMI lower than
0.15 are indicated by the shaded arca. The daily RMSD values are given for the prior and the post optimization simulations
over these 17 days of severe drought.

higher than in the prior simulation or the simulation that only assimilates GPP data, especially in the two weeks
of LE decrease (DOY 206-220).

Simulated vegetation COS uptake closely follows the decreasing trend in the simulated GPP until the end of the
most intense phase of the drought across all assimilation scenarios (Figure 6¢). However, for vegetation COS
uptake, the impact of the different assimilation scenarios is mainly concentrated at the beginning of the most
severe part of the drought. Indeed, when assimilating COS, the decrease in vegetation uptake during this period
is stronger than the decrease in the GPP-only assimilation or that in the prior simulation. This faster reduction in
vegetation COS uptake better tracks the response of the observed GPP to water stress than does the simulated GPP.

Finally, we studied the variations in the simulated stomatal and internal conductance to COS during this drought
event for the three optimization scenarios (Figure 6d). As previously seen for the mean seasonal cycles (Figure 4),
the assimilations of COS data reduce the simulated stomatal conductance and increase the simulated internal
conductance to COS. While the internal conductance to COS does not show a sharp decreasing trend during the
drought event, the stomatal conductance is halved from the beginning of the very dry conditions to the end of
the most intense phase of the drought. Therefore, during the period with particularly high soil moisture stress
(SMI <0.15), the stomatal conductance shows lower values than the internal conductance and becomes the most
limiting factor for vegetation COS uptake. Note that these conductance responses are found in ORCHIDEE
simulations, though there are no observations to validate these responses during this drought event. This change
in the limiting conductance is more pronounced when assimilating COS observations, because the difference
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Figure 7. Relative difference (%) in RMSDs of weekly GPP (a) and LE (b) between prior simulations and after multi-site
optimizations at each of the 15 validation sites. A negative difference (in blue) means a decrease in RMSD after multi-site
optimization. In all multi-site optimization scenarios, GPP data from 10 BorENF sites (not marked with a star), each with
an observational record of at least 4 years, were assimilated. For each site in this group, three out of the 4 years of data were
assimilated, and the rest was used for evaluation. In addition, 5 other BorENF sites (marked with a star), each of which
provides | year of GPP data, were used for evaluation but not data assimilation.

between the internal conductance and the stomatal conductance is higher in these optimization scenarios than in
the prior simulation or the optimization that assimilates only GPP data.

3.2. Evaluation of COS and GPP Multi-Site Assimilations at Several Boreal Evergreen Needleleaf Forest
Sites

After evaluating the potential of COS to constrain GPP and LE at FI-Hyy, we investigated the additional constraint
provided by COS measurements at FI-Hyy on multiple BorENF sites, as compared to the constraint provided
solely by GPP data at the same sites. Figure 7 presents the improvement or degradation of RMSD in the 3 multi-
site optimization scenarios compared to the prior RMSD at each of the 15 validation sites, of which 10 were used
for the assimilations (see Section 2.3.3).

First, we find that the multi-site optimization that assimilates only GPP data at the 10 assimilaton sites (“Post
GPP”) deteriorates the simulated GPP at 7 of the 15 validation sites (CA-NS1, CA-NS2, CA-NS5, CH-Dav,
RU-Fyo, SE-Kno, and US-NR1). At these sites, prior simulations underestimate GPP compared to the observa-
tions (Figure S4 in Supporting Information S1).

Assimilating COS observations at FI-Hyy in addition to GPP at 10 BorENF sites (“Post GPP & F.,q ¥2” and
“Post GPP & F¢ ¥5”) also increases the RMSD of GPP at 5 sites (CA-NS1, CA-NS2, CA-NSS5, SE-Kno, and
US-NR1), but the degradation of GPP performance is not as severe as after GPP-only data assimilation (‘“Post
GPP”). This is mainly because assimilating both COS and GPP data leads to a stronger seasonal amplitude at
these 5 sites compared to assimilating only GPP data.

For sites at which the prior GPP is underestimated, different changes in parameter values may explain the milder
degradation of GPP performance for the optimizations that assimilated COS data than for the optimization that
assimilates only GPP data. Contrary to assimilating both COS and GPP data, the optimization that assimilates
only GPP data reduces three GPP-related parameters: acclim, ., specific leaf area (SLA), and LAIL  (Figure
S5 in Supporting Information S1; see Table 1 for parameter definitions). In particular, because the ratio between
LAI . and SLA determines the maximum leaf biomass, a decrease in this ratio after assimilating only GPP data

max
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Figure 8. GPP (a), ET (b), and vegetation COS fluxes (¢) in the prior simulation and each of the multi-site optimization
scenarios computed over land grid cells that have a fractional coverage of BorENF higher than 40%, averaged between 2006
and 2015. For GPP and ET, the fluxes from the evaluation products (FLUXCOM, FLUXSAT, GLEAM) were shown in
colors. Note that the y-axis has been inverted for GPP (with largest positive values on the bottom, and decreasing moving up)
so that both GPP and vegetation COS fluxes that represent net uptake are in the same direction.

leads to a lower maximum leaf biomass. In contrast, this ratio increases after the two optimizations that assimilate
COS data, leading to a higher maximum leaf biomass.

At the 8 sites where GPP performance was improved after the GPP-only multi-site optimization, the prior simu-
lations overestimate GPP. Note that similar to the single-site optimization at FI-Hyy (Figure S3 in Supporting
Information S1), the multi-site optimizations that assimilate COS data also lead to a decrease in Al (Figure S5 in
Supporting Information S1), which reduces stomatal conductance at the same VPD (Equation 2). Then, all sites
considered, the mean improvement of GPP after optimization, as measured by the relative difference in RMSD,
is about 2% when assimilating only GPP data, and 4% and 7% when assimilating both COS and GPP data with a
weight of ¥2 or 3, respectively.

Similar patterns are found for LE which experiences performance degradation at 6 sites (CA-NS1, CA-NSS5,
CH-Dav, CZ-BK1, SE-Kno, and US-NR1) after assimilating only GPP data (“Post GPP”). In contrast, assimilat-
ing COS and GPP data (“Post GPP & F }2” and “Post GPP & F,¢ 5”) mitigates the performance degrada-
tion or even reduces the RMSD compared to the prior (except SE-Kno). The prior simulations overestimate LE
compared to the observations at most sites, and assimilating COS data in addition to GPP data helps to reduce
this overestimation (Figure S6 in Supporting Information S1). Overall, assimilating only GPP data has little
impact on the mean relative change in RMSD (1%), while a joint assimilation of GPP and COS data reduces the
mean RMSD by 6% considering a weight of ¥2 for COS observations and by 7% with a weight of ¥4 for COS
observations.

For both GPP and LE, assimilating GPP and COS observations using a weight of %3 for the latter yields
post-optimization GPP and LE that are closer to the observations than using a weight of ¥2 for COS observations
in the assimilation. This can be due to the larger decrease in Al and increase in Vemax,, for the joint assimilation
with a weight of V3 for COS data compared to the assimilation using a weight of ¥z for COS data. At US-NRI1, the
model struggles to represent both GPP and LE and the optimizations fail to improve the simulated fluxes. This
site is located at a high altitude (3,050 m, Table S1 in Supporting Information S1) and this specific condition may
have contributed to the inaccurate representation of GPP and LE.

3.3. COS and GPP Multi-Site Assimilation Upscaling to Boreal High Latitudes

The three optimized sets of parameters for BorENF from the multi-site assimilation scenarios were used to run
simulations over the whole boreal region (40°-80°N) (Figure S7 in Supporting Information S1). Figure 8 presents
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the changes in GPP, ET, and COS fluxes over land grid cells that have a fractional coverage of BorENF higher
than 40%.

In ORCHIDEE, the prior simulation overestimates GPP compared to FLUXCOM and FLUXSAT products over
the studied areas. The three optimizations lead to similar reductions of 9% in GPP compared to this prior simu-
lation, and help to reduce the mismatch with both evaluation products. This decrease in GPP mainly occurs
between the beginning of the growing season and the end of July (Figure S8 in Supporting Information S1). GPP
estimates from all three optimizations are close to the FLUXSAT GPP estimate (4.76 PgC yr~'), but exceed that
of FLUXCOM (3.94 PgC yr').

The prior estimate of ET is between those of FLUXCOM (2.01 10° km? yr~!) and GLEAM (2.86 10° km? yr~!)
and is only slightly impacted by the optimizations. Note that over land grid cells that have a fractional coverage
of BorENF higher than 40%, the GLEAM ET is 30% higher than FLUXCOM ET, but the spatial distribution of
ET also differs between these products (Figure S9 in Supporting Information S1).

The two optimizations that assimilate COS data lead to a stronger vegetation COS sink with an increase of 5%
(“Post Fr.,g & GPP V%) and 9% (“Post F,s & GPP ¥5”") compared to the prior. Surprisingly, the optimization that
assimilates only GPP data leads to a substantial increase in vegetation COS uptake to 43.50 GgS yr~! over the
whole study area, which is about 3 times the prior estimate.

Finally, spatial distribution of the vegetation COS uptake, GPP, and LE does not differ significantly between the
three optimization scenarios and the prior (not shown).

We also investigated how the post-optimization changes in GPP and ET affect WUE over the BorENF biome
(Figure S10 in Supporting Information S1). ORCHIDEE overestimates WUE in the prior simulation (2.32 + 0.008
gC kgH,0~") compared with FLUXCOM WUE (2.0 + 0.007 gC kgH,O~"). All optimizations reduce WUE as
well as the difference in WUE between ORCHIDEE simulations and FLUXCOM. The largest reduction in WUE
occurs for the optimization that assimilates only GPP data (2.14 + 0.009 ¢C kgH,O~" and 8% reduction compared
with the prior estimate).

4. Discussion
4.1. COS Data Assimilation Informs Biospheric Processes Represented in ORCHIDEE

Because vegetation COS uptake is more sensitive to stomatal conductance than is GPP, assimilating ecosystem
COS flux data in models provides a more robust constraint on parameters that govern stomatal diffusion than
does assimilating GPP data. Indeed, we find that the simulated GPP is weakly sensitive to the conductance-related
parameters according to a multi-site sensitivity analysis (Figure S1 in Supporting Information S1). This could
be due to infrequent high VPD conditions over the BorENF biome, the influence of which is represented by the
parameter Al (Equation 1). Therefore, for this biome, GPP is more sensitive to other photosynthesis-related
parameters, particularly those that determine the light reactions of photosynthesis (e.g., acclim ).

In addition to constraining stomatal conductance, COS data assimilation also highlights the need to improve the
model-represented response of GPP to drought, especially during the most severe phase of the drought and the
recovery phase that follows. In ORCHIDEE, the response of the simulated GPP to soil moisture stress depends on
a soil water stress factor, which linearly varies between O at the wilting point and 1 for soil moisture close to the
field capacity (Section 2.2.1). The inability of the model to capture the observed decrease in GPP at the beginning
of the most severe phase of the drought at FI-Hyy, even after optimization (Figure 6), indicates that uncertainty in
the response of GPP to drought is dominated by structural uncertainty associated with the functional form rather
than parametric uncertainty. That is to say, a linear response to soil moisture stress cannot accurately represent
drought impacts on GPP and COS fluxes.

Moreover, a comparison between the surface soil moisture measured at FI-Hyy and that simulated in ORCHIDEE
highlights an underestimation of the simulated soil moisture at the onset of drought recovery (Figure S11 in
Supporting Information S1). The lower simulated soil moisture translates to a stronger water stress on GPP, which
explains the slower recovery of the simulated GPP than in the observations. In addition, the highest volumetric
soil moisture values simulated in ORCHIDEE during the recovery phase (18%-20%) are associated with a GPP
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of about 4.5 ¢C m? d~', which is lower than the FLUXNET GPP of 6.6 gC m? d~' at similar soil moisture values
(Figure S12 in Supporting Information S1).

Despite the potential of COS to constrain plant carbon and water exchanges, a joint assimilation of COS and
GPP data seems necessary to improve the seasonal cycle of COS fluxes without risking degrading GPP at the
same time (Figure 3). Indeed, the degradation in GPP seasonal cycle after assimilating only COS data can be
explained by error compensation between Vemax,. and a. When both Vemax,s and a need to be increased, the
optimization that assimilates only COS observations increases a more than Vemax,s (Vemax,s = 46.6 pmol m?
s~'and a = 0.0016, Figure S3 in Supporting Information S1), which reduces errors in COS uptake at the expense
of GPP performance. In contrast, the optimization that assimilates both COS and GPP observations increases
Vemax,; more than a (Vemax, = 54 pmol m? s~! and a = 0.0014), which reduces errors in both COS uptake and
GPP. Therefore, the stronger increase in a needed to reproduce observed vegetation COS uptake will not affect
GPP, whereas the weaker increase in Vemax,s needed to reproduce GPP cannot compensate for the decrease in
the stomatal conductance resulting from the decrease in Al (Figure S3 in Supporting Information S1). The joint
data assimilation is a delicate balancing act between the two competing needs.

Multi-site GPP-only assimilation leads to an unconstrained and unrealistically large increase in vegetation COS
sink over the boreal forest biome (Figure 8). This large increase in vegetation COS uptake seems to be driven by
increases in the leaf boundary layer conductance (gb, ;) and in the parameter that represents thermal acclimation
of Vemax (acclimy, ), because such increases are absent in the optimization that assimilates both GPP and
COS data (Figure S5 in Supporting Information S1). This is because the simulated vegetation COS uptake is
particularly sensitive to acclim,,_ . ., which affects the internal conductance to COS through Vemax according
to the Berry et al. (2013) parameterization (Figure S1 in Supporting Information S1). Thus, this overly sensitive
behavior of vegetation COS uptake highlights a need for a mechanistic representation of the internal conductance
to COS beyond what an empirical scaling factor a can offer.

Finally, this study highlights other deficiencies in the representation of some processes in ORCHIDEE, as illus-
trated by the overestimation of the simulated LE from January to April at FI-Hyy (Figure 5), which cannot be
corrected by data assimilation. The culprit seems to be snow sublimation, which shows strong peaks early in
the year for several years (Figure S13 in Supporting Information S1). These peaks coincide with those of the
simulated LE, such as the peaks in 2005 or 2008 between January and March. Therefore, it is likely that the
overestimation of the simulated LE at this time of the year originates from the snow sublimation component,
which cannot be mitigated by assimilating GPP and COS flux observations. Note that the earlier onset of the
simulated GPP compared to the FLUXNET GPP could also result from a misrepresentation in the snow processes
(Figure 3).

4.2. BorENF COS and GPP Fluxes and Related LRU

All studies focusing on the BorENF PFT find an increase in vegetation COS uptake after optimization (Figure 9),
which is in line with a suspected high-latitude missing sink of COS proposed in recent inversion studies (Hu
etal., 2021; Kuai et al., 2022; Ma et al., 2021; Remaud et al., 2022). Remaud et al. (2022) optimized the COS and
CO, gross fluxes simulated in ORCHIDEE against atmospheric concentrations from the NOAA/ESRL/GML and
provided prior and posterior values for GPP and vegetation COS uptake for each PFT. While their optimization
led to an increase of 20% in the vegetation COS uptake for BorENF, this study found a lower increase up to 10%
(“Post F.,s & GPP !5”). It is to be noted that their prior vegetation COS fluxes were computed using the LRU
approach with the LRU values from Whelan et al. (2018), which gives a prior vegetation COS uptake for BorENF
80% larger than the prior in this study (32.3 GgS yr~' against 17.78 GgS yr~"). In their inversion framework, the
errors from all boreal PFT fluxes (BorENF, Boreal Broadleaf Summergreen, and Boreal Needleleaf Deciduous)
were correlated, which does not allow to strictly optimize the fluxes per PFT separately. On the contrary, the prior
GPP simulated in their ORCHIDEE version (5.8 PgC yr~!) is 10% lower than the one computed in the version
used in this study (6.36 PgC yr~!). In another inversion study, Hu et al. (2021) derived the GPP over the North
American Arctic and boreal region using atmospheric COS concentrations from the NOAA/ESRL and the LRU
approach. Over this region, the atmospheric COS inversion led to a vegetation COS uptake 40% higher than the
prior simulated in the SiB4 LSM. Finally, to investigate BorENF contribution to the missing COS sink from a
bottom-up approach, Vesala et al. (2022) developed a parametric model based on environmental drivers (photo-
synthetically active radiation, vapor pressure deficit, air temperature, and leaf area index) to simulate vegetation
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Figure 9. Synthesis of LRU values and vegetation COS and GPP fluxes from different studies focusing on boreal biomes.
Note that the y-axis has been inverted for GPP (with largest positive values on the bottom, and decreasing moving up) so
that both GPP and vegetation COS fluxes representing uptakes are in the same direction. Also note that each study follows a
different approach to estimate the changes in COS or GPP fluxes relative to the reference values (see the referenced papers
for more details). Each background color represents a specific vegetation type or studied area: Scots pine (Pinus sylvestris)
tree (light yellow); BorENF PFT only (light blue); all land grid cells that have a fractional coverage of BorENF higher than
40% (light purple). For the comparison over land grid cells that have a fractional coverage of BorENF higher than 40% (in
purple), we added the GPP estimates for the FLUXCOM and FLUXSAT evaluation products, and the mean GPP from the
TRENDY-V10 model ensemble with the minimum and maximum GPP. Over this region, contrary to Figure 8, the COS and
GPP fluxes for this study were computed using the post optimization values for @ and Al parameters from the multi-site
optimizations for all C4 PFTs.

COS fluxes that was used in SiB4 to scale up the COS fluxes to the region covered with BorENF. This parame-
terization also led to an increase in COS uptake for BorENF from 10.6 GgS yr~! for the prior SiB4 simulation to
14.6 GgS yr~'. In this study, we found a vegetation COS sink for BorENF from the two optimizations including
COS assimilation (average of 18.8 GgS yr~!) that is higher than the one computed in SiB4 with the parametric
model.

Unlike inversion studies where a linear relationship is used to link the COS fluxes and GPP, directly optimizing
the model parameters does not imply that vegetation COS fluxes and GPP evolve in the same direction. While
Remaud et al. (2022) and this study agree on an increase of vegetation COS uptake for BorENF, the changes in
GPP differ. The optimization performed in Remaud et al. (2022) increased the GPP considerably for BorENF
(from 5.8 PgC yr~! to 7.2 PgC yr~'), which would disagree with the estimates from the FLUXCOM and FLUX-
SAT products (3.94 PgC yr~! and 4.76 PgC yr~! respectively over land grid cells that have a fractional coverage
of BorENF higher than 40%). Then, Kuai et al. (2022) also used atmospheric COS observations to optimize
the vegetation COS uptake but using aircraft profiles over Alaska (CARVE). The vegetation COS uptake was
increased by 25% over the Northern high latitudes (40°-90°N), as well as GPP given that vegetation COS flux
and GPP are linked with a linear relationship. It should be noted that all these inversion studies use atmospheric
COS concentrations over northern North America to constrain the whole boreal region, while the optimization of
ecosystem COS fluxes is driven by FI-Hyy in this study.

