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Titre : Contraindre les flux de photosynthèse et de transpiration à grande échelle dans un modèle de biosphère par 

assimilation de mesures de flux in situ dont l’oxysulfure de carbone 

Mots clés : Photosynthèse, Transpiration, Oxysulfure de carbone, Modélisation, Assimilation de données 

Résumé : La production primaire brute (GPP), absorption 

photosynthétique du CO2 atmosphérique par la végétation, 

joue un rôle crucial dans l'atténuation du changement 

climatique. La transpiration, émission d'eau par les plantes 

concomitante à la GPP, renvoie une part significative des 

précipitations terrestres dans l'atmosphère. Bien que la 

GPP soit le plus grand flux du cycle du carbone et que la 

transpiration soit la principale composante de 

l'évapotranspiration terrestre, leurs estimations globales et 

leurs réponses au changement climatique demeurent 

incertaines. Cette recherche vise donc à améliorer la 

simulation de la GPP et de la transpiration dans un modèle 

de surfaces continentales, ORCHIDEE. J'ai exploré 

l'utilisation de mesures d’oxysulfure de carbone (COS), un 

gaz atmosphérique absorbé par les plantes de manière 

similaire au CO2, pour contraindre la GPP et la transpiration 

dans ORCHIDEE. J’ai tout d’abord implémenté un modèle 

des échanges de COS par les sols, complétant le modèle 

existant d’absorption de COS par la végétation. Ce 

développement a permis de simuler les flux de COS de 

l’écosystème à différentes échelles et de fournir de 

nouvelles estimations des contributions de la végétation et 

des sols au budget global du COS. Cette étude a montré 

l’importance de considérer la capacité des sols oxiques à 

émettre du COS en plus de leur absorption, et que les sols 

anoxiques peuvent produire des quantités significatives de 

COS (96 GgS/an), compensant en grande partie 

l'absorption nette de COS par les sols oxiques (-126 

GgS/an), résultant en une absorption nette totale des sols 

de -30 GgS/an. Avec ces développements, des mesures in 

situ de flux de COS de l'écosystème ont pu être utilisées 

pour optimiser les paramètres d'ORCHIDEE via des 

techniques d'assimilation de données (DA). J'ai assimilé la 

plus longue série temporelle de flux de COS de 

l’écosystème de la forêt boréale de Hyytiälä en Finlande, 

afin d'optimiser les paramètres impliqués dans la 

simulation de la GPP et de la transpiration. La comparaison 

entre une assimilation conjointe ou indépendantes des 

données 

données de COS et de GPP a montré que l'assimilation 

des données de COS en plus de celles de GPP améliore à 

la fois le flux de chaleur latente (LE) et la GPP simulés, ce 

que ne permet pas l’assimilation de la GPP seule. 

L’application des paramètres optimisés à l'ensemble de 

ce biome boréal a augmenté l'absorption de COS dans 

les hautes latitudes, en accord avec des études 

indépendantes. Ensuite, en collaboration avec d'autres 

chercheurs, j'ai travaillé sur les concentrations 

atmosphériques de COS et de CO2 pour contraindre les 

flux de COS de surface, GPP, et respiration. Enfin, 

l'évaluation de la contrainte apportée par le COS sur la 

GPP et le LE simulés lors d'une sécheresse ayant révélé 

des erreurs structurelles non corrigées par la DA, la 

dernière partie de ma thèse s'est concentrée sur 

l'amélioration de la représentation de la réponse de la 

végétation à un stress hydrique. J'ai assimilé des données 

de GPP et de LE sur plus de 40 sites enregistrant les 

récentes années de sécheresse en Europe. Ce travail a 

montré que le paramètre déterminant la vitesse de 

fermeture stomatique pendant un stress hydrique 

pouvait être défini en fonction des conditions à long 

terme de déficit de pression de vapeur. L'implémentation 

de cette réponse dans ORCHIDEE permet de mieux 

prendre en compte la diversité de réponse de la 

végétation aux sécheresses et sa capacité 

d'acclimatation. Enfin, j'ai réalisé des projections pour 

évaluer l'impact de cette nouvelle réponse dans un climat 

futur. En conclusion, cette recherche encourage 

l'utilisation du COS comme proxy pour la GPP et la 

transpiration, et préconise davantage de mesures de flux 

et de concentration de COS pour affiner la 

paramétrisation des modèles. Elle suggère également 

des pistes pour améliorer la GPP et la transpiration 

simulées dans les modèles en tenant compte de la 

capacité des plantes à s'acclimater face au changement 

climatique. 
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Title: Constraining large-scale photosynthesis and transpiration fluxes in a biosphere model through data assimilation of in 

situ flux measurements including carbonyl sulfide 
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Abstract: Gross primary production (GPP), the 

photosynthetic absorption of atmospheric CO2 by 

continental vegetation, plays a critical role in climate 

mitigation. In parallel, transpiration, the emission of water 

by plants, returns a significant portion of land precipitation 

to the atmosphere. Despite GPP being the largest carbon 

cycle flux and transpiration the largest component of 

terrestrial evapotranspiration, their global estimates and 

responses to climate change remain uncertain. Therefore, 

this research aims to enhance the simulation of GPP and 

plant transpiration in a land surface model (LSM), 

ORCHIDEE. First, I investigated the use of carbonyl sulfide 

(COS) measurements, an atmospheric gas absorbed by 

plants similarly to CO2, to constrain GPP and plant 

transpiration in ORCHIDEE. This involved implementing a 

model for soil COS exchanges, complementing the existing 

vegetation COS uptake model. This development enabled 

the simulation of ecosystem COS fluxes from the site to the 

global scale and provided new estimates of vegetation and 

soil contributions to the global atmospheric COS budget. 

Notably, this study highlighted the importance of 

considering that oxic soils can emit COS in addition to 

absorbing COS, and that anoxic soils can produce 

significant amounts of COS (96 GgS y-1), offsetting much of 

the net oxic soil COS uptake (-126 GgS y-1), and resulting in 

a total global net soil uptake of -30 GgS y-1. With these 

developments, in situ measurements of ecosystem COS 

fluxes have been used to optimize the parameters of 

ORCHIDEE through data assimilation (DA) techniques. 

Therefore, in a second phase, I assimilated the longest time 

series of ecosystem COS flux from the Hyytiälä boreal 

evergreen needleleaf forest in Finland to optimize 

parameters involved in GPP and plant transpiration 

simulation. Comparing a joint assimilation or independent 

assimilations of COS and GPP data showed that 

assimilating COS along with GPP data improves the 

simulated latent heat flux (LE) as well as GPP, unlike the 

GPP-only assimilation. Upscaling the optimized parameters 

across the boreal evergreen needleleaf forest biome 

increased researchers, 

increased COS uptake in high latitudes, aligning with 

independent studies. Then, in collaboration with other 

researchers, I worked on atmospheric concentrations of 

COS and CO2 to constrain surface COS fluxes, GPP, and 

respiration. Finally, as the evaluation of COS constraint 

on the simulated GPP and LE during a drought event 

revealed structural errors in the simulated fluxes 

uncorrected by DA, the final part of my PhD focused on 

improving the representation of vegetation response to 

drought events in ORCHIDEE. To this end, I assimilated 

GPP and LE data at over 40 sites capturing recent 

drought years across Europe. This work demonstrated 

that the parameter determining stomatal closure speed 

during soil moisture stress, influencing both GPP and 

transpiration, could be defined as a function of long-

term vapor pressure deficit conditions. Implementing 

this response in ORCHIDEE allows better consideration of 

site-specific vegetation responses to droughts and 

vegetation acclimation capacity. Finally, I performed 

projections to assess the impact of this new response 

under future climate. Overall, this research supports 

using COS as a proxy for GPP and transpiration, 

advocating for more COS flux and concentration 

measurement campaigns to refine LSM 

parameterization. It also suggests future avenues to 

improve GPP and plant transpiration representations in 

LSMs by accounting for plants' ability to acclimate in 

their response to climate change. 

 



 

3 

 

Publications 

 

In this section, I present the publications I produced as a first author, followed by those where I 

am a co-author. The first publication listed under first authorship will soon be submitted to Global 

Biogeochemical Cycles, and the second publication listed under co-authorship is to be submitted to 

Atmospheric Chemistry and Physics in early September 2024.  

 

Abadie, C., Maignan, F., Bacour, C., Peylin, P.: Vegetation acclimation to atmospheric moisture 

stress during drought events over Europe. (to be submitted) 

 

Abadie, C., Maignan, F., Remaud, M., Kohonen, K.-M., Sun, W., Kooijmans, L., Vesala, T., Seibt, U., 

Raoult, N., Bastrikov, V., Belviso, S., Peylin, P.: Carbon and water fluxes of the boreal evergreen 

needleleaf forest biome constrained by assimilating ecosystem carbonyl sulfide flux observations. 

Journal of Geophysical Research: Biogeosciences, 128, e2023JG007407. 

https://doi.org/10.1029/2023JG007407 (2023) 

 

Abadie, C., Maignan, F., Remaud, M., Ogée, J., Campbell, J. E., Whelan, M. E., Kitz, F., Spielmann, F. 

M., Wohlfahrt, G., Wehr, R., Sun, W., Raoult, N., Seibt, U., Hauglustaine, D., Lennartz, S., Belviso, S., 

Montagne, D., Peylin, P.: Global modelling of soil carbonyl sulfide exchanges. Biogeosciences, 19, 

2427–2463. https://doi.org/10.5194/bg-19-2427-2022 (2022) 

 

De Vries, A., Wohlfahrt, G.,  Kohonen, K.-M., Abadie, C.,  Remaud, M.,  Kesselmeier, J., Korrensalo, 

A., Mammarella, I., Whelan, M., Vesala, T.: On the contribution of boreal wetlands to the Northern 

hemisphere carbonyl sulfide sink (in prep.) 

 

Peylin, P., Abadie, C., Haslehner, M., Belviso, S., Cadule, P., Remaud, M., Maignan, F.: Evaluation of 

CMIP/TRENDY model gross primary productivity and terrestrial ecosystem respiration using 

atmospheric COS and CO2 data. (to be submitted) 

 

Berchet, A., Pison, I., Huselstein, C., Narbaud, C., Remaud, M., Belviso, S., Abadie, C., Maignan, F.: 

Can we gain knowledge on COS anthropogenic and biogenic emissions from a single atmospheric 

mixing ratios measurement site? Atmospheric Chemistry and Physics [preprint]. 

https://doi.org/10.5194/egusphere-2024-549 (In review) 

  

Remaud, M., Ma, J., Krol, M., Abadie, C., Cartwright, M. P., Patra, P., Niwa, Y., Rodenbeck, C., Belviso, 

S., Kooijmans, L., Lennartz, S., Maignan, F., Chevallier, F., Chipperfield, M. P., Richard, J. P., Harrison, 

J. J., Vimont, I., Wilson, C., Peylin, P.: Intercomparison of atmospheric carbonyl sulfide (TransCom-

COS; part one): Evaluating the impact of transport and emissions on tropospheric variability using 

ground-based and aircraft data. Journal of Geophysical Research: Atmospheres, 128, 

e2022JD037817. https://doi.org/10.1029/2022JD037817 (2023) 

 

Belviso, S., Abadie, C., Montagne, D., Hadjar, D., Tropée, D., Vialettes, L., Kazan, V., Delmotte, M., 

Maignan, F., Remaud, M., Ramonet, M., Lopez, M., Yver-Kwok, C., Ciais, P.: Carbonyl sulfide (COS) 



 

4 

 

emissions in two agroecosystems in central France. PLOS ONE, 17(12): e0278584. 

https://doi.org/10.1371/journal.pone.0278584 (2022) 

 

Belviso, S., Remaud, M., Abadie, C., Maignan, F., Ramonet, M., Peylin, P.: Ongoing decline in the 

atmospheric COS seasonal cycle amplitude over Western Europe: Implications for surface fluxes. 

Atmosphere, 13(5):812. https://doi.org/10.3390/atmos13050812 (2022) 

 

Remaud, M., Chevallier, F., Maignan, F., Belviso, S., Berchet, A., Parouffe, A., Abadie, C., Bacour, C., 

Lennartz, S., Peylin, P.: Plant gross primary production, plant respiration and carbonyl sulfide 

emissions over the globe inferred by atmospheric inverse modelling. Atmospheric Chemistry and 

Physics, 22, 2525–2552. https://doi.org/10.5194/acp-22-2525-2022 (2022) 

 

Maignan, F., Abadie, C., Remaud, M., Kooijmans, L., Kohonen, K.-M., Commane, R., Wehr, R., 

Campbell, J. E., Belviso, S., Montzka, S. A., Raoult, N., Seibt, U., Shiga, Y. P., Vuichard, N., Whelan, M. 

E., Peylin, P.: Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake 

in a land surface model and the leaf relative uptake approach. Biogeosciences, 18, 2917–2955. 

https://doi.org/10.5194/bg-18-2917-2021 (2021) 

  



 

5 

 

Acknowledgments 

 

My deepest thanks go to my two PhD supervisors, Fabienne Maignan and Philippe Peylin, for their 

support, guidance, and continuous encouragement in promoting my work. I am especially thankful 

for their confidence in me, which allowed me to grow and improve in areas where I felt least 

comfortable. I am extremely grateful for the opportunity to work with them over these past years, 

benefiting from their high and diverse levels of expertise, and for the rich and healthy work 

environment they have always provided.  

 

I would like to express my gratitude to Lisa Wingate, Georg Wohlfahrt, Tristan Quaife, Maarten 

Krol, and Erwan Personne, who have accepted to take part in the jury commission of this PhD 

thesis.  

 

Special recognition is also due to the COS team at LSCE, particularly Marine Remaud, for the fruitful 

discussions and whose collaboration has been a pleasure. I am also thankful to Sauveur Belviso 

for his constant motivation to integrate experimental and modeling efforts, and for inviting me on 

the experimental side to gather a few COS concentration flask samples. I would also like to extend 

my thanks to the members of the MOSAIC team of which I was a part, and to Cédric Bacour for his 

numerous pieces of advice and significant help in improving my work. 

 

I am grateful to all the past and present postdocs, PhD students, and interns at LSCE whom I have 

had the pleasure of knowing, and who collectively contribute to making LSCE such a nice place to 

work. Special thanks to Julien, Lucas, Aya, Simon, Vincent, Mandresy, Luis, Mojtaba, Karine, Amélie, 

Zacharie, Maureen, Valentin, Benoit, Guillermo, Maud, Coralie, and many others. Julien and Lucas 

deserve a particular mention for their constant support, (unexpected and well hidden) wisdom, 

(sometimes questionable) humor, but undoubtedly valuable friendships. I am also grateful for 

Aya's positivity, kindness, and shared laughter, which have uplifted me daily. Also a special thanks 

to the motivated people of the climbing group, Aya, Vincent, Simon, Mojtaba, Karine, Amélie, 

Guillermo, and Maud, with whom suffering together has turned out to be so enjoyable.  

 

I am also thankful for the wonderful people in my life, Alexandra, Viviane, Antoine, Mathias, 

Thomas, Hugo, Léa, Charlotte, and many others.  

 

Finally, I would like to convey my appreciation to my family, especially my mother and brother, for 

their constant support and belief in me through the years. 

 

 

 

  



 

6 

 

Contents 

 
1 Introduction ........................................................................................................................................ 10 

1.1 Context and overview: Challenges of modeling vegetation responses to climate change

 10 

1.2 GPP and plant transpiration: mechanisms, interactions, and climate sensitivity .......... 11 

1.2.1 GPP and plant transpiration: uncertainties in two key processes of plant functioning

 11 

1.2.2 The coupling between GPP and plant transpiration through stomatal conductance

 12 

1.2.3 GPP and plant transpiration dynamics under climate change ..................................... 13 

1.3 Challenges in estimating GPP and plant transpiration ...................................................... 15 

1.3.1 Approaches to estimating GPP and LE from the ecosystem to the global scale ....... 15 

1.3.2 Using proxies for large scale GPP and LE estimates ...................................................... 17 

1.3.3 Carbonyl sulfide: a proxy for GPP and plant transpiration ........................................... 19 

1.4 Research questions and approach ....................................................................................... 22 

2 Data assimilation with ORCHIDEE ................................................................................................... 27 

2.1 The ORCHIDEE land surface model ...................................................................................... 27 

2.2 COS, GPP, and LE observation datasets ............................................................................... 29 

2.3 The ORCHIDEE data assimilation system ............................................................................. 32 

2.3.1 Data assimilation ................................................................................................................ 32 

2.3.2 Sensitivity analysis .............................................................................................................. 33 

3 Representing ecosystem COS fluxes in ORCHIDEE ....................................................................... 35 

3.1 Vegetation COS uptake........................................................................................................... 35 

3.2 Soil COS exchanges ................................................................................................................. 36 

3.3 Improving ecosystem COS flux representation in LSMs .................................................... 74 

4 Using COS and CO2 flux observations to constrain GPP and plant transpiration in ORCHIDEE

 77 

4.1 Assimilating COS flux observations in ORCHIDEE .............................................................. 77 

4.2 Additional constraint on GPP and plant transpiration from COS flux observations for 

boreal forests ......................................................................................................................................... 78 

4.3 Recent advances in COS flux data assimilation in LSMs and prospective future 

experiments ......................................................................................................................................... 105 

5 Using atmospheric COS concentrations to constrain the global COS and CO2 budgets ....... 107 

5.1 Overview of the studies using atmospheric COS concentrations .................................. 107 



 

7 

 

5.2 Applications for the regional and global COS budget ...................................................... 108 

5.2.1 Agroecosystem contribution to COS emissions ........................................................... 108 

5.2.2 Evaluation of COS anthropogenic and biogenic emissions from atmospheric COS 

observations ..................................................................................................................................... 110 

5.2.3 Impact of recent change in atmospheric COS concentration on surface COS fluxes

 111 

5.2.4 Impact of atmospheric COS transport models ............................................................. 112 

5.3 Valorisation of atmospheric COS and CO2 spatio-temporal gradients .......................... 114 

5.3.1 Evaluation of simulated GPP and terrestrial ecosystem respiration from model 

intercomparison projects using atmospheric COS and CO2 data ............................................. 114 

5.3.2 Inferring COS and CO2 surface fluxes from inverse modeling of atmospheric COS and 

CO2 data ............................................................................................................................................ 117 

6 Improving the simulated response of GPP and plant transpiration to drought events ........ 119 

6.1 Current limitations in the representation of vegetation physiological response to 

drought events in ORCHIDEE ............................................................................................................. 119 

6.2 Refining vegetation physiological response to drought in ORCHIDEE by incorporating 

acclimation to atmospheric moisture stress ................................................................................... 121 

6.3 Future prospects for evaluating and integrating vegetation physiological acclimation to 

atmospheric moisture stress in ORCHIDEE ..................................................................................... 180 

7 Conclusion and perspectives ......................................................................................................... 182 

7.1 General conclusion ............................................................................................................... 182 

7.2 Perspectives ........................................................................................................................... 185 

7.2.1 Towards a multiproxy approach .................................................................................... 185 

7.2.2 Integrating optimality principles .................................................................................... 187 

7.2.3 Closing remarks ................................................................................................................ 188 

8 References ........................................................................................................................................ 190 

9 Appendix ........................................................................................................................................... 218 

9.1 Carbonyl sulfide: comparing a mechanistic representation of the vegetation uptake in a 

land surface model and the leaf relative uptake approach ........................................................... 218 

9.2 Carbonyl sulfide (COS) emissions in two agroecosystems in central France ................ 258 

9.3 Evaluation of CMIP/TRENDY model gross primary productivity using atmospheric COS 

and CO2 data ........................................................................................................................................ 274 

 

 

  



 

8 

 

Abbreviations 

 

ABA  Abscisic Acid 

ALT  Alert station, Canada 

APAR  Absorbed Photosynthetically Active Radiation 

ATM  Atmospheric Transport Model 

ATP  Adenosine triphosphate 

BEPS  Boreal Ecosystem Productivity Simulator 

Ca  Atmospheric concentration 

Cc  Chloroplast concentration 

Ci  Internal concentration 

Cs  Leaf surface concentration 

CA  Carbonic Anhydrase 

CIF  Community Inversion Framework 

CMIP  Coupled Model Intercomparison Projects 

CO2  Carbon dioxide  

COS/OCS Carbonyl sulfide 

CS2  Carbon disulfide 

DA  Data Assimilation 

DMS  Dimethyl sulfide 

ENVISAT  European Space Agency Environmental Satellite 

ESA  European Space Agency  

ESM  Earth System Model 

EVI  Enhanced Vegetation Index 

FACE  Free-Air CO2 Enrichment 

FAO  Food and Agriculture Organization 

FLEX  Fluorescence Explorer 

FLEXPART Flexible Particle model  

gb  Boundary layer conductance 

gc  Rubisco reaction rate equivalent conductance for CO2 

gi  Internal conductance for COS 

gm  Mesophyll conductance for CO2 

gs  Stomatal conductance 

GA  Genetic Algorithm 

GLEAM  Global Land Evaporation Amsterdam Model 

GPP  Gross Primary Production 

H2O  Water 

HIPPO  HIAPER Pole-to-Pole Observations 

ICOS  Integrated Carbon Observation System 

ITRDB  International Tree-ring Data Bank 

JULES  Joint United Kingdom Land Environment Simulator 

LAI  Leaf Area Index 

L-BFGS-B Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm with Bound constraints 

LE  Latent heat flux  

LMDZ  Laboratoire de Météorologie Dynamique atmospheric circulation model 

LRU  Leaf Relative Uptake 

LSM  Land Surface Model 



 

9 

 

LST  Land Surface Temperature 

LUE  Light Use Efficiency 

MIPAS  Michelson Interferometer for Passive Atmospheric Sounding 

MLO  Mauna Loa station, United States 

MODIS  Moderate Resolution Imaging Spectroradiometer 

NADP+  Nicotinamide Adenine Dinucleotide Phosphate  

NADPH  Nicotinamide Adenine Dinucleotide Phosphate Hydrogen 

NASA  National Aeronautics and Space Administration 

NBP  Net Biome Productivity 

NDVI  Normalized Difference Vegetation Index 

NEE  Net Ecosystem Exchange 

NOAA  National Oceanic and Atmospheric Administration 

NPQ  Non-Photochemical Quenching 

NUCAS  Nanjing University Carbon Assimilation System 

O2  Oxygen 

ORCHIDAS Organising Carbon and Hydrology In Dynamic Ecosystems Data Assimilation System 

ORCHIDEE Organising Carbon and Hydrology In Dynamic Ecosystems 

PAR  Photosynthetically Active Radiation 

PFT  Plant Functional Type 

PRI  Photochemical Reflectance Index 
222Rn  222Radon 

Raero  Aerodynamic resistance 

Rboundary  Boundary layer resistance 

Rinternall  Internal resistance 

Rmesophyll  Mesophyll resistance 

Rstomata  Stomatal resistance 

RMSD  Root Mean Squared Deviation 

Rubisco  Ribulose-1,5-bisphosphate carboxylase/oxygenase 

RuBP  Ribulose-1,5-bisphosphate 

SA  Sensitivity Analysis 

SiB  Simple Biosphere model 

SIF  Solar-Induced Fluorescence 

SSP  Shared Socioeconomic Pathways 

Tair  Air temperature 

TransCom Atmospheric tracer transport model intercomparison project for COS 

TRENDY  Trends in Net Land-Atmosphere Carbon Exchange 

TROPOMI Tropospheric Monitoring Instrument 

USDA  United Nations-United States Department of Agriculture 

VIs  Vegetation Indices 

VOD  Vegetation Optical Depth 

VPD  Vapor Pressure Deficit 

WUE  Water Use Efficiency 

 



 

10 

 

1 INTRODUCTION 

1.1 Context and overview: Challenges of modeling vegetation 

responses to climate change 

 

The ability of vegetation to face climate change is a fundamental issue for societies that rely on 

the services provided by ecosystems, which represent all the benefits derived from natural 

ecosystems, essential for human physical, social, and economic well-being (Costanza et al. 1997). 

These ecosystem services encompass provisioning services such as the supply of food and wood 

fuel, regulating services like water purification and carbon storage, and cultural services (Daily 

1997; MA 2005). All of these depend on underlying supporting services, including nutrient cycling 

and water cycling. Terrestrial vegetation acts as a major carbon sink, playing a part in climate 

mitigation by absorbing about 30% of the atmospheric CO2 released by anthropogenic activities, 

while the oceans take up about 25%, and the remainder stays in the atmosphere (Friedlingstein et 

al., 2022). In 2021, 3.5 ± 0.9 GtC y−1 were absorbed by the terrestrial land sink, and 2.9 ± 0.4 GtC y−1 

by the ocean sink, out of a total anthropogenic emission of 10.9 ± 0.8 GtC y−1 (Friedlingstein et al., 

2022). In parallel to CO2 uptake through photosynthesis, plants emit water vapor to the 

atmosphere during transpiration, sending back 40% of the total precipitation over lands (Oki & 

Kanae, 2006).  

 

However, the increasing atmospheric CO2 concentration significantly alters ecosystem functioning 

by enhancing plant carbon assimilation mainly for plants with C3 photosynthetic metabolism, 

thereby promoting plant growth, a phenomenon known as the CO2 fertilization effect (Chen et al., 

2022). Indeed, under current atmospheric CO2 levels, plant growth is limited by CO2 availability in 

the absence of other limiting factors such as soil nutrients or water availability (Boretti et al., 2019). 

This rise in atmospheric CO2 concentration, as well as shifts in precipitation and temperature 

patterns, also influences the phenology and length of the growing season (Keenan et al., 2014), 

and modifies vegetation carbon uptake interannual variability (Zhang et al., 2016). Climate change 

also exacerbates the frequency and intensity of extreme events such as droughts and heatwaves, 

inducing further stress on vegetation (Crausbay et al., 2017). Due to the strong interactions 

between vegetation and the atmosphere through mass and energy exchanges, climate change 

stresses on ecosystems also influences the future climate (Bonan & Doney, 2018). For example, 

increases in vegetation leaf area index (LAI) in regions where there is winter snow can cause a 

positive feedback and warming through reductions in the winter snow-cover albedo (Bonan et al., 

1992). On the other hand, an increase in LAI enhances the cooling effect of evapotranspiration, 

leading to negative feedback (Woodward et al., 1998). Therefore, vegetation responses and 

feedback to present and future climate is still highly uncertain.  

 

Because both photosynthesis and plant transpiration cannot be directly measured at the 

ecosystem scale (Damm et al., 2010), various approaches have been developed to quantify these 

fluxes from the ecosystem to the global scale. Data-driven methods, leveraging increasingly 

available Earth observations and machine learning techniques, have been widely adopted to 
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provide global scale estimates. Additionally, land surface models (LSMs) have been developed to 

quantify photosynthesis and plant transpiration across different spatial and temporal scales, 

facilitating the study of future vegetation-climate interactions and feedback through projections. 

The accuracy of LSM simulations and projections, however, strongly depends on our ability to 

accurately represent exchange processes between the land surface and the atmosphere. 

Consequently, LSMs are continually being refined to incorporate more complexity, enhancing the 

realism of vegetation responses to climate change. A major challenge, therefore, lies in improving 

the modeling of photosynthesis and plant transpiration to accurately represent vegetation 

responses to climate change and extreme events. 

 

In this context, different proxies have emerged, corresponding to a measurement of one physical 

quantity used as a substitute for another quantity that is too challenging or costly to measure 

directly (Bailey et al., 2018). These proxies can be used to inform the representation of 

photosynthesis and plant transpiration in LSMs.  

 

1.2 GPP and plant transpiration: mechanisms, interactions, and 

climate sensitivity 

 

1.2.1 GPP and plant transpiration: uncertainties in two key processes of 

plant functioning 

 

Vegetation carbon uptake through photosynthesis, called gross primary production (GPP), is the 

largest and the most uncertain flux in the carbon cycle (Anav et al., 2015). There is no consensus 

on the global total GPP, with estimates ranging from 112 to 169 PgC y-1 (Anav et al., 2015). While 

observation-based and LSM GPP estimates typically align on the phase of the GPP seasonal cycle, 

there are significant discrepancies regarding the seasonal amplitude (Anav et al., 2015). 

Additionally, GPP interannual variability and trends differ between observation-based databases 

and LSM estimates from 1990 to 2009, with LSMs showing stronger increasing trends, ranging 

from 0.28 PgC y-1 to 0.62 PgC y-1 (Anav et al., 2015). 

Similarly, plant transpiration is the largest component of total terrestrial evapotranspiration 

(Jasechko et al., 2013; Wei et al., 2017). Using a combination of remote sensing and modeling 

approaches, Vicente-Serrano et al. (2022) estimated global plant transpiration to be 50.5 103 km3 

y-1 between 1980 and 2020, accounting for 74.7% of total terrestrial evapotranspiration, with a 

positive trend of 0.28 km3 decade-1 over this period. However, transpiration estimates vary 

significantly, ranging from 24% to 90% of total land evapotranspiration, depending on the 

estimation method, including satellite-based estimations, reanalysis, LSMs, and isotopic 

measurements (Wei et al., 2017). 

Therefore, both photosynthesis and plant transpiration estimates still have large uncertainties. 

This highlights the need to better constrain these two key processes of plant functioning, which 

are interconnected through the diffusion pathway of carbon and water vapor via stomata and are 

strongly influenced by climate drivers. 
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Quantifying GPP is essential because it represents the initial influx of material and energy into a 

terrestrial ecosystem, directly indicating its productivity. Plants absorb light energy to produce 

organic molecules such as glucose from CO2 and H2O, while releasing molecular O2 into the 

atmosphere. These organic molecules can then be used for plant metabolism and growth (Alberts 

et al., 2002). Photosynthesis consists of two interconnected parts, called light and dark reactions 

(Stirbet et al., 2020). The light reaction takes place in the thylakoid membranes of the chloroplasts, 

where the light energy absorbed by the photosystems containing chlorophyll pigments is mainly 

converted into redox chemical energy. In this phase, H2O is oxidized to O2, adenosine triphosphate 

(ATP) is produced, which is a molecule that stores energy used for cellular processes, and 

nicotinamide adenine dinucleotide phosphate (NADP+) is reduced to NADPH, an electron donor 

that provides energy for cellular reactions. Then, both NADPH and ATP are required for CO2 

assimilation during the dark part of photosynthesis in the chloroplast stroma. This part includes 

the Calvin cycle reactions with the Ribulose-1,5-bisphosphate carboxylase/oxygénase (Rubisco) 

enzyme that initiates CO2 fixation onto Ribulose 1,5-bisphosphate (RuBP), which will further result 

in the production of C3 or C4 sugars that the plant uses for metabolism. 

 

This carbon gain through photosynthesis occurs alongside water loss through transpiration. Due 

to its large contribution, transpiration determines global water availability for human and 

ecological uses. The spatial variability in transpiration is influenced by multiple factors, such as 

precipitation, soil water availability, or vegetation density and physiological mechanisms (Sitch et 

al., 2003). By emitting water vapor to the atmosphere, plant transpiration represents one of the 

main components of the water cycle and contributes to moisture recycling (Oki & Kanae, 2006). 

Plant transpiration is also a key process in the soil-plant-atmosphere continuum. Indeed, it drives 

the water transport from the roots to the leaves, allowing the distribution of the nutrients in the 

plant cells. In addition, by converting liquid water to water vapor in the stomata, plant transpiration 

has a cooling effect as the energy used for this conversion would otherwise be used to heat the 

leaves (Grossiord et al., 2020).  

 

1.2.2 The coupling between GPP and plant transpiration through stomatal 

conductance 

 

The stomata play a crucial role in vegetation and atmosphere interplays, allowing the exchanges 

of carbon and water vapor between these two components. Because carbon gain and water loss 

are coupled through the regulation of stomatal opening, Briggs & Shantz (1913) introduced the 

notion of water use efficiency (WUE) as a measure of the amount of carbon assimilated as biomass 

per unit of water used by a plant. Then, stomatal regulation balances the risk of carbon starvation 

and the risk of hydraulic failure. Indeed, while maintaining the stomata open benefits CO2 uptake 

for photosynthesis, an excessive water loss through plant transpiration can lead to soil water 

depletion, a decrease in plant water potential, xylem cavitation, and a risk of mortality (Drake et 

al., 2017; Martin-StPaul et al., 2017; Dewar et al., 2018).  
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Considering this tradeoff, optimality theories suggested that plants respond to environmental 

changes by regulating stomatal opening to maximize the difference between carbon gain and 

water loss (Prentice et al., 2014; Wang et al., 2020). The concepts of isohydricity and anisohydricity 

have also emerged to describe the different plant water use strategies (Hochberg et al., 2018). 

These concepts link stomatal regulation to soil and leaf water potentials (Konings et al., 2017; 

Martínez‐Vilalta et al., 2014; Meinzer et al., 2016). When soil water potential drops due to water 

depletion, while isohydric species close their stomata to maintain the leaf water potential with a 

risk of carbon starvation, anisohydric species maintain their stomata open with a risk of hydraulic 

failure (Martínez‐Vilalta et al., 2014).  

 

In addition to soil moisture status affecting stomatal conductance, vapor pressure deficit (VPD), 

defined as the difference between saturation and actual air vapor pressure, also regulates 

stomatal opening (Grossiord et al., 2020). A rapid increase in VPD typically causes plants to close 

their stomata to minimize water loss. However, stomatal sensitivity to VPD varies significantly 

between and within species (Creese et al., 2014; Gao et al., 2015). The exact mechanisms driving 

stomatal closure in response to increased VPD are not fully understood but likely involve active 

sensing of water status within leaf cells, mediated by hormonal signals such as abscisic acid (ABA). 

Stomatal responses are influenced by leaf water potential and hydraulic conductance, linking them 

to the plant's overall hydraulic characteristics (Sharpe et al., 1987). Therefore, variations in 

stomatal conductance in response to VPD determine plant transpiration rates. When VPD is low 

and stomata are fully open, plant transpiration increases with VPD. However, above a certain VPD 

threshold, stomatal closure reduces plant transpiration to limit water loss (Cunningham, 2004; 

Whitley et al., 2013). Finally, short-term stomatal responses to high VPD can differ from long-term 

impacts, as stomata can acclimate to prolonged high VPD exposure, enhancing stomatal 

conductance and plant transpiration (Marchin et al., 2016). 

 

1.2.3 GPP and plant transpiration dynamics under climate change  

 

Ecosystems are changing in response to rising CO2 concentrations driving climate change, which 

influences global shifts such as temperature increases, and altered precipitation patterns, while 

also exacerbating the frequency and intensity of extreme events (Malhi et al., 2020). However, the 

sensitivity and responses of ecosystems to climate change vary across different regions and are 

influenced by species' abilities to adapt, resist, and recover, as well as by additional disturbances, 

including those caused by humans, and interactions among organisms.  

Several studies have projected an increase in GPP in the Northern high latitudes, where 

temperature typically limits growth. Global warming is expected to enhance photosynthesis in 

these regions (Wu et al., 2015) and lead to earlier growing season start and later senescence for 

temperate and boreal vegetation (Keenan et al., 2014; Jeong et al., 2011; Delbart et al., 2008). 

Conversely, GPP is anticipated to decrease in tropical regions, related to a contraction of tropical 

humid regions, and expansion of areas with intense dry periods (Uribe et al., 2023). In arid and 

semi-arid regions, where precipitation is often a limiting factor for vegetation growth (Snyder & 

Tartowski, 2006), global warming may exacerbate droughts by increasing evapotranspiration 

(Miao et al., 2020). Additionally, in the Mediterranean, Southern North America, Southern Africa, 
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Australia, and Amazonia, earth system model (ESM) intercomparison exercises project reduced 

plant transpiration due to decreased precipitation, resulting in lower soil moisture availability 

(Douville et al., 2021).  

 

The increase in atmospheric CO2 concentration is expected to enhance photosynthesis driven by 

the higher availability of CO2 for fixation by Rubisco (Drake et al., 1997). However, the degree of 

these responses and spatial patterns are unclear due to the influence of other factors on 

photosynthesis, such as water and nutrient availability (Leakey et al., 2009; Zhu et al., 2017).  

Regarding plant transpiration, increased CO2 typically reduces stomatal opening, thereby 

decreasing transpiration. However, this effect is countered by the increase in transpiration due to 

CO2 fertilization and enhanced foliage cover (Cowling & Field, 2003). 

 

The increase in CO2 concentration also induces an increase in global temperature, another 

extensively studied driver of photosynthesis. Photosynthesis critically depends on air 

temperature, however, photosynthesis temperature dependence varies between or within 

species, also depending on different growing conditions (Yamori et al., 2014; Kumarathunge et al., 

2019). Indeed, it has been shown that the optimal temperature that maximizes the photosynthetic 

rate can increase with growth temperature, which is the temperature of the environment where 

plants grow, due to acclimation mechanisms (Berry & Björkman, 1980). However, global 

temperature increase is expected to have distinct effects on biomes, being mainly beneficial for 

plants in cooler habitats, while more stressful in warmer habitats.  

 

The global rise in temperature leads to an increase in VPD (Hatfield & Prueger, 2015), which is a 

key driver of plant functioning. Indeed, high VPD corresponds to a strong atmospheric water 

demand that has been found to increase plant transpiration up to a threshold (Franks et al., 1997). 

This enhancement of plant transpiration can result in soil moisture depletion and increase the risk 

of plant water stress (Dai, 2013; Grossiord et al., 2020). To reduce the risk of hydraulic failure, 

plants tend to close their stomata under high VPD conditions (Running, 1976). While further 

research is needed on the impact of high VPD on photosynthetic capacity, Flexas et al. (2006) found 

that Rubisco activity can be downregulated with lower carboxylation and electron transport rates 

following stomatal closure induced by high VPD. Under soil moisture stress conditions, plant 

carbon assimilation has also been found to decrease due to non-stomatal limitations with a 

reduction in mesophyll conductance (Flexas et al., 2012).  

 

The complexity of GPP and plant transpiration responses to climate change associated to different 

timescales makes it challenging to accurately project vegetation functioning under future climate. 

Moreover, it is difficult to disentangle the effect of each driver on GPP and plant transpiration with 

combined effects of co-existing global changes such as a rise in atmospheric CO2, air temperature, 

and VPD (Novick et al., 2016), but also co-occurring extreme events with heatwaves and droughts 

that often happen alongside. Therefore, it is essential to test hypotheses using LSMs and validate 

these models against experimental data to better understand the interactions between these 

complex factors and improve the reliability of climate projections.  
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1.3 Challenges in estimating GPP and plant transpiration 

 

1.3.1 Approaches to estimating GPP and LE from the ecosystem to the 

global scale 

 

There is no direct measurement of GPP above the leaf scale because net CO2 exchange entails 

both photosynthesis and respiration, which must be partitioned to estimate GPP (Damm et al., 

2010). Similarly, for plant transpiration, at the ecosystem scale the water flux involves other 

components, such as soil evaporation, snow sublimation, evaporation from canopy and 

interception, or floodplain evaporation, which collectively contribute to evapotranspiration or 

latent heat flux (LE). Consequently, at global scales, our ability to estimate GPP and plant 

transpiration rely on data-driven approaches or simulated fluxes in LSMs.  

 

At the ecosystem scale, since the 1990s, eddy-covariance tower networks like FLUXNET 

(https://fluxnet.org/), including Ameriflux (https://ameriflux.lbl.gov/) and the Integrated Carbon 

Observation System (ICOS) (https://www.icos-cp.eu/), have been developed to provide in situ LE 

and GPP estimates at hundreds of sites across the globe. The eddy-covariance technique provides 

continuous measurements of GPP or LE by analyzing the turbulent exchange of CO2 or water vapor 

between the ecosystem and the atmosphere, using high-frequency data from sensors placed on 

a tower to capture the vertical wind speed and gas concentrations (Burbat, 2013). GPP estimates 

are derived by partitioning the net ecosystem exchange (NEE) into its GPP and ecosystem 

respiration components based on day-time or night-time separation algorithms (Lasslop et al., 

2010; Reichstein et al., 2005). However, regions such as North America and Europe are 

disproportionately represented in terms of site numbers compared to other regions like the 

tropics, which have a scarcity of sites. Moreover, the eddy-covariance tower footprint, defined as 

the temporally dynamic areas that contribute to measured fluxes, typically ranges from a few 

hundred meters to a few kilometers (Chu et al., 2021). Consequently, in situ eddy-covariance 

measurements are insufficient to represent the spatiotemporal patterns of global GPP and LE and 

the diversity of terrestrial ecosystems. 

On the model of the FLUXNET network, Poyatos et al. (2021) recently released SAPFLUXNET, the 

first global database of sap flow measurements (https://sapfluxnet.creaf.cat/). Sap flow 

measurements can provide information on plant transpiration dynamics and its response to 

environmental changes. The SAPFLUXNET database encompasses 202 datasets from 2714 plants 

of 174 species, predominantly trees. Covering diverse biomes, particularly woodlands, shrublands 

and temperate forests, the dataset span from 1995 to 2018 and include sub-daily sap flow and 

hydrometeorological data, along with metadata on stand characteristics and plant attributes. 

However, similar to FLUXNET, SAPFLUXNET suffers from the sparsity of sites, with Europe, the 

Eastern USA, and Australia particularly well represented.  

 

Data-driven GPP and LE products, such as FLUXCOM (https://www.fluxcom.org/) (Jung et al. 2019; 

Tramontana et al. 2016; Nelson et al., 2024), can be derived from machine learning methods that 

upscale in situ eddy-covariance measurements using remote sensing and meteorological data. 

However, this approach is constrained by the limited number of in situ sites and the uncertainties 

https://fluxnet.org/
https://ameriflux.lbl.gov/
https://www.icos-cp.eu/
https://sapfluxnet.creaf.cat/
https://www.fluxcom.org/
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involved in upscaling these local measurements to a global scale. Consequently, while these 

machine learning-based products are extensively used for benchmarking, significant biases in GPP 

estimation tend to occur in regions with sparse flux sites (Jung et al., 2020). 

Other data-driven approaches do not rely on an upscaling of in situ eddy-covariance 

measurements, but uses models and remote sensing data to provide large scale GPP and LE 

estimates. This includes for example GPP products that are based on light use efficiency (LUE) 

models, such as FLUXSAT (Joiner et al. 2018) 

(https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html), and LE estimates from 

models like the Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011) 

(https://www.gleam.eu/), which computes the different components of evapotranspiration from 

satellite data. In the LUE approach, GPP is a function of vegetation absorbed photosynthetically 

active radiation (APAR) and the efficiency of light absorption for carbon fixation. Note that LUE 

products can still rely on in situ eddy covariance measurements for calibration. While LUE products 

effectively capture the spatial distribution patterns of GPP, they tend to overestimate GPP under 

dry and cold conditions (Ryu et al., 2011; Wei et al., 2017).  

All these data driven methods present limitations related to their underlying assumptions, 

parametrization, and uncertainties in the in situ eddy-covariance and remote sensing data. 

Consequently, various data-driven products yield different GPP and LE estimates, as illustrated in 

Figure 1 for GPP, highlighting the need for further constraints on these fluxes to reduce the 

associated uncertainties. 

 

 

 

Figure 1: Seasonal cycles of total GPP estimates (PgC month-1) from 5 data-driven global products 

from May 2018 to December 2020. The 5 data-driven products are SIF-GPP (Duveiller et al., 2023), 

FLUXCOM-X (Nelson et al., 2024), FLUXSAT (Joiner et al., 2018), GOSIF (Li and Xiao, 2019), and 

CHLOFLUO (Doughty et al., 2024).  

