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Titre :Stabilité non-linéaire d’un moteur fusée régulé en boucle fermée
Mots clés : Lanceurs réutilisables, Systèmes non-linéaires, Stabilité, Commande non-linéaire,Systèmes Hamiltoniens à Ports
Résumé : Dans le cadre du développement demoteurs de fusée réutilisables, les exigences defonctionnement des différents éléments com-posant unmoteur ont connu de grandes évolu-tions. Alors qu’un moteur classique était conçupour un nombre restreint de points de fonc-tionnement, un moteur réutilisable doit ré-pondre à des exigences sur une large plagede points, afin d’effectuer des manœuvres pluscomplexes. En conséquence, les lois de com-mande des moteurs fusées ont subi une évolu-tion similaire, rendant nécessaire la loi de com-mande en boucle fermée. Bien que de nom-breuses études aient été réalisées sur des loisde commande, peu de travaux portent sur lastabilité du moteur en boucle fermée. Danscette optique, l’objectif de ces travaux est deproposer une démonstration de stabilité d’unmodèle demoteur fusée, ainsi qu’un contrôleurpermettant d’obtenir des garanties de stabilitédu modèle.En premier lieu, un modèle typique de moteurde fusée à ergols liquide est développé, sousformed’espace d’états. Ce type demodèle, bienque plus courant, se révèle peu adapté à l’étudede la stabilité, de par sa formulation hautementnon-linéaire. Dans ce cadre, l’utilisation d’unefonction de Lyapunov se révèle complexe, etune reformulation du modèle est envisagée,sous forme d’un modèle Hamiltonien à ports.Un second chapitre permet d’introduire la no-tion de modèle Hamiltonien à ports. Ce typede modèle met en valeur les transferts éner-gétiques qui ont lieu entre les différents élé-ments d’un système, et sont construits avecune structure géométrique fixe. Ces différentescaractéristiques permettent une étude directede la passivité d’un système, un outil d’analysede la stabilité d’un système. La reformulationpermet de trouver une fonction caractéristiqued’un système Hamiltonien à ports, l’Hamilto-nien, qui prouve la passivité d’un système etpeut être formulé comme une fonction de Lya-punov. Cette démonstration donne des condi-tions de stabilité sur la modélisation du sys-

tème, ainsi que sur le contrôleur appliqué enboucle fermée. Dans le cas où la démonstra-tion directe de passivité n’est pas réalisable, uncontrôleur peut être construit pour assurer lapassivité de la boucle fermée.Pour conférer les propriétés de la passivitéau modèle de moteur utilisé, la théorie ducontrôle par passivité est présentée. Le prin-cipe d’un tel contrôleur est d’assurer la stabi-lité d’un système en rendant la boucle ferméepassive. Avec la théorie des systèmes Hamil-tonien à ports cependant, ce contrôleur per-met aussi demodifier la structure géométriquehamiltonienne, afin de reformuler un systèmesous forme Hamiltonienne à ports. Ce contrô-leur permet de rendre le système passif autourd’un point de fonctionnement désiré par l’utili-sateur, qui peut être changé au cours du temps.Ainsi, ce contrôleur permet un suivi de trajec-toire avec des garanties de passivité du sys-tème au cours du temps. Le quatrième chapitrepropose une approche différente pour établirun contrôleur stabilisant, à l’aide de la théoriede la contraction. La propriété de contractiond’un système dénote sa capacité à convergerrapidement vers une trajectoire de référence.Cette propriété constitue une forme de stabi-lité exponentielle, plus puissante que la stabi-lité par passivation. Le contrôleur peut de plusêtre réalisé aisément, en résolvant des inégali-tés linéaires matricielles.Enfin, les résultats de ces travaux sont pré-sentés à l’aide de simulations sur MATLAB Si-mulink, et permettent de conclure sur les dif-férents contrôleurs présentés. Un contrôleursimple proportionnel intégral dérivé (PID) estconstruit pour permettre une comparaison. Lesrésultats montrent que les contrôleurs réalisésproposent des propriétés stabilisantes, alorsque le contrôleur PID est instable dans cer-taines zones de fonctionnement. Le contrôleurpar passivité étend le domaine de stabilité dusystème, et le contrôleur par contraction em-pêche le système de quitter le domaine de sta-bilité du système original.



Title : Non-linear stability of a liquid propelled rocket engine in closed loop regulation
Keywords :Reusable launchers, Non-linear systems, Stability, Non-linear control, Port-Hamiltoniansystems
Abstract : With the development of reusablerocket engines, the operating requirements ofthe various components in an engine have si-gnificantly increased. While a non-reusable en-gine was designed for a limited number of ope-rating points, a reusable engine must meetrequirements over a wide range of points toperform complex maneuvers. Consequently,rocket engine control laws have evolved si-milarly, with the introduction of closed-loopcontrol laws. Althoughmany studies have beenconducted on control laws, few works focuson the stability of the engine in closed-loopcontrol. In this context, the objective of thiswork is to propose a demonstration of the sta-bility of a rocket engine model, as well as acontroller that guarantees the stability of themodel.First, a model of a liquid propelled rocket en-gine is proposed under a state-space form. Al-though more common, this type of modelingdoes not allow for an easy stability analysis dueto its highly nonlinear terms. In this context, theuse of a Lyapunov function proves to be cum-bersome, and a reformulation of the model isconsidered, in the form of a Port-Hamiltonianmodel, more suited for stability analysis of thesystem.A second chapter introduces the concept ofthe Port-Hamiltonian model. This type of mo-del highlights the energy transfers that occurbetween the various components of a systemand is built with a fixed geometric structure.These characteristics allow for a direct studyof the passivity of a system, a tool for stabilityanalysis the stability. The reformulation allowsfor the identification of a characteristic functionof a Port-Hamiltonian system, the Hamiltonianfunction, which can be used to prove the passi-vity of a system and can be formulated as a Lya-punov function. This demonstration providesstability conditions for the system as well as the

controller applied in the closed-loop system. Incaseswhere a direct demonstration of passivityis not possible, a controller can be constructedto ensure the passivity of the closed-loop sys-tem.To endow the rocket engine model with pas-sivity properties, the third chapter presentspassivity-based control (PBC) theory. The prin-ciple of such a controller is to ensure the sta-bility of a system by making the closed-loopsystem passive. Coupled with Port-Hamiltoniansystems theory, however, this controller also al-lows for modification of the Hamiltonian geo-metric structure to reformulate a system intoPort-Hamiltonian form. This controller makesthe system passive around a desired operatingpoint, which can be changed over time. Thus,this controller enables trajectory tracking withpassivity guarantees over time.The fourth chapter proposes a different ap-proach to establish a stabilizing controller usingcontraction theory. The contraction property ofa system indicates its ability to rapidly convergetowards a reference trajectory. This propertyrepresents a form of exponential stability,which is more robust than stability throughpassivation.Moreover, the controller can be ea-sily implemented by solving linear matrix in-equalities.Finally, the results of this work are presentedthrough simulations on MATLAB Simulink, al-lowing for conclusions on the various control-lers presented. A simple proportional-integral-derivative (PID) controller is constructed forcomparison. The results show that the desi-gned controllers offer stabilizing properties,while the PID controller is unstable in certainoperating regions. The passivity-based control-ler extends the stability domain of the system,and the contraction-based controller preventsthe system from leaving the stability domain ofthe original system.
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Résumé en français

Dans le cadre du développement de moteurs de fusée réutilisables, les exigences de fonctionne-
ment des différents éléments composant un moteur ont connu de grandes évolutions. Alors qu’un
moteur classique était conçu pour unnombre restreint de points de fonctionnement, unmoteur réuti-
lisable doit répondre à des exigences sur une large plage de points, afin d’effectuer des manœuvres
plus complexes. En conséquence, les lois de commande des moteurs fusées ont subi une évolution
similaire, rendant nécessaire la loi de commande en boucle fermée. Bien que de nombreuses études
aient été réalisées sur des lois de commande, peu de travaux portent sur la stabilité du moteur en
boucle fermée. Dans cette optique, l’objectif de ces travaux est de proposer une démonstration de
stabilité d’un modèle de moteur fusée, ainsi qu’un contrôleur permettant d’obtenir des garanties de
stabilité du modèle.
En premier lieu, unmodèle typique demoteur de fusée à ergols liquides est développé, en présentant
les différents composants du moteur et les équations de la physique associées. Ces équations per-
mettent d’écrire une première approche pour la modélisation, sous forme d’espace d’états. Ce type
de modèle, bien que plus courant, se révèle peu adapté à l’étude de la stabilité, de par sa formulation
hautement non-linéaire. En effet, pour démontrer la stabilité par l’utilisation de méthodes classiques
comme une fonction de Lyapunov, la complexité du modèle constitue un nouvel obstacle. Dans ce
cadre, cette thèse propose une reformulation du modèle moteur, sous forme d’un modèle Hamilto-
nien à ports, afin d’obtenir une forme plus adaptée à l’étude de stabilité.
Un second chapitre permet d’introduire la notion de modèle Hamiltonien à ports. Ce type de modèle
met en valeur les transferts énergétiques qui ont lieu entre les différents éléments d’un système, et est
construit avec une structure géométrique fixe. Ces différentes caractéristiques permettent une étude
directe de la passivité d’un système, un outil d’analyse de la stabilité d’un système. La reformulation
permet de trouver une fonction caractéristique d’un système Hamiltonien à ports, l’Hamiltonien, qui
prouve la passivité d’un système et peut être formulé comme une fonction de Lyapunov. L’avantage
de cette approche est une simplification de l’analyse de stabilité mais aussi une meilleure compré-
hension des obstacles à la stabilité du système et des éléments problématiques. Cette démonstration
permet aussi d’identifier des conditions de stabilité sur la modélisation du système, ainsi que sur le
contrôleur appliqué en boucle fermée. Dans le cas où la démonstration directe de passivité n’est pas
réalisable, un contrôleur peut être construit pour assurer la passivité de la boucle fermée.
Pour conférer les propriétés de la passivité au modèle de moteur utilisé, la théorie du contrôle par
passivité est présentée dans cette thèse. Le principe d’un tel contrôleur est d’assurer la stabilité d’un
système en rendant la boucle fermée passive. Avec la théorie des systèmes Hamiltonien à ports ce-
pendant, ce contrôleur permet aussi de modifier la structure géométrique hamiltonienne, afin de
reformuler un système sous forme Hamiltonienne à ports. Dans le cas du moteur fusée, cette pro-
priété s’avère cruciale car certains composants, de par leur modélisation approchée, ne permettent
pas d’écrire le système dans son entiereté sous cette forme. Ce contrôleur permet alors de rendre le
système passif autour d’un point de fonctionnement désiré par l’utilisateur, qui peut être changé au
cours du temps. Ainsi, ce contrôleur permet un suivi de trajectoire avec des garanties de passivité du
système. Cette première solution stabilisante a permis de développer un contrôleur et une méthode
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d’analyse de système de type moteur de fusée, répondant à une des exigences de la problématique
initiale. Cependant, la construction du contrôleur n’étant pas orientée pour le suivi de trajectoire, une
seconde approche est proposée pour répondre à cette exigence. Le quatrième chapitre propose une
approche différente pour établir un contrôleur stabilisant, à l’aide de la théorie de la contraction. La
propriété de contraction d’un système dénote sa capacité à converger rapidement vers une trajec-
toire de référence. Cette propriété constitue une forme de stabilité exponentielle, plus puissante que
la stabilité par passivation. Par ailleurs, cette théorie est axée sur la convergences de trajectoires,
plutôt que par rapport à un point de fonctionnement. En ce sens, cette méthode est plus adaptée
au suivi de trajectoire. Le contrôleur peut de plus être intégré aisément, en résolvant des inégalités
linéaires matricielles et avec un retour d’état.
Les résultats de ces travaux sont présentés à l’aide de simulations surMATLAB Simulink, et permettent
de conclure sur les différents contrôleurs présentés. Un contrôleur simple proportionnel intégral dé-
rivé (PID) est construit pour permettre une comparaison. Les résultats montrent que les contrôleurs
réalisés proposent des propriétés stabilisantes, alors que le contrôleur PID est instable dans certaines
zones de fonctionnement. Le contrôleur par passivité étend le domaine de stabilité du système, et le
contrôleur par contraction empêche le système de quitter le domaine de stabilité du système origi-
nal, en plus d’être plus performant que les autres contrôleurs pour le suivi de trajectoire. Ce travail
permet d’ouvrir la voie à de nouvelles méthodes de modélisation et d’analyse de stabilité pour des
systèmes multi-physiques complexes.
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Nomenclature

General symbols
f vector function
g input vector function
x state vector
y output vector
u input vector
v positive function
t time (s)
Id unit matrix

H(x) Hamiltonian function
J(x) Hamiltonian structure matrix
R(x) Hamiltonian dissipation matrix
G input matrix
xr reference state vector
x0 equilibrium state vector
V (x) Lyapunov function

W,K,N,Z contraction matrices
P contraction metric
D domain

Variables and constants
γ specific heat ratio [-]
ω rotational speed [rad.s−1]
π ratio [-]
ρ density [kq.m−3]
Θ temperature [K]
Av surface [m2]
C velocity [m.s−1]
d diameter [m]
h enthalpy [J.kq−1]
I hydraulic inertia [m−1]
J angular inertia [kg.m2]
m mass [kg]
MR mixture ratio [-]
NR reduced rotational speed [-]
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p pressure [Pa]
q mass flow [kg.s−1]
Rg gas constant [J.kg−1.K−1]
ST specific torque [-]
T torque [N.m]
Vc volume [m3]
W work [J ]
Zres equivalent resistive coefficient [kg−1m−1]

Suffixes
•cc main combustion chamber
•gg gas generator
•tu turbine intake
•ep pump input
•ip pump output
•H hydrogen line
•O oxygen line
•out flow exiting the system (turbine or main combustion chamber)
•in flow entering the element
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1 - Introduction

The stability and automatic control of liquid-propelled rocket engines (LPREs) is a dense field that
aims to regulate a complex non-linear system that is often simplified to a finite set of operating points.
For a non-throttlable engine, stability is asserted for a small number of operating points, and the control
action is devoted to maintaining stability around a single operating point. The replacement of hydraulic
actuators with electrical ones enabled the closed-loop control of such engines and encouraged the in-
dustry to shift towards developing throttlable engines. The notion of throttle denotes the ability of the
engine to function for several operating points, allowing awide range of variation of the thrust produced.
A throttlable engine enables a rocket stage to perform a safe power landing in good operating condition,
such that it can be re-purposed for future launches. This capability defines the notion of reusability of a
rocket stage.

The powered landing process of the first stage implies a strict following of the planned trajectory of
the stage, to ensure a safe landing and mitigation of the damages caused to the engine. Such require-
ments facing the simplicity of a single operating point lead inevitably to the complexification of control
laws [1]. With the addition of modeling errors and perturbations in the functioning, the control lawsmust
ensure robustness and stability during the operation. The requirements of the landing maneuver imply
variations of the thrust produced by the engine, that are performed using the electrical actuators. In an
LPRE, the control variables mainly consist of the thrust of the engine which defines the acceleration of
the body, and the mixture ratio of the propellants in the chamber, which defines the efficiency of the
combustion. In addition, accurate control of the mixture ratio is critical for a parallel consumption of
species in both storage tanks, and reduce unburned species resulting from the combustion.

In this introductory chapter, a global context of reusable and non-reusable engines is given in section
1.1. The state-of-the-art of control laws developed for LPREs is given in section 1.2. The notion of stability
for an LPRE system is described in section 1.3. A summary concludes this introduction.

1.1 . Reusable launchers, context and problematic

Space launchers constitute a competitive environment, as the number of objects launched into space
has highly increased since the beginning of the space race. Following Space X [2], Blue Origin [3], the main
actors of the space scene have grasped the benefits of rocket stage reusability due to the high demand
for launches. In [4], the main factors contributing to this race to a reusable launcher are described as
cost reduction, return capability enhancement, and environmental impact.While Space X andBlueOrigin
already developed reusable technology with Falcon 9, Falcon Heavy or evenNew Shepherd, other agencies
such as JAXA [5] and ESA [6] are developing reusable stages.
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1.1.1 . Rocket engine generalities
A rocket engine is a complex combustion that system, that aims at providing a high thrust to launch

a rocket body. The general rocket engine is composed of 5 main elements,
• Tanks that store the propellants used
• Lines that direct the propellants during the functioning
• A main combustion chamber, that builds up the pressure with the combustion of the propellant
species

• A nozzle, a component whose specific geometry provokes expansion of high-pressured gases, and
ejects them at high speeds resulting in the generation of thrust for the rocket

• Valves that are placed on the lines of the propellants and serve multiple purposes, such as regula-
tion, safety, or even shutdown.

To attain higher pressures and thrust, turbo-pumps can be added to the engine, to increase the pressure
of the propellants after exiting the tanks. Higher pressure in the propellants leads to higher pressure in
the combustion chamber. This addition adds high complexity to the engine, as the addition of the tur-
bopumps requires a component to provide the torque needed by the pumps to function. In the vast
majority of the literature, this component is a gas-generator (GG), which is a smaller combustion cham-
ber aimed at redirecting the burned gases to propel the pumps. Other cycles are available in the industry,
such as staged combustion, which requires pre-burners that heat the propellants before the main com-
bustion chamber, and increase efficiency. Similarly, expander cycles have been developed, where the
turbines are propelled using the expansion of the cold fuel in the regenerative circuit. The main diffe-
rence between the two cycles presented and the GG cycle resides in the possible thrust output. With the
addition of the gas-generator, higher torques are attainable in the pumps, leading to higher maximum
thrust outputs. This difference is of interest in the case of a first-stage engine (which is the case in reu-
sable launchers), which requires higher thrusts than other stages. Therefore in this work, we will limit
ourselves to a GG cycle of an LPRE.

1.1.2 . Reusable launchers
As described in [7], classical LPRE designs consider constant thrust of the engine, with small varia-

tions around the operating point. However, for a diverse class of missions (rendez-vous, landing, orbital
maneuver), it is necessary to provide throttling capabilities to a rocket engine. In [7], the author describes
a range of solution designs to provide a wider range of variation to the thrust of an engine. Nonetheless,
mass flow regulation proves to be the more efficient and reliable solution for a wide range of variations
of the engine thrust. It is however no simple task to control such an engine, as the range of variation is
greatly dependent on the internal structure of the engine. While rocket engines are considered stable
around the main operating point, the requirements for down-throttling introduce new hazards, as the
combustion instabilities and sub-optimal performance of the other components such as the biphasic
mass flow in the regenerative circuit in very low thrust outputs. ([7]).

Development of rocket engines with throttling capabilities has nonetheless risen in the space indus-
try. For example, Blue Origin’s BE-3 throttles down to 18% of its operating value [7] and Space X ’s Merlin
1-D Vacuum engine is estimated to 39% of the nominal value.
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These capabilities add complexity to the engine designwhile themodeling and control of such charac-
teristics have to mirror the design complexity. This modeling complexity is often reflected in the validity
range of themodel. As the system evolves in the considered domain of variation, it is necessary to qualify
the stability of the system, approached by the modeling, especially when the operating point is near the
edges of the validity domain of the model. This requirement for stability when dealing with variations of
the thrust is the motivation of this thesis.

In the literature, while control laws have been developed for the permanent regime of an LPRE, few
references concerning the stability of an engine are available.Mainly due to the high confidentiality of this
growing industrial sector, the requirements for stability are seldom of interest and authors focus on the
robustness of the control designed. In most cases, the stability of the engine is asserted by simulations,
or post-proved by bench-testing of the engine. This thesis aims to provide tools and methods to analyze
the stability of an LPRE and derive relevant conditions for controllers’ proof of stability.

1.1.3 . Mission design
Stage recovery has been an important aspect of launches, and since the early days of space conquest

has proven to be a challenge. Early attempts to recover some stage of a rocket mainly concerned the
booster elements. These methods for booster recovery have been designed around the gliding of the
considered stage back to the launch site. The first stage recovery performed concerned the space shut-
tle solid boosters [8], however, the re-purposing of such boosters proved to be of very high cost and
maintenance. Other booster recoveries have been performed, mainly for expertise, such as Ariane 5 [9],
using chutes to slow down the fall of the engine. However, such recovery does not allow the engine to
be re-used, due to the damages caused by the launch.

The development of reusable technology using re-ignition and throttling of themain engine has led to
more optimized recovery missions. The design of the recovery process has shifted from simple gliding
or parachutes to active engine propulsion to slow down the recovered stage. In the several mission
designs proposed in [9] and illustrated in figure 1.1, scenarios A and B are of interest in this work, and
the technological solution adapted to the engine presented later in this thesis. Scenario A features the
toss-back strategy which consists of a first boost to re-orient the recovered stage of the rocket, and using
active propulsion of themain engine to slow down the body for the landing at the launch site. Scenario B
illustrates the recovery of the engine on a barge prepared upfront to the launch, which follows the same
idea as scenario A with a notable difference in the re-orienting initial boost. Both scenarios have already
been used by Space X to recover the first stage of the Falcon 9, and have proven efficient mission design.
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Figure 1.1 – Some of the possible recovery scenarios for reusable engines by Baiocco & al. [9]
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1.2 . Overview of modeling and control of liquid-propelled rocket engines

1.2.1 . Review of modeling techniques
An LPRE is a complex physical system whose exact dynamics are still being studied. The numerous

components that define the overall system lead to increasing complexity and uncertainties on the va-
riables considered. In the literature, the modeling of LPREs takes numerous forms, depending on the
objective of the model and the methods employed to obtain the evolution equations.

Models built using linear identification of terms are obtained via simulations or bench testing of the
engine [10], most of the time, such models aim to identify non-linearities and dynamics of a pre-existing
engine, or during the design of the engine.

Linearized models in general constitute the most common approach when aiming for the control
of an engine. A control law is constructed for A linear model around an operating point of the system
and is then validated for a wider range of thrust values. In [11], the modeling of the engine simplifies the
combustion dynamics to focus the study on the fluid evolution, allowing for precise control of the mass
flows involved. In [12], an engine capable of down-throttling is linearized around the operating point of
the system, and a non-linear closed-loop controller is designed for the model. The controller proved
relevant for large variations of thrust, validating the linear approach for a variation of thrust between
133 and 432N .

Non-linear models serve multiple purposes, ranging from model validation to control design. While
non-linear models were previously rarely used for control design, the past 10 years have shown a new
interest in non-linear models for control. The work of Sergio Pérez-Roca [13], one of the main references
in this thesis, has led to the development of a non-linear model for a gas-generator LPRE. The objec-
tive of this model was to derive robust controllers for the transient control of the LPRE. This model,
which inspired the one presented later in this thesis, is comprised of 13 states with non-linear evolution
to encapsulate the behavior of the engine. More recently, non-linear models trained for AI-generated
controllers have risen. In [14], the author modeled an LPRE as a feed-forward neural network for engine
monitoring and control. In [15, 16], the author hasmodeled heat conduction in regenerative circuits using
neural networks. Such modeling techniques make use of neural networks which are mathematical en-
tities that can be trained to reproduce the behavior of a real system. In use, such models are able to
efficiently reconstruct the state of a system frommeasurements, and, therefore, provide powerful tools
for the control design with non-measurable states.

1.2.2 . Review of control methods
Control of a liquid-propelled rocket engine recalls from the early stages of the rocket industry. Initial

designs for controllers have no throttling requirements to fulfill and often consist of single operating
points, where the controller is designed for a linearized state-space [17] about the considered point. An
extensive review of control methods in rocket engine control and modeling is available in [18], and is
summarized here.

LPREs present a stable behavior in general, leading to open-loop control techniques with high per-
formance. In [19, 20], the author introduces an optimal policy to control an engine during throttling
transients. The optimization is performed off-line to take into account several parameters. While this
approach proposes an optimal controller, the stability of the system must be asserted previous to the
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operation of the engine. A second off-line optimal control strategy for thrust control is developed in [21].
This approach takes into account the whole body of the rocket rather than the sole engine. This adds
complexity to the optimization problem as the whole mass of the rocket is taken into account, englo-
bing fuel consumption and acceleration of the body (dependent on the varying mass of the rocket). The
control is developed on a simplified engine, with an algebraic relation between the mass flow injected
and the thrust produced.

While open-loop controllers are stable due to the LPRE stability, their performance is not sufficient
in most cases. First, the design of the open-loop controller requires a method, which is to be conducted
again for each operating point. When facing very low thrust levels or mixture ratio regulation, an open-
loop control method is insufficient. In addition, open-loop controllers are unable to deal with faults that
can occur in the engine. Therefore for precision and reference tracking, control methods have been
oriented towards closed-loop controllers. Such controllers enable to perform complex maneuvers for
throttlable engines, however may introduce unstable behavior in the system. And while robustness is
required in most designs, there is a lack in formal stability analysis in the approaches proposed.

Intelligent control systems, which consist of a superposition of control and diagnostics methods.
Here the mission control is integrated to the design, defining the requirements for thrust level and mix-
ture ratio online. A second layer of the controller performs the control action on the actuators. This
type of control makes use of multivariable control loops, to monitor and control multiple life-extending
parameters of an engine. In [22], model-based fault detection has been successfully integrated on a re-
presentation of the space shuttle main engine. The controller proves to be efficient in facing several
failure scenarios, validating the approach for life-extending control. In [23],[24], a cluster of three en-
gines is controlled. The control policy is to distribute the thrust requirements due to the health of all
three monitored engines.

Control strategies developed are considered for valve actuators. The main tendency is oriented to-
wards the control of the fuel mass flow to determine the main chamber pressure and the control of the
oxidizer mass flow to control the mixture ratio in the main chamber. In [17], the regulation loop is built
using PI controllers, where the oxidizer line has a faster controller than the fuel line. As the oxidizer line
is dedicated tomixture ratio control, it is designed to follow the fuel line and therefore requires a smaller
time response to avoid spikes in the mixture ratio caused by delays.

Another approach to life-extending control has been presented in [25], which is accomplished by
introducing a structural stability to prevent damages at the cost of performance. One of the main draw-
backs of intelligent control systems or life-extending policies, in general, resides in the computational
requirements of the optimal policy. Indeed according to [26], nonlinear optimization is key to minimizing
the damage to an engine.

Model predictive control approaches, developed in [27], [13] for the transient control of a reusable
engine, prove to be a powerful tool for optimal control policies. The approach relies on the determi-
nation of an optimal time frame for the prediction of the model behavior, and the cost function of the
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optimization which determines the objectives of the controller. In this sense, this optimization problem
offers more flexibility to the user, with the tuning of the cost function to determine the control policies.

In parallel to this work, control strategies have been developed in an ongoing thesis, which aims to
design a robust controller for the transient regime of an LPRE using neural networks-based controllers
[28, 29]. The reinforcement learning approach is developed for the control of the transient regime of
an LPRE. The control is computed after training a neural network on a proposed model and allows for
a controller with good performance. The author furthermore emphasizes the benefits of a reinforced
learning-based controller :

• Diversification of the objectives of the controller (the reward function used to define the objective
can be tuned by the user).

• Multiplicity of the considered variables of the physical system (provided the reinforced learning is
able to find a solution to the optimization problem defined by the variables).

• Robust to operating conditions.
Following from these conclusions, the reinforcement learning approach is a suitable technology for the
aerospace domain, as it allows for an accurate modeling of nonlinear dynamics, notably for fault detec-
tion [30]. However, this approach does not provide a proof of stability of the LPRE system.

1.3 . Stability of an LPRE state-of-the-art

While efficient and robust control laws have been designed for an LPRE system, validation of the
stability lacks mathematical demonstration. In [31, 32], the author proposes stable region computation
for the combustion chamber of an LPRE and frequency couplings between the different components
of an LPRE. This method requires frequency plots of the system and proves to be complex. Although
rocket engines are often considered stable systems, hence the multiplicity of open-loop controllers, the
need for a proper demonstration validating future control laws is required. In this section, the stability
requirements for an LPRE are presented. The definition of stability is briefly recalled in a first place, and
the objectives facing the problem statement are defined in a second time.

1.3.1 . Stability requirements
The notion of stability of the closed-loop controlled LPRE in a permanent regime is seldom evoked in

the literature. Indeed in a classical engine, the notion of stability is often associated with the coupling of
oscillations between the different phenomena (chugging, chamber instabilities). In this work, the notion
of stability concerns the coupling of the closed-loop controller with the engine. In the literature, proof of
the stability of the controller is often not required as the thrust requirement evolves in a narrow space
around the desired nominal thrust. In throttling engines, the engine is required to perform transitions
between operating points, leaving room for uncertainties and unstable behavior to disturb the functio-
ning of the engine. The validity domain of the evolution models for LPREs adds complexity to the study,
as the edges of the validity domain often prove to lose some representativeness of the states. To account
for this, stability requirements are introduced for a rocket engine.

In control theory, the stability of a system characterizes the ability of a system to remain within a
21



bounded domain of the state-space. This is often associated with the notion of convergence of the states
to a single point, and stability can characterize an operating point of the state-space.

Let an autonomous system, of state x ∈ Rn and non-linear vector function f : Rn → Rn and let f be
locally Lipschitz over a domain D ⊂ R,

ẋ = f(x). (1.1)
An equilibrium point x0 of the system (1.1) is defined such that

f(x0) = 0. (1.2)
Definition 1. An equilibrium point [33] is stable if for each ϵ > 0, there exists δ > 0 such that

||x(0)− x0|| < δ ⇒ ||x(t)− x0|| < ϵ,∀t > 0. (1.3)
Conversely, an equilibrium is said to be unstable if property (1.3) does not stand. This definition of

stability characterizes a region of the domain D, where an autonomous system remains at all times.
Such characterization of stability is insufficient for the study, as oscillations of the system are not consi-
dered unstable behavior according to this definition. The stability definition aimed for the LPRE study is
asymptotic stability.
Definition 2. An equilibrium point is asymptotically stable [33] if it is stable and

∃δ > 0, ||x(0)− x0|| < δ ⇒ lim
t→∞

x(t) = x0. (1.4)
In this case, the solution x(t) is said to converge asymptotically to x0.

This definition of stability is more suitable for a non-linear system, as it contains the requirements
of the study : the convergence of the solution to the equilibrium of the system, and the stability of the
system.
Definition 3. The region of asymptotic stability [33] (also called region of attraction) is the set of all points
x̂ in D such that the solution of ẋ = f(x) for initial condition x(0) = x̂ is defined for all time t > 0 and
converges to the equilibrium x0 when t tends to∞.

The equilibrium x0 is globally asymptotically stable if the region of asymptotic stability is the whole
space Rn.

More powerful definitions of the stability of an equilibrium are available in the literature, such as the
exponential stability of an equilibrium.
Definition 4. An equilibrium point x0 is exponentially stable [33] if

||x(t)− x0|| ≤ k||x(0)− x0||e−λt,∀t > 0 (1.5)
with k ≥ 1, λ > 0, for all ||x(0)|| < c.

where c is a constant that defines the radius of the region of exponential stability.
Stability analysis of a system often relies on the Lyapunov theorem [33],
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Theorem 1. Lyapunov If there exists a continuously differentiable positive definite function V (x) such
that V̇ (x) is negative semidefinite, then the origin of the system is stable. If V̇ (x) is negative definite,
then the origin is asymptotically stable.

The definition of the Lyapunov function characterizes the equilibrium corresponding to the origin of
the system. For a different equilibrium, the definition holds, if the minimum of the Lyapunov function
is V (x0). Finding a Lyapunov function for a system is a sufficient condition to assert the stability of the
system. Since there is no general method that yields a Lyapunov function, failure to retrieve such a
function does not imply instability.

For a non-autonomous system,
ẋ = f(x, u) (1.6)

where u ∈ Rp is the controller and f : Rn × Rp → Rn. The notion of stability for a controlled system
requires taking into account the controller action. The equilibrium of a system is expressed for a couple
(x0, u0). In order to introduce the controller action in the stability equation, the notion of passivity of a
system is introduced.
Definition 5. A system

ẋ = f(x, u)

y = h(x, u), (1.7)
is dissipative with supply rate w(u, y) if there exists a storage function S(x), S(0) = 0, such that for all x,

S(x) ≥ 0 and S(x(T ))− S(x(0)) ≤
∫ T

0
w(u(t), y(t)). (1.8)

Definition 6. A system is passive if it is dissipative with supply rate w(u, y) = u⊤y. If the storage function
S is differentiable, then the equation (1.8) for a passive system can be written,

Ṡ(x) ≤ u⊤y. (1.9)

If the system (1.7) is passive with a positive storage function S(x), then the equilibrium ẋ = f(x, 0) is
stable. A strictly passive system is defined by the following storage function

Ṡ(x) + ψ(x) ≤ u⊤y. (1.10)
where ψ is a positive definite function. If the system (1.7) is strictly passive, then the equilibrium ẋ =

f(x, 0) is asymptotically stable.
In this thesis, proof of asymptotic stability of an equilibrium x0 of a closed-loop controlled LPREmodel

is sought.
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x1
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x2

Uncertainty zone

Figure 1.2 – Stability during a transition between operating points

1.3.2 . Point-based stability
Stability analysis of a system, according to the previous definitions, is driven relative to an equili-

brium point of the system. Such analysis studies the convergence of the solutions for initial conditions
of x. In the case of an LPRE, asymptotic convergence of the system to different equilibria defined by
the controller is enough to ensure stable transitions between operating points. This can be performed
by analysis of an increasing number of operating points so that the attraction regions overlap. A stable
transition from one operating point to another can be performed when the initial condition is situated
in both attractors (the initial and the target attraction regions). Such a method is applicable for discrete
inputs, with a succession of operating points that the system must follow. In this case, to ensure the
stability of the system, the initial condition x[n] must be in both the attraction region of the n + 1 tar-
get point and the one of n the point of the reference. For a time-continuous reference, it is therefore
necessary to discretize the input in order to study the evolution of the attraction region of the system.
This can be performed by choosing a sufficient number of operating points such that attractors can be
defined and fulfill the conditions. In figure 1.2, the transition between two operating points x1 and x2 isillustrated. If the attractors defined around the operating points have no intersection, then an uncertain
region appears, where no stability proof is available.

An alternative to this is to introduce the notion of convergence of a trajectory and consider the flow
of trajectories of a system. Such analysis is performed in chapter 5.

1.3.3 . Review of stability analysis methods in rocket engines
Previous to this work, Sergio Pérez-Roca [13] developed an analysis and control on the transient be-

havior of the state-space of an LPRE. The author developed an MPC-based control for robust control of
the transient behavior of a rocket engine, paired with an analysis of the stability of the engine. The analy-
sis has emphasized the difficulties of obtaining a Lyapunov function for the complex nonlinear behavior
of the system.

The stability analysis and design of a stabilizing controller is seldom performed, and the stable beha-
vior is proven by simulations of the system. Analysis of the stability is seldom proposed in the literature,
in [34], the author derives the state space responses for a variable thrust engine, with a pressure-fed
actuator. However, no formal stability guarantees are derived. In [35], the author proposes a stabilizing
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control design for combustion processes in LPREs, with validation of the stable behavior through simu-
lations.

