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For many centuries, cosmology was regarded as a branch of metaphysics dealing with the
ontological questions relating to the existence, genesis and constitution of the cosmos. Ever
since the creation of philosophy and physics, which are considered to have been born together
under the pen of the pre-Socratics, somewhere between the 6th and 5th centuries BC, cosmol-
ogy has been a discipline in which all kinds of speculation were permitted about the supralunar
world (which was originally the object of study of cosmology). This freedom in cosmological
theories arose naturally from a lack of observational data, insofar as the only data available
came from the observation of the motion of the bodies making up the solar system, giving rise to
various cosmological theories, among which we can cite Plato’s model of homocentric spheres,
Hipparchus’ model of epicycle circles and Ptolemy’s theory of the equant point. For many
years, cosmology was therefore considered to be a discipline that did not belong to the scientific
circle, essentially due to (i) the absence of data that made it difficult to apply the falsification
principle, and (ii) the absence of a complete theory that could describe the evolution and the
behaviour of the Universe. However, since the middle of the 20th century, cosmological data
has been accumulating, with the development of a large number of telescopes, both terrestrial
and space-based, making it possible to collect a wealth of cosmological data going back to the
origins of the Universe. In addition, at the beginning of the 20th century, physics underwent
an unprecedented upheaval with the development of general relativity, providing a conceptual
and theoretical framework for describing the history of the Universe. Insofar as the two points
set out above are no longer adapted to the observational and theoretical discoveries of the 20th
century, cosmology is now considered to be part of the broad spectrum of modern science, i.e.,
a mathematical science that attaches particular importance to the empirical study of natural
phenomena. However, it should be stressed that cosmology has a number of characteristics that
distinguish it from other sciences. Among the many singularities inherent in cosmology, we
can quickly mention two here. First, cosmology is unable to provide a substantial explanation
of the origins of the initial conditions of the system under consideration, i.e., the Universe,
which is unique in physics. In addition, the main objective of cosmology is to derive and
characterise the laws of nature that govern the behaviour and evolution of the Universe, but
is it really adequate to talk about laws of nature when the physical system under study is unique?

Leaving aside these philosophical questions, in this thesis we will constrain models of mod-
ern cosmology mainly with data from the large-scale structures of the Universe using a theoreti-
cal formalism, the effective field theory of large-scale structures, which allows us to explain and
describe these data. The work presented in this manuscript is based on several research projects
that I carried out with various collaborators during my PhD: 4

– T. Simon, P. Zhang and V. Poulin, Cosmological inference from the EFTofLSS: the eBOSS
QSO full-shape analysis, JCAP 07 (2023) 041, arXiv:2210.14931.

– T. Simon, P. Zhang, V. Poulin and T. L. Smith, Consistency of effective field theory anal-
yses of the BOSS power spectrum, Phys. Rev. D 107 (2023) 123530, arXiv:2208.05929.

– E. Brinch Holm, L. Herold, T. Simon, E. Ferreira, S. Hannestad, V. Poulin, and T. Tram,
Bayesian and frequentist investigation of prior effects in EFTofLSS analyses of full-shape
BOSS and eBOSS data, Phys. Rev. D 108 (2023) 123514, arXiv:2309.04468.

4The papers are listed in order of appearance in the manuscript.
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– T. Simon, P. Zhang, V. Poulin and T. L. Smith, Updated constraints from the effective
field theory analysis of the BOSS power spectrum on early dark energy, Phys. Rev. D
107 (2023) 063505, arXiv:2208.05930.

– T. Simon, Can acoustic early dark energy still resolve the Hubble tension?, submitted
to Phys. Rev. D, arXiv:2310.16800.

– T. Simon, G. F. Abellán, P. Du, V. Poulin and Y. Tsai, Constraining decaying dark matter
with BOSS data and the effective field theory of large-scale structures, Phys. Rev. D 106
(2022) 023516, arXiv:2203.07440.

Note that during my PhD I also had the opportunity to participate in other research projects
which are not presented in this manuscript:

– R. Gsponer, R. Zhao, J. Donald-McCann, D. Bacon, K. Koyama, R. Crittenden, T. Si-
mon and EM. Mueller, Cosmological constraints on early dark energy from the full shape
analysis of eBOSS DR16, MNRAS 530 (2024) 3, 3075-3099, arXiv:2312.01977.

– N. Schöneberg, G. F. Abellán, T. Simon, A. Bartlett, Y. Patel and T. L. Smith, Compar-
ative analysis of interacting stepped dark radiation, Phys. Rev. D 108 (2023) 123513,
2306.12469.

– T. L. Smith, V. Poulin and T. Simon, Assessing the robustness of sound horizon-free
determinations of the Hubble constant, Phys. Rev. D 108 (2023) 103525, 2208.12992.

Before presenting my research work listed above, the first part of this thesis is devoted to ex-
plaining the theoretical and conceptual formalism of modern cosmology, on which all the work
described here is based. In particular, in chapter 1 we describe the ingredients of the standard
model of cosmology, the ΛCDM model, and we outline the behaviour of the Universe at very
large scales (i.e., in the regime where it is considered to be homogeneous and isotropic). In
chapter 2, we focus on the evolution of cosmological perturbations in the purely linear regime,
making it possible to describe the physics of the cosmic microwave background. Finally, in
chapter 3, we describe the evolution of these perturbations in the mildly non-linear regime, pro-
viding an adequate characterisation of the formation and evolution of large-scale cosmological
structures. This third chapter defines the conceptual framework and the theoretical formalism
used in the work presented in this thesis.
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6 1. THE ΛCDM MODEL IN A NUTSHELL

The ΛCDM model, corresponding to the core model of the modern cosmology, is founded
on four main ingredients:

1. two sets of fundamental equations, i.e., the Boltzmann equations and the Einstein equa-
tions;

2. one philosophical principle that makes it possible to simplify these two sets of equations,
i.e., the cosmological principle;

3. five main constituents whose evolutions are governed by the Boltzmann equations and the
Einstein equations;

4. initial conditions derived from the inflation paradigm.

With these four ingredients in hand, it turns out to be possible to explain with a very high
degree of accuracy the wide variety of cosmological data from various probes. Nowadays,
despite some discrepancies known as "cosmological tensions", the ΛCDM model constitutes
an effective description of the Universe, corroborated by (most) observational data.

In this chapter, we first present in Sec. 1.1 the various theoretical ingredients of the ΛCDM
model, while in Sec. 1.2 we provide an overview of the ΛCDM model in the context of a
homogeneous and isotropic universe (i.e., on very large scales). Finally, in Sec 1.3, we discuss
the successes and challenges of this model.

1.1 The ΛCDM ingredients
In this section, we cover all the theoretical ingredients needed to describe the origin and

evolution of the Universe within the ΛCDM paradigm.

1.1.1 The cosmological principle
The cosmological principle stipulates that the Universe can be considered as homogeneous

and isotropic for very large distances, to the extent that the different components of the Uni-
verse have the statistical homogeneity of a fluid in stationary equilibrium at this scale. This
postulate is based on a fundamental observation: from our location in the Universe, we observe
that the geometry of the Universe as well as the energy distribution of the various components
are isotropic on very large scales (from ∼ 100 Mpc), as evidenced by the cosmic microwave
background (CMB) for example. However, this observation is only possible from our specific
location in the Universe, and it is not possible to know whether the Universe is also isotropic for
all other observers. The cosmological principle then corresponds to the fundamental hypothesis
according to which the Universe on very large scales is isotropic for all observers at rest with
respect to the CMB (and that the reference frame of each of the observers is identical). This is a
sort of Copernican principle applied to the cosmological scale which could be formulated as fol-
lows: given that there is no privileged observer, this implies that all observers at rest with respect
to the CMB must observe large-scale isotropy. In this regard, George F. R. Ellis asserts that [1]:

If all observers see an isotropic universe, then spatial homogeneity follows; indeed
homogeneity follows if only three spatially separated observers see isotropy. Now
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we cannot observe the universe from any other point, so we cannot observationally
establish that far distant observers see an isotropic universe. Hence the standard
argument is to assume a Copernican Principle: that we are not privileged observers.
This is plausible in that all observable regions of the universe look alike: we see
no major changes in conditions anywhere we look. Combined with the isotropy we
see about ourselves, this implies that all observers see an isotropic universe.

From this cosmological principle follows the Ehlers–Geren–Sachs (EGC) theorem, stipulating
that if all observers at rest relative to the CMB see an isotropic temperature, then the exact
geometry of the Universe respects the Friedmann-Lemaître-Robertson-Walker (FLRW)
solution [2, 3]. This solution makes it possible to describe a physical system that is expanding,
homogeneous and isotropic, as is the case for the Universe at large scales. The Einstein and
Boltzmann equations are then solved (and simplified) with respect to this particular geometry.
In addition, it is thanks to the cosmological principle that we can define a cosmological time,
as well as a cosmological reference frame, defined as the reference frame of all observers at
rest relative to the CMB.

It is therefore important to understand that modern cosmology and the ΛCDM model depend
on a philosophical principle, and that it has never yet been demonstrated that (i) the Universe
is isotropic for all observers, and that (ii) the Universe is homogeneous and isotropic for scales
larger than that of the CMB. For example, in a Bianchi Universe, which is homogeneous but
not isotropic, one can show that the Universe can at some point reach an intermediate isotropy
and thus mimic a FLRW geometry (despite a highly anisotropic state in the early and advanced
stages) [4]. However, the cosmological principle can be falsified observationally and a number
of research efforts are being made in this direction (see e.g., Refs. [5, 6]). One of the most
common ways of verifying this principle is to check whether the reference frame where the
CMB is homogeneous is the same as the frame where the large-scale structure distribution is
homogeneous, in particular by comparing the CMB dipole with that of large-scale structures
(see e.g., Refs. [7, 8]).

1.1.2 The two fundamental equations of modern cosmology

It is remarkable that the richness and complexity inherent in cosmology can be explained
by two sets of fundamental equations. Einstein’s equations and Boltzmann’s equations, which
are considered universally valid (insofar as no experiment has refuted them), are in fact capable
of explaining and characterising the evolution of the various constituents of the Universe, as
well as the dynamics of the Universe’s geometry.

Einstein’s equations

At the beginning of the 20th century, Newtonian mechanics was invalidated in favour of
the theory of general relativity, when the latter was able to explain the anomaly of the advance
of Mercury’s perihelion. Since then, the theory of relativity has become the new consensus
paradigm for explaining gravitational phenomena, to the detriment of Newtonian mechanics,
insofar as it has since passed all the experimental and observational tests to which it has been
subjected.
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In order to understand the ontological structure of general relativity, it is necessary to intro-
duce the three fundamental mathematical objects of this theory:

• A four-dimensional differentiable manifold M. This is a set of space-time points that
make up a continuous four-dimensional grid, where each point is defined by its three
spatial coordinates (x,y,z) and its time coordinate (t). All in all, a differentiable variety
of dimension 4 can be understood as a set of points with a topological structure and
a differentiable structure, which allow the points to be related to each other and to be
designated locally (and “smoothly”) by 4 real numbers. 1 It is important to understand
that this manifold partially fixes the geometry of space-time, insofar as it can be used to
link points of space-time together, but it cannot, on its own, be used to define distances.

• The metric tensor gµν . It is a mathematical object that is defined at any point of the dif-
ferentiable manifold of dimension 4 and encodes all gravitational and geometric effects.
This object makes it possible to determine the causal structure of the physical system un-
der consideration, i.e., the way in which the points in space-time are interconnected, by
introducing curves into the manifold. The gµν tensor is used to define whether or not an
event is causally linked to another event. Moreover, it is only thanks to this object that it is
possible to define distances within this manifold (explaining the name of metric tensor),
and in particular to define the space-time interval s. It can therefore be used to calculate
“four-dimensional lengths” in a space-time that is curved both by gravitational effects
(i.e., by the interactions between the various massive objects) and by geometric effects
(i.e., by the intrinsic geometry of the system under consideration). It is important to un-
derstand that this object has an ambivalent character in that it encodes both the properties
of the gravitational field and those of the space-time geometry. In this way, gravitation
and geometry become two aspects of a single physical entity, implying the annihilation
of the differentiation between geometric effects and gravitational effects.

• The stress-energy tensor Tµν This is a mathematical object, also defined at any point
of the differentiable manifold of dimension 4, which encodes the distribution of mass
and energy in space-time. It takes into account the energy distribution associated with
massive objects as well as that associated with other sources of energy (for example,
from electromagnetic radiation). This object makes it possible to assign to each point in
space-time a set of dynamic properties associated with an energy entity in the Universe
(such as energy density, pressure, impulsion, etc.).

General relativity reassesses our ordinary definition of matter and space-time. First of all, this
theory calls into question the classical perception of the concept of matter, which is present
in special relativity. In general relativity, matter (and energy in general) is described by two
mathematical objects: the metric tensor and the stress-energy tensor. Consequently, it is not
clear that the concept of matter exists within general relativity as a substantial entity, which
is independent and indivisible, insofar as its properties are split into two different objects: the
gravitational properties of matter are described by the gµν tensor, while the energetic properties
of matter are described by the Tµν tensor. Moreover, this loss of individuality of material
objects is accentuated by the fact that the gravitational properties of matter tend to merge with
the geometric properties of space-time within the metric tensor. With regard to the notion of

1Lam, Vincent, ‘Aspects structuraux de l’espace-temps dans la théorie de la relativité générale”, in Le Bihan,
Soazig (ed.), Précis de la philosophie de la physique, Paris: Vuibert, 2013, p. 206.
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space-time, the theory of relativity (whether general relativity or special relativity) also presents
a number of metaphysical ambiguities. Like the concept of matter, space-time seems to be
able to refer to two mathematical objects emerging from this theory: the differential variety
M and the metric field gµν . While the former makes it possible to establish a network of
relationships between different points in space-time, the latter makes it possible to define space-
time distances within M (insofar as the metric field generates the topological deformations of
this variety). Thus, space-time is represented by a pair (M,g), where gµν is attached to M
in order to define the properties of the network of relations instantiated by M. We can (very)
schematically summarise the relativistic conception of matter and space-time as follows:

Space-time = M+gµν ;
Matter = Tµν +gµν . 2

We argued earlier that the metric tensor gµν has a dual role, in that it encodes both gravita-
tional and geometric effects. Importantly, the gµν tensor respects differential equations that are
directly linked to the Tµν stress-energy field through Einstein’s equations:

Gµν +Λgµν = 8πG ·Tµν , (1.1)

where G is the gravitational constant, and where Λ is a (cosmological) constant representing
the energy density of space-time in the absence of non-gravitational fields. We will see later
that this parameter can parametrized dark energy. Tµν corresponds to the stress-energy tensor,
which implies that the right-hand side depends on the energy distribution in the Universe,
whereas Gµν corresponds to the Einstein tensor which depends solely on the metric field gµν

and its derivatives, implying that the left-hand side fixes the geometry of space-time. These
equations directly link the topology of space-time, encoded in the gµν field (and by the same
occasion in the Einstein tensor), with the distribution of matter in the Universe, encoded in the
Tµν field. In other words, a change in the geometry of space-time will lead to a change in the
distribution of matter, and inversely. Thus, to solve this equation one “only” needs to specify
the stress-energy tensor Tµν on the one hand, and the metric tensor gµν on the other hand.

Let us now clarify the mathematical nature of the Einstein tensor. The latter is related
to the Ricci tensor Rµν :

Gµν ≡ Rµν −
1
2
Rgµν , (1.2)

where R is the Ricci scalar defined thanks to a contraction between the metric tensor and
the Ricci tensor R = gµνRµν . In addition, the Ricci tensor is defined as a contraction of the
Riemann tensor (Rµν = Rα

µνα ), and is used (schematically) to quantify the level of deviation of
the local geometry of any metric from a Euclidean space. This tensor is entirely determined by
the metric tensor gµν , and its derivatives through the Christoffel symbol Γµ

αβ
:

Rµν = Γα
µν ,α −Γα

µα,ν +Γα

βα
Γβ

µν −Γα

βν
Γβ

µα , (1.3)

where

Γµ

αβ
=

gµν

2
(
gαν ,β +gβν ,α −gαβ ,ν

)
. (1.4)

2It should be noted that these “equations” are pedagogical and in no way fully encapsulate the ontological
structure of general relativity
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The Christoffel’s symbol allows us to characterise the spatio-temporal dynamics of the basis
vectors through their covariant derivative.

In general relativity, unlike Newtonian mechanics, it is the topology of space-time (and not
the external forces) which determines the trajectory of the particles. A particle in a curved
space-time follows a geodesic, corresponding to the smallest possible four-dimensional trajec-
tory between two space-time coordinates. In other words, a geodesic is the generalization to
any curved space-time of a straight line in Euclidean geometry. The trajectory of the particles
in curved space-time then respects the so-called geodesic equation:

d2xµ

dλ 2 +Γµ

αβ

dxα

dλ

dxβ

dλ
= 0 , (1.5)

where the geodesic curve is parametrized by the scalar λ . Note that we can easily derive the
geodesic equation thanks to the principle of least action, by minimizing the four-dimensional
length of the trajectory:

δS = 0 ; S =
∫

ds , (1.6)

where ds =
√
±gµν(x)dxµdxν corresponds to the line element.

Boltzmann’s equations

The second fundamental equation that allows us to describe the evolution of our Universe is
Boltzmann’s equation, which describes the behaviour of the phase-space distribution function
of a species a, fa(x, p, t). As in Ref. [9], one can define the distribution function as the number
of particles of the species a, Na(x, p, t), in a small phase-space volume around (x, p):

Na(x, p, t) = fa(x, p, t) · (∆x)3 · (∆p)3

(2π)3 . (1.7)

If the number of particles in the phase-space volume defined by (∆x∆p/2π)3 is conserved,
then we obtain the Liouville’s equation:

d f
dt

=
∂ f
∂ t

+
∂ f
∂xi ·

dxi

dt
+

∂ f
∂ p
· d p

dt
+

∂ f
∂ p̂i ·

d p̂i

dt
= 0 , (1.8)

where one has decomposed the three-momentum pi by the product of its amplitude p and its
three-dimensional projection p̂i: pi = p · p̂i. However, in the general case, the number of par-
ticles in the phase-space volume is not conserved due to particle-particle interactions (scatter-
ing, pair creation, annihilation, particle decay, etc.), then quantified by the collision term C[ f ].
The Boltzmann equation then becomes:

∂ f
∂ t

+
∂ f
∂xi ·

dxi

dt
+

∂ f
∂ p
· d p

dt
+

∂ f
∂ p̂i ·

p̂i

dt
=C[ f ] . (1.9)

If one wants to solve the Boltzmann equation, then one needs (i) to specify the collision
terms of processes that modify the number of particles in the phase-space volume, and (ii) to
determine the expressions of dxi/dt, d p/dt and d pi/dt thanks to the geodesic equation (and
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must therefore specify a given metric gµν ).

To explain the collision term briefly (see Ref. [9] for more details), let us consider an
interaction of the type

1[p,E1(p)]+2[q,E1(q)]↔ 3[p′,E3(p′)]+4[q′,E4(q′)] . (1.10)

Then the collision term for particle 1 takes the following form:

C[ f1(p)] =
1

2E1(p)

∫ d3q
(2π)32E2(q)

∫ d3 p′

(2π)32E3(p′)

∫ d3q′

(2π)32E4(q′)
|M |

× (2π)4
δ
(3)
D [p+q− p′−q′]δ (1)[E1(p)+E2(q)−E3(p′)−E4(q′)]

× [ f3 f4(1± f1)(1± f2)− f1 f2(1± f3)(1± f4)] , (1.11)

where δD is the delta Dirac’s function which imposes the energy and momentum conservations,
and where M is the scattering amplitude of the process. This equation subtracts to f1(p) the
type 1 particles that had a momentum p before undergoing the process and adds back the type
1 particles that obtain a momentum p thanks to this process. Such an operation is performed
via the sum of all the momentums q, p′ and q′ over the scattering amplitude squared multiplied
by the term ( f3 f4− f1 f2). In addition, the terms (1± f1)(1± f2) and (1± f3)(1± f4) allow
us to encode the Pauli exclusion or the Bose-Einstein enhancement (with a − for fermions
and with a + for bosons).

1.1.3 The components of the Universe

The dynamics and geometry of the Universe can be fully explained if we introduce five
different energy components. Among these five species, three (baryons, neutrinos and pho-
tons) can be explained by the Standard Model of particle physics (or at least an extension of
the Standard Model for neutrinos), while the other two (dark matter and dark energy) have
an unknown intrinsic nature. These five constituents are postulated by the ΛCDM model, but
we will see in part III that it is possible to build models beyond ΛCDM that involve other
hypothetical constituents.

Photons

Today, the main radiation contribution of the Universe comes from CMB photons. The
energy distribution of the CMB photons follows that of an almost perfect black body with a
Bose-Einstein distribution function:

ργ,0 = gγ ·
∫ d3 p

(2π)3
p

ep/T −1
=

π2

15
T 4 , (1.12)

where gγ = 2 corresponds to the two spin states of the photon. The FIRAS instru-
ment on board the COBE satellite measured the temperature of the CMB photons with
extremely high precision [10]:

T γ,0 = 2.726±0.001K . (1.13)
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Using Eq. (1.12), we can determine the current photon energy density in the Universe, and
more specifically the fraction of radiation energy density relative to the total energy
density in the Universe as

Ωγ,0 =
ργ,0

ρcrit,0
= 2.47×10−5 ·h−2 , (1.14)

where h = H0/(100 [km/s/Mpc]) is the dimensionless Hubble parameter today, and where
ρcrit,0 is the total energy density today for a flat universe (see below). This value is currently
very low, but as we will see later, the Universe experienced a period in which radiation dom-
inated its energy content. At that time, there were other sources contributing to the radiation
energy density, in particular from relativistic particles that are no longer relativistic today. It
should be noted that there are other sources of radiation today, notably from the reionization of
the Universe (i.e., the moment when the gas that made up the Universe after the CMB became
re-ionised due to star formation), but these contributions are extremely negligible compared
with the CMB photons.

Baryons

In cosmology, we call baryons everything that corresponds to ordinary matter that has a
significant impact on the history of the Universe, i.e., nuclei and electrons. Note that this is a
misnomer, because electrons are leptons, but the main contribution to the energy density of this
constituent does come from the baryons (via the nuclei). Within the framework of the standard
model of cosmology, baryons represent only 5% of the energy content of the Universe. The most
precise measures of this quantity come from the CMB anisotropies and the big bang nucleosyn-
thesis (BBN). Concerning CMB, we will see that the temperature anisotropies are sensitive to
the amount of baryon present at that time, making it possible to provide an accurate measure of
the current energy density fraction of baryons. For instance, the Planck satellite measured [11]:

Ωb ·h2 = 0.02237±0.00015 . (1.15)

Concerning BBN, the abundances of the light elements created during BBN depends on the
quantity of baryons present in the Universe, which allows us to obtain a measurement indepen-
dent of that of the CMB. This measurement is compatible with the Planck satellite measure-
ment. For instance, Ref. [12] determined that

Ωb ·h2 = 0.0222±0.0005 . (1.16)

This compatibility between these two probes is one of the many successes of the ΛCDM model.

Neutrinos

Neutrinos have also played an important role in the evolution of the Universe. However, cos-
mic neutrinos have never yet been observed, making their existence purely theoretical (despite
very strong clues). Neutrinos are fermions, and we consider in this thesis (based on standard
assumptions) that there are three species of neutrinos. The neutrino energy density in the rela-
tivistic regime (mν� p) can be expressed as a function of the photon energy density as follows:

ρν = 3 · 7
8

(
Tν

T

)4

ργ , (1.17)



1.1. The ΛCDM ingredients 13

where the factor 3 indicates that there are three types of neutrino (with spin 1/2), and the factor
7/8 corresponds to the ratio between the the integration of the Fermi-Dirac distribution and
the integration of the Bose-Einstein distribution [see Eq. (1.14)]. Importantly, the tempera-
ture of neutrinos is different from that of photons, because these two components decoupled
very early in the Universe, implying that they evolve differently from a thermodynamic point
of view. In the primordial plasma, neutrinos decouple before electron-positron annihilation,
implying that the products do not thermalize with neutrinos. By imposing conservation of to-
tal entropy between the moment when electron-positron annihilation does not occur and the
moment when it does, we can show that

Tν

T
=

(
4
11

)1/3

. (1.18)

It is not possible to use Eq. (1.17) to directly infer the current energy density fraction of neu-
trinos, as we have known since the Super-Kamiokande experiments conducted in 1998 that
neutrinos possess mass [13]. Thus, when the neutrino temperature drops below their mass
(Tν ∼ mνi , where mνi is the mass a given neutrino generation), they are no longer relativistic
and the previous equations are no longer valid. The energy density associated with a neu-
trino generation νi then becomes:

ρνi = 2
∫ d3 p

(2π)2
1

ep/Tν +1

√
p2 +m2

νi . (1.19)

This allows us to numerically obtain that today

Ωνh2 =
∑i mνi

94eV
, (1.20)

where ∑i mνi is not yet known. From the neutrino oscillation experiments, ∑i mνi > 0.06eV
for the normal hierarchy (see e.g., Ref. [14]) and ∑i mνi > 0.10eV for the inverse
hierarchy (see e.g., Ref. [15]).

Dark matter

Dark matter is not lacking in astrophysical evidence. The first evidence of a discrepancy
between gravitational mass and observed mass was provided by Fritz Zwicky in 1933 when
he observed the galaxy dynamics within the Coma cluster [16]. Fritz Zwicky then postulated
the existence of invisible matter which could explain this discrepancy. The idea of dark matter
was put aside for a while when, in 1970, Vera Rubin postulated the existence of a similar form
of matter when she and her collaborators studied the rotation curves of galaxies [17]. Indeed,
visible matter could not, on its own, explain why the rotation speed of the spiral galaxies did
not decrease with distance to the center as predicted by the Newtonian equations carried out
with the observed matter.

Cosmology also provides very strong evidence for dark matter, and at present no cosmolog-
ical model can survive without dark matter. In particular, dark matter (as we shall see) explains
the fluctuations of the CMB, and without this component it would not be possible to predict the
existence of such fluctuations. The CMB fluctuations are therefore a good way of measuring the
current dark matter fraction accurately, and, for instance, the Planck data determined that [11]:

Ωch2 = 0.1431±0.0025 . (1.21)
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The amount of dark matter is around 25% of the current total budget of the Universe, which
implies that it plays an important role in the expansion history of the Universe (which is also
another evidence of its existence). All these pieces of evidence tell us that dark matter is non-
relativistic, or “cold”. Indeed, in order to explain the CMB fluctuations, dark matter must
decouple very rapidly from the primordial plasma and acquire a thermodynamic autonomy in
the first instants of the Universe. Furthermore, no evidence has yet been found for the existence
of a non-gravitational interaction with the particles of the Standard Model or for an unstability
of this constituent, which makes it possible to place constraints on its intrinsic nature.

Dark energy

In 1998, two groups (Riess et al. [18], and Perlmutter et at. [19]) have shown, by measuring
the apparent magnitudes of dozens of Type Ia Supernovae, that the Universe is currently under-
going an acceleration of its expansion. We shall return briefly later to the physical principles
of this discovery. The best explanation for the acceleration of the expansion of the Universe
lies in the postulate of dark energy, a component of the Universe that has a constant energy
density and that can be modelled with the cosmological constant Λ introduced in the Einstein
equations. While the energy densities of all the other constituents of the Universe decrease
with time, that of the dark energy remains constant, which implies that the dark energy dom-
inates the Universe at some point, even though its initial contribution was negligible. In the
ΛCDM model, this component is modelled as a cosmological constant with a constant potential
VΛ = ρΛ = 8πG ·Λ, where Λ is the parameter representing the energy density of space-time in
the absence of non-gravitational fields in the Einstein equation. It is estimated today that dark
energy composed ∼ 70% of the Universe content, while this value will continue to increase in
the future of the Universe. In particular, the Planck satellite measured [11]:

ΩΛ = 0.6847±0.0073 . (1.22)

It should also be noted that dark energy, unlike all the other components of the Universe, does
not seem to have any non-negligible fluctuations [11], and so we are going to treat it as a
perfectly homogeneous and isotropic fluid.

1.1.4 Initial conditions
In order to fully describe the evolution of the Universe, it is necessary (as in any physi-

cal system) to know and characterise its initial conditions. These initial conditions, within the
framework of the standard paradigm of cosmology, arise from inflation, a phase in the evolu-
tion of the Universe occurring before the radiation and matter areas (see below). The inflation
model makes it possible to explain several problems that the ΛCDM model cannot explain on
its own, and the combination of the inflation paradigm (which sets the initial conditions) with
the ΛCDM model (which describes the evolution of these initial conditions) constitutes the
standard model of cosmology. Note that adding inflation on top of the ΛCDM model does
not alter any of its successes! Here we list very briefly the various problems (among others)
that inflation can solve [20]:

• Flatness problem. The various cosmological data seem to show that the Universe is flat,
i.e., it has no curvature (see below for more details on curvature). This strong constraint
on the curvature of the Universe necessitates a fine-tuning of Ωκ , the curvature energy
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density fraction (i.e. the contribution of the curvature to the total energy density of the
Universe), at early time. Current data seem to show that we need a value of | Ωκ(tpl)−
1 |. 10−60, where tpl corresponds to the Planck scale. The inflationary paradigm avoids
this fine-tuning insofar as the inflationary phase flatten space-time. Inflation thus makes
it possible to explain why our Universe has been flat since the end of inflation, without
requiring fine-tuned initial conditions.

• Horizon problem. Today, we observe that CMB photons have the same temperature
in all directions of the sky. However, at the time of the last scattering surface (i.e., when
photons decoupled form the primordial plasma), some different regions of the sky were
never in causal contact (if we assume no inflation), since the size of the CMB observed
today is much greater than the particle horizon at the time of the CMB. This implies that
no causal physical mechanism can explain, within the framework of the ΛCDM model,
why all photons are emitted with the same temperature. Inflation overcomes this problem
by asserting that photons were in causal contact before the inflationary phase of the Uni-
verse. In other words, the different scales of the Universe move from inside the horizon
during inflation (where there has been a thermalization of these different scales) to outside
the horizon (see below). Finally, to solve the Horizon issue, we need to postulate a phase
where the (comoving) Hubble radius (or the particle horizon) decreases significantly in
the early universe.

• Density fluctuation problem. Where did the initial fluctuations observed in the CMB
come from? Inflation provides an elegant answer to this question. The basic idea can be
briefly summarised as follows: the inflation field experiences quantum fluctuations before
the inflationary phase, which are then stretched. During reheating (namely the period
when the inflation field decays to give rise to all the particles of the Standard Model), the
inflation field transmit its perturbations to the other species of the Universe.

We shall return to inflation in a little more detail later in this chapter (once we
have specified the metric of the ΛCDM model), and we will briefly explain the initial
conditions arising from inflation.

1.2 The smooth universe
In this section, we now apply the ingredients explained above to describe the behaviour

of the homogeneous universe, i.e., at very large scales (& 100 Mpc). In particular, we derive
here the cosmological equations, from the Einstein and Boltzmann equations coupled with the
cosmological principle, for the different constituents of the Universe. The inhomogeneous uni-
verse will be studied in detail in the following chapters.

1.2.1 The FLRW geometry
As previously specified, if we want to solve the Einstein equations, then one needs to

specify the metric tensor gµν and the stress-energy tensor Tµν of the (homogeneous) Universe.

Let us start with the metric tensor for a homogeneous and isotropic expending uni-
verse. As specified above, the EGC theorem states that for an expanding universe that
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respects the cosmological principle, the Universe has a geometry of type Friedmann-
Lemaître-Robertson-Walker (FLRW):

ds2 = gµνdxµdxν =−dt2 +a(t)2
[

dr2

1−κr2 + r2dθ
2 + r2 sin2

θdφ
2
]
. (1.23)

This metric depends on just two parameters: the scale factor a(t), which is time-dependent,
and the constant κ , which corresponds to the Gaussian curvature of the Universe at time t such
that a(t) = 1 (corresponding to today). This latter parameter corresponds to all the possible
geometries of a homogeneous and isotropic 3-space, and can take the values κ =−1,0,1, where
it respectively corresponds to an hyperbolic, Euclidean (or flat), and elliptical (locally isometric
to a 3-sphere) geometry. It turns out that the current cosmological data favour a Euclidean
Universe (see in particular chapter 4 for strong constraints on the curvature energy density
fraction), i.e., a Universe with κ = 0. The metric that will therefore be used in the rest of this
thesis (unless otherwise specified) will be that of the flat ΛCDM model, namely

gµν = diag
[
−1, a(t)2, a(t)2, a(t)2] . (1.24)

Note that this metric corresponds to a homogeneous and isotropic Universe since there is no
privileged spatial direction (given that gµν is space-independent, has no extra-diagonal terms,
and that gxx = gyy = gzz). The expansion of the Universe is encoded in the scale factor a(t),
the parameter which allows to link the physical distance lphys (i.e, the actual distance sepa-
rating two objects in the Universe) with the comoving distance lcom (i.e., the distance which
follows the expansion of the Universe):

lphys = a(t)lcom . (1.25)

The scale factor is conventionally normalized such that a(t0) = 1, where t0 is the age of the
Universe today. In particular, in the context of the comoving coordinates, the physical velocity
of an object is given by the following relationship (known as the Hubble law):

vphys =
dlphys

dt
= vpec +H(t) · lphys , (1.26)

where vpec = a(t) · dlcom/dt is the peculiar velocity of the object and where H is the Hubble
parameter, defined as H ≡ ȧ/a. This parameter, which has the unit of Time−1, quantifies the
global expansion rate of the Universe. Its current value is around∼ 70 km/s/Mpc, which means
that today a distance of 1 Mpc expands at a speed of ∼ 70 km/s. In addition, the scale factor
is related to the redshift z by the following formula:

a0

a(t)
= 1+ z ; 1+ z≡ λobs

λemit
, (1.27)

where λemit is the wavelength of a photon when it was emitted, and λobs is the wavelength
of the same photon when it is detected elsewhere in the Universe. The redshift is a direct
consequence of the geometric expansion of the Universe undergone by a photon as it travels,
implying that the inequality λobs > λemit is always true.

Finally, note that using Eq. (1.4) with the metric defined in Eq. (1.24), we obtain only
two non-zero Christoffel’s symbols:

Γi
j0 = Γi

0 j = Hδ
i
j ; Γ0

i j = aȧδi j , (1.28)

where i, j = x,y,z, and where δ stands for the Kronecker symbol.
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1.2.2 The stress-energy tensor of the smooth Universe and the continu-
ity equation

The stress-energy tensor of the species a, T a
µν , can be written for a homogeneous and

isotropic universe and under the assumption of perfect fluids as

T a
µν = [Pa(t)+ρa(t)]UµUν +Pa(t) ·gµν , (1.29)

where ρa(t) and Pa(t) are respectively the mean energy density and the mean pressure of the
species a (namely, the energy density and the pressure at large-scale), and where Uµ is the
four-velocity of a given observer. Note that we cannot include any velocity or momentum in
T a

µν , otherwise we would break the isotropy of the Universe. Then, for an observer attached
to the fluid, that is Uµ = (−1,0,0,0) and gµν = ηµν (where ηµν is the Minkowski metric),
one can rewrite the stress-energy tensor as

T a
µν = diag

[
−ρa(t), Pa(t), Pa(t), Pa(t)

]
. (1.30)

Let us note that ρa(t) is simply linked to Pa(t) through the equation of state Pa(t) = ωaρa(t),
where ωa is the equation of state parameter.

In addition, the stress-energy tensor has the fundamental property of being conserved under
its covariant derivative for an expanding universe 3 (following Bianchi identities):

∇µT µ

ν ≡
∂T µ

ν

∂xµ
+Γµ

αµT α
ν −Γα

νµT µ

α = 0 . (1.31)

This equation is the generalisation of the continuity (for ν = 0) and Euler (for ν = i) equations
in a curved space-time.

The Euler’s equation is trivially zero (∂P/∂xi = 0) in the FLRW universe, because the
spatial component of the metric is isotropic. This is a direct consequence from the fact that
the peculiar velocity of each component is zero in the smooth universe. However, if we set
ν = 0 in Eq. (1.31), then one obtains:

−∂ρa
∂ t
−Γµ

0µ
ρa−Γα

0µT µ

α = 0 , (1.32)

leading to the continuity equation of the smooth Universe:

∂ρa
∂ t

+3
ȧ
a
(ρa +Pa) = 0. (1.33)

By integrating this equation from a given a(t) to a0, and using the equation of state parameter
wa (under the assumption that the latter does not vary with time), one obtains:

ρa(t) = ρa,0

(
a(t)
a0

)−3(1+wa)

, (1.34)

where ρa,0 corresponds to the energy density of the constituent a today.

3This conservation is only true for species that do not interact with other species, otherwise a source term must
be added (as in the Boltzmann equation). In reality, this is not the case for photons and baryons, which interact
with each other before recombination. However, the number of photons and the number of baryons are conserved
during their interaction. The continuity equation, which is the one we are interested in here, is directly linked to
the conservation of the number of particles, and is therefore not modified by such an interaction term.
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1.2.3 The smooth Einstein equations
We now have all the tools to determine the solutions to Einstein’s equation. If one in-

jects in the Einstein equations the FLRW metric tensor, and the stress-energy tensor as defined
previously, one can obtain the Friedmann-Lemaître equations, which allow us to describe the
evolution of the components in the homogeneous and isotropic universe. We can easily show
that there are only two non-vanishing components of the Ricci tensor, namely

R00 =−3
ä
a

; Ri j = δi j(2ȧ2 +aä+2κ) . (1.35)

Therefore, the µ = ν = 0 component of the Einstein equations leads to the first
Friedmann-Lemaître equation, while the µ = ν = i component leads to the second
Friedmann-Lemaître equation:

FLI :
(

ȧ
a

)2

≡ H2 =
8πG

3
ρ− κ

a2 +
Λ
3
, (1.36)

FLII :
ä
a
=−4πG

3
(ρ +3P)+

Λ
3
, (1.37)

where ρ = ∑a ρa and P = ∑a Pa, with a = {c,γ,ν ,b} respectively for cold dark matter, photons,
neutrinos, and baryons. Let us note that we can define ρΛ = 8πG ·Λ, together with wΛ = −1,
in order to absorb the Λ/3 terms in ρ and P.

1.2.4 The smooth Boltzmann equations
For a homogeneous universe (using the cosmological principle), that is ∂ f/∂ p̂i = 0, it is

very straightforward to show that the Boltzmann equation becomes (see Ref. [9]):

∂ f
∂ t

+
p
E

p̂i

a
∂ f
∂xi −H(t)p

∂ f
∂ p

=C[ f ] , (1.38)

where E =
√

p2 +m2 is the energy of the particle. To obtain this equation, we need to specify
dxi/dt and d p/dt in Eq. (1.8) thanks to the geodesic equation. Interestingly, this equation is
valid for all particles, so all we need to do is specify the distribution function of the particle
in question. For photons one uses the Bose-Einstein distribution function with zero chemical
potential (if we are in equilibrium):

f0(p) = [exp(E/T )−1]−1 , (1.39)

where E = p for photons. For fermions (like neutrinos) one uses the Fermi-Dirac distribution:

f0(p) = [exp(E/T )+1]−1 , (1.40)

where E =
√

m2 + p2.

We can now derive two specific cases of equation Eq. (1.38): the relativistic limit, when
p >> m for photons and relativistic neutrinos and the non-relativistic limit, when p << m (for
baryons and dark matter). For relativistic particles, we obtain:

∂ f
∂ t

+
p̂i

a
∂ f
∂xi −H(t)p

∂ f
∂ p

=C[ f ] , (1.41)
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while for non-relativistic particle, one has:

∂ f
∂ t

+
p
m

p̂i

a
∂ f
∂xi −H(t)p

∂ f
∂ p

=C[ f ] . (1.42)

Finally, by integrating over the 3-momentum, we can rewrite Eq. (1.38) in terms of the
(mean) number density n(t) (see e.g., Ref. [9]):

dn(t)
dt

+3H(t)n(t) =
∫ d3 p

(2π)3C[ f ] , (1.43)

where

n(t) =
∫ d3 p

(2π)3 f . (1.44)

This equation is fundamental for deriving the (homogeneous) evolution of the energy density.
We will see later that there is an analogous equation for the inhomogeneous Universe to
describe the behaviour of density perturbations of the species under consideration. Note that
this is the first moment of the Boltzmann equation, and that this equation is nothing other than
the continuity equation. If we fix the interaction term at 0, then we find Eq. (1.33). The second
moment leads to the Euler’s equation which is 0 in the background universe (see above).

In the general case, one can define the particle current density and the stress-energy tensor
from the phase-space distribution function as:

nµ(xi, t) = g
∫ d3Pj

(2π)3
1√

−det(gµν)

Pµ

P0 f (xi,Pj, t) , (1.45)

T µ

ν(x
i, t) = g

∫ d3Pj

(2π)3
1√

−det(gµν)

PµPν

P0 f (xi,Pj, t) , (1.46)

where g corresponds to the internal degrees of freedom of the given particle, where det(gµν) =
−a6 for the FLRW metric, and where Pµ = (P0 = E,Pi) is the covariant four-momentum of
the particle. Note that the spatial part of Pµ depends on the physical 3-momenta pi as pi ≡ aPi

(since p2 = gi jPiP j). In addition, for a FLRW univers and according to the cosmological princi-
ple, we can simplify the phase-space distribution function as f (xi,Pj, t) = f (p, t), implying that
we can define, in a homogeneous and isotropic universe, the number density n(t), the energy
density ρ(t) and the pressure P(t) as:

n(t) = n0(t) = g
∫ d p p2

2π2 f (p, t) , (1.47)

ρ(t) =−T 0
0 = g

∫ d p p2

2π2 E f (p, t) , (1.48)

P(t) =
1
3 ∑

i
T i

i = g
∫ d p p2

2π2
p2

3E
f (p, t) . (1.49)

It is easy to check that for a relativistic particle (i.e., E ∼ p� m), we have w = P/ρ = 1/3,
while for a non-relativistic particle (i.e., E ∼ m� p), we obtain w ∼ 1/3 · 〈p2〉/m2 ∼ 0. Note
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that we can also rewrite the comoving version of these equations in terms of the comoving
momentum norm q = ap and the comoving energy E = aE of the particle:

n(t) = n0(t) =
g
a3

∫ dq ·q2

2π2 f (q, t) , (1.50)

ρ(t) =−T 0
0 =

g
a4

∫ dq ·q2

2π2 E f (q, t) , (1.51)

P(t) =
1
3 ∑

i
T i

i =
g
a4

∫ dq ·q2

2π2
q2

3E
f (q, t) . (1.52)

1.2.5 Evolution of the smooth universe
First, we can apply the continuity equation (1.34) to non-relativistic matter (with wm = 0),

radiation (with wr = 1/3) and dark energy (with wΛ = −1) in order to obtain homogeneous
energy density evolutions in terms of the scale factor a:

ρm = ρm,0

(
a
a0

)−3

for matter, (1.53)

ρr = ρr,0

(
a
a0

)−4

for radiation, (1.54)

ρΛ = ρΛ,0

(
a
a0

)0

for dark energy. (1.55)

The origin of the a−3 dependence of the matter energy density is purely geometric. Let us
rewrite ρ(t) as ρ(t) = E(t) · n(t), where E(t) is the mean energy of one particle and n(t) is
the mean number density. 4 With expansion, a volume V (t1) of the Universe at an instant t1 is
dilated by a factor [a(t2)/a(t1)]−3 at an instant t2, insofar as the dilatation is the same in the three
dimensions of space. Thus, the mean energy density is modified by a factor [a(t1)/a(t2)]−3,
explaining the a−3 dependence of the matter energy density in Eq. (1.53) [by taking a(t1) = a
and a(t2) = a0]. For photons (and radiation in general), the a−4 dependence is a combination
of the dilation of the volume containing a given number of photons, i.e. the a−3 dependence
of n(t), and the wavelength stretching. This last contribution adds a contribution in a−1 to
the energy of a single photon: with the expansion, a travelling photon will see its wavelength
change by λ → aλ , and its energy to 1/λ → 1/λ · a−1. Finally, the radiation energy density
will change according to the following transformation: Eγ(t) · nγ(t) → a−1Eγ(t) · a−3nγ(t),
explaining the a−4 dependence in Eq. (1.54).

It is very common (and convenient) to define the critical energy density of the Universe,
which is the total energy density today for a curvature-free universe (i.e., κ = 0), obtained by
inverting the first Friedmann-Lemaître equation at a = a0:

ρcrit,0 =
3H2

0
8πG

= 1.9×10−29h2 g cm−3 , (1.56)

where H0 ∼ 70 km/s/Mpc is the Hubble parameter today, and where h is the dimen-
sionless Hubble parameter today: H0 ≡ 100 · h km/s/Mpc. The ρcrit,0 parameter then

4Given that ρ(t) = E(t) · n(t), we can very easily show that Eqs. (1.53) and (1.54) can be obtained from the
Boltzmann equation (1.44) without collision term.
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allows us to define the current energy density fraction of each of the constituents for a
zero-curvature Universe (see above):

Ωr ≡
ρr

ρcrit,0
; Ωm ≡

ρm
ρcrit,0

; ΩΛ ≡
ρΛ

ρcrit,0
=

Λ
3H2

0
. (1.57)

In the general case (namely with a non-zero curvature), the following consistency
relation holds:

∑
a

Ωa ≡Ωr +Ωm +ΩΛ = 1−Ωκ ; Ωκ =− κ

H2
0 a2 , (1.58)

where we recall that Ωr = Ωγ +Ων and Ωm = Ωc +Ωb. The Ωa parameters allow us to rewrite
the first Friedmann-Lemaître equation [see Eq. (1.36)] as follows:

H2 = H2
0

[
Ωm,0

(
a
a0

)−3

+Ωr,0

(
a
a0

)−4

+Ωκ,0

(
a
a0

)−2

+ΩΛ,0

]
, (1.59)

where Ωa,0 = ρa,0/ρcrit,0.

By isolating dt from Eq. (1.59), using the fact that H2 = (da/dt ·1/a)2, one can obtain the
exact equation of the age of the Universe tU:

tU =
∫ t0

0
dt =

1
H0

∫ 1

0

dx
[Ωm,0x−1 +Ωr,0x−2 +ΩΛ,0x2 +Ωκ ]1/2 , (1.60)

where x = a/a0. Interestingly, if we assume that the present universe is entirely com-
posed of matter, i.e., Ωm,0 = 1, then tU = 2/3 ·H0 ∼ 9.3 Gyr (for H0 = 70 km/s/Mpc =
7,15 ·10−2 Gyr−1). However, this value is lower than the age at which the first stars observed
in the Universe appeared, namely∼ 13 Gyr ago. It is therefore obvious that the current universe
cannot be composed of matter alone, and that it is necessary to find a mechanism that acceler-
ates the expansion of the Universe. This is, in fact, the first evidence of dark energy! In addition,
if we consider a empty Universe (i.e., a Milne Universe), namely ∑a Ωa = 0⇒ Ωκ = 1, then
tU = 1/H0 ∼ 14.0 Gyr [see Eq. (1.60)], which is very close to the consensus value adopted in
the ΛCDM model! This also highlights the fact that the inverse of the current Hubble parameter
H0 gives a relatively accurate estimate of the age of the Universe. The exact value provided
by the ΛCDM model from Eq. (1.60), i.e., with Ωm = 0.31 and ΩΛ = 0.69, gives: tU = 13.7 Gyr.

In Fig. 1.1, we plot the evolution of the various constituents of the Universe according to
Eqs. (1.53)-(1.55). This figure highlights the fact that the Universe is first dominated by radia-
tion, then by matter, and finally by the cosmological constant. In addition, it is easy to quickly
identify the moment of transition between radiation and matter in this figure by equalising the
radiation energy density and the matter energy density:

Ωr,0

(
aeq

a0

)−4

= Ωm,0

(
aeq

a0

)−3

⇒ aeq =
Ωr,0

Ωm,0
⇒ 1+ zeq ∼ 3440 . (1.61)

Similarly, we can do the same for the transition between matter and dark energy:

Ωm,0

(
aΛ
a0

)−3

= ΩΛ,0⇒ aΛ =

(
ΩΛ,0
Ωm,0

)1/3

⇒ 1+ zΛ ∼ 1.31 . (1.62)
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Figure 1.1: Evolution of the mean energy density of the constituents as a function of the scale factor.
The universe is first dominated by radiation (dashed red line) which evolves as a−4, then by matter (black
line) which evolves as a−3 and finally by dark energy (dotted green line) which is constant with respect
to a. Taken from Ref. [9].

Finally, in order to fully describe the evolution of the different constituents of the homoge-
neous universe, we still need to specify the time dependence of the scale factor for the different
periods of the Universe. Therefore, for the different epochs, the temporal evolution of the
Universe is determined by [see Eq. (1.60)]:

Radiation era : t =
1

H0

∫ a/a0

0

xdx√
Ωr,0
⇒ a

a0
= (2H0

√
Ωrt)1/2 ∝ t1/2 , (1.63)

Matter era : t =
1

H0

∫ a/a0

aeq/a0∼0

√
xdx√
Ωm,0

⇒ a
a0
∼
(

3
2

H0Ωm,0t
)2/3

∝ t2/3 , (1.64)

Dark energy era :
∫ t

tΛ
dt =

1
H0

∫ a/a0

aΛ/a0

dx√
ΩΛ,0x

⇒ aΛ
a0

= exp
{

H0
√

ΩΛ,0(t− tΛ)
}

∝ et . (1.65)

1.2.6 Cosmological distances

In cosmology, there are several ways of measuring distances between different objects.
These distance measurements are always dependent on the model under consideration (here
ΛCDM) and only depend on the quantities coming from the homogeneous universe. First of
all, let us rewrite the FLRW metric as:

ds2 = gµνdxµdxν =−dt2 +a(t)2 [dχ
2 +Sκ(χ)(dθ

2 + sin2
θdφ

2)
]
, (1.66)
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where

Sκ(χ) =





sin2
χ if κ =−1

χ2 if κ = 0
sinh2

χ if κ = 1 .
(1.67)

Comoving distance. The first interesting and widely used distance in cosmology is
the comoving distance for a photon (insofar as all cosmological information comes to
us via electromagnetic radiation). Using the fact that ds2 = 0 for a photon, we can
define the comoving distance as:

χ(a) =
∫ t0

te

dt
a(t)

=
∫ a0

a(te)

da
a(t)2H(a)

=
∫ z(te)

0

dz
H(z)

, (1.68)

where te is the time at which the photon is emitted. Let us note that if we take a(te) = 0 (or
equivalently z(te) =∞), then this quantity corresponds to the comoving particle horizon, namely
the maximum distance a photon can have travelled since the end of inflation. This quantity then
defines the size of the causal universe today!

The angular distance. The second important distance in cosmology is the angular distance.
Let us imagine that we are looking at an object with a proper size δ lobject seen from a small
angle δθ . Then the angular distance is define as:

dA =
δ lobject

δθ
= a ·Sκ(χ) =

1
1+ z

·Sκ(χ) , (1.69)

where we have used the fact that δ lobject = a · Sκ(χ)δθ [see Eq. (1.66)]. This distance is im-
portant when we have a standard ruler, i.e., an object with a known intrinsic distance δ lobject.
This is for instance the case for the typical size of CMB fluctuations (in chapter 2, we use this
quantity to define the angular acoustic scale at recombination θs, while in chapter 3 we use it
in order to define the baryonic acoustic oscillation scale).

The luminosity distance. The last widely used distance in cosmology is the luminosity dis-
tance. This time, let us imagine we have a standard candle, i.e., an object whose intrinsic
luminosity L is known, at a comoving distance χ(a). This is for instance the case of the Su-
pernovae Ia (SNIa). The flux received at a distance dL(a) from the source is then given by
the following formula:

F =
L

4πd2
L(a)

. (1.70)

Now, it is also possible to derive an equivalent formula for the flux, which this time depends
on the comoving distance χ(a):

F =
1

4πS2
κ(a)

× NE0

δ t0
, (1.71)

where 4πS2
κ(a) corresponds to the surface of the 3-sphere whose radius is determined by the

physical distance between the source and the observer, and N the number of photons received
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Figure 1.2: Evolution of the SNIa apparent magnitude as a function of the redshift z. The apparent
magnitude, which depends on the luminosity distance dL, is defined as m = M+5log(dL)+K, where M
is the absolute magnitude (which is known for a SNIa) and where K is a correction. Taken from Ref. [21].

with an energy E0 during a fraction of time δ t0. Given that L = NEe/δ te, where Ee is the energy
of the photons at emission, and that E0 = a ·Ee and δ t0 = δ te/a, then

F =
L ·a2

4πS2
κ(a)

. (1.72)

By equalizing this equation with Eq. (1.70), the luminosity distance is then defined as

dL(a) = (1+ z)Sκ(a) . (1.73)

As shown in Fig. 1.2, it was thanks to this luminosity distance reconstructed from several SNIa
that the Riess and Perlmutter groups were able to reveal the acceleration of the expansion of the
Universe and, at the same time, the existence of dark energy.

Relationship between distances. In Fig 1.3, we plot these three distances as a function of the
cosmological redshift z for an Euclidean expanding universe. Note that these three distances
are linked by the following equations [with Sκ(a) = χ(a)]:

dA(a) = aχ(a) = a2dL(a)⇐⇒ dA(a) =
χ(z)
1+ z

=
dL(z)

(1+ z)2 . (1.74)

1.2.7 Initial conditions: the inflationary paradigm
As mentioned above, the ΛCDM model needs some initial conditions to work consistently,

and it is necessary to bring in a complementary theory that not only explains these initial con-
ditions but also solves some problems that the ΛCDM model cannot solve on its own. In the
simplest models, inflation is caused by a single scalar field, called inflaton φ , which is mini-
mally coupled to gravity in the following way:

Lφ =−1
2

gµν
∂µφ∂νφ −V (φ) , (1.75)
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Figure 1.3: Evolution of the comoving distance χ(z), the angular distance dA(z) and the luminosity
distance dL(z) in an Euclidean expanding universe as a function of the redshift z. Taken from Ref. [9].

where V (φ) is the inflation potential. One can then define the action of the inflation field as

Sφ =
∫

d4x
√−gLφ , (1.76)

allowing us to determine the stress-energy tensor associated with the inflaton field thanks to
the Noether’s theorem:

Tµν ≡
2√−g

δSφ

δgµν
= ∂µφ∂νφ −gµν

[
1
2

∂
α

φ∂αφ −V (φ)

]
, (1.77)

where g ≡ det(gµν). Using this equation, we can determine the inflation energy density and
the inflation pressure as

ρφ =−T 0
0 =

1
2

φ̇ +V (φ) , (1.78)

Pφ =
1
3 ∑

i
T i

i =
1
2

φ̇ −V (φ) , (1.79)

implying that the inflation equation of state parameter reads:

wφ =
Pφ

ρφ

=
1
2 φ̇ −V (φ)
1
2 φ̇ +V (φ)

. (1.80)

In order to have an inflationary phase, i.e., to have ä > 0, inflation must satisfy the following
condition [which derives directly from the second Freedman-Lemaître equation (1.37)]:
wφ <−1/3.
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In a FLRW metric, the equation of motion (known as the Klein-Gordon equation), derived
from the principle of least action δSφ/δφ = 0, becomes:

φ̈ +3Hφ̇ +
dV (φ)

dφ
= 0 ; H2 =

8πG
3

ρφ . (1.81)

One of the main challenges of the inflation physics is to find a potential V (φ) which is com-
patible with several conditions, known as slow-roll conditions. This particular regime requires
two conditions on the inflation scalar field φ :

φ̇

2
�V (φ) ; φ̈ � V (φ)

dφ
=V ′(φ) , (1.82)

where the first condition implies that w ∼ −1 < −1/3. It is straightforward to show quickly
that these two conditions can be expressed in the following way (allowing strong constraints to
be placed on the type of inflation potential that can be used):

εV =
M2

pl

2

(
V ′

φ

Vφ

)2

� 1 ; | ηV |= M2
pl|

V ′′
φ

Vφ

| � 1 , (1.83)

where Mpl = 1/
√

8πG is the reduced Planck mass. The first condition can be re-expressed as
ε = −Ḣ/H � 1, showing that this condition imposes a Hubble parameter that varies slowly
during the slow-roll phase. In the limit where ε → 0, we recover a de Sitter Universe, implying
that inflation relies on a quasi de Sitter solution. In a de Sitter universe, we have

H2 =

(
ȧ
a

)2

=
Λ
3

; Ḣ = 0 , (1.84)

giving a scale factor that evolves according to a = eHt . In this type of solution, the Universe is
exponentially accelerated, while the Hubble radius remains constant, implying that the different
modes become progressively bigger than the size of the particle horizon. These modes will then
gradually re-enter the Hubble radius during the radiation, matter and dark energy domination
eras. Finally, let us note that the slow-roll inflation ends when max(εV ,ηV ) = 1.

1.3 Successes and challenges of the ΛCDM model

1.3.1 Successes of the ΛCDM model
In Fig 1.4, we summarise all the modern cosmology data as a function of the redshift 1+ z

and the scale k = 2π/λ (where λ ’s are the typical distances observed by the experiment) under
consideration. 5 It is remarkable that the ΛCDM model can provide an explanation and a rather
good fit for all these data, even if some discrepancies seem to appear. The fact that this model
is able to explain this wide variety of data from different tracers, and over a very wide range
of scales and redshifts, is undeniably the greatest success of the ΛCDM model. In the rest of
this thesis, we use data from experiments that have probed CMB anisotropies, CMB lensing,
galaxy clustering and weak lensing for the inhomogeneous probes, as well as baryon acoustic

5Thank you so much Guillermo for this great figure, I know how much time you spent on it!
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Figure 1.4: Redshift ranges as well as scale ranges covered by current and future cosmological probe.
Taken from Ref. [22].

oscillations (BAO), supernovae of type Ia (SNIa) and big bang nucleosynthesis (BBN) for the
background probes. We will see (especially in chapter 4) that the ΛCDM model is capable
of explaining most of these data very accurately and that only six parameters (which we will
describe at the end of chapter 2) are needed.

In particular, in chapter 2, we discuss in detail the theoretical framework used to describe
CMB anisotropies and CMB lensing data, while in chapter 3, we describe the theoretical frame-
work used to describe galaxy clustering and BAO data. In addition, we have already briefly
described the SNIa physics, but we will not be talking about the BBN and weak lensing physics
in this thesis. For a review on BBN see, e.g., Ref. [23], and for a review on weak lensing
see, e.g., Refs. [24, 25].

1.3.2 Limits of the ΛCDM model

To close this chapter, we discuss the limitations of the ΛCDM model which will be of
interest to us in the remainder of this thesis.

The intrinsic nature of the dark sector

The standard models of cosmology and particle physics have so far been unable to determine
the intrinsic nature of the dark sector of the Universe, made up of dark matter and dark energy
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(in the ΛCDM model). The framework of this thesis is in line with this axis of research, since
we study models that make assumptions about the intrinsic nature of these two constituents and
assess the extent to which these models can resolve cosmological tensions. There are several
serious candidates to explain the origin and nature of these two dark components. Here we
briefly list the candidates for dark matter:

• WIMPs. For a very long time, this hypothesis was very popular. Today, it remains a
favoured option, even if its popularity has declined due to the absence of observations in
particle colliders and direct detectors. These particles are assumed to be stable, neutral,
to have a very weak interaction with Standard Model particles and to be very massive
(of the order of GeV-TeV, which made them unobservable until now), hence the name
weakly interacting massive particles (see Ref. [26] for a review). For instance, in the
Supersymmetry framework the WIMP could be a neutralino.

• Primordial black holes. Primordial black holes is also a very popular model (see
Ref. [27] for a review). These are black holes formed as a result of very large overdensities
on small scales in the primordial Universe, causing a peak in the matter power spectrum.
These black holes could today make up dark matter, or a fraction of it (which seems more
likely).

• Axions. Axion is a hypothetical particle of low mass and neutral charge introduced in
1978 by Steven Weinberg [28] and Frank Wilczek [29] thanks to the work of Roberto
Peccei and Helen Quinn in 1977 to solve the strong CP problem [30]. Quantum chro-
modynamics predicts that the strong interaction has no reason to preserve CP symmetry,
while recent studies on the primordial asymmetry between baryons and antibaryons pre-
dict that the strong interaction must necessarily not preserve CP symmetry. However,
experimentally one has never observed a CP violation by the strong interaction, which
would be explained by the fact that the axion field symmetrizes the Langrangian of the
strong interaction. Thus, quantum chromodynoamics with an axions field would then be
able to explain this anomaly. The axion is also a very serious candidate for dark matter
(see Refs. [31, 32] for reviews). The axion potential is usually written as

V (a) = m2
a f 2

a

(
1− cos

a
fa

)
, (1.85)

where ma is the effective axion mass and fa is the decay constant (note that QCD imposes
a relation between ma and fa). The axion acquires its mass when the temperature falls
below the QCD energy scale, and the axion then behaves like standard matter (namely
ρa ∝ a−3) after rolling towards the minimum of its potential. There are currently axion
models, called axion-like particles, inspired by the potential of the QCD axion, but which
do not necessarily solve the strong CP problem.

• Sterile neutrinos. If one wants to explain neutrino oscillations and neutrino masses,
then one needs to extend the Standard Model. One way of doing this postulates the
existence of a right-handed neutrino called sterile neutrino (for instance with a type-I
seesaw mechanism), that could make up dark matter (see Ref. [33] for a review).

For dark energy, a number of candidates are also receiving special attention, among
which we can cite:
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• Cosmological constant. This is the dark energy paradigm of the ΛCDM model, as
explained above. It should be noted that this dark energy model faces a problem, known
as the cosmological constant problem (or vacuum catastrophe). The latter arises from
a mismatch between the measured energy density of dark energy determined from cos-
mology and the theoretical energy density of the vacuum (or, more precisely, the largest
theoretical value of zero-point energy density) determined from quantum field theory. In
principle, these two values should correspond within a coherent physical theory, but they
disagree by 120 orders of magnitude!

• Quintessence models. This is a class of scenarios, first proposed by Bharat Ratra and
Jim Peebles [34], where the dark energy equation of state is no longer necessarily equal
to wφ = −1 and varies over time. In these scenarios, dark energy is then modelled by a
dynamic scalar field that is minimally coupled to gravity. In order to have an accelerated
expansion it is necessary to respect the condition (see the discussion above on inflation):

wφ =
1
2 φ̇ −V (φ)
1
2 φ̇ +V (φ)

<−1/3 . (1.86)

• Modified gravity. There are many modified gravity models that allow us to obtain a
behaviour similar to dark energy. The idea of these models is to assert that the acceler-
ation of the expansion of our Universe is not due to an additional component, but to an
incompleteness in the general relativity equations. This is for example the case of the
scalar-tensor theories described by the Horndeski action [35]. This theory encompasses
all the possible ways of constructing a Lagrangian from a metric tensor and a scalar field.
A fairly popular example is the f (R) model, which modifies the Einstein-Hilbert action
as follows:

S[g] =
∫ 1

16πG
R
√−gd4x → S[g] =

∫ 1
16πG

f (R)
√−g (1.87)

where R is the Ricci scalar, and f (R) a function of the Ricci scalar.

Cosmological tensions

Another current limitation of the ΛCDM model are the so-called cosmological tensions.
As the accuracy of measurements has increased over the past few years, some intriguing
discrepancies have emerged between the values of some cosmological parameters predicted
by the ΛCDM model and their direct measurements in the local Universe. In particular,
the “Hubble tension” is a significant discrepancy (∼ 5σ ) between the value of the current
expansion rate of the universe, i.e., the Hubble parameter H0, measured using SNIa data as a
cosmic distance ladder (see above), and that inferred from CMB data using the ΛCDM model
(see chapter 2). Additionally, a less significant (∼ 2σ ), but older, tension exists which this
time concerns the amplitude of the local matter fluctuations, typically parametrized as S8. The
S8 tension is a mismatch of the value of this parameter between its prediction by the ΛCDM
model from the CMB data on the one hand, and its direct and local determination from weak
lensing (see Fig. 1.4) on the other hand. These tensions could be the first indication of new
features in the dark components and give hope to access their fundamental properties. These
two tensions are an important (though not the only) motivation for the third part of this thesis,
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and we therefore deal with them in detail in the introduction to this part (see p. 199).

There are other interesting tensions that are not covered in this thesis, such as the Alens
anomaly [36], the lithium problem [37], the small-scale crisis [38] or the cosmic dipole ten-
sion [39]. A review of all the cosmological tensions can be found in Ref. [40].
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Figure 2.1: Summary of the various interactions of the perturbed universe. Taken from Ref. [9].

As we have seen in chapter 1, in order to describe temporal and spatial behaviour of the
species in the Universe one needs to solve the Einstein and Boltzmann equations, that is
Eqs. (1.1) and (2.58), and more specifically to specify the stress-energy tensor Tµν and the
metric tensor gµν for the former, and the distribution function f (x, p, t) for the latter. In a
flat, homogeneous, and isotropic universe, Tµν is defined by Eq. (1.30), gµν by Eq. (1.24)
and f (x, p, t) by Eq. (1.39) for photons. These definitions allow us to obtain the equations
governing the evolution of components in a homogeneous universe (i.e., for characteristic
distances larger than 100 Mpc), namely the Friedmann-Lemaître equations [Eqs. (1.36)
and (1.37)] and the homogeneous and isotropic Boltzmann equations for an expanding universe
[Eq. (1.38)]. Now, if one wants to understand the local evolution of the Universe, for example
the evolution of the large-scale structures or the anisotropies of the CMB, one must release the
homogeneity and isotropy constraints. This implies, as we shall see, a new solution of Tµν ,
gµν and f (x, p, t). In each case, one starts from the homogeneous definition and then perturb
it with small parameters depending on position and time, which makes it possible to obtain
the perturbation equations of the various components describing the local inhomogeneities
of our Universe. Actually, there are three types of metric perturbations: scalar, vector and
tensor perturbations (relative to the group of spatial rotations). However, the scalar degrees of
freedom (that interest us here) are decoupled from the other degrees of freedom at linear order
(according to the decomposition theorem), which means that the other two types of perturbation
are not mentioned in what follows. The main picture of the perturbed Universe is shown in
Fig. 2.1. The aim of this section is to establish the general equations that couple the density
perturbations of each of the constituents to the metric perturbations. In particular, we will
establish that the scalar perturbations of the metric are coupled with the density perturbations
of each of the constituents (except the cosmological, which influences the metric only at the
level of the homogeneous solution through the scale factor), using the perturbed Boltzmann
and Einstein equations.
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In this chapter, we first introduce the formalism of the perturbed universe in Sec. 2.1,
before perturbing the Boltzmann and Einstein equations in Sec. 2.2. Then, in Sec. 2.3, we
discuss the initial conditions of the perturbed universe, and in Sec. 2.4 we deal with CMB
physics. Let us note that Secs. 2.1 and 2.2 are based mainly on Ref. [41], while Sec. 2.4 is
based mainly on Ref. [9].

2.1 From the homogeneous universe to the perturbed
universe

To obtain the equations of the perturbed universe, the first step is to perturb (i) the metric, (ii)
the stress-energy tensor, and (iii) the phase-space distribution function (for relativistic species).
All calculations in this section are based on Ref. [41].

2.1.1 Perturbation of the metric

First of all, let us discuss the perturbations of the metric. Given that gµν is a symmetric
tensor, one has ten independent degrees of freedom. However, the decomposition theorem states
that of these ten degrees of freedom four are related to scalar perturbations and that at linear
order they evolve independently from the other six degrees of freedom. In addition, in general
relativity one has a gauge freedom due to the diffeomorphism invariance of this theory, which
implies that, by a gauge choice, one can reduce these four degrees of freedom to two degrees of
freedom, as does the Newtonian gauge (also known as the longitudinal gauge):

ds2 = gµνdxµdxν = [−1−2ψ(x, t)]dt2 +a(t)2 [1−2φ(x, t)]δi jdxidx j , (2.1)

where ψ(x, t) corresponds to the local Newtonian potential that governs the behaviour of slow-
moving bodies and where φ(x, t) can be interpreted as the local scale factor perturbation, namely
a(t) 7→ a(t)[1−φ(x, t)]. The parameters φ and ψ are very small compared to unity (φ ,ψ � 1),
which allows us to consider them as perturbations of the homogeneous and isotropic FLRW
solution. One can redefine this metric in a simpler way by using the conformal time τ , with
the following transformation t 7→ τa(τ):

gµν = a(τ)2 · {[−1−2ψ(x,τ)]dt2 +[1−2φ(x,τ)]δi jdxidx j} . (2.2)

The main advantages of this gauge is that (i) the two scalar degrees of freedom have a very
clear and well-defined physical meaning, and (ii) the equations take Newtonian forms on
subhorizon scales within this gauge (hence the name).

We mention here another gauge which is sometimes simpler to use, because (as we shall
see) it sometimes makes it possible to simplify the perturbation equations (see e.g., the case of
decaying cold dark matter models in chapter 9). This gauge, also widely used in cosmology,
is called the synchronous gauge, where the scalar part of the perturbed metric is written as
(using the conformal time)

ds2 = gµνdxµdxν = a2(τ) ·
[
−dτ

2 +(δi j +hi j(x, t))dxidx j] . (2.3)
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Here hi j(x,τ) is defined as

hi j(x,τ) =
∫

d3keik.x[k̂ik̂ jh(k,τ)

+

(
k̂ik̂ j−

1
3

δi j

)
6η(k,τ)] , (2.4)

where h ≡ hii denotes the trace of hi j, while η corresponds to the traceless scalar degree of
freedom of the metric perturbation in Fourier space.1 This gauge has a particular subtlety:
we have to eliminate a residual gauge freedom due to the fact that this gauge does not set the
initial hypersurface and its coordinate assignment. It is conventional to fix the synchronous
coordinates to the dark matter rest frame in order to set this remaining gauge freedom.
Therefore, in this gauge, we have vi,CDM = ∂ivi,CDM = 0, which significantly simplifies the
dark matter perturbation equations.

One can show (see e.g., Ref. [41]) that the equivalence relations between these two arbitrary
metrics can be written (in Fourier space) as follows

ψ(k,τ) =
1

2k2

[
ḧ(k,τ)+6η̈(k,τ)+

ȧ
a

ḣ(k,τ)+6
ȧ
a

η̇(k,τ)
]
, (2.6)

φ(k,τ) = η(k,τ)− 1
2k2

ȧ
a

[
ḣ(k,τ)+6η̇(k,τ)

]
. (2.7)

We warn the reader that in this chapter Ẋ = dX/dτ , unlike in the previous chapter where Ẋ =
dX/dt. The two metrics presented above now depend on x, unlike the unperturbed FLRW
metric, which implies that the evolution of the Universe now depends on position: we are now
in the framework of a non-homogeneous and non-isotropic universe.

2.1.2 Perturbation of the stress-energy tensor
Concerning Tµν , it will be affected by three modifications with respect to the homoge-

neous solution [see Eq. (1.30)]:

• one no longer considers fluids at rest, but they now have small local velocities, vi(x,τ) =
dxi/dτ , leading to non-diagonal terms;

• we now perturb the homogeneous density field ρ(τ) and the homogeneous pressure field
P(τ) with the overdensity and overpressure fields [δρ(x,τ) and δP(x,τ)], respectively
defined as

ρ(x,τ)≡ρ(τ)+δρ(x,τ) , (2.8)

P(x,τ)≡P(τ)+δP(x,τ) , (2.9)

which will affect the diagonal terms of Tµν ;

1In natural space, we thus have [if we take k̂ = (0 0 1)]:

ds2 = a2(τ) · {−dτ
2 +[1−2η(x,τ)]dx2 +[1−2η(x,τ)]dy2 +[1+h(x,τ)+4η(x,τ)]dz2} . (2.5)
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• one adds the anisotropic stress tensor Σi j(x,τ), which corresponds to the traceless compo-
nent of Ti j. The main contribution to this tensor comes from neutrinos (or free streaming
relativistic species in general).

These modifications allow us to write δT µ

ν(x,τ) = T µ

ν(x,τ) − T µ

ν(τ), which is valid
for all components, as:

δT 0
0(x,τ) =−δρ(x,τ) , (2.10)

δT 0
i (x,τ) = (ρ(x,τ)+P(x,τ))vi , (2.11)

δT i
j(x,τ) = δP(x,τ)δ i

j +Σi
j ; Σi

i = 0 , (2.12)

where δρ = ∑a δρa is the total overdensity field and δP = ∑a δPa is the total overpressure
field. Note that in the following, we sometimes use the total divergence of the fluid veloci-
ties, namely θ = ∑a ∂ivi

a, instead of the total velocity itself, since the perturbation equations
only involve the derivative of the velocity. Finally, let us note that we can parametrize the
anisotropic stress tensor as:

Σi j ≡
(

∂i∂ j−
1
3

∇2
δi j

)
Σ+

1
2
(∂iΣ̂ j +∂ jΣ̂i)+ Σ̂i j , (2.13)

where Σ is the scalar degree of freedom of this tensor. Since we are only interested here in
scalar modes, we consider only this degree of freedom in the remainder of this thesis. However,
it is common to use the parameter σ instead, defined as

(ρ +P)∇2
σ ≡−

(
∂i∂ j−

1
3

∇2
δi j

)
δT i

j . (2.14)

This parameter is called the shear or anisotropic stress parameter, and like the other perturbation
parameters, it is made up of the sum of the contribution of each of the components: σ = ∑a σa.

Now, let us find the relationships that relate these four perturbations parameters (δρ , δP, θ

and σ ) between these two gauges. T µ

ν transforms like a tensor, which implies that the stress-
energy tensor in synchronous gauge T µ

ν(Syn) is related to the stress-energy tensor in (confor-
mal) Newtonian gauge T µ

ν(New) by:

T µ

ν(Syn) =
∂ x̂µ

∂xα

∂xβ

∂ x̂ν
T β

α(New) , (2.15)

where x̂µ denotes the coordinates of the synchronous gauge, while xµ denotes the coordinates
of the Newtonian gauge. From this equation, one can directly show that in Fourier space

T 0
0(Syn) = T 0

0(New) , (2.16)

T 0
i (Syn) = T 0

i (New)+ iki
ḣ+6η̇

2k2 (ρ +P) , (2.17)

T i
j(Syn) = T i

j(New) . (2.18)
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Using Eqs. (2.10)-(2.12), one can show that:

δ (Syn) = δ (New)− ḣ+6η̇

2k2 · ρ̇
ρ
, (2.19)

θ(Syn) = θ(New)− ḣ+6η̇

2
, (2.20)

δ (Syn)P = δP(New)− ḣ+6η̇

2k2 · Ṗ , (2.21)

σ(Syn) = σ(New) . (2.22)

These equations work for the sum of the constituents as well as for each individual species.

2.1.3 Perturbation of the phase-space distribution function
Finally, the phase-space distribution function of photons (i.e., the Bose-Einstein distribution)

is perturbed in the following way thanks to the parameter Ψ(xi, p j,τ) defined as

f (xi,Pj,τ) = f0(p,τ)[1+Ψ(xi,Pj,τ)] , (2.23)

where f0(p,τ) corresponds to the Bose-Einstein distribution of the homogeneous universe [see
Eq. (1.39)]. Pj is the spatial part of the four-momentum, given by

Pi = a(1−φ) · pi , (2.24)

Pi = a(δi j +
1
2

hi j) · p j , (2.25)

in Newtonian gauge and synchronous gauge respectively, where pi corresponds to the physical
(proper) 3-momentum of the particle. In addition (and as in chapter 1), it is convenient to use
the comoving quantity q j = a · p j. It is also useful to decompose q j as q j = q · n̂ j, where q
is the magnitude and n̂ j the direction of the momentum. Therefore, for practical reasons, we
consider the following perturbed quantity: Ψ(xi,Pj,τ)→Ψ(xi,q, n̂ j,τ).

This is equivalent to perturbing the photon temperature thanks to the parameter Θ(xi,q, n̂ j,τ)
as T (τ) 7→ T (τ)[1+Θ(xi,q, n̂ j,τ)], and to inject this new temperature into the homogeneous
photon phase-space distribution function [see Eq. (1.39)]:

f (xi,q, n̂ j,τ) =

[
exp
(

q
T (τ)[1+Θ(xi,q, n̂ j,τ)]

)
−1
]−1

(2.26)

' f0(q,τ)−q
∂ f0(q,τ)

∂q
Θ(xi,q, n̂ j,τ) , (2.27)

where the second line results from a first-order Taylor expansion in Θ(xi,q, n̂ j,τ). Ψ(xi,q, n̂ j,τ)
is therefore related to Θ(xi,q, n̂ j,τ) by

Ψ(xi,q, n̂ j,τ) =−
(

d ln f0(q)
d lnq

)
Θ(xi,q, n̂ j,τ) . (2.28)

Note that in the case we are considering, Θ(xi,q, n̂ j,τ) → Θ(xi, n̂ j,τ) does not depend on
q, the momentum magnitude, because we will consider that the photons interact with the
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electrons solely by a Thomson interaction (since the electrons are at rest when T � me, which
is the relevant regime for studying the CMB). This implies that the photon momentum is
(approximately) conserved over the cosmological eras considered.

The same can be done for neutrinos by considering the Fermi-Dirac equation:

fν(xi,q, n̂ j,τ) =

[
exp
(

q
Tν(τ)[1+N (xi,q, n̂ j,τ)]

)
+1
]−1

. (2.29)

From Eq. (1.46), and by analogy with Eqs. (1.51) and (1.52) which are valid in the homo-
geneous universe, we can easily show that the components of T µ

ν can be written as

T 0
0 =−

1
a4

∫
q2dqdΩ E f0(q)(1+Ψ) , (2.30)

T 0
i =

1
a4

∫
q2dqdΩ qn̂i f0(q)Ψ , (2.31)

T i
j =

1
a4

∫
q2dqdΩ

q2n̂in̂ j

E
f0(q)(1+Ψ) , (2.32)

where E = aE =
√

q2 +m2a2 is the comoving energy. Note that in these last equations we
have (conventionally) integrated the factor g/(2π)3, where g is the number of internal degrees of
freedom, in the phase-space distribution function. We have also used the fact that (in Newtonian
gauge)

√−g = a4(1+ψ)(1− 3φ), and dP1dP2dP3 = (1− 3φ)q2dqΩ.

2.2 The perturbed universe
Let us now derive the Einstein and Boltzmann equations for the perturbed universe. All

calculations in this section are based on Ref. [41], and will be performed in Fourier space (or "k-
space") in order to linearized the Einstein and Boltzmann equations at first order in perturbation.
In this thesis, we use the following convention

φ(x,τ) =
∫ d3k

(2π)3 eik.x · φ̃(k,τ) , (2.33)

where k corresponds to the wavenumber of the perturbation allowing to define a perturbation
mode. The comoving wavelength of the mode associated to k is define as λ = 2π/‖k‖. Let us
note that while the comoving size of a mode is given by λ , the comoving size of the Universe,
the comoving horizon, is given by τ .

2.2.1 Perturbed Einstein’s equations
Let us start with the perturbed Einstein equations. The (scalar) perturbation of the metric

tensor by ψ(x,τ) and φ(x,τ), or h(x,τ) and η(x,τ), implies that the Einstein tensor Gµν is also
perturbed: Gµν 7→ Gµν + δGµν . As one has seen above, the stress-energy tensor is perturbed
as Tµν 7→ Tµν + δTµν , implying that the perturbed Einstein equations read [one eliminates the
homogeneous and isotropic contribution thanks to Eq. (1.1)]

δGµ

ν = 8πG ·δT µ

ν . (2.34)

This allows us to obtain, in k-space, the following equations [corresponding to the 00, 0i, ii and
i j components of Eq. (2.34) respectively] for the two gauges:
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Newtonian gauge:

k2
φ +3

ȧ
a

(
φ̇ +

ȧ
a

ψ

)
=−4πGa2

δρ(New) , (2.35)

k2
(

φ̇ +
ȧ
a

ψ

)
= 4πGa2(ρ +P)θ(New) , (2.36)

φ̈ +
ȧ
a
(ψ̇ +2φ̇)+

(
2

ä
a
− ȧ2

a2

)
ψ +

k2

3
(φ −ψ) = 4πGa2

δP(New) , (2.37)

k2(φ −ψ) = 12πGa2(ρ +P)σ(New) . (2.38)

Synchronous gauge:

k2
η− 1

2
ȧ
a

ḣ =−4πGa2
δρ(Syn) , (2.39)

k2
η̇ = 4πGa2(ρ +P)θρ(Syn) , (2.40)

ḧ+2
ȧ
a

ḣ−2k2
η =−24πGa2

δPρ(Syn) , (2.41)

ḧ+6η̈ +2
ȧ
a
(ḣ+6η̇)−2k2

η =−24πGa2(ρ +P)σρ(Syn) . (2.42)

We recall that θ and σ correspond respectively to the total divergence of the fluid velocities
(θ = ∑a ik jv

j
a in Fourier space) and to the total anisotropic stress perturbation, respectively.

These four equations allow us to determine the space-time evolution of φ and ψ (on the left-
hand side of these equations, obtained thanks to δGµ

ν ) as a function of the perturbation pa-
rameters of the fluid, that is δρ , δP, θ and σ (on the right-hand side of these equations,
obtained thanks to δT µ

ν ). Note that deep inside the horizon, where k � aH, Eq. (2.35) re-
duces to the Poisson equation:

−k2

a2 φ = 4πGδρ . (2.43)

2.2.2 Conservation of the stress-energy tensor
In addition, the stress-energy tensor Tµν must be conserved for a non-interacting fluid, which

is expressed through its covariant derivative:

∇µT µ

ν ≡
∂T µ

ν

∂xµ
+Γµ

αµT α
ν −Γα

νµT µ

α = 0 , (2.44)

where we recall that the ν = 0 component corresponds to the continuity equation, while the
ν = i component corresponds to the Euler’s equation. While the Euler equation is trivially zero
in the homogeneous and isotropic FLRW universe, since ∂P/∂xi is obviously zero, this is no
longer true in a non-homogeneous and non-isotropic universe. In the two gauges presented
above, the continuity and Euler equations take the following form:
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Newtonian gauge:

δ̇ =−(1+ω)(θ −3φ̇)−3
ȧ
a

(
δP
δρ
−ω

)
δ , (2.45)

θ̇ =− ȧ
a
(1−3ω)θ − ω̇

1+ω
θ +

δP/δρ

1+ω
k2

δ − k2
σ + k2

ψ . (2.46)

Synchronous gauge:

δ̇ =−(1+ω)(θ +
ḣ
2
)−3

ȧ
a

(
δP
δρ
−ω

)
δ , (2.47)

θ̇ =− ȧ
a
(1−3ω)θ − ω̇

1+ω
θ +

δP/δρ

1+ω
k2

δ − k2
σ . (2.48)

These two equations allow us to obtain two coupled differential equations for δ and θ , where
δ is simply δρ/ρ . A number of comments deserve to be made here:

1. Unlike the perturbed Einstein equations, we will apply these two equations to each con-
stituent and not to the sum of the constituents, since these equations depend on the intrin-
sic nature of the constituents (through the equation of state parameter w, for example).

2. The first equation governing the behaviour of δ̇ corresponds to the perturbed continuity
equation, while the second equation governing the behaviour of θ̇ corresponds to the
perturbed Euler’s equation. As already mentioned in chapter 1 and as we shall see later
on, the first two moments of the Boltzmann equation allow us to find these two equations
as well.

3. As we will explain later (when we will derive the perturbed Boltzmann equations), these
two equations are sufficient to describe the perturbation behaviour of massive species
(namely, baryons and dark matter). On the other hand, for non-massive species (namely
photons and neutrinos), it is necessary to solve the complete hierarchy of the Boltzmann
equations, and not just the first two moments! Typically, each moment will involve a
new perturbation parameter, which means that photons and neutrinos have many more
perturbation parameters than dark matter and baryons.

4. These two equations are only valid for a fluid without interaction. This is true for neutri-
nos and dark matter (which decoupled from the other fluids very early in the history of
the Universe within the ΛCDM framework). On the other hand, for baryons and photons
it is necessary to add an interaction term to the right-hand side of Eq. (2.44), since these
two components have interacted before recombination through Thomson scattering.

5. In our case, the interaction terms will only modify the Euler equations and not the conti-
nuity equations, insofar as the latter deals with the temporal conservation of the number
of particles per unit volume. For the processes in which we are interested (in particular
the Thomson scattering) we have no modification in the total number of particles.

We can now use Eqs. (2.45)-(2.48) in order to derive the perturbed continuity and Euler
equations for the different cosmological fluids. To do so, let us note that for adiabatic per-
turbations (see next section), we have the following relationship: δP/δρ = c2

s , where cs is
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the adiabatic sound speed of the perturbations. On the other hand, this parameter is defined
as c2

s = dP/dρ = dw/dρ +w. Consequently, in an adiabatically perturbed fluid with a con-
stant equation of state parameter, δP/δρ = w. Given that for photons and massless neutrinos
ω = 1/3, and for cold dark matter and baryons ω ≈ 0, one has:

Newtonian gauge:

Cold Dark Matter: δ̇c =−θc +3φ̇ ; θ̇c =−
ȧ
a

θc + k2
ψ , (2.49)

Massless Neutrinos: δ̇ν =−4
3

θν +4φ̇ ; θ̇ν = k2
(

1
4

δν −σν

)
+ k2

ψ , (2.50)

Photons: δ̇γ =−
4
3

θγ +4φ̇ ; θ̇γ = k2
(

1
4

δγ −σγ

)
+ k2

ψ +aneσT (θb−θγ) , (2.51)

Baryons: δ̇b =−θb +3φ̇ ; θ̇b =−
ȧ
a

θb + c2
s k2

δb + k2
ψ +

4ργ

3ρb
aneσT (θγ −θb) . (2.52)

Synchronous gauge:

Cold Dark Matter: δ̇c =−
1
2

ḣ ; θ̇c = θc = 0 , (2.53)

Massless Neutrinos: δ̇ν =−4
3

θν −
2
3

ḣ ; θ̇ν = k2
(

1
4

δν −σν

)
, (2.54)

Photons: δ̇γ =−
4
3

θγ −
2
3

ḣ ; θ̇γ = k2
(

1
4

δγ −σγ

)
+aneσT (θb−θγ) , (2.55)

Baryons: δ̇b =−θb−
1
2

ḣ ; θ̇b =−
ȧ
a

θb + c2
s k2

δb +
4ργ

3ρb
aneσT (θγ −θb) . (2.56)

These equations have a few subtleties that need to be explained:

1. As already mentioned above, the synchronous gauge gives us the freedom to set the frame
of reference. Conventionally, we fix the synchronous coordinates to the dark matter rest
frame, implying θc = θ̇c = 0.

2. We have added collision terms from the Thomson interaction to the Euler equations for
baryons and photons. These two interaction terms are effective before recombination,
and depend on the Thomson cross section σT

2 and the proper mean density of electrons
ne. We can see that these terms involve a coupling between the velocity divergence of
photons and that of baryons through the factor (θγ −θb). To have an explicit derivation
of these collision terms from Eq. (1.11), the interested reader can for example refer to
chapter 5 of Ref. [9].

2The differential cross section is given by

dσ

dΩ
= 3σT

1+ cos2 θ

16π
, (2.57)

where θ is the scattering angle and σT = 0.6652 ·10−24cm2.
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3. For baryons, in principle δP/δρ = c2
s = ω � 1. However, for sufficiently large k, we

cannot neglect the c2
s k2δb acoustic term for baryons. For dark matter this term is set to

zero to the extent that this species does not interact with photons (in the ΛCDM model)
and therefore exhibits a perfect non-relativistic behavior (i.e, wc = 0).

4. One has neglected σc and σb since cold dark matter and baryons do not have anisotropic
stress perturbation due to their low velocities with respect to the temperature scales con-
sidered. As we will see in the following, this is due to the fact that we can neglect the
Boltzmann equations of higher order than the Euler equation.

2.2.3 Perturbed Boltzmann’s equations

Now, let us perturb the general Boltzmann equation. To do so, we inject the perturbed phase-
space distribution function (2.23) into the standard Boltzmann equation (in conformal time):

∂ f
∂τ

+
∂ f
∂xi ·

dxi

dτ
+

∂ f
∂q
· dq

dτ
+

∂ f
∂ n̂i ·

n̂i

dτ
=C[ f ] . (2.58)

As in the homogeneous framework, to solve this equation all we need to do is determine dxi/dτ ,
dq/dτ and dn̂i/dτ in the two gauges. Let us emphasize that ∂ f/∂ n̂i · dn̂i/dτ is not linear in
perturbation and that we can therefore drop it. Finally, with a bit of basic algebra, we can obtain
the non-homogeneous and non-isotropic Boltzmann equations in the two gauges:

Newtonian gauge:

∂Ψ
∂τ

+ i
q
E
(k · n̂)Ψ+

d ln f0

d lnq

[
φ̇ − i

E

q
(k · n̂)ψ

]
=

1
f0

C[ f ] , (2.59)

Synchronous gauge:

∂Ψ
∂τ

+ i
q
E
(k · n̂)Ψ+

d ln f0

d lnq

[
η̇− ḣ+6η̇

2
(k · n̂)2

]
=

1
f0

C[ f ] , (2.60)

where E = aE =
√

p2 +m2a2 is the comoving energy.

The case of non-relativistic particles

In the case of non-relativistic particles, we have trivially q/E ∼ q/m� 1. We will therefore
keep only the moments of the Boltzmann equation that involve terms in (q/m)0 and (q/m)1,
while we will neglect the higher-order terms. By integrating the Boltzmann equation with∫

d3q/(2π)3 and
∫

d3q/(2π)3qq j/E , one obtains the conservation and Euler equations respec-
tively. This can be easily done for dark matter and for baryons. It is easy to see that obtaining
the higher moments of the Boltzmann equation would require integrating higher powers of q/E,
which implies that these moments are suppressed. This explains why the continuity and Euler
equations are sufficient to describe the behaviour of dark matter and baryons.
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The case of relativistic particles

The story is different for relativistic particles. In this case, we trivially have q/E = 1,
implying that the hierarchy of the Boltzmann equations is not truncated by an underlying
physical principle. In principle, there are an infinite number of non-zero moments, and we
have to resolve the Boltzmann hierarchy completely. However, we have to close the system of
equations if we want to solve it, which means we still have to truncate the hierarchy at some
point.

In order to simplify the calculations, it is customary to introduce a new quantity,
F(k, n̂,τ), which integrates out the q-dependence of the perturbation of the phase space
distribution function:

F(k, n̂,τ) =
∫

q2dq q f0(q) Ψ∫
q2dq q f0(q)

. (2.61)

This quantity allows us to get rid of q, the magnitude of the comoving momentum, but not n̂,
the direction of the comoving momentum. To do this, we can expand the angular dependence
of this quantity thanks to a Legendre polynomial decomposition:

F(k, n̂,τ)≡
∞

∑
l=0

(−i)l(2l +1)F̀ (k,τ)L`(k̂ · n̂) , (2.62)

where µ = k̂ · n̂ is the cosine of the angle given by the direction of a perturbation mode and the
momentum direction, and where L`(k̂ · n̂)’s correspond to the Legendre polynomials. At the
end of the day, let us note that the different moments F̀ (k,τ) depend neither on q nor on n̂,
which considerably simplifies the analytical resolution of the Boltzmann equation. Let us now
consider two specific cases: massless neutrinos and photons.