 

Another approach to estimate GPP and LE or plant transpiration at large scales relies on their 

simulation in LSMs such as the Organising Carbon and Hydrology In Dynamic Ecosystems 

(ORCHIDEE) model. This approach is not independent from the in situ eddy covariance 

measurements and data-driven products described above, as these data are used for LSM 

https://daac.ornl.gov/VEGETATION/guides/FluxSat_GPP_FPAR.html
https://www.gleam.eu/
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parameter calibration and simulated flux evaluation. In addition to providing global GPP and LE 

estimates, projections by LSMs also enable to investigate future flux spatial and temporal 

dynamics. A diverse range of LSMs have been developed, increasing in complexity to improve 

process representation and accuracy. However, estimated GPP and LE vary significantly between 

LSMs, as illustrated in Figure 2, which shows the simulated GPP by 18 LSMs from the Trends in Net 

Land-Atmosphere Carbon Exchange (TRENDY) project. This variability in simulated fluxes arises 

from differences in parametrization, including process representation and parameter values that 

depend on calibration accuracy (Anav et al., 2015). Additionally, uncertainties in simulated fluxes 

also come from LSM input data, such as climate forcing data.  

 

 

 

Figure 2: Seasonal cycles of total GPP estimates (PgC month-1) from 18 LSMs of the TRENDY project 

between 2018 and 2020. The model ensemble mean is in black while each model is represented 

by a color.  

 

In addition to the above methods, proxies for GPP and plant transpiration can be used as 

substitute measurements and provide estimates of these two fluxes that cannot be directly 

measured above the leaf scale. In particular, the emergence of new proxies for GPP and plant 

transpiration can offer additional constraints to inform processes representation and parameter 

calibrations in LSMs, thereby reducing uncertainty in the simulation and projection of GPP and LE. 

 

1.3.2 Using proxies for large scale GPP and LE estimates 

 

Remote sensing vegetation indices (VIs) have traditionally served as proxies for GPP or as input 

data for LUE models (Wang et al. 2004; Zhou et al. 2001; Running et al. 2004). VIs such as the 

normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and LAI reflect 

vegetation states related to greenness or leaf area, which are associated with photosynthetic 

capacity (Huete, 1997; Tucker & Sellers, 1986). However, these traditional VIs have limitations when 

estimating GPP. For instance, they tend to saturate over dense canopies (Turner et al., 2003; 

Running et al., 2004) and are influenced by the reflectance of soil, snow, or water bodies, as well 
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as atmospheric scattering (Huete et al., 1985, 2002). Additionally, VIs may not accurately capture 

rapid changes in GPP due to their temporal resolution or during periods of vegetation stress where 

greenness does not change. The spatial heterogeneity of vegetation types and conditions can also 

lead to variability in the relationship between VIs and GPP (D’Odorico et al., 2015; Zhou et al., 2014).  

VIs like NDVI (Goward & Huemmrich, 1992) and EVI (Xiao et al., 2004) have been used as proxies 

for LE by providing insights into surface conductance, which is closely tied to plant transpiration. 

Remote sensing of land surface temperature (LST) (Kalma et al., 2008), or a combination of VIs and 

LST data, has also been used to estimate global LE (Tang et al., 2010). VIs are generally used to 

estimate LE through empirical relationships based on flux tower LE measurements (Nishida et al., 

2003) or to parameterize the conductance term in the Penman-Monteith equation to estimate 

evapotranspiration (Leuning et al., 2008). LST data can serve as input for a surface energy balance 

model (Kalma et al., 2008). However, Cleugh et al. (2007) found that inaccuracies in LSTs led to 

significant errors in LE estimates when using a surface energy balance model. Additionally, LE 

models that use VIs to represent transpiration as a function of surface conductance have been 

found to overestimate water fluxes in water-limited ecosystems, such as savannahs and arid and 

semi-arid regions (Barraza et al., 2017). 

 

In recent years, our understanding of global GPP dynamics has improved through the use of newer 

satellite products more closely linked to the photosynthetic process. In particular, the near-

infrared reflectance of vegetation (NIRv) and sun-induced fluorescence (SIF) have been 

investigated to provide information on vegetation physiology (Porcar-Castell et al., 2014; Wang et 

al., 2019). Compared with NDVI, NIRv and SIF are less affected by the soil background and 

atmospheric scattering (Badgley et al., 2017). NIRv, which is the product of NDVI and near-infrared 

reflectance, is demonstrated to be a good proxy of GPP at monthly to annual scales (Badgley et 

al., 2019; Wang et al., 2021). SIF is an electromagnetic signal emitted by chlorophyll a molecules 

when they are illuminated by sunlight, directly linking it to the light reactions of photosynthesis 

(Frankenberg & Berry, 2018). Several studies have demonstrated that satellite-based SIF retrievals 

exhibit a linear relationship with GPP at the ecosystem scale across various biomes (Guanter et al., 

2014; Sun et al., 2017). Because SIF tracks plant activity and CO2 and H2O exchanges are closely 

linked through stomatal diffusion, SIF has also been used as a proxy for plant transpiration or LE 

(Alemohammad et al., 2017; Maes et al., 2021; Zhang et al., 2024). However, SIF represents only 

about 3% of the absorbed energy, making it a weak signal and leading to significant retrieval noise 

in passive measurements (Joiner et al., 2020). Additionally, the relationship between GPP and SIF 

is influenced by various factors such as canopy structure (van der Tol et al., 2019; Yang et al., 2019), 

cloud cover, sun-sensor geometry effects (Zhang et al., 2021), or environmental stressors 

(Wohlfahrt et al., 2018). Similarly, the empirical relationship between transpiration and SIF was 

found to be influenced by photosynthetically active radiation (PAR), VPD, and air temperature (Lu 

et al., 2018). Tracking GPP and LE variations at fine temporal and spatial scales is also constrained 

by the current coarse resolution of satellite measurements. However, the European Space 

Agency's (ESA) Fluorescence Explorer (FLEX), set to be launched in 2026, will be the first satellite 

mission specifically designed to measure SIF, offering data at a 300 m spatial resolution. 

 

Tree rings and carbon and oxygen isotopes have also been demonstrated to be useful proxies for 

GPP. For example, 13C in C3 woody plants could be a valuable carbon isotope for the study of 
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photosynthesis (Lavergne et al., 2022). Plant tissues have a 13C-depleted signature compared to 

atmospheric CO2 due to slower diffusion of 13CO2 through stomata and preferential fixation of 
12CO2 by Rubisco, a process known as carbon isotope discrimination (Δ13C) (Park & Epstein, 1960). 

Short-term Δ13C variations in C3 leaves have been found to be influenced by environmental factors 

like soil moisture and precipitation (Diefendorf et al., 2010; Kohn, 2010), VPD (Lloyd & Farquhar, 

1994), temperature, atmospheric pressure (Cornwell et al., 2018). Tree ring studies also suggest 

that Δ13C in C3 woody plants increases with rising CO2 concentration (McCarroll et al., 2009). Then, 

GPP estimates have been derived from oxygen isotopic analyses (16O, 17O, and 18O) (Farquhar et 

al., 1993; Ciais et al., 1997; Peylin et al., 1999; Cuntz et al., 2003). During photosynthesis, plants 

incorporate oxygen from H2O into organic compounds. The ratio of 18O to 16O of water in leaves, 

which is influenced by source water and evaporative enrichment, gets reflected in the organic 

matter (Liu et al., 2023).  

Finally, in addition to the Δ13C analysis in tree rings, tree ring widths have been found to have a 

consistent correlation with GPP, informing on trends in tree growth and terrestrial carbon stocks 

(Babst et al., 2014; Tei et al., 2019). Tree ring width and stable isotope data have also been used to 

evaluate and constrain vegetation carbon uptake and tree growth in LSMs (Barichivich et al., 2021; 

Panek & Waring, 1997). Worldwide tree ring databases, such as the International Tree-ring Data 

Bank (ITRDB), can be used for LSMs benchmarking or to constrain model parameters through data 

assimilation.  

 

Despite the extensive use of the proxies mentioned above, significant uncertainties remain in GPP 

and plant transpiration estimates (Anav et al., 2015; Wei et al., 2017). Moreover, the relationship 

between each proxy and GPP or plant transpiration is affected by spatial and temporal scales, 

along with specific uncertainties tied to each proxy. Therefore, there is a need to investigate 

additional proxies that can address the limitations associated with traditional methods. Ideally, 

these proxies should offer a more direct measurement of GPP and plant transpiration, unlike 

indices that inform on vegetation greenness for example. These proxies should not require 

partitioning between GPP and respiration fluxes, and should be measured at fine temporal 

resolution to capture short-term variations in GPP and plant transpiration. Additionally, they 

should allow for integration over large-scale areas, such as through atmospheric concentration 

measurements.  

 

1.3.3 Carbonyl sulfide: a proxy for GPP and plant transpiration 

 

COS is a trace gas with a mean atmospheric concentration about 106 times smaller than the one 

of CO2, with approximately 480 parts per trillions for COS (ppt), compared to 420 parts per millions 

(ppm) for CO2 in 2023. However, COS shares similarities with CO2 that have led to an increasing 

interest in investigating its potential to constrain the carbon cycle. Indeed, COS shows a seasonal 

cycle of atmospheric concentrations that follows the one of CO2, as recorded by measurement 

stations from the National Oceanic and Atmospheric Administration (NOAA) network (Montzka et 

al., 2007). This close seasonal cycle with a drawdown in concentrations in spring and summer in 

the Northern hemisphere is due to vegetation uptake, which is the main sink of COS as it is of CO2 

(Whelan et al., 2018).  
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Therefore, COS uptake has been proposed as a proxy of GPP as both COS and CO2 are absorbed 

by plant leaves following a similar diffusion pathway from the atmosphere to the leaf interior, 

which is represented by the boundary layer, the stomatal, and the internal conductance (Figure 3). 

Besides, COS has the advantage of not having a respiration flux analogous to the one of CO2, as 

COS is irreversibly hydrolysed by the carbonic anhydrase enzyme (CA) inside the leaf following the 

reaction (Stimler et al., 2010),  

 

COS + H2O → CO2 + H2S                                                                                                              (Equation 1)  

 

Then, COS is mainly not emitted back to the atmosphere by plants, and at the canopy scale, 

measurements of COS vegetation flux do not require a partitioning of the net flux as it is the case 

between respiration and photosynthesis for CO2.   

 

 

 

Figure 3: Relationship between CO2 and COS (or OCS) vegetation uptake from the ecosystem to 

the leaf scale (Whelan et al., 2022). The diffusion pathway is characterized by a series of 

conductances with the boundary layer (gb) and stomatal (gs) conductances, followed by the internal 

conductance (gi) for COS, and the mesophyll (gm) and Rubisco reaction rate equivalent 

conductances (gc) for CO2. Along this diffusion pathway, the gradient of concentration is 

represented by the atmospheric (Ca), the leaf surface (Cs), the internal (Ci), and the chloroplast (Cc) 

concentrations. 

 

In particular, COS leaf uptake has been more directly linked to stomatal conductance than GPP 

(Seibt et al., 2010; Wehr et al., 2017; Wohlfahrt et al., 2012; Berkelhammer et al., 2020). Indeed, 

COS internal conductance differs from the photosynthesis reaction in CO2 internal conductance. 

Unlike CO2 fixation by the Rubisco enzyme that depends on the energy from the light reaction part 

of photosynthesis, COS hydrolysis by CA is not light-dependent. Therefore, COS can provide 

additional information on GPP through its constraint on stomatal conductance (Asaf et al., 2013; 

Commane et al., 2015; Maseyk et al., 2014; Spielmann et al., 2019). Then, because stomatal 

conductance determines the coupling between GPP and plant transpiration, COS potential to 

constrain plant transpiration has also been investigated (Wehr et al., 2017; Wohlfahrt et al., 2012).   

A first relationship has been established to derive vegetation CO2 uptake from COS, which is 

defined by the leaf relative uptake (LRU) that is the ratio of COS and CO2 leaf uptakes normalized 

by their concentrations (Sandoval-Soto et al., 2005) (Figure 3). Once the LRU value has been 
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experimentally estimated, GPP can be inferred from measurements of COS flux, and COS and CO2 

concentrations. However, this extensively adopted approach has limited accuracy as the LRU 

values were found to vary with plant species (Sandoval-Soto et al., 2005; Stimler et al., 2012), 

atmospheric humidity (Sun et al., 2018; Kooijmans et al., 2019), and light (Stimler et al., 2011; 

Maseyk et al., 2014; Commane et al., 2015; Kooijmans et al., 2019).  

 

The vegetation one-way COS flux also benefits from being spatially separated from the main COS 

sources (Whelan et al., 2018). Indeed, the ocean and anthropogenic activities are the main 

contributors to COS emissions. COS can be directly emitted by the ocean, or be indirectly produced 

from the oxidation of carbon disulfide (CS2) or dimethyl sulfide (DMS), representing a total oceanic 

contribution estimated between +200 and +400 GgS y-1 (Lennartz et al., 2017, 2020). 

Anthropogenic emissions of the same order of magnitude have been evaluated between +220 and 

+580 GgS y-1, with the main COS source originating from the viscose industry through the oxidation 

of CS2 (Zumkehr et al., 2018). COS emissions of lower magnitude also come from biomass burning 

with +50 to +168 GgS y-1 (Campbell et al., 2015; Glatthor et al., 2017; Stinecipher et al., 2019), and 

volcanoes with +25 to +43 GgS y-1 (Whelan et al., 2018). Then, the second largest COS net sink is 

the soil with estimates ranging from -409 to -30 GgS y-1 (Kettle et al., 2002; Berry et al., 2013; 

Launois et al., 2015; Kooijmans et al., 2021; Abadie et al., 2022). Soils are mainly involved in COS 

absorption because the CA enzyme is present in soil microorganisms and drives COS consumption 

(Masaki et al., 2021), but soils can also emit COS under specific temperature and light conditions 

(Whelan & Rhew, 2015; Whelan et al., 2016, 2018; Kitz et al., 2017, 2020). Finally, the atmosphere 

is a small COS sink, through oxidation by the OH radical in the troposphere representing -130 to -

82 GgS y-1, and photolysis in the stratosphere with -80 to -30 GgS y-1. A synthesis of COS sinks and 

sources is presented in Table 1.  

 

Table 1: COS sinks and sources. Negative(/positive) estimates correspond to net 

uptake(/emission). 

 Contribution 
Estimated range 

(GgS y-1) 
References 

Net sinks 

Vegetation [-1335; -238] 

Kettle et al. (2002); Montzka et al. 

(2007); Suntharalingam et al. (2008); 

Berry et al. (2013); Launois et al. 

(2015); Maignan et al. (2021); 

Kooijmans et al. (2021) 

Troposphere [-130; -82] Whelan et al. (2018) 

Stratosphere [-80; -30] Whelan et al. (2018) 

Total soil [-409; -30] 

Kettle et al. (2002); Berry et al. (2013); 

Launois et al. (2015); Kooijmans et al. 

(2021); Abadie et al. (2022) 
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 Oxic soils [-510; -89] 

Kettle et al. (2002); Berry et al. (2013); 

Launois et al. (2015); Kooijmans et al. 

(2021); Abadie et al. (2022) 

 

Net sources 

 Anoxic soils [+26; +101] 
Kettle et al. (2002); Launois et al. 

(2015); Abadie et al. (2022) 

Total ocean [+200; +400] Lennartz et al. (2017, 2020) 

 COS direct [+50; +210] Lennartz et al. (2017) 

 COS from CS2 [+5; +265] Lennartz et al. (2017) 

 
COS from 

DMS 
[+0; +80] Lennartz et al. (2017) 

Anthropogenic [+220; +580] Zumkehr et al. (2018) 

Biomass burning [+50; +168] 
Campbell et al. (2015); Glatthor et al. 

(2017); Stinecipher et al. (2019) 

Volcanoes [+25; +43] Whelan et al. (2018) 

 

The large range of estimates for the COS sink and source components leads to strong uncertainties 

in the global COS budget. Then, a better characterization of the different contributors to the global 

COS budget is required, including vegetation COS uptake to be able to fully exploit its potential as 

a proxy for GPP and plant transpiration. Currently, the global COS budget is not balanced, with a 

missing source likely located in the tropics and a missing biospheric sink in the high latitudes as 

suggested by atmospheric inversion studies (Ma et al., 2021; Remaud et al., 2022, 2023). 

Constraining the different COS sinks and sources is also of interest for the atmospheric sulfur cycle 

as COS is the longest-lived and most abundant sulfur-containing gas in the atmosphere.  

 

1.4 Research questions and approach 

 

Given the growing interest in COS measurements (Kooijmans et al., 2019; Kohonen et al., 2020; 

Vesala et al., 2022; Wehr et al., 2017; Berkelhammer et al., 2014; Commane et al., 2015; Kitz et al., 

2019; Maseyk et al., 2014; Spielmann et al., 2019) and in the representation of land surface COS 

fluxes (Berry et al., 2013; Sun et al., 2015; Ogée et al., 2016), I decided to further explore this proxy 

to introduce new constraints on the simulated GPP and plant transpiration in the ORCHIDEE LSM. 

This work builds on the progress made during a first internship at LSCE, where I focused on 

integrating vegetation COS uptake in ORCHIDEE. However, the full potential of COS as a proxy for 

GPP and plant transpiration has yet to be quantified. Moreover, the additional constraints that 

COS can provide on these fluxes, beyond those captured by traditional eddy-covariance 

measurements of GPP and LE, need to be evaluated. 

https://paperpile.com/c/YyvwcL/lInn+XiIw+XIFD+ajmW
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In this section, I present an overview of the manuscript structure, highlighting the main research 

questions and the approach taken to address them. Chapter 2 introduces the ORCHIDEE LSM, the 

key observation datasets utilized in this study, and the data assimilation tool used for parameter 

calibration. Then, chapters 3, 4, 5, and 6 each address the research questions outlined in the 

following. The connections between these chapters are illustrated in Figure 4.  

 

 

 

Figure 4: Overview of the main parts of the PhD, corresponding to the manuscript chapters. Large 

gray arrows indicate the connection between chapters. 

 

Accurately characterizing the components of the global atmospheric COS budget is critical for 

using COS to constrain GPP and plant transpiration, and addressing the current imbalance in the 

COS budget. During a previous internship at LSCE before this PhD, I worked on implementing a 

vegetation COS uptake model in ORCHIDEE, aiming at exploiting the link between plant COS and 

CO2 uptakes to constrain the simulated GPP using COS fluxes.  

However, terrestrial biospheric COS fluxes also include the contribution from soils, which cannot 

be neglected as they have been estimated to be the second largest COS sink component (Section 

1.3.3). Then, to complement the existing vegetation COS uptake model and simulate ecosystem 

COS fluxes at the global scale, a representation of soil COS exchanges needed to be implemented 

in ORCHIDEE. Unlike the first simple empirical soil COS flux models that estimated soil COS uptake 

while neglecting the soils' capacity to emit COS (Berry et al., 2013; Launois et al., 2015), two 

mechanistic models for soil COS exchanges (Ogée et al., 2015; Sun et al., 2015) were recently 

developed, based on fine scale soil measurements. These models account for the ability of soils to 

both take up and emit COS. Therefore, I implemented a mechanistic-based model of soil COS 

fluxes in ORCHIDEE, as presented in Chapter 3. This development enables simulating the spatial 

distribution and temporal variations of both oxic soil COS uptake and emission, as well as anoxic 

soil COS production. Moreover, this work allowed the evaluation of this mechanistic-based model, 

which involves parameters that depend on the vegetation type, across several sites representative 

of different biomes and climates. Indeed, this implementation of soil COS exchanges in ORCHIDEE, 

as well as the one made in parallel in another LSM (Simple Biosphere Model version 4, SiB4) based 
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on the same mechanistic soil COS flux model (Kooijmans et al., 2021), mark the first 

implementations of mechanistic-based representations of soil COS exchanges in LSMs.  

Additionally, both vegetation and soil COS fluxes are driven by atmospheric COS concentration. 

However, previous works, including the first version of the vegetation COS uptake model in 

ORCHIDEE, considered a constant atmospheric COS concentration, neglecting the impact of its 

spatial and temporal variations on biospheric COS surface fluxes. Therefore, I included the 

consideration of a spatially and temporally varying atmospheric COS concentration in ORCHIDEE 

for computing vegetation and soil COS fluxes. 

Consequently, in Chapter 3, I aim at answering the following main research questions:  

- What are the contributions of vegetation and soil COS fluxes to the global 

atmospheric COS budget based on mechanistic representations in a LSM?  

- How does the contribution of anoxic soils compare to that of oxic soils in the global 

atmospheric COS budget?  

- What is the impact of using spatially and temporally varying atmospheric COS 

concentrations, as opposed to a constant concentration, on the simulated surface 

vegetation and soil COS fluxes? 

 

In a second step, building on the developments presented in Chapter 3 to simulate ecosystem COS 

fluxes, I investigated how these simulated biospheric COS fluxes could be used to inform GPP and 

plant transpiration in ORCHIDEE. Although the process-based models represent an improvement 

over the LRU approach previously used to infer GPP from vegetation COS flux observations 

(Section 1.3.3), they include parameters that need to be calibrated. Therefore, I focused on using 

in situ biospheric COS flux observations to calibrate a set of ORCHIDEE parameters that influence 

GPP and plant transpiration in addition to vegetation COS fluxes, as presented in Chapter 4.  

Ecosystem COS flux data, like GPP and LE estimates, can be obtained by eddy covariance 

measurements, which represent the sum of the vegetation and soil COS fluxes simulated in 

ORCHIDEE. However, multiple years of eddy covariance ecosystem COS flux data are available only 

at a few sites. Therefore, I chose to work on the Hyytiälä boreal forest in Finland, which provides 

the longest time series of in situ ecosystem COS flux measurements (Vesala et al., 2022). This site 

offers a large number of observation data under different environmental conditions, allowing for 

a more robust calibration of ORCHIDEE parameters.  

Focusing on this site in the Northern high latitudes was also particularly interesting because 

previous studies have identified a missing COS sink in this region. Thus, I was able to assess the 

impact of ORCHIDEE parameter calibration using in situ ecosystem COS flux observations on the 

simulated biospheric COS sink estimate, in regard with the global atmospheric COS budget 

imbalance.  

Therefore, the framework developed in Chapter 4 explores the additional constraint provided by 

ecosystem COS flux data to improve the representation of GPP and plant transpiration in 

ORCHIDEE through parameter calibration, and addresses these main research questions: 

- How can ecosystem COS flux observations constrain the simulated GPP and plant 

transpiration in ORCHIDEE?  

- Can local ecosystem COS flux observations help refine regional biospheric COS flux 

estimates to address the global atmospheric COS budget imbalance? 

 



 

25 

 

Following the COS model developments in ORCHIDEE and the use of simulated ecosystem COS 

fluxes described in Chapters 3 and 4, I was invited to contribute to several studies that relied on 

ORCHIDEE simulated biospheric COS fluxes and atmospheric COS concentrations. In Chapter 5, I 

expand on how I broadened my focus and expertise to use atmospheric COS and CO2 

concentrations for informing COS and CO2 surface fluxes, with the aim of more accurately 

constraining the global atmospheric COS and CO2 budgets. 

The vegetation COS flux model implemented in ORCHIDEE assumes that vegetation can only act 

as a COS sink. The first study I contributed to tests this assumption by using local scale 

observations to investigate ecosystem COS flux processes. This work compares ORCHIDEE 

simulated ecosystem COS fluxes against field observations, including COS concentration 

measurements at two agroecosystem sites near LSCE. The identification of a potential missing 

crop COS source representation in ORCHIDEE led to a publication in which I am the second author. 

While biospheric COS fluxes are the primary COS sinks, other components significantly contribute 

to terrestrial surface COS fluxes and need better constraints. Another study I participated in 

expanded the evaluation of surface COS fluxes at the regional scale, using a model that tracks 

atmospheric particle trajectories and COS concentration measurements at the Gif-sur-Yvette (GIF) 

site in France. This work helped identify discrepancies in anthropogenic COS emission estimates 

and in ORCHIDEE simulated biogenic COS fluxes. 

In Chapter 3, I assessed the importance of considering spatially and temporally varying 

atmospheric COS concentrations to simulate vegetation and soil COS fluxes in ORCHIDEE. This was 

complemented by another study I contributed to, which investigated the impact of a recent 

decrease in atmospheric COS concentration, as observed at the GIF site, on simulated biogenic 

COS fluxes across the Northern hemisphere. 

Evaluating surface COS fluxes can be achieved by transporting all surface COS flux components 

and comparing the resulting simulated concentrations with atmospheric COS concentration 

measurements. However, uncertainties related to the transport of these fluxes can limit this 

evaluation. To address this, I provided ORCHIDEE simulated biospheric COS fluxes for a study 

focusing on quantifying uncertainties in simulated atmospheric COS concentrations resulting from 

the transport of surface COS fluxes in seven atmospheric transport models (ATMs). 

Following the improved characterization of surface COS fluxes from the studies presented above 

using atmospheric COS concentrations, we aimed to investigate how these concentrations can 

inform surface CO2 fluxes, specifically GPP and ecosystem respiration, in addition to constraining 

surface COS fluxes. Expanding my focus beyond ORCHIDEE, I contributed to a joint assessment of 

atmospheric COS and CO2 concentrations to evaluate potential seasonal amplitude and phase 

biases in simulated GPP and terrestrial ecosystem respiration from three model ensembles. This 

work also led to a publication in which I am the second author. 

Finally, I participated in a study that not only evaluated surface COS and CO2 fluxes using 

atmospheric COS and CO2 concentrations but also optimized these fluxes using an atmospheric 

inversion modeling approach. This addressed the global COS budget imbalance issue. 

Therefore, in Chapter 5, the studies I contributed to aim to answer the following main research 

questions:  

- How can atmospheric COS concentrations provide insights into the simulated 

ORCHIDEE biospheric COS fluxes and other surface COS component estimates to 

identify discrepancies and potential missing processes? 
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- How can atmospheric COS and CO2 concentrations be used to constrain surface COS 

fluxes, GPP, and ecosystem respiration? 

- Can a joint analysis of atmospheric COS and CO2 concentrations help identify 

potential biases in GPP and terrestrial ecosystem respiration within model 

simulation ensembles? 

 

My work on COS, described in Chapters 3, 4, and 5, contributed to better constraining surface COS 

and CO2 fluxes. Additionally, it allowed me to investigate specific GPP and plant transpiration 

processes implemented in ORCHIDEE. In Chapter 4, I focused on a drought event at the Hyytiälä 

site following ORCHIDEE parameter calibration using ecosystem COS flux data. This focus revealed 

structural deficiencies in the simulated GPP and LE under soil moisture stress conditions that could 

not be resolved solely through the calibration of existing model parameters within their physical 

range. This is critical as accurately modeling drought events in LSMs is crucial, given that their 

frequency and intensity are expected to increase due to climate change.  

Therefore, in Chapter 6, I aimed to improve the representation of vegetation response to soil 

moisture stress in ORCHIDEE. For instance, the default physiological vegetation response to 

droughts in ORCHIDEE is not differentiated by vegetation type, although different species exhibit 

varied responses. Consequently, I investigated whether the default physiological vegetation 

response to soil moisture stress in ORCHIDEE could be refined to better account for the diversity 

of responses between biomes and the influence of environmental drivers. To achieve this, I 

calibrated a set of ORCHIDEE parameters, including those involved in vegetation response to soil 

moisture stress, using GPP and LE data at over 40 sites from the ICOS Warm Winter 2020 network. 

This dataset captured the impact of recent drought years across various biomes in Europe. This 

work led to the development of a new definition for the parameter determining the speed of 

stomatal closure under soil moisture stress conditions, incorporating vegetation's capacity to 

acclimate to long-term VPD conditions. Finally, I performed projections until 2100 to assess the 

impact of this refined parameter under future climate scenarios. 

Consequently, in Chapter 6, I address the following main research questions:  

- How can the simulated physiological response of vegetation to drought events be 

improved in ORCHIDEE? 

- How does a biome-dependent vegetation response to soil moisture stress compare 

to a response that also incorporates acclimation to long-term VPD conditions? 

- How does incorporating vegetation acclimation to long-term VPD conditions in 

drought response simulations affect GPP and LE under a future climate scenario?  
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2 DATA ASSIMILATION WITH ORCHIDEE 

2.1 The ORCHIDEE land surface model 

 

ORCHIDEE is the LSM component of the earth system model (ESM) developed at the Institut Pierre 

Simon Laplace (IPSL) (Boucher et al., 2020; Krinner et al., 2005). It simulates the carbon, water, and 

energy exchanges between the land surface and the atmosphere. ORCHIDEE can be run coupled 

with an atmospheric model, or forced with prescribed meteorological fields (offline mode), which 

was the configuration used during my PhD. Simulations can be performed from the site scale to 

the global scale.  

 

Vegetation is characterized by plant functional types (PFTs), grouping plants with similar structure, 

phenology, photosynthetic pathway, and climate into 14 vegetated classes, with another PFT 

dedicated to bare soil. Each model grid cell is represented by fractions of PFTs that can be either 

imposed by ORCHIDEE users at the site scale, or prescribed using yearly varying vegetation maps 

at the global scale. Two global soil maps can be used to describe soil textures, which determine 

thermal and hydraulic soil properties like porosity and moisture thresholds, including the wilting 

point and field capacity for plant water uptake. The global map of soil textures can be derived from 

a simplification of the Zobler texture classification (Zobler, 1986) into three different soil texture 

classes. Alternatively, a more detailed global map is based on the Food and Agriculture 

Organization of the United Nations-United States Department of Agriculture (FAO-USDA) texture 

classification, which includes 12 texture classes (Reynolds et al., 2000). I have used the FAO-USDA 

map in ORCHIDEE as it offers a finer representation of soil textures. 

 

Fast processes such as photosynthesis, plant transpiration and the energy budget are computed 

at a half-hourly time step, while slower processes related to phenology and carbon allocation are 

computed at a daily time step. The representation of GPP and plant transpiration in ORCHIDEE 

and their main drivers are illustrated in Figure 5.  
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Figure 5: Simplified representations of GPP and plant transpiration in ORCHIDEE along with their 

main drivers. Blue arrows indicate water cycle fluxes, while red arrows represent carbon cycle 

fluxes. The resistance scheme for plant transpiration involves the aerodynamic resistance (Raero), 

the leaf boundary layer resistance (Rboundary), the stomatal resistance (Rstomata). Additionally, the 

resistance scheme for GPP incorporates the mesophyll resistance (Rmesophyll) and the intern 

resistance (Rintern), which represents Rubisco activity. The main drivers influencing GPP and plant 

transpiration are depicted in purple. PAR: Photosynthetically Active Radiation; Tair: air temperature; 

VPD: Vapor Pressure Deficit.  

 

Photosynthetic CO2 assimilation is calculated for each PFT at the leaf level using the analytical 

algorithm described in Yin & Struik (2009), based on the photosynthesis model of Farquhar et al. 

(1980) for C3 species and Collatz et al. (1992) for C4 species. The Yin & Struik (2009) CO2 assimilation 

model also integrates a description of stomatal and mesophyll conductances. Following Farquhar 

et al. (1980), the photosynthesis rate is expressed as the minimum between the Rubisco-limited 

and the electron transport-limited rates of CO2 assimilation. The rates of maximum Rubisco 

carboxylation and RuBP regeneration are influenced by leaf age (Ishida et al., 1999; Krinner et al., 

2005), and by an implicit nitrogen content, which diminishes deeper into the canopy (Johnson & 

Thornley, 1984). Air temperature also affects these rates through a modified Arrhenius function 

that incorporates acclimation to growth temperature, following Kattge & Knorr (2007). 

Furthermore, a constraint is applied to these maximum rates to reflect the downregulation of the 

productivity in response to elevated CO2 concentrations (Sellers et al., 1996; Bounoua et al., 1999, 

2010). 

Stomatal conductance is determined by a residual stomatal conductance when the irradiance 

approaches zero, the intercellular CO2 partial pressure and its compensation point in the absence 

of day respiration, and accounts for the effect of instantaneous changes in VPD, which reduces 

stomatal conductance when VPD increases. On the other hand, the mesophyll conductance is 

assumed to be only influenced by air temperature.  
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In ORCHIDEE, a soil moisture stress function has been integrated to the Yin & Struik (2009) CO2 

assimilation model to limit stomatal conductance, mesophyll conductance, and the Rubisco 

carboxylation and RuBP regeneration rates as soil moisture decreases (Section 6.1). Then, leaf 

boundary layer and aerodynamic conductances also limit CO2 assimilation following Su et al. 

(2001), mainly influenced by wind speed, LAI, and canopy height.  

 

LAI, which corresponds to the one-sided green leaf area per unit ground surface area (m2 m-2) is a 

prognostic variable tightly linked to the carbon allocation scheme. The calculated LAI is used to 

vertically discretize the canopy into a maximum of 20 LAI layers, with increasing thickness from 

top to bottom. Then, the gross carbon assimilation computed at the leaf level in a given LAI layer 

is scaled-up to the canopy level by summing over all LAI layers.  

 

Plant transpiration is computed for each PFT directly at the canopy level, driven by the saturated 

moisture gradient between the surface and the air at 2 m, and regulated by the aerodynamic, leaf 

boundary layer, and total canopy stomatal conductances. The total canopy stomatal conductance 

corresponds to the integration of the stomatal conductance computed in each LAI layer over all 

LAI layers.  

As for GPP computation, plant transpiration is also influenced by soil moisture stress through the 

soil moisture stress function limiting stomatal conductance when soil moisture decreases.  

 

LE is the sum of all processes contributing to this flux at the grid cell level considering the fraction 

of the grid cell concerned by each process, which are plant transpiration, bare soil evaporation, 

canopy interception and evaporation, snow sublimation, and floodplain evaporation. Similar to 

plant transpiration, each other process contributing to LE is driven by the saturated moisture 

gradient between the surface and the air at 2 m, controlled by the aerodynamic and boundary 

layer conductances, and by a process-specific conductance (as total canopy stomatal conductance 

for transpiration).  

 

2.2 COS, GPP, and LE observation datasets 

 

In this PhD thesis, I have used various observational datasets, ranging from in situ measurements 

for data assimilation and model evaluation to global products for large-scale evaluation of the 

upscaled optimized simulated fluxes. In addition to traditional observation-based data such as 

GPP and LE eddy-covariance measurements, this work incorporates a wide range of COS 

observations. These include small-scale observations obtained through flux chamber 

measurements and atmospheric concentration flask measurements for regional-scale studies. 

The observational datasets are presented in Figure 6.  
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Figure 6: Overview of the main observation datasets used in this PhD work, presented at various 

spatial scales. The left column distinguishes datasets traditionally used for LSM evaluation and 

calibration, while the right column presents the COS observations.  

 

GPP and LE data estimated using eddy covariance flux towers, which have been extensively used 

to benchmark LSMs (Section 1.3.1), are utilized in this study to calibrate ORCHIDEE parameters 

and evaluate model developments and calibrations. With the eddy covariance method, NEE is 

separated into GPP and ecosystem respiration (Re), for example by using night-time NEE data to 

estimate Re and subtracting it from NEE to isolate GPP (Reichstein et al., 2005). The FLUXNET La 

Thuile and 2015 networks have previously been used to calibrate and evaluate ORCHIDEE 

simulated carbon, water, and energy fluxes (Kuppel et al., 2012; Bastrikov et al., 2018, Peylin et al., 

2016). Additionally, in this PhD work, I processed flux data from the ICOS Warm Winter 2020 

database to provide new data for improving and evaluating ORCHIDEE fluxes over recent years in 

Europe. 

Then, since direct GPP and LE observations are not available at regional and global scales, I have 

utilized several satellite-based global GPP and LE products for model evaluation at these broader 
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scales. The FLUXSAT GPP (Joiner et al., 2018) and FLUXCOM GPP and LE (Jung et al., 2019, 2020; 

Nelson et al., 2024) datasets are derived from machine learning algorithms that integrate data 

from eddy covariance flux towers with remote sensing observations. GLEAM also provides LE 

estimates by combining satellite observations with a model that integrates land surface and 

meteorological data (Miralles et al., 2011). Then, I used the SIF-GPP product from the Sen4GPP 

project (Duveiller et al., 2023), which derives GPP using linear empirical relationships with SIF data 

obtained from the ESA Sentinel-5P Tropospheric Monitoring Instrument (TROPOMI) (Guanter et 

al., 2021), with biome-specific calibrations. Using multiple global GPP and LE products helps 

account for uncertainties arising from different estimation methods and underlying assumptions 

when evaluating ORCHIDEE simulated fluxes.  

 

To complement these commonly used GPP and LE data, I have incorporated various COS flux 

observation datasets. Unlike eddy covariance GPP estimates, eddy covariance COS flux 

measurements are typically not affected by the confounding influence of a vegetation emission 

flux. Using COS flux measurements also provides an independent constraint on GPP and LE, 

thereby reducing reliance on traditional GPP and LE eddy covariance data and offering 

complementary insights into these fluxes.  

COS flux chamber measurements can be used to investigate COS flux processes at small scales. 

Leaf COS uptake can be measured using branch chambers (Seibt et al., 2010; Kooijmans et al., 

2019). In particular, the Hyytiälä boreal evergreen needleleaf forest in Finland has been the subject 

of extensive COS flux measurements. Branch chambers measured COS fluxes on a Scots pine tree 

from March to July 2017 (Kooijmans et al., 2019). COS fluxes were derived from hourly changes in 

mole fractions when chambers were sealed, using a quantum cascade laser calibrated against 

reference standards (Kooijmans et al., 2016). Soil COS exchanges can also be inferred from 

chamber measurements. Soil COS flux chamber measurements have been conducted at several 

sites, covering a variety of biomes with forest, grassland, and agricultural sites (Kitz et al., 2020; 

Spielmann et al., 2019, 2020; Sun et al., 2018). While chambers offer the advantage of isolating 

individual components of the COS budget, they also have limitations beyond their small spatial 

scale. For example, some chamber components might emit COS, and using soil chambers 

necessitates removing the aboveground vegetation.  

At the ecosystem scale, COS fluxes that include the contribution from both vegetation and soil are 

measured from eddy covariance flux towers. Several years of ecosystem COS flux measurements 

are available from 2013 to 2017 at the Hyytiälä forest (Vesala et al., 2022), and in 2012 and 2013 at 

the Harvard deciduous temperate forest in the United-States (Wehr et al., 2017).  

 

Then, to address the lack of direct GPP observations and COS flux measurements at the regional 

scale, studies I contributed to used atmospheric CO2 and COS concentration measurements to 

inform CO2 and COS surface fluxes (Section 5). Analyzing atmospheric CO2 and COS concentration 

data allows for the investigation of contributions from various components of the global CO2 and 

COS budgets. The NOAA surface tower network has been providing long-term COS concentration 

measurements at 15 locations, with weekly to monthly frequencies, since 2000 (Montzka et al., 

2007). These measurements, which also include CO2 concentrations, are collected using paired 

flasks and analyzed with gas chromatography and mass spectrometry. Additionally, COS 

concentration measurements have been conducted at the GIF station in France from August 2014 
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to November 2021, and at the Trainou site, approximately 80 km south of GIF (Belviso et al., 2022a, 

2022b). Finally, at the global scale, the Michelson Interferometer for Passive Atmospheric 

Sounding (MIPAS) spectrometer (Fisher et al., 2008), which is operated onboard of the ESA 

Environmental Satellite (ENVISAT), provides satellite retrievals of atmospheric COS concentration 

from 2002 to 2012 (Glatthor et al., 2015). 

 

2.3 The ORCHIDEE data assimilation system 

2.3.1 Data assimilation 

 

Because the parameter values used in process representations of LSMs significantly contribute to 

the uncertainty of the simulated fluxes, a tool was developed at LSCE to optimize the parameters 

of the ORCHIDEE LSM. Data assimilation (DA) is an effective method for optimizing key parameters 

to enhance model accuracy and improve future climate predictions. The ORCHIDEE DA system 

(ORCHIDAS, https://orchidas.lsce.ipsl.fr/) integrates different DA techniques that rely on the 

minimization of a cost function (measuring the distance between model and observation) to 

determine a combination of optimized parameters (Bastrikov et al., 2018). Various observational 

data streams can be assimilated to constrain the model parameters, such as in situ or remote 

sensing data (Bacour et al., 2023; Kuppel et al., 2014; MacBean et al., 2022; Mahmud et al., 2021; 

Peylin et al., 2016). For each data stream, an observation operator is required in ORCHIDEE to 

simulate the corresponding variable, allowing the assimilation system to improve this simulated 

variable by reducing the misfit between the model and the observational data stream (Figure 7).  

 

The cost function quantifies the discrepancy between observed and simulated variables and the 

deviation of optimized parameters from their prior values, considering the errors associated with 

all components. Assuming Gaussian distributions for model-data and parameter errors, the cost 

function is expressed as follows (Tarantola, 2005),  

 

𝐽(𝑥) =
1

2
⋅ [(𝐻(𝑥) − 𝑦)𝑇 ⋅ 𝑅−1 ⋅ (𝐻(𝑥) − 𝑦) + (𝑥 − 𝑥𝑏)𝑇 ⋅ 𝐵−1 ⋅ (𝑥 − 𝑥𝑏)]                       (Equation 2) 

 

with 𝑦 representing the observed variable and 𝐻(𝑥) the corresponding simulated variable. 𝑥𝑏 is 

the prior, and 𝑥 is the optimized parameter vector. 𝑅 and 𝐵 are the prior error covariance matrices 

for the observations and parameters, respectively. Note that 𝑅 includes both the measurement 

and model structural errors. Only the diagonal elements are considered for 𝑅 and 𝐵. The 

parameter error in 𝐵 is defined as 15% of the parameter variation range, while the observation 

errors were set to the root mean squared deviation (RMSD) between observed data and the prior 

model simulations (Kuppel et al., 2012, 2013; Bacour et al., 2023). 

 

https://orchidas.lsce.ipsl.fr/
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Figure 7: Overview of the data assimilation approach to optimize ORCHIDEE parameters using 

ORCHIDAS.  

 

ORCHIDAS integrates two main minimization methods, a gradient-based approach (limited 

memory Broyden-Fletcher-Goldfarb-Shanno algorithm with bound constraints, L-BFGS-B), and a 

global random search with a Genetic Algorithm (GA) approach (Bastrikov et al., 2018). In this work, 

I have used GA to optimize the model parameters (Goldberg, 1989; Haupt & Haupt, 2004; Santaren 

et al., 2014).  

GA is inspired by genetics and natural selection (Goldberg, 1989; Haupt & Haupt, 2004). It treats 

the model parameter vector as a chromosome, with each gene representing a parameter. 

Iteratively, the algorithm generates a pool of a given number of chromosomes. The initial pool is 

created by randomly perturbing parameters, and subsequent iterations generate new 

chromosomes via two processes. New chromosomes can be generated through crossover, 

corresponding to an exchange of gene sequences between two parent chromosomes, or through 

mutation, randomly perturbing selected genes of a parent chromosome. The pool is then updated 

with the best chromosomes from both the parent and offspring pools, based on the lowest cost 

function values. Chromosomes are ranked by their cost function values, and the selection process 

ensures that the best chromosomes are more likely to produce offspring, adhering to the selection 

principle. 

While GA is computationally more demanding than gradient-based approaches due to its slower 

convergence, it offers a significant advantage by considering a population of solutions and 

performing a global search. This thorough exploration of the search space helps avoid premature 

convergence. In contrast, gradient-based methods rely on a single solution trajectory, limiting the 

exploration of the search space and increasing the risk of converging to local optima. For example, 

in ORCHIDEE, Santaren et al. (2014) demonstrated that GA outperformed the gradient-based 

method in minimizing the cost function to the correct minimum at one FLUXNET site, constrained 

by water and carbon fluxes, as the gradient method frequently became trapped in local minima.  