Estimating LRU is critical for inversion studies that rely on this empirical approach to link vegetation COS uptake
and GPP. However, temporal variations in LRU in response to changes in environmental drivers such as light
and VPD (Kohonen, Dewar, et al., 2022; Kooijmans et al., 2019; Sun et al., 2022) are not accounted for in some
of these studies (Hu et al., 2021; Remaud et al., 2022). Following our optimizations, we computed the seasonal
variations of optimal LRU values of BorENF for each scenario (Figure S14 in Supporting Information S1), as
described in Maignan et al. (2021). The LRU seasonal cycles show that monthly LRU can vary by 0.3-0.7 within
a year with lower values in spring and autumn. Then, the resulting mean annual LRU is increased by 20% with
the two assimilations including COS data (LRU of 1.20 for “Post F., & GPP %2 and 1.23 for “Post F_ 4 &
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GPP 5”) compared to the prior (0.98). The assimilation including only GPP data led to the highest LRU of 3.24,
a value not reported in Figure 9 because based on an inconsistent vegetation COS uptake after optimization.
The LRU values from the optimized fluxes including GPP and COS assimilations are in the low range of the
reported LRU values with a median of 1.68 for C3 plants (Whelan et al., 2018), but close to the value obtained in
Kooijmans et al. (2019) at FI-Hyy for Scots pine (Pinus sylvestris) under light-saturated conditions (1.1). Indeed,
the lowest LRU values have been estimated for boreal ecosystems (Maignan et al., 2021; Seibt et al., 2010). This
was recently supported by Wohlfahrt et al. (2023) who provided new LRU estimates for each biome based on
plant optimality principles and found LRU values around 0.5 in high latitudes. However, this LRU data set is
computed for light-saturated conditions (photosynthetically active radiations higher than 1,000 pmol m=2 s~!),
which can explain its low values as LRU increases with low photosynthetically active radiations (Kooijmans
et al., 2019). Therefore, considering a sunlit leaf at the top of the canopy also induces a scale bias between the
two LRU estimates as ORCHIDEE computes LRU integrated over the canopy, and not at the leaf scale. It is to be
noted that their estimate for BorENF (around 0.6) is about half of the LRU values found after our optimizations
including COS data. Therefore, while branch chamber measurements enable to study the LRU dynamics for a
given species and determine a LRU value under light-saturated conditions (Kooijmans et al., 2019), a strong
uncertainty remains when considering a constant LRU in inversion frameworks for BorENF after several studies
focusing on this biome, with values ranging from 0.6 to 1.89 (Figure 9).

Finally, as BorENF is only one of the biomes in the high latitudes where the missing COS sink was identified,
we performed a scaling up of the two optimizations including COS assimilations to the whole boreal region
(40°-80°N). We ran ORCHIDEE using the post optimization values for @ and A1 parameters from the multi-site
optimizations (“Post F,; & GPP %2” and “Post F ., & GPP ¥5”) for all C, PFTs as the values of these two param-
eters were initially defined according to the photosynthetic pathways (C, or C, plants). While the a parameter is
specific to the vegetation COS uptake model, the A1 parameter is involved in the computation of the stomatal
conductance, which impacts COS exchanges but also GPP and LE. Considering the higher post optimization
value for a and the decrease in Al (Figure S5 in Supporting Information S1) leads to an increase of 18% in vege-
tation COS uptake (93.9 GgS yr~! for both assimilation scenarios) over the whole boreal region compared to the
prior simulation (79.75 GgS yr~!) (Table S3 in Supporting Information S1). On the other hand, changing only the
value of A1 has a negligible impact on GPP and LE fluxes over the boreal region.

4.3. Remaining Challenges for Ecosystem COS Flux Modeling

The inability of the simulated ecosystem COS flux to reproduce the observed seasonal amplitude after optimi-
zation can highlight model deficiencies specific to the biospheric COS flux representation in ORCHIDEE. In
particular, the implementation of the internal conductance to COS as a function of the Rubisco maximum carbox-
ylation rate (Vemax) instead of directly representing the activity of the CA enzyme could lead to an inadequate
response of vegetation COS uptake to environmental factors. Indeed, while photosynthetic activity depends on
both light and temperature, the activity of CA is not light dependent (Protoschill-Krebs et al., 1996). Moreover,
Cho et al. (2023) recently proposed a new function to describe the temperature response of CA that accounts for
a temperature optimum specific to this enzyme. Following this approach, the internal conductance to COS is still
expressed as a function of the & parameter and the Vcmax,; of the Rubisco, but includes the temperature response
function of CA instead of the one of Rubisco. They found that the temperature response of CA and Rubisco
differs, with a lower optimum temperature for CA at FI-Hyy (22°C against 45°C for Rubisco). We implemented
this new CA temperature response in ORCHIDEE and optimized the ecosystem COS flux at FI-Hyy with this
updated formulation of g; ., (see Text S1 in Supporting Information S1). However, the updated prior simulated
ecosystem COS uptake was strongly overestimated compared to the observations (Figure S15a in Supporting
Information S1). Then, the COS assimilations led to a higher RMSD than the one obtained after the optimization
with the formulation from Berry et al. (2013) for g, .5 (RMSD of 3.6 pmol m? s~! against 3.2 pmol m? s71),
further degrading the ecosystem COS flux seasonal amplitude. Therefore, in ORCHIDEE, the implementation of
a temperature response specific to CA is not sufficient to improve the representation of vegetation COS fluxes.
Furthermore, assimilating ecosystem COS flux only, with this CA temperature response, also leads to a stronger
degradation of the GPP seasonal amplitude (Figure S15b in Supporting Information S1). A next step in the vege-
tation COS uptake model development could be to define a formulation for COS consumption by CA that is inde-
pendent from the Rubisco activity for CO, assimilation. This would imply to distinguish between the mesophyll
conductance and CA activity in g; .. Following a different approach, Davidson et al. (2022) recently highlighted
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the potential of sulfur isotopes to better constrain the internal conductance to COS by providing information on
COS internal concentration inside the leaves.

In the current formulations of 8:cos (Berry et al., 2013; Cho et al., 2023), the a parameter is critical for vegetation
COS uptake and optimizing its value is necessary as this parameter, but also its temporal and spatial variability
and drivers, are not well constrained in the literature (Berry et al., 2013). In this study with the formulation of
Berry etal. (2013) for g; .. the two optimizations including COS data increase the value of a, which participates
in the increase of the internal conductance to COS (Figure S3 in Supporting Information S1). Post optimiza-
tion values are between 0.0014 and 0.0016 mol pmol~! while the default value used for all C, plants in Berry
et al. (2013) is 0.0012 mol pmol~!. However, in SiB3 where the Berry et al. (2013) model was initially imple-
mented, the value of a was recently revised to 0.0014 mol pmol~" for C, plants (Kooijmans et al., 2021). Cho
et al. (2023) obtained lower values for a (0.001316 mol pmol~' and 0.001331 mol pmol~' for growth and matu-
rity phenological stages, respectively) at FI-Hyy following their optimization with the CA temperature response
in SiB4. Then, performing similar optimizations on sites dominated by different vegetation types could help to
refine the definition of this parameter with estimated values specific to a biome type instead of a photosynthetic
pathway only (C, and C, plants). For example, Cho et al. (2023) extended the optimization of & to the Harvard
Forest site (United States) in addition to FI-Hyy and found values between 0.001740 mol pmol~! and 0.002224
mol pmol~! depending on the phenological stage.

Despite the insufficiency of the a parameter to adequately represent the internal conductance to COS, its value
still needed to be calibrated compared to the default value of 0.0012 mol pmol~! as a major change was made
to the vegetation COS model when considering 3-hourly variable atmospheric COS concentrations instead of a
constant value of 500 ppt in the previous version of the model (Maignan et al., 2021). Initially a was estimated
by fitting a regression between vegetation COS uptake observations (Stimler et al., 2010) and SiB3 simulated
fluxes (Berry et al., 2013). When estimating « following this approach, the estimated value of a depends on the
atmospheric COS concentration considered to compute the vegetation COS fluxes.

Neglecting the COS drawdown during the growing season would lead to an overestimation of the simulated
ecosystem COS uptake, impacting the optimized parameter values when performing data assimilation. It is to be
noted that an additional drawdown of COS concentration further down inside the canopy due to leaf COS uptake,
or possibly related to understory, ground cover vegetation, or mosses, is not taken into account in ORCHIDEE.
To highlight the importance of considering a variable COS concentration in the biospheric COS models, Belviso
et al. (2022) estimated the impact of the recent decline in atmospheric COS concentration on the simulated vege-
tation COS fluxes in the ORCHIDEE LSM. However, at FI-Hyy, Vesala et al. (2022) found a lower univariate
correlation between COS fluxes and atmospheric COS mixing ratio than with air or soil temperature or net radi-
ation, but still larger than with VPD. It should be noted that the optimized atmospheric COS concentrations used
to compute the COS fluxes are also associated with posterior uncertainties (Remaud et al., 2022).

In addition to the uncertainty on the parameter estimates, the vegetation and soil COS models implemented in
ORCHIDEE are missing some processes, which can contribute to the model observation mismatch. For example,
non stomatal components such as mosses were found to absorb COS during nighttime (Rastogi et al., 2018; Sun
et al., 2018). COS uptake by understory vegetation is also neglected. These missing processes could explain part
of the underestimation of the net ecosystem COS uptake simulated during summertime at FI-Hyy (Figure 3).
The representation of soil COS exchanges also neglects processes such as the effect of snow cover on COS diffu-
sion for subniveal COS uptake or the impact of solar radiations on COS production (Abadie et al., 2022; Kitz
et al., 2020; Spielmann et al., 2019).

Then, a strong limitation for assimilating biospheric COS measurements to constrain GPP and LE is the lack
of COS flux measurement sites and long time series, with FI-Hyy being the longest available time series of 5
consecutive years. Moreover, the absence of data during wintertime does not enable to fully capture the seasonal
cycle amplitude of ecosystem COS fluxes for evergreen biomes. Going further in the assimilation of ecosystem
COS fluxes in LSMs would greatly benefit from having a larger network of COS flux measurements, on the
model of the FLUXNET network for carbon and energy flux measurements. However, developing such a network
is currently restrained by the high instrumental cost of performing COS flux measurements. The NOAA/ESRL
offers a better cover for atmospheric COS flasks measurements, with about 15 stations measuring COS concen-
trations since 2000. However, the continental stations are mainly located over North America.
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Despite these challenges in ecosystem COS flux modeling, assimilating biospheric COS fluxes has different
advantages than assimilating COS concentrations. Indeed, tower based COS flux measurements capture only
the COS sinks and sources included in the tower footprint, enabling to mainly focus on the vegetation and soil
contributions. Therefore, working at the ecosystem scale enables us to exclude contributions from other compo-
nents of the COS budget associated with large uncertainties, such as the ocean with a contribution estimated
between 200 GgS yr~! and 1,000 GgS yr~! (Berry et al., 2013; Kuai et al., 2015; Launois et al., 2015; Lennartz
etal., 2017, 2020; Remaud et al., 2022; Suntharalingam et al., 2008). In addition, this can help to identify missing
processes that have an impact at the ecosystem scale.

5. Conclusions and Outlooks

We performed a joint assimilation of ecosystem COS fluxes and GPP to directly optimize the parameters involved
in the representation of these fluxes for BorENF. The key messages from this study and the arising recommenda-
tions for future work are the following:

¢ Jointly assimilating ecosystem COS flux and GPP data enables us to improve both GPP and LE due to the
strong link among COS, CO, and H,O fluxes through stomatal diffusion. This finding supports using COS
flux data to obtain new insights into plant transpiration and encourages for future exploration into inferring
transpiration from COS measurements. An alternative optimization worth considering could be to assimilate
both ecosystem COS flux and LE, which could then be compared to the assimilation of ecosystem COS flux
and GPP performed in this study. Exploring different data assimilation strategies may inform the complemen-
tarity of different flux measurements in constraining leaf-level parameters that control biosphere-atmosphere
exchange of H,0, CO,, and COS.

¢ Despite the fact that COS data assimilation yields an increase in simulated net ecosystem COS uptake to
better match the observations at FI-Hyy, the representation of COS internal conductance following Berry
et al. (2013) is structurally insufficient to reproduce the ecosystem COS flux seasonal amplitude. This evinces
the need to implement a mechanistic representation of a mesophyll diffusion and enzymatic consumption
specific to COS in LSMs.

¢ Ecosystem COS flux assimilation can highlight deficiencies in simulated GPP and LE sensitivity to drought
events. Along this line, COS fluxes could be used to evaluate GPP and LE sensitivity to water stress in LSMs,
and this potential application should be further investigated, for example, COS flux measurements could help
to better capture the response of the simulated WUE that is currently underestimated in the ORCHIDEE LSM
(De Pue et al., 2022). Thus, it would be interesting to perform COS data assimilation for ecosystems more
exposed to drought than BorENF, using the data collected in Wohlfahrt et al. (2018) and Cochavi et al. (2021)
during heat waves, in a Mediterranean pine forest and citrus orchard, respectively.

¢ The joint assimilation of ecosystem COS flux and GPP leads to an increase in vegetation COS uptake, but not
in GPP for BorENF, thereby alleviating the mismatch between the model and the evaluation GPP products.
It is to be noted that the assimilation of ecosystem COS flux and GPP data together enables parameter opti-
mization in a way consistent with the shared stomatal control of COS and CO, vegetation uptakes, contrary
to a COS flux-only or GPP-only data assimilation. These post-optimization changes in COS and GPP fluxes
contrast with previous top-down studies assimilating atmospheric COS concentrations, which find increased
vegetation COS uptake along with GPP due to an empirical linear relationship (i.e., through LRU) being
imposed between the two fluxes. Therefore, the empirical approach to derive GPP from COS may introduce
an important source of uncertainty. This also highlights the need for continued work to reconcile top-down
and bottom-up COS-derived GPP estimates.

¢ Considering that COS serves as a mechanistic constraint on stomatal diffusion and helps to inform the carbon
assimilation stage of photosynthesis, a complementary approach could be to jointly assimilate COS and
solar-induced fluorescence, the latter of which has a global coverage from satellite observations and can
inform the light reactions of photosynthesis. This complementary approach is a promising path toward a more
comprehensive mechanistic understanding of global photosynthesis.
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4.3 Recent advances in COS flux data assimilation in LSMs and
prospective future experiments

Since the above DA study of ecosystem COS fluxes from the Hyytiala forest in ORCHIDEE, other
studies have implemented a representation of ecosystem COS fluxes in LSMs and assimilated COS
flux data to refine the simulated biospheric COS fluxes, as well as GPP, LE, sensible heat flux, and
soil moisture (Zhu et al., 2024a, 2024b).

Zhu et al. (2024a) developed the adjoint-based Nanjing University Carbon Assimilation System
(NUCAS) to assimilate multiple COS flux observations in the Boreal Ecosystem Productivity
Simulator (BEPS). A representation of biospheric COS fluxes has been integrated in BEPS, with
vegetation COS uptake simulated using the same mechanistic approach as implemented in
ORCHIDEE and SiB4, as proposed by Berry et al. (2013). However, unlike ORCHIDEE and SiB4, BEPS
does not base soil COS exchanges on the mechanistic model from Ogée et al. (2016). Instead, BEPS
adopts a simplified approach to simulate soil COS exchanges (Whelan et al., 2016). This approach
models soil COS exchanges as the sum of an abiotic component, represented by an exponential
function of soil temperature, and a biotic component, which depends on soil temperature and
moisture.

COS flux data from seven sites (Neustift grassland in Austria, Sorg forest in Denmark, Las Majadas
del Tietar savanna in Spain, Hyytiala forest in Finland, a soybean site in Italy, Harvard forest in the
United States, and Wind River experimental forest in the United States) were assimilated to
optimize 76 parameters in BEPS using a gradient-based optimization approach (BFGS). Among
these, five parameters related to photosynthesis, transpiration, and soil water transport were
efficiently optimized following COS flux DA. Single-site COS flux DA reduced the mean GPP RMSD
from 8.22 pmol m2 s to 6.38 pmol m2 s. Notably, this improvement in simulated GPP was
achieved by assimilating independent COS flux data, without incorporating any GPP data.
However, results varied across sites, with some degradation of the simulated GPP at low-stature
vegetation sites. Consistent with the COS flux DA in ORCHIDEE, the simulated LE also showed
improvement with a mean RMSD reduction from 94.69 W m2 to 79.69 W m?, and a slight
improvement of about 5% in the simulated sensible heat flux. Additionally, COS flux DA helped
correct the prior overestimation of the soil moisture decline rate in summer, although significant
errors remained due to a weaker link between ecosystem COS flux and soil moisture parameters
compared to photosynthesis-related parameters.

Building on this work, Zhu et al. (2024b) continued exploring the potential of COS flux assimilation
to constrain the simulated GPP in BEPS. In this second study, they used COS flux observations
from the same seven sites as Zhu et al. (2024a). However, instead of employing a gradient-based
approach, they used a Monte Carlo-based parameter calibration method to optimize nine
parameters associated with photosynthesis, soil hydrology, stomatal diffusion, and energy
balance. The results indicated that both the simulated ecosystem COS flux and GPP were most
sensitive to the maximum Rubisco carboxylation rate at 25°C and the leaf nitrogen content, while
less sensitive to soil hydrology parameters as noted by Zhu et al. (2024a). The Ball-Berry model
parameter for stomatal conductance intercept was critical for COS flux simulation but had a

105



minimal impact on simulated GPP. Across all sites, the mean RMSD reduction in ecosystem COS
fluxes was 32.09%, and a GPP RMSD reduction of 35.42% was achieved following COS flux DA.

These two studies assimilate only COS flux observations to constrain the carbon, water, or energy
fluxes in BEPS. However, Zhu et al. (2024a) noted that relying solely on COS flux data can result in
equifinality issues (Beven, 1993) after the optimization, where different combinations of optimized
parameter values yield similar reductions in the cost function. They also emphasize that
assimilating only COS flux data can degrade the simulated GPP at some sites and lead to
overshooting of some photosynthesis-related parameters. Consequently, Zhu et al. (2024a)
suggest that it may be necessary to combine COS flux data with other observational data streams
during DA to better constrain the carbon, water, and energy fluxes. This finding aligns with the
results from COS flux DA in ORCHIDEE, where the joint assimilation of COS flux and GPP data
improved both simulated variables, while using only COS flux data degraded the simulated GPP at
the Hyytiala site.

Despite growing interest in using COS flux observations to constrain stomatal conductance,
photosynthesis, and water and energy fluxes (Abadie et al., 2023; Cho et al., 2023; Chen et al., 2023;
Zhu et al., 202443, 2024b), all studies have highlighted the limitations of this approach due to the
scarcity of COS flux observations. To address this challenge, a second constraint could be added
by performing a joint assimilation of two data streams: ecosystem COS flux and atmospheric COS
concentration data, to directly optimize model parameters. Indeed, COS concentration
observations from the NOAA network and other measurement towers, such as the GIF site near
Paris in France, offer additional information at a large spatial scale, including around 15 sites with
some providing data spanning more than 20 years, which complements the in situ COS flux data
(Section 2.2). An example of such an approach, which assimilates both surface fluxes and
atmospheric concentration data, has been conducted in the ORCHIDEE-LMDZ LSM-atmosphere
model by Bacour et al. (2023). This study used in situ NEE and LE estimates, NDVI satellite retrievals,
and CO; concentrations. To our knowledge, DA of COS flux for parameter optimization (Abadie et
al., 2023; Cho et al., 2023; Chen et al., 2023; Zhu et al., 20244, 2024b) or DA of COS concentrations
for surface flux estimation through atmospheric inversions (Ma et al., 2021; Remaud et al., 2022)
have been conducted in LSMs, but no joint assimilation has yet been performed. This approach
could exploit the complementarities between the information embedded in ecosystem COS fluxes,
which provide a more direct constraint on vegetation activity, and atmospheric COS
concentrations, which account for all components of the global COS budget.
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5 USING ATMOSPHERIC COS CONCENTRATIONS TO
CONSTRAIN THE GLOBAL COS AND CO, BUDGETS

5.1 Overview of the studies using atmospheric COS
concentrations

While the primary focus of my PhD work was using COS flux observations to constrain simulated
ecosystem COS fluxes, GPP, and plant transpiration in ORCHIDEE, | also participated in several
studies that used atmospheric COS and CO; concentration data to inform surface COS fluxes and
terrestrial vegetation CO; exchanges. Investigating atmospheric COS concentrations can provide
an additional constraint on the COS fluxes simulated in ORCHIDEE, supplementing parameter
optimization and process evaluation against in situ COS flux data. This approach also allows for
the assessment of other components of the global COS budget beyond the vegetation and soil
COS fluxes.