In linear modeling of an LPRE, stability analysis can be derived from the poles of the transfer function
[13]. However, extension of the results to a non-linear model proves to be difficult, as few references are
available. A common approach for non-linear systems relies on the definition of a Lyapunov function,
which proves the stability of the system around an equilibrium. As stated in [13], derivation of a Lyapunov
function for such complex non-linear systems proves to be very difficult in a direct approach, due to the
lack of methodology to find a Lyapunov function. An alternative that relies on the physical interpretation
of the system is the passivity of a system. Formal stabilizing designs have been proposed,mainly through
the use of a passivity-based controller [36, 37]. As the rocket engine constitutes a combustion system,
which consumes propellants to produce a thrust, the notion of passivity of the system is a suitable ap-
proach for stability analysis. Although the latter has been proven for several subsystems used in a rocket
engine, the formal proof of the passivity of an engine is lacking in the literature. Passivity analysis of sys-
tems that present similar properties to that of an engine has been driven, for example in [38] for a class
of chemical reactors. The passivity of the system is proven by an entropy production approach, resulting
from the chemical reaction that occurs. In [39], a Lyapunov function-based controller is derived for a
turbocharged diesel engine, which in design resembles a simplified and less powerful rocket engine. A
passivity analysis of a full re-entry body, using a gliding strategy is provided in [40]. The author shows that
while passivity conditions are not met in the whole considered domain, a simple feed-forward controller
allows it to fulfill the passivity requirements. In the field of LPREs, the mass flow regulation for an LPRE
has been studied in [41], where the regulation of the flows in the feeding lines of an LPRE is performed
using a passive controller. While these approaches lack validation on a rocket engine, they provide useful
insights on the method to be carried on a rocket engine to analyze the passivity of the system.

1.3.4 . Review of classical perturbations and instabilities

When studying the stability of a system, it is necessary to derive the main perturbations and insta-
bilities dealt with in the considered system. Although many phenomena are neglected in the approach
chosen, due to the high frequencies of said phenomena, robustness requirements are derived from the
perturbations mentioned in the literature. A thorough study of combustion instabilities is proposed in
[42]. According to this source, the main combustion instabilities rely on oscillations of thermo-acoustic
modes in the combustion. For smooth combustion, such oscillations should not exceed 5% of the cham-
ber pressure value. Such oscillations can lead to mass flow perturbation, and reflect on the rest of the
system. Similarly in [43], the author derives simulations for the modeling of combustion instabilities
and the results show a variation of 6% of the pressure value. As combustion instabilities depend on the
geometry of the nozzle, the propellants used and the injector properties, several relevant pieces of the
literature can be mentioned.

A second source of instability of an engine is engine failures, which are not considered in this thesis.
When dealing with down-throttling, another source of instability relies on the different elements,

operating lower than for their nominal design. A comprehensive review by [7] describes the loss of per-
formance in certain components and changes in behavior. The loss of efficiency of certain components
can hardly be illustrated in a steady-state, but can be a source of instability under a certain threshold.
For example, the author in [7] describes injector components that suffer a high drop in performance
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under 20% of the nominal value, leading to a sharp decrease in combustion efficiency.
Most of the perturbations in this work will be illustrated with the addition of noise to the chamber

equations. In 2, a closer insight into themodeling hypothesis and phenomena taken into account is given.

1.4 . Summary and answers provided

In the wake of reusable rockets, the design of rocket engines and technological requirements have
shifted to the ability to perform efficiently for a wide range of thrust variations. The control laws built to
satisfy the mission requirements have consequently increased in complexity, and the need for optimal
control has led to several new technologies being introduced. However, the down-throttling of an engine
introduces new perturbations and uncertainties in the engine’s functioning, leading to the need for ro-
bust and stable control. While robust control laws have been designed to face perturbations, the analysis
lacks formal proof of the stability of the engine, and stability is often proved in simulations, or assumed
around the functioning points considered. The proof of the stability of an engine is a powerful tool that
enables new control laws to emerge, under the guarantees provided by the stability of the engine. Va-
lidation of a controller can be performed using the initial properties of the engine, and understanding
the limits of the modeling are all important consequences of the initial stability analysis.

In this thesis, we aim to provide a better understanding of the stability of the engine. While stability
proof is often performed by the derivation of a Lyapunov function, it is shown that the complexity of the
state-space model makes it no easy task [13]. In chapter 2, the state-space modeling of an LPRE is pre-
sented. This state-space is designed using non-linear equations for the behavior of the components in
a GG cycle of an LPRE. The limitations of the state-space analysis render the direct approach to stability
cumbersome (for example finding a Lyapunov function) and therefore this work proposes a new formu-
lation of the dynamics of the engine, more adapted to the stability analysis under Port-Hamiltonian form
[44], in 3. This reformulation provides insights into a formal proof of the passivity of the LPRE system,
and the design of a passivity-based controller following the new reformulation is proposed. Such proof
provides the asymptotic stability of the system, but faces the issue mentioned in 1.3.2, to assert stability
over a trajectory. To address this, a second analysis using contraction theory [45] focuses on the stability
of the LPRE facing a reference trajectory in chapter 5. In chapter 6, the comparison between the mo-
deling approaches is provided, and simulations of the controllers show the stabilizing properties of the
different approaches.
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2 - State-space model of an LPRE

This chapter describes the state-space model of an LPRE. This model will be used for the simulations
described in the next chapters. A model for the transient behavior of an LPRE was developed in Sergio
Perèz-Roca Ph-D Thesis [13]. It is used as a basis for the current model which aims at representing the
permanent regime. The set of physical equations is thus unchanged but some simplifications are made.

The description of the considered engine is given in Section 2.1, where the hypotheses formulated are
listed, and the main differences with a transient modeling are emphasized. In Section 2.2, the physical
equations for each component are detailed. A simplified and a complete model are described in Section
2.3. An analysis of the limitations of the description in state-space form is provided in Section 2.4.

2.1 . Modeling of a reusable LPRE in permanent regime

The engine used for a reusable launcher must be able to achieve the variations of thrust required
during the powered landing of the rocket’s first stage. The engine considered in this thesis consists in
a liquid-propelled rocket engine with a gas-generator cycle, regulated using electrical actuators. The ac-
tuators consist of valves whose openings modify the mass flows in the feeding lines. The valves respond
to an electrical stimulation from the on-board control devices. During the landing phase of the stage, the
combustion is already established in the different chambers, and the engine is in a permanent regime.

This section describes the cycle of a gas generator LPRE, and details the hypotheses and differences
with a transient modeling.

2.1.1 . Description of the gas-generator cycle
The engine considered in this thesis is inspired by [13]. A rocket engine propels the body of the rocket

by providing a high thrust. The thrust action results from the ejection of matter through the nozzle at
hyper-sonic speeds. The conservation of the quantity of movement allows the body of the rocket to
be propelled by the counteraction of the ejected gas. To this end, the rocket engine features a main
combustion chamber, whose aim is to create high-pressure gases with the combustion of both fuel and
oxidizer in the chamber. The ejected gases are composed of the products of the chemical reaction and
unburned species. In the following, the components allowing to obtain a high pressure in the combustion
chamber are described.

First, the fuel and oxidizer chosen for this study are liquid hydrogen (LH) and liquid oxygen (LO). The
two propellants are fed to the system using two distinct tanks, that provide an initial storage pressure
to the propellants. Contrary to simple cycles that rely on the pressure provided by the tanks, the gas-
generator cycle aims to increase the tank pressure with the use of turbopumps. To this end, two turbo-
pumps are placed at the outputs of the tanks in the cycle providing an increase of pressure in the feeding
line of the cycle. To power the turbopumps, the cycle makes use of a gas-generator, which consists of
a secondary combustion chamber that aims to propel the turbopumps. A portion of the propellants in
the feeding line is redirected to the gas-generator, to be burned. The hot gases hereby produced are
redirected in both turbines and provide the necessary torque for the functioning of the turbopumps.
The hot gases are then ejected in the turbine exhaust directly into the ambient atmosphere.
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Figure 2.1 – Representation of the gas generator cycle

The main combustion chamber is the receptacle of the combustion, expansion, and temperature in-
crease of the species in the reacting chamber. The propellants are fed to the reacting chamber through
injectors, which aim to the scattering of the propellants, to obtain a homogeneous mixture of fuel and
oxidizer and optimize the chemical efficiency. Moreover, the injection results in a pressure drop in the
line, that prevents the mass flows from reversing as the injection pressure is lower than the turbopump
outlet pressure. The high temperature in the main combustion chamber requires the addition of a rege-
nerative circuit. It consists of the hydrogen line circulating around the chamber’s walls to transfer heat
and prevent damage to the engine.

Six propellant lines are considered in the modeling, summarized in table 2.1. The mass flows with the
subscriptH consist in liquid hydrogen, while the subscript O denotes liquid hydrogen. Note that for the
turbine mass flows qtu,•, the composition of the mass flow is burned gas.

To describe the evolution of the combustion that takes place in the main combustion chamber, it
is necessary to obtain the ratios between the different reactive species in the chemical process. To this
end, the mixture ratioMR is introduced for both chambers (MRcc andMRgg), defined byMR = qO

qH
for

both chambers, where qO, qH are the oxygen and hydrogen mass flows entering the chamber.
Each propellant line mass flow is powered by the difference between the upstream and downstream

flow pressures. To model the evolution of the mass flows over time, the following pressures are consi-
dered, represented in figure 2.1 : the main chamber pressure (pcc), the gas generator pressure (pgg) andthe turbine input pressures (ptu,H ,ptu,O). Additionally, the tank pressures (pep,H ,pep,O) and the pressure atthe outlet of the turbopumps are considered (pip,H ,pip,O) in the modeling. Note that the pressure outlet
is different from the pressure increase∆pip,• with the relation pip,• = ∆pip,• + pep,•.The system is controlled using five distinct valves,

• Vgg,H ,Vgg,O regulate the mass flows inputs of the gas generator qgg,H , qgg,O, by changing the equi-
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Massflow Function Upstream Downstream Valvepressure pressure associated
qcc,H Feed the main combustion chamber pip,H pcc Vcc,H

qcc,O Feed the main combustion chamber pip,O pcc Vcc,O

qgg,H Feed the gas-generator pip,H pgg Vgg,H

qgg,O Feed the gas-generator pip,O pgg Vgg,O

qtu,H Feed the Hydrogen turbine pgg ptu,H None
qtu,O Feed the Oxygen turbine pgg ptu,O Vhg

Table 2.1 – Description of the different considered mass flows q•
valent resistance Zvalve =

1
2ρA2

valve
whereAvalve is the opening surface of the valve. This equivalent

resistance denotes the friction induced by the valve in the mass flow equation detailed later in
(2.19).

• Vcc,H ,Vcc,O regulate the mass flows input of the main combustion chamber qcc,H , qcc,O, similarly to
the gas generator valves.

• Vhg aims to regulate the flows of hot gases between the different turbines qtu,H , qtu,O, distributingthe power to both turbopumps.
The control action of the valves in the LPRE aims to regulate the thrust of the engine. While not used

in the state-spacemodel, the thrust of the engine is directly computed from themain chamber pressure,
F = qoutIspg0 (2.1)

where Isp is the specific impulse of the engine in a vacuum, g0 is the standard gravity acceleration and qoutis the outputmass flow of the engine (ejectedmatter), that is computed in the component formulation in
(2.22). The ejectedmatter flow qout is computedusing the chamber pressure, leading to the reformulation,

F = CF pccAth (2.2)
where CF is the thrust coefficient, Ath is the throat area. In the following of this work, the goal of the
controllers established will be to regulate the main chamber pressure pcc which is analog to the thrust
as shown in (2.2).

In order to give an insight on the orders of magnitude of the different variables described, table 2.2
represents the operating data of a liquid-propelled rocket engine taken from [13] are presented. This data
will be mentioned in this work as a reference for the orders of magnitude between variables. Typically,
the conditioning of matrices derived from the state space provided in 2.3 will be described through this
data.

2.1.2 . Physical considerations and hypotheses
Differences with a transient model

In this thesis, the focus of the stability analysis is on the permanent regime of the rocket engine. In
this sense, it differs from themodel in [13] as new simplifications and hypotheses can be formulated. In a
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Variable ValueChamber mixture ratioMRcc 6Gas generator mixture ratioMRgg 1Thrust F (ground) 815kNChamber pressure pcc 100barGas generator pressure pgg 87barChamber temperature Θcc 3500KGas generator temperature Θgg 1000KHydrogen turbopump rotational impulse ωH [28500, 36000]rpmOxygen turbopump rotational impulse ωO [11000, 14800]rpm
Table 2.2 – Example of steady-state operating data [13]

start-up transient, an additionalmass flow starts the ignition in the gas generator which is not featured in
this work. Indeed, during the start-up, it is necessary to initiate the rotation of the turbopumps and flow
the fuels to the combustion chamber to pursue the chemical reaction. During the permanent regime,
however, this input in the gas generator is not used, as the combustion is already set and running.

The valves controlling the mass flows in the main combustion chamber lines do not change position
during a permanent regime as their purpose is to redirect the propellants in the gas generator during
the system ignition. Both valves Vcc,H , Vcc,O are therefore considered of constant value.

The temperature mainly depends on the mixture ratio of the considered combustion chamber, in a
permanent regime, and for a good regulation of the mixture ratio (i.e. the mixture ratio has a very small
range of variation), the temperature variations can be neglected in the main combustion chamber.

The domain of the study is greatly affected by the validity of the approximations used for the dif-
ferent components (see 2.2.1). The components provided are not valid for low thrusts and therefore it is
necessary to adapt the considered range of variation. In this thesis, we consider a domain of functioning
between 100% and 150% of the states’ nominal values, corresponding to the steady-state of the engine.
Simplifications and hypotheses

The functioning of the main combustion chamber is simplified by considering that the design has
been performed to drastically reduce the instabilities in the combustion. Combustion instabilities mainly
originate from the thermo-acoustic shock waves produced during the combustion. These waves mani-
fest in the combustion pressure by introducing oscillations that can range to 5−7% of the pressure value
pcc depending on the design of the chamber ([42, 43]). Higher frequency phenomena originate from the
injectors, with the scattering and mixing of the species in the chamber. The components are supposed
well designed so that such phenomena do not occur. Chugging, cavitation, andwater hammer surges are
in thismodel neglected as in other simulations [13, 51, 52] and the system is considered well mechanically
designed to avoid such phenomena in the lines. In general, high-frequency phenomena (when compa-
red to the actuators > 10Hz) are considered out of the scope of this work, and the thermo-acoustic
oscillations are represented with the addition of noise on the chamber temperature in 6.

One of the main hypotheses of the system is the simplification of the thermodynamic parameters
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such as the specific heat ratio γ or the heat capacity at constant volume Cv. The chemical reaction is
also simplified by considering the efficiency of the reaction constant and equal to 1. This implies that
all reactive species are consumed (until the stoichiometric ratio). Additionally, the fractions of species
created in the chemical reaction are supposed constant, neglecting combustion instabilities. Finally, the
effect of the cooling circuit on the combustion temperature is neglected, from the chamber perspective
only. This simplification has been compared with a more complex state-space in [13], and illustrated a
difference of behavior in the transient phase of the engine, mainly on the mass-flow behavior (which
varies around 5% of the real value). However, the effects on the permanent regime are negligible as the
author in [13] registered a less than 1% difference in the final value of the transient simulation.

All fluids are presumed to follow the perfect gas law (2.9). Additionally, the liquid propellants in the
feeding lines (qcc, qgg) are considered of constant density ρ. Note that this hypothesis only concerns thefeeding lines and not the hot gas line, where the density varies with the pressure in the gas generator.
The regenerative circuit is simplified and is represented with an increase in the temperature of the fuel
LH2, and a resistive term in the mass flow equation. Indeed in [53], a RANS-based numerical simulation
of a combustion chamber is proposed, to model the heat flux circulation in the regenerative circuit of an
LPRE. The main result shows that the heat flow have a strong impact near the cooling walls, with a low
impact on the overall flow.

The fluid tanks in the LPRE are considered ideal in the state-space equations. Such a hypothesis
implies that the pressure delivered by the tanks does not vary over time (in practice, this pressure varies
due to the acceleration of the stage, however is measurable, which allows to mitigate the impact on the
system), and is considered constant. The tanks are therefore considered an infinite pressure reservoir,
with the pressure pep. In practice, the fluid tanks’ pressure pep,• is maintained by pressurized Helium [52].
The small variations of the tank pressure [54] has a very low impact on the system, as shown in 6.1.5,
where a variation of 10% in the tank pressure pep,• results in a variation of 0.2% for the chamber pressure
pcc.

2.2 . Components modeling

The different equations considered in the model are regrouped around the corresponding com-
ponent. This allows to encapsulate the different physical domains covered by the individual compo-
nents of the engine. Additionally, themodel is simplified in a first approach, by considering only a certain
amount of physical components. In this section, the physical equations that dictate the component’s be-
havior are described. The modeling of the components follows the equations described in [13], and are
recalled here.

The conservation equations used in the determination of the system state-space are the following
• The conservation of mass, written in (2.3).
• The conservation of momentum, in (2.5).
• The conservation of energy, in (2.6).
• The conservation of kinetic momentum, in (2.8).
The general form of the conservation of mass equation in a flow is,

∂

∂t

∫
V
ρdV +

∫
A
ρ.(n⃗.v⃗)dA = 0, (2.3)
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where V is a control volume,A is a control area, for instance, the area of the pipe in which the considered
flow circulates, n⃗, v⃗ are respectively the normal vector to the area and the flow velocity and ρ is the density
of the fluid. Equation (2.3) is applied to constant-volume cavities, for a pipe with a constant area and is
rewritten,

V
dρ

dt
= qin − qout (2.4)

where qin, qout are the input and output flows of the cavity. In particular, this expression is used at the
intersection between the GG and CC lines. Indeed to describe the relation between the flow through the
pump and both flows in the GG and CC line, the conservation of mass is used (2.4). As the density ρ of the
fluids is considered constant in the lines, the input and output flows are equal. The mass flow circulating
in the turbopump is then the sum of both mass flows in the split, qcc + qgg.The general form of the conservation of momentum is expressed

∂

∂t

∫
V
v⃗ρdV +

∫
A
v⃗ρ.(n⃗.v⃗)dA = 0. (2.5)

The conservation of energy is written,
∂

∂t

∫
V
eρdV +

∫
A
eρ.(n⃗.v⃗)dA = ψ. (2.6)

where ψ is the heat transferred to the closed system under consideration, e is the energy per unit of
volume. To apply this equation to the combustion chambers, the following formulation is used in [55],

d

dt

(
pV

γ − 1

)
= hinqin − houtqout + ψ, (2.7)

where h is the enthalpy per unit of mass of the considered flow. In the scope of this thesis, the heat
transfers through the walls are neglected in combustion chambers, therefore the heat term ψ is neglec-
ted in this approach. Note that for the expander cycle, for example, such a term is not negligible as it is
responsible for fluid expansion and therefore propels the turbines.

Finally, the conservation of the momentum is written,
dω

dt
=

1

J

∑
i

Ti, (2.8)

where J is the kinetic inertia of the pump, and Ti are the different torques applied to the considered
system (see 2.2.1,2.2.1).

Additionally, consider the perfect gas equation
p = ρRT (2.9)

In the following, the description and equations of the different components are provided, deriving
from the physical equations presented.
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2.2.1 . Pumps modeling
Motopumps modeling

A motopump is an ideal component that provides a pressure increase from an energetic input from
the exterior of the system. Here the considered motopump delivers a pressure increase in the fuel lines
from an input in the form of a torque (Tm) or a power (Pm). The behavior of such a system is complex to
model as it implies both the mass flow of the fluid in the line and the rotational speed of the pump. The
component behavior is described using two equations, the formulation of the pressure increase in the
line∆pip and the resistive torque Tr resulting from the energy transfer from the pump to the fluid. Each
equation corresponds to a polynomial description of the considered term (∆pip or Tr) provided by the
manufacturer [13], and is recalled here. The equation of the resistive torque from the pumped fluid is,

Tr = |ac
ρ
q2cc + bcqccω + ccρω

2|, (2.10)
where the coefficients ac, bc, cc are given by the constructor. With the considered range of variations of
the parameters (100% − 150% of nominal value), the torque equation (2.10) does not become negative,
and for simplification, the absolute value is suppressed in the following equations. Similarly, a second
polynomial function is given for the pressure increase∆pip,

∆pip =
ap
ρ
q2cc + bpqccω + cpρω

2. (2.11)
The polynomial function denoted in (2.10) paired with the conservation of the kinetic momentum (2.8)
leads to the evolution of the rotational speed of the pump,

ω̇ =
1

J
(Tm − Tr) , (2.12)

where the motor torque is given as the input.
Remark 1. The motopump component requires an input torque or power, originating from another
component on board the rocket. In practice, the component supplying the required torque (resp. power)
is the turbine (with some exceptions such as in [56], which considers electro-pumps), which is propelled
with the exhaust gases of the GG. In this case, as the torque generation (resp. power) is decided by
the user, it supposes the existence of a perfect storage of torque (resp. power). In fact, one could see
the motopump as the ideal gas-generator. Such an ideal gas-generator would provide the exact torque
desired by the user, yielding an energetic input for regulation purposes.
Turbines and turbopumps

The turbine’s main function is to provide a motor torque for the pump, Tm. The equation of Tm is
constructed using constructor data. First define a reduced rotational speed NR,

NR =
ωdtu√
γRΘgg

. (2.13)
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where dtu is the diameter of the turbine. The reduced rotational speed is used to build a polynomial
approximation of the data provided by the manufacturer [13], corresponding to a regression using 8
coefficients that approximate the specific torque of the turbine,

ST = (a1 +NR(a2 +NRa3) + πtu(a4 + πtua5) + a6πtuNR + a7 lnπtu + a8 lnNR).Corr (2.14)
where the a1, ...a8 are constant coefficients determined by subsystem tests, and πtu is the pressure ratiobetween the inlet and outlet of the turbine. As both pressures are computed using the choked equa-
tion (2.22), this ratio can be computed with the ratio between both the turbine inlet and outlet areas
πT = Atu

Atu,outlet
, leading to a constant value. The approximation here concerns the validity of the choked

equation for the turbine intake. As described in [13], the design of hot lines in a gas generator features
small areas, to maximize the expansion of the hot gases in the turbine, justifying the use of the choked
equation.

The work of the mass flow on the turbine is given by
W = qout

√
γRΘgg

γ − 1
(1− π

1−γ
γ

tu )dtu (2.15)
where the mass flow qout is computed with the choked equation (2.22),

qout =
ptuAtu

γ

√
RΘgg

γ
(

2

γ + 1
)
− γ+1

γ−1 . (2.16)
This equation can be used in the case of supersonic turbines, which is the case here. Again, a different
cycle will lead to a different equation and considerations. Finally, the motor torque equation is given by,

Tm = ST.W (2.17)
In the following, the fact that the equation for the leaving mass flow qout is linear in the pressure is

used, and the expression for the motor torque is denoted by
Tm = ptuST (ω)wtu (2.18)

where wtu = Atu
γ

√
RΘ
γ ( 2

γ+1)
− γ+1

γ−1 .
2.2.2 . Lines modeling

The modeling of the behavior of the fluid in the lines is expressed through the evolution of the flow
through the pipe. The flow originates from the pressure difference between the pressure upstream and
downstream in the line. Additionally, elements along the pipe that compose the line induce a resistive
term in themomentum conservation equation. Equation (2.5) is used in the lines’ expression as in [90,96],
since the area and length of the pipe are constant,

q̇ =
A

L
(pin − pout − Zresq|q|) , (2.19)

where L is the length of the line, and Zres is the equivalent resistive coefficient of the line. The term L
A is

the inertia of the line and will be noted Iline. The resistive terms are expressed under a single term Zres
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in the momentum conservation (2.19). The different resistive elements originate from the resistance of
the pipe itself Zpipe (considered given by the manufacturer), the resistance of the injector of the com-
bustion chamber at the end of the pipe Zinj and the valve equivalent resistance Zvalve (see 2.2.6). As
resistive terms are expressed under the same form Zres|q|q, the different resistive terms are regrouped
in the evolution equation Zres = Zpipe + Zinj + Zvalve. For the main chamber hydrogen mass flow only,
the regenerative circuit introduces an additional resistive term Zregen. The inertia of the line Iline = L

Adepends on the opening area of the valve (detailed in 2.2.6). By notation abuse, the resistive term will
be written Zresq

2 since the considered domain solely contains positive mass flows. As an example, the
evolution of the main chamber hydrogen mass flow qcc,H is expressed

q̇cc,H =
1

I

(
pip,H − pcc − (Zpipe + Zinj + Zvalve + Zregen)q

2
cc

)
. (2.20)

2.2.3 . Main combustion chamber modeling
The pressure evolution in the main combustion chamber is due to two main physical phenomena :

the contribution in terms of kinetic energy from the enteringmass flows in the chamber and the pressure
increase to the combustion and creation of new species in the chamber. On the other hand, the dissipa-
tion of the energy is due to thematter leaving the chamber with the ejection of the hot gases through the
nozzle, and the heating of the species entering the chamber, before their ignition. The evolution model
of the pressure is taken as in [13].

First introduce the pressure variations due to the kinetic energy variations,
(γout − 1)

Vg

(
γinpcc

(γ − 1)ρin
+
Cv,inpcc(γin − γout)

Cv,outρcc(γout − 1)2

)
qin − pccγout

Vgρc
qout (2.21)

where Cv denotes the heat capacity at constant volume of the mixture. qout designates the output flowof the chamber, and is computed in permanent regime using the choked equation [57],
qout =

pcAth√
RΘcc
γout

(
2

γout+1

)− γout+1
γout−1

(2.22)

The variation due to the creation and consumption of species follows,
(γout − 1)

∑
mixture

(υhf,i −
γoutpcc

(γout − 1)ρc

∑
mixture

(
Cp,i

Cp,out
− Cv,i

Cv,out

)
υi), (2.23)

wherehf,i is the formation enthalpy of the associated specie andCv denotes theheat capacity at constantpressure. υ designs the variation rate of each species per unit of volume denoted in [13]. Such variation
rate solely depends on the mass flow and the mixture ratio. The subscript i is used in sums to denote
one of the species considered (fuelsH2, O2 or productH2O). The term mixture denotes all the different
species contained at a time t in the chamber, injected species areH2 andO2, and created species containall combustion products. The subscript "in" therefore denotes only injected species, while the subscript
"out" denotes created species and unburned fuel.

Finally, the variation originating from the heating of the injected species is expressed as,
(γout − 1)

Vg

∑
injected

(Cp,outΘvap,i − (Lv,j + Cp,i(Θvap,i −Θin,i))) qin, (2.24)
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where Θvap denotes the vaporization temperature of a specie, Lv,j is the vaporisation heat of a specie.Equations (2.21), (2.23) and (2.24) are summed to obtain the total evolution of the chamber pressure
pcc. The three equations can be simplified when taking into account the constant nature of the thermo-
dynamical terms and the permanent regime character of the chemical reaction. The different terms can
be regrouped by first-order Taylor expansion [13] of the expression into,

ṗcc = (k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc
√

Θccpcc. (2.25)
Remark 2. Noticing that both mass flows qcc,H , qcc,O are multiplied by the same term in (2.25), it is pos-
sible to substituteMRccqcc,H = qcc,O in the pressure pcc equation. Thus pcc only depends on qcc,H provi-
ded the value of the mixture ratioMRcc is known. This substitution is used in the following chapters bysupposingMRcc = 6, to consider only the hydrogen line and simplify the system.

2.2.4 . Gas generator chamber modeling
The model of the gas generator chamber pressure pgg is based on the same equations as the com-

bustion chamber pressure pcc,
ṗcc = (k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc

√
Θccpcc.

The modeling of the gas generator follows the same equations as the main combustion chamber in
2.2.2, with the additional consideration that the mass flow leaving the cavity is modeled using the sum
of both hot gas mass flows qout,gg = qtu,H + qtu,O,

ṗgg = (k4gg + k5gg + (k2gg − k1gg)Θgg)(qgg,H + qgg,O)− k3gg
√

Θgg(qtu,H + qtu,O). (2.26)
Note that the pressure pgg does not directly appear in the evolution equation. It is also necessary to
modify the expected value for the mixture ratio. Indeed, the temperature tolerated in the gas-generator
is lower than the temperature in the main combustion chamber. The desired mass flow is therefore
chosen asMRgg = 1.

2.2.5 . Turbine pressures modeling
The evolution of the turbine pressure is also based on the combustion chamber equations. Indeed,

the turbine intake represents a cavity in which the pressured hot gases leaving the gas generator cham-
ber expand and propel the turbine. In this sense, since this expansion involves no combustion, the pres-
sure evolution only follows the kinetic contribution of the hot gases,

γoutRTGG

Vturbine
qin − ptuγout

Vgρc
qout

where Vturbine is the equivalent volume of the turbine intake. The formulation of the turbine pressure
evolution then follows,

ṗtu,H = k2tu,HΘggqtu,H − k3tu,H
√

Θggptu,H (2.27)
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2.2.6 . Valves modeling
Valve components act as control surfaces for themass flow regulation.We first describe the behavior

of the valves situated in the lines Vgg,H , Vgg,O, Vcc,H , Vcc,O. The last valve Vhg ’s conception differs from
the line valves since it is designed to redirect hot gases in the turbines. Although the resistive equation
defined by both valve types ((2.28), (2.29)) are similar, the hot gas needs additional computation to include
the varying density of the hot gases.

The main effect of a line valve is to modify the value of the resistive term associated Zvalve. Let thearea of a valve Av , then the equivalent valve resistance is expressed as
Zvalve =

1

2ρA2
v

. (2.28)
Additionally, the valve component dictates the inertia of a line under the form Iline =

Av
L .

The alternative valve used in thehot gas line ismodeledusing the same resistive effect, withZvalve,hg =
1

2ρhgA
2
v,hg

. However, while the density can be reasonably considered constant in the feeding lines of the
engine, the hot gases do not verify such a hypothesis. To represent the variations of the hot gas den-
sity ρhg , the perfect gas equation is used. The density is then a function of the pressure, leading to the
resistive term

Zvalve,hg =
RTgg

2pggA2
v,hg

. (2.29)
This dependency in pgg is valid only for strictly positive GG pressure, which is the case in the scenarios
accounted for in this thesis. In the case of the transient behavior in [13], the additional mass flow used
to start the gas generator allows to set a positive minimum for pgg.

Note that the dynamic evolution of the valve itself is not modeled, and the variation ofAv is conside-red instantaneous, as this is a control parameter for the regulation of the engine. The same considera-
tions apply to the equivalent resistive coefficient Zvalve. To model the valve actuator more realistically,
an introduction of their dynamics is proposed in 3 with a second-order model,

Äv = −2ξw0Ȧv − w2
0Av, (2.30)

for ξ = 0.7 and the pulsation w0 = 25rad.s−1.

2.3 . State-space models

In this section, the state-space models that will be considered in this thesis are presented. Two se-
parate space-state models have been developed in the scope of this thesis. A first, simplified model that
does not feature the gas-generator part has been built to propose a first design for the control methods
applied in the next chapters 3, 5. The method can then be generalized to a complex model, that takes
into account the gas-generator elements of the LPRE. The extension of the method often requires addi-
tional considerations and conditions, highlighting the impact of the gas generator on the difficulties of
analyzing the stability.
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Figure 2.2 – Simplified state-space cycle under study
2.3.1 . Simplified model

The first model considered contains 5 states, as it only takes into account one hydrogen line and
one oxygen line. It uses both mass flows for the combustion chamber qcc,H , qcc,O, the main combustion
chamber pressure pcc and the rotational speed for both motopumps ωH , ωO. The gas-generator part ofthe model is supposed ideal and the motor torques Tm,H , Tm,O in the rotational speed equations (2.12)
are the inputs of the system. The simplified model cycle is recalled in figure 2.2.

ω̇H =
1

JH

(
Tm,H −

∣∣ac,H
ρH

q2cc,H + bc,HωHqcc,H + cc,HρHω
2
H

∣∣)
q̇cc,H =

1

Icc,H

(
pep,H − pcc + (

ap,H
ρH

− Zres,H)q2cc,H + bp,HωHqcc,H

+ cp,HρHω
2
H

)
ω̇O =

1

JO

(
Tm,O −

∣∣ac,O
ρO

q2cc,O + bc,OωOqcc,O + cc,OρOω
2
O

∣∣)
q̇cc,O =

1

Icc,O

(
pep,O − pcc + (

ap,O
ρO

− Zres,O)q
2
cc,O + bp,OωOqcc,O

+ cp,OρOω
2
O

)
ṗcc =(k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc

√
Θccpcc (2.31)

For a power input Pm, the rotational speed ω equation (2.12) expresses
ω̇ =

1

J

(
Pm

ω
− Tr

)
. (2.32)

The fraction 1
ω , leads to an unstable term at the origin. Therefore by noticing that d

dt(ω
2) = 2 ∗ ω̇ω, and

multiplying both right and left terms in (2.32) by ω, it is more convenient to use the change of variables
Ω = ω2. which leads to the system expression,
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Ω̇H =
2

JH

(
Pm,H −

∣∣ac,H
ρH

q2cc,HΩ
1
2
H + bc,HΩHqcc,H + cc,HρHΩ

3
2
H

∣∣)
q̇cc,H =

1

Icc,H

(
pep,H − pcc + (

ap,H
ρH

− Zrescc,H)q2cc,H + bp,HΩ
1
2
Hqcc,H

+ cp,HρHΩH

)
Ω̇O =

2

JO

(
Pm,O −

∣∣ac,O
ρO

q2cc,OΩ
1
2
O + bc,OΩOqcc,O + cc,OρOΩ

3
2
O

∣∣)
q̇cc,O =

1

Icc,O

(
pep,O − pcc + (

ap,O
ρO

− Zrescc,O)q
2
cc,O + bp,OΩ

1
2
Oqcc,O

+ cp,OρOΩO

)
ṗcc =(k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc

√
Θccpcc (2.33)

2.3.2 . Complex model
Providing tools to analyze the stability of the controlled model and designing control laws to stabilize

it are two of the major goals of this thesis. Stability analysis of the complex model of the LPRE is the goal
of this thesis. In the following, the state equations that describe the evolution of the variables conside-
red are presented. The complex model follows the behavior described in 2.1.1 and comprises 12 states
to describe the LPRE. 6 states represent the mass flows in each considered line (CC, GG and turbine ex-
haust), 4 pressures are featured (CC, GG, and the 2 turbine pressures) and 2 rotational speeds describe
the functioning of the pumps. The structure of the cycle is reminded in figure 2.3.