Massless neutrinos. For massless neutrinos, we have Pν = 3ρν , implying that one obtains
from Eqs. (2.30)-(2.32):

δρν = 3δPν −
1
a4

∫
q2dqdΩ q f0(q)Ψ , (2.63)

δT 0
ν i =

1
a4

∫
q2dqdΩ qn̂i f0(q)Ψ , (2.64)

Σi
ν j =

1
a4

∫
q2dqdΩ q

(
n̂in̂ j−

1
3

δi j

)
f0(q)Ψ , (2.65)

where δT 0
ν i is the energy flux, and where Σi

ν j = T i
ν j−Pδ i

j is the anisotropic stress tensor. If
we use our definition of F(k, n̂,τ), then one can show that:

δν =
1

4π

∫
dΩF(k, n̂,τ) = Fν0 , (2.66)

θν =
3i

16π

∫
dΩ k · n̂ F(k, n̂,τ) =

3
4

kFν1 , (2.67)

σν =− 3
16π

∫
dΩ
[
(k · n̂)2− 1

3

]
F(k, n̂,τ) =

1
2

Fν2 , (2.68)
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where δν = δρν/ρν , with ρν = 3Pν = a−4 ∫ q2dqdΩ q f0(q). To obtain these equations, we
have used the fact that:

F̀ (k,τ) =
2`+1

2

∫ 1

−1
dµ L`(µ)F(k, n̂,τ) . (2.69)

If we now integrate Eqs. (2.59) and (2.60), by performing the integral
∫

q2 dq q f0(q)× [(2.59) or (2.60)]∫
q2 dq q f0(q)

, (2.70)

one can find the perturbed Boltzmann equations in Newtonian and synchronous gauges
for massless neutrinos:

Newtonian gauge:

∂Fν

∂τ
+ ikµFν = 4(φ̇ − ikµψ) , (2.71)

Synchronous gauge:

∂Fν

∂τ
+ ikµFν =−2

3
ḣ− 4

3
(ḣ+6η̇)L2(µ) , (2.72)

where L2(µ) = 1/2(3µ2− 1). It is now possible, by integrating over the various Legendre
polynomials and using Eq. (2.69), to determine that:

Synchronous gauge:

δ̇ν =−4
3

θν +4φ̇ , (2.73)

θ̇ν = k2
(

1
4

δν −σν

)
+ k2

ψ (2.74)

Ḟν(`>1) =
k

2`+1
[
`Fν(`−1)− (`+1)Fν(`+1)

]
, (2.75)

Synchronous gauge:

δ̇ν =−4
3

θν −
2
3

ḣ , (2.76)

θ̇ν = k2
(

1
4

δν −σν

)
, (2.77)

2σ̇ν =
8

15
θν −

3
5

kFν3 +
4

15
ḣ+

8
5

η̇ , (2.78)

Ḟν(`>2) =
k

2`+1
[
`Fν(`−1)− (`+1)Fν(`+1)

]
, (2.79)

where we have explicitly shown that the equation governing the behaviour of F̀ depends on
the (`− 1) and (`+ 1) multipoles. Let us note that to obtain Eqs. (2.75) and (2.79), we used
the recursion relation of the Legendre polynomials:

(`+1)P̀ +1(µ) = (2`+1)µP̀ (µ)− `P̀ −1(µ) . (2.80)
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We thus obtain an infinite hierarchy of multipoles for massless neutrinos (unlike massive par-
ticles). However, we need to close this system if we want to solve it. Therefore, Ref. [41]
proposed adopting the following truncation scheme for neutrinos:

Fν(`max+1) '
2`max +1

kτ
Fν`max−Fν(`max−1) . (2.81)

This prevents us from setting Fν(`max+1) = 0, which would propagate the error to all the
lower multipoles. This truncation scheme then allows us to minimise the propagation
of error to the lower multipoles.

Photons. For photons, the method is exactly the same, and all the precedent equations work.
The only difference is that it is necessary to add a collision term on the right-hand side of the
Boltzmann equations [Eqs. (2.59) and (2.60)] that takes into account the Thomson scattering be-
tween photons and baryons before recombination. This collision term takes the following form:

Ĉ[ f ] = aneσT

[
−Fγ +Fγ0 +4n̂.ve−

1
2
(Fγ2 +Gγ0 +Gγ2)L2

]
, (2.82)

where Fγ is defined by Eq. (2.61), and where ve is the electron bulk velocity. The last term
∝ L2 quantifies the dependence of the Thomson cross section on the polarisation of the pho-
tons, where Gγ`(k, n̂,τ) is the polarization strength, namely the difference between the two
linear polarization components of the photons (that we expend in Legendre polynomial decom-
position). Let us note that Gγ` is sourced only by the quadrupole of the temperature distribution
(see below), namely Fγ2. With all these tools in hand, it is finally possible to determine the
Boltzmann equation for photons, crucial for describing the CMB perturbations:

Newtonian gauge:

δ̇γ =−
4
3

θγ +4φ̇ , (2.83)

θ̇γ = k2
(

1
4

δγ −σγ

)
+ k2

ψ +aneσT (θb−θγ) , (2.84)

2σ̇γ =
8

15
θγ −

3
5

kFγ3−
9
5

aneσT σγ +
1
10

aneσT (Gγ0 +Gγ2) , (2.85)

Ḟγ(`>2) =
k

2`+1
[
`Fγ(`−1)− (`+1)Fγ(`+1)

]
−aneσT Fγ` , (2.86)

Synchronous gauge:

δ̇γ =−
4
3

θγ −
2
3

ḣ , (2.87)

θ̇γ = k2
(

1
4

δγ −σγ

)
+aneσT (θb−θγ) , (2.88)

2σ̇γ =
8

15
θγ −

3
5

kFγ3 +
4

15
ḣ+

8
5

η̇− 9
5

aneσT σγ +
1

10
aneσT (Gγ0 +Gγ2) , (2.89)

Ḟγ(`>2) =
k

2`+1
[
`Fγ(`−1)− (`+1)Fγ(`+1)

]
−aneσT Fγ` . (2.90)
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The truncation scheme usually adopted for photons is

Ḟγ`max = kFγ(`max−1)−
`max +1

τ
Fγ`max−aneσT Fγ`max . (2.91)

In the following, we will express the CMB power spectrum as a function of Θ(k,µ,τ), the
temperature perturbation. It is therefore convenient to rewrite the previous equations in terms of
Θ`(k,τ), the Legendre polynomial decompositions of the Θ(k,µ,τ) field [see Eq. (2.62)]. By
solving δγ , δT 0

ν i and Σi
ν j [namely Eqs. (2.63)-(2.65)] in terms of Θ`(k,τ) instead of Ψ`(k,τ),

one can easily show that:

δγ = 4Θ0 ; θγ = 3kΘ1 ; σγ = 2Θ2 . (2.92)

In addition, we can show that:

F =

∫
q2dq q f0(q) Ψ∫

q2dq q f0(q)

=−
∫

q2dq q2 ∂ f (0)
∂q Θ

∫
q2dq q f0(q)

= 4Θ , (2.93)

where we have used Eq. (2.28) in the second line, and an integration by parts in the third
line. We now have a very simple equation connecting Θ(k,µ,τ) and F(k,µ,τ), which
means that we can re-express Boltzmann’s equations in terms of Θ(k,µ,τ). For exam-
ple, using Eqs. (2.71) and (2.82), the Boltzmann equation for photons in the Newtonian
gauge can be written as follows:

Θ̇+(ikµ +neσT a)Θ =+φ̇ − ikµψ +neσT a
[

Θ0 +µvb−
1
2
L2µΠ

]
, (2.94)

where Π = Θ2 +ΘP,2 +ΘP,0, with ΘP = G/4 the polarization field. In this equation, we have
used the fact that n̂.ve = µve, because the baryon velocity is collinear with k (namely the baryon
velocity is irrotational).

2.2.4 Partial summary
Thus, the perturbation equations governing the behaviour of the local universe correspond

to Eqs. (2.35)-(2.42) on the one hand, which describe the space-time evolution of the metric
perturbations with respect to the perturbation parameters of the fluid, and Eqs. (2.49)-(2.56) on
the other hand, which govern the behaviour of δ , the energy overdensity field, and θ , the diver-
gence of the velocity fluid, for each constituent. The first set of equations is obtained from the
perturbed Einstein equations, while the second set is obtained from the perturbed stress-energy
tensor conservation. As already mentioned above, the second set of equations can also be
obtained from the first two moments of the Boltzmann equation. These two sets of equations
are sufficient for dark matter and baryons, because in the time scales one considers, one
respects the condition T � mDM,mb, where mDM and mb corresponds respectively to the mass
of a dark matter particle and a baryonic particle. However, for photons and neutrinos, which
are relativistic species, one has to complete these two sets of equations with the equations of
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Figure 2.2: Evolution of the energy density
perturbations (δγ , δb and δc) with respect to the
scale factor (a/a0 = (1+ z)−1) for k = 1 and
10−2 Mpc−1. Taken from Ref. [42].

Figure 2.3: Evolution of the metric tensor per-
turbations (φ and ψ) with respect to the scale
factor (a/a0 = (1+ z)−1) for k = 1 and 10−2

Mpc−1. Taken from Ref. [42].

the higher-level multipoles Fl(k,τ), with l > 1 (until a certain l which one considers negligible).

All these cosmological perturbation equations can be solved with a Boltzmann code such as
CLASS [43] or CAMB [44]. In Figs. 2.3 and 2.2, one can plot with the CLASS code the evolution of
the perturbations for k = 1 Mpc−1, a mode that entered the horizon during the radiation domina-
tion era, and for k = 10−2 Mpc−1, a mode that entered the horizon at the beginning of the matter
domination era. In Fig. 2.2, we can see that the three perturbation densities are initially equal
and constant: this corresponds to the moment when the mode has not yet entered the horizon.
Then, one can see that δc evolves independently from δb and δγ , while the latter two evolve to-
gether through the Thomson scattering already mentioned earlier. The oscillations correspond
precisely to the baryonic acoustic oscillations (BAO), that is, a competition between (i) the ther-
mal pressure between photons and baryons, and (ii) the gravity interaction between baryons and
dark matter, resulting in a spatio-temporal oscillation of the perturbations of the fluid composed
of photons and baryons. These oscillations stop when the baryons and photons are no longer
coupled by the Thomson effect, i.e., from the recombination epoch. After that, δγ decreases due
to the expansion of the Universe, while under the effect of gravity, δc and δb increase, allowing
the formation of structures. For the mode k = 10−2 Mpc−1, the perturbations are initially con-
stant because they are outside the horizon and do not exhibit oscillation afterwards because they
enter after the recombination. The behaviour of the perturbations is then identical to the mode
k = 1 Mpc−1. In Fig. 2.3, we can see that gravitational potentials are strongly suppressed when
a mode enters during the radiation era, whereas this is not the case when a mode enters during
the matter era. In addition, let us note that the potentials are constant in time during matter
era, namely φ ∼ const. These effects will be described in detail in chapter 3. Finally, let us
note that the difference between φ and ψ at early time is due to the presence of the anisotropic
shear of neutrinos, as can be seen from Eq. (2.38). The remainder of this introductory part is
devoted to describing in detail the behaviour of these perturbations in the context of the CMB
and large-scale structure physics, which implies that we will come back to these figures.
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2.3 Initial conditions
As with any physical system, if we wish to characterise its evolution, it is necessary to

know (i) the equations which govern the evolution of the system, and (ii) the initial condi-
tions of this system. Having detailed the equations of the perturbed universe, it is now time to
look briefly at its initial conditions. The initial conditions refer here to the state of the pertur-
bations well into the radiation domination era, but after nucleosynthesis, insofar as it is from
this moment that the five main constituents of our Universe are fully formed (as detailed in
chapter 1, Sec. 1.1). It is possible to take this moment as the initial time because only per-
turbations that have a wavelength greater than the Hubble radius (and which have therefore
not yet been affected by sub-horizon physics) are relevant for CMB observations. This section
is based mainly on Refs. [9] and [21].

2.3.1 Adiabatic and isocurvature perturbations
First, let us describe the two possible types of perturbation: the adiabatic and

isocurvature perturbations.

Adiabatic modes. These modes have two fundamental characteristics: (i) the local state of
the energy densities of each of the species at an instant t is the same as that of the background
at an instant t + δ t(x), and (ii) δ t(x) is the same for all constituents, i.e., at a given point in
space, the energy density of each of the species comes from the same background state. It then
corresponds to common shift in time of all background quantities in a local area. If we perform
a first- order Taylor expansion in δ t(x), we get

ρa(x, t) = ρa(t +δ t(x))' ρa(t)+δ t(x) · ρ̇a(t) . (2.95)

This equation, together with condition (ii), implies that

δ t(x) =
δρa

ρ̇a
=

δρb

ρ̇b
, (2.96)

indicating that this ratio at a given time and a given position in the Universe is the same
for all species. If we use the background continuity equation, ρ̇a = −3H(1 + wa)ρa, we
can express this ratio as

δa

(1+wa)
=

δb

(1+wb)
. (2.97)

From all these properties, we can draw out an important result: at the initial time, the matter
overdensities and the radiation overdensities are related by the following relation, wherever
we are in the Universe

δr(x, ti) =
4
3

δm(x, ti) . (2.98)

At the end of the day, adiabatic perturbations allow a change in the total energy density
δ = ∑a δa, while the relative ratios in the energy density perturbations remain unperturbed,
namely [from Eq. (2.97)]:

δ

(
δa(x, ti)
δb(x, ti)

)
= 0 . (2.99)
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In addition, we can rewrite the 00 component of Einstein’s equations [see Eq. (2.35)], as:

δ = ∑
a

δa =−
3
2

k2a2

ȧ2 φ − 2a
ȧ

φ̇ −2φ . (2.100)

If we neglect the cosmic shear (i.e., σ = 0), then φ =ψ by virtue of Eq. (2.38). Furthermore, for
super-horizon scales, we have k� ȧ/a and φ̇ ' 0 (since φ = const because no causal physics
can modify super-horizon modes), which implies that:

δ =−2φ =−2ψ . (2.101)

This equation therefore indicates that adiabatic perturbations, which imply δ 6= 0, modify the
local curvature of the Universe. Using Eq. (2.98), we therefore have for adiabatic perturbations
in a radiation-dominated universe (i.e., δ = δr)

δm(x, ti) =
3
4

δr(x, ti) =−
3
2

φ(x, ti) =−
3
2

ψ(x, ti) . (2.102)

This is the equation that connects density perturbations and metric perturbations at the end of in-
flation, where the Universe is dominated by radiation, for super-horizon modes. Subsequently,
all modes which gradually enter the horizon thereafter possess this property before being af-
fected by sub-horizon physics. For modes entering the horizon during the matter domination
era, there is a small subtlety, in that the metric perturbations of the super-horizons modes are
slightly suppressed (as we shall shortly see):

φMatter =
9

10
φRadiation . (2.103)

Isocurvature modes. Furthermore, given that there are several different species in the Uni-
verse, it is in principle possible to obtain perturbations that do not modify the geometry of
the Universe: these are the isocurvature modes. For these modes, the total energy density is
conserved at any point in space, namely δ = ∑a δa = 0, while the various constituents can be
perturbed independently, namely δa 6= 0, in such a way that their sum is equal to zero. There-
fore, for these perturbations, there are variations in the individual energy densities, but with
vanishing curvature perturbation since δ = 0 [see Eq. (2.101)]. The relative ratios in the en-
ergy density perturbations is now non-zero, namely δ (δa/δb) 6= 0, and they can be quantify
using the entropy perturbations:

Sa,b ≡
δa(x, ti)
(1+wa)

− δb(x, ti)
(1+wb)

. (2.104)

We can define the entropy perturbations with respect to a reference species, that we (conven-
tionally) choose to be the photons. We can therefore define:

Sb,γ = δb−
3
4

δγ , (2.105)

Sc,γ = δc−
3
4

δγ , (2.106)

Sν ,γ =
3
4

δν −
3
4

δγ . (2.107)
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The standard single-field inflation model only predicts adiabatic modes, 3 and this is (remark-
ably) consistent with CMB data, which do not detect any primordial isocurvature mode. The
data are then consistent with Sb,γ = Sc,γ = Sν ,γ = 0. Let us note that pure isocurvature ini-
tial perturbations would generate a sine oscillatory behaviour in the CMB fluctuations with a
first peak at ` ' 330, while pure adiabatic initial perturbations generate a cosine oscillatory
behaviour with a first peak at ` ' 220 (see bellow). The Planck data are compatible with the
second scenario, and consequently, in the remainder of this manuscript we only consider adi-
abatic modes. However, it should be noted that the Planck data exclude isocurvature modes
as the main contribution of primordial fluctuations, but there is nothing to prevent this type of
fluctuations from being subdominant.

2.3.2 Primordial power spectrum
The aim now is to find a appropriate summary statistics that encodes the initial condition

of the Universe assuming adiabatic perturbations. To do this, we use the power spectrum and
start by giving some properties of this summary statistic.

Power spectrum in cosmology. For a Gaussian field f (x), all the information is contained
in the correlation function:

ξ (x,x′) =
〈

f (x) f (x′)
〉
. (2.108)

We can then rewrite x′ as x′ = x+ r, and Fourier transform the correlation function as

ξ (x,r) = 〈 f (x) f (x+ r)〉=
∫ d3k

(2π)3

∫ d3k′

(2π)3

〈
f̃ (k) f̃ ∗(k′)

〉
eik·x e−ik′·x′ e−ik′·r . (2.109)

If we now consider a homogeneous universe, then the correlation function depends only on
the distance between x and x′, and not on the position of x: ξ (x,r)→ ξ (r), where r = x− x′.
This implies that

〈
f̃ (k) f̃ ∗(k′)

〉
∝ δD(k− k′) in order to eliminate x and x′ in the integral. In

addition, if we consider an isotropic universe, then the correlation function does not depend on
the direction of r: ξ (r)→ ξ (r).

We can now define the power spectrum P(k) of an homogeneous and isotropic field as

P(k) δ
(3)
D (k− k′) = (2π)−3 〈 f̃ (k) f̃ ∗(k′)

〉
, (2.110)

where P(k) does not depend on the direction of k because of the isotropy. The power spec-
trum corresponds to the inverse Fourier transform of the correlation function, since, using
Eq. (2.109), we now have:

ξ (r) =
∫ d3k

(2π)3 P(k)e−ik·r (2.111)

=
∫ dk k2

2π2 P(k)
sin(kr)

kr
. (2.112)

3Indeed, if we only have one perturbed inflaton field, it is not possible to obtain δ = 0 when this field decays.
On the other hand, it is possible to obtain isocurvature modes for multi-field inflation models.
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We can then obtain the variance of the field simply by setting r = 0:

σ
2 =ξ (r = 0) =

∫ 1
k

dk
2π2 k3 P(k) (2.113)

=
∫

d lnk Pk , (2.114)

where

Pk =
k3

2π2 P(k) (2.115)

is the dimensionless power spectrum.

Curvature perturbations. The aim now is to find a suitable formulation for the primordial
power spectrum, which encodes the initial condition of the Universe. Canonical inflation models
only predict Gaussian fields, which implies that we only consider the two-point correlation
function (or its Fourier transform) and not the higher-order correlation functions. As already
indicated in chapter 1, the initial perturbations come from quantum perturbations in the inflaton
field that have been stretched during the inflationary phase. We can then write the inflaton field
with an homogeneous part and a perturbation δφ(x, t) as

φ(x, t) = φ(t)+δφ(x, t) , (2.116)

where φ(t) respects the field equations mentioned in Sec. 1.2.7. If we consider the ν = 0
component of the perturbed conservation equation, we can obtain the perturbed Klein-Gordon
equation for δφ(x, t) (in Newtonian gauge):

¨δφ +2aH ˙δφ + k2
δφ = 0 . (2.117)

It is useful to find a quantity that is conserved on the super-horizon scales for adiabatic
fluctuations. When a mode leaves the horizon during inflation, it will later enter the horizon
after experiencing a super-horizon life. Finding a quantity that is preserved during this pe-
riod thus allows us to preserve the information coming directly from inflation. It is therefore
possible to define the curvature perturbation R, such a conserved quantity (see Ref. [21]),
as follows (in Newtonian gauge)

R ≡ ikiδT i
0(k,τ)a

2H(τ)

k2[ρ +P](τ)
−ψ(k,τ) . (2.118)

One can show that this quantity is conserved, namely Ṙ = 0, at super-horizon scales
for adiabatic perturbations (only). During inflation ψ is negligible compared with the
first term, while we have

ρ +P =
1
2

φ̇ 2

a2 +V (φ)+
1
2

φ̇ 2

a2 −V (φ) =
φ̇ 2

a2 . (2.119)

In addition, from Eq. (1.77)

δT i
0 = giν

∂νδφ ∂0φ (2.120)

=
ikiφ̇δφ

a3 , (2.121)
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implying that

R =−aH
˙̄
φ

δφ . (2.122)

This equation relates the comoving curvature perturbation to the inflaton perturbations.

In addition, using the continuity equation, we can show that

R =−5+3w
3+3w

ψ , (2.123)

implying that (as already mentioned earlier)

R =−3
2

φRadiation =−
5
3

φMatter ⇒ φMatter =
9
10

φRadiation . (2.124)

Primordial power spectrum. Given that curvature perturbation R is conserved beyond the
horizon and that we know its expression as a function of the inflaton field perturbation δφ ,
it is customary to define the primordial power spectrum as the Fourier transform of the two-
point correlation function of the curvature perturbation R. In particular, from Eq (2.122), the
variance of the curvature perturbation can be expressed as

〈
|Rk |2

〉
=

(
aH

φ̇

)2 〈
| δφk |2

〉
, (2.125)

where
〈
| δφk |2

〉
is the variance of the inflaton field perturbation for a given mode. One can

show that (see Ref. [9] or [21])

Pδφ (k)'
H2

2k3 , (2.126)

therefore involving

PR(k) =
2πGH2

εk3 ; ε = 4πG

(
φ̇

aH

)2

. (2.127)

It is customary to parametrize the dimensionless primordial scalar power spectrum
PR(k) = k3/2π2 · PR(k) as

PR(k)≡ As

(
k
k∗

)ns−1

, (2.128)

where ns the tilt of the primordial scalar power spectrum, and As its amplitude at k = k∗, where
k∗ refers to the pivot scale, often set at 0.05 Mpc−1. Note that from Eq. (2.124) we have,
during the radiation domination era,

Pφ (k) = Pψ(k) =
4
9
PR(k) . (2.129)

The Planck data measure As = (2.101±0.033) ·10−9 and ns = 0.9649±0.0044 [11]. These
data therefore yield a primordial scalar power spectrum that is almost scale independent, in
agreement with the predictions of inflation, which assert an almost constant energy density
during the inflationary period. This is one of the greatest successes of the combination between
the ΛCDM model and the inflationary paradigm.
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Figure 2.4: Anisotropies (of the order of 10−4 to 10−5) of the Cosmic Microwave Background (CMB)
observed by Planck. Taken from https://www.esa.int/.

2.4 CMB physics
Now that we know the equations of the perturbed universe and have mentioned the initial

conditions of the perturbations, it is time to explain the origin of the temperature anisotropies
of the CMB observed in Fig. 2.4. This section is based mainly on Ref. [9].

2.4.1 CMB power spectrum
The temperature anisotropies, measured in particular by the Planck satellite, are evaluated

at time τ0 (i.e., at the age of the current universe) and at the position xi
0 (i.e., at our position

today). In addition, one has seen previously that baryons and photons interact only by the
Thomson effect, which implies a conservation of the norm of the photon momentum q during
these interactions. It follows that Θ(xi

0,q, n̂,τ0)→ Θ(xi
0, n̂,τ0) does not depend on q, and that

the anisotropies that one sees in Fig. 2.4 are only generated by a change in n̂, the direction
of the photon momentum! Then, it is convenient to decompose the temperature anisotropies
Θ(xi

0, n̂,τ0) on a spherical harmonic basis (equivalent of the discrete Fourier basis when one
has an invariance by rotation) as follows:

Θ(xi
0, n̂,τ0) =

T (n̂)−T
T (n̂)

=
+∞

∑̀
=1

`

∑
m=−`

a`m(xi
0,τ0)Y`m(n̂) , (2.130)

where a`m are the coefficients associated to the spherical harmonics Y`m. Here ` and m are
conjugate to the unit vector n̂, and Y`m corresponds to the eigenfunctions for an expansion of
Θ(xi

0, n̂,τ0) on the surface of a sphere. The a`m coefficients can be obtained from Θ(k, n̂,τ) (in
Fourier space) thanks to the following relation [which corresponds to the Fourier transform
of the inversion of Eq. (2.130)]:

a`m(x,τ) =
∫ d3k

(2π)3 eik.x ·
∫

dΩ Y ∗`m(n̂)Θ(k, n̂,τ) . (2.131)

https://www.esa.int/
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Figure 2.5: CMB temperature power spectrum from the Planck data, together with the best-fit of the
ΛCDM model. Taken from Ref. [11].

Interestingly, 〈a`m〉 = 0, because if we average out the perturbations, we get zero, namely
〈Θ(k, n̂,τ)〉 = 0. The cosmological information is therefore to be found in the variance of the
a`m coefficients determined through the two-point correlation function:

〈a`ma∗`′m′〉= δ``′δmm′C` , (2.132)

where C` is what one calls the CMB power spectrum of temperature anisotropies, which corre-
sponds to the real observable of the CMB. It turns out that the CMB perturbations are Gaussian,
which implies that all the information is contained in C` (note, however, that some inflation
models predict non-Gaussianities and that it is necessary to study higher-order correlation func-
tions). When ` is fixed, each a`m has the same variance, which means that the power spec-
trum can be measured as:

Cobs
l =

1
2l +1 ∑

−l<m<l
|aobs

lm |2 . (2.133)

Given that at ` fixed, there are 2`+1 degenerate a`m, this implies that the smaller ` is, the more
imprecise the measurement of the power spectrum: this is what we call the cosmic variance.
This is an uncertainty related to the geometry of the Universe and the fact that we observe
fewer large-scale modes than small-scale modes. Fig. 2.5, taken from Ref. [11], represents D`

as a function of `, where DT T
l defined as

DT T
l ≡

`(`+1)
2π

C` , (2.134)

where the prefactor allows us to highlight the CMB peaks.
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The main objective of what follows will be (i) to relate the power spectrum C` to Θ(xi
0, n̂,τ0)

and (ii) to find the expression for Θ(xi
0, n̂,τ0) allowing us to obtain the theoretical expression

of C`. Ultimately, what we want to explain is how to obtain the fit shown in Fig 2.5. To
achieve this, it will be necessary, according to Eqs. (2.131) and (2.132), to determine the quan-
tity

〈
Θ(k, n̂) ·Θ∗(k′, n̂′)

〉
, where now we implicitly assume that we are at τ = τ0. This expec-

tation value depends both on the initial conditions of the Universe and the evolution of these
initial perturbations up to the last-scattering surface. We have already partially described these
two contributions, which prompts us to make the following separation:

Θ(k, n̂) = R(k) ·T (k, n̂) , (2.135)

where R corresponds to the primordial curvature perturbations defined above, while T is the
transfer function allowing us to encode the spatio-temporal evolution of Θ(k, n̂,τ). Therefore,

〈
Θ(k, n̂) ·Θ∗(k′, n̂′)

〉
=
〈
R(k) ·R∗(k′)

〉
·T (k, n̂)T ∗(k′, n̂′) (2.136)

= (2π)3
δ
(3)
D (k− k′)PR(k) ·T (k, n̂)T ∗(k′, n̂′) . (2.137)

Let us note that T (k, n̂) = T (k,µ), with µ = k̂ · n̂, because each time k enters the equations it
is multiplied by n̂ (see the perturbation equations above). By squaring Eq. (2.131), and inject-
ing the last equation, we obtain an equation for the CMB temperature power spectrum which
depends on both the transfer function and the primordial power spectrum:

C` =
∫ d3k

(2π)3 PR(k)
∫

dΩY ∗`m(n̂)T
∗(k,µ)

∫
dΩ′Y`m(n̂′)T (k,µ ′) . (2.138)

If we now expand T (k,µ) = ∑`(−i)` (2`+1)L (µ)T`(k) into a Legendre polynomial decom-
position, and inject it into equation (2.138), then we can show that:

C` =
2
π

∫ +∞

0
dk k2 PR(k)· |T`(k) |2 , (2.139)

where T`(k) =Θ`(k,τ0)/R(k). This is a very important result, as this equation allows the CMB
temperature power spectrum to be linked with the primordial power spectrum and the transfer
function. In other words, if we can obtain a theoretical equation for these two contributions,
then we are able to describe the CMB power spectrum in Fig. 2.5. While we have already
explained the contribution from the initial conditions [see Eq. (2.128)], we now explain the
contribution from the evolution of the temperature perturbations.

2.4.2 The CMB anisotropies

The main objective is here to determine the functional form of T`(k). To do this, it is nec-
essary to characterise that of Θ`(k), since the two are directly linked by R(k). First of all,
let us slightly rewrite the inhomogeneous and anisotropic Boltzmann equation for photons in
Newtonian gauge (remember that the observables are independent of the gauge considered),
corresponding to Eq. (2.94), as:

Θ̇+(ikµ− τ̇opt)Θ = Ŝ , (2.140)
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where Ŝ is the source term that generates the Θ(k,µ,τ) perturbations:

Ŝ≡ φ̇ − ikµψ− τ̇opt

[
Θ0 +µvb−

1
2
L2µΠ

]
. (2.141)

In this equation, Π = Θ2 +ΘP,2 +ΘP,0, with ΘP the polarization field (see above), and τopt
is the optical depth, defined as:

τopt ≡
∫

τ0

τ

dτ
′neσT a , (2.142)

⇒ τ̇opt =−neσT a , (2.143)

where τ0 is the conformal time of the Universe today. On the other hand, we can
rewrite Eq. (2.140) as:

e−ikµτ+τopt
d

dτ

[
Θ e−ikµτ+τopt

]
= Ŝ , (2.144)

allowing us to determine an equation for Θ(k,µ,τ = τ0) which depends on the source term Ŝ:

Θ(k,µ,τ = τ0) =Θ(k,µ,τ = τinit) eikµ(τinit−τ0) e−τopt(τinit)

+
∫

τ0

τinit

dτ Ŝ(k,µ,τ) eikµ(τ−τ0)−τopt(τ) , (2.145)

where τinit → 0 is the initial conformal time, and where τ0 is the current conformal time. In
this equation, we have used the fact that τopt(τ0) = 0 from the definition of this parameter in
Eq. (2.142). Interestingly, the first term in Eq. (2.145) tends to zero, since τopt(τinit)→ ∞. This
implies that Eq. (2.145) simplifies to:

Θ(k,µ,τ = τ0) =
∫

τ0

0
dτ Ŝ(k,µ,τ) eikµ(τ−τ0)−τopt(τ) . (2.146)

We can now get rid of the µ-dependence and determine the equations for Θ`(k,τ = τ0) by
integrating this equation over the Legendre polynomials. We can show (see Ref. [9])
that the exact solution is

Θ`(k,τ = τ0) =
∫

τ0

0
dτ S(k,τ) j`[k(τ0− τ)] , (2.147)

where j` are the spherical Bessel function obtained from
∫ +1

−1

dµ

2
L`(µ)eiµX =

1
(−i)`

j`[X ] , (2.148)

and where we have defined a new source term which does not depend on µ:

S(k,τ)≡e−τopt

[
φ̇ − τ̇opt

(
Θ0 +

1
4

Π
)]

+
d

dτ

[
e−τopt

(
ψ− ivbτ̇opt

k

)]

− 3
4k2

d2

dτ2

[
e−τopt τ̇optΠ

]
. (2.149)

This is the exact solution for Θ`(k,τ = τ0). Importantly, we can inject this solution into
Eq. (2.139) to obtain the CMB temperature power spectrum from a Boltzmann code. However,
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although this equation allows us to obtain the final physical observable of the CMB, it is not very
intuitive. In order to have an expression which is a little more physically meaningful, it is useful
to simplify it. To do so, it is customary to introduce the visibility function g(τ), defined as

g(τ)≡−τ̇opte−τopt ;
∫

τ0

0
dτg(τ) = 1 , (2.150)

which simply corresponds to the probability of a photon undergoing its last scattering at τ .
If we neglect Π, which is very small (compared to φ , ψ and Θ0), then one obtains, in terms
of the visibility function,

Θ`(k,τ = τ0)'
∫

τ0

0
dτg(τ) [Θ0(k,τ)+ψ(k,τ)] j`[k(τ0− τ)]

− i
k

∫
τ0

0
dτg(τ)vb(k,τ)

d
dτ

j`[k(τ0− τ)]

+
∫

τ0

0
dτe−τopt

[
ψ̇(k,τ)+ φ̇(k,τ)

]
j`[k(τ0− τ)] . (2.151)

The visibility function is very peaked around the last scattering surface conformal time τ∗ (since
the probability of a photon having its last scattering at τ∗ is very high). It follows, together with
the fact that vb = −iΘ1 at linear order [see Eq. (2.92)], that

Θ`(k,τ = τ0)' [Θ0(k,τ∗)+ψ(k,τ∗)] j`[k(τ0− τ∗)]

+3Θ1(k,τ∗)
(

j`−1[k(τ0− τ∗)]− (`+1)
j`[k(τ0− τ∗)]

k(τ0− τ∗)

)

+
∫

τ0

0
dτe−τopt

[
ψ̇(k,τ)+ φ̇(k,τ)

]
j`[k(τ0− τ)] . (2.152)

This formula is fairly accurate and agrees with the numerical solution to within about 10%
(provided that we take into account a damping term related to the Silk damping in the first
term). In order to solve this analytical solution, we need to know the behaviour of Θ0, Θ1 and
ψ at the time of the last-scattering surface (i.e., at τ = τ∗). Let us note that the monopole Θ0
(which encodes the isotropic temperature distribution at a given point in the CMB) is directly
linked to the energy density fluctuations δγ [δγ = 4Θ0 according to Eq. (2.92)], while the dipole
Θ1 (which encodes, at a given point in the CMB, a particular preferential direction where the
temperature is higher) is directly linked to the local velocity of the baryons vb [vb = −iΘ1
according to Eq. (2.92)]. Eq. (2.152) has several terms that are easy to interpret physically.
These terms are plotted independently in Fig. 2.6, and are described in the following:

• The first term, known as Sachs-Wolfe effect, is the main contribution of the CMB power
spectrum and corresponds to the main state of the CMB perturbations at the time of the
last-scattering surface. In this term, we need to add the contribution of ψ , which takes
into account the gravitational redshift, namely the effect of the gravitational potential
field ψ(x,τ∗) on the photon propagation. This term varies as a function of the angular
scale l−1 through the Bessel functions.

• The second term ∝ vb corresponds to the Doppler effect term, which comes from the local
velocity of the fluid at the emission time. This term is proportional to the projection of
the local baryon peculiar velocity along the photon’s line of sight.
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Figure 2.6: Main contributions to the CMB temperature power spectrum. Taken from Ref. [22].

• Finally, the last term, called the integrated Sachs-Wolf term, is an integral of the time
variation of ψ and φ along the CMB photon’s trajectory. This term allows us to take
into account the gravitational influence of a variation in the metric perturbation along
the line of sight. The integrated Sachs-Wolf term can be divided into two contributions
(see Fig. 2.5), namely the early integrated Sachs-Wolf and the late integrated Sachs-Wolf,
corresponding to the two main locations where the metric perturbations vary significantly
along the line of sight. The first contribution is due to the fact that recombination occurs
shortly after matter-radiation equality and that the perturbations of the metric have not
had time to stabilise completely after undergoing a decay during the radiation domination
period (see next chapter). The second contribution is due to the moment at which the
perturbations of the metric began to decay again during the dark energy domination era
(see next chapter as well).

2.4.3 A description of the CMB temperature power spectrum

We are now going to give a little more detail about the physics of the CMB and the shape
of the power spectrum in Fig. 2.5.

Acoustic oscillations. In order to describe the CMB acoustic oscillations, it is customary to
consider the tightly-coupled limit, which corresponds to the limit where the mean free path of a
photon is much smaller than the scale λ we consider. This is actually a condition on τopt, namely
τopt� 1. The main idea behind this condition is that it is necessary to solve only the first two
moments of the Boltzmann equation, while all the others are zero. We will therefore consider, in
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Figure 2.7: The monopole Θ0(k,τ∗) and dipole Θ1(k,τ∗) of the CMB at recombination as a function of
the `∼ kτ0 modes. Taken from Ref. [9].

the context of this approximation, the following equations [from Eqs. (2.87), (2.88) and (2.92)]:

Θ̇0 + kΘ1 = φ̇ , (2.153)

Θ̇1−
k
3

Θ0 =
k
3

ψ + τ̇opt

(
Θ1−

i
3

vb

)
. (2.154)

We can show with a little bit of algebra (see Ref. [9]) that we obtain the following solution
for the (Θ0 − φ)(k,τ) quantity:

[
d2

dτ2 +
Ṙ

1+R
d

dτ
+ k2c2

s

]
(Θ0−φ)(k,τ) =−k2

3

[
1

1+R
φ +ψ

]
(k,τ) , (2.155)

where R is the baryon-to-photon energy ratio, and cs(τ) is the the sound speed of the
perturbations in fluid:

R(τ)≡ 3ρb(τ)

4ργ(τ)
and cs(τ)≡

√
1

3 · (1+R(τ))
. (2.156)

Eq. (2.155) is the equation of an harmonic oscillator with a driving force term due to gravity
on the right-hand side (so it is a forced harmonic oscillator), and with a drag term in Θ̇0 in
the left-hand side. The drag term creates an asymmetry between the odd and even peaks (see
Fig. 2.7) which is controlled by the R parameter. However, the contribution of the drag term
∼ R/[τ2(1+R)] is subdominant compared to the contribution of the pressure term∼ k2c2

s when
the modes are within the horizon, namely when k � 1/τ . If we ignore this drag term, we
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can show that (see Ref. [9])

Θ0(k,τ)−φ(k,τ)'[Θ0(k,τ = 0)−φ(k,τ = 0)]cos(krs)

+
k√
3

∫
τ

0
dτ̃[φ(k, τ̃)−ψ(k, τ̃)]sin[k(rs(τ)− rs(τ̃)] , (2.157)

where we define the sound horizon as

rs ≡
∫

τ

0
dτ̃cs(τ̃) . (2.158)

Similarly, we can show that the approximate solution of Θ1(k,τ) respects

Θ1(k,τ)'
1√
3
[Θ0(k,τ = 0)−φ(k,τ = 0)]sin(krs)

− k
3

∫
τ

0
dτ̃[φ(k, τ̃)−ψ(k, τ̃)]cos[k(rs(τ)− rs(τ̃)] . (2.159)

Importantly, this gives an approximate solution of Θ0(k,τ∗) and Θ0(k,τ∗) in Eq. (2.152). In
Fig. 2.7, we represent the two CMB multipoles (using full numerical resolution) at the time
of recombination as a function of the ` modes. There are a number of important physical
points that need to be highlighted here:

• The dipole is totally out of phase with the monopole. This implies that the Sachs-Wolf
contribution is out of phase with the Doppler contribution in Eq. (2.152) (see Fig. 2.6).
Therefore, this second contribution increases the overall anisotropy level compared to the
first contribution alone.

• The main contribution to the Θ0(k,τ) and Θ1(k,τ) solutions is respectively a cosine and
sine term multiplied by the initial conditions Θ0(k,τ = 0)+ φ(k,τ = 0), that comes di-
rectly from inflation.

• The solution of Θ0(k,τ) allows us to estimate the position of the peaks in the CMB power
spectrum. In fact, as we can see in Fig. 2.6, the principal contribution of the CMB peak
positions comes from the Sachs-Wolf term, which depends directly on Θ0(k,τ∗). From
the extrema of cos(krs) in Eq. (2.157), we can determine that:

kpeak(τ∗) =
nπ

rs(τ∗)
, with n = 1,2,3, ... (2.160)

These peak positions are shown in Fig. 2.7 by solid black lines and are in agreement to
within 10% with the numerical resolution.

Finally, it should be noted that rs(τ) corresponds to the sound horizon, namely the comoving
characteristic distance travelled by a sound wave at τ . At recombination, it is defined as:

rs(z∗) =
∫ +∞

z∗

cs(z′)
H(z′)

dz′ . (2.161)

The sound horizon allows us to define a important quantity of the CMB physics, namely the
angular acoustic scale at recombination θs, defined as [see Eq (1.69)]:

θs =
rs(z∗)
DA(z∗)

, (2.162)
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where DA(z∗) =
∫ z∗

0 dz′/H(z′) ∝ 1/H0 is the comoving angular diameter distance. This quan-
tity corresponds to the apparent angular size of the characteristic distance travelled by a sound
wave at τ∗ – which is located at a distance rs from an initial perturbation –, and corresponds
to the position of the first CMB peak. The angular acoustic scale is extremely well measured
by the Planck satellite (100θs = 1.04110± 0.00031 [11]) and is perhaps the best measured
quantity in modern cosmology.

Diffusion damping. If we are interested in the small scales of the CMB (up to now we have
only considered the medium scales), then it is necessary to take into account Θ2. If we solve
the first three moments of the Boltzmann hierarchy, we arrive at an equation of the follow-
ing type (see Ref. [9]):

Θ0,Θ1 ∼ exp
{

ik
∫

dτ̃cs(τ̃)

}
exp
{
− k2

k2
D

}
, (2.163)

where kD is the damping scale:

1
k2

D
≡
∫

τ

0

dτ̃

6(1+R)neσT a

(
R2

1+R
+

8
9

)
. (2.164)

So when we solve the Boltzmann hierarchy we bring in a new scale λD ∼ 1/kD ∼
√

τ/neσT a
which suppresses the small-scale perturbations. This scale corresponds to the typical (comov-
ing) mean distance travelled by a photon at recombination. Below this scale, the perturbations
are washed out by photon diffusion, as we can see in Fig. 2.5. This phenomenon is called Silk
damping, and occurs at `& 800. Below this scale, perturbations are increasingly suppressed.

Large-scale anisotropies. The last scales we have not yet considered are the very large scales,
on the order of the size of today’s Hubble horizon. Interestingly, they provide direct access to
the initial conditions of the Universe, fixed by inflation, insofar as they have just entered the
horizon and have not yet undergone sub-horizon physics. At very large scales, the dominant
term in Eq. (2.152) is the Sachs-Wolfe term (see Fig. 2.6):

Θ`(k,τ = τ0)' [Θ0(k,τ∗)+ψ(k,τ∗)] j`[k(τ0− τ∗)] . (2.165)

On very large scales, only the first moment of the Boltzmann equation is not negligible, which
means that the hierarchy can be reduced to:

Θ̇0 = φ̇ ⇒Θ0(τ) = φ(τ)+C , (2.166)

where C is nothing more than an integration constant. If we evaluate this equation at τ = 0,
and using the fact that Θ0(τ = 0) = −φ(τ = 0)/2 [see Eqs. (2.102) and (2.92)] then we get
that C = −3/2 φ(τ = 0) = R [from Eq. (2.124)]. Given that the last-scattering surface at
τ = τ∗ is well inside the matter domination era, we get φ(k,τ∗) = ψ(k,τ∗) = −3/5 R(k)
[see Eq. (2.124)], giving

Θ0(k,τ∗) = φ(k,τ∗)+R(k) =−2
3

φ(k,τ∗) , (2.167)

⇒Θ0(k,τ∗)+ψ(k,τ∗)'
1
3

φ(k,τ∗)'−
R(k)

5
. (2.168)



2.4. CMB physics 61

This implies that

T`(k) =
Θl(k,τ0)

R(k)
'−1

5
· j`[k(τ0− τ∗)] , (2.169)

and if we insert this equation into Eq. (2.139), then we obtain

CSW
` ' 2

25π

∫ ∞

0
dk k2 PR(k) | j`[k(τ0− τ∗)] |2 . (2.170)

The primordial power spectrum is given by Eq. (2.128), which can be inserted into
the previous equation:

CSW
` ' 4π

25
Ask1−ns

p

∫ ∞

0
dk kns−2 | j`[k(τ0− τ∗)] |2 . (2.171)

Large scales give direct access to As and ns insofar as the loss of information about the ini-
tial conditions is minimised at these scales. For instance, if we consider a scale-independent
primordial power spectrum (ns = 1) then one finds that:

`(`+1) CSW
` ' 8

25
As , (2.172)

providing a precise determination of the As value.

2.4.4 Cosmological parameters.
If we want to fit the Planck data with the flat-ΛCDM model, we need to use (only) 6 param-

eters. We list these parameters here and explain their influence on the CMB power spectrum:

• As: the variance of primordial curvature perturbations centred around the pivot scale
k∗ = 0.05Mpc−1. This parameter controls the overall amplitude of the power spectrum.
Indeed, from Eq. (2.139), we can easily see that C` ∝ As.

• ns: the scalar spectral index. If we shift ns→ ns +β , then the power spectrum at small
scales is shifted by a factor of (l/l∗)β , where l∗ ∼ τ0k∗ is the angular wavenumber asso-
ciated with the pivot scale. Finally, a change in ns change the overall slope of the power
spectrum (in logarithmic space): the larger ns is, the steeper the overall shape of the power
spectrum.

• ωb = Ωb h2: the dimensionless baryon energy density. This parameter has three main
effects on the power spectrum. Firstly, it modifies the position of the peaks. As we saw
earlier, the positions of the C` peaks are given by:

lpeaks ∼ τ0 kpeaks ∼ τ0 ·
nπ

rs(τ∗)
. (2.173)

Changing the ωb parameter will modify the position of the peaks insofar as this parameter
will modify the size of the sound horizon through H(z):

rs(z∗) =
∫ +∞

z∗

cs(z′)
H(z′)

dz =
∫ +∞

z∗

cs(z′)

100 · [km/s/Mpc]
√

∑a ωa(z′)
dz′ . (2.174)



62 2. THE LINEARLY PERTURBED UNIVERSE AND CMB PHYSICS

So the larger this parameter, the larger lpeaks will be, which means that the CMB temper-
ature power spectrum will shift to the right. Secondly, as we saw earlier, this parameter
is included in the drag term in Θ̇0 of Eq. (2.155). This term sets an asymmetry between
even and odd peaks (as we can see in Fig. 2.7), and increasing ωb will have the effect of
increasing this asymmetry. Finally, the last effect is a modification in the damping scale
kD [see Eq. (2.164)]: if we increase ωb, then we reduce the Silk damping length (and
increase kD), and the CMB temperature power spectrum will be suppressed at larger l.

• ωc = Ωc h2: the dimensionless cold dark matter energy density. Changing this param-
eter will also result in three main types of change in the power spectrum. Firstly, this
parameter has an influence on the position of the peaks, in exactly the same way as the
ωb parameter [see Eq. (2.174)]. Secondly, this parameter will change the driving force
term (since the evolution of the gravitational potentials φ and ψ are dominated by the
cold dark matter) in Eq. (2.155) that governs the behaviour of Θ0. Finally, increasing
the ωc parameter will bring forward the moment of matter-radiation equality, which has
two main influences: (i) it will affect the evolution of perturbations, namely it will in-
crease the matter clustering (which is higher in the matter-dominated universe than in the
radiation-dominated universe), and (ii) it will reduce the early integrated Sachs-Wolf ef-
fect, because the metric perturbations (or the gravitational potentials) have had more time
to stabilise before the last-scattering surface. This last effect is particularly important and
leads to a suppression of the power spectrum at `∼ 100 (around the first peaks).

• H0: the Hubble parameter today. The main impact of this parameter is to change DA(z∗)=∫ z∗
0 dz′/H(z′) ∝ 1/H0, namely the distance of the last-scattering surface from us. The

main effect of this parameter will be to modified the position of the peaks, insofar as
π/lpeaks ∼ θs(τ∗) ∝ H0 · rs(τ∗). While ωb and ωc influence the position of the CMB peaks
through rs(τ∗), H0 also influences the position of the CMB peaks through DA(z∗). Note
that if we replace this parameter with θs or ΩΛ we obtain the same phenomenology.

• τreio: the reionization optical depth. This parameter allows us to take into account the
effect of reionization on CMB radiation: once the Universe has been reionized, CMB
photons can once again interact with free electrons from the reionization. This effect
changes the CMB perturbation patterns, and it is therefore necessary to take it into account
(for both temperature and polarisation). This effect changes the CMB temperature as

T γ(1+Θγ) → T γ(1+Θγ)e−τreio +T γ

(
1− e−τreio

)
= T γ

(
1+Θγe−τreio

)
, (2.175)

where e−τreio is the fraction of photons that are not scattered. Therefore, T γ(1+Θγ)e−τreio

corresponds to the temperature of the photons that have not been scattered, while T γ(1−
e−τreio) corresponds to the temperature of the photons scattered by the ionised regions.
So the greater the τ parameter, the more temperature perturbations are suppressed. This
parameter therefore has the same effect as As (and is degenerate with the latter) insofar
as it controls the overall amplitude of the power spectrum. However, this effect only
suppresses modes that are within the horizon at the time of reionization, i.e., at z ∼ 10.
This corresponds to modes l & 50.
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Figure 2.8: Primary CMB power spectra and the ΛCDM best-fit (from Ref. [11]). The data points and
associated error bars correspond to those of the Planck data.

2.4.5 Other CMB power spectra
In this thesis, we will also use other observables from CMB observations. These include

the CMB polarization power spectrum and the lensing power spectrum. We briefly explain
these two observables here.

Polarization

It is possible to decompose the polarization of the CMB photons into two modes: the
E-modes and the B-modes. It turns out that the B-modes can be sourced solely by the
tensor perturbations of the metric, while the E-modes are coupled to the scalar and tensor
contributions of the metric perturbations. Tensor perturbations can be generated by primordial
gravitational waves predicted by the inflationary paradigm, with a nearly scale-invariant power
spectrum, Ph = At(k/kp)

nt . A detection of these B-modes would then be a mean of detecting
these primordial gravitational waves, and measure the tensor-to-scalar ratio r = At/As. This
would constitute additional evidence for inflation. Since these modes have never been detected
so far, they will not be considered in the remainder of this thesis.

In this thesis, we will use the EE power spectrum, corresponding to the auto-correlation
of the E-mode polarization, and the TE power spectrum, which corresponds to the cross-
correlation of the E-mode polarization and the temperature perturbations. By analogy with
the CMB temperature power spectrum, we define CEE

` and CTE
` as

CEE
` =

2
π

∫ +∞

0
dk k2 PR(k)· |T E

` (k) |2 , (2.176)

CTE
` =

2
π

∫ +∞

0
dk k2 PR(k)· |T ∗

` (k) ·T E
` (k) | , (2.177)
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Figure 2.9: CMB temperature power spectrum with and without the lensing correction. Taken from
Ref. [9].

where T E
` (k) = ΘP,`(k,τ0)/R(k). In Fig. 2.8, we plot the best-fit of the flat-ΛCDM model

obtained from the three primary CMB power spectra measured by Planck. In addition, it is
possible to obtain an analytical approximation of ΘP,`(k,τ0) for a Universe that contains only
scalar perturbations [as we did for Θ`(k,τ0)]. We can then show (see Ref. [9] for instance) that
at small-scales (kτ0 >> 1) and in the tightly-coupled approximation (where the photon mean
free path is much smaller that the scale we consider), we obtain:

ΘP,`(k,τ0)'
15
8

Θ2(k,τ∗)
`2 j`(kτ0)

(kτ0)2 (2.178)

'− 5k
6τ̇opt(τ∗)

Θ1(k,τ∗)
`2 j`(kτ0)

(kτ0)2 , (2.179)

where we have used the fact that, in the tightly-coupled approximation, Θ2 ' −4kΘ1/(9τ̇opt).
A number of important points need to be highlighted here:

• The E-mode polarization is sourced by the quadrupole Θ2(k,τ∗) of the temperature per-
turbations. Therefore, polarization fluctuations are strongly correlated with the tempera-
ture patterns, which implies that we can obtain cosmological information from CTE

` (see
Fig. 2.8).

• CEE
` is smaller than CTT

` by a factor of ∼Θ2
P,`(k,τ0)/Θ2

`(k,τ0)∼ (k/τ̇opt(τ∗))2.

• Since ΘP,`(k,τ0) ∝ Θ1(k,τ∗), we expect the EE power spectrum to exhibit an oscillatory
behaviour out of phase with Θ0(k,τ∗), and by the same token with CTT

` (see Fig. 2.8).
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Lensing

Photons from the last-scattering surface are affected by several effects as they propagate
in the post-CMB universe. We have already mentioned the effect of reionization and the
integrated Sachs-Wolf effect. One of the other main effects corresponds to the deflection
of photons by large-scale structures localized at z . 3 through the weak lensing effect. The
interested reader can refer to Ref. [45] for an in-depth study of this effect.

Fig. 2.9 shows the CMB temperature power spectrum CTT
` with and without the lensing

correction. We can see that the weak lensing effect has two main impacts: (i) it suppresses
the peaks of the CMB temperature power spectrum, and (ii) adds power on very small scales
(because the effect of weak lensing is negligible at large scales). The main observable of weak
lensing is the two-dimensional deflection field d̂(n̂), which is defined as the difference between
the direction of the incident photon coming from the CMB, n̂, and the direction of the photon
after undergoing this effect, n̂+ d̂(n̂). This effect changes the patterns of the temperature per-
turbations and it is therefore important to take it into account in order to extract the primary
CMB power spectra correctly. We define the lensing potential ϕ , related to the deflection
field according to d̂(n̂) ≡ ∇⊥ϕ , as

ϕ(n̂) =−
∫

τ0

τ∗
dτ

χ(τ∗)−χ(τ)

χ(τ∗)χ(τ)
(φ +ψ)(x=r(τ)n̂,τ) , (2.180)

where χ is the comoving distance defined in chapter 1. Note that weak lensing is sourced by the
metric perturbations φ and ψ , which in turn depend on the matter density perturbations δm via
Poisson’s equation. It is then possible to extract cosmological information from the harmonic
lensing power spectrum Cϕϕ

` , which depends on the matter power spectrum ∼
〈
δ 2

m
〉
.
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In the previous chapter, we detailed the linear perturbation theory of modern cosmology
within the ΛCDM model, which allowed us to describe the physics of the CMB. In particular,
we saw how it is possible to fit the full-shape of the CMB power spectra in order to extract
cosmological information. The objective is identical in this chapter, but this time for the matter
power spectrum. However, compared with CMB physics, there are two major complexities
when we want to extract cosmological information from the large-scale structure physics: (i) as
we approach small scales, linear perturbation theory breaks down, since the condition δm� 1
is no longer satisfied, which means that we have to develop a non-linear perturbation theory,
(ii) the matter power spectrum cannot be measured directly and we have to consider biased
tracers, which are massive objects that allow us to track the matter evolution of the Universe.
This section has two main objectives. First, we explain the physics associated with the matter
and biased tracer power spectra in linear and non-linear frameworks. Secondly, we show how
to extract information from the biased tracer power spectrum, both in the linear framework
(from the the redshift space distortion information and the BAO imprint on the galaxy power
spectrum), and in the non-linear framework (from fitting the biased tracer power spectrum
full-shape).

In this chapter, we first describe in Sec. 3.1 the physics associated with the matter power
spectrum in the framework of linear perturbation cosmology, while in Sec. 3.2 we explain the
biased tracer physics and how it is possible to extract cosmological information at the linear
level from the biased tracer power spectrum with the redshift space distortion information and
the BAO imprint on the galaxy power spectrum. Then, in Sec. 3.3, we go beyond the linear
regime and provide a more accurate description of the matter power spectrum using the standard
perturbation theory. Finally, in Sec. 3.4, we deal with the effective field theory of large-scale
structures and explain how this theory makes it possible to extract cosmological information
from the full-shape of the galaxy power spectrum. This final section introduces the theoret-
ical framework and motivations used throughout this thesis. Let us note that Secs. 3.1, 3.2
and 3.3 are based mainly on Ref. [9].

3.1 The linear matter power spectrum
In this section, we focus on the evolution of perturbations in the matter density field

δρm(k,τ), previously defined as

ρm(k,τ) = ρm(τ)+δρm(k,τ) (3.1)
= ρm(τ) [1+δm(k,τ)] , (3.2)

where δm = δρm/ρm. In particular, the material content of the Universe is composed of dark
matter, baryons and massive neutrinos, such that

δm =
δρm

ρm
=

δρc +δρb +δρν

ρc +ρm +ρν

. (3.3)

The main observable we consider in this section is the (linear) matter power spectrum Pm(k),
i.e., the two-point correlation function of the matter density field perturbation, defined as (see
Sec. 2.3.2 of the previous chapter)

Pm(k)δ 3(k− k′) = (2π)−3 〈
δm(k)δm(k′)

〉
. (3.4)
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Figure 3.1: Linear matter power spectrum of the ΛCDM model confronted with various probes, namely
CMB perturbations (Planck), galaxy clustering (SDSS/BOSS) and weak lensing (DES). Credit: ESA
and the Planck Collaboration.

Fig. 3.1 shows the ΛCDM matter power spectrum, confronted with various experiments,
and the aim of this section is to explain its shape and associated physics. This section
is based mainly on Ref. [9].

3.1.1 The (relevant) perturbation equations

First of all, we need to specify the set of equations we are going to use to obtain the matter
power spectrum. In what follows, we carry out a first fundamental approximation: we consider
that matter is composed solely of dark matter, implying that δm = δc. In reality, we would
need to add the effect of baryons and neutrinos in order to get an accurate description of the
matter power spectrum, but here we neglect these effects because they are subdominant. On
the other hand, let us note they are taken into account in the numerical resolutions using a
Boltzmann code. In addition, we need to consider radiation insofar as it had a decisive impact
in the early Universe, namely before matter-radiation equality: the evolution of gravitational
potentials at small-scales, i.e., modes that entered the horizon before matter-radiation equality,
is dependent on their coupling with radiation in the early universe. Finally, here is the set of
equations we are going to consider:

Boltzmann radiation :
{

Θ̇r,0 + kΘr,1 = φ̇

Θ̇r,1− k
3 =− k

3φ
; (3.5)

Boltzmann dark matter :
{

δ̇c + ikvc = 3φ̇

v̇c +
ȧ
avc =−ikφ

; (3.6)
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Einstein (00) : k2
φ +3

ȧ
a

(
φ̇ +

ȧ
a

φ

)
=−4πGa2

δρ . (3.7)

We can make a few brief comments on this set of equations:

• Boltzmann’s equations for radiation: we consider only Θ1 and Θ2, because we
saw in the previous chapter that before recombination photons can be characterised by
their first two moments (because the others are strongly damped by photon diffusion).
The impact of photons on the matter power spectrum is negligible after CMB, which
means that we only consider their impact before the last-scattering surface, at a < a∗.
Therefore, we consider here Eqs. (2.153) and (2.154), namely the first two moments of
the Boltzmann hierarchy in the tightly-coupled approximation, where we have dropped
the term ∝ τ̇opt which takes into account the interaction with baryons, since we are only
interested in dark matter perturbations. Note that we are also considering neutrinos in
their relativistic regime here. We neglect the higher order multipoles of neutrinos (namely
multipoles higher than Θν ,1), so that the first two Boltzmann moments are identical to
those of photons. This is why we have used Θr,0 and Θr,1 in Eq. (3.5), to avoid confusing
them with Θ0 and Θ1.

• Boltzmann’s equations for dark matter: it is simply the equations from Eqs. (2.49).
We simply used the fact that, without the neutrino cosmic shear, namely σν = 0, then
φ = ψ .

• Time-time component of the Einstein equations: this corresponds to Eq. (2.35),
together with the approximation φ = ψ . Let us note that δρ ' δρc + 4ρrΘr,0. This
equation is used to close the previous two sets of Boltzmann’s equations.

3.1.2 Solving the perturbation equations
Unfortunately, there is no analytical solution for δc that is valid for all regimes (i.e., on all

scales at all times), so it is necessary to solve these equations numerically. In what follows, we
nevertheless try to find analytical equations that are valid in some specific regimes, in order to
gain physical intuition. The final objective is to explain the shape of the power spectrum shown
in Fig. 3.1.

For the CMB, we have isolated two contributions for Θ [the first coming from the initial
conditions, and the second from the transfer function, namely Θ = R(k) ·T (k, n̂)]. We can
do the same here with the gravitational potential:

φ(k,a) = ψ(k,τ) =−3
5
R(k)×T (k)× D+(a)

a
. (3.8)

This prescription is made up of three contributions:

• The primordial curvature perturbation: as we saw in the previous chapter, it is pos-
sible to relate the super-horizon solution of φ with the primordial curvature perturbation
R [see Eq. (2.124)] as φ =−3/5 ·R. Note that this relationship is valid only for a super-
horizon mode that evolves in the matter domination era, and this corresponds to the initial
condition of a mode that enters the horizon during this period.
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• The transfer function: this function T (k) is used to describe the spatial evolution (in
k) of the gravitational potential, such that

T (k)≡ φ(k,alate)

φlarge−scale(k,alate)
, (3.9)

where alate means that we consider a period in the matter domination era, and where
φlarge−scale(k,alate) corresponds to the gravitational potential solution of a mode crossing
the horizon in the matter domination era. The transfer function thus corresponds to the
solution of the potential for each mode, normalised by the initial solution of that mode
in the matter domination period. The transfer function is used to quantify, at fixed time
(namely at alate), the difference in behaviour between a mode that crossed the horizon
during the radiation domination era and a mode that crossed the horizon during the matter
domination era.

• The growth factor: the growth factor D+(a) allows to quantify the time dependence of
the gravitational potential, such that

D+(a)
a
≡ φ(k,a)

φ(k,alate)
. (3.10)

This corresponds to the solution of the potential, for a given scale k, normalised by its
value at the time the transfer function is defined, i.e., at alate. We will show that for a
mode entering the horizon during the matter domination era, the potential is constant in
time, implying that D+(a) ∝ a for this period.

We need to bear in mind that we want to solve the solution of δc in order to obtain the matter
power spectrum. It is then important to find a mathematical relationship between the gravita-
tional potential φ and the (dark) matter overdensity δc. To do so, we use the Poisson equation
[see Eq. (2.43)], valid deep inside the horizon:

−k2

a2 φ = 4πGδρ , (3.11)

where δρ = ρmδm in the matter domination era. Note that the evolution of baryons follows the
evolution of dark matter (insofar as they no longer interact with photons after CMB and behave
like dark matter), which implies that baryons are taken into account in this equation. By using
the fact that ρm = Ωmρcrit,0a−3 and that 4πGρcrit,0 = (3/2)H2

0 , we obtain

δm(k,a) =−
3
2

k2a
ΩmH2

0
φ(k,a) (3.12)

=
2
5

k2

ΩmH2
0

R(k) T (k) D+(a) , (3.13)

which is valid only if a > alate and if k� aH. If we square this equation, we obtain a (relatively
accurate) formula for the linear matter power spectrum at late time for k� aH:

Pm(k,a) =
4

25
k4

Ω2
mH2

0
PR T 2(k) D2

+ (3.14)

=
8π2

25
As

Ω2
m

kns

H4
0 kns−1
∗

D2
+(a) T 2(k) , (3.15)
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where we have used the fact that PR = (2π2/k3)As(k/k∗)ns−1 [see Eq. (2.128)]. This equation
therefore allows us to directly link the matter power spectrum with the gravitational potential.
In other words, finding the solution to the gravitational potential, namely if we know D+(a)
and T (k), gives us direct access to the matter power spectrum. The rest of this section focuses
on the (approximate) solutions of these two functions.

3.1.3 The various analytical solutions
In order to obtain approximate analytical solutions of the transfer function, it is customary

to solve it for two cosmological periods, namely the radiation and matter domination periods,
and three regimes, namely the super-horizon regime (kτ � 1), the horizon entry (kτ ∼ 1) and
the sub-horizon regime (kτ� 1). Here we give some details of these different regimes, in order
to better understand the behaviour of matter throughout the history of the Universe:

• Super-horizon solution: if we consider a mode that has always remained in the super-
horizon regime, then we have already mentioned in the previous chapter that φMatter =
(9/10) φRadiation =−(3/5)R [see Eq. (2.124)]. This implies that:

φ(k,τ)
φ(k,0)

=

{
1 if τ < τeq
9
10 if τ > τeq

(3.16)

where φ is constant in both radiation and matter domination eras. According to
Eq. (2.102), δm = −(3/2)φ for super-horizon scales (and adiabatic perturbations),
implying that δm is also constant in time.

• Modes that crossed the horizon during matter domination era: for this regime we
can neglect the Boltzmann radiation equations, and solve only the Boltzmann dark matter
equations. We can show that (see below) δm ∝ a when we are in matter domination era.
We can then use the Poisson equation (3.11) in order to obtain the time dependence of the
gravitational potential:

φ ∝ a2 ·ρm ·δm ∝ a2 ·a−3 ·a∼ constant . (3.17)

Finally, a mode entering the matter domination era will see its gravitational potential
remain constant, while δm will become ∝ a. The important result here is that T (k) ' 1
for modes that have crossed the horizon after matter-radiation equality!

• Modes that crossed the horizon during radiation domination era: the last im-
portant case concerns the evolution of modes that have crossed the horizon before matter-
radiation equality. To do this, we need an equation that describes the evolution of δc in the
matter domination era for the sub-horizon modes that have corssed the horizon before τeq.
In this regime, photons are negligible, which means that we can use the two Boltzmann
dark matter equations, together with the Poisson equation (3.11). It is straightforward to
show that combining these equations (see Ref. [9]) leads to the Meszaros equation:

d2δc

dy2 +
2+3y

2y(y+1)
dδc

dy
− 3

2y(y+1)
δc = 0 , (3.18)

where y = a/aeq = ρm/ρr. This equation governs the evolution of dark matter overden-
sities for sub-horizon modes when radiation is negligible. We can show that the solution
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to the Meszaros equation can be expressed as a linear combination of a growing mode
D+(a) and a decaying mode D−(a)

δc(k,a) =C1D+(a)+C2D−(a) , (3.19)

where

D+(a) = a+
2
3

aeq , (3.20)

D−(y) = (y+
2
3
) ln
√

1+ y+1√
1+ y

−1−2
√

1+ y . (3.21)

This expression is valid from a = aeq to a . 0.1, namely after the radiation domination
era and before the dark energy domination era, for a mode deep inside the horizon. The
important result here is that at late time, when a� aeq (and y� 1), i.e., deep inside matter
domination era, D+(a) ' a and D−(a) ' (a/aeq)

−3/2, implying that the D−(a) solution
is subdominant during the matter domination era.

3.1.4 The transfer function
We now give an approximate solution of the transfer function that we can inject into

Eq. (3.15) to obtain an estimate of the matter power spectrum. To do this it is necessary (i)
to find the δc solution in the radiation domination era for a mode which is well within the
horizon in this period, and (ii) to equalise it with the solution of Eq. (3.19) in order to find the
value of the C1 coefficient. This term can in fact be determined by performing the following
boundary condition: δc(k,a < aeq) = δc(k,a > aeq), where δc(k,a > aeq) corresponds to
Eq. (3.19). It is possible to show (see Ref. [9]) that the solution of δc for a mode well within
the horizon during radiation domination era can be approximated as

δc(k,τ)' AR lnBkτ , (3.22)

where A and B are two integration constants. By equating Eq. (3.19) with Eq. (3.22) as well as
their derivatives, we can show that the growing mode behaves like

δc(k,a) =
3
2

AR(k) ln
(

4Be−3aeq

aH

)
D+(a) , (3.23)

where aH is the scale factor when the mode enters the horizon. We have neglected the decaying
mode here because, as we showed earlier, it is subdominant at late time. This equation then
describes the evolution in the matter domination era of a mode that entered the horizon during
the radiation domination era. We can compare this equation with Eq. (3.13), in order to get

T (k) =
15
4

ΩmH2
0

k2aeq
A ln

(
4Be−3aeq

aH

)
. (3.24)

Finally, we can obtain a final approximation for the transfer function

T (k)'
{

1 for k� keq

12.0
k2

eq
k2 ln

(
0.12 k

keq

)
for k� keq

, (3.25)

where for the regime k� keq we have used the result obtained above [see Eq. (3.17)]. For the
regime k� keq, we have used the fact that keq =

√
2ΩmH0a−1/2

eq .
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Figure 3.2: Evolution of the growth factor divided by the scale factor D+(a)/a as a function of the scale
factor a. Note that this figure only concerns time-scales that are well into the matter domination era (and
dark energy domination era). This figure shows also the evolution of the growth factor as a function of
several values of ΩΛ, the current dark energy density fraction, and w, the dark energy equation of state
parameter. Taken from Ref. [9].

3.1.5 The shape of the matter power spectrum

We now have all the tools to understand the shape of the matter power spectrum in Fig. 3.1.
If we inject Eq. (3.25) in Eq. (3.15), then we obtain

Pm ∼ knsT 2(k)∼
{

kns for k� keq
kns k−4 for k� keq

. (3.26)

Given that ns ' 1, we get

Pm ∼
{

k for k� keq
k−3 for k� keq

. (3.27)

This is a fairly precise description of the linear matter power spectrum of Fig. (3.1)!

3.1.6 The growth factor

Having quantified the scale dependence of the matter power spectrum through the trans-
fer function, we now need to determine its time dependence by determining an approximate
analytical solution for the growth factor. This is the last ingredient we need to fully char-
acterise the behaviour of the matter power spectrum in Eq. (3.15). To do this, we can con-
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sider these two equations

d
dτ

[
aδ̇m(k,τ)

]
=−ak2

φ(k,τ) , (3.28)

k2
φ(k,τ) =−4πGa2

ρmδm(k,τ) , (3.29)

where the first equation corresponds to the time derivative (with respect to τ) of the dark matter
continuity equation [see Eq. (3.6)] multiplied by a, and combined with the dark matter Euler
equation [see Eq. (3.6)], where we neglect φ̇ and vc. The second equation is simply the Poisson
equation for a mode deep inside the horizon. It is then straightforward to get the following
differential equation, which is nothing more than the Meszaros equation [see Eq. (3.18)]

d2δm

da2 +
d ln(a3H)

da
dδm

da
− 3

2
ΩmH2

0
2a5H2 δm = 0 . (3.30)

In the presence of dark energy (which we have not yet considered), the solution is

D+(a) =
5
2

ΩmH(a)
H0

∫ a

0

da′

(a′H(a′)/H0)3 . (3.31)

We plot in Fig. 3.2 the evolution of D+(a)/a as a function of a from this equation. We can see
that we obtain the aforementioned solution D+(a) = a in the matter domination era. When
dark energy starts to dominate, at 1+ z' 1.3 for ΩΛ = 0.69 and w =−1, then we have a decay
of the growth factor, and therefore of the matter overdensities δm.

Finally, let us note that it is customary to define the growth rate f , which quantifies the
variation of the growing mode D+(a) as a function of the scale factor a

f (a)≡ d lnD+(a)
d lna

' [Ωm(a)]0.55 , (3.32)

where the last equality comes from a fitting formula which is remarkably accurate within
the ΛCDM framework.

3.1.7 Impact of the ΛCDM parameters on the matter power spectrum

To close the section on the linear matter power spectrum, we describe the impact of the 6
ΛCDM parameters on this observable:

• As: from Eq. (3.15), where Pm ∝ As, it is clear that this parameter controls the amplitude
of the matter power spectrum, as it does for the CMB power spectra.

• ns: from Eq. (3.26), it is clear that this parameter controls the tilt of the matter power
spectrum, as it does for the CMB power spectra.

• ωc: given that keq =
√

2ωma−1/2
eq , this parameter controls the location of the turn-over

(and therefore of the total matter power spectrum). The more we increase this parameter,
the more the power spectrum shifts to the right.
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• ωb: this parameter mainly controls the behaviour of the BAO in the matter power spec-
trum, in particular its amplitude and the position of the peaks (see similar discussion for
the CMB temperature power spectrum). We have not yet discussed the BAO in the matter
power spectrum, but we shall do so later. In addition, ωb slightly controls the location of
the turn-over in the same way as ωc.

• H0: this parameter, like As, controls the overall amplitude of the matter power spectrum.
We saw earlier that dark energy suppresses the growth factor (see Fig 3.2), and that this
suppression is identical for all the scales considered (because the growing mode does
not depend on k). Since H0 is directly linked to ΩΛ, this parameter also controls the
suppression of the power spectrum. The greater this parameter, the more the matter power
spectrum is suppressed.

• τreio: trivially, this parameter has no influence on the matter power spectrum, insofar as it
quantifies the effect of reionization on photons.

3.2 Biased tracer statistics in linear perturbation theory
In the previous section of this chapter, we detailed the behaviour of the matter power spec-

trum, as we did for CMB in chapter 2. We saw that the CMB power spectra can be determined
directly from observations, since we can measure the temperature distribution (as well as the
polarization) of the photons coming from the last scattering surface. However, matter is mainly
composed of invisible dark matter, which makes it impossible to measure the matter power
spectrum directly (apart from lensing). Therefore, it is necessary to use biased tracers in or-
der to probe the large-scale matter distribution. The biased tracers correspond to observable
objects made of matter which track the matter evolution described earlier without behaving in
exactly the same way as the whole matter distribution (due to their dynamics, geometry, com-
position, distribution, etc.). In this thesis, we use two types of biased tracers, namely galaxies
and quasars. For instance, Fig. 3.3 shows the distribution of galaxies observed by the SDSS
Collaboration. In this figure, we can directly determine the two point correlation function of
the galaxy distribution, and therefore infer the galaxy power spectrum. In other words, galaxy
redshift surveys (such as SDSS) measure the 3D positions of each galaxy, and then derive the
3D galaxy power spectrum. The main objective of the rest of this chapter is to relate the biased
tracer power spectrum, i.e., what is measured by the large-scale structure Collaborations, with
the linear matter power spectrum defined above, in order to extract cosmological information
from large-scale structure data. In this section, we carry out this work within the framework
of the linear perturbation theory, while in the following sections we perform it in the mildly
non-linear regime in order to (significantly) improve the accuracy of the theoretical prediction
of the biased tracer power spectrum. In the following we use galaxies as an example of bi-
ased tracers, but everything we claim is valid for other biased tracers, such as quasars. This
section is based mainly on Ref. [9].

3.2.1 Biased tracers
In order to obtain the galaxy power spectrum, four elements need to be taken into account

in order to relate it to the matter power spectrum: (i) the fact that the galaxy clustering is biased
with respect to the matter clustering, (ii) the redshift space distortion, (iii) the Alcock-Paczyński
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Figure 3.3: Galaxy distribution observed by the SDSS collaboration as a function of angle and redshift.
In the remainder of this thesis we will use data directly from these observations. Credit: SDSS Collabo-
ration.

effect, and (iv) the stochastic behaviour of galaxy clustering. These four features are specific to
the biased tracers used and therefore do not concern the matter distribution. In the following,
we describe these four effects in detail.

Bias parameter

In this section (because we are still in the framework of linear perturbation theory), we
assume that there is a linear relationship between the galaxy density field perturbations and
the matter density field perturbations:

δg(x,τ) = b1(τ) ·δm(x,τ) , (3.33)

where b1 is the linear bias parameter, which encodes the specific behaviour of galaxy clustering
with respect to the specific behaviour of matter clustering. In other words, the density perturba-
tion of matter is not the same as the density perturbation of galaxies, and we need to takes it into
account thanks to the b1 parameter. This parameter depends on the object under consideration
(type of galaxy, quasars, etc.) as well as the redshift.
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Redshift space distortion

If the frame of reference of galaxies were the same as the frame of reference of matter, then
we would simply have the following relationship: Pg(k,τ) = b2

1 ·Pm(k,τ). However, things are
not quite so simple, because the measured redshift of galaxies contains a contribution from the
expansion of the Universe as well as a Doppler shift due to the particular galaxy velocities.
Cosmological redshift is key to measuring distances in the Universe, and it is therefore
necessary to subtract the redshift contribution of the particular velocity of the galaxies in order
to be able to deduce the distance of the galaxies from us. Furthermore, the galaxy velocity
field is correlated with the galaxy density field, which implies that the galaxy velocities are
not random and will therefore modify the galaxy statistics. This means that we cannot use the
standard reference frame of cosmology (as has always been the case up to now) and that it is
necessary to make a change of coordinate that corrects the position of the galaxies by taking
into account the Doppler effect.

The observed redshift zobs of the light emitted from a distant object sitting on a cosmo-
logical background is given by:

1+ zobs = (1+ z)(1+δ zpec) , (3.34)

where δ zpec ' v(z) · n̂/c, with c the speed of light, arises from the peculiar velocity v of the
object in the direction of the line-of-sight n̂ with respect to its local cosmological background
(labelled with redshift z). Eq. (3.34) follows straightforwardly from noticing that: (i) the pe-
culiar velocity of the object with respect to the local comoving background induces a redshift
1+ δ zpec ≡ λc/λe, where λe is the emitted physical wavelength while λc is the wavelength
seen in the local comoving frame, (ii) the cosmological expansion induces another redshift
1+ z≡ λo/λc between the wavelength λo that we observe today in our local inertial frame with
respect to the wavelength λc, (iii) the total redshift is the shift between the physical emitted
wavelength λe and the observed one λo: 1 + zobs = λo/λe. For what follows, it is conve-
nient to rewrite Eq. (3.34) as:

zobs = z+(1+ z)δ zpec . (3.35)

Let us recall that the comoving distance χ(z) from us at redshift z = 0 to the observed object
sitting on a cosmological background at redshift z, is given by:

χ(z)≡
∫ dt

a
=
∫ a0

a

da′

a′2 H(a′)
=
∫ z

0

dz′

H(z′)
. (3.36)

The line-of-sight distance associated to the volume distortion from the peculiar velocity v

of the object measured in its local comoving frame at redshift z is given by δ χ ′(δ zpec) '
δ zpec/H(z), assuming that the change in the background d(H−1(z))/dz around z is small with
respect to δ zpec. Seen from our local comoving frame, this distance is rescaled by a0/a ≡
(1 + z), then yielding:

δ χ ≡ (1+ z)
δ zpec

H(z)
' (1+ z)

v(z) · n̂
H(z)

, (3.37)

assuming that the velocity is non-relativistic such that δ zpec ' v(z) · n̂/c. Thus, we get that
the comoving coordinate in redshift space s ≡ χ(zobs) is related to the comoving coordinate
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Figure 3.4: The effect of redshift space distortion on galaxy clustering in the linear and non-linear
regimes. The observer is located far away below this figure. In the linear regime (considered here), an
overdense region in real space (shown in dashed line) is compressed along the line of sight in redshift
space (shown in solid line). The arrows indicate the direction of galaxy velocities within the cluster.
Taken from Ref. [9].

in real space x ≡ χ(z) through:

s(z)' x(z)+(1+ z)
v(z) · n̂
H(z)

n̂ = x+
v · n̂
aH

n̂ . (3.38)

In this equation, x is the true three-dimensional position of a given galaxy obtained by
correcting the measured distance s(z) for the Doppler effect, and v · n̂ = v‖ is the projection of
the galaxy velocity along the line of sight.

Before moving on to the other effects, let us describe what redshift space distortion
(RSD) is, and its impact on galaxy clustering. The problem is the following: let us consider
a overdense galaxy region (typically a galaxy cluster), where all the galaxies are attracted
towards the center. The galaxies that are closest to an observer located far from the galaxy
cluster will therefore move away from the observer, so that the Doppler effect will add an
additional redshift to the cosmological one. These galaxies are therefore perceived as being
further away from the observer. Similarly, the most distant galaxies move towards the observer,
so the contribution of the Doppler effect will be a blueshift. These galaxies are therefore
perceived as being closer to the observer. The redshift space distortion effect is illustrated
in Fig 3.4, and we can understand intuitively that the number density of galaxies is larger in
redshift space than in real space (because the number of galaxies is conserved between the real
space volume, in dashed line, and the redshift space volume, in solid line).

We can anticipate a little by mentioning the effect of RSD for non-linear scales. For these
scales, the galaxy velocities become large as the typical distance considered decreases (because
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Figure 3.5: The effect of the Alcock-Paczyński distortion on galaxy clustering. Taken from Ref. [9].

we are in the non-linear regime), which implies that the v‖/aH term becomes larger than the
typical distance separating two galaxies. In Fig 3.4, we can see that this implies (i) an elonga-
tion (and not a compression as in the linear case) of the overdense volume when we go from
real space coordinates to redshift space coordinates, and (ii) that the quadrupole moment of
the galaxy power spectrum has the opposite sign to the linear case (because the galaxies have
swapped places relative to the centre of the overdensity) [9]. This phenomenon therefore leads
to an elongation of the galaxy clusters along the line of sight at small scale. In the type of
diagram shown in Fig 3.3, the galaxy clusters are then elongated towards the centre. For this
reason, this phenomenon is often referred to as fingers of god in the literature.

Alcock-Paczyński effect

Eq. (3.38) allows us to connect the redshift space coordinates s(z) with the real space
coordinates x(z), where x(z) corresponds to the comoving distance in real space along the
line of sight, i.e., x(z) = χ(z) · n̂. It follows that if we want to determine the redshift space
coordinates s(z) of a galaxy (in order to match the observations) then we need to know the
real space comoving distance of this galaxy a posteriori. We therefore need to have an idea of
the expansion history of the Universe before we can measure it with the galaxy in question
(remember that this measurement is necessarily made in redshift space in order to eliminate the
contribution of the Doppler effect).

Consequently, it is necessary to postulate a fiducial cosmology, i.e., a fiducial value of Hfid
0

and Ωfid
m , which allows us to assume a comoving distance before having measured it:

χ
fid(z) =

∫ z

0

dz′

Hfid
0

√
Ωfid

m a−3 +(1−Ωfid
m )

. (3.39)
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Figure 3.6: Effects of the redshift space distortion (or Doppler) and Alcock-Paczyński contributions on
the observed comoving distance. Taken from Ref. [9].

This fiducial comoving distance is related to the actual one in the following way:

χ
fid(z) = χ(z)+δ χ(z) . (3.40)

The impact of the fiducial cosmology on galaxy clustering is known as the Alcock-Paczyński
(AP) effect. We will see that this effect plays a key role in extracting cosmological information
from the BAO imprint on the galaxy power spectrum. In any case, it is therefore necessary to
perform the transformation x(z)→ x(z)+δ χ(z) n̂ in the redshift space coordinates s(z):

s(z) = x(z)+
v‖
aH

n̂ → s(z) = x(z)+
(

δ χ(z)+
v‖
aH

)
n̂ . (3.41)

Fig. 3.5 shows the effect of the Alcock-Paczyński distortion on galaxy clustering. At the lowest
order, all the galaxies are displaced from their true position (obtained with the true cosmology)
by a quantity δ χ · n̂, parallel to the line of sight. However, in reality, δ χ is not constant with
redshift (because the distance-redshift relation evolves independently between the true and
fiducial cosmologies), which implies that the furthest galaxies are not moved by the same
distance as the nearest galaxies.

Finally, the redshift space distortion and the AP effect are two contributions that must be
taken into account in the observed comoving distance in order to reconstruct the actual expan-
sion history of the Universe. Fig 3.6 summarises these two contributions and their additive
effect on the observed distance.

Stochastic behaviour of galaxies

Because galaxies are discrete tracers, the two-point correlation function of the galaxy field
is not zero if we remove gravity (i.e., if we remove any physical correlation). This leads us to
model a noise term PN in the galaxy power spectrum which takes into account statistic correla-
tions that have no physical origin. In this section, we consider that galaxies are Poisson-sampled
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from the underlying (continuous) matter field, which leads to the following modification in
the linear galaxy power spectrum:

Pg(k,τ)→ Pg(k,τ)+PN ; PN =
1
ng

, (3.42)

where ng is the mean number density of galaxies. The noise term PN , called shot noise, is scale-
independent, and this approximation only works (as we shall see later) at very large scales.

3.2.2 Galaxy density field perturbation
Following Refs. [46, 47] (see also Refs. [48, 49]), we can derive the relation between the

density field in redshift space (that we denote with a subscript “r”) at comoving redshift-space
coordinate s with the density and velocity fields in real space at comoving real-space coordinate
x. As we saw earlier in Fig. 3.4, the number of galaxies is conserved between a volume in real
space and a volume in redshift space. Therefore, mass conservation between the infinitesimal
volume d3x in real space and the infinitesimal volume d3s in redshift space implies:

ρg(x)d3x = ρg,r(s)d3s = ρg,r(s)

∣∣∣∣
∂s

∂x

∣∣∣∣d3x , (3.43)

where
∣∣∣ ∂s

∂x

∣∣∣ ≡ J denotes the Jacobian of the transformation. The overdensity field in redshift
space thus transforms as:

1+δg,r(s) =

∣∣∣∣
∂s

∂x

∣∣∣∣
−1

(1+δg(x)) . (3.44)

In Fourier space, the overdensity relation between redshift space and real space then reads:

δg,r(k)≡
∫

d3se−ik·s
δg,r(s)

= δg(k)+
∫

d3xe−ik·x
(

e−ik·n̂ v
aH ·n̂−1

)
(1+δg(x))

= b1δm(k)+
∫

d3xe−ik·x
(

e−ik·n̂ v
aH ·n̂−1

)
(1+b1δm(x)) . (3.45)

Note that in this equation we have not introduced δ χ from Eq. (3.41), which takes into account
the AP effect, because we only want to consider the correction due to the peculiar velocity. We
will look later at the effect of δ χ on the galaxy power spectrum. Eq. (3.45) connects δg,r(k), the
galaxy overdensities in redshift space and in Fourier space, with δm and v, the matter overdensity
field and the galaxy velocity field in real space. As we are working in the linear regime, it is
possible to simplify this equation by noting that v‖/aH � 1: 1

δg,r(k)' b1δm(k)+
∫

d3xe−ik·x
(
−ik · n̂ v(x)·n̂

aH

)
. (3.46)

Alternatively, we can derive the same relation from the Lagrangian description that relates
both the density in real space and the density in redshift space to the density at some initial

1This means that the galaxy velocities are significantly lower than the expansion velocity of the Universe. We
saw earlier that when this condition is not met, we have to consider the non-linear regime.
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time. In real space, the position of the object in Lagrangian coordinate x, at time t, is given by
its initial position q and the displacement m(q, t) from its initial position:

x(q, t) = q+m(q, t) , (3.47)

where x are the Eulerian coordinates used above. For dark matter, the overdensity
field is given by:

1+δm(x, t) =
∫

d3qδD(x− q−m(q, t)) . (3.48)

For biased tracers, this becomes:

1+δg(x, t) =
∫

d3qFL δD(x− q−m(q, t)) , (3.49)

where FL ≡ FL
[
δ (q, t),∂ 2δ (q, t), . . .

]
is the Lagrangian halo biasing function. Fourier trans-

forming the above, the real-space galaxy overdensity reads:

(2π)3
δD(k)+δg(k, t) =

∫
d3qFL e−ik·(q+m(q,t)) . (3.50)

In redshift space, the position in Lagrangian coordinates is given by:

s(q, t) = q+m(q, t)+
(

ṁ(q, t)
aH

· n̂
)

n̂ . (3.51)

Eq. (3.50) thus becomes:

(2π)3
δD(k)+δg,r(k, t) =

∫
d3qFL e

−ik·
(
q+m(q,t)+

(
ṁ(q,t)

aH ·n̂
)

n̂
)

=
∫

d3x(1+δg(x))e−ik·xe−ik·n̂ v
aH ·n̂ , (3.52)

where we have used Eq. (3.49) to go to the second line. We thus find the same relation between
the overdensities in redshift space and real space:

δg,r(k) = δg(k)+
∫

d3xe−ik·x
(

e−ik·n̂ v
aH ·n̂−1

)
(1+δg(x)) . (3.53)

In order to determine the galaxy power spectrum in redshift space as a function of the matter
power spectrum in real space, it is necessary to find a relationship that relates v with δm in order
to inject it into the equation Eq. (3.46), which we rewrite here for the sake of clarity:

δg,r(k)' b1δm(k)+
∫

d3xe−ik·x
(
−ik · n̂ v(x)·n̂

aH

)
. (3.54)

To do so, we can notice that at late time (i.e., z . 10), baryons cool down and then have the
same dynamics as cold dark matter, which implies that δc = δb and vc = vb. We can then
use the perturbed continuity equation:

δ̇m + ik · vm = 3φ̇ , (3.55)
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where δm = δc+δb and vm = vc+vb. For sub-horizon modes, one can neglect the right-hand side
(since the potential is constant in matter domination era, as already mentioned in Sec. 3.1.3).
Using the fact that δ̇m = (Ḋ+/D+) · δm [since, from Eq. (3.19), δc(k,a) = C1(k) ·D+(a)], one
can express the matter velocity in terms of the matter density perturbation as

vm(k,τ) =
ik
k2

Ḋ+

D+
δm(k,τ) = aH f

ik
k2 δm(k,τ) , (3.56)

where f = d lnD+/d lna is the linear growth rate [see Eq. (3.32)]. This relationship is only
valid within the framework of linear perturbation theory, i.e., on a very large scale.

However, if we assume that the tracer velocity field is unbiased, 2 then the peculiar velocity
of galaxies v in Eq. (3.54) is nothing more than the matter velocity vm at the location of the
galaxies in question, implying that v= vm. If we now inject Eq. (3.56) into Eq. (3.54), we obtain

δg,r(k)' b1δm(k)+
∫

d3xe−ik·x (−ik · n̂ 1
aH

)∫ d3k′

(2π)3 eik′xaH f
ik′

k′2
δm(k′) · n̂

= b1δm(k)+ f
∫ d3k′

(2π)3 δm(k′)
(
k · n̂ · k

′

k′2
· n̂
)∫

d3xei(k′−k)·x , (3.57)

where the last integral leads to (2π)3 δ
(3)
D (k′− k). As a result, we end up with

δg,r(k) =
[
b1 + f µ

2]
δm(k) , (3.58)

where µ = n̂ · k̂ is the cosine of the angle between the wavevector k and line of sight n̂. Note that
to obtain this result, we have implicitly carried out the distant-observer approximation, namely
the approximation that the observer sees all the galaxies along the direction n̂. This direction
often corresponds to the direction of the centre of the sky area probed by the large-scale
structure survey in question.

3.2.3 The linear galaxy power spectrum
It is now trivial to obtain the linear galaxy power spectrum in redshift-space [by

squaring Eq. (3.58)], found by Nicholas Kaiser in 1987 [50], as a function of the linear
matter power spectrum

Pg,r(k,µ,a) =
[
b1 + f µ

2]2 Pm(k,a)+
1
ng

, (3.59)

where we (artificially) add the shot noise contribution (see Sec. 3.2.1). As previously stated,
galaxy overdensities are stronger in redshift space than in real space (where Pg = b2

1 Pm), since
f µ2 ≥ 0. Note that this does not apply to a perturbation perpendicular to the line of sight
(since µ = 0 in this case). In addition, it should be remembered that Eq. (3.59) only takes into
account the effect of redshift space distortion on the galaxy power spectrum and not the AP

2We will come back to this assumption later, as it follows directly from the equivalence principle of general
relativity.
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effect (which we deal with below).