The LSCE team studying COS benefited from a complementary blend of expertise, resulting in
several publications involving both experimental and modeling approaches. Notably, Sauveur
Belviso (permanent researcher) led the experimental work on COS concentrations, monitoring
atmospheric COS at the GIF and Trainou stations in France, and conducting COS concentration
measurements in agroecosystems near LSCE. Marine Remaud (postdoctoral researcher)
contributed her expertise in atmospheric transport modeling with the LMDZ model, allowing to
transport the soil and vegetation COS fluxes simulated in ORCHIDEE, along with other components
of the global COS budget to simulate atmospheric COS concentrations. She also performed
atmospheric inversion modeling to optimize and inform surface COS and CO; fluxes at the global
scale using atmospheric COS and CO; concentration measurements. Then, Antoine Berchet and
Isabelle Pison (both permanent researchers) used the Flexible Particle model (FLEXPART) to assess
surface COS fluxes, including the ecosystem COS fluxes simulated in ORCHIDEE. Contrary to the
LMDZ atmospheric circulation model, the FLEXPART Lagrangian particle dispersion model tracks
the trajectories of particles as they move through the atmosphere (Pisso et al., 2019). FLEXPART
can be operated both forward and backward in time. In forward mode, particles are released from
one or more sources to determine concentrations. Backward simulations are employed to
examine the history of air parcels impacting a specific location, such as an atmospheric
measurement site, which serves as a receptor.

Consequently, the simulated vegetation and soil COS fluxes in ORCHIDEE have been used in

multiple studies ranging from local to global scales. The publications resulting from these
collaborations are summarized in Figure 9 below.
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Figure 9: Overview of the studies involving COS surface fluxes | contributed to. The main COS
surface flux components of the global COS budget are represented (in red), while only GPP is
shown for CO; (in blue). Studies highlighted in light red focus on COS while studies highlighted in
light purple focus on both COS and CO..

5.2 Applications for the regional and global COS budget
5.2.1 Agroecosystem contribution to COS emissions

While vegetation COS flux is considered to be a one-way flux from the atmosphere to the leaf
interior, where it is completely hydrolyzed by CA (Stimler et al., 2010), some field and controlled
environment experiments have highlighted the potential of vascular plants to emit COS (Bloem et
al., 2012; Geng & Mu, 2006; Maseyk et al., 2014). However, this emission process is not represented
in LSMs, and there has been no large-scale estimation of vegetation's role in COS production. As a
result, the contribution of vegetation to COS emissions is not accounted for in the global COS
budget.

Therefore, in Belviso et al. (2022a) (Appendix 9.2), the vegetation and soil COS fluxes simulated in
ORCHIDEE were evaluated against field observations at two agroecosystems in central France. My
contributions to this work included conducting the ORCHIDEE simulations for these sites and
participating in the analysis and presentation of the results, specifically comparing the observed
and simulated fluxes. This study investigated potential COS emissions from croplands that are not
yet considered in the model. Three independent approaches were used to compare the model
with observations.
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First, monitoring nighttime ratios of vertical mole fraction gradients of COS and CO; during the
summer months in 2019 and 2020 at a rural tall tower site near Orléans suggested a weakening
of nocturnal net COS uptake during peak growing season, recovering in August. In contrast, the
simulated nocturnal COS and CO, ecosystem fluxes in ORCHIDEE maintained a constant
proportional relationship throughout the summer. This discrepancy indicated that the model's
nocturnal vegetation COS uptake driven by residual nighttime conductance and soil COS
exchanges was insufficient to reproduce the observed patterns at this rural site.

Secondly, the radon tracer method was applied at the GIF site near Paris from 2014 to 2021. In
this approach, 222Radon (??2Rn), a tracer emitted by soil, is used to estimate nocturnal ecosystem
COS fluxes based on measurements of 222Rn and COS mixing ratios (Belviso et al., 2020). The
results indicated a biogenic COS source peaking in late June and early July. Comparison with the
ORCHIDEE simulations revealed that these observed summer COS emissions were not
represented in the model, highlighting a missing COS source in the ORCHIDEE simulations (Figure
10).

Then, surveys in spring and summer 2019, 2020, and 2021 were conducted using flask-air samples
upwind and downwind of wheat and rapeseed fields in GIF to determine horizontal COS
concentration gradients. These surveys revealed that rapeseed shifted from COS uptake to
emission in early summer, while wheat's uptake significantly decreased, showing that rapeseed
was a larger COS source than wheat at the plot scale. This suggests that the biogenic process not
yet included in ORCHIDEE likely corresponds to COS production from rapeseed crops during their
ripening and senescence stages. This COS production may be associated with a specific pathway
in Brassicaceae species, involving isothiocyanates and thiocyanate ions (Blazevica et al., 2020).
However, further research is needed to fully understand plant COS production pathways.

Finally, an empirical function was fitted between the simulated and observed ecosystem COS
fluxes to estimate the potential COS emissions by rapeseed (Figure 10). Extrapolating this function
across the global rapeseed harvested area of 32 million hectares in 2015 resulted in an estimated
emission of 0.84 + 0.13 GgS y'. This contribution is therefore minimal compared to anthropogenic
COS emissions for example, which are estimated to range from +220 to +580 GgS y' (Zumkehr et
al., 2018).
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Figure 10: Comparison between observed and simulated nighttime fluxes at GIF. Left panel:
Difference between observed and simulated ecosystem COS fluxes between 2015 and 2020. Right
panel: Data from the left panel between May and July, gathered across years, fitted with the
polynomial function presented in the legend, which estimates the dynamics of an additional
source of COS not represented in ORCHIDEE. The light green shading around the fitting function
represents the 4-sigma uncertainty.

Therefore, this study highlighted a missing process in ecosystem COS flux models implemented in
LSMs, which accounts for vegetation's potential to produce COS. However, this source is of
secondary importance compared to other COS sources for the global COS budget.

5.2.2 Evaluation of COS anthropogenic and biogenic emissions from
atmospheric COS observations

Additional uncertainties persist beyond those related to the potential of crops to emit COS, such
as for the vegetation, soil, or anthropogenic activity components, which are estimated to
significantly contribute to the global COS budget (Whelan et al., 2018). While bottom-up modeling
approaches provide estimates of surface COS fluxes (Berry et al., 2013; Kooijmans et al., 2021;
Maignan et al., 2021; Abadie et al., 2022), further constraints on these fluxes can be achieved
through atmospheric transport and simulated COS concentration evaluated against COS
concentration data (Ma et al., 2021; Remaud et al., 2022).

Berchet et al. (in review) aimed to evaluate the biogenic COS fluxes simulated in ORCHIDEE and
the anthropogenic emissions from two inventories, the one from Zumkehr et al. (2018) and a
home-made inventory based on Belviso et al. (2023), in Western Europe. The home-made
inventory incorporates data on CS, emissions from the viscose industry and CO, emissions from
coal power plants in Europe. This evaluation involved using the FLEXPART model to transport all
COS surface fluxes contributing to atmospheric COS concentration in this region and comparing
the simulated concentrations with COS concentration measurements recorded at the GIF site in
France over more than five years. In this study, | provided the biogenic COS fluxes from vegetation
and soil COS flux simulation in ORCHIDEE, and contributed to the interpretation of the results.

The findings suggest a strong overestimation of COS anthropogenic emissions by the Zumkehr et
al. (2018) inventory, especially in the Paris area despite the absence of coal power plant and major
viscose industry, which cannot agree with the observed COS concentrations at GIF. In contrast, the
new home-made inventory led to simulated atmospheric COS concentrations that were consistent
with the observations.

Additionally, this study assessed the nighttime and daytime variations, defined as the 12-hour
day/night differences in measured or simulated COS concentrations. This analysis highlighted an
underestimation of the simulated biogenic COS uptake in ORCHIDEE at night in winter and spring.
This underscores the need to refine ecosystem COS flux at night, attributed to both soil COS
exchanges and vegetation COS uptake through a residual nighttime stomatal conductance.
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Therefore, the transport of surface COS fluxes and the evaluation of the resulting atmospheric
concentrations can reveal structural deficiencies in COS process representation or highlight the
need for improved parameterization. Moveover, in contrast to the NOAA network providing
monthly or bi-weekly flask samples at several measurement stations (Section 2.2), the GIF COS
concentration time series offers a higher data frequency with hourly records, enabling a constraint
on the surface fluxes at a diurnal time resolution.

5.2.3 Impact of recent change in atmospheric COS concentration on surface
COS fluxes

While atmospheric CO; concentrations have continuously risen since pre-industrial times due to
anthropogenic emissions, with atmospheric COS levels generally mirroring this trend, a decline in
COS concentrations has been observed since 2015 (Li et al., 2024). Changes in atmospheric COS
concentrations affect surface COS exchanges, impacting their contribution to the global COS
budget. In particular, vegetation COS uptake presents a first order relationship with atmospheric
COS concentration (equation 2). At the global scale, a first assessment of the impacts of the recent
decrease in atmospheric COS concentrations on soil COS fluxes simulated in ORCHIDEE was
conducted in Abadie et al. (2022). This assessment revealed that the reduction in atmospheric COS
concentrations led to a decrease of about 25 GgS in the simulated net soil COS uptake between
2016 and 2019.

In Western Europe, Belviso et al. (2022b) monitored the trend in atmospheric COS concentrations
measured at the GIF site in France from August 2014 to November 2021, and investigated its
implications for biospheric COS fluxes using the COS fluxes simulated in ORCHIDEE. | provided the
vegetation and soil COS fluxes simulated by ORCHIDEE for this study and contributed to the
representation and analysis of the results. This study found a significant decrease in the seasonal
cycle amplitude of COS concentrations, dropping by 27 ppt over six years, with the spring
maximum declining more sharply than the autumn minimum. This decline aligns with
tropospheric COS trends attributed to reduced anthropogenic emissions.

At the GIF site, the drop in atmospheric COS concentrations resulted in a 10% decrease in the
simulated vegetation COS uptake in ORCHIDEE between 2016 and 2021. Across the entire
Northern hemisphere, this decline in atmospheric COS concentration led to an 8% reduction in
the simulated vegetation COS sink between 2016 and 2019 (Figure 11). Since vegetation COS
uptake is the main driver of seasonal variations in atmospheric COS concentration in the Northern
hemisphere, this suggests that the reduced plant COS uptake contributes to the decrease in the
seasonal cycle amplitude of COS concentrations in recent years.
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Figure 11: Evolution the mean annual atmospheric COS concentration and mean annual plant
COS uptake computed with a monthly variable atmospheric COS concentration, in the Northern
hemisphere between 2010 and 2019.

The importance of considering seasonal variations in atmospheric COS concentration to compute
biospheric COS fluxes in LSMs has been highlighted previously, in particular to account for the
impact of COS concentration drawdown during the vegetation growing season (Abadie et al., 2022;
Kooijmans et al., 2021). Belviso et al. (2022b) emphasized the need to consider trends in
atmospheric COS concentration when simulating vegetation COS fluxes, as these trends
significantly affect the role of plants in the COS sink within the global COS budget.

5.2.4 Impact of atmospheric COS transport models

The studies presented in the previous sections have highlighted some of the uncertainties in the
simulated surface COS fluxes. Additionally, uncertainties in the simulated atmospheric COS
concentrations arise from the transport of COS fluxes by atmospheric transport models (ATMs).
These uncertainties must be evaluated when using COS concentration measurements to constrain
surface COS or CO; fluxes, such as to determine potential missing COS sinks or sources that could
help closing the global COS budget.

Remaud et al. (2023) introduced the first atmospheric tracer transport model intercomparison
project for COS (TransCom-COS), involving seven ATMs that simulated tropospheric COS
concentrations based on state-of-the-art surface COS fluxes. In this study, | provided the
ORCHIDEE simulated vegetation and soil COS fluxes for transport by the ATMs, in addition to those
simulated in SiB4. This work aimed to explore transport uncertainties in simulated COS
concentrations and evaluate surface COS fluxes in relation with the current unbalanced global COS
budget. Simulated COS concentrations were compared with measurements from 15 NOAA
network stations between 2012 and 2018.

The latitudinal gradients of observed and simulated COS concentrations were analyzed for boreal
winter and summer (Figure 12). This analysis helped disentangle the contributions of oceanic and

112



biospheric COS fluxes, which show strong seasonality. In winter, all ATMs underestimated
simulated COS concentrations in the tropics by 50 ppt, suggesting a missing oceanic COS source
in this region. During summer, the ATMs failed to capture the observed latitudinal gradient,
particularly overestimating simulated COS concentrations above 40°N by 50 ppt, likely due to a
missing biospheric COS sink. These findings are consistent with previous studies by Ma et al. (2021)
and Remaud et al. (2022). Significant transport uncertainties were also observed above 40°N in
boreal summer, with a spread between ATMs exceeding 60 ppt.

Then, the evaluation of seasonal amplitude in COS concentrations revealed a large spread
between ATMs, reaching 50 ppt at 6 of the 15 stations, which is half of the observed amplitude
(100 ppt). Comparing simulated COS concentrations with ORCHIDEE and SiB4 biospheric fluxes or
two different oceanic flux estimates demonstrated that changes in the biospheric or oceanic
components typically had a lesser effect on the seasonal amplitude of simulated COS
concentrations than the variability observed across different ATMs.
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Figure 12: Comparison of the latitudinal variations of COS concentrations simulated by seven
ATMs using a control scenario of state-of-the-art surface COS fluxes (colored dots) with the
observations (black line) for February (left), and August (right) at 15 NOAA stations over the years
2012-2018. The simulated COS concentrations have been shifted such that the means are the
same as the mean of the observations (~500 ppt). The time series of COS mixing ratio have been
detrended and filtered to remove the synoptic variability beforehand. In August, the value at the
GIF station simulated by the TOMCAT ATM was removed as it was an outlier (value above 800 ppt).
For the same reason, the COS values at the GIF station simulated by TOMCAT (800 ppt) and LMDZ
(around 700 ppt) have been removed in February. The KUM station has been removed, which is
co-located in longitude and latitude with the MLO station, for the sake of simplicity. Removing the
KUM station does not affect the results.

Therefore, while this study has highlighted significant uncertainties in the simulated COS
concentrations due to the transport of surface COS fluxes, the various ATM simulations
consistently identify discrepancies in surface COS fluxes, specifically with a missing COS source in
the tropics and a missing COS sink in the Northern high latitudes.

On the other hand, directly assimilating COS flux observations to constrain COS and CO; surface
fluxes eliminates the impact of transport uncertainties on COS concentrations. Assimilating COS
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fluxes can also offer a more direct constraint as it involves fewer components of the global COS
budget compared to assimilating COS concentrations, as discussed in Section 4.1. However,
atmospheric COS concentrations provide information on a larger scale than COS flux observations.

5.3 Valorisation of atmospheric COS and CO, spatio-temporal
gradients

5.3.1 Evaluation of simulated GPP and terrestrial ecosystem respiration
from model intercomparison projects using atmospheric COS and CO:
data

The studies by Belviso et al. (2022a, 2022b), Berchet et al. (in review), and Remaud et al. (2023)
discussed in the previous section have advanced our understanding of the COS budget, from
investigating local-scale COS flux processes to examining the impact of atmospheric transport
models on COS concentrations. Improving the quantification of COS sinks and sources is crucial
for using COS concentration observations to inform on GPP beyond the ecosystem scale. However,
using previous estimates of COS components, Launois et al. (2015) utilized atmospheric
concentration measurements to evaluate trends, and seasonal and spatial variations in GPP as
simulated by three LSMs. This approach has been revised (based on some of the work conducted
in this PhD) and further expanded to create a comprehensive evaluation framework based on COS
concentration observations for a broader range of LSMs, incorporating the current knowledge on
COS component contributions.

In Peylin et al. (to be submitted in early September 2024) presented in Appendix 9.3, we evaluated
GPP and terrestrial ecosystem respiration across three model ensembles (Coupled Model
Intercomparison Projects Phase 5 (CMIP5), CMIP6, Trend in the Land Carbon Cycle Project Version
7 (TRENDY-V7)) using a combined analysis of atmospheric COS and CO; concentrations. This
evaluation framework is based on the premise that CO, concentrations reflect both GPP and
respiration fluxes, whereas COS concentrations offer a more direct constraint on GPP. This joint
analysis aims to identify potential biases in the seasonal amplitude and/or phase of GPP and/or
respiration for individual models, encompassing a total of 64 models, as well as differences across
the intercomparison experiments.

This evaluation uses atmospheric COS and CO, concentration measurements from the NOAA
network, focusing on two stations capturing the influence of the Northern hemisphere fluxes:
Mauna Loa in the Hawaiian region (MLO) and Alert in Canada (ALT). These measured atmospheric
concentrations are compared to simulated concentrations resulting from the transport of all COS
or CO; flux components using the LMDZ version 3 transport model. The vegetation COS uptake
for each model is determined using the LRU relationships based on the simulated GPP from each
LSM. Therefore, the simulated concentrations only differ between models by the vegetation COS
flux transported (based on model GPP) for the COS concentrations, and by the net biome
productivity (NBP) simulated in each model and transported for the CO, concentrations. Finally,
we evaluate the sensitivity of the simulated COS concentration to a change in LRU values, or in the
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soil or ocean contributions. In this work, Philippe Peylin initiated and conceptualized the approach,
while | provided the ORCHIDEE simulated soil COS fluxes for the transport, ran the atmospheric
transport simulations, and created the figures. Then, we both contributed equally to writing the
article.

The identification of seasonal amplitude biases involves comparing simulated COS and CO;
amplitudes normalized by observed ones (Figure 14). If a model overestimates or underestimates
both COS and CO, amplitudes, it suggests a misfit likely influenced by GPP, which directly affects
simulated concentrations of both gases (in a coherent and similar way, see the LRU equation in
Figure 3). Conversely, if a model underestimates COS amplitude while overestimating CO,, or vice
versa, it indicates potential biases in both GPP and respiration fluxes, as solely adjusting the GPP
flux alone cannot simultaneously correct the simulated amplitudes of COS and CO..

The seasonal phase analysis is based on the COS versus CO; correlations between the simulated
and observed concentrations. A model with low correlations for both gases suggests a
predominance of GPP flux in the simulated phase biases. Alternatively, a model showing high COS
correlation but not CO implies a respiration bias alongside accurate GPP flux. Conversely, a model
with high CO; correlation but low COS correlation may indicate biases in both GPP and respiration
phases, with respiration compensating for a GPP bias.
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Figure 13: Detrended mean seasonal cycles of atmospheric COS (left) and CO; (right)
concentrations simulated at Mauna Loa station (MLO) for all models of CMIP5 (top) and CMIP6
(bottom) ensembles. The observations are represented by red crosses.

The evaluation of the simulated COS and CO; concentrations reveals a significant spread in their
seasonal amplitudes across the CMIP5 model ensemble, ranging from 29 ppt to 94 ppt for COS
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and from 3.1 ppm to 13 ppm for CO,, related to the large variability in simulated GPP among the
LSMs (Figure 13). Furthermore, the joint analysis demonstrates a positive linear relationship
between the normalized seasonal amplitudes of COS and CO; concentrations simulated by CMIP5
models, underscoring the influential role of GPP on these variations (Figure 14). While some LSMs
accurately replicate observed seasonal amplitudes, a majority of CMIP5 models exhibit a bias in
GPP seasonal cycle amplitude for the Northern hemisphere.