The state vector is x =



ωH

ωO

qcc,H
qcc,O
qgg,H
qgg,O
qtu,H
qtu,O
pcc
pgg
ptu,H
ptu,O



the control vector is u =


Avcc,H

Avcc,O

Avgg,H

Avgg,O

Avhg

 (2.34)

˙ωH =
1

JH
(ptu,HSTH(ωH)wtu,H −

∣∣ac,H
ρH

(qcc,H + qgg,H)2 + bc,HωH(qcc,H + qgg,H) + cc,HρHω
2
H

∣∣)
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Figure 2.3 – Complex state-space cycle under study

ω̇O =
1

JO
(ptu,OSTO(ωO)wtu,O −

∣∣ac,O
ρO

(qcc,O + qgg,O)
2 + bc,OωO(qcc,O + qgg,O) + cc,OρOω

2
O

∣∣)

q̇cc,H =
1

Icc,H
(pep,H +

∣∣ac,H
ρH

(qcc,H + qgg,H)2 + bc,HωH(qcc,H + qgg,H) + cc,HρHω
2
H

∣∣
− pcc − (

1

2ρA2
cc,H

+ Zrescc,H)q2cc,H)

q̇cc,O =
1

Icc,O
(pep,O +

∣∣ac,O
ρO

(qcc,O + qgg,O)
2 + bc,OωO(qcc,O + qgg,O) + cc,OρOω

2
O

∣∣
− pcc − (

1

2ρA2
cc,O

+ Zrescc,O)q
2
cc,O)

q̇gg,H =
1

Igg,H
(pep,H +

∣∣ac,H
ρH

(qcc,H + qgg,H)2 + bc,HωH(qcc,H + qgg,H) + cc,HρHω
2
H

∣∣
− pgg − (

1

2ρA2
gg,H

+ Zresgg,H)q2gg,H)
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q̇gg,O =
1

Igg,O
(pep,O +

∣∣ac,O
ρO

(qcc,O + qgg,O)
2 + bc,OωO(qcc,O + qgg,O) + cc,OρOω

2
O

∣∣
− pgg − (

1

2ρA2
gg,O

+ Zresgg,O)q
2
gg,O)

q̇tu,H =
1

Itu,H
(pgg − ptu,H −

Zrestu,HRggΘgg

pgg
q2tu,H)

q̇tu,O =
1

Itu,O
(pgg − ptu,O −

Zvalve,hgRggΘgg

pgg
q2tu,O)

ṗcc = (k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc
√

Θccpcc

ṗgg = (k4gg + k5gg + (k2gg − k1gg)Θgg)(qgg,H + qgg,O)− k3gg
√
Θgg(qtu,H + qtu,O)

ṗtu,H = k2tu,HΘggqtu,H − k3tu,H
√

Θggptu,H

ṗtu,O = k2tu,OΘggqtu,O − k3tu,O
√

Θggptu,O. (2.35)

2.4 . Limitations of a state-space representation

State-space representation of a system is the most common representation for a system’s equa-
tions. Such representation is easily derived from physical equations and requires no additional compu-
tation. Indeed, the derivation of a state-space representation from the equation is complexified due to
the number of equations. Additionally, state-space representation yields high freedom in the choice of
the state variables, compared to Port-Hamiltonian systems, described in chapter 3, where the choice
of variables is limited to coupled quantities [44]. This flexibility is also reflected in the addition of new
dynamics. Indeed, the changes from the simplified model where the GG is not modeled, to the complex
non-linear model only required the equations associated with the non-modeled dynamics. However,
the state-space representation while prevalent for linear systems suffers limitations when it is used for
describing complex non-linear systems. In this section, the practical aspect of the state-space represen-
tation to describe loops and retro-actions is discussed. In a second paragraph, the numerical issues of
the simulations with the model are presented. In a third paragraph, the stability aspect of the model is
discussed.
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Figure 2.4 – Hydrogen feedback loop in the LPRE
Feedback loops

Equations of the complex system, although simplified by the hypothesis made in 2.1.2, illustrate a
complex behavior for a non-linear system. At first glance, it is hard to grasp the feedback loop due to the
introduction of a gas-generator in the complex system (2.35). A feedback loop consists of a structure of
the system that leads to one or more states having an influence on themselves in the evolution. Namely,
in [58], a feedback loop for a nonlinear system ẋ = f(x)with jacobian ∂f

∂x = fi,j , If there exists an orderedset
Ik = i1, ..., ik and a permutation Jk = j1, ...jk (2.36)

such that the product fi1,j1 ...fik,jk is nonzero, there is a composite k-dimensional loop in the system.
in figure 2.4, the Hydrogen feedback is illustrated, where the hydrogen turbopump is fed via the gas
generator burned gases, which are themselves fed by the pump.

ωH → qgg,H → pgg → qtu,H → ptu,H → ωH

Similarly to the stability of a feedback controller, a feedback loop must present stability properties [58].
Namely the influence of a state x on itself must be negative. In a more practical sense, the friction ge-
nerated in the loop with the valve or the lines’ resistive inertia must counteract the increase in energy
originating from the gas generator equation. Since this loop is comprised of polynomial functions in the
equations, a direct derivation of dissipativity conditions of feedback proves difficult.
Numerical issues and simulation

In multi-physical systems, the different physical domains covered are prone to face a high hetero-
geneity in the different variables composing the state vector. As depicted in the table 2.2, the operating
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values of an LPRE suffer from a large disparity in orders of magnitude. For example, while themass flows
considered vary around 102kg.s−1, the chamber pressure fluctuates around 107Pa. This high disparity
affects the state-space equations, taking as an example, the chamber pressure equation,

ṗcc = (k4cc + k5cc + (k2cc − k1cc)Θcc)(qcc,H + qcc,O)− k3cc
√

Θccpcc (2.37)
The high disparity is illustrated in the equations by the different multiplying terms. Here in order to
obtain an equilibrium (k4cc + k5cc + (k2cc − k1cc)Θcc) requires to be 105 times greater than k3cc. Suchconsideration paired with the highly non-linear character of certain equations creates a highly sensitive
system to perturbations, as a difference of and difficulties to simulate the behavior. As an example,
using SIMULINK and the equations presented for the system, a time step of 10−6 seconds is required to
compute the system.

As the disparity in the order of magnitude reflects on the non-variables term of the equations, the
analysis of the linearized behavior of the system deals with bad conditioning on the matrices, as it is
difficult to distinguish computation artifacts from small terms directly derived from the equations. A
linearized matrix A for the pressure equation and the hydrodynamical equation 2.19 leads to

A =

[
− 1

Icc,H
( 1
2ρA2

cc,H
+ Zrescc,H)qcc,H − 1

Icc,H

(k4cc + k5cc + (k2cc − k1cc)Θcc) −k3cc
√
Θccpcc

]
(2.38)

where the two terms in the right column of A are less than 105 times the terms in the left column. In
Chapter 5, an LMImethod is derived to obtain a stabilizing controller and suffers from the conditioning of
such matrices. Numerical methods and tools such as YALMIP [59] do not cope well with bad-conditioned
matrices and will run into numerical issues.
Definition of an equilibrium

In the following, the stability of the system is discussed regarding an equilibrium point. The equili-
brium point is defined by a state vector X0 for which the state derivatives are all equal to 0. The equili-
brium is defined by the valve opening areasAvgg,•. The equilibrium is computed from the state-equations
(2.35). Although a unique solution can be found formost of the equations, the polynomial functions to ex-
press the pressure increase (2.11) and the resistive torque (2.10) require additional considerations. Both
polynomial functions are indeed of degree 2 and therefore provide two distinct solutions for the pair
(ω, qtot)with a difference of tenfold in the orders of magnitude. However, with additional information on
the polynomial functions, it is possible to deduce that there is no intersection between the two solutions,
leading to a unique solution defined by the initial conditions of the system. It is then possible to compute
an equilibrium when initial conditions are properly defined.
Lyapunov stability of the state-space representation

The main aspect of this thesis is the stability analysis of the system represented in this chapter. Due
to the complexity of the above equations, attempts to directly derive a Lyapunov function in [13] have
proven unsuccessful. The author achieved the derivation of numerical approaches for a Lyapunov func-
tion with a time-dependent positive factor P (x). The difficulties to properly obtain a Lyapunov function
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arise from the non-linearities and the several polynomial approximations ((2.10), (2.11)) which add both
negative and positive terms to the state-space representation. The lack of prior information renders the
derivation of a Lyapunov function, as the polynomial functions used to represent the turbo-pumps do
not represent the physical behavior of the component. For example, the polynomial terms in the outlet
pressure of the pump equation (2.11), are not associated with distinct physical phenomena. This absence
of information renders the computation of a presumed Lyapunov function’s derivative difficult since
compensation of the positive terms requires additional information.
An approach based on the search for a storage function suffers the same limitations, as the notion of
energy provided to the system and dissipated is hindered by the lack of physical representation of the
polynomial approximations. An energy-based approach also highlights the other main obstacle to sta-
bility analysis, which resides in the lack of homogeneity of the variables’ dimensions. Indeed, while the
mechanical equation of the pumps is expressed with torque and rotational speed, the hydrodynamical
equation makes use of mass flows and pressure. This results in the computation of an energy (a torque
multiplied by a rotational speed equation) and an energy multiplied by a density (with a mass flow ins-
tead of a volume flow). A direct determination of a storage function then requires taking into account
this lack of a common dimension for the different elements in the system. Overall, the upper remarks
underline the lack of a proper structure of the system to apply classical stability theorems.

Similarly a Popov criterion [60] approach to prove the stability of the system is to consider, however,
the complexity of the state space renders the approach difficult. While the Popov criterion can be applied
to a linearized model around the functioning point, its generalization to the non-linear system is not an
easy task.

2.5 . Summary

In this chapter, the description of the considered LPRE cycle using a gas generator and turbopumps
has been provided. With considerations on the mechanical design of the system and on the simplifi-
cation of phenomena, the description of the components and their physical equations that drive the
evolution of an LPRE is given. Two different non-linear state-space representations can be derived from
the equations. A first simplifiedmodel, where the GG loop is not represented, will be used to build simpli-
fied controllers. A complex model including the GG loop is then proposed, which better represents the
difficulties when studying the stability of an LPRE. Indeed, the state-space representation of the LPRE
lacks clarity in the feedback loops and renders the stability approach more cumbersome. Additionally,
numerical issues occur from the high heterogeneity of the multi-physical state vector and hinder the
computation of the simulations. All in all, the direct stability of the state-space is a complex approach,
and a second approach is considered. With the limitations of the state-space representation, a reformu-
lation of the system under a form that is more adapted to stability analysis is proposed in the following
chapter 3. To this end, Port-Hamiltonian systems theory [44] is introduced and a Port-Hamiltonianmodel
of the LPRE is derived.
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3 - Port-Hamiltonian Systems, modeling and control

While the state-space modeling of the LPRE system proves efficient in building simulations of the
process, analysis of its stability using this framework proves rather difficult. In the previous work of Perez
Roca [13], the search for a suitable Lyapunov function was not achieved, and proving the passivity of the
system appears untractable. The recent results on stability analysis of nonlinear systems described by
Port-Hamiltonian models have driven this work to determine whether this modeling applied to an LPRE.

Port-Hamiltonian models are based on an energetic representation of a system. As will be seen in
this chapter, this framework provides Lyapunov functions of the dynamics derived from the Hamiltonian
associated with the energy exchanges. Moreover, passivity properties that are fundamental to stability
study can be easily derived from Port-Hamiltonian structures.

This chapter briefly introduces the notion of a Port-Hamiltonian system in section 3.1. In section 3.2,
the reformulation of the LPRE is described while in 3.3, the stability conditions yielded by the reformu-
lation are presented.

3.1 . Introduction to Port-Hamiltonian systems

Port-Hamiltonian systems framework, described in [61] and [44], derived from bond graphs theory
[62], makes use of physical invariants of a system, such as the total energy, to highlight the energy trans-
fers between the different elements composing a system. Port-based modeling can be recalled to the
1950s, when the spread of new complex engineering systems required a tool to unify themodeling of the
different physical domains. The common thread between any physical domain being energy, port-based
modeling represents a powerful tool to combine several distinct physical domains into a single model.
The addition leading to Port-Hamiltonian systems has been the introduction of a geometric structure to
the bond-graph theory. Through its development, the diverse applications of the Port-Hamiltonian fra-
mework have been extended to various systems such as hydrodynamics in [63] or even thermodynamic
processes in [64, 65, 66].

3.1.1 . From Bond-graphs to Hamiltonian function
Modeling under Port-Hamiltonian framework uses Dirac structures [44] which are defined in the

following, as a generalization of 0- and 1- junctions in bond graphs [62]. To provide a brief explanation of
bond graphs, let the introduction of the notion of flow f and effort e, which represent coupled quantities
(e.g. volume flow and pressure). Per convention, the flow is taken as the rate of change of a quantity (ẋ)
and the effort is the coupled quantity that receives or sends energy to the flow. The notion of coupled
quantities denotes the fact that the product ef is a power. A 0- junction relating two pairs of effort and
flow (e1, f1) and (e2, f2) follows,

e1 = e2, f1 + f2 = 0. (3.1)
Similarly, the 1- junction is defined by

f1 = f2, e1 + e2 = 0. (3.2)
47



The objective of such junctions is to build power-conserving structures, where e1f1 + e2f2 = 0. A Dirac
structure consists in the generalization of the 0- and 1-junctions, and is defined by a structure where∑

i eifi = 0 and by a relation fi = f1, i ∈ [1, n]. To build the Dirac structures, the coupled quantities also
denoted as the nodes of the structure can be classified into three distinct functions :

• Energy-storing, denoted by es, fs, defines elements representing energy storage (kinetic, potential,
...).

• Energy-dissipating, denoted by er, fr defines elements that dissipates energy (friction, loss, ...).
• Energy-routing, denotedby et, ft defines energy transfers, with no storage nor loss. These elements
are by construction perfect transformers and are often pairedwith a resistive element to represent
real systems.

• Interactions with the exterior environment are denoted by ep, fpThe construction of a Port-Hamiltonianmodel consists in assembling the different elements by equa-
ting the nodes (for example the 0- and 1-junction structures). Therefore the function of each element and
the definition of the nodes is a crucial preliminary in Port-Hamiltonian modeling. Let for example a hy-
drodynamical equation,

Iq̇ = pep − pcc − Zresq
2. (3.3)

The elements can be classified into storage for Iq̇, resistive with −Zresq
2, routing with −pcc and exteriorinteraction with pep. The sum of all the elements following 1- junctions yields the original equation.

Remark 3. The notion of a Dirac structure implies that the sum of the powers in the system is equal to
zero. When building a Port-Hamiltonian system from a state-space system, this property originates from
the equations of the system, take for example the conservation of the kinetic energy,

Jω̇ = Tm − Tr (3.4)
The power stored by the system can be computed with Jω̇ω, which corresponds to a couple (es = ω,fs =
−Jω̇). Through the same process, the motor torque Tm and the resistive torque Tr yield the provided
and dissipated power when multiplied by ω, with couples (ep = ω, fp = Tm) and (er = ω, fr = Tr). Underthis form, the sum of the powers in the system is equal to 0, and the equation defines a Dirac structure
D = {(Jω̇, ω)|

∑
Tω − Jω̇ω = 0}. Note that the storage element is the rate of change fs = −ẋ, to respect

the signs in the original state-space.
The energy transfers highlighted by Port-Hamiltonian framework are due to the definition of the

product e⊤f . In particular, the power fed to the system e⊤p fp and the consumed power er⊤fr are usedin the stability analysis of Port-Hamiltonian systems.
Let the introduction of the Hamiltonian function, which is equal to the total energy of the system.

The power-balance equation is defined from the Hamiltonian,
dH

dt
=
∂H

∂x
ẋ, (3.5)

which in other terms illustrates the fact that the rate of change of the energy in the system is equal to the
rate of change of the states multiplied by the co-energy variables, ∂H

∂x . The ports of the energy-storingelements are then assigned to fs = −ẋ and es = ∂H
∂x .
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From the Dirac structure the following equation is obtained,
e⊤s fs + e⊤r fr + e⊤p fp = 0. (3.6)

By definition, the dissipative elements yield e⊤r fr <= 0, as they dissipate energy, therefore equation (3.6)
can be written,

−e⊤s fs ≤ e⊤p fp. (3.7)
Equation (3.7) is a classical equation for the passivity of a system (see 1.9) where the system energetic
input is ep and the output y is fp.From these definitions, the system is then expressed under the form

ẋ = (J(x)−R(x))
∂H

∂x
+G(x)u

y = G(x)⊤
∂H

∂x

(3.8)

where the matrix J(x) expresses the energy storage terms, J = −J⊤ and R(x) expresses the energy
dissipationR(x) ≥ 0.G(x) is the control matrix defined in a state-space system. The output y is however
the passive output, defined by thematrixG⊤(x). Note that the passive output and the state-space output
often differ one from another.

3.1.2 . Port-Hamiltonian Systems, properties and passivity
Passivity and Port-Hamiltonian systems

From the power-balance equation (3.5) and th equation (3.7) the HamiltonianH verifies,
dH

dt
≤ e⊤p fp, (3.9)

where ep and fp are the passive input u and output y of the system. Here the passivity equation in
definition 6 is retrieved, where the user searches for a function V such that,

V̇ ≤ u⊤y (3.10)
Therefore, ifH(x) > 0 for all x,H is a candidate storage function for the passivity of a system. The Hamil-
tonian function H(x) of a system characterizes the stability regarding the minimum of the Hamiltonian
function. Indeed by fixing the energetic input to 0, the Hamiltonian function acts as a Lyapunov function
in theorem 1, with

V̇ ≤ 0, (3.11)
and the definition of a Lyapunov function is retrieved.
Interconnection of Port-Hamiltonian systems

Let two Port-Hamiltonian subsystems
ẋ1 = (J1 −R1)

∂H1

∂x1
+G1(x1)x2

ẋ2 = (J2 −R2)
∂H2

∂x2
+G2(x2)x1, (3.12)
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Figure 3.1 – Example of the interconnection of the physical domains for the simplified model

where J1, R1, H1, J2, R2, H2 are respectively the storage, dissipation matrices, and Hamiltonian function
of the considered systems andG1, G2 are the control matrices, that design the interactions between the
two subsystems. The following interconnection of the subsystems in (3.12) is considered,[

ẋ1
ẋ2

]
=
([
J ′]− [R′]) [∂H1

∂x1
∂H2
∂x2

]
. (3.13)

Port-Hamiltonian systems share interconnection properties [67, 44], that allow to create complex
multi-physical systems from subsystems. To conserve the equations (3.12), it is necessary to find J ′ and
R′ in (3.13). Themethod presented in [67] proposes to use a shared space of variables, namely a common
quantity to the two subsystems. Let two Dirac structures DA,DB on product spaces respectively F1 ×
F3,F2 ×F3. F3 is the space of shared variables (here as both evolution equations depend on x1, x2, theshared space of variables is defined by x1, x2). For example, in figure 3.1, the interconnection between
the hydrodynamical and chemical domains presents a shared space of variables (pressures and mass
flows) while the interconnection between hydrodynamical and mechanical does not.

The interconnection is then realized by equating the efforts (or flows) on the shared space (see figure
3.2. In this figure, the flows and efforts are taken as fA = −ẋ1, eA = x2 and fB = −ẋ2, eB = x1, and theshared space of variables is (x1, x2). In [67], the author proves that the Dirac structure is conserved by
the composition operation on Dirac structures. Therefore the Hamiltonian structure is conserved by the
composition operation. Additionally, the total HamiltonianH resulting from the interconnection (3.13) is
obtained directly from the two subsystems’ Hamiltonian functions,

H ′(x) = H1(x1) +H2(x2). (3.14)
This property is key to the creation of multi-physical systems and is used in 3.2.2 to build the LPRE under
Port-Hamiltonian formulation.

3.1.3 . Control of Port-Hamiltonian systems
The control of a Port-Hamiltonian system often aims to regulate the energy balance of the model,

and the conservation of the physical Hamiltonian structure in a closed-loop. The energy-balance of a
system is represented by the passivity equation 3.7. As Port-Hamiltonian systems already provide po-
werful properties to a system, simple controllers can provide stability to a system. Let the definition of
zero-state detectability,
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Figure 3.2 – Composition of two Dirac structures

Definition 7. A system is said to be zero-state detectable system if it admits one and only one solution
for the input u = 0, which is defined by x = 0.

From this definition, the lemma in [68], is applicable,
Lemma 1. Let a Port-Hamiltonian system defined by (3.8), with H(x) positive definite, ∂H

∂x ≤ 0 and
suppose that the system is zero-state detectable. The feedback controller u = −v(x)ywith v(x) > 0,∀x ∈
R defines the origin x = 0 as globally asymptotically stable.

Such properties have led to a wide development of controllers using Port-Hamiltonian properties. In
[69, 70], an adaptive controller is designed for complex systems under Por-Hamiltonian formulation. A
survey [71] shows that the Port-Hamiltonian framework can be used to design learning-based controllers.
However, these approaches originate from two main control techniques, energy-shaping and passivity-
based control.

Energy-shaping of a system [72] is mainly used for a dissipative controller. In [73], a dissipative de-
vice is controlled using the energy-shaping of the system. Energy-shaping shifts the minimal value of a
Hamiltonian function to stabilize the system at the desired equilibrium.

Passivity-based control (PBC) is a strong tool to achieve stabilization by passivation of a system. Al-
though similar to energy-shaping, PBC also makes use of a new structure for the system and enables
the user to formulate a non-Port-Hamiltonian system under a closed-loop controlled Port-Hamiltonian
system. In the scope of this thesis, the PBC approach is preferred, to achieve closed-loop stabilization
with a desired damping matrix R. PBC is often coupled with interconnection and damping assignment
[74], and the system is regulated by interconnection with a second Port-Hamiltonian system.

3.2 . Port-Hamiltonian modeling of an LPRE, subsystems and interconnection

In this section, the reformulation of the state-space models presented in 2 is depicted. First, the
modeling of the different physical domains covered by the LPRE is described. In a second time, the total
model is built by interconnection of the various subsystems.

3.2.1 . Port-Hamiltonian modeling of the LPRE elements
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The different physical domains covered by the modeling of an LPRE lead to a complex expression
of the interactions among the individual domains. Previous work in the Port-Hamiltonian framework
depicts the formulation of different physical equations under the Port-Hamiltonian structure. Moreover,
Port-Hamiltonian framework has been proven to suit the formulation of multi-physical systems in [76].

In the following formulations, the equations are written with scaling terms on the left-hand side of
the evolution equations, along with the derivative. This is a choice of modeling that will allow better
conditioning of the matrices J(x), R(x) in the final formulation of the Port-Hamiltonian system in 3.2.3.

The formulation of hydrodynamics has been thoroughly studied in [44],[63] or see the example in
[77]. The formulation is constructed around the analogy between hydrodynamics and electronics, repla-
cing the current with the volume flow and the voltage with the pressure. The couple effort/flow is com-
posed of (V̇ , p) the volume flow/pressure couple. Here themass flow q is preferred to the volume flow as
the state-space equations of the engine have been expressed using a mass flow q in 2. The conservation
of the quantity of movement is then written[

Iq q̇
kpṗ

]
=

[
−Rq −1
1 −Rp

] [
q
p

]
, (3.15)

for amass flow q and a pressure p in a line. The resistive termsRq, Rp are composed of the friction terms
in the line. The matrix J(x) is taken as the canonical symplectic, leading to the scaling term kp.The expression of the conservation of the momentum for the mechanical subsystem is written in
Port-Hamiltonian formdirectly using the sameanalogy [44]. Here the couple (ω, T ) (rotational speed/couple)
is used. [

Jω̇
]
=
[
−1
] [
Tr
]
+ Tm, (3.16)

where Tr and Tm are respectively the resistive and motor torques. For this subsystem on its own, the
motor torque is the energetic input of the subsystem while the resistive torque consists in energy dissi-
pation.

Finally, the conservation of energy applied to the combustion chambers can be derived in Port-
Hamiltonian form using the couple mass quantity/enthalpy. However, as stated in 2.1.2, the thermo-
dynamic properties of the fluids in the chamber are considered constant over time. As the enthalpy per
quantity of matter and the chamber volume are constant, the couple (q, p) is taken. The conservation of
energy expressed for a chamber reads,[

ṗV
]
=
[
−(γ − 1)hout

] [
qout

]
+ (γ − 1)qinhin (3.17)

where the entering and exiting flow qin and qout depend on the chamber considered.
In the case of the main combustion chamber, the entering flows are qccH , qccO and the output flow is

qpcc,out which has been computed previously 2.22. The conservation of energy for the main combustion
chamber is written [

kpccṗcc
]
=
[
−Rpcc

] [
pcc
]
+ (qccH + qccO). (3.18)

The gas generator pressure is expressed using the computed turbine mass flows for output flows
(qtuH , qtuO) and with input flows qggH , qggO. The expression of the subsystem is then[

kpggṗgg
]
=
[
−Rpgg

] [
pgg
]
+ (qggH + qggO)− k2pgg(qtuH + qtuO). (3.19)
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In the case of the turbine pressures, the equations are derived following the same principle as for the
main combustion chamber, with the use of the output flow qtuH,out which is computed from the turbine
pressure ptuH . [

kptuH ṗtuH
]
=
[
−RptuH

] [
ptuH

]
+ (qtuH). (3.20)

Finally, the different energies of the associated equations are as follows
kinetic rotational : ecr = 1

2
Jω2,

kinetic hydraulic : ech =
1

2ρ
Iq2,

potential pressure : epp = 1

2
kpp

2, (3.21)
for a rotational speed ω, a mass flow q and a pressure p.

3.2.2 . Physical domains and interactions of the subsystems
Identification of the different domains and subsystems is a key part of Port-Hamiltonian design for

systems. In this subsection, we recall the different domains covered by both state-space models des-
cribed in (2.31) for the simplified model and (2.35) for the complex model. In particular, the interaction
between the system and its environment is described, denoting the passive input and output of both
models. Interconnection is then described between the different physical domains. While the hydraulic
and chemical domains can be interconnected directly, interactions with the mechanical domain require
further computation.
Simplified Model

In the case of the simplified system using moto-pumps 2.2.1, the LPRE system interacts with its envi-
ronment through threemain nodes : the outlet pressure of the supply tanks pep, themotor torqueTm, theoutput flow of the main combustion chamber qcc,out. The output flow is approximated with the pressure
in the modeling, therefore the corresponding term is considered dissipative in the system equations.
The interactions through pep and Tm are energetic inputs of the system and are represented in red in
figure 3.3. The exterior interaction effort vector ep is

ep =

[
Tm
pep

]
, fp =

[
ω
qcc

]
(3.22)

with associated flows ω and qcc. The power provided to the system with both interactions is given by the
product e⊤p fp = Tmω + pepqcc. The passive output (y in equation 3.8) represents the rotational speed ωand the mass flow entering the combustion chamber qcc.
Complex model

In this modeling, the turbopump’s motor torque evolves following the turbine equation and is not
considered an input of the system. The system interacts with its environment with is comprised of two
entries, the tank outlet pressures and the valve surfaces. The valve surfaces do not provide energy to
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Figure 3.3 – Interconnection of the physical domains and energetic inputs for the simplified model
node flow effort nodes physical domain equation componentconnected reference1 Jω̇ ω 2, exterior mechanical 3.16 motopump2 Iq̇ q 1,3, exterior hydrodynamical 3.15 fuel line3 kpccṗcc pcc 2 chemical 3.18 combustion chamber

Table 3.1 – Interconnections and domains covered by the simplified model

the system and are workless. The workless control is not considered an exterior interaction of the system
in the sense of the couple (ep, fp). The exterior interaction effort vector ep is

ep =

[
pep
pep

]
, fp =

[
qcc
qgg

]
(3.23)

The energetic inputs of the complex model are represented in red in figure 3.4. The power provided by
the tanks is given by e⊤p fp = pepqcc + pepqgg.

The construction of the Port-Hamiltonian system for the LPRE consists in connecting the individual
subsystems using the flow and efforts described. The connections can be made smoothly for the hydro-
dynamical part, where both efforts and flows equate following mass flows and pressures as illustrated
in figure 3.4.

psp Tr

qcc

pcc
qgg

pgg

ptu

Tm

qtu
pgg

pep

Mecha.

Hydro.

Hydro.

Chem.
Chem.

Figure 3.4 – Interconnection of the physical domains covered by the LPRE modeling
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node flow effort nodes physical domain equation componentconnected reference1 Jω̇ ω 2, 7 mechanical 3.16 turbopump2 Iccq̇cc qcc 1,5, pep, Avg hydrodynamical 3.15 CC fuel line3 Igg q̇gg qgg 1,6, pep, Avc hydrodynamical 3.15 GG fuel line4 Ituq̇tu qtu 6,7 hydrodynamical 3.15 hot gas line5 kpccṗcc pcc 2 chemical 3.18 combustion chamber6 kpggṗgg pgg 3,4 chemical 3.19 gas generator7 kptuṗtu ptu 4,1 hydrodynamical 3.20 turbine inlet
Table 3.2 – Interactions and domains covered by the complex model

Interconnection of the physical domains

The interconnection of the hydrodynamical part of the system can be driven directly, by correspon-
ding both flow and efforts of the individual subsystems. Indeed the flows and efforts are already part
of a shared space of variables (e.g. the mass flows and pressures). Furthermore, the introduction of the
energy-conservation equation (3.17) uses the same space of variables as the hydrodynamical equations
(3.15). Therefore the chemical domain can be interconnected to the hydrodynamical domain directly,
using the space of variables (q, p).

The mechanical system presents a different physical domain and therefore the interfaces at both
ends require a shared space of variables. A proposition driven in [78] is to formulate the torque on
the mechanical end into an equivalent pressure. This results in equating the output pressure of the
pump with the resistive torque equivalent pressure. However, the main hypothesis of the reversible
hydropump system in [78] is a linear relation between the mass flow and the rotational speed q = kqωω,and that both the pressure increase pip and the resistive torque Tr solely depend on respectively q and
ω, e.g. pip = kprpq

2, Tr = kTrω
2 = kqωkTrq

2. This leads to expressing the resistive torque with only the
mass flow involved.

To express the whole system under the same shared space of variables, the mechanical domain
is expressed under a hydraulic formulation, meaning that an equivalent mass flow and pressure are
derived from the rotational speed ω and the torque s Tr, Tm. Note that the shared space of variables
(ω, T ) could have been chosen, but requires the reformulation of 6 equations rather than 1 equation
for the chosen approach. The turbo pump studied does not present the simplification mentioned in
[78]. However, it is possible to identify the driving terms of the polynomial functions to approximate an
equivalent pressure. Suppose a lower value for the resistive torque, given with ac

ρ q
2 and an upper value

for the pressure increase, given with bpqω. Define

αq =
bpρ

ac
, (3.24)

where the coefficients bp, ac are taken as in (2.10) and (2.11). With the notations pip = bpqω for the upper
value of the pressure increase and T r =

1
αq
bpq

2 for the lower value of the resistive torque, the real torque
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and pressure increase are rewritten
pip = pip − (

ap
ρ
q − cpρ

ω2

q
)q + pep ≤ pip

Tr = T r + αq(bcq + ccω)ω ≥ T r.

Then the equations of ω and a mass flow q through the pump read :
αqJω̇ = −bpq2 − αq(bcq + ccω)ω + αqTm

Iq̇ = bpqω − (Zeqq −
ap
ρ
q − cpρ

ω2

q
)q + pep,

which gives the following dynamical equation :[
αqJω̇
Iq̇

]
=

[
−Rω −bpq
bpq −Rq

] [
ω
q

]
+

[
αqTm
pep

]
, (3.25)

whereRq = Zeqq− ap
ρ q−cpρ

ω2

q andRω = αq(bcq+ccω) have to be positive to satisfy the upper and lowervalue hypothesis. Here two conditions are derived for the validity of the Port-Hamiltonian formulation
of the system, which can be used as a validation test for the stability of the system.

For the turbine part, a new shared space of variables is proposed. Let the effortαqTm = αqST (ω)wtuptu(see the motor torque equation in (2.18)). Again, suppose that a minimal bound for the pressure loss in
the turbine is αqST (ω)wtuω. A proposition to close the system in Port-Hamiltonian framework is to re-
formulate the ptu term into :

k2tuptu = αtω + βtptu, (3.26)
for the state-space evolution of the turbine pressure ptu (2.27),

ṗtu = k2tuΘggqtu − k3tu
√

Θggptu,

where αt = αqST (ω)wtu and βt is computed from k2tuptu − αtω. Hence the following interconnection :[
αqJω̇
kptuṗtu

]
=

[
0 αt

−αt −Rptu

] [
ω
ptu

]
. (3.27)

Here αtω is supposedly a lower bound of the term k2tuptu. The term βtptu has to be positive, with
RPtu = βt ≥ 0. This leads to a third condition on the system for the Port-Hamiltonian formulation.

3.2.3 . Formulation of the state-space systems under Port-Hamiltonian framework
In this subsection, the formulations for both state-space models of the simplified and complex mo-

del of an LPRE are presented. Note that a Port-Hamiltonian formulation of a system is not unique and
therefore, the formulation proposed is no unique solution for the modeling. The choices made during
themodeling concern thematrix J(x) for both systems. The dynamics written in 3.2.1 regroup the scaling
terms with the derivative of the state in the equation, to create a matrix J(x) close to unitary values. This
aims to improve the conditioning on the matrices J(x) and R(x).
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Port-Hamiltonian formulation of the simplified LPRE model

In this paragraph, the formulation of the simplified rocket engine using an input torque 2.31, is pre-
sented. For clarity, only the hydrogen line is written here. Note that to write the system for hydrogen
dynamics, the oxygen part is supposed well-regulated, meaning that the mixture ratio in the combus-
tion chamber is constantMR = 6. Therefore the increase in energy due to the mass flows entering the
chamber is multiplied by (MR + 1)qcc,H which by this hypothesis is equal to (qcc,H + qcc,O). First, thegeometric structure of Port-Hamiltonian systems yields the following, αqJω̇

Iccq̇cc
kpccṗcc

 =
[
J(X)−R(X)

]  ωqcc
pcc

+

Tmpep
0

 , (3.28)

where the structure matrix is
J(X) =

0 −λ 0
λ 0 −1
0 1 0


and the resistive matrix is

R(X) = diag(
[
Rω Rqcc Rpcc

]
). (3.29)

The different scaling terms are expressed as,

kpcc =
MR+ 1

(k4cc + k5cc + (k2cc − k1cc)Θcc)

αq =
bpρ

ac
λ = bpqcc, (3.30)

while the terms of the resistive matrix R follow
Rω = αq(bcqcc − ccρω)

Rqcc = Zeqccqcc −
ap
ρ
qcc − cpρ

ω2

qcc

Rpcc = k3cc
√
Θcckpcc. (3.31)

Port-Hamiltonian formulation of the complex non-linear LPRE model

The complex Port-Hamiltonian LPRE is expressed in this paragraph for the hydrogen half of the en-
gine. As for the simplified system, the complete model is given in Appendix A. The expression of the
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states under Port-Hamiltonian form yields the system,

αqJω̇
Iccq̇cc
Igg q̇gg
Ituκtuq̇tu
kpccṗcc
kpggṗgg
kptuṗtu


=
[
J(X)−R(X)

]


ω
qcc
qgg
qtu
pcc
pgg
ptu


+



0
pep
pep
0
0
0
0


(3.32)

where the structure matrix is

J(X) =



0 −λ −λ 0 0 0 αt

λ 0 0 0 −1 0 0
λ 0 0 0 0 −1 0
0 0 0 0 0 κtu −κtu
0 1 0 0 0 0 0
0 0 1 −κtu 0 0 0

−αt 0 0 κtu 0 0 0


, (3.33)

and the resistive matrix is
R(X) = diag(

[
Rω Rqcc Rqgg Rqtu Rpcc Rpgg Rptu

]
).