However, it is not possible to accurately fit the measured galaxy power spectrum with this
formula (see Fig. 3.16). In fact, this formula is only valid on very large scales, and therefore
cannot be used to fit the full shape galaxy power spectrum, but only very small modes. To
overcome this issue, we can extract information from the galaxy power spectrum using the
f σ8 information, instead of fitting the galaxy power spectrum full-shape. The σ8 parameter
corresponds to the root mean square of matter fluctuations on an 8h−1Mpc scale, defined as

σ
2
8 =

∫ k3

2π2 Pm(k)W 2
8 (k)d lnk , (3.60)

where Pm(k) is the linear matter power spectrum, and W8(k) is a window function describing
a sphere (in Fourier space) with a (historically chosen) radius of 8 h−1Mpc. There are several
choices for the window function W8(k), but the most popular one is undoubtedly the Fourier
transform of the top-hat window function:

W8(k) = 3
sin(kR)− kRcos(kR)

(kR)3 , (3.61)

where R= 8 h−1Mpc. As already mentioned, and as we shall discuss in detail in the introduction
of part III, this parameter is subjected to a tension within the ΛCDM model between its local
determination and its distant determination under the assumption of the ΛCDM model. In all
cases, the large-scale structure surveys give us the opportunity to measure this parameter in
combination with f , the linear growth rate. To do this, we need to get rid of the µ dependence
of the galaxy power spectrum using a Legendre polynomials decomposition:

Pg(k,µ) = ∑̀Pg,`(k)L`(µ) , (3.62)

Pg,`(k) =
2`+1

2

∫ 1

−1
dµ Pg(k,µ)L`(µ) . (3.63)

The first three non-zero multipoles are the monopole (` = 0), the quadrupole (` = 2) and the
hexadecapole (` = 4). Using the parameter β = f/b1, one has:

Pg,`=0(k) =
(

1+
2
3

β +
1
5

β
2
)

b2
1Pm(k) , (3.64)

Pg,`=2(k) =
(

4
3

β +
4
7

β
2
)

b2
1Pm(k) , (3.65)

Pg,`=4(k) =
8

35
β

2b2
1Pm(k) . (3.66)

There are a number of important points to be made here:

• All odd multipoles are equal to zero. In real space, the Universe is isotropic, but in redshift
space this isotropy is broken, because we have now a privileged direction, that of the line
of sight (see Fig. 3.4). However, there remains a residual symmetry, a consequence of
the isotropy in real space, which is the invariance of the direction along the line of sight.
In other words, the power spectrum must be invariant under the µ →−µ transformation,
which implies that all odd multipoles are zero (because they involve odd powers of µ).
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Figure 3.7: Various f σ8 measurements from different clustering experiments using the method explained
here. Grey bands correspond to the 68% and 95% C.L. of the ΛCDM fit to the Planck data (using the
TT, EE, TE and lensing power spectra). Taken from Ref. [11].

• We can quantify the impact of the redshift space distortion on the monopole by taking
f = 1 [valid for a matter dominated Universe, as shown by Eq. (3.32)] and b1 = 2 (valid
for the BOSS CMASS galaxy sample at z = 0.57). Then, the ratio Pg,`=0(k)/[b2

1Pm(k)]∼
1.4, which means that the RSD modifies the monopole (i.e., the isotropic part of the linear
galaxy power spectrum) by 40%, which is a significant effect!

• Last but not least, if we integrate these multipoles as
∫ k3

2π2W 2
8 (k)d lnk, then Eqs.(3.64)-

(3.66) are modified as Pm(k)→ σ2
8 . This modification allows us to use the σ8 parameter

instead of using the unknown (in the sense that we cannot measure it) matter power spec-
trum. These three multipoles allow us to obtain several combinations of f and b1 in order
to disentangle the effects of each of these parameters on the galaxy power spectrum. This
then provides us a measure of f σ8 and b1σ8, where the former contains cosmological
information and the latter galaxy information. The b1σ8 combination is therefore consid-
ered more as a nuisance parameter.

In Fig. 3.7, we show the measurement of f σ8 from different experiments, together with the
ΛCDM fit to the Planck data. We can see that the ΛCDM model provides good agreement
between the clustering data and the CMB data for the f σ8 information. Note that in the re-
mainder of this thesis we will be making considerable use of data from SDSS/BOSS DR12,
commonly referred to as “BOSS”, and SDSS/BOSS DR14, commonly referred to as “eBOSS”
(and a little from MGS and 6dFGS as well).
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3.2.4 Alcock-Paczyński parameters and BAO
Measuring f σ8, commonly referred to as redshift space distortion information, is therefore

a first way of extracting cosmological information from the galaxy power spectrum in the
linear regime (although often some non-linear corrections are made to determine f σ8).
There is actually a second popular way of extracting cosmological information in the linear
regime using the BAO part of the galaxy power spectrum. Previously, we had only taken
into account the effect of redshift space distortion on the power spectrum and not the AP
effect. It is now time to understand how it is possible to determine the true cosmology us-
ing the BAO part of the galaxy power spectrum, and to extract cosmological information from it.

As we explained earlier, it is necessary to assume a fiducial cosmology in Eq. (3.38) in order
to connect the redshift space coordinates s(z) with the real space coordinates x(z), where x(z) =
χ(z) · n̂. In particular, we need this fiducial cosmology in order to transform the observed galaxy
position in the system (θ , φ , z), where θ and φ are the angles used to position the galaxy in the
sky, into a 3D position in real space, xobs = (x1

obs, x2
obs, x3

obs). We can easily show that the 3D
position in real space obtained from the fiducial cosmology is related to the true one according to

(
x1, x2)=

[
1− δ χ(z)

χfid(z)

](
x1

obs, x2
obs
)
, (3.67)

x3 =

[
1− δH(z)

Hfid(z)

]
x3

obs , (3.68)

where δ χ(z) = χfid(z)− χ(z), δH(z) = H(z)−Hfid(z), and z is the central redshift of the sky
area probed. To obtain the second relationship, we used the fact that x3

obs = χfid(z)' z/Hfid(z)
and x3 ' z/H(z). Note that the transverse distortion [quantified by the transverse coordinates
(x1, x2)] is different from the distortion along the line of sight (quantified by the parallel co-
ordinate x3). The AP effect then generates a general elliptical distortion (see Fig. 3.5). It is
customary to parametrize the system of Eqs. (3.67)-(3.68) as:

x(xobs) =
(
[1−α⊥]x1

obs, [1−α⊥]x2
obs, [1−α‖]x

3
obs
)
, (3.69)

α⊥ =
δ χ

χfid

∣∣∣∣
z=z

; α‖ =
δH
Hfid

∣∣∣∣
z=z

, (3.70)

where α⊥ and α‖ are the two AP parameters evaluated at z = z, assuming that the redshift
slice is narrow. We can then express the true values of the comoving distance and the Hubble
parameter as a function of the AP parameters as

χ(z) =χ
fid(z)[1+α⊥] , (3.71)

H(z) =Hfid(z)[1+α‖] . (3.72)

Therefore, if we can measure the AP parameters, then we can directly infer the true values of
H and χ , which is crucial information for knowing the (true) expansion history.

We now have all the tools we need to correct the galaxy power spectrum of the
AP effect. To do this, we need to evaluate the galaxy power spectrum at z = z, and
at the corrected wavevector:

Pg(kobs,µ,z) =
[
b1 + f µ

2]2 Pm(k,z)
∣∣∣
k=([1+α⊥]k1

obs, [1+α⊥]k2
obs, [1+α‖]k3

obs)
+

1
ng

. (3.73)
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Figure 3.8: Ratio between the galaxy power spectrum P(k) and the smooth galaxy power spectrum
Psmooth(k), namely P(k) without the BAO feature, for the monopole of the BOSS CMASS sample. The
solid line corresponds to the ΛCDM model with a correction for the AP effect (by adjusting α⊥ and α‖),
which produces a general shift along the k dimension. Taken from Ref. [51] (with an adaptation from
Ref. [9]).

We thus obtain a formula for the linear galaxy power spectrum that depends directly on kobs,
the wavevector obtained with the fiducial cosmology, since k has been corrected for the AP
effect using the α⊥ and α‖ parameters. In other words, correcting the AP effect in the galaxy
power spectrum means shifting the wavevector according to the correct cosmology. Note
that Eq. (3.73) takes into account all the aforementioned effects, i.e., the contribution of the
biased tracer, the redshift space distortion, the Alcock-Paczyński distortion and the stochastic
contribution.

We now explain how we can measure AP parameters using the galaxy power spectrum, in
order to infer the true value of H(z) and χ(z). To do so, we can use the baryonic acoustic oscilla-
tion (BAO) imprint on the linear matter power spectrum. In Fig. 2.2, we mentioned the fact that
the baryon density field underwent an oscillatory behaviour for modes that entered the horizon
before the last-scattering surface epoch. Consequently, when we take baryons into account, the
matter power spectrum has low amplitude oscillations around keq ∼ 0.1hMpc−1, as shown in
Fig. 3.8. These oscillations are small, because the baryon fraction is low compared with that of
dark matter, but these oscillations are well measured. The physical origin of these oscillations is
therefore the same as those of the CMB, namely the propagation of sound waves in the primor-
dial plasma. We saw earlier that the apparent angular size of the characteristic distance travelled
by a sound wave at τ∗ (corresponding to the position of the first CMB peak) is quantified by the
angular acoustic scale at recombination θs [see Eq. (2.162)]: θs = rs(z∗)/DA(z∗). This scale is
determined at the moment when photons decouple from baryons, i.e., at z = z∗. However, there
are many more photons than baryons in the Universe, since η ≡ nb/nγ = 6.0 ·10−10. This means
that it is much less likely that a photon interact with a baryon (from the point of view of photons)
than a baryon interact with a photon (from the point of view of baryons). However, when the
photons decouple from the baryons, at z = z∗, the baryons continue to interact significantly with
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the photons. It is therefore necessary to introduce a new period at which baryons decouple from
photons, namely the baryon-drag epoch zdrag = 1059.94±0.30 < z∗ = 1089.92±0.25 (accord-
ing to Planck [11]). We can then define the sound horizon seen at baryon-drag epoch rs(zdrag),
and therefore the angular acoustic scale at this time. In particular, galaxy survey measure the
combinations rs(zdrag)H(z) and rs(zdrag)/DA(z), which can be summarized as

θg =
rs(zdrag)

DV (z)
, (3.74)

where DV (z) = [D2
A(z) · z/H(z)]1/3 is the volume average of the comoving distances in the

directions parallel (χ ' z/H) and perpendicular (DA) to the line of sight. The angle θg typically
summarizes the information from the BAO. In Fig 3.9, we show various angular acoustic scale
measurements, obtained from different clustering experiment, and we show that the current
values of θs are in good agreement with the ΛCDM fit to the Planck data. The angular acoustic
scale (either the one from the last-scattering surface or the one from the galaxy surveys) is a
standard ruler, as already mentionned in chapter 1 [see Eq. (1.69)]. Indeed, the comoving sound
horizon at baryon-drag epoch rs(zdrag) = 147.09± 0.26 Mpc and at recombination rs(z∗) =
144.43± 0.26 Mpc (according to Planck [11]) correspond to two physical processes whose
intrinsic distance is known in a given cosmological model (in this case ΛCDM). The second
advantage of the comoving sound horizon at baryon-drag epoch is that it is fixed (insofar as it
depends on the history before the baryon-drag epoch), and therefore does not depend on the
redshift of the galaxy survey. Finally, note that by analogy with the CMB [see Eq. (2.160)],
the position of the peaks are located at (see Fig. 3.8)

kpeak(τdrag) =
nπ

rs(τdrag)
, with n = 1,2,3, ... . (3.75)

If we go back to Eq. (3.73), the standard ruler established by the BAO is used to calibrate
the position of the galaxy power spectrum along the k axis. In other words, according to the
true cosmology we should have the first peak at k ∼ π/rs(zdrag) ∼ 0.02hMpc−1 (see Fig. 3.8),
but we detect it at an apparent scale kobs(k) which is different from k, because of the fiducial
cosmology. Given that rs(zdrag) is extremely well measured by the CMB (which makes it a
standard ruler) it is then possible to determine the real position of the peaks [see Eq. (3.75)].
This allows us to correct the position of the galaxy power spectrum along the k axis and to
have access to α⊥ and α‖, since in Eq. (3.73) we have a direct relationship between k and kobs
that depends solely on the AP parameters. We can then infer the true value of H(z) and DA(z)
from Eqs. (3.71) and (3.72). It should be pointed out that this method is very robust insofar as
the BAO physics is very well characterised and we know a posteriori the intrinsic value of the
characteristic distance of the BAO oscillations in the galaxy power spectrum. In Fig. 3.10, we
show the measurement of H(z) from different clustering experiments, together with the ΛCDM
fit to the Planck data. We can see that the ΛCDM model provides again a good agreement
between the clustering data and the CMB data for this parameter.

We have seen here two methods for extracting cosmological information from the galaxy
power spectrum at linear order: (i) the redshift space distortion information f σ8 and (ii) the ex-
traction of the AP parameters from the BAO shape. These two methods will be used frequently
in this thesis, and one of the main objectives will be to go further and extract cosmological
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Figure 3.9: Various angular acoustic scale measurements, obtained from different clustering experi-
ments, normalized to the corresponding parameter obtained by the ΛCDM fit of the Planck data. What
is shown here is 1/θg = DV (z)/rs(zdrag). Grey bands correspond to the 68% and 95% C.L. of the ΛCDM
fit to the Planck data (using the TT, EE, TE and lensing power spectra). Taken from Ref. [11].

information by fitting the full shape of the galaxy power spectrum, exactly as we have done
with the CMB power spectra. Let us note that the combination of this two methods used here
will be referred to as “BAO/ f σ8” in the remainder of this thesis, which corresponds to the
measurement of f σ8 (see Fig. 3.7), H(z) (see Fig. 3.10) and DA(z).

3.3 Beyond the linear theory

Up to now, we have remained solely within the linear perturbation framework. In particular,
in the CMB theory we have always used the linear regime, and this was justified by the fact that
we always have δa � 1 and φ , ψ � 1. This implies, as we have seen, that the linear regime
is sufficient to accurately fit the CMB data and derive cosmological information from the full
shape of the CMB power spectra. However, things are not that simple at late time. As we have
seen, in the framework of linear perturbation theory, we extract cosmological information from
the galaxy power spectrum with the redshift space distortion (i.e., f σ8) and the BAO shape
(i.e., α⊥ and α‖). We have to use these two “tricks” because it is not possible to fit the galaxy
power spectrum precisely with linear perturbation theory. Indeed, as we approach small scales,
linear perturbation theory breaks down, since the condition δm � 1 is no longer satisfied. It
is possible to determine the non-linear scale kNL at which non-linearities become so important
that we leave the linear framework. To do so, we can use the variance of the matter overdensity
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Figure 3.10: Various measurements of the comoving Hubble parameter aH(z) from different clustering
experiments using the method explained here. Note that parameter rs(zdrag) has been calibrated using
Planck data in order to extract α‖ and then H(z), as explained in the main text. The blue point corresponds
to the local Hubble determination from the SNIa calibrated with the cepheids, leading to the so-called
Hubble tension (see introduction of part III). Grey bands correspond to the 68% and 95% C.L. of the
ΛCDM fit to the Planck data (using the TT, EE, TE and lensing power spectra). Taken from Ref. [11].

field [see Eq. (2.114)] generated by the neighbouring modes closely centred on k, with ∆→ 0:

σ
2 ≡ 1

∆

∫ lnk+∆/2

lnk−∆/2
d lnk′ Pm(k′,a)'Pm(k,a) =

k3Pm(k,a)
2π2 . (3.76)

The linear regime corresponds to the regime where Pm(k,a)� 1, namely when the variance
of the density field perturbation is low, while non-linearities start to become important when
Pm(k,a)& 1. We can easily show that when Pm(k,a)∼ 1, then kNL(a = a0)∼ 0.25hMpc−1.
As we will see in the rest of this thesis, being able to describe the matter and galaxy power
spectra precisely up to k = 0.25hMpc−1 makes it possible to obtain a very rich amount of cos-
mological information. However, although in linear perturbation theory each k mode evolves
independently, this is no longer the case in the non-linear framework (see below). This im-
plies that each mode is in fact coupled with the other modes, and that an inaccurate description
of the large modes (typically k & kNL) will lead to a significant theoretical error on the small
modes (typically k . kNL), even if they are located in the linear regime. It is therefore nec-
essary to take these non-linearities into account in order to have an accurate description of
the galaxy power spectrum on large scales, and this is the purpose of the end of this chapter.
This section is based mainly on Ref. [9].

3.3.1 The Vlasov-Poisson system
First of all, let us define the system of equations we are dealing with in this section.

In the linear framework, we considered the continuity, Euler and Poisson equations
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[see Eqs. (3.5)-(3.7)]:

δ̇m + ikvm = 3φ̇ , (3.77)

v̇m +
ȧ
a

vm =−ikψ , (3.78)

k2
φ +3

ȧ
a

(
φ̇ +ψ

ȧ
a

)
=−4πGa2

ρmδm . (3.79)

In the previous section, we set φ = ψ , because we neglected the neutrino cosmic shear. We are
still going to do this here, as we are going to deal with non-linearities and not with the impact
of neutrinos on the power spectrum (which in all cases leads to a percent-level correction). In
addition, previously we dropped the second term of the left-hand side of the Poisson equation
because we were in the sub-horizon regime. This is still the case here and we also apply this
approximation in the non-linear framework. Indeed, for sub-horizon modes, the potential
is constant (see above), which means that φ̇ ∼ (ȧ/a)φ ∼ 0. Thus, in this section, we do
not modify the gravity equations compared to the linear regime: (i) the perturbations of the
metric are in any case very small (because φ has been constant since the radiation domination
era), implying that we can continue to work at linear order, and (ii) we can still apply the
approximation previously made for the Poisson equation.

However, in this section we want a Boltzmann equation for matter that is no longer restricted
to small perturbations and therefore to large scales, because we are breaking the approximation
δm � 1 (remember that δm ∝ a in the matter dominated era). Starting from the collisionless
Boltzmann equation [see Eq. (1.8)]

d f
dt

=
∂ f
∂ t

+
∂ f
∂xi ·

dxi

dt
+

∂ f
∂ pi ·

d pi

dt
= 0 , (3.80)

we obtained, in the linear regime, the first two moments, namely Eqs. (3.77) and (3.78). In
particular, we had decomposed pi as pi = p · p̂i and removed the contribution of p̂i, which was
necessarily non-linear (see Sec. 1.1). Here, this approximation is no longer valid, so we are
keeping pi. In the non-relativistic (m� p) and sub-horizon (ψ̇ = 0) regime, we can show from
the geodesic equation that (see Ref. [9]):

dxi

dt
=

pi

am
, (3.81)

d pi

dt
=−H pi− m

a
∂iψ . (3.82)

By injecting these equations into the Boltzmann equation, we obtain the so-called
Vlasov equation

d f
dt

=
∂ f
∂ t

+
∂ f
∂xi ·

pi

am
− ∂ f

∂ pi ·
[
H pi +

m
a

∂iψ
]
= 0 . (3.83)

Together with the Poisson equation,

k2
ψ =−4πGa2

ρmδm , (3.84)
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we get the Vlasov-Poisson system, a 7-dimensional system which is non-linear via the
coupling between f and ψ (even if it assumes a linear perturbation in the metric). The re-
mainder of this section is devoted to solving this equation using the perturbation theory method.

To do so, one needs to deduce the non-linear continuity and Euler equations. One ob-
tains the continuity equation by taking the zeroth moment of the Vlasov equation, namely by
doing the operation

∫
d3 p/(2π)3× (3.83), multiplied by m. Similarly, one obtains the Euler

equation by taking the first moment of the Vlasov equation, namely by doing the operation∫
d3 p/(2π)3 p j× (3.83). Without any particular difficulty, it can be shown (see Ref. [9]) that

in real space, the Vlasov-Poisson system reduces to

δ̇ +θ =−δθ − v j
∂ jδ , (3.85)

θ̇ +aHθ +∇2
ψ =−v j

∂ jθ −∂iv j ·∂ jvi , (3.86)

∇2
ψ =

3
2

Ωm(a)(aH)2
δ , (3.87)

where Ωm(a) = Ωma−3. Note that we have omitted the subscript “m” here for the sake of clar-
ity, as we will only be dealing with matter in the remainder of this chapter. In addition, we
are not considering velocity dispersion for dark matter, i.e., σm = 0 in this set of equations.
We have now considerably reduced the problem, as we have moved from a 7-dimensional dif-
ferential equation system to a 4-dimensional differential equation system, since we have inte-
grated over pi. However, this system is non-linear and no simple resolution is possible. In
the following we use a method, the standard perturbation theory, to obtain a (first) suitable
resolution of this system.

3.3.2 The standard perturbation theory

The fundamental principle of the standard perturbation theory is to expand the matter over-
density field and the matter velocity field as follows

δ (x,τ) = δ
(1)(x,τ)+δ

(2)(x,τ)+ ...+δ
(n)(x,τ) , (3.88)

θ(x,τ) = θ
(1)(x,τ)+θ

(2)(x,τ)+ ...+θ
(n)(x,τ) , (3.89)

where δ (1)(x,τ) is the linear solution we have dealt with so far. The idea is therefore to perturb
the linear solution up to an order n, where δ (n) and θ (n) involve n powers of the linear solution
δ (1). Whereas δ (2) ∼ (δ (1))2, δ (3) ∼ (δ (1))3, and so on, in such a way that each order is
suppressed relative to the previous one (hence the name perturbation theory).

Let us go back to the linear system in order to see how to obtain the higher-order solution
δ (2). At linear order, we have the following set of equations [see Eqs. (3.85) and (3.86)]:

δ̇ +θ = 0 , (3.90)

θ̇ +aHθ +∇2
ψ = 0 , (3.91)

∇2
ψ =

3
2

Ωm(a)(aH)2
δ . (3.92)
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We have already solved this system, and according to Eqs. (3.19) and (3.56), we get

δ
(1)(x,τ) = D+(τ)δ0(x) , (3.93)

θ
(1)(x,τ) =−δ̇

(1)(x,τ) =−aH f δ
(1)(x,τ) , (3.94)

where we have kept only the growing solution D+ and removed the decaying solution D−
(since the second solution is largely subdominant in the matter domination era). In the first
equation, δ0(x) = δ (1)(x,τref)/D+(τref) corresponds to the overdensity field at a (arbitrary)
given time (remember that fixing τref = τeq enabled us to link this solution valid in the matter
domination era to the solution valid in the radiation domination era, in order to determine an
approximate form of the transfer function).

The fact that we have obtained the linear solution by neglecting the non-linear terms, to-
gether with the fact that we have perturbed in Eqs. (3.88) and (3.89) the matter overdensity
field and the matter velocity field, suggest that to obtain the non-linear solutions at second or-
der in perturbation, namely δ (2)(x,τ) and θ (2)(x,τ), we can evaluate the right-hand side of
Eqs. (3.85) and (3.86) as follows:

δ̇
(2)+θ

(2) =−δ
(1)

θ
(1)− (v(1)) j

∂ jδ
(1) , (3.95)

θ̇
(2)+aHθ

(2)+∇2
ψ

(2) =−(v(1)) j
∂ jθ

(1)−∂i(v(1)) j ·∂ j(v(1))i , (3.96)

∇2
ψ

(2) =
3
2

Ωm(a)(aH)2
δ
(2) . (3.97)

Here we have injected the linear solution into the non-linear terms, in the same way as we
neglected these terms to obtain the linear solution. This iterative procedure allows us to
linearise Eqs. (3.85) and (3.86) for each order in perturbation and obtain a solution that depends
on the previous order. We can see that δ (2) and θ (2) are sourced by terms of the order of
∼ (δ (1))2, which implies that δ (n) ∼ (δ (1))n. On the other hand, note that the Poisson equation
is linear and that such a procedure is not required, since it is true to any order.

The natural next step is to determine the form of the system composed of Eqs. (3.95)-
(3.97) in Fourier space (after all, what we want is to compute the power spectrum). While for
the left-hand sides it is trivial (and identical to the linear case), for the right-hand sides it is
slightly more complicated: the products of perturbations in real space take the form of a con-
volution in Fourier space. We can show that we then obtain the following set of equations
[using Eqs. (3.94) and (3.97)]

δ̇
(2)+θ

(2) =
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2) ·aH f D2

+

[
1+

k1 ·k2

k2
1

]
δ0(k1)δ0(k2) ,

(3.98)

θ̇
(2)+aHθ

(2)+
3
2

Ωm(a)(aH)2
δ
(2) =−

∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2)

× (aH f D+)
2
[
k1 ·k2

k2
1

+
(k1 ·k2)

2

k2
1k2

2

]
δ0(k1)δ0(k2) . (3.99)

This equation is an ordinary differential equation that can be solved (relatively) easily. Using
the derivative with respect to the growth factor D+ instead of the derivative with respect to the
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conformal time τ , by performing the transformation

d
dτ
→ d lna

dτ
· d lnD+

d lna
d

d lnD+
= aH f

d
d lnD+

, (3.100)

we obtain (see Ref. [9])

d
d lnD+

δ
(2)+ θ̂

(2) = D2
+ Sδ (k) , (3.101)

d
d lnD+

θ̂
(2)+

(
3
2

Ωm(a)
f 2 −1

)
θ̂
(2)+

3
2

Ωm(a)
f 2 δ

(2) = D2
+ Sθ (k) , (3.102)

where θ̂ ≡ θ/aH f , and where Sδ (k) and Sθ (k) are time-independent source terms

Sδ (k) =
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2) ·

[
1+

k1 ·k2

k2
1

]
δ0(k1)δ0(k2) , (3.103)

Sθ (k) =−
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2) ·

[
k1 ·k2

k2
1

+
(k1 ·k2)

2

k2
1k2

2

]
δ0(k1)δ0(k2) .

(3.104)

Let us note that in a matter domination era Ωm(a)/ f 2 'Ωm(a)/[Ωm(a)]0.55×2 ' 1, and that we
use this approximation now (which allows us to linearise this system of equations in D+).

The next step is therefore to solve this system of equations. To do this, we perform
the following ansatz:

δ
(2)(k,D+) = Aδ (k)Dp

+ , (3.105)

θ̂
(2)(k,D+) = Aθ (k)Dp

+ , (3.106)

which is a power-low solution in D+ with a k-dependant amplitude. By inserting this solution
into Eqs. (3.101) and (3.102), we can show that the only viable solution is p = n = 2 (the other
solutions are valid for a finite set of times). It is then straightforward to show that:

Aδ (k) =
5
7

Sδ (k)−
2
7

Sθ (k) , (3.107)

Aθ (k) =−
3
7

Sδ (k)+
4
7

Sθ (k) . (3.108)

By incorporating these solutions into Eqs. (3.105) and (3.106), we can determine the final
form of the second-order density field perturbation δ (2) and the second-order velocity
field θ (2) in Fourier space:

δ
(2)(k,τ) = D2

+(τ)
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2) ·F2(k1,k2)δ0(k1)δ0(k2) ,

(3.109)

θ
(2)(k,τ) =−aH f D2

+(τ)
∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2) ·G2(k1,k2)δ0(k1)δ0(k2) ,

(3.110)
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where F2(k1,k2) and G2(k1,k2) are respectively the second-order density kernel and second-
order velocity kernel, symmetrized in k1 and k2 [52]:

F2(k1,k2) =
5
7
+

2
7
(k1 ·k2)

2

k2
1k2

2
+

1
2
k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
, (3.111)

G2(k1,k2) =
3
7
+

4
7
(k1 ·k2)

2

k2
1k2

2
+

1
2
k1 ·k2

k1k2

(
k1

k2
+

k2

k1

)
. (3.112)

This result is very important because it allows to (partially) derive the next leading order
of the matter power spectrum. We carried out several steps to arrive at this result, which, for
the sake of clarity, are recalled here:

1. Linearize the Vlasov-Poisson system at order n by injecting the n− 1 solution into the
non-linear terms [see Eqs. (3.95)-(3.97)].

2. Get this set of equations in Fourier space [see Eqs. (3.101) and (3.102)].

3. Insert the ansatz δ (n)(k,D+), θ̂
(n)(k,D+) ∝ Dp

+ into this set of equations, where p = n.

We can iteratively use exactly the same steps to determine the higher-order contributions to δ

and θ . Finally, we obtain for all orders:

δ
(n)(k,τ) =Dn

+(τ)

(
n

∏
i=1

∫ d3k1

(2π)3

)
(2π)3

δ
(3)
D

(
k−

n

∑
i=1

ki

)

×Fn(k1, ...,kn)δ0(k1)...δ0(kn) , (3.113)

θ
(n)(k,τ) =−aH f Dn

+(τ)

(
n

∏
i=1

∫ d3k1

(2π)3

)
(2π)3

δ
(3)
D

(
k−

n

∑
i=1

ki

)

×Gn(k1, ...,kn)δ0(k1)...δ0(kn) . (3.114)

The difficulty is then to determine the kernels for each order, and obviously the higher the order,
the more complicated it is (see Ref. [53]). Let us note that at linear order, for n = 1, we have
trivially F1 = G1 = 1, so that the integral reduces to δ0(x), to recover Eqs. (3.93) and (3.94).
In addition, we find again that δ (n) ∼ (δ (1))n. Using the method described above to the next
order, namely δ (3), we find the third-order density kernel

F3(k1,k2,k3) =
1

18

[
7
k1 · (k1 +k2 +k3)

k2
1

F2(k2,k3)+(k1 ·k2)
| k1 +k2 |2

k2
1k2

2
G2(k2,k3)

]

+
1

18
G2(k1,k2)

[
7
(k1 +k2) · (k1 +k3)

| k1 +k2 |2
+
| k1 +k2 +k3 |2
k2

3 | k1 +k2 |2
(k1 +k2) ·k3

]
.

(3.115)

Before moving on to the power spectrum, there are two important points to make:
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Figure 3.11: Diagrams showing the construction of the second-order and nth-order overdensity fields
from the linear solution δ (1) connected with each other thanks to the interaction kernels Fn. Taken from
Ref. [9].

• Whereas at linear order we have δ (1)(k,τ) = D+(τ)δ0(k), which implies that each
mode evolves independently from the others, this is not the case at non-linear order.
In Eq. (3.113), δ (n)(k,τ) now depends on n integrals over k1, ...,kn, implying that each
mode is coupled to other modes. For example, at second order, finding the solution
of δ (2)(k,τ) for a given mode k means integrating over all the modes k1 and k2 that
satisfy condition k = k1 + k2. This is due directly to the non-linear terms in Eqs. (3.95)
and (3.96), which couple two δ (1)(k,τ) together evaluated at different k [i.e., δ (1)(k1,τ)
with δ (1)(k2,τ)], and therefore couple the modes together.

• We can draw an analogy with quantum field theory. Here, the δ (1)’s, i.e., the linear
solutions, correspond to the free fields of the problem which can interact with each other
to give higher order terms. The kernels are then the transition amplitudes between n
linear fields and one non-linear field. For example, δ (2) is constructed by joining two
different δ (1)’s (evaluated at two different wavenumbers) with an F2 kernel. We can then
construct diagrams, which are analogous to Feynman diagrams, as shown in Fig. 3.11.

3.3.3 Non-linear matter power spectrum

We now have all the tools to determine the (mildly) non-linear matter power spectrum
from the standard perturbation theory. First of all, let us note that the expectation value of
an odd number of Gaussian random fields is zero [for instance, if f is such a field, then
〈 f (k1) f (k2) f (k3)〉 = 0]. Let us determine the contribution to the matter power spectrum of
a nth-order overdensity field δ (n) correlated with a n′th-order overdensity field δ (n′). Given that
δ (n) ∼ (δ (1))n and that δ (1) is a Gaussian random field, n+n′ must be even to contribute to the
matter power spectrum, otherwise it would involve an correlation of an odd number of δ (1). At
the end of the day, the non-zero contributions to the matter power spectrum can be expressed as

Pnn′(k)δ
(3)
D (k− k′) = (2π)−3

〈
δ
(n)(k)δ (n′)(k′)

〉
; n+n′ = 2,4,6, ... (3.116)
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Figure 3.12: Diagrams showing the construction of the NLO contributions to the matter power spec-
trum. The diagram on the left represents the contraction of δ (2) with δ (2) that leads to P22, while the
diagram on the right represents the contraction of δ (1) with δ (3) that leads to P13. Note that we have
two different possibilities of constructing P22, while we have three different possibilities of constructing
P13. PL corresponds to what we call P11 in the main text. Finally, the bottom diagrams correspond to a
condensed form of the top diagrams where the free fields have been connected. Each loop corresponds
to an integral over the wavevector p [see Eqs. (3.119) and (3.120)]. Taken from Ref. [9].

On the other hand, we are interested here in the next-to-leading order (NLO) correction to
the matter power spectrum, where the leading order corresponds to the linear matter power
spectrum as previously determined, namely

P11(k)δ 3(k− k′) = (2π)−3
〈

δ
(1)(k)δ (1)(k′)

〉
, (3.117)

where the subscript “11” indicates that we have correlated δ (1) with δ (1). In the language of
quantum field theory, this corresponds to the tree-level contribution to the matter power spec-
trum, i.e., the contraction between two free fields. Consequently, the NLO contribution must
satisfy the condition n+m = 4, in order to obtain PNLO ∼

〈
(δ (1))4

〉
. 3 There are two ways of

doing this: either we can contract δ (2) with δ (2), which corresponds to the P22 contribution, or
we can contract δ (1) with δ (3), which corresponds to the P13 contribution, as shown in Fig. 3.12.
The aim is to always contract the free fields with each other to form pairs, and each of these pairs
then corresponds to a linear power spectrum P11, implying that PNLO ∼ P2

11. These contractions
lead to loop Feynmann diagrams (see Fig. 3.12), and this is why the NLO power spectrum is
referred to as the one-loop power spectrum. Finally, by adding the NLO contribution, we obtain

Pm(k,τ) = P11(k,τ)+P22(k,τ)+2P13(k,τ) , (3.118)

3Let us note that the next-to-next-to leading order (NNLO) contribution is obtained through n+n′ = 6.
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where the factor 2 in front of P13 corresponds to a symmetry factor (since P13 = P31), and where

P22(k,τ) = 2
∫ d3 p

(2π)3 [F2(p,k−p)]2 P11(p,τ)P11(| k−p |,τ) , (3.119)

P13(k,τ) = 3P11(k,τ)
∫ d3 p

(2π)3 F3(p,−p,k)P11(p,τ) . (3.120)

Let us note that these integrals can only be computed numerically because (as we have seen) the
linear matter power spectrum has no simple analytical expression that is valid for all scales and
all periods. As indicated in Fig. 3.12, each loop corresponds to an integral over the wavevector
p (as in quantum field theory), explaining why P22 ∼

∫
P2

11 and P13 ∼ P11
∫

P11. According to
Fig. 3.12, this implies that P22(k,τ) allows us to describe how two short-scale modes, namely k

and p−k, generate a large-scale mode k, while P13(k,τ) is used to quantify the modification of
the matter power spectrum determined at a given k mode by a short-scale modes p (in the limit
where k� p). Here are the steps for obtaining Eqs. (3.119) and (3.120):

1. Insert the solutions of δ(1), δ(2) and δ(3) from Eq. (3.113) into Eq. (3.116) to get P22 and
P13.

2. Use the Wick’s theorem, which states that the n-point correlation function is obtained
through all terms involving all possible combinations of the n fields into two-point corre-
lation functions. Therefore, the Fourier transform of the four-point correlation function
reads

〈δ0(k1)δ0(k2)δ0(k3)δ0(k4)〉=(2π)6
δ
(3)
D (k1−k2)δ

(3)
D (k3−k4)P(k1)P(k3)

+(2π)6
δ
(3)
D (k1−k3)δ

(3)
D (k2−k4)P(k1)P(k2)

+(2π)6
δ
(3)
D (k1−k4)δ

(3)
D (k2−k3)P(k1)P(k2) . (3.121)

3. Evaluate the different possibilities of constructing P22 and P13. From Fig. 3.12, one can
see that one has two different possibilities of constructing P22, and three different possi-
bilities of constructing P13. This is the origin of the prefactors in Eqs. (3.119) and (3.120).

The perturbation theory breaks down when the NLO contribution becomes similar to that of
the tree-level. To estimate the scale from which this theory is no longer valid, we can consider
the following quantity (using the fact that the kernels are of the order of unity):

PNLO

P11
∼
∫ d3 p

(2π)3 P11(p) =
∫ lnk

0
d ln pP(p) , (3.122)

which is nothing more the variance of the linear matter power spectrum until the k mode (we
integrate until lnk because the kernels are suppressed for k > p). This quantity is very approx-
imately similar to the quantity used to determine kNL(a = a0) ∼ 0.25hMpc−1 [see Eq. (3.76)].
Therefore, the one-loop perturbation theory breaks down around the non-linear scale. Finally, to
close this section, it should be noted that the main effect of the standard perturbation theory with
respect to the linear theory is an enhancement of the power spectrum at small scales, and that
this enhancement becomes more and more pronounced as the scale decreases (see Fig. 3.13).
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Figure 3.13: Comparison between the matter power spectrum obtained from the linear theory
(see Sec. 3.1), the standard perturbation theory referred to as "SPT" (see Sec. 3.3), the effective field
theory of large-scale structures (see Sec. 3.4), and from an Nbody simulation incorporated in the CAMB

code [44] referred to as "Non-linear (CAMB)" in the figure. All these predictions are normalised to that
of the Nbody simulation, used here as a reference. Taken from Ref. [54].

3.4 The effective field theory of large-scale structures
In the previous section, we presented a perturbative method for obtaining a (mildly) non-

linear equation of the matter power spectrum at the NLO (or one-loop) order. Although this
method is a decisive first step in obtaining an accurate non-linear matter power spectrum for-
mulation, it suffers from a number of inconsistencies that lead to a very imprecise description
of the large-scale structure data. As shown in Fig. 3.13, the standard perturbation theory pre-
diction is very far from the Nbody prediction, and it turns out that the matching is just as bad
as for linear theory! In this section, we therefore consider a theory, the effective field theory
of large-scale structures (EFTofLSS), that corrects the inaccuracies of the standard perturba-
tion theory. Fig. 3.13 shows that the EFTofLSS prediction agrees with the Nbody prediction
at percent level up to k ' 0.25hMpc−1.

3.4.1 The basics of EFTofLSS

We now need to understand the main issues of the standard perturbation theory that need
to be overcome in order to obtain an accurate description of the matter power spectrum. We
identify here three problems of the standard perturbation theory:

1. No well-defined expansion parameter. In the standard perturbation theory there is
no well-defined expansion parameter, in the sense that the expansion parameter used,
namely δ , can be arbitrarily large. When this is the case, at small scales, linear theory is
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Figure 3.14: Summary of the different scales considered in the EFTofLSS. Standard perturbation theory
includes the non-linear modes that break down the perturbative expansion, whereas the EFTofLSS only
considers the k < Λ modes in the loop integrals. Taken from Ref. [55].

no longer at all well defined and expansion around this solution becomes inappropriate
(in the sense that we can obtain inconsistencies such as δ (2) > δ (1)).

2. Ideal fluid approximation. In standard perturbation theory, we assume that cold
dark matter behaves like an ideal fluid. Remember that for dark matter, we have
set the pressure to zero, which implies that the dark matter stress-energy tensor
T c

µν = diag [−ρc(x, t),0,0,0]. In addition, let us recall that at linear order, the general
Euler’s equation is written in the following form [see Eq. (2.46)]:

θ̇ =− ȧ
a
(1−3ω)θ − ω̇

1+ω
θ +

δP/δρ

1+ω
k2

δ − k2
σ + k2

ψ . (3.123)

By setting P = w = 0, we obtained θ̇c = − ȧ
aθc + k2ψ at linear order. In particular, in

the Euler’s equation, we have neglected the contribution of the stress tensor (the spatial
part of the stress-energy tensor), which encodes the pressure forces, in order to set the
δP/δρ = c2

s term to zero. This term, however, was not set to zero for baryons because at
very small scales we could not neglect the baryon pressure caused by Thomson scattering.
However, for our system, it is not possible to neglect the contribution of the dark matter
stress tensor at small scales (as was the case for baryons in CMB physics). It is therefore
necessary to introduce generalised pressure forces, which do not come from the usual
pressure of a gas composed of colliding atoms, but correspond to effective gravitational
effects created by small-scale perturbations. At very small scales, under the effect of
gravity, dark matter particles virialize to form bound structures. This happens at Rvir ∼
3h−1 Mpc, which corresponds to the typical size of a virialized halo. It is therefore crucial
to take into account the UV displacements (i.e., the small-scale displacements) due to the
virialization of dark matter particles, which standard perturbation theory does not do. In
other words, we obtain an enhancement of the matter power spectrum when we do not
take this effect into account, insofar as this effect suppresses the displacement of the dark
matter particles that are confined in the halos (see below).

3. Integration over UV modes. The last problem stems from the previous one: since we
are not able to adequately capture UV physics, then it is not adequate to integrate the one-
loop terms over UV modes. In particular, the loop integrals of Eqs. (3.119) and (3.120)
are evaluated up to infinity, and therefore integrate over modes of the non-linear regime,
where the fluid description breaks down.

All these elements imply that this perturbative theory does not converge: in particular, the
two-loop term is of the same order of magnitude as the one-loop term, while the three-loop
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term is larger than the two-loop term! We now show how it is possible to solve these is-
sues with the effective field theory of large-scale structures, in order to avoid the break down
of the (relevant) theory.

Solution to the first issue: the cutoff scale

To solve the first problem, the EFTofLSS proposes to make a substantial distinction between
short-scale modes δs and long-scale modes δl , by separating them using a cutoff scale Λ:

δ (k) = δl(k)+δs(k) , (3.124)

δl(k) = δ (‖k‖< Λ−1) ; δs(k) = δ (‖k‖> Λ−1) . (3.125)

The cutoff scale is chosen according to two criteria. First, it must be chosen in such a way that
the δl modes are always small, namely δl . O(1) for k . Λ−1, so that we can continue to work
in a perturbative framework. Knowing that at the approach of the non-linear scale kNL, δ starts
to be significantly large, it is necessary to adopt a cutoff scale which respects the condition
Λ−1 . kNL. We are therefore going to solve the Vlasov-Poisson system only for δl , which
cannot be arbitrarily large (in contrast to standard perturbation theory). We will therefore
smooth the Vlasov equation and solve it only for the long-scale modes. Second, we want to
build an effective field theory, namely we want to describe large-scale physics by capturing
all the relevant degrees of freedom from small-scale physics. The small-scale modes will be
integrated out in order to obtain a description of the large-scale physics which will depend on
the UV physics through several couplings. To achieve this, the cutoff scale must be chosen
from the scale at which the microphysics effects become significant. As we explained when we
introduced the second problem of the standard perturbation theory, dark matter can no longer
be treated as an ideal fluid from the scale where we have a virialization of dark matter particles,
i.e., at Rvir. This suggests that the cutoff scale is chosen such that Λ ∼Rvir ∼ 3h−1 Mpc. On
the other hand, the non-linear scale kNL (which is not the same as the one defined in standard
perturbation theory) in EFTofLSS has a very specific physical origin: it is the characteristic
distance travelled by a dark matter particle since the primordial instants. We expect the physics
to become non-linear below 1/kNL insofar as these scales are subjected to physical effects that
no longer derive from the physics of large-scale structures. Therefore, we take 1/kNL ∼ vH−1,
where v is the (non-relativistic) speed of a dark matter particle, leading to kNL ∼ 0.7hMpc−1.
Fig. 3.14 summarises these different scales and the benefits of introducing the cutoff scale Λ
compared to the standard perturbation theory.

We therefore need to define a smoothing function in order to smooth out the observables
when k > Λ−1. To do so, we define the Gaussian smoothing as

WΛ(x) =

(
Λ√
2π

)3

e−
1
2 Λ2x2

, (3.126)

WΛ(k) = e−
1
2

k2

Λ2 . (3.127)

In Fourier space, we can check that W → 1 when k� Λ−1, implying that the large-scale modes
are not affected by this smoothing function. In real space, all observables are then smoothed
by a convolution with the Gaussian smoothing, such that

Ol(x,τ) = [O]Λ(x,τ) =
∫

d3x′WΛ(x−x′)O(x′,τ) . (3.128)
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This equation is used to define δl in Eq. (3.124). This procedure also allows us to smooth the
other quantities that enter the Vlasov equation such that

d f
dt
→
[

d f
dt

]

Λ
. (3.129)

It is interesting to note at this point that each higher-order of the Vlasov equation is suppressed
by k/kNL, given that each moment adds a contribution of order (vi/H)∂ i ∼ (1/kNL)k com-
pared to the previous moment.

Solution to the second issue: The EFT Vlasov-Poisson system

We therefore solve the Vlasov-Poisson system only for the long-scale modes δl . However,
it is necessary to incorporate the small-scale physics, induced by δs, in order to determine its
impact on the large-scale physics. This also leads us to solve our second problem, by intro-
ducing a (effective) stress tensor τ i j to encode the (generalized) pressure forces induced by the
virialization of dark matter particles. The system under consideration is then (see Ref. [54])

δ̇l +θl =−δθl− v j
∂ jδl , (3.130)

θ̇l +aHθl +∇2
ψl =−v j

∂ jθl−∂iv
j
l ·∂ jvi

l−∂ j

(
1
ρl

∂i
[
τ

i j]
Λ

)
, (3.131)

∇2
ψl =

3
2

Ωm(a)(aH)2
δl , (3.132)

where we have highlighted in bold the new contribution from the effective stress tensor. This
system does depend on the long-scale modes (solution to the first problem) and includes the con-
tribution from the spatial part of the stress-energy tensor coming from the UV physics (solution
to the second problem). This contribution is a generalisation of the c2

s k2δ term in Eq. (3.123).
The stress tensor induced by the short-scale fluctuations is also smooth out, and is defined as

[τ i j]Λ = ki j
l +Φi j

l , (3.133)

where ki j
l and Φi j

l are respectively the kinetically-induced and the gravitationally-induced con-
tributions to this tensor, defined as (see Ref. [54])

ki j
l = σ

i j
l −ρlvi

lv
j
l , (3.134)

Φi j
l =− 1

8πGa2

[
wkk

l δ
i j−2wi j

l −∂kφl∂
k
φlδ

i j +2∂
i
φl∂

j
φl

]
. (3.135)

The wi j
l smooth tensor has the following form

wi j
l (~x) =

∫
d3x′WΛ(~x−~x′)

[
∂

i
φ(~x′)∂ j

φ(~x′)−∑
n

∂
i
φn(~x′)∂ j

φn(~x′)
]
. (3.136)

In this equation, we consider all the terms allowed by the symmetries of general relativity,
i.e., the rotation symmetry and the equivalence principle. Note that because of this second
symmetry, we cannot have terms ∝ φ and ∝ ∂iφ in the stress-energy tensor (since these
quantities can be eliminated by a change of gauge).
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So now we have an effective dark matter fluid obtained by considering only large-scale
modes with small perturbations. However, the dynamics of this effective fluid depends on a
stress tensor which encodes the microphysics, and we need to integrate out the UV physics in
order to get rid of any explicit dependence on δs. To do so, and since we have smoothed out the
effective stress tensor, we can perform a first-order Taylor expansion in δl:

〈
[
τ

i j]
Λ〉δl

= 〈
[
τ

i j]
Λ〉0 +

∂ 〈
[
τ i j]

Λ〉δl

∂δl

∣∣∣∣∣
0

δl + . . . , (3.137)

where we can show that at linear order it takes the following form (see Ref. [55])

〈
[
τ

i j]
Λ〉δl

= Pδ
i j +ρ

[
c2

s δlδ
i j− c2

bv
Ha

δ
i j

∂kvk
l −

3
4

c2
sv

Ha

(
∂

jvi
l +∂

iv j
l −

2
3

δ
i j

∂kvk
l

)]
+∆τ

i j + . . . .

(3.138)
The first term corresponds to the large-scale effective background pressure generated by small-
scale fluctuations, while the term in c2

s ρδl corresponds to the equivalent of the sound speed
term mentioned above. The parameters cbv and csv are two coefficients related to the viscosity
of the fluid. In particular, c2

bv = ζ H/ρb and csv = η4H/(3ρb), where ζ and η are respectively
the bulk and the shear viscosity. Finally, one adds a stochastic component ∆τ i j. The physical
origin of this term is the following: small-scale physics is not entirely correlated with large-
scale physics, insofar as it depends on underlying physical processes that do not depend on
large-scale physics (as is the case with virialization, for example). This term therefore encodes
the difference between the actual value of the effective stress energy tensor and its expectation
value. We have then the following properties:

〈
δl∆τ i j〉 = 0, since ∆τ i j is not correlated with

δl . Let us note that if we remove this term, one obtains the standard Navier-Stokes equations.
All these coefficients in the effective stress tensor (namely P, cs, cbv and csv) depend on the
small-scale physics, as well as the cutoff scale Λ, and cannot therefore be determined with the
EFTofLSS itself. However, these parameters can be measured with an Nbody simulation, and
Ref. [54] explains how to extract the value of these coefficients from such a simulation.

Solution to the third issue: the loop integral cut-off

Solving the third problem follows directly from solving the first. To avoid integrat-
ing UV modes, the EFTofLSS only considers the k < Λ−1 modes in the loop integrals
(unlike the standard perturbation theory), as shown in Fig. 3.14. To do so, we are going
to consider the smoothed power spectrum in standard perturbation theory loop integrals
[see Eqs. (3.119) and (3.120)]:

P11,l(k,τ,Λ) =W 2(k)P11(k,τ) , (3.139)

in order to perform this cutoff. Let us finally note that the one-loop matter power spectrum will
depend on Λ, insofar as all the smooth variables depend on this quantity. The dependence on
Λ will be eliminated thanks to counterterms, as we shall see later.

3.4.2 The EFTofLSS matter power spectrum
Having presented the conceptual basis of the EFTofLSS, and in particular the main differ-

ences with the standard perturbation theory, we can now determine the matter power spectrum
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obtained using this theory. One can Fourier transform Eqs. (3.130) and (3.131) exactly as we
did with standard perturbation theory. By injecting Eq. (3.138) in Eq. (3.131), we find

δ̇
(2)
l +θ

(2)
l =

∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2)

×aH f D2
+

[
1+

k1 ·k2

k2
1

]
δ0,l(k1)δ0,l(k2) , (3.140)

θ̇
(2)
l +aHθ

(2)
l +

3
2

Ωm(a)(aH)2
δ
(2)
l =−

∫ d3k1

(2π)3

∫ d3k2

(2π)3 (2π)3
δ
(3)
D (k−k1−k2)

× (aH f D+)
2
[
k1 ·k2

k2
1

+
(k1 ·k2)

2

k2
1k2

2

]
δ0,l(k1)δ0,l(k2)

+ c2
s k2

δ
(1)
l −

c2
vk2

aH
θ
(1)
l , (3.141)

where c2
v = c2

sv + c2
bv. For the moment we neglect the contribution of the stochastic parameter

∆τ i j, but we shall come back to that later. We can easily see that Eqs. (3.140) and (3.141)
are equivalent to Eqs. (3.98) and (3.99) of the standard perturbation theory in the limit where
c2

s = c2
v = 0 and δ

(2)
l → δ (2). The additional difficulty compared with Eqs. (3.98) and (3.99)

is that the parameters c2
s and c2

v are now time-dependent. Let us now talk about the pressure
terms in Eq. (3.141). The term ∝ c2

s is the sound speed term, which is equivalent to the term
in the Euler’s equation for baryons [see Eq. (2.52)], while the term ∝ c2

v is the viscosity term.
We are going to solve these terms perturbatively, in the same way as we solved the non-linear
terms in standard perturbation theory. Since the large-scale Vlasov equations at linear order
do not include these terms, then we inject the linear solutions δ

(1)
l and θ

(1)
l into these terms.

In addition, using the fact that θ (1) = −aH f δ (1) [see Eq. (3.94)], we can rewrite the stress
tensor contribution of Eq. (3.141) as

c2
s k2

δ
(1)
l −

c2
vk2

aH
θ
(1)
l =

[
c2

s + f c2
v
]

k2
δ
(1)
l = c2

comb(a)k2 D+(a)δ0,l(k) , (3.142)

where we have defined

c2
comb(a) = c2

s (a)+ f c2
v(a) . (3.143)

This parameter is the relevant combination of c2
s , c2

bv et c2
sv at one-loop order. Finally, the

resulting term of Eq. (3.142) is treated perturbatively with respect to the solution of the standard
perturbation theory (SPT), such that we now perform the following expansion:

δm,l = δ
(1)
l︸︷︷︸

Tree−level

+ δ
(2)
l +δ

(3)
l︸ ︷︷ ︸

One−loop SPT

+ δ
(c2

comb)
l︸ ︷︷ ︸

EFT contribution

+ ... . (3.144)

Finally, we already know the solutions of the first three elements, where δ
(2)
l and δ

(3)
l have

simply been smoothed with respect to the standard perturbation theory solution. In addition,

the solution for δ
(c2

comb)
l reads [54]

δ
(c2

comb)
l (k,a) =−k2

∫ a

0
dã G(a, ã,Λ)c2

comb(ã,Λ)D+(ã)δ0,l(k) , (3.145)
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where G(a, ã) is the density Green function for the second order linear differential operator.
It is necessary to introduce this function because the c2

comb(a) parameter depends on the
scale factor! In reality, we would have had to do the same for δ

(2)
l and δ

(3)
l if we had not

set Ωm(a)/ f (a)2 = 1 in Eq. (3.102). In this equation, all the functions that multiplied δ
(2)
l

did not depend on time, implying that in a universe that is not Einstein-de-Sitter, i.e., with
Ωm(a)/ f (a)2 6= 1, then the solutions of δ

(2)
l and δ

(3)
l also depend on the density Green function.

At the end of the day, by analogy with Eq. (3.118), the EFT one-loop matter power
spectrum reads

Pm(k,τ) = P11(k,τ)+PΛ
22(k,τ)+2PΛ

13(k,τ)+2PΛ
c2

comb
(k,τ) , (3.146)

where PΛ
22(k,τ) + PΛ

13(k,τ) are the same as those of the standard perturbation theory,
namely Eqs. (3.119) and (3.120), with the only difference is that we now integrate the
smooth matter power spectrum, which means that we only integrate over the p < Λ
modes. The new contribution to the matter power spectrum, which comes from the EFT
theory, is defined (at leading order) by

PΛ
c2

comb
(k,τ)δ 3

D(k− k′) = (2π)−3
〈

δ
(c2

comb)
l (k,τ)δ (1)

l (k′,τ)
〉
, (3.147)

leading to the following solution [using Eq. (3.145)]

PΛ
c2

comb
(k,a)δ 3

D(k− k′) =− 1
(2π)3 k2D+(a)

[∫ a

0
dã G(a, ã)c2

comb(ã,Λ)D+(ã)
] 〈

δ0,l(k)δ0,l(k
′)
〉

PΛ
c2

comb
(k,τ)≡−c2

s,eff(a,Λ)k2 P11(k,τ) , (3.148)

where c2
s,eff(a,Λ) is often referred to as effective sound speed. First, note that the factor two

in Eq. (3.146) in front of PΛ
c2

comb
(k,τ) comes from the fact that Eq. (3.147) is symmetric by

an inversion of δ
(c2

comb)
l and δ

(1)
l . Second, the contribution of PΛ

c2
comb

(k,τ) is negative, since c2
s

and c2
v suppress the gravitational collapse, which reduces the clustering of matter on at small

scales. This additional term therefore suppresses the matter power spectrum at small scales, as
expected form Fig. 3.13.

We now need to deal with one final issue: the Λ-dependence of Eq. (3.146). Let us recall
that PΛ

22(k,τ) and PΛ
13(k,τ) depend on Λ through the smoothing of the linear matter power spec-

trum P11,l(k,τ,Λ), while PΛ
c2

comb
(k,τ) depends on Λ through the parameter c2

comb (since we have
integrated out the small-scale modes). It is therefore necessary to remove any dependency on
Λ (which is just a calculation artefact). Let us first consider the term PΛ

13(k,τ). According to
Refs. [56, 57], we separate the loop integral of this term into two parts:

PΛ
13(k,τ) = 3P11(k,τ)

∫ ptrust

0

d3 p
(2π)3 F3(p,−p,k)P11(p,τ)

+3P11(k,τ)
∫ Λ

ptrust

d3 p
(2π)3 F3(p,−p,k)P11(p,τ) . (3.149)
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Remember that integrating over the smooth matter power spectrum is equivalent to integrating
the usual matter power spectrum up to Λ. Therefore, in the previous equation, if we carry out the
Λ→∞ limit, we find exactly the equation of the standard perturbation theory [see Eq. (3.120)].
Here, we have created an artificial separation between a part which is integrated up to a mode
of trust ptrust (i.e., this integral is carried out over scales which EFT is known to be valid), and
an integral which depends on Λ and can potentially incorporate UV modes. The final result
must not depend on Λ, insofar as the value of Λ must not affect the total matter power spec-
trum. It follows that we must then remove this integral, i.e., PΛ

13(k,τ) must be renormalized.
To simplify the problem, let us assume that ptrust � k (in other words, we compute the mat-
ter power spectrum for a k mode which is on a much larger scale than that of ptrust), which
implies that (according to Refs. [56, 57]):

3P11(k,τ)
∫ Λ

ptrust�k

d3 p
(2π)3 F3(p,−p,k)P11(p,τ) =− 61

630π2 k2P11(k,τ)
∫ Λ

ptrust�k
d pP11(p,τ) ,

(3.150)
which is the UV limit of PΛ

13(k,τ) which may possibly diverge. Remarkably, this UV limit
has the same k-dependence as PΛ

c2
comb

(k,τ) [see Eq. (3.148)], which makes this quantity a good

candidate for renormalizing PΛ
13(k,τ). This implies that we can intuitively represent PΛ

c2
comb

(k,τ)

as an interaction between δ (1) and δ (3) that renormalizes PΛ
13(k,τ), as shown in Fig. 3.15. We

can then separate the parameter c2
s,eff(a,Λ) of Eq. (3.148) into two contributions: a contribu-

tion which does not depend on Λ and which constitutes a renormalization parameter, and a
counterterm which depends on Λ:

c2
s,eff(a,Λ) = c2

s,eff ren(a, ptrust)+ c2
s,effctr(a,Λ) , (3.151)

where the second contribution must necessarily cancel out the UV contribution of
PΛ

13(k,τ), namely:

c2
s,effctr(a,Λ) =−

61
630π2

∫ Λ

ptrust�k
d pP11(p,τ) . (3.152)

Finally, the contribution 2PΛ
13(k,τ) + 2PΛ

c2
comb

(k,τ) = 2PΛ
13(k,τ) − 2c2

s,eff k2 P11(k,τ) in

Eq. (3.146) no longer depends on Λ, implying that the c2
s,eff parameter renormalizes PΛ

13(k,τ).
The parameter c2

s,eff ren(a, ptrust) is finite and does not depend on the value of Λ (even if Λ→∞),
while the other contribution is cancelled. This contribution to the effective sound speed must
either be fitted to the data or extracted from the Nbody simulations. In the remainder of this
thesis we will focus on the first method.

Finally, the last quantity that needs to be renormalised is PΛ
22(k,τ). This renormalization

is performed with the stochastic parameter ∆τ i j introduced into the effective stress tensor in
Eq. (3.138). As already indicated, this term is not correlated with δl , which implies that〈
δl∆τ i j〉= 0. The only contribution of this term to the matter power spectrum therefore comes

from its self-correlation. It is then necessary to add a new stochastic contribution δ
(stoch)
l to

Eq. (3.144), which scales at k2∆τ i j [we can easily see it by injecting the ∆τ i j contribution of
Eq. (3.138) into Eq. (3.131)]. Consequently, the new contribution to the matter power spec-
trum in Eq. (3.146) is

PΛ
stoch(k,τ)δ

3
D(k− k′) = (2π)−3

〈
δ
(stoch)
l (k,τ)δ (stoch)

l (k′,τ)
〉
, (3.153)
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Figure 3.15: Diagram showing the construction of the one-loop counterterm contribution to the matter
power spectrum. Taken from Ref. [54].

with a solution of the following form

PΛ
stoch(k,a) = Rstoch(a,Λ)7 · k4 , (3.154)

where Rstoch(a,Λ) has the unit of a length (see Ref. [56]). In addition, using the same approach
as in Eq. (3.150), we can show that UV contribution of PΛ

22(k,τ) reduces to:

PUV
22 (k,τ) = 2

∫ Λ

ptrust�k

d3 p
(2π)3 [F2(p,k−p)]2 P11(p,τ)P11(| k−p |,τ) (3.155)

= k4
[

9
196π2

∫ Λ

ptrust�k

d p
p2 P11(p,τ)

]
, (3.156)

which has the same k-dependency as Pstoch(k,τ)! We can then make the same separation as
for c2

s,eff(a,Λ) in Eq. (3.151) for Rstoch(a,Λ) and then remove the Λ-dependence of P22(k,τ),
by imposing Rstochctr(a,Λ)7 = −PUV

22 (k,τ)/k4. The stochastic term therefore allows us to
renormalize this one-loop contribution, but we did not include the PΛ

stoch(k,τ) contribution in
Eq. (3.146), which is actually a higher-order term than the one-loop.

This last point is worth clarifying. The linear matter power spectrum is a power law in
k [see Eq. (3.27)], so that:

P11(k) =
1

k3
NL

(
k

kNL

)n

, (3.157)

where n ∼ 1 at very small k [see Eq. (3.27)], i.e., in the linear regime. Consequently,
we have that

P11(k)≡
k3

2π2 P11(k) =
(

k
kNL

)n+3

∼
(

δ
(1)
)2

, (3.158)
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implying that δ (1) ∼ (k/kNL)
2 at k� kNL. Finally, one obtains (see Ref. [56]):

Pm(k)∼
(

k
kNL

)n+3

︸ ︷︷ ︸
Tree−level

+

(
k

kNL

)2(n+3)

︸ ︷︷ ︸
One−loop

+

(
k

kNL

)n+5

︸ ︷︷ ︸
Counterterm c2

comb

+

(
k

kNL

)7

︸ ︷︷ ︸
Stochastic

, (3.159)

where we have used the fact that P22 ∼ P13 ∼ P2
11 for the one-loop contribution,

Pc2
comb
∼ k2P11 for the counterterm contribution, and Pstoch ∼ k3 · Pstoch ∼ k3 · k4 for

the stochastic contribution. In the mildly non-linear regime (just after the turn over keq),
one has n ' −1.5, implying that:

P11�P22 ∼P13 ∼Pc2
comb
�Pstoch , (3.160)

explaining why we have not included the stochastic contribution in Eq. (3.146). Let us note
that, in the general case, we have for the L-loop order:

PL−loop =

(
k

kNL

)(L+1)(n+3)

. (3.161)

3.4.3 The EFTofLSS galaxy power spectrum
The aim now is to determine a formulation for the EFTofLSS galaxy power spectrum. To do

this, it is necessary (as was the case in Sec. 3.2 for the linear galaxy power spectrum) to consider
(i) the redshift-space distortion effect, and (ii) the corrections related to the biased tracers (i.e.,
the fact that the galaxy distribution is not the same as the matter distribution).

Redshift-space distortion in EFTofLSS

Let us start with the redshift-space distortion. All calculations in this subsection are taken
from Ref. [48]. Since we want to determine the galaxy power spectrum in the (mildly) non-
linear regime, we need to take into account the non-linear effects of the redshift-space distortion
(see discussion related to Fig. 3.4). We previously determined that the galaxy overdensity field
in redshift-space and in Fourier space reads [see Eq. (3.53)]:

δg,r(k) = δg(k)+
∫

d3xe−ik·x
(

e−ik·n̂ v
aH ·n̂−1

)
(1+δg(x)) . (3.162)

In order to find the Kaiser formula, we had carried out a Taylor expansion up to first order:

e−ik·n̂ v
aH ·n̂ = 1− ik · n̂ v

aH · n̂+ ... . (3.163)

We also used the distant observer approximation, which states that n̂ is the same for all the
galaxies in the survey under consideration. We use here the same approximation, and in par-
ticular we will consider that n̂ = ẑ, implying that k · n̂ = kz and v · n̂ = vz. The difference with
the linear calculation is that now we have to Taylor expand up to cubic order (as we did pre-
viously for the matter overdensity field):

e−i
kz
aH vz(x) = 1− i

kz

aH
vz(x)+

i2

2

(
kz

aH

)2

vz(x)
2− i3

3!

(
kz

aH

)3

vz(x)
3 + ... , (3.164)
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which is nothing more than an expansion in the velocity field vz(x). Therefore, to deter-
mine the one-loop galaxy power spectrum, we need to consider the following equation for
the galaxy overdensity field:

δg,r(k) = δg(k)+
∫

d3x

[
−i

kz

aH
vz(x)+

i2

2

(
kz

aH

)2

vz(x)
2− i3

3!

(
kz

aH

)3

vz(x)
3 + ...

]

+
∫

d3x

[
−i

kz

aH
vz(x)δg(x)+

i2

2

(
kz

aH

)2

vz(x)
2
δg(x)+ ...

]
, (3.165)

which can be rewritten in condensed form, using the notation [ f ]k =
∫

d3xe−ikx f (x) [48], as

δg,r(k) = δg(k)− i
kz

aH
vz(k)+

i2

2

(
kz

aH

)2

[vz(x)
2]k−

i3

3!

(
kz

aH

)3

[vz(x)
3]k

− i
kz

aH
[vz(x)δg(x)]k+

i2

2

(
kz

aH

)2

[vz(x)
2
δg(x)]k+ ... , (3.166)

where the two first terms lead directly to the Kaiser formula. However (as we saw above),
the product of two fields located at the same point in space depends very strongly on the UV
physics. These terms must therefore be renormalized to remove any dependence on UV physics.
One obtains (using the equivalence principle) (see Ref. [48]):

[vz(x)
2]R,k = [vz(x)

2]k+

(
aH
k−1

R

)2

[c1 + c2δ (k)]+

(
aH
k−1

R

)2

c3
k2

z

k2 δ (k)+ ... , (3.167)

[vz(x)
3]R,k = [vz(x)

3]k+3
(

aH
k−1

R

)2

c1vz(k)+ ... , (3.168)

[vz(x)δ (x)]R,k = [vz(x)δ (x)]k+

(
aH
k−1

R

)2

c4
kz

kM
δ (k)+ ... , (3.169)

[vz(x)
2
δ (x)]R,k = [vz(x)

2
δ (x)]k+

(
aH
k−1

R

)2

c1δ (k)+ ... . (3.170)

Let us note a few important points about these equations:

• We have four counterterms, c1, c2 c3 and c4, whose role is to eliminate the UV depen-
dence of the field product operators [...]k in order to get UV-independent operators [...]R,k.
These counterterms thus come purely from the Taylor expansion in vz due to the redshift-
space distortion. We therefore call them RSD counterterms.

• The aH/k−1
R factor has been conventionally chosen so that the counterterms are of the

order of unity.

• k−1
R is the renormalization scale of the velocity products appearing in the redshift-space

expansion. Physically it corresponds to the the typical scale associated with the velocity
dispersion of the galaxies.

• The renormalized operators [...]R,k are written directly as a function of the dark matter
overdensity field δ and not as a function of the galaxy overdensity field δg, because in the
end it is the relevant field that need to be used to relate the galaxy power spectrum to the
matter power spectrum.



3.4. The effective field theory of large-scale structures 111

Now, if we perform the two point correlation function of Eq. (3.166), and using the renormalized
operators, then one can show that (see Ref. [48])

Pg,r(k,µ) = PNLO
g,r (k,µ)+PRSDctr

g,r (k,µ) , (3.171)

where PNLO
g,r (k,µ) is the galaxy power spectrum obtained using the non-renormalized opera-

tors [which is nothing more than the two-point correlation function of Eq. (3.166)], and where
PRSDctr

g,r (k,µ) is the contribution of the RSD counterterms to the galaxy power spectrum. One
can easily show that this contribution reads (see Ref. [48]):

PRSDctr
g,r (k,µ) = 2

(
1+ f µ

2)(cr,1µ
2 + cr,2µ

4)

(
k
kR

)2

P11(k,µ) , (3.172)

where

cr,1 = c1 + c2−2c4 , (3.173)
cr,2 = c1 + c3 . (3.174)

Note that the ci parameters have been modified as: ci → −2π2D2
+(a)ci. Finally, only two

combinations of these RSD counterterms are suitable for the one-loop galaxy power spec-
trum, namely cr,1 and cr,2.

Biased tracers in EFTofLSS

Now we need to determine PNLO
g,r (k,µ) in Eq. (3.171), which depends solely on the

δg and vz fields. The new difficulty lies in the relationship between δg and δ in order to
find an expression for PNLO

g,r (k,µ) that depends on the linear matter power spectrum. To
do this, it is possible to choose several parametrizations that leave the theory invariant. In
particular, in this thesis we consider two different parametrization: the “West coast” (WC)
parametrization [58] implemented in the PyBird code [59], and the “East coast” (EC)
parametrization [60] implemented in the CLASS-PT code [61, 62]. However, note that the form
of the countreterms must necessarily be equivalent between the two parametrizations. One
of the aims of chapters 5 and 6 will be to compare these parametrizations, since they lead to
different cosmological results. It is crucial to understand the origin of these deviations, since
these two parameterisations are mathematically equivalent.

In order to obtain the one-loop galaxy power spectrum, one needs to consider all the pos-
sible operators in the bias expansion that do not violate the equivalence principle. As with the
matter overdensity and velocity fields, we need to consider the expansion up to third order. For
example, the bias expansion in the EC parametrization reads [60, 61]:

δg = b̃1δ +
b̃2

2
δ

2 +
b̃3

6
δ

3 +bG2G2 +bδG2δG2 +bG3G3 +bΓ3Γ3 +R2
∗∂

2
δ + ε , (3.175)

where

• b̃1, b̃2 and b̃3 are the bias expansion parameters of the matter overdensity field. In particu-
lar, b̃1 corresponds to the linear bias parameter, as defined in the Kaiser formula, while b̃2
and b̃3 are the second and third order non-linear bias parameters of the matter overdensity
field.
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• ε is a stochastic field uncorrelated with the matter overdensity field. It has the same
meaning as the one introduced in the effective stress tensor (see above).

• bG2 , bδG2 and bG3 correspond to the bias parameters which encode the dependence of δg
on the gravitational potential φ . Because of the equivalence principle, it is not possible
to have terms in φ and ∂φ , which implies that there is no dependence of the potential at
linear order. G2 is the Galileon operator defined as:

G2(φ)≡ (∂i∂ jφ)
2− (∂ 2

i φ)2 , (3.176)

while
Γ3 ≡ G2(φ)−G2(φv) , (3.177)

where φv is the velocity potential (defined as ∇2φv =−θ/aH [60]).

• One finally needs to add the contribution of ∂ 2δ (the contribution ∂δ does not respect the
equivalence principle) in the bias expansion.

Note that after renormalization, the contributions from b̃3, δG2 and bΓ3 disappear. In addition,
the R2

∗∂
2δ contribution (which is ∝ k2 in Fourier space) is degenerated with the effective sound

speed of the one loop matter power spectrum c2
s,eff, which means that in the following we

consider a new parameter, called cct, which is a linear combination of these two parameters,
namely c2

ct ∼ c2
s,eff +R2

∗. Finally, in addition to the two RSD counterterms, we will have four
bias parameter (b̃1, b̃2, bδG2 and bΓ3), the cct parameter and stochastic parameters coming from
the two-point correlation function of ε .

In the following, we will consider the WC parametrization, written in the basis
{b1,b2,b3,b4}, which is related to the previous basis {b̃1, b̃2,bG2,bΓ3} [60] in the
following way [63]:

b1 = b̃1,

b2 = b̃1 +
7
2

bG2,

b3 = b̃1 +15bG2 +6bΓ3,

b4 =
1
2

b̃2−
7
2

bG2 . (3.178)

The WC parametrization is the one mainly used in this thesis.

Finally, note that the final one-loop galaxy power spectrum in redshift-space is obtained by
injecting the bias expansion [see Eq. (3.175)] into the PNLO

g,r (k,µ) term of Eq. (3.171), which
depends only on the δg and vz fields.

Final expression of the galaxy power spectrum

We now turn to the final equation of the EFTofLSS galaxy power spectrum, obtained
in Ref. [64]. In this section, we give all the relevant details about this equation that
will be used throughout the manuscript. In particular, Eq. (3.180), implemented in the
PyBird code, is the fundamental equation that we consider throughout this thesis, and it
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is the one that will be used each time we perform a full-shape analysis of clustering data
(unless otherwise indicated). The main idea behind this equation is to obtain a formulation
of the EFTofLSS galaxy power spectrum that depends only on the linear matter power
spectrum. It is therefore possible to determine the latter using a Boltzmann code, and then
to infer the mildly non-linear galaxy power spectrum by applying this equation in a second step.

First of all, let us recall that at linear order the galaxy power spectrum in redshift space is
given by the famous Kaiser formula [see Eq. (3.59)]: 4

Pg,r(z,k,µ) =
[
b1(z)+ f µ

2]2 P11(z,k)≡ Z1(µ)
2P11(z,k) , (3.179)

where P11(z,k) corresponds to the linear matter power spectrum that can be calculated with
a Boltzmann code such as CLASS [43] or CAMB [44], f is the growth factor, b1(z) is the lin-
ear galaxy bias parameter, and µ = ẑ · k̂ is the cosine of the angle between the line-of-sight z

and the wavevector of the Fourier mode k. At one-loop order, for the WC parametrization,
the formula is improved to [64]:

Pg,r(k,µ) = Z1(µ)
2P11(k)+2Z1(µ)P11(k)

(
cct

k2

k2
M

+ cr,1µ
2 k2

k2
R

+ cr,2µ
4 k2

k2
R

)
(3.180)

+2
∫ d3q

(2π)3 Z2(q,k− q,µ)2P11(|k− q|)P11(q)+6Z1(µ)P11(k)
∫ d3q

(2π)3 Z3(q,−q,k,µ)P11(q)

+
1
n̄g

(
cε,0 + cmono

ε

k2

k2
M

+3cquad
ε

(
µ

2− 1
3

)
k2

k2
M

)
,

where k−1
M ' k−1

NL is the scale controlling the spatial derivative expansion, with size given by the
host halo typical extension [65], while k−1

R is the renormalization scale of the velocity products
appearing in the redshift-space expansion (see above) [48]. We discuss these scales more in
details in Sec. 4.1.2. In the following, we give a description of the different terms of Eq. (3.180):

• The first term corresponds to the Kaiser term (3.179).

• The second term proportional to k2Z1(µ)P11(k) corresponds to the contribution of the
one loop-order counterterms. cct is a linear combination of the dark matter sound speed
c2

s,eff coming from the one-loop matter power spectrum [see Eq. (3.148)] and a higher-
derivative bias (see above) [65], while cr,1 and cr,2 represent the redshift-space countert-
erms (see also above) [48]. Let us note that in our analyses, we do not consider cr,2 (which
belongs to a µ4−term), since we do not include the hexadecapole. Without the latter, this
term is degenerate with cr,1.

• The second line corresponds to the one-loop perturbation contribution, which depends
on four galaxy bias parameters appearing in Eqs. (3.181)-(3.183): bi, with i = [1,4] (see
above for their explicit definition).

• Finally, the last line, inversely proportional to the mean galaxy number density n̄g, cor-
responds to the stochastic contribution, which depends on three stochastic terms: cε,0,
cmono

ε and cquad
ε . The first term describes a constant shot noise as in the linear theory [see

4Note that for the sake of simplicity we have not indicated the redshift dependency of Z1(µ).
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Sec. 3.2], while the other two terms correspond to the scale-dependant stochastic contri-
butions of the monopole and the quadrupole. This comes from the two-point correlation
function of the stochastic parameter ε .

In Eq. (3.180), Zn corresponds to the redshift-space galaxy density kernels of order n (see
e.g., [64]). The equations of Z1, Z2, and Z3 are given by:

Z1(q1) = K1(q1)+ f µ
2
1 G1(q1) = b1 + f µ

2
1 , (3.181)

Z2(q1,q2,µ) = K2(q1,q2)+ f µ
2
12G2(q1,q2)+

1
2

f µq
(

µ2

q2
G1(q2)Z1(q1)+perm.

)
,

(3.182)

Z3(q1,q2,q3,µ) = K3(q1,q2,q3)+ f µ
2
123G3(q1,q2,q3)

+
1
3

f µq
(

µ3

q3
G1(q3)Z2(q1,q2,µ123)+

µ23

q23
G2(q2,q3)Z1(q1)+ cyc.

)
, (3.183)

where µ = q · ẑ/q, q = q1 + · · ·+ qn, and µi1...in = qi1...in · ẑ/qi1...in , qi1...im = qi1 + · · ·+ qim . Gi
are the standard perturbation theory velocity kernels (see Sec. 3.3), while Ki are the galaxy
density kernels, reading as [65, 66, 67]:

K1 = b1 , (3.184)

K2(q1,q2) = b1
q1 · q2(q2

1 +q2
2)

2q2
1q2

2
+b2

(
F2(q1,q2)−

q1 · q2(q2
1 +q2

2)

2q2
1q2

2

)
+b4 , (3.185)

K3(q,−q,k) =
b1

504k3q3

(
−38k5q+48k3q3−18kq5 +9(k2−q2)3 log

[
k−q
k+q

])

+
b3

756k3q5

(
2kq(k2 +q2)(3k4−14k2q2 +3q4)+3(k2−q2)4 log

[
k−q
k+q

])

+
b1

36k3q3

(
6k5q+16k3q3−6kq5 +3(k2−q2)3 log

[
k−q
k+q

])
, (3.186)

where F2 is the symmetrized standard perturbation theory second-order density kernel (see
Sec. 3.3 together with Ref. [53]), and the third-order kernel is written in its UV-subtracted
version and is integrated over k · q̂. Finally, in the redshift-space galaxy power spectrum
at one-loop [i.e., Eq. (3.180)], one obtains a total of ten EFT parameters, namely three
counterterms, four galaxy bias parameters and three stochastic parameters.

In this thesis, we consider the multipoles of the galaxy power spectrum, obtained through
a Legendre polynomials decomposition of the total galaxy power spectrum [as we did for the
Kaiser formula in Eqs. (3.64)-(3.66)]:

Pg(z,k,µ) = ∑̀
=0

L`(µ)P̀ (z,k) , (3.187)

where L` represents the Legendre polynomial of order `, and P̀ (z,k) are the multipoles of
the galaxy power spectrum defined as:

P̀ (z,k) =
2`+1

2

∫ 1

−1
dµ L`(µ)Pg(z,k,µ) . (3.188)
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Figure 3.16: Fit of the monopole and quadrupole of the galaxy power spectrum, either from the linear
perturbation theory [i.e., using the monopole and the quadrupole of the Kaiser formula from Eqs. (3.64)
and (3.65)] or from the EFTofLSS [i.e., using Eq. (3.180) implemented in the PyBird code]. The data
shown here correspond to the CMASS NGC skycut of the BOSS data.

Given that most of the signal-to-noise ratio resides in the monopole (`= 0) and the quadrupole
(` = 2), we consider only these two moments in our analyses, and in practice, we evaluate the
loop corrections using the FFTLog method [68]. In Fig. 3.16, we plot the predictions from the
linear perturbation theory [using the monopole and the quadrupole of the Kaiser formula from
Eqs. (3.64) and (3.65)] and from the EFTofLSS [using Eq. (3.180) implemented in the PyBird
code] when confronted with the galaxy power spectrum of the BOSS data. We can see that this
theory fits the galaxy power spectrum very precisely up to kmax ∼ 0.20−0.25hMpc−1 (whereas
this is not at all the case for the linear perturbation theory). In chapter 4, we shall detail precisely
how to determine kmax, and we shall quantify the goodness of the fit more precisely.

Galaxy correlation function

In chapter 4, we also consider the redshift-space galaxy correlation function instead of the
power spectrum. The correlation function at one loop order corresponds to the inverse Fourier
transform of the galaxy power spectrum given in Eq. (3.180):

ξg(z,s,µs) =
∫ d3k

(2π)3 eik·qPg(z,k,µs) , (3.189)

and, similarly to the galaxy power spectrum, one considers a Legendre polynomials
decomposition:

ξg(z,s,µs) = ∑̀
=0

L`(µs)ξ`(z,s) . (3.190)

We can relate the correlation function multipoles to the power spectrum multipoles through
a spherical-Bessel transform:

ξ`(s) = i`
∫ dk

2π2 k2P̀ (k) j`(ks) , (3.191)
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where j` is the spherical-Bessel function of order `. As with the power spectrum, we make use
of the monopole (`= 0) and the quadrupole (`= 2) of the correlation function in the following.
As the Fourier transform of power-laws are simply Dirac-δ function in configuration space, the
stochastic contributions in Eq. (3.180) drop out from the correlation function prediction [69].
In practice, we also evaluate the correlation function using the FFTLog method [70, 69].

3.4.4 Additional effects
In this final subsection, we briefly discuss both theoretical (for IR resummation) and exper-

imental corrections made to Eq. (3.180). In particular, we will use these corrections throughout
this thesis, whenever we perform a full shape analysis with EFTofLSS.

IR-resummation

As the long-wavelength displacements are non-perturbative in our Universe, we need to
resum them to all orders to accurately describe the scales around the BAO scale [71]. The
IR-resummation of the galaxy power spectrum up to the N-loop order is defined as [48, 72, 59]:

P`(k)|N =
N

∑
j=0

∑̀
′

4π(−i)`
′
∫

dqq2 Q``′
||N− j(k,q)ξ

`′
j (q) , (3.192)

where P`(k)|N corresponds to the resummed power spectrum, and ξ `
j (k) are the j-loop order

pieces of the Eulerian (i.e., non-resummed) correlation function, respectively. The effects from
the bulk displacements are encoded in Q``′

||N− j(k,q), given by:

Q``′
||N− j(k,q) =

2`+1
2

∫ 1

−1
dµk

i`
′

4π

∫
d2q̂ e−iq·kF||N− j(k,q)L`(µk)L`′(µq) , (3.193)

F||N− j(k,q) = T0,r(k,q)×T−1
0,r ||N− j(k,q) ,

T0,r(k,q) = exp
{
−k2

2
[
Ξ0(q)(1+2 f µ

2
k + f 2

µ
2
k )+Ξ2(q)

(
(k̂ · q̂)2 +2 f µkµq(k̂ · q̂)+ f 2

µ
2
k µ

2
q
)]}

,

where Ξ0(q) and Ξ2(q) are defined as:

Ξ0(q) =
2
3

∫ d p
2π2 exp

(
− p2

Λ2
IR

)
P11(p) [1− j0(pq)− j2(pq)] , (3.194)

Ξ2(q) = 2
∫ d p

2π2 exp
(
− p2

Λ2
IR

)
P11(p) j2(pq) . (3.195)

In practice, we evaluate the IR-resummation using the FFTLog method [59].

Additional modeling effects

On top of the description of the biased tracers in redshift space, we account for a num-
ber of observational effects, as described in Ref. [58]: the Alcock-Paszynski effect [73] (see
Sec. 3.2), the window functions as implemented in Ref. [74] (we describe this correction in
detail in App. D.1), and binning. For a given redshift data slice, we evaluate our predictions at
one effective redshift rather than accounting for the redshift evolution. In particular, we take the
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EFT parameters as constant within the redshift slice. The accuracy of this approximation has
been checked in Ref. [75] in the context of the BOSS survey. We have checked that this approx-
imation leads to negligible shifts in the determined cosmological parameters from eBOSS, as
expected from the size of the survey compared to the one of BOSS. Tests and further consider-
ations on observational effects are given in Sec. 4.1.3 of chapter. 4. Moreover, we have shown
above that the correction for uncertainties in the redshift determination is degenerate with some
EFT counterterms (see below), and therefore that our formalism naturally accounts for it.





Part II

The effective field theory of large-scale
structures applied to (e)BOSS data and its

consistency within the ΛCDM model
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The distribution of matter at large scales contains a wealth of cosmological information,
from the initial conditions of the Universe to the gravitational collapse of late-time objects.
The program of cosmic microwave background (CMB) experiments has now matured to a state
where ΛCDM parameters have been measured to percent level with the Planck satellite [11],
and with similar precision by subsequent experiments, e.g., ACT [76] and SPT [77, 78]. At
the same time, the data volume gathered by large-scale structure (LSS) surveys has been
continuously growing. As those surveys probe vastly different epochs in the history of the
Universe, they allow for a crucial consistency test of the ΛCDM model and have delivered
independent cosmological determinations at precision comparable to CMB measurements, see
e.g., the recent results from the photometric surveys DES [79] and KIDS [80], or from the
spectroscopic surveys BOSS [81]. In addition, LSS data have become paramount to break
degeneracies of the ΛCDM model and extensions when combined with CMB.

The large amount of LSS data available provides us with new opportunities to extract
additional cosmological information, by making use of the full-shape of summary statistics
built from clustering data. Among the spectroscopic surveys, the extended baryon oscillation
spectroscopic survey (eBOSS), combined with previous phases of the sloan digital sky
survey (SDSS), has mapped more than 11 billion years of cosmic history, providing an
unprecedented map of the matter clustering in the Universe [82] through different tracers of
the underlying matter density distribution, e.g., galaxies, quasars or the lyman-α forest. To
extract cosmological information from these surveys, the (e)BOSS Collaboration follows
the convention of compressing information from these surveys into simple parameters that
can be easily compared with cosmological models. These are usually expressed in the form
of the Alcock-Paczynski (AP) parameters measured from the BAO angles [73] and the f σ8
parameter, where f is the growth factor, measured from redshift-space distortions (RSD) [50],
as already explained in detail in Sec. 3.2. The combination of these two pieces of information
is referred to as “BAO/ f σ8” in this thesis. However, the large amount of LSS data available
provides us with new opportunities to extract additional cosmological information, by making
use of the full-shape of summary statistics built from clustering data. Given the increasing data
volume and the variety of tracers probed, new methods to make reliable predictions for the
full-shape are necessary to extract the cosmological parameters in a robust and systematic ways.

Thankfully, the underlying density and velocity fields of any tracer respect a set of
symmetries in the long-wavelength limit known as Galilean invariance [83, 84, 85]. Moreover,
we are interested in objects that are non-relativistic, allowing us to define a nonlinear scale
as the average distance travelled by the objects during the age of the Universe, under which
the underlying fields and their dynamics can be smoothed out [55] (see Sec. 3.4). Building
on those considerations, the effective field theory of large-scale structures (EFTofLSS) has
emerged as a systematic way to organize the expansions in fluctuations and derivatives of the
density and velocity fields of the observed tracers at long wavelengths [55, 54, 71, 65, 48], as
explained in detail in Sec. 3.4. 5 The prediction at the one-loop order for the power spectrum

5The first formulation of the EFTofLSS was carried out in Eulerian space in Refs. [54, 55] and in Lagrangian
space in [86]. Once this theoretical framework was established, many efforts were made to improve this theory
and make it predictive, such as the understanding of renormalization [87, 88], the IR-resummation of the long
displacement fields [48, 89, 71, 90, 70, 91], and the computation of the two-loop matter power spectrum [92, 93].
Then, this theory was developed in the framework of biased tracers (such as galaxies and quasars) in Refs. [65, 60,
66, 67, 64, 94]. See also the introduction footnote in, e.g., Ref. [95] for relevant related works on the EFTofLSS.
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of biased tracers in redshift space from the EFTofLSS [64] (see also Ref. [96]) has been
used to analyze the full-shape of BOSS clustering data in Refs. [58, 97]. These works have
shown that: (i) higher wavenumbers beyond the linear regime in good theoretical control can
be accessed, bringing additional cosmological information (see also Ref. [98]), and (ii) with
reliable predictions, as the cosmological parameters (together with the nuisance parameters) are
scanned the template can be varied instead of being held fixed, exploiting the full information
of the full-shape beyond the one from geometrical distortions (see Refs. [99, 100] for earlier
works where the full-shape predictions, yet not from the EFTofLSS, were varied at each point
in parameter space). EFT analyses of BOSS data have already provided precise and robust
determination of ΛCDM parameters [58, 97, 101, 102, 103, 69, 104, 105]. Some EFT analyses
of BOSS data have also included the bispectrum at tree-level [58, 62] and at one-loop [95] (see
also Ref. [106]), pushing down uncertainties on ΛCDM parameters and setting new bounds
from the LSS on non-Gaussianities [107, 108, 109]. See also, e.g., Refs. [110, 111, 112, 113,
114, 115] for results from BOSS and/or eBOSS full-shape analyses using methods different
from the EFTofLSS.

Furthermore, clustering data have the potential to play a key role in shedding light on the
Hubble and S8 tensions (see introduction of part III). In particular, an agreement between
clustering and CMB data would have, under the assumption that there is no systematic error,
significant impact on the interpretation of these tensions. Regarding the S8 tension, this
would hint that the origin lies in the scales beyond the (large) scales included in clustering or
CMB analyses (see e.g., Ref. [116]). As for the H0 tension, a resolution would then require
modifications to the concordance model that can lift both the values measured in the CMB and
in the LSS.

The second part of this thesis corresponds to my overall contribution to the EFTofLSS anal-
ysis applied to (e)BOSS data within the framework of the ΛCDM model (and its canonical
extensions). In chapter 4 (adapted from Ref. [117]), we present the first application of the
EFTofLSS to eBOSS QSO data and we established a systematic method for applying it to dif-
ferent LSS data to obtain robust results. In this chapter, we show (i) that this analysis allows
us to improve the ΛCDM constraints from LSS data and to obtain competitive constraints with
CMB data (and especially with the Planck data), and (ii) that current LSS data are compatible
with the flat-ΛCDM model and provide interesting constraints on the canonical extensions of
the ΛCDM model. Then, in chapter 5 (adapted from Ref. [105]), we seek to verify the self-
consistency of this theory within the ΛCDM model, in particular between different EFTofLSS
theoretical parametrizations that have been proposed in the literature and that seemed to pro-
vide different constraints on cosmological parameters. We perform a series of analyses of the
BOSS full-shape data, varying one-by-one (in order of importance) the prior choices, the BOSS
measurements used (full-shape and post-reconstructed BAO parameters), the scale cuts and the
number of multipoles included. Importantly, we find that cosmological constraints are sensitive
to the choice of prior on the EFT parameter space, and that this choice drives most of the differ-
ences in the results. Finally, in chapter 6 (adapted from Ref. [118]), we explore this difference
in parametrization and priors using a profile likelihood analysis. In particular, the goal is to
understand the impact of the EFT priors on the inferred cosmological parameters and how this
will change with more constraining data. This work demonstrates the importance of combining
Bayesian and frequentist approaches for a in depth inference from current and future LSS data.
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In this chapter, we analyze the eBOSS quasars (QSO) full-shape using the prediction from
the EFTofLSS. There are two main motivations behind this work. First, the EFTofLSS has only
been used to analyze BOSS luminous red galaxies (LRG) and more recently eBOSS emission
line galaxies (ELG) [119]. As QSO are different tracers than LRG, and selected by SDSS at an
overall higher redshift than LRG, the eBOSS QSO full-shape analysis complements previous
BOSS full-shape analysis, providing yet another important consistency test of ΛCDM at a
different epoch and for another tracer (while also allowing us to test the assumptions behind the
EFTofLSS such as the Galilean invariance symmetries). Second, the eBOSS QSO full-shape
once combined with other cosmological probes can shed light on extensions to ΛCDM model.
Here, we explore four one-parameter extensions to the flat ΛCDM model, namely the curvature
density fraction Ωk, the dark energy equation of state w0, neutrino masses ∑mν , and the
effective number of relativistic species Neff. We compare the obtained limits with the ones
from Planck and with the ones from the standard BAO/ f σ8 technique, in order to assess both
the consistency of the results and the potential improvements brought by the EFT analysis.