 

2.3.2 Sensitivity analysis 

 

ORCHIDEE incorporates over 130 parameters to simulate land-surface interactions. To manage 

the computational cost of parameter optimization and to exclude parameters that do not 

significantly impact the variables of interest, sensitivity analyses (SAs) are conducted as a 
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preliminary step to DA. This process helps identify and select a subset of key parameters for 

calibration. Moreover, as ORCHIDEE is a LSM that can be used for global scale simulations and 

projections of land carbon, water, and energy fluxes, we aim to achieve genericity in the optimized 

parameter values. For instance, in ORCHIDEE, plant species are categorized into 14 vegetated PFTs, 

each associated with processes that depend on PFT-specific parameters. Ensuring parameter 

value genericity allows each PFT-dependent parameter to be applicable across different 

environmental conditions within a PFT. Therefore, by selecting key parameters for optimization, 

we reduce the risk of overfitting, where the optimized parameters fit the assimilated observational 

data too closely but fail to generalize well to varying conditions or independent validation data.  

 

ORCHIDAS integrates two SA methods to test the impact of each parameter on a simulated 

variable, the Morris method (Morris, 1991) and the Sobol method (Sobol et al., 1993). The Sobol 

method provides a quantitative measure of the impact of each parameter and their interactions 

on the variable variance, but it is computationally expensive. In this PhD work, I have used the 

Morris method due to its time efficiency. The Morris method enables a qualitative identification of 

key parameters by ranking them according to their importance for the simulated variable.  
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3 REPRESENTING ECOSYSTEM COS FLUXES IN ORCHIDEE 

3.1 Vegetation COS uptake 

 

Vegetation COS uptake is estimated to be the largest sink for COS, but it also exhibits the widest 

range of estimates among all COS budget components, spanning from -1335 to -238 GgS y⁻¹ (Table 

1). This significant uncertainty in the vegetation contribution to the global COS budget highlights 

the need for a deeper understanding and tighter constraints on the spatial and temporal dynamics 

of vegetation COS fluxes to effectively use COS uptake as a proxy for GPP and plant transpiration. 

Berry et al. (2013) initially developed a mechanistic model of vegetation COS flux, and its 

implementation in LSMs can yield new global estimates of vegetation COS uptake. 

GPP can be inferred from observed vegetation COS flux using the LRU relationship (Section 1.3.3). 

A previous study by Launois et al. (2015), which considered three LSMs including ORCHIDEE, linked 

vegetation COS fluxes to simulated global GPP using the LRU approach. However, the integration 

of a mechanistic vegetation COS model into LSMs offers the potential to provide new insights into 

the simulated GPP and LE fluxes by constraining the model parameters that govern these three 

fluxes through the use of COS flux measurements and data assimilation techniques. 

 

Therefore, during a 3-month internship at LSCE prior to my PhD thesis, I worked on implementing 

the mechanistic model of vegetation COS uptake initially developed by Berry et al. (2013) in 

ORCHIDEE. This work, detailed in Maignan et al. (2021), where I am the second author and 

presented in Appendix 9.1, involved my contributions to the vegetation COS model 

implementation, performing simulations from site to global scales, and participating in the 

analysis of results and the writing of the article. 

In this model, vegetation COS flux is represented by a one-way diffusion equation from the 

atmosphere to the leaf interior, limited by a series of conductances, 

 

𝐹𝑐𝑜𝑠𝑣𝑒𝑔 = [𝐶𝑂𝑆]𝑎𝑡𝑚 ⋅ [
1

𝑔𝑏𝐶𝑂𝑆
+

1

𝑔𝑠𝐶𝑂𝑆
+

1

𝑔𝑖𝐶𝑂𝑆
]

−1

                                                                              (Equation 2) 

 

with 𝐹𝑐𝑜𝑠𝑣𝑒𝑔 the vegetation COS uptake (pmol COS m-2 s-1), [𝐶𝑂𝑆]𝑎𝑡𝑚 the atmospheric COS 

concentration (ppt), and 𝑔𝑏𝐶𝑂𝑆, 𝑔𝑠𝐶𝑂𝑆, 𝑔𝑖𝐶𝑂𝑆 respectively the boundary layer, stomatal, and internal 

COS conductance (mol COS m-2 s-1).  

Contrary to the empirically based LRU approach relying on a constant LRU value per PFT as 

previously used in ORCHIDEE (Launois et al., 2015), this mechanistic model accounts for the 

influence of environmental factors, such as light, on the relationship between GPP and vegetation 

COS uptake.  

 

The simulated vegetation COS fluxes in ORCHIDEE were evaluated against in situ measurements 

at two forest sites: Harvard in the United-States and Hyytiälä in Finland. This evaluation yielded 

relative RMSDs between 21% and 41% at both diel and seasonal scales across the two sites. Global 

simulations (Figure 8) estimated vegetation COS uptake at −756 GgS y-1 over the 2000-2009 period, 

in the range of previous estimates (Table 1). Additionally, new LRU values were derived for each 
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PFT, based on GPP and plant COS flux simulated in ORCHIDEE. The mechanistic and LRU 

approaches were compared through the transport of all COS components in the LMDZ 

atmospheric transport model and evaluation of the simulated COS concentrations at NOAA sites. 

Results showed that while the mechanistic approach was more accurate to represent high-

temporal-resolution measurements, both methods produced similar results after transport of 

monthly mean COS fluxes. This study highlighted that uncertainties in the global COS budget are 

a larger limiting factor for using COS concentrations to constrain GPP in LSMs than the differences 

between the two modeling approaches. 

 

 

Figure 8: Map of average ORCHIDEE simulated vegetation COS fluxes (pmol m-2 s-1) over the 2000-

2009 period.  

 

3.2 Soil COS exchanges 

 

To further constrain the biospheric COS flux contribution to the global atmospheric COS budget 

and to accurately represent COS flux at the ecosystem scale, a representation of soil COS 

exchanges needed to be implemented in ORCHIDEE in addition to the vegetation COS model. 

Consequently, the implementation of a mechanistic-based model of soil COS uptake and 

production in ORCHIDEE has followed the implementation of the vegetation COS model. This work 

is presented in my first publication as the lead author in the next section.  
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3.3 Improving ecosystem COS flux representation in LSMs 

 

Since the implementation of ecosystem COS fluxes in ORCHIDEE, recent studies on vegetation and 

soil COS exchanges have revealed opportunities to improve the representation of these COS 

fluxes. These studies offer valuable insights, by providing new constraints on COS fluxes and by 

identifying missing processes that could be integrated in the COS models. 

 

In the vegetation COS uptake model from Berry et al. (2013), the internal conductance to COS that 

represents the mesophyll conductance and carbonic anhydrase (CA) activity, is assumed 

proportional to the maximum carboxylation rate of Rubisco (Vcmax). This assumption implies that 

the temperature response of Rubisco is applied to CA when simulating vegetation COS uptake. In 

the SiB4 LSM, Cho et al. (2023) recently introduced a novel function to describe the temperature 

response of CA, incorporating its specific temperature optimum. This new approach still expresses 

the internal conductance to COS as proportional to the Vcmax at 25°C (Vcmax,25) of Rubisco, but it 

replaces Rubisco’s temperature response function with that of CA. Optimizing model parameters 

related to the stomatal and internal conductance using COS flux observations at two sites, the 

Hyytiälä and Harvard forests, Cho et al. (2023) found that CA has lower temperature optimums 

than Rubisco. Using the optimized parameter values to simulate global vegetation COS flux in SiB4 

decreased the COS uptake in regions where air temperatures exceed 25°C, predominantly in 

tropical areas, and increased the uptake in regions with temperatures below 25°C. In ORCHIDEE, 

this new CA temperature response has been implemented and its impact on the simulated 

vegetation COS fluxes is discussed in Section 4.2, as well as the potential distinction between 

mesophyll conductance and the enzyme activity in the vegetation COS model, as it is the case for 

CO2 in ORCHIDEE (Abadie et al., 2023).  

 

In ORCHIDEE, the contribution of understory vegetation to vegetation COS uptake is not accounted 

for due to the lack of representation of understory vegetation. This could be addressed by using 

LSMs that integrate a finer representation of vegetation structure and dynamics, such as CLM-

FATES (Fisher et al., 2015). 

In addition to leaf COS absorption by vascular plants, non-vascular plants and lichens also 

contribute to ecosystem COS exchanges. These processes are not yet represented in LSMs. 

Bryophytes and lichens can absorb COS even in the dark, potentially making a significant 

contribution depending on moisture conditions (Gimeno et al., 2017; Sun et al., 2018; Rastogi et 

al., 2018). These organisms have also been reported to emit COS driven by temperature (Gimeno 

et al., 2017). Understanding the mechanisms related to bryophyte and lichen COS fluxes and 

integrating them into LSMs could help scale up their contribution and assess their importance at 

the global scale. 

Some vascular plants also have the potential to emit COS (Bloem et al., 2012; Geng & Mu, 2006; 

Maseyk et al., 2014). Experimental studies have reported COS production by agricultural crops, 

such as wheat fields at specific growth stages (Maseyk et al., 2014), or following fungal infection in 

oilseed rape (Bloem et al., 2012). The ecosystem COS fluxes simulated in ORCHIDEE have been 

used to investigate COS emission in agroecosystems in Central France (Belviso et al., 2022a), as 

presented in Section 5.2.1. This also highlights the potential role of plant-fungi interactions in the 
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phyllosphere for ecosystem COS exchanges, which requires future research and is not yet 

represented in LSMs. 

 

Regarding the representation of soil COS exchanges, two mechanistic soil COS flux models have 

been proposed by Sun et al. (2015) and Ogée et al. (2016). For now, the model from Ogée et al. 

(2016) has been preferably implemented in LSMs such as SiB4 and ORCHIDEE (Kooijmans et al., 

2021; Abadie et al., 2022) due to its lower complexity. Sun et al. (2015) requires resolving COS 

diffusion, consumption, and emission by discretizing the soil column into several layers, whereas 

Ogée et al. (2016) derived a simplified analytical solution assuming a soil column with uniform 

temperature, soil moisture, and porosity and steady-state conditions. Therefore, implementing 

the model from Sun et al. (2015) in LSMs, which would alter the COS concentration profile in the 

soil column, could yield different estimates of soil COS contribution at the global scale and help 

evaluate the uncertainty related to the choice of soil COS flux representation. 

 

In addition to the existing simple empirical soil COS uptake models (Kettle et al., 2002; Berry et al., 

2013; Launois et al., 2015), Whelan et al. (2022) proposed a new empirical soil COS exchange model 

including an uptake and a production term. This model is based on biome-specific response curves 

to describe soil COS fluxes parametrized from field and upscaled lab incubation experiments, 

using only information on biome type, soil moisture, and surface temperature as input data. 

Contrary to the typically used exponential oxic soil COS production in response to soil 

temperature, Whelan et al. (2022) considered a logistic function to define a maximum soil COS 

production for each biome. While this could refine soil COS production implemented in LSMs, its 

impact on simulated soil COS fluxes might be limited, as its significance is more pronounced under 

conditions not typically found in vegetated ecosystems. New estimates of anoxic soil COS 

production are also provided based on an upscaling of a function of soil temperature fitted on in 

situ salt marsh measurements. This new wetland estimate, representative of high COS emissions 

from saline environments, yields a COS production four times higher than the one estimated in 

ORCHIDEE, which better represents freshwater environments (Abadie et al., 2022). This highlights 

a possible future improvement of wetland COS flux representation in LSMs by distinguishing 

between saline and freshwater environments. 

 

Regarding processes of soil COS flux that have been recently investigated and are not yet 

accounted for in LSMs, Kitz et al. (2023) highlighted the contributions of living roots and the 

rhizosphere to soil COS exchanges. Their experimental study with young beech trees found that 

living roots have a contrasting impact on soil COS fluxes throughout the season. During the 

growing season, the presence of living roots significantly reduced soil COS emissions compared to 

bare soil, attributed to the CA enzyme in roots that consumes COS. However, during periods of 

vegetative inactivity, living roots increased soil COS emissions. The variation in soil COS fluxes due 

to living roots may also be influenced by changes in the rhizosphere microbial community, which 

can be affected by rhizodeposition. This study calls for further investigation into the underlying 

mechanisms of living root contribution to soil COS exchanges. Understanding these processes 

could lead to their integration in LSMs that include soil COS models. Additionally, the study used 

an artificial, highly nutrient-rich soil, and future research should focus on assessing the impact of 

living roots on soil COS exchanges in natural soils to enhance the applicability of these findings. 
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Finally, several studies have highlighted the impact of using constant versus variable atmospheric 

COS concentrations on simulated ecosystem COS exchanges (Kooijmans et al., 2021; Abadie et al., 

2022). Consequently, spatially and temporally varying atmospheric COS concentrations are used 

as input data in LSMs. For example, SiB4 uses 3-hourly COS concentrations at a 4°x6° spatial 

resolution (Kooijmans et al., 2021), and ORCHIDEE uses 3-hourly concentrations at a 3.75°x1.9° 

spatial resolution (Abadie et al., 2023). This approach allows for accounting for the impact of high-

resolution variations in COS concentrations on simulated soil and vegetation COS fluxes. However, 

these approaches do not consider the influence of biospheric COS fluxes on atmospheric COS 

concentrations. To address this limitation, future simulations of ecosystem COS fluxes could 

benefit from coupling LSMs with atmospheric circulation models, providing a comprehensive view 

of the interactions and feedback between atmospheric COS concentrations and surface fluxes. 
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4 USING COS AND CO2 FLUX OBSERVATIONS TO CONSTRAIN 

GPP AND PLANT TRANSPIRATION IN ORCHIDEE 

4.1 Assimilating COS flux observations in ORCHIDEE  

 

The implementation of vegetation and soil COS models in ORCHIDEE (Sections 3.1 and 3.2) enables 

to simulate ecosystem COS flux, allowing the assimilation of eddy covariance COS flux data, which 

has been collected over several years at a few sites (Kohonen et al., 2020; Vesala et al., 2022; Wehr 

et al., 2017), to constrain ORCHIDEE parameters. Although atmospheric COS concentration 

measurements are available at more locations than eddy covariance COS flux data (Section 2.2), 

these concentrations reflect the influence of all COS budget components. To optimize ORCHIDEE 

parameters using atmospheric COS concentrations, a comprehensive understanding of all other 

components influencing these concentrations at the measurement sites is required. In contrast, 

assimilating eddy covariance COS flux data focuses on the biospheric contribution to the COS 

budget, providing a stronger constraint on parameters that also determine GPP and LE. Indeed, 

COS flux data has been found to provide information on stomatal diffusion (Berkelhammer et al., 

2020; Kooijmans et al., 2017; Wehr et al., 2017). Therefore, assimilating biospheric COS flux data 

can offer a new constraint on the stomatal conductance related parameters in ORCHIDEE, 

informing both GPP and plant transpiration, which are coupled through stomatal diffusion.  

 

Assimilating eddy covariance COS flux data also enables to calibrate the biospheric COS models 

implemented in LSMs (Kooijmans et al., 2021; Maignan et al., 2021; Abadie et al., 2022; Chen et al., 

2023). Several atmospheric inversion modeling studies using atmospheric COS concentration 

observations have identified a missing biospheric COS sink in Northern high latitudes (Ma et al., 

2021; Remaud et al., 2022). Then, Vesala et al. (2022) developed a parametric model of vegetation 

COS fluxes calibrated against eddy covariance COS fluxes at the Hyytiälä boreal forest, which also 

indicated increased COS uptake in high latitude boreal evergreen needleleaf biomes compared to 

the uptake simulated in the SiB4 LSM. Therefore, calibrating the COS model parameters in 

ORCHIDEE through data assimilation techniques allows us to constrain the simulated biospheric 

COS fluxes and assess whether this approach can reduce the missing COS sink in Northern high 

latitudes, bringing us closer to closing the global COS budget (Section 1.3.3). 

 

Consequently, eddy covariance COS fluxes from the Hyytiälä site, which constitute the longest time 

series of ecosystem COS flux measurements, have been assimilated in ORCHIDEE. This study is 

the first to assimilate COS flux data in ORCHIDEE. The data assimilation approach, along with the 

evaluation of the optimized ecosystem COS flux, GPP, and LE, and their upscaling over the entire 

boreal evergreen needleleaf biome, are presented in my second publication as the lead author in 

the following section.  
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4.2 Additional constraint on GPP and plant transpiration from 

COS flux observations for boreal forests 
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4.3 Recent advances in COS flux data assimilation in LSMs and 

prospective future experiments  

 

Since the above DA study of ecosystem COS fluxes from the Hyytiälä forest in ORCHIDEE, other 

studies have implemented a representation of ecosystem COS fluxes in LSMs and assimilated COS 

flux data to refine the simulated biospheric COS fluxes, as well as GPP, LE, sensible heat flux, and 

soil moisture (Zhu et al., 2024a, 2024b). 

 

Zhu et al. (2024a) developed the adjoint-based Nanjing University Carbon Assimilation System 

(NUCAS) to assimilate multiple COS flux observations in the Boreal Ecosystem Productivity 

Simulator (BEPS). A representation of biospheric COS fluxes has been integrated in BEPS, with 

vegetation COS uptake simulated using the same mechanistic approach as implemented in 

ORCHIDEE and SiB4, as proposed by Berry et al. (2013). However, unlike ORCHIDEE and SiB4, BEPS 

does not base soil COS exchanges on the mechanistic model from Ogée et al. (2016). Instead, BEPS 

adopts a simplified approach to simulate soil COS exchanges (Whelan et al., 2016). This approach 

models soil COS exchanges as the sum of an abiotic component, represented by an exponential 

function of soil temperature, and a biotic component, which depends on soil temperature and 

moisture.  

COS flux data from seven sites (Neustift grassland in Austria, Sorø forest in Denmark, Las Majadas 

del Tietar savanna in Spain, Hyytiälä forest in Finland, a soybean site in Italy, Harvard forest in the 

United States, and Wind River experimental forest in the United States) were assimilated to 

optimize 76 parameters in BEPS using a gradient-based optimization approach (BFGS). Among 

these, five parameters related to photosynthesis, transpiration, and soil water transport were 

efficiently optimized following COS flux DA. Single-site COS flux DA reduced the mean GPP RMSD 

from 8.22 μmol m-2 s-1 to 6.38 μmol m-2 s-1. Notably, this improvement in simulated GPP was 

achieved by assimilating independent COS flux data, without incorporating any GPP data. 

However, results varied across sites, with some degradation of the simulated GPP at low-stature 

vegetation sites. Consistent with the COS flux DA in ORCHIDEE, the simulated LE also showed 

improvement with a mean RMSD reduction from 94.69 W m-2 to 79.69 W m-2, and a slight 

improvement of about 5% in the simulated sensible heat flux. Additionally, COS flux DA helped 

correct the prior overestimation of the soil moisture decline rate in summer, although significant 

errors remained due to a weaker link between ecosystem COS flux and soil moisture parameters 

compared to photosynthesis-related parameters. 

 

Building on this work, Zhu et al. (2024b) continued exploring the potential of COS flux assimilation 

to constrain the simulated GPP in BEPS. In this second study, they used COS flux observations 

from the same seven sites as Zhu et al. (2024a). However, instead of employing a gradient-based 

approach, they used a Monte Carlo-based parameter calibration method to optimize nine 

parameters associated with photosynthesis, soil hydrology, stomatal diffusion, and energy 

balance. The results indicated that both the simulated ecosystem COS flux and GPP were most 

sensitive to the maximum Rubisco carboxylation rate at 25°C and the leaf nitrogen content, while 

less sensitive to soil hydrology parameters as noted by Zhu et al. (2024a). The Ball-Berry model 

parameter for stomatal conductance intercept was critical for COS flux simulation but had a 
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minimal impact on simulated GPP. Across all sites, the mean RMSD reduction in ecosystem COS 

fluxes was 32.09%, and a GPP RMSD reduction of 35.42% was achieved following COS flux DA. 

 

These two studies assimilate only COS flux observations to constrain the carbon, water, or energy 

fluxes in BEPS. However, Zhu et al. (2024a) noted that relying solely on COS flux data can result in 

equifinality issues (Beven, 1993) after the optimization, where different combinations of optimized 

parameter values yield similar reductions in the cost function. They also emphasize that 

assimilating only COS flux data can degrade the simulated GPP at some sites and lead to 

overshooting of some photosynthesis-related parameters. Consequently, Zhu et al. (2024a) 

suggest that it may be necessary to combine COS flux data with other observational data streams 

during DA to better constrain the carbon, water, and energy fluxes. This finding aligns with the 

results from COS flux DA in ORCHIDEE, where the joint assimilation of COS flux and GPP data 

improved both simulated variables, while using only COS flux data degraded the simulated GPP at 

the Hyytiälä site.  

 

Despite growing interest in using COS flux observations to constrain stomatal conductance, 

photosynthesis, and water and energy fluxes (Abadie et al., 2023; Cho et al., 2023; Chen et al., 2023; 

Zhu et al., 2024a, 2024b), all studies have highlighted the limitations of this approach due to the 

scarcity of COS flux observations. To address this challenge, a second constraint could be added 

by performing a joint assimilation of two data streams: ecosystem COS flux and atmospheric COS 

concentration data, to directly optimize model parameters. Indeed, COS concentration 

observations from the NOAA network and other measurement towers, such as the GIF site near 

Paris in France, offer additional information at a large spatial scale, including around 15 sites with 

some providing data spanning more than 20 years, which complements the in situ COS flux data 

(Section 2.2). An example of such an approach, which assimilates both surface fluxes and 

atmospheric concentration data, has been conducted in the ORCHIDEE-LMDZ LSM-atmosphere 

model by Bacour et al. (2023). This study used in situ NEE and LE estimates, NDVI satellite retrievals, 

and CO2 concentrations. To our knowledge, DA of COS flux for parameter optimization (Abadie et 

al., 2023; Cho et al., 2023; Chen et al., 2023; Zhu et al., 2024a, 2024b) or DA of COS concentrations 

for surface flux estimation through atmospheric inversions (Ma et al., 2021; Remaud et al., 2022) 

have been conducted in LSMs, but no joint assimilation has yet been performed. This approach 

could exploit the complementarities between the information embedded in ecosystem COS fluxes, 

which provide a more direct constraint on vegetation activity, and atmospheric COS 

concentrations, which account for all components of the global COS budget. 
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5 USING ATMOSPHERIC COS CONCENTRATIONS TO 

CONSTRAIN THE GLOBAL COS AND CO2 BUDGETS 

5.1 Overview of the studies using atmospheric COS 

concentrations  

 

While the primary focus of my PhD work was using COS flux observations to constrain simulated 

ecosystem COS fluxes, GPP, and plant transpiration in ORCHIDEE, I also participated in several 

studies that used atmospheric COS and CO2 concentration data to inform surface COS fluxes and 

terrestrial vegetation CO2 exchanges. Investigating atmospheric COS concentrations can provide 

an additional constraint on the COS fluxes simulated in ORCHIDEE, supplementing parameter 

optimization and process evaluation against in situ COS flux data. This approach also allows for 

the assessment of other components of the global COS budget beyond the vegetation and soil 

COS fluxes. 

 

The LSCE team studying COS benefited from a complementary blend of expertise, resulting in 

several publications involving both experimental and modeling approaches. Notably, Sauveur 

Belviso (permanent researcher) led the experimental work on COS concentrations, monitoring 

atmospheric COS at the GIF and Trainou stations in France, and conducting COS concentration 

measurements in agroecosystems near LSCE. Marine Remaud (postdoctoral researcher) 

contributed her expertise in atmospheric transport modeling with the LMDZ model, allowing to 

transport the soil and vegetation COS fluxes simulated in ORCHIDEE, along with other components 

of the global COS budget to simulate atmospheric COS concentrations. She also performed 

atmospheric inversion modeling to optimize and inform surface COS and CO2 fluxes at the global 

scale using atmospheric COS and CO2 concentration measurements. Then, Antoine Berchet and 

Isabelle Pison (both permanent researchers) used the Flexible Particle model (FLEXPART) to assess 

surface COS fluxes, including the ecosystem COS fluxes simulated in ORCHIDEE. Contrary to the 

LMDZ atmospheric circulation model, the FLEXPART Lagrangian particle dispersion model tracks 

the trajectories of particles as they move through the atmosphere (Pisso et al., 2019). FLEXPART 

can be operated both forward and backward in time. In forward mode, particles are released from 

one or more sources to determine concentrations. Backward simulations are employed to 

examine the history of air parcels impacting a specific location, such as an atmospheric 

measurement site, which serves as a receptor. 

 

Consequently, the simulated vegetation and soil COS fluxes in ORCHIDEE have been used in 

multiple studies ranging from local to global scales. The publications resulting from these 

collaborations are summarized in Figure 9 below. 
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Figure 9: Overview of the studies involving COS surface fluxes I contributed to. The main COS 

surface flux components of the global COS budget are represented (in red), while only GPP is 

shown for CO2 (in blue). Studies highlighted in light red focus on COS while studies highlighted in 

light purple focus on both COS and CO2.  

 

5.2 Applications for the regional and global COS budget 

5.2.1 Agroecosystem contribution to COS emissions 

 

While vegetation COS flux is considered to be a one-way flux from the atmosphere to the leaf 

interior, where it is completely hydrolyzed by CA (Stimler et al., 2010), some field and controlled 

environment experiments have highlighted the potential of vascular plants to emit COS (Bloem et 

al., 2012; Geng & Mu, 2006; Maseyk et al., 2014). However, this emission process is not represented 

in LSMs, and there has been no large-scale estimation of vegetation's role in COS production. As a 

result, the contribution of vegetation to COS emissions is not accounted for in the global COS 

budget.  

 

Therefore, in Belviso et al. (2022a) (Appendix 9.2), the vegetation and soil COS fluxes simulated in 

ORCHIDEE were evaluated against field observations at two agroecosystems in central France. My 

contributions to this work included conducting the ORCHIDEE simulations for these sites and 

participating in the analysis and presentation of the results, specifically comparing the observed 

and simulated fluxes. This study investigated potential COS emissions from croplands that are not 

yet considered in the model. Three independent approaches were used to compare the model 

with observations.  
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First, monitoring nighttime ratios of vertical mole fraction gradients of COS and CO2 during the 

summer months in 2019 and 2020 at a rural tall tower site near Orléans suggested a weakening 

of nocturnal net COS uptake during peak growing season, recovering in August. In contrast, the 

simulated nocturnal COS and CO2 ecosystem fluxes in ORCHIDEE maintained a constant 

proportional relationship throughout the summer. This discrepancy indicated that the model's 

nocturnal vegetation COS uptake driven by residual nighttime conductance and soil COS 

exchanges was insufficient to reproduce the observed patterns at this rural site.  

Secondly, the radon tracer method was applied at the GIF site near Paris from 2014 to 2021. In 

this approach, 222Radon (222Rn), a tracer emitted by soil, is used to estimate nocturnal ecosystem 

COS fluxes based on measurements of 222Rn and COS mixing ratios (Belviso et al., 2020). The 

results indicated a biogenic COS source peaking in late June and early July. Comparison with the 

ORCHIDEE simulations revealed that these observed summer COS emissions were not 

represented in the model, highlighting a missing COS source in the ORCHIDEE simulations (Figure 

10). 

Then, surveys in spring and summer 2019, 2020, and 2021 were conducted using flask-air samples 

upwind and downwind of wheat and rapeseed fields in GIF to determine horizontal COS 

concentration gradients. These surveys revealed that rapeseed shifted from COS uptake to 

emission in early summer, while wheat's uptake significantly decreased, showing that rapeseed 

was a larger COS source than wheat at the plot scale. This suggests that the biogenic process not 

yet included in ORCHIDEE likely corresponds to COS production from rapeseed crops during their 

ripening and senescence stages. This COS production may be associated with a specific pathway 

in Brassicaceae species, involving isothiocyanates and thiocyanate ions (Blaževića et al., 2020). 

However, further research is needed to fully understand plant COS production pathways.  

Finally, an empirical function was fitted between the simulated and observed ecosystem COS 

fluxes to estimate the potential COS emissions by rapeseed (Figure 10). Extrapolating this function 

across the global rapeseed harvested area of 32 million hectares in 2015 resulted in an estimated 

emission of 0.84 ± 0.13 GgS y-1. This contribution is therefore minimal compared to anthropogenic 

COS emissions for example, which are estimated to range from +220 to +580 GgS y-1 (Zumkehr et 

al., 2018).  
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Figure 10: Comparison between observed and simulated nighttime fluxes at GIF. Left panel: 

Difference between observed and simulated ecosystem COS fluxes between 2015 and 2020. Right 

panel: Data from the left panel between May and July, gathered across years, fitted with the 

polynomial function presented in the legend, which estimates the dynamics of an additional 

source of COS not represented in ORCHIDEE. The light green shading around the fitting function 

represents the 4-sigma uncertainty.  

 

Therefore, this study highlighted a missing process in ecosystem COS flux models implemented in 

LSMs, which accounts for vegetation's potential to produce COS. However, this source is of 

secondary importance compared to other COS sources for the global COS budget.  

 

5.2.2 Evaluation of COS anthropogenic and biogenic emissions from 

atmospheric COS observations 

 

Additional uncertainties persist beyond those related to the potential of crops to emit COS, such 

as for the vegetation, soil, or anthropogenic activity components, which are estimated to 

significantly contribute to the global COS budget (Whelan et al., 2018). While bottom-up modeling 

approaches provide estimates of surface COS fluxes (Berry et al., 2013; Kooijmans et al., 2021; 

Maignan et al., 2021; Abadie et al., 2022), further constraints on these fluxes can be achieved 

through atmospheric transport and simulated COS concentration evaluated against COS 

concentration data (Ma et al., 2021; Remaud et al., 2022).  

 

Berchet et al. (in review) aimed to evaluate the biogenic COS fluxes simulated in ORCHIDEE and 

the anthropogenic emissions from two inventories, the one from Zumkehr et al. (2018) and a 

home-made inventory based on Belviso et al. (2023), in Western Europe. The home-made 

inventory incorporates data on CS2 emissions from the viscose industry and CO2 emissions from 

coal power plants in Europe. This evaluation involved using the FLEXPART model to transport all 

COS surface fluxes contributing to atmospheric COS concentration in this region and comparing 

the simulated concentrations with COS concentration measurements recorded at the GIF site in 

France over more than five years. In this study, I provided the biogenic COS fluxes from vegetation 

and soil COS flux simulation in ORCHIDEE, and contributed to the interpretation of the results.  

 

The findings suggest a strong overestimation of COS anthropogenic emissions by the Zumkehr et 

al. (2018) inventory, especially in the Paris area despite the absence of coal power plant and major 

viscose industry, which cannot agree with the observed COS concentrations at GIF. In contrast, the 

new home-made inventory led to simulated atmospheric COS concentrations that were consistent 

with the observations.  

Additionally, this study assessed the nighttime and daytime variations, defined as the 12-hour 

day/night differences in measured or simulated COS concentrations. This analysis highlighted an 

underestimation of the simulated biogenic COS uptake in ORCHIDEE at night in winter and spring. 

This underscores the need to refine ecosystem COS flux at night, attributed to both soil COS 

exchanges and vegetation COS uptake through a residual nighttime stomatal conductance.   
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Therefore, the transport of surface COS fluxes and the evaluation of the resulting atmospheric 

concentrations can reveal structural deficiencies in COS process representation or highlight the 

need for improved parameterization. Moveover, in contrast to the NOAA network providing 

monthly or bi-weekly flask samples at several measurement stations (Section 2.2), the GIF COS 

concentration time series offers a higher data frequency with hourly records, enabling a constraint 

on the surface fluxes at a diurnal time resolution.  

 

5.2.3 Impact of recent change in atmospheric COS concentration on surface 

COS fluxes 

 

While atmospheric CO2 concentrations have continuously risen since pre-industrial times due to 

anthropogenic emissions, with atmospheric COS levels generally mirroring this trend, a decline in 

COS concentrations has been observed since 2015 (Li et al., 2024). Changes in atmospheric COS 

concentrations affect surface COS exchanges, impacting their contribution to the global COS 

budget. In particular, vegetation COS uptake presents a first order relationship with atmospheric 

COS concentration (equation 2). At the global scale, a first assessment of the impacts of the recent 

decrease in atmospheric COS concentrations on soil COS fluxes simulated in ORCHIDEE was 

conducted in Abadie et al. (2022). This assessment revealed that the reduction in atmospheric COS 

concentrations led to a decrease of about 25 GgS in the simulated net soil COS uptake between 

2016 and 2019. 

 

In Western Europe, Belviso et al. (2022b) monitored the trend in atmospheric COS concentrations 

measured at the GIF site in France from August 2014 to November 2021, and investigated its 

implications for biospheric COS fluxes using the COS fluxes simulated in ORCHIDEE. I provided the 

vegetation and soil COS fluxes simulated by ORCHIDEE for this study and contributed to the 

representation and analysis of the results. This study found a significant decrease in the seasonal 

cycle amplitude of COS concentrations, dropping by 27 ppt over six years, with the spring 

maximum declining more sharply than the autumn minimum. This decline aligns with 

tropospheric COS trends attributed to reduced anthropogenic emissions.  

At the GIF site, the drop in atmospheric COS concentrations resulted in a 10% decrease in the 

simulated vegetation COS uptake in ORCHIDEE between 2016 and 2021. Across the entire 

Northern hemisphere, this decline in atmospheric COS concentration led to an 8% reduction in 

the simulated vegetation COS sink between 2016 and 2019 (Figure 11). Since vegetation COS 

uptake is the main driver of seasonal variations in atmospheric COS concentration in the Northern 

hemisphere, this suggests that the reduced plant COS uptake contributes to the decrease in the 

seasonal cycle amplitude of COS concentrations in recent years.  
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Figure 11: Evolution the mean annual atmospheric COS concentration and mean annual plant 

COS uptake computed with a monthly variable atmospheric COS concentration, in the Northern 

hemisphere between 2010 and 2019.  

 

The importance of considering seasonal variations in atmospheric COS concentration to compute 

biospheric COS fluxes in LSMs has been highlighted previously, in particular to account for the 

impact of COS concentration drawdown during the vegetation growing season (Abadie et al., 2022; 

Kooijmans et al., 2021). Belviso et al. (2022b) emphasized the need to consider trends in 

atmospheric COS concentration when simulating vegetation COS fluxes, as these trends 

significantly affect the role of plants in the COS sink within the global COS budget.  

 

5.2.4 Impact of atmospheric COS transport models 

 

The studies presented in the previous sections have highlighted some of the uncertainties in the 

simulated surface COS fluxes. Additionally, uncertainties in the simulated atmospheric COS 

concentrations arise from the transport of COS fluxes by atmospheric transport models (ATMs). 

These uncertainties must be evaluated when using COS concentration measurements to constrain 

surface COS or CO2 fluxes, such as to determine potential missing COS sinks or sources that could 

help closing the global COS budget.  

 

Remaud et al. (2023) introduced the first atmospheric tracer transport model intercomparison 

project for COS (TransCom-COS), involving seven ATMs that simulated tropospheric COS 

concentrations based on state-of-the-art surface COS fluxes. In this study, I provided the 

ORCHIDEE simulated vegetation and soil COS fluxes for transport by the ATMs, in addition to those 

simulated in SiB4. This work aimed to explore transport uncertainties in simulated COS 

concentrations and evaluate surface COS fluxes in relation with the current unbalanced global COS 

budget. Simulated COS concentrations were compared with measurements from 15 NOAA 

network stations between 2012 and 2018. 

 

The latitudinal gradients of observed and simulated COS concentrations were analyzed for boreal 

winter and summer (Figure 12). This analysis helped disentangle the contributions of oceanic and 
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biospheric COS fluxes, which show strong seasonality. In winter, all ATMs underestimated 

simulated COS concentrations in the tropics by 50 ppt, suggesting a missing oceanic COS source 

in this region. During summer, the ATMs failed to capture the observed latitudinal gradient, 

particularly overestimating simulated COS concentrations above 40°N by 50 ppt, likely due to a 

missing biospheric COS sink. These findings are consistent with previous studies by Ma et al. (2021) 

and Remaud et al. (2022). Significant transport uncertainties were also observed above 40°N in 

boreal summer, with a spread between ATMs exceeding 60 ppt. 

Then, the evaluation of seasonal amplitude in COS concentrations revealed a large spread 

between ATMs, reaching 50 ppt at 6 of the 15 stations, which is half of the observed amplitude 

(100 ppt). Comparing simulated COS concentrations with ORCHIDEE and SiB4 biospheric fluxes or 

two different oceanic flux estimates demonstrated that changes in the biospheric or oceanic 

components typically had a lesser effect on the seasonal amplitude of simulated COS 

concentrations than the variability observed across different ATMs.  

 

 

Figure 12: Comparison of the latitudinal variations of COS concentrations simulated by seven 

ATMs using a control scenario of state-of-the-art surface COS fluxes (colored dots) with the 

observations (black line) for February (left), and August (right) at 15 NOAA stations over the years 

2012-2018. The simulated COS concentrations have been shifted such that the means are the 

same as the mean of the observations (∼500 ppt). The time series of COS mixing ratio have been 

detrended and filtered to remove the synoptic variability beforehand. In August, the value at the 

GIF station simulated by the TOMCAT ATM was removed as it was an outlier (value above 800 ppt). 

For the same reason, the COS values at the GIF station simulated by TOMCAT (800 ppt) and LMDZ 

(around 700 ppt) have been removed in February. The KUM station has been removed, which is 

co-located in longitude and latitude with the MLO station, for the sake of simplicity. Removing the 

KUM station does not affect the results. 

 

Therefore, while this study has highlighted significant uncertainties in the simulated COS 

concentrations due to the transport of surface COS fluxes, the various ATM simulations 

consistently identify discrepancies in surface COS fluxes, specifically with a missing COS source in 

the tropics and a missing COS sink in the Northern high latitudes.  

On the other hand, directly assimilating COS flux observations to constrain COS and CO2 surface 

fluxes eliminates the impact of transport uncertainties on COS concentrations. Assimilating COS 
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fluxes can also offer a more direct constraint as it involves fewer components of the global COS 

budget compared to assimilating COS concentrations, as discussed in Section 4.1. However, 

atmospheric COS concentrations provide information on a larger scale than COS flux observations. 

 

5.3 Valorisation of atmospheric COS and CO2 spatio-temporal 

gradients 

5.3.1 Evaluation of simulated GPP and terrestrial ecosystem respiration 

from model intercomparison projects using atmospheric COS and CO2 

data   

 

The studies by Belviso et al. (2022a, 2022b), Berchet et al. (in review), and Remaud et al. (2023) 

discussed in the previous section have advanced our understanding of the COS budget, from 

investigating local-scale COS flux processes to examining the impact of atmospheric transport 

models on COS concentrations. Improving the quantification of COS sinks and sources is crucial 

for using COS concentration observations to inform on GPP beyond the ecosystem scale. However, 

using previous estimates of COS components, Launois et al. (2015) utilized atmospheric 

concentration measurements to evaluate trends, and seasonal and spatial variations in GPP as 

simulated by three LSMs. This approach has been revised (based on some of the work conducted 

in this PhD) and further expanded to create a comprehensive evaluation framework based on COS 

concentration observations for a broader range of LSMs, incorporating the current knowledge on 

COS component contributions.  

 

In Peylin et al. (to be submitted in early September 2024) presented in Appendix 9.3, we evaluated 

GPP and terrestrial ecosystem respiration across three model ensembles (Coupled Model 

Intercomparison Projects Phase 5 (CMIP5), CMIP6, Trend in the Land Carbon Cycle Project Version 

7 (TRENDY-V7)) using a combined analysis of atmospheric COS and CO2 concentrations. This 

evaluation framework is based on the premise that CO2 concentrations reflect both GPP and 

respiration fluxes, whereas COS concentrations offer a more direct constraint on GPP. This joint 

analysis aims to identify potential biases in the seasonal amplitude and/or phase of GPP and/or 

respiration for individual models, encompassing a total of 64 models, as well as differences across 

the intercomparison experiments.  

This evaluation uses atmospheric COS and CO2 concentration measurements from the NOAA 

network, focusing on two stations capturing the influence of the Northern hemisphere fluxes: 

Mauna Loa in the Hawaiian region (MLO) and Alert in Canada (ALT). These measured atmospheric 

concentrations are compared to simulated concentrations resulting from the transport of all COS 

or CO2 flux components using the LMDZ version 3 transport model. The vegetation COS uptake 

for each model is determined using the LRU relationships based on the simulated GPP from each 

LSM. Therefore, the simulated concentrations only differ between models by the vegetation COS 

flux transported (based on model GPP) for the COS concentrations, and by the net biome 

productivity (NBP) simulated in each model and transported for the CO2 concentrations. Finally, 

we evaluate the sensitivity of the simulated COS concentration to a change in LRU values, or in the 
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soil or ocean contributions. In this work, Philippe Peylin initiated and conceptualized the approach, 

while I provided the ORCHIDEE simulated soil COS fluxes for the transport, ran the atmospheric 

transport simulations, and created the figures. Then, we both contributed equally to writing the 

article. 

 

The identification of seasonal amplitude biases involves comparing simulated COS and CO2 

amplitudes normalized by observed ones (Figure 14). If a model overestimates or underestimates 

both COS and CO2 amplitudes, it suggests a misfit likely influenced by GPP, which directly affects 

simulated concentrations of both gases (in a coherent and similar way, see the LRU equation in 

Figure 3). Conversely, if a model underestimates COS amplitude while overestimating CO2, or vice 

versa, it indicates potential biases in both GPP and respiration fluxes, as solely adjusting the GPP 

flux alone cannot simultaneously correct the simulated amplitudes of COS and CO2. 

The seasonal phase analysis is based on the COS versus CO2 correlations between the simulated 

and observed concentrations. A model with low correlations for both gases suggests a 

predominance of GPP flux in the simulated phase biases. Alternatively, a model showing high COS 

correlation but not CO2 implies a respiration bias alongside accurate GPP flux. Conversely, a model 

with high CO2 correlation but low COS correlation may indicate biases in both GPP and respiration 

phases, with respiration compensating for a GPP bias. 

 

 
Figure 13: Detrended mean seasonal cycles of atmospheric COS (left) and CO2 (right) 

concentrations simulated at Mauna Loa station (MLO) for all models of CMIP5 (top) and CMIP6 

(bottom) ensembles. The observations are represented by red crosses.  

 

The evaluation of the simulated COS and CO2 concentrations reveals a significant spread in their 

seasonal amplitudes across the CMIP5 model ensemble, ranging from 29 ppt to 94 ppt for COS 
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and from 3.1 ppm to 13 ppm for CO2, related to the large variability in simulated GPP among the 

LSMs (Figure 13). Furthermore, the joint analysis demonstrates a positive linear relationship 

between the normalized seasonal amplitudes of COS and CO2 concentrations simulated by CMIP5 

models, underscoring the influential role of GPP on these variations (Figure 14). While some LSMs 

accurately replicate observed seasonal amplitudes, a majority of CMIP5 models exhibit a bias in 

GPP seasonal cycle amplitude for the Northern hemisphere. 

The CMIP6 ensemble exhibits a noteworthy reduction in the variability of COS and CO2 seasonal 

amplitudes compared to CMIP5, ranging from 21 ppt to 57 ppt for COS and from 2.2 ppm to 9 ppm 

for CO2, indicating increased model convergence (Figure 13). However, across most CMIP6 models, 

both CO2 and COS seasonal amplitudes are slightly underestimated (Figure 14), suggesting a 

general tendency towards lower simulated GPP seasonal amplitudes in these models. 

Assessing the last intercomparison model ensemble, TRENDY-V7, reveals a wide range in 

simulated COS and CO2 seasonal amplitudes, between 30 ppt and 74 ppt for COS and between 1.9 

ppm and 7.7 ppm for CO2, despite using the same meteorological forcing for all models. 