The scaling terms read,
λ = bp(qcc + qgg)

κtu = k3gg
√

Θggkgg , kptu =
κtu

k2tuΘgg

kpcc =
MR+ 1

(k4cc + k5cc + (k2cc − k1cc)Θcc)
, kpgg =

1

(k4gg + k5gg + (k2gg − k1gg)Θgg)

αq =
bpρ

ac
, αt = αqST (ω)wtu

(3.34)
And the resistive terms composing the matrix R are expressed as

Rω = αq(bc(qcc + qgg)− ccρω)

Rqcc = Zresccqcc −
ap
ρ
(qcc + qgg)− cpρ

ω2

qcc

Rqgg = Zresggqgg −
ap
ρ
(qcc + qgg)− cpρ

ω2

qgg

Rqtu = κtuZresqtuqtu, Rpcc = k3cc
√

Θcckpcc

Rpgg = 0, Rptu = βt (3.35)
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3.2.4 . Advantages and limitations of the framework
Hypothesis on the dynamic system

It is important to notice that the expression of the hydraulic energy ech = 1
2ρIq

2 requires the know-
ledge density of the considered fluid ρ. In both the GG and CC feeding lines (qcc and qgg), the densities canbe considered constant. However, the density of the fluid in the hot gases line (qtu) can not be set as a
constant and requires to be computed if used. To account for this, a modified Hamiltonian is used, which
is equivalent to an energy multiplied by a density. This leads to a reformulation of the energy associated
to themechanical subsystem. The term αq introduced in (3.24) for the expression of the equivalent mass
flow is equivalent to a constant density, such that

qω = αqω, (3.36)
is equivalent to a mass flow. With this associated mass flow, the kinetic rotational energy is expressed
under a kinetic hydraulic form :

ecr =
1

2
Jω2αq. (3.37)

Remark 4. The equivalent mass flow related to the rotational speed qω = αqω leads to a simple expres-
sion of the total energy of the system, which can be resumed to the kinetic hydraulic and the potential
pressure energies. Additionally, the terms αqT where T is the motor or resistive torque, bear the dimen-
sion of a pressure. The interconnection between the mechanical and hydraulic systems mentioned in
both the simplified and complex systems can then be reformulated similarly to a simple hydrodynami-
cal system, using only mass flows and pressures, under[

q̇
ṗ

]
= [J(x)−R(x)]

[
∂H
∂q
∂H
∂p

]
(3.38)

Addition of dynamics

In themodeling of the system, the dynamics of the actuators (valves) have beenneglected due to their
low impact on the uncontrolled system, and their time-response has been supposed instantaneous. In
this paragraph, the addition of such dynamics in Port-Hamiltonian framework is discussed. First recall
the actuators’ dynamics under a second-order form,

Äv = −2ξw0Ȧv − w2
0Av + w2

0uA, (3.39)
for the valve surface Av , the pulsation w0, the damping coefficient ξ and the valve actuator setpoint uA.Such a system can be easily derived in Port-Hamiltonian framework under the form[

Ȧv
1
w2

0
Äv

]
=

[
0 1
−1 −2ξ

] [
Av

Ȧv

]
+

[
0
1

]
uA. (3.40)

Although the geometric structure of the Port-Hamiltonian framework is directly retrieved from a
second-order system, the choice of using the surface Av as a state variable leads to the Hamiltonian
function

Hvalve =
1

2
A2

v +
1

2w2
0

Ȧv
2
, (3.41)
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which is not equivalent to an energy ([A2
v] = m4). In order to connect this subsystem to the other LPRE

components, it is necessary to formulate an energy from the moving surface of the actuator. Several
solutions are available for this,

• Using the equivalent inertia of the moving surfaces, it is possible to derive a coefficient that ex-
presses the kinetic energy of the moving surface. Let a kinetic energy to the valve, 12meqȦv

2 where
meq is a unitary linear mass [meq = [kq.m−1]. Then the Hamiltonian expresses kinetic energy and
can be added to the original system. This method requires however numerical values for the linear
mass, which is not available in the literature.

• In [13], the author describes the actuators with the opening angle of the valve, from which it is pos-
sible to retrieve a surface. From this opening angle, it is possible to obtain a mechanical equation
under the form 3.16. This solution also suffers from the lack of numerical values available.

• A third solution is to directly add the dynamics in the controller equation, and assert stability for
the new controller function,

üactuator = −2ξw0 ˙uactuator − w2
0uactuator + w2

0uA. (3.42)
This solution will be used in the chapter 6, to account for the lack of numerical values for the other
propositions.

In a first approach, the stability of the engine is considered regarding the value of the actuators (na-
mely the surface valueAvg). In this case, the dynamics of the actuator are not considered. The validation
of the work on the stability will take into account the actuators in the chapter 6.

3.3 . Fixed-point stability and stability conditions

In this section, the implications of the Port-Hamiltonian formulation regarding the stability of the
system are discussed. The Hamiltonian function obtained with the Port-Hamiltonian modeling allows to
assert the passivity of the system over a domain of functioning. However, it is necessary to assert the
Port-Hamiltonian formulation (namely that R(x) ≥ 0, ∀x. Verification of the upper and lower bound hy-
pothesis in 3.2.2 yields the conditions for the passivity of the system. Paragraph 3.3.1 details the passivity
analysis of the simplified system. In a second time, the complex system is studied and the impact of the
valves’ values on the stability is investigated in 3.3.2.

3.3.1 . Simplified system analysis
Hamiltonian of the system and passivity The Hamiltonian function of a system is derived from
the couples effort/flowused in the subsystem formulation (3.15), (3.16) and (3.17). As the storage elements
are defined using dH

dt (x) = −e⊤s fs, the two vectors,

x =

αqJω
Iq
kpp

 and ∂H
∂x

(x) =

ωq
p

 , (3.43)

are used to retrieve the formulation of the Hamiltonian. Therefore the Hamiltonian of the simplified
system (3.28) reads,

H(x) =
1

2
Jω2αq +

1

2
Iccq

2
cc +

1

2
kpccp

2
cc, (3.44)
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Figure 3.5 – Evolution of the states for a step-response

which was predictible since this is the formulation of the total energy of the system. Using the Dirac
structure equation 3.7, the Hamiltonian function respects the following,

dH

dt
(x) ≤ e⊤p fp, (3.45)

which is the equation of a storage function. The HamiltonianH(x) is positive due to its quadratic formu-
lation (12ω2 ≥ 0∀x ∈ R). The passivity of the simplified system (3.28) with respect to the energetic input
ep is proved, using the definition of the passivity 6.in figure 3.6, the resistive terms used in the simplified LPRE are illustrated during the response to a
step. The simulations are performed in open-loop with a step function for the motor torque. The data is
represented under a normalized form,where the plot displays R•

|R•0| . As the resistive terms donot become
negative during the functioning, the dissipated power e⊤r fr is indeed negative, and the Hamiltonian

H(x) =
1

2
Jω2αq +

1

2
Iccq

2
cc +

1

2
kpccp

2
cc,

is a candidate storage function for the simplified LPRE. Note that the Hamiltonian proves the passivity
at an equilibrium defined by the minimal value of the Hamiltonian function, here for all states at 0.
This equilibrium is not physically attainable, as it resides outside of the polynomial functions’ domain of
validity (no guarantee of a solution) and because this would require the tank pressure pep to be equal
to 0. However, the simulation in figure 3.5 illustrates the existence of another equilibrium of the system
depending on the values of pep and the motor torque Tm. Indeed, before the step (t < 1s) the system is
situated at the equilibrium x = x0. At time t ≥ 1s, the system converges to a new equilibrium, due to the
change in the motor torque.
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Figure 3.6 – Evolution of the resistive terms for a step-response
Limitation of the passivity domain To analyze the passivity regarding a non-zero equilibrium, it is
necessary to reformulate the equations of the systemwith a change of variables. Letx0 be the consideredequilibrium of the simplified system (3.28) and for a state x ∈ Rn, define x̂(t) = x(t)− x0. The dynamics
of x̂ are then expressed,

αqJ ˙̂ω =

(
ac
ρ
(2q0 + q̂)q̂ + bc(q̂ + q0)ω̂ + bcq̂ω0 + ccρ(2ω̂ + ω̂2)

1

q̂

)
+ T̂m

I ˙̂q =

(
ap
ρ
(2q0 + q̂)q̂ + bp(q̂ + q0)ω̂ + bpq̂ω0 + cpρ(2ω̂ + ω̂2)− Zeqcc(q0 + q̂)q̂

)
− p̂

kp ˙̂p = q̂ − kpccp̂ (3.46)
these equations are obtained by development of the reformulation x̂(t) = x(t) − x0, and subtracting
the equilibrium terms whose sum is equal to 0. This shift in the equilibrium allows to reformulate the
resistive terms inside the equations, to study the passivity toward a new equilibrium. While bothRω and
Rp remain unchanged, the resistive term for the mass flow R̂q follows,

R̂q =

(
−ap
ρ
(2q0 + q̂)− bpω0 − cpρ(2ω̂ + ω̂2)

1

q̂
+ Zeqcc(q0 + q̂)

)
, (3.47)

and the term −bpω0 is new from the formulation of the resistive term,
Rq = Zeqccq −

ap
ρ
q − cpρ

ω2

q
, (3.48)

for a certain value of q, the new resistive matrix R̂ is then non positive, when R̂q becomes negative. This
explains an unstable zone of the system for a low value of q, where the passivity of the system is not
proven anymore.

62



3.3.2 . Hamiltonian function and stability of the complex model
For the complex system, the Hamiltonian function is obtained via the system’s formulation. As sto-

rage ports are defined with dH
dt (x) = −e⊤s fs, the two vectors x and ∂H

∂x (x) are used to retrieve the ex-
pression ofH(x),

H(x) =
1

2
Jω2αq +

1

2
Iccq

2
cc +

1

2
Iggq

2
gg +

1

2
Ituq

2
tu

+
1

2
kpccp

2
cc +

1

2
kpggp

2
gg +

1

2
kptup

2
tu.

(3.49)

It is important to note that the use of the scaling terms kp• and αq impact the Hamiltonian function of
the system by scaling all terms to the order of magnitude of the mass flows. This allows a better scaling
of the contributions in the total energy from all the states. Such terms enable to write the total pseudo-
energy of the system under a common unit (J.kg.m−3) which is equivalent to an energy times a constant
density. This Hamiltonian function is positive definite, due to the quadratic formulation. We recall here
Dirac structure equation,

−e⊤s fs ≤ e⊤p fp,

dH

dt
≤ e⊤p fp. (3.50)

Then H(x) is a candidate storage function for the passivity of the system. The minimum of the Hamil-
tonian is located at the origin of the system (for x = 0). Therefore, the system is passive with respect
to the energetic input. However, it is important to note that the tank pressure pep is the energetic inputof the system. As pep is fixed over time, the origin (pep = 0) is not physically attainable. As seen in the
simulations, the system proves to have an equilibrium for the constant pressure pep and a valve surface
Avgg.To determine the equilibrium generated by the tank pressure and the valve surface, it is possible to
use a different Hamiltonian function, as in (3.46), where the system is shifted to another equilibrium.
Since the pressure equations are linear in the states, the mass flow q•, and the rotational speed ω equa-
tion have been defined for a different equilibrium than the origin, it is possible to propose a shifted
equation for the complex system. This allows to determine the same unstable zone for the mass flow
qcc. However, in 3.3.2, it is shown that a resistive term in the equation is not positive, therefore this direct
method is not valid.

The shifted Hamiltonian function can also be defined using the shifted passivity conditions defined
in [79]. The shifted Hamiltonian function is expressed as,

H(x) := H(x)− (x− x0)
⊤∂H

∂x
(x0)−H(x0), (3.51)

if the system verifies two assumptions, namely that the original HamiltonianH is strictly convex and that
the mapping of the storage and dissipative matrices expressed in terms of co-energy variables respects
the following

∇(F(s)s) +∇(F(s)s)⊤ − 2R∗ ≤ 0, (3.52)
where s := ∂H

∂x and F(x) := J(x)−R(x). R∗ is a constant positive matrix, such that R(x) ≥ R∗ for all x.
As pointed out previously, the obtained formulation of the system leads to the resistive matrix not being

63



Figure 3.7 – Evolution of the resistive inertia depending on the mass flow and the valve (3.53)

positive definite, therefore no suitable R∗ can be found. In order to apply the shifted passivity theorem
in [79] it is required to first act on the Port-Hamiltonian structure.

Influence of the valves on the passivity domain

In this paragraph, the stability requirements evolution with the usage of the valves is illustrated.
The passivity domain of the system is also characterized by the resistive terms defined previously in

the Port-Hamiltonian formulation of the system in 3.2.3. Mainly, the terms defining the resistive influence
of the valves (without considering the valve’s inner dynamics) on the system are recalled :

Zresgg = Zline,ggqgg +
1

2ρA2
vgg

qgg,

Rqgg = Zresggqgg −
ap
ρ
(qcc + qgg)− cpρ

ω2

qgg
.

(3.53)

From the formulation of the resistive inertia Zresgg , the valve surfaces have a direct influence on the
value of the resistive terms Rqgg. The condition Rqgg ≥ 0 illustrates the need for friction to counteract
the residual terms of the polynomial function. in figure 3.7, the evolution of Rqgg is plotted depending
on both themass flow qgg and the valve surfaceAvgg. As the mass flow increases, the valve surface value
Avgg required to maintain stability also increases, although the condition Rqgg > 0 is respected through
the span of the considered domain.

As a valve’s surface value is bounded by mechanical constraints, the stability of the system is not
guaranteed for the whole state-space but only with respect to the valve’s surface span.
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Stability conditions and resistive terms

As stated in 3.2.2, the formulation under Port-Hamiltonian framework requires a hypothesis on the
positivity of the resistive terms Rqgg, Rqcc, Rptu, Rω. From figure 3.7, illustrates the positivity of the resis-
tive terms Rqgg, Rqcc. The resistive term Rω is also positive as illustrated in figure 3.9.
Remark 5. The resistive term Rptu is not however positive in figure 3.9. Because of the scaling αt themotor torque provided exceeds the pressure drop induced by the turbine. Since the hypothesis on the
Port-Hamiltonian structure R ≥ 0 is not respected, this is an obstacle to the proof of passivity of the
system. A solution to this is to use a passivity-based controller which is developed in the following chapter
4. Such a controller can be designed to assign a specified resistive term, in this caseRptu to a closed-loopsystem.
Remark 6. The positivity of the resistive terms relies on the model chosen. In reality, the pressure drop
is not directly due to the turbine, but to the exhaust mass flow of the cavity. This same mass flow then
provides kinetic energy to the turbine. As this modeling does not consider this mass flow, this shortcut
results in a positiveRptu. Port-Hamiltonian formulation provides here a good insight on approximations
and stability analysis. As long as the residual terms in approximations can be considered resistive, then
the system is stable. However positive residual terms imply to provide additional analysis on the power-
balance of the system, provided in the following paragraph.

Although the condition on the resistive terms is not met at all points, it is still possible to assert the
passivity of the system if the overflow in the other components exceeds the passivity shortage in the
turbine pressure. In other words, if the power dissipated in the other components compensates for the
shortage in Rptu, then the power balance equation is verified :

−e⊤s fs ≤ e⊤p fp, if e⊤r fr < 0 (3.54)
in figure 3.9, the evolution of the resistive terms for a step scenario is presented. In this scenario, the
control input u represents the opening surface of the valveAvgg in open-loop. The total dissipated energyis represented in figure 3.10, although the resistive term Rptu is positive, the hypothesis e⊤r fr < 0 still
holds in the definition of the geometric structure 3.6. As the total dissipated power is negative, equation
(3.54) is respected throughout the step scenario and the system is passive around the origin.

3.4 . Summary

In this chapter, a reformulation of the state-space systems presented in 2 under Port-Hamiltonian
formulation is conducted. The new formulation adapts tomulti-physical systems by defining subsystems
that characterize the evolution of each separate domain, and by then performing the interconnection
between the different domains. The reformulation yields the Hamiltonian function of the system, a po-
werful tool for proving the passivity of a system. Provided the system respects the hypothesis on the
Hamiltonian structure, a Port-Hamiltonian system is passive with respect to the origin of the system.

The analysis of the different terms in the formulation allowed to prove the passivity of the simplified
system, with respect to the origin of the system (zero) and the original equilibrium of the system (non-
zero equilibrium). This additionally allowed to prove an unstable behavior in low values of the main
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Figure 3.8 – Evolution of the states for a step-response

Figure 3.9 – Evolution of the resistive terms for a step-response
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Figure 3.10 – Evolution of the total dissipated power for a step-response

chamber mass flow, where the resistive term Rqcc becomes negative and does not respect the Port-
Hamiltonian structure (R > 0).

The passivity of the complex systemcanbeproved, however, as it does not respect the Port-Hamiltonian
structure due to the turbine pressure ptu equation, it is necessary to introduce a controller to render thesystem passive with respect to a chosen equilibrium.

In this scope, the introduction of a passivity-based controller is proposed in chapter 4.
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4 - Passivity-based controller

Using Port-Hamiltonian modeling of a system, it is possible to prove the passivity of a system, and
the asymptotic stability around an equilibrium. However, the LPRE complex system presents a positive
resistive term Rptu that proves problematic for the passivity analysis. Additionally, while proof of the
stability around the origin is possible, demonstration of the stability around a desired equilibrium is
lacking. This chapter presents an approach to designing a passivity-based controller for a liquid-propelled
rocket, using Port-Hamiltonian representation. This controller aims to make the closed-loop controlled
system passive and assign a new chosen equilibrium.

4.1 . Passivity-based control theory

Passivity-based control [74] is a classical control design method in Port-Hamiltonian systems theory.
It is briefly recalled here. Note that R(x) and J(x) are noted R and J per abuse of notation, however,
the dependency on the state is still considered.

Let a Port-Hamiltonian system of the form
ẋ = (J −R)

∂H

∂x
+ g.u(x, t), (4.1)

where x ∈ Rn, u ∈ Rp, with the associated desired system behavior given by
ẋd = (Jd −Rd)

∂Hd

∂x
, (4.2)

where the matrices Jd = −J⊤
d ,Rd ≥ 0 represent the desired storage and damping matrices, and Hd isthe desired resulting Hamiltonian function.

The principle of the design of the controller is to define a new stable equilibrium to the system (4.1).
To do so, a new Hamiltonian function Hd(x) is assigned to the system (4.1). This new energy function
should beminimal at the desired equilibrium and consequently be a candidate function for the passivity
condition of the new closed-loop system. This requires the new Hamiltonian function to respectHd(x) ≥
0 and to conserve the Port-Hamiltonian structure Jd(x) = −Jd(x)⊤, Rd(x) ≥ 0. While Jd and Rd aredefined by the user, the Hamiltonian functionHd is not known a priori.The developed method consists in searching for a controller u such that the dynamics of the closed-
loop system (4.1) converges to the dynamics of (4.2). This translates into

∀x ∈ R⋉, (J −R)
∂H

∂x
+ gu = (Jd −Rd)

∂Hd

∂x
, (4.3)

which is the generation equation for the controller. This equation is used to define both the new Hamil-
tonianHd(x) and the controller u(x). Let a full rank left annihilator g⊥ of g. If p < n, then the full rank left
annihilator g⊥ ∈ Rn×(n−p) is defined such that ∀x ∈ Rn, g⊥(x)g(x) = 0. Using (4.3), where the control ac-
tion is nullified, it is possible to obtain the following partial derivative equation, where the control action
u(x) is nullified,

g⊥(Jd −Rd)
∂Hd

∂x
= g⊥(J −R)

∂H

∂x
. (4.4)
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To find the unknown desired Hamiltonian Hd, from the known matrices Rd, Jd, define the matrices
added to the system, and the added HamiltonianHa(x),

Ra(x) = Rd(x)−R(x), Ra(x) ≥ 0

Ja(x) = Jd(x)− J(x), Ja(x) = −Ja(x)⊤

Ha(x) = Hd(x)−H(x). (4.5)

Assumingwe can find u(x),Ra(x),Ja(x) and ∂Ha
∂x , with properties specified in the following, the closed-

loop system (4.1) is a Port-Hamiltonian system with dissipation Rd(x) and a stable equilibrium at a spe-
cified x = x0 (see [77], Prop. 1.)While Ra and Ja follow from the knowledge of Rd and Jd, Ha(x) is a Hamiltonian function added to
the system and must be determined (note that from the definition of Ha(x), finding Ha is equivalent tofinding Hd(x)). Ha(x)’s hessian is defined by the partial derivative equation (4.4) and must respect the
following existence conditions,

• ∂Ha
∂x is the gradient of a scalar function, and should be integrable, thereforeHa(x)must respect an
integrability condition

∂2Ha

∂x2
=

[
∂2Ha

∂x2

]⊤
. (4.6)

This condition can be directly injected in (4.4). It is not directly applicable to Hd(x) and therefore
justifies the introduction of the intermediary Hamiltonian functionHa(x).• The equilibriumassignment atx = x0 defines theminimumofHd(x). In other terms,minx(Hd(x)) =

Hd(x0). Paired with the passivity conditions (Hd(x) ≥ 0, see 3.1.2), the minimal value ofHd is set to
Hd(x0) = 0. The functionHa(x) is then defined at x0 by

Ha(x0) = −H(x0)

∂2Ha

∂x2
(x0) >

∂2H

∂x2
(x0). (4.7)

Following the definitions ofHa, Ra, Ja, (4.4) can be written
g⊥(J + Ja −R−Ra)

∂Ha

∂x
= −g⊥(Ja −Ra)

∂H

∂x
(4.8)

The partial derivative equation (4.8), paired with the two conditions onHa (4.6) and (4.7) allows to solvethe system and define the added Hamiltonian Ha. with the added Hamiltonian Ha(x), the desired Ha-
miltonian follows directly usingHd(x) = H(x) +Ha(x), and the controller u(x) is defined directly using

u(x) = (g⊤g)−1g⊤
(
(Jd −Rd)

∂Hd

∂x
− (J −R)

∂H

∂x

)
(4.9)

where (g⊤g)−1g⊤ is a left inverse of the control matrix g.
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4.2 . Application to the simplified LPRE model

To illustrate the design of the passivity-based controller, we present it using the simplified model of
the LPRE (3.28). We recall here the geometric structure of the model,Jαqω̇

Iq̇
kpṗ

 = (J(x)−R(x))
∂H

∂x
+ g(x)Tm +

 0
pep
0

 , (4.10)

where
J(x) =

0 −λ 0
λ 0 −1
0 1 0

 , R(x) =
−Rω 0 0

0 −Rq 0
0 0 −Rp

 (4.11)

∂H

∂x
=

ωq
p

 and g(x) =
10
0

 . (4.12)
The application of PBC to the simplified LPREmodel aims to change the stable equilibrium of the sys-

tem. Indeed, the simplified system is passive with respect to the origin, and a PBC controller is designed
to stabilize the system to an equilibrium that differs from the origin of the system (x0 ̸= 0). To do so, a
new Hamiltonian functionHd(x) is retrieved for the system.

4.2.1 . Determination of the desired functions
The first step for the design of the PBC controller is to establish the desired effect of the controller

on the system. The equilibrium is defined by a known chamber pressure p0, for which the corresponding
ω0, q0 can be computed (therefore are supposed known). As the initial Hamiltonian function of an LPRE
is quadratic in the states in (3.44), the HamiltonianHd is chosen under a quadratic form,

Hd(x) = x⊤Qx (4.13)
where Q is a positive symmetric square matrix that represents the equivalent inertia of the system.
Additionally, let the state vector xd be of the form,

xd =

Jαqω − Jαqω0

Iq − Iq0
kpp− kpp0

 , (4.14)

for an equilibrium defined by x0 =
[
Jαqω0 Iq0 kpp0

]⊤. The state vector at the equilibrium is then
defined by xd(x0) =

[
0 0 0

]⊤. As the LPRE simplified system is expressed under Port-Hamiltonian
form, there is no need for a new resistive matrix Rd(x). In this approach, define Jd = J and Rd = R,
(leading to Ja = Ra = 0) as there are no other requirements than equilibrium assignment.

4.2.2 . Choice of the HamiltonianHd(x)

After having selected the desired matrices Jd(x), Rd(x), the determination ofHd(x)must be perfor-
med via the determination of Ha(x). This step makes use of equations (4.6), (4.8) and (4.13) to express
the Hamiltonian function.
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Let a full rank left annihilator of g be
g⊥ =

[
0 1 0
0 0 1

]
. (4.15)

Equation (4.8) yields [
λ −Rq −1
0 1 −Rp

]
∂Ha

∂x
= 0, (4.16)

which translates into two equations for the partial derivatives ofHa,
∂Ha

∂Iq
= Rp

∂Ha

∂kpp

∂Ha

∂Jαqω
=

(RqRp + 1)

λ

∂Ha

∂kpp
. (4.17)

The newHamiltonianHd is proposedwith an quadratic form in (4.13). Additionally, (4.17) implies cross
terms within the different components. ThenHd’s partial derivatives can be written,

∂Hd

∂Jαqω
= Qω(ω − ω0) + kωq(q − q0) + kωp(p− p0),

∂Hd

∂Iq
= Qq(Iq − Iq0) + kqω(ω − ω0) + kqp(p− p0),

∂Hd

∂kpp
= Qp(p− p0) + kpω(ω − ω0) + kpq(q − q0), (4.18)

where Q• is the equivalent inertia coefficient for a state and k• is a cross-term coefficient in the inertia
matrixQ. Here the state vector corresponds to xd defined in (4.14) to ensure the equilibrium assignment.
The matrix Q expresses as :

Q =

Qω kωq kωp
kqω Qq kqp
kpω kpq Qp

 (4.19)
The relationHa(x) = Hd(x)−H(x) is used to translate (4.18) into

∂Ha

∂Jαqω
= (Qω − 1)(ω − ω0) + kωq(q − q0) + kωp(p− p0) + ω0,

∂Ha

∂Iq
= (Qq − 1)(q − q0) + kqω(ω − ω0) + kqp(p− p0) + q0,

∂Ha

∂kpp
= (Qp − 1)(p− p0) + kpω(ω − ω0) + kpq(q − q0) + p0, (4.20)

The integrability condition in (4.6) gives
kωq = kqω,

kωp = kpω,

kqp = kpq (4.21)
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From (4.17), (4.20), (4.21) it is possible to express every unknown term in terms of a single one. Qq isselected as the common parameter. The other parameters are computed with a projection of equation
(4.17) on the states. Let for example the first partial derivative equation,

∂Ha

∂Iq
= Rp

∂Ha

∂kpp
(4.22)

projected on the state (Jαω which is equivalent to a projection on ω as J, αq are time-invariant),
kqω(ω − ω0) = Rp.(kpω(ω − ω0)). (4.23)

The projections for the system lead to the definition of 6 equations, with 1 redundancy, for a total of
5 independent equations. The system is then solvable, and all unknown parameters can be expressed
under one common parameter. The other terms of the equation expressed as a function of Qq read as,

Qω =
(RqRp + 1)2

λ2R2
p

(Qq − 1) + 1

kωq =
RqRp + 1

λRp
(Qq − 1)

kωp =
RqRp + 1

λR2
p

(Qq − 1)

Qp =
1

R2
p

(Qq − 1) + 1

kqp =
1

Rp
(Qq − 1) (4.24)

The equilibrium assignment (4.7) can be easily verified from (4.18).
The controller can finally be expressed using (4.9),

u = −Rω
∂Ha

∂Jαqω
− λ

∂Ha

∂Iq
, (4.25)

or in a developed form,
u(x) =−Rω

[
(RpRq + 1)

λRp
(Qq − 1)(

(RpRq + 1)

λRp
(ω − ω0) + (q − q0) +

1

Rp
(p− p0)

)
+ω0

]
− λ

[
(Qq − 1)

(
(q − q0) +

(RpRq + 1)

λRp
(ω − ω0)

+
1

Rp
(p− p0)

)
+ q0

]
. (4.26)

This controller is then a non-linear state feedback since the non-linear expression of the resistive terms
implies the non-linearities in the expression of the controller.
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4.2.3 . Controller tuning
The tuning parameter of the controllerQq is derived from conditions onHa summarized by (4.7). To

ensure a minimum of the Hamiltonian function at the desired equilibrium x0, the parameterQq is set tosatisfy Qω kωq kωp
kωq Qq kqp
kωp kqp Qp

 > 0 (4.27)
As the eigenvalues of the matrix Q areQq +

1
R2

pλ
2 (Qq − 1)

(
R2

q + 2RqRp + λ2 + 1
)

1
1

 , (4.28)

a simple choice is to use Qq = 1 + ku.v(x) where v(x) is a positive function v : Rn → R+ and ku ∈ R+.Additionally, to obtain the desired behavior the function v(x) is tuned to mitigate the highest eigen-
value of the matrix Q, which means that for the highest eigenvalue,

Qq +
1

R2
pλ

2
(Qq − 1)

(
R2

q + 2RqRp + λ2 + 1
)
, (4.29)

we want v(x) such that this eigenvalue is close to 1. Note that the hessian of the original Hamiltonian is
composed of constant terms, with eigenvalues 

1
Jαq
1
I
1
kp

 . (4.30)

As the resistive term Rp is small before 1, Rp << 1, we define v(x) = ku.R
2
p, and the equivalent inertia

of the Hamiltonian is defined as
Qq = 1 + kuR

2
p (4.31)

where the parameter ku can vary and influence the speed and precision of the controller. And the max
eigenvalue of Q is then,

ku
λ2
(
R2

q + 2RqRp + λ2 + 1
)
. (4.32)

The parameter ku is a tuning parameter of the controller, and impacts the speed and stabilizing
properties of the controller. In the controller expression (4.26), kuv(x)multiplies the error (x− x0), andhas a high impact on the behavior of the controlled system. Therefore the choice of ku must be justified
by the system behavior desired by the user and the actuators’ performance. Note that for v(x) = 1, the
controller is equal to Rωω0 + λq0 which corresponds to the value of the desired equilibrium u0.The impact of v(x) = kuR

2
p can be witnessed on the system with simulations for different ku. Figure4.1 illustrates the behavior of the pressure p for different tuning parameters ku in the range [0.1, 10]. Thecontroller follows a step from the nominal value x0 = 1 to x = 1.1x0. The figure illustrates the speedincrease with a higher parameter ku, however, an overshoot appears in the highest value of ku. Thisbehavior was expected as ku scales the importance of the state difference to the equilibrium (x − x0).
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Figure 4.1 – Evolution of the pressure for different tuning parameters Qq

A small ku leads to a slow system, with a high static error, while a high ku leads to a fast system, with an
overshoot and a low static error.

In the chapter 6, the open-loop system displays a time-response of 0.74s, therefore a suitable value
is ku = 0.1, as it proves to have a similar time-response (0.61s in figure 4.1).

Note that in this design the controller obtained yields the closed-loop (4.2). The introduction of an
integral action in the definition of the equilibrium x0 in (4.14) suppresses the resulting static error whileconserving the Port-Hamiltonian structure.

4.3 . Determination of a controller for the complex system with application to trajec-
tory tracking

In this section, the steps to extend the PBC designmethod to the complex system in Port-Hamiltonian
form (3.32) are depicted. Note that the Port-Hamiltonian form is comprised of the H-half of the LPRE only,
and is composed of 7 states. Additionally, the additional elements to perform trajectory tracking with the
controller are described. We note Rs a matrix for the simplified system and Rc a matrix for the complex
system.

4.3.1 . Controller design for the complex system
In a first time, consider the approach where the matrices Jc

a(x) = Rc
a(x) = 0 as for the simplified

system in the previous section 4.2. The PDE defined by
g⊥(J + Ja −R−Ra)

∂Ha

∂x
= −g⊥(Ja −Ra)

∂H

∂x
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yields the following
−Rω

∂Ha

∂(αqJω)
+ αt

∂Ha

∂(kptuptu)
− λ

∂Ha

∂(Iccqcc)
− λ

∂Ha

∂(Iggqgg)
= 0

−Rqcc
∂Ha

∂(Iccqcc)
+ λ

∂Ha

∂(αqJω)
− ∂Ha

∂(kpccpcc)
= 0

−Rqtu
∂Ha

∂(Ituqtu)
+ κtu

∂Ha

∂(kpggpgg)
− κtu

∂Ha

∂(kptuptu)
= 0

−Rpcc
∂Ha

∂(kpccpcc)
+

∂Ha

∂(Iccqcc)
= 0

−Rpgg
∂Ha

∂(kpggpgg)
+

∂Ha

∂(Iggqgg)
− κtu

∂Ha

∂(Ituqtu)
= 0

−Rptu
∂Ha

∂(kptuptu)
+ κtu

∂Ha

∂(Ituqtu)
− αt

∂Ha

∂(αqJω)
= 0 (4.33)

Similarly to the simplified system, the desired Hamiltonian function Hc
d for the complete LPRE is

computed using the variables separation method as in [80]. In the complex modeling case however, the
multiple projections of the partial derivative equation (4.33) lead to an over-defined equation system,
which corresponds to the number of unique equations exceeding the number of unknown parameters.
In this section, the solution explored consists in changing the desired dissipation matrix Rc

d(x) ̸= Rc(x).
This new assignment serves two distinct goals, increase the number of unknown parameters to grant the
closure of the PDE equations, and assign a new damping to the complex LPRE system, whose resistive
matrix contains a negative resistive term Rptu (see 3.3.2).Let a positive symmetric matrix Qc ∈ R7×7 such that the desired HamiltonianHc

d(x) is under the form
Hd(x) = x⊤Qcx. (4.34)

The PDE,
∀x ∈ R⋉, (Jc −Rc)

∂Hc

∂x
+ gcuc = (Jc

d −Rc
d)
∂Hc

d

∂x
,

grants 42 equations, and has no solution for Rc
a = Jc

a = 0, due to over-definition of the equations (42
equations for only 28 parameters that compose the matrix Qc). In comparison, the same PDE for the
simplified system granted 6 equations with one repetition (5 unique equations), and Qs is composed of
6 parameters. To find a solution for the PDE, it is then necessary to define a new suitable matrix Ra. Leta diagonal matrix Ra ̸= 0,

Rc
a(x) = diag(Raω, Raqcc, Raqgg, Raqtu,

Rapcc, Rapgg, Raptu). (4.35)
The introduction of this unknownmatrix adds 7 unknown parameters to the equation (4.33). This allows
the user to solve the equations (as several equations in the 42 are not unique, resolution has proven that
there are only 31 unique equations). In particular, 4 conditions on the added resistive matrix Ra(x) are
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derived from solving the equation,
Raqcc = Rqcc

Rapcc = 0

Raω = Rω −Rpcc

Rapgg = Rqtu −Raqtu (4.36)
Using the newly defined matrix Rc

a(x) with conditions stated in (4.36), the equations (4.33) are now sol-
vable, with the separation of the variables method. A more powerful method is presented in [74], to
solve partial derivative equations using the method of characteristics. However, in the case of a separa-
tion method, a sufficient condition on the rank of the equation matrix (the rank of the equations is n−1,
leading to no over-definition) is enough to solve the system.

The computation of the controller is determined using the symbolic computing tool Maple. The for-
mulation of the controller is given in Appendix B as obtained in Maple. A simpler expression is given
using the co-energy variables under the form,

u(x) = − 1

q2gg
(−Rc

aqgg

∂Hd

∂Iqggqgg
− (λ

∂Hd

∂αJω
−Rqgg

∂Hd

∂Iqggqgg
− ∂Hd

∂kpggpgg
)

+λ
∂H

∂αJω
−Rqgg

∂H

∂Iqggqgg
− ∂H

∂kpggpgg
). (4.37)

Notice that at the equilibrium x0, which is a minimum of the function Hd, the controller value leads to
Iqgg q̇gg = 0 as the equation can be found back into the controller.

The equations are solved by expressing every parameter depending on the value of Qqgg , which is
the equivalent impedance for the state qgg in the desired HamiltonianHd(x) = x⊤Qcx. As the controller
influences the mass flow qgg , in

Igg q̇gg = αqω − pgg −Rqggqgg − Zvggq
2
gg (4.38)

it is of interest to associate the common parameter to Qqgg. Indeed, the computation of the other im-
pedance terms Qω, ... is more complex at each equation. The Qqgg parameter is then a suitable choice
since it distributes on all the system. In this case the equilibrium assignment condition (4.7) yields the
following parameter Qqgg

Qqgg = 1 + v(x, t) (4.39)
where v(x, t) remains a positive function.

4.3.2 . Application to trajectory tracking
In this subsection, the controller’s performance for trajectory tracking is presented. At this point, the

controllers designed for both the simplified system in 4.2 and for the complex system in 4.3 are able to
stabilize the system around a desired equilibrium. This subsection discusses the options to generate a
reference that is suitable for the tracking of a trajectory and is illustrated by step functions to show the
differences between the options.

First introduce the notion of a reference trajectory. A reference trajectory is a vector function of time
xr(t) : R+ → Rn, which defines a known state vector at all times t > 0.
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Figure 4.2 – Step response of the controlled system, with no reference generation
A trajectory x(t) of the system is a solution to the equations of the system over time.
Define also the notion of objective function xobj(t) which is the trajectory that the state must follow.

The difference between objective and reference is illustrated in the following, with the notion of error
with the reference (x− xr).To perform a trajectory tracking, the difference between the current trajectory x(t) and the reference
at the same time t, xr(t) is used, (x(t)−xr(t)). The first example of trajectory tracking is provided for the
PBC controller with the equilibrium assignment in the term (x−x0). This consists in a trajectory trackingof a constant reference xr(t) = x0.To define a reference xr from a continuous function, it is necessary to discretize this function into
multiple equilibrium assignments. This process is for example realized in simulations, when the discre-
tization is generated by the time-step of the simulation.