This chapter is organized as follow. In Sec. 4.1, we describe the EFT analysis pipeline for
eBOSS QSO that we built. In particular, we present the dataset, likelihood, and prior chosen
for our analysis in 4.1.1. In 4.1.2, we assess the highest wavenumbers kmax that can be included
in the analysis of eBOSS QSO full-shape data by making use of a general method that consists
in evaluating the size of the theoretical error through the insertion of the dominant next-to-
next leading order terms in the EFTofLSS prediction at one-loop. In 4.1.3, we address known
observational systematic effects and provide tests against simulations, while in 4.1.4 we perform
a new calculation to include the redshift error (which is significant for QSOs) in EFTofLSS. In
Sec. 4.2, we present and discuss the constraints on flat ΛCDM from the EFT analysis of the
eBOSS QSO full-shape, both in Fourier and configuration space, and in combination with other
cosmological probes. Results on extensions to ΛCDM are presented and discussed in Sec. 4.3.
A summary of our results and concluding remarks are given in Sec. 4.4. Additional material
can be found in App. A.1, which is dedicated to exploring the impact of fixing the spectral tilt
ns and the baryons abundance ωb in the base-ΛCDM analysis of the eBOSS QSO full-shape.

4.1 Analysis pipeline
In this chapter, we use the WC parametrization as presented in Sec. 3.4.3. In particular, the

galaxy power spectrum equation we use is that of Eq. (3.180).

4.1.1 Cosmological inference setup
Data. In this work, we use various sets of cosmological observations, comparing results of the
EFTofLSS applied to (e)BOSS data with those from Planck CMB data, and their combination.
We make use of the following datasets:

• eBOSS DR16 QSO: The main novelty of this work is the full-shape analysis of
the quasars (QSO) from the extended Baryon Oscillation Spectroscopic Survey
(eBOSS) [82]. The QSO catalogs are described in Ref. [120]. The covariances are built
from the EZmocks described in Ref. [121]. There are about 343708 quasars selected in
the redshift range 0.8 < z < 2.2, making for a sample of about 0.6Gpc3 at an effective
redshift of zeff = 1.52, cut into two skies, NGC and SGC. We analyze the full-shape of



4.1. Analysis pipeline 125

the eBOSS QSO power spectrum multipoles, ` = 0,2, namely the monopole and the
quadrupole, measured in Ref. [122]. 1 The covariances and the window functions we
use are also from [122]. We use data (and associated covariance matrices) deconvolved
from the window functions, such that one does need to apply them to the prediction [58,
122]. We analyze the correlation function multipoles measured in Ref. [123]. 2 When
not explicitly mentioned, our eBOSS results are obtained with the power spectrum.

• BOSS DR12 LRG: We compare and combine the eBOSS QSO with BOSS luminous red
galaxies (LRG) [81]. The BOSS catalogs are described in Ref. [124]. The covariances
are built from the patchy mocks described in Ref. [125]. The BOSS data are cut into
two redshift bins, LOWZ and CMASS, spanning ranges 0.2 < z < 0.43 (zeff = 0.32),
0.43 < z < 0.7 (zeff = 0.57), respectively, with north and south galactic skies for each,
respectively denoted NGC and SGC. We use the EFT likelihood of the full-shape of the
BOSS LRG power spectrum pre-reconstructed multipoles, `= 0,2 (namely the monopole
and the quadrupole), measured and described in Ref. [69], together in cross-correlation
with post-reconstruction BAO compressed parameters obtained in Ref. [59] on the post-
reconstructed power spectrum measurements of Ref. [126].

• ext-BAO: We also combine the data from eBOSS and BOSS with external BAO (ext-
BAO) measurements, namely data from 6dFGS at z = 0.106 and SDSS DR7 at z = 0.15
[127, 128, 81], and the joint constraints from eBOSS DR14 3 Ly-α absorption auto-
correlation at z = 2.34 and cross-correlation with quasars at z = 2.35 [130, 131].

• Pantheon: We also include the Pantheon18 SNIa catalogue, 4 spanning redshifts 0.01 <
z < 2.3 [133]. We stress that here we are only using the uncalibrated luminosity distance
to Pantheon18 SNIa.

• Planck: Finally, we compare constraints obtained from different LSS surveys combi-
nations with the Planck results obtained from analyzing the high-` TTTEEE + lowE +
lensing [11]. We use the nuisance parameters marginalized Planck lite likelihood when
performing the MCMC, but switch to the full likelihood to derive the best-fit.

We dub “LSS” the combination of eBOSS + BOSS + ext-BAO + Pantheon to refer to an analysis
that is independent of Planck (or any CMB data).

Likelihood and prior. To describe the eBOSS QSO full-shape data, we use the
following likelihood L :

−2log(L ) = (D−T (θ)) ·C−1 · (D−T (θ))−2log p(θ) . (4.1)

Here D is the data vector, constructed from the measurements of the monopole and quadrupole
of the power spectrum or the correlation function; T (θ) is the corresponding EFTofLSS pre-
diction, containing also additional modeling effects, as described in Sec. 3.4, where θ desig-
nates generically all parameters– cosmological and EFT ones– entering in T ; C−1 is the inverse

1Publicly available at: https://fbeutler.github.io/hub/deconv_paper.html.
2Publicly available at: https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/

dataveccov/lrg_elg_qso/QSO_xi/.
3These data were recently updated in Ref. [129] and are consistent with those used in this work.
4We note that, as this work was completed, the new Pantheon+ data became available [132]. Given that the

datasets are broadly consistent we do not expect major changes in our conclusions.

https://fbeutler.github.io/hub/deconv_paper.html
https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/dataveccov/lrg_elg_qso/QSO_xi/
https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_1/dataveccov/lrg_elg_qso/QSO_xi/
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covariance built from the mocks mentioned in previous paragraph; p(θ) is the prior that we
describe next. For our baseline ΛCDM analysis of the LSS data, we vary three cosmologi-
cal parameters within uninformative large flat prior: {ωcdm, h, log

(
1010As

)
}, corresponding re-

spectively to the physical cold dark matter abundance, the reduced Hubble constant, and the log-
amplitude of the primordial fluctuations. We fix the physical baryons abundance ωb = 0.02233,
as motivated by big-bang nucleosynthesis estimates [134], and the spectral tilt ns = 0.965 to
Planck preferred value [11]. The impact on the posteriors of letting these parameters free to
vary is discussed in App. A.1. Let us stress that every time Planck data are used, we free ωb
and ns, and co-vary the optical depth to reionization τreio. For better comparison with the lit-
erature, we present most of our cosmological results on the fractional matter abundance, the
reduced Hubble constant, and the clustering amplitude, respectively {Ωm, h, σ8}. We also ex-
plore one-parameter extensions to this baseline ΛCDM analysis, freeing either the fractional
curvature density Ωk, the equation of state parameter of a smooth dark energy field w0, the sum
of the neutrino masses ∑mν , or the effective number of relativistic species Neff. For all runs
performed, unless specified, we use Planck prescription for the neutrinos, taking two massless
and one massive species with mν = 0.06eV [11]. For the EFT parameters, we analytically
marginalized over the parameters appearing only linearly in our predictions with a Gaussian
prior centered on 0 of width ∼ O(b1) in order to keep them within physical range [58]. As
for the remaining ones, b1 and c2, we use flat prior [0,4] and [−4,4] while scanning them.
We refer to chapters 5 and 6 for a detailed description of our choice of priors, that is dubbed
“West-coast” prior therein. For eBOSS, we use n̄g = 2 · 10−5(hMpc−1)3 as estimated from
Ref. [135], while for BOSS, we use n̄g = 4 ·10−4(hMpc−1)3 as estimated from Ref. [81]. The
values chosen for kM and kR is discussed in Sec. 4.1.2. We assign one set of EFT parameters
per sky cut (NGC or SGC) and per redshift bin for BOSS and eBOSS. To obtain the best-fits,
we follow the App. C of Ref. [59] and minimize the full likelihood, but without scanning over
the parameters appearing only linearly in our predictions, as described therein. When analyzing
both BOSS and eBOSS full-shapes, we simply add their corresponding likelihoods, as there is
no overlap. We also simply add the likelihoods when combining with ext-BAO, Pantheon, or
Planck, neglecting potential small correlation.

Posterior sampling. We sample the posteriors from our likelihood using the Metropolis-
Hasting algorithm from MontePython [136, 137]. 5 The linear power spectra are computed
with the CLASS Boltzmann code [43]. 6 The full-shape prediction from the EFTofLSS [corre-
sponding to Eq. (3.180)] with additional modeling effects are computed using PyBird [59]. 7

Credible interval and best-fit. As we will see in chapters 5 and 6 in the context of the full-
shape analysis of BOSS data with the EFTofLSS, shifts between the means of the 1D marginal-
ized posteriors with respect to the most-likely values can arise due to prior volume effects.
Therefore, when presenting the cosmological results, on top of providing the 68%-credible in-
tervals, we also systematically provide the corresponding most-likely values. Those latter are
sensitive to the prior weight but are not affected by the prior volume projection effect (see chap-
ters 5 and 6). Let us also caution about the determination of the best-fit values quoted in this
work, as they can be subject to some uncertainty, given the flatness of the likelihood of eBOSS

5https://github.com/brinckmann/montepython_public
6http://class-code.net
7https://github.com/pierrexyz/pybird

https://github.com/brinckmann/montepython_public
http://class-code.net
https://github.com/pierrexyz/pybird


4.1. Analysis pipeline 127

QSO full-shape around its maximum in some particular directions. For example, we find for
eBOSS alone ∆χ2 . 0.2 when moving by ∼ 1σ in the direction of Ωm or σ8, where σ is the
error bars read from the 68%-credible intervals. As a complete profile likelihood analysis is
beyond the scope of this work, we leave this to future investigation. See, e.g., Ref. [138] for
discussions on how to mitigate those uncertainties.

4.1.2 Scale cut from governing scales
In this section, we determine the scale cut of the full-shape analysis of eBOSS QSOs di-

rectly from the data by considering the impact of higher-order corrections to our one-loop pre-
diction. We additionally validate our likelihood against simulations in order to cross-check
the value of the scale cut, as well as test for additional modeling uncertainties independent
of the EFTofLSS formalism. We summarize here the scale cut values that we use, and for
which we find that the determination of the cosmological parameters is safe from significant
systematic shifts due to the theory error:

• When analyzing the eBOSS QSO power spectrum, we include k ∈ [0.01,0.24]hMpc−1.

• When analyzing the eBOSS QSO correlation function, we include s ∈ [20,160]Mpch−1

(which are all the scales provided in the public data).

• For completeness, we recall that in the analysis of BOSS LRG power spectrum, we in-
clude k ∈ [0.01,0.23]hMpc−1 for CMASS, while we include k ∈ [0.01,0.20]hMpc−1 for
LOWZ [101, 59].

Let us remark that it may come as a surprise that the maximal wavenumber of the analysis for
eBOSS QSO are so close to the one of BOSS. Indeed, naively, given that eBOSS data are at
higher redshift, therefore with smaller nonlinearities, and are of smaller volume than BOSS
data, one may expect that the EFTofLSS prediction at one loop could allow to include (in a
controlled manner) deeper scales in the eBOSS full-shape analysis, i.e., keBOSS

max > kBOSS
max . In

fact, the scales at which the theory error starts to become important is similar in both analyses.
This is because, although eBOSS error bars are larger, the theory error is dominated by terms
that renormalize products of velocities in the redshift-space expansion and that happen to be
larger for eBOSS QSOs than BOSS LRGs. We expand over this issue in the following.

Governing scales in eBOSS QSOs. In Eq. (3.180) appear three scales governing the EFT
expansions: the nonlinear scale, k−1

NL, the spatial extension of the observed objects, k−1
M , and the

“dispersion” scale, k−1
R . The nonlinear scale k−1

NL can be understood as the typical distance mat-
ter particles travel during the (finite) age of the Universe ∼H −1. It is thus about k−1

NL ∼ v/H ,
where v� 1, as we are dealing with non-relativistic matter. For the long-wavelength modes of
interest, k∼H , this implies k/kNL� 1. Therefore, this allows us to organize the expansion of
the galaxy density field δg in long-wavelength “smoothed” fluctuations, e.g., δg ∼ ∂ 2φ/H 2 ∼
(k/kNL)

2 � 1 [55]. In particular, at next-to-leading order, this scale appears explicitly in the
counterterm ∝ (∂ 2/k2

NL)∂
2φ/H 2 ∼ c2

s,eff(k
2/k2

NL)δ
(1) renormalizing the dark matter field δ at

short distances [54]. The spatial extension of the observed objects k−1
M is instead controlling

the spatial derivative expansion [65]. At leading order in derivatives, δg receives a contribution
of the form of δhd ∼ (∂ 2/k2

M)∂ 2φ/H 2 ∼ R2
∗(k

2/k2
M)δ (1). For halos, k−1

M is typically of a
few Mpc’s, and similarly for LRGs residing in halos, or QSOs residing in LRGs. Therefore,
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in the galaxy power spectrum, Eq. (3.180), given kNL ∼ kM, the counterterm proportional to
c2

ct ∼ c2
s,eff +R2

∗ is then the linear combination of the two aforementioned contributions, aris-
ing from the renormalization of the dark matter field at short distances and from the spatial
derivatives expansion (see Sec. 3.4). Finally, the products of velocity operators, appearing
in the redshift space expansion, are renormalized by counterterms entering with yet another
scale, k−1

R [72, 139], e.g., δg ⊃ 1
2 µ2k2(v · ẑ)2 ⊃ 1

2cr,1µ2(k/kR)
2δ (1), where cr,1 is defined in

Eq. (3.180). In practice, these scales can be measured directly from the data with associated
EFT parameters ∼ O(1). As explained above, since for biased tracers, the dark matter coun-
terterm is degenerate with the higher-derivative term with k−1

NL ∼ k−1
M , we only measure kM and

kR. For BOSS, it was found that kM ∼ 0.7hMpc−1 and kR ∼ 0.35hMpc−1 [58, 139]. 8 We
find for eBOSS similar value for the scale kM ∼ 0.7hMpc−1, which is expected since QSOs
are residing in LRGs. In contrast, we measure that keBOSS

R ∼ 0.7kBOSS
R , such that cr,1 ∼ O(1).

Such measurement indicates that the “velocity dispersion” along the line-of-sight is larger in
eBOSS QSOs than in BOSS LRGs, which could point to the possibility that QSOs populate
preferentially satellite galaxies rather than central galaxies (see also Ref. [140] suggesting like-
wise from the perspective of halo occupation distribution). For all analyses in this chapter, we
choose the following values for the renormalization scales, ensuring that cct, cr,1 are measured
well within their Gaussian prior N (0,2):

kBOSS
M = 0.7hMpc−1, kBOSS

R = 0.35hMpc−1, (4.2)

keBOSS
M = 0.7hMpc−1, keBOSS

R = 0.25hMpc−1.

Next-to-next-to-leading order. Given the scale estimates above, the theory error associated
to the higher order terms not included in our baseline analysis is dominated by the terms
associated to k−1

R > k−1
NL,k

−1
M . Thus, the size of the theory error can be estimated by the

size of the largest contributions at next-to-next-to-leading order (NNLO), which are given by
the counterterms [139]:

PNNLO(k,µ) =
1
4

b1
(
cr,4b1 + cr,6µ

2)
µ

4 k4

k4
R

P11(k) , (4.3)

where cr,4 and cr,6 are the O(1)-parameters controlling the size of the NNLO counterterms.
Following Ref. [69], we measure the shift in each 1D posterior upon adding of the NNLO term
given by Eq. (4.3) as a function of kmax. The scale cut is determined as the highest scale kmax
included in the analysis such that the theory error is safely small.

kmax vs. theory error. In Tab. 4.1, we show as a function of kmax the shifts upon adding
the NNLO term, Eq. (4.3), to the one-loop prediction, Eq. (3.180), on the 1D posteriors of the
three baseline cosmological parameters, Ωm, h, and σ8, and two EFT parameters, b1 and c2.
Given the scale estimates above, we put a Gaussian prior N (0,4) on the NNLO parameters
cr,4 and cr,6 to keep their size within physical range with a conservative choice. The posteriors
are obtained as described in previous subsection, additionally marginalizing over cr,4 and cr,6
when including the NNLO term in the prediction. At kmax ≤ 0.27hMpc−1, the shift in all
parameters is small. At kmax = 0.30hMpc−1, the shift starts to become appreciable in Ωm, to
about 0.5σ , where σ is the 68% CL. Therefore, staying on the conservative side and within

8Note that here we have adjusted the value of kR, redefining accordingly the associated EFT parameters.
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∆shift
NNLO/σ eBOSS

stat
kmax [hMpc−1] 0.21 0.24 0.27 0.30
Ωm 0.00 -0.04 0.05 -0.47
h -0.02 -0.07 -0.06 0.09
σ8 -0.04 -0.15 -0.03 -0.20
bN

1 0.02 0.09 0.02 -0.09
cN

2 0.02 0.06 0.00 -0.18
bS

1 0.02 0.08 0.06 0.01
cS

2 -0.02 -0.07 0.04 0.00

Table 4.1: Relative shifts of the cosmological and EFT parameters from the addition of the NNLO to the
base-ΛCDM fit to eBOSS for different values of kmax in hMpc−1.

the EFT regime of validity, we take as our final choice for the scale cut kmax = 0.24hMpc−1,
where no appreciable shift is observed. Let us note that the same conclusion is reached when
considering the shift in the best-fit values upon inclusion of the NNLO: at kmax = 0.24hMpc−1,
we find . 0.25σ on all cosmological parameters. Formally the EFT expansions are convergent
only for k < min(kNL,kM,kR) = kR. Therefore, for eBOSS, this reinforce our choice of kmax =
0.24hMpc−1, as it is smaller than the EFT breakdown scale, kR ∼ 0.25hMpc−1. However, we
note that this kmax is rather close to kR. Consequently, the associated parameter controlling this
expansion is close to unity, and the whole tower of counterterms (at all order) proportional to
powers of k−1

R can in principle be of the same order as the linear power spectrum around kmax.
Nevertheless, the theory error should ultimately be compared with the observational error to
gauge whether the computation is sufficiently under control. In practice, we find that despite
being very close the EFT breakdown scale, for our truncated expansion at one-loop, the shift in
parameters presented in Tab. 4.1 is much smaller than the observational error up to kmax . kR,
and it is safe to take kmax = 0.24hMpc−1. In addition, an analysis to higher kmax than the one
found here is not precluded by the size of k−1

R . Indeed, the multipoles can be rotated to form
new linear combinations where the terms associated to k−1

R are suppressed [139]. As shown in
Ref. [139], not much cosmological constraint is gained by such analysis for BOSS data volume
(see also [141]). Similarly, we find that the addition to higher wavenumbers in the full-shape
analysis of eBOSS QSOs does not improve significantly the constraints. For simplicity, we thus
present the results from the multipoles instead of the rotated ones.

4.1.3 Assessing systematics beyond the EFT reach
Our method to determine the scale cut is convenient as it does not rely on simulations (except

the ones used to built the covariance). We have simply taken the scale cut as being the kmax for
which the theory error controlled by the largest NNLO contribution, Eq. (4.3), is negligible at
the level of the posteriors. This is a well-defined procedure relying only on estimates of the
scales entering in the EFT expansions. However, it does not allow for testing the modeling
aspects beyond the EFTofLSS prediction, as e.g., the additional observational effects described
at the end of Sec. 3.4. In order to assess the accuracy of these extra modeling aspects, in
particular the window functions, we perform the following two tests.

Test against simulations. We fit the full-shape of the mean over all EZmock realizations. As
described in Sec. 4.1.1, those mocks are built to simulate eBOSS observational characteristics
such as the sky mask, redshift selection, systematics weights and veto, etc. Results from this
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Figure 4.1: Triangle plot (1D and 2D posterior distributions) of the cosmological parameters recon-
structed when fitting the mean of all EZmock realizations, analyzed up to kmax = 0.24hMpc−1. The
crosses correspond to the best-fit values while the dashed lines correspond to the truth of the simulation.

fit are shown in Fig. 4.1. We find that up to kmax = 0.24hMpc−1, the best-fit values of the
cosmological parameters of interest (Ωm,h, and σ8) are shifted with respect to the truth of the
simulations by . 1/3 ·σ . 9 This shows that our modeling of the observational effects in eBOSS
are under good control, and our previous determination of the scale cut kmax = 0.24hMpc−1

is corroborated by our fit to simulations. Before moving on, a comment on the 1D posteri-
ors of the reconstructed cosmological parameters is in order. Although the best-fit parameters
agree well with the fiducial model, we see that the mean of the posterior is shifted with re-
spect to the fiducial by up to 1.3σ (on σ8). The fact that the mean is shifted with respect to
the best-fit represents a clear illustration of the prior volume projection effects, as mentioned
in Sec. 4.1.1 and discussed throughout in chapter 5: this motivates us to consider the 68%-
credible intervals together with the corresponding best-fit values, especially when comparing
results from two different experiments.

Fourier vs. configuration space. In the following section, we compare the results obtained
when fitting the correlation function or the power spectrum of eBOSS QSO. This allows us
to assess the potential systematic error associated to the estimators and the differences in the
modeling discussed at the end of Sec. 3.4. In particular, the effect of the mask cancels in the
correlation function estimator, which makes it free from potential inaccuracies associated to the
modeling of the window function. In the following, we will demonstrate that the posteriors
of Ωm, h, and σ8 are consistent at < 0.4σ between the Fourier and the configuration space
analyses (see Tab. 4.2 and Fig. 4.4 for details). Bearing in mind that the information content
in the power spectrum and the correlation is not exactly the same in the BAO part and due to
effectively different scale cuts, such consistency provides a conservative bound on the level of

9Hereinafter, when comparing results from the same dataset, σ is taken as the error bar read from the 68%-
credible interval, regardless of whether we compare the posterior means or best-fits.
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the aforementioned systematics. For more discussions on the comparison between the analyses
of the power spectrum or the correlation function, see Ref. [69].

Additional systematic errors? Last, we caution that the tests conducted in this work only
assess the systematics arising at the level of the summary statistics: the cosmological results are
also dependent on the choices made at the level of map-making and catalog selection, which
are beyond the scope of the present study. We also mention that there are sub-leading contri-
butions that we have not included in our predictions, in particular wide-angle and relativistic
effects, line-of-sight dependent effects, and corrections to fiber collisions. The wide-angle and
relativistic effects have been shown to be negligible for current surveys at kmin = 0.01hMpc−1

in, e.g., Refs. [142, 74, 143, 144]. Similarly, the line-of-sight dependent effects have been
shown to lead to a relatively small impact on the determination of the cosmological parameters
in the context of the EFT analysis of BOSS in the App. D of Ref. [69] (see also Ref. [145]).
However, these conclusions are dependent on the choice of prior on the size of the tidal align-
ment biases. While for LRGs selected by BOSS, such estimate can be found in Ref. [146],
QSOs selected by eBOSS lack, to our knowledge, an estimate of the size of tidal alignments.
If no estimate can be derived for QSOs, the bispectrum can mitigate those effects (see e.g.,
Ref. [147]). We leave this to future work. Finally, the fiber collisions can be treated using the
effective window method put forward in Ref. [148]. This correction has been implemented in
the EFT analysis of BOSS in Ref. [58]. The largest corrections are degenerate with the EFT
counterterms [148], and are therefore automatically accounted for in our analysis. The remain-
ing corrections, the so-called uncorrelated part [148], can also be straightforwardly included.
However, they were shown to be negligible for BOSS volume [58]: we therefore also neglect
them in the current analysis. Finally, we are now going to show that our analysis is free from
errors in the redshift determination of eBOSS QSOs as the corrections to the prediction happen
to be degenerate with some EFT counterterms.

4.1.4 Including redshift error in EFTofLSS
The broadness of the emission lines of the quasars from the eBOSS QSO data, due to the

rotating gas located around the black hole, increases the uncertainties in the determination of
their redshift, see e.g., Ref. [149]. Here, we show that the leading corrections coming from these
redshift errors are, under minor assumptions concerning their distribution, degenerate with EFT
counterterms (justifying that our analysis is free from those potential systematics). Note that
this discussion is only relevant for biased tracers that have a significant redshift error, as is the
case for quasars. For galaxies, on the other hand, the redshift is very well determined, and this
discussion is not useful. Note that this calculation is entirely new and that it can be used for
other data with significant redshift uncertainty.

Integrating redshift errors into the galaxy power spectrum The uncertainties in
the determination of the redshift can be tracked by introducing an independent variable,
δ zsys, in Eq. (3.34):

1+ zobs = (1+ z)(1+δ zpec +δ zsys) . (4.4)

For convenience, we define an associated “fake” velocity variable given by δ zsys ≡ vsys(z)/c.
In what follows, we perform the same derivation as in Sec. 3.2.1 (where we dealt with red-
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shift space distortion), but with the replacement v · n̂→ v · n̂+ vsys. Therefore, in the pres-
ence of redshift errors, the relation between the overdensities in redshift space and real space,
Eq. (3.53), is modified to:

δ
sys
g,r (k) = δg(k)+

∫
d3xe−ik·x

(
e−ik·n̂ v

H ·n̂e−ik·n̂ vsys
H −1

)
(1+δg(x)) . (4.5)

We want to understand the leading corrections to our predictions from the presence

of redshift errors. To see this, we can Taylor-expand e−ik·n̂ vsys
H = 1− i(k · n̂)H −1 vsys −

1
2(k · n̂)2 H −2 v2

sys + . . . in the above equation. After some straightforward manipula-
tions, Eq. (4.5) becomes:

δ
sys
g,r (k) = δg,r(k)+ εsys(k)δD(k)+ εsys(k)δg,r(k)+ . . . , (4.6)

where δg,r(k) is the redshift-space galaxy density field without redshift error given by Eq. (3.53).
In addition, we have introduced the notation

εsys(k)≡−iµkH −1 vsys−
1
2

µ
2k2H −2 v2

sys , (4.7)

with µ ≡ (k · n̂)/|k|. The “. . .” represents higher-order corrections in powers of εsys. Assuming
that, by definition, vsys is a scale-independent variable that correlates only with itself, the power
spectrum picks, at leading orders in derivatives, corrections going as:

Psys
g,r (k,µ) = Pg,r(k,µ)−2iµk

v̄sys

H
σ

2
0 −2iµk

v̄sys

H
(b1 + f µ

2)2P11(k) (4.8)

−µ
2k2 σ2

v,sys

H 2 (δD(k)+3σ
2
0 )−2µ

2k2 σ2
v,sys

H 2 (b1 + f µ
2)2P11(k)+ . . . ,

where we have introduced the following notation: v̄sys ≡
〈
vsys
∣∣vsys

〉
, σ2

v,sys ≡
〈
vsysvsys

∣∣vsysvsys
〉
,

and σ2
0 ≡ Pg,r(0).

Application to eBOSS QSO full-shape analysis From this derivation, we can make
several observations:

• The first two correction terms at the first line of Eq. (4.8), are purely imaginary, and
thus do not appear in the even multipoles that we use in our analysis. Moreover, those
terms are significant only if the determination of the redshifts is biased on average, i.e.,〈
vsys
∣∣vsys

〉
6= 0. 10

• Therefore, as anticipated and according to Eq. (3.180), we see that the leading corrections
to uncertainties in the redshift determination are degenerate with EFT counterterms going
like ∼ µ2k2 (namely, the terms in cquad

ε ) or ∼ µ2k2P11(k) (namely, the terms in cr,1).
Therefore, albeit a potential adjustment in the prior for the coefficients associated to those
counterterms to accomodate this new effect, our predictions are unchanged in the presence
of redshift errors.

10One could imagine measuring the redshift error bias by searching in the odd multipoles such signal, that may
be clean from other known contributions such as relativistic or wide-angle effects that present a different scaling
dependence, see e.g., Refs. [74, 150]. Besides, in principle, the odd window function multipoles that are imaginary
also mix imaginary contributions in the power spectrum to the even multipoles of the power spectrum. We leave
those explorations to future work.



4.2. Constraints on flat ΛCDM 133

• Beyond the leading corrections, there could be a term going like ∼ k3P11(k) from the
contraction of

〈
v3

sys
∣∣v3

sys
〉
, that is not degenerate with counterterms in the EFT. However,

again, this term is purely imaginary, and thus does not appear in the even multipoles that
we use in our analysis. Moreover, this term is significant only if the distribution of the
redshift errors has some level of assymetry.

• We can get insights on the size of the corrections by inspecting the distribution of the
redshift errors. From Ref. [151], we learn that the variance of the estimated distribution
of eBOSS QSO redshift errors corresponds roughly to σ2

v,sys ∼ (300km/s)2. This tells us
that the size of the correction is about

σ2
v,sys

H 2(z)
∼ (1+ zeBOSS)

2(300 km/s)2

(Ωm · (1+ zeBOSS)3 +ΩΛ)(100 h km/s/Mpc)2 ∼ 10 (Mpch−1)2 . (4.9)

Despite this being slightly larger than the size of cε/k2
M ∼ 4 (Mpch−1)2, σ2

0 is smaller
than 1/n̄g ∼ 2 · 105 (Mpch−1)3 for eBOSS, and therefore, the first correction term at
the second line of Eq. (4.8) is smaller than the corresponding EFT counterterm going
as ∼ µ2k2. Furthermore, Eq. (4.9) also tells us that b2

1 σ2
v,sys H

−2 ∼ 40 (Mpch−1)2 is
about 1.6 times smaller than b1 cr,1/k2

R ∼ 64 (Mpch−1)2, i.e., the typical size of the EFT
counterterm going as ∼ µ2k2P11 that is degenerate with the last correction in the second
line of Eq. (4.8). Thus, corrections to redshift uncertainties are well accounted in our
analysis given the prior we put on those counterterms. 11

• The next-to-leading correction to the even multipoles is going like ∼ µ4k4P11(k), which
is degenerate with EFT counterterms at two loop [see Eq. (4.3)]. From Ref. [151] (see in
particular figs. 4 and 5), we see that the redshift errors distribution of eBOSS QSO sample
departs visibly from a Gaussian by the presence of fat tails. Naively, this indicates that
higher moments of the distribution are suppressed, and in particular,

〈
v4

sys
∣∣v4

sys
〉
� σ4

v,sys.

Thus, the higher-order corrections to redshift uncertainties, e.g., ∼ µ4k4 〈v4
sys|v4

sys〉
H 4 P11(k),

become quickly negligible with respect to the EFT counterterms that share similar scale
dependence, e.g., the NNLO counterterms of Eq. (4.3), that are themselves already higher
order and thus safely small with respect to the error bars of the data at the scales analyzed.

We conclude that, given the presence of EFT counterterms that share similar scale depen-
dence with corrections from redshift errors and large enough priors to encompass these effects,
our analysis is unaffected by uncertainties in the determination of eBOSS QSO redshifts.

4.2 Constraints on flat ΛCDM
In this section, we present results on the flat ΛCDM model from the EFT analysis of the

full-shape of eBOSS QSOs. We perform combined analyses with different sets of LSS surveys,
namely BOSS full-shape, ext-BAO, Pantheon, as well as with Planck data, as described in
Sec. 4.1.1. We remind that for our base-ΛCDM analysis, we fix the baryon abundances to the
mean value measured by BBN experiments, the spectral tilt ns to Planck preferred value, and

11Note that here we have assumed that redshift uncertainties are thought to arise in the determination of the
peculiar velocity of the objects, as given by Eq. (4.4). If instead we attribute them as a global error, such as
zobs = z+(1+ z)δ zpec +δ zsys, the size of the corrections to our observables will be reduced by a factor 1+ z.
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Figure 4.2: Triangle plots (1D and 2D posterior distributions) of the cosmological parameters recon-
structed either from the EFT full-shape analysis or from the compressed BAO/ f σ8 parameters. In the left
panel, we have represented these two analyses for eBOSS and BOSS, while in the right pannel we have
combined these two datasets and added the ext-BAO and Pantheon data. In this figure and for the rest
of this chapter, when not explicitly mentioned, eBOSS and BOSS refer to the EFT full-shape analysis of
the power spectrum multipoles.

the neutrino total mass to its minimal value, as explained in Sec. 4.1.1. In App. A.1, we show
the impact on the cosmological results letting the baryon abundance to vary within a Gaussian
prior motivated by BBN experiments and freeing ns. The free neutrino mass case, together with
other one-parameter extensions to our base-ΛCDM model, are presented in the next section.

As a preliminary analysis and to gauge the impact of the EFT analysis of eBOSS, we show
in Fig. 4.2 the results from the analyses of eBOSS, BOSS and their combination (LSS, referring
to eBOSS + BOSS + ext-BAO + Pantheon), using either the combination of BAO and redshift
space distortion information (BAO/ f σ8) as measured by the eBOSS Collaboration [152] or the
EFT full-shape likelihood built in this work. One can see that, as expected, the EFT analysis
allows us to gain significant constraining power over the conventional BAO/ f σ8 information.
For eBOSS, the error bars of Ωm and σ8 are reduced by a factor ∼ 2.0 and ∼ 1.3, respectively.
For BOSS, the error bars of Ωm and h are reduced by ∼ 5.4 and ∼ 3.2, respectively. Finally,
for their combination, we find that the error bars of Ωm and h are reduced by ∼ 2.0 and ∼
1.25, respectively. We also note that the EFT likelihood leads to a lower mean for σ8 than the
BAO/ f σ8 analysis: ∼ 1σ for eBOSS and ∼ 2σ for the full combination of LSS datasets. Note
that, as can be seen in Ωm−σ8 plane, the results obtained with BOSS and eBOSS are in better
agreement in the EFT analysis than in the template-based BAO/ f σ8 analysis (which shows a
difference of low statistical significance). This may be traced in part to the lower mean value
of σ8 inferred in the EFT analysis of eBOSS, which in addition may be subject to some prior
volume projection effects as we comment on later.
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Figure 4.3: Upper - Best-fit predictions of the monopole and quadrupole of the power spectrum P̀ (k)
for the NGC sky cut of eBOSS QSOs against the data. We also plot the residuals with respect to the data.
Middle - Same but with the eBOSS SGC sky cut. Lower - Same but with the eBOSS correlation function
ξ`(s) measured on the combination of NGC-SGC sky cuts.
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best-fit BOSS eBOSS eBOSS ξ`(s) eBOSS + BOSS BOSS eBOSS + BOSS
µ
+σu
−σl

+ ext.BAO + Pan + ext.BAO + Pan

Ωm
0.2981 0.331 0.306 0.2986 0.2986 0.2991

0.2978+0.0082
−0.0083 0.327+0.031

−0.039 0.311+0.032
−0.037 0.2981+0.0077

−0.0079 0.2979+0.0075
−0.0076 0.2985+0.0066

−0.0071

h 0.6839 0.646 0.648 0.6814 0.6813 0.6793
0.6846+0.0086

−0.0086 0.655+0.033
−0.034 0.655+0.026

−0.031 0.6827+0.0078
−0.0085 0.6812+0.0078

−0.0079 0.6803+0.0072
−0.0078

σ8
0.811 0.943 0.922 0.840 0.809 0.840

0.763+0.038
−0.045 0.880+0.076

−0.089 0.888+0.084
−0.085 0.787+0.036

−0.039 0.762+0.038
−0.044 0.788+0.037

−0.037

ωcdm
0.1164 0.1154 0.106 0.1157 0.1156 0.1150

0.1166+0.0047
−0.0047 0.1162+0.0077

−0.0079 0.110+0.010
−0.010 0.1160+0.0038

−0.0043 0.1153+0.0042
−0.0042 0.1152+0.0035

−0.0037

ln(1010As)
3.08 3.42 3.49 3.16 3.08 3.17

2.95+0.12
−0.12 3.26+0.20

−0.21 3.36+0.21
−0.24 3.02+0.11

−0.11 3.03+0.12
−0.12 3.17+0.10

−0.10

S8
0.808 0.991 0.931 0.838 0.807 0.839

0.761+0.040
−0.046 0.918+0.089

−0.123 0.903+0.096
−0.115 0.785+0.037

−0.040 0.759+0.039
−0.045 0.786+0.038

−0.038
χ2

min 157.9 57.1 53.9 217.8 1191.1 1251.0
Ndata 170 92 56 262 1224 1316
p-value 0.13 0.94 0.20 0.47 0.50 0.64

Table 4.2: Cosmological results (best-fit, posterior mean, and 68% CL) of different combinations of
LSS data, including BOSS and eBOSS, for our base-ΛCDM model. For each dataset we also report its
best-fit χ2

min, the number of data bins Ndata, and the associated p-values. In the following, “LSS” refers
to eBOSS + BOSS + ext-BAO + Pantheon.

Parameter eBOSS - BOSS BOSS - Planck eBOSS - Planck (eBOSS + BOSS) - Planck LSS - Planck
b-f µ b-f µ b-f µ b-f µ b-f µ

Ωm 0.89 0.76 -1.60 -1.58 0.42 0.30 -1.61 -1.62 -1.67 -1.68
h -1.08 -0.84 1.05 1.08 -0.79 -0.53 0.84 0.93 0.66 0.72
σ8 1.41 1.25 -0.03 -1.13 1.56 0.82 0.72 -0.63 0.75 -0.63
ωcdm -0.11 -0.05 -0.75 -0.69 -0.58 -0.47 -1.04 -0.95 -1.32 -1.26
ln(1010As) 1.43 1.30 0.26 -0.76 1.82 1.05 1.04 -0.19 1.17 -0.09
S8 1.55 1.33 -0.55 -1.57 1.43 0.77 0.11 -1.15 0.13 -1.15

Table 4.3: σ -deviations between the ΛCDM cosmological parameters reconstructed from eBOSS,
BOSS, their combination, and Planck. For a given cosmological parameter, the σ -deviation metric is

computed, assuming Gaussian errors, as (µ1−µ2)/
√

σ2
1 +σ2

2 , where µi are either the means (µ) or the
best-fits (b-f) obtained from the two experiments i = 1,2, while σi are the associated error bars read from
the 68%-credible intervals.

4.2.1 Flat ΛCDM from the EFT analysis of eBOSS

Goodness of fit. Before commenting over the reconstructed cosmological parameters, let us
first assess the goodness of fit. We plot in Fig. 4.3, using the best-fit parameters listed in Tab. 4.2,
the theoretical prediction of the monopole and quadrupole of the power spectrum, as well as the
correlation function, against the data. One can see that there are not particular features in the
residuals. We list in Tab. 4.2 the χ2

min and degrees of freedom of each fit. Assuming that all data
points and parameters are uncorrelated, we find that the p-values associated with the different
fits are acceptable both for our analyses in Fourier and configuration space, which tell us that
our model is a good description of the data, up to the scale cut chosen in Sec. 4.1.2.

68%-credible interval. The 1D and 2D posterior distributions from eBOSS, analysed alone
or in combination with other LSS probes, are shown in Fig. 4.4, with the corresponding 68%-
credible intervals and best-fit values given in Tab. 4.2. We also display posteriors obtained
with Planck data for comparison. As it can be read off from Tab. 4.2, from eBOSS alone, we
reconstruct at 68% CL within the base-ΛCDM model, Ωm, h, and σ8 to 11%, 5%, and 9% pre-
cision, respectively. The eBOSS full-shape analysis in configuration space leads to comparable
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error bars at . 20% (and consistency on Ωm, h, and σ8 at < 0.4σ , as already commented in
Sec. 4.1.2). The corresponding posteriors are shown in the lower right panel of Fig. 4.4.

4.2.2 Comparison with several LSS probes
Consistency across LSS probes. The EFT analysis of eBOSS QSOs provides independent
measurements of ΛCDM parameters in a different redshift range than previous EFT analyses
(recalling that zeff ' 1.5), and from yet another tracer. It is therefore interesting, as a consis-
tency check of ΛCDM (and the assumptions behind the EFTofLSS), to compare the results
with other cosmological probes. In Tab. 4.3, we present the σ -deviations on the cosmological
parameters reconstructed from BOSS, eBOSS, and Planck, analyzed under ΛCDM. 12 As al-
ready mentioned in Sec. 4.1.2 and discussed throughout in chapter 5, the EFT analysis, given
the prior chosen in Sec. 4.1.1, can lead to potentially important prior volume projection effects
(which do not affect the best-fit values). Therefore, we present in Tab. 4.3 the σ -deviation on
the cosmological parameters between two experiments comparing both their means and their
best-fits (shown in Tab. 4.2 and in the left upper panel of Fig. 4.4). Given those two met-
rics, we find that all cosmological parameters are consistent at . 1.6σ between eBOSS and
BOSS. Note that the value of H0 is ∼ 1σ lower for eBOSS than for BOSS, while σ8, as well
as ln(1010As) and S8, are ∼ 1.5σ higher.

Combining LSS probes. We present constraints from combining eBOSS + BOSS data in
Fig. 4.4. Posteriors are also given in Tab. 4.2. Combining eBOSS with BOSS, we reconstruct
Ωm, h, and σ8 to 3%, 1%, and 5% precision at 68% CL. This represents an improvement of
about 10% over BOSS alone. If the improvement in the constraints within ΛCDM is somewhat
marginal, in the next section we show that the addition of eBOSS can play a significant role in
extended models, in particular in constraining the total neutrino mass. For better comparison
with the official eBOSS analysis [82], we also present in Fig. 4.4 results obtained when com-
bining with a compilation of independent BAO data dubbed “ext-BAO” and the Pantheon SN1a
sample. These additional data, on top of eBOSS + BOSS, further improves the constraints on
Ωm and h by about 10% (see upper right panel of Fig. 4.4).

Comparison with other works. Our joint constraints on flat ΛCDM from eBOSS + BOSS
using the EFTofLSS can be compared with constraints from previous full-shape analysis, e.g.,
from Refs. [112, 113, 114], with the caveat that there are some differences in the modeling, the
data combination considered, the scale cuts, and the priors on the cosmological parameters ωb
and ns. Concretely, we find that when considering similar data we are consistent at . 0.4σ on
all cosmological parameters with Ref. [112] when freeing ωb and ns (see App. A.1). 13 With the

12While for BOSS and eBOSS, we remind that we analyze them fixing ωb and ns, for Planck, we let them vary
and additionally vary τreio. See App. A.1 for results with ns free and a BBN prior on ωb.

13In Ref. [112], our constraints can be compared with the results for “BOSS + eBOSS” with “Wide priors” from
their Tab. 2, as they consider the same redshift bins of BOSS LRG LOWZ + CMASS and eBOSS QSO that we an-
alyze. However, their analysis is carried in configuration-space wedges restricted to scales 20 < s/[Mpc/h]< 160
instead. Their model uses a different parameterization for the galaxy biases, no counterterms, and a different
treatment for the BAO smearing than our IR-resummation. Albeit small differences in the treatment of the BAO
smearing, redshift-space distortions, and nuisance parametrization, we believe that the modeling in [112] is effec-
tively not so different than Eq. (3.194), for the following reason. Although they do not include counterterms, in
configuration space, the stochastic terms are absent as they are just Dirac-δ distributions at vanishing seperation,
as we explained in Sec. 3.4. Plus, the remaining counterterms are very steep and thus potentially negligible at the
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Figure 4.4: Triangle plots (1D and 2D posterior distributions) of the cosmological parameters recon-
structed from the base-ΛCDM analyses performed in this work of the following datasets: Upper left -
eBOSS compared to BOSS or Planck. Upper right - eBOSS + BOSS and eBOSS + BOSS + ext-BAO +
Pantheon, (i.e., the LSS dataset). Planck is shown for comparison. Lower left - eBOSS + BOSS + ext-
BAO + Pantheon with and without eBOSS, to gauge the impact of the addition of eBOSS. Lower right -
eBOSS power spectrum P̀ (k) or correlation function ξ`(s). The crosses represent the best-fit values.
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results of Ref. [114], we find consistency at 0.3σ , 0.1σ , 1.9σ on Ωm, h, σ8, with fixed ωb and
ns. 14 Finally, we find consistency at 1.1σ , 1.7σ , 2σ on Ωm, h, σ8 with the results of Ref. [113],
with fixed ωb and ns. 15 This tells us that, despite the various choices of those analyses, our
results are in broad agreement with these results. It would be interesting to understand better
how the small differences we find arise. We leave this to future work.

best-fit LSS + Planck
µ
+σu
−σl

Ωm
0.3081

0.3081+0.0052
−0.0052

h 0.6787
0.6789+0.0039

−0.0040

σ8
0.8096

0.8095+0.0057
−0.0057

ωcdm
0.1188

0.1189+0.0009
−0.0009

ln(1010As)
3.052

3.051+0.013
−0.015

S8
0.820

0.820+0.010
−0.010

ns
0.9665

0.9674+0.0036
−0.0038

τreio
0.0592

0.0585+0.0064
−0.0075

χ2
min 4026.4
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Figure 4.5: Left - Cosmological results (best-fit, posterior mean, and 68% CL) of eBOSS + BOSS +
ext-BAO + Pantheon in combination with Planck. We also report the best-fit χ2

min of this analysis. Right
- Triangles plots (1D and 2D posterior distributions) of the cosmological parameters reconstructed from
eBOSS + BOSS + ext-BAO + Pantheon (referred as LSS), Planck, or their combination, within the base-
ΛCDM model. When Planck is analyzed, ns and ωb are set free. The empty contours correspond to
the LSS analysis of App. A.1 where we let ns free and ωb vary within a BBN prior. The blue crosses
represent the LSS best-fit values for our base-ΛCDM model.

scales analyzed. This is not the case in Fourier space: there, the counterterms are substantial contributions at the
scales analyzed.

14Our results can be compared with the “BBN + ShapeFit” analysis from Tab. 8 in Ref. [114]. They consider the
two redshift bins BOSS LRG 0.2 < z < 0.6 and 0.4 < z < 0.6, eBOSS LRG 0.6 < z < 1, but the same eBOSS QSO
redshift bins than us, with scale cuts 0.02 < k/[h/Mpc]< 0.15 for the LRG bins and 0.02 < k/[h/Mpc]< 0.30 for
the QSO bins. They use a different model to describe the perturbation theory contributions and no counterterms,
as well as a different approach that extends the template-based BAO/ f σ8 analysis with a new “shape parameter”,
from which cosmological constraints can then be derived.

15Our results can be compared with the case “3 surveys” in Ref. [113] with “ωb & ns” prior from their Tab. 3.
They consider as redshift bins BOSS LRG low-z (0.2 < z < 0.5), eBOSS LRG (0.6 < z < 1) instead of CMASS,
but the same eBOSS QSO sample, with scale cuts respectively 0.02 < k/[h/Mpc] < 0.15, 0.02 < k/[h/Mpc] <
0.15, and 0.02 < k/[h/Mpc] < 0.30. They use a different model on the perturbation theory contributions and no
counterterms.
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4.2.3 Comparison with Planck

Consistency with Planck. The combination of eBOSS + BOSS allows to determine Ωm and
h at a precision similar to Planck, with error bars only larger by 5% and 50% respectively.
Once ext-BAO and Pantheon are included, we obtain lower error bar of 5% and higher error
bar of 40% for Ωm and h respectively. Indeed, it is known that there is a rather large geometric
degeneracy between Ωm and h in the CMB, as displayed in Fig. 4.4, while LSS data benefit
from measuring the BAO (and additional shape features) over volumes (i.e., in two directions,
parallel and perpendicular to the line-of-sight), and covering a large range of redshifts. In con-
trast, the amplitude parameter σ8 is constrained roughly ∼ 6 times better by Planck. Given
the two metrics used in Tab. 4.3, we find that all cosmological parameters are consistent at
. 1.8σ between Planck and the various combinations of LSS data. More specifically, as it
can be seen from Tab. 4.3 and in the upper right panel of Fig. 4.4, we find that the combina-
tion of eBOSS + BOSS leads to cosmological parameters consistent at . 1.0σ with the ones
inferred from Planck, except for Ωm where we find a ∼ 1.6 σ -deviation. These conclusions
are unchanged with the inclusion of ext-BAO and Pantheon. The consistency between LSS
and CMB experiments represent a nontrivial check of the ΛCDM model, given that those are
different experiments in the target objects they probe, their technical design (and associated
systematic errors), and the redshift range they cover. Further considerations on consistency of
beyond-ΛCDM models are discussed in Sec. 4.3.

S8 and H0 tension. From the analyses presented here, we find no tension on H0 or S8 between
LSS and Planck. Nevertheless, let us remark that, since the error bars on the cosmological
parameters inferred from the LSS data are larger than the ones obtained by Planck, our results
are in reasonable agreement with the lensing measurements of S8. While Planck is known to be
in 3σ tension with KIDS [80], we find here agreement at about ∼ 1.8σ , considering either the
best-fit value of eBOSS + BOSS or LSS. As for H0, we find that the inferred value is, depending
on the addition of ext-BAO + Pantheon to the EFT analyses of BOSS + eBOSS, in∼ 3.6−4.0σ

tension with the one obtained by SH0ES [153]. This level of tension is comparable to that
recently determined in Ref. [154] with updated BBN predictions and the recently-developed
ShapeFit analysis [114]. Yet, we stress that this CMB-independent determination of H0 does
not marginalize over the sound horizon information, as advertised in Refs. [155, 156, 157,
158], and therefore should not be interpreted as a constraint against models affecting the pre-
recombination era in order to resolve the Hubble tension.

Combination with Planck. In Fig. 4.5, we show the results from the combination of eBOSS
+ BOSS + ext-BAO + Pantheon with Planck. Compared to Planck alone, the constraints on
Ωm and h are improved by ∼ 30%, as we can clearly see that LSS data break the partial de-
generacy present in the CMB in the Ωm− h plane. This is further accompanied by an im-
provement in the constraints on ωcdm, S8, and ns of about 28%, 24%, and 13%, respectively.
On the other hand, the amplitude parameter σ8 and As are not significantly impacted, as they
are very tightly constrained by Planck alone. Note that the best-fit values are not far from the
mean with respect to the error bars for all cosmological parameters, as expected from the rela-
tively large data volume of Planck which lead to posteriors that are much more Gaussian (see
Refs. [105, 138] for related discussions).
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4.3 Extensions to the flat ΛCDM model
∑

Figure 4.6: 2D posterior distributions of cosmological parameters in several model extensions to ΛCDM
reconstructed from analyzing LSS data (i.e., eBOSS + BOSS + ext-BAO + Pantheon), with and without
freeing ns and ωb, compared with Planck and their combination.

In this section, we present the results of analyses of several extensions to the flat ΛCDM
model, namely the curvature density fraction Ωk, the equation of state of dark energy w0, the
neutrino mass ∑mν , and the number of relativistic degrees of freedom Neff. For each model,
we list in Tab. 4.4 the results of LSS analyses with and without eBOSS to highlight the role
of the EFT likelihood of eBOSS QSO data in constraining these extensions. In App. A.1, we
provide the results of analyses including the variation of ns (within a uninformative flat prior)
and ωb (within a BBN prior), and show the differences with the baseline analyses that fix these
parameters. We also combine the LSS datasets with Planck and provide reconstructed param-
eters in Tab. 4.5. For comparison (and although not explicitly listed), we perform the same
series of analyses using the BAO/ f σ8 information for the eBOSS and BOSS data. Finally,
in Fig. 4.6 we plot, for each model, the 2D posterior distributions obtained from analyzing
the combination of the LSS datasets (with and without the ns and ωb variations) compared
to Planck, and their combination.

4.3.1 ΩkΛCDM

In this section, we consider the ΛCDM model with the addition of the curvature density
fraction, Ωk, by imposing a large flat prior on this parameter. We derive Ωk =−0.032+0.028

−0.031 at
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BOSS + ext-BAO + Pantheon
best-fit ΩkΛCDM w0CDM νΛCDM NeffΛCDM
µ
+σu
−σl

Ωm
0.2962 0.2987 0.2982 0.298

0.2955+0.0079
−0.0074 0.2967+0.0080

−0.0085 0.3049+0.0094
−0.0110 0.291+0.010

−0.010

h 0.6853 0.681 0.6811 0.685
0.6886+0.0099

−0.0110 0.684+0.010
−0.011 0.6826+0.0080

−0.0082 0.714+0.026
−0.044

σ8
0.801 0.810 0.810 0.809

0.749+0.044
−0.043 0.762+0.042

−0.044 0.763+0.039
−0.044 0.758+0.041

−0.046

ωcdm
0.1161 0.1155 0.1154 0.1168

0.1172+0.0046
−0.0043 0.1158+0.0046

−0.0047 0.1179+0.0047
−0.0055 0.1256+0.0078

−0.0150

ln(1010As)
3.01 3.09 3.09 3.08

2.84+0.16
−0.17 2.95+0.14

−0.13 3.00+0.12
−0.13 2.95+0.12

−0.12

S8
0.796 0.808 0.808 0.806

0.744+0.045
−0.044 0.758+0.044

−0.044 0.769+0.040
−0.045 0.748+0.044

−0.048

Ωk
−0.023 – – –−0.032+0.028

−0.031

w0 – −0.998 – –−1.015+0.042
−0.042

∑mν [eV] – – 0.052 –
< 0.429

∆Neff – – – 0.09
0.82+0.62

−1.08

χ2
min 1190.8 1191.1 1191.1 1191.1

∆χ2
min -0.3 0 0 0

eBOSS + BOSS + ext-BAO + Pantheon (LSS)
best-fit ΩkΛCDM w0CDM νΛCDM NeffΛCDM
µ
+σu
−σl

Ωm
0.2952 0.2987 0.2962 0.3029

0.2945+0.0072
−0.0081 0.3042+0.0084

−0.0096 0.3017+0.0076
−0.0097 0.2950+0.0099

−0.0093

h 0.6858 0.680 0.6789 0.664
0.6882+0.0098

−0.0094 0.683+0.011
−0.011 0.6810+0.0078

−0.0072 0.696+0.017
−0.039

σ8
0.824 0.835 0.838 0.843

0.775+0.032
−0.050 0.744+0.040

−0.041 0.787+0.035
−0.040 0.787+0.033

−0.043

ωcdm
0.1158 0.1150 0.1142 0.1107

0.1165+0.0041
−0.0031 0.1189+0.0043

−0.0038 0.1164+0.0040
−0.0044 0.1199+0.0061

−0.0120

ln(1010As)
3.04 3.15 3.14 3.18

2.90+0.14
−0.15 2.86+0.13

−0.13 3.04+0.10
−0.11 3.03+0.11

−0.11

S8
0.817 0.833 0.833 0.847

0.768+0.040
−0.047 0.749+0.041

−0.043 0.789+0.036
−0.041 0.780+0.039

−0.039

Ωk
−0.034 – – –−0.039+0.028

−0.029

w0 – −1.002 – –−1.038+0.041
−0.041

∑mν [eV] – – 0.002 –
< 0.274

∆Neff – – – −0.37
0.40+0.44

−0.91

χ2
min 1250.0 1250.9 1250.6 1250.8

∆χ2
min -1.0 -0.1 -0.4 -0.2

Table 4.4: Upper - Cosmological results (best-fit, posterior mean, and 68% CL) from BOSS + ext-BAO
+ Pantheon for several model extensions to ΛCDM. Note that we quote the 95% CL bound for ∑mν .
For each dataset we also report its best-fit χ2, and the ∆χ2 with respect to the analogous ΛCDM best-fit
model. Lower - Same, but this time with the addition of eBOSS data.
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LSS + Planck
best-fit ΩkΛCDM w0CDM νΛCDM NeffΛCDM
µ
+σu
−σl

Ωm
0.3069 0.3015 0.3039 0.3080

0.3065+0.0051
−0.0054 0.3013+0.0071

−0.0073 0.3058+0.0055
−0.0059 0.3090+0.0063

−0.0054

h 0.6809 0.6877 0.6825 0.680
0.6813+0.0059

−0.0055 0.6878+0.0076
−0.0081 0.6809+0.0045

−0.0044 0.675+0.010
−0.011

σ8
0.8100 0.821 0.8203 0.811

0.8109+0.0068
−0.0069 0.821+0.011

−0.010 0.8144+0.0098
−0.0071 0.806+0.009

−0.010

ωcdm
0.1192 0.1195 0.1192 0.1191

0.1192+0.0013
−0.0012 0.1194+0.0009

−0.0010 0.1189+0.0009
−0.0009 0.1177+0.0027

−0.0026

ln(1010As)
3.050 3.045 3.043 3.052

3.051+0.014
−0.015 3.046+0.013

−0.015 3.048+0.014
−0.015 3.047+0.014

−0.017

S8
0.819 0.823 0.826 0.821

0.820+0.010
−0.010 0.822+0.010

−0.010 0.822+0.010
−0.010 0.818+0.010

−0.010

ns
0.9650 0.9646 0.9658 0.9665

0.9665+0.0042
−0.0043 0.9659+0.0038

−0.0039 0.9673+0.0037
−0.0037 0.9650+0.0062

−0.0070

τreio
0.0581 0.0555 0.0548 0.0593

0.0582+0.0068
−0.0081 0.0555+0.0068

−0.0074 0.05716+0.0070
−0.0076 0.0581+0.0073

−0.0074

Ωk
0.0007 – – –

0.0008+0.0018
−0.0017

w0 – −1.040 – –−1.039+0.029
−0.029

∑mν [eV] – – 9×10−5
–

< 0.093

∆Neff – – – 0.02
−0.07+0.15

−0.16

χ2
min 4025.9 4025.0 4023.3 4026.1

∆χ2
min -0.5 -1.4 -3.1 -0.3

Table 4.5: Cosmological results (best-fit, posterior mean, and 68% CL) from LSS + Planck for several
model extensions to ΛCDM. Note that we quote 95% CL bound for ∑mν . For each dataset we also
report its best-fit χ2, and the ∆χ2 with respect to the analogous ΛCDM best-fit model.

68% CL (with a best-fit value at −0.023) from the analysis without eBOSS, while we derive
Ωk = −0.039+0.028

−0.029 at 68% CL (with a best-fit value at −0.034) for the analysis with eBOSS.
These analyses allow us to highlight several important points for the LSS analysis:

• With the LSS data only, we find Ωk compatible with zero curvature at 1.2σ (considering
the best-fit). When we vary ns and ωb (see App. A.1), this compatibility is increased to
0.6σ .

• The addition of eBOSS data does not significantly reduce the 68% constraints on Ωk.
However it improves the constraint at 95% CL from−0.032+0.062

−0.057 to−0.039+0.054
−0.052, which

corresponds to an improvement of ∼ 10%.

• The EFT analysis significantly improves the constraints on Ωk (by ∼ 50%) compared to
the conventional BAO/ f σ8 analysis (−0.037+0.067

−0.053 at 68% C.L., with a best-fit value at
−0.006).

• Note that, as visible on Fig. 4.6, we find no tension between LSS and Planck when cur-
vature is allowed to vary as long as CMB lensing is included in the fit to Planck: at
95% CL, Planck finds Ωk = −0.011+0.013

−0.012 while our combination of LSS data leads to
Ωk =−0.039±0.053.
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When combining LSS and Planck, we reconstruct Ωk = 0.0008+0.0018
−0.0017 at 68% CL and Ωk =

0.0008±0.0034 at 95% CL (with a best-fit value at−0.0007), which allows us to highlight that:

• The combination of LSS and Planck leads to a strong constraint on the Ωk parameter,
thanks to the redshift leverage between LSS probes and the last-scattering surface, allow-
ing the breaking of degeneracies in the Ωk-Ωm and Ωk-H0 planes.

• The combination with Planck data excludes the (slightly favored) negative values of Ωk
reconstructed from LSS data alone, and we find that cosmological data are in very good
agreement with Ωk = 0.

• Our constraints are better at 10% than the Planck + BAO constraints of Ref. [11]
(0.0007± 0.0037 at 95% CL), and are similar within 5% to the constraints obtained
from the ShapeFit method (0.0015± 0.0016 at 68% CL) [114]16 or from the equivalent
combined analysis including instead standard BAO/ f σ8 method (0.0013±0.0017 at 68%
CL) derived in our work. See also Ref. [159] for a work presenting CMB-independent
constraints on spatial curvature from beyond the standard BAO/ f σ8 that also support a
flat universe.

4.3.2 w0CDM

We now turn to the dark energy equation of state w0 in the context of smooth quintessence,
i.e., a quintessence field with no perturbations, and carry out two analyses: one in which we
impose a large flat prior on w0, and another in which we restrict w0 ≥−1 to stay in the physical
region. With the former prior, we obtain w0 =−1.015±0.042 at 68% CL (with a best-fit value
at−0.998) for the analysis without eBOSS, and w0 =−1.038±0.041 at 68% CL (with a best-fit
value at −1.002) for the analysis with eBOSS. We can conclude that:

• With the LSS data, we find no evidence for a universe with w0 6= −1. This conclusion
does not change when considering the variation of ns and ωb.

• The inclusion of eBOSS data does not improve the constraints at 68% CL and at 95% CL.
This is expected as the effective redshift of the eBOSS data, namely z = 1.52 (which is
significantly higher than the effective redshift of the BOSS data, z = 0.32−0.57), is well
above the beginning of the dark energy dominated universe, zΛ ∼ 0.3.

• The EFT analysis improves the constraints on w0 by ∼ 20% compared to the
BAO/ f σ8 analysis (−0.961+0.054

−0.042 at 68% CL, with a best-fit value at −0.931). This
improvement can be understood as follow. Roughly, for each mode k in our analysis,
the amplitudes of the monopole and the quadrupole are given by b2

1D2AsT (k) and
4/3 · b1 f D2AsT (k), respectively, where D is the growth factor and T (k) describes a
k-dependence fixed by the transfer function of the linear power spectrum, roughly scaling
as T (k) ∝ (1+ log

(
k/keq

)
)2(k/k∗)ns−4, where k∗ is the pivot scale. The transfer function

captures modes that have re-entered the horizon during radiation domination, k > keq,
where keq ∼ 0.01hMpc−1 is the radiation-matter equality scale, and are log-enhanced
(see e.g., Ref. [158]). The ratio of the monopole and quadrupole allows to obtain

16We note that this comparison should be taken with caution, as we do not use the same exact dataset as in
Ref. [114]. In particular, authors therein consider the eBOSS LRG sample, which is not the case in our analysis,
while we consider the Pantheon data, which is not the case in their analysis.
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Figure 4.7: 2D posterior distributions of LSS (i.e., eBOSS + BOSS + ext-BAO + Pantheon), and the
combination between LSS and Planck for the w0CDM model. For both analyses, we show the results
with the uninformative prior on w0 and with the w0 ≥−1 prior.

f σ8 ∝ f D2As, but does not contain information on T (k). The EFT analysis allows us
to make use of the k-dependence of the full-shape that contains information beyond the
(scale-independent) BAO/ f σ8 analysis, in particular about keq ∝ Ωmh2, in turn providing
an extra handle on Ωmh2 with no degeneracy with w0. This allows to break the w0−Ωm
degeneracy that remains with BAO/ f σ8, and therefore to improve constraints on w0 [59,
160].

• The constraints we derived in this work are much better than Planck (w0 = −1.57+0.50
−0.40

at 95% CL for the high-` TT, TE, EE + lowE + lensing analysis [11]), which is expected
as (the primary) Planck CMB data is largely unable to constrain the behaviour of the
Universe at low redshift.

When combining the LSS data with Planck, we obtain w0 = −1.039 ± 0.029 at
68% CL and w0 = −1.039+0.055

−0.059 at 95% CL (with a best-fit value at −1.040), which
allows us to highlight that:

• The w0 best-fit value is ∼ 1.4σ below −1, with ∆χ2 = −1.4 with respect to the ΛCDM
model.

• The addition of LSS data select values of w0 close to −1, located in the 2-σ region
reconstructed from Planck data.

• Our constraints are better at 43% than the Planck + BAO constraints of Ref. [11] (−1.04±
0.10 at 95% CL) and better than the constraints reported using ShapeFit (−1.093+0.048

−0.044 at
68% CL) [114] at 37%. However, these constraints are similar at < 1% to the equivalent
combined analysis including instead the standard BAO/ f σ8 (−1.043±0.030 at 68% CL),
indicating the improvement mostly comes from our inclusion of Pantheon data, when
combining with Planck.

In Fig. 4.7, we show results of the analyses with the w0 ≥−1 prior, to restrict the parameter
space in the physical region of smooth quintessence (see e.g., discussions in Ref. [160]). We
obtain w0 < −0.932 at 95% CL for the LSS analysis, while the constraint improves to w0 <
−0.965 at 95% CL for the LSS + Planck analysis. In addition, one can see that this new prior
shifts the 2D posteriors inferred from the LSS data in a non-negligible way, while it remains
globally stable for the LSS + Planck analysis. Note that, for these analyses, ∆χ2 = 0 with
respect to ΛCDM, since we obtain best-fit values of w0 = −1.
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4.3.3 νΛCDM

We now turn to variation of the total neutrino mass ∑mν . Following the convention used by
Planck, we consider one massive neutrino and two massless ones. We derive ∑mν < 0.429eV
at 95% (with a best-fit value at 0.052eV) from the analysis without eBOSS, while we derive
∑mν < 0.274eV (with a best-fit value at 0.002eV) from the analysis that includes eBOSS.
We can conclude that:

• A non-zero value of the total neutrino mass is not favored.

• The eBOSS data improve the upper limit on the sum of neutrino masses by ∼ 40% with
respect to the analysis of LSS data without eBOSS. This significant improvement is due
to the fact that the neutrino energy density is higher at the epoch probed by eBOSS QSO
than at the epoch probed by BOSS.

• The EFT analysis significantly improves the constraints on ∑mν (by a factor of∼ 18) over
the BAO/ f σ8 constraint (∑mν < 4.84eV at 95% CL, with a best-fit value at 0.74eV). This
is expected as BAO/ f σ8 gains constraining mostly from the geometrical impact of mas-
sive neutrinos (as the determination of f σ8 assumes scale-independence), which is largely
degenerate with the CDM density. The inclusion of the full-shape of the power spectrum
breaks that degeneracy. The reason is the following: the EFT full-shape analysis allows to
exploit the scale-dependence of the power spectrum that contains both information on the
characteristic power suppression induced by neutrinos at the perturbation level, as well
as on keq ∝ Ωmh2 (through the log-enhancement at small-scales), therefore breaking the
degeneracy with neutrino masses at the background level.

• The LSS constraint derived in this work is only∼ 10% weaker than the Planck constraint
(∑mν < 0.241eV) obtained from high-` TT, TE, EE + lowE + lensing [11].

We note here that unlike the other model extension, co-varying ns and ωb has a signifi-
cant impact on the reconstructed parameters, as seen in App. A.1. In particular, we find
∑mν < 0.777eV at 95% CL from the full combination of LSS datasets, which is 2.8 times
weaker than what we found when fixing those parameters. We show in App. A.1 that
(perhaps unsurprisingly) this relaxation is due to the marginalization over ns, which is strongly
degenerate with the power suppression induced by a non-zero neutrino mass.

When combining LSS with Planck, we derive the strong constraint ∑mν < 0.093eV at
95% CL. We conclude that:

• This analysis disfavors the inverse hierarchy at ∼ 2.2σ , as the minimal sum of neutrino
masses allowed by oscillation experiments is ∼ 0.1eV [15].

• The best-fit value of ∑mν is very close to 0eV, with ∆χ2
min =−3.1 compared to the base-

ΛCDM analysis which sets the mass of a neutrino at 0.06eV. Note that the contribution
to the ∆χ2

min is about −2 from Planck and −1 from eBOSS + BOSS data. Taken at face
value, our analysis therefore seems to slightly favor a universe without massive neutrinos
compared to the base-ΛCDM model, in agreement with what was found for high-` TT,
TE, EE + lowE + BAO analysis in Ref. [11] (where the best-fit is 0.0009eV), and may be
connected to the lensing amplitude anomaly, see e.g., discussions in Ref. [138].
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• This constraint is better than the Planck high-` TT, TE, EE + lowE + BAO constraint [11]:
∑mν < 0.120eV. However, our constraint is slightly weaker than the ShapeFit con-
straint [114]: ∑mν < 0.082eV. This may be due to their inclusion of eBOSS LRG data in
addition to QSO. Nevertheless, these constraints are competitive with recent constraints
from the Ly-α forest power spectrum [161]. Note that the bound on the total neutrino
mass derived in this work is somewhat relaxed with respect the one derived from the
equivalent combined analysis including instead standard BAO/ f σ8: ∑mν < 0.080eV
(derived in this work). Such relaxation was already observed when combining Planck
with the EFT likelihood of BOSS [162] (see also Ref. [59]). Importantly, this does not
imply that the EFT likelihood has less statistical power than the BAO/ f σ8 likelihood,
but rather results from the differences in the modeling of the power spectrum in the
mildly nonlinear regime in the presence of massive neutrinos.

We perform two complementary analyses where we consider the sum of the neu-
trino masses either under the assumption of normal (∑mν ,NH) or inverted (∑mν , IH)
hierarchy. In summary, we find that:

• For the normal hierarchy (NH), ∑mν ,NH < 0.469eV at 95 % CL for the analysis without
eBOSS, and ∑mν ,NH < 0.308eV with eBOSS (with a best-fit value compatible with the
prior lower bound). This represents a ∼ 50% stronger constraint thanks to eBOSS. When
varying ns and ωb, we get ∑mν ,NH < 0.633eV, which is∼ 2 times larger than the analysis
where these two parameters are kept fix. Yet, the combination of LSS + Planck leads to
∑mν ,NH < 0.134eV (with a best-fit value compatible with the prior lower bound, i.e.,
0.06eV).

• Similarly, for the inverse hierarchy (IH) we reconstruct ∑mν , IH < 0.337eV for the LSS
analysis and ∑mν , IH < 0.177eV in combination with Planck (with a best-fit value com-
patible with the prior lower bound for both analyses, i.e., 0.1eV).

• We obtain, for LSS + Planck, ∆χ2
min = +3.7 between the analysis with the NH and the

one assuming two massless neutrinos. This is because the LSS + Planck analysis has a
preference for zero mass (see above).

• Similarly, we obtain, for LSS + Planck, ∆χ2
min = +7.1 between the analysis with the IH

and the one with two massless neutrinos. Interestingly, we find ∆χ2
min =+3.4 between the

IH and NH analyses, implying that the IH is disfavoured by LSS + Planck compared to
the NH, as already mentioned above (see Refs. [163, 164] for detailed discussions about
preference against the IH from a compilation of data).

4.3.4 NeffΛCDM

Finally, we co-vary the effective number of relativistic species, Neff. Here we consider
∆Neff = Neff− 3.044, where 3.044 is the standard model prediction [165]. We derive ∆Neff =
0.82+0.62

−1.08 at 68% CL (with a best-fit value at 0.09) from the analysis without eBOSS, while
we derive ∆Neff = 0.40+0.44

−0.91 at 68% CL (with a best-fit value at −0.37) for the analysis with
eBOSS. These analyses allow us to conclude that:

• The inclusion of eBOSS data changes the best-fit value of ∆Neff, favoring a negative value,
while the analysis without eBOSS favored a positive one. Nevertheless, constraints with
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and without eBOSS are in statistical agreement, with a significantly stronger constraints
on ∆Neff (by∼ 30%) once eBOSS is included. The clear improvement in this constraint is
due to the fact that ∆Neff leaves an impact on the matter power spectrum by affecting the
BAO and the amplitude on scales k > keq, where keq is the equality scale: the presence of
additional energy density affects the expansion rate of the Universe, reducing the sound
horizon and delaying the onset of matter domination (see e.g., Ref. [166] for a review).
The addition of a data point at z∼ 1.5 thus improves the constraints.

• Interestingly, the conventional BAO/ f σ8 analysis is unable to constrain this parameter
since it is mostly sensitive to the background radiation density that is negligible at low-
redshift. The EFT therefore provides a new way of probing the contribution of extra
relativistic species using BOSS and eBOSS data.

• Current LSS constraint is weaker than the Planck constraint (∆Neff = −0.15+0.36
−0.38 at

95% CL from high-` TT, TE, EE + lowE + lensing [11]), but it would be interesting to
test whether higher accuracy LSS data can provide an independent constraint competitive
with that obtained from the next generation CMB data.

When we combine the LSS analysis with Planck data, we reconstruct ∆Neff =−0.07+0.15
−0.16 at

68% CL and ∆Neff =−0.07+0.30
−0.29 at 95% CL (with a best-fit value at 0.02). We conclude that:

• This is compatible with the standard model value and this represents a significant im-
provement over the results from Planck alone.

• Our constraints are better by 12% than the Planck + BAO constraints of Ref. [11]
(−0.06+0.34

−0.33 at 95% CL) and by 20% than the ShapeFit constraints (0.07± 0.38 at 95%
CL) [114]. In addition, we note that our full-shape constraints are also slightly better
than those obtained with the equivalent combined analysis including instead the standard
BAO/ f σ8 (0.05+0.33

−0.31 at 95% CL.).

4.4 Conclusions
In this chapter, we have performed the first EFT analysis of the eBOSS QSO full-shape data.

We have combined this analysis with other LSS data in order to obtain independent constraints
from Planck. As results are in good agreement with Planck, we have combined LSS and CMB
probes in order to break the degeneracies present in the CMB, especially within models beyond
ΛCDM. We summarise our main results here.

Determining the scale cut. In order to adequately study the eBOSS QSOs data, we have de-
termined the maximum scale kmax at which the EFT full-shape analysis is valid. This scale is
chosen such that the theoretical error is smaller than the data error bars and does not cause a sig-
nificant shift in the cosmological results. By fitting the full-shape of the mean over all EZmock
realizations with the EFTofLSS at one-loop, as well as with the addition of the dominant next-
to-next-leading order terms, we determine that for a scale cut kmax = 0.24hMpc−1, the shift in
all cosmological and EFT parameters is below a reasonable threshold (of < 1/3σ ). In addition,
cosmological results obtained using the correlation function of eBOSS QSO are in overall good
agreement. It is interesting to note that the scale cut for eBOSS QSO full-shape is restricted by a
rather large “dispersion” scale kR ∼ 0.25hMpc−1, entering the renormalization of the products
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of velocity operators appearing in the redshift-space expansion of the density field. This might
provide indication that quasars selected by the eBOSS are preferentially populating satellite
galaxies rather than central ones, as also argued from the perspective of halo occupation [140].

eBOSS QSOs flat ΛCDM cosmological results. The EFT analysis of eBOSS QSOs provides
independent measurements of the ΛCDM parameters in a different redshift range (z∼ 1.5) than
previous EFT analyses, and from yet another tracer. Interestingly, we find good consistency
between the EFT analysis of eBOSS QSO and the BOSS LRG data. For the H0 parameter in
particular, we find consistency at∼ 1.0σ between these two datasets. Additionally, we find that
eBOSS favors a higher value for σ8 (and S8) at∼ 1.5σ than the ones reconstructed using BOSS
or Planck. Therefore, in general, the combination of eBOSS to the other cosmological probes
tend to lift the value of the clustering amplitude. The addition of the EFT likelihood of eBOSS
QSOs on top of the EFT likelihood of BOSS LRG (as well as in combination with ext-BAO +
Pantheon) improves the 68% CL error bars by about 10%.

Consistency with Planck. Interestingly, we found that all cosmological parameters are con-
sistent at . 1.0σ between eBOSS + BOSS and Planck data, except Ωm that is consistent at
∼ 1.6σ . This consistency is a non-trivial check of the ΛCDM model and the many associ-
ated assumptions, as we considered very different data both in terms of redshift and in terms
of the objects being probed. This may hint that the S8 tension, unless causes by a systematic
error, is restricted to scales smaller than k ∼ 0.2hMpc−1, or originate only at very late times
(see e.g., Refs. [167, 168, 169, 170]).

Extensions of the flat ΛCDM model. In addition to further testing the ΛCDM model, we
have assessed that eBOSS data help improving constraints on extended cosmological models
in which the late-time background dynamics departs from flat ΛCDM. Using a combination
of LSS datasets, i.e., eBOSS + BOSS + ext-BAO + Pantheon, we obtain competitive con-
straints on the curvature density fraction Ωk = −0.039 ± 0.029, the dark energy equation of
state w0 =−1.038 ±0.041, the effective number of relativistic species Neff = 3.44+0.44

−0.91 at 68%
CL, and the sum of neutrino masses ∑mν < 0.274eV at 95% CL. These constraints represent
a significant improvement over the standard BAO/ f σ8 method. First, Ωk and w0 are better
constrained by 50% and 20% respectively (at 68% CL). Second, the application of the EFT to
BOSS and eBOSS allows to tremendously improve constraints on the ∑mν (by a factor ∼ 18)
as the EFT allows to gain sensitivity to the power suppression of neutrinos, while conventional
analysis are mostly sensitive to their effect on the angular diameter distance. In the same vein,
the EFT likelihoods of eBOSS and BOSS allows for a novel independent determination of the
effective number of relativistic species, while Neff is basically unconstrained from the standard
BAO/ f σ8 analysis that is mostly sensitive to the (almost negligible) background contribution
of radiation at late-times. Including Planck data, contraints significantly improve thanks to
the large lever arm in redshift between LSS and CMB measurements. In particular, we ob-
tain Ωk = 0.0008± 0.0018 and w0 = −1.039± 0.029 at 68% CL. In addition, we obtain the
stringent constraint ∑mν < 0.093eV, competitive with recent Lyman-α forest power spectrum
bound [161], and Neff = 2.97± 0.16 at 68% CL (∆Neff < 0.23 at 2σ ). Note that, unlike the
limits obtained using LSS data only, similar results are obtained when considering conventional
BAO/ f σ8 data, due to the fact that Planck constraining power still largely dominates over that
of BOSS and eBOSS. However, we expect that for significantly larger volume of data with,



150 4. COSMOLOGICAL INFERENCE FROM THE EFTOFLSS: THE EBOSS QSO
FULL-SHAPE ANALYSIS

e.g., DESI [171] or Euclid [172], the EFT analysis will allow to improve over conventional
analysis even when combining with Planck.

Our work demonstrates that eBOSS QSO data can help breaking model degeneracies in
certain extensions to ΛCDM, as they sit at an intermediate redshift between BOSS and Planck.
Furthermore, we have shown the importance of going beyond conventional BAO/ f σ8 analysis
with the EFTofLSS in order to constrain simple extensions to ΛCDM without the inclusion of
Planck data. We leave for future work the application of the EFT full-shape analysis of eBOSS
QSO data to more sophisticated beyond-ΛCDM physics, such as, e.g., early dark energy (see
chapter 7) and decaying dark matter (see chapter 9). Our analysis can also be extended to the
eBOSS LRG [173, 174] and eBOSS ELG data [175] (see Ref. [119] for an EFT analysis of
eBOSS ELG), which can provide new consistency tests of the ΛCDM model, and refine our
ways to look for deviations from ΛCDM.

Note that after this work, Ref. [176] carried out an EFT full-shape analysis of the eBOSS
QSO data using the CLASS-PT code [61]. Our results are broadly consistent.
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In this chapter, we perform a thorough comparison of the cosmological constraints derived
from the full-shape analysis of BOSS power spectrum from the EFTofLSS, in order to assess
the consistency of the various analyses presented in the literature. Indeed, a proper comparison
between these various analyses is still lacking, and the implication for the robustness of the
constraints has yet to be established. The EFT implementation and BOSS data we will focus
on in this study are packaged in the PyBird likelihood, based on the EFT prediction and
likelihood from PyBird 1 [59] (as in chapter 4) and the CLASS-PT likelihood, based on the EFT
prediction from CLASS-PT 2 [61] and likelihood from Ref. [62]. 3 Cosmological constraints in
ΛCDM obtained from these two likelihoods for the BOSS full-shape analysis with a big-bang
nucleosynthesis (BBN) prior were originally presented in Ref. [69] and Ref. [62]. While
results are in broad agreement, differences occur at the 1σ level between the two approaches
for BOSS data, in particular on the primordial power spectrum amplitude As and the cold
dark matter density ωcdm, that can have an impact on the variance of matter fluctuations on a
8h−1Mpc scale, σ8. As a result, the level of the tension on the S8 ≡ σ8(Ωm/0.3)0.5 parameter
compared to the CMB prediction can vary between these analyses, from mild to insignificant,
which is particularly relevant to understand the scale-dependence of the growing “S8 tension”
[177, 79, 178, 116, 40]. Moreover, it casts some doubts on the robustness (and potentially on
the validity) of the constraints derived on ΛCDM (and extensions) from the EFTofLSS applied
to BOSS data. Note that we are not performing an eBOSS analysis here, as chapter 4 was
chronologically completed after this chapter. The aim here is to study the consistency of the
EFTofLSS within the ΛCDM model between the various analyses available in the literature, in
the context of a particular case, namely the analysis of BOSS data.

In this work, we aim at understanding what drives the differences seen at the level
of the posteriors of the cosmological parameters for the BOSS data. There are several
analyses choices that differ between the two pipelines, from the choice of prior on the EFT
parameters, for which several prescriptions have been suggested in the literature, to the
BOSS measurements themselves. Specifically, we ask: (i) How sensitive are cosmological
constraints derived from the full-shape analysis of BOSS power spectrum to those effects?; (ii)
How do the various BOSS data measurements used in previous full-shape analysis, that are
obtained with different estimators, split in different redshift bins, or combined with various
post-reconstructed measurements, impact the cosmological results?

To answer those questions, we perform a series of analyses of the BOSS full-shape data,
varying one-by-one (in order of importance) the prior choices, the BOSS measurements
used (full-shape and post-reconstructed BAO parameters), the scale cuts and the number of
multipoles 4 included. Importantly, we find that cosmological constraints are sensitive to the
choice of prior on the EFT parameter space, and the two different choices of prior used in
the PyBird and CLASS-PT analyses drive most of the differences in the results. On the other
hand, the different BOSS full-shape measurements leads to at most 0.6σ difference among all

1https://github.com/pierrexyz/pybird
2https://github.com/michalychforever/CLASS-PT
3https://github.com/oliverphilcox/full_shape_likelihoods
4By multipoles, we refer to the Legendre polynomial L` decomposition in multipoles P̀ (k) of the 3D power

spectrum P(k,µ), i.e., P(k,µ) = ∑`L`(µ)P̀ (k), where k is the norm of the mode k and µ is the cosine of its angle
with the line-of-sight. In this work we consider multipoles restricted to the first even ones, namely `= {0,2} (the
monopole and the quadrupole), or `= {0,2,4} (including also the hexadecapole).

https://github.com/pierrexyz/pybird
https://github.com/michalychforever/CLASS-PT
https://github.com/oliverphilcox/full_shape_likelihoods
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cosmological parameters, while the different post-reconstructed BAO measurements can affect
constraints by up to 0.9σ . Yet, when the choices of prior and data are the same, we show that
the two pipelines agree at better than 0.2σ , which consists in an important validation check of
the two public likelihoods available.

For all analyses in this chapter, we work within ΛCDM. Except when combined with
Planck [179], we impose a Gaussian prior on ωb ∼ N (0.02268,0.00038). 5 We scan over
the physical dark matter density ωcdm, the reduced Hubble constant h, the log-amplitude of
the primordial fluctuations ln

(
1010As

)
, and the spectral tilt ns, with large flat prior. We fix the

total neutrino mass to minimal following Planck prescription [179]. We sample our posteriors
using the Metropolis-Hasting algorithm in MontePython [136] with convergence given by the
Gelman-Rubin criterion R− 1 < 0.01. Finally, we extract the maximum a posteriori (MAP)
parameters from the procedure highlighted in appendix of Ref. [183], and triangle plots are
produced using GetDist [184].

Our chapter is organized as follows. In Sec. 5.1, we review the two prior choices on the
EFT parameters used in previous analyses with the two aforementioned likelihoods, and discuss
the various prior effects at play in the determination of the cosmological parameters from the
Bayesian analysis. In Sec. 5.2, we assess the impact from those prior choices on the cosmologi-
cal constraints from the EFT analysis of BOSS power spectrum. We scrutiny the impacts given
various BOSS data measurements of the pre-reconstructed two-point functions in Sec. 5.3, and
of the post-reconstructed ones in Sec. 5.4. Finally, we summarize our findings and conclude
in Sec. 5.5. In App. B.1, we quantify the (minor) differences introduced due to choices of
scale cuts and number of multipoles included in the analyses. For completeness, we provide a
comparison of the two likelihoods in their respective baseline configurations in App. B.2.

5.1 The role of EFT priors

The one-loop prediction to the galaxy power spectrum in redshift space depends on a number
of EFT parameters. Those are marginalized over in order to obtain constraints on the cosmo-
logical parameters. There are various ways that the EFT prediction can be parametrized, but
all are equivalent at the one-loop order, in the sense that they are simply changes of basis (i.e.,
linear transformations) of each others. However, differences can appear at the level of the pos-
teriors, as soon as one needs to impose priors on the EFT parameters. There are two effects that
can arise from the choice of priors. Let us give a precise definition for a given parameter Ω of
interest (a cosmological parameter) and one nuisance “EFT” parameter c. The generalization to

more parameters is straightforward. Considering a Gaussian prior e−
1
2 (c/σ)2

on c, we identify
the following effects on the 1D posterior of Ω:

• The prior weight effect: this refers to how much the prior is weighting in the likeli-
hood given that the true value of c will be different than the central value of our prior:

e−
1
2 ((c−ĉ)/σ)2

, with ĉ the true value. This can lead to a shift of the most-likely value of Ω
away from its true value.

5This prior is inspired from BBN experiments [180], based on the theoretical prediction of [181], the experi-
mental Deuterium fraction of [12] and the experimental Helium fraction of [182].
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WC vs EC prior: P̀ (`= 0,2)
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Figure 5.1: Comparison of ΛCDM results (1D and 2D credible intervals) from the full-shape analyses
of BOSS power spectrum using the PyBird likelihood or the CLASS-PT likelihood. Here we use the
same data measurements, Pz1/z3

QUAD as specified in Tab. 5.4, and same analysis configuration: we fit two
multipoles, `= 0,2, and use kmax = 0.20/0.25hMpc−1 for the z1/z3 redshift bins. Given the same prior
choice, the EC prior, we reproduce from the PyBird likelihood the results from the CLASS-PT likelihood
to very good agreement (see blue and red posteriors): we obtain shifts . 0.2σ on the means and the errors
bars similar at . 15%. Given that the two pipelines have been developed independently, this comparison
provides a validation check of their implementation. In contrast, the WC and the EC prior choices lead
to substantial differences on the 1D marginalized posteriors (see black and blue posteriors). The gray
bands on the 1D posteriors are centered on the results obtained with the WC priors. The MAP (depicted
by the crosses) are however in better agreement.
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• The prior volume projection effect: this refers to the marginalization integral over c given

its prior:
∫

dce−
1
2 ((c−ĉ)/σ)2

. . . As the likelihood will be a function of Ω and c, that usually
enter in the model not just linearly but also as Ω× c, etc., the posterior of Ω will be non-
Gaussian. The effect is a shift of the mean of Ω away from its most-likely value.

Here, we quantify the impact on the inferred cosmological parameters that different choices
in the prior of the EFT parameters can have upon marginalization.

5.1.1 The two EFT priors
There has been several prescriptions for the EFT parameter priors that have been suggested

in the literature. Generally, one would like to keep EFT parameters within physical range, such
that the one-loop contributions cannot be larger than the tree-level part given the perturbative
nature of the EFTofLSS. The simplest way to implement this requirement is to ask the EFT
parameters controlling the loop contributions to be ∼ O(b1), where b1 is the linear bias. We
here compare two choices of prior on the EFT parameters made in the original analyses with
the PyBird likelihood and the CLASS-PT likelihood. Following Ref. [98], we dub those prior
choices “West coast” (WC) prior and “East coast” (EC) prior, respectively. Let us describe the
differences between these two parametrizations. We recall that the redshift space galaxy power
spectrum at one-loop for the WC parametrization is given in Eq. (3.180).

WC prior. The WC prior is designed to encompass the region physically-allowed by the
EFTofLSS [65]. For each sky cut, we assign one set of EFT parameters, and impose the fol-
lowing priors to keep them within physical range [160]:

• b1 ∼ flat [0,4],

• c2 = (b2 +b4)/
√

2∼ flat [−4,4],

• {b3,cct,2cr,1,cε,0,c
quad
ε } ∼N (0,2),

• {c4 = (b2−b4)/
√

2,cr,2,cmono
ε } ∼ 0,

where N (m,σ) is a Gaussian prior centered on m with a standard deviation σ . Here b1 is the
linear bias and b2,b3,b4 are the nonlinear EFTofLSS biases [65, 66, 67]. cct is dark-matter /
higher-derivative counterterm coefficient appearing in front of ∼ k2/k2

MPlin(k) [54, 65]. cr,1,cr,2
are the counterterm coefficients renormalizing products of velocity operators appearing the
expansion of the density field in redshift space [48, 64, 139], that are appearing in front of
∼ k2/k2

RPlin(k). cε,0,cmono
ε ,cquad

ε are the stochastic term coefficients [64], respectively of the
shot noise n̄−1, monopole ∼ k2/k2

M and quadrupole ∼ k2/k2
M. The renormalization scales

are measured to be kNL = kM = 0.7hMpc−1 and kR = 0.35hMpc−1 [139], and the mean
galaxy density is set to n̄ = 4 · 10−4(Mpch−1)3. The EFT parameters set to 0 have too low
signal-to-noise ratio to be measured from BOSS two-point function (namely, c4 and cmono

ε ), or
are degenerate with already present EFT parameters when using only two multipoles (namely
cr,2) [58]. 6 In total, the WC prior consists of 9 EFT parameters per sky cut when fitting two

6Notice than when we perform checks adding the hexadecapole, we then free cr,2 with a prior∼N (0,2) as the
degeneracy is broken.
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multipoles, and 10 when fitting three multipoles. We also perform checks freeing c4 and cmono
ε ,

as well as adding the next-to-next-leading order redshift-space counterterm c̃ (defined in the
following). In this case, both priors have the same number of EFT parameters and an equivalent
set of associated theoretical predictions.

EC prior. The EC prior is motivated by the coevolution model and simulations [185] (and
see Refs. therein). The basis of galaxy biases {b̃1, b̃2,bG2 ,bΓ3} developed in Ref. [60] is related
to the EFTofLSS basis as (see, e.g., [63]):

b1 = b̃1, b2 = b̃1 +
7
2

bG2,

b3 = b̃1 +15bG2 +6bΓ3, b4 =
1
2

b̃2−
7
2

bG2 . (5.1)

As for the counterterms and the stochastic terms, although almost all scaling functions are
present in the two likelihoods, there are differences in their definition, leading to differences
in their prior. In particular, in the EC prior, kM or kR are absorbed in the definition of the
counterterm coefficients c0, c2, c4, while k−0/2

NL n̄−1 appears explicitly in front of their k0/k2

stochastic terms, with choice kNL = 0.45hMpc−1 and n̄ ' 3 · 10−4(Mpch−1)3. Furthermore,
the EC prior also includes in their baseline a next-to-next-leading order term ∼ c̃ k4Plin(k). The
EC prior on the EFT parameters consists of [62]:

• b̃1 ∼ flat [0,4],

• {b̃2,bG2} ∼N (0,1),bΓ3 ∼N (23
42(b1−1),1),

• c0/[Mpch−1]2 ∼N (0,30), c2/[Mpch−1]2 ∼N (30,30), c4/[Mpch−1]2 ∼N (0,30),

• {cε,0,cmono
ε ,cquad

ε } ∼N (0,2),

• c̃/[Mpch−1]4 ∼N (500,500).

In total, the EC prior consists of 11 EFT parameters per sky cut when fitting two multipoles,
and an extra one, c4, when fitting three multipoles.