Then, considering the contributions of the various COS components used in this study, the global 

COS budget remains unbalanced, with an average deficit in COS sources ranging from 276 GgS y−1 

to 530 GgS y−1 across intercomparison exercises. Adjusting lower LRU values could potentially 

balance the COS budget by reducing the vegetation sink. However, solely lowering LRU values 

would not suffice, as it would decrease the simulated COS seasonal amplitude, potentially causing 

all models to deviate from observed values. Therefore, other COS processes would need to display 

a more pronounced seasonal cycle in phase with that of GPP. 

Finally, sensitivity tests exploring the simulated COS concentrations with varying estimates of soil 

and ocean contributions demonstrated significant impacts on the global COS budget for both 

components, although the soil component showed a lesser effect on the seasonal amplitude. This 

highlights the need for improved understanding and estimation of COS fluxes from oceans and 

soils. 

 
                         CMIP5 models                                                                       CMIP6 models 

 
 

Figure 14: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes 

of smoothed seasonal concentrations at MLO for CMIP5 (left) and CMIP6 (right) models using the 

reference scenario. The observed amplitude is identified by the red cross.  

 

Despite these sources of uncertainty, this study has developed a promising framework to evaluate 

simulated ecosystem CO2 gross fluxes (GPP and ecosystem respiration) from various model 
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ensembles used in intercomparison exercises, using COS and CO2 concentration measurements. 

This work highlighted some individual model discrepancies that were also confirmed by previous 

studies (i.e., the ORCHIDEE model used in the CMIP5 exercice exhibited an excessively large 

seasonal amplitude in GPP at Northern high latitudes, a discrepancy that was largely corrected in 

CMIP6, see Figure 14). This evaluation framework can be applied to the latest TRENDY versions 

and future CMIP and TRENDY exercises, enabling the monitoring of simulated GPP and respiration 

biases over successive model intercomparison experiments. Additionally, the approach should be 

regularly updated to incorporate future advancements in the characterization of COS flux 

components. 

 

5.3.2 Inferring COS and CO2 surface fluxes from inverse modeling of 

atmospheric COS and CO2 data   

 

As seen in the previous section, atmospheric transport models can be used to evaluate potential 

biases in LSM GPP estimates by transporting the different COS and CO2 surface flux components 

and comparing the resulting simulated concentrations against concentration observations. In 

contrast, atmospheric inversion modeling approaches enable optimization of the surface fluxes in 

addition to identifying discrepancies in the spatial and temporal dynamics of these fluxes. 

 

Remaud et al. (2022) conducted a joint assimilation of atmospheric COS and CO2 concentration 

data into the LMDZ atmospheric transport model to constrain surface COS fluxes, GPP, and plant 

respiration, using scaling factors applied to an ensemble of few large ecosystem-based regions. 

They assimilated atmospheric COS and CO2 concentration observations at 15 sites from the NOAA 

network. This approach not only improved estimates of large-scale GPP and plant respiration 

fluxes but also addressed the challenge of the global COS budget closure, which has been 

hindered by significant uncertainties in its components. The inversion framework uses simulated 

ORCHIDEE GPP and plant transpiration fluxes, optimizing each flux for the 15 ORCHIDEE PFTs. 

Vegetation COS flux is linked to GPP through the empirical LRU relationship, distinguishing values 

for C3 and C4 plants. In this study, I have performed the ORCHIDEE simulation providing the fluxes 

that have been transported and optimized. Then, the simulated concentrations are evaluated 

against independent data with MIPAS satellite retrievals, HIAPER Pole-to-Pole Observations 

(HIPPO) airborne measurements, and surface measurements over Japan and France.  

The resulting optimized COS budget suggests a global biospheric uptake of -800 GgS y−1 between 

2008 and 2019, with enhanced absorption observed in high latitudes (Figure 15), mainly attributed 

to a vegetation sink of -620 GgS y−1. Optimized oceanic COS emissions have been doubled to 

530 GgS y−1, with the increase primarily concentrated in tropical regions, while emissions in high 

latitudes were revised downward compared to the prior. This suggests that the contribution of 

DMS to higher COS emissions in the tropics might be significant, given that measurements of COS 

and CS2 in seawater do not support such an increase in oceanic sources (Lennartz et al., 2017, 

2020). The decrease in oceanic emissions in high latitudes may indicate an overestimation of direct 

COS emissions and COS emissions via CS2 in this region.  

In terms of the global CO2 budget, the inversion substantially increased net vegetation uptake in 

high latitudes, nearly tripling the previous estimate. GPP in this region was boosted by almost 2 
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GtC y−1, while the respiration flux remained unchanged. Conversely, in tropical regions, both 

respiration and GPP showed a tendency to decrease. 

The evaluation against independent concentration data showed that the system effectively 

corrects previously underestimated GPP in high latitudes. However, the decrease in biospheric 

uptake in the Amazon following the inversion contradicts MIPAS COS retrievals, highlighting the 

limited observational constraints in this critical region. Finally, comparisons with surface 

measurements in Japan and France indicate inaccuracies in the prior anthropogenic COS emission 

inventory from Zumkehr et al. (2018), with too strong sources over Europe and Japan, and too 

weak sources in the Eastern edge of China. These findings highlight the necessity for an improved 

inventory and supports the new one proposed by Belviso et al. (2023) for Europe. 

 

 

 

Figure 15: Latitudinal distribution of the prior (dashed line) and posterior fluxes (full line): for the 

continental (red) and oceanic components (blue) of the COS budget (top), and for the net CO2 

fluxes from terrestrial vegetation (bottom). Terrestrial vegetation fluxes are the sum of GPP and 

respiration fluxes. The fluxes have been averaged over the years 2009-2019. 

 

Therefore, although this atmospheric inversion modeling study does not directly constrain 

ORCHIDEE model parameters and process representations that determine the simulated 

biospheric COS and CO2 fluxes, it highlights discrepancies in these fluxes and guides future 

improvement efforts.   
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6 IMPROVING THE SIMULATED RESPONSE OF GPP AND PLANT 

TRANSPIRATION TO DROUGHT EVENTS 

6.1 Current limitations in the representation of vegetation 

physiological response to drought events in ORCHIDEE 

 

During the investigation of COS potential to improve the simulation of GPP and plant transpiration 

in ORCHIDEE, a particular attention was given to the constraint introduced by COS (through a data 

assimilation approach) when evaluating a drought event at the Hyytiälä site (Section 4.2). This 

assessment revealed that while DA experiments incorporating COS data improved both simulated 

GPP and LE, parameter optimization through DA was insufficient to accurately represent this 

drought event in ORCHIDEE. This finding underscores the structural insufficiency in ORCHIDEE's 

representation of vegetation responses to drought events, which is critical for carbon, water, and 

energy flux simulation as drought events are expected to be more frequent and intense with 

climate change. Consequently, the final part of this PhD work focuses on improving the simulation 

of GPP and plant transpiration under soil moisture stress conditions.  

 

Issues in representing vegetation response to soil moisture decrease in ORCHIDEE have been 

previously reported across different versions, leading to contrasting conclusions (Rebel et al., 

2012; De Pue et al., 2022; MacBean et al., 2020). For example, Rebel et al. (2012) identified an 

underestimation of vegetation response to droughts in an earlier ORCHIDEE model version that 

lacked a multi-layer soil hydrology component. In semi-arid ecosystems, MacBean et al. (2020) also 

demonstrated that incorporating a discretized soil hydrology scheme with 11 soil layers in 

ORCHIDEE improved the simulated evapotranspiration through a more accurate representation 

of soil moisture in the upper layers compared to a simpler 2-layer bucket scheme. However, more 

recently, using the ORCHIDEE version from the CMIP6 exercise (Boucher et al., 2020; Cheruy et al., 

2020), De Pue et al. (2022) found an oversensitivity of the simulated LE and GPP to soil moisture 

decrease, which strongly correlates with errors in the simulated LAI. 

 

In the ORCHIDEE version used in this work (Section 2.1), the physiological vegetation response to 

drought is modeled by an empirical function (𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠) that limits stomatal conductance, 

mesophyll conductance, and the Rubisco carboxylation and RuBP regeneration rates as soil 

moisture decreases (Figure 16). In the default version of the model, 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 decreases linearly 

when soil moisture drops below a threshold corresponding to no stress conditions (θno stress) until 

it reaches a minimum threshold at the wilting point (θWP), where the stomata close as plants can 

no longer extract water from the soil. These thresholds, θno stress and θWP, are determined by soil 

texture. This 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 function is computed for each soil layer except the topsoil layer considered 

without root (~1 mm deep), weighted by the root profile, and integrated over the soil column to 

determine the soil moisture stress applied for each PFT.  
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Figure 16: Variations of the function (𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠) that controls stomatal closure when soil moisture 

(kg.m-2) decreases, as implemented by default in ORCHIDEE. Here, its variations are illustrated 

considering a minimum stress for soil moisture above 18 kg.m-2 (θno stress) and a maximum stress 

below 5 kg.m-2 (θWP). 

 

Therefore, the default simulated response to drought in ORCHIDEE depends solely on soil 

moisture availability and soil texture, which determines θno stress and θWP. Additionally, the response 

varies between tree and herbaceous PFTs, as the maximum root depth is set to 2 m for trees and 

1 m for herbaceous species. This is a significant limitation as several studies have shown that 

vegetation responses to soil moisture stress vary across different biomes (McDowell et al., 2008; 

Chaves et al., 2003; Li et al., 2023). Consequently, the default simulated drought response in 

ORCHIDEE has neither been defined nor calibrated for different PFTs, failing to account for the 

diversity of vegetation responses to soil moisture stress. Then, other climatic factors beyond soil 

moisture, such as VPD and atmospheric CO2 levels, have been found to influence physiological 

vegetation responses to drought (Swann et al. 2016; Stovall et al., 2019; Li et al., 2023), which can 

lead to variations in drought response within biomes. 

 

Furthermore, the default drought response implementation only considers the immediate effects 

of soil moisture changes on vegetation physiology, without integrating potential mechanisms of 

plant plasticity. Indeed, several studies have demonstrated that plants can acclimate and adapt to 

environmental changes over short to long timescales, which can influence their responses to 

drought events (Marchin et al., 2016; Grossiord et al., 2017). 

 

Finally, another potential limitation of the physiological vegetation response to drought in 

ORCHIDEE is the application of the same function to stomatal conductance, mesophyll 

conductance, and the Rubisco carboxylation and RuBP regeneration rates. This approach assumes 

a coordinated response between stomatal and non-stomatal limitations under soil moisture stress 

conditions. Indeed, Drake et al. (2017) indicates that both types of limitations occur during 

droughts. However, the relative importance of mesophyll and Rubisco activity limitations is still 

debated and may vary depending on the species and the duration of stress (Cano et al., 2014; 

Gimeno et al., 2019). As a result, differentiating the responses of stomatal conductance, mesophyll 
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conductance, and photosynthetic efficiency to soil moisture stress remains challenging to 

implement in LSMs and is associated with significant uncertainty.  

 

The following section details the last focus of this PhD dedicated to improving vegetation 

physiological response to soil moisture stress, with the draft of the article soon to be submitted 

(before the end of September 2024) to Global Biogeochemical Cycles. In this study, another 

definition of the 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 function is tested, which has been previously implemented in 

ORCHIDEE based on the work of Meridja (2011). Such function replaces the linear dependence of 

𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 to soil moisture with an exponential bounded function. Although this new definition 

has not yet been calibrated for the different PFTs in ORCHIDEE and therefore shares the same 

limitations as the default 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 function shown in Figure 16, it was originally developed by 

Meridja (2011) to better account for the diversity of plant sensitivity to soil moisture decrease. The 

study in the following section aims to calibrate this new function for several PFTs and proposes 

incorporating an acclimation mechanism in the simulated vegetation physiological response to 

soil moisture stress.  

 

6.2 Refining vegetation physiological response to drought in 

ORCHIDEE by incorporating acclimation to atmospheric 

moisture stress 
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Abstract 

 

Improving the simulated response of Gross Primary Production (GPP) and plant transpiration to 

soil moisture stress in Land Surface Models (LSMs) is crucial for accurate climate simulations, 

especially as drought events are expected to increase. In this study, we used the ORCHIDEE LSM 

to investigate how the simulated physiological response of vegetation to soil moisture stress can 

be refined, focusing on Europe, which has experienced significant droughts. We used in situ GPP 

and latent heat flux (LE) data from more than 40 sites across various biomes, along with data 

assimilation techniques, to improve GPP and plant transpiration representations. This work shows 

that the speed of stomatal closure under soil moisture stress can be refined by incorporating 

vegetation acclimation to long-term vapor pressure deficit (VPD) conditions. This new drought 

response results in a greater reduction in GPP root mean square deviation than a response based 

solely on biome type, achieving an 18% improvement at the site scale, whereas the biome-type-
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only version shows no improvement. However, the two model versions show similar performance 

in simulating LE, with an 8 to 9% improvement at the site scale but a slight degradation at the 

regional level (using data-driven benchmarks). Projections until 2100 show that the model 

incorporating VPD acclimation results in the smallest increase in soil moisture stress, 22% less 

than the model based solely on vegetation-type-dependent responses. This study underscores the 

importance of better understanding potential acclimation mechanisms and how to implement 

them in LSMs to enhance the accuracy of climate projections. 

 

1. Introduction 

 

Europe has been experiencing an increase in climate anomalies due to climate change, leading to 

more frequent and severe drought events in recent years (Bastos et al., 2020). The period from 

2018 to 2020 is particularly notable for its significant impacts on ecosystems, as well as substantial 

social and economic losses (Conradt et al., 2023). Soil moisture stress is often considered the 

primary factor affecting plant functioning during droughts (McDowell et al., 2008). The decrease 

of soil moisture typically induces plant water stress, causing stomatal closure to prevent water 

loss, which in turns also limits carbon uptake and can reduce plant productivity. However, the 

combined effects of various climate change drivers on plant responses to drought are complex 

and difficult to disentangle. While warm conditions can enhance photosynthesis and plant 

transpiration (Dreyer et al., 2001; Way et al., 2015; Dusenge et al., 2018; Urban et al., 2017), further 

depleting soil moisture, the rising temperatures also increase vapor pressure deficit (VPD) 

(Grossiord et al., 2020), promoting stomatal closure to conserve water (Monteith, 1995; Oren et 

al., 1999). High VPD conditions usually coincide with soil moisture stress and amplifies its effect 

(Grossiord et al., 2020). Given VPD's significant role in drought-induced plant mortality (Breshears 

et al., 2013; Stovall et al., 2019), it is crucial to consider its current and future impacts on vegetation 

responses to drought. 

Land surface models (LSMs) have been developed to investigate ecosystems functioning and are 

now increasingly used to project their possible responses to climate change. However, LSMs often 

struggle to accurately represent the diverse responses of vegetation to extreme events such as 

droughts and to account for different response timescales. For instance, several LSMs, including 

the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE), have been found to 

overestimate the frequency of hydrological droughts due to their over-sensitivity to short-term 

precipitation variability (Prudhomme et al., 2011; Tallaksen & Stahl, 2014). As a result, vegetation 

carbon uptake and evapotranspiration simulated in ORCHIDEE were found to be overly sensitive 

to droughts (De Pue et al., 2022). 

Accurately representing stomatal response to drought is particularly critical, as it controls the 

coupling between carbon uptake and transpiration (Cowan & Farquhar, 1977; Kozlowski & 

Pallardy, 2002; Prentice et al., 2014; Marchin et al., 2016), determining vegetation water stress 

strategies that can be illustrated by the isohydricity concept (Tardieu & Simmoneau, 1998). 

According to this concept, isohydric species close their stomata to maintain steady leaf water 

potential under water stress, whereas anisohydric species keep their stomata open longer, 

resulting in a drop in leaf water potential. LSMs are evolving to include more complex processes 

to improve the realism of vegetation functioning representation, but the diversity of stomatal 

conductance response mechanisms remains challenging to implement. Short-term stomatal 
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regulation, such as the impact of instantaneous changes in VPD on stomatal conductance (Medlyn 

et al., 2011; Yin & Struik, 2009), is commonly accounted for in LSMs, including ORCHIDEE. However, 

on longer timescales, several studies have also highlighted the potential for stomatal conductance 

to acclimate to environmental conditions (Marchin et al., 2016; Kutsch et al., 2001). 

 

In this study, we have refined the representation of vegetation physiological response to soil 

moisture stress in the ORCHIDEE LSM by comparing two formulations: one that only incorporates 

a biome-type dependency and another that also accounts for vegetation potential to acclimate to 

long-term VPD conditions. These formulations were evaluated for their ability to accurately 

simulate gross primary production (GPP) and latent heat flux (or evapotranspiration) (LE) during 

drought events. In doing so, we address the following questions: 

1. Is a biome dependency sufficient to simulate vegetation response to soil moisture stress?  

2. What is the impact of accounting for long term VPD conditions in the simulated vegetation 

response to drought? 

3. How does accounting for the influence of environmental conditions in vegetation response 

to drought impact plant carbon and water exchanges under future climate? 

The refinement of the vegetation physiological response to soil moisture stress in ORCHIDEE - 

including a formulation based solely on biome type and another that incorporates vegetation 

potential to acclimate to long-term VPD - and the calibration of these formulations are supported 

by assimilating in situ GPP and LE data. The impact of these updated ORCHIDEE versions on the 

simulated GPP and LE is then evaluated at both site and regional scales across Europe using in situ 

data and satellite-based evaluation products. Finally, projections through 2100 are conducted to 

assess the effects of these different vegetation responses to soil moisture stress under future 

climate conditions. 

 

2. Materials and methods 

 

2.1. The ORCHIDEE LSM  

 

2.1.1. General model description 

 

The ORCHIDEE LSM is the land component of the Earth System Model developed at the Institut 

Pierre Simon Laplace (Boucher et al., 2020; Cheruy et al., 2020). ORCHIDEE simulates carbon, 

water, and energy exchanges between land surfaces and the atmosphere from a daily time step 

for slow processes such as carbon allocation, to a half hourly time step for fast processes such as 

photosynthesis (Krinner et al., 2005). Vegetation is grouped into 14 plant functional types (PFTs) 

based on similar phenology, photosynthetic metabolisms, structure, and bioclimatic range, and a 

last PFT represents bare soil. PFT maps are prescribed annually using European Space Agency 

(ESA) Climate Change Initiative (CCI) land cover products (Lurton et al., 2020). The soil profile is 

decomposed into 11 soil layers with increasing depth from the top to the bottom of the soil column 

at a 2 m depth, and soil hydraulics are computed in each layer. Vertical water fluxes within the soil 

are modeled using the Richards equation across the discretized soil column and a free drainage 

condition is set at the column's base (de Rosnay et al., 2002; D'Orgeval et al., 2008). Soil textures, 

which determine soil characteristics such as porosity and hydraulics, are described using 12 
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classes from a global soil map based on the Food and Agriculture Organization of the United 

Nations/United States Department of Agriculture (FAO/USDA) texture classification (Reynolds et 

al., 2000). Global yearly mean near-surface CO2 concentrations are provided by the TRENDY 

(Trends in the land carbon cycle) model intercomparison project (Sitch et al., 2015). 

The ORCHIDEE version used in this study builds upon the model used for the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) (Boucher et al., 2020; Lurton et al., 2020). However, this 

version features updates compared to the CMIP6 version, such as revisions to the radiative 

transfer model (RTM) described below, the representation of vegetation physiological response to 

soil moisture stress based on the work of Meridja (2011), and the representation of the root profile 

(see section 2.1.2).  

This ORCHIDEE version includes a RTM that distinguishes between direct and diffuse light within 

the canopy, based on the RTM developed by Zhang et al. (2020). The canopy is discretized in a 

maximum of 20 leaf area index (LAI) layers, with finer layers at the top to thicker layers at the 

bottom of the canopy. The calculation of the absorbed light, photosynthesis, and stomatal 

conductance per PFT are carried out for each LAI layer and for sunlit and shaded leaves separately. 

Photosynthesis and stomatal conductance are described following Yin & Struik (2009), based on 

the photosynthesis model of Farquhar et al. (1980) for C3 species and Collatz et al. (1992) for C4 

species. In this model, an empirical function accounts for the effect of instantaneous change in 

VPD on stomatal conductance at each time step (Yin & Struik, 2009; Text S1). The maximum rates 

of Rubisco carboxylation and RuBP regeneration depend on leaf age (Ishida et al., 1999; Krinner et 

al., 2005), and on an implicit leaf nitrogen content, which decreases in the lower canopy (Johnson 

& Thornley, 1984). Both rates also respond to air temperature, following a modified Arrhenius 

function that accounts for acclimation to growth temperature, as described by Kattge & Knorr 

(2007). Additionally, a limitation is imposed on the maximum rates of Rubisco carboxylation and 

RuBP regeneration to account for the downregulation of the productivity under elevated CO2 levels 

(Sellers et al., 1996; Bounoua et al., 1999, 2010). Then, photosynthesis and stomatal conductance 

are integrated over all LAI layers to compute GPP at the canopy level and the total canopy stomatal 

conductance.  

Plant transpiration for each PFT is calculated at the canopy level, driven by the saturated moisture 

gradient between the surface and air at 2 m, and regulated by aerodynamic, leaf boundary layer, 

and total canopy stomatal conductances.  

LE is the sum of various processes at the grid cell level, including plant transpiration, bare soil 

evaporation, canopy interception and evaporation, snow sublimation, and floodplain evaporation. 

Each process contributing to LE is driven by the saturated moisture gradient between the surface 

and air at 2 m and is regulated by aerodynamic, boundary layer conductances, and a specific 

conductance for each process, similar to how canopy stomatal conductance regulates 

transpiration. A resistance to soil evaporation is implemented following Sellers et al. (1992) to limit 

soil evaporation when soil moisture decreases (Text S1).  

The aerodynamic conductance affecting both plant transpiration and carbon uptake is detailed in 

Su et al. (2001), which updates the approach of Massman (1999) based on localized near-field 

Lagrangian theory. 
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2.1.2. Representation of vegetation response to soil moisture stress 

 

In ORCHIDEE, vegetation response to soil moisture stress is represented by an empirical function 

that limits stomatal conductance, mesophyll conductance, and Ribulose-1,5-bisphosphate 

carboxylase/oxygénase (Rubisco) carboxylation and ribulose-1,5-bisphosphate (RuBP) 

regeneration rates. This function is computed for each soil layer, except the topsoil layer (~1 mm 

deep) as it is considered without root and does not contribute to plant transpiration. In this model 

version, the soil moisture stress response is defined as an empirical exponential function 

𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ([0,1], unitless) that depends on soil water status and vegetation sensitivity to water 

stress following Meridja (2011): 

 

𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 = 𝑒𝑥𝑝 (−𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 ⋅
(𝜃𝐹𝐶,𝑙−𝜃𝑊𝑃,𝑙)

(𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙−𝜃𝑊𝑃,𝑙)
⋅

(𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙−𝜃𝑙)

(𝜃𝑙−𝜃𝑊𝑃,𝑙)
) ⋅ 𝑟𝑜𝑜𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦,𝑙                                 (Eq. 1) 

 

with 𝜃𝑙 the soil moisture (kg.m-2) in a given soil layer 𝑙, and 𝜃𝐹𝐶,𝑙 and 𝜃𝑊𝑃,𝑙 the soil moisture at field 

capacity and wilting point (kg.m-2) in the soil layer 𝑙, respectively. 𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 is the soil moisture 

threshold above which there is no water stress (kg.m-2), defined as 𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 = 𝜃𝑊𝑃,𝑙 + 𝑝𝑚𝑎𝑥 ⋅

(𝜃𝐹𝐶,𝑙 − 𝜃𝑊𝑃,𝑙), with 𝑝𝑚𝑎𝑥  the coefficient ([0,1], unitless) that determines this threshold. 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 

is bounded between 0 (when 𝜃𝑙 < 𝜃𝑊𝑃,𝑙) and 1 (when 𝜃𝑙 > 𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙). Then, 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 is the water 

stress sensitivity coefficient which was initially considered as a constant (𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 = 1., unitless) 

in ORCHIDEE (see red curve in Figure 4), but is now defined as PFT-dependent in agreement with 

Meridja (2011) ([0.05-10.]). This coefficient determines the speed of vegetation response to 

decreasing soil moisture between 𝜃𝑛𝑜 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 and 𝜃𝑊𝑃,𝑙. Therefore, this coefficient could indicate 

either a more isohydric behavior, characterized by rapid stomatal closure under soil moisture 

stress, or a more anisohydric behavior, marked by slower stomatal closure under the same 

conditions. 𝑟𝑜𝑜𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦,𝑙  is the normalized root length fraction in the soil layer 𝑙 ([0,1], unitless) (the 

fraction of the root length density in the layer divided by the total root length in the root zone) that 

weights the water stress function, and defined according to the available water in each layer (see 

Text S1). Finally, 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 is summed over all soil layers to determine a response to soil moisture 

stress for each PFT.  

Here, we aim to refine the representation of 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 using data assimilation techniques, with a 

particular focus on the 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 coefficient, which has not yet been calibrated in ORCHIDEE. 

Specifically, we investigate whether 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 should depend solely on the PFT or if it should also 

vary with environmental factors.  

 

2.1.3. Simulations 

 

2.1.3.1. Simulations over the present period  

 

For any simulation, we first performed a spin-up phase to stabilize all carbon pools and equilibrate 

net ecosystem production in the absence of any disturbance (Lardy et al., 2011). This phase 

requires cycling over the available years in the meteorological forcing data for 340 years with a 

constant atmospheric CO2 concentration corresponding to a pre-industrial level. The spin-up is 

followed by a transient phase that introduces disturbances such as increasing atmospheric CO2 

concentration, and land use and climate change. The transient phase also cycles over the available 
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forcing years for 60 years until the first year of the meteorological data. Then, the simulations over 

the recent years are performed at a daily time step.  

Site simulations (section 2.2) were forced by local micro-meteorological half-hourly measurements 

from the ICOS Warm Winter 2020 network (Warm Winter 2020 Team and ICOS Ecosystem 

Thematic Centre, 2022). Simulations over Europe were forced by 6-hourly CRU JRA reanalysis at a 

0.5° spatial resolution over 2000-2021 (University of East Anglia Climatic Research Unit Japanese 

Reanalysis; Friedlingstein et al., 2020). 

 

2.1.3.2. Projections 

 

Projections over Europe were conducted following the shared socioeconomic pathway scenario 3 

(SSP) with an additional radiative forcing of 7 W.m-2 by the year 2100, called hereafter SSP370. This 

scenario is one of the scenarios considered in the Scenario Model Intercomparison Project 

(ScenarioMIP) (O’Neill et al., 2016), which is part of CMIP6. It was chosen as it represents a medium-

to-high challenge scenario for mitigation and adaptation, combining relatively high societal 

vulnerability and forcing with important aerosol emissions and land use change. We used 

meteorological forcing datasets from the UK ESM (UKESM1) (Alistair et al., 2019) at a 2° spatial 

resolution, covering 1850 to 2014 for the historical period and 2015 to 2100 for projections.  

A spin-up phase was first performed as described in the previous section, by cycling over the 10 

first years of the historical forcing file for 340 years. Then, simulations at a daily time step were 

performed from 1850 to 2014 for the historical period, followed by projections until 2100. Note 

that for the projection simulations only, the PFT map is not updated each year and is fixed to the 

one of 2015.  

 

2.2. Studied area and data 

 

 

Figure 1: Location of the ICOS Warm Winter sites with a dominant PFT fraction of at least 50%. The 

legend colors represent the dominant PFT at each site or pixel. TempENF = Temperate evergreen 

needleleaf forest; TempDBF = Temperate deciduous broadleaf forest; BorENF = Boreal evergreen 

needleleaf forest; C3TempGRA = Temperate natural grassland (C3); C3Crop = Crops (C3); C3BorGRA 

= Boreal natural grassland (C3). 
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The model evaluation and parameterisation relies on flux measurements from the Integrated 

Carbon Observation System (ICOS) Warm Winter 2020 database, which captures the recent 

drought years experienced in Europe (Warm Winter 2020 Team and ICOS Ecosystem Thematic 

Centre, 2022). Among the 73 available sites, we kept 53 sites having a fraction of the dominant PFT 

of at least 50% at a 0.0125° spatial resolution using ESA-CCI land cover maps combined with 

Köppen-Geiger climate zone map at 0.25°. Then, we removed 7 sites for which the relative mean 

absolute difference (rMAD, the mean absolute difference divided by the mean of the observed 

variable) or the correlation between the ICOS GPP estimates and ORCHIDEE prior simulation was 

respectively higher than 1.25 or lower than 0.6, in 2017 or 2018 (the 2 years considered for data 

assimilation, see section 2.3). Indeed, we considered that these values point to model errors that 

cannot be corrected only through parameter optimization, but are related to structural issues in 

process implementation, such as missing processes to account for site disturbances.  

This selection resulted in 46 sites (Figure 1, Table S1), encompassing six PFTs: Temperate 

evergreen needleleaf forest (TempENF, 14 sites), Temperate deciduous broadleaf forest 

(TempDBF, 7 sites), Boreal evergreen needleleaf forest (BorENF, 7 sites), Temperate natural C3 

grassland (C3TempGRA, 5 sites), C3 Crops (C3Crop, 12 sites), and C3 Boreal natural grassland 

(C3BorGRA, 1 site). 

 

2.2.1. Site scale data 

 

We used in situ GPP and LE eddy covariance (EC)-based estimates from the ICOS Warm Winter 

2020 database (Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre, 2022). We 

considered daily data from 2017 up to 2020. GPP is estimated based on the daytime partitioning 

method (Lasslop et al., 2010). We applied a correction to the ICOS LE measurements to ensure 

energy balance closure each day, as it is the case in the ORCHIDEE model at each time step. LE was 

corrected using the flux-data-qaqc Python package (Volk et al., 2021) following the Bowen Ratio 

method (Bowen, 1926).  

 

2.2.2. Regional scale evaluation products 

 

We used three GPP products to evaluate the simulated GPP over Europe. First, we considered the 

FLUXSAT version 2.0 GPP, estimated from a light use efficiency approach using satellite data and 

calibrated with FLUXNET2015 (Pastorello et al., 2020) EC fluxes (Joiner et al., 2018). The second GPP 

product is FLUXCOM-X-BASE (Nelson et al., 2024), based on a machine learning approach using 

predictor variables such as remotely sensed vegetation indices and land surface temperatures 

from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging 

Spectroradiometer (MODIS) along with meteorological variables. FLUXCOM-X-BASE also 

incorporates EC fluxes from various networks including FLUXNET 2015, ICOS Drought 2018, ICOS 

Warm Winter 2020, or Ameriflux. Then, we used the SIF-GPP product developed for the Sen4GPP 

project (Duveiller et al., 2023) in which GPP is estimated based on empirical linear relationships 

with Solar-Induced Fluorescence (SIF) estimates from the European Space Agency (ESA) Sentinel-

5p Tropospheric Monitoring Instrument (TROPOMI) (Guanter et al., 2021) and calibrated per 

biome.  

For LE, FLUXCOM-X-BASE also provides land evapotranspiration estimates (Nelson et al., 2024).  



 

128 

 

We evaluated the leaf area index (LAI) simulated in ORCHIDEE against three global LAI datasets. 

The two first LAI datasets (named here “PROBA-V” and “OLCI”) are based on a neural network 

approach using top of canopy reflectances from SPOT-4 and -5, PROBA-V, and Sentinel-3 OLCI 

(Baret et al., 2013; Camacho et al., 2013). In addition to the reflectance data, the neural network is 

calibrated using LAI estimates derived from MODIS and CYCLOPES LAI products for the PROBA-V 

LAI dataset. Then, the neural network for the OLCI LAI dataset is trained using the PROBA-V LAI 

dataset. For these two datasets, LAI uncertainty is provided, which corresponds to the root mean 

squared deviation (RMSD) between 10-day composite and daily values. The PROBA-V dataset is 

available until April 2020 while the OLCI dataset is available until 2022. The last LAI dataset (named 

here “MODIS”) is based on the reprocessing of MODIS version 6.1 LAI products MCD15A2H, 

MOD15A2H, and the MCD12Q1 land cover type product (Yuan et al., 2011; Lin et al., 2023).  

The regional scale evaluation was conducted considering a 0.5° spatial resolution for all data 

products, between 2018 and 2020. The LAI products are available at a monthly timestep, while we 

considered 8-day averages for the GPP and LE products.  

 

2.2.3. Regional scale ecoregion classification and drought identification 

 

We used monthly standardized precipitation-evapotranspiration index (SPEI) (Vicente-Serrano et 

al., 2010) data from the SPEIbase v.2.9 provided by Beguería et al. (2023) at a 0.5° spatial resolution. 

SPEI is a meteorological drought index based on a water balance that includes the effect of both 

precipitation and temperature through potential evapotranspiration (PET), here computed using 

the FAO-56 Penman-Monteith method. We used SPEI to identify grid cells with drought conditions 

for each year over Europe, selecting the ones for which SPEI is lower than -1 (mild to extreme 

drought, see Table S2) for at least one month between June and August. The selected stressed 

areas are represented in Figure S1.  

Then, we defined four ecoregions in Europe to evaluate the simulated LAI, based on a 

simplification of the original Köppen-Geiger climate classification at a 0.5° spatial resolution 

provided by Beck et al. (2023) built over the period 1991-2020. The four resulting ecoregions are 

referred to as “dry”, “temperate”, “cold”, and “boreal”. Their spatial distribution as well as details 

about the climate classification grouping are provided in Figure S2. 

Finally, for projection analysis, four ecoregions have also been defined based on the same climate 

classification grouping. These classifications are derived from Beck et al. (2023) under the SSP370 

scenario over 2070-2100, using a 2° spatial resolution, consistent with the projections performed 

with ORCHIDEE (Figure S3). 

  

2.3. Data assimilation framework 

 

To improve GPP and LE response simulated in ORCHIDEE, and in particular during drought events, 

we optimized the main parameters of the processes influencing these two variables using data 

assimilation (DA) techniques, as described in the following sections.  
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2.3.1. Parameter selection following sensitivity analyses 

 

Prior to conducting DA, we ran sensitivity analyzes (SA) to select the most influential parameters 

for simulating GPP and LE. This preliminary step enables to limit the number of parameters 

included in the DA procedure, which reduces its computational cost and the risk of overfitting.  

We performed SA at each selected ICOS site for GPP and LE in 2018 to identify the most important 

parameters during a year characterized by drought events in Europe. We used the Morris method 

(Morris, 1991), which is a cost efficient qualitative SA method that provides a ranking of the 

parameters to which GPP or LE are the most sensitive. We tested 128 parameters involved in GPP 

or LE representation considering a range of variation defined based on expert and physical 

knowledge for each parameter. Based on the SA results, we finally selected 20 parameters, most 

of them being PFT-dependent, mainly related to photosynthesis, stomatal conductance, biomass, 

soil hydrology and moisture stress vegetation response. These parameters are presented in Table 

S3.  

 

2.3.2. Optimization tool 

 

Following SA, we optimized the 20 selected parameters using the ORCHIDEE DA system 

(ORCHIDAS, https://orchidas.lsce.ipsl.fr/) that has been described in details in Bastrikov et al. 

(2018) and used in many studies (Kuppel et al., 2012; Peylin et al., 2016; Mahmud et al., 2021; 

MacBean et al., 2022; Bacour et al., 2023). ORCHIDAS allows finding a combination of parameter 

values that minimizes a cost function quantifying the mismatch between the observed and 

simulated variables as well as the distance between optimized parameters and their prior values, 

accounting for errors associated with all these components. Assuming Gaussian distributions for 

model-data and parameters errors, the cost function expresses as (Tarantola, 2005), 

 

𝐽(𝑥) =
1

2
⋅ [(𝐻𝐺𝑃𝑃(𝑥) − 𝑦𝐺𝑃𝑃)𝑇 ⋅ 𝑅𝐺𝑃𝑃

−1 ⋅ (𝐻𝐺𝑃𝑃(𝑥) − 𝑦𝐺𝑃𝑃) + (𝐻𝐿𝐸(𝑥) − 𝑦𝐿𝐸)𝑇 ⋅ 𝑅𝐿𝐸
−1 ⋅ (𝐻𝐿𝐸(𝑥) − 𝑦𝐿𝐸) + (𝑥 −

𝑥𝑏)𝑇 ⋅ 𝐵−1 ⋅ (𝑥 − 𝑥𝑏)]                                                                                                                                 (Eq. 2) 

 

with 𝑦𝐺𝑃𝑃/𝐿𝐸 the observed GPP or LE, and 𝐻𝐺𝑃𝑃/𝐿𝐸(𝑥) the corresponding simulated variable. 𝑥𝑏 is 

the prior and 𝑥 is the optimized vector of parameters. 𝑅𝐺𝑃𝑃/𝐿𝐸 and 𝐵 are the prior error covariance 

matrices for the observations and the parameters, respectively. As in previous studies, we 

considered only diagonal elements for 𝑅𝐺𝑃𝑃/𝐿𝐸 and 𝐵, and defined the parameter error in 𝐵 as 15% 

of the parameter range of variation while the observations errors were set to the RMSD between 

observed GPP and LE data and the prior model simulations (Kuppel et al., 2012; Bacour et al., 

2023).  

We performed DA using the genetic algorithm (GA) method (Goldberg, 1989; Haupt & Haupt, 2004; 

Santaren et al., 2014), which is a global search method that reduces the risk of falling into a local 

minima of 𝐽(𝑥) during its minimization. We ran the algorithm for 25 iterations with a population of 

32 individuals to ensure its convergence.  

 

 

 

 

https://orchidas.lsce.ipsl.fr/
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2.3.3. Optimization experiments 

 

Since most ORCHIDEE parameters are specified for each PFT, all DA experiments involve grouping 

the ICOS sites based on the dominant PFT fraction. Indeed, conducting multi-site optimizations 

per PFT allows us to derive a set of generic parameters for each PFT, ensuring representation of 

diverse conditions across multiple sites rather than specific conditions at a single site (Kuppel et 

al., 2012; Macbean et al., 2022). 42 out of the 46 sites were used in the optimizations, as the years 

used for DA (2017 and 2018) were not available for 4 sites, which were used for evaluation only 

(Table S1).  

We conducted two successive DA experiments (Figure 2) to both support the development of a 

new drought-acclimated modeling scheme in ORCHIDEE (see section 3.1) and to evaluate its 

performance. 

We performed a first optimization of the selected parameters (section 2.3.1, Table S3) by 

assimilating in situ GPP and LE data either in 2017 or in 2018 to account for different environmental 

conditions (2018 exhibited more pronounced soil water stress than 2017, Figure S4). Following this 

step, we analyzed the change in parameter values after optimization, with a specific focus on the 

parameter that determines the speed of stomatal closure 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (section 2.1.2). After this step, 

a new definition of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 is proposed, which incorporates vegetation potential to acclimate 

to long-term VPD conditions (see section 3.1), resulting in a drought-acclimated version of 

ORCHIDEE (ORCHIDEE-ACCLIM). This version is compared to the standard version (ORCHIDEE-

STANDARD) in which 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 is a constant calibrated per PFT.  

In the second DA step, in situ GPP and LE data were assimilated to optimize each of the two 

ORCHIDEE versions considering both 2017 and 2018, seeking for more generic parameter values. 

Indeed, we aim at obtaining combinations of optimized parameters that enhance the model 

performance during drought years without compromising performance in other periods.  

Each optimization experiment involved assimilating GPP and LE data at daily intervals using 7-day 

moving averages. This approach helps to reduce the influence of high-frequency fluctuations, 

which are more challenging to capture and may introduce noise, while still retaining the impact of 

longer-term events such as droughts that develop over at least a week. This ensures that the 

minimization of 𝐽(𝑥) (eq. 2) focuses on significant variations rather than short-term noise.   

 

 

Figure 2: Overview of the DA and evaluation framework. Step 1 corresponds to the first DA 

experiment performed in either 2017 or 2018 that leads to the ORCHIDEE-ACCLIM model version 

with the redefinition of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 as described in eq. 3. Step 2 is the second DA experiment using 

both years to optimize each model version (ORCHIDEE-STANDARD and ORCHIDEE-ACCLIM). The 

third step corresponds to the evaluation of each optimized model version against in situ and 

regional evaluation data.  
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To evaluate the simulated variables after DA, in addition to using 2019 and 2020 as independent 

years not included in the optimization, we also considered the year 2018. This inclusion allows for 

more sites to be evaluated at the site scale, as flux data were not available until 2020 at several 

ICOS Warm Winter 2020 sites. 

 

3. Results 

 

3.1. Defining long term VPD effect on vegetation response to soil moisture stress 

 

The first optimization step (section 2.3.3) improved the simulated GPP RMSD by 15%/18% and LE 

by 28%/30% in 2017/2018 compared to ORCHIDEE-PRIOR (Table S4).  

We analyzed the distribution of the optimized values of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (speed of stomatal closure 

during soil moisture stress) for each PFT depending on various environmental variables, and  

investigated if these optimized values could be defined as a function of environmental drivers, 

such as air and soil temperature, radiation, VPD over the assimilation period. To do so, several 

fitting functions were tested (not shown). The only significant relationship demonstrated was 

between mean annual VPD and 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (Figure 3), with a coefficient of determination (R²) of 

0.92 when all other tested fitting functions and environmental drivers, including multilinear 

regressions, only led to a R² lower than 0.2. R² was calculated with the r2_score function from the 

sklearn.metrics module in Python.  

 

 

Figure 3: Optimized 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values (-) obtained after the several multi-site assimilations versus 

yearly averaged VPD (hPa) over all sites grouped by dominant PFT in 2017 and 2018. The marker 

colors represent the dominant PFT while the marker shapes correspond to the year. The sigmoid 

regression function providing the best model-data fit is represented in red, with the corresponding 

coefficient of determination (R²) on the top right.  

 

Figure 3 shows the optimized values of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 for the years 2017 and 2018 plotted against the 

mean annual VPD across all sites grouped by dominant PFT. Considering all PFTs, 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

decreases with increasing mean annual VPD values. Lower 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values mean that stomata 

remain open for longer periods when soil moisture decreases, indicating increased vegetation 

resistance to droughts under long-term high VPD conditions. C3Crop show the lowest optimized 
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𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values, which are associated with the highest mean annual VPD conditions both in 2017 

and 2018. For the other PFTs, different mean annual VPD values are found between the two years, 

with higher optimized values of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 for the year with lowest VPD conditions. Notably, the 

two boreal PFTs (BorENF and C3BorGRA) show the highest optimized 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values. These 

highest 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values illustrate that vegetation is less resistant to soil moisture stress under 

long-term low VPD conditions.  

Across all PFTs, the best model-data fit was obtained with the following sigmoid function (with 

coefficients calibrated using the curve_fit function from the scipy.optimize module), which 

expresses the variation of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 with rolling mean annual VPD (𝑉𝑃𝐷𝑦𝑒𝑎𝑟) (hPa), yielding an R² 

of 0.92,  

 

𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 = 𝑏 +
(𝑎 − 𝑏)

(1.+  𝑒𝑥𝑝(𝑉𝑃𝐷𝑦𝑒𝑎𝑟 − 
𝑐

2
)

𝑑
)

                                                                                                   (Eq. 3) 

 

with 𝑎 = 4.8, 𝑏 = 0.15, 𝑐 = 6, and 𝑑 = 3 four empirical coefficients.  

This function was used instead of considering a constant value of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 for each PFT 

(ORCHIDEE-STANDARD version) to derive a model version called hereafter ORCHIDEE-ACCLIM. The 

impact of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 derived from this function for a range of rolling mean annual VPD conditions 

on the water stress function 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠  is illustrated in Figure 4.  