In the following paragraphs, solutions are illustrated on a step response in closed-loop control of the
complex system with the controller in 4.3. The simulations are computed with the parameter Qqgg suchthat,

Qqgg = 1 + ku
R2

pc

Rqt
. (4.40)

As for the simplified system, the value ofQqgg is selected tominimize the highest eigenvalue in thematrix
Qc

To illustrate the problem of reference generation, let a first reference defined by
xr = (pcc,obj − pcc)

x0
pcc,0

. (4.41)
where pcc,obj(t) the objective function for themain chamber pressure pcc. This reference aims to perform
trajectory tracking of the main chamber pressure, with equilibrium assignment at (x(t) − xr(t)). This
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simple reference generation approximates each state using a first-order Taylor expansion of the state
xr =

x0
pcc,0

pcc. In the simulation using this reference, a static error is expected, due to the error between
the state and the reference xr. The objective function is a step, which translates to

pcc,obj =

{
pcc0 t < 1

1.2pcc0 t ≥ 1
(4.42)

in figure 4.2, the controlled system responding to the step is proposed. A static error appears at the
start and the end of the step function. This static error originates from the reference generation in the
controller. As mentioned in the design of the controller 4.2.1, the new state associated with the desired
behavior is x−xr, where xr is the desired equilibriumof the system. In this work, the states are supposed
measurable therefore it is possible to compute the controller for a known equilibrium of the system.

The static error illustrates the requirement for a reference generation method, to define a new func-
tion xr(t) that allows the system to precisely converge to the objective xobj . As shown in figure 4.2, an
insufficient design of the reference leads to the loss of precision in the tracking. Two solutions for refe-
rence generation are proposed in the following, a simple reference generation and the addition of an
integrator.
Addition of a simple reference governor

In this paragraph, the reference xr used in the system is comprised of two vectors corresponding
to the desired equilibria during a step. The first vector is composed of an equilibrium where pcc = pcc0and the second vector of an equilibrium where pcc = 1.2pcc0 . Until the step, the first vector xr,pcc0 is
injected in the system, and at the time of the step (t = 1s), the second vector xr,1.2pcc0 is used. Note that
xr ∈ Rn is a known equilibrium of the system, describing each state with precision. The main difference
with the reference defined by (4.41), is that this reference provides a real value for all states, rather than
an approximation. Consequently, no static error is expected in the simulation. The closed-loop system
equation with this reference is

ẋ = (Jd −Rd)
∂Hd

∂x
(x, xr) (4.43)

where
xr =

{
xr,pcc0 t < 1

xr,1.2pcc0 t ≥ 1
(4.44)

The response to this reference is provided in figure 4.3. The figure displays the controller, which is the
value of the PBC controller u, the reference, which is the state xr, and the consign which is the objectivefunction. In this case, the reference and the consign overlap, as they represent the same quantity for the
state pcc.A proper reference allows the system to converge to the desired value pcc = 1.2pcc0, without an addedintegrator. The term proper designates the fact that the reference requires prevision of the 7 states of
the system at the desired pcc. The step response provides a spike in the controller u at time t = 1s, which
is echoed on the state qgg. Such a spike is not desired in this system, as it is not representative of the
capabilities of the real actuators.
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Figure 4.3 – Step response of the controlled system, using a simple reference governor

Additionally, such reference requires a new step in the implementation of the controller. For example,
on 4.3, previous simulations allowed to determine all values for the states in the reference before and
after the step (at t = 1s).

While the stability of the system is guaranteed by the new Hamiltonian function Hd(x, xr) beforethe step it is required to verify that the Hamiltonian is valid for both points. Finally, such reference is
difficult to retrieve when a smooth reference is required (rather than scattered points), and is sensible
to perturbations and measurement errors, see 6.
Addition of an integrator

In this subsection, the addition of an integrator before the controller to generate a reference is propo-
sed. This means that the objective function pcc,obj is compared to the current state pcc, then is processedby the integrator to obtain xr(t)which is finally injected in the PBC controller. The global equation of theclosed-loop system is

ẋ = (Jd −Rd)
∂Hd

∂x
(x, xr),

xr =

(
(pcc,obj − pcc) + kI

(∫ t

0
(pcc,obj − pcc)dt

))
x0
pcc,0

(4.45)
for kI = 0, the equation for a simple reference is retrieved. For kI > 0 the system proposes a new
reference xr that allows the suppression of the static error present in figure 4.2. To illustrate this, figure4.4 reproduces the controller in figure 4.3, where a proportionate-integral (PI) defines the reference with
kI = 30, kP = 1. Define an integrator on the static error between pcc and the reference pressure pccref .
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Figure 4.4 – Step response of the controlled system, using an integrator

In this simulation the controller and mass flow qgg present a smooth behavior at t = 1s, and a more
feasible behavior for the real physical system. Because of the integrator, the step function in the objective
is smoothed with the integration process, in

xr =

(
(pcc,obj − pcc) + kI

(∫ t

0
(pcc,obj − pcc)dt

))
x0
pcc,0

(4.46)
Additionally, this reference is in practice easier to obtain than a full reference for the states since it only
requires the consign valuewhich is pcc. From the value of pcc, it is possible to define a reference that allowsprecise equilibrium assignment and a slower time-response. The slow time response is of interest in the
scope of the addition of actuators dynamics to the system since a non-smooth behavior is unfeasible
with a real system.

4.4 . Summary

In this chapter, to answer the equilibrium assignment problem, a controller using passivity-based
properties has been designed for both the simplified and complex Port-Hamiltonianmodels of the LPRE.
Additionally, it is shown that the PBC design allows to introduce a new damping matrix, to enforce the
Port-Hamiltonian behavior on a system, and cancel a negative term in the resistive matrix R(x) of the
original system. This is used on the turbine pressure resistive term Rptu which was shown to be positivein the previous chapter 3. Finally, the controller proves to have tuning capabilities, and a first tuning
method is proposed, with a common parameter Qq for the simplified system.

In a second time, the adaptation of the design to the tackle trajectory tracking scenario is discussed,
in particular the reference generation problem, where it is necessary to inject a suitable function in the
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controller to perform the equilibrium assignment and the convergence of the system. The controller
presented in this chapter is to be compared with other applications of the PBC design in the literature.
Notably, in [81] and [82], the authors developed control strategies to adapt the PBC design developed in
[77] to trajectory tracking applications.

In [81] the author derives the PBC design to render the tracking error, in this instance corresponding
to xobj − x, under a Port-Hamiltonian form. The PBC controller is then used to make the tracking error a
passive system with equilibrium 0, where the trajectory is correctly followed. In comparison, the trajec-
tory tracking defined in this chapter is only able to render the same properties for a constant trajectory,
or an almost constant trajectory (a step between two operating points). Indeed, a constant trajectory
only adds an invariant term to the design, and therefore the error system follows the dynamics specified
byHd, Rd, Jd. In the case of a time-varying trajectory, the tracking ability of the design is hindered by the
lack of integration of its dynamics into the design.

In [82], the notion of a contracting Port-Hamiltonian system is introduced, and the synthesis of a
controller is recalled to be the design of a contracting controller with the PBC tools. This design allows to
construct an exponentially stable controller, which is suited to perform trajectory tracking. The author
searches for a contraction metric (see chapter 5) using the PBC method to assign the desired matrices
Jd, Rd with a structure that enables contraction of the system. To do so, the author supposes that it is
possible to find constant matrices in the desired structure (Jd, Rd), which in the case of the LPRE, has
proven not to be possible in the computations driven. Indeed, the necessary fixed terms in the new
resistive matrix Rd imply that Raqcc = Rqcc which is time-dependent. A solution to make the system
contractive is presented in the following chapter, using another design method.

For trajectory tracking, PBC however proves to have a complex design in the reference generation,
as well as limited stabilizing properties (stability must be proved around each point of the reference).
To answer this, contraction theory is introduced in the following chapter, which is a tool that analyses
stability with respect to a trajectory.
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5 - Contraction theory analysis

Using Port-Hamiltonian systems framework, the analysis of the fixed-point stability of an LPREmodel
(simplified and complete) has been described using the passivity of the system. Additionally, the control-
ler derived from a PBC approach in chapter 3 has proven suitable to stabilize the system around several
operating points, allowing for the tracking of simple setpoint trajectories. However, the passivity-based
controller additionally requires precise knowledge of the overall system, as the equations to determine
the controller highly depend on the system’s structure. PBC ensures the asymptotical stability of the sys-
tem towards a reference point, which can prove insufficient in high-perturbated scenarios. As shown in
3.3.1, the Port-Hamiltonian modeling passivity is only applicable in a certain domain of stability. In the
event of a more complex trajectory, the system can then be imposed unstable references, which cross
the domain threshold and lead to unstable behavior. In such cases, it seems preferable to propose in-
creased stability guarantees. In the case of a prior analysis of the domain of passivity, and the restriction
of the reference to this domain, asymptotic stability with the PBC controller is sufficient. In this chapter
a controller that renders the system exponentially stable is proposed, to face the event of an unstable
trajectory.

The stability guarantees derived from the PBC controller yield convergence of the system to the de-
sired operating point. For two successive points of a trajectory, a controller can be designed to ensure
stability in a neighborhood of these points. However, when the neighborhoods are too distant from one
another, portions of the transition trajectory may belong to regions where stability is not guaranteed
(see figure 5.1). The transition between two stable equilibria in certain scenarios can lead to the loss
of stability guarantee in uncertain regions (in blue on figure 5.1). In such a scenario it is interesting to
provide analysis of the stability from a trajectory preservation point of view. Contraction theory [83, 45]
focuses on the convergence of the different possible trajectories of a system and proves to be a well-
suited framework for the analysis of nonlinear systems. The stability of the system is proven when the
trajectories with potentially different initial conditions converge to a reference trajectory. Moreover, the
stability of the system is guaranteed with respect to the reference trajectory. This means that if a stable
trajectory is found for the transition between two operating points, contraction theory implies a stable
behavior along the transition.

In this chapter, contraction theory is briefly recalled in 5.1. A contractive controller design is presented

x1

Stability domain

x2

Uncertainty zone

Figure 5.1 – Example of navigation between reference points
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in 5.2, and applied to the simplified system. Performance and stability guarantees are shown in section
5.3. Complements to the existing design and the extension of the controller for the complex system are
presented in 5.4.

5.1 . Contraction theory, definition and properties

Contraction theory for non-linear systems developed in [83], [45], is a powerful analysis tool for non-
linear systems. In particular, contraction theory is used to describe the convergence of different solutions
for a system. Typically, for an evolution equation of the form,

ẋ = f(x, t) + d(t), (5.1)
where d(t) is a time-varying perturbation, the solution of the equation depends on the initial condition
x(0) and on the perturbation d(t). Contrary to classical analysis which focuses on the convergence of a
solution to a point, contraction theory considers the flow of trajectories of a system. Contraction theory
hasmainly been used for studying the convergence of non-linear systems [84], [85] and controller design
in [86], [87], [88].

Consider the following non-autonomous system
ẋ = f(x, t), (5.2)

where x is ann-dimension state vector and f ann-dimension non-linear vector functionwith Jacobian ∂f
∂x .If f is continuously differentiable, a virtual displacement δx is defined as an infinitesimal displacement

at a fixed time. A virtual velocity is derived using the system equation (5.2),
δẋ =

∂f

∂x
(x, t)δx, (5.3)

representing differential dynamics of the flow of trajectories. Define a trajectory as a possible solution
for the equation (5.2). Define the notion of neighboring trajectories as two trajectories solution to the
same equation, with variance in a parameter (for example initial condition or perturbation). Consider
now two neighboring trajectories x1(t), x2(t) and the virtual displacement between them at time t, δx =

x1(t) − x2(t). From here, define the squared distance between the two trajectories δx⊤δx. The rate of
change of this squared distance is deduced from equation (5.2),

d

dt
(δx⊤δx) = 2δx⊤

∂f

∂x
δẋ ≤ 2λmaxδx

⊤δẋ. (5.4)
were λmax is the highest possible eigenvalue of ∂f

∂x . Then if there exists ϵ such that λmax ≤ ϵ < 0, then
the trajectories converge to each other, exponentially.
Definition 8. [45] Given the system dynamics equations ẋ = f(x, t), a region of the state space is called
a contraction region if the Jacobian matrix ∂f

∂x is uniformly negative definite in that region, which means
∃ϵ > 0, ∂f∂x + ∂f

∂x

⊤
< −ϵId < 0.

Using this definition, Theorem 2 introduces a first condition for assessing the exponential conver-
gence of a set of trajectories.
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Theorem 2. Lohmiller & al. Given the system equations ẋ = f(x, t), any trajectory, with initial condi-
tions x0, belonging to a ball of constant radius centered on a given trajectory, and contained at all times
within a contraction region, remains in that ball and converges exponentially to this trajectory. Further-
more, global exponential convergence to the given trajectory is guaranteed if the whole state space is a
contraction region.

The definition of a contraction region 8 is seldom verified under this formulation. In the literature,
the sufficient condition that composes this definition has been extended [45]. Let a coordinate transfor-
mation

δz = Θδx (5.5)
where Θ(x, t) is a square invertible matrix. Then the squared distance between two neighboring trajec-
tories is expressed

δz⊤δz = δx⊤P(x, t)δx (5.6)
where P(x, t) = Θ⊤Θ is a symmetric positive matrix and defines a metric. The use of a metric allows to
apply the sufficient condition for contraction to a wider range of systems. From here, we will consider a
symmetric positive P .
Definition 9. Given the systemdynamics equation (5.2), a region of the state space is called a contraction
region with respect to the metric P(x, t) if there exists a metric P(x, t) such that,

∂fP(x, t) +
∂f

∂x

⊤
P(x, t) + P(x, t)

∂f

∂x
≤ −ϵP(x, t) (5.7)

where ∂fP(x, t) is defined in [89] as the derivative of P(x, t) along the vector field f . P(x, t) is said
to have a derivative along f if the following limit exists,

∂fP(x, t) = lim
h→0

P(X̃(x̃, h))− Px̃
h

, (5.8)
where X̃(x̃, •) is the flow of trajectories generated by the vector field f for initial condition x̃.

Theorem 2 leads to the following metric-oriented theorem.
Theorem 3. Lohmiller & al. Given the system dynamics (5.2), any trajectory, with initial conditions x0,belonging to a ball of constant radius with respect to themetricP(x, t) (in the coordinate transformation
Θδx), contained at all times within a contraction region with respect to themetricP(x, t), remains in that
ball and converges exponentially to that trajectory.

This theorem allows to prove the exponential convergence of a system to a trajectory or a point
(a constant trajectory over time). If the controlled LPRE system verifies Theorem 3, then any trajectory,
regardless of its initial conditions [90] (to the extent of the contraction region), converges exponentially
fast to a reference trajectory. In practice, however, contraction conditions are hard to obtain naturally
on a physical system, and the LPRE system studied is no exception.
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5.2 . Contraction based control

While simple systems such as a damped oscillator present a contractive behavior. The property of
contraction on a complex system is seldomproved, and thereforemost of them do not display a contrac-
tive behavior. In the literature, contraction-based controllers have been designed using direct methods
[88], [86], when a contraction metric can be found. The search for a contraction metric with a direct me-
thod can prove difficult, similar to the Lyapunov approach. To perform such task contraction theory has
been paired with some reinforcement learning techniques [87], adapted for the search of contraction
metrics. A more general approach to providing contractive properties to a system has been studied in
[89], leading to the definition of a controller using LMI (Linear Matrix Inequality) tools. In [89], the au-
thor considers the definition of a controller for a wide range of non-linearities, provided some sector
conditions on the non-linearities are respected. This method is designed to cover a wide range of non-
linear systems and results in a simple controller that applies to embedded systems. Due to the nature
of the non-linearities of the LPRE (square roots, squared terms) and its limitation to the positive values
of the variables, the method in [89] constitutes a suitable design. The study of several solutions of an
equation moreover allows to prove the convergence of complex controllers based on machine learning
techniques [91], which make use of different trajectories based on neural network computation.

5.2.1 . Contracting controller
We recall here the method derived from [89] for the design of a contraction based controller.
Let a state-space system of the form (5.2), whose non-linear terms are separated from the linear

terms in the form,
ẋ = Ax+Mϕ(Lx, t) (5.9)

where the matrix A is a square, time-invariant matrix, ϕ is an n-dimensional nonlinear vector function
andM,L are twomatrices of appropriate dimensions. The dimension of thematricesM,L are definedby
the structure of the nonlinear terms in the system. Such reformulation (5.9) isolates the nonlinear terms
of the original system in the function ϕ. Definition 9 applied to the state-space reformulation yields the
following definition of the contraction region, explicited in [92] :
Definition 10. The system is contracting for an explicit metricP(x, t), if there exists aC1 matrix function
P(x, t) : Rn → Rn×n with positive symmetric values such that

∃ϵ > 0 ∂fP(x, t) + P(x, t)

(
A+M

∂ϕ

∂Lx
(Lx, t)L

)
+

(
A+M

∂ϕ

∂Lx
(Lx, t)L

)⊤
P(x, t) < −ϵIdn,

with
pIdn ≤ P(x, t) ≤ pIdn, ∀(x, t) ∈ Rn × R, (5.10)

where p, p are positive real numbers and Idn is the identity matrix of dimension n.
When a constant matrix P can be found, then (5.10) translates into :

∃P ∈ Rn×n,P = P⊤, ∃ϵ > 0 He(P(A+M
∂ϕ

∂Lx
(Lx, t)L)) ≤ −ϵIdn, (5.11)

whereHe(•) = •+ •⊤.
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Assumption 1. ([89]) (Monotonic nonlinearities) The mapping ϕ : Rm × R → Rm is such that :
0 ≤ ∂ϕ

∂Lx
(Lx, t) +

∂ϕ

∂Lx
(Lx, t)⊤, ∀(x, t) ∈ Rm × R, (5.12)

Theorem 4. Andrieu & al. Consider a system of the form (5.9). Assume that ϕ satisfies Assumption 1. If
there exist a constant symmetric positive definite matrix P ∈ Rn×n and a positive real number ϵ such
that : [

A⊤P + PA+ ϵIdn L⊤ + PM
L+M⊤P 0

]
≤ 0, (5.13)

then the system (5.9) defines a contraction. This LMI is then split into two constraints : A⊤P +PA+

ϵIdn < 0 and L⊤ = −PM (as the trace of equation (5.13) is equal to the trace of A⊤P + PA+ ϵIdn).
The author in [89] then defines the following theorem for a controller u,

Theorem 5. Andrieu & al. The control law u that makes the system
ẋ = Ax+Mϕ(Lx, t) +Bu, (5.14)

contracting for a constant metric P is obtained under the form
u = Kx+Nϕ(Lx, t), (5.15)

where Z ∈ Rq×n,N ∈ Rq×p are obtained with the LMI
He(AW +BZ)⊤ + (AW +BZ) ≤ 0,

W > 0,WL⊤ = −(M +BN),
(5.16)

and withK = ZW−1 andW−1 = P .
Such design for a controllermakes use of the assumption thatP is a constantmatrix. This implies that

the matrices involved in (5.16), namely A,B,L,M,N must be constant. In the next subsection (5.2.2), a
controller is developed for the simplifiedmodel of the LPRE, where the consideredmatrices are constant.

In the case of the complex model, the control matrix B(x) of the system is not constant. Indeed, the
matrix B(x) denotes the friction induced by the equivalent resistance of the valve,

B(x)Zvalve = −Zvalveq
2
gg (5.17)

In this case, the design has to be adapted for a time-varying matrix B(x). This approach is developed in
the subsections 5.4.1,5.4.2.
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5.2.2 . Application to the motopump system

In this subsection, contraction theory is applied to the motopump model of the LPRE. As the mo-
del does not present a contractive behavior in its original form, a contractive controller is designed to
regulate the system.

The controller is in a first time designed for the regulation of the hydrogen line of the model. The
behavior of the oxygen line of the system is supposed well-regulated and allows for a constant mixture
ratio in the combustion chamberMRcc. The input variable in the motopump system is the motor power
of the pump Pm (see 2.33), while the regulated output is the chamber pressure pcc. The objective of thiscontroller is to provide a contractive behavior for the closed-loop system with the previously defined
input and output.

The design of the controller follows three distinctive steps :
• The linear and non-linear terms are separated into two parts to isolate the non-linearities in a
matrix function ϕ.

• The mappingMϕ is then reformulated to respect the sector-bound condition in (5.12), while ensu-
ring a feasible LMI solution.

• Finally, the LMI is solved for the new mappingMϕ.
The main part of the system design is eventually to find a suitable reformulation of the system under
the form ẋ = Ax +Mϕ(Lxs, t) + Bu. The controller is then directly derived from the solutionsW,N,Z
of the LMI.

Preliminaries

The formulation of the hydrogen line for the motopump system yields :

Ω̇ =
2

J

(
Pm −

∣∣ac
ρ
q2ccΩ

1
2 + bcΩqcc + ccρΩ

3
2

∣∣)
q̇cc =

1

Icc

(
pep − pcc + (

ap
ρ

− Zres)q
2
cc + bpΩ

1
2 qcc

+ cpρΩ

)
ṗcc =k1

(
1 +MRcc

)
qcc − k2pcc.

(5.18)
where for the sake of simplicity k1 = (k4cc + k5cc + (k2cc − k1cc)Θcc) and k2 =

√
Θcck3cc in 2.33. The

Jacobian of the system is then,

∂f

∂x
=


∂f1
∂Ω

∂f1
∂qcc

∂f1
∂pcc

∂f2
∂Ω

∂f2
∂qcc

∂f2
∂pcc

∂f3
∂Ω

∂f3
∂qcc

∂f3
∂pcc

 , (5.19)
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where
∂f1
∂Ω

= − 2

JH
(acH

q2cc

2Ω
1
2

+ bcHqcc +
3

2
ccHρHΩ

1
2 ),

∂f1
∂qcc

= − 2

JH
(2acHqccΩ

1
2 + bcHΩ),

∂f1
∂pcc

= 0,

∂f2
∂Ω

=
1

IH
(bpH

qcc

2Ω
1
2

+ cpHρH),

∂f2
∂qcc

=
1

IH
(2
apH
ρH

− keqH)qcc + bpHΩ
1
2 ,

∂f2
∂pcc

= − 1

IH
,

∂f3
∂Ω

= 0,

∂f3
∂qcc

= k1(1 +MRcc),

∂f3
∂pcc

= −k2,

which is not uniformly negative definite. Numerical simulations are used to confirm this claim. To
answer this, application of the method from [89] is made to compute a new input signal that will make
the system contracting, meaning that the Jacobian of the closed-loop systemwith the controller respects
equation (5.11). Reformulation of the system with (5.14) gives :

ẋ = Ax+Mϕ(Lx, t) +Bu, (5.20)
in which the non-linear terms of the simplified model are regrouped into the function ϕ, while the linear
terms compose the matrix A.

A =

0 0 0
0 0 − 1

IH
0 k1 −k2

 , Lx =

(
Ω
qcc

)
, B =

1
0
0

 , u = Pm

M =

1 0
0 1
0 0

 , L =

(
1 0 0
0 1 0

)
,

ϕ(y, t) =


2
JH

(
− acH

ρH
q2ccΩ

1
2 − bcHΩqcc − ccHρHΩ

3
2

)
1
IH

(
(
apH
ρH

− keqH)q2cc + bpHΩ
1
2 qcc + cpHρHΩ

)
 . (5.21)

From the new formulation of the system in (5.20)-(5.21), the design of a contracting controller follo-
wing the method described in [89] can be driven. From here, the controller design consists in computing
the matricesW,Z,N in (5.16). In the following, the reformulation of the system is detailed, to respect the
controller design.
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Remark 7. The function ϕ is assumed to follow a sector-bound condition. A Lipschitz condition on the
non-linearities allows to simplify the design of the contracting controller in [89]. However, analysis of the
monotony of the non-linearity as in assumption 1 shows that ∂ϕ

∂Lx(Lx, t)+
∂ϕ
∂Lx

⊤
(Lx, t) is not Lipschitz, as

it depends on the states Ω and qcc. Indeed, by taking note that :
∂ϕ

∂Lx
(Lx, t) =

(
∂f1
∂Ω

∂f1
∂qcc

∂f2
∂Ω

∂f2
∂qcc

)
, (5.22)

the non-linearity
∂f1
∂Ω

= − 2

JH
(acH

q2cc

2Ω
1
2

+ bcHqcc +
3

2
ccHρHΩ

1
2 )

is non-Lipschitz, due to the introduction of squared terms such as q2cc. The assumption from equation
(5.12) is then used to map the non-linearities of the partial derivatives (5.22).

Search of a mapping of the non-linearitiesMϕ The second step for the design of the controller
is to find a mapping of the non-linearitiesMϕ such that ∂ϕ

∂Lx(Lx, t) +
∂ϕ
∂Lx

⊤
(Lx, t) ≥ 0, and that the LMI

(5.16) has a solution.
∂ϕ

∂Lx
(Lx, t) +

∂ϕ

∂Lx
(Lx, t)⊤ ≥ 0 (5.23)

A first remark on the LMI formulation is that the constraints described in (5.16) impose several terms
in the searched matricesW,N,Z. With the expressions of the knownmatrices described earlier, and for
N =

(
n1 n2

),
WL⊤ = −(M +BN),

W

0 1
1 0
0 0

 = −

n1 + 1 n2
0 1
0 0

 . (5.24)

This constraint fixes six of the terms in W , namely the two left columns of W =

−n2 −n1 − 1 •
1 0 •
0 0 •


which leads to the constraint (AW +BZ)⊤+(AW +BZ) ≤ 0 to have no solutionsW,Z. To address this
issue, the matrixM is taken as

M =

1 0
0 −1
0 0

 . (5.25)

Note that the appropriate sign changes need to be made in the sign of the second row of the ϕ(y, t)
function.
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The new mapping ϕ is expressed :

ϕ(Lx, t) =


2
JH

(
− acH

ρH
q2ccΩ

1
2 − bcHΩqcc − ccHρHΩ

3
2

)
− 1

IH

(
(
apH
ρH

− keqH)q2cc + bpHΩ
1
2 qcc + cpHρHΩ

)
 . (5.26)

The mapping ϕ in (5.26) presents negative eigenvalues, so to verify condition (5.12), it is necessary to
change the matrices A, ϕ. The addition of a linear term in the expression of ϕ(Lx, t) is proposed, under
the form (l1Ω 0

)⊤. The term l1 is computed from the smallest negative value of ∂ϕ
∂Lx(Lx, t)+

∂ϕ
∂Lx

⊤
(Lx, t).

This term is then subtracted from the matrix A to keep the same equation as in (5.20).
This second reformulation of the system yields,

ẋ =

(
A−

l10
0

)x+M

(
ϕ(Lx, t) +

(
l1
0

)
Lx

)
+Bu. (5.27)

and respects assumption (5.22). From this reformulation, it is possible to find the matrices W,N,Z to
design the contracting controller.

LMI formulation With this formalism, the preliminaries to solve the LMI defined in (5.16) are obtai-
ned. The LMI is solved using YALMIP [59], which yields the three constant matrices that enable to build
the feedback control for the system :W,N,Z. The control law is then defined by

u = Kx+Nϕ(Lx, t),K = ZW−1. (5.28)
In the sense of [89], the closed-loop system is now contracting as the LMI condition

He(AW +BZ)⊤ + (AW +BZ) ≤ 0,

W > 0,WL⊤ = −(M +BN),

is verified.
Addition of a reference to the controller The closed-loop system with the controller designed
previously is contracting to the reference trajectory x = 0 per definition. Indeed, as x = 0 is the origin
of the system, it is the stable trajectory that the system converges to. To regulate the system around a
reference trajectory xr(t), a tracking term is added into the equation (5.27).

This leads to the final controlled system equation,

ẋ =

(
A−

l10
0

)x+M

(
ϕ(Lx, t) +

(
l1
0

)
Lx

)
+B

(
K(x− xr) +Nϕ

(
L(x− xr), t

))
. (5.29)

This tracking termmay interfere with the contracting behavior of the system, and therefore the contrac-
tion region associated to the controller is detailed in the following section.
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Figure 5.2 – Closed-loop contracting system

5.3 . Analysis and performance of the contracting controller

In this section, the limitations and properties of the contractive controller design are discussed. First,
we clarify the notion of contraction region generated by the controller. The stability properties granted by
the contraction of the system are then linked to Lyapunov theory. Finally, the controller design requires
a reference for the states. The feasibility of this reference on a physical LPRE system is discussed, and
alternative solutions to the reference are presented.

The controlled system is represented onfigure 5.2, where a referencexr is injected into the controller.The closed-loop system ẋ = f(x)+u(x−xr) is contracting around the reference xr provided it is situatedin a contraction region. The discussion in this section focuses on the closed-loop system in 5.2.
5.3.1 . Stabilizing property and convergence of the controller

In this subsection, the contracting behavior is illustrated for the controlled simplified system. First
consider the exponential convergence of a system. The exponential convergence [33] of a system to-
wards an equilibrium is defined by

||x(t)− x0|| ≤ k||x(0)− x0||e−λt,∀t > 0 (5.30)
with k ≥ 1, λ > 0, for all ||x(0)|| < c. The contracting behavior implies that any couple of trajectories
converge [93] exponentially, rather than each trajectory converging to the origin. This leads to the follo-
wing property of forgetting initial conditions, where the system converges to the reference exponentially,
independently of the value of the variables at initiation. The distance between a trajectory x and the
reference xr to follow

||x(t)− xr(t)|| ≤ k||x(0)− xr(0)||e−λt,∀t > 0 (5.31)
which is mainly governed by the negative exponential term for t > 0. Note that this form of stability is
more powerful than exponential stability as it applies to a trajectory rather than the origin of the system
[93].

As long as the system is in a contraction region, the initial conditions bear no outcome on the final
state of the system. In figure 5.3, the pressure evolution of the controlled closed-loop on figure 5.2 is
represented for several initial conditions, and the same reference is injected in the controller. While the

92



Figure 5.3 – Chamber pressure evolution for different initial conditions

initial conditions imply different evolutions for the first instants of the simulation, the different trajec-
tories converge rapidly to the reference, at a fixed rate. At time 0.2s, all trajectories merge around the
reference for each initial condition.

Additionally the stabilizing properties granted by the controller can be illustrated by the closed-loop
motopump system. The polynomial functions for the pressure increase ∆pip and the resistive torque
Tr have no solution for low values of mass flows, and therefore the system diverges when crossing a
threshold in the mass-flow qcc (this will be further illustrated in chapter 6). On figure 5.4, an unstable
scenario is presented for two controllers, a contracting controller following the previous design and a
proportional integrate (PI) controller, regulated around the operating point x0 = 1. The figure displays
the pressure pcc evolution for both controllers. The unstable scenario is a reference that crosses the
threshold qcc,unstable where the system diverges. The PI controller follows the reference as intended and
presents the unstable behaviormentioned. On the other hand, the contracting controller does not follow
the reference in the unstable region, as the pressure evolution presents an additional inflection point at
t = 2s, before the reference. This is because the unstable threshold qcc = qcc,unstable is situated outsideof the contraction region.

The controller acts then as a barrier function to avoid the system leaving the contraction region. As
N is negative, which is expected of a stabilizing controller, when the non-linearities spike to negative
values for qcc, the controller increases at the same time, leading qcc increasing again. As a result, the
system avoids the unstable region. Contrary to a classical state feedback, the introduction of the non-
linearities in Nϕ(x, t) allows for the compensation. This stabilizing behavior from a controller is one of
the objectives of this thesis.

5.3.2 . Contraction region
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Figure 5.4 – Chamber pressure evolution for an unstable scenario defined by a reference v(t)

To illustrate the contraction region, the controlled motopump system is considered. Let the closed-
loop system in (5.29),

ẋ = fc(x, t) (5.32)
where fc(x, t) represents the controlled closed-loop motopump system for a constant reference xr = 1.
The contraction region built with the controller is illustrated with the relation (9) that is recalled here for
a constant metric P ,

∂f

∂x

⊤
P + P ∂f

∂x
≤ −ϵP, (5.33)

When no reference is defined xr = 0 in the controller equation (5.28), the system defines a contraction
around the origin. To define a contraction around the reference xr = x0, the controller is expressed
using ϕ(x− x0). On figure 5.5a, the maximal eigenvalue of the equation,

∂f

∂x

⊤
P + P ∂f

∂x
(5.34)

is represented. To simplify the reading, the positive values have been scaled to 0, and display a plateau.
The contraction region of the system is then illustrated by the region where the maximal eigenvalue is
negative, and respects (5.33). The range of the states considered is [70%, 150%] of the nominal value. In
figure 5.5a, the contraction region extends around the nominal value, which is the equilibrium, and is
extended for the parameter ω on the right horizontal axis. However, the contraction region stops before
qcc = 0.9qcc,0 on the left axis, which is on par with the previous simulation in figure 5.4, where the edge
of the contraction region was assumed for this value of qcc. For greater values of qcc however, as long asthe rotational speed ω is not too far from qcc (for example ω = 1ω0, qcc = 1.5qcc,0) the system defines a
contraction. The sharpness of the edges of the contraction region corresponds to the increasing value
of the controller when the system narrows the unstable region, illustrated in figure 5.4.
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(a) Closed-loop controlled system (b) Uncontrolled system
Figure 5.5 – Comparison of max eigenvalues for a controlled and uncontrolled system

In comparison, consider the max eigenvalue of the uncontrolled system in figure 5.5b. The eigenva-
lue is always positive, and then the scaling at 0 is not applied on this figure. Note that the absence of
contraction does not imply the absence of stability, as it has been shown that the uncontrolled system
is passive in the chapter 3.

As the contraction region covers all the points in the domain x ∈ [100%−150%] of the nominal value,
the controller for the simplified system fulfills its function.

5.3.3 . Reference generation
The contraction-based controller stabilizes a systemaround a given reference trajectory of the states.

This implies providing a trajectory for each considered state in the controller, to generate the reference
for the system. However, knowledge of each state in a real application is not achievable, as all states are
not physically measurable. Previous simulations allow to obtain a database for the trajectory generation,
however, the optimal solution is to make use of a reference governor. In this subsection, we consider a
controller, that is placed before the contracting controller and generates the reference xr, as in figure 5.6.The objective of this paragraph is to illustrate the behavior of the contracting controller when confronted
with a high reference. We recall here the equation of the controller with a reference,

u = K(x− xr) +Nϕ(L(x− xr), t). (5.35)
Three main solutions are considered for the generation of the reference,

• Simple linear estimation of the state
• Integration and linear estimation of the state
• Prediction of the real reference
A simple linear estimation of the state is a simple tool that provides a good approach for the control.

The process is to identify with a linear regression the states from the output pcc. Such identification leadsto the definition of n− 1 parameters (for n states) denoted ki for i ∈ [1, n− 1] and the remaining states
are then evaluated at

x̂ = kipcc (5.36)
Typically, the parameter ki is set to xi,0

pcc,0
to respect the initial equilibrium. Results illustrate that a simple

reference for the controlled state pcc imposes a static error. Indeed, if xr is a scalar (rather than a vector
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Figure 5.6 – Global controller for the closed-loop contracting system

of dimension equal to the number of states), only one state is appropriately represented, and the other
states are assumed to follow a linear relation xi = kipcc. This relation leads to a suitable first approachfor the system however the linear relation is not representative enough of the behavior of the states,
leading to a static error.