5.1.2 Prior weight and volume projection effects
The EC and WC basis are merely linear combinations of the other ones. However, we stress

that the two prior choices are not equivalent, for two reasons. First, given the definition above,
the allowed ranges of variation are not equivalent. As a result, they can lead to different prior
weight effect (on the likelihood of the cosmological parameters of interest) as defined previously.
This raises two important questions regarding the prior choice and the prior weight effect: Is one
prior choice more restrictive (i.e., more informative) than the other one? How significantly does
the prior choice disfavor physically-allowed region, and lead to potential bias in the measured
cosmological parameters? Second, the metric on the parameter space is different: although
one can go from one basis to the other through linear transformations, we do not keep the
jacobians of the transformations, i.e., the integral measures that enter in the marginalization. If
the posteriors are Gaussian, e.g., in the limit where the parameters are well determined, this is
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WC vs EC prior (×2): P̀ (`= 0,2)
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Figure 5.2: Same figure as the top panel of Fig. 5.1, but this time increasing the allowed prior width for
the EFT parameters by a factor of two. The shifts between the mean and the MAP are . 1.4σ for the
WC prior and . 2.7σ for the EC prior. This should be compared with the shifts we obtain for the usual
EFT prior width, namely . 1.2σ for the WC prior and . 2.0σ for the EC prior.

not so much an issue. However, in our case, the posteriors are non-Gaussian. This is obvious
in the case of the cosmological parameters, but it is also the case for EFT ones, as for example
b1 enters quadratically in the prediction. In fact, even the EFT parameters that enter at most
linearly in the prediction, and thus quadratically in the likelihood, do not lead to Gaussian
posteriors as they often (if not always) correlate with other parameters, such as b1, As, etc.
Given the relatively large number of EFT parameters to marginalize over, this might lead to a
rather large prior volume projection effect that affects the marginalized posteriors, as defined
previously. Given the non-Gaussianity of the posteriors, a natural question to ask is therefore:
do the differences in the parametrization, producing effectively different integral measures upon
marginalization, lead to discrepancies on the measured value of the cosmological parameters?
In the following, we perform a detailed analysis to address those issues.

5.1.3 Pipeline validation check

Before comparing the results from the two prior choices, let us first present an important
check. To test the validity of the two pipelines, we implement in the PyBird likelihood the EC
prior. On the same data and at same configuration (same number of multipoles and same kmax),
we obtain the posteriors shown in Fig. 5.1 (see also Fig. B.1 of App. B.1 for the equivalent
analyses with three multipoles). The residual differences are . 0.2σ on the 1D posteriors of
the cosmological parameters. Beyond serving as validation check of those two pipelines built
independently, this also means that the different IR-resummation schemes, that differ at the
two-loop level, are indeed not leading to appreciable shifts in the posteriors, as expected from
the size of theory error (compared to BOSS error bars) at the scales we analyze. 7

7PyBird implements the original IR-resummation scheme proposed in Ref. [71], generalized to redshift space
in Ref. [72], and made numerically practical in Ref. [59]. In this approach, the bulk displacements are resummed
directly on the full shape, and higher-order terms that are neglected are proven to be small at each order in per-
turbations [71] (see also [90]). CLASS-PT implements instead the IR-resummation scheme proposed in Ref. [91],
and generalized to redshift space in Ref. [186]. This alternative scheme has been shown to be an approximation of
the former one in Ref. [70], where one consider only the resummation of the bulk displacements around the BAO
peak, rBAO ∼ 110Mpch−1. For this scheme to be made practical, one further relies on a wiggle-no-wiggle split
procedure to isolate the BAO part. These approximations were shown to be smaller than the two-loop contribution
in Ref. [61].
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Parameter WC pr. EC pr. WC pr. ×2 EC pr. ×2
h 0.6893 0.6861 0.6865 0.6850
ωcdm 0.1243 0.1253 0.1254 0.1277
ln(1010As) 2.980 2.894 2.926 2.915
ns 0.941 1.011 0.913 0.944
Ωm 0.3107 0.3158 0.3155 0.3219
σ8 0.7979 0.7891 0.7718 0.7848
S8 0.8120 0.8096 0.7915 0.8129
b1 1.977 − 1.962 −
c2 0.4058 − -0.0478 −
c4 − − 3.999 −
b3 0.7003 − -0.1567 −
cct -0.2901 − 0.0927 −
cr,1 -0.6575 − 1.246 −
cε,0 1.706 − 2.131 −
cmono

ε − − 3.919 −
cquad

ε -0.3780 − 0.1944 −
c̃/[Mpc/h]4 − − 134.3 −
b̃1 − 2.181 − 2.038
b̃2 − -1.382 − -2.725
bG2 − 0.0977 − -0.2013
bΓ3 − 0.0571 − -0.3848
c0/[Mpc/h]2 − 19.06 − 23.27
c2/[Mpc/h]2 − 43.88 − 36.07
cε,0 − 0.3509 − 0.5684
cmono

ε − -0.0440 − 0.4738
cquad

ε − 0.6255 − 0.4041
c̃/[Mpc/h]4 − 160.3 − 111.5
χ2

min 352.6 343.7 336.0 336.4
Ndata 344

Table 5.1: MAP of the cosmological parameters and EFT parameters corresponding to the analyses of
Fig. 5.1, obtained either with the WC or the EC prior. For clarity, we only show the EFT parameters
associated to the NGC z3 sky cut. We also report the associated effective χ2 values. Here we quote
the MAP, as defined in the main text, which is not the values obtained maximizing the likelihood where
the EFT parameters that enter the model linearly are marginalized over analytically. The MAP can be
obtained with such likelihood [59] (see also Ref. [95]), but it is not sufficient to simply maximize this
likelihood.
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Parameter WC (→ Pr. ×2) EC (→ Pr. ×2)
h 0.4 σ (→ 0.4σ ) 0.8 σ (→ 1.1σ )
ωcdm 0.6 σ (→ 0.4σ ) 1.0 σ (→ 1.3σ )
ln(1010As) -1.2 σ (→−1.1σ ) -1.3 σ (→−2.4σ )
ns -0.7 σ (→−0.6σ ) -1.3 σ (→−1.6σ )
Ωm 0.5 σ (→ 0.3 σ ) 0.8 σ (→ 1.1σ )
σ8 -1.2 σ (→−1.3σ ) -2.0 σ (→ -2.7 σ )
S8 -1.0 σ (→−1.3σ ) -1.8 σ (→-2.3 σ )

Table 5.2: A summary of prior volume projection effects on the posterior mean: distance of the mean
from the MAP. σ is taken as the 68% C.L. error bars. The number in parenthesis give the distance when
multiplying the prior width by two.

Parameter X ∆X(MAP) → Pr. ×2
h 0.2 σ → 0.1 σ

ωcdm -0.1 σ → -0.2 σ

ln(1010As) 0.5 σ → 0.1 σ

ns 0.9 σ → -0.4 σ

Ωm -0.2 σ → -0.3 σ

σ8 0.2 σ → -0.3 σ

S8 0.1 σ → -0.4 σ

Table 5.3: A summary of prior weight effects on the MAP: distance (XWC−XEC) between the MAP
obtained with the WC and EC prior in units of σ , the average of the 68%-CL error bars derived from the
two priors. The number in the right column give the distance when multiplying the prior width by two.

5.2 Impact of EFT priors in ΛCDM

5.2.1 Highlighting the role of the priors
To illustrate the impact of the prior choice, we compare the marginalized posteriors of

the cosmological parameters within ΛCDM obtained with one or another prior choice (WC
or EC), using the exact same data measurements, at the exact same scale cut and number of
multipoles. In Fig. 5.1, we show the results when analyzing Pz1/z3

QUAD as specified in Tab. 5.4,
with the same analysis configuration, namely we fit two multipoles, ` = 0,2, and use kmax =
0.20/0.25hMpc−1 for the z1/z3 redshift bins. Additional comparisons with different data con-
figurations are provided in App. B.1, Figs. B.1 and B.2. Let us quote the largest shifts for
two analysis configurations:

• Fitting `= 0,2 at kmax = 0.25hMpc−1 in z3 (i.e., the PyBird native configuration), we find
differences < 0.5σ on all cosmological parameters between the two likelihoods, except
larger ones on ln

(
1010As

)
, σ8, and S8, of 1.2σ , 1.1σ and 0.9σ .

• Fitting ` = 0,2,4 at kmax = 0.20hMpc−1 in z3 (i.e., the CLASS-PT native configuration),
we find differences < 0.5σ on all cosmological parameters between the two likelihoods,
except large ones on ln

(
1010As

)
, Ωm, σ8 and S8, of 1.2σ , 0.7σ , 1σ , and 0.7σ .

This shows that the choice of prior on the EFT parameters can lead to differences in the
posteriors. These can arise either from prior weights, in the sense that the allowed ranges are
informing (potentially disfavoring) the “true” value that the EFT parameters want to take; or the
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prior volume lead to important projection effects, given the large number of EFT parameters
that we marginalize over.

Prior volume projection effects. One way to estimate the prior volume projection effects
is to compare the MAP values in Tab. 5.1 to the 68%-credible intervals in Fig. 5.1 (as already
mentioned in chapter 4). We summarize those shifts in Tab. 5.2. In particular, one can compute
the shifts of the mean to the MAP, where the MAP is (by definition) not affected by prior
volume projection effects. Here we refer to the “MAP” as the most likely value obtained by
maximizing the likelihood of the data together with a conditional probability distribution given
by the prior chosen for the EFT (nuisance) parameters. We stress that to obtained such MAP,
the nuisance parameters are not marginalized over, i.e., they are not integrated over given their
prior probability distribution. With the EC prior, we find for some cosmological parameters
that the MAP values are not lying within the 68%-credible intervals: for example, we find
shifts of ∼ 2σ on ln

(
1010As

)
, σ8, or S8. With the WC prior, we find that the MAP and the

mean are consistent at . 1.2σ for all cosmological parameters. These shifts are particularly
relevant when assessing the level of tension with the σ8 and S8 measurements from Planck
(as already mentioned in chapter 4). While it might appear that σ8 measured from EFTBOSS
data are systematically lower than those deduced from Planck under ΛCDM, we find here that
a large part of the apparent tension comes from a projection effect that shift the σ8 value by
1.2σ and 2σ for the WC and EC prior respectively compared to the MAP (and by a similar
amount for S8). In fact, the MAP we derived for both priors (see Tab. 5.1) is in very good
agreement with the reconstructed value from Planck TTTEEE+lowE+lensing under ΛCDM,
σ8 = 0.8111±0.0060 [11].

Finding smaller prior volume projection effects with the WC prior than with the EC
prior is consistent with the fact that the prior widths for the EFT parameters are, in general,
slightly more restrictive in the WC prior than in the EC prior (see discussion in Sec. 5.1).
To further demonstrate the prior volume effect, we increasing the prior widths for the EFT
parameters by a factor of two. One can see from Fig. 5.2 and Tab. 5.2 that the prior volume
projection effects grow as expected: the mean-to-MAP distances are now up to ∼ 1.3σ

with the WC prior and up to ∼ 2.7σ with the EC prior, with σ8 suffering again from the
largest projection effect. A similar analysis was recently performed in Ref. [187] in the
context of ΛCDM and a model of dark energy with a free-to-vary equation of state w and
interaction rate with dark matter. Working with the EC priors defined above, they show that
broadening the width of the priors can strongly affect posteriors distributions of cosmological
parameters, in good agreement with our findings. A more complete diagnosis would be
to look at the profile likelihoods, that are however computationally challenging to obtain.
We discuss this frequentist approach in Sec. 5.2.2, while this will be the main focus of chapter 6.

Prior weight effects. One simple way to quantify the effect due to the prior weight is
to consider the MAP from the two prior choices, given in Tab. 5.1. Indeed, these are not
affected by the projection effects discussed above, which only occur when performing the
marginalization integrals over the EFT parameters (within their priors), and therefore are
mostly biased by the prior weight effect (barring computational errors / inaccuracies). In
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Tab. 5.3, we quantify the consistency between the most-likely values of all cosmological
parameters X derived with the two prior choices (EC or WC), by computing the distance
(XWC−XEC)/σ , where σ is taken as the average of the 68%-CL error bars derived from the
two priors. 8 One can see that they are different at . 1σ , with the largest difference being
for ns. It is also informative to compare the min χ2 values, in order to check whether the fit
is acceptable for both priors. From Tab. 5.1, we see that with the EC prior, the ΛCDM model
leads to a slight better min χ2 at ∆χ2 ∼ 9 than with the WC prior, but also introduces 2 extra
free parameters per sky cut. Assuming all data points and parameters to be uncorrelated, we
estimate that both prior choices lead to a comparable goodness-of-fit, with a p−value' 5%.

Finally, to further demonstrate the role of the prior in informing the determination of the
cosmological parameters, we enlarge the allowed range for the EFT parameters in both prior
choices by a factor of two. 9 We now find that the min χ2 values are comparable: 336.0 and
336.4 from the WC and the EC prior, respectively, with corresponding p-values ' 7%. More
importantly, the most-likely values of the cosmological parameters are now compatible at
. 0.4σ (compared to . 1σ before enlargement).

Summary. On the one hand, we have shown that prior volume projection effects lead to
shifts up to ∼ 1σ and ∼ 2σ on the posterior means from the WC and EC prior, respectively
(see Tab. 5.2). As already mentioned in chapter 4, this effect is particularly noticeable in
shifting downward the mean value of σ8, which lead to an apparent small tension with Planck
under ΛCDM (at 1.5σ and 2.5σ for the WC and EC prior respectively), compared to the MAP
that is in good agreement with Planck at . 0.5σ for all prior choices. The prior weight effects,
on the other hand, are responsible for differences in the most-likely values up to ∼ 1σ between
the two prior choices. Additionally, the ΛCDM model provides an acceptable description of
the data regardless of the prior. Let us stress that the effects from the prior that we have found
here are sizeable (with respect to the error bars) only because current data are of relatively
small volume (and therefore larger statistical errors). In the following, we argue that those
effects becomes less relevant as soon as more data are added in the cosmological analysis.

Before moving on, we make the following comment. One may wonder if the present study
allows us to draw lesson on how to choose appropriately priors on the EFT parameters. We
have demonstrated that the two EFT priors allow for the same maximal likelihood point once
enlarged enough. This is expected since we stress again that the two parametrizations are equiv-
alent, as they are related by a change of basis to each other: as such, once the prior is large
enough, the prior weight becomes negligible with respect to the likelihood of the data, and the
maximal likelihood point is recovered. Therefore, one possible criteria to choose the prior is
to require that the size of the one-loop contribution stays smaller than the tree-level, such that
the perturbative nature of the theory is preserved. Progress in this direction are ongoing. Nev-

8In principle, it would be more accurate to estimate the consistency between the best-fits via a profile likelihood
(see chapter 6). We take the 68%-credible intervals obtained from the posterior distribution as a simple proxy,
although these are potentially affected by the projection effects mentioned above.

9For the WC prior, we also free c4 and cmono
ε with range 4, and add the next-to-next leading redshift-space

counterterm c̃ as in the EC prior, such that the two priors have equivalent sets of associated theoretical predictions.
Indeed, in this case, both priors have the same number of EFT parameters and an equivalent set of associated
theoretical predictions.
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ertheless, we anticipate than none of the choice for the EFT parameters satisfying such criteria
will be immune to the prior volume projection effects given BOSS data volume. We therefore
now move on to look at the situation given larger data volume.

5.2.2 How to beat the prior weights and volume effects
Forthcoming surveys data. While we have established that effects from the prior are of
utmost importance for BOSS, one may ask whether these will still be important given a larger
data volume, e.g., from forthcoming surveys such as DESI [171] or Euclid [172]. To answer
this question, following Ref. [95], we measure effect from the prior by fitting synthetic data
generated with our prediction on the MAP of the data. The results are presented in Fig. 5.3 for
the WC prior as well as for the EC prior. For the volume of BOSS, one can see as expected
that the prior effects are important, as the posterior means are far away from the truth, namely
a . 1.2σ shift for the WC prior and a . 2.0σ shift for the EC prior. However, by re-scaling
the covariance of BOSS by 16, which corresponds roughly to the volume of the forthcoming
galaxy surveys, one can see that the prior effects are less important: the shifts of the mean to the
truth are now . 0.5σ for the WC prior and . 0.7σ for the EC prior. There are several caveats
to this simple exercise. First, here we have simply rescaled the covariance of BOSS, and used
the synthetic data generated from the MAP to BOSS data. These are far from the specifications
of forthcoming surveys in terms of targeting, shot noise, redshifts, etc., although we anticipate
that this should not change the conclusions. Maybe more importantly, keeping in mind that the
kmax is determined as the highest scale at which the theory error remains under control with
respect to the statistical error, the kmax will presumably not be as high for larger data volume.
Therefore, the size of the error bars seen in Fig. 5.3 are likely underestimated. This in principle
can allow for more effects from the prior, which remain to be precisely quantified. We refer
to App. C of Ref. [98] as well as Ref. [139] for more realistic prospects of the EFT analysis
on a DESI-like surveys with the WC prior. Finally, the forthcoming data will be cut into very
different redshift bins than the ones of BOSS. If one assigns one set of EFT parameters per
redshift bin in the analysis, the thinner is the slicing, the bigger the prior volume will get. If
this becomes an issue, one can imagine to be more informative, for example add a correlation
on the EFT parameters from one redshift bin to another, given that one expects them to not
be so different. This effectively reduces the number of EFT parameters to marginalize over,
i.e., reduces the prior volume and the associated projection effects. We refer to Ref. [95] for a
practical implementation of such correlated prior in an EFT analysis of BOSS data.

Combining with CMB. In Fig. 5.4, we show the combination of the EFT analysis of BOSS
power spectrum, using either the WC or the EC prior, with Planck TTTEEE+lowE+lensing
data [11]. The inclusion of Planck data brings the two analyses into good agreement: we
observe at most shifts . 0.5σ on the means, and the errors bars are similar at . 5%. The
Planck data represents a considerable data volume with respect to BOSS, such that it is not
surprising that the cosmological constraints are dominated by Planck. As such, all prior effects
observed earlier are then less prone to bias the cosmological results.

Profile Likelihood. Although we have shown that increasing the data volume, either from the
survey or by combining with CMB experiments, help to mitigate prior effects, the question of
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Prior effects in current and forthcoming data
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Figure 5.3: ΛCDM results (1D and 2D credible intervals) from the same likelihood as Fig. 5.1, PyBird,
but on noiseless synthetic data generated with the EFT prediction close to the MAP of BOSS. In par-
ticular, we use the same covariance as for the BOSS analysis, represented by VBOSS. We perform this
analysis either with the WC prior or the EC prior. The vertical lines represent the truth. For BOSS data
volume, VBOSS, we observe shifts in the 1D posteriors from the prior effects up to ∼ 1.2σ for the WC
prior, and up to∼ 2.0σ for the EC prior. For forthcoming survey-like data volume,∼ 16×VBOSS, we see
that the cosmological parameters are instead recovered at . 0.5σ with the WC prior and . 0.7σ with
the EC prior.
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WC vs EC prior in combination with Planck data
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with the EC and WC prior choices lead to similar results within . 0.5σ on all cosmological parameters.
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Pre-reconstructed measurements
Ref. Estimator Code Redshift split Window

PLZ/CM
FKP [191] FKP Rustico [191] LOWZ / CMASS Inconsistent norm.

PLZ/CM
FKP [69] FKP PowSpec [192] / nbodykit [193] LOWZ / CMASS Consistent norm.

ξ LZ/CM [69] Landy & Slazay FCFC [194] LOWZ / CMASS Window-free
Pz1/z3

FKP [122] FKP – z1 / z3 Consistent norm.
Pz1/z3

QUAD [62] Quadratic Spectra without Windows [195] z1 / z3 Window-free

Post-reconstructed measurements
Ref. – – Redshift split Method

α LZ/CM
rec [126] – – LOWZ / CMASS [59]

α
z1/z3
rec [51] – – z1 / z3 [59]

β
z1/z3
rec [51] – – z1 / z3 [102]

Table 5.4: Comparison of pre-reconstructed and post-reconstructed BOSS two-point function measure-
ments: reference, estimator, code of the measurements, redshift split [LOWZ: 0.2 < z < 0.43 (zeff =
0.32), CMASS: 0.43 < z < 0.7 (zeff = 0.57); z1: 0.2 < z < 0.5 (zeff = 0.38), z3: 0.5 < z < 0.7 (zeff =
0.61)], and window function treatment. For the post-reconstructed measurements, while we instead
provide under “Method” the references presenting the algorithm used to extract the reconstructed BAO
parameters and how the cross-correlation with the pre-reconstructed measurements is performed, “Ref.”
now refers to the public post-reconstructed measurements used. The SDSS-III BOSS DR12 galaxy sam-
ple data are described in Refs. [81, 125]. The pre-reconstructed measurements are from BOSS catalogs
DR12 (v5) combined CMASS-LOWZ [124].

how to extract reliable cosmological summary statistics from smaller data volume remains. One
possibility is to go back to the frequentist approach: instead of sampling the likelihood to obtain
posteriors that we then marginalize to get credible intervals, we can simply look at the profile
likelihoods and read the confidence intervals. In the context of Planck CMB data, Ref. [138]
showed that the frequentist analysis yields similar distribution as the Bayesian analysis within
ΛCDM. However, it as already been pointed out that this is not necessarily the case for beyond-
ΛCDM model, such as early dark energy [188, 189, 190]. As we have illustrated, this can have
several advantages over the Bayesian approach: one is free to choose very agnostic prior, i.e.,
broad prior ranges, thus avoiding potential bias from the prior weight, without paying the price
of being subject to large prior volume projection effects, as the confidence intervals are not
derived upon marginalization. It this will be the main focus of chapter 6.

5.3 Comparison of BOSS measurements

On top of various EFT prior choices, there are various BOSS two-point function measure-
ments (that can be) used in full-shape analyses. Here, we present a detailed comparison on the
posteriors obtained from the EFT analysis given various BOSS measurements. In particular, we
ask what are the differences that can occur given the various treatments of the window functions.
The characteristics of each measurements are listed in Tab. 5.4, while a more in-depth descrip-
tion is available in Sec. 5.3.1. All analyses in this section are performed using the same pipeline:
same prior choice on the EFT parameters, same scale cuts, and same number of multipoles, to
ensure that we are only sensitive to differences due to the various measurements under scrutiny.
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5.3.1 Contenders
Here we compare four pre-reconstructed and two post-reconstructed two-point function

measurements from the BOSS sample, summarized in Tab. 5.4:

• PLZ/CM
FKP : pre-reconstructed power spectrum measured for the full-shape analysis (abbre-

viated “FS” analysis in the following) presented in Ref. [69]. The corresponding window
functions were consistently normalized with Q0(s→ 0) ∼ 0.9 at vanishing separation,
matching the measurements normalization (see App. D.1).

• ξ LZ/CM: pre-reconstructed correlation function measured for the FS analysis presented in
Ref. [69]. The correlation function estimator is free from window function effects.

• Pz1/z3
FKP : pre-reconstructed power spectrum measured in Ref. [122]. The corresponding

window functions were consistently normalized matching the corresponding measure-
ments normalization. We analyze Pz1/z3

FKP by deconvolving the window functions from the
theory prediction by redefinition of the data vector and covariances at the level of the like-
lihood, as described in Ref. [122]. The window functions furthermore include the integral
constraints [196].

• Pz1/z3
QUAD: pre-reconstructed power spectrum measured using the quadratic “window-free”

estimator of [195].

• α LZ/CM
rec : BAO transverse and parallel parameters measured in Ref. [59] from

post-reconstructed power spectrum measured in Ref. [126].

• α
z1/z3
rec : BAO transverse and parallel parameters measured in this work (following method-

ology described, e.g., in Ref. [51]) from post-reconstructed power spectrum measured in
Ref. [51].

PLZ/CM
FKP , ξ LZ/CM, and α LZ/CM

rec are cut into LOWZ and CMASS redshift bins, 0.2 < z <
0.43 (zeff = 0.32), 0.43 < z < 0.7 (zeff = 0.57), respectively. Pz1/z3

FKP , Pz1/z3
QUAD and α

z1/z3
rec are

cut into z1 and z3 redshift bins, 0.2 < z < 0.5 (zeff = 0.38) and 0.5 < z < 0.7 (zeff = 0.61),
respectively. The scale cut for BOSS FS analysis has been determined on large-volume high-
fidelity HOD simulations in Refs. [101, 98, 59, 69] and from a theory-error estimate in Ref. [69]
for LOWZ / CMASS split to (kmin,kmax) = (0.01,0.20/0.23)hMpc−1 in Fourier space and
(smin,smax) = (25/20,200)Mpch−1 in configuration space. When the data are split into z1 and
z3 instead, we rescale kmax, using Eq. (40) of [58], in order to have an equivalence with the
LOWZ / CMASS separation. Especially, since z3 is effectively slightly higher redshift and with
less data volume than CMASS, we re-scale the associated kmax to kz3

max = 0.25hMpc−1, while
we keep kz1

max = 0.20hMpc−1. Finally, we precise that the reconstructed BAO parameters are
always combined with a FS analysis of pre-reconstructed measurements. α LZ/CM

rec and α
z1/z3
rec

listed above for completeness will be compared in the next section.

5.3.2 The matchups
We now compare the cosmological results from a FS analysis within ΛCDM of the various

BOSS data presented previously. Summary of the cosmological results are given in Fig. 5.5.
We divide the contenders into the following matchups:
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Comparison of BOSS pre-reconstructed measurements
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Figure 5.5: Comparison of ΛCDM results (1D and 2D credible intervals) from BOSS full-shape analyses
of various pre-reconstructed two-point function measurements (PLZ/CM

FKP ,ξ LZ/CM,Pz1/z3
FKP ,Pz1/z3

QUAD). Details on
the naming convention and relevant information are summarized in Tab. 5.4. The gray bands on the 1D
posteriors are centered on the results obtained with PLZ/CM

FKP .
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PLZ/CM
FKP vs. ξ LZ/CM (i.e., the Fourier vs. configuration space matchup). Such matchup was

already presented in Ref. [69] but with varying neutrino masses. Here we re-do the same
comparison with one massive neutrino fixed to minimal mass, finding similar conclusions: the
difference in the 1D posteriors is about . 0.6σ for all cosmological parameters. Importantly,
as seen in Fig. 5.6, the consistency is brought to better agreement when the same reconstructed
BAO parameters α LZ/CM

rec is added to both: . 0.2σ for all cosmological parameter, except on
σ8, S8, and ns, which are consistent at about 0.3− 0.5σ . Contrary to the other comparisons
made here, the cosmological information between the two compared statistics is effectively
quite different due to two reasons. First, the BAO signal is fully analyzed in configuration
space, as it shows up as a peak around 110Mpch−1, while the BAO wiggles in Fourier space
above the scale cut are not analyzed. Second, the scale cuts are effectively different (see more
discussions in Ref. [69]). Therefore, the addition of the same reconstructed BAO parameters
effectively bring closer the BAO information content between the Fourier and configuration
space analysis. However, we still expect some level of differences on the posteriors as the
information content is not equivalent in the two analyses. In particular, as the correlation
function is free from the window functions effect, such match between the two analyses tells
us that the effect from the window function (normalization) is under relatively good control.
PLZ/CM

FKP and ξ LZ/CM are thus declared both consistent.

PLZ/CM
FKP vs. Pz1/z3

FKP (i.e., the LOWZ / CMASS vs z1 / z3 redshift split matchup). We find that
PLZ/CM

FKP and Pz1/z3
FKP and their respective window functions (consistently normalized), measured

independently, are rather consistent (. 0.3σ ). Here Pz1/z3
FKP is analyzed by deconvolving the

window from the theory predictions at the level of the likelihood as described in Ref. [122].
Furthermore, [122] adds to the window of Pz1/z3

FKP the integral constraints [196]. Therefore,
finding consistency between PLZ/CM

FKP and Pz1/z3
FKP gives us several important information: (i)

it allows us to check the accuracy of the deconvolution procedure on BOSS data; (ii) it tells
us that the integral constraints have minor effects on the cosmological results from BOSS;
and (iii) that the LOWZ / CMASS and z1 / z3 splits (and their respective scale cuts) lead to
consistent cosmological measurements. PLZ/CM

FKP vs. Pz1/z3
FKP are thus declared both consistent.

PLZ/CM
FKP vs. Pz1/z3

QUAD (i.e., window vs. window-free matchup). This comparison was initially
performed in Ref. [195] but using the CLASS-PT likelihood. Thanks to the PyBird likelihood,
we find similar trend using the WC prior, with Pz1/z3

QUAD leading to differences of about 0.5−
0.6σ on h, ωcdm, ln

(
1010As

)
and Ωm. Similarly, Pz1/z3

FKP and Pz1/z3
QUAD are consistent at . 0.6σ

on all cosmological parameters. While Ref. [195] argues that the Pz1/z3
QUAD analysis is “formally

equivalent” to the Pz1/z3
FKP window-deconvolved analysis, we observe that the inverse covariance

(schematically W T ·C−1 ·W , where W is the window function matrix, see again Ref. [122]) in
the deconvolved analysis is different than the inverse covariance built from measurements using
the window-free quadratic estimator. Another potential difference is the fact that Pz1/z3

FKP is shot-
noise subtracted while Pz1/z3

QUAD is not. However, putting a prior centered on 1 instead of 0 (in unit

of n̄−1) for the shot noise in the analysis Pz1/z3
QUAD only shifts ln

(
1010As

)
by ∼ 0.2σ . Finally, we

note that both PLZ/CM
FKP and Pz1/z3

QUAD are consistent with ξ LZ/CM at . 0.6σ .
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5.3.3 Measurements comparison summary
All in all, all BOSS pre-reconstructed full-shape measurements not affected by a window

function normalization issue (see App. D.1 for a discussion about this issue and its impact
on the cosmological parameters), namely PLZ/CM

FKP , ξ LZ/CM, Pz1/z3
FKP , and Pz1/z3

QUAD, measured
from different estimators as figuring in Tab. 5.4, lead to broadly consistent results at < 0.8σ

on the 1D posteriors for all cosmological parameters, and with similar error bars within
. 10% (see Fig. 5.5). To be more precise, taking PLZ/CM

FKP as reference, the 1D posterior
distribution of parameters reconstructed from ξ LZ/CM, Pz1/z3

FKP , and Pz1/z3
QUAD are consistent at

. 0.6σ , 0.3σ , and 0.6σ , respectively. The addition of the same post-reconstructed BAO signal
(by cross-correlation) to PLZ/CM

FKP and ξ LZ/CM brings them in consistency at . 0.2σ for all
cosmological parameters, with the exception of residual shifts of ∼ 0.3−0.5σ on σ8, S8, or ns,
as it can be seen on Figs. 5.5.

To summarize, we list the differences seen at the level of the posteriors (within ΛCDM),
ordered from the most to the least important one, and the respective choices of measure-
ments that they stem from:

• up to 0.6σ among all cosmological parameters from the choice of the power spectrum
estimators (PLZ/CM

FKP vs. Pz1/z3
QUAD);

• about 0.3 − 0.5σ on σ8, S8, or ns, from the choice of Fourier-space analysis or
configuration-space analysis (PLZ/CM

FKP +α LZ/CM
rec vs. ξ LZ/CM +α LZ/CM

rec );

• . 0.3σ on all cosmological parameters from the choice of the redshift bin split in either
LOWZ and CMASS or z1 and z3 (PLZ/CM

FKP vs. Pz1/z3
FKP ), as defined in Tab. 5.4.

Besides the effects mentioned here, there are subleading ones affecting those comparisons that
we have discussed above: the addition of the integral constraints in the analysis of FKP mea-
surements or subtracting the shot noise in the power spectrum measurements lead to shifts of at
most . 0.2σ . We now turn to the comparisons of reconstructed BAO parameters combined
with the full-shape analysis.

5.4 Comparison of Reconstructed BAO

5.4.1 Inconsistency between post-reconstructed measurements
We here compare the two BOSS post-reconstructed measurements through the BAO

parameters extracted with the same methods, as defined in previous section and in Tab. 5.4:
α LZ/CM

rec vs. α
z1/z3
rec . The results of this comparison are shown in Fig. 5.6. We find that

adding the reconstructed signals α LZ/CM
rec and α

z1/z3
rec to PLZ/CM

FKP and Pz1/z3
FKP , respectively, lead

to substantial differences on the mean of h, at about 0.9σ . This is to be contrasted with the
consistency on h that was better than < 0.1σ between PLZ/CM

FKP and Pz1/z3
FKP before the addition

of the reconstructed BAO parameters. Indeed, the addition of the two reconstructed BAO
measurements to the full-shape analysis shift h in the opposite directions (see Fig. 5.6). Given
that the reconstruction algorithm used for both reconstructed measurements is essentially the
same, this is an unexpected result. Exploring the reconstruction algorithm is beyond the scope
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0.67 0.71
h

P LZ/CM
FKP

+ LZ/CM
rec

LZ/CM

+ LZ/CM
rec

P z1/z3
FKP

+ z1/z3
rec

P z1/z3
QUAD

+ z1/z3
rec

0.695 ± 0.012

0.697 ± 0.012

0.685 ± 0.011

0.688 ± 0.011

0.12 0.14
cdm

0.128 ± 0.011

0.128 ± 0.011

0.123 ± 0.009

0.128 ± 0.010

2.5 3.0
ln(1010As)

2.84 ± 0.16

2.81 ± 0.18

2.88 ± 0.15

2.82 ± 0.15

0.85 0.95
ns

0.901 ± 0.059

0.869 ± 0.061

0.935 ± 0.054

0.910 ± 0.054

0.30 0.35
m

0.312 ± 0.016

0.312 ± 0.017

0.312 ± 0.015

0.319 ± 0.016

0.7 0.8
8

0.746 ± 0.044

0.727 ± 0.051

0.752 ± 0.045

0.739 ± 0.045

0.7 0.8
S8

0.760 ± 0.044

0.741 ± 0.049

0.766 ± 0.045

0.762 ± 0.045

0.67 0.73
h

0.30

0.35

m

0.8

1.0

n s

2.5

3.0

ln
10

10
A s

2.5 3.0
ln1010As

0.8 1.0
ns

0.29 0.36
m

0.66
0.70
0.74

h

P LZ/CM
FKP P z1/z3

FKP P LZ/CM
FKP + LZ/CM

rec P z1/z3
FKP + z1/z3

rec

Figure 5.6: Upper panel: same as the 1D posterior distributions of Fig. 5.5 but combined with various
post-reconstructed BAO parameters: α LZ/CM

rec , α
z1/z3
rec . The gray bands are centered on the results obtained

with PLZ/CM
FKP +α LZ/CM

rec . Lower panel: 2D posteriors from the full-shape analyses of BOSS power spec-
trum with two choices of redshift splits: PLZ/CM

FKP , Pz1/z3
FKP . We also show their combinations with α LZ/CM

rec

and α
z1/z3
rec , respectively. Details on the naming convention and relevant information are summarized in

Tab. 5.4. While the two choices of redshift split lead to consistent results at . 0.1σ on h, the addition
of the BAO parameters, that extracted from the two available BOSS post-reconstructed measurements in
Fourier space, lead to differences on h of ∼ 0.9σ .
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Comparison of BAO extraction methods
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Figure 5.7: Comparison of ΛCDM results (1D credible intervals) from BOSS full-shape analyses using
the PyBird likelihood or the CLASS-PT likelihood. The differences between the two likelihoods consist
in the choices of prior on the EFT parameters, the number of multipoles analyzed and the value of kmax.
For the same pre-reconstructed measurements Pz1/z3

QUAD, although not analyzed with the same likelihood,
one can see the differences from different BAO parameters, α

z1/z3
rec and β

z1/z3
rec , due to different extraction

methods, since they are from the same post-reconstructed measurements. Relevant information regarding
the measurements and their notations are summarized in Tab. 5.4.

of this work, and we leave a careful scrutiny of the reconstructed measurements to future work.
We observe that full-shape analyses combining the pre-reconstructed power spectrum either
with reconstructed signal from configuration space [103], or with the bispectrum analyzed
at one loop up to kmax ∼ 0.23hMpc−1 (which comprises most of the additional information
brought by the reconstructed signal) [95], find shifts in h in the same direction (and by a
similar amount) as what we obtain when we add α LZ/CM

rec , rather than α
z1/z3
rec . Although the

comparisons are far from straightforward given differences in the analysis setups, we take
them as mild evidence that α LZ/CM

rec is more consistent than α
z1/z3
rec with what one should expect

from the addition of the information from the reconstructed measurements. We nevertheless
warn the reader that further studies are required to clarify this discrepancy. We note that the
addition of the reconstructed BAO parameters also has an impact on ns, since we have a shift
of 0.6σ between PLZ/CM

FKP +α LZ/CM
rec and Pz1/z3

FKP +α
z1/z3
rec , while the other parameters does not

shift appreciably.

5.4.2 Comparison of extraction methods of reconstructed BAO pa-
rameters

After comparing the two available BOSS post-reconstructed measurements using the same
BAO extraction methods, α LZ/CM

rec and α
z1/z3
rec , we now compare two sets of BAO parameters

from the same post-reconstructed measurements, α
z1/z3
rec and β

z1/z3
rec , but extracted from two

different methods as defined in the following. The reconstructed BAO parameters are not
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obtained using the same methodology: in the PyBird likelihood, the BAO parameters (α LZ/CM
rec

or α
z1/z3
rec ) are obtained following the standard method as described in, e.g., Ref. [51], while in

the CLASS-PT likelihood, the BAO parameters (β z1/z3
rec ) are obtained following the method put

forward in Ref. [102]. The two methods are similar in spirit as they both focus on extracting the
information from the reconstructed signal using only knowledge of “the position of BAO peak”
through the Alcock-Paszinki parameters, as the broadband shape (and the BAO amplitude
with respect to the broadband) is marginalized over. However, they differ slightly in their
design. In particular we note that in the CLASS-PT likelihood, some nuisance parameters
such as the shot noise are not included in the model to fit the reconstructed power spectrum.
Instead, an approximation for the theory error at high k (where the shot noise contribution
starts to be significant) is added to the data covariance to account for, among others, the shot
noise contribution, which should be equivalent to the procedure in used by PyBird likelihood. 10

In Fig. 5.7, we can see the differences on the cosmological parameters arising from the two
extraction methods. We compare α

z1/z3
rec with β

z1/z3
rec , that we remind that are from the same post-

reconstructed measurements, combined with the same pre-reconstructed measurements Pz1/z3
QUAD,

analyzed respectively with the PyBird or the CLASS-PT likelihood. Here are the takeaways:

• The addition of β
z1/z3
rec to Pz1/z3

QUAD in the CLASS-PT likelihood shifts h in the same direction

as the addition of α
z1/z3
rec to Pz1/z3

QUAD in the PyBird likelihood, of about 1/3 ·σ and 1/2 ·σ ,

respectively. This is expected, as the BAO parameters of β
z1/z3
rec and α

z1/z3
rec are based on

the same post-reconstructed measurements obtained in Ref. [51] as seen in Tab. 5.4.

• The error bar reduction from the addition of the BAO parameters are quite compara-
ble between the PyBird likelihood and the CLASS-PT likelihood. Indeed, taking the same
pre-reconstructed measurements, Pz1/z3

QUAD, we find that the errors on h, ln
(
1010As

)
,ns, Ωm,

and σ8 are reduced respectively by 23%, 13%, 14%, 18%, and 12% in the PyBird like-
lihood when adding α

z1/z3
rec , while they are reduced by 22%, 3%, 7%, 16%, and 0% in

the CLASS-PT likelihood when adding β
z1/z3
rec . Therefore, keeping in mind that α

z1/z3
rec ans

β
z1/z3
rec are based on the same post-reconstructed measurements, we see that differences in

the methods to extract and cross-correlate the BAO parameters lead to similar error bars
within ∼ 10%.

To conclude, given the same post-reconstructed measurements, we do not find appreciable
differences between the two extraction methods of reconstructed BAO parameters.

5.5 Conclusions
The developments of the predictions for the galaxy clustering statistics from the EFTofLSS

have made possible the study of BOSS data beyond the conventional analyses dedicated
to extracting BAO and RSD information. The analyses available in the literature lead

10There is an additional difference in the methodology, however, shown to be not relevant at the level of the
constraints: β

z1/z3
rec are obtained in Ref. [102] by marginalizing over the damping of the BAO wiggles, while

α LZ/CM
rec or α

z1/z3
rec are obtained following [51] using a fixed damping amplitude parameter. As shown in Ref. [102],

this does not lead to significant differences in the determination of the BAO parameters and their covariances.
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to differences on the reconstructed cosmological parameters that can be at the 1σ level.
Given that they all come from the same BOSS data, this may be consider surprising and
unsatisfactory. However, the analyses vary at a number of levels: the EFT parameters prior
choices, the power spectrum estimator used for the measurements, the reconstructed BAO
algorithm, the scale cut and the number of multipoles. In this chapter, we have identified the
analyses choices that can impact the cosmological constraints, and quantify the shifts in the
full-shape analysis of BOSS power spectrum within ΛCDM. We summarize our findings below.

In Sec. 5.1, we have looked at two choices of prior used in previous BOSS full-shape analy-
sis, the so-called “West-coast” (WC) and “East-coast” (EC) priors, that have been implemented
in the PyBird and CLASSPT pipeline, respectively. Most importantly, we have identified that
the prior assigned on the EFT parameters plays a non-negligible role in the determination of
the cosmological parameters, for two reasons.

• First, in the Bayesian analysis, the marginalized constraints of the cosmological parame-
ters are subject to prior volume projection effects from the marginalization over the EFT
parameters, as the resulting posteriors are non-Gaussian. We find that that prior volume
projection effects shift the posterior mean from the MAP up to ∼ 1σ with the WC prior
and up to ∼ 2σ with the EC prior across all cosmological parameters.

• Second, from a frequentist perspective, we have found that the prior weight shift the MAP
between the two analyses at . 1σ , with the min χ2 different at ∆χ2 ∼ 9. Once the prior
range are enlarged by two, the MAP become consistent at . 0.4σ , and the min χ2 are now
comparable at ∆χ2 = 0.4. However, at the same time, the prior volume projection effect
increases by up to∼ 33% depending on the prior choice and the cosmological parameters.

• Nevertheless, we checked that when the pipelines follow the same prescription, results are
in agreement at better than 0.2σ . We conclude that the results between the two analyses
are consistent, up to the various level of prior volume projection effects and prior weight
effect, resulting from their respective choice of basis and more-or-less informative prior
for the EFT parameters.

We have then suggested several ways to mitigate the prior effects.

• First, one can simply abandon the Bayesian view and come back to the frequentist one,
for which the confidence intervals are not affected by prior volume projection effects as
they are derived from profile likelihoods rather than from marginalized posteriors (see
chapter 6).

• Setting aside the philosophical debate between Bayesian and frequentist, we have argued
that for forthcoming larger data volume, all those prior effects will eventually become less
important (with respect to the error bars). In fact, the prior effects in the EFT analysis of
BOSS have been realized only recently [95] because in the past, most of the validations,
if not all, were performed with large-volume simulations. 11

11Note one exception in Ref. [62], where a large-volume simulation is analyzed with a covariance corresponding
to BOSS total volume. Here the shift to the truth, that represents a sum of the theory error + prior effect, is find to
be . 0.4σ on all cosmological parameters. This is different than the shift we find in Fig. 5.3, as in their case, there
is only one sky, while in our case, we keep four skies as for the real analysis of BOSS data, with four independent
sets of EFT parameters. When analyzing one-sky of synthetic data with covariance corresponding to BOSS total
volume, we find < 1/5 ·σ .
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• Additionally, for the time being with BOSS, we have shown that when combined with
Planck, the results are less sensitive to those prior effects and the results are in good
agreement.

For completeness, we have also scrutinized the impact on the cosmological constraints given
various BOSS measurements. From the most significant to the least one, we have found:

• a difference of about 0.9σ on h between the two public BOSS pre-reconstructed mea-
surements in Fourier space (α LZ/CM

rec vs. α
z1/z3
rec ). This might constitute a warning that one

should not use reconstructed measurements until this is clarified (see Sec. 5.4 for more
discussions);

• a difference of up to 0.6σ among all cosmological parameters between the FKP and
quadratic estimators of the power spectrum (PLZ/CM

FKP vs. Pz1/z3
QUAD);

• a difference of about 0.3− 0.5σ on σ8, S8, and ns, between the Fourier-space analysis
and the configuration-space analysis (PLZ/CM

FKP +α LZ/CM
rec vs. ξ LZ/CM +α LZ/CM

rec );

• Finally, a difference of . 0.3σ on all cosmological parameters between the choices of
redshift bin split in either LOWZ and CMASS or z1 and z3 (PLZ/CM

FKP vs. Pz1/z3
FKP ).

Besides the former EFT analyses of BOSS power spectrum using the PyBird likelihood
or CLASSPT likelihood, let us also mention the work of Ref. [103] using another likelihood
based on yet another public code developed independently, Velocileptors [197, 198].
Velocileptors also implements predictions from a Lagrangian version of the EFTofLSS,
which is equivalent, up to higher-order terms, to the Eulerian version of the EFTofLSS with
IR-resummation [71, 198]. It would also be interesting to perform comparison with the
Velocileptors likelihood with the prior choice used in the BOSS analysis of Ref. [103].
See some discussions in App. B.2, and more importantly Ref. [199] that reaches similar
conclusions as our current work on the prior volume projection effects in the EFT analysis
within ΛCDM but with the Velocileptors pipeline. Given that all analyses are equivalent
in their parametrization (i.e., provide equivalent sets of fitting functions), all prior choices are
equally motivated as long as they encompass the physically-allowed region of the EFT. For
the current level of precision of the data, the various prior choices lead to various level of
prior projection volume effect, but the results, i.e., MAP or multidimensional posteriors, are
essentially the same.

We end the discussion with a closer look at S8 and σ8 in light of the BOSS full-shape
analysis. At face-value, the 68%-credible interval on S8 and σ8 in this work are systematically
lower than the value measured by Planck under ΛCDM, with a statistical significance of
∼ 1.4σ (2.2σ ) and ∼ 1.5σ (2.5σ ) respectively for the WC (EC) priors. However, we have
argued that part of this (small) discrepancy is due to a downwards shift compared to the MAP
due to prior volume projection effect (as already mentioned in chapter 4). These are more
important for the EC prior (∼ 2σ ) than the WC prior (∼ 1.2σ ), and increase when doubling the
widths of the EFT priors. In fact, the MAP values for S8 and σ8 (Tab. 5.1) measured with both
priors are in good agreement with Planck under ΛCDM, which infers σ8 = 0.8111± 0.006
[11] (see also [95, 200]). Nevertheless, the values reconstructed from our analyses are also
consistent with lower measurements of S8 from lensing observations, see, e.g., [201, 177,
79]. In fact, the analysis of BOSS data is done in the perturbative regime, i.e., we restrict
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the analysis at kmax ∼ 0.2hMpc−1 where the EFTofLSS applies and in that sense, most of
the cosmological information is from the large scales. In contrast, measurements of S8 from
lensing experiments rely on the modeling of small scales (way) beyond the nonlinear scales,
where our EFT approach does not apply. Our reconstruction suggests that the deviation mostly
occurs on scales smaller than those probed by our analysis (or at very low-z < 0.3), although
because of large error bars, it is still compatible with a relatively low-S8 on large scales, as
hinted by the cross-correlation of DES and CMB lensing [202]. For more discussion on the
scale-dependence of the S8 tension, we refer to Refs. [178, 200].

Although the detailed comparisons we have performed in this chapter help quantifying at
some level the systematic uncertainties associated with the measurements, we stress that we
have not studied those related to BOSS galaxy catalog itself, which would require much more
work. It will also be interesting to perform similar analysis for the bispectrum [95, 62] as
well as the recent eBOSS datasets [82], that can provide interesting additional constraining
power on ΛCDM and extensions.
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We have shown in chapter 5 that the parameter structure of the EFTofLSS may impact
the results of Bayesian analyses through prior effects, especially when the data has weak
constraining power. As a consequence, chapter 5 showed that different – yet theoretically
equivalent – choices of the EFT parametrization result in discrepant Bayesian credible intervals
and in point-estimate shifts sometimes on the order of 1σ , particularly affecting the amplitude
of matter fluctuations, σ8. Additionally, Ref. [187] found the priors on the EFT parameters
to be informative and motivate a more comprehensive study of the effects of the parameter
structure of the EFT sector. Ref. [199] argue that prior effects lead to a shift in f σ8 in BOSS
full-shape analyses based on an EFT implementation using the Velocileptors code [197,
198, 103], partially explaining the difference with template fitting methods. Ref. [203] find
that confidence intervals based on the profile likelihood method on a modified gravity scenario
are inflated with respect to the Bayesian posterior and that volume effects shift the likelihood
peaks. Moreover, Refs. [204, 205] show that the use of a Jeffreys prior on the EFT parameters
can mitigate biases in the standard EFT analysis.

Motivated by these previous results, in this chapter, we complement the results of the
standard Bayesian analysis, as performed in chapters 4 and 5, with a profile likelihood analysis.
The profile likelihood is a frequentist method based only on the maximum likelihood estimate
(MLE) and, therefore, inherently reparametrization invariant and prior independent. Our goal
is to understand the impact of priors on the EFT parameters on the inferred cosmological
parameters and how this will change with more constraining data. In particular, we wish
to answer the question, already raised in chapter 6): does the seemingly low σ8 value
reconstructed from a Bayesian analysis of BOSS data under the EFTofLSS come from prior
effects inherent to the Bayesian framework, rather than the true data likelihood? Ultimately,
our analysis demonstrates the importance of combining Bayesian and frequentist approaches
for a fully nuanced inference from current and future LSS data.

This chapter is structured as follows. In Sec. 6.1, we describe the respective analysis meth-
ods employed in the Bayesian and frequentist approaches and introduce the datasets used. In
Sec. 6.2, we outline the EFTofLSS approach and give a detailed description of the two predom-
inantly employed EFT parametrizations to be scrutinized. In Sec. 6.3.1, we compare the two
EFT parametrizations using the profile likelihood and contrast them to the MCMC results. In
Sec. 6.3.2, we study the influence of prior effects and discuss the issue that the EFT parameters
take on extreme values in the frequentist setting. In Sec. 6.3.3, we show that discrepancies be-
tween frequentist and Bayesian approaches subside with increasingly constraining data. Finally,
we provide a profile likelihood analysis of the ΛCDM concordance model for the parameters
σ8, h, Ωm, ns and ln

(
1010As

)
with data from the BOSS and eBOSS surveys using the EFTofLSS

formalism in Sec. 6.4 and conclude in Sec. 6.5. In App. C.1, we illustrate the impact of changing
the prior width on the profile likelihood of σ8 and we discuss the values of the EFT parameters in
our analysis. In Apps. C.2 and C.3 we show additional material, namely a comparison between
profile results and MCMC results, and global best-fitting parameters for several datasets.

6.1 Analysis Methods

The structure of the EFT parameters and their priors may impact the constraints on cos-
mological parameters derived from Bayesian inference. In particular, given a fixed choice of
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parametrization, we may classify the prior impact in terms of two separate effects, as was al-
ready done in chapter 5:

• The prior weight effect: Since the Bayesian posterior is proportional to the product of the
prior and likelihood, non-flat priors will affect the posterior in a direct way when they do
not align with the likelihood. This can manifest in, for example, a shift of the posterior
peak or a scaling of its width.

• The prior volume effect: Bayesian marginalization of the full-dimensional posterior in-
volves integrating out the nuisance dimensions. Since in addition to the value of the
posterior, an integral is sensitive to the volume in these directions, large parameter re-
gions (of possibly non-maximal posterior values) are emphasized compared to smaller
regions (of possibly larger posterior values).

Importantly, the volume effect can occur even with flat priors and is, therefore, an inescapable
feature of the Bayesian method. Therefore, it becomes relevant to study the extent to which
one’s results are affected by volume effects. Since the profile likelihood is directly inferred
from the likelihood, it is inherently independent of priors [206] and is, therefore, an ideal tool
for this. In Sec. 6.1.1, we briefly review the use of profile likelihoods for inference, and in
Sec. 6.1.2 we describe our analysis pipeline.

6.1.1 Profile Likelihood and Markov Chain Monte Carlo
The profile likelihood is a method in frequentist statistics, maximizes the likelihood over

nuisance parameters (as opposed to marginalization, which is the commonly used method in
Bayesian statistics). By splitting the full parameter space Θ into two categories, θ of N param-
eters and ν of M (nuisance) parameters, the profile likelihood of θ is obtained by maximization
over all parameters in the complementary set of (nuisance) parameters ν for fixed θ [206],

L(θ) = max
ν

L(θ ,ν), (6.1)

where L(θ ,ν) represents the full likelihood function. Since the above is a MLE in the
reduced parameter space θ , the profile likelihood is invariant under reparametrizations of the
reduced parameter space θ [206]. The reparametrization invariance of the profile likelihood
will be particularly useful when comparing the different EFT parametrizations in Sec. 6.3.1,
which is more challenging with Bayesian methods since these can depend on the particular
parametrization of the model and prior choices. In addition, the profile likelihood is inherently
prior independent, thus automatically avoiding prior volume effects.

Frequentist methods like the profile likelihood are commonly used in particle physics but
rarely used for cosmological inference. They recently gained more interest in the context
of models beyond ΛCDM, which often contain many model parameters that are not well
constrained by the data [188, 207, 190, 208, 189, 209, 210, 211], and in the context of efficient
marginalization [212].

To obtain parameter constraints in θ , we employ the Neyman construction, valid in the limit
of a Gaussian likelihood of the data (also called the “graphical construction”) [213]: from the
profile likelihood L(θ ), α confidence regions are given by the solution to ∆χ2(θ)< F−1(α,N),
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where F−1 is the inverse of the χ2 cumulative distribution function with N degrees of
freedom. For example, in the one-dimensional case θ = θ , the 68% (95%) confidence
intervals correspond to the values of θ for which ∆χ2(θ) < 0.99 (3.84). These confidence
levels are exact when the likelihood is Gaussian, or, in the asymptotic limit of a large dataset
[214]. In this limit, the quantity ∆χ2(θ) ≡ −2log(L(θ)/Lmax) follows a χ2 distribution
with N degrees of freedom [206] and the graphical method corresponds to the exact Neyman
construction. Since for the BOSS and eBOSS datasets Gaussian likelihoods are employed,
the graphical construction is exact, whereas parts of the Planck likelihood are non-Gaussian
[215] and we acknowledge that the graphical confidence intervals may be approximate. If
the profile likelihood has a substantial overlap across a physical boundary of the parameter,
an alternative Neyman construction needs to be used, also known as the Feldman-Cousins
prescription [216]. However, since the parameters studied in this work are well away from their
physical boundaries, the Neyman construction is sufficient.

Computing the profile likelihood amounts to optimizations in the reduced parameter space
ν . Since evaluating the likelihood function L(θ ,ν) involves running the Einstein-Boltzmann
solver, numerical gradients are noisy and inefficient [138]. For the optimization, we therefore
use simulated annealing [217], a gradient-free stochastic optimization algorithm (see
[218] for efficient computation of profile likelihoods using an emulator and see [219] for
earlier approaches). The simulated annealing algorithm is based on chains with iteratively
decreasing temperatures and step sizes, where the temperature T > 0 modulates the likelihood
function as L(θ ,ν) → L(θ ,ν)1/T . Large temperatures smoothen the likelihood landscape,
whereas small temperatures enhance peak structures. Thus, the chains are able to escape
local optima while eventually being localized in a likelihood peak at low temperatures.
Simulated annealing performs well against the noisy cosmological likelihood landscapes
with many local optima [220], but may depend moderately on the particular temperature
schedule employed. In practice, we inform the simulated annealing process with proposal
covariance matrices and best-fits obtained from the corresponding MCMC analyses. Since
the minimizations for each point in the profile are started from the global best-fit obtained
from the MCMC, poor convergence would likely lead to an underestimation of the width
of the confidence interval, which would not have a strong impact on the conclusions in
this work as we find very large confidence intervals with the profile likelihood. We ensure
convergence and combat local optima by running each optimization several times. Due to
the limited accuracy of the global best-fits caused by the finite sampling of the profile, we
present the best-fit points in this work as the optimum of the parabola fitted to the point
of highest likelihood and its two neighboring points. Our implementation of the simulated
annealing algorithm 1 interfaces the MontePython [137, 136] inference code with the
Einstein-Boltzmann solver CLASS [221], 2 which models the CMB coefficients and linear
matter power spectra, and with PyBird [59], 3 which models the full-shape of the galaxy
power spectra from the EFTofLSS. It is identical to the implementation used in Refs. [210, 211].

For all MCMCs performed in this study, we use the Metropolis-Hastings algorithm from
MontePython, and we assume our MCMC chains to be converged with the Gelman-Rubin

1Publicly available at: https://github.com/AarhusCosmology/montepython_public/tree/2211.

01935.
2Publicly available at: http://class-code.net.
3Publicly available at: https://github.com/pierrexyz/pybird.

https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
https://github.com/AarhusCosmology/montepython_public/tree/2211.01935
http://class-code.net
https://github.com/pierrexyz/pybird
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criterion R−1 < 0.05.

In the following, we quote frequentist confidence intervals as the MLE ± 1σ obtained via
the graphical Neyman method and we quote Bayesian credible intervals as the posterior mean
± 1σ obtained from the MCMC posterior. We will employ the following metric as a measure
of the discrepancy between two approximately Gaussian posteriors or likelihoods,

σ -distance≡ |θi−θ j|√
σ2

θ ,i +σ2
θ , j

, (6.2)

where θi is the i’th point estimate of the parameter θ and σθ ,i the corresponding standard de-
viation. The point estimates and standard deviations may be derived either from a posterior
or from a profile likelihood. In the case that the two intervals are derived from the same
model and the same statistical method (Bayesian or frequentist), but different datasets, the
σ -distance coincides with the Gaussian tension metric employed, for example, in Ref. [183].
When the point estimates are from different statistical paradigms, we instead normalize only
by the Bayesian uncertainty,

σ -distance≡ |θBayes.−θfreq.|
σθ ,Bayes.

, (6.3)

which can be interpreted as the significance of the bias between mean and MLE in units of the
Bayesian error bars induced by the prior effects.

6.1.2 Datasets and analysis choices
In this chapter, we perform various MCMC and profile likelihood analyses using

different datasets:

• BOSS DR12 LRG: In our main analysis, we consider the BOSS luminous red galaxies
data (LRG) [81] (see Ref. [124] for a description of the catalogues), with covariances built
from the patchy mocks described in Ref. [125]. The BOSS data are divided into four sky
cuts, corresponding to two galactic skies, denoted NGC and SGC, cut into to two red-
shift bins: LOWZ, which corresponds to the redshift range 0.2 < z < 0.43 (zeff = 0.32),
and CMASS, which corresponds to the redshift range 0.43 < z < 0.7 (zeff = 0.57). For
LOWZ we analyse the galaxy power spectrum up to kmax = 0.20hMpc−1, while for
CMASS we analyse it up to kmax = 0.23hMpc−1. In this study, we use the EFT like-
lihood of the full shape of the BOSS LRG power spectrum pre-reconstructed multipoles,
including the monopole and the quadrupole, measured and described in Ref. [69] and
referred to as “BOSS.” We also consider “BOSS+BAO,” which additionally includes the
cross-correlation of the pre-reconstructed measurements with post-reconstruction BAO
compressed parameters obtained in Ref. [59] on the post-reconstructed power spectrum
measurements of Ref. [126].

• eBOSS DR16 QSO: We also consider the quasars (QSO) data from the extended Baryon
Oscillation Spectroscopic Survey (eBOSS) [82] (see Ref. [120] for a description of the
catalogues), with covariances built from the EZmocks described in Ref. [121]. The
eBOSS data are divided into two sky cuts, corresponding to two galactic skies, denoted
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NGC and SGC, in the redshift range 0.8 < z < 2.2 (zeff = 1.52). We analyse the eBOSS
QSO galaxy power spectrum up to kmax = 0.24hMpc−1. In this study, we use the EFT
likelihood of the full shape of the eBOSS QSO power spectrum pre-reconstructed mul-
tipoles from chapter 4 and the measurements of Ref. [122], including the monopole and
the quadrupole, which is referred to as “eBOSS”.

• BBN likelihood: As in chapter 5, unless specified otherwise, we impose a Gaussian
likelihood on ωb ∼N (0.02268,0.00038), where N (x̄,σx) denotes a Gaussian centered
on x̄ with standard deviation σx, coming from BBN experiments [180]. This likelihood
is based on the theoretical prediction of [181], the experimental Helium fraction of [182]
and the experimental Deuterium fraction of [12].

• Planck: Finally, we compare the BOSS and eBOSS results with the low-l CMB TT, EE,
and the high-l TT, TE, EE data, as well as the gravitational lensing potential reconstruc-
tion from Planck 2018 [11], referred to as “Planck.”

For the BOSS and eBOSS analyses, we vary five cosmological parameters:

{ωcdm, ωb, h, ln
(
1010As

)
, ns}, (6.4)

corresponding to the physical cold dark matter and baryon energy density, the reduced Hubble
constant, the log-amplitude of the primordial fluctuations and the scalar spectral index, respec-
tively. 4 For the MCMC, we assume large flat priors, and for the profile likelihood, we scan a pa-
rameter range that covers at least the 95% confidence interval. For the LSS data, unless specified
otherwise, we always include the BBN likelihood mentioned above. To facilitate comparison
with previous studies, we present our cosmological results on {σ8, h, Ωm, ns, ln

(
1010As

)
}, cor-

responding respectively to the clustering amplitude, the reduced Hubble constant, the fractional
matter abundance as well as the scalar spectral index and amplitude of primordial fluctuations
from (6.4). Finally, for all analyses performed we use the Planck convention for the neutrinos,
namely we take two massless and one massive species with mν = 0.06 eV [11].

6.2 The EFTofLSS parametrizations

To model the full shape of the BOSS and eBOSS power spectra, we use the EFTofLSS
theoretical prediction at one-loop order [see Eq. (3.180)]. In the literature, several prescriptions
have been proposed for the EFT parameters. In line with Ref. [98] and chapter 5, we consider
the two most commonly used parametrizations, namely the “West coast” (WC) parametrization,
the one used in the PyBird [59] likelihood, and the “East coast” (EC) parametrization, the
one used in the CLASS-PT [61, 62] likelihood. 5 In this section, we describe these two EFT
parametrizations and the associated priors. Note that we have already described these two
parametrizations in the previous chapter (see Sec. 5.1), but we recall them here for the sake of
clarity and given that there are some minor differences between the two analyses.

4For runs that include Planck data, we also vary τreio, the re-ionization optical depth, within a large flat prior.
5Let us note that there exists another EFT likelihood implemented in the public code Velocileptors [197,

198, 103], with different prior choices on the EFT parameters.
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6.2.1 Different parametrizations

WC parametrization

In Eq. (3.180), we expressed the power spectrum in the framework of the WC parametriza-
tion using 10 EFT terms: 4 bias parameters (bi, with i = [1,4]), 3 counterterms (cct, cr,1 and
cr,2), and 3 stochastic terms (cε,0, cmono

ε and cquad
ε ). In this study, we set to zero [58] the

parameters cr,2 (degenerated with cr,1, as we do not include the hexadecapole), implying that
we end up with 9 EFT parameters for each sky cut of the BOSS LRG and eBOSS QSO data.
In the PyBird likelihood, instead of using b2 and b4, we use linear combinations of these
parameters: c2 = (b2 + b4)/

√
2 and c4 = (b2 − b4)/

√
2. Given that b2 and b4 are almost

completely anti-correlated (at ∼ 99% according to Ref. [58]), the standard procedure is to set
c4 = 0. In addition, cmono

ε is also set to zero in the PyBird baseline analysis since the functions
that are multiplied by this parameter were found to be small compared to the signal-to-noise
ratio associated with the BOSS volume [222, 58]. In this study, we include c4 and cmono

ε

as free parameters in our analysis when comparing the WC parametrization with the EC
parametrization in Sec. 6.3.1, which ensures mathematical equivalence between the EC and
WC parametrizations. On the other hand, for our cosmological results (where we only use
the WC parametrization) we adopt the standard PyBird convention and set c4 = cmono

ε = 0 to
facilitate easier comparison with previous works. In Sec. 6.3.1, we find that fixing or freeing c4
and cmono

ε changes the frequentist confidence intervals for σ8, indicating that the effect of these
two EFT parameters is not negligible.

Note that we treat these nuisance parameters as independent across each of the four sky
cuts, giving a total of 28 EFT nuisance parameters in our standard BOSS analysis (and 14 for
the eBOSS analysis) when fixing c4 = cmono

ε = 0.

Within the WC parametrization, we set kM = 0.7hMpc−1, kR = 0.35hMpc−1 and n̄g =
4 ·10−4(Mpc/h)3 for the BOSS LRG data [139], and kM = 0.7hMpc−1, kR = 0.25hMpc−1 and
n̄g = 2 · 10−5(Mpc/h)3 for the eBOSS QSO data (see chapter 4) in Eq. (3.180).

EC parametrization

We now turn to the EC parametrization which is used by the CLASS-PT likelihood [61].
In the following, we list the differences between the two parametrizations, and comment on
how to switch from one to the other:

• Bias parameters: the EC parametrization uses the {b̃1, b̃2,bG2,bΓ3} basis [60], which is
related to the previous basis {b1,b2,b3,b4} in the following way [63]:

b1 = b̃1,

b2 = b̃1 +
7
2

bG2,

b3 = b̃1 +15bG2 +6bΓ3,

b4 =
1
2

b̃2−
7
2

bG2 . (6.5)

These two bases are equivalent and describe the one-loop contribution.
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WC Priors EC Priors
Parameter type Parameter MCMC prior Parameter MCMC prior

Bias

b1 flat [0,4] b̃1 flat [0,4]
c2 flat [−4,4] b̃2 N (0,1)

c4 (∗) flat [−4,4] bG2 N (0,1)
b3 N (0,2) bΓ3 N (23

42(b1−1),1)

Counterterms
cct N (0,2) c0/[Mpc/h]2 N (0,30)
cr,1 N (0,2) c2/[Mpc/h]2 N (30,30)

Stochastic
cε,0 N (0,2) cε,0 N (0,2)

cmono
ε (∗) N (0,2) cmono

ε N (0,2)
cquad

ε N (0,2) cquad
ε N (0,2)

Table 6.1: Standard priors on the EFT parameters in the WC and EC parametrizations used for MCMC
analyses in this chapter. In the WC parametrization, b1 and c2 vary within flat priors, whereas in the EC
parametrization, b̃1 varies within a flat prior, b̃2 and bG2 vary within Gaussian priors, while Gaussian pri-
ors are imposed on the other parameters before analytically marginalizing them. In the profile likelihood
analyses, we mimic the case without priors by multiplying all priors by a factor 100. The two parameters
with (∗) are set to 0 for our cosmological results, but we include them for the comparison with the EC
parametrization in Sec. 6.3.1 to ensure perfect equivalence between the two parametrizations. N (x̄,σx)
corresponds to a Gaussian prior on the parameter x with a mean value of x̄ and a standard deviation of
σx. We emphasize that we treat these parameters as an independent set in each sky cut.

• Counterterms: in the EC parametrization, the definition of the counterterms {c0,c2,c4}
changes slightly with respect to the WC parametrization {cct ,cr,1,cr,2}: kM and kR are
now absorbed in the counterterm coefficients, such that c0 ∝ cct/k2

M, c2 ∝ cr,1/k2
R and

c4 ∝ cr,2/k2
R. Note that in the EC parametrization, these counterterms are not unitless. In

this analysis, we fix c4 = 0 as we do not include the hexadecapole.

• Stochastic terms: we use the same definition for the stochastic parameters as for the
WC parametrization. Further, the EC parametrization uses kM = 0.45hMpc−1 and n̄ '
3 ·10−4(Mpch−1)3.

Note that the EC baseline parametrization includes a next-to-next leading order parameter,
c̃, in front of a term in ∼ k4P11(k). In order to be consistent with the WC parametrization, we
do not include this term in this analysis, which implies that we end up with 9 EFT parameters
that are equivalent to the WC ones.

In this chapter, in line with chapter 5, the results of the EC parametrization are obtained
with PyBird, which supports both the EC and WC parametrizations. This facilitates explo-
ration of the differences in the inferred cosmological parameters introduced by the priors and
parametrizations of the EFT parameters without the need to take into account differences in
data and codes, namely the different implementations in CLASS-PT and PyBird (we invite the
interested reader to refer to chapter 5 for such a comparison).

6.2.2 Priors
In the left half of Tab. 6.1, we summarize the MCMC standard priors used for the 9

parameters in the PyBird code. In general, given the perturbative nature of the theory, the
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one-loop contribution should be smaller than the tree-level contribution. The latter is given
by the Kaiser formula, which depends on the linear bias b1, implying that the other EFT
parameters should be in ∼ O(b1). In the standard WC analysis, i.e., c4 = cmono

ε = 0, the
parameters b1 and c2 vary within flat priors, while the other EFT parameters, i.e., those which
enter linearly into Eq. (3.180), are analytically marginalized with Gaussian priors following the
procedure of App. C of Ref. [59].

In the right half of Tab. 6.1, we summarize the MCMC standard priors used for the 9
parameters in the CLASS-PT likelihood. The main difference to the WC priors is that the EC
priors are mainly based on simulations [185]. In the standard EC analysis, b̃1 varies within
a flat prior, and b̃2 and bG2 vary within Gaussian priors, while the other EFT parameters are
analytically marginalized within Gaussian priors. 6

For the profile likelihood analysis, in theory, we do not need to include priors. However, for
practical reasons related to the implementation of the EFT likelihood, we mimic the case with-
out priors by multiplying the bounds of the flat priors and the standard deviation of the Gaus-
sian priors in Tab. 6.1 by 100. In App. C.1 we check that this leads to an effectively flat prior.
Lastly, we refrain from applying the analytical marginalization from appendix C of Ref. [58],
commonly used in the standard analysis. Instead, we use the analytical approximation (with-
out marginalization) from the same reference to estimate, at each point in the optimizations, the
best-fitting values of the EFT parameters that have Gaussian priors in the standard configuration,
having checked explicitly that this approximation works to good precision even with flat priors.

6.3 Consistency of EFTofLSS from profile likelihood
analyses

In this section, we compare the two EFTofLSS parametrizations introduced in Sec. 6.2.1,
contrast them to the standard MCMC results, explore the impact of the Bayesian priors, and
illustrate explicitly the effect of more constraining data. We take the example of the ampli-
tude of matter clustering, 7 σ8, which was found to be particularly affected by prior effects
(see Ref. [187] and chapter 5).

6.3.1 EC vs. WC parametrizations and comparison to MCMC
In Fig. 6.1, we compare the one-dimensional marginalized MCMC posteriors P(σ8) to

the profile likelihoods L(σ8), which are normalized by their individual MLEs. We use BOSS
full-shape data combined with reconstructed BAO data based on the WC (blue) and EC
(orange) parametrizations, respectively. We find that the Bayesian MCMC posteriors differ
from the frequentist profile likelihoods in both WC and EC parametrizations, respectively,
indicating that priors and/or marginalization have an impact on the constraints on σ8 in the
Bayesian analysis, as was already pointed out in chapter 5.

6Note that alternative renormalization approaches can help to inform well-motivated priors from theory, see
e.g. [223].

7Note that the definition of σ8, which is in units of Mpc/h, depends also on the background cosmology and,
therefore, alternative measures of the amplitude of matter fluctuations have been proposed [224, 112, 115, 225].
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Figure 6.1: Marginalized MCMC posteriors (dashed) and profile likelihoods (solid) of σ8 within the
WC (blue) and EC parametrizations (orange), for BOSS+BAO data. The two statistical approaches
and two parametrizations yield different intervals for σ8. If c4 and cmono

ε are allowed to vary in the
WC parametrization, the MCMC posteriors do not agree (dashed lines), while the WC-profile likelihood
(blue dotted) agrees with the EC-profile likelihood (orange solid), confirming that the two mathematically
equivalent parametrizations lead to the same likelihood. In the remainder of this chapter, we adopt the
WC-standard convention (c4 = cmono

ε = 0, blue solid).

In the WC parametrization, the standard configuration includes setting c4 = cmono
ε = 0.

Mathematically, the WC parametrization is only equivalent to the EC parametrization if c4 and
cmono

ε are taken as free parameters (see Sec. 6.2.1). However, even if c4 and cmono
ε are free to

vary, the MCMC posteriors in the two parametrizations (dashed lines), using the recommended
standard priors in Tab. 6.1, do not yield the same credible interval:

σ8 = 0.748+0.043
−0.048 (MCMC, WC),

σ8 = 0.700±0.044 (MCMC, EC).
(6.6)

Chapter 5 showed that this difference, which corresponds to a σ -distance of 0.7σ (as
defined in Eq. 6.2), can be attributed to the different prior configurations in the WC and EC
parametrizations (and not to differences in the implementation of the codes).

The profile likelihoods, on the other hand, do not depend on priors, since they are con-
structed solely from the MLE, and are reparametrization invariant. Therefore, two profile likeli-
hoods from the same dataset will agree if the underlying models are equivalent, i.e., if the range
of their possible predictions coincide. We explicitly confirm that if c4 and cmono

ε are free to vary,
the profile likelihood in the WC parametrization (blue dotted) agrees with the profile likelihood
in the EC parametrization (orange solid) up to numerical accuracy:

σ8 = 0.850±0.119 (profile, WC),
σ8 = 0.850±0.117 (profile, EC).

(6.7)

Note that in Fig. 6.1, we show the individually normalized profiles, but we checked that the
absolute values of the likelihood at each point are also approximately equal with maximum
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differences of ∆χ2 < 0.2, which can be attributed to uncertainties in the optimization. This
consistency check at the example of σ8 confirms the mathematical equivalence of the WC and
EC parametrizations.

Since the recommended standard configuration in the WC parametrization includes setting
c4 = cmono

ε = 0, we use this as the baseline setting for both Bayesian and frequentist analyses in
the remainder of this chapter to facilitate comparison with previous work. The profile likelihood
in the baseline configuration (blue solid line in Fig. 6.1, c4 = cmono

ε = 0) yields:

σ8 = 0.7699±0.0851 (profile, WC-base), (6.8)

which differs from the profile likelihood with free c4, cmono
ε in the WC parametrization (blue

dotted) by 0.6σ . Fixing c4 and cmono
ε also leads to a reduction of the width of the frequentist

confidence interval by 30%. This indicates that c4 and cmono
ε have an impact on the inference

for σ8, which cannot be neglected for the profile likelihood analysis. Explicitly checking the
best-fit values of these two EFT parameters close to the global MLE, i.e., the minimum of the
profile likelihood, reveals that these parameters take on non-zero values as large as c4 ≈ 57 and
cmono

ε ≈ 38 (depending on the particular sky cut), pointing to an important role played by these
two parameters and motivating closer inspection of the impact of analysis choices regarding the
EFT parameters, which we present in the next section.

6.3.2 Role of EFT “priors” in the frequentist setting

It is instructive to look at the values attained by the EFT parameters in the frequentist
framework, which requires varying all parameters in very large flat ranges. Let us recall that
the EFT parameters in the WC parametrization should be of order unity in order to conserve
the perturbative nature of the EFTofLSS [139]. Yet, we find that they take on extreme values
at most points in the profile. For example, Fig. C.2 in App. C.1 shows the values of the EFT
parameters at each point in the σ8 profile with the baseline configuration (WC, c4 = cmono

ε = 0),
which finds values like b3 ≈ 26 and cct ≈ 23. Similarly large values appear in the σ8 profile us-
ing the EC configuration, where we find as large values as b2 ≈ 53 and bG3 ≈ 38. This indicates
that the profile likelihood includes parts of the EFT parameter space in the analysis in which the
EFT prediction is no longer valid. In the Bayesian analysis this issue is addressed by imposing
narrow Gaussian priors on the EFT parameters (see Tab. 6.1). However, as we will now
show, imposing a specific (subjective) prior has a direct impact on the inferred uncertainty in σ8.

Indeed, the intervals from the profile likelihoods in Fig. 6.1 are broader than the intervals
from the MCMC posteriors by factors of 2.6 to 2.7 (for c4, cmono

ε free). To explore whether this
significant loss in constraining power can be explained by the information content of the priors
in the Bayesian analysis, we construct a profile likelihood subject to the same “priors” as the
Bayesian analysis: If the non-flat Bayesian priors were well-founded, they could in principle be
promoted to likelihoods, be interpreted as genuine data, and thus used in the profile likelihood
construction.

In Fig. 6.2, we show the impact of including Gaussian likelihoods on the EFT parameters,
which correspond to the standard priors in the WC (top, black solid line, with free c4, cmono

ε )
and EC parametrization (bottom, red solid line), as quoted in Tab. 6.1. Including the Gaussian
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Figure 6.2: Same as Fig. 6.1 but including profile likelihoods with Gaussian data likelihoods on the
EFT parameters, which correspond to the standard WC (top, black line) and EC priors (bottom, red line).
The Gaussian likelihoods lead to a reduction of the width of the profiles almost to the level of the MCMC
posterior and to small shifts of the MLE. However, the posterior and profile do still not overlap, which
can be explained by prior volume effects in the Bayesian inference.

data likelihoods gives the following frequentist confidence intervals:

σ8 = 0.817±0.049 (profile, WC-“priors”),
σ8 = 0.783±0.060 (profile, EC-“priors”).

(6.9)

We observe a strong increase in constraining power, reducing the width of the frequentist
intervals almost to the level of the Bayesian intervals, indicating that the priors on the EFT
parameters are informative. We also observe a slight shift in the global MLE toward the mean
of the posterior as a result of including the Gaussian likelihoods on the EFT parameters.
However, the shift thus introduced is not enough to reconcile the frequentist and Bayesian
results; we observe a σ -distance of about 1σ for both the WC and EC parametrizations.
This is an indication that there is not only a prior weight effect, which is a direct result
of the multiplication of the prior, but also a prior volume effect, which is a result of the
marginalization (see Sec. 6.1) of some of the model parameters. This is in agreement with
Ref. [199], which finds similar results for f σ8 using a profile likelihood analysis based on
Velocileptors [197, 198, 103] (see e.g. their Fig. 3). Moreover, Ref. [204] find that the
posteriors of several EFT parameters, e.g., c4, cmono

ε , b3, cct among others, are dominated by
the prior information (see their Fig. 8), reinforcing our conclusions that the priors on the EFT
parameters are informative. In App. C.1, we go one step further and illustrate the impact of
changing the prior width on the profile likelihood of σ8.

We conclude this section with the observation that both statistical approaches come with
disadvantages in the context of BOSS+BAO data. While the results of the Bayesian analysis
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Figure 6.3: Profile likelihoods (solid) and marginalized MCMC posteriors (dashed) of σ8 in the WC
parametrization under BOSS+BAO data (blue) and the same data but with a data covariance divided by
16 (red). This illustrates how more constraining power reduces the difference between the Bayesian and
frequentist approaches.

depend on informative (subjective) priors and are influenced by volume effects, the frequentist
analysis takes into account parts of the EFT parameter space in which the theory is no longer
valid, which reflects a significant loss of constraining power. As a way forward, we explore the
impact of using more constraining data than the BOSS+BAO data in the next section.

6.3.3 Effect of more constraining data

In the asymptotic limit of infinite data, the likelihood will dominate the Bayesian prior, and
prior effects will vanish accordingly [206]. Consequently, Bayesian and frequentist constraints
will converge to the same answer as the model is better constrained by data.

To illustrate this point, we rescaled the BOSS covariance matrix by a factor 16, simulating
a prospective situation with less uncertainties or, equivalently, a larger data volume, roughly
corresponding to that of future galaxy surveys such as DESI [171] or Euclid [172]. In Fig. 6.3,
we compare the constraints on σ8 from the rescaled data covariance to those obtained from the
unscaled data covariance using both MCMC and profile likelihoods, normalized to their MLE.
Note that from now on, we show only results in the WC parametrization, using the default
configuration c4 = cmono

ε = 0. The constraints on σ8 as well as the σ -distances, as defined in
Eq. (6.3), are given in Table 6.2.

With the reduced data covariance, the profile and posterior are narrower and roughly
centered around the same value of σ8. When reducing the data covariance, the posterior mean
value obtained from the MCMC moves closer to the MLE (i.e., the maximum of the profile
likelihood), while the MLE is unchanged since the case with reduced data covariance is based
on the same power-spectra data. Table 6.2 shows that the consistency improves from 0.49σ to
0.33σ when we reduce the data covariance.
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BOSS + BAO BOSS/16 + BAO
MCMC (mean ±1σ ) 0.748±0.045 0.765±0.015
profile (bf. ±1σ ) 0.770±0.085 0.770±0.018
σ -distance 0.49σ 0.33σ

Table 6.2: Constraints on σ8 from the marginalized MCMC posteriors and profile likelihoods of Fig. 6.3.
The last row gives the σ -distances between the MCMC/profile constraints.

This improved consistency between the best-fit and the posterior mean of the MCMC shows
that the prior influence decreases as the data volume increases, as already pointed out in chap-
ter 5. Thus, discrepancies between Bayesian and frequentist methods can be seen as due to a
lack of data, which will improve as more data is obtained in the future. Furthermore, one may
hope that more data will aid in constraining the EFT parameters helping to avoid extreme values
at which the EFT is no longer valid, though this is not guaranteed. Hence, we can look to future
galaxy surveys to improve the situation for EFTofLSS analyses using either statistical method.

6.4 Profile likelihood results on cosmological parameters
In this section, we present profile likelihood results from the EFTofLSS applied to BOSS,

eBOSS and Planck data for five selected ΛCDM parameters, σ8, h, Ωm, ns, and As, and com-
pare to the credible intervals from the Bayesian MCMC. While lacking more constraining data,
comparison of frequentist and Bayesian methods can help to gain a more nuanced view of
the data. For both frequentist and Bayesian setups we use the standard WC parametrization
(setting c4 = cmono

ε = 0) of the PyBird likelihood and for the MCMC the default prior con-
figuration from Ref. [58] as above.

Bayesian results. Firstly, Fig. 6.4 shows the one-dimensional marginalized posterior distribu-
tions and the 68% and 95% two-dimensional marginalized posteriors obtained from our MCMC
analyses for the BOSS, BOSS + BAO, eBOSS, and Planck data (see Sec. 6.1.2 for details).
The general picture, which corroborates previous results using the WC parametrization of the
EFTofLSS [58], is that the parameter constraints from BOSS and eBOSS show overall agree-
ment with Planck data up to 1.6σ . All σ -distances, as defined in Eq. 6.2, are summarized in Ta-
ble 6.4. We confirm that BOSS+BAO data prefers slightly lower values of σ8 than Planck data at
a significance of 1.4σ . Note that this difference is larger in the EC parametrization correspond-
ing to a σ -distance of 2.5σ (see Sec. 6.3.1). Moreover, we find that BOSS+BAO data prefers
slightly larger values of h than Planck at a significance of 1.6σ and eBOSS prefer slightly larger
values of ns and As than Planck at a significance of 1.4σ to 1.5σ , while having a weaker con-
straining power compared to BOSS data. The inclusion of the reconstructed BAO data does not
alter the constraints from BOSS significantly, the most significant being a 0.4σ shift on h. 8

Frequentist results. Fig. 6.5 shows the profile likelihood results for the cosmological pa-
rameters σ8, h, Ωm, ns, and As. For each of the parameters, the top panels show the profile

8Compared to previous analyses, especially in chapter 4, we do not set ns to the Planck value, which explains
why our LSS constraints are somewhat weaker and why we have a stronger inconsistency between eBOSS and
BOSS.
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Figure 6.4: MCMC posteriors for five selected ΛCDM parameters using four different datasets, de-
scribed in Sec. 6.1.2.

likelihoods in terms of the ∆χ2, such that according to the Neyman construction for a Gaussian
likelihood the intersections with ∆χ2 = 1 (3.84), shown as the dashed (dotted) horizontal line,
gives the 68% (95%) confidence interval. The bottom panels show such constructed confidence
intervals, along with the corresponding credible intervals obtained from the MCMC analyses.
Note that the confidence intervals for Planck have been constructed from fitting the ∆χ2 to a
parabola, which is the fit shown in the figure. This is appropriate since the ΛCDM profiles are
Gaussian under Planck data [138]. For a visual comparison, individual profiles and posteriors
for each parameter and data combination can be found in Fig. C.3 of App. C.2. Our constraints
are summarized in Table 6.3, and the global best-fitting parameters in the BOSS+BAO and
eBOSS datasets are given in App. C.3. In Tab. 6.4, we indicate the σ -distances between several
combinations of experiments for either the MCMC or the profiles, while in Tab. 6.5, we display
the σ -distances between posterior mean and MLE for each dataset. In the following, we will
discuss the profile results and compare them to the MCMC results for each dataset individually.

BOSS & the “σ8-discrepancy.” Our profile likelihood confidence intervals for the
BOSS+BAO data are in good agreement with the confidence intervals from Planck data for
all five cosmological parameters at less than 1.4σ and we find no indication for a tension.
Removing the reconstructed BAO data leads only to sub-σ shifts, the largest being in h, which
is 0.7σ larger when including the reconstructed BAO data (as is the case for the MCMC
analysis). When comparing to the credible intervals from the MCMC, the most striking
feature is that the confidence intervals from the profile are much wider, e.g., the 68% profile
confidence intervals are wider by a factor of 1.4 to 1.9 than the MCMC credible intervals. As
already discussed in Sec. 6.3.2, this cannot fully be attributed to prior volume effects, and is
consequently an indication that the priors on the EFT parameters in the Bayesian approach are
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Figure 6.5: Profile likelihoods for five selected ΛCDM parameters using the three main datasets de-
scribed in Sec. 6.1.2. For each of the parameters, the top subplots show the profile likelihoods in terms
of the quantity ∆χ2(θ) = −2log(L(θ)/Lmax), where Lmax is the MLE. The bottom subplots show the
68% and 95% confidence intervals derived from the profiles (solid) as well as the 68% and 95% credible
intervals obtained from the Bayesian analysis (dashed) of Fig. 6.4. The profile constraints differ from
the MCMC constraints for BOSS+BAO and eBOSS data, while the Planck constraints are roughly un-
changed. We find no indication for a tension between any of the considered datasets.

informative and lead to tighter constraints on the cosmological parameters. The point estimates
of profile and MCMC differ only slightly; we find σ -distances between posterior mean and
MLE, as defined in Eq. 6.3, up to 1σ , namely ∼ 0.5σ on h and σ8, and ∼ 1σ on Ωm (see
Tab. 6.5). As discussed in Sec. 6.3.2, note that in our BOSS and BOSS+BAO results, we
observe that the EFT parameters take on extreme values, which reflects in considerably larger
uncertainties and questions the validity of the EFTofLSS in our profile likelihood analysis. Our
results corroborate previous findings (see Refs. [204] as well as chapters 4 and 5) that there is
no indication for a “σ8 discrepancy” between BOSS and Planck data. While in the Bayesian
analysis the σ -distance between σ8 posteriors of BOSS+BAO data based on the WC (EC)
parametrization and Planck is 1.4σ (2.5σ ), this is reduced to 0.49σ (0.33σ ) for the profile.
This reduction of the σ -distance is mainly due to the increase of the errorbar by a factor of 1.9
(2.7) along with a shift of the MLE compared to the posterior mean to slightly larger values of
σ8. These results suggest treating the somewhat curious 2.5σ discrepancy in σ8 obtained in the
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σ8 h Ωm ns ln1010As

BOSS
PL 0.8025±0.0925 0.6816±0.0209 0.3197±0.0291 0.9499±0.1349 3.0304±0.3167

MCMC 0.7443±0.0433 0.6889±0.0136 0.3137±0.0174 0.9050±0.0576 2.8610±0.1543

BOSS + BAO rec.
PL 0.7699±0.0851 0.7013±0.0183 0.3293±0.0281 0.8795±0.1078 2.8222±0.2918

MCMC 0.7476±0.0450 0.6957±0.0123 0.3126±0.0170 0.8997±0.0602 2.8455±0.1612

eBOSS
PL 1.0267±0.1179 0.6645±0.0233 0.2872±0.0490 1.1454±0.1326 3.5852±0.3065

MCMC 0.8903±0.0856 0.6668±0.0291 0.2804±0.0416 1.0880±0.0853 3.3940±0.2266

Planck
PL 0.8122±0.0063 0.6742±0.0054 0.3151±0.0074 0.9663±0.0044 3.0453±0.0139

MCMC 0.8112±0.0058 0.6737±0.0054 0.3153±0.0074 0.9651±0.0042 3.0446±0.0142

Table 6.3: 68% C.L. constraints obtained in this work. Profile likelihood (PL) constraints represent the
best-fit and confidence interval from the Neyman construction described in Sec. 6.1.1; the quantity in
± is the average of the absolute difference between the lower and upper bounds and the best-fit (noting
that the profiles are largely Gaussian). The MCMC constraints represent the mean of the marginalized
one-dimensional posterior and its associated 68% credible interval.

σ8 h Ωm ns ln1010As

BOSS+BAO vs. Planck
PL 0.49σ 1.33σ 0.48σ 0.78σ 0.70σ

MCMC 1.40σ 1.63σ 0.15σ 1.08σ 1.23σ

eBOSS vs. Planck
PL 1.82σ 0.39σ 0.56σ 1.34σ 1.76σ

MCMC 0.92σ 0.23σ 0.83σ 1.44σ 1.54σ

BOSS+BAO vs. eBOSS
PL 1.77σ 1.18σ 0.74σ 1.53σ 1.72σ

MCMC 1.48σ 0.91σ 0.72σ 1.80σ 1.87σ

Table 6.4: σ -distances, as defined in Eq. 6.2, for five selected parameters between different datasets.

σ8 h Ωm ns ln1010As

BOSS+BAO 0.50σ 0.46σ 0.98σ 0.34σ 0.14σ

eBOSS 1.59σ 0.08σ 0.16σ 0.67σ 0.84σ

Planck 0.16σ 0.08σ 0.03σ 0.29σ 0.05σ

Table 6.5: Distance between posterior mean and best-fit in units of the standard deviation, σ , of the
posterior, as defined in Eq. 6.3.

MCMC analysis using the EC parametrization cautiously since it depends on the EC convention
of the EFT parameter priors and on prior-volume effects inherent to the Bayesian framework.

eBOSS. The profile likelihood confidence intervals from eBOSS data show mild discrep-
ancies with Planck and BOSS+BAO data for some parameters, e.g., σ8 is 1.82σ (1.77σ )
higher than for Planck (BOSS+BAO) and ln1010As is 1.82σ (1.72σ ) higher than for Planck
(BOSS+BAO), which is similar to the MCMC analyses (see Tab. 6.4). Otherwise, the pa-
rameter constraints of eBOSS are within around . 1.5σ of the constraints from Planck and
BOSS+BAO. When comparing to the MCMC constraints, we find that the width of the 68%
confidence intervals of the profile is a factor 1.2 to 1.6 wider than the credible intervals of
the MCMC. The best-fit obtained from the profile is within 1σ of the posterior mean obtained
from the MCMC except for the parameter σ8, where the best-fit is at a 1.59σ higher value
than the posterior mean. However, as with BOSS data, we also find extreme values of the
EFT parameters under eBOSS data.
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Planck. For comparison, we also constructed profile likelihoods for Planck data. We find very
good agreement between the constraints from profile likelihoods and MCMC for Planck data.
The width of the confidence and credible intervals agree within less than 8% and the shifts be-
tween best-fit and posterior mean are less than 0.3σ . This corroborates the results in Ref. [138],
which used Planck 2013 intermediate results and also found very good agreement between both
methods. The good agreement between the profile likelihood and MCMC are expected due to
the high constraining power of Planck data, which dominates over any prior information. We
note that for all cosmological parameters, the Planck constraints are in-between the BOSS and
eBOSS ones, indicating no tension between the CMB and the galaxy clustering data.