The four empirical coefficients of this function were ultimately optimized in a DA experiment, along 

with the other model parameters (DA step 2 in Figure 2). Recognizing that various vegetation types 

may exhibit distinct responses to drought events despite similar environmental conditions 

(Schmied et al., 2023), we opted to define and optimize these four parameters for each PFT. 

Therefore, this new definition of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 was initially observed across the different PFTs, and 

we assume that this behavior also applies within each PFT.  

 

 

Figure 4: ORCHIDEE water stress function 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (-) variations with soil moisture (kg.m-2), 

illustrated with a minimum stress for soil moisture above 18 kg.m-2 and a maximum stress below 

5 kg.m-2. The ORCHIDEE-STANDARD version is represented in red (corresponding to 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 = 

1), while the ORCHIDEE-ACCLIM version is represented by all other colors associated with the VPD 

value (hPa) used to compute 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠.  
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3.2. Evaluation of optimized simulated GPP and LE during drought events 

 

We here assess the performance of the two optimized model versions (POST ORCHIDEE-

STANDARD and POST ORCHIDEE-ACCLIM) following the multi-site DA over the whole 2017-2018 

period (step 2 in Figure 2), which corresponds to step 3 evaluation in Figure 2. 

 

3.2.1. Site scale evaluation 

 

 

Figure 5: Evaluation of the simulated GPP (gC.m-2.d-1) (first row) and LE (W.m-2) (second row) at all 

Warm Winter 2020 sites for which 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 reaches a value below 0.85 between May and 

September in 2018, 2019, or 2020, for ORCHIDEE-PRIOR (dark blue), and the two optimized 

versions: POST ORCHIDEE-STANDARD (light blue) and POST ORCHIDEE-ACCLIM (purple). This 

evaluation is based on RMSD values between the daily observed and simulated variables. The 

number of sites included in the GPP or LE evaluation for each PFT is indicated in the top center 

box. Note that the number of sites can differ between the GPP and LE evaluations due to uneven 

data gaps.  

 

Figure 5 shows the GPP and LE RMSD values per PFT for ORCHIDEE-PRIOR and the two optimized 

versions, POST ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM, over the period 2018-2020. 

The RMSD values are computed for the entire period from May to September, but only for sites 

where 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 falls below 0.85 at any point during this period, which indicates significant soil 

moisture stress conditions. Concerning GPP, the median RMSD decreases for the two optimized 

model versions compared to ORCHIDEE-PRIOR for TempENF and BorENF, while only the POST 

ORCHIDEE-ACCLIM version improves the median RMSD for TempDBF. However, note that DA 

degrades the simulated GPP with the two optimized model versions for all herbaceous PFTs 

(C3TempGRA, C3BorGRA, C3Crop) (see discussion in section 4.3). Across all PFTs, POST ORCHIDEE-

ACCLIM reduces the median GPP RMSD by 18% (Table S5), while no improvement is found with 
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POST ORCHIDEE-STANDARD. For LE, both optimized model versions reduce the median RMSD for 

all PFTs except C3TempGRA. The two optimized model versions lead to a similar reduction in the 

median RMSD across all PFTs by 8 to 9% (Table S5).  

Interestingly, when considering all 46 sites and the entire seasonal cycles from 2018 to 2020, POST 

ORCHIDEE-STANDARD improves the median GPP RMSD by 10% and LE by 19% across all PFTs, 

while POST ORCHIDEE-ACCLIM leads to a lower improvement with 3% for GPP and 15% for LE 

(Table S6). Therefore, the higher performance of POST ORCHIDEE-ACCLIM in simulating GPP 

compared to POST ORCHIDEE-STANDARD is found specifically when evaluating sites with 

significant soil moisture stress conditions between May and September (Figure 5). 

 

3.2.2. Regional scale evaluation 

 

 

Figure 6: Maps of RMSD change (%) between the RMSD computed between the data-driven GPP 

and post-optimization simulated ones (for POST ORCHIDEE-STANDARD on the left column or POST 

ORCHIDEE-ACCLIM in the middle column), and the RMSD obtained with  ORCHIDEE-PRIOR, for 

each evaluation product (FLUXSAT, FLUXCOM-X-BASE, SIF-GPP). The right column shows the RMSD 

difference (gC.m-2.d-1) between POST ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each 

evaluation product. The selected grid cells correspond to the stressed areas (section 2.2.3), 

between May and September 2020. Data are 8-day averages with a 0.5° spatial resolution. For the 

first two columns, grid cells in green depict an improvement in the posterior simulated GPP 

compared to ORCHIDEE-PRIOR (reduction in RMSD), while grid cells in pink show a degradation of 

the simulated GPP after optimization. For these two columns, the median RMSD change (%) is 

provided in the top left corner.  

 

Figure 6 presents the evaluation of the simulated GPP for POST ORCHIDEE-STANDARD and POST 

ORCHIDEE-ACCLIM compared to ORCHIDEE-PRIOR against the three GPP evaluation products over 
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stressed areas (based on the SPEI drought index, see section 2.2.3) between May and September 

2020. POST ORCHIDEE-ACCLIM achieves a more significant reduction in GPP RMSD compared to 

ORCHIDEE-PRIOR than POST ORCHIDEE-STANDARD. The median improvement in GPP RMSD for 

POST ORCHIDEE-ACCLIM ranges between 7% and 9%, over all grid cells considered and depending 

on the evaluation product, whereas POST ORCHIDEE-STANDARD shows an improvement of no 

more than 3% in 2020. Higher performance of POST ORCHIDEE-ACCLIM over POST ORCHIDEE-

STANDARD is also observed in 2018 and 2019 (Figures S5 and S6). Across 2018, 2019, and 2020, 

considering all evaluation products, POST ORCHIDEE-STANDARD results in an equivalent number 

of degraded and improved grid cells, while POST ORCHIDEE-ACCLIM improves the simulated GPP 

for 61% of the grid cells in stressed areas (Table S7). However, regions such as the Pyrenees, the 

Alps, and Northern Norway exhibit GPP degradation in both optimized versions. Then, despite the 

general trend of lower GPP RMSD values with POST ORCHIDEE-ACCLIM compared to POST 

ORCHIDEE-STANDARD across most grid cells, exceptions include regions like the Northwestern 

part of France and Southeastern Europe. 

 

 

Figure 7: Maps of RMSD change (%) between the RMSD computed between FLUXCOM-X-BASE and 

post-optimization simulated LE (for POST ORCHIDEE-STANDARD on the left column or POST 

ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between FLUXCOM-X-BASE 

and ORCHIDEE-PRIOR LE. The right column shows the RMSD difference (W.m-2) between POST 

ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each evaluation product. The selected 

grid cells correspond to the stressed areas (section 2.2.3), between May and September 2020. Data 

are 8-day averages with a 0.5° spatial resolution. For the first two columns, grid cells in green 

depict an improvement in the posterior simulated LE compared to ORCHIDEE-PRIOR (reduction in 

RMSD), while grid cells in pink show a degradation of the simulated LE after optimization. For these 

two columns, the median RMSD change (%) is provided in the top left corner.  

 

Figure 7 presents a similar evaluation against FLUXCOM-X-BASE LE. Both optimized models exhibit 

an equivalent median degradation of 6% in simulated LE compared to ORCHIDEE-PRIOR. This 

degradation is observed across nearly all stressed areas, particularly in Western and Eastern 

Europe and Northern Norway, with a slight improvement mainly in Sweden. Between the two 

model versions, POST ORCHIDEE-ACCLIM demonstrates higher performance than POST 

ORCHIDEE-STANDARD, showing a greater reduction in RMSD across most grid cells, except in 

Southeastern Europe and Spain. Similar patterns were observed in 2018 and 2019, with POST 

ORCHIDEE-ACCLIM showing a slightly lower median LE degradation than POST ORCHIDEE-

STANDARD compared to ORCHIDEE-PRIOR (Figures S7 and S8 and Table S8). Note that the general 

degradation in the simulated LE after the two optimizations contrasts with the overall 

improvement in the simulated GPP for POST ORCHIDEE-ACCLIM (Figure 6). 
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3.3. Additional validation against LAI over European ecoregions 

 

 

Figure 8: Mean seasonal cycle of LAI (m2.m-2) for ORCHIDEE simulations (solid lines) compared to 

three evaluation products (MODIS, PROBA-V, OLCI) (dotted lines) over the four ecoregions from 

2018 to 2020. Data are monthly averages with a 0.5° spatial resolution. For all evaluation products 

and ORCHIDEE simulations, grid cells where the evaluation products have missing data have been 

masked. The gray shaded areas represent the uncertainty in the PROBA-V and OLCI LAI products, 

for which uncertainty is provided (see section 2.2.2).  

 

Figure 8 shows the mean seasonal cycle of LAI simulated by ORCHIDEE-PRIOR and the two 

optimized versions, evaluated against three different evaluation products for each ecoregion. 

Across all ecoregions, POST ORCHIDEE-ACCLIM simulates a lower LAI than POST ORCHIDEE-

STANDARD. Both optimized versions reduce the simulated LAI in the boreal and dry ecoregions 

compared to ORCHIDEE-PRIOR, with POST ORCHIDEE-ACCLIM also reducing LAI in the temperate 

ecoregion. In contrast, POST ORCHIDEE-STANDARD increases LAI in the cold ecoregion compared 

to ORCHIDEE-PRIOR.  

A notable spread in LAI estimates is observed between the three evaluation products, highlighting 

significant uncertainties. Despite this, the simulated peak of LAI for the boreal, cold, and temperate 

ecoregions falls within the range of the evaluation products. However, in the dry ecoregion, the 

simulated LAI is significantly overestimated, even though POST ORCHIDEE-ACCLIM reduces this 

overestimation. 

All simulated LAI seasonal cycles, except in the dry ecoregion, exhibit a delay of 1 to 2 months in 

the summer LAI maximum compared to the evaluation products, all of them showing an 

agreement in the seasonal LAI phase. This results in a systematic overestimation of LAI during mid-
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summer and autumn. In the dry ecoregion, while the LAI maximum in ORCHIDEE-PRIOR was also 

delayed by a month compared to the evaluation product, the optimization succeeded in correcting 

this phase issue for both POST ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM.  

The two optimized versions show the strongest reduction in LAI RMSD across the 3 evaluation 

products in the boreal ecoregion, with 25 to 36% for POST ORCHIDEE-ACCLIM and 13 to 16% for 

POST ORCHIDEE-STANDARD (Table S9). Then, while POST ORCHIDEE-ACCLIM improves the RMSD 

by 13 to 18% in the dry ecoregion, and by 8 to 17% in the temperate ecoregion, RMSD changes 

with POST ORCHIDEE-STANDARD range from an increase of 3% to a reduction of 4% in these two 

ecoregions. The lowest LAI RMSD improvement is found for the cold ecoregion. However, while 

POST ORCHIDEE-ACCLIM improves it by 6 to 10%, POST ORCHIDEE-STANDARD leads to a 

degradation by up to 16%.  

Note that the significant improvement in the simulated LAI with POST ORCHIDEE-ACCLIM could be 

attributed to changes in parameter values affecting carbon allocation and pool growth, such as 

the specific leaf area (SLA) (Table S3). Additionally, the improvement in simulated GPP may also 

play a role, due to the coupling of the carbon assimilation and biomass allocation schemes in 

ORCHIDEE.  

 

3.4. Projections over Europe 

 

Figure 9: Mean seasonal cycles of simulated GPP (gC.m-2.d-1), LE (W.m-2), LAI (m2.m-2), 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (-

), and surface soil moisture (kg.m-2) over Europe, projected under the SSP370 scenario for the 

period 2015-2034 and 2081-2100. Data are 8-day averages with a 2° spatial resolution.  

 

Figure 9 shows the mean seasonal cycles of simulated GPP, LE, LAI, 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠, and surface soil 

moisture over Europe for 20 years at the beginning (2015-2034) and at the end of the century 

(2081-2100) under the SSP370 scenario. An increase in the seasonal amplitude of GPP is observed 

across all model versions by the end of the century compared to 2015-2034, with increases of 14% 

for ORCHIDEE PRIOR, 8% for POST ORCHIDEE-STANDARD, and 4% for POST ORCHIDEE-ACCLIM. 

The most pronounced increase occurs in the boreal ecoregion (Figure S9). In addition, the mean 

seasonal cycle of GPP shows an earlier seasonal maximum by the end of the century, by 

approximately 15 days for the two optimized versions. A similar shift is also found in the seasonal 
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cycle of LAI. These changes are particularly notable in the dry and temperate ecoregions (Figures 

S9 and S10).  

Conversely, LE mean seasonal cycle, driven by the seasonal cycle of plant transpiration (not 

shown), shows no significant changes in its seasonal phase or amplitude between 2015-2034 and 

2081-2100, nor between the different model versions. 

Then, all model versions also project a decrease in surface soil moisture at the end of the century 

compared to 2015-2034, particularly during the peak of minimum soil moisture in August. 

Therefore, all versions predict stronger soil moisture stress (i.e., lower 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠). However, while 

the three models show similar increases in soil moisture stress from spring until early August, 

POST ORCHIDEE-ACCLIM reduces the simulated stress levels afterwards compared to ORCHIDEE 

PRIOR and POST ORCHIDEE-STANDARD, resulting in the lowest stress level after the summer peak 

of minimum soil moisture. Notably, POST ORCHIDEE-ACCLIM achieves this despite simulating the 

lowest surface soil moisture.  

 

 

 

 

Figure 10: Projected variations of GPP (gC.m-2.d-1) (top), LE (W.m-2) (middle), and 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 (-) 

(bottom) over Europe from 2015 to 2100 under the SSP370 scenario. The mean annual values are 

represented in solid lines, and the corresponding linear regressions are in dotted lines with the 

regression coefficient values (slope) given in the legend for each model version. 

 

Figure 10 illustrates the temporal variations and trends in mean annual GPP, LE, and 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 

across Europe from 2015 to 2100. Consistent with the seasonal cycle findings in Figure 9, GPP is 

projected to increase until 2100, with the fastest rate observed in the ORCHIDEE PRIOR model 
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(0.0076 gC.m-2.d-1.y-1) and the slowest in the POST ORCHIDEE-ACCLIM model (0.0034 gC.m-2.d-1.y-

1). This increase in GPP can be attributed to the CO2 fertilization effect. Indeed, under the SSP370 

scenario, atmospheric CO2 levels are projected to rise by an average of 5.46 ppm.y-1 between 2015 

and 2100, resulting in more than a doubling of the atmospheric CO2 concentration by 2100 

compared to current levels (Figure S11). LAI also shows a slightly positive trend (Figure S12), with 

comparisons between model versions similar to those for GPP: the ORCHIDEE PRIOR model 

exhibits the highest increase rate (0.0017 m².m-2.y-1), while the POST ORCHIDEE-ACCLIM model has 

the slowest rate (0.0010 m².m-2.y-1). In contrast, the projected LE shows negligible trends between 

2015 and 2100.  

Then, all model versions depict an increasing trend in soil moisture stress until the end of the 

century. However, the POST ORCHIDEE-ACCLIM version projects the smallest trend. Indeed, the 

soil moisture stress trend in POST ORCHIDEE-ACCLIM is 22% lower than in POST ORCHIDEE-

STANDARD and 50% lower than in ORCHIDEE-PRIOR. Therefore, despite the optimized versions 

initially showing higher soil moisture stress than the prior version at the beginning of the century, 

POST ORCHIDEE-ACCLIM simulates the lowest soil moisture stress among the three versions from 

2040 onwards.  

 

4. Discussion 

 

4.1. Accounting for physiological acclimation mechanisms in vegetation response to 

drought events in LSMs 

 

This study evidences the importance of better accounting for vegetation's potential to acclimate 

to environmental drivers, such as VPD, in LSMs during drought events. This DA approach, 

considering years characterized by drought conditions in Europe, has led to a new definition of 

the speed of stomatal closure during soil moisture stress, incorporating vegetation acclimation to 

long-term VPD conditions (eq. 3). The acclimatation parameterization is consistent with the 

literature: Grossiord et al. (2017) evidenced stomatal acclimation to elevated VPD in some tree 

species in semi-arid regions during soil drying periods. Other experimental studies have also 

demonstrated that stomatal conductance can acclimate to long-term VPD exposure (i.e. weeks to 

months) (Nejad & van Meeteren 2008; Sermons et al., 2012), with high VPD conditions enhancing 

stomatal conductance and plant transpiration (Marchin et al., 2016). This acclimation response 

contrasts with the expected decrease in stomatal conductance with increasing VPD, emphasizing 

the need to differentiate between the short-term response to VPD and the effects of long-term 

exposure on stomatal behavior in LSMs. As a result, some plant traits defined as parameters in 

LSMs could be allowed to vary over time to account for vegetation's acclimation potential to 

environmental conditions. 

Several mechanisms behind stomatal acclimation to long term VPD have been suggested. Marchin 

et al. (2016) proposed that the phytohormone abscisic acid (ABA), which plays a crucial role in 

stomatal closure, is involved. Stomatal acclimation could be explained by changes in the sensitivity 

of ABA biosynthesis to VPD or in the responsiveness of stomata to ABA. This acclimation can allow 

plants to maintain carbon uptake under high VPD conditions despite increased water loss (Wang 

& Kellomaki, 1997; Kutsch et al., 2001; Herbst et al., 2008). Additionally, stomatal acclimation could 

help cooling the leaf through transpiration (Nobel, 1974) and maintaining leaf temperature within 
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an optimal range (Mahan & Upchurch, 1988). This cooling effect of transpiration occurs because 

the energy that would otherwise increase the leaf's temperature is used in converting liquid water 

into water vapor (Grossiord et al., 2020).  

This study focuses on stomatal acclimation to long-term VPD under soil moisture stress conditions. 

However, further investigation is needed to understand vegetation's potential to acclimate to long-

term soil moisture conditions in response to drought events. Indeed, the effects of these two 

drivers are difficult to disentangle as VPD and soil moisture are coupled over extended periods 

(Novick et al., 2024). In LSMs, we could hypothesize that parameters such as the soil moisture 

threshold above which there is no water stress and the one below which stomata close could 

acclimate to long-term soil moisture conditions or to the frequency and intensity of drought 

events. These parameters determine when vegetation begins to respond to a drought event and 

reach maximum stress, which could be refined as functions incorporating acclimation 

mechanisms, such as to account for ecological stress memory (Gessler et al., 2020). However, in 

this study using ORCHIDEE, no relationship was found between 𝜃𝑊𝑃 (soil moisture at wilting point) 

or 𝑝𝑚𝑎𝑥  . 𝜃𝐹𝐶  (soil moisture above which there is no stress) and long-term environmental drivers 

(not shown) when each year (2017 or 2018) was optimized independently. Currently, these 

parameters depend solely on soil texture type, but future work could refine them to investigate 

potential acclimation to specific climate and/or soil variables. 

 

4.2. Link between the acclimation function and the isohydricity concept 

 

The 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 coefficient, which defines the speed of stomatal closure during drought events (eq. 

2), can be linked to the concept of isohydricity, describing plant water stress strategies (Hochberg 

et al., 2018). Isohydric species close their stomata when soil water potential drops to preserve leaf 

water potential, risking carbon starvation, while anisohydric species keep their stomata open, 

risking hydraulic failure (Martínez‐Vilalta et al., 2014). In this study, high 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values indicate 

a rapid reduction in stomatal conductance when soil moisture decreases below a threshold 

marking the onset of a drought event (𝑝𝑚𝑎𝑥  . 𝜃𝐹𝐶), indicative of an isohydric strategy (Figure 4). 

Conversely, low 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values suggest that stomata remain open longer as soil moisture 

declines, reflecting an anisohydric strategy. Following the first DA phase, C3Crop showed low 

optimized 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values (Figure 3), aligning with findings by Li et al. (2017) that crops exhibit 

more anisohydric behavior based on vegetation optical depth data. In contrast, boreal biomes 

(BorENF and C3BorGRA) demonstrated high optimized 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 values, indicating a more 

isohydric behavior. 

In addition to the biome type dependency in stomatal response to droughts, the acclimation 

function introduces a dependency of 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 on long-term VPD, allowing vegetation responses 

to drought to vary within the same PFT depending on the local environmental conditions. Novick 

et al. (2019) emphasized that the degree of isohydricity alone is insufficient to assess stomatal 

behavior in response to soil moisture decrease, as VPD also influences the relationship between 

leaf and soil water potentials. Moreover, several studies have shown that plants of the same 

species can switch between isohydric and anisohydric behavior depending on environmental 

conditions (Guo et al., 2020), including their growing conditions (Hochberg et al., 2018; Feng et al., 

2019). Therefore, defining 𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 as a constant dependent solely on biome type would fail to 
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account for the impact of environmental conditions on the speed of stomatal closure during 

droughts. 

 

4.3. Representativeness of the observation data and DA limitations 

 

DA performance is limited by uncertainties in the assimilated variables. For instance, uncertainties 

in in situ GPP estimates arise from the partitioning method (Tramontana et al., 2020). Similarly, 

uncertainty exists in the in situ LE data obtained by eddy covariance, which have been corrected 

using the Bowen ratio method to ensure energy balance closure, as is the case in ORCHIDEE 

(section 2.2.1). The simulated GPP improves following DA when evaluated both at the site (Figure 

5) and the regional (Figures 6, S5, and S6) scales during soil moisture stress. However, while the 

site scale evaluation shows an improvement in the median LE RMSD by 8% to 9% across all PFTs 

after DA compared to ORCHIDEE-PRIOR (Figure 5, Table S5), there is a median degradation 

between 6% and 12% over the stressed areas when evaluated against FLUXCOM-X-BASE LE at the 

regional scale (Figures 7, S7, and S8). FLUXCOM-X-BASE’s upscaling of in situ fluxes integrates LE 

data from the ICOS Warm Winter 2020 database, but no energy balance correction was applied 

for this global product (Nelson et al., 2024). Therefore, different assumptions between the LE data 

used for assimilation and evaluation at the site scale and those used for regional scale evaluation 

could explain the diverging DA performances between these scales. 

Uncertainties in the data-driven products considered for the regional scale evaluation also limit 

the assessment of the simulated variables in ORCHIDEE. For GPP, using three different global 

evaluation products (FLUXCOM-X-BASE, FLUXSAT, and SIF-GPP) allows accounting for uncertainties 

related to various estimation methods and underlying assumptions. This approach also identifies 

discrepancies between different estimates in GPP seasonal cycles over stressed areas in Europe. 

While FLUXCOM-X-BASE and SIF-GPP show an asymmetric GPP seasonal cycle around the 

maximum in late June, FLUXSAT presents a symmetrical GPP seasonal cycle around the peak in 

early July (Figure S13). Therefore, FLUXSAT appears unable to accurately capture the GPP summer 

drawdown over the stressed areas, making it less suitable for evaluating the simulated GPP during 

drought years. Notably, across the three evaluation products, the lowest improvement in GPP 

using ORCHIDEE-ACCLIM is obtained when using FLUXSAT for assessment over the stressed areas 

(Figures 6, S5, and S6). Regarding the SIF-GPP product, previous studies have highlighted the high 

performance of SIF to track the impacts of drought stress on plant physiology at large scales, 

surpassing traditional vegetation indices such as the normalized difference vegetation index 

(NDVI) and the enhanced vegetation index (EVI) (Cao et al., 2021; Song et al., 2018; Sun et al., 2015).  

While DA improves the simulated GPP and LE over the whole period considered in the assimilation, 

the main evaluation in this study focuses on conditions with significant soil moisture stress and 

uses two years of independent data (not included in the assimilation). This focus explains some 

observed degradations in the simulated variables compared to ORCHIDEE-PRIOR for the soil 

moisture stress periods. The model may therefore lack the genericity needed to apply the 

optimized parameter values to independent years, potentially highlighting overfitting during the 

assimilation period. Then, the contrasting results between tree and herbaceous PFTs at the site 

scale (Figure 5, Table S5) could be related to the specificities of herbaceous structure, phenology, 

and management. Thus, structural model errors related to herbaceous representation could be 

reduced by using specific ORCHIDEE versions that explicitly represent these specificities. For 
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example, the ORCHIDEE-GM version incorporates a grassland management module that includes 

cutting, grazing, and fertilization (Chang et al., 2013, 2015). For croplands, the ORCHIDEE-CROP 

version includes a module for better accounting of crop phenology and management practices 

(Wu et al., 2016).  

Finally, specific regions with no improvement in the simulated fluxes following DA can highlight 

limitations in the DA approach, related to the representativeness of the sites selected for the 

assimilation. Notably, in Northern Norway, the simulated GPP is degraded compared to 

ORCHIDEE-PRIOR in both optimized versions across all evaluation products (Figure 6). Boreal 

broadleaf summergreen forests and C3BorGRA are prevalent in this region, but the boreal 

broadleaf summergreen forest PFT was not optimized since no representative ICOS Warm Winter 

2020 site was selected in this study. Similarly, a degradation of the simulated GPP compared to 

ORCHIDEE-PRIOR is observed over the Alps and the Pyrenees, possibly due to the unique 

characteristics of these high-altitude zones, which complicate accurate simulation of vegetation 

functioning, or due to the meteorological forcing having too coarse a resolution to accurately 

represent the climate over these areas. 

 

4.4. Additional challenges in representing vegetation response to drought events in LSMs 

 

In addition to stomatal regulation mechanisms, vegetation response to droughts also involves 

non-stomatal limitations that can coordinate with stomatal limitations (Flexas et al., 2008; Gago et 

al., 2016) and should be considered in LSMs. Several studies have reported a decrease in 

photosynthetic activity under soil moisture stress (Keenan et al., 2010; Gourlez de la Motte et al., 

2020), which could be related to a down-regulation of the Rubisco enzyme (Flexas et al., 2004; 

Sugiura et al., 2020), a decrease in carbon demand (Fatichi et al., 2014), or a reduced mesophyll 

conductance (Flexas et al., 2012). In ORCHIDEE, the same soil moisture stress response is applied 

to the stomatal conductance, mesophyll conductance, and photosynthetic rate (section 2.1.2), 

assuming full coordination between the three. A future refinement of the model could be 

considered by distinguishing between specific responses. Optimization approaches describing 

non-stomatal limitations have been proposed (Dewar et al., 2018), however, their implementation 

in LSMs is challenging due to limited understanding of non-stomatal limitation dynamics (Yang et 

al., 2019).  

Vegetation phenological and anatomical changes under prolonged soil moisture stress are also 

essential to accurately represent in LSMs. Droughts can induce leaf senescence, reducing leaf area 

(Hochberg et al., 2017; Schuldt et al., 2020), which limits plant water loss but also carbon uptake 

required to rebuild canopy structure after drought stress. Sustained droughts can also lead to 

hydraulic failure (Salmon et al., 2015) and tree mortality (Blackman et al., 2016). 

Then, in addition to physiological acclimation such as the stomatal acclimation function to long 

term VPD conditions described in this study, anatomical acclimation mechanisms have also been 

reported in response to droughts. Anatomical adjustments influencing stomatal conductance, 

such as changes in stomatal size and density, were found in some plant species in response to 

long term high VPD exposure (Du et al., 2020). Acclimation of the plant hydraulic system to high 

VPD conditions has also been reported, such as through increasing secondary wall thickness 

(Hacke et al., 2001; Pittermann et al., 2006) or larger roots (Du et al., 2020). Plants can also respond 
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to drought by developing deeper roots to access soil moisture when topsoil layers are depleted 

(Chaves et al., 2002).  

Finally, an integrated assessment of vegetation response to soil moisture stress would require an 

accurate representation of drought associated risks in LSMs, such as fires and insect outbreaks 

(Williams et al., 2016; Allen et al., 2015). 

 

4.5. Projected impact of acclimation 

 

With the projected VPD increasing trend of 0.04 hPa.y-1 under the SSP370 scenario between 2015 

and 2100 over Europe (Figure S14), the acclimation function in the POST ORCHIDEE-ACCLIM 

version is expected to enhance vegetation resistance to soil moisture decrease compared to the 

other model versions. Indeed, POST ORCHIDEE-ACCLIM simulates a lower average soil moisture 

stress over Europe at the end of the century compared to the two other model versions (Figures 

9 and 10). This reduced soil moisture stress would typically be expected to increase vegetation CO2 

and H2O exchanges, thereby enhancing GPP and LE. However, this anticipated increase during soil 

moisture stress periods is moderated by the optimization of parameters that influence the mean 

seasonal cycle of GPP and LE, not just during drought events. For example, the optimization 

reduces SLA for 5 out of the 6 PFTs represented in this study (BorENF, TempDBF, TempENF, 

C3BorGRA, C3TempGRA) in POST ORCHIDEE-ACCLIM, while SLA decreases for 2 PFTs only (BorENF, 

C3BorGRA) in POST ORCHIDEE-STANDARD (not shown). In ORCHIDEE, LAI is computed from the 

simulated leaf biomass pool multiplied by SLA. Therefore, the decrease in SLA can contribute to 

the lowest LAI and GPP in POST ORCHIDEE-ACCLIM.  

In addition to the focus on acclimation to long-term VPD in vegetation response to soil moisture 

stress, the projections underscore the significance of another factor to which photosynthesis can 

acclimate. Indeed, the comparison of the GPP seasonal cycles between the beginning and the end 

of the century indicates a projected shift in the seasonal phase towards earlier in the year by 

century's end, while no such change is found for LE (Figure 9). This shift could be linked to changes 

in Vcmax, the maximum rate of carboxylation, which is crucial for photosynthesis. Vcmax responds 

to temperature by increasing up to an optimal point, beyond which it decreases. The mean air 

temperature in Europe is projected to rise by 0.07 °C.y-1 between 2015 and 2100 (Figure S14). 

Consequently, higher air temperatures can cause Vcmax to get closer to its optimum temperature 

earlier in the spring (Figure S15), then declining due to soil moisture limitations (Figure 9). 

Accounting for Vcmax acclimation to plant growth temperature is critical for GPP projections. The 

ORCHIDEE model incorporates this acclimation based on Kattge & Knorr (2007). Using equation 2 

from their study, the optimum temperature for Vcmax is projected to increase at a rate of 0.036 

°C.y-1 for C3 plants (Figure S16).  

Finally, note that the projection ability to simulate future GPP and LE dynamics is limited by the 

absence of coupling between the land surface and the atmosphere, as ORCHIDEE is not run in 

coupled mode with an atmospheric circulation model. Running the model in coupled mode would 

improve the accounting for land-atmosphere interactions and feedback. For instance, a reduction 

in LE affects the energy and water budgets, altering the atmospheric state, which can in turn 

influence stomatal conductance.  
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5. Conclusion 

 

To enhance the accuracy of projected vegetation responses to climate change, this study highlights 

the importance of incorporating acclimation mechanisms in LSMs. This work specifically addresses 

drought events, revealing that refining vegetation physiological response to soil moisture stress 

can be achieved by considering the influence of long-term VPD conditions on the speed of stomatal 

closure.  

Under soil moisture stress conditions, integrating long-term VPD acclimation in the ORCHIDEE LSM 

improved the simulated GPP by 18% on sites when evaluated against in situ observations following 

DA. In contrast, a response based solely on vegetation type did not improve the simulated GPP 

following DA. At the regional scale in Europe, areas experiencing soil moisture stress saw a 7% to 

9% improvement in simulated GPP in 2020 with the acclimation-based response, compared to a 

maximum of 3% improvement with the biome-type dependency response. Additionally, only the 

parameter optimization with the model version including long-term VPD acclimation improved the 

simulated LAI over Europe. However, the two model versions performed similarly in simulating LE 

at both site and regional scales. 

Given the projected global increase in VPD alongside rising air temperatures, future projections 

under the SSP370 scenario until 2100 were conducted. As anticipated, the model accounting for 

vegetation acclimation to long-term VPD conditions during droughts projected the slowest 

increase in soil moisture stress levels. These projections also indicated an increase in GPP over 

Europe by the end of the century, with an earlier seasonal phase. 

In conclusion, this study compared an LSM version that solely accounts for a biome-dependent 

vegetation response to drought with a version incorporating vegetation potential to acclimate to 

long-term environmental changes, such as VPD. The differing simulated responses between these 

model versions highlight the necessity of integrating acclimation mechanisms in LSMs for more 

accurate simulations and climate projections. 

This new vegetation response to soil moisture stress that accounts for acclimation to long-term 

VPD could be further evaluated using tree ring width data, which provides insights into GPP (Babst 

et al., 2014; Tei et al., 2019). This assessment would determine if incorporating long-term VPD 

acclimation improves the correlation between relative changes in tree ring width and simulated 

GPP.  

In future research, acclimation mechanisms that influence stomatal responses to soil moisture 

stress could be explored in LSMs by incorporating a continuous representation of water potential 

from soil to leaves through roots and trunk (referred to as hydraulic architecture). This approach 

more effectively accounts for plant structure, such as height and water storage. 
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Supplementary  

 

Text S1: Description of the main processes related to the vegetation response to stress 

implemented in ORCHIDEE. 

 

VPD effect on stomatal conductance: 

 

ORCHIDEE simulates stomatal conductance 𝑔𝑠 (m s-1) following Yin & Struik (2009), with an 

empirical function describing the effect of VPD 𝑓𝑉𝑃𝐷 (unitless): 

 

𝑔𝑠 = 𝑔0 +
𝐴+𝑅𝑑

𝐶𝑖−𝐶𝑖∗
⋅ 𝑓𝑉𝑃𝐷                                                                                                                     (equation S1) 

 

with 𝑔0 (m s-1) the residual stomatal conductance when irradiance approaches zero, 𝐴 the CO2 

assimilation (μmol m-2 s-1) corresponding to the minimum between the electron transport limited 

rate and the Rubisco-limited rate, and 𝑅𝑑 the day respiration (μmol m-2 s-1). 𝐶𝑖 represents the 

intercellular partial pressure (μmol m-2 s-1) and 𝐶𝑖∗ is the base compensation point when 𝑅𝑑 is zero 

(μmol m-2 s-1). 𝑓𝑉𝑃𝐷 is defined using two empirical coefficients 𝐴𝑉𝑃𝐷and 𝐵𝑉𝑃𝐷 (unitless) as: 

 

𝑓𝑉𝑃𝐷 =
1

1/(𝐴𝑉𝑃𝐷−𝐵𝑉𝑃𝐷⋅𝑉𝐷𝑃)−1
                                                                                                            (equation S2) 

 

Root water uptake: 

 

ORCHIDEE simulates a dynamic water uptake by roots in which the root density profile is updated 

at each timestep depending on the soil water content available for transpiration in each soil layer. 

Therefore, the 𝑟𝑜𝑜𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦,𝑙 value that weights 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠,𝑙 matches the soil water content that can 

be taken up by root (𝜃𝑙 − 𝜃𝑊𝑃,𝑙). Roots can be allocated from the second soil layer to the bottom 

layer at 2 m deep for trees, while the maximum root depth considered for grasslands and crops is 

1 m.  

 

Resistance to soil evaporation: 

 

In ORCHIDEE, a resistance to soil evaporation enables limiting soil evaporation when soil moisture 

decreases in the top 4 soil layers (~2.15 cm deep), corresponding to litter layers. This resistance to 

soil evaporation 𝑟𝑠𝑜𝑖𝑙  (s m-1) is defined as an empirical exponential function of litter moisture 

following Sellers et al. (1992): 

 

𝑟𝑠𝑜𝑖𝑙 = 𝑒𝑥𝑝 (𝑟1𝑠𝑜𝑖𝑙 − 𝑟2𝑠𝑜𝑖𝑙 ⋅
𝜃 𝑙𝑖𝑡𝑡𝑒𝑟

𝜃 𝑆𝐴𝑇,𝑙𝑖𝑡𝑡𝑒𝑟
)                                                                                         (equation S4) 

 

with 𝜃 𝑙𝑖𝑡𝑡𝑒𝑟 and 𝜃 𝑆𝐴𝑇,𝑙𝑖𝑡𝑡𝑒𝑟  the liquid soil moisture content in the litter, and liquid soil moisture 

content at saturation in the litter (kg m-2), respectively. Then, 𝑟1𝑠𝑜𝑖𝑙  and 𝑟2𝑠𝑜𝑖𝑙  are two coefficients 

(unitless) initially estimated in Sellers et al. (1992) for a 5 cm deep soil. Therefore, the values of 

these coefficients need to be adapted to the litter depth considered in ORCHIDEE. 
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Table S1: List of ICOS Warm Winter 2020 sites with a fraction of dominant PFT of at least 50% at 

0.0125°. Sites only used for evaluation are indicated with *. 

 

Site name, country (ID) Coordinates (lat, 

lon) 

Dominant PFT 

fraction at 

0.0125° (%) (ESA-

CCI) 

Soil texture 

(FAO-USDA) 

Temperate Needleleaf Evergreen (TempENF) 

Gludsted Plantage, Denmark 

(DK-Gds)* 

56.0737°, 9.3341° 75.0 Loamy sand 

Oberbärenburg, Germany (DE-

Obe) 

50.7867°, 13.7213° 75.0 Sandy loam 

Lavarone, Italy (IT-Lav) 45.9562°, 11.2813° 71.9 Sandy loam 

Renon, Italy (IT-Ren) 46.5869°, 11.4337° 50.0 Sandy loam 

Norunda, Sweden (SE-Nor) 60.0865°, 17.4795° 75.0 Sandy loam 

Hyltemossa, Sweden (SE-Htm) 56.0976°, 13.4190° 68.0 Sandy loam 

Bily Kriz forest, Czech Republic 

(CZ-BK1) 

49.5021°, 18.5369° 75.0 Loam 

Grillenburg ,Germany (DE-Gri) 50.9500°, 13.5126° 63.3 Loam 

Rajec, Czech Republic (CZ-RAJ) 49.4437°, 16.6965° 75.0 Loam 

Hetzdorf, Germany (DE-Hzd) 50.9638°, 13.4898° 75.0 Loam 

Wustebach, Germany (DE-

RuW) 

50.5049°, 6.3310° 75.0 Loam 

Lettosuo, Finland (FI-Let) 60.6418°, 23.9595° 65.8 Loam 

San Rossore 2, Italy (IT-SR2) 43.7320°, 10.2909° 75.0 Clay loam 

Font-Blanche, France (FR-FBn) 43.2408°, 5.67865° 66.7 Clay loam 

Temperate Broadleaf Summergreen (TempDBF) 

Fyodorovskoye dry spruce, 

Russia (RU-Fy2) 

56.4476°, 32.9019° 60.3 Sandy loam 

Lanzhot, Czech Republic (CZ-

Lnz) 

48.6815°, 16.9463° 54.4 Loam 

Stitna, Czech Republic (CZ- Stn) 49.0360°, 17.9699° 61.2 Loam 
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Hohes Holz, Germany (DE-

HoH) 

52.0866°, 11.2224° 70.0 Loam 

Laegern, Switzerland (CH-Lae) 47.4783°, 8.3644° 54.0 Loam 

Soroe, Denmark (DK-Sor) 55.4859°, 11.6446° 50.8 Loam 

Hainich, Germany (DE-Hai) 51.0792°, 10.4522° 70.0 Clay loam 

Boreal Needleleaf Evergreen (BorENF) 

Kenttarova, Finland (FI-Ken)* 67.98721°, 24.2430° 80.0 Sandy loam 

Varrio, Finland (FI-Var) 67.7549°, 29.61° 80.0 Sandy loam 

Rosinedal-3, Sweden (SE-Ros) 64.1725°, 19.738° 79.8 Sandy loam 

Svartberget, Sweden (SE-Svb) 64.2561°, 19.7745° 80.0 Sandy loam 

Hyytiala, Finland (FI-Hyy)  61.8474°, 24.2948° 80.0 Loam 

Alp Weissenstein, Switzerland 

(CH-Aws) 

46.5832°, 9.79042° 53.3 Sandy clay loam 

Davos, Switzerland (CH-Dav) 46.8153°, 9.85591° 56.6 Sandy clay loam 

Temperate Natural Grassland (C3) (C3TempGRA) 

Chamau, Switzerland (CH-Cha) 47.2102°, 8.4104° 60.6 Loam 

Anklam, Germany (DE-Akm) 53.8662°, 13.6834° 65.6 Loam 

Rollesbroich, Germany (DE-

RuR) 

50.6219°, 6.3041° 90.6 Loam 

Clara Raised Bog, Ireland (IE-

Cra)* 

53.3231°, -7.6418° 69.4 Loam 

Trebon, Czech Republic (CZ-

wet) 

49.0247°, 14.7704° 81.6 Sandy clay loam 

Crops (C3) (C3Crop) 

Oensingen crop, Switzerland 

(CH-Oe2) 

47.2864°, 7.7338° 75.4 Loam 

Klingenberg, Germany (DE-Kli) 50.8931°, 13.5224° 51.7 Loam 

Selhausen Juelich, Germany 

(DE-RuS) 

50.8659°, 6.4471° 79.3 Loam 

Monte Bondone, Italy (IT-MBo) 46.0147°, 11.0458° 60.7 Loam 
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Dorinne, Belgium (BE-Dor)  50.3119°, 4.9681° 67.5 Loam 

Majadas del Tietar North, 

Spain (ES-LM1) 

39.9427°, -5.7787° 66.6 Loam 

Majadas del Tietar South, 

Spain (ES-LM2) 

39.9346°, -5.7759° 50.0 Loam 

Lamasquere, France (FR-Lam) 43.4964°, 1.2379° 64.8 Loam 

Lison, Italy (IT-Lsn) 45.7405°, 12.7503° 61.9 Loam 

Albuera, Spain (ES-Abr) 38.7018°, -6.7859° 63.9 Sandy clay loam 

Gebesee, Germany (DE-Geb)  51.0997°, 10.9146° 82.4 Clay loam 

Qvidja, Finland (FI-Qvd)* 60.2952°, 22.3916° 64.8 Clay loam 

Boreal Natural Grassland (C3) (C3BorGRA) 

Torgnon, Italy (IT-Tor) 45.8444°, 7.5781° 51.2 Sandy clay loam 
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Table S2: SPEI classes used for drought severity characterization (Wang et al., 2021). 

 

SPEI classes Characterization 

SPEI ≥ 2 Extremely wet 

1.5  ≤ SPEI < 2. Severely wet 

1. ≤ SPEI < 1.5 Moderately wet 

0.5 < SPEI < 1. Mildly wet 

-0.5 ≤ SPEI ≤ 0.5 Normal 

-1. < SPEI < -0.5 Mild drought 

-1.5 < SPEI ≤ -1. Moderate drought 

-2. < SPEI ≤ -1.5 Severe drought 

SPEI ≤ -2. Extreme drought 

 

 

 

 

 

Figure S1: Maps of mean SPEI values (-) between June and August for the years 2018, 2019, and 

2020, over the stressed areas. For each year, the stressed areas correspond to the grid cells for 

which monthly SPEI values reached a value below -1 (mild to extreme droughts) for at least one 

month in June, July or August.  
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Figure S2: a) Map of European ecoregions according to the original Köppen-Geiger classification 

(period 1991-2020) at a 0.5° spatial resolution. b) Map of simplified European ecoregions at a 0.5° 

spatial resolution. In this simplified classification, the following biomes have been grouped 

together: arid with temperate dry summer biomes into “dry”; temperate no dry season biomes 

into “temperate”; cold no dry season hot summer with cold no dry season warm summer biomes 

into “cold”; cold no dry season cold summer with polar tundra biomes into “boreal”. Note that the 

cold dry summer and cold dry winter biomes in a) have been removed from the “dry” ecoregion in 

b) because of the differences between these cold biomes and the arid and temperate ones 

included in the “dry” ecoregion. The grid cells of the cold no dry season cold winter biome for 

latitudes below 50°N in a) (mainly distributed over the Alps) have also been masked in the “boreal” 

ecoregion in b) because of the specific behavior expected from these high-altitude grid cells 

compared to the rest of the “boreal” ecoregion.  