To remedy this error, the inclusion of an integrator block before the static error is proposed, leading
to a controller of the form

uci = uc + kI

∫ t

0
(p0 − pcc)dt, (5.37)

which solves the static error issue. This method has to be applied carefully, however. As the integrator
emphasizes the static error to mitigate it, the value of the reference shifts and modifies the contraction
region. In figure 5.7, the shifting of the contraction region is illustrated for two constant reference values.
In figure 5.7a, the contraction region is represented for a reference xr = x0, while figure 5.7b representsthe contraction region when xr = 40x0. The shifting is mainly illustrated by the loss of contraction region
for low values of the mass flow qcc. For the reference xr = 40x0, the contraction region only spans to
qcc = qcc,0, while the original contraction region for xr = x0 spans to qcc = 0.9qcc,0. Due to this shifting,the system can leave the contraction region under the reference’s action. A solution to this is to choose
the parameter kI such that the time constant of the integrator is close to that of the system and so that
the value of xr remains low xr < 10x0.

Finally, the inclusion of a prediction of the states prior to the system is considered. This solution re-
quires being able to compute the real value of the states at all times t, typically by using an estimator
before the system as in [13], where a reference governor is used to compute a model predictive control-
ler. This solution applies a high computational cost and is therefore not chosen in the scope of this thesis.

The most suitable solution for a reference generation is therefore the use of an integrator, which will
be applied in the chapter 6. Note that while the estimation of the states is not costly for a discrete input,
for a continuous reference the computation time can rise significantly. Therefore while the prediction of
the reference xr is a suitable solution for the PBC controller in 3, for the contraction base controller theintegrator is preferred. Note that since both controllers are state-feedbacks, the estimation of the states
is required to compute the controller.
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(a) r = 1 (b) r = −40

Figure 5.7 – Comparison of the maximal eigenvalues for two references

5.3.4 . Contraction metric
Tuning of the controller with the contraction metric

The controller design (5.64) depends on the value of the matrix W . This constitutes a degree of
freedom in the system if the LMI (5.57) is solvable for multiple W . If possible, the choice of the me-
tricW−1 = P should bemade following a pole placement of the eigenvalues of the resulting closed-loop
system. However, due to the tools available for LMI solving, the number of solutions is limited. As an
example, the LMI for the simplified system is not solvable for a differentW , while the LMI for the com-
plex system is solvable for multiple W = kW0 where k is a positive constant and W0 is the original
solution of the LMI. This is dependent on the formulation of the LMI and the conditioning of theA andB
matrices in the LMI (5.57). In figure 5.8, the contraction region is illustrated using themaximal eigenvalue
of the equation,

∂f

∂x

⊤
P + P ∂f

∂x
, (5.38)

which can be written
∂f

∂x

⊤
W−1

0 +W−1
0

∂f

∂x
. (5.39)

The figure 5.8 includes two contraction regions, defined for two different values of W . In 5.8a, the
contraction region is extended with the use of a small metric W = 0.1W0, to the point that the state
qcc = 0.80qcc0 is the new limit of the contraction region. Such a metric allows to widen the contraction
region, at the cost of a smaller time response and a greater static error (if used with the proportional
reference generation method). On 5.8b, the contraction region is shortened with the use of a larger
W = 10W0. In this case, only close states to the equilibrium are attainable by the system. This metric
allows for faster time-responses, at the cost of the size of the contraction region. Note that in practice,
the LMI of the simplified system (5.57) is not solvable for 10W0 and this figure is here to illustrate the
compression of the contraction region due to the metric.
Lyapunov theory and contraction metric

In this paragraph, we recall the notion of a Lyapunov function for an autonomous system ẋ = f(x),
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(a)W = 0.1W0 (b)W = 10W0

Figure 5.8 – Comparison of the maximal eigenvalues for two contraction metrics

Theorem 6. Khalil If there exists a continuously differentiable positive definite scalar function V (x) such
that V̇ (x) is negative semidefinite, then the origin of the system is stable. If V̇ (x) is negative definite,
then the origin is asymptotically stable.

From definition 9, the use of ametric can be linked to Lyapunov theory [83]. Let a globally contracting
autonomous system , the function

V (x, t) = f(x, t)⊤Pf(x, t). (5.40)
is a candidate for a Lyapunov function of the system.

V̇ = f(x, t)⊤(∂fP + P ∂f
∂x

+
∂f

∂x

⊤
P)f(x, t) (5.41)

which per the definition of the contracting region, respects the following
V̇ ≤ −ϵV (5.42)

therefore V is a Lyapunov function for the closed-loop system. This function is in practice easier to obtain
than a direct approach for a Lyapunov function. Moreover, while a regular Lyapunov function verifies

V̇ ≤ 0 (5.43)
which proves asymptotic stability, (5.42) proves the exponential convergence of the system.

Note that the Lyapunov function in (5.40) is only valid for the controlled system. For the natural
system, no Lyapunov function has been obtained via the contraction theory approach, and one should
rely on the Lyapunov function derived from the Port-Hamiltonian approach 3.3.2.

5.4 . Controller design for complex nonlinear systems

In this section, the complex model of the LPRE is considered. While the design of the contractive
controller for the simplifiedmodel is directly derived from [89], the complexmodeling requires additional
considerations. The complex model input being the value of the GG valve associated with the line, the
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control action is modulated by a time-varying term. In this case, the direct approach is not valid. This
section presents the additional considerations brought to the method to compute a controller for the
complex system.

The determination of the controller of the form (5.15) based on the LMIs (5.16) relies on the fact that
the matrix B in (5.14) is constant. However, for mass flow control systems such as the LPRE, matrix B(x)

expresses as :
B(x) =

[
0 −q2gg 0 ... 0

]⊤
, (5.44)

and is state-dependent. Therefore the assumption that all the matrices A,B,M,L is not valid since the
matrixB is not valid. A direct application of themethod described earlier results in a varyingP(x), which
does not fulfill the first assumption in [89] summarized in (5.11).

In this section, additional considerations tomake the design possible are proposed. In a first time, the
notion of virtual contraction [94] of a system is described, which is a useful tool to study the contraction
of systems with non-linear control matrices (or highly non-linear dynamics).

5.4.1 . Virtual contractivity
Virtual systems and contracting properties

This problem constitutes a system affine in the control, i.e. the control matrix is dependent on the
states. In the literature, an extension of the design of the controller with contraction theory for systems
affine in the control has been proposed in [94], using the notion of a virtual system.

Let a system Σ,
Σ : ẋ = f(x) + g(x)u, (5.45)

and introduce the associated virtual system Σv defined for virtual state xv , virtual control uv , where g(x)depends on x and is considered constant with respect to xv ,
Σv : ẋv = f(xv) + g(x)uv. (5.46)

The idea behind the use of the virtual system is to separate the variables x and xv. As g(x) is inde-pendent of the variations of xv , it is possible to study the virtual system for variations of x. In particular,
such a method is used in [94] to prove the contraction of a real system from the use of a virtual system.
Theorem 7. Reyes-Baez & al. Suppose that uv(x, xv, t) is a contracting control for Σv. Then, if the systemis contracting for every x with respect to xv , the control action uv(xv, xv, t) is contracting for the system([94], Theorem 2) :

Σ′
v : ẋv = f(xv) + g(xv)uv. (5.47)

The result can be extended to the real systemΣby noticing thatΣ′
v = Σ for xv = x. Then a contracting

control for the system Σ is uv(x, x, t).
LMI formulation for virtual systems

The control solution obtained via LMIs from (5.16) depends onW−1 = P , which is constant. However,
using a virtual system description, the LMIs have to be defined for each potential value of the state x and
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it may not be possible to find a solution for each x with a constant P .
To solve this problem, a new formulation of the LMI is proposed (5.16), introducing an additional

condition onW (or P).
We recall here the formulation of a real system, expressed under the Andrieu & al. form (5.14), with state-
dependent matrix B(x),

Σ : ẋ = Ax+Mϕ(Lx, t) +B(x)u. (5.48)
Suppose the virtual system Σv in (5.46) expressed in as (5.14) such that

Σv : ẋv = Axv +Mϕ(Lxv, t) +B(x)uv. (5.49)
Suppose that there exist a vector x0 and three matricesW0, Z0, N0 such that

(AW0 +B(x0)Z0)
⊤ + (AW0 +B(x0)Z0) ≤ 0,

W0 > 0,W0L
⊤ = −(M +B(x0)N0).

(5.50)

According to Theorem 4 Andrieu & al., the control u0(xv) = Z0 W
−1
0 xv + N0ϕ(Lxv, t) is contractingfor the system

Σv : ẋv = Axv +Mϕ(Lxv, t) +B(x0)uv.

with contraction metric P0 =W−1
0 , as the LMI (5.50) is verified.

Consider now x ̸= x0. To obtain a contracting control uv(x, xv) with the metric P0, it is then necessary tofind two matrices N(x) and Z(x) such that
(AW0 +B(x)Z(x))⊤ + (AW0 +B(x)Z(x)) ≤ 0,

W0L
⊤ = −(M +B(x)N(x)).

(5.51)

Assume that a generalized left inverse ofB(x), B̂(x) such that B̂(x)B(x) = Id, exists for each x in the
state domain of definition. It is then simple to verify thatN(x) = B̂(x)B(x0)N0 andZ(x) = B̂(x)B(x0)Z0form a solution of (5.51). Therefore for all x, with respect to the domain of definition of xv , a control
uv(x, xv) = Z(x)W−1

0 xv + N(x)ϕ(Lxv, t), is a contracting control with the same metric P0. Using [94],Theorem 2, the control uv(xv, xv) is then contracting for the system
Σ′
v : ẋv = Axv +Mϕ(Lxv, t) +B(xv)uv. (5.52)

With this proposition, it is therefore possible to design a contracting controller for the real system,
by solving the LMI for the virtual system (5.49). The LMI yields a new form for the controller, uv(x, xv) =
Z(x)W−1

0 xv +N(x)ϕ(Lxv, t). This controller is contractive for the virtual system, and its properties are
extended to the real system for all x with respect to xv. With this proposition, the LMI design can be
extended to state-dependent control matrices B(x).

Note that this only involves solving the LMI once, at the point x0. The solution for x ̸= x0 is thenderived provided a suitable left inverse ofB(x) can be found for all x. ThematrixW remains at the value
W0 during the process, therefore granting the validity of the hypothesis, P =W−1 is constant.
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5.4.2 . Application to the control design for a non-linear control matrix

To illustrate the design method, the controller is explicited for a portion of the system. Consider one
of the hydraulic subsystems and let

[
Igg q̇gg
kggṗgg

]
=

[
−Rqgg −1

1 −Rpgg

] [
qgg
pgg

]
+

[
pep − uq2gg

0

]
(5.53)

where Rqgg = (Zresgg − Zvgg)qgg − ap
ρ (qcc + qgg) − cpρ

ω2

qgg
> 0 and Rpgg = 0 both represent the fric-

tion matrices in PHS framework. (Zresgg −Zvgg) corresponds to the friction term in the line, without the
valve resistance (as it is represented in the control matrix). The friction induced by the valve is u q2gg ,where the control corresponds to the resistive coefficient u = Zvgg , for the control design. The inertia
Igg = Lgg

√
ZV GH
2ρ constitutes a second time dependent term in this setup.

The solution is composed of three steps :
• The expression of a virtual system, in order to separate the control matrix dependency in the state
x, and the dependency of the inertia I in the controller u.

• The design of a contracting controller for the virtual system. This step consists in finding amapping
Mϕ in the reformulation

ẋv = Axv +Mϕ(Lxv, t) +B(x0)u,

such that
∂ϕ

∂Lx
(Lx, t) +

∂ϕ

∂Lx
(Lx, t)⊤ ≥ 0

and the LMI, (5.50) is solvable for the mapping Mϕ. The resolution of the LMI fixes the matrices
W0, Z0, N0.• The validation of the control for the real system, if a solution (Z(x), N(x) is found for the equation
(5.51) for all x with respect to xv , then a controller can be defined for the complete system.

Expression of the virtual system

Let the associated virtual system to (5.53) be
[
Igg q̇v
kggṗv

]
=

[
−Rqv −1
1 −Rpv

] [
qv
pv

]
+

[
pepv − uvq

2
gg

0

]
, (5.54)

where qv and pv are the virtual states associated to qgg and pgg , uv is the virtual control. Here the realinertia Igg and the state qgg are considered constant as they do not depend on the evolution of the virtualstate xv.
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Design of a contracting controller for the virtual system

An LMI design for a contracting controller can be found for this system. Let the corresponding refor-
mulation of the system be [

Igg0q̇v
kggṗv

]
= A

[
qv
pv

]
+Mϕ(qv, t), with

A =

[
0 −1
1 −Rp

]
,M =

[
−1 0
0 −1

]
, B =

[
−q2gg0
0

]
,

and ϕ(qv, t) =
[
Rqvqv − pepv

0

]
, (5.55)

where qgg0 and Igg0 being the values corresponding to x0. As mentioned in [46], a change of variables
using the appropriate matrix M = −Id2, allows to change ϕ → −ϕ. Upon verification of the uniform
positivity of ∂ϕ

∂q (see (5.12)), the control is then defined by
uv0(xv) = K0

[
qv pv

]⊤
+N0ϕ(qv, t), (5.56)

with
(AW0 +BZ0)

⊤ + (AW0 +BZ0) ≤ 0,

W0 > 0, W0L
⊤ = −(M +BN0), K0 = Z0W

−1
0 , (5.57)

which is a contracting control for the virtual system (5.54) where qgg = qgg0 and Igg = Igg0.

Validation of the control for the real system

The definitions ofA,M,B, ϕ remain unchanged. A contracting control was designed for the previous
virtual system for qgg = qgg0 and Igg = Igg0. Let first maintain Igg = Igg0. As qgg(x) ̸= 0 on the consi-
dered variation domain by hypothesis, a general inverse of B can be defined. Using (5.51), a contrac-
ting control is deduced using N0 and Z0 for the considered domain. In this case, N(qgg) = N0

q2gg0
q2gg

and
Z(qgg) = Z0

q2gg0
q2gg

.
However, the variations of Igg must be accounted for. We transcribe the new dynamics in (5.58) with

a new virtual state xv1,
[
Igg 0
0 1

] [
q̇v1

kggṗv1

]
=

[
−Rqv1 −1

1 −Rpv1

] [
qv1
pv1

]
+

[
pepv1 − uv1q

2
v1

0

]
. (5.58)

As Igg is a strictly positive value that is bounded and varies in an interval [Igg, Igg], it is possible totransform system (5.58) into
ẋv1 = c(x)Axv1 +Mc(x)ϕ(yv1, t) + c(x)B(qv1)uv1 (5.59)
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where c(x) is the following matrix, whose values are computed at state x,
c(x) =

[
1

Igg(x)
0

0 1

]
. (5.60)

For this system, under the assumption of the uniform positivity of c(x)∂ϕ(qv1)∂qv1
(see (5.12)), N1(x, qv1),

Z1(x, qv1), defining the contracting control are solutions of the LMI :
c(x)He(AW0 +B(qv1)Z1(x, qv1)) ≤ 0,

W0 > 0,W0L
⊤ = −(M + c(x)B(qv1)N1(x, qv1)),

(5.61)

for all x, whereHe(•) = •+•⊤. With the formulation of c(x), let Z1(x, qv1) = Z(qv1), then c(x)He(AW0+

B(qv1)Z(qv1)) ≤ 0 is verified. Define then N1(x, qv1) = N(qv1)c
−1(x) which yields

c(x)B(qv1)N1(x, qv1) = c(x)B(qv1)N(qv1)c
−1(x),

as B(qv1)N(qv1) is a square matrix,
c(x)B(qv1)N1(x, qv1) = B(qv1)N(qv1).

(5.62)
This choice of N1(x, qv1), Z1(x, qv1), solutions of (5.61) is valid for all Igg in [Igg, Igg], and the control

associated to N1(x, qv1), Z1(x, qv1) is contracting for the real system (5.53) with
uv1 = K(xv1)xv1 +N1(x, qv1)c(x)ϕ(yv1, t),

or uv1 = Z(qv1)W
−1
0 +N(qv1)ϕ(yv1, t).

(5.63)
The control

u(x) = Z0

q2gg0
q2gg

W−1
0 x+N0

q2gg0
q2gg

ϕ(y, t) (5.64)
is then a contracting control for the real system (5.53), with qgg > 0 and Igg ∈ [Igg, Igg] with a constant
contraction metric P =W−1

0 .
Note that the control law developed solely requires solving the LMI in (5.57) for the virtual system.

The real system controller is deduced using the derived matrices N1, Z1 which verify the LMI (5.57) by
construction. The low computational requirements for the practical use of such a control law make it a
relevant candidate for an embedded controller.

5.4.3 . Application of the design to a complete complex system
Hydrogen and oxygen lines of the model

Previous section 5.4.2 aims to design a contractive controller for the hydraulic subsystem. The control-
ler is defined for all the problematic non-linearities (time-dependentB(x) and inertia of the line) in (5.53).
In the following, the model is defined from the Port-Hamiltonian formulation of the complex model in
3.32. With the better conditioning of the matrix J , the LMI is solvable for the matrixA. Note that with the
state-space, the LMI is not solvable due to the poor conditioning of the matrix.
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To compute the controller for the full hydrogen half of the system, let the introduction of the new
mapping,

A =



0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 κtu,H −κtu,H
0 1 0 0 −Rpcc 0 0
0 0 1 −κtu,H −Rpgg 0 0
0 0 0 κtu,H 0 0 0


, B =



0
0

−q2gg,H
0
0
0
0


(5.65)

M =

[
1 01,8

08,1 −Id8

]
, ϕ(Lx, t) =



−Rω,HωH − λHqcc,H + qgg,H + αt,Hptu,H
Rqgg,Hqgg,H − λHωH

Rqcc,Hqcc,H − λHωH

Rqtu,Hqtu,H
0
0

Rptu,Hptu,H


(5.66)

And the method described in 5.4.2 is applicable to the complex model. The controller is then denoted
uH = KH(x)x+NH(x)ϕ(Lx, t). (5.67)

Due to the symmetry of the system, the same method is applicable for the design of a controller on
the oxygen line. The evolution of the oxygen line follows the same equations, where the numerical values
of the terms are changed to represent the differences between the two species. The main change for
the system resides in one less resistive term in the main combustion chamber oxygen mass flow qcc,O,where there is no resistive term corresponding to the regenerative circuit. Therefore a change is made
in the equation of the oxygen controller with the resistive term Rqcc,O = (Zvalve + Zline + Zinj)qcc,O.

A =



0 0 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 κtu,O −κtu,O
0 1 0 0 −Rpcc 0 0
0 0 1 −κtu,O −Rpgg 0 0
0 0 0 κtu,O 0 0 0


, B =



0
0

−q2gg,O
0
0
0
0


(5.68)

M =

[
1 01,8

08,1 −Id8

]
, ϕ(Lx, t) =



−Rω,OωO − λHqcc,O + qgg,O + αt,Optu,O
Rqgg,Oqgg,O − λOωO

Rqcc,Oqcc,O − λOωO

Rqtu,Oqtu,O
0
0

Rptu,Optu,O


(5.69)

The controller then reads,
uO = KO(x)x+NO(x)ϕ(Lx, t). (5.70)
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Contractivity of the total LPRE system

To assert the contractivity of the interconnection of both systems (hydrogen and oxygen lines), it is
necessary to refer to the properties of the interconnection of contracting systems in [83]. Let a feed-
back combination of the two closed-loop systems, where xH (resp. xO) is the vector of the states in thehydrogen line (resp. in the oxygen line).

ẋH = fH(xH , xO, t)

ẋO = fO(xH , xO, t)

, (5.71)
then the feedback combination [

˙xH
ẋO

]
=

[
FH Ff

−F⊤
f FO

] [
xH
xO

]
(5.72)

is contracting if both systems in 5.71 are contracting using the samemetric. The Port-Hamiltonian formu-
lation of the complex system respects the feedback structure in 5.72. Computations show that thanks
to the symmetry of the systems, W0 depicted for the hydrogen line and used in the controller (5.64) is
a suitable solution for the contraction metric of the oxygen line. The interconnection is then contractive
with contraction metric P =W−1

0 .

5.5 . Summary

This chapter introduces a new stability analysis for an LPRE system, contraction theory. The contraction-
based analysis of the stability of a system relies on the analysis of the convergence of the possible
solutions to the state equations. It is shown that if the system is contractive, the different trajectories
generated by the solutions of the state equations converge to a single trajectory named the reference
trajectory.

Although the LPRE system is not naturally contracting, a controller that provides such properties is
designed for the simplified LPRE model, using the method described in [89]. This method resumes the
design of a contracting to solving an LMI equation, providing a powerful design tool for non-linear control.
This method is directly applicable to the simplified system, though requires additional considerations to
apply to the complex system. The main issue presented occurs when dealing with time-variant control
matrices. The complex system being controlled using the friction generated by the valve openings, it
presents such an issue. In this chapter, a proposition to generalize the system to non-constant control
matrices is proposed, allowing for the design of a controller on the complex model.

In addition to this proposition, this chapter makes use of the reformulation under Port-Hamiltonian
form of the system for an easier design, as well as a better conditioning on the LMI matrices.

As presented in 5.3, the contracting behavior of the controller can stabilize the system around the
desired equilibrium. The highlighting of the contraction region, the region of the state where the system
possesses the contracting properties, allows to show the stabilizing behavior. The different options to
use the controller, with tuning of the contraction metric value and choice of reference are also shown to
influence on the contracting behavior. Namely, that the choice is to bemade between time response and
stability of the controller. Finally, the equilibrium defined by the closed loop is considered exponentially
stable, which is the stability desired for such a system.
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6 - Comparison of performances

Themodels andmethods for control design that have been introduced in the previous chapters need
to be evaluated and the resulting performances have to be compared. The evaluations are performed
using numerical simulations developed on Matlab Simulink.

The objectives of these evaluations are first to determinewhether the classical state spacemodel and
the Port-Hamiltonian representation of Section 3.2.3 provide similar behaviors, second provide a wider
scope of evaluations for the performances of the methods for stability analysis and control designs.

6.1 . Modeling the dynamic behavior

The first mandatory analysis consists at comparing the evolution of the main variables of the LPRE
obtained either using the state-space modeling in 2.3.2 and the Port-Hamiltoninan representation in
3.2.3. We first provide a short description of the two model implementations in Matlab Simulink.

6.1.1 . Descriptions of the simulations
In this paragraph, the simulations used on Matlab Simulink are illustrated and described.

State-space simulation The state-space simulation of the LPRE is composed of one single Simulink
block, illustrated In figure 6.1. In this figure, the red components represent the states of the LPRE injected
in the block on the left side and the derivatives computed by the block on the right. The block contains
the evolution equations for the complex system described in (2.35). The green components represent
both actuator’s values U1 = Zggvalve,H , U2 = Zggvalve,O, that are injected in the system. An integrator
initialized for the known equilibrium x0 closes the loop.This simulation is ran with a time step of 10−6s, and is unstable for a higher time-step.
Port-Hamiltonian simulation The Port-Hamiltonian simulation of the LPRE is composed of two
distinct blocks. In figure 6.2, the left block computes the necessary terms to write the Hamiltonian for-
mulation of equation (3.32). Namely, the resistive terms composing the matrix R(x) are represented in
blue, and the light blue terms correspond to the scaling terms kp,•, λ, αq, αt, βt, κ in equation (3.32). Theterms computed from the states’ values (in red in figure 6.2) are then injected in the system block on
the right side of the figure. This block builds the matrices R(x) and J(x) from the terms injected, and
proceeds with the equation

ẋ = (J(x)−R(x))
∂H

∂x
(6.1)

An integrator initialized for the known equilibrium x0 closes the loop.This simulation is run with a time step of 10−5s, which is a larger time step than the state-space
simulation, due to the better conditioning of the matrices R(x), J(x).
Remark 8. The Port-Hamiltonian modeling has been constructed to respect the equations of the state-
space model. This means that in an analytic expression, the equality between the twomodels is verified.
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Figure 6.1 – Simulink block for the state-space simulation of an LPRE
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Figure 6.2 – Simulink blocks for the Port-Hamiltonian simulation of an LPRE

For example, both models show derivatives equal to 0 for the equilibrium. In the next subsection, the
simulated behavior using Matlab Simulink is displayed, and differences occur due to the simulator.

Scenarios In this chapter, several scenarios are proposed to illustrate the results.
Short scenarios like step-responses and unstable scenarios for the controllers to follow only require

short simulations (4s) to illustrate the change of operating point or the rapid variations demanded by
the simulation. The step response illustrates the behavior of the system during simple transitions from
one operating point to another. The objective for this simple transition is to assert performances of the
considered controller, for several tuning values.

For realistic scenarios, the time frame of the simulations is extended to 30s, to illustrate slower va-
riations of the system and cover all the variations during the scenario.

Perturbations in the combustion chamber are illustrated with the addition of noise on the chamber
temperature, which will be the noise introduced in further simulations. The choice of temperature as the
noised parameter is made to illustrate combustion instabilities and variations in the chamber pressure
pcc. Note that such a perturbation is not enough to represent the coupled phenomena that take place in
a combustion chamber. In SIMULINK, a noise function can be assigned a seed, meaning that every gene-
rated noise is not randomized, and the same noise can be added to different simulations using the same
seed. The noised used for the temperature Θcc features the seed 10 and a noise power of 100. With the
white noise function, this implies that the temperature varies between 90%−110% of the nominal value.
Such temperature variations prove to be a suitable modeling of the combustion instabilities discussed
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(a) Pressure response (b) Mass flow response
Figure 6.3 – Open-loop response to a step function

in [42] where the variations in the chamber pressure do not exceed 0.6% of the pressure nominal value
for high-frequency pressure variations.

6.1.2 . Comparison of results with actuators inputs
To illustrate the behavior of the LPRE system, figure 6.3a and 6.3b feature the evolution of the states

in response to a step in the actuators’ value. At time t = 1s, the valves’ surfaces spike from Av0 to
1.1Av0. The step is illustrated with the evolution of Av,gg,H , Av,gg,O in figure 6.3a. In this comparison,
the actuators’ dynamics are not modeled, and therefore the step on the actuators is represented by
a step on the equivalent resistive inertia Zresgg. The first consequence of this step is observed on the
gas-generator mass flows qgg,H , qgg,O, which displays a non-smooth behavior due to the step. The mass
flows in the gas generator spike at t = 1s, following the step in the valve surfaces changing the equivalent
resistive coefficient, which is done instantly. The rest of the states follow the evolution smoothly. Note
that this behavior is impossible with a real actuator and does not represent a physically realistic valve.

Analysis of dynamic behavior state-spacemodeling A few remarks can bemade from this first
step simulation. The system, while being symmetric in the equations, does not behave identically for the
oxygen and hydrogen halves. Indeed, an increase of the same percentage 10% in both actuators Avg,Hand Avg,O does not lead to the same increase in the states for both species. This illustrates the need to
adapt the control methods designed on the hydrogen half in previous chapters when controlling the oxy-
gen half of the system. Most of the methods can be driven directly, by simply changing the numerical va-
lues to fit the oxygen equations. Such difference in the main chamber mass flows (qcc,O = 1.0745,qcc,H =

1.0946), while the gas generator mass flows observe the same increase (qgg,H = 1.1953, qgg,O = 1.1919),
comes from the fact that the mixture ratio desired in the main combustion chamber isMRcc = 6, while
MRgg = 1.
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(a) Pressure response (b) Mass flow response
Figure 6.4 – Open-loop response of the PH model

(a) Pressure resistive terms response (b) Mass flow resistive terms response
Figure 6.5 – Open-loop response of the resistive terms of the PH model
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Observing the final values of the states in response to a step function illustrates the fact that the gas-
generator has to be designed for a wider range of variation than themain chamber pressure. In order to
generate a high enough pressure at the pump output, the gas generator increases to pgg = 1.1936 value
while the main chamber pressure reaches pcc = 1.1308.

The time response of the system can be considered regarding two different states. The first time
response concerns the state qgg,• that responds to the actuators directly and is illustrated by the non-
smooth spike at t = 1s in figure 6.3b the total time-response is t = 0.64s. This is due to the presence of
Zresgg in the GG mass flow equation,

q̇gg,• =
1

I
(pip,• − pgg − Zresgg,•q

2
gg,•). (6.2)

The other time constant of the system is denoted by the pressure evolution pcc. This time response is
slower than the mass flow response with 0.74s, and illustrates the evolution of the overall system. To
accurately represent an actuator’s behavior, it is important to take into account the qgg,• time response,
that shows the feasibility of the control law on a real actuator. For example, the non-smooth behavior in
figure 6.3b of the gas generator mass flows qgg,• immediately results from a step in the valve surfaces.
In the following, the time responses of the system will be expressed in terms of qgg,• to illustrate the
feasibility of a controller, and in terms of pcc to illustrate the performance of the controller on the system.
Analysis of dynamic behavior Port-Hamiltonian modeling Figures 6.4a and 6.4b display the
evolution of the pressures and the mass flows responding to a step function. The Port Hamiltonian mo-
deling fulfills its purpose of following the same behavior of the original system, apart from the initial
conditions (pcc = 1.3007 compared to 1.308 with the state-space). This small difference originates from
the method used to compute the models in Matlab Simulink, where computational artifacts add up and
display an error between the two equilibria (for the state-space and the Port-Hamiltonian simulations).
In figure 6.5a and 6.5b, the resistive terms composing the matrix R are represented. As discussed in 3,
the resistive terms for the turbine pressure Rptu,• are negative, which conflicts with the formulation of
the Port-Hamiltonian system. It has been shown however that the passivity of the system can still be
proven. This issue is furthermore dealt with using the PBC controller in 6.2.2.

While the evolution of most of the resistive terms follows the state’s evolution (figure 6.5a and 6.5b),
the turbine mass flows qtu are to consider, as the resistive term Rqtu diminishes while the mass flow
increases. This originates from the term 1

pgg
, used to express the density of the hot gas (see 2), and will

not become negative over time (this would imply the system to cross the origin, which is prevented by
the term 1

pgg
).

The Port-Hamiltonian framework also adds new equations to the process, and the computational
artifacts induce a different behavior in the start-up of the system. The Port-Hamiltonian system first de-
viates from the initial equilibrium and then converges normally. This behavior results from the difference
in conditioning of the two simulations. The state-space model, with high heterogeneity in the equations,
has neglected terms that are taken into account in the Port-Hamiltonian modeling. This difference in
the computation comes from the storage of the terms inMatlab, which only takes into account a certain
To account for this, the simulations are started at a negative time (−1s), to obtain the relaxation of the
system before starting the simulation.
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(a) Pressure response (b) Mass flow response
Figure 6.6 – Open-loop response to a step function with added noise on Θcc

6.1.3 . Noise influence on the simulations
State-space model and noise Figure 6.6a and 6.6b both illustrate the state’s responses to a step
with a noise added to the temperature. In figure 6.6a, the simulation illustrates the propagation of the
noise on themain chamber pressure pcc (variations that attain 1.1%), while both the gas generator cham-
ber pressure pgg and the turbine pressure ptu are not impacted by the perturbation (less than 0.0022%

oscillations). In figure 6.6b, it is shown that the main chamber mass flow qcc is impacted by the perturba-
tion, proving to show higher oscillations than pcc (up to 1.9%). Although the noise can be slightly visible onthe rotational speed ω (0.07% variation), its impact is mitigated for the mass flow qgg (0.15% variations)
compared to the mass flow qcc. This lower impact is due to the pressure increase of the turbo pump
equation pip that absorbs most of the oscillations.
Port-Hamiltonian and Noise The previous paragraph mentioned that Port-Hamiltonian modeling
introduces uncertainty in the simulations due to the use of several SIMULINK blocks to represent the
model. The addition of noise proves to be tricky as the user must ensure that the noise added is syn-
chronized with the two blocks, i.e. that the same iteration of the noise is injected in both blocks and that
no delay in the iterations is created. The addition also creates an unstable behavior if the first iteration
lines up with the initial condition shift of the Port Hamiltonian system (typically, if the noise added is
sufficient to enter the unstable zone of the system see 6.1.4).

If the simulation is defined properly, meaning that the shift is situated in negative time-values and
the noise is synchronized with both blocks of the simulation, the Port-Hamiltonian model follows the
same behavior as the original model, as illustrated by the figures 6.7a and 6.7b. Additionally, the noise
is carried on to the resistive terms of R as shown in figures 6.8a and 6.8b. For example, Rpcc which onlydepends on the temperature features a 0.6% variation due to the noise. As illustrated figure 6.8b, the
noise impact on the resistive terms forRω, 2% andRqgg, 0.9%, far exceeds their state counterparts ω and
qgg. This is explained by the dependancy in qcc of the resistive terms, due to the polynomial formulation
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(a) Pressure response (b) Mass flow response
Figure 6.7 – Open-loop response of the states in the PH model with added noise on Θcc

of the pressure pip and resistive torque Tr.The Port-Hamiltonian model consists of a worse choice for noise modeling. As the startup equili-
brium has to be reassigned, it introduces a potential for instability in the system. In fact, the solution of
starting the simulation in negative time windows comes from unstable simulations for a start at t = 0s

of the noised Port-Hamiltonian model. Considering this with the fact that the two blocks must be well-
synchronized, the Port-Hamiltonianmodel does not constitute a good choice for modeling when dealing
with noise.
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(a) Pressure resistive terms response (b) Mass flow resistive terms response
Figure 6.8 – Open-loop response of the resistive terms of the PH model with added noise on Θcc
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6.1.4 . Limitations and unstable zones of the open-loop
In this paragraph, the approach on stability domain analysis with the Port-Hamiltonian system is

compared to the state-space simulations.
While the stability domain is difficult to determine for a state-space system, Port-Hamiltonian frame-

work allows for an easier stability analysis. The open-loop system under Port-Hamiltonian form shown
in 3, is passive with storage function,

H(x) =
1

2
Jω2αq +

1

2
Iccq

2
cc +

1

2
Iggq

2
gg +

1

2
Ituq

2
tu +

1

2
kpccp

2
cc +

1

2
kpggp

2
gg +

1

2
kptup

2
tu. (6.3)

For a shifted equilibriumatx0, it has been shown in 3.3 that the domain of stability of the Port-Hamiltonian
model is characterized by the shifted resistive term

R̂qcc =

(
−ap
ρ
(2q0 + q̂)− bpω0 − cpρ(2ω̂ + ω̂2)

1

q̂
+ Zeqcc(q0 + q̂)

)
If this term becomes negative, then the passivity of the system is not proven anymore. Solving this equa-
tion gives a minimal limit for the stable domain at qcc,H,lim = 0.874. Note that this prediction denotes the
domain where the Port-Hamiltonian proof of passivity is not valid anymore. This does not imply that the
system is unstable from this limit, but that the method carried to assert stability is not valid anymore. To
evaluate the precision of this method, it is then necessary to compare the limit qcc,H,lim obtained with a
numerical simulation.

This determination of the equilibrium is to be compared with the result obtained via a state-space si-
mulation. In the following figures 6.9a and 6.9b, the system follows a rampwith a slope of−0.1Avg,H,0×tfor both valve surfaces. Figure 6.9b illustrates that the system equations do not have a solution for a cer-
tain surface, and show unstable behavior. At time t = 1s, the states display a negative spike that is not
compensated, and the simulation is stopped byMatlab Simulink due to the apparition of non-finite terms
in the derivatives. Taking the last values computed before the simulation stops, the system is stable un-
til Avg,H = .9Avg,H,0. The unstable behavior manifests first by an important decrease in the mass flow
qcc,H in lower values (qcc,H = 0.9). This sudden decrease is then witnessed on the rotational speed ω and
the pressure pcc. Finally, the system is unable to recover and the values decrease to −∞. The mass flow
equation has no solution for qcc,H = 0.86 (no more precise value is available as the threshold is unclear).
The Oxygen equation proves to have a solution for lower values of the states, with a different threshold
for the loss of stability.