6.5 Conclusions
Motivated by previous Bayesian studies that found a prior dependence of the inferred

cosmological parameters from BOSS full-shape data using the EFTofLSS [187, 203,
105, 204], in this work, we present frequentist profile likelihood constraints to view this
matter from a different statistical point of view. In particular, two of the commonly used
parametrizations of the EFTofLSS, the WC [59] and EC parametrizations [61], give different
constraints on the cosmological parameters of up to∼ 1σ in a Bayesian analysis (see chapter 5).

Using the profile likelihood, we find that the WC and EC parametrizations yield the
same confidence interval for σ8, confirming that the two parametrizations are mathematically
equivalent, i.e., they describe the same space of model predictions for the galaxy power
spectrum multipoles (see Fig. 6.1 in Sec. 6.3.1). 9 However, we find that the profile likelihood
gives constraints on σ8 that are factors of > 2 wider than the constraints based on the MCMC
posterior. Moreover, we observed that several of the EFT parameters take on extreme values
during the profile likelihood analysis, indicating that the frequentist analysis takes into
account parts of the EFT parameter space beyond the intended use of the theory, in which
the perturbative nature might be broken. This issue is addressed in the Bayesian case by
imposing narrow Gaussian priors on the EFT parameters. If these priors were well founded,
e.g., motivated from theory, simulations, or other observations, the priors could in principle
be promoted to data likelihoods in the frequentist analysis. Although the priors on the EFT
parameters are not rigorously motivated, we explore the effect of including Gaussian data
likelihoods in the frequentist analysis, which correspond to the priors in the Bayesian analysis.
We find that the inclusion of the Gaussian likelihoods on the EFT parameters reduces the width
of the constraints almost to the level of the ones inferred from the MCMC posterior and keeps
the EFT parameters in the intended range (see Fig. 6.2 in Sec. 6.3.2). However, it also leads to
a shift of the confidence interval of σ8. This demonstrates that the priors on the EFT parameters
in the Bayesian analysis are informative and influence the inferred cosmological parameters.

As a way forward, we explore the impact that data from future surveys like DESI [226]
will have by considering BOSS+BAO data with a data covariance matrix rescaled by 16 (see
Fig. 6.3 in Sec. 6.3.3). We find that the constraints from Bayesian and frequentist approaches
converge to the same interval for σ8 as the likelihood dominates over the prior information,

9This equivalence requires the free variation of two EFT parameters in the WC parametrization (c4 and cmono
ε ,

see Sec. 6.2), which are typically fixed to zero in the standard WC convention. Instead, we find a strong correlation
between these parameters and σ8, motivating further study.
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suggesting that the issues discussed above will subside with more data.

Finally, we construct frequentist confidence intervals for five selected ΛCDM parameters,
σ8, h, Ωm, ns, ln1010As, and compare the constraints from different datasets, including BOSS,
eBOSS and Planck (see Sec. 6.4). With the profile likelihood, we find that the constraints
from BOSS and Planck for all five parameters are within 1.4σ , finding no indication of a
tension. In particular, while the MCMC posterior prefers intervals for σ8, which are 1.4σ

(2.5σ ) lower than the Planck value for the WC (EC) EFT parametrization, the intervals from
the profile likelihood are only 0.5σ (0.3σ ) lower than the Planck constraint. The reduction
of the σ -distances can be mainly attributed to the wide confidence intervals from the profile
likelihood, but in the case of σ8, also to shifts of the MLE closer to the Planck value than the
posterior mean. In line with chapters 4 and 5, we find that the parameter σ8 is most subject
to prior effects. This indicates that the slight “σ8 discrepancy” seen in the Bayesian results
using the EC parametrization is due to the particular choice of priors. On the other hand,
although our main profile likelihood analysis makes use of the WC baseline parametrization
of the EFTofLSS without priors, we do not expect major changes in our conclusions regard-
ing the state of the σ8 tension from resorting to the use of “priors” or a different parametrization.

Our results clearly show the advantages and disadvantages of frequentist and Bayesian
parameter inference. Since the frequentist inference does not include priors that confine
the EFT parameters to the regime intended by the theory, we observe that the data prefers
several EFT parameters to take on extreme values, possibly breaking the perturbativeness of
the theory. The lack of prior further leads to significantly wider confidence intervals. This
loss of constraining power reflects the purely data driven frequentist approach, which is
completely agnostic about which model parameters are deemed more likely a priori. On the
other hand, the priors in the Bayesian inference are informative and have an impact on the
inferred cosmological parameters. This is important since it is not straightforward to define
well motivated priors on the EFT parameters, which is reflected in the fact that the WC and EC
parametrizations use different standard configurations for the EFT priors.

Looking towards the future, which will bring more constraining datasets, we can expect
these points of discussion to subside as the data will dominate over any subjective preference
introduced by the analysis setup. While waiting for better data, our results indicate that the
use of frequentist along with Bayesian methods are valuable in order to obtain a fully nu-
anced view of the data.
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Figure 6.6: 68% CL constraints on the H0 parameter either from indirect measurements (coming from
CMB experiments) or from direct measurements in the local universe. The yellow band corresponds
to the Planck value [11], while the blue band refers to the SH0ES value using the Cepheid-calibrated
cosmic distance ladder [153, 227] (which is the canonical value we consider in the following analyses).
I would like to thank Guillermo Franco Abellàn and Vivian Poulin for this figure.

In the previous part of this thesis, we showed that there is very good agreement between
the ΛCDM parameters reconstructed from the clustering data analysed with the EFTofLSS
and the CMB data, in particular those from Planck. However, in recent years, several tensions
between probes of the early and late universe analyzed under the ΛCDM model have emerged.
The Hubble tension [228] refers to the inconsistency between local measurements of the
current expansion rate of the Universe, i.e., the Hubble constant H0, and the value inferred
from early universe data using the ΛCDM model. This tension is predominantly driven by
the Planck Collaboration’s observation of the cosmic microwave background (CMB), which
predicts a value in ΛCDM of H0 = 67.27± 0.60 km/s/Mpc [11], and the value measured by
the SH0ES Collaboration using the Cepheid-calibrated cosmic distance ladder, whose latest
measurement yields H0 = 73±1 km/s/Mpc [153, 227]. Taken at face value, these observations
alone result in a ∼ 5σ tension. 10 Experimental efforts are underway to establish whether this

10A new calibration including cluster cepheids and Gaia EDR3 parallaxes further increase the tension to 5.3σ

[227].
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discrepancy can be caused by yet unknown systematic effects (appearing in either the early or
late universe measurements [229, 230], or both). It appears that various attempts to alter the
modeling of dust extinction are not successful in altering the Hubble constant [231, 232, 233],
nor is there support for different populations of type Ia supernova (SNIa) at low−z and high−z
causing significant impact [234, 235, 236, 237]. In fact, the SH0ES team recently provided a
comprehensive measurement of the H0 parameter to 1.3% precision, addressing these potential
systematic errors, and concluded that there is “no indication that the discrepancy arises
from measurement uncertainties or [over 70] analysis variations considered to date” [153].
On the side of the CMB, it has been noted that Planck data carry a number of anomalies
of low statistical significance that may play a role in this tension [238, 239, 11, 240, 241].
Nevertheless, the appearance of this discrepancy across an array of probes (although not always
with strong statistical significance) suggests that a single systematic effect may not be sufficient
to resolve it. For a very short summary of alternative methods, let us mention that, on the one
hand, there exists a variety of different techniques for calibrating ΛCDM at high redshifts and
subsequently inferring the value of H0, which do not involve Planck data. For instance, one can
use alternative CMB datasets such as WMAP, ACT, or SPT. We can even remove observations
of the CMB altogether and combine measurements of big bang nucleosynthesis (BBN) with
data from baryonic acoustic oscillation (BAO) [242, 243], as shown in Fig. 3.10, or from the
full-shape of the galaxy power spectrum analysed with the EFTofLSS, as shown in chapter 4,
resulting in H0 values in good agreement with Planck. On the other hand, alternative methods
for measuring the local expansion rate have been proposed in the literature, in an attempt at
removing any bias introduced from cepheid and/or SNIa observations. The Chicago-Carnegie
Hubble program (CCHP), which calibrates SNIa using the tip of the red giant branch (TRGB),
obtained a value of H0 = 69.8± 0.6 (stat)± 1.6 (sys) km/s/Mpc [244, 245], in between the
Planck CMB prediction and the SH0ES calibration measurement, and a reanalysis of the
CCHP data by Anand et al. yields H0 = 71.5± 1.9km/s/Mpc [246]. The SH0ES team, using
the parallax measurement of ω−Centauri from Gaia DR3 to calibrate the TRGB, obtained
H0 = 72.1± 2.0km/s/Mpc [247, 248]. Additional methods intended to calibrate SNIa at
large distances include surface brightness fluctuations of galaxies [249], Miras [250], or the
Baryonic Tully Fisher relation [251]. There also exists a variety of observations that do not
rely on observations of SNIa – these include, e.g., time delay of strongly lensed quasars [252,
253], maser distances [254], or gravitational waves as “standard sirens” [255]. For recent
reviews on the topic, we refer the reader to Refs. [256, 40], while a summary is given in Fig. 6.6.

Along with experimental developments to confirm the Hubble tension, a lot of effort has
been given to explain these discrepancies with some new physical mechanism, often in the
form of extensions to the ΛCDM model that may be connected to the (still unknown) nature of
dark matter or dark energy. It has been argued that the most promising category of solutions to
resolve the H0 tension involves physics in the pre-recombination era leading to a decrease of
the sound horizon at recombination [257, 258, 259, 260, 261, 183], such as models involving
dark radiation and/or new neutrino properties [262, 263, 264, 265, 266, 267, 268, 269, 270,
271, 272, 273], early dark energy (EDE) [274, 275, 276, 277, 278, 279, 280], modified gravity
[281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
299, 300], or exotic recombination [301, 302, 303, 304, 305] (for review of EDE models see
Ref. [280], and for a review of models that could resolve the Hubble tension see Refs. [256,
183]).
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Figure 6.7: 68% CL constraints on the S8 parameter either from indirect measurements (coming from
CMB experiments) or from direct measurements in the local universe (coming from weak lensing sur-
veys). The yellow band corresponds to the Planck value [11], while the blue band refers to the combined
analysis between the weak lensing observations from KiDS-1000, the galaxy clustering observations
from BOSS and the galaxy-galaxy lensing observations from KiDS-1000, BOSS, and the spectroscopic
2-degree Field Lensing Survey (2dfLenS) [177]. I would like to thank Guillermo Franco Abellàn and
Vivian Poulin for this figure.

Additionally, within ΛCDM, the parameter S8 ≡
√

σ8(Ωm/0.3), where σ8
11 is the root

mean square of matter fluctuations on an 8h−1Mpc scale and Ωm the (fractional) matter
density today, inferred from CMB [11, 76] is about 2− 3σ larger than that deduced from
weak lensing surveys 12 such as the CFHTLenS [201], HSC [307], KiDS-1000 [177, 80],
DESY3 [79], as well as from Planck Sunyaev-Zeldovich cluster abundances [11, 308] and

11We recall that σ8 is defined as follows:

σ
2
8 =

∫ k3

2π2 Pm(k)W 2
8 (k)d lnk , (6.10)

where Pm(k) is the linear matter power spectrum, and W8(k) is a window function describing a sphere (in Fourier
space) with a (historically chosen) radius of 8 h−1Mpc.

12More precisely, there even exists a “lensing is low” anomaly when comparing galaxy clustering and weak
lensing data within the ΛCDM cosmology [306, 178, 116].
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SPT [309]. The early and late measurements of S8 are summarised in Fig. 6.7. In particular,
the Planck [11] data indicate S8 = 0.834± 0.016, while the combined analysis between the
weak lensing observations from KiDS-1000, the galaxy clustering observations from BOSS
and the galaxy-galaxy lensing observations from KiDS-1000, BOSS, and the spectroscopic
2-degree Field Lensing Survey (2dFLenS), namely the so-called “3×2pt” analysis, 13 indicates
0.766± 0.020 [177]. Note that the S8 values of the other CMB experiments, in particular
ACT [76] and SPT [309], are compatible with the value of Planck, while all the weak lensing
measurements lead to lower values than in the CMB experiments. In addition, the 3× 2pt
analysis breaks down the degeneracy between σ8 and Ωm compared with the weak lensing
analysis alone, showing that the tension comes from σ8 rather than Ωm. Finally, let us note that
the constraints on S8 derived solely from galaxy clustering data with the EFTofLSS (but also
with the BAO/ f σ8 information and other techniques) are compatible with Planck and weak
lensing values. In chapter 4, we indeed found that S8 = 0.785+0.037

−0.040, with a best-fit at 0.838, for
BOSS + eBOSS.

As for the H0 tension, it has yet to be understood whether the S8 tension is due to systematic
effects [116], or physics beyond ΛCDM. Among the systematics that could explain the low
value of the late time determination of S8, we can cite for instance the intrinsic alignment of
galaxies [310] or the effect of baryons at very small scales (namely the baryonic feedback)
[311, 200]. Note that recently an analysis (released after the studies carried out in this thesis)
combining KiDS-1000 data and DESY3 data [312] found a value of S8 = 0.790+0.018

−0.014 (with a
best-fit at 0.801), showing a lower discrepancy of 1.7σ . This analysis took several systematic
effects into account and succeeded in reducing this tension, perhaps indicating the need to
explore this direction further. However, this discrepancy might also be the first clue about
the intrinsic nature of the ΛCDM dark sector. The resolution of the S8 tension (because
it is due to σ8 rather than Ωm) requires a suppression in the matter power spectrum for
k ∼ 0.1− 1 hMpc−1 in order to reduce the value of the σ8 parameter, which can be achieved
through a number of models that take into account new hypothetical properties of dark matter
and/or dark energy [313, 314, 315, 316, 317, 305, 318, 319, 320, 167, 321, 322].

Interestingly, the models which can alleviate one or both tensions tend to leave signatures in
the matter power spectrum on large scales that can be probed by large-scale structures surveys.
While models that resolve the S8 tension need to suppress the matter power spectrum, models
that resolve the Hubble tension often require the ΛCDM parameters to be readjusted, which
has an effect on the matter power spectrum. 14 An EFTofLSS analysis has already been applied
to several models beyond ΛCDM, such as neutrino masses and effective number of relativistic
species [101, 162, 323, 324, 273, 203], dark energy [59, 160, 187], curvature [325, 326] (see
chapter 4 as well), early dark energy [327, 328, 329, 330], non-cold dark matter [169, 331],
interacting dark energy [332], and more [333, 298, 334, 335]. In addition, the EFTofLSS has
made possible the development of a new consistency test of the ΛCDM and alternative models
based on a sound horizon-free analysis [155, 156, 157], providing a new way to probe beyond
ΛCDM models [158].

13This refers to the 2-point statistic combination of cosmic shear, galaxy-galaxy lensing and galaxy clustering.
14For example, we will see later that the early dark energy model has a higher value of ns and ωcdm than the

ΛCDM model, which has a significant impact on the matter power spectrum (see Sec. 3.1).



203

The third part of this thesis is dedicated to the study of constraints derived from an
EFTofLSS analysis applied to BOSS and eBOSS data, combined with other cosmological
probes, on some models beyond ΛCDM. In chapters 7 (adapted from Ref. [330]) and 8
(adapted from Ref. [336]), we deal respectively with the axion-like early dark energy and
acoustic (early) dark energy models proposed to resolve the Hubble tension, while in chapter 9
(adapted from Ref. [169]), we study the constraints on two decaying cold dark matter
scenarios, including one that could resolve the S8 tension.
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In this chapter, we reassess the constraints on early dark energy (EDE) from the full shape
of the most recent measurements of the power spectrum (or correlation function) of BOSS in
light of a correction to the normalization of BOSS window functions (presented in App. D.1).
EDE has been shown to reduce the Hubble tension to the ∼ 1.5σ level, with an energy density
representing at most a fraction fEDE(zc) ∼ 12% at the critical redshift zc ∼ 3500 after which
the fields start to dilute away [274, 275, 276, 183]. There exists a variety of EDE models that
can similarly reduce the tension to the 1.5− 2.5σ level [337, 277, 338, 279, 339]. Recently,
several groups have reported “hints” of EDE within ACT data at the ∼ 3σ level, alone or in
combination with WMAP (or, equivalently, Planck temperature data restricted to ` < 650) and
Planck polarization data [340, 341], as well as with SPT-3G data [342, 343].

However, it has also been pointed out that EDE leaves an impact in the matter power
spectrum that can be constrained thanks to the EFTofLSS applied to BOSS data or through
measurements of the parameter S8. Typically, in the EDE cosmology that resolves the Hubble
tension, the amplitude of fluctuations σ8 is slightly larger due to increase in ωcdm and ns, which
are necessary to counteract some of the effects of the EDE on the CMB power spectra [275,
344, 345]. As a result, the S8 tension tends to increase by ∼ 0.5σ in the EDE cosmology,
and large-scale structure (LSS) measurements may put pressure on the EDE model [344].
Additionally, it has been argued that the full-shape analysis of the galaxy power spectrum of
BOSS disfavors the EDE model as an efficient resolution of the H0 tension [328, 327]. Indeed,
in order to adjust the BAO data seen either in 3D or 2D at different comoving distances in a
galaxy clustering survey (typically at z∼ 0.1−1), it requires in the EDE cosmology an increase
in ωcdm

1 [275, 304], which can affect the fit to the full-shape [344, 327, 328]. Thus, galaxy
clustering data can provide a way to break the degeneracy introduced by EDE, in particular,
due to the constraints it provides on ωcdm and σ8.

Although these effects are certainly relevant in constraining EDE, the original interpretation
of the additional constraining power suggested in Refs. [327, 328] was disputed in Refs. [346,
347]. There, it was argued that the apparent constraining power from the BOSS full-shape
analysis may be artificially amplified by (i) the impact of the prior volume artificially favoring
ΛCDM in the Bayesian context (later verified with a profile likelihood approach 2 [188,
189]); (ii) a potential ∼ 20% mismatch in the overall amplitude (typically parametrized
by the primordial power spectrum amplitude As) between BOSS and Planck, rather than
additional constraints on ωcdm. In parallel, it had already been pointed out in Ref. [329]
that the effective field theory of LSS applied to BOSS data does not rule out the new EDE model.

In App. D.1, we explore the impact of the correction to the normalization of the BOSS
data window function within ΛCDM and show that it leads to a 1σ shift upward in the value
of As, now in better agreement with Planck. 3 Given that previous analyses, e.g., Refs. [327,
328], have used the measurements inconsistently normalized between the power spectrum and
the window function (as already acknowledged in Ref. [157] for their previous analyses), the
constraints from EDE are expected to change with these corrected BOSS measurements. While

1A similar increase is required to keep the CMB peaks’ height fixed [275], in particular, through the ISW effect
[345].

2For further discussion about the mitigation of projection and prior volume effect, see Ref. [190].
3Note that, in chapter 5, we argue that the remaining difference on the amplitude might be explained by projec-

tion effects from the prior volume associated with the marginalization of the EFT parameters.
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Refs. [327, 328] concluded that the BOSS data, combined with Planck data, disfavored the EDE
model as a potential candidate to solve the H0 tension, we find here that the conclusions reached
strongly depend on the normalization of the window functions used in the BOSS measurements.

This chapter is structured as follows: In Sec. 7.1, we review the EDE model and data consid-
ered in this work. In particular, we detail the possible choices of BOSS measurements and EFT
likelihoods. In Sec. 7.2, we assess the constraining power of corrected BOSS data alone on the
EDE resolution to the Hubble tension and discuss differences between the constraints derived
from the various BOSS data and EFTofLSS likelihoods. In Sec. 7.3, we derive constraints on
EDE from the EFTBOSS data combined with either Planck data (with and without SH0ES) or
ACT data. We also show the impact of the new Pantheon+ SN1a catalog [132] on the constraints
on EDE. We eventually present our conclusions in Sec. 7.4. App. D.1 presents details on how to
consistently normalize the window function with the power spectrum measurements. App. D.2,
provides additional comparison between EFTofLSS likelihoods within the EDE model. Finally,
App. D.3 lists additional relevant information about χ2 statistics.

7.1 Early Dark Energy Model and Data

7.1.1 Review of the EDE model
Background dynamics

The EDE model corresponds to an extension of the ΛCDM model, where the existence of
an additional subdominant oscillating scalar field φ is considered. The EDE field dynamics is
described by the Klein-Gordon equation of motion (at the homogenous level),

φ̈ +3Hφ̇ +Vn,φ (φ) = 0 , (7.1)

where Vn(φ) is a modified axion-like potential defined as

Vn(φ) = m2 f 2 [1− cos(φ/ f )]n . (7.2)

f and m correspond to the decay constant and the effective mass of the scalar field, respectively,
while the parameter n controls the steepness of the potential (see Fig. 7.1), and the rate of
dilution after the field becomes dynamical (see Fig. 7.2). Let us note that the n = 1 case
corresponds to the standard axion potential. In the following, we will use the redefined field
quantity Θ = φ/ f for convenience, such that −π ≤Θ≤+π . In Fig. 7.1, we plot the axion-like
EDE potential for several values of n.

Within this framework, the EDE energy density ρφ = −T 0
0 and the EDE pressure Pφ = T i

i
take the following form:

ρφ =
1
2

φ̇
2 +Vn(φ) , (7.3)

Pφ =
1
2

φ̇
2−Vn(φ) , (7.4)

implying that the EDE equation of state parameter is defined as

wφ =
Pφ

ρφ

=
1
2 φ̇ 2−Vn(φ)
1
2 φ̇ 2 +Vn(φ)

. (7.5)
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Figure 7.1: The axion-like EDE potential for n = 1 (i.e. the standard axion potential), n = 2 and n = 3
(i.e. our baseline model). Let us note that here m = f = 1.

At early times, when H� m, during the slow-roll phase (that consists in neglecting the kinetic
energy φ̇ 2 and the acceleration φ̈ of the EDE field as for inflation), the scalar field φ is frozen
at its initial value since the Hubble friction prevails, which implies that the EDE behaves like
a form of dark energy and that its contribution to the total energy density increases relative to
the other components. When the Hubble parameter drops below a critical value (H ∼ m), the
field starts evolving toward the minimum of the potential and becomes dynamical. The EDE
contribution to the total budget of the Universe is maximum around a critical redshift zc, after
which the energy density starts to dilute with an approximate equation of state wφ [348, 349],

wφ =

{ −1 if z > zc
n−1
n+1 if z < zc

. (7.6)

In the following, we will fix n = 3 as it was found that the data are relatively insensitive to this
parameter provided 2 . n . 5 [276]. Instead of the theory parameters f and m, we make use
of zc and fEDE(zc) = ρφ (zc)/ρtot(zc), which is the fraction of EDE at zc, determined through
a shooting method [276]. We also include the initial field value Θi as a free parameter, whose
main role once fEDE(zc) and zc are fixed is to set the dynamics of perturbations right around
zc, through the EDE sound speed c2

s (see chapter 8). Thus, Θi controls the frequency of the
background field oscillations, as can be seen in Fig. 7.2. This parameter also plays a role in the
value of fEDE(zc), which can be approximated as [276]

fEDE(zc)∼
Vn(Θi)

ρtot(zc)
=

m2 f 2

ρtot(zc)
[1− cos(Θi)]

n . (7.7)

Perturbation dynamics

The perturbation of the EDE field δφ(k, t), around its homogeneous solution φ̄(t), is defined
by φ(k, t) = φ̄(t)+δφ(k, t). The axion-like EDE model we consider in this work does not rely
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Figure 7.2: Impact of n and Θi on the evolution of the total energy density fraction. Taken from [276].

on a fluid approximation (like in Ref. [275]), since we solve the exact perturbed Klein-Gordon
equation (at linear order) for a scalar field, which is expressed in synchronous gauge as [41]:

δφ
′′
k +2Hδφ

′
k +
[
k2 +a2Vn,φφ

]
δφk =−h′

φ ′

2
, (7.8)

where the prime denotes derivatives with respect to conformal time.

The EDE resolution of the Hubble tension and LSS data

The EDE field will provide a small contribution to the expansion rate H(z) around zc (we
will focus on ∼ 103− 104 in the context of the Hubble tension), which causes a modification
of the sound horizon at the recombination

rs(zrec) =
∫ +∞

zrec

cs(z′)
H(z′)

dz′, (7.9)

where cs corresponds to the sound speed of the photon-baryon fluid acoustic waves.
The sound horizon is observationally determined through the angular acoustic scale at
recombination θs, defined as

θs =
rs(zrec)

DA(zrec)
, (7.10)

where DA(zrec) =
∫ zrec

0 dz′/H(z′) ∝ 1/H0 is the comoving angular diameter distance. Given that
θs is determined from Planck CMB power spectra with a very high accuracy, the change in
the sound horizon must be compensated by a readjustment of the angular diameter distance in
order to keep the angular acoustic scale constant. This readjustment is automatically done by
increasing H0 (and additional shift in ωcdm and ns to compensate effect of EDE on the growth of
perturbations), which can, by design, bring the CMB measurements and the late-time estimate
of the Hubble constant from the SH0ES Collaboration into agreement. In this chapter, we ad-
dress the question of whether the current full shape of galaxy clustering data analyzed using the



210 7. EFTOFLSS’ TAKE ON THE HUBBLE TENSION AND THE EARLY DARK ENERGY

EFTofLSS, can accommodate EDE. Indeed, on the one hand, the sound horizon seen at baryon-
drag epoch rs(zdrag) is measured through another angular acoustic scale in galaxy surveys,

θg =
rs(zdrag)

DV (zeff)
, (7.11)

where zeff is the effective redshift of the survey, and DV (z)= (D2
A(z)

c·z
H(z))

1/3 is a volume average
of the comoving distances in the directions parallel and perpendicular to the line of sight, with
c the speed of light. The angle θg typically summarizes the information from the BAO, and
measuring it with high precision has the potential to break the degeneracy between rs(zdrag)
and H0 introduced by the EDE. In practice, BAOs from BOSS were shown to be well fit in
combination with Planck and SH0ES when allowing for EDE [275], at the cost of a larger ωcdm
[350], which can simultaneously allow for the CMB peaks’ height to be kept fixed [275] through
the ISW effect [345]. However, the full-shape of the galaxy power spectrum also contains
additional information. For example, the amplitude of the small-scale galaxy power spectrum at
k > keq, where keq is the wavenumber entering the horizon at matter/radiation equality, contains
information about ωm, h, and the spectral tilt ns [58, 101]. As the values of ωcdm and ns are
uplifted to compensate the growth of perturbations in the presence of EDE, the full shape of
the galaxy power spectrum (with ωb fixed by CMB or a BBN prior) is also modified in that
respect. In the following, we quantify if these modifications from the EDE as a resolution of
the H0 tension are consistent with current cosmological data, including the full-shape galaxy
power spectrum from BOSS modeled with the EFT.

7.1.2 Data and method
We analyze the EDE model in light of recent cosmological observations through a series of

Markov chain Monte Carlo (MCMC) analyses using the Metropolis-Hastings algorithm from
MontePython-v3 4 code [137, 136] interfaced with our modified 5 version of CLASS 6 [221].
In this work, we carry out various analyses from a combination of the following datasets:

• PlanckTTTEEE: The low-l CMB TT, EE, and the high-l TT, TE, EE data from Planck
2018 [11].

• PlanckTT650TEEE: Same dataset as Planck TTTEEE, but in this case the TT power
spectrum has a multipole range restricted to l < 650.

• Lens: The CMB gravitational lensing potential reconstructed from Planck 2018 temper-
ature and polarization data [179]. When used without high-l TT, TE, EE data, we use the
CMB-marginalized version of the likelihood. 7

• ACT: The temperature and polarization angular power spectrum of the CMB from the
Atacama Cosmology Telescope (ACT DR4) [351].

• BBN: The BBN measurement of ωb [180] that uses the theoretical prediction of [181], the
experimental deuterium fraction of [12], and the experimental helium fraction of [182].

4https://github.com/brinckmann/montepython_public.
5https://github.com/PoulinV/AxiCLASS.
6https://lesgourg.github.io/class_public/class.html.
7We thank Oliver Philcox for his help with correcting a bug in the standard Plik implementation.

https://github.com/brinckmann/montepython_public
https://github.com/PoulinV/AxiCLASS
https://lesgourg.github.io/class_public/class.html
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• BAO: The measurements of the BAO from the CMASS and LOWZ galaxy samples of
BOSS DR12 at z = 0.38, 0.51, and 0.61 [81], which we refer to as BOSS BAO DR12,
and the BAO measurements from 6dFGS at z = 0.106 and SDSS DR7 at z = 0.15 [127,
128], which we refer to as BOSS BAO low−z.

• BOSS f σ8 DR12: We also sometimes include the redshift space distortion at z = 0.38,
0.51, and 0.61, which we refer to as f σ8 [81], taking into account the cross-correlation
with BAO measurements.

• EFTBOSS: The full-shape analysis of the BOSS power spectrum from the EFTofLSS,
namely, PLZ/CM

FKP [69], cross-correlated with reconstructed BAO, namely, α
LZ/CM
rec

[126]. The measurements are defined in Tab. 5.4 of chapter 5. The SDSS-III
BOSS DR12 galaxy sample data and covariances are described in Refs. [81,
125]. The measurements, obtained in Ref. [69], are from BOSS catalogs DR12
(v5) combined CMASS-LOWZ 8 [124] and are divided in redshift bins LOWZ
0.2 < z < 0.43 (zeff = 0.32) and CMASS 0.43 < z < 0.7 (zeff = 0.57), with north
and south Galactic skies for each, respectively, denoted NGC and SGC. For the EDE
analyses, we analyze the full shape of CMASS NGC, CMASS SGC, and LOWZ
NGC, cross-correlated with post-reconstruction BAOs. The analysis includes the
monopole and quadrupole between (kmin,kmax) = (0.01,0.20/0.23)hMpc−1 in Fourier
space and (smin,smax) = (25/20,200)Mpch−1 in configuration space [101, 59, 69] for
LOWZ / CMASS. The theory prediction and likelihood are made available through
PyBird. We also compare PyBird to CLASS-PT. More details on the differences
between these likelihoods are given e.g. in Sec. 5.1 of chapter 5. When computing
constraints with CLASS-PT, we use the galaxy power spectrum monopole, quadrupole,
and hexadecapole, for 0.01 6 k 6 0.2 hMpc−1 as well as the real-space extension Q0, up
to kmax = 0.4 hMpc−1, and the post-reconstructed BAO parameters. We use the standard
CLASS-PT priors on the bias parameters.

• Pan18: The Pantheon SNIa catalog, spanning redshifts 0.01 < z < 2.3 [133]. We will
also study in Sec. 7.3.4 the impact of the newer Pantheon+ catalog, favoring a larger Ωm
[132], on our conclusions.

• SH0ES: The SH0ES determination of H0 = 73.04± 1.04 km/s/Mpc from cepheid cali-
brated SNIa, modeled as a Gaussian likelihood. 9

We will refer to the combination of PlanckTTTEEE+BAO+Pan18 as BaseTTTEEE, and to
BaseTT650TEEE when replacing PlanckTTTEEE with PlanckTT650TEEE. In the absence of
CMB TTTEEE data, we refer to the dataset EFTBOSS+BBN+Lens+BAO+Pan18 as BaseEFT-
BOSS. For all runs performed, we use Planck conventions for the treatment of neutrinos, that
is, we include two massless and one massive species with mν = 0.06 eV [11]. In addition, we
impose a large flat prior on the dimensionless baryon energy density ωb, the dimensionless cold
dark matter energy density ωcdm, the Hubble parameter today H0, the logarithm of the variance
of curvature perturbations centered around the pivot scale kp = 0.05 Mpc−1 (according to the
Planck convention), ln

(
1010As

)
, the scalar spectral index ns, and the reionization optical depth

8https://data.sdss.org/sas/dr12/boss/lss/.
9For discussions about this modeling, see Refs. [260, 261, 183]

https://data.sdss.org/sas/dr12/boss/lss/
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τreio. Regarding the three free parameters of the EDE model, we impose a logarithmic prior
on zc and flat priors for fEDE(zc) and Θi,

3≤ log10(zc)≤ 4,
0≤ fEDE(zc)≤ 0.5,
0≤Θi ≤ π .

We define our MCMC chains to be converged when the Gelman-Rubin criterion R−1 < 0.05,
except for runs combining Planck+EFTBOSS+ACT, for which we use a relaxed criterion of
R−1 < 0.1 due to the complicated nature of the parameter space for the MCMC to explore. 10

Finally, we extract the best-fit parameters from the procedure highlighted in the appendix of
Ref. [183], and we produce our figures thanks to GetDist [184].

7.1.3 Details on the BOSS measurements and EFT likelihoods
In this chapter, we perform a thorough comparison of the constraints derived from the

EFTBOSS data, in order to assess the consistency of the various analyses presented in the
literature. Indeed, there are various BOSS two-point function measurements available to
perform full-shape analyses, as well as a different EFT code. As described in more detail in
chapter 5, the BOSS DR12 data can be divided into two different sets of redshift splitting
(LOWZ/CMASS vs z1/z3). Furthermore, depending on the estimator, the data are sometimes
analyzed by convolving the theory model with a window function, or not. For a window-free
analysis, one way is to use the configuration-space correlation function ξ , another is to
use a quadratic estimator, which we denote with the subscript “QUAD.” Finally, there are
different ways to analyze the post-reconstructed parameters, which are then combined with the
EFTBOSS data, denoted by αrec and βrec. These different datasets include slightly different
amounts of information (due to different scale cuts) but they all represent reasonable choices
on how to analyze the BOSS DR12 observations.

The characteristics of each measurement are listed in Tab. 5.4 of chapter 5 and more details
can be found in Sec. 5.3 of this chapter. The EFT implementation and BOSS data we will
focus on in this study are packaged in the PyBird likelihood, based on the EFT prediction and
likelihood from PyBird 11 [59], and the CLASS-PT likelihood, based on the EFT prediction
from CLASS-PT 12 [61] and likelihood from Ref. [62]. 13 Details about the PyBird and
CLASS-PT likelihoods are presented in Sec. 5.1 of chapter 5. Here, let us simply mention that
CLASS-PT implements the IR-resummation scheme proposed in Ref. [91] and generalized to
redshift space in Ref. [186]. This is different than that implemented in PyBird, proposed
in Ref. [71], generalized to redshift space in Ref. [72], and made numerically efficient in
Ref. [59]. The CLASS-PT scheme has been shown to be an approximation of the one used in
PyBird in Ref. [70], where one considers only the resummation of the bulk displacements
around the BAO peak, rBAO ∼ 110Mpch−1. For this scheme to be made practical, one further
relies on a wiggle-no-wiggle split procedure to isolate the BAO part. Although this scheme

10Most parameters are converged at 0.01-0.05, the parameter with the worse convergence is Θi, which is often
unconstrained or multimodal in the analyses.

11https://github.com/pierrexyz/pybird.
12https://github.com/michalychforever/CLASS-PT.
13https://github.com/oliverphilcox/full_shape_likelihoods.

https://github.com/pierrexyz/pybird
https://github.com/michalychforever/CLASS-PT
https://github.com/oliverphilcox/full_shape_likelihoods


7.2. Updated EFTBOSS constraints on EDE 213

Figure 7.3: Residuals of the monopole and quadrupole of the galaxy power spectrum in two EDE models
(see. Tab. 7.1) with respect to the ΛCDM model (obtained from the baseTTTEEE+Lens+EFTBOSS
analysis, see chapter 9) for the three sky cuts of the EFTBOSS data.

has been shown to work fairly well within ΛCDM for cosmologies not too far from the one of
Planck, we cautiously observe that in far-away cosmologies as the ones probed in EDE, the
BAO peak location happens to be dramatically modified, and it thus remains to be checked
that the approximations still hold in these cases. For our prior choice (on fEDE), we have
checked that at least the wiggle-no-wiggle split procedure as implemented in CLASS-PT is as
numerically stable as for a fiducial case where the BAO peak is ∼ 110Mpch−1.

In addition, in chapter 5, we have checked the validity of the two pipelines by implement-
ing in the PyBird likelihood the exact same prior as those used in the CLASS-PT likelihood,
and we found agreement on the 1D posteriors of the cosmological parameters at . 0.2σ in
ΛCDM, where these residual differences can be attributed to the different implementations of
the IR-resummation mentioned above.

7.2 Updated EFTBOSS constraints on EDE

7.2.1 Preliminary study

In the recent literature, there has been a number of analyses showing hints of EDE
and allowing for a resolution of the Hubble tension [275, 277, 340, 341, 342, 343]. In
this preliminary study, we will take the results of two representative analyses. First,
the baseline analysis of BaseTTTEEE+Lens+SH0ES data (second column of Tab. 7.2)
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BaseTTTEEE+Lens BaseTT650TEEE BaseTTTEEE+Lens
+SH0ES (EDE) +ACT (EDE) +EFTBOSS (ΛCDM)

χ2
CMASS NGC 39.3 39.1 40.3

χ2
CMASS SGC 45.2 46.0 44.0

χ2
LOWZ NGC 34.4 35.1 33.5

χ2
EFTBOSS 118.9 120.2 117.8

∆χ2
min(EDE−ΛCDM) +1.1 + 2.4 –

p−value (%) 16.7 14.7 18.5
Ndata 132

Table 7.1: χ2 of each sky cut of the EFTBOSS dataset for the EDE best-fit models extracted from
a fit to BaseTTTEEE+Lens+SH0ES and BaseTT650TEEE+ACT and the ΛCDM model from a fit to
BaseTTTEEE+Lens+EFTBOSS. We also indicated the ∆χ2 with respect to the ΛCDM best-fit model.
The associated p-value is calculated assuming that the data points are uncorrelated and taking 3 ·9 EFT
parameters in each fit (given that the cosmology is fixed).

has a best-fit of fEDE(zc) = 0.122, H0 = 71.89 km.s−1.Mpc−1. Second, the analysis of
BaseTT650TEEE+ACT (first column of Tab. 7.3) favors an EDE model with significantly
larger values of fEDE(zc) and H0 compared to the BaseTTTEEE+Lens+SH0ES, namely,
fEDE(zc) = 0.159, H0 = 73.30 km.s−1.Mpc−1 (see also [340, 342, 341, 343]). In this section,
we will gauge how these two specific models fair against BOSS data following Refs. [327, 328].

Using the best-fit parameters listed in Tab. 7.2 (second column) and Tab. 7.3 (first column),
we perform a preliminary study where we determine the χ2 of the EFTBOSS data (using our
fiducial PLZ/CM

FKP +α
LZ/CM
rec data) after optimizing only the EFT parameters (since the cosmolog-

ical parameters are fixed here). Using the PyBird code, we show in Tab. 7.1 the χ2 associated
with the EFTBOSS data, and we plot in Fig. 7.3 the residuals with respect to ΛCDM from the
BaseTTTEEE+Lens+EFTBOSS analysis 14. We also show the BOSS data residuals for com-
parison with respect to the same model. First, one can see that the changes in the residuals
between those various fits are almost imperceptible by eye with respect to BOSS error bars. We
find that the χ2 of the BOSS data is degraded by +1.1 for BaseTTTEEE+Lens+SH0ES (to be
compared with ∼ +2.5 in Ref. [328]) and +2.4 for BaseTT650TEEE+ACT, compared to the
best-fit χ2 of EFTBOSS data in the ΛCDM model. Despite this small χ2 degradation, we note
that the p-value of BOSS data in the EDE models that resolve the Hubble tension is still very
good. Nevertheless, we anticipate that the EFTBOSS data could have a non-negligible con-
straining power in combination with BaseTT650TEEE+ACT, while its impact should be small
in the context of the BaseTTTEEE+Lens+SH0ES analysis.

7.2.2 Constraints from various BOSS data

As is done in chapter 5 for ΛCDM, we compare the constraints on EDE from the various
BOSS two-point function measurements, described in Tab. 5.4 of chapter 5, in combination
with the BBN prior on ωb.

14When combined with EFTBOSS, we do not include the BOSS BAO+ f σ8 data.



7.2. Updated EFTBOSS constraints on EDE 215

0.2 0.4
fEDE(zc)

2.5
3.0

ln
10

10
A s

3.2
3.5
3.8

lo
g 1

0(z
c)

0.7
0.8
0.9

h

0.15

0.25

cd
m

0.14 0.23
cdm

0.7 0.9
h

3.3 3.7
log10(zc)

2.4 3.0
ln1010As

LZ/CM
FKP + LZ/CM

rec

PLZ/CM
FKP + LZ/CM

rec
LZ/CM + LZ/CM

rec

P z1/z3
QUAD + z1/z3

rec

Figure 7.4: Comparison of 2D posteriors of a subset of parameters in the EDE model recon-
structed from BOSS full-shape analyses using PyBird baseline likelihood, with a BBN prior on ωb,
of various pre-reconstructed two-point function measurements and handling of the window functions
(PLZ/CM

FKP ,PLZ/CM
FKP ,ξ LZ/CM,Pz1/z3

QUAD) combined with various post-reconstructed BAO parameters (α LZ/CM
rec ,

α
z1/z3
rec ). We recall that PLZ/CM

FKP +α LZ/CM
rec corresponds to the BOSS FKP measurements analyzed with

the EFT predictions convolved with inconsistently normalized window functions. The main EDE anal-
yses of this work are based on EFTBOSS, which corresponds to PLZ/CM

FKP +α LZ/CM
rec . We choose to show

only the cosmological parameters that are not completely prior dominated.

The comparison of the 2D posteriors is shown in Fig. 7.4, while the 1D posteriors of
{ fEDE(zc),h,ωcdm, ln

(
1010As

)
,ns,Ωm σ8,S8} are shown in Fig. 7.5. In these figures, we also

display the results from the BOSS data analyzed with the EFT predictions convolved with
inconsistently normalized window functions, namely, PLZ/CM

FKP + α
LZ/CM
rec , which disfavor

the EDE model when they are combined with Planck data [327, 328] (see the discussion in
App. D.1 for the impact of inconsistent normalization within the ΛCDM model). Interest-
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Constraints from BOSS+BBN on EDE
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Figure 7.5: Comparison of 1D credible intervals in the EDE model reconstructed from BOSS full-
shape analyses using PyBird baseline likelihood, with a BBN prior on ωb, of various pre-reconstructed
two-point function measurements and handling of the window functions (PLZ/CM

FKP ,PLZ/CM
FKP ,ξ LZ/CM,Pz1/z3

QUAD)
combined with various post-reconstructed BAO parameters (α LZ/CM

rec ,α
z1/z3
rec , and β

z1/z3
rec ). We recall that

PLZ/CM
FKP +α LZ/CM

rec corresponds to the BOSS FKP measurements analyzed with the EFT predictions con-
volved with inconsistently normalized window functions. The gray region corresponds to the EFTBOSS
data that we use in our main analysis, namely, PLZ/CM

FKP +α LZ/CM
rec . In the last line, we also show the results

of Pz1/z3
QUAD +β

z1/z3
rec analyzed using the CLASS-PT baseline likelihood. Relevant information regarding the

measurements and their notations are summarized in Tab. 5.4 of chapter 5. We choose to show only the
cosmological parameters that are not prior dominated. For fEDE, we quote instead the 2σ bound.

ingly, using the PyBird likelihood, the ΛCDM parameters are broadly consistent between
PLZ/CM

FKP +α
LZ/CM
rec and Pz1/z3

QUAD +α
z1/z3
rec , as we have a shift of . 0.3σ on ΛCDM parameters

between these two measurements. However, we find that PLZ/CM
FKP +α

LZ/CM
rec leads to stronger

constraints on EDE, namely, 15 fEDE(zc)< 0.321, while Pz1/z3
QUAD+α

z1/z3
rec yields fEDE(zc)< 0.382.

Concerning ξ LZ/CM +α
LZ/CM
rec , we find different constraints, even for the ΛCDM param-

eters: comparing ξ LZ/CM +α
LZ/CM
rec to PLZ/CM

FKP +α
LZ/CM
rec , we find shifts of . 1.2σ , whereas

comparing ξ LZ/CM +α
LZ/CM
rec to Pz1/z3

QUAD +α
z1/z3
rec , we find shifts of . 1.0σ . Let us note that

the constraints on ΛCDM parameters reconstructed from ξ LZ/CM +α
LZ/CM
rec are weaker than

those of PLZ/CM
FKP + α

LZ/CM
rec and Pz1/z3

QUAD + α
z1/z3
rec , which is consistent with what was found

within the ΛCDM model in chapter 5 (see also Ref. [69] and explanations therein). Regarding
the EDE parameters, we obtain weaker constraints on fEDE, namely fEDE(zc) < 0.468. It is
worth noting that, for the same likelihood, the constraints on fEDE(zc) can be up to ∼ 35%
different depending on the data (especially between PLZ/CM

FKP +α
LZ/CM
rec and ξ LZ/CM +α

LZ/CM
rec ).

However, regardless of the data we consider, the BOSS full-shape (analyzed on their own with
a BBN prior) within EDE leads to reconstructed values of H0 that are compatible with what is
obtained by the SH0ES Collaboration.

15Per convention, we cite one-sided bound at 95% C.L. and two-sided ones at 68% C.L.
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This conclusion also holds for the CLASS-PT baseline (last line of Fig. 7.5), which is less
constraining than the PyBird likelihood for the EDE model. Indeed, we obtain fEDE(zc) <
0.448, which is ∼ 15% weaker than the constraint obtained with the PyBird likelihood, even
for similar data (Pz1/z3

QUAD). Furthermore, we note that the fEDE(zc) constraint reconstructed from
PLZ/CM

FKP +α
LZ/CM
rec , analyzed with the PyBird likelihood, is ∼ 35% weaker than the constraint

obtained from Pz1/z3
QUAD +β

z1/z3
rec , analyzed with the CLASS-PT likelihood. We conclude that the

standard PyBird analysis setup (which consists of our baseline setup) shows a higher con-
straining power than the standard CLASS-PT analysis. Let us note that, for the H0 parameter,
we obtain a value 1.4σ higher than the Planck value (h = 0.6851+0.0076

−0.014 at 68% CL) with the
PyBird analysis setup, and a value 1.8σ higher with the CLASS-PT analysis setup, which in-
dicates a reasonably good consistency between Planck and BOSS regarding H0. For a more
detailed discussion, including other data combinations, of the differences between PyBird and
CLASS-PT for the EDE model, we refer to App. D.2. We, however, warn that the cosmological
constraints from EFTBOSS at the level of the 1D posteriors might be affected by prior effects,
as discussed in chapters 5 and 6 in the context of ΛCDM.

7.2.3 Primary CMB-free constraints on EDE
To fully gauge the constraining power of a primary CMB-free analysis, on top of the fiducial

EFTBOSS data and BBN prior, we now include other BOSS BAO measurements, Planck
lensing and the Pantheon18 datasets. We recall that this dataset is simply called BaseEFT-
BOSS, and we plot the associated reconstructed 2D posteriors in Fig. 7.6 (blue contours). We
compare our results with the posteriors reconstructed from a BaseTTTEEE+Lens+SH0ES
(red contours) and BaseTT650TEEE+ACT (orange contours) analysis. One can see that,
while the primary CMB-free analysis does not favor EDE (in the absence of a SH0ES prior),
constraints are relatively weak and the reconstructed posteriors from the BaseEFTBOSS
data are not in tension with those reconstructed from the BaseTTTEEE+Lens+SH0ES and
BaseTT650TEEE+ACT analyses. Nevertheless, we note a clear narrowing of the constraints
in the { fEDE(zc), log10(zc)} parameter space around log10(zc) ∼ 3.5, indicating that BOSS
gains constraining power right around matter-radiation equality. To extract a meaningful
CMB-independent bound on fEDE(zc), we perform an additional analysis now restricting the
log10(zc) range to log10(zc) ∈ [3.4,3.7], which corresponds to the region favored to resolve
the Hubble tension. We find that the combination of EFTBOSS+BBN+Lens+BAO+Pan18
(i.e., BaseEFTBOSS) leads to fEDE(zc)< 0.2 (95% C.L.) and h = 0.710+0.015

−0.025, which does not
exclude the EDE models resolving the Hubble tension. When performing the same analysis
with CLASS-PT, we find significantly weaker constraints, with fEDE(zc) < 0.284 (95% C.L.)
and h = 0.726+0.02

−0.04. Constraints from CLASS-PT are shown in App. D.2, Fig. D.2.

7.3 EFTBOSS combined with CMB data

7.3.1 EFTBOSS+PlanckTTTEEE
We now turn to studying the constraining power of EFTBOSS data in combination with

primary CMB datasets. We start by performing joint analyses with the full PlanckTTTEEE
datasets. All relevant χ2 statistics are given in App. D.3, Tabs. D.1 and D.2, while the
reconstructed posteriors and best-fit values of parameters are given in Tab. 7.2. In the left
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Figure 7.6: 2D posterior distributions reconstructed from the BaseEFTBOSS dataset compared
with the posterior reconstructed from BaseTTTEEE+Lens+SH0ES and BaseTT650TEEE+ACT. We
recall that BaseEFTBOSS refers to EFTBOSS+BBN+Lens+BAO+Pan18, BaseTTTTEEE refers to
PlanckTTTEE+BAO+Pan18, and BaseTT650TEEE to PlanckTT650TEE+BAO+Pan18.

panel of Fig. 7.7, we compare constraints obtained with the consistently and inconsistently
normalized EFTBOSS data to that obtained with the compressed BAO/ f σ8 data. One can
see that the correction of the normalization of the window function leads the new EFTBOSS
data to have a constraining power only slightly stronger than the compressed BAO/ f σ8 data.
We derive a BaseTTTEEE+Lens+EFTBOSS constraint of fEDE(zc) < 0.083, to be compared
with fEDE(zc) < 0.088 from BaseTTTEEE+Lens+ f σ8, while the EFTBOSS data with wrong
normalization incorrectly lead to fEDE(zc)< 0.054.

Moreover, as was already pointed out in various works [347, 346, 183, 188], posteriors are
highly non-Gaussian with long tails toward high-H0, and therefore these constraints should be
interpreted with care. This is further attested by the fact that the best-fit point lies at the 2σ

limit of our constraints (e.g., fEDE at the best-fit is 0.082 for BaseTTTEEE+Lens+EFTBOSS).
We defer to future work to compare constraints derived here with a Bayesian analysis to those
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Figure 7.7: Left panel: 2D posterior distributions from BaseTTTEEE+Lens, BaseTTTEEE+Lens+ f σ8,
and BaseTTTEEE+Lens+EFTBOSS. We also show the results from the EFTBOSS data with a wrong
normalization for comparison. Right panel: 2D posterior distributions from BaseEFTBOSS and
BaseTTTTEEE+Lens+SH0ES, with and without EFTBOSS data. We recall that BaseTTTTEEE refers
to PlanckTTTEE+BAO+Pan18, while BaseEFTBOSS refers to EFTBOSS+BBN+Lens+BAO+Pan18.

derived with a profile likelihood approach (e.g., [188, 189]), which will be affected by our
update to the survey window function calculation.

As advocated recently, we will gauge the level of the Hubble tension by computing the
tension metric QDMAP ≡

√
χ2(w/ SH0ES)−χ2(w/o SH0ES) [352, 183], which agrees

with the usual Gaussian metric tension for Gaussian posteriors, but better captures the
non-Gaussianity of the posterior.

Once the SH0ES prior is included in the BaseTTTEEE+Lens+EFTBOSS analysis, we
reconstruct fEDE(zc) = 0.103+0.027

−0.023 with h = 0.713 ± 0.009 and find the tension metric
QDMAP = 2.1σ (while we find 4.8σ in ΛCDM), see Tab. 7.2 and Fig. 7.7, right panel. This is
only a minor difference compared to the results without BOSS f σ8 or full-shape information,
for which we get fEDE(zc) = 0.109+0.030

−0.024 with h = 0.715± 0.009 and the QDMAP metric gives
a 1.9σ tension between SH0ES and other datasets. 16 Similarly, when the f σ8 information is
included, we find a 2.0σ tension with fEDE(zc) = 0.102+0.030

−0.024 and h = 0.712±0.009.

Analyses with CLASS-PT are presented in App. D.2, and similar results are found. There-
fore, current full-shape EFTBOSS data provide little additional constraining power (∼ 10%)
on the EDE model over Planck and f σ8. We conclude that the EFTBOSS data are in agree-
ment with the model reconstructed when including a SH0ES prior, as the preliminary study
suggested, and BOSS data do not exclude the EDE resolution to the Hubble tension.

16This is different than what was reported in Ref. [183], because of an updated H0 prior with tighter error bars.
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BaseTTTEEE+Lens BaseTTTEEE+Lens+ f σ8 BaseTTTEEE+Lens+EFTBOSS
H0 prior? no yes no yes no yes
fEDE(zc) < 0.091(0.088) 0.109(0.122)+0.030

−0.024 < 0.088(0.057) 0.102(0.118)+0.030
−0.024 < 0.083(0.082) 0.103(0.116)+0.027

−0.023
log10(zc) unconstrained (3.55) 3.599(3.568)+0.029

−0.081 unconstrained (3.78) 3.603(3.569)+0.037
−0.11 unconstrained (3.82) 3.67(3.83)+0.21

−0.15
θi unconstrained (2.8) 2.65(2.73)+0.22

−0.025 unconstrained (2.94) 2.58(2.76)+0.33
+0.034 unconstrained (2.9) 2.73(2.89)+0.19

−0.065
h 0.688(0.706)+0.006

−0.011 0.715(0.719)±0.009 0.687(0.694)+0.006
−0.011 0.712(0.718)±0.009 0.687(0.700)+0.006

−0.011 0.713(0.715)±0.009
ωcdm 0.1227(0.1281)+0.0018

−0.0036 0.1303(0.1319)±0.0035 0.1227(0.1246)+0.0016
−0.0036 0.1296(0.1314)±0.0035 0.1221(0.1269)+0.0015

−0.0033 0.1288(0.1297)±0.0032
102ωb 2.258(2.266)+0.018

−0.020 2.283(2.303)±0.020 2.258(2.266)+0.017
−0.021 2.282(2.279)±0.021 2.257(2.275)+0.017

−0.020 2.287(2.301)±0.023
109As 2.122(2.135)±0.032 2.153(2.145)±0.032 2.119(2.119)+0.029

−0.033 2.146(2.164)±0.031 2.113(2.120)±0.032 2.144(2.144)±0.032
ns 0.9734(0.9823)+0.0053

−0.0076 0.9883(0.9895)±0.0060 0.9730(0.9809)+0.0048
−0.0074 0.9868(0.9899)±0.0062 0.9715(0.9827)+0.0049

−0.0076 0.9867(0.9921)±0.0065
τreio 0.0570(0.0574)+0.0069

−0.0076 0.0582(0.0579)±0.0075 0.0564(0.0553)±0.0072 0.0572(0.059)±0.0073 0.0562(0.0553)±0.0073 0.0586(0.0599)+0.0068
−0.0076

S8 0.831(0.839)+0.011
−0.013 0.839(0.843)±0.012 0.831(0.833)+0.011

−0.012 0.838(0.843)±0.013 0.826(0.836)±0.011 0.833(0.835)±0.012
Ωm 0.3084(0.3041)±0.0058 0.3008(0.3005)±0.0048 0.3089(0.3074)±0.0054 0.3019(0.3003)±0.0051 0.3077(0.3065)±0.0054 0.2998(0.3004)±0.0050
total χ2

min 3799.2 3802.9 3801.8 3806.1 3912.7 3917.3
∆χ2

min −3.8 −23.7 −3.9 −23.0 −4.7 −22.7
QDMAP 1.9σ 2.0σ 2.1σ

Table 7.2: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE
model confronted to various datasets, including PlanckTTTEEE.

BaseTT650TEEE+ACT BaseTT650TEEE+ACT BaseTT650TEEE+ACT BaseTT650TEEE+ACT
+ f σ8 +EFTBOSS +Lens+EFTBOSS

fEDE(zc) 0.128(0.159)+0.064
−0.039 0.116(0.148)+0.059

−0.046 0.093(0.148)+0.047
−0.066 < 0.172(0.148)

log10(zc) 3.509(3.521)+0.048
−0.033 3.505(3.514)+0.056

−0.049 3.493(3.514)+0.080
−0.093 3.486(3.514)+0.091

−0.13
θi 2.63(2.77)+0.24

+0.023 2.53(2.78)+0.37
+0.094 2.54(2.78)+0.47

0.065 2.41(2.78)+0.65
0.12

h 0.723(0.733)+0.021
−0.017 0.718(0.728)±0.018 0.713(0.730)+0.017

−0.021 0.708(0.725)+0.015
−0.022

ωcdm 0.1332(0.1369)+0.0071
−0.0059 0.1320(0.1355)±0.0062 0.1285(0.1355)+0.0057

−0.0067 0.1276(0.1355)+0.0047
−0.0074

102ωb 2.268(2.267)±0.019 2.266(2.261)±0.020 2.265(2.266)±0.020 2.263(2.265)±0.019
109As 2.144(2.148)±0.037 2.136(2.144)±0.038 2.128(2.147)±0.040 2.127(2.143)±0.034
ns 0.9928(0.9963)+0.0092

−0.0078 0.9910(0.9936)+0.0090
−0.0081 0.9885(0.9936)±0.0091 0.9865(0.9936)±0.0086

τ reio 0.0520(0.0508)±0.0077 0.0511(0.0506)±0.0079 0.0519(0.0506)±0.0077 0.0523(0.0506)±0.0072
S8 0.842(0.846)±0.016 0.841(0.845)±0.017 0.830(0.838)±0.016 0.831(0.837)+0.013

−0.014
Ωm 0.2996(0.2982)+0.0061

−0.0072 0.3013(0.2995)±0.0068 0.2990(0.2995)±0.0069 0.3008(0.2995)±0.0059
total χ2

min 3571.9 3575.8 3688.3 3698.4
∆χ2(EDE−ΛCDM) -14.6 -13.3 -12.0 -11.1

Table 7.3: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE
model confronted to various datasets, including PlanckTT650TEEE+ACT.

7.3.2 EFTBOSS+PlanckTT650TEE+ACT

We now turn to the combination of Planck data with ACT. We start with a restricted version
of Planck temperature data at ` < 650 (chosen to mimic WMAP and perform a consistency
test between CMB datasets), combined with Planck polarization and ACT data. This data
combination 17 is known to favor 18 EDE at ∼ 3σ [340, 341, 342, 343], with large values of
fEDE(zc) = 0.128+0.064

−0.039 and h = 0.723+0.021
−0.017 (see Tab. 7.3, first column). In Ref. [343], it was

shown that BOSS f σ8 and Planck lensing data decreased the preference 19 to 2.6σ . We now
test whether the EFT analysis of BOSS data can put further pressure on this hint of EDE, as our
preliminary study indicates. All relevant χ2 statistics are given in App. D.3, Tab. D.3, while
we give the reconstructed posteriors of parameters in Tab. 7.3. We show in Fig. 7.8 (left panel)
the 2D posterior distribution { fEDE(zc),ωcdm,h, log10(zc)} reconstructed from the analysis of
BaseTT650TEEE+ACT compared with that reconstructed with the addition of either f σ8 or

17The preference persists until PlanckTT data at ` & 1300 are included, while the inclusion of SPT-3G TEEE
data has little impact (in fact, slightly strengthening the hint of EDE) [343].

18As discussed by the ACT Collaboration [340], it is still a possibility that the apparent preference for EDE
arises from remaining systematic errors in the data.

19In the following, the preference is computed assuming the ∆χ2 follows a χ2 distribution with three degrees of
freedom. We stress that this is just an approximation, as the true number of degrees of freedom is more complicated
to estimate due to log10(zc) and θi becoming ill defined when fEDE→ 0.



7.3. EFTBOSS combined with CMB data 221

0.1 0.2
fEDE(zc)

3.2
3.5
3.8

lo
g 1

0(z
c)

0.70

0.75

h

0.12

0.14

cd
m

0.12 0.14
cdm

0.69 0.75
h

3.3 3.7
log10(zc)

BaseTT650TEEE+ACT
BaseTT650TEEE+ACT+f 8

BaseTT650TEEE+ACT+EFTBOSS
+Planck lensing

0.1 0.2
fEDE(zc)

3.2
3.5
3.8

lo
g 1

0(z
c)

0.70

0.75

h

0.12
0.13
0.14

cd
m

0.12 0.14
cdm

0.69 0.74
h

3.3 3.7
log10(zc)

BaseTT650TEEE+ACT+Lens+EFTBOSS
BaseTTTEEE+ACT+Lens+EFTBOSS
+SH0ES

Figure 7.8: Left Panel: 2D posterior distributions from BaseTT650TEEE+ACT in combi-
nation with f σ8, EFTBOSS, and Planck lensing. We recall that BaseTT650TEEE refers
to PlanckTT650TEEE+BAO+Pan18 data. Right Panel: 2D posterior distributions from
ACT+Lens+EFTBOSS in combination with either BaseTT650TEEE or BaseTTTEEEE with and with-
out SH0ES.

EFTBOSS data.

One can see that, in this case, the EFTBOSS data do reduce the preference for EDE, with
fEDE now compatible with zero at 1σ . For the BaseTT650TEEE +ACT+Lens+EFTBOSS
dataset, represented by the dark blue line on Fig. 7.8 (left panel), we find a weak upper limit
fEDE < 0.172 and h = 0.708+0.015

−0.022, with best-fit values fEDE ' 0.148 and h ' 0.725 in good
agreement with the SH0ES determination. Quantifying the preference over ΛCDM, we find a
∆χ2 = −11.1 in favor of EDE (2.5σ ), decreased from −14.6 without EFTBOSS and Planck
lensing data. The χ2 of EFTBOSS data is degraded by +1.7 in the EDE model compared to
ΛCDM, while the improvement in the fit of ACT and PlanckTT650TEEE is fairly stable, with
∆χ2(ACT) =−7.6 and ∆χ2(PlanckTT650TEEE) =−6.1, respectively. Additionally, we note
that, for this more extreme EDE model, the full EFTBOSS data provide stronger constraints
than the conventional BAO/ f σ8 data. Although current data do not fully erase the preference
for EDE over ΛCDM, this confirms that BOSS data, and more generally measurement of the
matter power spectrum in the late Universe, provide an important probe of large EDE fraction
in the early Universe. We find similar results with CLASS-PT (see App. D.2 for details), at-
testing that once BOSS data are combined with CMB data, the results obtained are robust to
reasonable choices in the EFT analysis.

7.3.3 EFTBOSS+PlanckTTTEE+ACT
Except for consistency tests, there are no good reasons to remove part of the

high-` Planck TT data. In the following, we present results of combined analyses of
PlanckTTTEEE+ACT+EFTBOSS (i.e., including full Planck data) in Tab. 7.4 and Fig. 7.8
(right panel). All relevant χ2 statistics are given in App. D.3, Tab. D.4. We quantify the
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BaseTTTEEE+ACT+Lens+EFTBOSS
H0 prior? no yes
fEDE(zc) < 0.110(0.074) 0.108(0.124)+0.028

−0.021
log10(zc) 3.48(3.51)±0.21 3.552(3.531)+0.026

−0.065
θi unconstrained 2.77(2.81)+0.13

−0.070
h 0.691(0.7)+0.006

−0.013 0.715(0.72)±0.009
ωcdm 0.1229(0.1267)+0.0017

−0.0042 0.1300(0.1322)+0.0035
−0.0031

102ωb 2.247(2.248)+0.015
−0.017 2.260(2.255)±0.018

109As 2.126(2.133)+0.028
−0.032 2.153(2.156)±0.030

ns 0.9758(0.9795)+0.0049
−0.0080 0.9873(0.9893)±0.0058

τ reio 0.0540(0.0534)±0.0070 0.0548(0.0539)±0.0070
S8 0.829(0.843)+0.010

−0.012 0.837(0.843)±0.012
Ωm 0.3061(0.3052)±0.0054 0.2997(0.3)±0.0047
total χ2

min 4157.6 4159.8
∆χ2

min(EDE−ΛCDM) -6.4 -26.1
QDMAP 1.5σ

Table 7.4: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE
model confronted to BaseTTTEEE+ACT+Lens+EFTBOSS, with and without SH0ES.

residual tension with SH0ES using the QDMAP metric introduced previously. In that case,
we find that the preference for EDE without SH0ES is strongly reduced, in agreement
with previous works, but the 2σ upper limit on fEDE < 0.110 is much weaker than in the
BaseTTTEEE+Lens+EFTBOSS analysis presented previously, fEDE < 0.083. As a result, the
tension metric between BaseTTTEEE+ACT+Lens+EFTBOSS and SH0ES is released to 1.5σ

compared to 4.7σ in ΛCDM (and 2.1σ without ACT data). When the SH0ES prior is included,
we find fEDE = 0.108+0.028

−0.021 and h = 0.715± 0.009 (in very good agreement with the results
presented earlier without ACT), with no degradation in the χ2 of EFTBOSS. This confirms
that the EFTBOSS data can accommodate the amount of EDE required to resolve the Hubble
tension (with fEDE ∼ 0.1 and h∼ 0.72), but constrain more extreme EDE contributions.

7.3.4 Impact of Pantheon+ data
To finish, we perform an analysis with the new Pantheon+ SNIa catalog [132], which is

known to favor a higher Ωm = 0.338± 0.018, to illustrate the impact that these new data have
on the EDE model. We perform analyses of four datasets in combination with Pantheon+, fol-
lowing our baseline data, namely, BaseEFTBOSS, BaseTTTEEE+Lens+EFTBOSS(+SH0ES),
and BaseTT650TEEE+ACT+Lens+EFTBOSS. The results of these analyses are presented
in Tab. 7.5 and in Fig. 7.9, while all relevant χ2 statistics are given in App. D.3, Tab. D.5.
First, without information from the primary CMB, we find that the combination of EFT-
BOSS+BBN+Lens+BAO+PanPlus (i.e., BaseEFTBOSS+PanPlus) leads to a weak constraint
on fEDE(zc)< 0.228 with h = 0.717+0.015

−0.026 in good agreement with SH0ES. In fact, even within
ΛCDM we find h = 0.694+0.012

−0.014, which is not in significant tension with SH0ES. This data
combination was recently argued to constrain new physics solution to the Hubble tension
that affects the sound horizon, due to the fact that measurement of h based on the scale of
matter-radiation equality keq (which can be extracted by marginalizing over the sound horizon
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BaseEFTBOSS BaseTTTEEE+Lens BaseTTTEEE+Lens BaseTT650TEEE+ACT+Lens
+PanPlus +EFTBOSS+PanPlus +EFTBOSS+PanPlus+SH0ES +EFTBOSS+PanPlus

fEDE(zc) < 0.228(0.01) < 0.079(0.056) 0.123(0.141)+0.030
−0.018 < 0.137(0.11)

log10(zc) unconstrained (3.91) 3.59(3.57)+0.25
−0.21 3.64(3.57)+0.23

−0.13 < 3.5(3.5)
θi unconstrained(2.98) unconstrained(2.74) 2.59(2.77)+0.31

+0.064 unconstrained(2.78)
h 0.717(0.692)+0.015

−0.026 0.684(0.692)+0.006
−0.001 0.719(0.724)+0.009

−0.008 0.700(0.714)+0.013
−0.019

ωcdm 0.142(0.131)+0.010
−0.014 0.1222(0.1251)+0.0015

−0.0028 0.1317(0.1346)±0.0031 0.1258(0.1306)+0.0039
−0.0058

10−2ωb 2.276(0.023)+0.035
−0.039 2.251(2.254)±0.018 2.291(2.275)+0.020

−0.024 2.258(2.259)±0.019
109As 1.88(1.929)+0.16

−0.20 2.114(2.148)±0.029 2.155(2.157)+0.030
−0.036 2.120(2.135)±0.033

ns 0.873(0.889)±0.049 0.9700(0.9752)+0.0046
−0.0071 0.9911(0.9912)+0.0062

−0.0071 0.9827(0.9877)±0.0081
τreio − 0.0562(0.0558)±0.0069 0.0582(0.0554)±0.0077 0.0519(0.0516)+0.0065

−0.0075
S8 0.815(0.824)±0.018 0.832(0.837)±0.010 0.840(0.847)±0.012 0.831(0.839)+0.012

−0.011
Ωm 0.321(0.324)±0.013 0.3116(0.3093)±0.0056 0.3000(0.3014)±0.0047 0.3041(0.3016)±0.0061
total χ2

min 1537.9 4304.0 4187.0 4085.1
∆χ2

min(EDE-ΛCDM) 0 -1.1 -32.3 -9.2

Table 7.5: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE
model confronted to various datasets, including the recent PanPlus SNIa catalog.

information 20) is in tension with the SH0ES measurement [195, 62, 157]. In our analysis, we
stress that we do not marginalize over the sound horizon in the EFTBOSS analysis. We do not
expect that removing part of the data through the marginalization procedure would make BOSS
data appear in strong tension with SH0ES, at least in EDE. Rather, we expect that constraints
would significantly weaken. We leave for future work to test whether the determination of h
from keq is robust to changes in the cosmological model.

When combining with PlanckTTTEEE, we find that constraints on EDE are increased by
∼ 5% with respect to the analogous analysis with Pantheon18, with fEDE(zc) < 0.079. This
can be understood by noting that the larger Ωm favored by Pantheon+, coupled with the pos-
itive correlation between fEDE(zc)− h, can lead to high ωm = Ωmh2 which are constrained
by CMB data. However, once the SH0ES cepheid calibration of SNIa is included, we find a
strong preference for EDE, with fEDE(zc) = 0.123+0.030

−0.018 (i.e., nonzero at more than 5σ ) and
a ∆χ2(EDE−ΛCDM) = −32.3 (compared to −22.7 with Pantheon18). The cost in χ2 for
PlanckTTTEEE+Lens and EFTBOSS compared to the analysis without the SH0ES calibration
is small, with χ2(Planck) increasing by +2.3 and χ2(EFTBOSS) increasing by +0.9, which
further attests to the non-Gaussianity of the posterior in the absence of the SH0ES calibration.
The QDMAP tension metric introduced earlier cannot be used as easily, due to the fact that the
SH0ES data are now modeled in a more involved way, making use of a correlation matrix con-
necting SNIa calibrators and high−z SNIa [153], rather than the simple Gaussian prior on h.

Finally, when combining with Planck TT650TEEE and ACT, we find that the preference
for EDE seen within ACT data further decreases to ∆χ2 = −9.2 (2.2σ ) and we derive a limit
fEDE(zc) < 0.137, with h = 0.700+0.013

−0.019 and a . 2σ tension with SH0ES. We defer to future
work to further test the ability of EDE (and other promising models) to resolve the Hubble
tension in light of this new Pantheon+ SNIa catalog.

20More precisely, in Refs [195, 62, 157], the marginalization over the sound horizon information is intended as
a consistency test to be performed within ΛCDM.
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Figure 7.9: Top left panel: 2D posterior distributions from BaseTTTEEE+Lens+EFTBOSS in combi-
nation with either Pantheon18 or Pantheon+ data, and the SH0ES cepheid calibration. We recall that
BaseTTTEEE refers to PlanckTTTEEE+BAO+Pan18 data. Top right panel: 2D posterior distributions
from BaseEFTBOSS and BaseTT650TEEE+ACT+Lens+EFTBOSS, in combination with either Pan-
theon18 or Pantheon+ data. We recall that BaseTT650TEEE refers to PlanckTT650TEEE+BAO+Pan18
data, while BaseEFTBOSS refers to EFTBOSS+BBN+Lens+BAO+Pan18. Bottom panel: 2D posterior
distributions from BaseEFTBOSS, with either Pantheon18 or Pantheon+ data.
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7.4 Conclusions
The developments of the predictions for the galaxy clustering statistics from the EFTofLSS

have made possible the study of BOSS data beyond the conventional analyses dedicated
to extracting BAO and f σ8 information. There has been in the recent literature a number
of studies aiming at measuring the ΛCDM parameters at precision comparable with that of
Planck CMB data (see, e.g., Refs. [58, 97, 101, 59, 160, 103, 69, 62]). Additionally, it was
shown that BOSS full-shape data, when analyzed using the one-loop predictions from the
EFTofLSS (here called EFTBOSS data), can lead to strong constraints on extension to the
ΛCDM model. In particular, the EDE model, currently one of the most promising models to
resolve the Hubble tension [275, 183], was shown to be severely constrained by EFTBOSS data
[327, 328]. However, it was subsequently argued that part of the constraints may come from a
mismatch in the primordial power spectrum As amplitude between EFTBOSS and Planck [346].

Recently, it was found that the original EFTBOSS data used in these analyses were affected
by an inconsistency between the normalization of the survey window function and the one of
the data measurements, which led to a mismatch in As. A proper reanalysis of the EFTBOSS
data constraints on the EDE model was lacking until now.

In this chapter, we have performed a thorough investigation of the constraints on EDE in
light of the correctly normalized EFTBOSS data and estimated the shifts introduced on the re-
constructed cosmological parameters and their errors between various analysis strategies. A
similar analysis within the ΛCDM model is presented in Sec. 5.3 of chapter 5. Our results
are summarized in the following.

7.4.1 EFTBOSS constraints on EDE alone
We have shown in Sec. 7.2.2 that, regardless of the BOSS data or the likelihood we con-

sider, the BOSS full-shape (analyzed on their own with a BBN prior) leads to reconstructed
values of H0 that are compatible with what is obtained by the SH0ES Collaboration. Yet, the
various EFTBOSS measurements, as well as the PyBird and CLASS-PT likelihoods, do not
have the same constraining power on EDE:

• When using the PyBird likelihood, we found fEDE(zc) < 0.321 when analyzing
PLZ/CM

FKP +α
LZ/CM
rec , while analyzing Pz1/z3

QUAD +α
z1/z3
rec yields fEDE(zc) < 0.382, a ∼ 20%

difference.

• When using the same BOSS data, namely, Pz1/z3
QUAD, we have found that the PyBird like-

lihood gives fEDE(zc) < 0.382, while the CLASS-PT likelihood gives fEDE(zc) < 0.448,
i.e., a ∼ 15% difference.

• Restricting our analysis to the range of critical redshift log10(zc) ∈ [3.4,3.7] that
can resolve the Hubble tension, we have shown that the combination of EFT-
BOSS+BBN+Lens+BAO+Pan18, leads to the constraints fEDE(zc)< 0.2 (95% C.L.) and
h = 0.710+0.015

−0.025 , which does not exclude the EDE models resolving the Hubble tension.
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• The inclusion of the recent Pantheon+ data does not affect this conclusion as we find
h = 0.717+0.015

−0.026. We do not expect that marginalizing over the sound horizon as done in
Refs. [195, 62, 157] would alter our conclusions, as it would simply remove information
from the data. This question will be thoroughly explored elsewhere.

7.4.2 Planck+EFTBOSS constraints on EDE
In combination with Planck TTTEEE data, we have shown that constraints on EDE have

changed due to the correction of the normalization of the window function:

• The combination of PlanckTTTEEE+Lens+BAO +Pan18+EFTBOSS leads to fEDE(zc)<
0.083, which is a ∼ 10% improvement over the constraints without BOSS data and a ∼
5% improvement over the constraints with conventional BAO/ f σ8 data. Yet, this is much
weaker than the constraints reported with the incorrect normalization, namely, fEDE <
0.054. We quantify that the Hubble tension is reduced to the 2.1σ level in the EDE
cosmology (1.9σ without EFTBOSS) compared to 4.8σ in the ΛCDM model, and we
find fEDE(zc) = 0.103+0.027

−0.023 at zc = 3970+255
−205 when the SH0ES prior is included.

• Replacing Pantheon18 by the new Pantheon+ data improves the constraints on EDE to
fEDE(zc)< 0.079. Yet, the inclusion of the SH0ES cepheid calibration leads to fEDE(zc)=
0.123+0.030

−0.018 at zc = 4365+3000
−1100, i.e., a nonzero fEDE(zc) at more than 5σ with ∆χ2(EDE−

ΛCDM) = −32.3. The cost in χ2 for PlanckTTTEEE+Lens and EFTBOSS compared
to the analysis without the SH0ES calibration is small, with χ2(Planck) increasing by
+2.3 and χ2(EFTBOSS) increasing by +0.9, which attests to the non-Gaussianity of the
posterior in the absence of the SH0ES calibration. This deserves to be studied further
through a profile likelihood approach [188, 189].

7.4.3 ACT+EFTBOSS constraints on EDE
Finally, we have studied the impact of EFTBOSS data on the recent hints of EDE observed

within ACT DR4 data:

• EFTBOSS reduces the preference for EDE over ΛCDM seen when analyzing ACT
DR4, alone or in combination with restricted PlanckTT data. The combination of
PlanckTT650TEEE+Lens+BAO+Pan18+ACT+EFTBOSS leads to a mild constraints
on fEDE(zc) < 0.172 with ∆χ2(EDE − ΛCDM) = −11.1, to be compared with
fEDE(zc) = 0.128+0.064

−0.039 without EFTBOSS+Lens, with ∆χ2(EDE−ΛCDM) =−14.6.

• The inclusion of Pantheon+ data further restricts fEDE(zc) < 0.137, with ∆χ2(EDE−
ΛCDM) =−9.2.

• When full Planck data are included, we derived a constraint fEDE(zc) < 0.110, which is
∼ 30% weaker than without ACT data. When all CMB data are included in combination
with EFTBOSS, the Hubble tension is reduced to 1.5σ in the EDE model, to be compared
with 4.7σ in ΛCDM. The inclusion of the SH0ES prior leads to fEDE(zc) = 0.108+0.028

−0.021
at zc = 3565+220

−495.

We conclude that EFTBOSS data do not exclude EDE as a resolution to the Hubble tension,
where we consistently find fEDE(zc) ∼ 10− 12% at zc ∼ 3500− 4000, with h ∼ 0.72, when
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the cepheid calibration is included in the analyses. However, EFTBOSS data do constrain very
high EDE fraction as seen when analyzing ACT DR4 data.

7.4.4 Final comments
There are a number of relevant caveats to stress regarding our analyses. First, we note that

the reconstructed S8 values from the various analyses that favor EDE are ∼ 2.8− 3.2σ higher
than those coming from weak lensing measurement (and their cross-correlation with galaxy
clustering) such as DES [79] and KiDS [177]. As was already pointed out in the past, this
indicates that weak lensing data (and the existence of a S8 tension) could be used to further
restrict the existence of EDE. Nevertheless, it has been noted that solutions to the S8 tension
may be due to systematic effects [116] or nonlinear modeling including the effect of baryons
at very small scales [200] or to a more complete dynamics in the dark sector [353, 354]. In
fact, models that resolve the S8 tension leave the EDE resolution unaffected [335, 355] such
that, although perhaps theoretically unappealing, it is possible that solutions to the H0 and
S8 lie in different sectors. We leave for future work a robust study of EDE in light of the
combination of EFTBOSS and weak lensing data, which will require better handling of the
modeling of physical effects at scales beyond the range of validity of our EFT. Second, it will
be very important to extend this work to include the bispectrum, which was recently analyzed
at the one-loop level within ΛCDM [95, 108]. Additional constraints on EDE may also arise
from measurements of the age of old objects such as globular clusters of stars [356, 357], or
the halo mass function at high−z [358]. Interestingly, using N-body simulations, Ref. [358]
showed that EDE predicts 50% more massive clusters at z = 1 and twice more galaxy-mass
halos at z = 4 than ΛCDM. These predictions can be tested by observations from the James
Webb Space Telescope and the first publicly available data are, in part, better fit by EDE than
ΛCDM [359].

To close this work, we mention that we find here in agreement with previous literature, that
the cosmological data including SH0ES prefer a higher value for the spectral tilt ns in the EDE
model than in ΛCDM, with ns ∼ 1 allowed at . 2σ depending on the combination of data
considered. Of interest here, we see that the inclusion of EFTBOSS data does not significantly
pull back ns to lower value, and when analyzed alone (with a BBN prior) also independently
favors a value of ns consistent with scale independence at ∼ 1σ . A value of ns close to
that of the Harrison–Zeldovich spectrum, when put in perspective of CMB measurements of
the tensor-to-scalar ratio, would dramatically change the status of the preferred inflationary
models [360] (see also Refs. [361, 362, 363]). Therefore, if EDE is firmly detected with future
cosmological data, beyond serving as resolution of the H0 tension, it would also have important
consequences for early Universe physics.

It should be noted that a similar analysis was subsequently carried out using eBOSS data
in Ref. [364] (of which I am one of the authors).





VIII

EFTofLSS’ take on the Hubble tension and
the acoustic dark energy

Contents
8.1 The model and the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

8.1.1 Review of the ADE model . . . . . . . . . . . . . . . . . . . . . . 230

8.1.2 Review of the axion-like EDE model . . . . . . . . . . . . . . . . . 232

8.1.3 Data and analysis methods . . . . . . . . . . . . . . . . . . . . . . 233

8.2 Cosmological results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

8.2.1 Impact of the EFTofLSS analysis . . . . . . . . . . . . . . . . . . . 236

8.2.2 Impact of the Pantheon+ data . . . . . . . . . . . . . . . . . . . . . 238

8.3 Model variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.3.1 Variation of c2
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.3.2 The cADE model . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

This chapter is based on:

T. Simon, Can acoustic early dark energy still resolve the Hubble tension?, submitted
to Phys. Rev. D, arXiv:2310.16800.



230 8. EFTOFLSS’ TAKE ON THE HUBBLE TENSION AND THE ACOUSTIC DARK ENERGY

In this chapter, we reassess the constraints on the acoustic dark energy (ADE) and
axion-like EDE models (paying particular attention to the former) and their ability to resolve
the Hubble tension, by successively evaluating the impact of the effective field theory (EFT)
full-shape analysis applied to the BOSS LRG [81] and eBOSS QSO [82] data, and the impact
of the Pantheon+ data [132]. On the one hand, we make use of developments of the one-loop
prediction of the galaxy power spectrum in redshift space from the effective field theory
of large-scale structures (EFTofLSS) applied to the BOSS [58] and eBOSS [117] data (see
chapter 4) in order to constrain the ADE model. This study is similar to what was carried out for
the axion-like EDE in chapter 7 (see also Refs. [327, 346, 328]), which showed that this latter
model leaves signatures in the galaxy power spectrum on large scales that can be probed by the
BOSS data. On the other hand, we update the constraints on the ADE model by considering the
Pantheon+ data from Ref. [132]. It has already been shown in chapter 7 that the combination
of the Pantheon+ data with a SH0ES prior provides better constraints on the axion-like EDE
model than the equivalent analysis including Pantheon data. This can be interpreted as a
consequence of the fact that the Pantheon+ data prefers a value of Ωm = 0.334± 0.018 which
is higher than that of the Pantheon data. Together with the measured value of H0 = 100 · h
km/s/Mpc by SH0ES, it leads to an increased value of ωcdm = Ωcdm ·h2 (see Ref. [365]), which
cannot be fully compensated by the presence of EDE, therefore degrading slightly the fit to
CMB data.

In Sec. 8.1, we provide a review of the ADE and axion-like EDE models, as well as a
description of the analysis method and the datasets to which these models will be subjected.
In Sec. 8.2, we present the constraints of the ADE model and compare them to the axion-like
EDE case, while in Sec. 8.3 we consider some additional variations of the model under study.
In Apps. E.1 and E.2, we provide additional material.

8.1 The model and the data

8.1.1 Review of the ADE model
In this chapter, we focus on the acoustic dark energy (ADE) model proposed in Ref. [337]

(see Ref. [280] for a general introduction). In this model, the ADE equation of state parameter,
wADE(a) = PADE(a)/ρADE(a), is modelled as

wADE(a) =
1+w f[

1+(ac/a)3(1+w f )/p
]p −1 . (8.1)

In Fig. 8.1, we plot the evolution of wADE as a function of the cosmological redshift z. This
figure clearly illustrates that in this model the critical redshift zc = (a0−ac)/ac sets a transition
in the ADE equation of state from wADE → −1, when z� zc, to wADE → w f , when z� zc.
Therefore, this parametrization allows the ADE component to behave in a similar way to dark
energy before the critical redshift (exactly like the axion-like EDE model), while it allows the
late-time value of the ADE equation of state to be set thanks to the parameter w f . As shown in
Fig. 8.1, the rapidity of this transition is controlled by the parameter p, which is set at p = 1 for
our baseline model, corresponding to the modelling of the time averaged background equation
of state of the axion-like EDE model [349]. Similarly to the axion-like EDE case where
wEDE(z� zc) = 1/2 (see chapter 7), the ADE dilutes faster than the radiation (i.e., w f > wr)
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Figure 8.1: Evolution of the ADE equation of state parameter, wADE, as well as the ADE fractional
energy density, fADE(zc), as a function of the cosmological redshift z. To perform this plot, we use
the best-fit values of the BAO/ f σ8 + Pan + Mb analysis (see Tab. 8.1). For the ADE equation of state
parameter, we set p = 1, which corresponds to our baseline setup, and p = 1/2, which corresponds to
the setup of Ref. [337]. The horizontal lines correspond to the radiation and dark energy equation of
state parameters, wr and wΛ, respectively, while the dashed vertical lines correspond to the redshift of
recombination z∗, the redshift of the matter-radiation equality zeq, and the ADE critical redshift zc.

below the critical redshift, in order to suppress the contribution of this component to the total
budget of the Universe at the moment of the CMB.

Let us note that the parametrization of Eq. (8.1) can be achieved in the K-essence class of
dark energy models. In particular, the dark component is here a perfect fluid represented by a
minimally-coupled scalar field φ with a general kinetic term [366]. For the specific case of a
constant sound speed c2

s , the Lagrangian density is written as [367]:

P(X ,φ) =

(
X
A

) 1−c2
s

2c2
s X−V (φ) , (8.2)

where X = −∇2φ/2 and A is a constant density scale [337]. In this category of models,
wADE→ c2

s if the kinetic term dominates, whereas wADE→−1 if the potential V (φ) dominates.
The main advantage of the ADE model over the axion-like EDE model is that the former
provides a general class of exact solutions, while the latter requires a specific set of initial
conditions to achieve a similar phenomenology [337].

Since the ADE equation of state parameter changes over time, the conservation
equation gives

ρADE(a) = ρADE,0e3
∫ 1

a [1+wADE(a′)]da′/a′ , (8.3)
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which allows us to define the ADE fractional energy density as

fADE(a) =
ρADE(a)
ρtot(a)

. (8.4)

In Fig. 8.1, we also plot the evolution of fADE as a function of the cosmological redshift z. We
notice that this parameter is maximal around the ADE equation of state transition, sets by the
critical redshift zc, namely when fADE(z ∼ zc). Then, this parameter becomes subdominant at
the time of recombination, with fADE(z∗)∼ 1% [368].

Finally, the ADE model we are considering is described by the three following parameters

{zc, fADE(zc), w f } . (8.5)

Ref. [337] also considers the variation of a fourth parameter that determines the behavior of the
ADE perturbations, namely their rest frame sound speed c2

s (k,a). Unlike the standard axion-like
EDE model (see bellow), we assume for this model the scale independence of this parameter,
i.e., c2

s (k,a) = c2
s (a), which is equivalent to assuming a perfect fluid with a linear dispersion

relation. In addition, because of the sharp transition of the wADE parameter, the impact of
the ADE component on the perturbed universe is localised in time, which implies that we can
approximate this parameter as a constant. Thus, Ref. [337] varies this parameter to its critical
redshift value, namely c2

s = c2
s (a = ac), in addition to the three other parameters listed above.

In our baseline model, we consider that c2
s = w f , insofar as it has been shown to be a good

approximation near the best-fit [337]. However, in Sec. 8.3, we consider two model variations
of our baseline model: (i) the c2

s ADE model, where we free these two parameters independently,
and (ii) the cADE model, where we set c2

s =w f = 1. Let us note that it exists a second difference
between Refs. [337, 369] and our baseline analysis, since these references set p = 1/2, which
leads to a sharper transitions than ours (with p = 1), as shown in Fig. 8.1. However, the impact
of this parameter on cosmological results is very minor, and we have verified that we obtain
the same results as Ref. [369] with p = 1.

8.1.2 Review of the axion-like EDE model
For comparison, we also consider the axion-like early dark energy (EDE) model [274, 275,

276] (see Sec. 7.1 of chapter 7). Let us note here that the axion-like EDE sound speed c2
s (a,k) =

δPEDE(k,a)/δρEDE(k,a) is scale- and time-dependent, and is entirely determined by the three
EDE parameters (zc, fEDE(zc), Θi). In the fluid approximation, one can estimate the a and k
dependencies of this parameter as [349, 275]:

c2
s (a,k) =





1 , a≤ ac,

2a2(n−1)ϖ2(a)+ k2

2a2(n+1)ϖ2(a)+ k2 , a > ac ,
(8.6)

where ϖ corresponds to the angular frequency of the oscillating background field, which has a
time dependency fixed by zc, n and Θi (see Ref. [349]). Let us note however that the axion-like
EDE model we consider in this work does not rely on this fluid approximation, and instead
solves the exact (linearized) Klein-Gordon equation for a scalar field, which is expressed in
synchronous gauge as [41]:

δφ
′′
k +2Hδφ

′
k +
[
k2 +a2Vn,φφ

]
δφk =−h′

φ ′

2
, (8.7)
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where the prime denotes derivatives with respect to conformal time.

8.1.3 Data and analysis methods
We perform Monte Carlo Markov Chain (MCMC) analyses, confronting the ADE

model with recent cosmological observations. To do so, we make use of the Metropolis-
Hastings algorithm from MontePython-v3 1 code [136, 137] interfaced with our modified
CLASS [370, 221] version. 2 In this chapter, we perform various analyses from a com-
bination of the following datasets:

• Planck: The low-` CMB temperature and polarization auto-correlations (TT, EE), and
the high-` TT, TE, EE data [215], as well as the gravitational lensing potential reconstruc-
tion from Planck 2018 [179].

• ext-BAO: The low-z BAO data gathered from 6dFGS at z = 0.106 [127], SDSS DR7 at
z = 0.15 [128].

• BOSS BAO/ f σ8: BAO measurements, cross-correlated with the redshift space distortion
measurements, from the CMASS and LOWZ galaxy samples of BOSS DR12 LRG at
z = 0.38, 0.51, and 0.61 [81].

• eBOSS BAO/ f σ8: BAO measurements, cross-correlated with the redshift space distor-
tion measurements, from the CMASS and LOWZ quasar samples of eBOSS DR16 QSO
at z = 1.48 [82].

• EFTofBOSS: The EFTofLSS analysis of BOSS DR12 LRG, cross-correlated with the
reconstructed BAO parameters [126]. The SDSS-III BOSS DR12 galaxy sample data and
covariances are described in [81, 125]. The measurements, obtained in [69], are from
BOSS catalogs DR12 (v5) combined CMASS-LOWZ [124], and are divided in redshift
bins LOWZ, 0.2 < z < 0.43 (zeff = 0.32), and CMASS, 0.43 < z < 0.7 (zeff = 0.57),
with north and south galactic skies for each, respectively denoted NGC and SGC. From
these data we use the monopole and quadrupole moments of the galaxy power spectrum.
The theory prediction and likelihood for the full-modeling information are made available
through PyBird [59].

• EFTofeBOSS: The EFTofLSS analysis (see chapter 4) of eBOSS DR16 QSOs [82]. The
QSO catalogs are described in [120] and the covariances are built from the EZ-mocks
described in [121]. There are about 343 708 quasars selected in the redshif range 0.8 <
z < 2.2, with zeff = 1.52, divided into two skies, NGC and SGC [122, 123]. From these
data we use the monopole and quadrupole moments of the galaxy power spectrum. The
theory prediction and likelihood for the full-modeling information are made available
through PyBird.