 

 

 

Figure S3: a) Map of future European ecoregions according to the original Köppen-Geiger 

classification under SSP370 (period 2070-2100) at a 2° spatial resolution. b) Map of simplified 

future European ecoregions under SSP370 (period 2070-2100) at a 2° spatial resolution. In this 

simplified classification, the biomes have been grouped as described in Figure S2.   
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Table S3: Parameters selected for the optimization.  

 

Name Description (unit) Dependency Prior 

value 

Range of 

variation 

Photosynthesis 

𝑉𝑐𝑚𝑎𝑥25 Rubisco maximum 

carboxylation rate at 25°C 

(μmol m-2 s-1) 

TempENF 35. [26.; 44.] 

TempDBF 50. [38.; 63.] 

BorENF 45. [34.; 56.] 

C3TempGrass 50. [38.; 63.] 

C3Crop 60. [45.; 75.] 

C3BorGrass 50. [38.; 63.] 

𝑎𝑐𝑐𝑙𝑖𝑚𝑉𝑐𝑚𝑎𝑥  Offset of the linear 

temperature acclimation 

relationship for the entropy 

parameter of the 𝑉𝑐𝑚𝑎𝑥  

temperature-dependence 

function, following Kattge & 

Knorr (2007) (J K-1 mol-1) 

TempENF 668.39 [501.3; 835.5] 

TempDBF 668.39 [501.3; 835.5] 

BorENF 668.39 [501.3; 835.5] 

C3TempGrass 668.39 [501.3; 835.5] 

C3Crop 668.39 [501.3; 835.5] 

C3BorGrass 668.39 [501.3; 835.5] 

𝑎𝑐𝑐𝑙𝑖𝑚𝐽𝑚𝑎𝑥 Offset of the linear 

temperature acclimation 

relationship for the entropy 

parameter of the 𝐽𝑚𝑎𝑥 

temperature-dependence 

function, following Kattge & 

Knorr (2007) (J K-1 mol-1) 

TempENF 659.70 [495.; 825.] 

TempDBF 659.70 [495.; 825.] 

BorENF 659.70 [495.; 825.] 

C3TempGrass 659.70 [495.; 825.] 

C3Crop 659.70 [495.; 825.] 

C3BorGrass 659.70 [495.; 825.] 

𝐿𝑒𝑎𝑓𝑎𝑔𝑒 𝑐𝑟𝑖𝑡  Critical leaf age, used for 

computing the age-

dependence of the maximum 

TempENF 910. [683.; 1138.] 

TempDBF 160. [120.; 200.] 
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carboxylation rate limited by 

Rubisco activity, and for leaf 

turnover (Krinner et al., 2005) 

(days) 

BorENF 910. [683.; 1138.] 

C3TempGrass 80. [60.; 100.] 

C3Crop 90. [68.; 113.] 

C3BorGrass 80. [60.; 100.] 

Biomass 

SLA Specific leaf area (m2 gC-1) TempENF 0.00926 [0.00695; 

0.01157] 

TempDBF 0.026 [0.020; 0.033] 

BorENF 0.00926 [0.00695; 

0.01157]  

C3TempGrass 0.026 [0.020; 0.033] 

C3Crop 0.026 [0.020; 0.033] 

C3BorGrass 0.026 [0.020; 0.033] 

𝐿𝐴𝐼𝑚𝑎𝑥 Maximum leaf area index (m2 

m-2) 

TempENF 5. [3.75; 6.25] 

TempDBF 5. [3.75; 6.25] 

BorENF 4.5 [3.4; 5.6] 

C3TempGrass 2.5 [1.88; 3.13] 

C3Crop 5. [3.75; 6.25] 

C3BorGrass 2.5 [1.88; 3.13] 

Stomatal conductance response to VPD 

𝐴𝑉𝑃𝐷 Empirical factor involved in the 

function describing the effect 

of VPD on stomatal 

conductance (-) 

TempENF 0.85 [0.64, 1.06] 

TempDBF 0.85 [0.64, 1.06] 

BorENF 0.85 [0.64, 1.06] 

C3TempGrass 0.85 [0.64, 1.06] 

C3Crop 0.85 [0.64, 1.06] 
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C3BorGrass 0.85 [0.64, 1.06] 

𝐵𝑉𝑃𝐷 Empirical factor involved in the 

function describing the effect 

of VPD on stomatal 

conductance (-) 

TempENF 0.14 [0.1, 0.18] 

TempDBF 0.14 [0.1, 0.18] 

BorENF 0.14 [0.1, 0.18] 

C3TempGrass 0.14 [0.1, 0.18] 

C3Crop 0.14 [0.1, 0.18] 

C3BorGrass 0.14 [0.1, 0.18] 

Vegetation sensitivity to soil moisture stress 

𝛼𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠  Empirical factor determining 

the speed to stomatal closure 

under soil moisture stress (-) 

TempENF 1. [0.05, 10.] 

TempDBF 1. [0.05, 10.] 

BorENF 1. [0.05, 10.] 

C3TempGrass 1. [0.05, 10.] 

C3Crop 1. [0.05, 10.] 

C3BorGrass 1. [0.05, 10.] 

𝑝𝑚𝑎𝑥   Fraction of saturated 

volumetric soil moisture above 

which transpiration is 

maximum ([0,1]) (-) 

Loamy sand 0.8 [0.6, 0.9999] 

Sandy loam 0.8 [0.6, 0.9999] 

Loam 0.8 [0.6, 0.9999] 

Sandy clay 

loam 

0.8 [0.6, 0.9999] 

Clay loam 0.8 [0.6, 0.9999] 

Soil hydrology 

𝑛𝑣𝑎𝑛 𝐺𝑒𝑛𝑢𝑐ℎ𝑡𝑒𝑛 Root profile Van Genuchten 

coefficient n (-) 

Loamy sand 2.68 [2.01; 3.35] 

Sandy loam 1.89 [1.42; 2.36] 

Loam 1.56 [1.17; 1.95] 
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Sandy clay 

loam 

1.48 [1.11; 1.85] 

Clay loam 1.31 [0.98; 1.64] 

𝜃𝑆𝐴𝑇  Volumetric water content at 

saturation (m3 m-3) 

Loamy sand 0.41 [0.31; 0.51] 

Sandy loam 0.41 [0.31; 0.51] 

Loam 0.43 [0.32; 0.54] 

Sandy clay 

loam 

0.39 [0.29; 0.49] 

Clay loam 0.41 [0.31; 0.51] 

𝜃𝐹𝐶   Volumetric water content at 

field capacity (m3 m-3) 

Loamy sand 0.0710 [0.071; 0.0888] 

Sandy loam 0.1218 [0.0914; 0.1523] 

Loam 0.1654 [0.1241; 0.2068] 

Sandy clay 

loam 

0.1695 [0.1390; 0.2119] 

Clay loam 0.2697 [0.2028; 0.309] 

𝜃𝑊𝑃  Volumetric water content at 

wilting point (m3 m-3) 

Loamy sand 0.057 [0.057; 0.071] 

Sandy loam 0.0657 [0.065; 0.0821] 

Loam 0.0884 [0.078; 0.1105] 

Sandy clay 

loam 

0.1112 [0.100; 0.1390] 

Clay loam 0.1496 [0.1122; 0.187] 

Resistance to soil evaporation 

𝑟1𝑠𝑜𝑖𝑙   Coefficient 1 for soil resistance 

(Sellers et al., 1992) (-) 

None 8.206 [4.103; 12.309] 

𝑟2𝑠𝑜𝑖𝑙   Coefficient 2 for soil resistance 

(Sellers et al., 1992) (-) 

None 4.255 [2.1275; 6.3825] 

Aerodynamic conductance 
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𝑟1𝑎𝑒𝑟𝑜 Constant 1 used in the 

formulation of the ratio of 

friction velocity to the wind 

speed at the canopy top 

(Ershadi et al., 2015) (-) 

None 0.32 [0.24; 0.40] 

𝑟2𝑎𝑒𝑟𝑜 Constant 2 used in the 

formulation of the ratio of 

friction velocity to the wind 

speed at the canopy top 

(Ershadi et al., 2015) (-) 

None 0.264 [0.198; 0.330] 

Radiative transfer and leaf absorption 

Clumping Leaf clumping index (-) TempENF 0.74 [0.555; 0.925] 

TempDBF 0.70 [0.10; 1.50] 

BorENF 0.55 [0.41; 0.69] 

C3TempGrass 0.75 [0.10; 1.50] 

C3Crop 0.75 [0.10; 1.50] 

C3BorGrass 0.75 [0.10; 1.50] 

𝑎𝑃𝑆𝐼𝐼 Absorption cross section for 

photosystem II (-) 

None 0.5 [0.375; 0.625] 

 

 

 

Figure S4: Maps of mean SPEI values (-) between May and September for each year from 2017 to 

2020.  
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Table S4: Mean RMSD value for GPP (gC m-2 d-1) and LE (W m-2) per PFT following the first DA steps 

assimilating GPP and LE data either in 2017 or in 2018. This evaluation is based on RMSD values 

between the daily observed and simulated variable of the optimized year.  

 

 TempENF TempDBF BorENF 
C3TempG

rass 
C3Crop 

C3BorGra

ss 

Average 

over all 

PFTs 

GPP 

2017 

PRIOR 2.28 2.51 1.90 2.97 2.93 1.14 2.29 

POST 1.95 2.45 1.20 2.75 2.59 0.83 1.96 

2018 

PRIOR 2.22 2.31 1.96 2.36 2.81 1.14 2.13 

POST 1.95 1.96 1.26 2.14 2.17 1.05 1.75 

LE 

2017 

PRIOR 23.80 21.76 19.30 31.79 24.97 19.72 23.56 

POST 21.64 19.55 14.43 16.77 22.09 8.49 17.16 

2018 

PRIOR 22.20 23.65 26.88 29.48 23.89 12.29 23.06 

POST 20.12 19.60 17.95 15.01 17.64 7.41 16.29 

 

 

Table S5: Median RMSD value for GPP (gC m-2 d-1) and LE (W m-2) per PFT considering all Warm 

Winter 2020 sites for which 𝑓𝑤𝑎𝑡𝑒𝑟 𝑠𝑡𝑟𝑒𝑠𝑠 reaches a value below 0.85 between May and September 

in 2018, 2019, or 2020, for “ORCHIDEE-PRIOR” and the two optimized versions: “POST ORCHIDEE-

STANDARD” and “POST ORCHIDEE-ACCLIM”. This evaluation is based on RMSD values between the 

daily observed and simulated variable.  

 

 TempENF TempDBF BorENF 
C3TempG

rass 
C3Crop 

C3BorGra

ss 

Average 

over all 

PFTs 

GPP 

ORCHIDEE-

PRIOR 
3.03 3.34 3.89 3.87 1.32 0.57 2.67 

POST 

ORCHIDEE-

STANDARD 

2.64 4.05 2.10 4.76 1.69 0.98 2.70 

POST 

ORCHIDEE-

ACCLIM 

2.57 2.03 1.61 4.57 1.62 0.87 2.21 
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LE 

ORCHIDEE-

PRIOR 
26.58 31.82 37.06 44.49 18.00 6.12 27.35 

POST 

ORCHIDEE-

STANDARD 

23.26 18.89 19.33 69.46 15.53 5.26 25.29 

POST 

ORCHIDEE-

ACCLIM 

20.31 19.91 17.03 72.86 14.65 4.10 24.81 

 

 

Table S6: Median RMSD value for GPP (gC m-2 d-1) and LE (W m-2) per PFT considering all Warm 

Winter 2020 sites from 2018 to 2020, for “ORCHIDEE-PRIOR” and the two optimized versions: 

“POST ORCHIDEE-STANDARD” and “POST ORCHIDEE-ACCLIM”. This evaluation is based on RMSD 

values between the daily observed and simulated variable.  

 

 TempENF TempDBF BorENF 
C3TempG

rass 
C3Crop 

C3BorGra

ss 

Average 

over all 

PFTs 

GPP 

ORCHIDEE-

PRIOR 
2.37 2.31 2.48 3.43 2.92 1.39 2.48 

POST 

ORCHIDEE-

STANDARD 

2.41 2.16 1.47 3.34 2.67 1.40 2.24 

POST 

ORCHIDEE-

ACCLIM 

3.39 2.17 1.41 3.34 2.68 1.41 2.4 

LE 

ORCHIDEE-

PRIOR 
24.76 23.11 27.26 29.47 25.49 14.85 24.16 

POST 

ORCHIDEE-

STANDARD 

22.59 20.62 24.35 19.31 20.52 10.37 19.63 

POST 

ORCHIDEE-

ACCLIM 

22.73 20.09 25.87 19.30 24.31 10.56 20.48 
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Figure S5: Maps of RMSD change (%) between the RMSD computed between the data-driven and 

post-optimization simulated GPP (for POST ORCHIDEE-STANDARD on the left column or POST 

ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between the data-driven and 

ORCHIDEE-PRIOR GPP, for each evaluation product (FLUXSAT, FLUXCOM-X-BASE, SIF-GPP). The 

right column shows the RMSD difference (gC m-2 d-1) between POST ORCHIDEE-ACCLIM and POST 

ORCHIDEE-STANDARD for each evaluation product. The selected grid cells correspond to the 

stressed areas (section 2.2.3), between May and September 2018. Data are 8-day averages with a 

0.5° spatial resolution. For the first two columns, grid cells in green depict an improvement in the 

posterior simulated GPP compared to ORCHIDEE-PRIOR (reduction in RMSD), while grid cells in 

pink show a degradation of the simulated GPP after optimization. For these two columns, the 

median RMSD change (%) is provided in the top left corner.  
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Figure S6: Same as Figure S5 for the year 2019.  

 

 

Table S7: Percentage of improved grid cells after optimization for the two model versions (POST 

ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM) compared to the prior, evaluated using the 

RMSD for the three GPP evaluation products, over the stressed areas in 2018, 2019, and 2020. The 

highest improvement between the two optimized model versions are in bold.  

 

 2018 2019 2020 Mean 

improvement 

 FLUXS

AT 

FLUXC

OM-X-

BASE 

SIF-

GPP 

FLUXS

AT 

FLUXC

OM-X-

BASE 

SIF-

GPP 

FLUXS

AT 

FLUXC

OM-X-

BASE 

SIF-

GPP 

POST ORCHIDEE-

STANDARD 

53 55 54 49 53 48 55 48 50 52 

POST ORCHIDEE-

ACCLIM 

57 66 69 54 61 57 60 64 64 61 
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Figure S7: Maps of RMSD change (%) between the RMSD computed between FLUXCOM-X-BASE 

and post-optimization simulated LE (for POST ORCHIDEE-STANDARD on the left column or POST 

ORCHIDEE-ACCLIM in the middle column), and the RMSD computed between FLUXCOM-X-BASE 

and ORCHIDEE-PRIOR LE. The right column shows the RMSD difference (W m-2) between POST 

ORCHIDEE-ACCLIM and POST ORCHIDEE-STANDARD for each evaluation product. The selected 

grid cells correspond to the stressed areas (section 2.2.3), between May and September 2020. Data 

are 8-day averages with a 0.5° spatial resolution. For the first two columns, grid cells in green 

depict an improvement in the posterior simulated LE compared to ORCHIDEE-PRIOR (reduction in 

RMSD), while grid cells in pink show a degradation of the simulated LE after optimization. For these 

two columns, the median RMSD change (%) is provided in the top left corner.  

 

 

 

Figure S8: Same as Figure S7 for the year 2019.  

 

 

Table S8: Percentage of improved grid cells after optimization for the two model versions (POST 

ORCHIDEE-STANDARD and POST ORCHIDEE-ACCLIM) compared to the prior, evaluated using the 

RMSD for FLUXCOM-X-BASE LE, over the stressed areas in 2018, 2019, and 2020. The highest 

improvement between the two optimized model versions are in bold.  

 

 2018 2019 2020 Mean 

improvement 

POST ORCHIDEE-

STANDARD 

26 19 25 23 

POST ORCHIDEE-ACCLIM 26 21 26 24 
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Table S9: Mean LAI RMSD (m2 m-2) values between the 3 ORCHIDEE simulations and the 3 

evaluation products (MODIS, PROBA-V, OLCI) for each ecoregion between 2018 and 2020. Data are 

monthly averages. For all evaluation products, grid cells where the evaluation products have 

missing data have been masked. The lowest RMSD values between the 3 ORCHIDEE simulations 

are in bold.  

 

 Boreal Cold Temperate Dry Europe 

 ORCH

IDEE-

PRIOR 

POST 

ORCH

IDEE-

STAN

DARD 

POST 

ORCH

IDEE-

ACCLI

M 

ORCH

IDEE-

PRIOR 

POST 

ORCH

IDEE-

STAN

DARD 

POST 

ORCH

IDEE-

ACCLI

M 

ORCH

IDEE-

PRIOR 

POST 

ORCH

IDEE-

STAN

DARD 

POST 

ORCH

IDEE-

ACCLI

M 

ORCH

IDEE-

PRIOR 

POST 

ORCH

IDEE-

STAN

DARD 

POST 

ORCH

IDEE-

ACCLI

M 

ORCH

IDEE-

PRIOR 

POST 

ORCH

IDEE-

STAN

DARD 

POST 

ORCH

IDEE-

ACCLI

M 

PROBA

-V 

0.99 0.86 0.74 1.08 1.10 1.01 1.06 1.03 0.98 0.88 0.85 0.76 0.99 0.97 0.89 

OLCI 1.13 0.99 0.77 1.08 1.25 1.04 1.02 1.04 0.85 0.9 0.87 0.76 1.01 1.04 0.87 

MODIS 1.06 0.89 0.68 0.83 0.85 0.75 0.77 0.74 0.66 0.73 0.71 0.60 0.81 0.78 0.67 
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Figure S9: Mean seasonal cycle of simulated GPP (gC.m-2.d-1) over each ecoregion in Europe, 

projected under the SSP370 scenario for the period 2015-2034 and 2081-2100. Data are 8-day 

averages with a 2° spatial resolution.  

 

 

Figure S10: Mean seasonal cycle of simulated LAI (m2.m-2) over each ecoregion in Europe, 

projected under the SSP370 scenario for the period 2015-2034 and 2081-2100. Data are 8-day 

averages with a 2° spatial resolution.  
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Figure S11: Projected variations of atmospheric CO2 concentration (ppm) over Europe from 2015 

to 2100 under the SSP370 scenario. The mean annual values are represented in solid lines and the 

corresponding linear regressions are in dotted lines with the regression coefficient values (slope). 

 

 

Figure S12: Projected variations of LAI (m2.m-2) over Europe from 2015 to 2100 under the SSP370 

scenario. The mean annual values are represented in solid lines, and the corresponding linear 

regressions are in dotted lines with the regression coefficient values (slope) given in the legend for 

each model version.  
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Figure S13: Mean GPP seasonal cycle (gC m-2 d-1) for the evaluation products (FLUXSAT, FLUXCOM-

X-BASE, SIF-GPP) (solid lines) and ORCHIDEE simulations (dotted lines) over the stressed areas in 

Europe from 2018 to 2020. Data are 8-day averages at a 0.5° spatial resolution. Grid cells where 

the GPP evaluation products have missing data have been masked. 

 

 

Figure S14: Projected variations of air temperature (°C) and VPD (hPA) over Europe from 2015 to 

2100 under the SSP370 scenario. The mean annual values are represented in solid lines and the 

corresponding linear regressions are in dotted lines with the regression coefficient values (slope). 

 

 

Figure S15: Mean seasonal cycle of air temperature (Tair in °C) (yellow), optimum temperature of 

Vcmax (Topt in °C) (orange), and the difference between Tair and Topt (°C) (black) over Europe, 

projected under the SSP370 scenario for the period 2015-2034 and 2081-2100. Data are 8-day 

averages with a 2° spatial resolution.  
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Figure S16: Projected variations of the optimum temperature of Vcmax (°C) for C3 plants over 

Europe from 2015 to 2100 under the SSP370 scenario. The mean annual values are represented 

in solid lines and the corresponding linear regressions are in dotted lines with the regression 

coefficient values (slope). 
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6.3 Future prospects for evaluating and integrating vegetation 

physiological acclimation to atmospheric moisture stress in 

ORCHIDEE 

 

In the above study, the acclimation function that modulates vegetation response to soil moisture 

stress was evaluated against eddy covariance GPP and LE data at the site scale, and against 

satellite-based GPP and LE products at the regional scale across Europe. For future research, it 

would be valuable to use independent datasets for further evaluation of this function. For 

example, tree ring width data, which has been shown to correlate with GPP (section 1.3.2), could 

be utilized by comparing the relative changes in tree ring width with the ones in simulated GPP at 

various sites that have experienced drought events. This approach could help determine whether 

incorporating acclimation to long-term VPD in the simulated response to soil moisture stress 

improves the correlation between relative changes in tree ring width and in GPP in ORCHIDEE. 

Furthermore, integrating this acclimation function in the ORCHIDEE version that simulates tree 

ring width variability (Barichivich et al, 2021) could enable further calibration of the acclimation 

function's parameters through the assimilation of tree ring data. Indeed, Barichivich et al. (2021) 

demonstrated that tree ring width as well as carbon and oxygen stable isotope data could be used 

not only to evaluate the growth variability simulated in ORCHIDEE but also to constrain the model's 

stomatal response to drought stress. 

Another independent evaluation of the acclimation function could be conducted using 

atmospheric CO2 concentration data from measurement towers, such as those in the ICOS 

network (https://www.icos-cp.eu/), which includes 46 towers across 16 European countries. Since 

tall tower atmospheric CO2 concentration measurements capture influences from broader areas 

than local phenomena, they can provide insights into surface processes at the regional scale. For 

this evaluation, it would be necessary to transport all surface CO2 fluxes contributing to 

atmospheric CO2 concentration - including NEE, which is the difference between GPP and 

ecosystem respiration - in order to simulate atmospheric CO2 concentrations. This approach 

would allow us to assess whether the simulated CO2 concentrations derived from the NEE that 

incorporate the acclimation function improve the agreement with observed atmospheric CO2 

concentrations. The evaluation could be conducted using the Community Inversion Framework 

(CIF) (Berchet et al., 2021), a platform that supports running multiple transport models, such as 

LMDZ (Chevallier et al., 2005), FLEXPART (Pisso et al., 2019), and the Transport Model version 5 

(Krol et al., 2005), enabling the quantification and comparison of errors arising from atmospheric 

transport modeling. 

 

The study presented in the previous section encourages the integration of new mechanisms of 

vegetation responses to environmental changes in LSMs by incorporating plants' ability to 

acclimate. The focus of this work is on the physiological response of vegetation to soil moisture 

stress, particularly stomatal regulation and the coordinated non-stomatal responses, including 

mesophyll conductance and photosynthetic activity. Although the acclimation function developed 

in this study was designed for a model version that does not represent plant hydraulic 

architecture, future research could explore how vegetation acclimation can be integrated in 

physiological responses to soil moisture changes in a model that includes an explicit 

https://www.icos-cp.eu/
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representation of plant hydraulic architecture. Note that a hydraulic architecture has already been 

integrated in ORCHIDEE-CAN (Yao et al., 2022). However, in that version, the hydraulic architecture 

determines plant transpiration based on leaf water potential only during soil moisture stress 

conditions. In contrast, the new hydraulic architecture developed in Julien Alléon's PhD work will 

enable the computation of plant transpiration based on leaf water potential under any conditions. 

Additionally, this new representation includes a root absorption model that relies on solving a 

diffusion equation radially around the roots.  

Then, the integration of an hydraulic architecture in ORCHIDEE enables explicit simulation of water 

storage in the plant, and water movement through the soil, roots, stems, leaves, and atmosphere 

continuum, based on water potential gradients and specific conductivity parameters for each 

organ. This model version could offer new insights on potential stomatal acclimation to long term 

environmental conditions influencing vegetation response to drought events. By representing 

stomatal conductance as a function of leaf water potential, this version may reveal different 

sensitivities to environmental drivers compared to the ORCHIDEE version without hydraulic 

architecture. Additionally, this version provides a framework for exploring potential acclimation 

functions that could influence simulated hydraulic dysfunction or failure mechanisms, such as the 

percentage loss of conductance (Adams et al., 2017) or xylem vessel embolism (Cochard and 

Delzon, 2013). Incorporating these acclimation responses into the hydraulic architecture could 

improve the simulation of stomatal response to soil moisture stress and drought-induced 

mortality in LSMs.  

Finally, the ORCHIDEE version used in this PhD work does not explicitly represent the nitrogen 

cycle. The nitrogen cycle interacts with the carbon cycle, influencing GPP and its response to 

climate change with rising atmospheric CO2 (Reich et al., 2014; Zaehle et al., 2015). Vuichard et al. 

(2019) evaluated an ORCHIDEE version that includes carbon-nitrogen interactions and found that, 

under elevated CO2, the simulated GPP and plant transpiration were significantly lower than those 

simulated with a model version lacking an explicit nitrogen cycle representation. Therefore, using 

a model version that accounts for carbon-nitrogen interactions can lead to different vegetation 

responses to environmental changes and different associated potential acclimation mechanisms. 
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7 CONCLUSION AND PERSPECTIVES 

7.1 General conclusion 

 

GPP and plant transpiration are essential components of the carbon and water cycles, playing a 

crucial role in ecosystem functioning and their interactions with the atmosphere. Accurately 

representing GPP and plant transpiration in LSMs is essential for reliable climate simulations and 

projections, which are key to informing policy decisions. Although various proxies have been used 

to independently constrain these processes, there remains significant uncertainty, necessitating 

the investigation of new proxies to enhance our understanding. The primary objective of this PhD 

thesis was to provide new constraints on GPP and plant transpiration, particularly by exploring the 

potential of COS as a proxy for these fluxes, with the aim of improving their representation in the 

ORCHIDEE LSM. To address the research questions central to this work, I implemented ecosystem 

COS flux representation in ORCHIDEE and employed DA techniques to enhance the model's 

process representation, using in situ flux data, including ecosystem COS flux observations. While 

the study of ecosystem COS flux observations has evidenced the potential of COS to provide 

specific constraints on GPP and plant transpiration, it has also revealed limitations in using COS as 

a proxy for these fluxes, as well as deficiencies in GPP and plant transpiration representation 

during drought events. These findings led me to focus on better characterizing the dynamics of 

GPP and plant transpiration under soil moisture stress conditions, to more accurately account for 

the diversity in vegetation responses and the capacity of vegetation to acclimate to long-term VPD 

conditions. The main conclusions to the research questions presented in section 1.4 are 

summarized below.  

 

In this PhD work, I initially focused on integrating a mechanistic representation of ecosystem COS 

fluxes within ORCHIDEE by implementing a model for soil COS exchanges to complement the 

existing vegetation COS uptake model. This effort aligns with the growing interest in mechanistic 

representations of surface COS fluxes to better characterize the contributions of various COS 

components to the global atmospheric COS budget and to use COS as a proxy for GPP and plant 

transpiration. The increasing interest in COS's potential to constrain GPP and plant transpiration 

in LSMs is evidenced by the rising number of LSMs that have incorporated more complex 

ecosystem COS flux models, moving beyond the earlier empirical representations. This began with 

SiB (Berry et al., 2013; Kooijmans et al., 2021), followed by ORCHIDEE (Maignan et al., 2021; Abadie 

et al., 2022), then BEPS (Zhu et al., 2024a, 2024b), and COS is currently being integrated into the 

Joint United Kingdom Land Environment Simulator (JULES). The inclusion of ecosystem COS fluxes 

in multiple LSMs allows for the simulation of vegetation and soil COS flux temporal and spatial 

dynamics on a global scale while accounting for uncertainties arising from differences in flux 

representations and parameterizations. In ORCHIDEE, the mechanistic-based representation of 

soil COS exchanges has enabled me to compare the contributions from anoxic soils - often 

neglected in the global atmospheric COS budget (Remaud et al., 2022, 2023) - with those from oxic 

soils, revealing a significant contribution from anoxic soils, producing +96 GgS y-1 compared to a 

net oxic soil sink of -126 GgS y-1 over 2009-2016. During this implementation phase, I also refined 
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the vegetation COS uptake model in ORCHIDEE by incorporating spatially and temporally varying 

atmospheric COS concentrations to drive simulated COS fluxes, while the vegetation COS model 

previously used a constant COS concentration. This refinement is crucial for the global 

atmospheric COS budget, as using a variable COS concentration has reduced the net COS uptake 

by vegetation and soil by 8% and 10%, respectively, compared to using a constant concentration. 

As our understanding of vegetation and soil COS fluxes continues to advance, with experimental 

studies revealing new processes that contribute to ecosystem COS fluxes, such as the role of living 

roots (Kitz et al., 2024) or the potential of crops to emit COS (Belviso et al., 2022a), the COS models 

in ORCHIDEE should gradually evolve to incorporate these new processes. 

 

The integration of a mechanistic-based representation of ecosystem COS flux in ORCHIDEE has 

enabled the use of COS flux as a proxy to provide new constraints on GPP and plant transpiration 

parameterization. Thanks to the implementation of biospheric COS flux models in LSMs, eddy-

covariance ecosystem COS flux observations have begun to be assimilated in LSMs to directly 

optimize model parameters. In this PhD work, I performed the first assimilation of ecosystem COS 

flux data in ORCHIDEE using the longest available time series of such measurements from the 

Hyytiälä boreal evergreen needleleaf forest in Finland. This data assimilation framework revealed 

that the simulated vegetation COS uptake is more sensitive to stomatal conductance parameters 

than GPP, underscoring the potential of COS flux to specifically constrain stomatal regulation, 

which couples GPP and transpiration fluxes. Due to the stronger constraint on stomatal 

conductance provided by COS flux, this study found that assimilating ecosystem COS fluxes in 

addition to GPP data improves not only the simulated COS fluxes and GPP at Hyytiälä but also LE, 

a result not achieved when assimilating GPP data alone. In addition to emphasizing the value of 

COS fluxes for constraining GPP and LE in LSMs, the assimilation of ecosystem COS flux data also 

offered a revised estimate of the contribution of boreal evergreen needleleaf forests to the global 

atmospheric COS budget. This revision suggests a stronger biospheric COS sink in the Northern 

high latitudes, aligning with the previously identified missing COS sink in this region (Ma et al., 

2021; Remaud et al., 2022). 

Working with COS fluxes in ORCHIDEE also underscored limitations in using this proxy to improve 

the representation of GPP and plant transpiration in LSMs. A key limitation is the current scarcity 

of biospheric COS flux observations at the spatial and temporal scales required to inform LSM 

processes. Exploiting the full potential of COS would be greatly facilitated by establishing a large 

network of in situ COS flux observations, such as FLUXNET for CO2, H2O, and energy fluxes. At 

present, the limited number of sites with ecosystem COS flux observations prevents the calibration 

of parameters for all PFTs represented in LSMs, and typically does not capture a full seasonal cycle. 

Furthermore, conducting biospheric COS flux measurements under conditions that simulate 

future climates, such as elevated CO2 (White et al., 2010), could be valuable for informing 

simulations of GPP and plant transpiration in climate projections. Another important limitation in 

using COS as a proxy for GPP and plant transpiration is the incomplete understanding of the 

mechanisms governing COS surface fluxes. The identification of new contributions to ecosystem 

COS fluxes by experimental studies (Kitz et al., 2024; Belviso et al., 2022a), which are not yet 

accounted for in current LSM representations, adds complexity to modeling ecosystem COS fluxes 

and could complicate efforts to constrain GPP and transpiration using COS flux observations 

alone. One possible solution to address these limitations is adopting a multi-tracer approach.  
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Through this PhD thesis, I extended my work on biospheric COS fluxes to the study of atmospheric 

COS concentrations by contributing to several modeling and experimental studies. In these 

collaborations, ORCHIDEE simulated vegetation COS uptake and soil COS exchanges were used to 

investigate other biospheric COS fluxes not yet included in the model, such as the potential for 

crops to emit COS, relying on local COS concentration measurements in two French 

agroecosystems. Observations of a recent decrease in atmospheric COS concentrations from a tall 

tower in France led to an assessment of how the atmospheric COS trend affects simulated 

ecosystem COS fluxes in ORCHIDEE, highlighting the need to account for variable atmospheric COS 

concentrations in COS flux models implemented in LSMs, as recent studies have shown 

(Kooijmans et al., 2021; Abadie et al., 2022). Then, comparisons between observed and simulated 

atmospheric COS concentrations, following the transport of all surface COS flux components, 

revealed discrepancies in COS anthropogenic emissions over Europe, as estimated by the widely 

used inventory of Zumkehr et al. (2018) (Ma et al., 2021; Remaud et al., 2022; 2023). The transport 

studies involving ORCHIDEE simulated biospheric COS fluxes also provided additional evaluation 

of the simulated ecosystem COS fluxes, identifying potential regional missing COS sinks to address 

the current imbalance in the atmospheric COS budget. This highlighted areas for future 

improvement in surface COS flux estimates, such as the underestimation of the simulated 

biospheric COS uptake in Northern high latitudes. Finally, atmospheric COS and CO2 

concentrations have been used in transport and inversion frameworks to provide insights into two 

critical components of the global CO2 cycle: GPP and respiration. These studies illustrate the 

potential of using COS and CO2 concentration data to constrain these surface fluxes simulated in 

LSMs and to serve as an additional evaluation in model intercomparison exercises. 

 

During the study of COS, I highlighted deficiencies in the representation of GPP and plant 

transpiration under soil moisture stress conditions when examining a drought event at the 

Hyytiälä site. After identifying the current limitations in how vegetation physiological response to 

drought is modeled in ORCHIDEE, I focused on improving the simulation of GPP and plant 

transpiration dynamics under soil moisture stress for the final part of my PhD thesis. This work is 

centered on Europe, which has experienced significant soil moisture stress in recent years (Bastos 

et al., 2020), with the ICOS eddy covariance tower network capturing the effects on CO2 and H2O 

fluxes. I assimilated in situ GPP and LE data from over 40 sites across six different biomes in 

Europe, which showed that the speed of stomatal closure in response to decreasing soil moisture 

can be modeled as a function of the rolling 12-month average of VPD, with PFT-dependent 

parameters. Integrating such a response in LSMs enables to account for the diversity of drought 

responses not just between different PFTs but also within the same PFT under varying 

environmental conditions. I conducted site-scale evaluation under soil moisture stress, which 

revealed that incorporating long-term VPD acclimation in ORCHIDEE improved the simulated GPP 

by 18% (in terms of RMSD reduction) after DA, whereas a response based solely on vegetation type 

showed no improvement. At the European scale, an evaluation with three satellite-based GPP 

products demonstrated a 7% to 9% improvement in simulated GPP over drought-affected areas 

in 2020 using the acclimation-based response, compared to a maximum of 3% improvement with 

the vegetation-type-dependent response. Furthermore, only the model version with long-term 

VPD acclimation improved the simulated LAI across Europe. However, both model versions 
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performed similarly in simulating LE at both site and regional scales, with an 8 to 9% improvement 

at the site level but a slight degradation at the regional scale compared to the prior. Then, I 

performed projections until 2100 under the SSP370 scenario, considering the projected rise in 

global VPD, which showed that the model incorporating VPD acclimation resulted in the lowest 

increasing trend in soil moisture stress, 22% lower than the model relying solely on a vegetation-

type-dependent response. This study underscores the importance of including long-term 

acclimation mechanisms, such as the effect of VPD, in LSMs to improve the accuracy of GPP and 

plant transpiration simulations beyond drought events. It highlights the broader value of 

incorporating acclimation processes into vegetation responses to environmental changes in LSMs 

to improve the reliability of climate projections and potentially mitigate some of the adverse 

effects of climate change. 

 

7.2 Perspectives 

7.2.1 Towards a multiproxy approach 

 

Over the years, numerous methods have been developed to estimate GPP and plant transpiration, 

including relying on various proxy-based approaches (section 1.3). However, as demonstrated in 

this PhD thesis with COS, no single proxy perfectly captures GPP or plant transpiration. Each proxy 

offers distinct advantages, comes with specific limitations and uncertainties, and operates at 

particular temporal and spatial scales. To address the shortcomings inherent in individual proxies, 

a multiproxy approach could be adopted. By combining the strengths of multiple proxies, this 

approach could provide a more robust and comprehensive understanding of ecosystem 

processes.  

 

A multiproxy approach takes advantage of the complementary nature of different proxies, each 

providing unique insights into different aspects of plant function. For example, COS informs on 

stomatal conductance (Seibt et al., 2010; Wehr et al., 2017; Wohlfahrt et al., 2012; Berkelhammer 

et al., 2020), which couples GPP and plant transpiration. In contrast, SIF relates to the light-

dependent phase of photosynthesis (Frankenberg & Berry, 2018) and can provide information on 

photosynthetic efficiency, responding almost instantaneously to changes in the photosynthetic 

machinery (Porcar-Castell et al., 2014). Additionally, the photochemical reflectance index (PRI), 

derived from narrow-band reflectance observations (Gamon et al., 1992), is associated with non-

photochemical quenching (NPQ) - a third energy pathway that competes with photochemistry and 

fluorescence - and has been linked to variations in photosynthetic efficiency (Garbulsky et al., 

2011). In contrast, stable isotopes of water, such as ¹⁸O, offer insights into plant water use sources 

and transpiration rates (Sheshshayee et al., 2005). Moreover, sap flow measurements, including 

those from the SAPFLUXNET database (Poyatos et al., 2021), provide direct information on plant 

water transport, which is closely related to transpiration rates (Flo et al., 2019). Then, high-

frequency vegetation optical depth (VOD) satellite retrievals, such as the X- and Ku-band, are 

sensitive to changes in upper-canopy water content as well as biomass, and can provide insights 

into stomatal regulation on a diurnal timescale (Konings et al., 2021).  
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The complementarity among various proxies can also be leveraged to address different temporal 

and spatial resolutions. Proxies that can be measured from space, such as SIF, PRI, VOD, or 

traditional VIs like NDVI and EVI, provide global coverage (Liao et al., 2023; Garbulsky et al., 2011). 

In contrast, some proxies, such as sap flow and stable isotope measurements, offer detailed 

insights at the leaf or individual tree level (Dai et al., 2023; Poyatos et al., 2021). COS, on the other 

hand, provides information from the leaf level with chamber measurements (Seibt et al., 2010; 

Kooijmans et al., 2019) to the global scale with satellite atmospheric COS concentration retrievals 

from MIPAS (Glatthor et al., 2015). Proxies available at smaller scales typically offer finer temporal 

resolution, with sap flow and chamber or eddy covariance COS measurements that can be 

available at sub-hourly intervals (Poyatos et al., 2021; Seibt et al., 2010; Berkelhammer et al., 2014; 

Commane et al., 2015; Kooijmans et al., 2019; Wehr et al., 2017), whereas satellite-based proxies 

generally provide data at daily or coarser resolutions (Garbulsky et al., 2011). Therefore, combining 

multiple proxies allows for a more detailed and comprehensive spatial and temporal study of GPP 

and plant transpiration. 

Moreover, different proxies exhibit varying sensitivities to environmental factors, making a 

multiproxy approach more robust under diverse environmental conditions. For example, during a 

heatwave in a Mediterranean pine forest, Wohlfahrt et al. (2018) used COS flux measurements to 

show that the early decline in GPP was linked to stomatal limitations, while SIF remained nearly 

constant and did not reflect the GPP variations during this phase. However, the subsequent drop 

in SIF during the peak of the heatwave corresponded with biochemical impairment of 

photosynthesis. Additionally, VOD retrievals can be particularly valuable under drought 

conditions, as they have been found to capture vegetation physiological changes, informing on 

plant water-saving strategies through stomatal regulation (Li et al., 2023). 

Finally, because different proxies are based on distinct measurement techniques, combining them 

can reduce uncertainty in GPP and plant transpiration estimates by minimizing the potential bias 

that could result from relying on a single methodology. 

 

Since GPP and plant transpiration are influenced by a variety of biophysical processes, such as 

stomatal conductance, photosynthetic efficiency, and water transport, all of which are governed 

by multiple environmental factors, adopting a multiproxy approach allows these processes to be 

more comprehensively constrained in LSMs. Given that various proxies respond differently to 

environmental changes, incorporating multiple proxies could enable LSMs to more accurately 

simulate GPP and plant transpiration dynamics under varying climate conditions. Additionally, 

calibrating model parameters through DA that incorporates proxies with varying temporal and 

spatial resolutions can help bridge the gap between short-term and long-term observations, as 

well as between small-scale and large-scale observations. 

For ORCHIDEE, beyond the COS flux models implemented as presented in this work, a 

representation of SIF has also been previously integrated (Bacour et al., 2019). The SIF model in 

ORCHIDEE is currently being revised to differentiate between fluorescence emissions from sunlit 

and shaded leaves (Maignan et al., in prep), and the representation of non-photochemical 

quenching (NPQ) is likewise being updated (Leverne et al., in revision). PRI data could also be used 

to inform the simulated NPQ, which is currently constrained only by measurements representative 

of three PFTs (Bacour et al., 2019). A next step would be to implement an observation operator for 

VOD, potentially linking it to simulated stomatal conductance, or leaf water potential (Liu et al., 

https://paperpile.com/c/YyvwcL/lInn+XiIw+XIFD+ajmW
https://paperpile.com/c/YyvwcL/lInn+XiIw+XIFD+ajmW
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2021) in a model version that incorporates an explicit hydraulic architecture. Integrating all these 

proxy representations in ORCHIDEE paves the way for multiproxy DA, allowing for the optimization 

of a broader range of parameters than what is achievable through the assimilation of a single 

proxy to further constrain the various processes that determine GPP and plant transpiration. 

 

A multiproxy approach presents numerous opportunities for DA to constrain GPP and plant 

transpiration in LSMs. A stepwise approach could be adopted given the high computational cost 

associated with assimilating multiple datastreams (Peylin et al., 2016). In this approach, the 

different proxies would be assimilated sequentially, with information from each step informing 

the next. Specifically, this approach could take advantage of the varying spatial and temporal 

resolutions of the different observational data. Initial steps could focus on assimilating global-scale 

satellite data, such as SIF, VOD, or PRI, to capture a wide range of environmental conditions and 

PFTs by selecting homogeneous pixels around the world. Following this, finer-scale data would be 

assimilated to provide more precise constraints on the processes determining GPP and plant 

transpiration, including regional information from atmospheric COS concentrations and in situ 

measurements such as COS flux data and sap flow data. This hierarchical strategy could help 

assess how each proxy and assimilation step improves the overall model accuracy in simulating 

GPP and plant transpiration. 

Furthermore, in a multiproxy DA approach, considering spatially variable parameters in the 

representations of GPP and plant transpiration, instead of static values, during DA could help 

move beyond the traditional reliance on PFT-based parameterization in LSMs. This approach 

would allow parameters to be optimized to better reflect the influence of local environmental 

conditions. In particular, such optimization could help determine whether certain parameters 

representing plant traits should be redefined as functions that more accurately capture vegetation 

potential to acclimate to varying environmental conditions. This highlights the importance of 

having access to global-scale proxy observation data, such as satellite-based retrievals, as well as 

the need to develop extensive in situ observation networks to provide data across diverse 

ecosystems worldwide. 

 

7.2.2 Integrating optimality principles 

 

DA aims to improve the simulation of GPP and plant transpiration in LSMs by optimizing 

parameters. This approach is increasingly supported by the growing quantity and diversity of 

remote sensing and field observations (Duncanson et al., 2019; Houborg et al., 2015). However, 

another challenge for LSMs is determining whether certain parameters should be assigned values 

that differ only between PFTs or soil texture types for example, or if they should be treated as 

model parameters that optimize plant traits in response to environmental conditions (Fisher et al., 

2020). 