This behavior is difficult to explainwith classical automaticmethods. However, using a Port-Hamiltonian
interpretation, the unstable domain is explained by the lack of natural damping on the system. Indeed,
as the damping is insufficient when leaving the neighborhood of the equilibrium, the mass flow qcc,Hlacks damping and deviates such that the distance ||qcc−qcc,0|| increases and becomes unbounded. The-
refore, to stabilize the system, it is necessary to increase the damping injected in the mass flow qcc,H . Aperspective of this workwould be to explore the use of the valveAvcc,H , supposedly opened at a constantvalue during the permanent regime, to increase the range of the stable domain. Indeed, by closing the
valve, it is possible to increase the resistive term Rqcc to a positive value.
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(a) pressure behavior (b) mass flows behavior
Figure 6.9 – Unstable zone of the LPRE model

6.1.5 . Tank pressure response
During the modeling of the LPRE in section 2, the tank pressure pep,• for both species has been consi-dered constant. In reality, the tank pressure decreases over time when the amount of fluid in the tanks

decreases. A common method to maintain the pressure in the tanks is to use pressurizing gas, which
is injected during the emptying of the tanks. This results in a pressure profile over time with slow oscil-
lations around the operating pressure. However, this variation of pressure is negligible as it has close
to no impact on the final value of the chamber pressure pcc. In figure 6.10, the state-space system is re-
presented for a step-function on the tank pressures pep,•. This is represented in the simulation with a
change of the tank pressure value from pep,•,0, to 1.1pep,•,0 at time t = 1s. In figure 6.10a the evolution of
the pressures in the system is represented. The increase in the main chamber pressure pcc is less than
0.2%, for a 10% increase in the tank pressures pep,•. It is then justified to neglect the pressure variationsin the tanks in terms of impact on the final value of the system.
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(a) pressure behavior (b) mass flows behavior
Figure 6.10 – State-space open-loop response to a step on the tank pressure
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6.2 . Analysis and comparison of performances of the controller designs

The developed approaches in the previous chapters 3 and 5 offer two different improvements to the
stable region of the system :

• The PBC controller allows to redefine some of the dynamics of the total closed-loop to extend the
stability region.

• The contracting controller provides new guarantees with the notion of contraction region.
In this section, both controllers designed in chapter 3 and 5 are presented. The stabilizing behavior

of both controllers is presented, and to this end, a classical PI controller is proposed as a reference.
For each controller, a comparison is performed with the PI, on an unstable scenario for the system,
e.g. a reference that crosses the unstable threshold qcc. It is important to note that this scenario leaves
the practical case of the LPRE, as it is tested for an objective function outside of the validity domain
of the model. In a second time, the tunable parameters of the controllers are presented (for example
the contraction metric for the contraction-based controller). The impact of these parameters, discussed
previously in terms of stability, are recalled here and their performances are illustrated using simple
step-responses. Finally, the addition of the dynamics of the actuators is proposed, under the form,

Äv = −ξw0Ȧv − w2
0Av + uA, (6.4)

where Av is the opening surface of the actuator, and uA is the controller value. The new tuning of the
system required to maintain the stabilizing behavior with the addition of the actuators is proposed.

The simulations and considerations are realized on the hydrogen line of the LPRE model, for simpli-
fication. As this line presents the unstable behavior, it is chosen to illustrate the stabilizing capabilities
of the controllers.

The section is organized around the different controllers used, and after the presentation of the PI
controller, the previously mentioned analysis and tuning are performed first for the PBC controller and
then for the contraction-based controller. The reference is generated with an integrator for both stabili-
zing controllers.

Two scenarios are injected to study the stabilizing properties of the controllers. First, an unstable
scenario is proposed, where the controllers are comparedwith the PI reference. This scenario is designed
to represent fluctuations around an equilibrium x0, and cross the limit of the stability domain. A second
comparison is made for a transition between two stable points of the system.

6.2.1 . PI controller reference
In the scope of comparing the controllers designed to a more classical solution, a PI controller is de-

fined around the equilibrium point x0. The PI controller for the feeding valve’s surface Avg,H is designed
to regulate the chamber pressure pcc, for a fixed mixture ratioMRcc = 6 (hydrogen half of the system
assumption). The PI controller design follows the control law,

uPI = kP (xr − pcc) + kI

∫ t

0
(xr − pcc)dt (6.5)
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Figure 6.11 – Response to an unstable scenario with a PI controller

where kP , kI are the proportionate and integral parameters. Since the chosen equilibrium of the system
is different than the origin x = 0, a constant term is added to the control law. To assign the equilibrium
with the PI controller, define

kA = Avg,H,0, kP = 1 and kI = 30 (6.6)
where the formulation of the control law is

uPI = kP (xr − pcc) + kI

∫ t

0
(xr − pcc)dt+ kA (6.7)

The value of kI is chosen according to the time response of the open-loop system (see figure 6.13a). The
PI controller provides no stability guarantee, it consists in a passive controller, which paired with the
Port-Hamiltonian formulation of the systems, makes use of interconnection theorems and the closed-
loop system is passive. In the following simulations, this controller is used to show the limitations of
classical control when dealing with unstable zones of the system.

In figure 6.11, an unstable scenario is injected as the reference for the controller. This scenario will
be referred to as the unstable scenario from now on. The unstable section of this scenario is situated
at the reference crossing the line pcc = 0.9pcc,0 in figure 6.11. As mentioned previously, the PI controller
provides no stability guarantees to the system, and as the trajectory of the states enters the unstable
zone of the system, the divergence occurs.

The PI controller can nonetheless by a suitable solution for simple operating point transition, pro-
vided the trajectory resulting from the transition remains in the stable region of the system. In figure
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(a) Pressure behavior (b) mass flows behavior
Figure 6.12 – Step response using the PI controller

6.12a and 6.12b, the PI controller is a sufficient solution for the control of stable trajectories. This is be-
cause the system is indeed passive around the equilibrium and above the value x0. Therefore a negativefeedback in the form of a PI controller is a sufficient control to ensure stability in the region where the
system is passive. Indeed, given the following lemma [95], if the port-Hamiltonian shifted system in (3.46)
is zero-state detectable, then a feedback controller

u = −v(x, t)y, v(x, t) ≥ ϵId ≥ 0, (6.8)
renders the equilibrium x̂ for the shifted system in section 3.3 asymptotically stable.

As shown in figure 6.12b, the PI controller presents an asymptotically stable behavior in the stable
region of the system. The response to a step is satisfying, for a time response of 0.27s of pcc. The time-
response of the GG mass flow qgg is identical at 0.276s. The overshoot due to the PI controller may be
reduced, and for this tuning corresponds to 0.276 in pcc.

121



6.2.2 . Stabilization with PBC controller
This subsection aims to present the use and tuning of the PBC controller, illustrated with numerical

simulations of the closed-loop controlled system with the controller.
Tuning of the PBC controller

The objective of the PBC controller is to stabilize the closed-loop system around a desired equili-
brium. The stability of the system is proven by the passivity of the closed-loop. For a reachable reference
(where the polynomial functions are defined) the system can perform stable transitions between opera-
ting points. For an ill-designed reference, the systemmay cross the unstable zone of the systemmentio-
ned in 3.3.1. To improve the stability of the system, a reformulation of the dynamics of the closed-loop
6.10 is performed. As described in 3, the matrix Rd(x) can be tuned to obtain a desired behavior.A first illustration of the controller design is proposed in figures 6.13a and 6.13b. In this simulation,
an integrator has been added to the system as in 4.3.2. Here only the hydrogen half of the system is
presented, to study the behavior of the controller towards the unstable zone. As the controller stabilizes
the system around a desired equilibrium, it is resilient to uncertainty on the parameters. The parameters
used for this simulation are Qqgg = 1 +

R2
pcc

Rqtu
. Additionally, the following parameters are fixed for the

resistive matrix Rd,
Rdqcc = Rqcc

Rdpcc = Rpcc

Rdω = 2Rω −Rpcc

Rdpgg = 2Rqtu −Raqtu

Rdqtu = 0

Rdptu = 1

Rdqgg = Rqgg . (6.9)
Most of the conditions are derived from the resolution of the partial derivative equations in 3. The rest
of the parameters are fixed for simplification, or to assert the Port-Hamiltonian behavior of the desired
system with Rdptu = 1 > 0. This choice for Rptu is made to respect the orders of magnitude of the other
terms in the matrices J(x), R(x), that are close to a unit. We recall here the equation of the controlled
closed-loop system with the PBC design :

ẋ = (Jd(x)−Rd(x))
∂H

∂x
(x) (6.10)

where the matrix Rd(x) is composed of the resistive terms in (6.9), and Jd(x) is the original structurematrix from the model (3.32). The step response with the parameters described in (6.9) is illustrated
in figure 6.13. The parameters described allow to obtain a fast time response with minimal overshoot,
with stability guarantees of the controller during the step. Note that as the actuator’s dynamics are not
modeled, the controller presents a spike that is unrealistic (see Avgg,H on orange in figure 6.13a).

In the following tables 6.1 and 6.2, the setup for the system is a simple reference generation, and
leads to the function :

xref = (pcc,obj − pcc)
x0
pcc,0

, (6.11)
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Rdqgg Minimal qcc qgg time response qgg overshoot pcc time response pcc overshoot
0.1Rqgg 0.744 0.019s 31% 0.18s None
0.5Rqgg 0.745 0.016s 20% 0.18s None
Rqgg 0.749 0.015s 15% 0.18s None
2Rqgg 0.748 0.01s 8% 0.18s None
10Rqgg 0.755 < 0.01s 2% 0.18s None
Rqgg ,0 0.749 0.015s 15% 0.18s None

Table 6.1 – Variations of the parameter Rdqgg

where xref is the reference injected in the controller and xobj is the objective of the controller (here a stepfunction). Such reference leads to a static error, but better illustrates the step response of the system,
and is more suitable to highlight the impact of the different parameters.

The tuning of the controller is due to the choice of the matrices Jd and Rd. From the formulation
of the matrix J in (3.32), there is no significant simplification with the matrix Jd. On the other hand,
the matrix R(x) contains the unstable polynomial functions and is of interest to tune to obtain a larger
stable region. The tuning ofRd(x) consists in finding the best-suited functions for the individual resistiveterms, expressed in (6.9). As most of the terms are fixed by the resolution of the PDE equations (see
4.36), three terms remain for tuning : Rdqtu , Rdptu and Rdqgg . The impact on the system behavior of the
parameter Rdqgg is summed in the following table 6.1. The time response and overshoot are expressed
for the state qgg and the state pcc. Indeed, modification of the closed-loop resistive matrix Rd(x) firstimpacts the state qgg. The response of the main chamber pressure is affected if the state’s response is
slower than the main chamber pressure. Additionally, an overshoot in the state qgg seldom affects the
main chamber pressure, as it occurs for only short time responses, which the main chamber pressure
does not react to. As the value of the resistive term decreases, the stable zone is extended, however,
such extension is negligible in front of the impact on the step response. The modification of the resistive
parameters is not sufficient to obtain the desired time response for the system, which is too fast.

The choice of a tuning parameterQqgg presents a low impact on the systemunder a certain threshold.
Indeed, in the controller equation the term parameter Qqgg multiplies the difference between the state
and the reference, under the form

uPBC = u0 + (Qqgg − 1)(xref − x) (6.12)
see ANNEX B for a detailed expression of the controller. For small variations of the operating point (here
the new equilibrium is 120%), the time response and the overshoot are not affected until the product
(6.12) exceeds the term u0 in the controller i.e. ku = 1000. In this event the time response of pcc is affectedand the resulting spike is not desirable. In the case of trajectory tracking, where no clear u0 can be
found, the parameter Qqgg has a higher impact on the speed of the system. In the following table 6.2
the variations of the performances are depicted following Qqgg = 1 + ku

R2
pcc

Rqtu
. The overshoot and time-

response are estimated for the evolution of both qgg and pcc.
Remark 9. Fromequation (6.12), the controller is subject to a product of two terms, the tuning parameter
and the difference between the reference and the state. Depending on themethod used to generate the
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ku Minimal qcc qgg time response qgg overshoot pcc time response pcc overshoot
0.1 0.748 0.012s 14% 0.18s None
1 0.749 0.015s 15% 0.18s None
10 0.749 0.013s 15% 0.18s None
100 0.748 0.012s 16% 0.18s None
1000 0.755 0.012s 30% 0.15s 1.2%

Table 6.2 – Variations of the parameter ku

(a) Pressure behavior (b) mass flows behavior
Figure 6.13 – Step response using the PBC controller

reference, the difference between the reference and the state is subject to high changes in the order of
magnitude.

• For a perfect reference generator that provides the exact value for all the states, the user would
prefer a high value of ku (102 − 103) to emphasize a low difference between the reference and the
state.

• For an integrator that generates a reference, the difference between the reference and the state
grows over time, and the user should prefer a low value for ku (.1 − 1) to minimize the impact of
the already high difference.

Since the addition of an integrator is used in this work, the choice for ku is limited to the range 0.1− 1.

Comparison of stabilization with PI design

A comparison is performed with the classical PI controller, to show the extension of the stable zone
due to the new dynamics proposed by Rd. in figure 6.14, the results of a simulation for a quick adjust-
ment in the pressure is provided. The scenario used in this simulation corresponds to brief changes in
the operating point, to enhance the response performance of the controller. Additionally, the scenario
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Figure 6.14 – Comparison between PI and PBC responses to an unstable reference

overlaps the unstable zone of the polynomial functions, to illustrate the stabilizing behavior of the PBC
controller. On the bottom half, the chamber pressures pcc and pgg are provided along the reference (ref)and the gas generator valve’s surface Avg,H . On the top half, the evolution of the feeding mass flows
qcc,H , qgg,H next to the rotational speed ωH are figured. Figure 6.14 displays the resulting trajectories of
the states for both the PBC and PI controllers. The PBC controller can remain stable for lower values of
the states than the PI controller, e.g. pccmin,PBC < pccmin,PID. Note that although the pressure is lower,
pcc,PBC = 0.8712, the mass flow qcc does not decrease lower than the threshold value qcc,H = 0.86. This
is due to the changes applied to the resistive matrices, that influence the system’s dynamics.

This is explained by the fact that the PBC controller maintains a higher gas generator mass flow qggthan the PI controller (see the orange and purple evolutions in figure 6.14. This allows tomaintain a higher
rotational speed ω and higher main chamber pressure pcc with less variations in qcc. The same principle
applies for low values, and results in the comparison, where the pressure pcc,PBC = 0.8712 attains lower
values than the pressure pcc,P ID = 0.8999.
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(a) Pressure behavior (b) Mass flow behavior
Figure 6.15 – Step response using the PBC controller and a second-order actuator

Addition of actuators

The addition of the actuator’s dynamics requires tuning the controller to match the time response
of the actuators. The parameters selected for the actuators require a time response of 0.3s and a low
overshoot, as the second-order system already presents an overshoot. Therefore, the parameter ku ischosen at 1 andRdqgg = Rqgg ,0. in figure 6.15, the evolution of both pressures andmass flows in response
to a step function with the actuators dynamics are represented. The addition of actuators tends to em-
phasize the initial overshoot of the system, which is now paired with the overshoot of the second-order
function.

The addition of an integrator discussed in 4.3.2 allows to neutralize the static error remaining for
under-defined references, and to increase the time response of the system with actuator’s dynamics,
leading to the reduction of the overshoot.
Conclusion on the PBC tuning

As shown in the tables, the tuning of the resistive parameters of the system can be counter-intuitive,
as the increase in a resistive parameter gives a faster time-response to the system in terms of mass-flow
qgg , however, decreases the static error of the system. The system furthermore presents low sensitivity to
this parameter tuning, as the time-response and overshoot of pcc show very small variations compared
to the tuning parameter in table 6.1.

The low impact of the damping parameter on the variations of pcc comes from the fact that without
overshoot in the mass flow qgg , the pressure pcc will follow a pseudo step in the mass-flow, similar to an
open-loop control in figure 6.13a, and conserve its slow raising time.

A more impactful parameter resides in the tuning of Qqgg and in particular the parameter ku, pre-sented in the table 6.2. This parameter influences the rising speed and overshoot of the mass flow qggwith more impact than the damping term. However, the desired effect is only attained at a certain value
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kw qgg time response qgg overshoot pcc time response pcc overshoot
0.1 .6s None 0.6s None
0.5 .18s 0.8% 0.18s < 0.1%
1 .048s 8% 0.18s 1.7%
2 .03s 23% 0.18s 3%

Table 6.3 – Variations of the parameter kw
of ku = 1000. As stated in 4.2.3, the controller presents 2 terms, one devoted to equilibrium assignment,
and one multiplying (x− xr) which is the reference term. For a sufficient ku, this second term is predo-
minant in the controller’s equation and drives the behavior, hence the increase in overshoot. For lower
ku, the equilibrium assignment is predominant.

6.2.3 . Stabilization with contraction design
Contraction controller tuning

In this paragraph, the contracting controller designed in (5.64) is illustrated and compared to the
PBC design on the same scenario. Again, the variable to track is the main chamber pressure pcc, andthe contracting controller uses as reference generation an integrator, which is slow enough kI = 30 to
remain in the contraction region at all times. The contraction metric P = W−1 constitutes the tunable
parameter for the contraction-based controller. The parameterW will be expressed as a equal to kwW0,whereW0 is the solution of the LMI,

(AW0 +BZ0)
⊤ + (AW0 +BZ0) ≤ 0,W0 > 0, W0L

⊤ = −(M +BN0), K0 = Z0W
−1
0 ,

where the matrices A,B,M are computed following the design proposed in subsection 5.4.
In the following table 6.3, the setup for the system is a simple reference generation, and leads to the

function :
xr = (pcc,obj − pcc)

x0
pcc,0

, (6.13)
where xr is the reference injected in the controller and xobj is the objective of the controller (here a stepfunction). Such reference leads to a static error, but better illustrates the step response of the system,
and is more suitable to highlight the impact of the different parameters.

As discussed in 5.3.4, the design of the contracting controller allows more than a single solution for
the matrixW0 in the LMI (6.13). The choice of the matrixW0 has a direct impact on the feasibility of the
controller and the performances in closed loop. In table 6.3, the characteristics of the step response
are presented for different metrics kwW0. The performances of the closed-loop system show a high
sensibility to the tuning ofW0, and for kw above 2, there is no solution to the LMI. For a perfect reference,
the original metric W0, kw = 1 is sufficient, with a low overshoot and a quick time response. Following
remark 9, in the case of a reference generated with an integrator, a lower metric kw ∈ [0.1, 0.5] is chosen,
which slows down the system but allows it to remain in the contraction region.
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Figure 6.16 – Comparison between Contraction and PI responses to a difficult reference

128



(a) Pressure behavior (b) Mass flow behavior
Figure 6.17 – Step response using the CON controller and a second-order actuator

Stability via contraction region study

in figure 6.16, the contracting controller is compared to the original PI controller for an unstable refe-
rence. The contracting behavior can also be observed as the system remains stable where the PI system
diverged. However, contrary to the PBC which extends the stable region, the contracting controller im-
poses constraints to avoid the borders of the contraction region. This is illustrated by the controller
Avg,H,CON in figure 6.16, where at the 2smark, the controller increases before the reference reaches its
minimum. This increase is generated by the constraints of the controller, which act like barrier functions
at the edges of the contraction region, leading to stabilizing behavior.
Addition of actuators dynamics

The addition of the actuator’s dynamics implies a slower dynamic for the controller. The reference
is generated using an integrator, with a slow parameter (kI = 20). The choice is oriented towards the
metric 0.1∗W0, for a match in the time constants of the systems and to limit the impact of the integrator.
The step-response of the system with an added actuator is presented in figure 6.17, for both pressures
and mass flows. As shown on the figure, if the time-constant differ from one another, it is possible to
observe a shift in the curve of the trajectory, at the 1.2smark in the qgg evolution (see 6.17b, in the lowerleft corner). While admissible for a simple reference as a step, a continuous trajectory would suffer from
the error between the time constants. In the following, a parameter kw = 0.3 is chosen to remedy this.
Conclusion on the contraction tuning

The tuning of the contracting controller is revealed to be more intuitive than the PBC controller.
Indeed, with only one parameter to act on, the choice of a suitable contractionmetric kwW0 is simplified.
However, the system displays a greater sensitivity to this parameter, and it is preferable to remain in low
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values of the metric to conserve stability.
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6.3 . Realistic scenario for a reusable engine

In this section, a scenario is proposed that approaches the types of trajectories encountered in the
landing of a rocket first stage. During the landing maneuver, the first stage detaches from the rocket
body, and after performing a U-turn to orient the rocket enginewith the velocity, a first burn atmaximum
thrust is performed to slow down the rocket engine for atmospheric re-entry. In a second time, the
engine’s thrust is minimized to save fuel, and allow for aerobraking. Once the velocity of the first stage
is low enough thanks to friction in the atmosphere, a last burn is performed at maximum thrust to land
the engine. Due to themodel being designed for 100%−150% of the nominal state values, themaximum
thrust is set to 140% of the state value and the minimum thrust to 100%. One of the main goals of this
thesis is to assert the tracking of the trajectory with the controllers designed and maintain the stability
guarantees evoked during the functioning.

To the scenario, a white noise on the temperature Θcc is added, to represent combustion instabili-
ties and parameter uncertainty on the chemical reaction. The objective of both controllers is to prove
a robust design to the noise addition and to the addition of the actuators dynamics. To this end, the
parameters used for the controllers are depicted, and chosen to slow the behavior down to match the
actuator’s time response. To better the comparison, both controllers respond to the same reference,
which is represented along the controllers in figures 6.18 and 6.20. The reference is generated using an
integrator on the state pcc with the parameter kI = 5.

6.3.1 . PBC controller
This type of scenario implies a continuous objective, that translates into a continuous reference injec-

ted in the PBC controller. The discretization of the reference is then performed only by Matlab Simulink,
and does not present optimal conditions for the PBC controller, which is more adapted to slow tran-
sitions. The responses on previous simulations (step responses and unstable reference) show that the
requirement for stability implies a low value of ku (ku ≤ 100), and a simple damping term. For a high
value of ku, the table 6.2 shows that the overshoot and time-response are not feasible for the actuators,
leading to unstable behavior.

The PBC controller parameter ku is set to 100, while the remaining resistive terms are taken constant
(Rdqtu = 0,Rdptu = 1 and Rdqgg = Rqgg,0 ). This allows to mitigate eventual oscillations in the design due
to the addition of the actuator’s dynamics. The main drawback of the slow parameters for the tracking is
illustrated in figure 6.18, where the PBC controller imposes a delay on the tracking of the reference. For
ku greater than 100, the controller outpaces the evolution of the actuators, and induces high oscillations
on the system, leading to unstable behavior.

The PBC controller shows limited performances towards noise cancellation. In figure 6.18a, it is pos-
sible to observe the noise impact on the main chamber pressure pcc, which remains at 1.9% of the nor-
malized value of the state, similar to the open-loop system. Using this controller, the addition of new
dynamics is hindered by the high dependency on the original dynamics of the system. This originates
from the complex computation of the controller, which fixes a high number of the variables in the desired
behavior (4 out of 7 of the terms in the new damping matrix Rd), and is highly sensible to modifications
in the system.

To obtain better performances with the PBC controller, it is necessary to increase both the parameter
ku and the integrator kI . In figure 6.19, the following parameters have been applied : ku = 100, kI =
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(a) Pressure behavior (b) Mass flow behavior
Figure 6.18 – Real-life scenario using the PBC controller ku = 100, kI = 5 and a second-order actuator

20. Such an increase allows for closer tracking, in terms of time response and delay. As the system is
able to reach the desired value faster, the difference between the objective and the actual pressure
pcc decreases. Additionally, a decrease in the noise influence can be noted, as the oscillations in the
controller can be dissipated with more efficiency due to the increased time response.

While the PBC controller proves to be a reliable solution for simple transitions between operating
points, the performances on trajectory tracking feature a delay that is solved by increasing the added
integrator speed. As explained earlier, such tuning implies a loss in the stability domain.While the perfor-
mances using the newly tuned integrator are satisfying, it is possible to note the apparition of oscillations
on the controller value Avg,H in figure 6.19a, due to the increase in speed.

6.3.2 . Contracting controller
The contracting controller is well adapted to trajectory tracking, and the continuous reference gene-

rated by the realistic scenario does not pose problems. The simulations presented previously emphasize
the need for a low kw, that stabilizes the system when dealing with high variations of the states’ value
(100%− 140%).

The contracting controller parameter kw mentioned in the table 6.3 is chosen to ku = 0.3. A higher
parameter leads to oscillations because it outpaces the actuators, and a lower parameter is unable to
follow the reference. The integrator added to suppress the static error of the system is selected with a
time constant of 5. This time constant is taken slow before the rest of the dynamics to not interfere with
the contracting behavior of the controller (see 5). The results of the simulation are provided in figure
6.20. A closer look to the evolution shows the dissipation of oscillations when tending to low values of
the states, where the contracting controller acts as a barrier function. The tracking proves to have a delay
illustrated in figure 6.21, however negligible in front of the time-scale of the required variations of the
system during the scenario. Similarly, the overshoot and oscillations do not exceed 2% of the amplitude
of the scenario and are then satisfying. Contrary to the PBC controller, a contractive controller rejects
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(a) Pressure behavior (b) Mass flow behavior
Figure 6.19 – Real-life scenario using the PBC controller ku = 100, kI = 20 and a second-order actuator

high frequencies of the system (see [83]), and reduces the impact of the noise injected on the system
(average noise amplitude of 1.9% for PBC, compared to 1.2% for the contraction).
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(a) Pressure behavior (b) Mass flow behavior
Figure 6.20 – Real-life scenario using the contractive controller and a second-order actuator

Figure 6.21 – Zoom on oscillations dissipation of the contracting controller
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CONTROLLER Stability Delay Oscillations Noise rejectionPI None Low High NonePBC Passive / High On the actuator No noise rejectionExtension of thepassive domainCON Contraction region / Low For low values Decrease of 30%Barrier function
Table 6.4 – Summary of the controllers used

6.4 . Summary

In this chapter, the comparison between the state-space simulations of the system and the Port-
Hamiltonian modeling has been presented. The Port-Hamiltonian model allows for an efficient stability
analysis, and the prediction for the unstable domain of the system is proven using state-space simula-
tions. The simulations of the Hamiltonian model in permanent regime show a nearly identical behavior
to that of the state-space, validating the reformulation of the model. Although some differences can
be noticed where the Port-Hamiltonian model takes a longer time to reach the initial equilibrium, due
to computation artifacts remaining, the simulation can simply be taken from when the equilibrium has
settled.

In a second section, the two controllers proposed are compared with a classical controller (PI), to
illustrate the strategies when dealing with unstable references. While the PI controller is unable to main-
tain stability during the unstable transition, both controllers are able to remain stable and end the
simulation.

The PBC controller extends the stable region of the system, by design of the new resistive terms in
the matrix Rd. Such terms can furthermore be tuned, for improved performances and extend again the
stable zone.

The contracting controller acts as a barrier function to reject the unstable domain of the system
and remain in the contraction region. It proves to be a powerful tool to stabilize a system, with a low
computation time and is very adapted to trajectory tracking, with better performances than the PBC
controller.

Finally, both controllers are paired with real actuators dynamics, that add a second-order system to
the equations. Such addition requires the proper tuning of the controllers, as the slow response of the
actuators has to be taken into account in the design. Simulations of the controllers with realistic state
transitions illustrate that both controllers are able to performwith the actuator’s dynamics, added noise,
and maintain stability. Characteristics of the controllers are briefly recalled in table 6.4.

In summary, the controllers both provide a stable closed-loop in the domain considered. The PBC
controller is more adapted to use when dealing with simple transitions between operating points, and
delivers a better understanding of the stability conditions provided to the system, namely with a storage
function for the passivity of the system. The contracting controller has better performances in trajectory
tracking, as it is able to follow more closely a trajectory with a simple reference (whereas to obtain the
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same performances, the PBC controller requires a greater integrator).
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7 - Conclusion and perspectives

7.1 . Conclusion

This thesis aims to provide tools andmethods to assert the stability of a non-linear model of the per-
manent regime of a reusable LPRE in closed-loop regulation. This objective has been translated into a
study of the stability of the system in open-loop to derive stability conditions for a controller design and
in a second part, in the design of controllers that provide stability guarantees to the closed-loop system.
The state of the art of the stability of LPRE systems has been reviewed in chapter 1. Namely, the field of
reusable stages for rockets introduced new requirements, mainly an increase in the range of variation
of the thrust produced by the engine. In the literature, closed-loop controllers mainly consist in a regu-
lation designed around a linearized operating point of the system. Robust control also constitutes an
important field of the literature, which is aimed at being tolerant of uncertainties and faulty scenarios.
An important aspect of reusable technology relies on damage-mitigation control, which consists in the
implementation of control policies that minimize the damage caused to the engine during the functio-
ning. However, these approaches seldom account for the stability of the system, and there is a lack of a
formal stability analysis of an LPRE in the literature.

In the first place, the state-space modeling of an LPRE is considered. Two distinct models are de-
veloped to this end in chapter 2, a simplified model which consists in a moto-pump cycle. This cycle
enables to perform stability analysis while considering a reduced number of states, drastically reducing
the complexity. A second model, consisting in a gas generator cycle of an LPRE, presents an increase in
complexity. The objective of these two models is to demonstrate the versatility of the methods by deve-
loping them on both systems. Although convenient for modeling and simulations, a state-space model
proves to be a complex approach for stability analysis. The formulation of the states evolution and the
poor conditioning of the linearized matrices illustrate the difficulties encountered when trying to derive
a Lyapunov function for example. A conclusion to this is the requirement for a reformulation of the state-
spaces considered.

The reformulation of the states under a form more adapted to stability analysis is performed, using
the Port-Hamiltonian framework. In chapter 3, the formulation of both the simplified and complex sys-
tems is carried out. To respect the particular structure of Port-Hamiltonian systems, conditions on the
approximations performed in the modeling (chapter 2) can be derived. The first consequences concern
the polynomial approximations, where conditions on the construction of such polynomial functions can
be stated. Port-Hamiltonian systems enable to prove the passivity of the simplified system, using a sto-
rage function. In order to prove the stability of the complex system, further considerations are required.
This formal proof of stability and reformulation has been described in [47]. The complex model, howe-
ver, requires the addition of a controller to respect the Port-Hamiltonian modeling.

To assert the passivity of the complex system around a chosen operating point, a controller is deve-
loped. To make use of the passivity properties of the system, a passivity base controller (PBC) is chosen
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in chapter 4. The design of the controller is first carried out on the simplified system. In order to com-
pute the controller for the complex system of the LPRE, the notion of damping assignment is introduced,
where a new closed-loop behavior of the system is chosen. The PBC controller defines an equilibrium as
asymptotically stable and constitutes an important result of the stability in closed-loop control. This type
of controller however is more adapted to simple transitions between operating points and decreases in
performance when designed for trajectory tracking.

To perform more complex maneuvers, the thrust of the engine is required to follow more complex
trajectories. To study the stability with respect to a trajectory rather than an equilibrium, contraction
theory is presented in chapter 5. Contraction theory is a powerful tool that is used to prove the ex-
ponential stability of a system, which is more powerful than asymptotic stability. This however implies
more conditions on the system behavior to fulfill. Similarly to the PBC approach, a contracting controller,
a controller that imposes a contracting behavior to the closed-loop system is developed. A first approach
is carried out on the simplified system, where it is proven that a simple LMI design is sufficient to design
such a controller. This work has been summarized in [46]. To perform the design on a complex model,
additional considerations are required and a generalization of the method on more complex non-linear
systems has been developed. This application has been published in [49].

A comparison of the different modeling methods is performed in chapter 6. Simulations are per-
formed to compare the behavior of both modelings, Port-Hamiltonian and state-space. Results show
that the differences in the numerical values for both modelings (settling time, final value) are negligible,
validating the Port-Hamiltonian approach. Simulations however highlight the differences in the imple-
mentation under Matlab Simulink, of both models. While requiring an additional block to simulate the
components required to build the system equations, Port-Hamiltonian modeling proves to have bet-
ter simulation performances, with the possibility of using reduced time-steps compared to the state-
space approach. However, Port-Hamiltonian modeling requires additional considerations when mode-
ling noise on the system, and proves to have a starting dynamic different from the state-space, due to
differences in the initialization process.

A comparison of the regulation methods in closed-loop control is proposed, where the stabilizing
properties of the controllers is compared with an unstable PI controller. The PBC approach provides
a stabilization by extension of the stability domain, where the modification of the closed-loop behavior
and in particular the damping allows to extend the domain of validity. On the other hand, the contracting
controller proves to act as a barrier function when near the unstable zone and maintains the system in
a certain region, designated by the contraction region.

The addition of actuator dynamics defines a second phase of the controller’s validation. With second-
order dynamics, the actuators add a new constraint of tunability and feasibility to the controller outputs.
Previous testswith different parameters allow to determine suitable tuning for both the PBC and contrac-
ting controllers.

Finally, the tracking performances on longer scenarios are asserted, with the actuator dynamics and
noise perturbation. In this type of simulation, the contracting controller proves to be a more precise and
reliable option than the PBC controller.
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7.2 . Perspectives

The continuation of this work is possible in the control theory field, with some remarks previously
made, that are recalled here. The controllers developed in this thesis share the common structure of
a state feedback controller. While being an efficient approach for stability, feedback controllers require
the values of the state to be computed. This brings the issue of measurements of the states, for which
no solution is provided as of today. Indeed, while states like the rotational speeds of the pumps are well
measured during the operation of the engine, the chamber temperatures, pressures, or mixture ratios
have no technological solution that allows to measure the state in a real system.

With the objective of conserving the controller structures developed in this thesis, observers can be
developed to answer the problem of state measurements. In this case, observers which conserve the
contraction properties of a system. Such observers have been recently developed in the literature, with
two interesting applications in the scope of this work,

• The use of contraction theory to develop observers, with proof of convergence [96, 97, 98].
• The use of contraction theory on observers, to induce contracting behavior to the loop with obser-
vers [99, 100].

Similarly, observer design for Port-Hamiltonian systems has been studied in the literature [101], lea-
ding to new possibilities on the observer designs for the LPRE.

In the wake of new technologies for control, and in particular AI-related controllers, the proof of
convergence becomes a much-needed requirement for the validation of complex controllers. An exten-
sion of the results proposed in this thesis can be studied for these new controllers, and in particular,
the notion of contraction when dealing with AI generation mechanisms. Indeed, contraction theory has
been considered in the literature to assert the convergence of algorithms and proves to be a powerful
tool to qualify AI results [102]. Such a tool can be of great importance to assert the stability of already
performing controllers [16]. In this sense, the contraction behavior is used to prove the convergence of
the neural networks that generate the controller.