The CMIP6 ensemble exhibits a noteworthy reduction in the variability of COS and CO; seasonal
amplitudes compared to CMIP5, ranging from 21 ppt to 57 ppt for COS and from 2.2 ppm to 9 ppm
for CO,, indicating increased model convergence (Figure 13). However, across most CMIP6 models,
both CO, and COS seasonal amplitudes are slightly underestimated (Figure 14), suggesting a
general tendency towards lower simulated GPP seasonal amplitudes in these models.

Assessing the last intercomparison model ensemble, TRENDY-V7, reveals a wide range in
simulated COS and CO; seasonal amplitudes, between 30 ppt and 74 ppt for COS and between 1.9
ppm and 7.7 ppm for CO,, despite using the same meteorological forcing for all models.

Then, considering the contributions of the various COS components used in this study, the global
COS budget remains unbalanced, with an average deficit in COS sources ranging from 276 GgSy™!
to 530 GgS yt across intercomparison exercises. Adjusting lower LRU values could potentially
balance the COS budget by reducing the vegetation sink. However, solely lowering LRU values
would not suffice, as it would decrease the simulated COS seasonal amplitude, potentially causing
all models to deviate from observed values. Therefore, other COS processes would need to display
a more pronounced seasonal cycle in phase with that of GPP.

Finally, sensitivity tests exploring the simulated COS concentrations with varying estimates of soil
and ocean contributions demonstrated significant impacts on the global COS budget for both
components, although the soil component showed a lesser effect on the seasonal amplitude. This
highlights the need for improved understanding and estimation of COS fluxes from oceans and
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Figure 14: Scatter plots of CO, vs COS simulated amplitudes normalized by observed amplitudes
of smoothed seasonal concentrations at MLO for CMIP5 (left) and CMIP6 (right) models using the
reference scenario. The observed amplitude is identified by the red cross.

Despite these sources of uncertainty, this study has developed a promising framework to evaluate
simulated ecosystem CO, gross fluxes (GPP and ecosystem respiration) from various model
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ensembles used in intercomparison exercises, using COS and CO, concentration measurements.
This work highlighted some individual model discrepancies that were also confirmed by previous
studies (i.e., the ORCHIDEE model used in the CMIP5 exercice exhibited an excessively large
seasonal amplitude in GPP at Northern high latitudes, a discrepancy that was largely corrected in
CMIP6, see Figure 14). This evaluation framework can be applied to the latest TRENDY versions
and future CMIP and TRENDY exercises, enabling the monitoring of simulated GPP and respiration
biases over successive model intercomparison experiments. Additionally, the approach should be
regularly updated to incorporate future advancements in the characterization of COS flux
components.

5.3.2 Inferring COS and CO: surface fluxes from inverse modeling of
atmospheric COS and CO; data

As seen in the previous section, atmospheric transport models can be used to evaluate potential
biases in LSM GPP estimates by transporting the different COS and CO; surface flux components
and comparing the resulting simulated concentrations against concentration observations. In
contrast, atmospheric inversion modeling approaches enable optimization of the surface fluxes in
addition to identifying discrepancies in the spatial and temporal dynamics of these fluxes.

Remaud et al. (2022) conducted a joint assimilation of atmospheric COS and CO, concentration
data into the LMDZ atmospheric transport model to constrain surface COS fluxes, GPP, and plant
respiration, using scaling factors applied to an ensemble of few large ecosystem-based regions.
They assimilated atmospheric COS and CO; concentration observations at 15 sites from the NOAA
network. This approach not only improved estimates of large-scale GPP and plant respiration
fluxes but also addressed the challenge of the global COS budget closure, which has been
hindered by significant uncertainties in its components. The inversion framework uses simulated
ORCHIDEE GPP and plant transpiration fluxes, optimizing each flux for the 15 ORCHIDEE PFTs.
Vegetation COS flux is linked to GPP through the empirical LRU relationship, distinguishing values
for Cs and C4 plants. In this study, | have performed the ORCHIDEE simulation providing the fluxes
that have been transported and optimized. Then, the simulated concentrations are evaluated
against independent data with MIPAS satellite retrievals, HIAPER Pole-to-Pole Observations
(HIPPO) airborne measurements, and surface measurements over Japan and France.

The resulting optimized COS budget suggests a global biospheric uptake of -800 GgSy* between
2008 and 2019, with enhanced absorption observed in high latitudes (Figure 15), mainly attributed
to a vegetation sink of -620 GgS y™. Optimized oceanic COS emissions have been doubled to
530 GgS y?, with the increase primarily concentrated in tropical regions, while emissions in high
latitudes were revised downward compared to the prior. This suggests that the contribution of
DMS to higher COS emissions in the tropics might be significant, given that measurements of COS
and CS; in seawater do not support such an increase in oceanic sources (Lennartz et al., 2017,
2020). The decrease in oceanic emissions in high latitudes may indicate an overestimation of direct
COS emissions and COS emissions via CS; in this region.

In terms of the global CO, budget, the inversion substantially increased net vegetation uptake in
high latitudes, nearly tripling the previous estimate. GPP in this region was boosted by almost 2
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GtCy1, while the respiration flux remained unchanged. Conversely, in tropical regions, both
respiration and GPP showed a tendency to decrease.

The evaluation against independent concentration data showed that the system effectively
corrects previously underestimated GPP in high latitudes. However, the decrease in biospheric
uptake in the Amazon following the inversion contradicts MIPAS COS retrievals, highlighting the
limited observational constraints in this critical region. Finally, comparisons with surface
measurements in Japan and France indicate inaccuracies in the prior anthropogenic COS emission
inventory from Zumkehr et al. (2018), with too strong sources over Europe and Japan, and too
weak sources in the Eastern edge of China. These findings highlight the necessity for an improved
inventory and supports the new one proposed by Belviso et al. (2023) for Europe.
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Figure 15: Latitudinal distribution of the prior (dashed line) and posterior fluxes (full line): for the
continental (red) and oceanic components (blue) of the COS budget (top), and for the net CO;
fluxes from terrestrial vegetation (bottom). Terrestrial vegetation fluxes are the sum of GPP and
respiration fluxes. The fluxes have been averaged over the years 2009-2019.

Therefore, although this atmospheric inversion modeling study does not directly constrain
ORCHIDEE model parameters and process representations that determine the simulated
biospheric COS and CO; fluxes, it highlights discrepancies in these fluxes and guides future
improvement efforts.
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6 IMPROVING THE SIMULATED RESPONSE OF GPP AND PLANT
TRANSPIRATION TO DROUGHT EVENTS

6.1 Current limitations in the representation of vegetation
physiological response to drought events in ORCHIDEE

During the investigation of COS potential to improve the simulation of GPP and plant transpiration
in ORCHIDEE, a particular attention was given to the constraint introduced by COS (through a data
assimilation approach) when evaluating a drought event at the Hyytidla site (Section 4.2). This
assessment revealed that while DA experiments incorporating COS data improved both simulated
GPP and LE, parameter optimization through DA was insufficient to accurately represent this
drought event in ORCHIDEE. This finding underscores the structural insufficiency in ORCHIDEE's
representation of vegetation responses to drought events, which is critical for carbon, water, and
energy flux simulation as drought events are expected to be more frequent and intense with
climate change. Consequently, the final part of this PhD work focuses on improving the simulation
of GPP and plant transpiration under soil moisture stress conditions.

Issues in representing vegetation response to soil moisture decrease in ORCHIDEE have been
previously reported across different versions, leading to contrasting conclusions (Rebel et al.,
2012; De Pue et al., 2022; MacBean et al., 2020). For example, Rebel et al. (2012) identified an
underestimation of vegetation response to droughts in an earlier ORCHIDEE model version that
lacked a multi-layer soil hydrology component. In semi-arid ecosystems, MacBean et al. (2020) also
demonstrated that incorporating a discretized soil hydrology scheme with 11 soil layers in
ORCHIDEE improved the simulated evapotranspiration through a more accurate representation
of soil moisture in the upper layers compared to a simpler 2-layer bucket scheme. However, more
recently, using the ORCHIDEE version from the CMIP6 exercise (Boucher et al., 2020; Cheruy et al.,
2020), De Pue et al. (2022) found an oversensitivity of the simulated LE and GPP to soil moisture
decrease, which strongly correlates with errors in the simulated LAI.

In the ORCHIDEE version used in this work (Section 2.1), the physiological vegetation response to
drought is modeled by an empirical function (fyacer stress) that limits stomatal conductance,
mesophyll conductance, and the Rubisco carboxylation and RuBP regeneration rates as soil
moisture decreases (Figure 16). In the default version of the model, f,,qter stress deCreases linearly
when soil moisture drops below a threshold corresponding to no stress conditions (Bno stress) UNtil
it reaches a minimum threshold at the wilting point (Bwe), where the stomata close as plants can
no longer extract water from the soil. These thresholds, Bne stess and Bwp, are determined by soil
texture. This f,,qter stress fUNCtion is computed for each soil layer except the topsoil layer considered
without root (~1 mm deep), weighted by the root profile, and integrated over the soil column to
determine the soil moisture stress applied for each PFT.
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Figure 16: Variations of the function (f,,qter stress) that controls stomatal closure when soil moisture
(kg.m2) decreases, as implemented by default in ORCHIDEE. Here, its variations are illustrated
considering a minimum stress for soil moisture above 18 kg.m=2 (B stress) and @ maximum stress
below 5 kg.m (Bwe).

Therefore, the default simulated response to drought in ORCHIDEE depends solely on sail
moisture availability and soil texture, which determines 6o stress and Bwe. Additionally, the response
varies between tree and herbaceous PFTs, as the maximum root depth is set to 2 m for trees and
1 m for herbaceous species. This is a significant limitation as several studies have shown that
vegetation responses to soil moisture stress vary across different biomes (McDowell et al., 2008;
Chaves et al., 2003; Li et al., 2023). Consequently, the default simulated drought response in
ORCHIDEE has neither been defined nor calibrated for different PFTs, failing to account for the
diversity of vegetation responses to soil moisture stress. Then, other climatic factors beyond soil
moisture, such as VPD and atmospheric CO; levels, have been found to influence physiological
vegetation responses to drought (Swann et al. 2016; Stovall et al., 2019; Li et al., 2023), which can
lead to variations in drought response within biomes.

Furthermore, the default drought response implementation only considers the immediate effects
of soil moisture changes on vegetation physiology, without integrating potential mechanisms of
plant plasticity. Indeed, several studies have demonstrated that plants can acclimate and adapt to
environmental changes over short to long timescales, which can influence their responses to
drought events (Marchin et al., 2016; Grossiord et al., 2017).

Finally, another potential limitation of the physiological vegetation response to drought in
ORCHIDEE is the application of the same function to stomatal conductance, mesophyll
conductance, and the Rubisco carboxylation and RuBP regeneration rates. This approach assumes
a coordinated response between stomatal and non-stomatal limitations under soil moisture stress
conditions. Indeed, Drake et al. (2017) indicates that both types of limitations occur during
droughts. However, the relative importance of mesophyll and Rubisco activity limitations is still
debated and may vary depending on the species and the duration of stress (Cano et al., 2014;
Gimeno et al., 2019). As a result, differentiating the responses of stomatal conductance, mesophyll
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conductance, and photosynthetic efficiency to soil moisture stress remains challenging to
implement in LSMs and is associated with significant uncertainty.

The following section details the last focus of this PhD dedicated to improving vegetation
physiological response to soil moisture stress, with the draft of the article soon to be submitted
(before the end of September 2024) to Global Biogeochemical Cycles. In this study, another
definition of the fuerstress fUNCtion is tested, which has been previously implemented in
ORCHIDEE based on the work of Meridja (2011). Such function replaces the linear dependence of
fwater stress TO S0il moisture with an exponential bounded function. Although this new definition
has not yet been calibrated for the different PFTs in ORCHIDEE and therefore shares the same
limitations as the default f,,4ter stress fUNCtion shown in Figure 16, it was originally developed by
Meridja (2011) to better account for the diversity of plant sensitivity to soil moisture decrease. The
study in the following section aims to calibrate this new function for several PFTs and proposes
incorporating an acclimation mechanism in the simulated vegetation physiological response to
soil moisture stress.

6.2 Refining vegetation physiological response to drought in
ORCHIDEE by incorporating acclimation to atmospheric
moisture stress

Vegetation acclimation to atmospheric moisture stress during
drought events over Europe

Camille Abadie’, Fabienne Maignan', Cédric Bacour’, and Philippe Peylin'

"Laboratoire des Sciences du Climat et de I'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université
Paris-Saclay, Gif-sur-Yvette, France

Abstract

Improving the simulated response of Gross Primary Production (GPP) and plant transpiration to
soil moisture stress in Land Surface Models (LSMs) is crucial for accurate climate simulations,
especially as drought events are expected to increase. In this study, we used the ORCHIDEE LSM
to investigate how the simulated physiological response of vegetation to soil moisture stress can
be refined, focusing on Europe, which has experienced significant droughts. We used in situ GPP
and latent heat flux (LE) data from more than 40 sites across various biomes, along with data
assimilation techniques, to improve GPP and plant transpiration representations. This work shows
that the speed of stomatal closure under soil moisture stress can be refined by incorporating
vegetation acclimation to long-term vapor pressure deficit (VPD) conditions. This new drought
response results in a greater reduction in GPP root mean square deviation than a response based
solely on biome type, achieving an 18% improvement at the site scale, whereas the biome-type-
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only version shows no improvement. However, the two model versions show similar performance
in simulating LE, with an 8 to 9% improvement at the site scale but a slight degradation at the
regional level (using data-driven benchmarks). Projections until 2100 show that the model
incorporating VPD acclimation results in the smallest increase in soil moisture stress, 22% less
than the model based solely on vegetation-type-dependent responses. This study underscores the
importance of better understanding potential acclimation mechanisms and how to implement
them in LSMs to enhance the accuracy of climate projections.

1. Introduction

Europe has been experiencing an increase in climate anomalies due to climate change, leading to
more frequent and severe drought events in recent years (Bastos et al., 2020). The period from
2018 to 2020 is particularly notable for its significant impacts on ecosystems, as well as substantial
social and economic losses (Conradt et al., 2023). Soil moisture stress is often considered the
primary factor affecting plant functioning during droughts (McDowell et al., 2008). The decrease
of soil moisture typically induces plant water stress, causing stomatal closure to prevent water
loss, which in turns also limits carbon uptake and can reduce plant productivity. However, the
combined effects of various climate change drivers on plant responses to drought are complex
and difficult to disentangle. While warm conditions can enhance photosynthesis and plant
transpiration (Dreyer et al., 2001; Way et al., 2015; Dusenge et al., 2018; Urban et al., 2017), further
depleting soil moisture, the rising temperatures also increase vapor pressure deficit (VPD)
(Grossiord et al., 2020), promoting stomatal closure to conserve water (Monteith, 1995; Oren et
al., 1999). High VPD conditions usually coincide with soil moisture stress and amplifies its effect
(Grossiord et al., 2020). Given VPD's significant role in drought-induced plant mortality (Breshears
etal., 2013; Stovall et al., 2019), it is crucial to consider its current and future impacts on vegetation
responses to drought.

Land surface models (LSMs) have been developed to investigate ecosystems functioning and are
now increasingly used to project their possible responses to climate change. However, LSMs often
struggle to accurately represent the diverse responses of vegetation to extreme events such as
droughts and to account for different response timescales. For instance, several LSMs, including
the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE), have been found to
overestimate the frequency of hydrological droughts due to their over-sensitivity to short-term
precipitation variability (Prudhomme et al., 2011; Tallaksen & Stahl, 2014). As a result, vegetation
carbon uptake and evapotranspiration simulated in ORCHIDEE were found to be overly sensitive
to droughts (De Pue et al., 2022).

Accurately representing stomatal response to drought is particularly critical, as it controls the
coupling between carbon uptake and transpiration (Cowan & Farquhar, 1977; Kozlowski &
Pallardy, 2002; Prentice et al., 2014; Marchin et al., 2016), determining vegetation water stress
strategies that can be illustrated by the isohydricity concept (Tardieu & Simmoneau, 1998).
According to this concept, isohydric species close their stomata to maintain steady leaf water
potential under water stress, whereas anisohydric species keep their stomata open longer,
resulting in a drop in leaf water potential. LSMs are evolving to include more complex processes
to improve the realism of vegetation functioning representation, but the diversity of stomatal
conductance response mechanisms remains challenging to implement. Short-term stomatal
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regulation, such as the impact of instantaneous changes in VPD on stomatal conductance (Medlyn
etal, 2011; Yin & Struik, 2009), is commonly accounted for in LSMs, including ORCHIDEE. However,
on longer timescales, several studies have also highlighted the potential for stomatal conductance
to acclimate to environmental conditions (Marchin et al., 2016; Kutsch et al., 2001).

In this study, we have refined the representation of vegetation physiological response to soil
moisture stress in the ORCHIDEE LSM by comparing two formulations: one that only incorporates
a biome-type dependency and another that also accounts for vegetation potential to acclimate to
long-term VPD conditions. These formulations were evaluated for their ability to accurately
simulate gross primary production (GPP) and latent heat flux (or evapotranspiration) (LE) during
drought events. In doing so, we address the following questions:
1. Is a biome dependency sufficient to simulate vegetation response to soil moisture stress?
2. What s the impact of accounting for long term VPD conditions in the simulated vegetation
response to drought?
3. How does accounting for the influence of environmental conditions in vegetation response
to drought impact plant carbon and water exchanges under future climate?
The refinement of the vegetation physiological response to soil moisture stress in ORCHIDEE -
including a formulation based solely on biome type and another that incorporates vegetation
potential to acclimate to long-term VPD - and the calibration of these formulations are supported
by assimilating in situ GPP and LE data. The impact of these updated ORCHIDEE versions on the
simulated GPP and LE is then evaluated at both site and regional scales across Europe using in situ
data and satellite-based evaluation products. Finally, projections through 2100 are conducted to
assess the effects of these different vegetation responses to soil moisture stress under future
climate conditions.

2. Materials and methods
2.1. The ORCHIDEE LSM
2.1.1. General model description

The ORCHIDEE LSM is the land component of the Earth System Model developed at the Institut
Pierre Simon Laplace (Boucher et al., 2020; Cheruy et al., 2020). ORCHIDEE simulates carbon,
water, and energy exchanges between land surfaces and the atmosphere from a daily time step
for slow processes such as carbon allocation, to a half hourly time step for fast processes such as
photosynthesis (Krinner et al., 2005). Vegetation is grouped into 14 plant functional types (PFTs)
based on similar phenology, photosynthetic metabolisms, structure, and bioclimatic range, and a
last PFT represents bare soil. PFT maps are prescribed annually using European Space Agency
(ESA) Climate Change Initiative (CCl) land cover products (Lurton et al., 2020). The soil profile is
decomposed into 11 soil layers with increasing depth from the top to the bottom of the soil column
at a 2 m depth, and soil hydraulics are computed in each layer. Vertical water fluxes within the soil
are modeled using the Richards equation across the discretized soil column and a free drainage
condition is set at the column's base (de Rosnay et al., 2002; D'Orgeval et al., 2008). Soil textures,
which determine soil characteristics such as porosity and hydraulics, are described using 12
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classes from a global soil map based on the Food and Agriculture Organization of the United
Nations/United States Department of Agriculture (FAO/USDA) texture classification (Reynolds et
al., 2000). Global yearly mean near-surface CO;, concentrations are provided by the TRENDY
(Trends in the land carbon cycle) model intercomparison project (Sitch et al., 2015).