• Pantheon: The Pantheon catalog of uncalibrated luminosity distance of type Ia super-
novae (SNeIa) in the range 0.01 < z < 2.3 [133].

• Pantheon+: The newer Pantheon+ catalog of uncalibrated luminosity distance of type
Ia supernovae (SNeIa) in the range 0.001 < z < 2.26 [132].

1https://github.com/brinckmann/montepython_public.
2https://github.com/PoulinV/AxiCLASS.

https://github.com/brinckmann/montepython_public
https://github.com/PoulinV/AxiCLASS
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• Pantheon+/SH0ES: The Pantheon+ catalog cross-correlated with the absolute calibra-
tion of the SNeIa from SH0ES [153].

• Mb: Gaussian prior from the most up-to-date late-time measurement of the absolute
calibration of the SNeIa from SH0ES, Mb = −19.253± 0.027 [153], corresponding to
H0 = (73.04±1.04) km/s/Mpc.

We choose Planck + ext-BAO + BOSS BAO/ f σ8 + eBOSS BAO/ f σ8 + Pantheon (option-
ally with the Mb prior) as our baseline analysis, called, for the sake of simplicity, “BAO/ f σ8
+ Pan.” In order to assess the impact of the EFT full-shape analysis of the BOSS and eBOSS
data on the ADE resolution of the Hubble tension, we compare the baseline analysis with an
equivalent analysis that includes the EFTofBOSS and EFTofeBOSS likelihoods instead of the
BOSS and eBOSS BAO/ f σ8 likelihoods. This analysis is called “EFT + Pan.” Finally, in order
to gauge the influence of the new Pantheon data, we replace the Pantheon likelihood with the
Pantheon+ likelihood. This analysis, referred to as “EFT + PanPlus,” is compared with the
aforementioned EFTofLSS analysis. In App. E.1, we show explicitly that the addition of the Mb
prior on top of the Pantheon+ likelihood is equivalent to the use of the full “Pantheon+/SH0ES”
likelihood as provided in Ref. [153].

For all runs performed, we impose large flat priors on {ωb,ωcdm,H0,As,ns,τreio}, which
correspond, respectively, to the dimensionless baryon energy density, the dimensionless cold
dark matter energy density, the Hubble parameter today, the variance of curvature perturbations
centered around the pivot scale kp = 0.05 Mpc−1 (according to the Planck convention), the
scalar spectral index, and the reionization optical depth. Regarding the free parameters of the
ADE model, we impose logarithmic flat priors on zc, and flat priors on fADE(zc) and wADE,

3≤ log10(zc)≤ 4.5 ,
0≤ fADE(zc)≤ 0.2 ,
0≤ w f ≤ 3.6 .

Note that we have verified that a wider prior on w f does not impact our results. When we com-
pare the ADE model with the axion-like EDE model, we use the following priors for the latter:

3≤ log10(zc)≤ 4 ,
0≤ fEDE(zc)≤ 0.5 ,
0≤Θi ≤ π .

In this work, we use Planck conventions for the treatment of neutrinos, that is, we include two
massless and one massive species with mν = 0.06 eV [11]. In addition, we use Hmcode [311] to
estimate the non-linear matter clustering solely for the purpose of the CMB lensing. We define
our MCMC chains to be converged when the Gelman-Rubin criterion R− 1 < 0.05. Finally,
we extract the best-fit parameters from the procedure highlighted in the appendix of Ref. [183],
and we produce our figures thanks to GetDist [184].

In this chapter, we compare the models with each other using two main metrics. Firstly,
in order to assess the ability of an extended model M to fit all the cosmological data, we
compute the Akaike Information Criterion (AIC) of this model relative to that of the ΛCDM.
This metric is defined as follows

∆AIC = χ
2
min,M −χ

2
min,ΛCDM +2 · (NM −NΛCDM) , (8.8)
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where M ∈ {ADE, EDE,c2
s ADE, cADE}, and where NM stands for the number of free pa-

rameters of the model. This metric enables us to determine whether the fit within a particular
model M significantly improves that of ΛCDM by penalizing models with a larger number
of degrees of freedom. Secondly, in order to gauge the ability of the extended model M to
solve the Hubble tension for a given combination of data D (which does not include the Mb
prior), we also compute the residual Hubble tension thanks to the difference of the maximum
a posteriori (DMAP) [352], determined by

QDMAP =
√

χ2
min,M (D +Mb)−χ2

min,M (D) . (8.9)

This metric allows us to determine how does the addition of the Mb prior to the dataset D impact
the fit within a particular model M . Ref. [183] asserts that a model is a good candidate for
solving the Hubble tension if it meets these two conditions: ∆AIC <−6.91 and QDMAP < 3σ .
Finally, we also consider the Gaussian tension (GT), computed as

GT =
H0(SH0ES)−H0(D)√
σ2

H0
(SH0ES)+σ2

H0
(D)

, (8.10)

where H0 and σH0 correspond to the mean and standard deviation of the Hubble parameter
today determined from the SH0ES experiment and the dataset D (within the model M ). The
Gaussian tension is certainly the most direct metric for quantifying the Hubble tension, but
the main problem with this metric is that it is unable to favor a complex model whose some
parameters become irrelevant in the ΛCDM limit. If a probability density function deviates
from Gaussian in a complex model (as is the case for EDE models), only the Gaussian ΛCDM
limit has significant statistical weight [183, 346].

8.2 Cosmological results
In this section, we discuss the cosmological constraints of the ADE model and its ability

to solve the Hubble tension by successively evaluating the impact of the EFT full-shape
analysis of the BOSS and eBOSS data (compared with the standard BAO/ f σ8 analysis) and
the impact of the new Pantheon data (compared with the equivalent older data) on this model.
The cosmological constraints are shown in Tab. 8.1, while the χ2

min values associated with each
likelihood are presented in Tab. E.1 of App. E.2. In Tab. 8.1, we also display the ∆χ2

min and the
associated ∆AIC with respect to ΛCDM, as well as the QDMAP for several combinations of data.

Our baseline combination of data, denoted “BAO/ f σ8 + Pan,” refers to Planck + ext-BAO
+ BOSS BAO/ f σ8 + eBOSS BAO/ f σ8 + Pantheon, corresponding roughly to that used in
Ref. [369]. 3 For this analysis, combined with the Mb prior, we find fADE(zc) = 0.081±0.018
and H0 = 71.24± 0.68 km/s/Mpc for the ADE model, leading to a residual Hubble tension
of QDMAP = 2.6σ and a preference over ΛCDM of ∆AIC = −22.3 (see Tab. 8.1). Note that
this χ2 improvement is mainly driven by the SH0ES data (as is also the case in the remain-
der of this paper), implying that this preference over ΛCDM will no longer be significant if
the Hubble tension arises from systematic associated with the data. Let us underline that with

3Note that this analysis used another SH0ES prior, H0 = 74.03±1.42 km/s/Mpc, from Ref. [371], and does not
take into account the redshift space distortion information (but only the BAO).
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BAO/ f σ8 + Pan EFT + Pan EFT + PanPlus
Mb prior? no yes no yes no yes
fADE(zc) < 0.060(0.034) 0.081(0.090)±0.018 < 0.049(0.010) 0.068(0.076)±0.019 < 0.036(0.011) 0.073(0.082)±0.020
log10(zc) unconst.(3.748) 3.655(3.677)±0.093 unconst.(3.713) 3.676(3.686)+0.095

−0.120 unconst.(3.957) 3.692(3.724)+0.098
−0.120

w f > 0.49(0.69) 0.79(0.76)+0.10
−0.12 > 0.59(0.70) 0.78(0.75)+0.11

−0.13 > 0.61(0.57) 0.76(0.73)±0.13
H0 68.44(69.04)+0.47

−0.93 71.24(71.49)±0.68 68.16(68.26)+0.41
−0.53 71.01(71.31)±0.73 68.03(68.16)+0.43

−0.53 71.13(71.29)±0.73
ωcdm 0.1212(0.1239)+0.0012

−0.0030 0.1291(0.1305)±0.0027 0.1196(0.1202)+0.0009
−0.0015 0.1267(0.1280)±0.0027 0.1201(0.1211)+0.0011

−0.0015 0.1278(0.1294)±0.0028
102ωb 2.259(2.269)+0.016

−0.023 2.304(2.309)±0.021 2.254(2.252)+0.014
−0.017 2.303(2.306)±0.022 2.250(2.258)±0.018 2.306(2.311)±0.022

109As 2.123(2.119)±0.030 2.159(2.152)±0.031 2.111(2.111)±0.030 2.148(2.151)+0.028
−0.032 2.111(2.116)+0.028

−0.036 2.151(2.150)+0.028
−0.033

ns 0.9711(0.9748)+0.0041
−0.0074 0.9900(0.9925)±0.0061 0.9684(0.9686)+0.0040

−0.0048 0.9878(0.9904)±0.0060 0.9679(0.9697)+0.0038
−0.0047 0.9890(0.9906)±0.0063

τreio 0.0583(0.0540)+0.0063
−0.0075 0.0588(0.0561)+0.0066

−0.0077 0.0572(0.0573)±0.0070 0.0590(0.0584)+0.0067
−0.0077 0.0570(0.0574)±0.0072 0.0585(0.0573)+0.0065

−0.0077
S8 0.828(0.834)+0.011

−0.013 0.843(0.846)±0.013 0.820(0.823)±0.010 0.832(0.835)±0.012 0.825(0.830)+0.010
−0.011 0.836(0.842)±0.013

Ωm 0.3083(0.3089)±0.0054 0.3011(0.3018)±0.0050 0.3074(0.3078)±0.0050 0.2983(0.2983)±0.0047 0.3096(0.3107)+0.0047
−0.0053 0.2994(0.3014)±0.0047

∆χ2
min -3.9 -28.3 -1.4 -24.9 -1.3 -27.8

∆AIC +2.1 -22.3 +4.6 -18.9 +4.7 -21.8
QDMAP 2.6σ 2.9σ 3.6σ

QDMAP(EDE) 1.5σ 2.4σ 2.5σ

QDMAP(ΛCDM) 5.6σ 5.6σ 6.3σ

Table 8.1: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the ADE
model confronted to various datasets. All datasets include Planck + ext-BAO data, while we consider
either the BAO/ f σ8 information or the EFT full-shape analysis for the BOSS and eBOSS data, and we
consider either the Pantheon data or the Pantheon+ data (with and without the Mb prior). We also display
for all datasets the ∆χ2

min with respect to ΛCDM, the associated ∆AIC, as well as the QDMAP. Finally,
QDMAP(ΛCDM) and QDMAP(EDE) corresponds the QDMAP of the ΛCDM and axion-like EDE models
for the equivalent datasets.

our baseline combination of data, the ADE model satisfies both Ref. [183] conditions. In ad-
dition, we find for the ADE model that GT = 3.7σ for our original combination of data. We
are now assessing how the EFTofLSS on the one hand, and the new data from Pantheon+ on
the other hand, change these conclusions.

8.2.1 Impact of the EFTofLSS analysis

In the top panel of Fig. 8.2, we show the reconstructed 2D posteriors of the ADE model
for the analysis with the BOSS and eBOSS BAO/ f σ8 likelihoods (namely the BAO/ f σ8 +
Pan analysis), as well as for the analysis with the EFTofBOSS and EFTofeBOSS likelihoods
(namely the EFT + Pan analysis), either with or without the Mb prior. To isolate the effect of
the EFT full-shape analysis, we carry out these analyses using only the older Pantheon data.

For the analyses without the Mb prior, the addition of the EFT likelihood has a non-
negligible impact on the fADE(zc), w f , and H0 constraints. The upper bound of the ADE
fractional energy density and the lower bound of w f are indeed both improved by ∼ 20%,
while the standard deviation of H0 is reduced by ∼ 35%.

When we consider the Mb prior, EFTofBOSS and EFTofeBOSS do not improve the
parameter constraints of this model over the BAO/ f σ8 information. However, these likelihoods
shift fADE(zc) and H0 towards smaller values of 0.7σ and 0.3σ , 4 respectively. The EFT
full-shape analysis of the BOSS and eBOSS data therefore slightly reduces the ability of this
model to resolve the Hubble tension, and the QDMAP changes from 2.6σ to 2.9σ when EFT
likelihoods are considered (see Tab. 8.1). In particular, the χ2

min associated with the Mb prior
is degraded by 1.0 compared to the BAO/ f σ8 analysis. In addition, the preference for this

4Since we are considering here the same experiments (with different methods for extracting cosmological
constraints), we use the following metric: 2 · (θi−θ j)/(σθ ,i +σθ , j), where θi and σθ ,i are respectively the mean
value and the standard deviation of the parameter θ for the dataset i.
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Figure 8.2: Top panel: 2D posterior distributions reconstructed from the BAO/ f σ8 + Pan dataset com-
pared with the 2D posterior distributions reconstructed from the EFT + Pan dataset, either with or without
the Mb prior. Bottom panel: 2D posterior distributions reconstructed from the EFT + Pan dataset com-
pared with the 2D posterior distributions reconstructed from the EFT + PanPlus dataset, either with or
without the Mb prior. The gray bands correspond to the H0 constraint associated with the Mb prior,
H0 = (73.04±1.04) km/s/Mpc [153].
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model over the ΛCDM model is slightly reduced, given that the ∆AIC changes from −22.3 to
−18.9 when the EFT likelihood is added (see Tab. 8.1). Note that at this point, the ADE model
still satisfies both conditions of Ref. [183], even though QDMAP ∼ 3σ . However, the Gaus-
sian tension changes from 3.7σ to 4.3σ when EFT likelihoods are considered, which can be
explained by the fact that the fADE(zc) parameter is better constrained by the EFT + Pan dataset.

For the axion-like EDE case, we find for the equivalent analyses (see Tab. E.1 of App. E.2)
that the QDMAP changes from 1.5σ to 2.4σ , and that the ∆AIC changes from −29.1 to −22.9,
when EFT likelihoods are added. 5 The ADE model slightly better supports the addition of
the EFT likelihood compared to the EDE model, insofar as the QDMAP and ∆AIC are more
stable (see Tab. 8.1). However, the EDE model remains a better model to solve the Hubble
tension, with QDMAP = 2.4σ for the EFT + Pan analysis, compared to QDMAP = 2.9σ for the
ADE model, and has a better fit to the data when the Mb prior is added, with ∆AIC = −22.9,
compared to ∆AIC = −18.9 for the ADE model. For a detailed discussion of the EFTofLSS
impact on the EDE model in the framework of the BOSS data, please refer to chapter 7. 6

8.2.2 Impact of the Pantheon+ data

Let’s now turn to the impact of the latest Pantheon data, namely the Pantheon+ data, on the
ability of this model to resolve the Hubble tension. In the bottom panel of Fig. 8.2, we show
the reconstructed 2D posteriors of the ADE model for the analyses with the old Pantheon data
(i.e., the EFT + Pan analysis), as well as for the analyses with the updated data (i.e., the EFT
+ PanPlus analysis). To isolate the effect of the Pantheon+ data, we carry out these analyses
using only the EFT full-shape analysis of the BOSS and eBOSS data.

The analysis with the Pantheon+ data, but without any SH0ES prior, improves significantly
the 95% C.L. constraints on fADE(zc) by ∼ 30%. This implies that H0 is shifted down by
0.2σ 7 compared to the analysis with the old Pantheon data. Although the ADE model prefers
a higher value of ωcdm than ΛCDM (because ADE slows down the evolution of the growing
modes), the larger Ωm favored by the Pantheon+ data (Ωm = 0.334± 0.018 [132]) leads to a
large ωcdm = Ωcdm · h2 which is not sufficiently compensated for by ADE. Then, to offset the
high value of Ωm, the current Hubble parameter decreases slightly, as well as fADE(zc), since
the latter is positively correlated with H0.

When the Mb prior is included, non-zero contribution of ADE are favored. One may have
expected that the tighter constraints from Pantheon+ may reduce the contribution of fADE and
the value of H0. These are in fact stable when compared to analyses with the older Pantheon

5The similar analysis in chapter 7, which does not include the eBOSS data, determined that QDMAP = 2.0σ

for the BAO/ f σ8 + Pan analysis and that QDMAP = 2.1σ for the EFT + Pan analysis (see Tab. D.2 in chapter 7).
This difference is due solely to the eBOSS data: the χ2 of the eBOSS BAO/ f σ8 likelihood is improved when the
Mb prior is added (which decreases the QDMAP of the BAO/ f σ8 + Pan analysis), while the χ2 is degraded for the
EFTofeBOSS likelihood when the Mb prior is added (which increases the QDMAP of the EFT + Pan analysis).

6Note that chapter 7 used an H0 prior equivalent to the Mb prior, and did not consider the EFTofeBOSS likeli-
hood (as well as the eBOSS BAO/ f σ8 likelihood). Note that the impact of eBOSS data on the axion-like EDE is
studied in Ref. [364].

7Since we are considering here different experiments, we use the following metric: (θi− θ j)/
√

σ2
θ ,i +σ2

θ , j,
where θi and σθ ,i are respectively the mean value and the standard deviation of the parameter θ for the dataset i.
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data, with similar error bars between the EFT + Pan + Mb and EFT + PanPlus + Mb analyses.
Thus, if we rely solely on the posterior distributions, we could argue that the Pantheon+ data do
not change the conclusion about the ADE resolution of the Hubble tension. However, it turns
out that the ADE model is not able to accommodate at the same time the large value of H0 and
Ωm that are favored by the Pantheon+ data once they are calibrated with Mb. Indeed, the best-fit
value H0 = 71.29 km/s/Mpc is 1.7σ lower than the SH0ES constraint [H0 = (73.04± 1.04)
km/s/Mpc], while the best-fit value Ωm = 0.3014 is 1.8σ lower than the Pantheon+ constraint
[Ωm = 0.334± 0.018]. Therefore, the ADE model does not provide a good fit to the Mb prior
(χ2

Mb
= 6.42 as shown in Tab. E.1 of App. E.2), while the fit to the Pantheon+ data is worsen

(by +1.6) with the inclusion of the Mb prior. These degradations of χ2
min

8 imply that the
QDMAP changes from 2.9σ (5.6σ for ΛCDM) to 3.6σ (6.3σ for ΛCDM) when we consider
the Pantheon+ data (see Tab. 8.1), which severely limits the ability of this model to resolve the
H0 tension. One of the two criteria of Ref. [183], namely QDMAP < 3σ , is indeed no longer
fulfilled. However, while the Pantheon+ data and the Mb prior from Ref. [153] seriously restrict
the ability of the ADE model to resolve the Hubble tension, these data improve the preference
for this model over ΛCDM, since the ∆AIC changes from −18.9 to −21.8. We nevertheless
caution over-interpreting this preference, given that the QDMAP indicates that combining these
datasets is not statistically consistent. In addition, the Gaussian tension GT = 4.4σ is stable
with respect to the EFT + Pan dataset. 9

In the left panel of Fig. 8.4, we show the 2D posterior distributions of the axion-like EDE
model reconstructed from the EFT + PanPlus + Mb dataset, while the associated cosmological
constraints are displayed in Tab. 8.2. For the axion-like EDE case, we find that the QDMAP
changes from 2.4σ to 2.5σ , and that the ∆AIC changes from −22.9 to −29.1, between the old
and the new Pantheon data analysis (see Tab. E.1 of App. E.2 for the individual χ2

min). This
model better supports these new data, since the QDMAP is stable (and especially the χ2

min of
the SH0ES prior), while the ∆AIC, as in the case of the ADE model, decreases significantly.
Whereas with the addition of the EFT data we had a slight preference for EDE over ADE, with
the Pantheon+ data the preference for this model becomes clearly apparent: in the axion-like
EDE model, H0 = 71.67± 0.77 km/s/Mpc with QDMAP = 2.5σ , while in the ADE model,
H0 = 71.13± 0.73 km/s/Mpc with QDMAP = 3.6σ . In addition, the axion-like EDE model
provides a better overall fit than the ADE model, with ∆AIC(EDE−ADE) = +7.3. The two
main contributions to this difference come from the Planck data (and in particular the high-`
TTTEEE likelihood), where ∆χ2(EDE−ADE) = +3.7, and from the SH0ES prior, where
∆χ2(EDE−ADE) = +2.7. The axion-like EDE model is capable of better compensating the
effect of large values of H0 and Ωm (and therefore ωcdm) on the CMB compared to the ADE
model.

In order to understand why the axion-like EDE model performs better than ADE, we plot
in Fig. 8.3 the CMB power spectra residuals with respect to the ΛCDM best-fit for these two
models. On this figure, we also plot (in green dashed) the CMB power spectra residuals of the
ADE model, where we set the ΛCDM parameters to the axion-like EDE best-fit, and the zc and
w f parameters to the ADE best-fit. The last ADE parameter, namely fADE(zc), is dermined

8Let us note that the χ2
min of the other likelihoods are stable between the Pantheon and Pantheon+ analyses, and

therefore play no role in the change in QDMAP between these two analyses.
9Note that for the same dataset, we obtain GT = 3.8σ for the axion-like EDE model and GT = 4.8σ for the

ΛCDM model.
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Figure 8.3: CMB power spectra residuals with respect to ΛCDM for the ADE (red) and axion-like EDE
(black) models. All cosmological parameters of the ΛCDM, ADE, and axion-like EDE models have
been set to their EFT + PanPlus best-fits, while the displayed data (nomalized to the ΛCDM best-fit)
correspond to the Planck 2018 data [215]. Finally, for the plot entitled “EDE→ADE,” we set the ΛCDM
parameters to the axion-like EDE best-fit, while the zc and w f parameters are set to the ADE best-fit. The
last ADE parameter, namely fADE(zc) = 0.095, is determined such that the values of 100θs = 1.042 and
rs = 140.53 Mpc are the same as for the EDE best-fit.

such that the values of the angular acoustic scale at recombination, θ∗, and the comoving sound
horizon at recombination, r∗, are the same as for the EDE best-fit. In other words, this plot
would represent the best-fit of the ADE model if the latter could reduce the Hubble tension
to the same level as the axion-like EDE model. In this figure, the main difference between the
ADE and ADE→ EDE plots stems from the suppression (particularly at low `) of the CTT

` power
spectrum for the EDE → ADE analysis. This suppression typically corresponds to the effect
of a large value of ωcdm (and also ns), showing that the ADE model is not able to compensate
for a high value of Ωcdmh2 in the same way as the axion-like EDE model. This is explained
by the fact that the EDE model allows the sound speed to decrease in the k range associated
with ` < 500, making it easier to compensate for the effect of increasing Ωcdmh2 in the low-`
TT power spectrum. Let us note that the effect of the increase in Ωcdmh2 is more significant for
the modes that have re-entered the horizon at the time when fADE is decreasing, and therefore
no longer significantly suppresses the evolution of the growing modes. In order to compensate
for this effect, it is therefore helpful to decrease c2

s for l < 500, insofar as a reduction in this
parameter leads to an enhancement in the Weyl potential (see Ref. [337]). Note that these
results are compatible with Ref. [337], but interestingly the limitation in the value of Ωcdmh2

does not arise from the CMB polarization as in that reference (which considered Planck 2015
data), but from the CMB temperature.
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EDE c2
s ADE cADE

fADE/EDE(zc) 0.116(0.128)+0.023
−0.021 0.103(0.080)+0.028

−0.046 0.079(0.087)±0.019
log10(zc) 3.69(3.84)+0.20

−0.16 3.61(3.73)+0.12
−0.10 3.540(3.532)±0.058

Θi 2.77(2.88)+0.15
−0.072 – –

w f – unconst.(0.71) –
c2

s – > 0.701(0.72) –
H0 71.67(71.84)±0.77 70.76(71.23)±0.70 70.95(71.23)±0.73
ωcdm 0.1303(0.1309)±0.0030 0.1257(0.1294)±0.0024 0.1273(0.1286)±0.0028
102ωb 2.294(2.312)±0.024 2.304(2.310)±0.020 2.305(2.308)±0.021
109As 2.149(2.143)+0.027

−0.034 2.152(2.150)+0.030
−0.036 2.149(2.158)±0.031

ns 0.9898(0.9951)±0.0061 0.9882(0.9902)±0.0065 0.9849(0.9874)±0.0057
τreio 0.0590(0.0590)+0.0063

−0.0079 0.0592(0.0573)+0.0069
−0.0080 0.0573(0.0583)+0.0066

−0.0078
S8 0.836(0.836)±0.011 0.831(0.842)±0.012 0.836(0.841)±0.012
Ωm 0.2995(0.2997)±0.0047 0.2985(0.3018)±0.0049 0.3000(0.3001)±0.0047
∆χ2

min −35.1 −27.9 −24.1
∆AIC −29.1 −19.9 −20.1
QDMAP 2.5σ 3.6σ 3.9σ

Table 8.2: Mean (best-fit) ±1σ (or 2σ for one-sided bounds) of reconstructed parameters in the EDE,
c2

s ADE, and cADE models confronted to the Planck + ext-BAO + EFT + PanPlus + Mb dataset, i.e., the
most up-to-date dataset. We also display for each model the ∆χ2

min with respect to ΛCDM, the associated
∆AIC, as well as the QDMAP.

8.3 Model variations

8.3.1 Variation of c2
s

In the previous sections, we fixed c2
s (ac) = w f instead of varying these two parameters in-

dependently. In the right panel of Fig. 8.4, we show the 2D posterior distributions reconstructed
from the EFT + PanPlus + Mb dataset for our baseline ADE model by relaxing this assump-
tion, while in Tab. 8.2 we display the associated cosmological constraints. To do so, we have
applied the prior of Refs. [337, 369] to c2

s , namely

0≤ c2
s ≤ 1.5 .

In the following, we simply call this extended model “c2
s ADE,” for which we still consider

that p = 1. Interestingly, and in line with Ref. [337], the assumption c2
s = w f does not change

our conclusions, especially regarding the Hubble tension: we obtain QDMAP = 3.6σ , which is
similar to that of our baseline ADE model (see Tab. E.1 of App. E.2 for the χ2 values). In this
specific case, we obtain H0 = 70.76± 0.70 km/s/Mpc, which is 0.5σ lower than the H0 value
from our baseline ADE model. This is due to projection effects caused by the non-Gaussian
posteriors of c2

s and w f , and we notice that the best-fit value (H0 = 71.23 km/s/Mpc) is very
close to that of the ADE model. Thus, the relaxation of this hypothesis does not resolve the
Hubble tension, while the ∆AIC worsens somewhat in this model because of the additional
parameter (∆AIC = −20.1 instead of −21.8 for our baseline ADE model). In addition, as
shown in Fig. 8.5, the best-fit point of the ADE model in the c2

s −w f plane lies in the 68% C.L.
reconstructed from the c2

s ADE model, and is very close to the best-fit point of this model. This
implies that setting c2

s = w f is a good approximation around the best-fit of the c2
s ADE model.
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8.3.2 The cADE model

Refs. [337] and [369] showed that the special case where c2
s = w f = 1 made it possible to

solve the Hubble tension. In this particular model, called “cADE,” the ADE component is a
canonical scalar which goes from a frozen phase (w =−1) to a kinetion phase (w = 1) around
matter-radiation equality. This model is particularly interesting because it allows the Hubble
tension to be resolved with only two more parameters than the ΛCDM model [namely fADE(zc)
and log10(zc)]. However, while in Ref. [337] the case c2

s = w f = 1 is within the 68% C.L. of the
c2

s and w f parameters (see Fig. 1 of this reference), one can see in Fig. 8.5 that this particular
case is no longer located in the 1σ region. 10 In the right panel of Fig. 8.4, we display the 2D
posterior distributions of the cADE model reconstructed from the EFT + PanPlus + Mb dataset,
while in Tab. 8.2 we display the associated cosmological constraints. We can clearly see that
this particular model is unable to resolve the Hubble tension with current data, since we obtain
H0 = 70.95±0.73 km/s/Mpc and fADE(zc) = 0.079±0.019, with a QDMAP = 3.9σ (compared
to QDMAP = 3.6σ for our baseline ADE model).

8.4 Conclusions

In this chapter, we have updated the constraints on the acoustic dark energy model by first
assessing the impact of the EFT full-shape analysis applied to the BOSS LRG and eBOSS QSO
data, and secondly the impact of the latest Pantheon+ data.

• When we consider the full-shape analysis of the BOSS and eBOSS data, combined with
Planck, ext-BAO measurements, Pantheon data from [133], and SH0ES data from [153],
we obtain H0 = 71.01±0.73 km/s/Mpc with a residual Hubble tension of 2.9σ (compared
to 2.4σ for the axion-like EDE model and 5.6σ for the ΛCDM model).

• We have demonstrated that the EFTofLSS analysis slightly reduces the ability of this
model to resolve the Hubble tension compared to the BAO/ f σ8 analysis, which has a
residual tension of 2.6σ (with H0 = 71.24±0.68 km/s/Mpc).

• Although the axion-like EDE model remains a better solution to the Hubble tension after
using the EFTofBOSS and EFTofeBOSS likelihoods, we have shown that the EFTofLSS
analysis has a stronger impact on this model.

• Importantly, when we replace the Pantheon data with the Pantheons+ data from [132], the
ADE model no longer resolves the Hubble tension at a suitable level, leading to a 3.6σ

residual tension (compared to 2.5σ for the EDE model and 6.3σ for the ΛCDM model).

• Whereas with the EFTofLSS analysis we had only a slight preference for EDE over
ADE, with the new data from Pantheon+ and SH0ES, the preference for this model
becomes clearly apparent, due to the fact that axion-like EDE manages to compensate a
higher Ωcdmh2 in Planck data thanks to the scale-dependence of the sound speed.

10Let us note that Refs. [337] and [369] set p = 1/2, while we set p = 1, but this difference does not change the
results.
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• Finally, we have verified that relaxing the assumption c2
s = w f does not alter our conclu-

sions, justifying this choice. In addition, for the cADE model (where c2
s = w f = 1), we

have obtained H0 = 70.95± 0.73 km/s/Mpc with a QDMAP = 3.9σ , implying that one
can no longer solve the Hubble tension with this constrained ADE model, contrary to
previous results [337, 369].

Let us add a few words about the S8 ≡ σ8 ·
√

Ωm/0.3 tension (see e.g., Ref. [40] for a
review). EDE-like models are known to slightly increase the amplitude of fluctuations σ8 with
respect to ΛCDM [275, 344, 345], due to an increase in ωcdm and ns. In particular, increasing
ωcdm brings forward matter-radiation equality aeq, leaving more time for growing modes (that
are subhorizon at aeq) to evolve in the matter era. Considering our most up-to-date dataset (i.e.,
“EFT+PanPlus+Mb”), we obtain a Gaussian tension 11 on S8 of 3.2σ , 3.5σ and 3.8σ for the
ΛCDM, ADE and axion-like EDE models, respectively. It is interesting to note that the better
the model is able to resolve the Hubble tension, the higher the S8 tension. In order to resolve
these two tensions simultaneously in the context of EDE cosmologies, it is therefore necessary
to find a mechanism that reduces the growth of small-scale modes, as could be achieved by an
interaction between EDE and DM [372].

In this work, we have shown that the new data from Pantheon and SH0ES, and to a lesser ex-
tent the EFTofLSS applied to the BOSS and eBOSS data, can have a decisive impact on models
which aim to resolve the Hubble tension. We leave for future work the study of the impact on the
Hubble tension of such an analysis applied to other early dark energy models, such as new early
dark energy [277, 278], Rock ‘n’ Roll dark energy [373], or early modified gravity [298, 374].

11We use here the Gaussian metric (θi− θ j)/
√

σ2
θ ,i +σ2

θ , j, where θi and σθ ,i are respectively the mean value
and the standard deviation of the parameter θ for the dataset i. For the week lensing determination of the S8
parameter, we use the simple weighted mean and uncertainty of SGT

8 = 0.766+0.020
−0.014 from the combination of KiDS-

1000×dFLensS+BOSS, S8 = 0.769+0.016
−0.012 [177], and DES-Y3, S8 = 0.775+0.026

−0.024 [79].
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Decaying cold dark matter (DCDM) models, in which dark matter is unstable on a cosmo-
logical timescale and decays into invisible products, have been proposed as potential resolutions
to cosmic tensions [375, 376, 377, 378, 167, 168]. In the past it was found that DM models with
purely radiation decay products can neither resolve the Hubble tension nor the S8 tension [379,
380, 381, 382, 383, 384, 385], while DM models with massive decay products can resolve the
S8 tension, as the massive particle produced during the decay acts as a WDM component, re-
ducing power on scale below the free-streaming length at late times [167, 168]. Beyond recent
observational tensions, the study of these models is important from the particle physics point
of view, as it addresses the question of the stability of DM on long cosmological timescales.
In the literature, there are many models involving the existence of DM decays at late times,
such as models with R-parity violation [386, 387], super weakly interacting massive particles
(super WIMPs) [388, 389, 390, 391], sterile neutrinos [392, 393], models with an additional
U(1) gauge symmetry [394, 395, 396, 397], or more recently a model of decaying warm dark
matter [398]. Besides cosmic tensions, some DCDM models were proposed as a way to explain
the excess of events in the electronic recoils reported by the Xenon1T collaboration [399, 400,
401, 167, 168]. In addition, DCDM models with massive daughters have also been suggested
as a potential solution to the small (subgalactic) scales structure problem of CDM (e.g., [402,
403, 404, 405, 406, 407, 408, 409, 396]).

In this chapter, we deal with DCDM with two types of decay products: (i) the DCDM →
DR model, where the decay products is only composed of a (massless) dark radiation (DR)
component, and (ii) the DCDM→ WDM+DR model, where the decay products are one mas-
sive WDM component and one DR component. Previous works have limited themselves to
the impact of DCDM decay at the background and linear perturbations level, deriving con-
straints (and hints) on these models from a combination of Planck CMB, BAO and uncali-
brated luminosity distance to SN1a data. Here, we go beyond previous works by making use
of the effective field theory of large-scale structures (EFTofLSS) to describe the mildly non-
linear regime of the galaxy clustering power spectrum and derive improved constraints thanks
to the EFTofLSS applied to BOSS data. The main objectives of this chapter are: (i) perform
the first-ever computation of the mildly nonlinear regime in DCDM models with massive and
massless decay products through the EFTofLSS; (ii) test whether current BOSS data can lead to
stronger constraints on these models; and (iii) check whether these constraints can put pressure
on DCDM models that resolve the S8 tension.

This chapter is structured as follows: in Sec. 9.1, we introduce the models and present
the nonlinear power spectrum computed with the EFTofLSS; in Sec. 9.2, we present the
results of comprehensive Monte Carlo Markov chain analyses of the DCDM model and
discuss the implications of these constraints for the S8 tension; we eventually conclude
in Sec. 9.3. App. F.1 is dedicated to comparing results of the EFTofLSS with N-body
simulations in the DCDM→DR model, while App. F.2 details the scope of our computation
in the DCDM→WDM+DR model. Finally Apps. F.3, F.4 and F.5 present additional results
of the MCMC analyses for completeness.
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9.1 Nonlinear power spectrum in DCDM cosmologies

In this section, we review the models of decaying dark matter considered in this work, and
present the first computation of the nonlinear power spectra in these cosmologies. We consider
two different DCDM models (both are limited to decay into the dark sector): one in which a
fraction of dark matter decays into massless particles, and the second one in which all of the
dark matter experiences two-body decay into massive and massless particles.

9.1.1 Dark radiation decay products (DCDM→ DR model)

Presentation of the model

In the first model we consider, the cold DM sector is partially composed of an unstable
particle (denoted as DCDM) that decays into a noninteracting relativistic particle (denoted as
DR). The rest of the DM is considered stable and we refer to it as the standard CDM. In addition
to the standard six ΛCDM parameters, there are two free parameters describing the lifetime of
DCDM τ (or equivalently the decay width Γ = τ−1), as well as the fraction of DCDM to total
dark matter at the initial time aini → 0:

fdcdm ≡
ωdcdm(aini)

ωtot,dm(aini)
, (9.1)

with ωtot, dm ≡ωdcdm + ωcdm. With these definitions, in the limit of large τ and/or small
fdcdm, one recovers the ΛCDM model.

The evolution of the homogeneous energy densities of the decaying dark matter and dark
radiation is given by (see e.g. Refs. [410, 375, 381]):

˙̄ρdcdm +3H ρ̄dcdm =−aΓρ̄dcdm, (9.2)
˙̄ρdr +4H ρ̄dr = aΓρ̄dcdm, (9.3)

where H is the conformal Hubble parameter,

H 2(a) =
8πGa2

3 ∑
i

ρ̄i(a), (9.4)

with

∑
i

ρ̄i(a) = ρ̄cdm(a)+ ρ̄dcdm(a)+ ρ̄dr(a)

+ ρ̄γ(a)+ ρ̄ν(a)+ ρ̄b(a)+ ρ̄Λ. (9.5)

To describe the evolution of the linearly perturbed universe, we consider the usual syn-
chronous gauge, where the scalar part of the perturbed metric is written as [41]

ds2 = a2(τ)
[
−dτ

2 +(δi j +hi j(x, t))dxidx j] . (9.6)
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Here τ is the conformal time, and hi j(x,τ) is defined as

hi j(x,τ) =
∫

d3keik.x[k̂ik̂ jh(k,τ)

+

(
k̂ik̂ j−

1
3

δi j

)
6η(k,τ)] . (9.7)

h denotes the trace of hi j, while η corresponds to the other traceless scalar degree of freedom of
the metric perturbation in Fourier space. Additionally, we consider the frame comoving with the
DCDM (and CDM) fluid, such that θdcdm = ∂ivi

dcdm = 0, where θdcdm is the divergence of the
DCDM velocity vi

dcdm. As a result, the energy density perturbation of the DCDM component,
δdcdm ≡ ρdcdm/ρ̄dcdm− 1, follows the same evolution as standard CDM:

δ̇dcdm =− ḣ
2
. (9.8)

The evolution of the linear perturbations of the DR integrated phase-space distribution multi-
poles is governed by the following hierarchy of equations [410, 375, 381]:

Ḟdr,0 =−kFdr,1−
2
3

rdrḣ+ ṙdrδdcdm, (9.9)

Ḟdr,1 =
k
3

Fdr,0−
2k
3

Fdr,2, (9.10)

Ḟdr,2 =
2k
5

Fdr,1−
3k
5

Fdr,3 +
4

15
rdr(ḣ+6η̇), (9.11)

Ḟdr,` =
k

(2`+1)
[
`Fdr,`−1− (`+1)Fdr,`+1

]
(`≥ 3). (9.12)

In the previous equations we have introduced rdr ≡ a4ρ̄dr(a)/ρc,0 following Ref. [381], where
ρc,0 is the critical density today. In the scenario under study, we have:

ṙdr = aΓ(ρ̄dcdm/ρ̄dr)rdr. (9.13)

We also note that the first three multipoles are simply related to elements of the perturbed
stress-energy tensor as Fdr,0 = rdrδdr, Fdr,1 = (4rdr/3k)θdr, and Fdr,2 = 2σdrrdr. In order to
truncate the hierarchy of Eqs. (9.9)-(9.12) at some `max = 17, we adopt the scheme proposed
in Ref. [41] for massless neutrinos (and extended in CLASS to include nonzero curvature [411])
in order to limit the propagation of the error from `max to `. We extrapolate the behavior of
Fdr,`max+1 thanks to the recursion relation:

Fdr,`max+1 ≈
2`max +1

kτ
Fdr,`max−Fdr,`max−1. (9.14)

These equations have been implemented in the Boltzmann code CLASS, and the impact of
DCDM → DR decay on the (linear) CMB and matter power spectrum has been studied in
detail in the literature [410, 375, 381]. In App. F.1 we present a comparison of the EFTofLSS
calculation with N-body simulations performed in Ref. [412]. The results obtained from these
two methods agree up to subpercent difference for k . 0.2 hMpc−1 and z = 0, justifying that
one can safely analyze the (mildly) nonlinear galaxy power spectrum with the EFTofLSS.
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The nonlinear power spectrum

Thanks to the PyBird code, we plot in Fig. 9.1 the residuals of the nonlinear matter power
spectra of the DCDM → DR model with respect to that of the ΛCDM model at z = 0. We
also represent the associated linear matter power spectra obtained from the CLASS code. In
addition, we plot in Fig. 9.2 the residuals of the monopole and quadrupole of the galaxy power
spectra of this model. In these figures, we set the ΛCDM parameters 1 to their best-fit values
from the analysis of Planck + Pantheon + EFTofBOSS + Ext-BAO (as described in Sec. 9.2).
Finally, we simply vary the two parameters fdcdm and τ to isolate their cosmological effects :
in the left panels, we fix fdcdm = 1 and vary τ ∈ [0.1,1000] Gyr, while in the right panel we
fix τ = 1 Gyr and vary fdcdm ∈ [0.1,1].

From Figs. 9.1 and 9.2, one can see that the monopole of the galaxy power spectrum shows
a behavior very similar to that of the linear matter spectrum. For a realistic choice of EFT
parameters, it shows an almost scale-independent power suppression due to two main reasons
[410, 381]. First, the decay of DCDM decreases the duration of the matter dominated era (and
at fix h, a smaller Ωm/larger ΩΛ), implying a shift of the power spectrum towards large scales,
i.e., towards small wavenumbers. Second, DCDM models involve a larger ratio of ωb/ωcdm
compared to the ΛCDM model due to the decay. Both effects manifest as a strong suppression
of the small-scale power spectrum, and the latter effect leads to an additional modulation of the
BAO amplitude visible as wiggles in Figs. 9.1 and 9.2. Moreover, we note that the nonlinear
matter power spectrum shows a stronger scale-dependent suppression compared to the linear
power spectrum at k & 0.1 hMpc−1. There is an intuitive explanation as to why the nonlinear
power spectrum is further suppressed, very similarly to what happens for standard neutrinos
or warm dark matter, as reviewed e.g. in [166]. In general, nonlinear growth is faster than
the linear growth, and the impact of nonlinearities is typically to enhance the power spectrum
(this is famously the case in ΛCDM). In the DCDM case, modes that are suppressed will enter
the nonlinear regime later, and therefore start experiencing their enhanced growth due to non-
linearities later. This delay leads to a further suppression of the power spectrum compared to
ΛCDM when nonlinear effects are included. We checked that the amplitude of the deviation
from scale-independent suppression at k & 0.1 hMpc−1 is tied to the value of the effective dark
matter sound speed cs, and can vary a few % for cs ∈ [1,5] k2

nl · (Mpc/h)2, where knl corre-
sponds to the nonlinear scale and determines the cutoff scale of the theory. On the other hand,
the power suppression gets less strong with larger k in the monopole of the galaxy power spec-
trum, an effect indicating an additional degeneracy with other EFT parameters. Finally, and
as expected, deviations with respect to ΛCDM increases as τ decreases and/or fdcdm increases
for the monopole as well as for the quadrupole.

Preliminary study

To gauge the impact of using the EFTofBOSS data in our analyses of the DCDM → DR
model, we first perform a preliminary study in which we consider a set of DCDM parameters

1For completeness, note that the shape of the residuals of the galaxy and matter power spectra depend on the
values of the EFT nuisance parameters, especially at large k. According to the notation of Ref. [59], for the
numerical evaluation we set the effective dark matter sound speed cs = 1 for the matter power spectra, and b1 = 2,
b2 = 1, b3 = 0.5, b4 = 0, cct = 0.5, cr,1 = 2 and cr,2 = cε,0 = cε,1 = cε,2 = 0 for the galaxy power spectra. In
practice, these parameters are optimized when quoting best-fits, to ensure that they take realistic values.
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Figure 9.1: Left - Residuals of the linear (dashed lines) and nonlinear matter power spectrum (solid
lines) for fdcdm set to 1 and τ = 0.1, 1, 10, 100 Gyr. Residuals are taken with respect to the ΛCDM
model at z = 0. Right - The same, but this time τ is set to 1 Gyr and fdcdm = 0.1, 0.4, 0.7, 1.

Figure 9.2: Left - Residuals of the monopole and the quadrupole of the galaxy power spectrum for fdcdm
set to 1 and τ = 0.1, 1, 10, 100 Gyr. Residuals are taken with respect to the ΛCDM model at z = 0. Right
- The same, but this time τ is set to 1 Gyr and fdcdm = 0.1, 0.4, 0.7, 1.
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Parameter fdcdm = 0.0203 & τ = 0.1 Gyr fdcdm = 1 & τ = 248.4 Gyr
χ2

CMASS NGC 41.3 40.7
χ2

CMASS SGC 43.9 44.0
χ2

LOWZ NGC 33.4 33.6
χ2

EFTofBOSS 118.6 118.3
χ2

min(DCDM)−χ2
min(ΛCDM) +0.8 +0.5

Table 9.1: χ2 of each sky cut of the EFTofBOSS dataset for our DCDM→ DR preliminary study. We
also indicated the ∆χ2 with respect to the analogous ΛCDM best-fit model (EFTofBOSS analysis in Tab.
9.7).

laying at the 95% C.L. 2 derived from Planck data, and compute the χ2 of the EFTofBOSS
data after optimizing the EFT nuisance parameters. The goal is to check the extent to which
EFT nuisance parameters can lead to effects degenerate with those of the DCDM with a quick
analysis. We set all ΛCDM parameters to their best-fit values from the analysis of Planck
+ Pantheon + EFTofBOSS + Ext-BAO (see Sec. 9.2). We perform two analyses: (i) we set
τ = 0.1 Gyr and take the upper bound on fdcdm from our Planck + Pantheon + Ext-BAO (no Ly-
α), i.e. fdcdm = 0.0203 (see Tab. 9.5), and (ii) we set fdcdm = 1 (i.e., all the dark matter decays),
while we take the lower bound of τ from our Planck + Pantheon + Ext-BAO (no Ly-α) analysis,
i.e., τ = 248.4 Gyr (see Tab. 9.5). We show in Tab. 9.1 the χ2 associated to the EFTofBOSS
data, and we plot in Fig 9.3, using the PyBird code, the residuals (with respect to ΛCDM
from the Planck + Pantheon + EFTofBOSS + Ext-BAO analysis) of these studies. To gauge the
impact of EFT nuisance parameters, in this latter figure, we show residuals with and without
the optimization procedure (in the latter case, we simply set the EFT nuisance parameters to
those of ΛCDM). This preliminary study allows us to highlight two important points. First, the
optimization procedure has washed out the suppression due to decay, which implies that the
effect of the EFT nuisance parameters are (at least partly) degenerate with that of the decay.
Second (and consequently), for these two analyses where we have chosen DCDM parameters
that are excluded at 95% C.L., we obtain a χ2 very close to that of the ΛCDM best-fit model of
the full analysis, suggesting that EFTofBOSS data may not provide strong additional constraints
to this model. Naturally, it does not prevent the model to potentially yield an improved fit over
ΛCDM once all (cosmological and nuisance) parameters are optimized against the data, and we
will check our naive results against a full analysis in Sec. 9.2.

9.1.2 Warm dark matter decay products (DCDM→WDM+DR model)
Presentation of the model

We now turn to a DCDM model where the entirety of the DM sector is considered unstable
(i.e., fdcdm = 1 in the language of the first model), decaying into dark radiation and a massive
particle, which will act as WDM. As before, we assume the decay products do not interact with
the standard model particles. The DCDM sector is now described by the DCDM lifetime τ , and
the fraction ε of rest-mass energy carried away by the massless particle given by [413]

ε =
1
2

(
1− m2

wdm
m2

dcdm

)
, (9.15)

2From here on, we quote one-sided bounds at 2σ (95 % C.L.) and two-sided bounds at 1σ (68% C.L.).
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Figure 9.3: Residuals of the monopole and the quadrupole of our DCDM→ DR preliminary study with
respect to the ΛCDM model (EFTofBOSS analysis in Tab. 9.3) for the three sky cuts of the EFTofBOSS
data. For the solid lines we optimized the EFT nuisance parameters, while for the dotted lines we set the
EFT nuisance parameters to those of the ΛCDM (EFTofBOSS analysis in Tab. 9.3).

where mdcdm and mwdm are the mother and daughter particle masses respectively. The accurate
computation of the cosmological impact of the DCDM sector requires to follow the evolution
of the phase space distribution of the warm particle produced during the decay. The full set of
equations is described in Refs. [414, 168]. We summarize here the sets of equations describing
the evolution of the background energy densities of the dark components, as well as the linear
perturbations in a fluid approximation, valid well within the horizon.

The background energy densities evolve as follows [414]:

˙̄ρdcdm +3H ρ̄dcdm =−aΓρ̄dcdm, (9.16)
˙̄ρwdm +3(1+w)H ρ̄wdm = (1− ε)aΓρ̄dcdm, (9.17)

˙̄ρdr +4H ρ̄dr = εΓaρ̄dcdm (9.18)

where w = P̄wdm/ρ̄wdm is the equation of state of the massive daughter particle. In the limit
of large τ or small ε , one recovers the ΛCDM model, while setting ε = 1/2 leads to a de-
cay solely into massless particles.

In the synchronous gauge comoving with the DCDM fluid, the linear perturbation equa-
tions for the parent particle and DR daughter is still given by Eq. (9.8) and Eqs. (9.9)-(9.12),
respectively. However, the quantity rdr now satisfies

ṙdr = aεΓ(ρ̄dcdm/ρ̄dr)rdr, (9.19)
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where the parameter ε now affects the amount of energy transferred to the DR. Regarding the
WDM linear perturbations, it is unfortunately not possible to integrate out the dependency on
momenta as it is done for the DR species. In general one has to follow the evolution of the full
phase-space distribution, which becomes very computationally demanding (see Ref. [168] for
the expression of the full Boltzmann hierarchy). Nevertheless, it was shown in Ref. [168] that,
well within the horizon, the dynamics of the WDM perturbations can be well approximated
by the following set of fluid equations:

δ̇wdm =−3H (c2
s −ω)δwdm− (1+ω)

(
θwdm +

ḣ
2

)

+(1− ε)aΓ
ρ̄dcdm

ρ̄wdm
(δdcdm−δwdm), (9.20)

θ̇wdm =−H (1−3c2
g)θwdm +

c2
s

1+ω
k2

δwdm− k2
σwdm

− (1− ε)aΓ
1+ c2

g

1+ω

ρ̄dcdm

ρ̄wdm
θwdm, (9.21)

where cs is the WDM sound speed in the synchronous gauge, i.e., c2
s = δPwdm/δρwdm,

and cg is the WDM adiabatic sound speed, i.e., c2
g = ˙̄Pwdm/ ˙̄ρwdm, which one can write

in the following form:

c2
g = w

(
5− pwdm

P̄wdm
− ρ̄dcdm

ρ̄wdm

aΓ
3wH

ε2

1− ε

)

×
[

3(1+w)− ρ̄dcdm

ρ̄wdm

aΓ
H

(1− ε)

]−1

. (9.22)

In this latter equation, pwdm is the pseudo-pressure (introduced in the context of the fluid equa-
tions for massive neutrinos [415]), which corresponds to a higher momenta integral of the WDM
homogeneous phase space distribution, reducing to the standard pressure in the relativistic limit.
Solving the fluid equations requires specifying the sound speed cs, which was found to be well
described by the following formula:

c2
s (k,τ) = c2

g[1+0.2× (1−2ε)
√

k/kfs] (9.23)

where the free-streaming scale kfs of the WDM is computed as:

kfs(τ) =

√
3
2

H (τ)

cg(τ)
. (9.24)

The free-streaming scale corresponds to the scale at which pressure (coming from the “velocity
kick” received during the decay process) suppresses perturbations of the WDM compared to
those of the DCDM. In other words, on scales k < kfs, one has δwdm = δdcdm, while on scale
k > kfs the WDM perturbations are suppressed and exhibit oscillations over time.

To obtain the linear CMB and matter power spectrum, we make use of an extension of the
CLASS code 3 described in Ref. [168], and we determine the nonlinear galaxy power spectrum

3https://github.com/PoulinV/class_decays

https://github.com/PoulinV/class_decays
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using the PyBird code. We have argued in previous section and in App. F.1, through direct
comparison with N-body simulations, that PyBird can safely be used to describe DM decays
with massless decay products. Unfortunately, we do not have access to such N-body simu-
lations in the case of massive decay products. A priori, the problem is not the decay per se
(as we have seen for the massless decay products). Rather, contrarily to the case of massless
daugther, the massive daughter may develop perturbations whose contribution to the total mat-
ter power spectrum can be highly nontrivial. In App. F.2, following Refs [416, 417], which
treated the similar case of massive neutrinos, we argue that the corrections to the EFTofLSS
necessary to fully capture the model-specific effects can be neglected for most of the param-
eter space of interest, as the fractional contribution of the WDM to the DM density is small
(in particular for the best-fit model that we derive), or the free-streaming scale exceeds the
scale cut considered in the analysis.

The nonlinear power spectrum

We plot in Fig. 9.4 the residuals of the nonlinear matter power spectra of the DCDM →
WDM+DR model with respect to that of the ΛCDM model at z = 0. We also represent the
associated linear matter power spectra obtained from the CLASS code, exactly as in Fig. 4 of
Ref. [168]. In addition, we plot in Fig. 9.5 the residuals of the monopole and quadrupole of
the galaxy power spectra of this model. In these figures, the cosmological parameters are taken
from the DCDM→WDM+DR best-fit model of Ref. [167], while the nuisance parameters are
set as in Figs. 9.1 and 9.2. In the left panels, we fix ε = 0.1 and vary τ ∈ [10,300] Gyr, while
in the right panel we fix τ = 30 Gyr and vary ε ∈ [0.001,0.5].

As for the case of the DCDM→ DR model, we obtain a very similar behavior between the
linear matter power spectrum and the monopole of the galaxy power spectrum, except for a mild
monotonic reduction of the power suppression at larger k’s in the monopole of the galaxy power
spectrum (due to the choice of EFT parameters, this reduction of the suppression may change
for different values). The presence of a warm dark matter component which does not cluster on
small scales suppresses the matter power spectrum as well as the galaxy power spectrum, and
τ– which sets the abundance of the WDM species today– controls the amplitude of the power
suppression, while ε controls the cutoff scale. One can see in Fig. 9.5 that the suppression of
the galaxy spectrum increases as τ decreases (left panel), while the suppression starts to occur
on larger scales as ε increases (right panel). Once ε = 0.5, the free-streaming scale kfs becomes
equivalent to the Hubble horizon, and the effects become identical to that of the DCDM →
DR model presented before. Note that because of the effect of the WDM, the ε = 0.1 case
has a stronger suppression than the ε = 0.5 (pure dark radiation) case. Moreover, we find (see
Fig. 9.4) that the nonlinear correction slightly modulates the slope of the power suppression
compared to the linear matter power spectrum. It always leads to a stronger suppression than the
linear one at large enough k (for ε & 0.1, the modulation occurs at k & 0.1 hMpc−1). However,
for smaller ε (see the ε = 0.01 case for example), the modulation can appear as a milder power
suppression compared to the linear one in the range of validity of the EFT at one loop order.

Preliminary study

Similarly to the case of the DCDM → DR model, we perform a preliminary study to test
whether the EFTofBOSS data can further constrain the DCDM → WDM+DR model that re-
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Figure 9.4: Left - Residuals of the linear (dashed lines) and nonlinear matter power spectrum (solid
lines) for ε set to 0.1 and τ = 10, 30, 100, 300 Gyr. Residuals are taken with respect to the ΛCDM model
at z = 0. Right - The same, but this time τ is set to 30 Gyr and ε = 0.001, 0.01, 0.1, 0.5.

Figure 9.5: Left - Residuals of the monopole and the quadrupole of the galaxy power spectrum for ε

set to 0.1 and τ = 10, 30, 100, 300 Gyr. Residuals are taken with respect to the ΛCDM model at z = 0.
Right - The same, but this time τ is set to 30 Gyr and ε = 0.001, 0.01, 0.1, 0.5.
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Parameter Best-fit
χ2

CMASS NGC 41.2
χ2

CMASS SGC 44.5
χ2

LOWZ NGC 34.4
χ2

EFTofBOSS 120.1
χ2

min(DCDM)−χ2
min(ΛCDM) +3.1

Table 9.2: χ2 of each sky cut of the EFTofBOSS dataset for our DCDM → WDM+DR preliminary
study. We also indicated the ∆χ2 with respect to the analogous ΛCDM best-fit model (EFTofBOSS + S8
analysis in Tab. 9.7).

solves the S8 tension. We fix cosmological parameters 4 to those obtained from the joint analysis
of Planck data, Pantheon SN1a data, a compilation of BAO data and the S8 measurements by
KiDS-1000 [80]. We optimize the EFT nuisance parameters of the galaxy power spectrum to
check the extent to which they can lead to effects degenerate with those of the DCDM. We
show in Tab. 9.2 the χ2 associated to the EFTofBOSS data, while in Fig. 9.6, using the Py-

Bird code, we plot the residuals with respect to the best-fit ΛCDM model from the analysis
of Planck + Pantheon + EFTofBOSS + Ext-BAO (see Sec. 9.2). In this figure, we represent
residuals with and without the EFT optimization procedure (in the latter case, we simply set
the EFT nuisance parameters to those of ΛCDM). As before, one can see that the effects of the
DCDM are strongly reduced once EFT nuisance parameters are optimized, suggesting a strong
degeneracy between the DCDM and the EFT parameters. Nevertheless, for this preliminary
study, the χ2 is degraded by +3.1 compared to the best-fit χ2 obtained in the ΛCDM model
for the full analysis. Contrary to the preliminary study of the DCDM→ DR model for which
we obtained a χ2 close to that of the ΛCDM model, we anticipate that the EFTofBOSS data
can provide additional constraining power to this model.

9.2 A comprehensive MCMC analysis of the DCDM models

9.2.1 Data and method
We now perform a Monte Carlo Markov chain (MCMC) analyses, confronting these

two DCDM models with recent cosmological observations. To do so, we make use of the
MontePython-v3 code [136, 137] interfaced with our modified CLASS version. We perform
various analyses from a combination of the following datasets:

• Planck: The low-l CMB TT, EE, and the high-l TT, TE, EE data, as well as the gravita-
tional lensing potential reconstruction from Planck 2018 [11, 179].

• Pantheon: The Pantheon SNIa catalog, spanning redshifts 0.01 < z < 2.3 [133].

• Ext-BAO: The BAO measurements from 6dFGS at z = 0.106, SDSS DR7 at z = 0.15
[127, 128, 418], and the joint constraints from eBOSS DR14 Ly-α absorption autocorre-
lation at z = 2.34 and cross-correlation with quasars at z = 2.35 [130, 131].

4The analysis performed in Refs. [167, 168] made use of a S8 prior that includes information from BOSS [177].
For consistency and to avoid double counting information, we reperformed the analysis (see Sec. 9.2) with a prior
derived from KiDS-1000 data alone.
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Figure 9.6: Residuals of the monopole and the quadrupole of our DCDM → WDM+DR preliminary
study with respect to ΛCDM model (EFTofBOSS analysis in Tab. 9.3) for the three sky cuts of the
EFTofBOSS data. For the solid lines we optimized the EFT nuisance parameters, while for the dotted
lines we set the EFT nuisance parameters to those of the ΛCDM (EFTofBOSS analysis in Tab. 9.3).

• BOSS BAO/ f σ8: The measurements of the BAO and the redshift space distortion f σ8(z)
from the CMASS and LOWZ galaxy samples of BOSS DR12 at z = 0.38, 0.51, and 0.61
[418].

• S8: The KIDS-1000 cosmic shear measurement of S8 = 0.759+0.024
−0.021, modeled as a a split-

normal likelihood [80].

• EFTofBOSS: The EFTofLSS analysis of BOSS DR12 LRG, cross-correlated with the
reconstructed BAO parameters [126]. The SDSS-III BOSS DR12 galaxy sample data and
covariances are described in [81, 125]. The measurements, obtained in [69], are from
BOSS catalogs DR12 (v5) combined CMASS-LOWZ [124], and are divided in redshift
bins LOWZ, 0.2 < z < 0.43 (zeff = 0.32), and CMASS, 0.43 < z < 0.7 (zeff = 0.57),
with north and south galactic skies for each, respectively denoted NGC and SGC. From
these data we use the monopole and quadrupole moments of the galaxy power spectrum.
The theory prediction and likelihood for the full-modeling information are made available
through PyBird [59].

Our analyses always includes Planck, Pantheon and Ext-BAO data. However, we quantify the
impact of EFTofBOSS data and the S8 prior by performing analyses with and without these
data. When not including the EFTofBOSS data, we make use of the conventional BOSS
BAO/ f σ8 data. We use Planck conventions for the treatment of neutrinos and include two
massless and one massive species with mν = 0.06 eV [11]. We impose a large flat prior on the
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ΛCDM
Parameter w/ EFTofBOSS w/ EFTofBOSS + S8

100 ωb 2.242(2.245)+0.014
−0.015 2.247(2.248)±0.014

ωcdm 0.1191(0.1191)±0.00095 0.1184(0.1184)±+0.00089
H0/[km/s/Mpc] 67.76(67.80)+0.42

−0.44 68.05(68.07)±0.41
ln(1010As) 3.048(3.049)+0.015

−0.016 3.043(3.043)+0.015
−0.016

ns 0.9666(0.9676)±0.0039 0.9680(0.9687)±0.0039
τreio 0.0571(0.0574)+0.0075

−0.0085 0.0555(0.0549)+0.0077
−0.0078

Ωm 0.3098(0.3093)+0.0057
−0.0058 0.3057(0.3055)±0.0053

σ8 0.8097(0.8102)+0.0063
−0.0065 0.8056(0.8055)±0.0062

S8 0.82(0.82)±0.01 0.813(0.813)+0.0094
−0.0096

χ2
min 3927.0 3933.0

QDMAP ≡
√

χ2
min(w/ S8)−χ2

min(w/o S8) 2.4σ

Table 9.3: The mean (best-fit)±1σ errors of the cosmological parameters from our Planck + Pantheon +
EFTofBOSS + Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses for the ΛCDM
model. For each dataset we also report its best-fit χ2.

dimensionless baryon energy density ωb, the Hubble parameter today H0, the logarithm of the
variance of curvature perturbations centered around the pivot scale kp = 0.05 Mpc−1 (accord-
ing to the Planck convention), ln

(
1010As

)
, the scalar spectral index ns, and the reionization

optical depth τreio. We assume our MCMC chains to be converged when the Gelman-Rubin
criterion R− 1 < 0.05 [419]. Finally, we extract the best-fit parameters from the procedure
highlighted in appendix of Ref. [183].

9.2.2 Dark radiation decay products
Let us recall that in the case of the DCDM→ DR model we have two additional parameters:

Γ = τ−1, the decay rate of DCDM, and fdcdm, the fraction of DCDM with respect to the total
DM. In the MCMC analyses, we impose flat priors on Γ and f :

0≤ Γ/Gyr−1 ≤ 10,
0≤ fdcdm ≤ 1.

Our results for the analyses with and without S8 prior are presented in Tab. 9.4, while the
results of the analyses of ΛCDM against the same datasets are given in Tab. 9.3. The χ2 of the
EFTofBOSS data are reported in Tab. 9.7. In Fig. 9.7, we display the 1D and 2D posteriors of{

Γ/Gyr−1, fdcdm,H0,S8,Ωm
}

for the DCDM→ DR model with and without the EFTofBOSS
dataset. In App. F.3, we represent the same figure, but this time with and without the S8
prior (and with the EFTofBOSS dataset for both). Without the S8 prior, the ∆χ2 with respect
to ΛCDM is compatible with zero 5 (see Tab. 9.4), implying that the data does not favor the
DCDM → DR model. From Fig. 9.7, one can see that the inclusion of the EFTofBOSS data
does not improve the constraint on this model, which is consistent with the “naive” analysis
presented in Sec. 9.1.1. Moreover, we show that when adding the S8 prior, the ∆χ2 with respect
to ΛCDM is still compatible with zero (and the model does not provide a good fit to the S8 prior)
while the constraints on Γ and fdcdm are largely unaffected. We conclude (as in past studies)
that this model does not resolve the S8 tension.

5The improvement is below the precision of O(0.1) that we estimated on the minimization, and we therefore
simply quote ∆χ2 = 0.0. Hereafter, we follow the same approach when reporting other ∆χ2.
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DCDM→DR
Parameter w/ EFTofBOSS w/ EFTofBOSS + S8
Γ/[Gyr−1] unconstrained (4.8) unconstrained (5.8)
fdcdm < 0.0216(1.62 ·10−4) < 0.0242(1.67 ·10−4)

100 ωb 2.236(2.244)±0.015 2.241(2.248)+0.016
−0.015

ωcdm 0.1187(0.1191)±0.0010 0.1180(0.1184)+0.001
−0.00093

H0/[km/s/Mpc] 67.98(67.77)+0.46
−0.48 68.30(68.10)+0.44

−0.47
ln(1010As) 3.051(3.049)+0.015

−0.016 3.047(3.045)+0.015
−0.016

ns 0.9650(0.9671)+0.0042
−0.004 0.9660(0.9687)+0.0044

−0.0043
τreio 0.0577(0.0572)+0.0073

−0.0079 0.0562(0.0557)+0.0074
−0.0077

Ωm 0.3069(0.3097)±0.0061 0.3026(0.3050)+0.0059
−0.0057

σ8 0.8110(0.8101)+0.0063
−0.0066 0.8071(0.8061)+0.0062

−0.0063
S8 0.82(0.82)±0.01 0.811(0.813)+0.0097

−0.0095
χ2

min 3927.0 3933.0
χ2

min(DCDM)−χ2
min(ΛCDM) 0.0 0.0

QDMAP ≡
√

χ2
min(w/ S8)−χ2

min(w/o S8) 2.4σ

Table 9.4: The mean (best-fit)±1σ errors of the cosmological parameters from our Planck + Pantheon +
EFTofBOSS + Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses for the DCDM
→ DR model. For each dataset we also report its best-fit χ2, and the ∆χ2 with respect to the analogous
ΛCDM best-fit model.

DCDM→ DR
Datasets fdcdm τ (for fdcdm = 1)
Planck < 0.0205 > 246.3 Gyr
Planck + Pantheon + Ext-BAO (no Ly-α) < 0.0203 > 248.4 Gyr
Planck + Pantheon + BOSS BAO/ f σ8 + Ext-BAO (no Ly-α) < 0.0190 > 260.4 Gyr
Planck + Pantheon + BOSS BAO/ f σ8 + Ext-BAO < 0.0219 > 250.0 Gyr
Planck + Pantheon + EFTofBOSS + Ext-BAO < 0.0216 > 249.6 Gyr

Table 9.5: The 95% C.L. limit on fdcdm for the standard DCDM→ DR analysis, and the 95% C.L. limit
on τ for the DCDM→ DR analysis where fdcdm is fixed to the unit. Let us recall that “Ext-BAO” refers
to the BAO measurements from 6dFGS, SDSS DR7, and the joint constraints from eBOSS DR14 Ly-α
autocorrelation and cross-correlation. For some datasets we removed the Ly-α constraints (’no Ly-α’)
to explicitly show its impact.

To summarize our results, and present the most up-to-date constraints on DCDM with mass-
less decay products, in Tab. 9.5 we compare the 95% C.L. limits obtained for fdcdm and τ when
successively adding datasets. To obtain the bounds on fdcdm (in the “short-lived” regime), we
marginalize over the parameter Γ in the range described above. On the other hand, to obtain
the τ limits (in the “very long-lived” regime), we fix fdcdm = 1 in our MCMC analyses, i.e., we
assume that all DM decays. Note that, for fdcdm→ 1, one can interpret our constraints as a limit
on the ratio τ/ fdcdm, as discussed in Ref. [381]. From Tab. 9.5, one can deduce the following:

• The strongest constraints are obtained when considering Planck + Pantheon + BOSS
BAO/ f σ8 + Ext-BAO (no Ly-α). In that case, we find fdcdm < 0.0190 (in the short-lived
regime), and τ/ fdcdm > 260.4 Gyr (for fdcdm→ 1).

• On the other hand, the inclusion of Ly-α BAO data slightly reduces the constraints. This
is consistent with the fact that these data are compatible with ΛCDM only at the 1.7σ

level [130, 131], favoring lower energy density at high-z [420]. Additionally, we find
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Figure 9.7: 2D posterior distributions of the DCDM → DR model with and without the EFTofBOSS
dataset. The gray shaded bands refer to the joint S8 measurement from KiDS-1000 + BOSS + 2dFLens
[177].

that constraints with the EFTofBOSS data are the same as those with the standard red-
shift space distortion f σ8 information. Our fiducial constraints, including all data, are
therefore fdcdm < 0.0216, and τ/ f > 249.6 Gyr.

• Our constraints are somewhat different than those derived in Ref. [384], which consid-
ering Planck 2018 + BAO data (see Tab. 2 of this reference) found fdcdm < 0.0262 at 95
% C.L. and τ/ fdcdm > 268.8 Gyr. Our constraints are stronger on fdcdm, compatible with
the fact that we include more data, but weaker on τ , which may be explained by the fact
that their posteriors never quite reach fdcdm ∼ 1, as necessary to derive constraints in the
“very long-lived” regime.

9.2.3 Warm dark matter decay products
We now turn to the case of the DCDM→ WDM+DR model, described by the parameters

Γ = τ−1, the decay rate of DCDM, and ε , the fraction of DCDM rest mass energy converted
into DR. Note that in this section, we trade the density of DM today, ωcdm, for the initial
density of DM (before decays occur) at a→ 0, ω ini

dcdm. For a stable particle, we simply have
ω ini

dcdm ≡ ωcdm as defined previously. In the MCMC analyses, we imposed logarithmic priors 6

6For discussions about the impact of prior choices, see the appendix of Ref. [168]
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Figure 9.8: 2D posterior distributions of the DCDM→WDM+DR model with and without the EFTof-
BOSS dataset. We took into account the S8 prior from KIDS-1000 for these two MCMC analyses. The
gray shaded bands refer to the joint S8 measurement from KiDS-1000 + BOSS + 2dFLens.

on ε and Γ, and a flat prior on ω ini
dcdm:

−4≤ log10(Γ/[Gyr−1])≤ 1,
−4≤ log10(ε)≤ log10(0.5),

0≤ ω
ini
dcdm ≤ 1.

We present our results for the analyses with and without S8 prior in Tab. 9.6, while the
χ2 of the EFTofBOSS data of these analysis are reported in Tab. 9.7. All relevant χ2

per experiment are given in App. F.4. In Fig. 9.8, we display the 1D and 2D posteriors
of
{

log10(Γ/[Gyr−1]), log10(ε),H0,S8,Ωm
}

for the DCDM → WDM+DR model with
and without the EFTofBOSS dataset, always including the S8 prior. Posteriors without
the S8 prior are shown in App. F.3.

Estimating the tension with the S8 measurement

Without the S8 prior, the total χ2 does not show any improvement (see Tab. 9.6) and the
data do not favor the DCDM → WDM+DR model. In fact, in the absence of the S8 prior, it
seems that one could derive apparently strong constraints on these models. 7 Yet, once the S8

7In Ref. [168], it was shown through a mock data analysis that Planck data alone could not detect the best-fit
model required to explain the S8 tension, artificially leading to strong constraints on the DCDM model.
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DCDM→WDM+DR
Parameter w/ EFTofBOSS w/ EFTofBOSS + S8

log10(Γ/[Gyr−1]) unconstrained (-2.98) 2.21(−2.08)+1.5
−0.6

log10(ε) unconstrained (-3.84) −2.30(−1.92)+0.84
−1.10

100 ωb 2.242(2.245)+0.014
−0.014 2.245(2.242)+0.014

−0.015
ω ini

dcdm 0.1192(0.1190)+0.00089
−0.0009 0.1188(0.1192)+0.00084

−0.00099
H0/[km/s/Mpc] 67.78(67.82)+0.41

−0.42 67.97(67.73)+0.44
−0.42

ln(1010As) 3.049(3.051)+0.015
−0.016 3.046(3.052)+0.015

−0.016
ns 0.9668(0.9679)±0.0039 0.9676(0.9670)±0.0039
τreio 0.0571(0.0584)+0.0071

−0.0080 0.0564(0.0584)+0.0074
−0.0077

Ωm 0.3090(0.3089)+0.0055
−0.0057 0.3064(0.3094)+0.0055

−0.0058
σ8 0.806(0.811)+0.012

−0.014 0.790(0.763)+0.027
−0.010

S8 0.818(0.823)+0.016
−0.012 0.798(0.775)+0.025

−0.012
χ2

min 3927.0 3929.3
χ2

min(DCDM)−χ2
min(ΛCDM) 0.0 −3.8

QDMAP ≡
√

χ2
min(w/ S8)−χ2

min(w/o S8) 1.5σ

Table 9.6: The mean (best-fit)±1σ errors of the cosmological parameters from our Planck + Pantheon +
EFTofBOSS + Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses for the DCDM
→ WDM+DR model. For each dataset we also report its best-fit χ2, and the ∆χ2 with respect to the
analogous ΛCDM best-fit model.

ΛCDM DCDM→ DR DCDM→WDM+DR
w/ EFTofBOSS w/ EFTofBOSS + S8 w/ EFTofBOSS w/ EFTofBOSS + S8 w/ EFTofBOSS w/ EFTofBOSS + S8

χ2
CMASS NGC 40.3 39.2 40.4 39.2 40.2 40.8

χ2
CMASS SGC 44.0 44.3 44.0 44.3 44.1 43.8

χ2
LOWZ NGC 33.5 33.5 33.5 33.5 33.5 33.7

χ2
EFTofBOSS 117.8 117.0 117.9 117.0 117.8 118.3
p-value 0.54 0.56 0.49 0.51 0.49 0.47

Table 9.7: χ2 of each sky cut of the EFTofBOSS dataset for our Planck + Pantheon + EFTofBOSS +
Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses for ΛCDM, DCDM → DR
and DCDM→WDM+DR models.

likelihood is included, we find ∆χ2 =−3.8 (for 2 extra degrees of freedom) at virtually no cost
in χ2 for other likelihoods (see App. F.4): the inclusion of the S8 prior helps in opening up the
degeneracy with the DCDM parameters, without degrading the fit to the host of cosmological
data, as stressed in Refs. [167, 168].

Nevertheless, the DCDM model is not statistically favored over ΛCDM, as the preference
over ΛCDM is currently solely driven by the low S8 prior, for which we have used a value
only in mild ∼ 2.4σ tension with the ΛCDM prediction. 8 We can estimate the residual ten-
sion between datasets within the various models by computing the “difference in maximum a
posterior” (QDMAP statistics [352]) between the χ2 obtained with and without the S8 prior. The

8Different S8 priors would lead to different preferences. The preference could also be made stronger at fixed ε

(see Ref. [168]).
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tension estimator 9 at their MAP point gives QDMAP = 1.5σ in the DCDM→WDM+DR model,
as compared to 2.4σ in the ΛCDM and DCDM→DR models.

Impact of EFTofBOSS data

Comparing to results without the EFTofBOSS data, for which we get 10 ∆χ2 = −4.4, we
find that the ∆χ2 is only mildly degraded by the inclusion of EFTofBOSS data. More precisely,
the χ2 of the total EFTofBOSS data for the DCDM → WDM+DR model, given in Tab. 9.7,
is only slightly larger than that for ΛCDM (∆χ2 = 1.3) despite a much lower S8 ' 0.775 (at
the best-fit) which yields a very good fit of the KiDS-1000 prior. Comparing to the analysis
with the BAO/ f σ8 measurement from BOSS-DR12 (also presented in App. F.4), we note
that these “compressed” data already showed a minor degradation of χ2 compared to ΛCDM
(∆χ2 = 1.1). We conclude that BOSS-DR12 data are in good agreement with the DCDM
→ WDM+DR model, but have a non-negligible impact, as the “naive” analysis presented in
Sec. 9.1.2 suggested.

More precisely, one can see in Fig. 9.8 that the main impact of EFTofBOSS data is to cut in
the log10(Γ/Gyr−1)− log10(ε) degeneracy, excluding too large values of log10(Γ/Gyr−1). In
App. F.5 we show that including the EFTofBOSS data does not shift the ΛCDM parameters.
Therefore, the EFTofLSS significantly improves the constraints on the τ =Γ−1 parameter at 1σ :

1.61 < log10(τ/Gyr)< 3.71 (w/EFTofBOSS) ,

to be compared with

1.31 < log10(τ/Gyr)< 3.82 (w/o EFTofBOSS) .

Additionally, we observe a notable evolution of the DCDM parameters of the best-fit model
compared to the analysis without EFTofBOSS (and with the BAO/ f σ8 measurement from
BOSS-DR12 instead): the best-fit model, with the inclusion of the S8 likelihood, now has
Γ = 0.0083 Gyr−1 (τ = 120 Gyr) and ε = 0.012, while previously Γ = 0.023 Gyr−1 (τ = 43
Gyr) and ε = 0.006. This means that EFTofBOSS data favors longer lived DM models and
therefore a smaller fraction of WDM today fwdm ≡ ρ̄wdm/(ρ̄dcdm + ρ̄wdm) ' 10% compared
to fwdm ' 27% previously, but a significantly larger kick velocity vkick/c ' ε (and therefore a
larger free-streaming scale).

It is instructive to compare these numbers with recent constraints derived from obser-
vations of Milky Way satellites by the DES collaboration [421]. These constraints exclude
log10(Γ/Gyr−1) & −1.5 for log10(vkick/c) ' log10(ε) & −4. The best-fit model of our
EFTofBOSS analysis, and a large fraction of the 68% C.L., lie well within the allowed region,

9In general, QDMAP is computed as the difference of effective χ2 =−2LogL (θ MAP), where L (θ MAP) is the
likelihood evaluated on the maximum a posteriori θ MAP, between the χ2 obtained in the combined analysis and
the sum of the χ2 obtained in the individual analyses. For Gaussian L , it is distributed as a χ2 distribution with
N1 +N2−N12 degrees of freedom (d.o.f.), where Ni refers to the number of d.o.f. in the individual (i = 1,2) and
combined analysis (i = 12). In the case of the combination of Planck and a Gaussian prior on S8, it follows a χ2

distribution with one d.o.f., and the tension can be evaluated as QDMAP ≡
√

χ2
min(w/ S8)−χ2

min(w/o S8).
10This number is different from that quoted in Refs. [167, 168] because we recall that we make use of a different

S8 prior from KiDS-1000 alone, which does not include information from BOSS data and therefore has larger error
bars.
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Figure 9.9: Residuals of the monopole and the quadrupole of the DCDM → WDM+DR model for
EFTofBOSS data and EFTofBOSS data + S8 prior. We normalized these residuals as well as the data
with the ΛCDM best-fit (EFTofBOSS data).

but these observations certainly provide a crucial test of the DCDM cosmology, as a deficit
of satellites compared to ΛCDM is expected in this model.

Towards high-accuracy measurements of the galaxy power spectrum

To gauge the importance of future surveys in constraining the DCDM→WDM+DR model,
we show in Fig. 9.9 the residuals of the monopoles and quadrupoles of the galaxy power spec-
trum between the DCDM → WDM+DR and ΛCDM models. One can see that there are sub-
percent differences between the models that gives us hope to probe the DCDM model further.
Indeed, future galaxy clustering power spectrum data with higher precision and measurements
at additional redshift bins such as Euclid [172], VRO [422] and DESI [171] have an expected
sensitivity that should allow us to detect these mild differences. In order to estimate the impact
of future observations on the preference of the DCDM → WDM+DR model with respect to
the ΛCDM model, we plot in Fig. 9.10 the residuals of the nonlinear matter power spectrum 11

between the best-fit of the DCDM→WDM+DR model (for the EFTofBOSS + S8 analysis) and
ΛCDM model (for the EFTofBOSS analysis). We represent it for different redshifts, starting at
the minimal redshift probed by an experiment like Euclid [172]. Note that at the level of the
nonlinear matter power spectrum, the suppression with respect to the ΛCDM model at z = 0.32
and z = 0.57 corresponding to current observations is more than 1 order of magnitude stronger
than what is seen in the residual of the monopole and quadrupole of the galaxy power spectrum

11We set here cs = 1, which is an effective parameter of the one loop correction that can be interpreted as the
effective sound speed of the dark matter.
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Figure 9.10: Residuals of linear (dashed lines) and nonlinear (solid line) matter power spectrum of the
DCDM → WDM+DR model (EFTofBOSS data + S8 prior) for z = 0, 0.2 (Euclid minimal redshift),
0.32 (effective redshift of the LOWZ sky cut) and 0.57 (effective redshift of the CMASS sky cut). We
normalized these residuals with the ΛCDM best-fit (EFTofBOSS data).

(see Fig. 9.9). This is due to the impact of the degeneracy between the DCDM parameters
and the EFT galaxy bias parameters, which can counteract the effect of the DCDM decay in the
galaxy power spectrum. This shows that current theoretical uncertainties associated with galaxy
bias parameters limit the ability to use galaxy (clustering) surveys to probe the DCDM model,
and represent a potential challenge to fully exploit future surveys. Additionally, we observe
that as z decreases, the deviation from ΛCDM increases significantly because of the production
of WDM through the decay. We keep for future work to check through dedicated forecasts
whether accumulation of low redshift data, as well as the reduction of error bars, will allow us
to firmly detect or exclude the DCDM→WDM+DR model that resolves the S8 tension.

9.3 Conclusions

In this chapter, we have confronted two models of DCDM with BOSS DR12 galaxy power
spectrum data [418] as described by the EFTofLSS from Refs. [65, 60, 66, 67, 64, 94, 59].
We focused first on a model where a fraction of dark matter decays into dark radiation, the
DCDM → DR model, and second on a model where all the dark matter decays into warm
massive particles and dark radiation particles, the DCDM → WDM+DR model. The latter
model was recently suggested as a possible resolution to the S8 tension, the mismatch between
the determination of the S8 parameter from the Planck CMB power spectrum [11] and from
weak lensing surveys by KiDS [177, 80], CFHTLenS [423] and DES [79]. We presented in
Sec. 9.1 the first calculation of the nonlinear (matter and galaxy) power spectra in DCDM
models making use of recent progresses in the EFTofLSS. We then confronted in Sec. 9.2 these
two models to a compilation of Planck TTTEEE and lensing power spectra, BAO data from
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BOSS and eBOSS (including Ly-α data), uncalibrated luminosity distance to SN1a from the
Pantheon catalog [133], as well as measurements of the monopole and quadrupole of the galaxy
power spectrum for three different sky cuts of BOSS-DR12 (see Ref. [69]), namely LOWZ
NGC, CMASS NGC and CMASS SGC [418]. We compared the use of either the BAO/ f σ8
from that same release, or the full shape of the galaxy power spectrum. Additionally, we tested
the ability of these models to resolve the S8 tension by performing analyses with and without
prior on S8 as measured by KiDS [80]. Our results can be summarized as follows:

• We have derived the most up-to-date bound on the fraction of decaying dark matter fdcdm,
which is now fdcdm < 0.0216 for short-lived DCDM. We have also updated constraints
on the lifetime of dark matter for the case where fdcdm → 1, namely τ/ fdcdm > 249.6
Gyr. However, we have found that the EFTofLSS does not provide significantly better
constraints to the cosmological parameters for the DCDM→ DR model, compared to the
use of the standard BAO/ f σ8 data. In agreement with past studies, we have found that
these models do not help neither for the S8 nor for the H0 tension, and the inclusion of
EFTofBOSS data does not alter that conclusion.

• The DCDM→WDM+DR model can explain the low S8 value measured by KiDS-1000
while preserving the goodness of fit to other dataset, including EFTofBOSS data. The
residual tension is 1.5σ compared to 2.4σ in the ΛCDM model. Nevertheless, the model
is not statistically favored over ΛCDM (∆χ2 = −3.8 for 2 degrees of freedom, roughly
corresponding to 1.5σ ). The inclusion of EFTofBOSS data only marginally affects the
preference.

• EFTofBOSS data however do significantly improve the 1-σ constraint on the DCDM
lifetime for the DCDM → WDM+DR model, and when combined with the S8 prior,
we now obtain log10(τ/Gyr) = 2.21+1.5

−0.6 compared to log10(τ/Gyr) = 1.92+1.9
−0.61 with-

out the EFTofBOSS. The constraints on log10(ε) are however slightly weaker than with
BAO/ f σ8 measurements.

• The EFTofBOSS data also affects the best-fit model which, with the inclusion of the S8
likelihood, corresponds to a longer lived DM with τ = 120 Gyr (compared to τ = 43 Gyr
previously) and a larger kick velocity vkick/c ' ε = 1.2% (compared to vkick/c ' 0.6%
previously).

Looking forward, we expect future galaxy clustering power spectrum data, with higher pre-
cision and measurements at additional redshift bins such as Euclid [172], VRO [422] and DESI
[171], to provide us with exquisite sensitivity to DM decays into an invisible sector whether
massive or massless. Moreover, as the error bars decrease, it will likely be necessary to identify
and account for the corrections to be made to the EFTofLSS in order to capture all the specific
effects of the DCDM→WDM+DR model. Following Ref. [416] for the case of massive neu-
trinos, it will be important to determine the one loop terms and associated counterterms of the
mildly nonlinear galaxy power spectrum caused by the WDM contribution to the linear matter
power spectrum (which we have argued in App. F.2 to likely be small compared to current error
bars). We keep for future work to test whether these surveys will be able to firmly detect or
exclude the DCDM → WDM+DR model that resolves the S8 tension.
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Conclusion

This thesis focuses on two different but complementary axes of research. In the first axe, we
concentrated on the effective field theory of large-scale structures (EFTofLSS), and in particular
the study of its constraints when applied to the BOSS and eBOSS data and the study of its
self-consistency through prior effects. In the second axe, we were interested in the application
of this theory (always with BOSS and sometimes eBOSS data) to non-trivial extensions of
the ΛCDM model, particularly relevant to the resolution of cosmological tensions. These two
axes of research are distinct in that they address different questions: how to obtain the most
robust and optimised constraints from large-scale structure data? for the first one, and what is
the impact of large-scale structure data on the constraints of models beyond ΛCDM? for the
second one. In addition, these two axes are complementary insofar as they take place within
a common framework, namely EFTofLSS. The first part of this thesis is fundamental to the
second part in that it establishes the theoretical and analysis framework – and in particular its
advantages and limitations – which is used in the second part. The second part, in turn, is an
extension of the analysis carried out in the first part, and gives an idea of the very wide range
of applications that can be covered by the EFTofLSS. In the following, we summarise the main
results of each of the chapters of this thesis.

In chapters 1, 2 and 3 we respectively presented the paradigm of the modern cosmology
for the smooth universe, the linearly perturbed universe (with the CMB physics) and the
non-linearly perturbed universe (with the LSS physics). In particular, this last chapter sets out
the conceptual and theoretical foundations on which this thesis is based.

In chapter 4, we have performed the first EFT analysis of the eBOSS QSO full-shape data.
We have combined this analysis with other LSS data in order to obtain independent constraints
from Planck. As our results are in good agreement with Planck, we have combined LSS and
CMB probes in order to break the degeneracies present in the CMB. In addition, the EFT
analysis of eBOSS QSOs provides independent measurements of the ΛCDM parameters in
a different redshift range (z ∼ 1.5) than previous EFT analyses, and from yet another tracer.
Interestingly, we find good consistency between the EFT analysis of eBOSS QSO data, the
EFT analysis of BOSS LRG data, and the Planck data. This consistency is a non-trivial check
of the ΛCDM model and the many associated assumptions, as we considered very different
data both in terms of redshift and in terms of the objects being probed. In addition to further
testing the ΛCDM model, we have assessed that eBOSS data help improving constraints on
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extended cosmological models in which the late-time background dynamics departs from
flat-ΛCDM. When we combined our LSS analysis with the Planck data, we obtained very
strong constraints on the canonical extensions to the ΛCDM model, for example on the sum of
the neutrino masses. Finally, we have shown (i) the importance of going beyond conventional
BAO/ f σ8 analysis with the EFTofLSS in order to constrain simple extensions to ΛCDM with
LSS data only, and (ii) that the clustering data analysed with an EFT analysis are compatible
with the flat-ΛCDM model, with and without the combination with the Planck data.

In chapter 5, we have looked at two BOSS EFT full-shape analyses, the so-called
“West-coast” (WC) and “East-coast” (EC) analyses, that have been implemented in the PyBird
and CLASSPT pipeline, respectively. These analyses lead to differences in the reconstructed
cosmological parameters of up to 1σ . Given that they all come from the same BOSS data,
this may be consider surprising and unsatisfactory. In order to explore the origin of these
differences, we performed a series of analyses of the BOSS full-shape data, varying one-by-one
(in order of importance) the prior choices, the BOSS measurements used (full-shape and
post-reconstructed BAO parameters), the scale cuts and the number of multipoles included.
Importantly, we found that cosmological constraints are sensitive to the choice of prior on
the EFT parameter space, and that the two different choices of prior used in the PyBird and
CLASS-PT analyses drive most of the differences in the results. On the other hand, the different
BOSS full-shape measurements leads to at most 0.6σ difference among all cosmological
parameters, while the different post-reconstructed BAO measurements can affect constraints
by up to 0.9σ . Yet, when the choices of prior and data are the same, we show that the two
pipelines agree at better than 0.2σ , which consists in an important validation check of the two
public likelihoods available. Our analysis thus shows that the difference is mainly driven by
prior effects emanating from the Bayesian analysis, and not from the theory, the data or the
code implementations.

In chapter 6, we complement the results of the standard Bayesian analysis, as performed
in chapters 4 and 5, with a profile likelihood analysis. The profile likelihood is a frequentist
method based only on the maximum likelihood estimate (MLE) and, therefore, inherently
reparametrization invariant and prior independent. Our goal was to understand the impact of
priors on the EFT parameters on the inferred cosmological parameters and how this will change
with more constraining data. We found that the WC and EC parametrizations applied to the
BOSS data yield the same confidence interval for σ8, confirming that the two parametrizations
are mathematically equivalent. However, we found that the profile likelihood gives constraints
on σ8 that are factors of > 2 wider than the constraints based on the MCMC posterior. Our
results clearly show the advantages and disadvantages of frequentist and Bayesian parameter
inference. Since the frequentist inference does not include priors that confine the EFT
parameters to the regime intended by the theory, we observe that the data prefers several EFT
parameters to take on extreme values, possibly breaking the perturbativeness of the theory. The
lack of prior further leads to significantly wider confidence intervals. This loss of constraining
power reflects the purely data driven frequentist approach, which is completely agnostic about
which model parameters are deemed more likely a priori. On the other hand, the priors in
the Bayesian inference are informative and have an impact on the inferred cosmological
parameters. This is important since it is not straightforward to define well motivated priors
on the EFT parameters, which is reflected in the fact that the WC and EC parametrizations
use different standard configurations for the EFT priors. As a way forward, we explored the
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impact that data from future surveys like DESI will have by considering BOSS data with a data
covariance matrix rescaled by 16. We find that the constraints from Bayesian and frequentist
approaches converge to the same interval for σ8 as the likelihood dominates over the prior
information, suggesting that the issues discussed above will subside with more data.