 

Therefore, alternative approaches can be investigated to address parametric uncertainty in LSMs. 

Notably, optimality approaches focus on optimizing a functional relationship that balances the 

costs and benefits for a specific plant trait, as modulated by environmental factors. The underlying 

principle is that evolutionary processes have led to the selection of trait values that maximize 
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survival in given environments. Consequently, optimality approaches offer parameter-sparse 

representations of plant processes and facilitate the modeling of vegetation adjustments to 

environmental changes. Notably, optimization theories can include plant plasticity and acclimation 

to environmental drivers (Joshi et al., 2022).  

 

For instance, optimality principles have been applied to model stomatal conductance, traditionally 

based on the idea that stomata operate to maximize CO2 uptake for photosynthesis while 

minimizing water loss through transpiration (Prentice et al., 2014; Wolf et al., 2016). However, a 

significant challenge with this approach lies in accurately formulating the cost of stomatal opening 

and determining the appropriate constraints to impose (Dewar et al., 2018). To address this, 

various optimization theories have been developed: some balance carbon gain with the risk of 

vascular damage from embolism formation (Sperry et al., 2017), while others balance carbon gain 

against water loss, weighted by canopy hydraulic conductivity (Zhu et al., 2023). These different 

stomatal optimization models consequently predict varying sensitivities of stomatal conductance 

to environmental stresses, such as decreasing soil moisture or increasing VPD (Sabot et al., 2022; 

Zhu et al., 2023). 

 

Overall, these stomatal optimization models offer the advantage of requiring relatively few 

parameters (Dewar et al., 2009) and avoid the need to explicitly prescribe the direct effects of 

environmental factors on stomatal conductance. In contrast, most LSMs rely on empirical 

representations of stomatal behavior (Ball & Berry, 1987; Leuning, 1995) due to the incomplete 

understanding of stomatal regulation needed to implement a mechanistic representation (Wolf et 

al., 2016). By integrating optimality principles, LSMs could more accurately capture the rapid and 

acclimated responses of photosynthesis, plant transpiration, and stomatal conductance, while 

reducing the number of parameters that contribute to uncertainties in climate simulations and 

projections. To further validate the effectiveness of these principles, it would be valuable to 

conduct large-scale assessment of their impact on the simulated GPP and plant transpiration, and 

intercomparisons between different LSMs. Such studies could reveal whether the incorporation 

of optimality principles leads to better agreement in simulated GPP and plant transpiration across 

various models, ultimately improving the predictive capability and reliability of LSMs. 

 

7.2.3 Closing remarks 

 

To conclude, the use of multiple proxies to inform GPP and plant transpiration, even when these 

processes incorporate optimality principles with relatively few parameters, relies heavily on the 

availability of observational data for continuous improvement in process representation, 

parameterization, and evaluation of LSMs. Strengthening collaborations between experimental 

and modeling communities is crucial to effectively use and develop new observational data. For 

example, alongside observational data that inform ecosystem functioning and responses to 

current environmental conditions, experimental efforts like the Free-Air CO2 Enrichment (FACE) 

experiments (Ainsworth et al., 2005) are crucial for understanding ecosystem responses to future 

climate scenarios and for improving climate projections in LSMs. LSMs enable the investigation of 

the impacts of small-scale processes on larger temporal and spatial scales. However, LSMs can 
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also help identify critical data needs and guide future experimental studies by generating new 

hypotheses about ecosystem functioning. Therefore, recognizing and enhancing the continuity 

between experimental and modeling efforts can significantly improve LSMs ability to simulate 

climate and vegetation interactions, ultimately contributing to better ecological and climate-

related decision-making. 

 

During my PhD, I had the opportunity to collaborate with several experts from the experimental 

community to combine modeling and experimental efforts. This experience highlighted the 

importance and advantages of building strong connections between modeling and experimental 

research, which I would like to continue developing in my future research career. 

In addition to these collaborations, my work with the ORCHIDEE LSM over the past few years has 

motivated me to explore other LSMs to better understand the diversity of approaches and 

formalisms used to represent climate and vegetation interactions. In particular, I aim to deepen 

my expertise by working with an LSM that integrates the coupling between the carbon, nitrogen, 

and phosphorus cycles. In the future, I am also interested in conducting coupled simulations with 

an atmospheric circulation model to better account for land-atmosphere interactions and climate 

feedback mechanisms.  
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9 APPENDIX 

9.1 Carbonyl sulfide: comparing a mechanistic representation of 

the vegetation uptake in a land surface model and the leaf 

relative uptake approach 
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9.2 Carbonyl sulfide (COS) emissions in two agroecosystems in 

central France 
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Abstract  

 

Vegetation carbon uptake through photosynthesis (referred to as Gross Primary Production, GPP) 

is the most uncertain flux of the carbon cycle. Simulation of GPP and the associated ecosystem 

respiration flux (TER) by global land surface models (LSMs) still differ substantially between models, 

hampering robust prediction of the terrestrial carbon budget. Reducing GPP uncertainty is thus a 

key challenge of the climate modeling community. Recently, carbonyl sulfide (COS) has been 

proposed as a new tracer to constrain GPP at large spatial scales. COS is absorbed by plants like 

CO2, following the same diffusion pathway but there is no emission flux like plant respiration for 

CO2. In this study, we propose to use the atmospheric measurements of COS and CO2 to provide 

new constraints on both GPP and TER of global LSMs. Specifically, we evaluate model simulations 

from three ensembles, the last two climate modeling intercomparison projects CMIP5 and CMIP6 

ensembles and the TRENDY-v7 LSM intercomparison used for the Global Carbon Budget (GCB). For 

each model, COS plant uptake is estimated using the Leaf Relative Uptake (LRU) empirical 

relationship, which links COS to CO2 leaf uptake, with CO2 uptake represented by the simulated 

GPP. The LMDZ transport model is used to simulate atmospheric concentrations derived from 

surface fluxes. We focus the evaluation on the mean seasonal cycle of GPP and TER using the mean 

seasonal cycle of atmospheric COS and CO2 concentrations at two stations of the Northern 

hemisphere, Mauna Loa (MLO) and Alert (ALT). The evaluation of the simulated COS and CO2 

concentrations allows us to identify specific biases in the simulated GPP seasonal cycle amplitude 

of individual LSMs from the three ensembles. The CMIP5 ensemble leads to a large spread of the 

seasonal amplitude at both MLO and ALT stations that includes the observation but with clear 

model outliers (either too low or too large amplitude). The spread of the amplitude is largely 

reduced in the CMIP6 ensemble, indicating substantial improvements of the modeled GPP 

compared to CMIP5. Despite using similar climate forcing, the LSMs of the TRENDY-v7 collection 

show also a large amplitude spread at MLO and ALT, revealing specific model biases for temperate 

and high latitude ecosystems. In addition, the analysis of the phase of the mean COS and CO2 

concentration seasonal cycles highlights phase issues with respect to GPP and/or TER for specific 

models of each ensemble. This study demonstrates the potential of combining atmospheric COS 

and CO2 concentration measurements to evaluate GPP and TER simulated by LSMs. The proposed 
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diagnostics are however still dependent on the overall COS flux set up, not only the LRU values 

linking plant COS uptake to GPP, but also the soil COS uptake and the ocean source. Further 

quantifying the seasonality of these fluxes will help refine the proposed diagnostics.  

 

Key words: COS, GPP, CO2  

 

 

1. Introduction  

 

Projections of terrestrial vegetation functioning in response to climate changes (precipitation, 

temperature, light and humidity), atmospheric CO2 increase and nutrients availability and its 

capacity to mitigate climate change heavily rely on our ability to accurately represent vegetation 

carbon exchanges in land surface models (LSMs) (Anav et al., 2015). Although vegetation carbon 

uptake through photosynthesis, known as gross primary production (GPP), is the largest flux in the 

terrestrial carbon cycle over the globe, it is also the most uncertain (Friedlingstein et al., 2023). To 

quantify GPP at large scales (Beer et al., 2010), identify long-term trends (Sitch et al., 2008, 2024), 

and study the drivers of changes in plant carbon fluxes (Sitch et al., 2015), various LSMs have been 

developed by the land surface modeling community, following similar principles but differing in 

the implementation of the different processes regulating the water, carbon, and energy transfers 

in the soil - plant - atmosphere continuum. Although these models are usually calibrated using 

different observational datasets related to either plant physiological states or water, carbon and 

energy fluxes (i.e., eddy-covariance measurements), large differences exist between the simulated 

gross and net carbon fluxes as well as the simulated carbon stocks (both spatially and temporally; 

Anav et al., 2015). These differences can be seen as uncertainties arising from the model structure 

related to process representation, the parameter values used in these models (Zaehle et al., 2005), 

and the uncertainty in the data used to drive the models (Wu et al., 2017).  

For over 25 years, intercomparison exercises between Earth System Models (ESMs) including a LSM 

as the surface component, have been conducted to compare and evaluate various climate-related 

model outputs (Eyring et al., 2016; Taylor et al., 2012; Meehl et al., 2000), provide climate 

projections, and contribute to the Intergovernmental Panel on Climate Change (IPCC) reports. 

These regular intercomparison experiments allow for the assessment of LSM performances 

compared to previous versions and other new models. For instance, GPP was found to be 

overestimated in the models included in the Coupled Model Intercomparison Project Phase 5 

(CMIP5) (Anav et al., 2013). Gier et al. (2024) found that the issue of overestimating GPP in CMIP5 

was mostly addressed in CMIP6 for models with an interactive nitrogen cycle, but persisted in 

models that lacked this feature. In addition, most LSMs participate each year in the global carbon 

budget (GCB; Friedlingstein et al., 2023) through the TRENDY intercomparison (Trend in the Land 

Carbon Cycle). Despite similar climates, land use and nutrient forcings, there is still a large spread 

in terms of gross carbon fluxes (Sitch et al., 2024). For temperate and high latitude ecosystems 

differences occur primarily on the amplitude of the seasonal cycle while for tropical ecosystems 

phase differences dominate.  

Accurately simulating plant GPP and plant respiration fluxes in LSMs is challenging due to the lack 

of direct measurements beyond the leaf scale (Damm et al., 2010). The net ecosystem carbon 

exchange includes contributions from both vegetation uptake and soil and vegetation respiration 

(terrestrial ecosystem respiration, TER). Consequently, partitioning these fluxes at the ecosystem 

scale depends on models that incorporate various assumptions about the drivers of these gross 

fluxes and uncertainties (Tramontana et al., 2020). Despite the emergence of several proxies to 

constrain vegetation activity, such as the near-infrared reflectance of vegetation (Badgley et al., 

2017), the normalized difference vegetation index (Bhandari et al., 2012), or solar-induced 

fluorescence (Berry et al., 2018), LSMs exhibit significant differences in their simulated carbon 

https://paperpile.com/c/YyvwcL/sAA1
https://paperpile.com/c/YyvwcL/RDun
https://paperpile.com/c/YyvwcL/jIjC
https://paperpile.com/c/YyvwcL/bMQ7
https://paperpile.com/c/YyvwcL/aR2R
https://paperpile.com/c/YyvwcL/sAA1
https://paperpile.com/c/YyvwcL/iMzk
https://paperpile.com/c/YyvwcL/Dd44
https://paperpile.com/c/YyvwcL/lKX5+nC8F
https://paperpile.com/c/YyvwcL/t9HT
https://paperpile.com/c/YyvwcL/iSYo
https://paperpile.com/c/YyvwcL/RDun
https://paperpile.com/c/YyvwcL/FOdb
https://paperpile.com/c/YyvwcL/y7Jx
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https://paperpile.com/c/YyvwcL/lI8o
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fluxes, which can be of the same order of magnitude as the range of estimates from observational 

data (Seiler et al., 2022).  

In the last decade, carbonyl sulfide (COS), a trace gas in the atmosphere that can be measured at 

ground stations (Montzka et al., 2007), has sparked increasing interest for informing GPP and 

stomatal conductance in LSMs (Abadie et al., 2023; Berry et al., 2013; Cho et al., 2023; Kooijmans 

et al., 2021; Maignan et al., 2021; Remaud et al., 2022; Chen et al., 2023; Zhu et al., 2024a, 2024b). 

COS exhibits a seasonal cycle of atmospheric concentrations relatively similar to that of CO2, with 

a drawdown in spring and summer in the Northern hemisphere due to vegetation uptake 

(although with some lag), the primary land sink for both gases (Montzka et al., 2007; Whelan et al., 

2018). Indeed, both COS and CO2 are absorbed by plant leaves through a common diffusion 

pathway. However, COS benefits from the absence of a return flux analogous to that of plant 

respiration for CO2 (Stimler et al., 2010). Recently, several studies have used biospheric COS flux 

measurements to directly constrain GPP-related parameters in LSMs through data assimilation 

(Abadie et al., 2023; Cho et al., 2023; Chen et al. 2023; Zhu et al., 2024a, 2024b). Ecosystem COS 

flux observations provide valuable information on GPP at the ecosystem scale, as these fluxes are 

predominantly influenced by vegetation COS uptake (Commane et al., 2015). However, such 

observations are limited to a few sites and rarely span multiple years (Berkelhammer et al., 2014; 

Commane et al., 2015; Kooijmans et al., 2019; Wehr et al., 2017).  

In contrast, atmospheric COS concentrations have been recorded at numerous stations since 2000 

(Montzka et al., 2007). Consequently, previous studies have used temporal and spatial gradients of 

COS concentration measurements to evaluate and reduce uncertainty in the components of the 

global COS budget (Remaud et al., 2023, Berry et al., 2013; Kettle et al., 2002; Suntharalingam et 

al., 2008), aiming to exploit COS data to constrain GPP. Launois et al., (2015) used atmospheric COS 

data to assess the annual, seasonal, and latitudinal variations of GPP from three LSMs (LPJ, CLM4 

and ORCHIDEE), with a first attempt to scale the different COS flux components including the GPP-

induced COS uptake. More recently, atmospheric inversion studies have utilized atmospheric COS 

concentration measurements to optimize the spatial and temporal gradients of COS surface fluxes 

(Ma et al., 2021) and constrain simulated GPP and respiration fluxes from LSMs ( Remaud et al., 

2022).  

In this study, we aim to utilize the dual information provided by the temporal gradients of 

atmospheric CO2 concentrations, indicative of both GPP and respiration fluxes, while using 

atmospheric COS concentrations to provide a more direct constraint on GPP. The link between the 

surface fluxes and the atmospheric concentrations for CO2 and COS will be made with the 

atmospheric transport model, LMDz (Hourdin et al., 2006). Hence, the joint analysis of COS and 

CO2 concentrations will intend to identify potential biases in GPP and/or TER fluxes simulated by 

LSMs from three model intercomparison ensembles (CMIP5, CMIP6 and a version of TRENDY). The 

proposed framework focuses on the mean seasonal cycle with the objective to identify potential 

seasonal amplitude and phase biases of the individual models, while also evaluating systematic 

biases within and between the three ensembles.  

The first section outlines our approach to simulate atmospheric COS and CO2 concentrations from 

the various surface flux components for each model of the three intercomparison experiments, 

alongside a description of the observed COS and CO2 concentrations used for the evaluation. We 

then detail the framework behind the joint analysis of COS and CO2 concentrations to detect 

potential biases in the seasonal amplitude and/or phase of simulated GPP and respiration fluxes. 

The results are then detailed for two atmospheric stations and the three model ensembles, 

including sensitivity analysis of the results to various choices for the COS fluxes set up. Finally, we 

discuss the overall benefit of atmospheric COS concentrations in evaluating simulated GPP and 

respiration in LSMs, along with the limitations and anticipated improvements for future model 

evaluations using this framework.  

 

 

https://paperpile.com/c/YyvwcL/wXsL
https://paperpile.com/c/YyvwcL/YImy
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2. Observations, models and methodology  

 

2.1. Atmospheric measurements of COS and CO2  

 

The atmospheric COS and CO2 concentration measurements are taken from the National Oceanic 

and Atmospheric Administration Earth System Research Laboratory (NOAA/ESRL). COS pair flask 

samples have been collected one to five times a month since 2000 between 11 and 17h local time 

and analyzed using gas chromatography and mass spectrometry detection at the NOAA/GML’s 

Boulder laboratories. The maximum difference allowed between the pair flasks is 6.3 ppt to retain 

COS measurements. The atmospheric COS concentration measurements can be downloaded at 

ftp://ftp.cmdl.noaa.gov/hats/carbonyl_sulfide/ (last access: 7 February 2022) (extension of the data 

first published in Montzka et al., 2007) and the atmospheric CO2 concentration data come from the 

NOAA’s GlobalView Plus Observation Package (ObsPack; Cooperative Global Atmospheric Data 

Integration Project, 2018). 

We have used 10 stations with available COS and CO2 measurements (Table 1) but we mainly focus 

on 2 stations in the core of the manuscript: Mauna Loa (MLO) situated in the Hawaiian region and 

Alert (ALT) in Canada. While MLO represents the background atmospheric concentrations of the 

whole Northern hemisphere, ALT represents more specifically the influence of Northern high 

latitude ecosystems. Note that both MLO and ALT stations are located relatively far from human 

influences. Therefore, their seasonal CO2 and COS cycles are expected to undergo fewer 

anthropogenic contributions. The results for the other stations are provided in the Annexes.  

 

Table 1: List of air sampling stations selected for the joint analysis of COS and CO2 data. The two 

stations of interest for this study (MLO and ALT) are in bold. 

 

Code Stations Coordinates Elevation above 

sea level (m) 

SPO South Pole, Antarctica (United States) 90.0°S, 24.8°E 2810 

CGO Kennaook / Cape Grim, Australia 40.68°S, 144.69°E 164 

SMO Tutuila, American Samoa 14.25°S, 170.56°W 77 

MLO Mauna Loa, United States 19.54°N, 155.58°W 3397 

KUM Cape Kumukahi, United States 19.74°N, 155.01°W 3 

NWR Niwot Ridge, United States 40.04°N, 105.54°W 3475 

LEF Wisconsin, United States 45.95°N, 90.28°W 868 

MHD Mace Head, Ireland 53.33°N, 9.9°W 18 

BRW Utqiagvik (formerly Barrow), United States 71.32°N, 155.61°W 8 

ALT Alert, Canada 82.45°N, 62.51°W 195 

 

2.2. Land surface model simulations 

 

For the COS and CO2 analysis, we are using simulated GPP and net ecosystem productivity (NEE) 

fluxes from process-based global land surface models. Three ensembles of simulations 

https://paperpile.com/c/YyvwcL/YImy
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corresponding to three different model intercomparison projects (MIPs) are used: the Coupled 

Model Intercomparison Projects Phase 5 (CMIP5,  (Taylor et al., 2012)) with 24 models and Phase 6 

(CMIP6, (Eyring et al., 2016)) with 25 models, and the Trend in the Land Carbon Cycle Project Version 

7 (TRENDY-v7; Le Quéré et al., 2018) with 15 models. The complete list of the models for each 

ensemble is reported in the Appendix, Table A1.  

 

CMIP5 and CMIP6 simulations: 

We used the simulated land carbon fluxes of the historical climate simulations made with different 

Earth System Models (ESMs) that were used in these two exercises (2000 - 2005 for CMIP5 and 

2000 - 2014 for CMIP6). The different model simulations thus largely differ in terms of climate 

forcing that is seen by the land surface component of each ESM to compute the gross and net 

carbon fluxes. Note that several variants exist for a given ESM, mainly with differences linked to 

the spatial resolution of the main model components (i.e., Ocean, Atmosphere) and that several 

ESMs use the same land surface model, although with different atmosphere or ocean components.   

 

TRENDY-v7 simulations: 

The TRENDY simulations are performed each year by most global LSMs in order to contribute to 

the Global Carbon Budget (GCB) synthesis of the Global Carbon Project (GCP). We have used the 

version v7 with flux simulations covering the period 1960 - 2017 (see Le Quéré et al., 2018); this 

version corresponds approximately to the LSMs version that were used in the CMIP6 exercise. 

Contrary to CMIP simulations, the TRENDY experiment uses a prescribed climate forcing for all land 

surface models: the 6-hourly climate reanalysis, JRA-55, with a monthly bias correction based on 

the Climate Research Unit (CRU) data (Harris et al., 2019). Like for the CMIP simulations, land cover 

changes make use of the HYDE land-use change data set (Klein Goldewijk et al., 2017), which 

provides annual half-degree fractional data on cropland and pasture.   

From all model simulations, we extracted the monthly mean GPP and NBP to simulate the 

atmospheric CO2  and COS concentrations as described in the following sections. All fluxes have 

been re-gridded from the native resolution (see Appendix, Table A1) to the spatial resolution of the 

atmospheric transport model (see below). 

 

2.3. Modeled COS flux components 

 

The modeled COS fluxes considered in this study are vegetation uptake, exchanges by oxic soils 

that can be both uptake or emission, anoxic soil production, oceanic emissions, biomass burning 

emissions, anthropogenic sources, and oxidation by OH in the troposphere. COS photolysis in the 

stratosphere is neglected, which would account for -50 ⨦ 15 GgS/y (Whelan et al., 2018). Emissions 

of COS from volcanoes are also neglected as they are largely dominated by eruptive and post-

eruptive emissions (Belviso et al., 1986; Whelan et al., 2018), the intermittent nature of which 

makes the estimation highly uncertain. 

 

2.3.1. Vegetation COS uptake  

 

Plant uptake is the largest COS sink (Asaf et al., 2013; Berry et al., 2013; Campbell et al., 2008; 

Montzka et al., 2007). Inside the leaf, COS follows the same diffusional pathway as CO2 from the 

ambient air to the chloroplast, where it is irreversibly hydrolysed by the carbonic anhydrase (CA) 

enzyme following the exergonic (spontaneous) reaction: COS + H2O → CO2 + H2S (Protoschill-Krebs 

et al., 2016; Stimler et al., 2010). 

A mechanistic model of vegetation COS uptake has been developed by Berry et al. (2013) to 

represent COS diffusion and hydrolysis inside the leaves. This mechanistic approach has only been 

implemented in a few LSMs for now, as in SiB (Berry et al., 2013; Kooijmans et al., 2021) and 

ORCHIDEE (Maignan et al., 2021). Therefore, in this study we use an empirical concept, the Leaf 

https://paperpile.com/c/YyvwcL/lKX5
https://paperpile.com/c/YyvwcL/nC8F
https://paperpile.com/c/YyvwcL/rPfH
https://paperpile.com/c/YyvwcL/rPfH+8qD2
https://paperpile.com/c/YyvwcL/YImy+wBVl+FMut+LqmE
https://paperpile.com/c/YyvwcL/YImy+wBVl+FMut+LqmE
https://paperpile.com/c/YyvwcL/w6Ej+hMjd
https://paperpile.com/c/YyvwcL/w6Ej+hMjd
https://paperpile.com/c/YyvwcL/FMut
https://paperpile.com/c/YyvwcL/HgNq+FMut
https://paperpile.com/c/YyvwcL/AQnm
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Relative Uptake (LRU) (Sandoval-Soto et al., 2005), to compute vegetation COS uptake based on 

GPP (µmol COS/m2/s) simulated by each model, 

 

𝐹𝐶𝑂𝑆,𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐿𝑅𝑈 ⋅ 𝐺𝑃𝑃 ⋅  
[𝐶𝑂𝑆]

[𝐶𝑂2]
                                                                                               (1)  

 

where 𝐹𝐶𝑂𝑆,𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛  is COS vegetation uptake (pmol COS/m2/s) and [𝐶𝑂𝑆] and [𝐶𝑂2] are the 

atmospheric mixing ratios of COS (ppt) and CO2 (ppm). We use hemispheric mean mixing ratios 

estimated with weighted monthly means from NOAA sampling stations for [𝐶𝑂𝑆], and a global 

mean mixing ratio for [𝐶𝑂2]. 

A constant (in time) LRU value is usually defined for each vegetation type (Maignan et al., 2021; 

Seibt et al., 2010; Whelan et al., 2018). Maignan et al. (2021) compared the use of the LRU empirical 

approach and the mechanistic vegetation COS uptake model from Berry et al. (2013) using the 

ORCHIDEE LSM and the LMDz atmospheric transport model. Their study shows that the two 

approaches give similar results in terms of simulated atmospheric COS concentrations when 

transporting monthly mean vegetation COS fluxes obtained with the empirical or the mechanistic 

approach. 

Several sets of LRU value per vegetation type have been estimated experimentally (Seibt et al., 2010; 

Whelan et al., 2018). In this study, we aim at testing the sensitivity of the simulated atmospheric 

COS concentrations to different sets of LRU values. First, we use as our reference the LRU values 

from Seibt et al., (2010) (LRUref), estimated for various plant types assuming that the internal 

conductance is an intermediate limitation in the COS diffusional pathway (the stomatal to 

mesophyll conductances ratio equals to 0.1). In addition, we use the LRU set from Whelan et al. 

(2018) that defines one LRU value for all C3 plant types and one for all C4 plant types (LRUWhelan). 

Finally, we consider a set of LRU values computed from the ORCHIDEE LSM as described in Maignan 

et al., (2021) (LRUORC). We define the different vegetation categories using the 13 plant functional 

types described in Table 7 of Poulter et al., (2011). Then, we assign a LRU value per PFT for each 

LRU set as presented in Table 2. Note that the values of LRUWhelan and LRUORC are both lower than 

LRUref, by 30% for LRUWhelan and 40% for LRUORC on average across all PFTs. Considering lower sets 

of LRU values reduces vegetation COS uptake according to equation 1, as presented in Table 3 with 

a mean vegetation COS sink ranging from -1324 to -1070 GgS/y using LRUref, compared to estimates 

between -757 and -615 GgS/y for LRUWhelan and between -709 and -573 GgS/y for LRUORC across all 

model experiments.  

 

  

https://paperpile.com/c/YyvwcL/FYnB
https://paperpile.com/c/YyvwcL/vVJ5+AQnm+rPfH
https://paperpile.com/c/YyvwcL/vVJ5+AQnm+rPfH
https://paperpile.com/c/YyvwcL/AQnm
https://paperpile.com/c/YyvwcL/FMut
https://paperpile.com/c/YyvwcL/rPfH+vVJ5
https://paperpile.com/c/YyvwcL/rPfH+vVJ5
https://paperpile.com/c/YyvwcL/vVJ5
https://paperpile.com/c/YyvwcL/rPfH
https://paperpile.com/c/YyvwcL/rPfH
https://paperpile.com/c/YyvwcL/AQnm
https://paperpile.com/c/YyvwcL/AQnm
https://paperpile.com/c/YyvwcL/hasF


 

280 

 

Table 2: Sets of LRU per PFT tested in this study. 

 

PFTs Seibt Ref: 

LRUref 

Whelan: 

LRUWhelan 

ORCHIDEE: 

LRUORC * 

1 Tropical Evergreen 3.09 1.68 1.79 

2 Tropical Raingreen 3.38 1.68 1.69 

3 Temperate Needleleaf Evergreen 1.89 1.68 1.41 

4 Temperate Broadleaf Evergreen 3.60 1.68 1.11 

5 Temperate Broadleaf Summergreen 3.60 1.68 1.40 

6 Boreal Needleleaf Evergreen 1.89 1.68 0.97 

7 Boreal Needleleaf Deciduous 1.89 1.68 0.92 

8 Boreal Broadleaf Summergreen 1.94 1.68 1.07 

9 Natural Grassland (C3) 2.53 1.68 1.19 

10 Natural Grassland (C4) 2.53 1.21 1.33 

11 Managed Grassland (C3) 2.26 1.68 1.38 

12 Managed Grassland (C4) 2.26 1.21 1.59 

13 Non-vegetated (Barren, Water, Urban) 0.00 0.00 0.00 

* The LRU values obtained with the ORCHIDEE LSM differ from the ones presented in (Maignan et al., 

2021) as they are computed using 3-hourly variable atmospheric COS and CO2 concentrations in this 

study, while Maignan et al. (2021) used a constant value of 500 ppt for COS and monthly means for CO2. 

 

2.3.2. Soil COS exchanges  

 
At the global scale, soils have been estimated to be a net COS sink, with a budget ranging from −30 to 

−409 GgS yr−1 (Abadie et al., 2022; Berry et al., 2013; Kettle et al., 2002; Kooijmans et al., 2021; 

Launois et al., 2015). COS can be both taken up or emitted by oxic soils, whereas it was found to be 

only emitted by anoxic soils (Whelan et al., 2018). In oxic soils, COS can diffuse from the atmosphere 

into the soil matrix and be hydrolyzed mainly by CA contained in soil microorganisms (Smith et al., 

1999), and be produced through thermal or photo degradation processes (Whelan et al., 2018). On 

the other hand, COS production by anoxic soils has been related to the activity of sulfate reduction 

metabolisms (Whelan et al., 2013).  

Several empirical (Berry et al., 2013; Launois et al., 2015) and mechanistic (Ogée et al., 2016; Sun et 

al., 2015) models of soil COS exchanges have been developed and implemented in LSMs (Abadie et 

al., 2022; Berry et al., 2013; Kooijmans et al., 2021; Launois et al., 2015). In this study, we use a 

mechanistic representation of soil COS fluxes (our reference) and test an empirical approach to 

evaluate the sensitivity of simulated atmospheric COS concentrations to soil COS flux. The 

mechanistic approach is based on the Ogée et al., (2016) model implemented in ORCHIDEE as 

described in Abadie et al., (2022). It resolves COS diffusion into the soil matrix, abiotic and biotic 

COS hydrolysis, and COS production by oxic soils (Ogée et al., 2016). Anoxic soil grid cells are 

https://paperpile.com/c/YyvwcL/AQnm
https://paperpile.com/c/YyvwcL/AQnm
https://paperpile.com/c/YyvwcL/6eD1+FMut+HgNq+6E3l+F50W
https://paperpile.com/c/YyvwcL/6eD1+FMut+HgNq+6E3l+F50W
https://paperpile.com/c/YyvwcL/rPfH
https://paperpile.com/c/YyvwcL/UJ4V
https://paperpile.com/c/YyvwcL/UJ4V
https://paperpile.com/c/YyvwcL/rPfH
https://paperpile.com/c/YyvwcL/01lQ
https://paperpile.com/c/YyvwcL/FMut+6E3l
https://paperpile.com/c/YyvwcL/41Tc+sABL
https://paperpile.com/c/YyvwcL/41Tc+sABL
https://paperpile.com/c/YyvwcL/6E3l+F50W+FMut+HgNq
https://paperpile.com/c/YyvwcL/6E3l+F50W+FMut+HgNq
https://paperpile.com/c/YyvwcL/41Tc
https://paperpile.com/c/YyvwcL/F50W
https://paperpile.com/c/YyvwcL/41Tc
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represented using a map of wetlands from Tootchi et al., (2019), and anoxic soil COS flux is 

expressed as a function of soil temperature following Ogée et al., (2016). The more empirical 

approach is based on a relationship between H2 deposition and soil COS uptake developed by 

Launois et al., (2015). A distinction is also made for anoxic soils, which are represented by a map of 

seasonal methane emissions from Wania et al., (2010) with anoxic soil COS fluxes derived from 

Whelan et al. (2013). 

 

2.3.3. Ocean COS emissions 

 

The ocean is a major source of COS with a global contribution estimated between 120 and 600 GgS 

yr−1 (Lennartz et al., 2020). COS can be directly emitted by the ocean or indirectly emitted through 

atmospheric oxidation of dimethyl sulfide (DMS) and carbon disulfide (CS2) produced in seawater. 

Large uncertainties remain on oceanic COS production with previous inversion studies supporting 

an oceanic missing source (Berry et al., 2013; Kuai et al., 2015; Launois et al., 2015; Suntharalingam 

et al., 2008). Top-down studies also lead to higher COS emissions from the ocean, estimated 

between 400 and 800 GgS yr−1 (Kuai et al., 2015; Remaud et al., 2022). 

In this study, we test two oceanic COS flux estimates to evaluate the impact of ocean COS flux 

representation on simulated atmospheric COS concentrations. We first use the optimized ocean 

COS fluxes computed with the atmospheric inversion system described in Remaud et al., (2022) as 

our reference. In this inversion study, Remaud et al. (2022) assimilated both COS and CO2 

concentration measurements using the LMDz atmospheric transport model, aiming at better 

constraining GPP. The optimization led to an optimized ocean COS budget of 526 GgS yr−1 with the 

largest emissions located in the tropics. As a second ocean COS estimate, we consider the direct 

oceanic COS emissions and indirect emissions from CS2 estimated by Lennartz et al., (2017, 2020), 

with indirect emissions from DMS simulated by the NEMO-PISCES model as described in Launois et 

al. (2015a).  

 

2.3.4. Anthropogenic COS emissions 

 

A second major source of COS comes from anthropogenic activities. Anthropogenic emissions 

include direct COS emissions and indirect emissions from CS2 oxidation in the atmosphere. The 

largest anthropogenic COS production is related to the rayon (staple and yarn) industry, followed 

by residential and industrial coal, pigments, aluminum melting, agricultural chemicals and tire wear 

(Campbell et al., 2015). The recent gridded inventory by Zumkehr et al., (2018) has highlighted an 

underestimation of anthropogenic COS emissions in the previous estimate from Kettle et al., (2002), 

with a revised budget ranging from 223 to 586 GgS yr−1. We choose the Zumkehr et al., (2018) 

budget that provides emissions for the period 1980–2012. The largest emissions are concentrated 

in Asia and 45% of the global source is attributed to China. Note however that there are still large 

uncertainties associated with anthropogenic emissions, as pointed out for Europe in Belviso et al. 

(2023). Note also that soil COS emissions from managed lands are not included in the 

anthropogenic COS source inventory as they are taken into account in the soil COS exchanges.  

 

2.3.5. Biomass burning COS emissions 

 

The last source of COS considered in this study is biomass burning, which accounts for over 10% of 

COS global budget with 50 to 100 GgS yr−1 (Glatthor et al., 2015; Stinecipher et al., 2019). We use 

the recent inventory of Stinecipher et al., (2019) that is based on a global map of fire emissions 

provided by the Global Fire Emissions Database (GFED). GFED considers six biomass burning 

categories, which are savanna and grassland, boreal forests, temperate forests, tropical 

https://paperpile.com/c/YyvwcL/ycGI
https://paperpile.com/c/YyvwcL/41Tc
https://paperpile.com/c/YyvwcL/6E3l
https://paperpile.com/c/YyvwcL/Pow9
https://paperpile.com/c/YyvwcL/01lQ
https://paperpile.com/c/YyvwcL/gB6E
https://paperpile.com/c/YyvwcL/tTBK+FMut+sQqi+6E3l
https://paperpile.com/c/YyvwcL/tTBK+FMut+sQqi+6E3l
https://paperpile.com/c/YyvwcL/8PTH+sQqi
https://paperpile.com/c/YyvwcL/8PTH
https://paperpile.com/c/YyvwcL/8PTH
https://paperpile.com/c/YyvwcL/NLtg+gB6E
https://paperpile.com/c/YyvwcL/6E3l
https://paperpile.com/c/YyvwcL/6E3l
https://paperpile.com/c/YyvwcL/XkDO
https://paperpile.com/c/YyvwcL/XkDO
https://paperpile.com/c/YyvwcL/6eD1
https://paperpile.com/c/YyvwcL/XkDO
https://paperpile.com/c/YyvwcL/SlmX+foCy
https://paperpile.com/c/YyvwcL/foCy
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deforestation and degradation, peatland fires, and agricultural waste burning. An emission factor 

and an emission ratio for COS is defined for each biomass burning category.  

 

2.4. Modeled CO2 flux components 

 

In order to perform a joint COS - CO2 analysis using the atmospheric data at the 10 selected sites 

(Table 1), we also need to transport the different components of the global atmospheric CO2 

budget. The objective is to use the terrestrial ecosystem fluxes from each LSM simulation and to 

add the other surface flux components, namely the anthropogenic emissions and the ocean fluxes, 

using recent estimates used for the GCP. 

 

Land ecosystem CO2 fluxes: 

For each CMIP5/CMIP6/TRENDY-v7 model simulation, we use the simulated monthly mean NBP. 

Note that NBP corresponds to GPP minus all ecosystem respiration fluxes and that it includes 

potentially additional disturbance fluxes that may be considered in a given model, such as biomass 

burning. In addition, we also use for one model (ORCHIDEE from the TRENDY-v7 ensemble) the GPP 

and respiration fluxes separately, in order to illustrate their individual contribution to the simulated 

CO2 concentration seasonal cycle.  

 

Anthropogenic emissions of CO2: 

We use global fossil fuel emissions based on the GCP's Gridded Fossil Emissions Dataset version 

2021.2 (GCP-GridFEDv2021.2; Jones et al., 2021). GCP-GridFEDv2021.2 scales gridded estimates of 

CO2 emissions from EDGARv4.3.2 (Janssens-Maenhout et al., 2019) within national territories to 

match national emission estimates provided by GCB for the years 1959–2020. 

 

Ocean CO2 fluxes: 

We use the optimized gridded global air-sea fluxes (monthly mean) from the CAMS atmospheric 

CO2 inversion (version v18r2) provided to the 2019 GCB (Friedlingstein et al., 2019). The inversion 

is using the same atmospheric transport model (LMDz) than the one used in this study, although 

based on a more recent model version (V5, Remaud et al., 2018).   

 

2.5. Atmospheric transport model and concentration simulations  

 

We use an atmospheric transport model to simulate the atmospheric CO2 and COS concentrations 

from the different set of fluxes described above. We use the version 3 of the atmospheric circulation 

model of the Laboratoire de Météorologie Dynamique (referred to as LMDZ-v3 (Hourdin and 

Armengaud, 1999) with a horizontal resolution of  3.75° (longitude) x 2.5° (latitude) and 19 sigma-

pressure layers up to 3 hPa. The calculated winds are nudged to the European Centre for 

MediumRange Weather Forecasts (ECMWF) reanalysis, ERA-40, meteorological data (Uppala et al., 

2005) with a relaxation time of 2.5h in order to realistically account for large-scale advection 

(Hourdin et al., 2006). For this study, we use pre-calculated transport fields (as in Peylin et al., 2016) 

that correspond to the sensitivity of the concentration at each atmospheric site to the surface flux 

of each model grid cell (often referred to as influence functions). Such an approach allows to reduce 

the computing time (compared to the use of the full LMDz model), once the influence functions 

have been calculated; the transport is then replaced by a matrix multiplication.  

To simulate the atmospheric CO2 concentrations, we transport the NBP flux of all models of the 

CMIP5, CMIP6 and TRENDY-v7 ensembles, as well as a common air-sea CO2 exchange and fossil 

fuel CO2 emission (see section 2.4). For the COS concentrations, we transport the surface COS fluxes 

described in section 2.3: a vegetation uptake derived from each modeled GPP flux and  common 

soil, biomass burning, anthropogenic and ocean fluxes. The overall procedure is illustrated in Figure 
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1. Monthly atmospheric CO2 and COS concentrations are simulated for 5 years (2005 to 2009) in 

order to compute a mean seasonal cycle, which is the focus of this study.  

 

 
Figure 1: Flowchart of atmospheric CO2 and COS concentration computation from surface CO2 and 

COS fluxes using LMDz transport model. 

 

2.6. Method: joint COS - CO2 analysis and experimental design 

 

2.6.1. Data processing - Inferring model biases from a joint COS and CO2 analysis  

 

As described in the introduction, we focus in this paper on the mean seasonal cycle amplitude and 

phase of COS and CO2 simulated concentrations to highlight possible model-observation misfits 

that could be attributed to biases in GPP or respiration fluxes. In order to compute the mean 

seasonal cycle of simulated and observed concentrations, we use the curve fitting procedure 

developed by Thoning et al. (1989) (CCGVU; 

http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html). This procedure fits to the raw data a 

smoothed-function defined by a second-order polynomial equation (for the growth rate), combined 

with a four-harmonic function (for the annual cycle) and a low-pass filter of the residuals (with a 

cut-off defined at 120 days). The mean seasonal cycle is then defined as the sum of the harmonics 

and the short-term residuals. Figure 2 provides an illustration of the proposed seasonal cycle 

analysis. 

For the amplitude analysis (defined as the maximum minus the minimum of the mean seasonal 

cycle), we normalize the simulated amplitude with the observed one. For each model, if the 

seasonal amplitude of the COS and CO2 concentrations are equal to the observed ones, the model 

will be located on the red cross in Figure 2.a, which represents the non-biased situation. The red 

vertical / horizontal dotted lines are used to distinguish four regions in Figure 2.a, according to the 

observational target. If a model falls into the upper-right / lower-left region in Figure 2.a, it indicates 

that both COS and CO2 seasonal amplitudes are overestimated / underestimated compared to the 

observations, respectively. Since GPP flux directly impacts CO2 and COS simulated concentrations, 

it indicates that GPP likely plays a key role in the model-observation misfit. For instance, increasing 

http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
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(or decreasing) GPP seasonal flux amplitude would increase (or decrease) the atmospheric CO2 

seasonal cycle amplitude but also the COS amplitude given the linear dependency of COS plant 

uptake to GPP (Eq. 1). Therefore, a change in GPP could help to improve both COS and CO2 

simulated seasonal amplitudes. On the contrary, if a model is located into the upper-left / lower-

right box of Figure 2.a, it indicates that the simulated COS amplitude is overestimated / 

underestimated while the simulated CO2 amplitude is underestimated / overestimated compared 

to the observation. These two configurations suggest that a change in the GPP flux only cannot 

improve the simulated COS and CO2 amplitudes simultaneously. In this case, simulated 

concentration biases indicate that the seasonal amplitude and/or phase of both GPP and 

respiration fluxes are likely biased.   

For the phase analysis, we use the correlation between simulated and observed monthly 

concentrations as a proxy for phase biases. Similarly to the amplitude, the non-biased situation for 

COS and CO2 concentrations corresponds to a perfect correlation, as represented by the red cross 

in Figure 2.b. If a model is located along the diagonal axis (red dotted line in fig. 2b) but with low 

correlations, it may indicate the predominance of GPP flux in the simulated COS and CO2 phase 

biases. If a model falls close to the upper horizontal red dotted line, the model phase bias likely 

comes from a respiration bias since the COS correlation tends to support an accurate GPP flux. On 

the contrary, when a model lies close to the vertical red dotted line, it may highlight both GPP and 

respiration phase biases (i.e., a GPP bias for COS phase and a respiration bias to compensate for 

any change in GPP).  

Note that the proposed analysis framework assumes that all the other components of the COS and 

CO2 budgets as well as the transport model are perfect. 

 

 
Figure 2: Schemes of model biases inferred from joint COS and CO2 concentrations analysis with 

a) CO2 vs COS simulated seasonal amplitudes normalized by the observed seasonal amplitudes; 

and b) CO2 vs COS correlations (proxy of the phase) between simulated and observed 

concentrations. In both panels, different regions of the graph indicate model biases from GPP 

and/or respiration flux. 

 

2.6.2. Experimental set-up 

 

As mentioned in section 2.3, we propose to test several variants for different COS flux components 

in order to evaluate the impact of the most uncertain COS components on the simulated 

concentrations. Our reference simulations correspond to the use of LRUref proposed in Seibt et al. 

(2010), the mechanistic soil fluxes and the optimized ocean fluxes. But we also assess two other 

LRU cases, LRUwhelan and LRUORC, and one variant for the soil fluxes and the ocean fluxes (see section 
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2.3). These scenarios and the associated total COS flux are reported in Table 3. Note that for the 

CO2 analysis, we do not test different variants for the ocean and anthropogenic fluxes. 

 

Table 3: COS sinks and sources considered in this study, averaged between 2010 and 2014. The 

COS fluxes selected for the reference scenario to compute atmospheric COS concentrations are 

represented in bold.  