The ORCHIDEE version used in this study builds upon the model used for the Coupled Model
Intercomparison Project Phase 6 (CMIP6) (Boucher et al., 2020; Lurton et al., 2020). However, this
version features updates compared to the CMIP6 version, such as revisions to the radiative
transfer model (RTM) described below, the representation of vegetation physiological response to
soil moisture stress based on the work of Meridja (2011), and the representation of the root profile
(see section 2.1.2).

This ORCHIDEE version includes a RTM that distinguishes between direct and diffuse light within
the canopy, based on the RTM developed by Zhang et al. (2020). The canopy is discretized in a
maximum of 20 leaf area index (LAI) layers, with finer layers at the top to thicker layers at the
bottom of the canopy. The calculation of the absorbed light, photosynthesis, and stomatal
conductance per PFT are carried out for each LAl layer and for sunlit and shaded leaves separately.
Photosynthesis and stomatal conductance are described following Yin & Struik (2009), based on
the photosynthesis model of Farquhar et al. (1980) for Cs species and Collatz et al. (1992) for C4
species. In this model, an empirical function accounts for the effect of instantaneous change in
VPD on stomatal conductance at each time step (Yin & Struik, 2009; Text S1). The maximum rates
of Rubisco carboxylation and RuBP regeneration depend on leaf age (Ishida et al., 1999; Krinner et
al., 2005), and on an implicit leaf nitrogen content, which decreases in the lower canopy (Johnson
& Thornley, 1984). Both rates also respond to air temperature, following a modified Arrhenius
function that accounts for acclimation to growth temperature, as described by Kattge & Knorr
(2007). Additionally, a limitation is imposed on the maximum rates of Rubisco carboxylation and
RuBP regeneration to account for the downregulation of the productivity under elevated CO; levels
(Sellers et al., 1996; Bounoua et al., 1999, 2010). Then, photosynthesis and stomatal conductance
are integrated over all LAl layers to compute GPP at the canopy level and the total canopy stomatal
conductance.

Plant transpiration for each PFT is calculated at the canopy level, driven by the saturated moisture
gradient between the surface and air at 2 m, and regulated by aerodynamic, leaf boundary layer,
and total canopy stomatal conductances.

LE is the sum of various processes at the grid cell level, including plant transpiration, bare soil
evaporation, canopy interception and evaporation, snow sublimation, and floodplain evaporation.
Each process contributing to LE is driven by the saturated moisture gradient between the surface
and air at 2 m and is regulated by aerodynamic, boundary layer conductances, and a specific
conductance for each process, similar to how canopy stomatal conductance regulates
transpiration. A resistance to soil evaporation is implemented following Sellers et al. (1992) to limit
soil evaporation when soil moisture decreases (Text S1).

The aerodynamic conductance affecting both plant transpiration and carbon uptake is detailed in
Su et al. (2001), which updates the approach of Massman (1999) based on localized near-field
Lagrangian theory.
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2.1.2. Representation of vegetation response to soil moisture stress

In ORCHIDEE, vegetation response to soil moisture stress is represented by an empirical function
that limits stomatal conductance, mesophyll conductance, and Ribulose-1,5-bisphosphate
carboxylase/oxygénase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP)
regeneration rates. This function is computed for each soil layer, except the topsoil layer (~1 mm
deep) as it is considered without root and does not contribute to plant transpiration. In this model
version, the soil moisture stress response is defined as an empirical exponential function
fwater stress ([0,1], unitless) that depends on soil water status and vegetation sensitivity to water
stress following Meridja (2011):

(9FC,1—9WP,1) . (eno stress,l—el)
(6no stressi—Owp,1) (6:1-6wp,1)

fwater stressq = €XP (_awater stress * ) *T008gensity,l (Eq. 1)
with 6, the soil moisture (kg.m=) in a given soil layer [, and 6z, and 68y, the soil moisture at field
capacity and wilting point (kg.m) in the soil layer [, respectively. 0, stress; IS the soil moisture
threshold above which there is no water stress (kg.m?2), defined as 6,, stressi = Owp, + Pmax
(Brci — Bwpy). With ppg, the coefficient ([0,1], unitless) that determines this threshold. fiacer stress,
is bounded between 0 (when 6, < 8y,p;) and 1 (wWhen 6; > 0., stressi)- TheN, Ayater seress 1S the water
stress sensitivity coefficient which was initially considered as a constant (a,,qser stress = 1., UNitless)
in ORCHIDEE (see red curve in Figure 4), but is now defined as PFT-dependent in agreement with
Meridja (2011) ([0.05-10.]). This coefficient determines the speed of vegetation response to
decreasing soil moisture between 6,,, sess; and 6yp,. Therefore, this coefficient could indicate
either a more isohydric behavior, characterized by rapid stomatal closure under soil moisture
stress, or a more anisohydric behavior, marked by slower stomatal closure under the same
conditions. 100t gensiry, 1S the normalized root length fraction in the soil layer [ ([0,1], unitless) (the
fraction of the root length density in the layer divided by the total root length in the root zone) that
weights the water stress function, and defined according to the available water in each layer (see
Text S1). Finally, fiater stress; 1S SUMmed over all soil layers to determine a response to soil moisture
stress for each PFT.

Here, we aim to refine the representation of f,,4ier stress USiNg data assimilation techniques, with a
particular focus on the a,,q.er stress COEfficient, which has not yet been calibrated in ORCHIDEE.
Specifically, we investigate whether a,,4ser stress ShOuld depend solely on the PFT or if it should also
vary with environmental factors.

2.1.3. Simulations
2.1.3.1. Simulations over the present period

For any simulation, we first performed a spin-up phase to stabilize all carbon pools and equilibrate
net ecosystem production in the absence of any disturbance (Lardy et al., 2011). This phase
requires cycling over the available years in the meteorological forcing data for 340 years with a
constant atmospheric CO, concentration corresponding to a pre-industrial level. The spin-up is
followed by a transient phase that introduces disturbances such as increasing atmospheric CO;
concentration, and land use and climate change. The transient phase also cycles over the available
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forcing years for 60 years until the first year of the meteorological data. Then, the simulations over
the recent years are performed at a daily time step.

Site simulations (section 2.2) were forced by local micro-meteorological half-hourly measurements
from the ICOS Warm Winter 2020 network (Warm Winter 2020 Team and ICOS Ecosystem
Thematic Centre, 2022). Simulations over Europe were forced by 6-hourly CRU JRA reanalysis at a
0.5° spatial resolution over 2000-2021 (University of East Anglia Climatic Research Unit Japanese
Reanalysis; Friedlingstein et al., 2020).

2.1.3.2. Projections

Projections over Europe were conducted following the shared socioeconomic pathway scenario 3
(SSP) with an additional radiative forcing of 7 W.m2 by the year 2100, called hereafter SSP370. This
scenario is one of the scenarios considered in the Scenario Model Intercomparison Project
(ScenarioMIP) (O'Neill et al., 2016), which is part of CMIP6. It was chosen as it represents a medium-
to-high challenge scenario for mitigation and adaptation, combining relatively high societal
vulnerability and forcing with important aerosol emissions and land use change. We used
meteorological forcing datasets from the UK ESM (UKESM1) (Alistair et al., 2019) at a 2° spatial
resolution, covering 1850 to 2014 for the historical period and 2015 to 2100 for projections.

A spin-up phase was first performed as described in the previous section, by cycling over the 10
first years of the historical forcing file for 340 years. Then, simulations at a daily time step were
performed from 1850 to 2014 for the historical period, followed by projections until 2100. Note
that for the projection simulations only, the PFT map is not updated each year and is fixed to the
one of 2015.

2.2. Studied area and data

70°N | 70°N
TempENF
60°N|. 60°N BorENF
CsTempGRA
50°N |- 50°N
40°Nf - ~|40°N

Figure 1: Location of the ICOS Warm Winter sites with a dominant PFT fraction of at least 50%. The
legend colors represent the dominant PFT at each site or pixel. TempENF = Temperate evergreen
needleleaf forest; TempDBF = Temperate deciduous broadleaf forest; BorENF = Boreal evergreen
needleleaf forest; CsTempGRA = Temperate natural grassland (Cs); CsCrop = Crops (Cs); CsBorGRA
= Boreal natural grassland (Ca).
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The model evaluation and parameterisation relies on flux measurements from the Integrated
Carbon Observation System (ICOS) Warm Winter 2020 database, which captures the recent
drought years experienced in Europe (Warm Winter 2020 Team and ICOS Ecosystem Thematic
Centre, 2022). Among the 73 available sites, we kept 53 sites having a fraction of the dominant PFT
of at least 50% at a 0.0125° spatial resolution using ESA-CCI land cover maps combined with
Képpen-Geiger climate zone map at 0.25°. Then, we removed 7 sites for which the relative mean
absolute difference (rMAD, the mean absolute difference divided by the mean of the observed
variable) or the correlation between the ICOS GPP estimates and ORCHIDEE prior simulation was
respectively higher than 1.25 or lower than 0.6, in 2017 or 2018 (the 2 years considered for data
assimilation, see section 2.3). Indeed, we considered that these values point to model errors that
cannot be corrected only through parameter optimization, but are related to structural issues in
process implementation, such as missing processes to account for site disturbances.

This selection resulted in 46 sites (Figure 1, Table S1), encompassing six PFTs: Temperate
evergreen needleleaf forest (TempENF, 14 sites), Temperate deciduous broadleaf forest
(TempDBF, 7 sites), Boreal evergreen needleleaf forest (BorENF, 7 sites), Temperate natural Cs
grassland (CsTempGRA, 5 sites), C3 Crops (CzCrop, 12 sites), and Cs3 Boreal natural grassland
(CsBorGRA, 1 site).

2.2.1. Site scale data

We used in situ GPP and LE eddy covariance (EC)-based estimates from the ICOS Warm Winter
2020 database (Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre, 2022). We
considered daily data from 2017 up to 2020. GPP is estimated based on the daytime partitioning
method (Lasslop et al., 2010). We applied a correction to the ICOS LE measurements to ensure
energy balance closure each day, as it is the case in the ORCHIDEE model at each time step. LE was
corrected using the flux-data-qaqc Python package (Volk et al., 2021) following the Bowen Ratio
method (Bowen, 1926).

2.2.2. Regional scale evaluation products

We used three GPP products to evaluate the simulated GPP over Europe. First, we considered the
FLUXSAT version 2.0 GPP, estimated from a light use efficiency approach using satellite data and
calibrated with FLUXNET2015 (Pastorello et al., 2020) EC fluxes (Joiner et al., 2018). The second GPP
product is FLUXCOM-X-BASE (Nelson et al., 2024), based on a machine learning approach using
predictor variables such as remotely sensed vegetation indices and land surface temperatures
from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging
Spectroradiometer (MODIS) along with meteorological variables. FLUXCOM-X-BASE also
incorporates EC fluxes from various networks including FLUXNET 2015, ICOS Drought 2018, ICOS
Warm Winter 2020, or Ameriflux. Then, we used the SIF-GPP product developed for the Sen4GPP
project (Duveiller et al., 2023) in which GPP is estimated based on empirical linear relationships
with Solar-Induced Fluorescence (SIF) estimates from the European Space Agency (ESA) Sentinel-
5p Tropospheric Monitoring Instrument (TROPOMI) (Guanter et al., 2021) and calibrated per
biome.

For LE, FLUXCOM-X-BASE also provides land evapotranspiration estimates (Nelson et al., 2024).
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We evaluated the leaf area index (LAl) simulated in ORCHIDEE against three global LAl datasets.
The two first LAl datasets (named here "“PROBA-V” and “OLCI") are based on a neural network
approach using top of canopy reflectances from SPOT-4 and -5, PROBA-V, and Sentinel-3 OLCI
(Baret et al., 2013; Camacho et al., 2013). In addition to the reflectance data, the neural network is
calibrated using LAl estimates derived from MODIS and CYCLOPES LAl products for the PROBA-V
LAl dataset. Then, the neural network for the OLCI LAl dataset is trained using the PROBA-V LAl
dataset. For these two datasets, LAl uncertainty is provided, which corresponds to the root mean
squared deviation (RMSD) between 10-day composite and daily values. The PROBA-V dataset is
available until April 2020 while the OLCI dataset is available until 2022. The last LAl dataset (named
here “MODIS") is based on the reprocessing of MODIS version 6.1 LAl products MCD15A2H,
MOD15A2H, and the MCD12Q1 land cover type product (Yuan et al., 2011; Lin et al., 2023).

The regional scale evaluation was conducted considering a 0.5° spatial resolution for all data
products, between 2018 and 2020. The LAI products are available at a monthly timestep, while we
considered 8-day averages for the GPP and LE products.

2.2.3. Regional scale ecoregion classification and drought identification

We used monthly standardized precipitation-evapotranspiration index (SPEI) (Vicente-Serrano et
al., 2010) data from the SPEIbase v.2.9 provided by Begueria et al. (2023) at a 0.5° spatial resolution.
SPEI is a meteorological drought index based on a water balance that includes the effect of both
precipitation and temperature through potential evapotranspiration (PET), here computed using
the FAO-56 Penman-Monteith method. We used SPEI to identify grid cells with drought conditions
for each year over Europe, selecting the ones for which SPEI is lower than -1 (mild to extreme
drought, see Table S2) for at least one month between June and August. The selected stressed
areas are represented in Figure S1.

Then, we defined four ecoregions in Europe to evaluate the simulated LAl, based on a
simplification of the original Koppen-Geiger climate classification at a 0.5° spatial resolution
provided by Beck et al. (2023) built over the period 1991-2020. The four resulting ecoregions are
referred to as “dry”, “temperate”, “cold”, and “boreal”. Their spatial distribution as well as details
about the climate classification grouping are provided in Figure S2.

Finally, for projection analysis, four ecoregions have also been defined based on the same climate
classification grouping. These classifications are derived from Beck et al. (2023) under the SSP370
scenario over 2070-2100, using a 2° spatial resolution, consistent with the projections performed
with ORCHIDEE (Figure S3).

2.3. Data assimilation framework
To improve GPP and LE response simulated in ORCHIDEE, and in particular during drought events,

we optimized the main parameters of the processes influencing these two variables using data
assimilation (DA) techniques, as described in the following sections.
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2.3.1. Parameter selection following sensitivity analyses

Prior to conducting DA, we ran sensitivity analyzes (SA) to select the most influential parameters
for simulating GPP and LE. This preliminary step enables to limit the number of parameters
included in the DA procedure, which reduces its computational cost and the risk of overfitting.
We performed SA at each selected ICOS site for GPP and LE in 2018 to identify the most important
parameters during a year characterized by drought events in Europe. We used the Morris method
(Morris, 1991), which is a cost efficient qualitative SA method that provides a ranking of the
parameters to which GPP or LE are the most sensitive. We tested 128 parameters involved in GPP
or LE representation considering a range of variation defined based on expert and physical
knowledge for each parameter. Based on the SA results, we finally selected 20 parameters, most
of them being PFT-dependent, mainly related to photosynthesis, stomatal conductance, biomass,
soil hydrology and moisture stress vegetation response. These parameters are presented in Table
S3.

2.3.2. Optimization tool

Following SA, we optimized the 20 selected parameters using the ORCHIDEE DA system
(ORCHIDAS, https://orchidas.Isce.ipsl.fr/) that has been described in details in Bastrikov et al.
(2018) and used in many studies (Kuppel et al., 2012; Peylin et al., 2016; Mahmud et al., 2021;
MacBean et al., 2022; Bacour et al., 2023). ORCHIDAS allows finding a combination of parameter
values that minimizes a cost function quantifying the mismatch between the observed and
simulated variables as well as the distance between optimized parameters and their prior values,
accounting for errors associated with all these components. Assuming Gaussian distributions for

model-data and parameters errors, the cost function expresses as (Tarantola, 2005),

J(x) = % [(Hepp(x) = Yepp)™ - Rgpp - (Hepp (%) — Yepp) + (Hpe () = y12)" - Rig - (Hpp(x) — yue) + (x —
xp)"T B (o — xp)] (Eq. 2)

with yepp,1r the observed GPP or LE, and Hgpp,x(x) the corresponding simulated variable. x,, is
the prior and x is the optimized vector of parameters. Rgpp,,; and B are the prior error covariance
matrices for the observations and the parameters, respectively. As in previous studies, we
considered only diagonal elements for Rgpp/.r and B, and defined the parameter errorin B as 15%
of the parameter range of variation while the observations errors were set to the RMSD between
observed GPP and LE data and the prior model simulations (Kuppel et al., 2012; Bacour et al.,
2023).

We performed DA using the genetic algorithm (GA) method (Goldberg, 1989; Haupt & Haupt, 2004;
Santaren et al., 2014), which is a global search method that reduces the risk of falling into a local
minima of J(x) during its minimization. We ran the algorithm for 25 iterations with a population of
32 individuals to ensure its convergence.
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2.3.3. Optimization experiments

Since most ORCHIDEE parameters are specified for each PFT, all DA experiments involve grouping
the ICOS sites based on the dominant PFT fraction. Indeed, conducting multi-site optimizations
per PFT allows us to derive a set of generic parameters for each PFT, ensuring representation of
diverse conditions across multiple sites rather than specific conditions at a single site (Kuppel et
al., 2012; Macbean et al., 2022). 42 out of the 46 sites were used in the optimizations, as the years
used for DA (2017 and 2018) were not available for 4 sites, which were used for evaluation only
(Table S1).

We conducted two successive DA experiments (Figure 2) to both support the development of a
new drought-acclimated modeling scheme in ORCHIDEE (see section 3.1) and to evaluate its
performance.

We performed a first optimization of the selected parameters (section 2.3.1, Table S3) by
assimilating in situ GPP and LE data either in 2017 or in 2018 to account for different environmental
conditions (2018 exhibited more pronounced soil water stress than 2017, Figure S4). Following this
step, we analyzed the change in parameter values after optimization, with a specific focus on the
parameter that determines the speed of stomatal closure @, qter stress (S€CtION 2.1.2). After this step,
a new definition of a,,qcer stress IS Proposed, which incorporates vegetation potential to acclimate
to long-term VPD conditions (see section 3.1), resulting in a drought-acclimated version of
ORCHIDEE (ORCHIDEE-ACCLIM). This version is compared to the standard version (ORCHIDEE-
STANDARD) in which @y, gier stress iS @ cOnstant calibrated per PFT.

In the second DA step, in situ GPP and LE data were assimilated to optimize each of the two
ORCHIDEE versions considering both 2017 and 2018, seeking for more generic parameter values.
Indeed, we aim at obtaining combinations of optimized parameters that enhance the model
performance during drought years without compromising performance in other periods.

Each optimization experiment involved assimilating GPP and LE data at daily intervals using 7-day
moving averages. This approach helps to reduce the influence of high-frequency fluctuations,
which are more challenging to capture and may introduce noise, while still retaining the impact of
longer-term events such as droughts that develop over at least a week. This ensures that the
minimization of J(x) (eq. 2) focuses on significant variations rather than short-term noise.

POST
ORCHIDEE-STANDARD
@ ater stress = fPFT)
l in situ
@ DA In situ o @ @ Evaluation SIHPELE
)

2017 or 2018 GPP & LE 2017 and 2018 2018 to 2020 Regional
products

POST

ORCHIDEE-ACCLIM GPP, LE, LAl

ORCHIDEE-ACCLIM

a . = f(VPD,P .
aicr e = PO PFD @ yarer stress = f(VPD.PFT)

Figure 2: Overview of the DA and evaluation framework. Step 1 corresponds to the first DA
experiment performed in either 2017 or 2018 that leads to the ORCHIDEE-ACCLIM model version
with the redefinition of a,,4ter stress @S described in eq. 3. Step 2 is the second DA experiment using
both years to optimize each model version (ORCHIDEE-STANDARD and ORCHIDEE-ACCLIM). The
third step corresponds to the evaluation of each optimized model version against in situ and
regional evaluation data.
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To evaluate the simulated variables after DA, in addition to using 2019 and 2020 as independent
years not included in the optimization, we also considered the year 2018. This inclusion allows for
more sites to be evaluated at the site scale, as flux data were not available until 2020 at several
ICOS Warm Winter 2020 sites.