Another aspect of the continuation of thiswork relies on the Port-Hamiltonian framework used.While
the Port-Hamiltonian reformulation has been conducted using the state-space model, several approxi-
mations have already beenmade to fit the state-space. However, these simplifications (namely the turbo
pumppolynomial functions) lead tomore complex interconnections to obtain the formulation. These ad-
ditional steps allow to formulate qualitative remarks on the approximations. Namely, an approximation
can be deemed favorable to stability analysis if all the residual terms are negative, and correspond to
energy dissipation. In this sense, a direct formulation of the dynamics under Port-Hamiltonian frame-
work is interesting, as it implies new polynomial approximations more adapted to the study. The frame-
work can also be used to explore other cycles for an LPRE, for example, the expander cyclewhich requires
a more thorough expression of the thermic transfers between the chamber walls and the regenerative
circuit.
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APPENDIX A : Complete Port-Hamiltonian system



αq,HJH ω̇H

αq,OJOω̇O

Icc,H q̇cc,H
Icc,O q̇cc,O
Igg,H q̇gg,H
Igg,O q̇gg,O

Itu,Hκtuq̇tu,H
Itu,Oκtuq̇tu,O
kpccṗcc
kpggṗgg

kptu,H ṗtu,H
kptu,Oṗtu,O



=
[
J(X)−R(X)

]



ωH

ωO

qcc,H
qcc,O
qgg,H
qgg,O
qtu,H
qtu,O
pcc
pgg
ptu,H
ptu,O



+



0
0

pep,H
pep,O
pep,H
pep,O
0
0
0
0
0
0



(7.1)

where the storage matrix is

J(X) =



0 0 −λH 0 −λH 0 0 0 0 0 αt,H 0
0 0 0 −λO 0 −λO 0 0 0 0 0 αt,O

λH 0 0 0 0 0 0 0 −1 0 0 0
0 λO 0 0 0 0 0 0 −1 0 0 0
λH 0 0 0 0 0 0 0 0 −1 0 0
0 λO 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 κtu −κtu 0
0 0 0 0 0 0 0 0 0 κtu 0 −κtu
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 −κtu −κtu 0 0 0 0

−αt,H 0 0 0 0 0 κtu 0 0 0 0 0
0 −αt,O 0 0 0 0 0 κtu 0 0 0 0



, (7.2)

and the resistive matrix is

R(X) = diag(
[
Rω,H Romega,O Rqcc,H Rqcc,O Rqgg,H Rqgg,O Rqtu,H Rqtu,O Rpcc Rpgg Rptu,H Rptu,O

]
).
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The terms of the matrix J read
λH = bp,H(qcc,H + qgg,H)

λO = bp,O(qcc,O + qgg,O)

κtu = k3gg
√

Θggkgg

kptu,H =
κtu

k2tu,HΘgg

kptu,O =
κtu

k2tu,OΘgg

kpcc =
1

(k4cc + k5cc + (k2cc − k1cc)Θcc)

kpgg =
1

(k4gg + k5gg + (k2gg − k1gg)Θgg)

αq,H =
bp,HρH
ac,H

αq,O =
bp,OρO
ac,O

αt,H = αq,HSTH(ωH)wtu,H

αt,O = αq,OSTO(ωO)wtu,O

(7.3)
And the resistive terms composing the matrix R are expressed as

Rω,H = αq,H(bc,H(qcc,H + qgg,H)− cc,HρHωH)

Rω,O = αq,O(bc,O(qcc,O + qgg,O)− cc,OρOωO)

Rqcc,H = Zrescc,Hqcc,H −
ap,H
ρH

(qcc,H + qgg,H)− cp,HρH
ω2
H

qcc,H

Rqcc,O = Zrescc,Oqcc,O −
ap,O
ρO

(qcc,O + qgg,O)− cp,OρO
ω2
O

qcc,O

Rqgg,H = Zresgg,Hqgg,H −
ap,H
ρH

(qcc,H + qgg,H)− cp,HρH
ω2
H

qgg,H

Rqgg,O = Zresgg,Oqgg,O −
ap,O
ρO

(qcc,OH + qgg,O)− cp,OρO
ω2
O

qgg,O

Rqtu,H = κtuZresqtu,Hqtu,H

Rqtu,H = κtuZresqtu,Oqtu,O

Rpcc = k3cc
√
Θcckpcc

Rpgg = 0

Rptu,H = βt,H

Rptu,O = βt,O (7.4)
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APPENDIX B : Complex PBC design with Ra(x) ̸= 0

The complex PDE with a non zero matrix Ra is given by the following :
−Rω

∂Ha

∂(αqJω)
+ αt

∂Ha

∂(kptuptu)
− λ

∂Ha

∂(Iccqcc)
− λ

∂Ha

∂(Iggqgg)
−Ra,ω(

∂Ha

∂(αqJω)
− ω) = 0

−Rqcc
∂Ha

∂(Iccqcc)
+ λ

∂Ha

∂(αqJω)
− ∂Ha

∂(kpccpcc)
−Ra,qcc(

∂Ha

∂(Iccqcc)
− qcc) = 0

−Rqtu
∂Ha

∂(Ituqtu)
+ κtu

∂Ha

∂(kpggpgg)
− κtu

∂Ha

∂(kptuptu)
−Ra,qtu(

∂Ha

∂(Ituqtu)
− qtu) = 0

−Rpcc
∂Ha

∂(kpccpcc)
+

∂Ha

∂(Iccqcc)
−Ra,pcc(

∂Ha

∂(kpccpcc)
− pcc) = 0

−Rpgg
∂Ha

∂(kpggpgg)
+

∂Ha

∂(Iggqgg)
− κtu

∂Ha

∂(Ituqtu)
−Ra,pgg(

∂Ha

∂(kpggpgg)
− pgg) = 0

−Rptu
∂Ha

∂(kptuptu)
+ κtu

∂Ha

∂(Ituqtu)
− αt

∂Ha

∂(αqJω)
−Ra,ptu(

∂Ha

∂(kptuptu)
− ptu) = 0 (7.5)

The controller expression as obtained in Maple is then given in the following pages, where the sim-
plifications on Ra have been performed.
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u =

[−((−Rω + Rpcc)Ra,qtu + αt
2 + (Rqtu + 1)(Rω − Rpcc))qtu,0 (−λαt− Rpcc + Rω)κ

5

+ (((Qqgg − 1)(pcc,0 − pcc)λ
4 − (Qqgg − 1)(ω − ω0)λ

3 + (Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)

(Qqgg − 1))(Rω − Rpcc)λ
2 + ((pgg − pgg,0 )αt − ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))(Rω − Rpcc)λ−

(Rω − Rpcc)
2(Ra,qgg (qgg,0 − qgg)Qqgg + Rqgg qgg + pgg))Ra,qtu

2 + (−2 (Qqgg − 1)(Rqtu + Ra,ptu/2 + 1/2)

(pcc,0 − pc)λ4 + 2 (Qqgg − 1)((pcc,0/2 + pgg,0/2 + ptu,0/2− pcc/2− pgg/2− ptu/2)αt + (ω − ω0)

(Rqtu + Ra,ptu/2 + 1/2))λ3

+ (((pcc − pcc,0 )Rpcc − ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))αt
2 − (Qqgg − 1)(ω − ω0)αt − 2

(((pcc,0/2− pcc/2)Rpcc + 1/2 ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Ra,ptu + (Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + (pcc,0/2− pcc/2)Rpcc + 1/2 (Qqgg − 1)((pcc,0 − pcc)

Ra,qgg + pcc,0 − pgg,0 − ptu,0 − qgg,0

− pcc + pgg + ptu + qgg))(Rω − Rpcc))λ
2 + ((pgg,0 − pgg)αt

3 + (ωRpcc − Rω ω0 + Ra,qgg (Qqgg − 1)

(ω − ω0))αt
2 + ((ptu,0 − ptu)Ra,ptu + (2 pgg,0 − 2 pgg)Rqtu + (pcc − pcc,0 )Rpcc + Ra,qgg

(pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)Qqgg + (−pcc,0 − pgg,0 − ptu,0 + pcc + pgg + ptu)

Ra,qgg + Rptu ptu + pgg,0 − pgg)(Rω − Rpcc)αt− 2

((−1/2ωRpcc + 1/2Rω ω0 − 1/2Ra,qgg (Qqgg − 1)(ω − ω0))Ra,ptu + (−ωRpcc + Rω ω0 − Ra,qgg

(Qqgg − 1)(ω − ω0))Rqtu − 1/2ωRpcc + 1/2Rω ω0 − 1/2 (Qqgg − 1)(ω − ω0)

(Ra,qgg + 1))(Rω − Rpcc))λ− ((−2Ra,qgg (qgg,0 − qgg)Qqgg − 2

Rqgg qgg − pgg,0 − pgg)αt
2 + (−ωRpcc + Rω ω0 + Ra,qgg

(Qqgg − 1)(ω − ω0))αt + (Rω − Rpcc)((−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg

− pgg,0 + ptu,0 − ptu)Ra,ptu + (−2Ra,qgg (qgg,0 − qgg)Qqgg − 2Rqgg qgg − 2 pgg)Rqtu

+ ((−pgg,0 − ptu,0 − qgg,0 + pgg + ptu + qgg)Ra,qgg − qgg,0 + qgg)Qqgg

+ (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg + (−Rqgg − 1)qgg + Rptu ptu + qgg,0 − pgg))

(Rω − Rpcc))Ra,qtu + (Qqgg − 1)(Rqtu + 1)(Rqtu + Ra,ptu)(pcc,0 − pcc)λ
4 − (Rqtu + Ra,ptu)

(Qqgg − 1)((pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)αt + (ω − ω0)(Rqtu + 1))λ3+

(((Rpcc (pcc,0 − pcc)− (Qqgg − 1)(qgg,0 − qgg))Ra,ptu + (Rpcc

(pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + Ra,qgg (Qqgg − 1)

(pcc,0 − pcc))αt
2 + (Qqgg − 1)(ω − ω0)(Rqtu + Ra,ptu)αt + (((Rpcc

(pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − pgg,0 − ptu,0 − qgg,0 + pgg + ptu + qgg)(Qqgg − 1))

Ra,ptu + (Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu
2 + (Rpcc (pcc,0 − pcc) + (Qqgg

− 1)((pcc,0 − pcc)Ra,qgg + pcc,0 − pgg,0 − ptu,0 − qgg,0 − pcc + pgg + ptu + qgg))Rqtu + (Qqgg − 1)(pcc,0 − pcc))

(Rω − Rpcc))λ
2 + (((ptu − ptu,0 )Ra,ptu + (pgg − pgg,0 )Rqtu
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+ Rpcc (pcc,0 − pcc)− Ra,qgg (pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)Qqgg + Ra,qgg

(pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)− Rptu ptu)αt
3 + ((−ωRpcc + Rω ω0)Ra,ptu

+ (−ωRpcc + Rω ω0− Ra,qgg (Qqgg − 1)

(ω − ω0))Rqtu − Ra,qgg (Qqgg − 1)(ω − ω0))αt
2 − (((ptu,0 − ptu)Rqtu + Ra,qgg (pcc,0

+ pgg,0 + ptu,0 − pcc − pgg − ptu)Qqgg + (−pcc,0 − pgg,0 − ptu,0 + pcc + pgg + ptu)Ra,qgg + ptu,0 − ptu)

Ra,ptu + (pgg,0 − pgg)Rqtu
2 + ((pcc − pcc,0 )Rpcc + Ra,qgg (pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)

Qqgg + (−pcc,0 − pgg,0 − ptu,0 + pcc + pgg + ptu)Ra,qgg + Rptu ptu + pgg,0 − pgg)Rqtu

+ (pcc − pcc,0 )Rpcc + (pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu)Qqgg + pgg − pcc,0 + pcc − pgg,0

+ (Rptu + 1)ptu − ptu,0 )(Rω − Rpcc)αt + (Rω − Rpcc)((−ωRpcc + Rω ω0 − Ra,qgg

(Qqgg − 1)(ω − ω0))Ra,ptu + (−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − (Qqgg − 1)(ω − ω0))

(Rqtu + 1))λ+ (−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg − pgg,0 )αt
4+

(−ωRpcc + Rω ω0 + Ra,qgg (Qqgg − 1)(ω − ω0))αt
3 + (Rω − Rpcc)

((−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg − pgg,0 + ptu,0 − ptu)Ra,ptu

+ (−2Ra,qgg (qgg,0 − qgg)Qqgg − 2Rqgg qgg − pgg,0 − pgg)Rqtu + ((−pgg,0 − ptu,0 − qgg,0 + pgg + ptu + qgg)Ra,qgg

− qgg,0 + qgg)Qqgg + (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg + (−Rqgg − 1)qgg + Rptu ptu − pgg,0 + qgg,0 )αt
2

+ (Rω − Rpcc)(Ra,qgg (Qqgg − 1)(ω − ω0)Ra,ptu + (−ωRpcc + Rω ω0

+ Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − ωRpcc + Rω ω0 + (Qqgg − 1)(ω − ω0))αt+

(Rω − Rpcc)
2(((−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg − pgg,0 + ptu,0 − ptu)Rqtu

− Ra,qgg (pgg,0 + ptu,0 + qgg,0 − pgg − ptu − qgg)Qqgg

+ (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg − Rqgg qgg − pgg,0 + ptu,0 − ptu)Ra,ptu + (−Ra,qgg (qgg,0 − qgg)Qqgg

− Rqgg qgg − pgg)Rqtu
2 + (((−pgg,0 − ptu,0 − qgg,0 + pgg + ptu + qgg)Ra,qgg − qgg,0 + qgg)Qqgg

+ (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg + (−Rqgg − 1)qgg + Rptu ptu + qgg,0 − pgg)Rqtu

+ (−pgg,0 − ptu,0 − qgg,0 + pgg + ptu + qgg)Qqgg − qgg − pgg + qgg,0 + pgg,0 + (Rptu − 1)ptu + ptu,0 ))κ
4

+ (λαt qtu (Rω − Rpcc)Ra,qtu
3 + (λ3(Qqgg − 1)(qtu,0 − qtu)αt+ ((−qtu,0 − qtu)αt

2 + (Rω − Rpcc)

((qtu,0 − 3 qtu)Rqtu + Ra,qgg (qtu,0 − qtu)Qqgg + (qtu − qtu,0 )Ra,qgg − qtu,0 − qtu))αt λ

+ (Rω − Rpcc)((2 qtu,0 − qtu)αt
2 + (Rω − Rpcc)(Ra,ptu (qtu,0 − qtu) + qtu,0 )))Ra,qtu

2

+ (−2λ3(qtu,0 − qtu)(Qqgg − 1)(Rqtu + Ra,ptu/2)αt + (Qqgg − 1)(qtu,0 − qtu)(αt
2 − Rpcc + Rω)λ

2

− 2αt ((−Rqtu qtu + 1/2Ra,qgg (Qqgg − 1)

(qtu,0 − qtu))αt
2 + (1/2Ra,qgg (Qqgg − 1)(qtu,0 − qtu)Ra,ptu + (qtu,0 − 3/2 qtu)Rqtu

2 + (Ra,qgg (qtu,0 − qtu)

Qqgg + (qtu − qtu,0 )Ra,qgg − qtu)Rqtu + 1/2 (Qqgg − 1)(qtu,0 − qtu))(Rω − Rpcc))λ

+ (qtu − qtu,0 )αt
4 − 3 ((qtu,0/3− qtu/3)Ra,ptu + (qtu,0 − 2/3 qtu)Rqtu

− 1/3 (Ra,qgg Qqgg − Ra,qgg − 1)(qtu,0 − qtu))

(Rω − Rpcc)αt
2 − 2 (Rω − Rpcc)

2((Rqtu + 1/2)(qtu,0 − qtu)Ra,ptu + 1/2Rqtu qtu,0 − 1/2Ra,qgg

(Qqgg − 1)(qtu,0 − qtu)))Ra,qtu + (Rqtu λ
3(Qqgg − 1)(Rqtu + Ra,ptu)αt

− (Qqgg − 1)(Rqtu + Ra,ptu)(αt
2 − Rpcc + Rω)λ

2 + Rqtu ((Ra,qgg Qqgg − Ra,qgg + Rqtu)αt
2

+ (Ra,qgg (Qqgg − 1)Ra,ptu
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+ Rqtu
2 + (Ra,qgg Qqgg − Ra,qgg + 1)Rqtu +Qqgg − 1)(Rω − Rpcc))αt λ+ (−Ra,qgg Qqgg + Ra,qgg + Rqtu)αt

4

+ ((−Ra,qgg Qqgg + Ra,qgg + Rqtu)Ra,ptu + Rqtu
2 + (−Ra,qgg Qqgg + Ra,qgg + 1)Rqtu − (Qqgg − 1)(Ra,qgg + 1))

(Rω − Rpcc)αt
2 + ((Rqtu

2 + Rqtu − Ra,qgg (Qqgg − 1))

Ra,ptu − (Qqgg − 1)(Rqtu Ra,qgg + 1))(Rω − Rpcc)
2)(qtu,0 − qtu))κ

3

+ (((Qqgg − 1)(Ra,ptu + 1)(pcc,0 − pcc)λ
4 − (Qqgg − 1)((ptu,0 − ptu)αt + (ω − ω0)(Ra,ptu + 1))λ3

+ (αt
2 + (Ra,ptu + 1)(Rω − Rpcc))(Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))λ2

+ ((pgg − pgg,0 )αt
3 + (−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))αt

2

− (Rω − Rpcc)((ptu,0 − ptu)Ra,ptu + Ra,qgg (ptu,0 − ptu)Qqgg + (ptu − ptu,0 )Ra,qgg + Rptu ptu + pgg,0 − pgg)αt

+ (Rω − Rpcc)(Ra,ptu + 1)(−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0)))λ− (2αt
2

+ (Ra,ptu + 1)(Rω − Rpcc))(Rω − Rpcc)(Ra,qgg (qgg,0 − qgg)Qqgg + Rqgg qgg + pgg))Ra,qtu
2

+ (−2 ((Rqtu + 1)Ra,ptu + Rqtu)(Qqgg − 1)(pcc,0 − pcc)λ
4

+ 2 (((pcc,0/2 + pgg,0/2 + ptu,0 − pcc/2− pgg/2− ptu)Ra,ptu + (ptu,0 − ptu)Rqtu)αt

+ ((Rqtu + 1)Ra,ptu + Rqtu)(ω − ω0))

(Qqgg − 1)λ3 + ((((−2 pcc,0 + 2 pcc)Rpcc + 2 (Qqgg − 1)(qgg,0 − qgg))Ra,ptu

+ ((−2 pcc,0 + 2 pcc)Rpcc − 2 ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu − 2 (Qqgg − 1)

((pcc,0 − pcc)Ra,qgg + pcc,0/2− pgg,0/2− pcc/2 + pgg/2))αt
2

− Ra,ptu (Qqgg − 1)(ω − ω0)αt − 2 (Rω − Rpcc)(((Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu

+ Rpcc (pcc,0 − pcc) + (Qqgg − 1)((pcc,0 − pcc)Ra,qgg

+ pcc,0/2 + pgg/2− pgg,0/2 + ptu/2− ptu,0/2− pcc/2 + qgg − qgg,0 ))Ra,ptu

+ (Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + 1/2 (Qqgg − 1)

(pcc,0 − pgg,0 − pcc + pgg)))λ
2 + (((2 ptu,0 − 2 ptu)Ra,ptu + (2 pgg,0 − 2 pgg)Rqtu + (pcc − pcc,0 )Rpcc + Ra,qgg

(pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg − 2 ptu)Qqgg + (−pcc,0 − pgg,0 − 2 ptu,0 + pcc + pgg + 2 ptu)Ra,qgg

+ 2Rptu ptu)αt
3 + ((2ωRpcc − 2Rω ω0)Ra,ptu + (2ωRpcc − 2Rω ω0 + 2Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu

+ 2 (ω − ω0)(Qqgg − 1)(Ra,qgg + 1/2))αt
2 + 2 (Rω − Rpcc)(((ptu,0 − ptu)

Rqtu + 1/2Ra,qgg (pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg − 2 ptu)Qqgg

+ (pcc/2− pcc,0/2 + pgg/2− pgg,0/2− ptu,0 + ptu)Ra,qgg + ptu,0 − ptu)Ra,ptu

+ (Ra,qgg (ptu,0 − ptu)Qqgg + (ptu − ptu,0 )Ra,qgg + Rptu ptu + pgg,0 − pgg)Rqtu + (−pcc,0/2

+ pcc/2)Rpcc + (ptu,0/2− ptu/2)Qqgg + (1/2 + Rptu)ptu − ptu,0/2)αt − 2 (Rω − Rpcc)

(((−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − ωRpcc

+ Rω ω0 − (ω − ω0)(Qqgg − 1)(Ra,qgg + 1/2))Ra,ptu + (−ωRpcc + Rω ω0

− Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − 1/2 (Qqgg − 1)(ω − ω0)))λ+ (2Ra,qgg (qgg,0 − qgg)Qqgg + 2Rqgg qgg

+ pgg,0 + pgg)αt
4 + (ωRpcc − Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))αt

3

− ((−2Ra,qgg (qgg,0 − qgg)Qqgg

− 2Rqgg qgg − pgg,0 + ptu,0 − pgg − ptu)Ra,ptu

+ (−4Ra,qgg (qgg,0 − qgg)Qqgg − 4Rqgg qgg − 4 pgg)Rqtu
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+ ((−2 pgg,0 − ptu,0 − 2 qgg,0 + 2 pgg + ptu + 2 qgg)Ra,qgg − 2 qgg,0 + 2 qgg)Qqgg

+ (2 pgg,0 + ptu,0 − 2 pgg − ptu)Ra,qgg + (−2Rqgg − 2)qgg + Rptu ptu − pgg,0 + 2 qgg,0 − pgg)

(Rω − Rpcc)αt
2 − (Ra,qgg (Qqgg − 1)(ω − ω0)Ra,ptu + Rω ω0 − ωRpcc)(Rω − Rpcc)αt

− (((−2Ra,qgg (qgg,0 − qgg)Qqgg − 2Rqgg qgg − 2 pgg)Rqtu + ((−pgg,0 − ptu,0 − 2 qgg,0

+ pgg + ptu + 2 qgg)Ra,qgg − qgg,0 + qgg)Qqgg + (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg + (−2Rqgg − 1)qgg

− pgg,0 + ptu,0 + qgg,0 − pgg − ptu)Ra,ptu + (−2Ra,qgg (qgg,0 − qgg)Qqgg

− 2Rqgg qgg − 2 pgg)Rqtu + ((pgg − pgg,0 )Ra,qgg − qgg,0 + qgg)Qqgg

+ (pgg,0 − pgg)Ra,qgg + Rptu ptu + qgg,0 − qgg)(Rω − Rpcc)
2)Ra,qtu + (Qqgg − 1)Rqtu

(pcc,0 − pcc)((Rqtu + 2)Ra,ptu + Rqtu)λ
4 − (((pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg

− 2 ptu)Ra,ptu + (ptu,0 − ptu)Rqtu)αt + (ω − ω0)((Rqtu + 2)Ra,ptu

+ Rqtu))(Qqgg − 1)Rqtu λ
3 + (((((2 pcc,0 − 2 pcc)Rpcc − 2 (Qqgg − 1)

(qgg,0 − qgg))Rqtu − (Qqgg − 1)(pgg,0 − pgg))Ra,ptu + (Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu
2 + 2 (Qqgg − 1)((pcc,0 − pcc)Ra,qgg

+ pcc,0/2− pgg,0/2− pcc/2 + pgg/2)Rqtu + (Qqgg − 1)(pcc,0 − pcc))αt
2

+ Rqtu Ra,ptu (Qqgg − 1)(ω − ω0)αt + (Rω − Rpcc)(((Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu
2 + ((2 pcc,0 − 2 pcc)Rpcc

+ 2 (Qqgg − 1)((pcc,0 − pcc)Ra,qgg + pcc,0/2 + pgg/2− pgg,0/2 + ptu/2− ptu,0/2− pcc/2 + qgg − qgg,0 ))Rqtu

+ (Qqgg − 1)(pcc,0 − pgg,0 − pcc + pgg))Ra,ptu + Rqtu ((Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + (Qqgg − 1)(pcc,0 − pgg,0 − pcc + pgg))))λ
2

+ ((−2 (ptu,0 − ptu)Rqtu Ra,ptu + (pgg − pgg,0 )Rqtu
2 + (Rpcc (pcc,0 − pcc)

− Ra,qgg (pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg − 2 ptu)Qqgg + Ra,qgg (pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg − 2 ptu)

− 2Rptu ptu)Rqtu − (Qqgg − 1)(pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu))αt
3 + (2Rqtu (−ωRpcc

+ Rω ω0)Ra,ptu + (−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu
2

− 2 (ω − ω0)(Qqgg − 1)(Ra,qgg + 1/2)Rqtu − (Qqgg − 1)(ω − ω0))αt
2

− (((ptu,0 − ptu)Rqtu
2 + (Ra,qgg (pcc,0 + pgg,0 + 2 ptu,0 − pcc − pgg − 2 ptu)Qqgg

+ (−pcc,0 − pgg,0 − 2 ptu,0 + pcc + pgg + 2 ptu)Ra,qgg + 2 ptu,0 − 2 ptu)Rqtu

+ (Qqgg − 1)(pcc,0 + pgg,0 + ptu,0 − pcc − pgg − ptu))Ra,ptu + Rqtu ((Ra,qgg (ptu,0 − ptu)Qqgg
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+ (ptu − ptu,0 )Ra,qgg + Rptu ptu + pgg,0 − pgg)Rqtu

+ (pcc − pcc,0 )Rpcc + (ptu,0 − ptu)Qqgg + (2Rptu + 1)ptu − ptu,0 ))

(Rω − Rpcc)αt + (((−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)

(ω − ω0))Rqtu
2 + (−2ωRpcc + 2Rω ω0 − 2 (ω − ω0)(Qqgg − 1)(Ra,qgg + 1/2))Rqtu

− (Qqgg − 1)(ω − ω0))Ra,ptu + ((−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu−
(Qqgg − 1)(ω − ω0))Rqtu)(Rω − Rpcc))λ+ ((−2Ra,qgg (qgg,0

− qgg)Qqgg − 2Rqgg qgg − pgg,0 − pgg)Rqtu − (Qqgg − 1)

((pgg,0 − pgg)Ra,qgg + qgg,0 − qgg))αt
4 + ((−ωRpcc + Rω ω0 + Ra,qgg (Qqgg − 1)

(ω − ω0))Rqtu + (Qqgg − 1)(ω − ω0))αt
3+

(Rω − Rpcc)(((−2Ra,qgg (qgg,0 − qgg)Qqgg − 2Rqgg qgg − pgg,0 + ptu,0 − pgg − ptu)Rqtu − (Qqgg − 1)

((pgg,0 − pgg)Ra,qgg + qgg,0 − qgg))Ra,ptu + (−2Ra,qgg (qgg,0 − qgg)Qqgg − 2Rqgg qgg

− 2 pgg)Rqtu
2 + (((−2 pgg,0 − ptu,0 − 2 qgg,0 + 2 pgg + ptu + 2 qgg)Ra,qgg − 2 qgg,0 + 2 qgg)Qqgg + (2 pgg,0

+ ptu,0 − 2 pgg − ptu)Ra,qgg + (−2Rqgg − 2)qgg + Rptu ptu − pgg,0 + 2 qgg,0 − pgg)Rqtu − (Qqgg − 1)

((pgg,0 − pgg)Ra,qgg + 2 pgg,0 + ptu,0 + qgg,0 − 2 pgg − ptu − qgg))αt
2 + (Rω − Rpcc)((Qqgg − 1)

(ω − ω0)(Rqtu Ra,qgg + 1)Ra,ptu + (−ωRpcc + Rω ω0)Rqtu)αt + (Rω − Rpcc)
2

(((−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg − pgg)Rqtu
2 + (((−pgg,0 − ptu,0 − 2 qgg,0

+ pgg + ptu + 2 qgg)Ra,qgg − qgg,0 + qgg)Qqgg + (pgg,0 + ptu,0 − pgg − ptu)Ra,qgg

+ (−2Rqgg − 1)qgg − pgg,0 + ptu,0 + qgg,0 − pgg − ptu)Rqtu − ((pgg,0 − pgg)Ra,qgg + pgg,0 + ptu,0 + qgg,0

− pgg − ptu − qgg)(Qqgg − 1))Ra,ptu + (−Ra,qgg (qgg,0 − qgg)Qqgg − Rqgg qgg − pgg)Rqtu
2

+ (((pgg − pgg,0 )Ra,qgg − qgg,0 + qgg)Qqgg + (pgg,0 − pgg)Ra,qgg + Rptu ptu + qgg,0 − qgg)Rqtu

− (Qqgg − 1)(pgg,0 − pgg)))Ra,qtu κ
2 + (λαt qtu (αt

2 − Rpcc + Rω)Ra,qtu
3

+ (Ra,ptu λ
3(Qqgg − 1)(qtu,0 − qtu)αt + (((qtu,0 − 3 qtu)Rqtu + Ra,qgg (Qqgg − 1)(qtu,0 − qtu))αt

2

+ (Ra,qgg (Qqgg − 1)(qtu,0 − qtu)Ra,ptu + (qtu,0 − 3 qtu)Rqtu)(Rω − Rpcc))αt λ+ (αt
2 − Rpcc + Rω)(αt

2

+ Ra,ptu (Rω − Rpcc))(qtu,0 − qtu))Ra,qtu
2 + (−2Rqtu Ra,ptu αt (Qqgg − 1)

(qtu,0 − qtu)λ
3 + Ra,ptu (Qqgg − 1)(qtu,0 − qtu)(αt

2

− Rpcc + Rω)λ
2 − 2 (((qtu,0 − 3/2 qtu)Rqtu

2 + Ra,qgg (Qqgg − 1)

(qtu,0 − qtu)Rqtu + 1/2 (Qqgg − 1)(qtu,0 − qtu))αt
2

+ ((Qqgg − 1)(Rqtu Ra,qgg + 1/2)(qtu,0 − qtu)Ra,ptu + (qtu,0 − 3/2 qtu)Rqtu
2)

(Rω − Rpcc))αt λ− 2 (αt
2 − Rpcc + Rω)(αt

2 + Ra,ptu (Rω − Rpcc))(qtu,0 − qtu)

(−1/2Ra,qgg Qqgg + Rqtu + Ra,qgg/2))Ra,qtu + (Rqtu
2Ra,ptu αt (Qqgg − 1)λ3 − Rqtu Ra,ptu (Qqgg − 1)(αt

2

− Rpcc + Rω)λ
2 + Rqtu ((Rqtu

2 + Ra,qgg (Qqgg − 1)Rqtu

+Qqgg − 1)αt
2 + (Rω − Rpcc)((Qqgg − 1)(Rqtu Ra,qgg + 1)Ra,ptu + Rqtu

2))αt λ

+ (αt
2 − Rpcc + Rω)(αt

2 + Ra,ptu (Rω − Rpcc))(Rqtu
2 − Ra,qgg (Qqgg − 1)Rqtu −Qqgg + 1))

(qtu,0 − qtu))Ra,qtu κ− ((−Ra,ptu (Qqgg − 1)(pcc,0 − pcc)λ
4

+ (Qqgg − 1)((ptu,0 − ptu)αt + ω − ω0)Ra,ptu λ
3
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+ ((((pcc − pcc,0 )Rpcc + (Qqgg − 1)(qgg,0 − qgg))Ra,ptu − Ra,qgg (Qqgg − 1)(pcc,0 − pcc))αt
2

− (Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))(Rω

− Rpcc)Ra,ptu)λ
2 + (((ptu,0 − ptu)Ra,ptu + Ra,qgg (ptu,0 − ptu)Qqgg

+ (ptu − ptu,0 )Ra,qgg + Rptu ptu)αt
3 + ((ωRpcc − Rω ω0)Ra,ptu

+ Ra,qgg (Qqgg − 1)(ω − ω0))αt
2 + (Rω − Rpcc)((Ra,qgg Qqgg

− Ra,qgg + 1)(ptu,0 − ptu)Ra,ptu + Rptu ptu)αt − (Rω − Rpcc)Ra,ptu (−ωRpcc

+ Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0)))λ+ (αt
2 − Rpcc + Rω)(αt

2 + Ra,ptu (Rω

− Rpcc))(Ra,qgg (qgg,0 − qgg)Qqgg + Rqgg qgg + pgg))Ra,qtu
2 + (2Rqtu Ra,ptu (Qqgg − 1)(pcc,0 − pcc)λ

4

− 2 (Qqgg − 1)Rqtu ((ptu,0 − ptu)αt + ω − ω0)Ra,ptu λ
3

+ (((((2 pcc,0 − 2 pcc)Rpcc − 2 (Qqgg − 1)(qgg,0 − qgg))Rqtu

− (Qqgg − 1)(pgg,0 − pgg))Ra,ptu + 2 (Qqgg − 1)(Rqtu Ra,qgg + 1/2)(pcc,0 − pcc))αt
2

+ 2 ((Rpcc (pcc,0 − pcc) + ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu

+ 1/2 (Qqgg − 1)(pcc,0 − pgg,0 − pcc + pgg))(Rω − Rpcc)Ra,ptu)λ
2

+ ((−2 (ptu,0 − ptu)Rqtu Ra,ptu + (−2Ra,qgg (ptu,0 − ptu)Qqgg + (2 ptu,0 − 2 ptu)Ra,qgg

− 2Rptu ptu)Rqtu − (Qqgg − 1)(ptu,0 − ptu))αt
3

+ (2Rqtu (−ωRpcc + Rω ω0)Ra,ptu − 2 (ω − ω0)(Qqgg − 1)

(Rqtu Ra,qgg + 1/2))αt
2 − 2 (((Ra,qgg Qqgg − Ra,qgg + 1)Rqtu

− 1/2 +Qqgg/2)(ptu,0 − ptu)Ra,ptu + Rqtu Rptu ptu)(Rω − Rpcc)αt + 2 ((−ωRpcc

+ Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − 1/2 (Qqgg − 1)(ω − ω0))

(Rω − Rpcc)Ra,ptu)λ− 2 (αt
2 − Rpcc + Rω)(αt

2 + Ra,ptu (Rω

− Rpcc))((Ra,qgg (qgg,0 − qgg)Qqgg + Rqgg qgg + pgg)Rqtu + 1/2 (Qqgg − 1)((pgg,0 − pgg)Ra,qgg

+ qgg,0 − qgg)))Ra,qtu − Rqtu
2Ra,ptu (Qqgg − 1)(pcc,0 − pcc)λ

4

+ (Qqgg − 1)Rqtu
2((ptu,0 − ptu)αt + ω − ω0)Ra,ptu λ

3

− ((((Rpcc (pcc,0 − pcc)− (Qqgg − 1)(qgg,0 − qgg))Rqtu − (Qqgg − 1)(pgg,0 − pgg))Ra,ptu

+ (Qqgg − 1)(pcc,0 − pcc)(Rqtu Ra,qgg + 1))αt
2 + (Rω − Rpcc)Ra,ptu ((Rpcc (pcc,0 − pcc)

+ ((pcc,0 − pcc)Ra,qgg − qgg,0 + qgg)(Qqgg − 1))Rqtu + (Qqgg − 1)

(pcc,0 − pgg,0 − pcc + pgg)))Rqtu λ
2 − Rqtu ((−(ptu,0 − ptu)Rqtu Ra,ptu

+ (−Ra,qgg (ptu,0 − ptu)Qqgg + Ra,qgg (ptu,0 − ptu)− Rptu ptu)Rqtu − (Qqgg − 1)(ptu,0 − ptu))αt
3

+ (Rqtu (−ωRpcc + Rω ω0)Ra,ptu − (Qqgg − 1)(ω − ω0)(Rqtu Ra,qgg + 1))αt
2

− (Rω − Rpcc)(((Ra,qgg Qqgg − Ra,qgg + 1)Rqtu +Qqgg − 1)(ptu,0 − pu)Ra,ptu + Rqtu Rptu ptu)αt

+ ((−ωRpcc + Rω ω0 − Ra,qgg (Qqgg − 1)(ω − ω0))Rqtu − (Qqgg − 1)(ω − ω0))(Rω

− Rpcc)Ra,ptu)λ+ (αt
2 − Rpcc + Rω)(αt

2 + Ra,ptu (Rω − Rpcc))((Ra,qgg (qgg,0 − qgg)Qqgg

+ Rqgg qgg + pgg)Rqtu
2 + (Qqgg − 1)((pgg,0 − pgg)Ra,qgg + qgg,0 − qgg)Rqtu

+ (Qqgg − 1)(pgg,0 − pgg)))Ra,qtu
2]
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[Zg (((−Rω + Rpcc)Ra,qtu + αt
2 + (Rqtu + 1)(Rω

− Rpcc))κ
2 + Ra,qtu (Rqtu − Ra,qtu)(αt

2 − Rpcc + Rω))(((−Rω

+ Rpcc)Ra,qtu + αt
2 + (Rqtu + Ra,ptu)(Rω − Rpcc))κ

2

+ Ra,qtu (αt
2 + Ra,ptu (Rω − Rpcc))(Rqtu − Ra,qtu))]

−1

(7.6)
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