 

COS flux Representation References Budget (GgS/y) 

mean [min,max] 

CMIP5 CMIP6 TRENDY-v7 

Net sinks 

Vegetation 

uptake 

LRU approach 

applied to each 

model GPP 

using: 

LRUref Seibt et al. 

(2010) 

-1324  

[-2312,-982] 

-1070 

[-1342,-710] 

-1206 

[-1517,-984] 

LRUWhelan Whelan et al. 

(2018) 

-757 

 [-1327, -566] 

-615  

[-766,-398] 

-694 

[-867,-573] 

LRUORC Maignan et al. 

(2021) 

updated in 

this study 

-709  

[-1234,-525] 

-573  

[-724,-380] 

-648 

[-817,-520] 

Soil exchanges Mechanistic  Ogée et al. 

(2016); Abadie 

et al. (2022) 

-39 

Proxy-based Launois et al. 

(2015); 

Whelan et al. 

(2013) 

-340 

Oxidation by 

OH in the 

troposphere 

- Whelan et al. 

(2018) 

-100 

Net sources 

Ocean 

emissions 

Optimized 

ocean fluxes  

Remaud et al. 

(2022) 

+483 

Box model for 

COS and CS2, 

NEMO PISCES 

model for DMS 

Lennartz et al. 

(2020); 

Launois et al. 

(2015) 

+311 
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Anthropogenic 

emissions 

Inventory of 

spatially scaled 

sources 

Zumkehr et al. 

(2018) 

+397 

Biomass 

burning 

Inventory using 

CO emissions as 

a reference gas 

Stinecipher et 

al. (2019) 

+53 

Net budget 

Total for the reference scenario -530 -276 -412 

 

3. Results  

 

3.1. Seasonal cycle of atmospheric COS and CO2 concentrations 

 

3.1.1. Contribution of each flux component to the seasonal cycle 

 

Before analyzing the simulated concentrations obtained from the different LSM fluxes (GPP and 

NBP), we first investigate the respective contribution of each flux component for both COS and CO2 

concentrations at two stations of the Northern hemisphere, MLO and ALT, using one model, 

ORCHIDEE, taken from the TRENDY-v7 ensemble. These contributions (see Figure 3, different color 

lines) correspond to the detrended mean seasonal cycle following the procedure described in 

§2.6.1. 

For COS, we should first notice that the net simulated concentration (sum of all components, Figure 

3 - black line) follows relatively closely the observed mean seasonal cycle at the two stations with a 

peak in late spring (May - June) and a minimum in September - October. The contribution from the 

vegetation (i.e., uptake of COS related to GPP) dominates and explains most of the seasonal 

variations of the net concentrations at both MLO and ALT. The other components, ocean, soil, and 

the combined anthropogenic plus biomass burning and OH sink, have a much smaller contribution, 

although not negligible. At MLO, the seasonal amplitude of the vegetation contribution is around 

50 ppt, while it does not exceed 15 ppt for the three other components. At ALT, the vegetation 

contribution rises to nearly 60 ppt while the others contributions remain around 20-30 ppt. In terms 

of phase of the mean seasonal cycle, the vegetation contribution dominates the net signal and 

imposes the overall shape of the seasonal cycle. However, we notice that for instance at MLO the 

simulated net minimum occurs too early in September (compared to an observed minimum in 

November) because of the non-vegetation components and in particular the anthropogenic, 

biomass burning and OH sink contributions.   

For CO2, we also notice that the net simulated mean seasonal cycle is close to the observations at 

both stations. However, in this case the net signal is nearly equally influenced by the concentrations 

resulting from the vegetation uptake of CO2 (GPP) and from the ecosystem respiration flux (release 

of CO2). Both contributions lead to concentration variations in opposite phases with the GPP 

contribution dominating and thus imposing the phase of the net signal. The GPP-induced seasonal 

cycle amplitude is 18 and 40 ppm at MLO and ALT, respectively, while the respiration-induced 

amplitude is 12 and 30 ppm at MLO and ALT, respectively. The contribution from the ocean and 

fossil fluxes to the mean seasonal cycle is much smaller and nearly negligible at these two stations 

(less than 2 ppm), which is not the case for stations closer to large anthropogenic emissions in 

industrial or highly populated areas and in the Southern hemisphere where the ocean flux becomes 

a key component (not shown).  
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Overall, this preliminary analysis reveals the dominant contribution of GPP and its associated COS 

uptake for the seasonal cycle of COS and CO2 atmospheric concentrations. But while for COS GPP 

is the main component of the mean seasonal cycle, for CO2 the contribution of the ecosystem 

respiration is nearly as important, as already highlighted in (Launois et al., 2015). Therefore, this 

joint analysis evidences the potential information brought by atmospheric COS concentrations to 

constrain more specifically the simulated GPP of LSMs.  

 

 

 
Figure 3: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at MLO (top) and ALT (bottom) for the ORCHIDEE model of TRENDY-v7. Color lines 

correspond to the transport of the individual flux components of the COS or CO2 budget. The net 

total considering all components of the COS or CO2 budget is represented in black. For each 

component the detrended mean seasonal cycle has been computed following the method defined 

in § 2.6.1. 

 

3.1.2. Observed and simulated mean seasonal cycle 

 

Mauna Loa station: 

Figure 4 shows the mean seasonal cycle (average over 2010-2014) of modeled and observed 

monthly mean concentrations at the Mauna Loa (MLO) station for COS and CO2 (fig. 3 left and 

right), for the three ensembles of model simulations (24 CMIP5, 25 CMIP6 and 15 TRENDY models). 

Table A1 in the Appendix also provides the COS and CO2 seasonal amplitude and the correlation 

with the observation, for each model. The concentrations were simulated from the GPP for COS 

and the NBP for CO2 of the different models, following the methodology described in section 2, 

using the reference setup (see Table 1).  

For COS, the modeled concentrations qualitatively follow the observations for the mean seasonal 

cycle, as noticed above, with a maximum late spring and a minimum in September - October. The 

amplitude of the mean seasonal cycle varies substantially between the different models of a given 

ensemble (Table A1). For CMIP5 it varies by a factor of three, between 29 ppt (CanESM2) and 94 ppt 

(MRI-ESM1), while the observations have an amplitude of 48 ppt. The range of model amplitudes is 

much more reduced in CMIP6 with amplitudes that are on average slightly lower than the 

observations, between 32 ppt (TaiESM1) and 57 ppt (MPI-ESM1-2LR) with the exception of NorCPM1 

that has a much lower amplitude (21 ppt). For the TRENDY-v7 models, although they use the same 

https://paperpile.com/c/YyvwcL/6E3l
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meteorological forcing, the amplitude also substantially varies, between 30 ppt (ORCHIDEE-CNP) 

and 74 ppt (LPX). The phase of the seasonal cycle shows for the three ensembles a relatively good 

agreement although with a too early summer draw down of the COS concentration at MLO and a 

minimum occurring 1 to 2 months earlier than in the observations. No significant differences in 

terms of phase (measured as the correlation between the models and the observation) occur 

between the 3 ensemble of simulations.  

For CO2, the modeled concentrations show also similar features, with maximum concentrations in 

late spring and minimum concentrations in autumn. Like for COS, the amplitude of the mean 

seasonal cycle substantially varies between the CMIP5 models (Table A1), from 3.1 ppm (INM-CM4) 

to 13 ppm (IPSL-CM5A-LR), while the observed amplitude is 6.8 ppm. As expected the models with 

a low/high COS amplitude also have a low/high CO2 amplitude. For the CMIP6 ensemble, the spread 

is also largely reduced compared to CMIP5 (between 3.2 and 9.0 ppm) with the exception (as for 

COS) of NorCPM1 (2.2 ppm). For the TRENDY-v7 models, the CO2 amplitudes span like for COS also 

a large range, between 1.9 ppm (CABLE-POP) and 7.7 ppm (SDGVM). For the phase of the mean 

seasonal cycle (defined as the correlation with the observations, see Table A1), the spread between 

the different models of each ensemble is relatively large and similar to that for COS.        

Overall, the simulated concentrations at MLO reveal similar skills and biases for the COS and CO2 

mean seasonal cycles simulated by a given model. Given that MLO integrates the signal of the fluxes 

from the whole Northern hemisphere (Buermann et al., 2007), these results point toward specific 

model GPP biases for the Northern hemisphere ecosystem fluxes.   

 

 

 

https://paperpile.com/c/YyvwcL/TnSY
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Figure 4: Detrended mean seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at Mauna Loa station (MLO) for all models of CMIP5, CMIP6 and TRENDY-v7 ensembles. 

The observations are represented by red crosses. The detrended mean seasonal cycles have been 

computed following the method defined in § 2.6.1. 

 

Alert station: 

We performed the same analysis at the Alert station in Canada (ALT) to focus on high latitude 

ecosystem fluxes (see figure 5 and table A1 for the amplitude and phase diagnostics).   

Like for the MLO station, the modeled COS mean seasonal cycles qualitatively follow the 

observations. However, the maximum COS concentration is simulated one month earlier in spring 

for most models compared to the observations, while the minimum concentration is simulated 

around the observed one (September - October). The amplitude of the mean seasonal cycle varies 

drastically between the different models of a given ensemble (Table A1) and more than for the MLO 

station. For CMIP5 it varies by over a factor of four, between 43 ppt (CESM1-Fastchem, CCSM4) and 

195 ppt (IPSL-CM5A-LR), while the observations have an amplitude of 114 ppt. The range of model 

amplitudes is again highly reduced in CMIP6 with amplitudes that are on average lower than the 

observations, between 45 ppt (TaiESM1) and 121 ppt (MPI-ESM1-2LR, MIP-ESM-1-2-Ham) with the 

exception of NorCPM1 (26 ppt) like for MLO. For the TRENDY-v7 models, the amplitude brackets 

the observed amplitude with variations between 68 ppt (ORCHIDEE-CNP) and 157 ppt (LPX). No 

significant differences in terms of correlation between the models and the observation occur 

between the 3 ensemble of simulations.  

For CO2, the modeled mean seasonal cycles at ALT show a larger spread than at MLO for each 

model ensemble with several models having different seasonal variations than the observations.  

The amplitude of the mean seasonal cycles (Table A1) varies more across the CMIP5 models 

(between 9.2 ppm (INM-CM4) and 39.6 ppm (IPSL-CM5A-LR)) than the CMIP6 models (between 8.7 

and 23.7 ppm with the exception, as for COS, of NorCPM1 (3.4 ppm)) and the TRENDY-v7 models 

(between 5.2 and 23.8 ppm). Compared to the MLO station, the spread of the simulated CO2 mean 

seasonal cycles is larger with the timing of maximum or minimum concentrations that can vary by 

more than two months between models.  

Overall, the phase is on average less well captured for CO2 than it is for COS, at both MLO and ALT 

stations. The biases observed for CO2 (amplitude and or phase) correspond to a certain extent to 

similar biases for COS, as expected from the methodology used to derive the COS uptake from the 

vegetation (proportional to the GPP; see method in section 2).   
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Figure 5: Detrended mean seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at Alert station (ALT) for all models of CMIP5, CMIP6 and TRENDY-v7 ensembles. The 

observations are represented by red crosses. The detrended mean seasonal cycles have been 

computed following the method defined in § 2.6.1. 

 

3.2. Joint analysis of COS and CO2 seasonal amplitudes and phases  

 

3.2.1. Simulations with reference scenario 

 

The potential GPP and respiration biases of the CMIP5/6 and TRENDY-v7 models are assessed by 

comparing the amplitude and phase of the normalized simulated CO2 versus COS concentrations 

(see method in section 2.6.1).  
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Figure 6: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes of 

smoothed seasonal concentrations at MLO and ALT for CMIP5, CMIP6 and TRENDY models using 

the reference scenario. The observed amplitude is identified by the red cross.  

 

Figure 6 shows the evaluation of simulated CO2 versus COS concentration seasonal amplitudes at 

MLO and ALT across the three model ensembles, normalized by the observed amplitudes. CMIP5 

models exhibit a positive linear relationship between the normalized simulated CO2 and COS 

concentration seasonal amplitudes at the two stations. This alignment indicates that an 

underestimation or an overestimation of CO2 concentration seasonal amplitudes (compared to the 

observation) is accompanied by a similar deviation for COS. Because the simulated COS 

concentration amplitudes are driven by the amplitude of GPP through the LRU relationship (see 

section 3.1.1 for the contribution of each flux component), this highlights that the main biases arise 

from the simulated GPP. Notably, all CMIP5 models of the IPSL (IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-

CM5B-LR) consistently overestimate both CO2 and COS concentration seasonal amplitudes at the 

two stations, while the CESM1, NorESM1, CCSM4, CanESM2, and inmcm4 models consistently 

underestimate them. Importantly, note however that this positive linear relationship passes 
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through the observational target (red cross), demonstrating that certain models succeed in 

representing NOAA CO2 and COS concentration seasonal amplitudes, with the chosen set up for 

the vegetation COS uptake and the other COS components. Indeed, the seasonal amplitudes of CO2 

and COS concentrations for the MIROC-ESM and HadGEM2 models match the ones of the 

observations, supporting an accurate simulation of the mean seasonal cycle of GPP over the 

Northern hemisphere. Note that one model (MRI-ESM1) diverges from the positive linear 

distribution at MLO in particular, with a normalized COS amplitude significantly too large (1.98) and 

a normalized CO2 amplitude too low (0.75). This suggests a bias in both GPP and respiration fluxes 

as an increase in GPP seasonal amplitude only to better match the observed CO2 concentration 

amplitude would lead to a further degradation of the one of COS. At ALT, the two GFDL models also 

slightly deviate from the linear trend with an overestimation of COS concentration amplitudes but 

not of CO2, possibly highlighting both GPP and respiration biases.  

 

In contrast to CMIP5, CMIP6 models show a more restricted range of normalized seasonal 

amplitudes with reduced values, as explained in the previous section. At ALT station, we still see a 

positive linear distribution between the normalized seasonal amplitudes of CO2 and COS 

concentrations, while at MLO the relationship appears much weaker (partly because of the reduced 

amplitude spread). Notably, no models show a strong overestimation of CO2 or COS concentration 

seasonal amplitudes, except MIROC-ES2L and E3SM-1-1 for CO2 at ALT and MLO, respectively. This 

indicates significant improvements in CMIP6 compared to CMIP5, with respect to large positive GPP 

biases found in CMIP5, as clearly illustrated with the IPSL and MPI-ESM models. On the other hand, 

most CMIP6 models now tend to display an underestimation of both COS and CO2 concentration 

seasonal amplitudes, especially for NorCPM1, TaiESM1, SAM0-UNICON, and ACCES-ESM-1. For 

these models, a GPP seasonal cycle bias could explain the similar underestimation of CO2 and COS 

concentration seasonal amplitudes.  

 

While CMIP6 models show an overall improvement over CMIP5 for both tracers, the TRENDY-v7 

experiment reveals increased model spread around the observation target and a lower correlation 

between the two normalized seasonal amplitudes (especially at ALT), despite being driven by the 

same forcing data. Most TRENDY-v7 models (8 out of 14 at MLO and 10 out of 14 at ALT) 

underestimate both CO2 and COS concentration seasonal amplitudes, as noticed for ORCHIDEE, 

CABLE-POP, JSBACH, or ISAM, likely due to potential low-GPP seasonal amplitude biases for the 

Northern extra tropics ecosystems. Three models noticeably differ with an overestimation of the 

COS normalized seasonal amplitude and an underestimation of the CO2 one, for LPJ at MLO, and 

the opposite pattern for SDGVM and JULES at ALT, highlighting potential biases in both GPP and 

respiration fluxes.  

 

 



 

293 

 

 
Figure 7: Scatter plots of CO2 vs COS phase correlations at MLO and ALT simulated by the CMIP5, 

CMIP6 and TRENDY models. The correlations for each constituent was computed between modeled 

and observed smoothed seasonal concentrations. A correlation of 1 shows a good representation 

of reality. The observed phase is identified by the red cross.  

 

Figure 7 illustrates the evaluation of the phase (i.e., correlation analysis) of the simulated 

concentration mean seasonal cycles for CMIP5/6 and TRENDY-v7 experiments at MLO and ALT. 

CMIP5 models exhibit strong correlations between simulated and observed concentrations for both 

COS and CO2, indicating an accurate representation of the observed mean seasonal cycle phase. 

Notably, excluding the two GFDL models, the lowest correlations stand at 0.86 and 0.80 for CO2 and 

COS, respectively, across the two stations (Table A1). Despite demonstrating relatively high 

correlations for COS at ALT, the two GFDL models show a poor correlation with observed CO2 

concentrations, with values of 0.50 for GFDL-ESM2G and 0.36 for GFDL-ESM2M (Table A1). This low 

performance at ALT is related to a too early decrease of the simulated CO2 concentrations 

compared to NOAA observations, followed by an increase in concentrations during August and 

September not seen in the observations (Figure 5). This discrepancy in the seasonal cycle phase for 
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CO2 concentrations points toward a potential bias in the simulated respiration, given the accurate 

representation of the GPP phase as suggested by the agreement in the COS concentration seasonal 

cycle. 

Compared to CMIP5, CMIP6 models display an overall slightly lower performance in capturing the 

observed CO2 and COS concentration seasonal cycle phases, with correlations deviating further 

from the target (red cross). Therefore, the improvement in simulated seasonal amplitudes (Figure 

6) between CMIP5 and CMIP6 may have been counterbalanced by a slight decline in simulated 

phase accuracy or this may highlight issues with the other flux components. Among CMIP6 models, 

correlation values between simulated and observed CO2 concentrations range between 0.70 and 

0.99, and between 0.72 and 0.98 for COS (Table A1). In particular at MLO, the CESM2 and NorESM 

models exhibit a degradation of both simulated COS and CO2 concentration seasonal cycle phases. 

However, there is a notable improvement in the simulated CO2 concentration seasonal cycle phase 

at ALT for the GFDL model included in the CMIP6 experiment compared to CMIP5. Note that the 

EC-Earth3-Veg models show significantly lower correlations for CO2 than COS concentrations at 

both stations, suggesting potential biases in simulated respiration.  

The correlation distribution among TRENDY-v7 models appears narrower compared to CMIP6, yet 

it remains broader than CMIP5 (if we exclude the two GFDL models), despite all TRENDY-v7 models 

being forced with the same climate data. Excluding ORCHIDEE-CNP at MLO, correlations in the 

TRENDY-v7 experiment range from 0.75 to 0.99 for CO2 concentrations and from 0.81 to 0.98 for 

COS across the two stations (Table A1). The particularly poor performance of ORCHIDEE-CNP in 

simulating CO2 concentration seasonal cycle phase at MLO suggests a respiration bias. Finally, note 

that at MLO in particular, while most CMIP5 and CMIP6 models exhibit slightly lower correlations 

for COS compared to CO2, this contrast is not found in the TRENDY-v7 model ensemble.  
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3.2.2. Sensitivity analysis  

 

Sensitivity to LRU:  

 
 

Figure 8: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes of 

smoothed seasonal concentrations at MLO and ALT for CMIP5 and TRENDY models.  The different 

LRU scenarios are Seibt Reference LRU, ORCHIDEE LRU and Whelan LRU. The observed phase is 

identified by the red cross.  

 

Figure 8 shows the sensitivity of the normalized simulated CO2 and COS concentration seasonal 

amplitudes to the set of LRU values considered to compute vegetation COS flux from GPP, for the 

CMIP5 and TRENDY-v7 experiments at MLO and ALT (see Appendix D for CMIP6). For CMIP5 models, 

using LRUWhelan or LRUORC breaks the strong linear positive relationship between normalized 

simulated CO2 and COS concentration seasonal amplitudes obtained with LRUref at the two stations. 

Furthermore across all CMIP5 and TRENDY-v7 models, using the much lower  LRUWhelan or LRUORC 

values (see Table 2) decreases COS concentration seasonal amplitudes compared to the reference 

case (LRUref); the greatest reduction occurs for models that simulate the strongest CO2 

concentration seasonal amplitude, as expected. Indeed, using lower LRU values results in a reduced 

vegetation COS uptake according to equation 1, and the seasonal amplitude of the vegetation COS 

flux drives primarily the COS concentration seasonal amplitude as illustrated in Figure 3. Therefore 

in both experiments, when using sets of lower LRU values than LRUref, the majority of models now 

underestimate the COS concentration seasonal amplitude, with only 4 models in CMIP5 at the two 

stations and 1 model in TRENDY-v7 at MLO overestimating it. On average across all models, 

adopting lower LRU values than the reference fails to replicate the NOAA COS seasonal amplitude, 

with the lowest values from LRUORC resulting in the largest deviation from the target. This 
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underestimation of COS concentration seasonal amplitude with LRUWhelan and LRUORC would 

support the use of higher LRU values as in LRUref to compute vegetation COS uptake from GPP, if 

we assume that the other COS components are well simulated).  

 

Sensitivity to soil fluxes: 

 
Figure 9: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes of 

smoothed seasonal concentrations at ALT and MLO for CMIP5 and TRENDY models. The simulated 

COS concentrations use either the mechanistic model or the proxy-based approach for soil COS 

fluxes. The observed amplitude is identified by the red cross.  

 

Figure 9 presents the impacts of the approach chosen to compute soil COS fluxes on the normalized 

simulated CO2 and COS concentration seasonal amplitudes for the CMIP5 and TRENDY-v7 

experiments at the two stations. The proxy-based approach (see method) leads to a net annual soil 

COS sink more than 8 times higher than the one obtained with the mechanistic approach used as 

the reference (Table 3). Given the seasonal variations of soil COS fluxes, partly controlled by 

temperature (see figure 3 for the mechanistic approach), using the proxy-based approach leads 

also to an increase of the amplitude of the total COS concentration seasonal cycle, compared to the 

use of the mechanistic approach. We see an upward shift of all points in figure 9 when going from 

the mechanistic to proxy-based approach, leading to an overestimation of COS seasonal amplitude 

with the proxy-based model, for at least 15 out of the 23 CMIP5 models, and 13 out of the 14 

TRENDY-v7 models across the two stations. This may suggest that the mechanistic approach leads 

to more accurate soil COS fluxes, but more importantly it reveals that our combined COS - CO2 

analysis depends partly on the uncertainty in the simulated soil COS flux, not the annual mean flux 

but the amplitude of the seasonal cycle. 
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Sensitivity to ocean fluxes: 

 
Figure 10: Smoothed seasonal cycles of atmospheric COS concentrations simulated at MLO (left) 

and ALT (right) for the ORCHIDEE model of TRENDY-v7. The concentrations in colors are obtained 

by transporting separately the different flux components of the COS budget. The solid colored lines 

represent the components of the standard scenario, while the dashed blue line represents the 

ocean component estimated following Lennartz et al. (2017, 2020) for direct COS emissions and 

indirect emissions from CS2, and the NEMO-PISCES model estimate for indirect emissions from DMS 

(Launois et al., 2015) (Lennartz + PISCES). The net total considering all components of the COS 

budget is represented in black with a solid line for the standard scenario and with a dashed line for 

the scenario with the ocean Lennartz + PISCES.  

 

Figure 10 shows the COS concentration seasonal cycles following the transport of the individual 

components of the COS budget, considering either the reference ocean flux (“Ocean optimization” 

based on Remaud et al. 2022) or the Lennartz-PISCES approach (“Ocean Lennartz + PISCES”), as well 

as the resulting net seasonal cycle from the transport of all components for these two scenarios at 

MLO and ALT. At both stations, the COS concentration seasonal cycle associated with the Lennartz-

PISCES ocean flux depicts a larger seasonal cycle especially at ALT station, with lower COS 

concentration in winter (from October to May) and higher concentration in summer compared to 

the reference ocean contribution. At ALT, the transport of the Lennartz-PISCES ocean flux results in 

a COS concentration seasonal amplitude of approximately 75 ppt, compared to 20 ppt for the one 

of the reference ocean flux. While the reference ocean flux has a larger annual COS source (+483 

GgS/y) compared to the Lennartz-PISCES approach (+311 GgS/y) (Table 3), the latter method 

induces a more pronounced seasonality in oceanic COS emissions. The larger COS concentration 

seasonal amplitude derived from the Lennartz-PISCES ocean flux thus competes with the one 

induced by the vegetation component (amplitude of about 100 ppt with the ORCHIDEE model from 

TRENDY-v7) given that they are out of phase by 2-3 months. Consequently, changing the ocean flux 

component significantly modifies the phase and amplitude of the net seasonal cycle of COS 

concentrations, especially at ALT and to a small extent at MLO. Figure E3 in the appendix illustrates 

the change in amplitude of the mean seasonal cycle for COS due to changing the ocean flux 

component. From the results at ALT station, we clearly see that the reference ocean component 

("ocean optimisation") leads to a COS atmospheric seasonal cycle more in line with the observation 

than the “Lennartz + PISCES" ocean flux. This suggests that the large source of COS at high latitude 

from direct oceanic COS emissions and indirect emissions from CS2 estimated by Lennartz et al., 

2017, 2020 is too large and not compatible with the temporal dynamics of atmospheric COS 

concentrations at high latitudes. Remaud et al., 2023 did the same analysis but with several 

atmospheric transport models within the framework of the transcom-COS model intercomparison 

experiment, aiming at evaluating the transport errors. The analysis led to the same findings. 

 

  

https://paperpile.com/c/YyvwcL/NLtg+gB6E
https://paperpile.com/c/YyvwcL/NLtg+gB6E
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4. Discussion and conclusion  

 

The joint atmospheric COS and CO2 analysis presented above in details for two stations of the 

Northern hemisphere (MLO, ALT) helped us to identify potential biases in the simulated GPP and 

TER of individual LSM from three ensembles (CMIP5, CMIP6, TRENDY-v7) as well as specific features 

of the ensemble themselves. In particular, we noticed: 

● The CMIP5 model ensemble provides a large spread of the amplitude of the mean seasonal 

cycle of COS. This spread is directly linked to the large spread of the simulated GPP seasonal 

cycles across models. With the selected COS set up (i.e., the chosen LRU values to link GPP and 

plant COS uptake, and the other COS flux components), the simulated COS and CO2 normalized 

amplitudes follow a linear relationship that includes the observation. This highlights the strong 

and direct control of atmospheric COS and CO2 seasonal amplitudes by GPP, also evidencing 

that at least some LSMs may accurately represent the seasonal cycle of GPP for the Northern 

extra-tropics ecosystems. Reversely and more interestingly, this diagnostic points towards 

specific model biases with too large or too low GPP seasonal amplitudes.  

● The CMIP6 ensemble shows a significant reduction of the COS and CO2 concentration seasonal 

amplitude spread at MLO and ALT, which indicates that the models have converged between 

the CMIP5 and CMIP6 exercises. The COS seasonal amplitudes appear to be slightly too low 

across all models for CMIP6, which may suggest that i) other components of the COS budget 

are not contributing enough to the overall mean seasonal cycle amplitude and/or ii) the LRU 

values are too small (eq. 1) and/or iii) the simulated GPP is underestimated in most CMIP6 

models as the CO2 seasonal amplitude is also underestimated on average.   

● The TRENDY-v7 ensemble, despite using the same meteorological forcing (climate reanalysis), 

shows also a large spread of atmospheric COS and CO2 seasonal amplitudes across models. 

The linear relationship between the COS and CO2 normalized amplitude is weaker at ALT 

compared to CMIP5 and CMIP6 ensembles but still includes the observation. 

● The analysis of the phase of the mean seasonal cycle of atmospheric COS and CO2 also allows 

to highlight phase issues with respect to GPP and/or TER for specific models of each ensemble.    

 

Through this paper we thus demonstrate the potential of atmospheric COS concentration 

measurements, combined with atmospheric CO2 data, to evaluate the GPP and TER simulated by 

LSMs. The detailed analysis was made at only two atmospheric stations (MLO and ALT), but the 

same diagnostics are plotted at 8 other stations of the NOAA network (see figures B1-8 in appendix 

B). BRW station provides similar information on the potential model biases for the arctic 

ecosystems than ALT, while KUM and MHD stations provide similar features than MLO station. LEF 

and NWR stations provide CO2 specific diagnostics link to North American ecosystem fluxes (GPP 

and TER). The large CO2 seasonal amplitude observed at LEF is not captured by most models while 

the COS amplitude is well reproduced (Figure B4), which may indicate too large LRU values 

combined with too low GPP for North American ecosystems, especially for the great plains that are 

upwind of this station. For the tropical station SMO, all models of the three ensembles do not 

capture well the seasonal cycle of COS (Figure B7), which may reflect biases in the ocean COS flux, 

while for CO2 we obtain a large model spread that includes the observations. Such spread reflects 

the large uncertainties associated with GPP and TER fluxes of tropical ecosystems, but also the 

difficulties of a climate model to simulate the temporal dynamics of the inter-tropical convergence 

zone (ITCZ) for the CMIP ensembles. In the Southern hemisphere, the CGO station (Figure B2) shows 

a greater coherence for COS seasonal cycle across the different models of each ensemble than for 

CO2. At CGO the CO2 seasonal cycle depicts a small amplitude not in phase with the COS cycle, and 

the large spread obtained for CO2 at this station suggests potential biases in the seasonal variation 

of the simulated respiration fluxes. At SPO (Figure B8), the diagnostic is relatively similar to CGO. 
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Overall, at all stations we see a clear improvement of the simulated CO2 fluxes in the CMIP6 

ensemble compared to CMIP5, as also pointed out by Hu et al. (2022) .  

 

However, the COS diagnostic depends on the overall set up chosen for the computation of the 

different COS fluxes and especially the LRU values linking plant COS uptake to GPP. The values that 

we used for our reference set up (Seibt et al., 2010) are considered to be too high compared to 

other estimates (Whelan et al., 2018; Maignan et al., 2021; Wohlfahrt et al., 2023), especially in order 

to close the overall atmospheric COS budget (not closed with our reference set up; see table 3). 

Considering lower LRU values, would indeed enable a more balanced COS budget by reducing the 

vegetation sink component. However, it would substantially reduce the seasonal amplitude of the 

simulated COS concentrations (see section 3.2.2, Figure 8), with the risk that most models do not 

capture the observed amplitude. We argue that this is unlikely, and if LRU values are smaller, other 

COS processes should compensate with a more pronounced seasonal cycle in phase with that of 

GPP and/or atmospheric mixing would need to be revised. In addition, the method that we used 

with constant LRU values has some limitations, given that the COS relative uptake varies with 

atmospheric conditions such as light radiation (Kooijmans et al. 2019, Maignan et al., 2021; 

Wohlfahrt et al., 2023). However, with the ORCHIDEE model, Maignan et al. (2021) derived monthly 

LRU estimates that are much lower than our reference values (see Table 3) with only relatively small 

seasonal variations (around 0.2). Using monthly-variable LRU values for each PFT should thus be 

considered as an important direction to improve the COS diagnostic.  

 

In addition, we have seen significant impacts of COS components beyond plant uptake on the total 

COS concentrations, like soil and ocean fluxes. The sensitivity tests that were conducted have a 

large impact on the total annual atmospheric COS budget for both components as summarized in 

Table 3 (i.e., considering -39 vs -340 GgS/yr for the two soil variants and 483 vs 311 GgS/yr for the 

two ocean variants). However, the impact on the seasonal amplitude is relatively low for the soil 

component. For the ocean, using the “lennard+pisces” flux instead of the “ocean optimisation" flux 

(our reference) significantly biases the COS seasonal cycle at Northern high latitudes stations 

(Figure 10). A key priority is thus to further understand and quantify the seasonality of the ocean 

COS source as well as of the soil COS uptake. Note finally that the annual budget of the ocean flux 

is still highly uncertain and remains a key component to close the overall atmospheric COS budget 

(Berry et al., 2013; Remaud et al., 2022, Remaud et al., 2023). 

 

Last but not least, is the uncertainty associated with the atmospheric transport model used to 

compute COS and CO2 concentrations. Remaud et al. (2023) compared the impact of different 

atmospheric transport models on the simulated COS concentrations, using a common set of COS 

surface fluxes. They show (see Figure 5 of Remaud et al., 2023) significant impact for high latitudes 

stations like ALT, BRW and MHD with the most recent version of the LMDZ transport model (V6 

compared to V3 used in our study) belonging to a group of three atmospheric transport models 

producing larger amplitudes than the other group of three models. This pushes for additional 

studies with different atmospheric transport models, having different vertical and horizontal mixing 

properties. However, at MLO station, all transport models produce a similar COS amplitude, which 

reinforces the validity of the diagnostics that we made for the different LSMs, at least on average 

for the Northern ecosystem flux estimates.  

 

Therefore, this study has allowed a first quantitative assessment of the mean seasonal cycle of GPP 

and TER fluxes simulated by different LSMs (mainly the amplitude and to a lower extent the phase) 

using atmospheric COS and CO2 data. Several directions of research to improve the proposed 

diagnostics have been highlighted, including the need to refine the temporal and spatial variations 

of LRU, to reduce the uncertainty on COS flux components other than vegetation uptake, and to 
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use possibly several transport models for a more robust diagnostic of GPP and TER biases. We also 

encourage LSM modeling teams to implement a mechanistic model for vegetation COS uptake (as 

in Maignan et al., 2021 and Kooijmans et al., 2021) to better link GPP and COS plant uptake, 

accounting more directly for the impact of environmental drivers on the COS diffusion pathways 

into leaves.    
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Appendix A: COS and CO2 seasonal amplitude and phase analysis per model 
 

Table A1: COS and CO2 seasonal amplitude (in ppt for COS and ppm for CO2) and phase correlation 

(amplitude/correlation) for each of the CMIP5, CMIP6 and TRENDY-v7 models. 

 

 Model MLO ALT 

COS CO2 COS CO2 

Obs  48.0/1.0 6.8/1.0 113.8/1.0 17.0/1.0 

CMIP5 BNU-ESM 42.1/0.91 4.6/0.95 93.5/0.94 17.7/0.90 

CanESM2 29.0/0.96 3.8/0.89 76.3/0.97 10.7/0.93 

CCSM4 30.6/0.83 3.7/0.98 43.7/0.90 9.7/0.89 

CESM1-BGC 32.2/0.85 4.2/0.97 44.5/0.90 9.7/0.88 

CESM1-CAM5 34.6/0.83 4.2/0.96 46.8/0.89 10.4/0.86 

CESM1-FASTCHEM 30.4/0.85 3.8/0.98 42.9/0.91 10.0/0.88 

CESM1-WACCM 30.5/0.85 4.2/0.98 47.8/0.90 9.7/0.89 

GFDL-ESM2G 69.9/0.95 8.8/0.95 130.1/0.88 11.5/0.50 

GFDL-ESM2M 69.1/0.93 8.7/0.95 132.7/0.80 14.8/0.36 

HadGEM2-CC 48.7/0.93 7.8/0.99 95.7/0.98 18.2/0.98 

HadGEM2-ES 47.3/0.93 7.4/0.98 90.9/0.95 18.5/0.98 

INM-CM4 39.8/0.85 3.1/0.96 71.6/0.93 9.2/0.96 

IPSL-CM5A-LR 87.4/0.90 13.0/0.99 195.1/0.89 39.6/0.98 

IPSL-CM5A-MR 79.8/0.90 11.7/0.99 194.1/0.88 38.1/0.99 

IPSL-CM5B-LR 75.8/0.90 10.8/0.99 162.7/0.90 33.0/0.98 

MIROC-ESM-CHEM 52.6/0.88 6.8/0.98 111.5/0.90 18.5/0.96 

MIROC-ESM 53.6/0.88 7.2/0.97 113.7/0.92 17.9/0.97 
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MPI-ESM-LR 62.1/0.88 8.0/0.97 114.5/0.94 24.0/0.98 

MPI-ESM-MR 65.9/0.88 8.9/0.97 125.1/0.94 27.4/0.97 

MPI-ESM-P 58.6/0.86 8.0/0.97 109.3/0.94 25.1/0.98 

MRI-ESM1 94.5/0.88 5.1/0.98 191.6/0.93 20.2/0.97 

NorESM1-ME 32.2/0.85 4.9/0.98 46.2/0.91 10.4/0.90 

NorESM1-M 32.4/0.85 4.6/0.98 47.2/0.90 10.4/0.89 

CMIP6 ACCESS-ESM1-5 35.8/0.94 4.9/0.98 54.8/0.95 10.7/0.95 

CanESM5 45.2/0.97 5.9/0.90 96.0/0.96 14.5/0.90 

CESM2-FV2 47.7/0.72 5.9/0.85 92.4/0.88 13.1/0.96 

CESM2 47.9/0.75 5.5/0.87 92.6/0.84 12.8/0.95 

CESM2-WACCM 46.3/0.76 5.3/0.87 93.4/0.87 12.4/0.96 

CMCC-CM2-SR5 42.7/0.86 5.6/0.93 84.8/0.79 17.6/0.82 

CMCC-ESM2 42.7/0.85 5.6/0.95 82.0/0.80 16.8/0.85 

CNRM-ESM2-1 40.6/0.90 4.3/0.97 83.8/0.84 14.0/0.92 

E3SM-1-1-ECA 39.5/0.86 5.5/0.95 59.3/0.95 10.0/0.97 

E3SM-1-1 47.9/0.90 9.0/0.99 90.2/0.96 19.0/0.99 

EC-Earth3-Veg 44.1/0.94 5.3/0.73 86.6/0.95 12.5/0.70 

EC-Earth3-Veg-LR 41.6/0.95 5.1/0.79 79.9/0.98 12.0/0.77 

GFDL-ESM4 44.8/0.95 6.3/0.99 93.2/0.84 14.9/0.85 

INM-CM4-8 43.2/0.83 3.2/0.93 95.9/0.88 13.5/0.92 

INM-CM5-0 45.8/0.85 3.7/0.93 99.4/0.90 14.5/0.92 

IPSL-CM6A-LR 47.8/0.91 5.7/0.98 94.3/0.96 14.1/0.99 
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MIROC-ES2L 48.3/0.84 6.4/0.95 100.0/0.84 23.7/0.94 

MPI-ESM-1-2-HAM 55.5/0.92 4.9/0.94 121.1/0.92 17.5/.0.84 

MPI-ESM1-2-LR 57.6/0.90 5.1/0.89 121.0/0.89 19.5/0.79 

NorCPM1 21.2/0.81 2.2/0.92 25.8/0.90 3.4/0.92 

NorESM2-LM 44.3/0.76 5.1/0.87 83.6/0.88 11.7/0.96 

NorESM2-MM 45.1/0.76 5.0/0.88 87.5/0.88 11.3/0.97 

SAM0-UNICON 34.1/0.86 4.3/0.98 47.0/0.92 9.3/0.90 

TaiESM1 32.6/0.82 4.0/0.98 45.3/0.90 8.7/0.90 

UKESM1-0-LL 44.6/0.88 4.6/0.99 92.2/0.91 15.9/0.96 

TRENDY-v7 CABLE-POP 39.5/0.93 1.9/0.90 87.8/0.95 5.2/0.96 

CLASS 41.0/0.98 6.9/0.89 81.7/0.98 15.4/0.92 

CLM5 59.5/0.81 6.6/0.86 140.4/0.87 17.8/0.97 

DLEM 49.5/0.95 6.0/0.95 108.4/0.98 11.4/0.97 

ISAM 45.6/0.89 3.5/0.98 89.1/0.97 7.6/0.97 

JSBACH 41.1/0.94 3.7/0.94 89.8/0.90 14.3/0.75 

JULES 43.7/0.97 5.0/0.96 91.0/0.95 21.1/0.97 

LPJ 64.8/0.90 2.6/0.94 147.0/0.88 15.0/0.82 

LPX 74.2/0.89 8.3/0.99 157.5/0.95 16.5/0.98 

OCN 56.4/0.95 6.5/0.93 118.0/0.97 18.3/0.91 

ORCHIDEE-CNP 29.7/0.91 2.0/0.55 68.4/0.88 10.7/0.90 

ORCHIDEE 48.5/0.93 6.9/0.99 93.0/0.96 15.2/0.99 

SDGVM 43.7/0.89 7.7/0.84 83.3/0.88 23.8/0.76 
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SURFEX 40.0/0.96 6.0/0.99 75.3/0.97 13.5/0.99 
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Appendix B: Mean seasonal cycles of COS and CO2 atmospheric 

concentrations at 8 stations 
 

 
Figure B1: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at BRW for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses. 
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Figure B2: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at CGO for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B3: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at KUM for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B4: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at LEF for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B5: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at MHD for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B6: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at NWR for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B7: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at SMO for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses.  
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Figure B8: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at SPO for CMIP5, CMIP6 and TRENDY-v7 models. The observations are represented by 

red crosses. 
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Appendix C: Sensitivity of simulated COS concentrations to soil fluxes 
 

 
Figure C1: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes 

of smoothed seasonal concentrations at MLO and ALT for CMIP6 models. The simulated COS 

concentrations use either the mechanistic model or the proxy-based approach for soil COS fluxes. 

The observed amplitude is identified by the red cross.  

 

 
Figure C2: Scatter plots of CO2 vs COS phase correlations between modeled and observed 

smoothed seasonal concentrations at MLO and ALT simulated by the TRENDY-v7 models. The 

simulated COS concentrations use either the mechanistic model or the proxy-based approach for 

soil COS fluxes. The observed amplitude is identified by the red cross.  
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Appendix D: Sensitivity of simulated COS concentrations to LRU 
 

 
Figure D1: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes 

of smoothed seasonal concentrations at MLO and ALT for CMIP6 models. The different LRU 

scenarios are Seibt Reference LRU, ORCHIDEE LRU and Whelan LRU. The observed phase is 

identified by the red cross.  

 

 
Figure D2: Scatter plots of CO2 vs COS phase correlations between modeled and observed 

smoothed seasonal concentrations at MLO and ALT simulated by the TRENDY-v7 models. The 

different LRU scenarios are Seibt Reference LRU, ORCHIDEE LRU and Whelan LRU. The observed 

phase is identified by the red cross.  
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Appendix E: Sensitivity of simulated COS concentrations to ocean fluxes 
 

 
Figure E1: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at MLO for CMIP5, CMIP6 and TRENDY-v7 models. The simulated atmospheric COS 

concentrations use the oceanic estimates by Lennartz et al. (2017, 2020) for direct COS emissions 

and indirect emissions from CS2, and the NEMO-PISCES model estimate for indirect emissions from 

DMS (Launois et al., 2015). The observations are represented by red crosses.  
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Figure E2: Smoothed seasonal cycles of atmospheric COS (left) and CO2 (right) concentrations 

simulated at ALT for CMIP5, CMIP6 and TRENDY-v7 models. The simulated atmospheric COS 

concentrations use the oceanic estimates by Lennartz et al. (2017, 2020) for direct COS emissions 

and indirect emissions from CS2, and the NEMO-PISCES model estimate for indirect emissions from 

DMS (Launois et al., 2015). The observations are represented by red crosses. 
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Figure E3: Scatter plots of CO2 vs COS simulated amplitudes normalized by observed amplitudes 

of smoothed seasonal concentrations at MLO and ALT for CMIP5, CMIP6 and TRENDY-v7 models. 

The simulated COS concentrations use either the optimized ocean fluxes, or the ocean fluxes 

estimated by Lennartz et al. (2017, 2020) for direct COS emissions and indirect emissions from CS2 

and the NEMO-PISCES model estimate for indirect emissions from DMS (Launois et al., 2015). The 

observed amplitude is identified by the red cross.   
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Appendix F: LRU seasonal variations 
 

 
Figure F1: Seasonal variations of mean monthly LRU per PFT over 2000-2009. The LRU values were 

computed following the same approach as for LRUORC using ORCHIDEE simulated GPP and 

vegetation COS fluxes, and 3-hourly variable atmospheric COS and CO2 concentrations simulated 

by the LMDZ transport model. 

 

 

 