3. Results

3.1. Defining long term VPD effect on vegetation response to soil moisture stress

The first optimization step (section 2.3.3) improved the simulated GPP RMSD by 15%/18% and LE
by 28%/30% in 2017/2018 compared to ORCHIDEE-PRIOR (Table S4).

We analyzed the distribution of the optimized values of @, ger stress (SPEEd Of Stomatal closure
during soil moisture stress) for each PFT depending on various environmental variables, and
investigated if these optimized values could be defined as a function of environmental drivers,
such as air and soil temperature, radiation, VPD over the assimilation period. To do so, several
fitting functions were tested (not shown). The only significant relationship demonstrated was
between mean annual VPD and a,,qter stress (Figure 3), with a coefficient of determination (R?) of
0.92 when all other tested fitting functions and environmental drivers, including multilinear
regressions, only led to a R2 lower than 0.2. R2 was calculated with the r2_score function from the
sklearn.metrics module in Python.

6
54 R2 = 0.92 + (C3Crop
» BorENF
24 e C3TempGRA
& « TempDBF
3 31 «  TempENF
g 2 - C;BorGRA
¢ Multisite optimization 2017
1- O Multisite optimization 2018
@
0 - . :
0 2 4 6 8
VPD (hPa)

Figure 3: Optimized a,,qter stress Values () obtained after the several multi-site assimilations versus
yearly averaged VPD (hPa) over all sites grouped by dominant PFT in 2017 and 2018. The marker
colors represent the dominant PFT while the marker shapes correspond to the year. The sigmoid
regression function providing the best model-data fit is represented in red, with the corresponding
coefficient of determination (R?) on the top right.

Figure 3 shows the optimized values of @,,ter stress fOr the years 2017 and 2018 plotted against the
mean annual VPD across all sites grouped by dominant PFT. Considering all PFTS, ayacer stress
decreases with increasing mean annual VPD values. Lower a,,q;er stress Values mean that stomata
remain open for longer periods when soil moisture decreases, indicating increased vegetation
resistance to droughts under long-term high VPD conditions. Cz3Crop show the lowest optimized
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Quater stress Values, which are associated with the highest mean annual VPD conditions both in 2017
and 2018. For the other PFTs, different mean annual VPD values are found between the two years,
with higher optimized values of a,,uter stress TOr the year with lowest VPD conditions. Notably, the
two boreal PFTs (BorENF and CsBorGRA) show the highest optimized a,,qter siress Values. These
highest a,,qter stress Values illustrate that vegetation is less resistant to soil moisture stress under
long-term low VPD conditions.

Across all PFTs, the best model-data fit was obtained with the following sigmoid function (with
coefficients calibrated using the curve_fit function from the scipy.optimize module), which
expresses the variation of a,,4ter stress With rolling mean annual VPD (VPDyear) (hPa), yielding an R2
of 0.92,

(a —b)

(Eq. 3)

water stress = b + ~d
<I.+ exp(VPDyear _E) >

with a =4.8, b = 0.15, ¢ = 6, and d = 3 four empirical coefficients.

This function was used instead of considering a constant value of a,,qrer siress fOr €ach PFT
(ORCHIDEE-STANDARD version) to derive a model version called hereafter ORCHIDEE-ACCLIM. The
impact of a,,qter stress derived from this function for a range of rolling mean annual VPD conditions
on the water stress function f,, qier stress 1S illustrated in Figure 4.

The four empirical coefficients of this function were ultimately optimized in a DA experiment, along
with the other model parameters (DA step 2 in Figure 2). Recognizing that various vegetation types
may exhibit distinct responses to drought events despite similar environmental conditions
(Schmied et al., 2023), we opted to define and optimize these four parameters for each PFT.
Therefore, this new definition of a,,4ser stress Was initially observed across the different PFTs, and
we assume that this behavior also applies within each PFT.
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Figure 4: ORCHIDEE water stress function fyarer seress (-) Variations with soil moisture (kg.m),
illustrated with a minimum stress for soil moisture above 18 kg.m2 and a maximum stress below
5 kg.m2. The ORCHIDEE-STANDARD version is represented in red (corresponding to @, qrer stress =
1), while the ORCHIDEE-ACCLIM version is represented by all other colors associated with the VPD
value (hPa) used to compute ayuter stress-
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3.2. Evaluation of optimized simulated GPP and LE during drought events
We here assess the performance of the two optimized model versions (POST ORCHIDEE-
STANDARD and POST ORCHIDEE-ACCLIM) following the multi-site DA over the whole 2017-2018

period (step 2 in Figure 2), which corresponds to step 3 evaluation in Figure 2.

3.2.1. Site scale evaluation
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Figure 5: Evaluation of the simulated GPP (gC.m-2.d"") (first row) and LE (W.m2) (second row) at all
Warm Winter 2020 sites for which £, qier stress reaches a value below 0.85 between May and
September in 2018, 2019, or 2020, for ORCHIDEE-PRIOR (dark blue), and the two optimized
versions: POST ORCHIDEE-STANDARD (light blue) and POST ORCHIDEE-ACCLIM (purple). This
evaluation is based on RMSD values between the daily observed and simulated variables. The
number of sites included in the GPP or LE evaluation for each PFT is indicated in the top center
box. Note that the number of sites can differ between the GPP and LE evaluations due to uneven
data gaps.

Figure 5 shows the GPP and LE RMSD values per PFT for ORCHIDEE-PRIOR and the two optimized
versions, POST ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM, over the period 2018-2020.
The RMSD values are computed for the entire period from May to September, but only for sites
where f, qter stress falls below 0.85 at any point during this period, which indicates significant soil
moisture stress conditions. Concerning GPP, the median RMSD decreases for the two optimized
model versions compared to ORCHIDEE-PRIOR for TempENF and BorENF, while only the POST
ORCHIDEE-ACCLIM version improves the median RMSD for TempDBF. However, note that DA
degrades the simulated GPP with the two optimized model versions for all herbaceous PFTs
(CsTempGRA, C3BorGRA, C3Crop) (see discussion in section 4.3). Across all PFTs, POST ORCHIDEE-
ACCLIM reduces the median GPP RMSD by 18% (Table S5), while no improvement is found with
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POST ORCHIDEE-STANDARD. For LE, both optimized model versions reduce the median RMSD for
all PFTs except CsTempGRA. The two optimized model versions lead to a similar reduction in the
median RMSD across all PFTs by 8 to 9% (Table S5).

Interestingly, when considering all 46 sites and the entire seasonal cycles from 2018 to 2020, POST
ORCHIDEE-STANDARD improves the median GPP RMSD by 10% and LE by 19% across all PFTs,
while POST ORCHIDEE-ACCLIM leads to a lower improvement with 3% for GPP and 15% for LE
(Table S6). Therefore, the higher performance of POST ORCHIDEE-ACCLIM in simulating GPP
compared to POST ORCHIDEE-STANDARD is found specifically when evaluating sites with
significant soil moisture stress conditions between May and September (Figure 5).

3.2.2. Regional scale evaluation

GPP evaluation (MJJAS 2020) over the stressed areas
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Figure 6: Maps of RMSD change (%) between the RMSD computed between the data-driven GPP
and post-optimization simulated ones (for POST ORCHIDEE-STANDARD on the left column or POST
ORCHIDEE-ACCLIM in the middle column), and the RMSD obtained with ORCHIDEE-PRIOR, for
each evaluation product (FLUXSAT, FLUXCOM-X-BASE, SIF-GPP). The right column shows the RMSD
difference (gC.m2.d"") between POST ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each
evaluation product. The selected grid cells correspond to the stressed areas (section 2.2.3),
between May and September 2020. Data are 8-day averages with a 0.5° spatial resolution. For the
first two columns, grid cells in green depict an improvement in the posterior simulated GPP
compared to ORCHIDEE-PRIOR (reduction in RMSD), while grid cells in pink show a degradation of
the simulated GPP after optimization. For these two columns, the median RMSD change (%) is
provided in the top left corner.

Figure 6 presents the evaluation of the simulated GPP for POST ORCHIDEE-STANDARD and POST
ORCHIDEE-ACCLIM compared to ORCHIDEE-PRIOR against the three GPP evaluation products over

134



stressed areas (based on the SPEI drought index, see section 2.2.3) between May and September
2020. POST ORCHIDEE-ACCLIM achieves a more significant reduction in GPP RMSD compared to
ORCHIDEE-PRIOR than POST ORCHIDEE-STANDARD. The median improvement in GPP RMSD for
POST ORCHIDEE-ACCLIM ranges between 7% and 9%, over all grid cells considered and depending
on the evaluation product, whereas POST ORCHIDEE-STANDARD shows an improvement of no
more than 3% in 2020. Higher performance of POST ORCHIDEE-ACCLIM over POST ORCHIDEE-
STANDARD is also observed in 2018 and 2019 (Figures S5 and S6). Across 2018, 2019, and 2020,
considering all evaluation products, POST ORCHIDEE-STANDARD results in an equivalent number
of degraded and improved grid cells, while POST ORCHIDEE-ACCLIM improves the simulated GPP
for 61% of the grid cells in stressed areas (Table S7). However, regions such as the Pyrenees, the
Alps, and Northern Norway exhibit GPP degradation in both optimized versions. Then, despite the
general trend of lower GPP RMSD values with POST ORCHIDEE-ACCLIM compared to POST
ORCHIDEE-STANDARD across most grid cells, exceptions include regions like the Northwestern
part of France and Southeastern Europe.

LE evaluation (MJJAS 2020) over the stressed areas
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Figure 7: Maps of RMSD change (%) between the RMSD computed between FLUXCOM-X-BASE and
post-optimization simulated LE (for POST ORCHIDEE-STANDARD on the left column or POST
ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between FLUXCOM-X-BASE
and ORCHIDEE-PRIOR LE. The right column shows the RMSD difference (W.m?) between POST
ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each evaluation product. The selected
grid cells correspond to the stressed areas (section 2.2.3), between May and September 2020. Data
are 8-day averages with a 0.5° spatial resolution. For the first two columns, grid cells in green
depict an improvement in the posterior simulated LE compared to ORCHIDEE-PRIOR (reduction in
RMSD), while grid cells in pink show a degradation of the simulated LE after optimization. For these
two columns, the median RMSD change (%) is provided in the top left corner.

Figure 7 presents a similar evaluation against FLUXCOM-X-BASE LE. Both optimized models exhibit
an equivalent median degradation of 6% in simulated LE compared to ORCHIDEE-PRIOR. This
degradation is observed across nearly all stressed areas, particularly in Western and Eastern
Europe and Northern Norway, with a slight improvement mainly in Sweden. Between the two
model versions, POST ORCHIDEE-ACCLIM demonstrates higher performance than POST
ORCHIDEE-STANDARD, showing a greater reduction in RMSD across most grid cells, except in
Southeastern Europe and Spain. Similar patterns were observed in 2018 and 2019, with POST
ORCHIDEE-ACCLIM showing a slightly lower median LE degradation than POST ORCHIDEE-
STANDARD compared to ORCHIDEE-PRIOR (Figures S7 and S8 and Table S8). Note that the general
degradation in the simulated LE after the two optimizations contrasts with the overall
improvement in the simulated GPP for POST ORCHIDEE-ACCLIM (Figure 6).

135



3.3. Additional validation against LAl over European ecoregions

LAl mean seasonal cycle (2018-2020)
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Figure 8: Mean seasonal cycle of LAl (m2.m2) for ORCHIDEE simulations (solid lines) compared to
three evaluation products (MODIS, PROBA-V, OLCI) (dotted lines) over the four ecoregions from
2018 to 2020. Data are monthly averages with a 0.5° spatial resolution. For all evaluation products
and ORCHIDEE simulations, grid cells where the evaluation products have missing data have been
masked. The gray shaded areas represent the uncertainty in the PROBA-V and OLCI LAI products,
for which uncertainty is provided (see section 2.2.2).

Figure 8 shows the mean seasonal cycle of LAl simulated by ORCHIDEE-PRIOR and the two
optimized versions, evaluated against three different evaluation products for each ecoregion.
Across all ecoregions, POST ORCHIDEE-ACCLIM simulates a lower LAl than POST ORCHIDEE-
STANDARD. Both optimized versions reduce the simulated LAl in the boreal and dry ecoregions
compared to ORCHIDEE-PRIOR, with POST ORCHIDEE-ACCLIM also reducing LAl in the temperate
ecoregion. In contrast, POST ORCHIDEE-STANDARD increases LAl in the cold ecoregion compared
to ORCHIDEE-PRIOR.

A notable spread in LAl estimates is observed between the three evaluation products, highlighting
significant uncertainties. Despite this, the simulated peak of LAl for the boreal, cold, and temperate
ecoregions falls within the range of the evaluation products. However, in the dry ecoregion, the
simulated LAl is significantly overestimated, even though POST ORCHIDEE-ACCLIM reduces this
overestimation.

All simulated LAl seasonal cycles, except in the dry ecoregion, exhibit a delay of 1 to 2 months in
the summer LAl maximum compared to the evaluation products, all of them showing an
agreement in the seasonal LAl phase. This results in a systematic overestimation of LAl during mid-
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summer and autumn. In the dry ecoregion, while the LAl maximum in ORCHIDEE-PRIOR was also
delayed by a month compared to the evaluation product, the optimization succeeded in correcting
this phase issue for both POST ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM.

The two optimized versions show the strongest reduction in LAl RMSD across the 3 evaluation
products in the boreal ecoregion, with 25 to 36% for POST ORCHIDEE-ACCLIM and 13 to 16% for
POST ORCHIDEE-STANDARD (Table S9). Then, while POST ORCHIDEE-ACCLIM improves the RMSD
by 13 to 18% in the dry ecoregion, and by 8 to 17% in the temperate ecoregion, RMSD changes
with POST ORCHIDEE-STANDARD range from an increase of 3% to a reduction of 4% in these two
ecoregions. The lowest LAl RMSD improvement is found for the cold ecoregion. However, while
POST ORCHIDEE-ACCLIM improves it by 6 to 10%, POST ORCHIDEE-STANDARD leads to a
degradation by up to 16%.

Note that the significant improvement in the simulated LAl with POST ORCHIDEE-ACCLIM could be
attributed to changes in parameter values affecting carbon allocation and pool growth, such as
the specific leaf area (SLA) (Table S3). Additionally, the improvement in simulated GPP may also
play a role, due to the coupling of the carbon assimilation and biomass allocation schemes in
ORCHIDEE.

3.4. Projections over Europe
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Figure 9: Mean seasonal cycles of simulated GPP (gC.m-2.d""), LE (W.m2), LAl (M2.mM2), fiater stress (-
), and surface soil moisture (kg.m) over Europe, projected under the SSP370 scenario for the
period 2015-2034 and 2081-2100. Data are 8-day averages with a 2° spatial resolution.

Figure 9 shows the mean seasonal cycles of simulated GPP, LE, LAl, f,,ater stress:» aNd surface soil
moisture over Europe for 20 years at the beginning (2015-2034) and at the end of the century
(2081-2100) under the SSP370 scenario. An increase in the seasonal amplitude of GPP is observed
across all model versions by the end of the century compared to 2015-2034, with increases of 14%
for ORCHIDEE PRIOR, 8% for POST ORCHIDEE-STANDARD, and 4% for POST ORCHIDEE-ACCLIM.
The most pronounced increase occurs in the boreal ecoregion (Figure S9). In addition, the mean
seasonal cycle of GPP shows an earlier seasonal maximum by the end of the century, by
approximately 15 days for the two optimized versions. A similar shift is also found in the seasonal
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cycle of LAl These changes are particularly notable in the dry and temperate ecoregions (Figures
S9 and S10).

Conversely, LE mean seasonal cycle, driven by the seasonal cycle of plant transpiration (not
shown), shows no significant changes in its seasonal phase or amplitude between 2015-2034 and
2081-2100, nor between the different model versions.

Then, all model versions also project a decrease in surface soil moisture at the end of the century
compared to 2015-2034, particularly during the peak of minimum soil moisture in August.
Therefore, all versions predict stronger soil moisture stress (i.e., lOWer f,, qier stress)- HOWever, while
the three models show similar increases in soil moisture stress from spring until early August,
POST ORCHIDEE-ACCLIM reduces the simulated stress levels afterwards compared to ORCHIDEE
PRIOR and POST ORCHIDEE-STANDARD, resulting in the lowest stress level after the summer peak
of minimum soil moisture. Notably, POST ORCHIDEE-ACCLIM achieves this despite simulating the
lowest surface soil moisture.
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Figure 10: Projected variations of GPP (gC.m2.d™") (top), LE (W.m?) (middle), and f,,ater stress ()
(bottom) over Europe from 2015 to 2100 under the SSP370 scenario. The mean annual values are
represented in solid lines, and the corresponding linear regressions are in dotted lines with the
regression coefficient values (slope) given in the legend for each model version.

Figure 10 illustrates the temporal variations and trends in mean annual GPP, LE, and f,,qier stress

across Europe from 2015 to 2100. Consistent with the seasonal cycle findings in Figure 9, GPP is
projected to increase until 2100, with the fastest rate observed in the ORCHIDEE PRIOR model
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(0.0076 g€.m=2.d".y") and the slowest in the POST ORCHIDEE-ACCLIM model (0.0034 gC.m2.d "y
. This increase in GPP can be attributed to the CO, fertilization effect. Indeed, under the SSP370
scenario, atmospheric CO; levels are projected to rise by an average of 5.46 ppm.y' between 2015
and 2100, resulting in more than a doubling of the atmospheric CO, concentration by 2100
compared to current levels (Figure S11). LAl also shows a slightly positive trend (Figure S12), with
comparisons between model versions similar to those for GPP: the ORCHIDEE PRIOR model
exhibits the highest increase rate (0.0017 m2.m-2.y"), while the POST ORCHIDEE-ACCLIM model has
the slowest rate (0.0010 m2.m-2.y"). In contrast, the projected LE shows negligible trends between
2015 and 2100.

Then, all model versions depict an increasing trend in soil moisture stress until the end of the
century. However, the POST ORCHIDEE-ACCLIM version projects the smallest trend. Indeed, the
soil moisture stress trend in POST ORCHIDEE-ACCLIM is 22% lower than in POST ORCHIDEE-
STANDARD and 50% lower than in ORCHIDEE-PRIOR. Therefore, despite the optimized versions
initially showing higher soil moisture stress than the prior version at the beginning of the century,
POST ORCHIDEE-ACCLIM simulates the lowest soil moisture stress among the three versions from
2040 onwards.

4. Discussion

4.1. Accounting for physiological acclimation mechanisms in vegetation response to
drought events in LSMs

This study evidences the importance of better accounting for vegetation's potential to acclimate
to environmental drivers, such as VPD, in LSMs during drought events. This DA approach,
considering years characterized by drought conditions in Europe, has led to a new definition of
the speed of stomatal closure during soil moisture stress, incorporating vegetation acclimation to
long-term VPD conditions (eq. 3). The acclimatation parameterization is consistent with the
literature: Grossiord et al. (2017) evidenced stomatal acclimation to elevated VPD in some tree
species in semi-arid regions during soil drying periods. Other experimental studies have also
demonstrated that stomatal conductance can acclimate to long-term VPD exposure (i.e. weeks to
months) (Nejad & van Meeteren 2008; Sermons et al., 2012), with high VPD conditions enhancing
stomatal conductance and plant transpiration (Marchin et al., 2016). This acclimation response
contrasts with the expected decrease in stomatal conductance with increasing VPD, emphasizing
the need to differentiate between the short-term response to VPD and the effects of long-term
exposure on stomatal behavior in LSMs. As a result, some plant traits defined as parameters in
LSMs could be allowed to vary over time to account for vegetation's acclimation potential to
environmental conditions.

Several mechanisms behind stomatal acclimation to long term VPD have been suggested. Marchin
et al. (2016) proposed that the phytohormone abscisic acid (ABA), which plays a crucial role in
stomatal closure, is involved. Stomatal acclimation could be explained by changes in the sensitivity
of ABA biosynthesis to VPD or in the responsiveness of stomata to ABA. This acclimation can allow
plants to maintain carbon uptake under high VPD conditions despite increased water loss (Wang
& Kellomaki, 1997; Kutsch et al., 2001; Herbst et al., 2008). Additionally, stomatal acclimation could
help cooling the leaf through transpiration (Nobel, 1974) and maintaining leaf temperature within
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an optimal range (Mahan & Upchurch, 1988). This cooling effect of transpiration occurs because
the energy that would otherwise increase the leaf's temperature is used in converting liquid water
into water vapor (Grossiord et al., 2020).

This study focuses on stomatal acclimation to long-term VPD under soil moisture stress conditions.
However, further investigation is needed to understand vegetation's potential to acclimate to long-
term soil moisture conditions in response to drought events. Indeed, the effects of these two
drivers are difficult to disentangle as VPD and soil moisture are coupled over extended periods
(Novick et al., 2024). In LSMs, we could hypothesize that parameters such as the soil moisture
threshold above which there is no water stress and the one below which stomata close could
acclimate to long-term soil moisture conditions or to the frequency and intensity of drought
events. These parameters determine when vegetation begins to respond to a drought event and
reach maximum stress, which could be refined as functions incorporating acclimation
mechanisms, such as to account for ecological stress memory (Gessler et al., 2020). However, in
this study using ORCHIDEE, no relationship was found between 6,,, (soil moisture at wilting point)
OF Pmax - Orc (sOil moisture above which there is no stress) and long-term environmental drivers
(not shown) when each year (2017 or 2018) was optimized independently. Currently, these
parameters depend solely on soil texture type, but future work could refine them to investigate
potential acclimation to specific climate and/or soil variables.

4.2, Link between the acclimation function and the isohydricity concept

The ayqter stress COEFficient, which defines the speed of stomatal closure during drought events (eq.
2), can be linked to the concept of isohydricity, describing plant water stress strategies (Hochberg
et al., 2018). Isohydric species close their stomata when soil water potential drops to preserve leaf
water potential, risking carbon starvation, while anisohydric species keep their stomata open,
risking hydraulic failure (Martinez-Vilalta et al., 2014). In this study, high a,, qier stress Values indicate
a rapid reduction in stomatal conductance when soil moisture decreases below a threshold
marking the onset of a drought event (p,.qx - 9rc), indicative of an isohydric strategy (Figure 4).
Conversely, Iow a,,q4ter stress Values suggest that stomata remain open longer as soil moisture
declines, reflecting an anisohydric strategy. Following the first DA phase, CsCrop showed low
optimized a,,qter stress Values (Figure 3), aligning with findings by Li et al. (2017) that crops exhibit
more anisohydric behavior based on vegetation optical depth data. In contrast, boreal biomes
(BorENF and C3BorGRA) demonstrated high optimized a,,qier stress Values, indicating a more
isohydric behavior.

In addition to the biome type dependency in stomatal response to droughts, the acclimation
function introduces a dependency of a,,qter stress ON loNg-term VPD, allowing vegetation responses
to drought to vary within the same PFT depending on the local environmental conditions. Novick
et al. (2019) emphasized that the degree of isohydricity alone is insufficient to assess stomatal
behavior in response to soil moisture decrease, as VPD also influences the relationship between
leaf and soil water potentials. Moreover, several studies have shown that plants of the same
species can switch between isohydric and anisohydric behavior depending on environmental
conditions (Guo et al., 2020), including their growing conditions (Hochberg et al., 2018; Feng et al.,
2019). Therefore, defining a,,qier stress @S @ cONstant dependent solely on biome type would fail to
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account for the impact of environmental conditions on the speed of stomatal closure during
droughts.

4.3. Representativeness of the observation data and DA limitations

DA performance is limited by uncertainties in the assimilated variables. For instance, uncertainties
in in situ GPP estimates arise from the partitioning method (Tramontana et al., 2020). Similarly,
uncertainty exists in the in situ LE data obtained by eddy covariance, which have been corrected
using the Bowen ratio method to ensure energy balance closure, as is the case in ORCHIDEE
(section 2.2.1). The simulated GPP improves following DA when evaluated both at the site (Figure
5) and the regional (Figures 6, S5, and S6) scales during soil moisture stress. However, while the
site scale evaluation shows an improvement in the median LE RMSD by 8% to 9% across all PFTs
after DA compared to ORCHIDEE-PRIOR (Figure 5, Table S5), there is a median degradation
between 6% and 12% over the stressed areas when evaluated against FLUXCOM-X-BASE LE at the
regional scale (Figures 7, S7, and S8). FLUXCOM-X-BASE's upscaling of in situ fluxes integrates LE
data from the ICOS Warm Winter 2020 database, but no energy balance correction was applied
for this global product (Nelson et al., 2024). Therefore, different assumptions between the LE data
used for assimilation and evaluation at the site scale and those used for regional scale evaluation
could explain the diverging DA performances between these scales.

Uncertainties in the data-driven products considered for the regional scale evaluation also limit
the assessment of the simulated variables in ORCHIDEE. For GPP, using three different global
evaluation products (FLUXCOM-X-BASE, FLUXSAT, and SIF-GPP) allows accounting for uncertainties
related to various estimation methods and underlying assumptions. This approach also identifies
discrepancies between different estimates in GPP seasonal cycles over stressed areas in Europe.
While FLUXCOM-X-BASE and SIF-GPP show an asymmetric GPP seasonal cycle around the
maximum in late June, FLUXSAT presents a symmetrical GPP seasonal cycle around the peak in
early July (Figure S13). Therefore, FLUXSAT appears unable to accurately capture the GPP summer
drawdown over the stressed areas, making it less suitable for evaluating the simulated GPP during
drought years. Notably, across the three evaluation products, the lowest improvement in GPP
using ORCHIDEE-ACCLIM is obtained when using FLUXSAT for assessment over the stressed areas
(Figures 6, S5, and S6). Regarding the SIF-GPP product, previous studies have highlighted the high
performance of SIF to track the impacts of drought stress on plant physiology at large scales,
surpassing traditional vegetation indices such as the normalized difference vegetation index
(NDVI) and the enhanced vegetation index (EVI) (Cao et al., 2021; Song et al., 2018; Sun et al., 2015).
While DA improves the simulated GPP and LE over the whole period considered in the assimilation,
the main evaluation in this study focuses on conditions with significant soil moisture stress and
uses two years of independent data (not included in the assimilation). This focus explains some
observed degradations in the simulated variables compared to ORCHIDEE-PRIOR for the soil
moisture stress periods. The model may therefore lack the genericity needed to apply the
optimized parameter values to independent years, potentially highlighting overfitting during the
assimilation period. Then, the contrasting results between tree and herbaceous PFTs at the site
scale (Figure 5, Table S5) could be related to the specificities of herbaceous structure, phenology,
and management. Thus, structural model errors related to herbaceous representation could be
reduced by using specific ORCHIDEE versions that explicitly represent these specificities. For
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example, the ORCHIDEE-GM version incorporates a grassland management module that includes
cutting, grazing, and fertilization (Chang et al., 2013, 2015). For croplands, the ORCHIDEE-CROP
version includes a module for better accounting of crop phenology and management practices
(Wu et al., 2016).

Finally, specific regions with no improvement in the simulated fluxes following DA can highlight
limitations in the DA approach, related to the representativeness of the sites selected for the
assimilation. Notably, in Northern Norway, the simulated GPP is degraded compared to
ORCHIDEE-PRIOR in both optimized versions across all evaluation products (Figure 6). Boreal
broadleaf summergreen forests and C3BorGRA are prevalent in this region, but the boreal
broadleaf summergreen forest PFT was not optimized since no representative ICOS Warm Winter
2020 site was selected in this study. Similarly, a degradation of the simulated GPP compared to
ORCHIDEE-PRIOR is observed over the Alps and the Pyrenees, possibly due to the unique
characteristics of these high-altitude zones, which complicate accurate simulation of vegetation
functioning, or due to the meteorological forcing having too coarse a resolution to accurately
represent the climate over these areas.

4.4. Additional challenges in representing vegetation response to drought events in LSMs

In addition to stomatal regulation mechanisms, vegetation response to droughts also involves
non-stomatal limitations that can coordinate with stomatal limitations (Flexas et al., 2008; Gago et
al.,, 2016) and should be considered in LSMs. Several studies have reported a decrease in
photosynthetic activity under soil moisture stress (Keenan et al., 2010; Gourlez de la Motte et al.,
2020), which could be related to a down-regulation of the Rubisco enzyme (Flexas et al., 2004,
Sugiura et al., 2020), a decrease in carbon demand (Fatichi et al., 2014), or a reduced mesophyll
conductance (Flexas et al., 2012). In ORCHIDEE, the same soil moisture stress response is applied
to the stomatal conductance, mesophyll conductance, and photosynthetic rate (section 2.1.2),
assuming full coordination between the three. A future refinement of the model could be
considered by distinguishing between specific responses. Optimization approaches describing
non-stomatal limitations have been proposed (Dewar et al., 2018), however, their implementation
in LSMs is challenging due to limited understanding of non-stomatal limitation dynamics (Yang et
al., 2019).

Vegetation phenological and anatomical changes under prolonged soil moisture stress are also
essential to accurately represent in LSMs. Droughts can induce leaf senescence, reducing leaf area
(Hochberg et al., 2017; Schuldt et al., 2020), which limits plant water loss but also carbon uptake
required to rebuild canopy structure after drought stress. Sustained droughts can also lead to
hydraulic failure (Salmon et al., 2015) and tree mortality (Blackman et al., 2016).

Then, in addition to physiological acclimation such as the stomatal acclimation function to long
term VPD conditions described in this study, anatomical acclimation mechanisms have also been
reported in response to droughts. Anatomical adjustments influencing stomatal conductance,
such as changes in stomatal size and density, were found in some plant species in response to
long term high VPD exposure (Du et al., 2020). Acclimation of the plant hydraulic system to high
VPD conditions has also been reported, such as through increasing secondary wall thickness
(Hacke et al., 2001; Pittermann et al., 2006) or larger roots (Du et al., 2020). Plants can also respond
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to drought by developing deeper roots to access soil moisture when topsoil layers are depleted
(Chaves et al., 2002).

Finally, an integrated assessment of vegetation response to soil moisture stress would require an
accurate representation of drought associated risks in LSMs, such as fires and insect outbreaks
(Williams et al., 2016; Allen et al., 2015).

4.5. Projected impact of acclimation

With the projected VPD increasing trend of 0.04 hPa.y”" under the SSP370 scenario between 2015
and 2100 over Europe (Figure S14), the acclimation function in the POST ORCHIDEE-ACCLIM
version is expected to enhance vegetation resistance to soil moisture decrease compared to the
other model versions. Indeed, POST ORCHIDEE-ACCLIM simulates a lower average soil moisture
stress over Europe at the end of the century compared to the two other model versions (Figures
9 and 10). This reduced soil moisture stress would typically be expected to increase vegetation CO>
and H,0 exchanges, thereby enhancing GPP and LE. However, this anticipated increase during soil
moisture stress periods is moderated by the optimization of parameters that influence the mean
seasonal cycle of GPP and LE, not just during drought events. For example, the optimization
reduces SLA for 5 out of the 6 PFTs represented in this study (BorENF, TempDBF, TempENF,
C3BorGRA, CGsTempGRA) in POST ORCHIDEE-ACCLIM, while SLA decreases for 2 PFTs only (BorENF,
C3BorGRA) in POST ORCHIDEE-STANDARD (not shown). In ORCHIDEE, LAl is computed from the
simulated leaf biomass pool multiplied by SLA. Therefore, the decrease in SLA can contribute to
the lowest LAl and GPP in POST ORCHIDEE-ACCLIM.

In addition to the focus on acclimation to long-term VPD in vegetation response to soil moisture
stress, the projections underscore the significance of another factor to which photosynthesis can
acclimate. Indeed, the comparison of the GPP seasonal cycles between the beginning and the end
of the century indicates a projected shift in the seasonal phase towards earlier in the year by
century's end, while no such change is found for LE (Figure 9). This shift could be linked to changes
in Vcmax, the maximum rate of carboxylation, which is crucial for photosynthesis. Vcmax responds
to temperature by increasing up to an optimal point, beyond which it decreases. The mean air
temperature in Europe is projected to rise by 0.07 °C.y"" between 2015 and 2100 (Figure S14).
Consequently, higher air temperatures can cause Vcmax to get closer to its optimum temperature
earlier in the spring (Figure S15), then declining due to soil moisture limitations (Figure 9).
Accounting for Vcmax acclimation to plant growth temperature is critical for GPP projections. The
ORCHIDEE model incorporates this acclimation based on Kattge & Knorr (2007). Using equation 2
from their study, the optimum temperature for Vcmax is projected to increase at a rate of 0.036
°C.y' for Cs plants (Figure S16).

Finally, note that the projection ability to simulate future GPP and LE dynamics is limited by the
absence of coupling between the land surface and the atmosphere, as ORCHIDEE is not run in
coupled mode with an atmospheric circulation model. Running the model in coupled mode would
improve the accounting for land-atmosphere interactions and feedback. For instance, a reduction
in LE affects the energy and water budgets, altering the atmospheric state, which can in turn
influence stomatal conductance.

143



5. Conclusion

To enhance the accuracy of projected vegetation responses to climate change, this study highlights
the importance of incorporating acclimation mechanisms in LSMs. This work specifically addresses
drought events, revealing that refining vegetation physiological response to soil moisture stress
can be achieved by considering the influence of long-term VPD conditions on the speed of stomatal
closure.

Under soil moisture stress conditions, integrating long-term VPD acclimation in the ORCHIDEE LSM
improved the simulated GPP by 18% on sites when evaluated against in situ observations following
DA. In contrast, a response based solely on vegetation type did not improve the simulated GPP
following DA. At the regional scale in Europe, areas experiencing soil moisture stress saw a 7% to
9% improvement in simulated GPP in 2020 with the acclimation-based response, compared to a
maximum of 3% improvement with the biome-type dependency response. Additionally, only the
parameter optimization with the model version including long-term VPD acclimation improved the
simulated LAl over Europe. However, the two model versions performed similarly in simulating LE
at both site and regional scales.

Given the projected global increase in VPD alongside rising air temperatures, future projections
under the SSP370 scenario until 2100 were conducted. As anticipated, the model accounting for
vegetation acclimation to long-term VPD conditions during droughts projected the slowest
increase in soil moisture stress levels. These projections also indicated an increase in GPP over
Europe by the end of the century, with an earlier seasonal phase.

In conclusion, this study compared an LSM version that solely accounts for a biome-dependent
vegetation response to drought with a version incorporating vegetation potential to acclimate to
long-term environmental changes, such as VPD. The differing simulated responses between these
model versions highlight the necessity of integrating acclimation mechanisms in LSMs for more
accurate simulations and climate projections.

This new vegetation response to soil moisture stress that accounts for acclimation to long-term
VPD could be further evaluated using tree ring width data, which provides insights into GPP (Babst
et al., 2014; Tei et al., 2019). This assessment would determine if incorporating long-term VPD
acclimation improves the correlation between relative changes in tree ring width and simulated
GPP.

In future research, acclimation mechanisms that influence stomatal responses to soil moisture
stress could be explored in LSMs by incorporating a continuous representation of water potential
from soil to leaves through roots and trunk (referred to as hydraulic architecture). This approach
more effectively accounts for plant structure, such as height and water storage.
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Supplementary

Text S1: Description of the main processes related to the vegetation response to stress
implemented in ORCHIDEE.

VPD effect on stomatal conductance:

ORCHIDEE simulates stomatal conductance g, (m s7) following Yin & Struik (2009), with an
empirical function describing the effect of VPD f,pp (unitless):

- fyrp (equation S1)

with g, (m s7) the residual stomatal conductance when irradiance approaches zero, A the CO>
assimilation (umol m2 s') corresponding to the minimum between the electron transport limited
rate and the Rubisco-limited rate, and R, the day respiration (umol m2 s7). C; represents the
intercellular partial pressure (umol m=2 s) and C;, is the base compensation point when R, is zero
(WMol m2s™M). f,pp is defined using two empirical coefficients Ayppand By pp, (Unitless) as:

1
1/(Avpp—ByppVDP)-1

fvep = (equation S2)

Root water uptake:

ORCHIDEE simulates a dynamic water uptake by roots in which the root density profile is updated
at each timestep depending on the soil water content available for transpiration in each soil layer.
Therefore, the 100t gensity, Value that weights f,qcer seress; Matches the soil water content that can
be taken up by root (6, — 6,,p,). Roots can be allocated from the second soil layer to the bottom
layer at 2 m deep for trees, while the maximum root depth considered for grasslands and crops is
1T m.

Resistance to soil evaporation:

In ORCHIDEE, a resistance to soil evaporation enables limiting soil evaporation when soil moisture
decreases in the top 4 soil layers (~2.15 cm deep), corresponding to litter layers. This resistance to
soil evaporation ry,; (s m™) is defined as an empirical exponential function of litter moisture
following Sellers et al. (1992):

01 .
Tsoit = €Xp (rlsoil — 12501 'ﬁ) (equatlon S4)

With 6 jirer aNd 6 garirer the liquid soil moisture content in the litter, and liquid soil moisture
content at saturation in the litter (kg m2), respectively. Then, r1,,; and r2,;, are two coefficients
(unitless) initially estimated in Sellers et al. (1992) for a 5 cm deep soil. Therefore, the values of
these coefficients need to be adapted to the litter depth considered in ORCHIDEE.
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Table S1: List of ICOS Warm Winter 2020 sites with a fraction of dominant PFT of at least 50% at
0.0125°. Sites only used for evaluation are indicated with *.

Site name, country (ID) Coordinates (lat, Dominant PFT Soil texture
lon) fraction at (FAO-USDA)
0.0125° (%) (ESA-
CCl)
Temperate Needleleaf Evergreen (TempENF)
Gludsted Plantage, Denmark 56.0737°, 9.3341° 75.0 Loamy sand
(DK-Gds)*
Oberbarenburg, Germany (DE- | 50.7867°, 13.7213° 75.0 Sandy loam
Obe)
Lavarone, Italy (IT-Lav) 45.,9562°, 11.2813° 71.9 Sandy loam
Renon, Italy (IT-Ren) 46.5869°, 11.4337° 50.0 Sandy loam
Norunda, Sweden (SE-Nor) 60.0865°, 17.4795° 75.0 Sandy loam
Hyltemossa, Sweden (SE-Htm) 56.0976°, 13.4190° 68.0 Sandy loam
Bily Kriz forest, Czech Republic | 49.5021°, 18.5369° 75.0 Loam
(CZ-BK1)
Grillenburg ,Germany (DE-Gri) 50.9500°, 13.5126° 63.3 Loam
Rajec, Czech Republic (CZ-RAJ) | 49.4437°, 16.6965° 75.0 Loam
Hetzdorf, Germany (DE-Hzd) 50.9638°, 13.4898° 75.0 Loam
Woustebach, Germany (DE- 50.5049°, 6.3310° 75.0 Loam
RUW)
Lettosuo, Finland (FI-Let) 60.6418°, 23.9595° 65.8 Loam
San Rossore 2, Italy (IT-SR2) 43.7320°, 10.2909° 75.0 Clay loam
Font-Blanche, France (FR-FBn) | 43.2408°, 5.67865° 66.7 Clay loam
Temperate Broadleaf Summergreen (TempDBF)
Fyodorovskoye dry spruce, 56.4476°, 32.9019° 60.3 Sandy loam
Russia (RU-Fy2)
Lanzhot, Czech Republic (CZ- 48.6815°, 16.9463° 54.4 Loam
Lnz)
Stitna, Czech Republic (CZ- Stn) | 49.0360°, 17.9699° 61.2 Loam
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Hohes Holz, Germany (DE- 52.0866°, 11.2224° 70.0 Loam
HoH)

Laegern, Switzerland (CH-Lae) 47.4783°, 8.3644° 54.0 Loam
Soroe, Denmark (DK-Sor) 55.4859°, 11.6446° 50.8 Loam
Hainich, Germany (DE-Hai) 51.0792°, 10.4522° 70.0 Clay loam

Boreal Needleleaf Evergreen (BorENF)
Kenttarova, Finland (FI-Ken)* 67.98721°, 24.2430° 80.0 Sandy loam
Varrio, Finland (FI-Var) 67.7549°, 29.61° 80.0 Sandy loam
Rosinedal-3, Sweden (SE-Ros) 64.1725°, 19.738° 79.8 Sandy loam
Svartberget, Sweden (SE-Svb) 64.2561°, 19.7745° 80.0 Sandy loam
Hyytiala, Finland (FI-Hyy) 61.8474°, 24.2948° 80.0 Loam
Alp Weissenstein, Switzerland | 46.5832°, 9.79042° 53.3 Sandy clay loam
(CH-Aws)
Davos, Switzerland (CH-Dav) 46.8153°, 9.85591° 56.6 Sandy clay loam

Temperate Natural Grassland (C3) (CsTempGRA)

Chamau, Switzerland (CH-Cha) 47.2102°, 8.4104° 60.6 Loam
Anklam, Germany (DE-Akm) 53.8662°, 13.6834° 65.6 Loam
Rollesbroich, Germany (DE- 50.6219°, 6.3041° 90.6 Loam
RUR)

Clara Raised Bog, Ireland (IE- 53.3231°, -7.6418° 69.4 Loam
Cra)*

Trebon, Czech Republic (CZ- 49.0247°, 14.7704° 81.6 Sandy clay loam
wet)

Crops (C3) (CzCrop)
Oensingen crop, Switzerland 47.2864°,7.7338° 75.4 Loam
(CH-0e2)

Klingenberg, Germany (DE-KIi) | 50.8931°, 13.5224° 51.7 Loam

Selhausen Juelich, Germany 50.8659°, 6.4471° 79.3 Loam
(DE-RuS)
Monte Bondone, Italy (IT-MBo) | 46.0147°, 11.0458° 60.7 Loam
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Dorinne, Belgium (BE-Dor) 50.3119°, 4.9681° 67.5 Loam
Majadas del Tietar North, 39.9427°,-5.7787° 66.6 Loam
Spain (ES-LM1)
Majadas del Tietar South, 39.9346°, -5.7759° 50.0 Loam
Spain (ES-LM2)
Lamasquere, France (FR-Lam) 43.4964°, 1.2379° 64.8 Loam
Lison, Italy (IT-Lsn) 45.7405°, 12.7503° 61.9 Loam
Albuera, Spain (ES-Abr) 38.7018°, -6.7859° 63.9 Sandy clay loam
Gebesee, Germany (DE-Geb) 51.0997°, 10.9146° 82.4 Clay loam
Qvidja, Finland (FI-Qvd)* 60.2952°, 22.3916° 64.8 Clay loam

Boreal Natural Grassland (C3) (CzBorGRA)

Torgnon, Italy (IT-Tor)

45.8444°,7.5781°

51.2

Sandy clay loam
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Table S2: SPEI classes used for drought severity characterization (Wang et al., 2021).

SPEI classes Characterization
SPEI =2 Extremely wet
1.5 <SPEl < 2. Severely wet
1.<SPEI<15 Moderately wet
0.5 <SPEI < 1. Mildly wet
-0.5<SPEI=<0.5 Normal
-1.<SPEI<-0.5 Mild drought
-1.5 < SPEI = -1. Moderate drought
-2.<SPEl<-1.5 Severe drought
SPEI < -2. Extreme drought

Mean SPEI (JJA) over the stressed areas
2019

70°N

Figure S1: Maps of mean SPEI values (-) between June and August for the years 2018, 2019, and
2020, over the stressed areas. For each year, the stressed areas correspond to the grid cells for

which monthly SPEI values reached a value below -1 (mild to extreme droughts) for at least one

month in June, July or August.
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Figure S2: a) Map of European ecoregions according to the original Kdppen-Geiger classification
(period 1991-2020) at a 0.5° spatial resolution. b) Map of simplified European ecoregions at a 0.5°
spatial resolution. In this simplified classification, the following biomes have been grouped
together: arid with temperate dry summer biomes into “dry”; temperate no dry season biomes
into “temperate”; cold no dry season hot summer with cold no dry season warm summer biomes
into “cold”; cold no dry season cold summer with polar tundra biomes into “boreal”. Note that the
cold dry summer and cold dry winter biomes in a) have been removed from the “dry” ecoregion in
b) because of the differences between these cold biomes and the arid and temperate ones
included in the “dry” ecoregion. The grid cells of the cold no dry season cold winter biome for
latitudes below 50°N in a) (mainly distributed over the Alps) have also been masked in the “boreal”
ecoregion in b) because of the specific behavior expected from these high-altitude grid cells
compared to the rest of the “boreal” ecoregion.
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Figure S3: a) Map of future European ecoregions according to the original Képpen-Geiger
classification under SSP370 (period 2070-2100) at a 2° spatial resolution. b) Map of simplified
future European ecoregions under SSP370 (period 2070-2100) at a 2° spatial resolution. In this
simplified classification, the biomes have been grouped as described in Figure S2.
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Table S3: Parameters selected for the optimization.

Name Description (unit) Dependency Prior Range of
value variation
Photosynthesis
Vemax,s Rubisco maximum TempENF 35. [26.; 44.]
carboxylation rate at 25°C
(pmol m?s™) TempDBF 50. [38.; 63.]
BorENF 45, [34.; 56.]
CsTempGrass 50. [38.; 63.]
GsCrop 60. [45.; 75.]
CsBorGrass 50. [38.; 63.]
acclimycmax | Offset of the linear TempENF 668.39 [501.3; 835.5]
temperature acclimation
relationship for the entropy TempDBF 668.39 [501.3; 835.5]
parameter of the V.4
temperature-dependence BorENF 668.39 | [501.3;835.5]
function, following Kattge &
-1 -1
Knorr (2007) ( K™ mol) CsTempGrass | 66839 | [501.3;835.5]
CsCrop 668.39 [501.3; 835.5]
CsBorGrass 668.39 [501.3; 835.5]
acclimypqy Offset of the linear TempENF 659.70 [495.; 825.]
temperature acclimation
relationship for the entropy TempDBF 659.70 [495.; 825.]
parameter of the J,,.
temperature-dependence BorENF 659.70 [495.; 825.]
function, following Kattge &
-1 -1
Knorr (2007) § K™ mol™) CsTempGrass 659.70 [495.; 825.]
GsCrop 659.70 [495.; 825.]
CsBorGrass 659.70 [495.; 825.]
Leafage cric Critical leaf age, used for TempENF 910. [683.; 1138.]
computing the age-
dependence of the maximum TempDBF 160. [120.; 200.]

165




carboxylation rate limited by BorENF 910. [683.; 1138.]
Rubisco activity, and for leaf
turnover (Krinner et al., 2005) CsTempGrass 80. [60.; 100.]
(days)
CsCrop 90. [68.; 113.]
CsBorGrass 80. [60.; 100.]
Biomass
SLA Specific leaf area (m? gC™") TempENF 0.00926 [0.00695;
0.01157]
TempDBF 0.026 [0.020; 0.033]
BorENF 0.00926 [0.00695;
0.01157]
CsTempGrass 0.026 [0.020; 0.033]
CsCrop 0.026 [0.020; 0.033]
CsBorGrass 0.026 [0.020; 0.033]
LALy,qy Maximum leaf area index (m? TempENF 5. [3.75; 6.25]
m-2)
TempDBF 5. [3.75; 6.25]
BorENF 4.5 [3.4; 5.6]
CsTempGrass 2.5 [1.88; 3.13]
CsCrop 5. [3.75; 6.25]
CsBorGrass 2.5 [1.88; 3.13]
Stomatal conductance response to VPD
Avpp Empirical factor involved in the [ TempENF 0.85 [0.64, 1.06]
function describing the effect
of VPD on stomatal TempDBF 0.85 [0.64, 1.06]
conductance (-)
BorENF 0.85 [0.64, 1.06]
CsTempGrass 0.85 [0.64, 1.06]
CsCrop 0.85 [0.64, 1.06]
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CsBorGrass 0.85 [0.64, 1.06]
Bypp Empirical factor involved in the [ TempENF 0.14 [0.1, 0.18]
function describing the effect
of VPD on stomatal TempDBF 0.14 [0.1,0.18]
conductance (-)
BorENF 0.14 [0.1, 0.18]
CsTempGrass 0.14 [0.1,0.18]
GsCrop 0.14 [0.1, 0.18]
CsBorGrass 0.14 [0.1, 0.18]
Vegetation sensitivity to soil moisture stress
Qater stress Empirical factor determining TempENF 1. [0.05, 10.]
the speed to stomatal closure
under soil moisture stress (-) TempDBF 1. [0.05, 10.]
BorENF 1. [0.05, 10.]
CsTempGrass 1. [0.05, 10.]
GsCrop 1. [0.05, 10.]
CsBorGrass 1. [0.05, 10.]
Pmax Fraction of saturated Loamy sand 0.8 [0.6, 0.9999]
volumetric soil moisture above
which transpiration is Sandy loam 0.8 [0.6, 0.9999]
maximum ([0,1]) (-)
Loam 0.8 [0.6, 0.9999]
Sandy clay 0.8 [0.6, 0.9999]
loam
Clay loam 0.8 [0.6, 0.9999]
Soil hydrology
Nyan genuchten | ROOL profile Van Genuchten Loamy sand 2.68 [2.01; 3.35]
coefficient n (-)
Sandy loam 1.89 [1.42; 2.36]
Loam 1.56 [1.17; 1.95]
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Sandy clay 1.48 [1.11; 1.85]
loam
Clay loam 1.31 [0.98; 1.64]
Osar Volumetric water content at Loamy sand 0.41 [0.31; 0.51]
saturation (m3 m3)
Sandy loam 0.41 [0.31; 0.51]
Loam 0.43 [0.32; 0.54]
Sandy clay 0.39 [0.29; 0.49]
loam
Clay loam 0.41 [0.31; 0.51]
Orc Volumetric water content at Loamy sand 0.0710 [0.071; 0.0888]
field capacity (m* m=3)
Sandy loam 0.1218 [0.0914; 0.1523]
Loam 0.1654 [0.1241; 0.2068]
Sandy clay 0.1695 [0.1390; 0.2119]
loam
Clay loam 0.2697 [0.2028; 0.309]
Owp Volumetric water content at Loamy sand 0.057 [0.057; 0.071]
wilting point (m3 m3)
Sandy loam 0.0657 [0.065; 0.0821]
Loam 0.0884 [0.078; 0.1105]
Sandy clay 0.1112 [0.100; 0.1390]
loam
Clay loam 0.1496 [0.1122; 0.187]
Resistance to soil evaporation
s Coefficient 1 for soil resistance | None 8.206 [4.103; 12.309]
(Sellers et al., 1992) (-)
25011 Coefficient 2 for soil resistance | None 4.255 [2.1275; 6.3825]

(Sellers et al., 1992) ()

Aerodynamic conductance
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TLaero Constant 1 used in the None 0.32 [0.24; 0.40]
formulation of the ratio of
friction velocity to the wind
speed at the canopy top
(Ershadi et al., 2015) (-)
T2 gero Constant 2 used in the None 0.264 [0.198; 0.330]
formulation of the ratio of
friction velocity to the wind
speed at the canopy top
(Ershadi et al., 2015) (-)
Radiative transfer and leaf absorption
Clumping Leaf clumping index (-) TempENF 0.74 [0.555; 0.925]
TempDBF 0.70 [0.10; 1.50]
BorENF 0.55 [0.41; 0.69]
CsTempGrass 0.75 [0.10; 1.50]
GsCrop 0.75 [0.10; 1.50]
CsBorGrass 0.75 [0.10; 1.50]
Apgy Absorption cross section for None 0.5 [0.375; 0.625]
photosystem Il (-)
Mean SPEI (MJJAS)
< 2018 1 2019 . 2020 .
2 2 2 70°N> f =~ 2
1 1 1 60°N s 03—, 1
0 0 0 5oon % 0
-1 -1 =
40°N <3
-2 -2 Y = -2
5 <5 @&\ S :6’@ »&Q ,,’6’0“ -3

Figure S4: Maps of mean SPEI values (-) between May and September for each year from 2017 to

2020.
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Table S4: Mean RMSD value for GPP (gC m=2 d™") and LE (W m) per PFT following the first DA steps
assimilating GPP and LE data either in 2017 or in 2018. This evaluation is based on RMSD values
between the daily observed and simulated variable of the optimized year.

Average
TempENF | TempDBF | BorENF CsTempG CsCrop CsBorGra over all
rass ss PFTs
PRIOR 2.28 2.51 1.90 2.97 2.93 1.14 2.29
2017
POST 1.95 245 1.20 2.75 2.59 0.83 1.96
GPP
PRIOR 2.22 2.31 1.96 2.36 2.81 1.14 2.13
2018
POST 1.95 1.96 1.26 2.14 217 1.05 1.75
PRIOR 23.80 21.76 19.30 31.79 24.97 19.72 23.56
2017
POST 21.64 19.55 14.43 16.77 22.09 8.49 17.16
LE
PRIOR 22.20 23.65 26.88 29.48 23.89 12.29 23.06
2018
POST 20.12 19.60 17.95 15.01 17.64 7.41 16.29

Table S5: Median RMSD value for GPP (gC m2 d') and LE (W m2) per PFT considering all Warm
Winter 2020 sites for which f,,4ter stress reaches a value below 0.85 between May and September
in 2018, 2019, or 2020, for “ORCHIDEE-PRIOR” and the two optimized versions: “POST ORCHIDEE-
STANDARD” and “POST ORCHIDEE-ACCLIM". This evaluation is based on RMSD values between the
daily observed and simulated variable.

Average
CsTempG CsBorGra
TempENF | TempDBF | BorENF CsCrop over all
rass ss
PFTs
ORCHIDEE-
PRIOR 3.03 3.34 3.89 3.87 1.32 0.57 2.67
POST
GPP ORCHIDEE- 2.64 4.05 2.10 4.76 1.69 0.98 2.70
STANDARD
POST
ORCHIDEE- 2.57 2.03 1.61 4.57 1.62 0.87 2.21
ACCLIM
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LE

ORCHIDEE-
PRIOR

26.58

31.82

37.06

44.49

18.00

6.12

27.35

POST
ORCHIDEE-
STANDARD

23.26

18.89

19.33

69.46

15.53

5.26

25.29

POST
ORCHIDEE-
ACCLIM

20.31

19.91

17.03

72.86

14.65

4.10

24.81

Table S6: Median RMSD value for GPP (gC m2 d') and LE (W m2) per PFT considering all Warm
Winter 2020 sites from 2018 to 2020, for “ORCHIDEE-PRIOR” and the two optimized versions:
“POST ORCHIDEE-STANDARD"” and “POST ORCHIDEE-ACCLIM". This evaluation is based on RMSD
values between the daily observed and simulated variable.

Average
CsTempG CsBorGra
TempENF | TempDBF | BorENF CsCrop over all
rass ss
PFTs
ORCHIDEE-
PRIOR 2.37 2.31 2.48 3.43 2.92 1.39 2.48
POST
GPP ORCHIDEE- 241 2.16 1.47 3.34 2.67 1.40 2.24
STANDARD
POST
ORCHIDEE- 3.39 217 1.41 3.34 2.68 1.41 24
ACCLIM
ORCHIDEE- 24.76 23.11 27.26 29.47 25.49 14.85 24.16
PRIOR
POST
LE ORCHIDEE- 22.59 20.62 24.35 19.31 20.52 10.37 19.63
STANDARD
POST
ORCHIDEE- 22.73 20.09 25.87 19.30 24.31 10.56 20.48
ACCLIM
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GPP evaluation (MJJAS 2018) over the stressed areas

POST ORCHIDEE-STANDARD POST ORCHIDEE-ACCLIM POST ORCHIDEE-ACCLIM -
compared to PRIOR compared to PRIOR POST ORCHIDEE-STANDARD
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g
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(6]
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Figure S5: Maps of RMSD change (%) between the RMSD computed between the data-driven and
post-optimization simulated GPP (for POST ORCHIDEE-STANDARD on the left column or POST
ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between the data-driven and
ORCHIDEE-PRIOR GPP, for each evaluation product (FLUXSAT, FLUXCOM-X-BASE, SIF-GPP). The
right column shows the RMSD difference (gC m2 d') between POST ORCHIDEE-ACCLIM and POST
ORCHIDEE-STANDARD for each evaluation product. The selected grid cells correspond to the
stressed areas (section 2.2.3), between May and September 2018. Data are 8-day averages with a
0.5° spatial resolution. For the first two columns, grid cells in green depict an improvement in the
posterior simulated GPP compared to ORCHIDEE-PRIOR (reduction in RMSD), while grid cells in
pink show a degradation of the simulated GPP after optimization. For these two columns, the
median RMSD change (%) is provided in the top left corner.

172



FLUXSAT

FLUXCOM-X-BASE

SIF-GPP

70°N

60°N

50°N

40°N
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Figure S6: Same as Figure S5 for the year 2019.

POST ORCHIDEE-ACCLIM -
POST ORCHIDEE-STANDARD

gC.m=2.471

gC.m=2.d7!

Table S7: Percentage of improved grid cells after optimization for the two model versions (POST
ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM) compared to the prior, evaluated using the
RMSD for the three GPP evaluation products, over the stressed areas in 2018, 2019, and 2020. The
highest improvement between the two optimized model versions are in bold.

2018

2019 2020 Mean
improvement
FLUXS | FLUXC SIF- FLUXS | FLUXC SIF- FLUXS | FLUXC SIF-
AT OM-X- GPP AT OM-X- GPP AT OM-X- GPP
BASE BASE BASE

POST ORCHIDEE- 53 55 54 49 53 48 55 48 50 52
STANDARD
POST ORCHIDEE- 57 66 69 54 61 57 60 64 64 61
ACCLIM
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Figure S7: Maps of RMSD change (%) between the RMSD computed between FLUXCOM-X-BASE
and post-optimization simulated LE (for POST ORCHIDEE-STANDARD on the left column or POST
ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between FLUXCOM-X-BASE
and ORCHIDEE-PRIOR LE. The right column shows the RMSD difference (W m=) between POST
ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each evaluation product. The selected
grid cells correspond to the stressed areas (section 2.2.3), between May and September 2020. Data

are 8-day averages with a 0.5° spatial resolution. For the first two columns, grid cells in green
depict an improvement in the posterior simulated LE compared to ORCHIDEE-PRIOR (reduction in
RMSD), while grid cells in pink show a degradation of the simulated LE after optimization. For these
two columns, the median RMSD change (%) is provided in the top left corner.
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Figure S8: Same as Fi