In chapter 7, we reassessed the constraints on early dark energy (EDE) from the full
shape of the most recent measurements of the power spectrum (or correlation function)
of BOSS in light of a correction to the normalization of BOSS window functions. It has
been argued that the full-shape analysis of the galaxy power spectrum of BOSS disfavors
the EDE model as an efficient resolution of the H0 tension, and we have shown that this
is no longer the case with the new BOSS data. To do so, we have performed a thorough
investigation of the constraints on EDE in light of the correctly normalized BOSS data
and estimated the shifts introduced on the reconstructed cosmological parameters and their
errors between various EFT analysis strategies. Regardless of the BOSS data or the EFT
likelihood we consider, the BOSS full-shape (analyzed on their own with a BBN prior)
leads to reconstructed values of H0 that are compatible with what is obtained by the SH0ES
Collaboration. In addition, we considered the combination of PlanckTTTEEE + Lens + BAO
+ Pan18 + EFTBOSS which leads to fEDE(zc) < 0.083, which is a ∼ 10% improvement
over the constraints without BOSS data and a ∼ 5% improvement over the constraints with
conventional BAO/ f σ8 data. Yet, this is much weaker than the constraints reported with
the incorrect normalization, namely, fEDE < 0.054. We quantify that the Hubble tension is
reduced to the 2.1σ level in the EDE cosmology (1.9σ without EFTBOSS) compared to
4.8σ in the ΛCDM model. Then, we have studied the impact of the BOSS data on the recent
hints of EDE observed within ACT DR4 data. The combination of PlanckTT650TEEE +
Lens + BAO + Pan18 + ACT + EFTBOSS leads to a mild constraints on fEDE(zc) < 0.172
with ∆χ2(EDE− ΛCDM) = −11.1, to be compared with fEDE(zc) = 0.128+0.064

−0.039 without
EFTBOSS + Lens, with ∆χ2(EDE− ΛCDM) = −14.6. Finally, we concluded that the
EFTofLSS analysis of the BOSS data do not exclude EDE as a resolution to the Hubble tension,
where we consistently find fEDE(zc)∼ 10−12% at zc ∼ 3500−4000, with h∼ 0.72, when the
cepheid calibration is included in the analyses. However, the EFTofLSS analysis of the BOSS
data constrains the most extreme EDE cosmologies, as shown by the analysis of ACT DR4 data.

In chapter 8, we have updated the constraints on the acoustic (early) dark energy (ADE)
model by first assessing the impact of the EFT full-shape analysis applied to the BOSS and
eBOSS data, and secondly the impact of the latest Pantheon+ data. We have demonstrated
that the EFTofLSS analysis slightly reduces the ability of this model to resolve the Hubble
tension compared to the BAO/ f σ8 analysis, with a residual tension of 2.6σ . Importantly,
when we replace the Pantheon data with the Pantheons+ data, the ADE model no longer
resolves the Hubble tension at a suitable level, leading to a 3.6σ residual tension (compared
to 2.5σ for the EDE model and 6.3σ for the ΛCDM model). Whereas with the EFTofLSS
analysis we had only a slight preference for EDE over ADE, with the new data from
Pantheon+ and SH0ES, the preference for this model becomes clearly apparent, due to the
fact that axion-like EDE manages to compensate a higher Ωcdmh2 in Planck data thanks to the
scale-dependence of the sound speed. More generally, in this work, we have shown that the
new data from Pantheon+ and SH0ES, and to a lesser extent the EFTofLSS applied to the BOSS
and eBOSS data, can have a decisive impact on models which aim to resolve the Hubble tension.
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In chapter 9, we have confronted two models of decaying cold dark matter (DCDM)
with the full-shape analysis of the BOSS data, combined with Planck TTTEEE and lensing
power spectra, BAO data from BOSS and eBOSS (including Ly-α data), and the uncalibrated
luminosity distance to SNIa from the Pantheon18 catalog. We focused first on a model where
a fraction of dark matter decays into dark radiation, the DCDM → DR model, and second
on a model where all the dark matter decays into warm massive particles and dark radiation
particles, the DCDM → WDM+DR model. The latter model was recently suggested as a
possible resolution to the S8 tension. For the DCDM→ DR model, we have derived the most
up-to-date bound on the fraction of decaying dark matter fdcdm, which is now fdcdm < 0.0216
for short-lived DCDM. We have also updated constraints on the lifetime of dark matter for
the case where fdcdm → 1, namely τ/ fdcdm > 249.6 Gyr. However, we have found that the
EFTofLSS does not provide significantly better constraints to the cosmological parameters for
the DCDM → DR model, compared to the use of the standard BAO/ f σ8 data. In agreement
with past studies, we have found that this model does not help neither for the S8 nor for the
H0 tension, and the inclusion of the EFTofLSS analysis of the BOSS data does not alter that
conclusion. For the DCDM → WDM+DR model, we showed that this model can explain
the low S8 value measured by KiDS-1000 while preserving the goodness of fit to other
dataset, including the EFTofLSS analysis of the BOSS data. The residual tension is 1.5σ

compared to 2.4σ in the ΛCDM model. In addition, we demonstrated that the full-shape
analysis of the BOSS data do significantly improve the 68% C.L. on the DCDM lifetime
for the DCDM → WDM+DR model, and when combined with the S8 prior, we now obtain
log10(τ/Gyr) = 2.21+1.5

−0.6 compared to log10(τ/Gyr) = 1.92+1.9
−0.61 with BAO/ f σ8 measurements.

This thesis illustrates the crucial importance of large-scale structure data for accessing in-
formation in uncharted regimes, while it demonstrates the predictive power of the effective
field theory of large-scale structures as well as the benefits that this theory can bring in terms
of cosmological knowledge. Over the next few years, new large-scale structure data from the
international DESI, EUCLID and VRO projects will provide exquisite new data to study the na-
ture of dark matter, dark energy, and inflation, and allow to perform tests of models suggested
to resolve cosmological tensions. It will therefore be necessary to pursue theoretical efforts
to accurately predict the non-linear galaxy power spectrum (but also the galaxy bispectrum),
and make use of the wealth of data to come.







Appendices





A
Cosmological inference from the

EFTofLSS: the eBOSS QSO
full-shape analysis

A.1 What happens if we vary ns and ωb in the LSS analyses?

In our baseline LSS analyses (i.e., without combination with Planck data), we set
ωb = 0.02233 (the central value of big-bang nucleosynthesis (BBN) experiments [134]) and
ns = 0.965 (the central value from Planck in the ΛCDM model [11]). In the following, we
impose a uninformative large flat prior on ns, while we impose the BBN Gaussian prior on ωb,
motivated from [134], namely ωb = 0.02233± 0.00036, to explore the impact of the variation
of ns and ωb in the LSS analyses presented in this work. We carried out the eBOSS + BOSS
analysis either by varying one of these two parameters at a time to isolate their effects, or
varying both simultaneously. In Fig. A.1, we present these results in comparison with our
base-ΛCDM analysis of eBOSS + BOSS.

In this figure, one can easily gauge that the variation of ωb within the BBN prior has a
negligible impact on the cosmological results: we have a relative shift of . 0.04σ between the
mean values and . 0.07σ between the best-fit values, while the 68% CL constraints remain
the same for all parameters. However, the variation of ns within a uninformative large flat
prior leads to a relative shift . 0.4σ between the mean values, while the best-fit values are
shifted by -1.06σ , -0.50σ , 0.52σ , -1.15σ , 0.76σ , 0.13σ for Ωm, h, σ8, ωcdm, ln1010As and S8
respectively. In addition, the 68% CL constraints of the ns-free analysis are degraded . 10%
on all cosmological parameters, except for Ωm and ωcdm where the degradation reaches 57%
and 79% respectively. Not surprisingly, we find that the analysis that combines the variation of
these two parameters gives results very similar to the ns-free analysis.

It is common to set the value of ns in LSS analyses (see Refs. [97, 103, 114] for examples)
to that of Planck. Several tests have been carried out, often imposing a Gaussian prior inspired
by the Planck preferred value in order to evaluate the impact of the variation of ns around this
value. This is for instance the case in the ShapeFit analysis [114], where a Gaussian prior
ns = 0.965± 0.02 is imposed. In this analysis, which also combines eBOSS and BOSS data,



276 A. COSMOLOGICAL INFERENCE FROM THE EFTOFLSS: THE EBOSS QSO
FULL-SHAPE ANALYSIS

best-fit [ns + ωb]
µ
+σu
−σl
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Ωm
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Figure A.1: Left - Cosmological results (best-fit, posterior mean, and 68% CL) of eBOSS + BOSS for
the ΛCDM model. Here we let ns vary freely and restrict ωb to a BBN prior, calling such analysis “[ns +
ωb]”, in contrast to the corresponding analyses in the main text where those are fixed. We also report the
best-fit χ2, the number of data points Ndata and the associated p-values. Right - Triangles plots (1D and
2D posterior distributions) of the cosmological parameters reconstructed from the eBOSS + BOSS base-
ΛCDM analysis and the eBOSS + BOSS [ns + ωb] analysis. We also show, in dotted lines, the eBOSS
+ BOSS results with only the ns variation, denoted “eBOSS + BOSS [ns]”, or only the ωb variation,
denoted “eBOSS + BOSS [ωb]”.

it was reported that the variation of ns within this prior does not impact h and σ8 posteriors,
while it slightly degrades the constraints on Ωm. This is somewhat consistent with what we
observe here. However, it is essential to note that this degradation is exacerbated in our ns-free
analysis since we impose a large uninformative flat prior.

Although these differences do not alter the conclusions of this analysis, one may argue that
to obtain LSS constraints that are truly independent of Planck, one should not include any prior
on ns. Therefore, we have redone, for all cosmological model considered in this work, the anal-
ysis of eBOSS + BOSS + ext-BAO + Pantheon, letting ns vary freely as well as restricting ωb to
the BBN prior. Those cosmological results are presented in Tab. A.1. From the first column of
this table, we can compare the ns-free analysis with the base-ΛCDM analysis of the last column
of Tab. 4.2 for the full combination of LSS datasets. We observe that the relative shifts between
the mean values, the relative shifts between the best-fit values, and the degradation of the con-
straints are substantially similar to those observed in the above comparison on eBOSS + BOSS.
In addition, we list here the impact of varying ns (and ωb) on the constraints of the extension
parameters to flat ΛCDM from the analysis of eBOSS + BOSS + ext-BAO + Pantheon:

• For Ωk, the relative shift between the mean values is 0.74σ , the relative shift between the
best-fit values is 0.40σ , while the constraint is degraded by ∼ 30%.
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eBOSS + BOSS + ext-BAO + Pantheon (LSS) [ns +ωb]
best-fit ΛCDM ΩkΛCDM w0CDM νΛCDM NeffΛCDM
µ
+σu
−σl

Ωm
0.2905 0.291 0.2903 0.290 0.292

0.2957+0.0097
−0.0098 0.299+0.010

−0.012 0.2957+0.0096
−0.0110 0.299+0.010

−0.011 0.291+0.014
−0.012

h 0.6749 0.681 0.670 0.6753 0.671
0.6786+0.0085

−0.0088 0.697+0.013
−0.015 0.682+0.012

−0.013 0.6765+0.0085
−0.0094 0.697+0.017

−0.038

σ8
0.858 0.840 0.866 0.856 0.859

0.794+0.037
−0.041 0.755+0.043

−0.047 0.789+0.042
−0.045 0.811+0.042

−0.046 0.793+0.037
−0.040

ωcdm
0.1093 0.1120 0.1095 0.1096 0.108

0.1132+0.0056
−0.0062 0.1222+0.0076

−0.0096 0.1146+0.0060
−0.0079 0.1115+0.0055

−0.0070 0.119+0.007
−0.012

ln(1010As)
3.24 3.14 3.29 3.22 3.24

3.06+0.12
−0.12 2.76+0.22

−0.21 3.03+0.15
−0.15 3.20+0.15

−0.21 3.05+0.12
−0.12

S8
0.844 0.828 0.852 0.842 0.847

0.788+0.039
−0.039 0.754+0.040

−0.045 0.783+0.040
−0.044 0.809+0.041

−0.047 0.780+0.037
−0.043

ns
1.012 0.994 1.025 1.007 1.010

0.985+0.038
−0.038 0.930+0.053

−0.048 0.976+0.046
−0.043 1.038+0.050

−0.087 0.985+0.041
−0.039

Ωk – −0.021 – – –−0.063+0.036
−0.037

w0 – – −0.975 – –−1.018+0.047
−0.043

∑mν [eV] – – – 0.025 –
< 0.777

∆Neff – – – – −0.11
0.48+0.47

−0.86

χ2
min 1249.8 1249.6 1249.4 1249.7 1249.8

∆χ2
min – −0.2 −0.4 -0.1 0

Table A.1: Cosmological results (best-fit, posterior mean, and 68% CL) from eBOSS + BOSS + ext-
BAO + Pantheon for the ΛCDM model as well as several model extensions. In contrast to the previous
analyses, we vary ns and ωb. Note that we quote 95% CL bound for ∑mν . For each dataset we also
report its best-fit χ2, and the ∆χ2 with respect to the analogous ΛCDM best-fit model.

• For w0, the relative shift between the mean values is 0.46σ , the relative shift between the
best-fit values is 0.64σ , while the constraint is degraded by ∼ 10%.

• For ∑mν , there is no relative shift between the best-fit values, while the 95% CL bound
becomes 2.8 times weaker.

• For ∆Neff, the relative shift between the mean values is 0.12σ , the relative shift between
the best-fit values is 0.36σ , but the constraint is not degraded.

Finally, we perform a BOSS + ext-BAO + Pantheon analysis without eBOSS (i.e., the first
column of Tab. A.1 without eBOSS) to assess the impact of eBOSS on the determination of
ns. In this case, we reconstruct ns = 0.943± 0.043 at 68% CL (with a best-fit value at 0.957).
This shows that the inclusion of the eBOSS data allows us an improvement of 13% on the
68% CL error bar of ns.





B
Consistency of EFTofLSS analyses of the

BOSS data

B.1 Impact of scale cut and multipoles
In this appendix, we look at the differences when we change the scale cut and the number

of multipoles analyzed. BOSS analyses using the PyBird likelihood usually include two
multipoles, ` = 0,2, with scale cut kmax = 0.25(0.20)hMpc−1 for z3 (z1). The CLASS-PT

likelihood include three multipoles, ` = 0,2,4, with scale cut kmax = 0.20hMpc−1 for both z1
and z3. In Fig. B.1 we present a comparison between the WC and the EC prior, for the exact
same data and configuration (same kmax and same number of multipoles), now considering
three galaxy power-spectrum multipoles. This figure can be compared with Fig. 5.1, where
the same analysis was performed when considering two multipoles. One can see that, similar
to Fig. 5.1, the results of the PyBird and CLASS-PT likelihoods are in good agreement when
using the same prior, also when the hexadecapole is included in the analysis.

Let us now look at how the results change when going from one choice of scale cut or
multipoles to another one, for each prior choice. The results can be read from Fig. B.2, going
from top to bottom, either looking in the upper panel or the lower panel. We find that:

• with the WC prior, when either lowering the kmax from 0.25hMpc−1 to 0.20hMpc−1 in
z3, adding the hexadecapole, or changing both, we find at most a shift of . 0.5σ on the
cosmological 1D posteriors.

• with EC prior, we find shifts up to about 0.3σ , 0.9σ , and 0.5σ , respectively, when in-
creasing the kmax from 0.20hMpc−1 to 0.25hMpc−1 in z3, going from three to two mul-
tipoles, or changing both.

We stress that one does not expect the results between those various analysis settings to be
the same, given that data are included (or removed). However, given that the signal-to-noise
ratio of the hexadecapole is very low compared to the monopole and quadrupole, and that the
data added between k ∈ [0.20,0.25]hMpc−1 are only a few bins, we expect to see only relatively
small shifts in the posteriors. While this seems to be the case for the WC prior, the shifts are
slightly larger for the EC prior when going from two to three multipoles. As explained in
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Figure B.1: Comparison of ΛCDM results (1D and 2D credible intervals) from the full-shape analyses
of BOSS power spectrum using the PyBird likelihood or the CLASS-PT likelihood. Here we use the
same data measurements, Pz1/z3

QUAD as specified in Tab. 5.4, and same analysis configuration: we fit three
multipoles, `= 0,2,4, and use kmax = 0.20/0.25hMpc−1 for the z1/z3 redshift bins. Given the same prior
choice, the EC prior, we reproduce from the PyBird likelihood the results from the CLASS-PT likelihood
to very good agreement (see blue and red posteriors): we obtain shifts . 0.2σ on the means and the errors
bars similar at . 10%. Given that the two pipelines have been developed independently, this comparison
provides a validation check of their implementation. In contrast, the WC and the EC prior choices lead
to substantial differences on the 1D marginalized posteriors (see black and blue posteriors). The gray
bands on the 1D posteriors are centered on the results obtained with the WC priors.
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Figure B.2: Comparison of ΛCDM results from BOSS full-shape analyses using the PyBird likelihood
(WC prior) or the CLASS-PT likelihood (EC prior), for various analysis settings: number of multipoles
analyzed (`= 0,2 or `= 0,2,4), and kmax of z3 (kz3

max = 0.20 or kz3
max = 0.25). kz1

max = 0.20 for all analyses
here, while all kmax’s are given in hMpc−1. Here we use the same data measurements, Pz1/z3

QUAD, as specified
in Tab. 5.4. The native baseline configurations used in previous BOSS full-shape analyses, highlighted
by the gray bands, are ` = 0,2, kz3

max = 0.25 for the PyBird likelihood, and ` = 0,2,4, kz3
max = 0.20 for

the CLASS-PT likelihood.

previous section, the EC prior leads to larger prior volume projection effects, which can explain
why we see larger differences in the current comparison.

B.2 PyBird vs CLASS-PT: direct comparison
For completeness, we provide now a comparison keeping all the analysis choices

different in both likelihoods: the pre- and post-reconstructed measurements, scale cut,
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PyBird likelihood vs CLASS-PT likelihood

0.67 0.71
h

PyBird

CLASS-PT

0.695 ± 0.012

0.695 ± 0.012

0.12 0.14
cdm

0.128 ± 0.011

0.138 ± 0.012

2.5 3.0
ln(1010As)

2.84 ± 0.16

2.66 ± 0.15

0.85 0.95
ns

0.901 ± 0.059

0.886 ± 0.069

0.30 0.35
m

0.312 ± 0.016

0.334 ± 0.017

0.7 0.8
8

0.746 ± 0.044

0.710 ± 0.046

0.7 0.8
S8

0.760 ± 0.044

0.749 ± 0.047

Figure B.3: Comparison of ΛCDM results (1D credible intervals) from PLZ/CM
FKP +α LZ/CM

rec analyzed using
the PyBird likelihood (i.e., the native data and configuration of PyBird), and Pz1/z3

QUAD +β
z1/z3
rec analyzed

using the CLASS-PT likelihood (i.e., the native data and configuration of CLASS-PT). Contrary to the
analysis of Ref. [69] based on the PyBird likelihood, we fix the total neutrino mass to minimal, and, we
do not use Q0 or B0 as Ref. [62] in the CLASS-PT likelihood. The gray bands are centered on the results
from PyBird.

number of multipoles, and prior choices. This leads to the differences on the 1D posteriors
that we see in Fig. B.3. The differences between PLZ/CM

FKP + α LZ/CM
rec analyzed using the

PyBird likelihood, with Pz1/z3
QUAD + β

z1/z3
rec analyzed using the CLASS-PT likelihood, are about

0σ , 0.9σ , 1.2σ , 0.2σ , 1.3σ , 0.8σ and 0.3σ on h, ωcdm, ln
(
1010As

)
, ns, Ωm, σ8, and S8,

respectively. As discussed in the main text, we have found that those differences are due
to different prior choices, differences in the measurements used, and the full-shape analysis
settings (kmax and number of multipoles). Therefore, if the shifts between the two base analyses
do not seem to be that large in the end, . 1.3σ , we understand that there are cancellations
arising from the different analysis choices.

As an intermediate result, we can compare these two likelihoods with the same dataset, i.e,
by changing only the prior choices and the analysis settings (kmax and the number of multipoles).
We find that the largest deviations between the PyBird likelihood and the CLASS-PT likelihood
for Pz1/z3

QUAD are on ωcdm, ln
(
1010As

)
, Ωm, and σ8, as seen in Fig. 5.7. Without reconstructed

BAO, they are about 0.6σ , 0.9σ , 0.6σ and 0.7σ , respectively. With reconstructed BAO, the
deviations tend to increase, since they become equal to 0.9σ , 1.1σ , 0.9σ and 0.6σ , respectively.

To close this study, we mention a few other BOSS full-shape analyses using yet a dif-
ferent likelihood or measurements. First, Ref. [103], that uses another prior choice (note
in particular that they fix ωb and ns, other reconstructed measurements from configuration
space [424], and another methodology to analyze the reconstructed signal), finds Ωm = 0.303±
0.008, h = 0.6923± 0.0077, ln

(
1010As

)
= 2.81± 0.12, which overall is closer to PLZ/CM

FKP +

α LZ/CM
rec than Pz1/z3

FKP +α
z1/z3
rec , especially on h. It is actually also interesting to compare to their

results without reconstructed signal, for which they obtain Ωm = 0.305± 0.010, h = 0.685±
0.011, ln

(
1010As

)
= 2.84±0.13. Here again, their results are closer to PLZ/CM

FKP analyzed with

WC prior, than, e.g., Pz1/z3
QUAD, analyzed either with the WC or EC prior. Second, Ref. [114]

put forward another approach, dubbed ShapeFit, that extends the traditional analysis BAO and
redshift-space distortion measurements with one additional compressed parameter. They ob-
tain on BOSS data (fixing ωb and ns): Ωm = 0.300±0.006,h = 0.6816±0.0067, ln

(
1010As

)
=

3.19± 0.08. Those results are also in better agreement with PLZ/CM
FKP analyzed with the WC
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prior, than Pz1/z3
QUAD analyzed either with the WC or EC prior. We warn that it is not straightfor-

ward to interpret those comparisons given that there are many differences in the analysis setup.
In particular, we have checked that fixing ωb instead of using a BBN prior, or fixing ns, can
shift the posteriors of the other cosmological parameters up to about 1σ .





C
Frequentist investigation of EFTofLSS
analyses of the BOSS and eBOSS data

C.1 Impact of priors on EFT parameters
The naturalness of the EFTofLSS framework predicts the EFT nuisance parameters to be
of order unity, and too large values of these parameters would break the perturbativeness
of the theory [139]. Thus, the standard WC parametrization described in Sec. 6.2.1 assigns
Gaussian priors on a subset of the nuisance parameters in order to prohibit the non-perturbative
regime from influencing the inference. In principle, such priors could be informed by N-body
simulations and thereby promoted to likelihoods and interpreted as additional data in the
frequentist approach. However, since this is not the case for the above priors, it is statistically
not justified to include them in a profile likelihood analysis. In the main text, we have illustrated
the impact induced by including the priors as likelihoods in the analysis. Here, we repeat this
analysis varying the width of the priors.

Flat priors can be modelled as Gaussian priors in the limit that the standard deviations, or
widths, of the Gaussian priors tend to infinity. Thus, by gradually increasing the width of the
standard Gaussian priors, one uncovers the effects of the priors. Fig. C.1 shows σ8 profiles with
BOSS+BAO data with the Gaussian priors widths increased by the factor specified in the legend.
The red line corresponds to the standard prior configuration of the PyBird likelihood (with c4 =
cmono

ε = 0). We observe that the profiles converge to the same shape at large factors, indicating
that the Gaussian priors are flat, for all practical purposes, when their widths are increased by
factors above ∼ 40. Accordingly, for convenience purposes in the PyBird code, we model the
flat priors on the EFT parameters which have Gaussian priors in the standard configuration by
their usual Gaussian priors but with widths multiplied by 100. The 68% confidence intervals
obtained from the 1x and 100x widths in the figure are

σ8 = 0.802±0.045 (w. prior)
σ8 = 0.771±0.075 (no prior),

amounting to a 0.35σ shift. A similar shift in σ8 was found in chapter 5 from an MCMC
analysis when increasing the Gaussian priors widths by a factor of 2. We conclude that
the likelihoods imposed on the EFT parameters may influence the constraints when using
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Figure C.1: Profile likelihood of σ8 under BOSS+BAO data using Gaussian data likelihoods on the
EFT parameters, which correspond to the standard WC priors multiplied by different factors indicated
by the legend. There is a clear shift in σ8 as the prior is widened. In particular, the profiles with widths
multiplied by factors of 40, 100, and 400 coincide, indicating that the Gaussian priors reach the limiting
case of a flat prior with these large widths. Thus, in our analysis, we model the flat priors on all EFT
parameters as the usual priors, but with the widths of the Gaussian priors multiplied by 100.

BOSS data (note, however, that the influence will increase for less constraining datasets and
vice-versa).

The disadvantage of not imposing these likelihoods is that one loses control over whether
the EFT parameters become too large for the effective field theory description to be appropriate.
Thus, the only correct frequentist approach is to let them vary freely and then check explicitly
by inspection that they remain of order unity at each point in the profile likelihood. Fig. C.2
shows the values of the EFT nuisance parameters found by optimization at each point in the
σ8 profile with BOSS+BAO data, both with (red) and without (black) the explicit likelihoods
on the EFT parameters. For comparison, the shaded blue region indicates the 1σ region of the
Gaussian prior of the parameters, which have a prior in the standard analysis. We observe that
in the case without Gaussian likelihoods mimicking priors, the EFT parameters are not of order
unity as desired, which can break the perturbative nature of the theory. This result illustrates the
conundrum of the priors: either one adopts subjective priors (in a Bayesian framework), which
are informative and influence the inferred cosmological parameters, or one works without priors
(in a frequentist framework), which leads to extreme values of the nuisance parameters.

C.2 Full profile and MCMC results

Fig. C.3 shows the profile likelihoods (black) and one-dimensional marginalized posterior dis-
tributions (red) for the BOSS+BAO, BOSS (without BAO post-reconstruction measurements)
and eBOSS datasets, derived in this work. The profile likelihoods are normalized to their MLE.
The bottom panels show the 68% and 95% confidence intervals and credible intervals.
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Figure C.2: Values of the EFT parameters found from optimization at each point in the σ8 profile
with BOSS+BAO data, with (red) and without (black) the standard WC priors of the PyBird likelihood,
described in Sec. 6.2.1. The horizontal blue bands illustrate the 1σ regions of the Gaussian priors. For
the parameters without such a band, a flat prior is used ([0,4] for b1 and [−4,4] for c2). The labels CM
and LW denote the CMASS and LOWZ galaxy samples, respectively.
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Figure C.3: Profile likelihoods (black) and one-dimensional marginalized posteriors (red) of the
parameters σ8, h, Ωm, ns and ln

(
1010As

)
for the datasets BOSS+BAO, BOSS (without BAO post-

reconstruction) and eBOSS. The bottom panels show the 68% and 95% confidence intervals and credible
intervals, respectively.



288 C. FREQUENTIST INVESTIGATION OF EFTOFLSS ANALYSES OF THE BOSS AND

EBOSS DATA

C.3 Best-fit parameters
For the sake of reproducibility, Table C.1 shows the values of the cosmological parameters at
the global best-fits found in this work. We note that the best-fits here are simply taken as the
point in the profile likelihood with the maximum likelihood; due to the finite sampling of the
profile, the best-fit values of these parameters may therefore be slightly inaccurate.

BOSS+BAO BOSS eBOSS Planck
102ωb 2.2686 2.2682 2.2674 2.2399
ωcdm 0.1391 0.1259 0.1034 0.1198
h 0.7022 0.6838 0.6646 0.6750
ns 0.8728 0.9270 1.1468 0.9663
ln1010As 2.7925 2.9558 3.5889 3.0442
Ωm 0.3293 0.3191 0.2869 0.3121
σ8 0.7699 0.8025 1.0267 0.8100
χ2

min 138.54 128.33 47.98 1387.07

Table C.1: Values of cosmological parameters at the global best-fit of the ΛCDM model under the
BOSS+BAO, BOSS, eBOSS and Planck datasets, as specified in Sec. 6.1.2. We stress that, excepting the
χ2

min, the best-fit values here are only approximate due to the finite sampling of the profile likelihoods; a
more fair comparison of the constraints is in table 6.3.



D
EFTofLSS’ take on the Hubble tension and

the early dark energy

D.1 Window function normalization
As discussed in Refs. [196, 175, 122] (see also [425]), the window function measurements,

which are required to make an accurate theoretical calculation, have to be consistently normal-
ized with the power spectrum measurements. The estimator for the power spectrum we are
concerned with is the FKP estimator [426], later generalized to redshift space in Refs. [427,
428]. For fast estimation using FFTs [429, 430], the line of sight for a given galaxy pair is
chosen to be in the direction of one of galaxy in the pair, r1. For clarity in the discussion
we are going to have next, let us first gather here pieces of derivations that can be found par-
tially in Refs. [74, 58]. It is easy to see that the expectation value of the power spectrum
FKP estimator reads (see, e.g., [75])

〈
P̂̀ (k)

∣∣P̂̀ (k)
〉
=

2`+1
NP

∫ dΩk

4π
d3r1d3se−ik·sΘ(r1)Θ(r1+s)n̄w(r1)n̄w(r1+s)ξ (s,r1)L`(k̂ · r̂1) ,

(D.1)
where L` is the Legendre polynomial of order `. Here n̄w(r)≡ w(r)n̄(r) is the weighted mean
galaxy density, with weight w(r) being the FKP weights times some correction weights (usually
to account for veto and instrumental/observational systematics), Θ(r) is one if the galaxy at
position r falls inside the survey, zero otherwise, and ξ (s,r1) is the correlation function, with
s the separation between two galaxies. Importantly, NP is a normalization factor that is chosen
by the user, as we will precise below. Using the following identity:

∫ dΩk

4π
e−ik·sL`(k̂ · r̂1) = (−i)` j`(ks)L`(ŝ · r̂1) , (D.2)

where j` is the spherical-Bessel function of order `, we obtain

〈
P̂̀ (k)

∣∣P̂̀ (k)
〉
=
(2`+1)

NP
(−i)`

∫
dss2 j`(ks)

∫
dΩs

∫
d3r1Θ(r1)Θ(r1 + s)n̄w(r1)n̄w(r1 + s)ξ (s,r1)L`(µ) , (D.3)
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where we have introduced the notation µ ≡ ŝ · r̂1. We now make the following approximation.
We assume that the redshift evolution of the correlation function can be neglected within the
observational bin such that ξ (s,r1)≡ ξ (s,µ,r1(z))' ξ (s,µ,zeff)≡ ξ (s,µ), where the latter is
evaluated at the effective redshift zeff of the survey. 1 As such, we can pull out ξ (s,µ) from the
integral over d3r1. We can further expand in multipoles ξ (s,µ) = ∑`′ ξ`′(s)L`′(µ) to pull out
ξ`′(s) from the angular integrals. Then, using the identity

L`(µ)L`′(µ) = ∑
L

(
` L `′

0 0 0

)2

(2L+1)LL(µ) , (D.4)

where
(
` L `′

0 0 0

)
are the Wigner 3-j symbols, we get

〈
P̂̀ (k)

∣∣P̂̀ (k)
〉
= 4π(2`+1)(−i)` ∑̀

′,L

(
` L `′

0 0 0

)2 ∫
dss2 j`(ks)ξ`′(s)QL(s) , (D.5)

where we have defined the window functions

QL(s)≡
(2L+1)

NP

∫ dΩs

4π

∫
d3r1Θ(r1)Θ(r1 + s)n̄w(r1)n̄w(r1 + s)LL(µ) . (D.6)

Inserting the relation between the multipoles of the correlation function and those of
the power spectrum,

ξ`′(s) = i`
′
∫ dk′

2π2 k′2 P̀ ′(k′) j`′(k
′s) , (D.7)

we finally obtain

〈
P̂̀ (k)

∣∣P̂̀ (k)
〉
=
∫

dk′ k′2 ∑̀
′

W``′(k,k
′)P̀ ′(k′) , (D.8)

where we have defined

W`,`′(k,k
′) =

2
π
(2`+1)(−i)`i`

′
∫

ds s2 j`(ks) j`′(k
′s)∑

L

(
` L `′

0 0 0

)2

QL(s) . (D.9)

Notice that, for clarity, we have neglected the integral constraints [196], as well as wide-angle
contributions [74]. 2 Our master formula is Eq. (D.8): to predict the observed power spectrum〈
P̂̀ (k)

∣∣P̂̀ (k)
〉
, we simply need to convolve our predictions P̀ ′(k′) with W`,`′(k,k′) given by

Eq. (D.9). W`,`′(k,k′) can be precomputed, and the only input we need is QL(s).

The window function QL(s), Eq. (D.6), can be obtained in the following way [74]. Us-
ing Eq. (D.7) and the identity

∫
dk

(ks)2

2π2 jL(ks) jL(ks′) =
1

4π
δD(s− s′) , (D.10)

1See Ref. [75] for a BOSS analysis that does not rely on this approximation.
2We have checked that neglecting the integral constraints in the BOSS full-shape analysis leads to small shifts

in the posteriors of . 1/4 ·σ .
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where δD is the Dirac delta distribution, we see that

QL(s) = iL
∫ dk

2π2 k2QL(k) jL(ks) , (D.11)

where QL(k) is the expectation value of a power spectrum as defined in Eq. (D.3)
given ξ (s,r1) ≡ 1. Therefore, QL(k) can be measured as the power spectrum Pr

L(k) of
random objects (whose distribution is approaching Poisson) within the same geometry
survey that we are dealing with,

QL(k)≡ α
〈
P̂r

L(k)
∣∣P̂r

L(k)
〉
, (D.12)

where α = Ng/Nr is the ratio of the number of data “galaxy” objects to the number of random
objects. Such catalog of random objects is already available to us, as it is also required for the
estimation of the power spectrum.

The key point is the following: QL(k) is normalized by the same normalization factor as
P̀ (k), namely, NP. As such, in the limit of vanishing separation s→ 0, the window function
monopole does not go to unity, Q0(s) 6= 1, but instead

Q0(s→ 0)→ 1
NP

∫
d3r1n̄2

w(r) . (D.13)

Given that one does not know the value of the numerator in the equation above prior to making
the measurement, NP can only be estimated approximately in order to have Q0(s) approaching
1 at vanishing separation s→ 0. It is in this sense that NP is chosen by the user. However,
the normalization choice is not important as long as the window function measurements are
consistently normalized with the power spectrum measurements. Given the measurement
protocol sketched above, this is automatic if one is able to evaluate (D.11) accurately. 3

In past BOSS full-shape analyses, e.g. [58, 97, 101, 328, 327], the window function nor-
malizations were instead inconsistently enforced to Qwrong

0 (0)≡ 1, while in reality Q0(0)∼ 0.9
given the choice of NP. Such inconsistency of ∼ 0.9 led to a shift in As of around −1σ depend-
ing on the normalization choice. Let us list two choices for the normalization factor NP:

• Choice 1: NP = α ∑{i∈randoms} n̄(ri)w2
FKP(ri). 4 This was the choice in Ref. [431], which

measurements were used in, e.g., Refs. [97, 328].

3At https://github.com/pierrexyz/fkpwin, we provide a code written to perform the window function
measurements, based on nbodykit. Let us note that we find that it is not straightforward to get a precise mea-
surements of Q̂L(k), namely, the power spectrum of the random objects over the whole range of k for which
Q̂L(k) contributes significantly to the integral in Eq. (D.11). Furthermore, the estimator in Eq. (D.12) might have
a non-negligible variance, given that only one catalog is used. We nevertheless have checked that, letting the nor-
malization of the window functions to be different from the one of the power spectrum by a few percents leads to
tolerable shifts in the posteriors (. 1σ/5) inferred fitting BOSS data. For future large-volume datasets, it would be,
however, desirable to have a better numerical control over the measurements of QL(s) such that the normalization
consistency with P̀ (k) is achieved to sufficient accuracy given increasing precision of the data.

4Naively one might think that the sum over enough objects is a good approximation to the volume integral;
Actually, Choice 1 poorly estimates the integral in Eq. (D.13) because in the FKP estimator, n̄ is measured from
the grid for FFT with finite cell resolution, while in Choice 1, we are counting the objects instead.

https://github.com/pierrexyz/fkpwin
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Figure D.1: Comparison of ΛCDM results from BOSS full-shape analysis of the power spectrum mea-
surements PLZ/CM

FKP and PLZ/CM
FKP , analyzed with window functions inconsistently and consistently normal-

ized, respectively (see Tab. 5.4 of chapter 5). The gray bands are centered on the results from the PLZ/CM
FKP

data.

• Choice 2: NP = A ∗ ∫ drn̄2
w(r), where n̄w(r) is inferred from counting galaxies and

binning them in shells and A is an associated estimated area. 5 This was the choice
in Ref. [191], which measurements PLZ/CM

FKP were used in, e.g., Refs. [58, 101, 327].
PLZ/CM

FKP , as defined in Tab. 5.4 of chapter 5, is assigned window functions that are incon-
sistently normalized.

We stress again that those choices are not important as long as the same NP is used to normalize
the window functions and the power spectrum measurements. As already mentioned in the
main text, except for PLZ/CM

FKP that is used in this work for illustration purposes, all power
spectrum measurements obtained with the FKP estimator, namely, PLZ/CM

FKP and Pz1/z3
FKP , are

instead consistently normalized with their window functions (see Tab. 5.4 of chapter 5 for
more details on the measurements). We finish this section by noting that, in analyses using
measurements obtained from the FKP estimator, but also from the other estimators, the
posteriors may depend on the effective-redshift approximation used above. This suggests that,
for each estimator, more work is needed to understand the accuracy of this approximation,
along the line of, e.g., [75] for the correlation function.

In Fig. D.1, we show a comparison of the 1D posteriors from the full-shape analysis of
the BOSS power spectrum measured with the FKP estimator, using window functions with
consistent or inconsistent normalization. The inconsistency leads to a lower amplitude As, or
equivalently σ8, as well as higher Ωm ∼ f , where f is the logarithmic growth rate, through an-
ticorrelation. We find notable shifts on ωcdm, ln

(
1010As

)
, Ωm and σ8 of 0.9σ , 1.1σ , 1.1σ ,

and 0.8σ , respectively.

D.2 Additional comparison between the PyBird and CLASS-
PT likelihood in EDE

In Figs. D.2, D.3, and D.4, we show the 2D posterior distributions reconstructed from
BaseEFTBOSS, BaseTTTEEE+Lens+EFTBOSS, and BaseTT650TEEE+ACT+Lens+EFTBOSS,
respectively, comparing the results from the PyBird and the CLASS-PT likelihoods. 6 In

5We thank Hector Gil-Marín for private correspondence on this point.
6For this comparison, LOWZ SGC is not included in the PyBird likelihood. As expected, we have checked

that the addition of this sky cut does not change the posteriors for the corresponding analyses.
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ΛCDM

Planck high−` TTTEEE 2342.2 2345.0 2342.2 2344.6 2342.2 2345.2
Planck low−` TT 23.4 22.9 23.5 23.0 23.4 22.8
Planck low−` EE 396.3 397.2 396.1 397.2 396.3 397.2
Planck lensing 8.9 9.4 9.0 9.4 9.0 9.4
BOSS BAO low−z 1.2 1.9 1.2 1.8 1.2 1.9
BOSS BAO DR12 4.3 3.4 − − − −
BOSS BAO/ f σ8 DR12 − − 6.7 5.9 − −
EFTBOSS CMASS − − − − 84.6 83.1
EFTBOSS LOWZ − − − − 33.5 33.7
Pantheon 1027.2 1026.9 1027.2 1026.9 1027.2 1026.9
SH0ES − 19.9 − 20.4 − 19.8
total χ2

min 3803.6 3826.6 3805.7 3829.1 3917.4 3940.0
QDMAP 4.8σ 4.8σ 4.8σ

Table D.1: Best-fit χ2 per experiment (and total) for ΛCDM when fit to different data combina-
tions: BaseTTTEEE+Lens, BaseTTTEEE+Lens+ f σ8, BaseTTTEEE+Lens+EFTBOSS, with and with-
out SH0ES. We also report the tension metric QDMAP ≡

√
χ2(w/ SH0ES)−χ2(w/o SH0ES).

addition, we recall that EFTBOSS corresponds to PLZ/CM
FKP + α

z1/z3
rec in the framework of the

PyBird likelihood and to Pz1/z3
QUAD + β

z1/z3
rec in the framework of the CLASS-PT likelihood (see

Tab. 5.4 of chapter 5). The most striking differences occur in the BaseEFTBOSS alone case,
for which CLASS-PT leads to much weaker constraints on fEDE(zc) and much larger error bars
on h and ωcdm. The origin of these differences can be traced back to the discussion presented in
chapter 5, namely, to the choice of the power spectrum estimators, the BOSS post-reconstructed
measurements used, the scale cut, the number of multipoles, and more importantly, the choice
of EFT parameter priors. Once PlanckTTTEEE or PlanckTT650TEEE+ACT data are
included in the analysis, we find that the reconstructed posteriors are very similar between
the two EFTBOSS implementations and mostly driven by CMB data. We conclude that
the main results of this work, drawn from the combination of CMB and LSS data, are
unaffected by the choice of EFT implementation. However, parameter reconstruction based
on EFTBOSS data alone may vary at the 1σ level.

D.3 χ2 per experiment
In this appendix, we report the best-fit χ2 per experiment for both ΛCDM and EDE models.

In Tabs. D.1 and D.2 are presented the runs including Planck data, in Tab. D.3 the runs including
ACT data, and in Tab. D.4 the combination of the full Planck data and ACT data. Finally,
Tab. D.5 present runs including the PanPlus data.
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Figure D.2: Comparison between the 2D posterior distributions of a subset of parameters in
the EDE model reconstructed from the PyBird or CLASS-PT likelihood, in combination with
BBN+Lens+BAO+Pan18 (i.e., BaseEFTBOSS).
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Figure D.3: Comparison between the 2D posterior distributions of a subset of parameters in the EDE
model reconstructed from the PyBird or CLASS-PT likelihood, in combination with BaseTTTEEE+Lens.
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Figure D.4: Comparison between the 2D posterior distributions of a subset of parameters in
the EDE model reconstructed from the PyBird or CLASS-PT likelihood, in combination with
BaseTT650TEEE+ACT+Lens.



D.3. χ2 per experiment 297

EDE

Planck high−` TTTEEE 2339.4 2341.5 2339.1 2340.9 2339.3 2341.1
Planck low−` TT 21.8 20.4 22.0 20.6 21.1 20.5
Planck low−` EE 396.4 396.8 396.1 396.4 396.1 396.9
Planck lensing 9.5 10.0 9.3 9.9 9.6 9.9
BOSS BAO low−z 1.6 1.8 1.4 1.7 1.4 1.9
BOSS BAO DR12 3.7 3.5 − − − −
BOSS BAO/ f σ8 DR12 − − 6.5 7.0 − −
EFTBOSS CMASS − − − − 84.1 83.3
EFTBOSS LOWZ − − − − 34.0 34.4
Pantheon 1027.0 1026.9 1027.0 1026.9 1027.0 1026.9
SH0ES − 2.0 − 3.2 − 2.3
total χ2

min 3799.2 3802.9 3801.8 3806.1 3912.7 3917.3
∆χ2

min(EDE−ΛCDM) -3.8 -23.7 -3.9 -23.0 -4.7 -22.7
Preference over ΛCDM 1σ 4.2σ 1.1σ 4.1σ 1.3σ 4.1σ

QDMAP 1.9σ 2.0σ 2.1σ

Table D.2: Best-fit χ2 per experiment (and total) for EDE when fit to different data combina-
tions: BaseTTTEEE+Lens, BaseTTTEEE+Lens+ f σ8, BaseTTTEEE+Lens+EFTBOSS, with and with-
out SH0ES. We also report the ∆χ2

min ≡ χ2
min(EDE)− χ2

min(ΛCDM) and the tension metric QDMAP ≡√
χ2(w/ SH0ES)−χ2(w/o SH0ES).

ΛCDM EDE

Planck high−` TT650TEEE 1843.5 1842.6 1842.9 1842.8 1842.6 1837.5 1838.0 1836.9 1836.8 1837.7
Planck low−` TT 21.5 21.7 21.5 21.7 21.8 20.7 20.9 20.8 20.9 21.2
Planck low−` EE 395.7 395.7 395.8 395.9 − 395.8 395.8 395.8 395.8 395.8
Planck lensing − − − 9.0 9.0 − − − 10.2 9.9
ACT DR4 293.8 294.5 294.4 294.2 294.3 285.4 285.0 285.9 286.4 286.9
BOSS BAO low−z 1.5 1.4 1.6 1.5 1.4 2.1 2.0 2.4 2.3 1.9
BOSS BAO DR12 3.7 − − − − 3.5 − − − −
BOSS BAO/ f σ8 DR12 − 6.1 − − − − 7.2 − − −
EFTBOSS CMASS − − 83.4 83.6 84.9 − − 84.5 84.3 84.3
EFTBOSS LOWZ − − 33.7 33.7 33.7 − − 35.1 34.7 34.4
Pantheon 1026.8 1027.0 1027.0 1027.0 − 1026.9 1026.9 1026.9 1026.9 −
Pantheon+ − − − − 1411.8 − − − − 1413.0
total χ2

min 3586.5 3589.1 3700.3 3709.5 4094.3 3571.9 3575.8 3688.3 3698.4 4085.1
∆χ2

min(EDE−ΛCDM) − − − − − -14.6 -13.3 -12.0 -11.1 -9.2
Preference over ΛCDM − − − − − 3.1σ 2.9σ 2.7σ 2.5σ 2.2σ

Table D.3: Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to different data com-
binations: BaseTT650TEEE+ACT, BaseTT650TEEE+ACT+ f σ8, BaseTT650TEEE+ACT+EFTBOSS,
BaseTT650TEEE+ACT+Lens+EFTBOSS, and BaseTT650TEEE+ACT+Lens+EFTBOSS+PanPlus.
We also report the ∆χ2

min ≡ χ2
min(EDE)− χ2

min(ΛCDM) and the corresponding preference over ΛCDM,
computed assuming the ∆χ2 follows a χ2 distribution with three degrees of freedom.
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ΛCDM EDE

Planck high−` TTTEEE 2349.8 2352.0 2346.2 2347.2
Planck low−` TT 22.4 22.0 21.9 21.2
Planck low−` EE 396.2 396.8 396.1 396.4
Planck lensing 8.9 8.9 9.6 9.8
ACT DR4 240.6 241.0 236.8 236.2
BOSS BAO low−z 1.4 2.0 1.7 2.2
EFTBOSS CMASS 84.1 82.9 84.2 84.2
EFTBOSS LOWZ 33.6 33.8 34.2 34.6
Pantheon 1027.1 1026.9 1026.9 1026.9
SH0ES − 19.5 − 1.10
total χ2

min 4164.0 4185.9 4157.6 4159.8
∆χ2

min(EDE−ΛCDM) − − -6.4 -26.1
Preference over ΛCDM − − 1.7σ 4.4σ

QDMAP 4.7σ 1.5σ

Table D.4: Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to BaseTT-
TEEE+ACT+Lens+EFTBOSS, with and without SH0ES. We also report the ∆χ2

min ≡ χ2
min(EDE)−

χ2
min(ΛCDM) and the tension metric QDMAP ≡

√
χ2(w/ SH0ES)−χ2(w/o SH0ES).

ΛCDM EDE

Planck high−` TTTEEE 2346.18 2349.5 2344.0 2346.9
Planck low−` TT 23.0 22.4 22.3 21.0
Planck low−` EE 396.1 397.7 396.3 396.3
Planck lensing 8.8 9.1 9.0 9.6
BOSS BAO low−z 1.1 2.1 1.3 1.8
EFTBOSS CMASS 85.2 82.9 85.0 85.1
EFTBOSS LOWZ 33.6 33.8 33.8 34.6
Pantheon+ 1411.1 − 1411.6 −
Pantheon+SH0ES − 1321.9 − 1291.6
total χ2

min 4305.1 4219.3 4303.2 4187.0
∆χ2

min(EDE−ΛCDM) − − -1.9 -32.3
Preference over ΛCDM − − 0.5σ 5σ

Table D.5: Best-fit χ2 per experiment (and total) for ΛCDM and EDE when fit to BaseTT-
TEEE+Lens+EFTBOSS+PanPlus, with and without SH0ES. We also report the ∆χ2

min ≡ χ2
min(EDE)−

χ2
min(ΛCDM) and the corresponding preference over ΛCDM, computed assuming the ∆χ2 follows a χ2

distribution with three degrees of freedom.



E
EFTofLSS’ take on the Hubble tension and

the acoustic dark energy

E.1 Mb prior
In this appendix, we show explicitly, thanks to Fig E.1, that the addition of the Mb prior [153]

on top of the Pantheon+ likelihood is equivalent to the use of the full Pantheon+/SH0ES like-
lihood as provided in Ref. [153]. Since the constraints are similar, we have chosen to show
in this work the results with the Mb prior, for the sake of convenience, in order to determine
the QDMAP values easily.

E.2 χ2 table
In this appendix, we report the best-fit χ2 per experiment for the ΛCDM model, the ADE

model, as well as the axion-like EDE model for several combinations of data.
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Figure E.1: 2D posterior distributions reconstructed from Planck + ext-BAO + EFT, either with the Mb
prior on top of the Pantheon+ likelihood, or with the cross-correlation between the Pantheon+ data and
the SH0ES data (namely the Pantheon+/SH0ES likelihood) as provided in Ref. [153]. The gray band
corresponds to the H0 constraint associated with the Mb prior, H0 = (73.04±1.04) km/s/Mpc [153].
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Data Model χ2 tot P18TTTEE P18lens ext-BAO BOSS eBOSS Pan Mb PanPlus/SH0ES

BAO/ f σ8+Pan
ΛCDM 3816.39 2763.03 8.87 1.38 6.15 9.88 1027.07 – –
ADE 3812.50 2759.48 9.14 1.30 6.55 8.92 1027.10 – –
EDE 3809.87 2757.41 9.70 1.64 6.30 7.89 1026.93 – –

BAO/ f σ8+Pan+Mb

ΛCDM 3847.33 2765.48 9.12 1.84 5.91 9.14 1026.89 28.94 –
ADE 3819.06 2763.73 10.09 1.77 6.95 6.32 1026.89 3.32 –
EDE 3812.26 2759.10 9.89 1.91 6.97 6.21 1026.87 1.31 –

EFT+Pan
ΛCDM 4020.07 2762.14 8.87 1.25 160.20 60.44 1027.17 – –
ADE 4018.67 2761.21 8.99 1.40 159.63 60.39 1027.06 – –
EDE 4017.09 2759.20 9.29 1.60 159.54 60.51 1026.95 – –

EFT+Pan+Mb

ΛCDM 4051.76 2764.81 9.13 1.78 158.30 61.16 1026.90 29.61 –
ADE 4026.87 2763.76 9.62 2.11 159.94 60.26 1026.86 4.33 –
EDE 4022.83 2758.51 9.60 1.99 160.36 61.64 1026.87 3.86 –

EFT+PanPlus

ΛCDM 4404.28 2762.12 8.78 1.20 160.44 60.43 1411.31 – –
cADE 4404.07 2761.57 8.86 1.20 160.68 60.46 1411.31 – –
ADE 4402.96 2760.49 8.89 1.21 160.78 60.23 1411.36 – –

c2
s ADE 4402.93 2760.47 8.90 1.21 160.76 60.23 1411.37 – –
EDE 4402.54 2758.74 9.02 1.38 160.38 61.21 1411.82 – –

EFT+PanPlus+Mb

ΛCDM 4443.78 2766.95 9.69 1.95 158.36 60.63 1413.17 33.02 –
cADE 4419.67 2766.20 9.67 1.92 160.68 61.17 1413.27 6.76 –
ADE 4415.94 2763.42 9.82 1.81 160.52 60.95 1412.99 6.42 –

c2
s ADE 4415.89 2763.16 9.82 1.77 160.58 60.96 1412.91 6.70 –
EDE 4408.67 2759.71 10.05 1.96 159.64 60.24 1413.35 3.72 –

EFT+PanPlus/SH0ES
ΛCDM 4318.12 2767.42 9.24 2.20 158.01 60.39 – – 1320.85
ADE 4292.12 2763.74 9.77 1.94 160.31 60.20 – – 1296.17

Table E.1: Table of best-fit χ2 of the different models considered in this work for various combinations
of likelihood. All datasets include Planck + ext-BAO data. Note that the columns “BOSS” and “eBOSS”
refer either to the BAO/ f σ8 analysis or to the EFT full-shape analysis. Similarly, the column “Pan”
refers to either Pantheon data or Pantheon+ data. Finally, “PanPlus/SH0ES” corresponds to the full
Pantheon+/SH0ES likelihood as provided in Ref. [153].





F
EFTofLSS’ take on the S8 tension and the

decaying dark matter

F.1 Comparison between the EFTofLSS and N-body meth-
ods for the DCDM → DR model

In this appendix, we compare the nonlinear matter power spectrum obtained through the
EFTofLSS method with the results of dedicated N-body simulations performed in Ref. [412].
The authors of Ref. [412] have determined a fitting formula which describes the correction to
the nonlinear matter power spectrum due to the DM decay compared to the ΛCDM model, as
a function of τ , fdcdm, and the redshift z. In Fig. F.1, we compare this fitting formula, where
we set τ = 32 Gyr and z = 0 and vary fdcdm ∈ [0,1], with the linear matter power spectrum
of the CLASS code (left panel), and with the nonlinear matter power spectra from both the
CLASS-PT and PyBird codes (right panel). Here, we set the ΛCDM parameters to the values
used in Ref. [412]. The left panel of this figure is intended as a reproduction of Fig. 1 of
this reference for direct comparison, while the right panel presents the comparison of interest.
Indeed, from the right panel of Fig. F.1, one can clearly see that (i) the CLASS-PT and PyBird

codes give very similar power spectra for the DCDM → DR model, 1 (ii) the deviation from
ΛCDM predicted in these two EFTofLSS codes is very close to that obtained through N-body
simulation. In order to determine more precisely the deviations between the EFTofLSS and
the N-body methods, we plot, in Fig. F.2, the ratio between the residuals obtained with the
N-Body simulation and those obtained with the CLASS-PT and PyBird codes. One can see that
the difference is below the ∼ 1% level until k ∼ 0.2 hMpc−1 (the maximum k at which the
EFTofLSS is valid at one loop order for a small z). Let us note that the difference between the
N-body simulation and the EFTofLSS power spectrum for k . 0.02 hMpc−1 is not relevant;
it is merely due to the fact that the N-body fitting formula does not encode this behavior for
low k (see [412]), but this k range is well within the linear regime and does not necessitate a
correction. Let us also remark that the lower fdcdm (or the longer τ), the smaller the difference
between the residuals from the N-body and those from the EFTofLSS method. Since current
constraints only allow small values of fdcdm . 2.5% or large lifetime τ & 240 Gyr, it is safe to

1We set, in the PyBird and CLASS-PT codes, cs = 1, which is an effective parameter of the one loop correction
that can be interpreted as the effective sound speed of the dark matter.
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Figure F.1: Comparison between the residuals of the nonlinear matter power spectra predicted by the N-
body simulation and the residuals of the linear matter power spectra predicted by the CLASS code on the
one hand (left panel), and the residuals of the nonlinear matter power spectra predicted by the CLASS-PT
and PyBird codes on the other hand (right panel). We compute these power spectra for z = 0 and for
τ = 32 Gyr, while we varied fdcdm from 0 to 1 with a step of 0.2.

Figure F.2: Ratio between residuals of the nonlinear matter power spectra obtained from the N-body
simulation and those obtained from the CLASS-PT and the PyBird codes for z = 0, τ = 32 Gyr and fdcdm
varying from 0 to 1 with a step of 0.2.

use the PyBird (or CLASS-PT) code in their current form to describe the DCDM→DR model.
This good agreement between the EFT approach and the N-body simulation, despite having
made no change to the EFT modeling, may appear surprising at first sight. However, there
is a fairly intuitive argument as to why the DM equations (and therefore the EFT formalism)
should receive only minor corrections from the presence of a nonzero decay term. This is
because, in the synchronous gauge at linear order, the DCDM equations are strictly identical
to that of CDM: the effect of the decay is happening exactly at the same rate everywhere in
space, and therefore cancels out the perturbed continuity and Euler equations which drive the
DCDM perturbed dynamics. Although strictly speaking, the contribution of the decay term
may appear at higher order, as we treat the mildly nonlinear regime, it will be subdominant.
This explains why we find such a good agreement between N-body simulations and the EFT
computation despite not modifying the master equations, the expansion nor the counterterms.
Note that this argument is valid irrespective of the mass of the daughter particles as far as the
mother particle is concerned. Similarly, corrections to the massless daughter equations may
appear, but will likely have only a small impact on the observables given that the massless
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Figure F.3: Values of the WDM fraction at z = 0.32 (left panel) and the redshift at which the WDM
fraction becomes 1% (right panel), in a region of the log10(ε)-log10(Γ/Gyr−1) plane. The ΛCDM pa-
rameters are fixed to the best-fit from the Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analysis.
The black lines indicate the 1σ limits of this analysis, while the point highlighted in purple indicates
the best-fit. All the points below the yellow and red lines correspond to models having a WDM free-
streaming wavenumber kfs larger than kmax = 0.2 hMpc−1 and knl = 0.7 hMpc−1, respectively.

daughter quickly redshift away compared to other species for decays happening at late times
(at times relevant for galaxy surveys).

F.2 Assessing the validity of the EFTofLSS in the DCDM→
WDM+DR model

In this appendix, we discuss the validity of the EFTofLSS in the DCDM → WDM+DR
model. In Ref. [416], the EFTofLSS was extended to describe massive neutrinos, an extension
to ΛCDM with properties similar to that of the DCDM→WDM+DR model. Indeed, the main
issue with employing the EFTofLSS to describe the DCDM→WDM+DR model does not lie in
the effect of the decay itself (the effect of the decay on the perturbed equations of the DCDM is
identical to that of the DCDM→ DR model, which is captured by our formalism as discussed
in App. F.1), but rather in the production of a warm massive species which may contribute in a
nontrivial way to the power spectrum of galaxies. At the linear level, it was found the massive
decay products behave similarly to CDM at wavenumbers smaller than the free-streaming
scale kfs [with kfs approximately given by Eq. 9.24], but is strongly suppressed due to pressure
terms at larger wavenumbers similarly to WDM and hot DM such as neutrinos. In Ref. [416],
the contribution of neutrinos to the total one loop power spectrum was computed, and it was
found that the dominant effect is a correction to the dark matter power spectrum that scales like
16 fν , where fν ≡ ρ̄ν/(ρ̄ν + ρ̄cdm) ∼ 1%, at k > kfs and roughly half of that at k < kfs. The
naive O( fν) contribution is enhanced by twice the logarithm of the redshift of matter-radiation
equality, as neutrinos are present from early times. The log-enhanced contribution represents
about 70% of the contribution to the total one loop power spectrum. Additionally, at leading
order, counterterms can be captured by simply rescaling the effective DM sound speed c2

s
and do not necessitate adding new parameters to the dark-matter-only calculation. In the



306 F. EFTOFLSS’ TAKE ON THE S8 TENSION AND THE DECAYING DARK MATTER

case of the DCDM model, the WDM is produced at much later times. We plot in Fig. F.3
(right panel) the redshift z1% at which the WDM contribution fwdm ≡ ρ̄wdm/(ρ̄wdm + ρ̄dcdm)
reaches ∼ 1%. We also represent the limit at 68% C.L. derived in our work. For the best-fit
model (shown in purple in the figure), z1% ∼ 5. The log-enhancement from the ratio of scale
factor between z ∼ 5 and ze f f ,LOWZ = 0.32 is log[(1+ z1%)/(1+ z0)] ≈ 1−2 compared to the
log[(1+ zeq)/(1+ z0)] ≈ 8 in the neutrino study in Ref. [416] that gives the 16 fν factor. We
therefore expect the WDM correction to be comparable to the massive neutrino case even if the
energy density (today) ratio is ≈ 10 times larger than neutrinos.

We plot in Fig. F.3 (left panel), the fractional contribution of WDM at z = 0.32 (the effective
redshift of the low-z surveys) as a function of Γ and ε . We also represent the limit at 68% C.L.
derived in this work. One can see that it is under ∼ 15% as long as log10(Γ/[Gyr−1]) . −1.8.
Additionally, we show the value of ε − Γ for which the free-streaming scale kfs is equal to
the maximum k mode relevant for our analysis of BOSS data (kmax = 0.2 hMpc−1) and the
maximum scale considered in the EFT computation (knl = 0.7 hMpc−1). In a large part of
the parameter space favored by our analysis for which fwdm is not small, kfs exceeds kmax and
therefore corrections should also be minor. An improved EFT treatment including the effect of
the massive decay product would be necessary however to describe the power spectrum up to
knl. Given current precision of the data and the large theoretical uncertainty already present, the
corrections to our calculation should be negligible, but more work needs to be done to accurately
describe the part of the parameter space with large Γ (and leading to large fwdm), in particular
for future surveys which can reach subpercent precision at larger wave-numbers.

F.3 The role of the S8 prior
In this appendix, we present 2D posterior distributions obtained with and without the

S8 prior (but with the EFTofBOSS data) in both DCDM cosmologies. In the case of
the DCDM → DR model, represented in Fig. F.4, the impact of the S8 prior is minor.
However, in the case of the DCDM → WDM+DR model, represented in Fig. F.5, it
opens up a degeneracy with {Γ,ε} which can lead to low S8 while preserving the fit to
other datasets. Without the S8 prior, the DCDM model is not favored by Planck data.
As discussed in the main text, when the S8 prior is included, the fit to Planck data is not
affected, while the DCDM model can accommodate the lower S8 value, contrarily to the
ΛCDM model. From the QDMAP statistics [352], we can estimate the residual tension as

QDMAP ≡
√

χ2
min(w/ S8)−χ2

min(w/o S8) = 1.5σ in the DCDM→WDM+DR model, as
compared to 2.4σ in the ΛCDM model and DCDM→DR model.

[t]

F.4 Supplementary tables of χ2
min values per experiment

In this appendix, we report the best-fit χ2 per experiment for both ΛCDM (Tab. F.1) and
DCDM→WDM+DR (Tab. F.2) models for our analyses with the BAO/ f σ8 + S8, EFTofBOSS
and EFTofBOSS + S8 data. To help the reader gauge the goodness of fit, the number of d.o.f.
is estimated to be 2287 for Planck high-l TTTEEE, 25 for Planck low-l EE, and 25 for Planck
low-l TT [11]. Other experiments do not report the number of degrees of freedom, but it can be
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Figure F.4: 2D posterior distributions of the DCDM → DR model reconstructed from an analysis of
Planck, Pantheon, Ext-BAO and EFTofBOSS data, with (blue) and without (red) the S8 prior from KiDS-
1000. The gray shaded bands refer to the joint S8 measurement from KiDS-1000 + BOSS + 2dFLens.

estimated from the number of data points Ndata, assuming uncorrelated data points for simplicity,
and the number of free parameters Nparam = Nparam,model + Nparam,nuisance, as Ndof = Ndata −
Nparam. In practice, we have Ndata = 1048 and Nparam,nuisance = 1 for Pantheon [133], Ndata = 132
and Nparam,nuisance = 6 for the sum of the three sky cuts of the EFTofBOSS data including BAO,
and Ndata = 13 for the BOSS BAO/ f σ8 and Ext-BAO (the full BAO dataset). Finally, we have
for each model Nparam,ΛCDM = 6 and Nparam,ΛDCDM = 8.

F.5 ΛCDM parameters of the DCDM→WDM+DR model
In this appendix, we compare in Fig. F.6 the ΛCDM parameters of the DCDM →

WDM+DR model obtained from the analyses with (blue) and without (red) the EFTofBOSS
data, while in Fig. F.7 we represent the ΛCDM parameters reconstructed from an analysis
of Planck, Pantheon, Ext-BAO and EFTofBOSS data, with (blue) and without (red) the S8
prior. We also show in this second figure the standard ΛCDM posteriors as a reference
(green). One can see that the ΛCDM parameters are left largely unchanged in the DCDM →
WDM+DR model. The decay into warm products only affects the growth of structure at late
times with little impact on parameters that could affect early time physics. This is essentially
why cosmological data other than those measuring S8 (and potentially the growth of structure
at late-times) are unaffected by the DCDM, despite a lower S8 value.
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ΛCDM
Dataset w/ BAO/ f σ8 + S8 w/ EFTofBOSS w/ EFTofBOSS + S8
Planck high-l TTTEEE 2349.0 2347.4 2349.3
Planck low-l EE 396.1 396.7 396.1
Planck low-l TT 22.8 23.0 22.7
Planck lensing 9.6 8.9 9.6
Pantheon 1027.0 1027.1 1027.0
Ext-BAO 6.3 6.2 6.3
BOSS BAO/ f σ8 6.0 − −
EFTofBOSS − 117.8 117.0
S8 5.3 − 5.0
total χ2

min 3821.9 3927.0 3933.0

Table F.1: χ2 of each dataset for our Planck + Pantheon + BOSS BAO/ f σ8 + Ext-BAO + S8, Planck +
Pantheon + EFTofBOSS + Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses for
the ΛCDM model. Since we rounded the χ2 of each experiment, the total χ2 is only equal to the sum of
each χ2 at O(0.1) precision.

DCDM→WDM+DR
Dataset w/ BAO/ f σ8 + S8 w/ EFTofBOSS w/ EFTofBOSS + S8
Planck high-l TTTEEE 2347.7 2347.3 2348.0
Planck low-l EE 397.2 396.9 397.0
Planck low-l TT 23.1 23.0 23.2
Planck lensing 8.9 8.9 9.1
Pantheon 1027.2 1027.1 1027.2
Ext-BAO 6.1 6.2 6.2
BOSS BAO/ f σ8 7.1 − −
EFTofBOSS − 117.8 118.3
S8 0.2 − 0.4
total χ2

min 3817.5 3927.0 3929.2

Table F.2: χ2 of each dataset for our Planck + Pantheon + BOSS BAO/ f σ8 + Ext-BAO + S8, Planck +
Pantheon + EFTofBOSS + Ext-BAO and Planck + Pantheon + EFTofBOSS + Ext-BAO + S8 analyses
for the DCDM→WDM+DR model. Since we rounded the χ2 of each experiment, the total χ2 is only
equal to the sum of each χ2 at O(0.1) precision.
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Figure F.6: 2D posterior distributions of the DCDM→WDM+DR model with and without the EFTof-
BOSS dataset for the ΛCDM parameters. We took into account the S8 prior from KIDS-1000 for these
two MCMC analyses. The gray shaded bands refer to the joint S8 measurement from KIDS-1000 +
BOSS + 2dFLens.
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Figure F.7: 2D posterior distributions of the DCDM→WDM+DR model with and without the S8 prior
from KiDS-1000. We also plot the 2D posterior distribution for the ΛCDM model without this S8 prior.
We took into account the EFTofBOSS data for these three MCMC analyses. The gray shaded bands refer
to the joint S8 measurement from KiDS-1000 + BOSS + 2dFLens.





G
Résumé en français

Cette thèse se focalise sur deux axes de recherche à la fois différents et complémentaires.
Dans le premier axe, nous nous concentrons sur la théorie effective des champs des structures
à grandes échelles (EFTofLSS), et en particulier (i) sur l’étude de ses contraintes lorsqu’elle
est appliquée aux données de BOSS et de eBOSS et (ii) sur l’étude de son auto-consistance
à travers les conséquences sur les résultats cosmologiques des hypothèses préalables des
smulations Monte-Carlo par chaînes de Markov (MCMC). Dans le second axe, nous nous
sommes intéressés à l’application de cette théorie (toujours avec les données de BOSS et parfois
de eBOSS) à des extensions non triviales du modèle ΛCDM, particulièrement pertinentes
pour la résolution des tensions cosmologiques. Ces deux axes de recherche sont distincts
dans la mesure où ils abordent des questions différentes : comment obtenir les contraintes les
plus robustes et optimisées possibles à partir des données provenant des structures à grandes
échelles? pour le premier, et quelle est l’influence des données provenant des structures à
grandes échelles sur les contraintes des modèles au-delà de ΛCDM? pour le second. De plus,
ces deux axes sont complémentaires dans la mesure où ils s’inscrivent dans un cadre commun,
à savoir l’EFTofLSS. La première partie de cette thèse est fondamentale pour la deuxième
partie en ce qu’elle établit le cadre théorique et d’analyse – et en particulier ses avantages et
ses limites – qui est utilisé dans la deuxième partie. La deuxième partie, à son tour, est une
extension de l’analyse effectuée dans la première partie, et donne une idée de la très large
gamme d’applications qui peut être couverte par l’EFTofLSS. Dans ce qui suit, nous résumons
les principaux résultats de chacun des chapitres de cette thèse.

Dans les chapitres 1, 2 et 3 nous avons respectivement présenté le paradigme de la
cosmologie moderne dans le cadre de l’univers homogène et isotrope, de l’univers linéairement
perturbé (avec la physique du fond diffus cosmologique) et de l’univers perturbé de façon non
linéaire (avec la physique des structures à grandes échelles). En particulier, ce dernier chapitre
expose les fondements conceptuels et théoriques sur lesquels reposent cette thèse.

Dans le chapitre 4, nous avons effectué la première analyse EFTofLSS de la forme complète
des données de eBOSS QSO. Nous avons combiné cette analyse avec d’autres données
provenant des structures à grandes échelles afin d’obtenir des contraintes indépendantes de
Planck. Comme nos résultats sont en bon accord avec les données de Planck, nous avons
combiné les sondes provenant des structures à grandes échelles et celles provenant du fond
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diffus cosmologique (FDS) afin de briser les dégénérescences présentes dans le FDS. De plus,
l’analyse EFTofLSS des quasars de eBOSS fournit des mesures indépendantes des paramètres
ΛCDM dans un intervalle de redshift différent (z ∼ 1.5) par rapport aux analyses EFTofLSS
précédentes, et à partir d’un autre traceur. Il est intéressant de noter que nous trouvons un très
bon accord entre l’analyse EFTofLSS des données QSO de eBOSS (c’est-à-dire provenant
des quasars), l’analyse EFTofLSS des données LRG de BOSS (c’est-à-dire provenant des
galaxies), et les données de Planck (c’est-à-dire provenant du FDS). Cette cohérence est une
vérification non triviale du modèle ΛCDM et des nombreuses hypothèses associées, car nous
avons considéré des données très différentes à la fois en termes de redshift et en termes d’objets
sondés. Par ailleurs, nous avons mis en évidence que les données de eBOSS aident à améliorer
les contraintes sur les modèles cosmologiques construits à partir d’une extension triviale du
modèle ΛCDM pour lesquels la dynamique tardive de l’univers homogène s’écarte du modèle
ΛCDM. En combinant notre analyse des structures à grandes échelles avec les données du
FDS de Planck, nous avons obtenu des contraintes très fortes sur les extensions canoniques du
modèle ΛCDM, par exemple sur la somme des masses des neutrinos. Enfin, nous avons montré
(i) l’importance d’aller au-delà de l’analyse BAO/ f σ8 conventionnelle grâce à l’EFTofLSS
afin de contraindre les extensions simples du modèle ΛCDM avec les données provenant des
structures à grandes échelles uniquement, et (ii) que les données provenant des structures
à grandes échelles analysées avec une analyse EFTofLSS sont compatibles avec le modèle
ΛCDM plat, que nous considérons ou non l’analyse combinée avec les données de Planck.

Dans le chapitre 5, nous avons examiné deux analyses de forme complète de BOSS
avec l’EFTofLSS, à savoir les analyses dites "côte ouest" (WC) et "côte est" (EC), qui sont
implémentés dans les codes PyBird et CLASSPT, respectivement. Ces analyses conduisent
à des différences dans les paramètres cosmologiques reconstruits allant jusqu’à 1σ . Etant
donné qu’elles proviennent toutes des mêmes données de BOSS, il s’agit d’un écart surprenant
et insatisfaisant. Afin d’explorer l’origine de ces différences, nous avons effectué une série
d’analyses des données de la forme complète, en variant un par un (par ordre d’importance) les
hypothèses préalables des MCMC, les mesures BOSS utilisées (que ce soit celles de la forme
complète de BOSS ou des paramètres BAO post-reconstruits), l’échelle minimale considérée
dans l’analyse et le nombre de multipôles inclus. Il est important de noter que les contraintes
cosmologiques sont sensibles au choix des hypothèses préalables des MCMC sur l’espace
des paramètres de l’EFTofLSS, et que les deux différents choix sur les hypothèses préalables
utilisées dans les analyses PyBird et CLASS-PT sont à l’origine de la plupart des variations dans
les résultats. D’autre part, les différentes mesures de la forme complète de BOSS conduisent
à une différence maximale de 0,6σ parmi tous les paramètres cosmologiques, tandis que les
différentes mesures des BAO post-reconstruites peuvent affecter les contraintes jusqu’à 0,9σ .
Par ailleurs, lorsque les choix des données et des hypothèses préalables sont les mêmes, nous
montrons que les deux analyses (WC et EC) s’accordent à moins de 0,2σ , ce qui constitue une
validation importante des deux codes publiques disponibles. Notre analyse montre donc que la
différence est principalement due aux effets des hypothèses préalables émanant de l’analyse
bayésienne, et non à la théorie, aux données ou à l’implémentation des codes.

Dans le chapitre 6, nous complétons les résultats de l’analyse bayésienne standard, telle
qu’elle est réalisée dans les chapitres 4 et 5, par une analyse fréquentiste. L’analyse profile
likelihood est une méthode fréquentiste basée uniquement sur l’estimation du maximum
de vraisemblance et, par conséquent, est à la fois intrinsèquement invariante par rapport
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à la reparamétrisation et à la fois indépendante des hypothèses préalables. Notre objectif
est de comprendre l’influence des hypothèses préalables des paramètres de l’EFTofLSS
sur les paramètres cosmologiques déduits et comment cela changera avec des données plus
contraignantes. Nous avons constaté que les paramétrisations WC et EC appliquées aux
données de BOSS produisent le même intervalle de confiance pour σ8, confirmant que les
deux paramétrisations sont mathématiquement équivalentes. Cependant, nous avons constaté
que l’analyse fréquentiste donne des contraintes sur σ8 qui sont à un facteur > 2 plus larges
que les contraintes basées sur les postérieurs MCMC. Nos résultats montrent clairement les
avantages et les inconvénients de l’inférence fréquentiste et bayésienne. Étant donné que
l’inférence fréquentiste n’inclut pas d’hypothèses préalables qui confinent les paramètres de
l’EFTofLSS dans le régime prévu par la théorie, nous observons que les données préfèrent des
valeurs extrêmes de certains de ces paramètres, ce qui pourrait violer le caractère perturbatif de
l’EFTofLSS. L’absence d’hypothèses préalables conduit en outre à des intervalles de confiance
beaucoup plus larges. Cette perte de pouvoir contraignant découle naturellement du fait que
l’approche fréquentiste est totalement agnostique quant aux valeurs des paramètres du modèle
jugés les plus probables a priori. D’autre part, les hypothèses préalables dans l’inférence
bayésienne sont informatives et ont un impact sur les paramètres cosmologiques déduits. Ceci
est important car il n’est pas simple de définir des hypothèses préalables bien motivées pour
les paramètres de l’EFTofLSS, ce qui se reflète dans le fait que les paramétrisations WC et EC
utilisent des configurations différentes pour ces hypothèses préalables. Pour aller de l’avant,
nous avons exploré l’impact qu’auront les données des futures expériences comme DESI ou
EUCLID en considérant les données de BOSS avec une matrice de covariance rééchelonnée par
un facteur 16 (dans le sens où nous divisons tous les éléments de cette dernière par ce facteur).
Nous constatons que les contraintes des approches bayésienne et fréquentiste convergent vers
le même intervalle pour σ8 lorsque la vraisemblance domine les informations préalables, ce
qui suggère que les problèmes évoqués ci-dessus s’atténueront avec davantage de données.

Dans le chapitre 7, nous avons réévalué les contraintes sur l’énergie sombre précoce
(EDE) à partir de la forme complète des mesures les plus récentes du spectre de puissance
(ou fonctions de corrélation) de BOSS à la lumière de la correction de la normalisation des
fonctions de fenêtre de BOSS. Il a été avancé que l’analyse de la forme complète du spectre
de puissance des galaxies de BOSS défavorise le modèle EDE en tant que résolution efficace
de la tension de Hubble, et nous avons montré que ce n’est plus le cas avec les nouvelles
données de BOSS. Pour ce faire, nous avons effectué une étude approfondie des contraintes
sur l’EDE à la lumière des données de BOSS correctement normalisées et nous avons estimé
les variations introduites sur les paramètres cosmologiques reconstruits et leurs erreurs entre
les différentes stratégies d’analyse de l’EFTofLSS. Indépendamment des données BOSS ou
de l’analyse de l’EFTofLSS que nous considérons, la forme complète de BOSS (analysée
seule avec les données de la nucléosynthèse primordiale) conduit à des valeurs reconstruites
de H0 qui sont compatibles avec ce qui est obtenu par la collaboration SH0ES. Par ailleurs,
nous avons considéré la combinaison de l’analyse de la forme complète des données de BOSS
avec les données de PlanckTTTEEE + Lens + BAO + Pan18 + EFTBOSS qui conduit à
fEDE(zc) < 0.083, ce qui représente une amélioration de ∼ 10% par rapport aux contraintes
sans les données de BOSS et une amélioration de ∼ 5% par rapport aux contraintes avec les
données BAO/ f σ8 conventionnelles. Cependant, cette amélioration est beaucoup plus faible
que les contraintes rapportées avec la normalisation incorrecte, à savoir fEDE < 0.054. Nous
déterminons que la tension de Hubble est réduite à 2.1σ dans le cadre de la cosmologie EDE
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(1.9σ sans l’analyse EFTofLSS de BOSS), comparé à 4.8σ dans le modèle ΛCDM. Ensuite,
nous avons étudié l’influence des données de BOSS sur les récents indices de la détection
du modèle EDE avec les données de ACT DR4. La combinaison de PlanckTT650TEEE
+ Lens + BAO + Pan18 + ACT + EFTBOSS conduit à une contrainte plutôt faible sur
fEDE(zc)< 0.172 avec ∆χ2(EDE−ΛCDM) =−11.1, à comparer avec fEDE(zc) = 0.128+0.064

−0.039
et ∆χ2(EDE−ΛCDM) =−14.6 sans les données EFTBOSS + Lens. Enfin, nous avons conclu
que l’analyse de l’EFTofLSS des données de BOSS n’exclut pas le modèle EDE comme une
résolution de la tension de Hubble, où nous trouvons systématiquement fEDE(zc) ∼ 10− 12%
à zc ∼ 3500− 4000, avec h ∼ 0.72, lorsque la calibration des céphéides est incluse dans les
analyses. Cependant, l’analyse EFTofLSS des données de BOSS contraint les cosmologies
EDE les plus extrêmes, comme le montre l’analyse des données ACT DR4.

Dans le chapitre 8, nous avons mis à jour les contraintes du modèle acoustique de l’énergie
sombre précoce, simplement appelé “ADE”, en évaluant d’abord les conséquences de l’analyse
EFTofLSS appliquée aux données de BOSS et de eBOSS, et ensuite les conséquences des
dernières données de Pantheon+. Nous avons démontré que l’analyse EFTofLSS réduit
légèrement la capacité de ce modèle à résoudre la tension de Hubble par rapport à l’analyse
BAO/ f σ8, où nous obtenons une tension résiduelle de 2,6σ . Il est important de noter que
lorsque nous remplaçons les données de Pantheon par les données de Pantheon+, le modèle
ADE ne résout plus la tension de Hubble à un niveau convenable, ce qui conduit à une tension
résiduelle de 3,6σ (contre 2,5σ pour le modèle EDE et 6,3σ pour le modèle ΛCDM). Alors
qu’avec l’analyse EFTofLSS nous n’avions qu’une légère préférence pour le modèle EDE par
rapport au modèle ADE, avec les nouvelles données de Pantheon+ et de SH0ES, la préférence
pour ce modèle devient clairement évidente, en raison du fait que le modèle EDE de type axion
parvient à compenser un Ωcdmh2 plus élevé dans les données de Planck grâce à la dépendance
d’échelle de la vitesse du son. Plus généralement, dans ce travail, nous avons montré que
les nouvelles données de Pantheon+ et de SH0ES, et dans une moindre mesure l’EFTofLSS
appliqué aux données de BOSS et de eBOSS, peuvent avoir des conséquences décisives sur les
modèles qui visent à résoudre la tension de Hubble.

Dans le chapitre 9, nous avons confronté deux modèles de matière noire froide qui se
désintègre (DCDM) à l’analyse de la forme complète des données de BOSS, combinée
avec les données de Planck TTTEEE et le spectre de puissance des lentilles gravitationelles,
les données de la BAO de BOSS et eBOSS (incluant les données provenant de la Ly-α),
et les données de la distance de luminosité non calibrée des SN1a provenant du catalogue
Pantheon18. Nous nous sommes d’abord concentrés sur un modèle où une fraction de la
matière noire se désintègre en rayonnement sombre, le modèle DCDM→ DR, et ensuite sur un
modèle où toute la matière noire se désintègre en particules massives chaudes et en particules
radiatives sombres, le modèle DCDM → WDM+DR. Ce dernier modèle a récemment été
suggéré comme une solution possible à la tension de S8. Pour le modèle DCDM→ DR, nous
avons dérivé la limite la plus à jour sur la fraction de matière noire qui se désintégre fdcdm, à
savoir fdcdm < 0.0216 si nous nous limitons au régime où la DCDM possède une durée de vie
inférieure à l’âge de l’Univers. Nous avons également mis à jour les contraintes sur la durée de
vie de la matière noire pour le cas où fdcdm → 1, à savoir τ/ fdcdm > 249.6 Gyr. Cependant,
nous avons constaté que l’EFTofLSS ne fournit pas de contraintes significativement meilleures
pour les paramètres cosmologiques du modèle DCDM → DR, par rapport à l’utilisation des
données standard BAO/ f σ8. En accord avec les études antérieures, nous avons trouvé que ce
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modèle n’aide ni pour la tension de S8 ni pour la tension de H0, et que l’inclusion de l’analyse
EFTofLSS des données BOSS ne modifie pas cette conclusion. Pour le modèle DCDM →
WDM+DR, nous avons montré que ce modèle peut expliquer la faible valeur de S8 mesurée
par l’expérience KiDS-1000, tout en préservant la qualité de l’ajustement des autres donnés, y
compris de l’analyse EFTofLSS des données BOSS. La tension résiduelle est de 1,5σ contre
2,4σ dans le cadre du modèle ΛCDM. En outre, nous avons démontré que l’analyse de la
forme complète des données de BOSS améliore de manière significative les contraintes sur
la durée de vie de DCDM pour le modèle DCDM → WDM+DR, et lorsqu’elle est combinée
avec les données S8 de KiDS-1000, nous obtenons désormais log10(τ/Gyr) = 2.21+1.5

−0.6 contre
log10(τ/Gyr) = 1.92+1.9

−0.61 avec les mesures de BAO/ f σ8.

Cette thèse illustre l’importance cruciale des données provenant des structures à grandes
échelles pour obtenir des informations cosmologiques dans des régimes inexplorés, tout en
démontrant le pouvoir prédictif de la théorie effective des champs des structures à grandes
échelles ainsi que les avantages que cette théorie peut apporter en termes de connaissances
cosmologiques. Au cours des prochaines années, les nouvelles données provenant des struc-
tures à grandes échelles issues des projets internationaux DESI, EUCLID et VRO fourniront
de nouvelles données très précises pour étudier la nature de la matière noire, de l’énergie noire
et de l’inflation, et permettront de tester les modèles suggérés pour résoudre les tensions cos-
mologiques. Il sera donc nécessaire de poursuivre les efforts théoriques pour prédire avec pré-
cision le spectre de puissance non linéaire des galaxies (mais aussi le bispectre des galaxies),
et ainsi utiliser la richesse des données à venir.
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Abstract

Over the last two decades, the standard cosmological model “Λ cold dark matter” (ΛCDM) has been firmly es-
tablished by a variety of observations. Nevertheless, the nature of the dominant components of the Universe –
namely dark matter and dark energy – and the process of creation of its initial conditions – namely inflation –
are not yet known. Furthermore, as the precision of the data has increased, intriguing anomalies have appeared
within the standard cosmological model. These anomalies arise from a discrepancy between the value of some
cosmological parameters predicted from their calibration in the distant Universe, for example with the cosmic mi-
crowave background (CMB), and the measurement of these parameters from the local Universe. The two most
significant tensions in modern cosmology concern the parameter that determines the expansion rate of the Uni-
verse, i.e., the Hubble parameter H0, and the parameter that quantifies the amplitude of local matter fluctuations,
i.e., the parameter S8. A number of surveys dedicated to measuring large-scale structures (LSS) of the Universe
(BOSS and eBOSS in particular, and the forthcoming DESI and EUCLID) can be used to weigh in on these cosmo-
logical tensions. The first axis of this thesis is based on a semi-analytical method, known as effective field theory of
large-scale structures (EFTofLSS), which provides an accurate description of the galaxy power spectrum, and aims
at improving cosmological constraints from LSS surveys, a major challenge in the context of the forthcoming data
from DESI and Euclid. In particular, we apply an EFTofLSS analysis to describe the BOSS and eBOSS data, and
demonstrate that these surveys can be used to obtain constraints that are competitive with those coming from CMB
data. We also establish the self-consistency of this theory within the ΛCDM model, as it appears at first sight that
the different EFTofLSS parametrizations proposed in the literature seem to provide different constraints on cos-
mological parameters. We thus identify these discrepancies as originating from subtleties of the commonly used
Bayesian framework. In addition, we develop a systematic method for applying the EFTofLSS to different LSS
data and obtain robust results contrasting the Bayesian framework with the frequentist approach, for an in depth
cosmological inference. The second aspect of my work aims to establish the possible theoretical implications of
cosmological tensions for our understanding of the dark sector of the Universe. In particular, we confront various
models that can resolve these tensions with the BOSS and eBOSS data analysed under the EFTofLSS. We conclude
that current clustering data are not in tension with ΛCDM, and can be used to set important constraints on model
suggested to resolve cosmological tensions.

Résumé

Au cours des deux dernières décennies, le modèle cosmologique standard “Λ matière noire froide” (ΛCDM) a été
fermement établi par une variété d’observations. Néanmoins, la nature des composants dominants de l’Univers –
à savoir la matière noire et l’énergie noire – et le processus de création de ses conditions initiales – à savoir l’in-
flation – ne sont pas encore connus. En outre, à mesure que la précision des données s’est accrue, des anomalies
intrigantes sont apparues au sein du modèle cosmologique standard. Ces anomalies résultent d’une divergence
entre la valeur de certains paramètres cosmologiques prédite à partir de leur étalonnage dans l’Univers lointain,
par exemple avec le fond diffus cosmologique (CMB), et la mesure de ces paramètres dans l’Univers local. Les deux
tensions les plus importantes en cosmologie moderne concernent le paramètre qui détermine le taux d’expansion
de l’Univers, à savoir le paramètre de Hubble H0, et le paramètre qui quantifie l’amplitude des fluctuations locales
de la matière, à savoir le paramètre S8. Un certain nombre de relevés dédiés à la mesure des structures à grande
échelle de l’Univers (BOSS et eBOSS en particulier, et prochainement DESI et EUCLID) peut être utilisé pour arbitrer
ces tensions cosmologiques. Le premier axe de cette thèse est basé sur une méthode semi-analytique, connue sous
le nom de théorie effective des champs des structures à grandes échelles (EFTofLSS), qui fournit une description précise
du spectre de puissance des galaxies, et vise à améliorer les contraintes cosmologiques provenant des structures à
grandes échelles, un défi majeur dans le contexte des prochaines données de DESI et EUCLID. En particulier, nous
appliquons une analyse EFTofLSS pour décrire les données de BOSS et eBOSS, et nous démontrons que ces relevés
peuvent être utilisés pour obtenir des contraintes qui sont compétitives avec celles provenant des données CMB.
Nous établissons également l’auto-consistance de cette théorie au sein du modèle ΛCDM, car il semble à première
vue que les différentes paramétrisations de l’EFTofLSS proposées dans la littérature fournissent des contraintes dif-
férentes sur les paramètres cosmologiques. Nous avons ainsi mis en évidence que ces divergences proviennent de
certaines subtilités du cadre bayésien couramment utilisé. Par ailleurs, nous développons une méthode systéma-
tique pour appliquer l’EFTofLSS à différentes données provenant des structures à grandes échelles et obtenons des
résultats robustes, tout en contrastant le cadre bayésien avec l’approche fréquentiste. Le second axe de mon travail
vise à établir les implications théoriques éventuelles des tensions cosmologiques sur notre compréhension du sec-
teur sombre de l’Univers. En particulier, nous confrontons différents modèles qui peuvent résoudre ces tensions à
la lumière des données de BOSS et eBOSS analysées dans le cadre de l’EFTofLSS. Nous concluons que les données
actuelles provenant des structures à grandes échelles ne sont pas en tension avec ΛCDM, et peuvent être utilisées
pour établir des contraintes importantes sur les modèles suggérés pour résoudre les tensions cosmologiques.


	I General introduction
	The bold0mu mumu CDM model in a nutshell
	The bold0mu mumu CDM ingredients
	The cosmological principle
	The two fundamental equations of modern cosmology
	The components of the Universe
	Initial conditions

	 The smooth universe
	The FLRW geometry
	The stress-energy tensor of the smooth Universe and the continuity equation
	The smooth Einstein equations
	The smooth Boltzmann equations
	Evolution of the smooth universe
	Cosmological distances
	Initial conditions: the inflationary paradigm

	Successes and challenges of the bold0mu mumu CDM model
	Successes of the bold0mu mumu CDM model
	Limits of the bold0mu mumu CDM model


	The linearly perturbed universe and CMB physics
	From the homogeneous universe to the perturbed universe
	Perturbation of the metric
	Perturbation of the stress-energy tensor
	Perturbation of the phase-space distribution function

	The perturbed universe
	Perturbed Einstein's equations
	Conservation of the stress-energy tensor
	Perturbed Boltzmann's equations
	Partial summary

	Initial conditions
	Adiabatic and isocurvature perturbations
	Primordial power spectrum

	CMB physics
	CMB power spectrum
	The CMB anisotropies 
	A description of the CMB temperature power spectrum
	Cosmological parameters.
	Other CMB power spectra


	Beyond the linearly perturbed universe and large-scale structure physics
	The linear matter power spectrum
	The (relevant) perturbation equations
	Solving the perturbation equations
	The various analytical solutions
	The transfer function
	The shape of the matter power spectrum
	The growth factor
	Impact of the CDM parameters on the matter power spectrum

	Biased tracer statistics in linear perturbation theory
	Biased tracers
	Galaxy density field perturbation
	The linear galaxy power spectrum
	Alcock-Paczyński parameters and BAO

	Beyond the linear theory
	The Vlasov-Poisson system
	The standard perturbation theory
	Non-linear matter power spectrum

	The effective field theory of large-scale structures
	The basics of EFTofLSS
	The EFTofLSS matter power spectrum
	The EFTofLSS galaxy power spectrum
	Additional effects



	II The effective field theory of large-scale structures applied to (e)BOSS data and its consistency within the bold0mu mumu CDM model
	Cosmological inference from the EFTofLSS: the eBOSS QSO full-shape analysis
	Analysis pipeline
	Cosmological inference setup
	Scale cut from governing scales
	Assessing systematics beyond the EFT reach
	Including redshift error in EFTofLSS

	Constraints on flat CDM 
	Flat CDM from the EFT analysis of eBOSS
	Comparison with several LSS probes
	Comparison with Planck

	Extensions to the flat CDM model
	kCDM
	w0CDM
	CDM
	Neff CDM

	Conclusions

	Consistency of EFTofLSS analyses of the BOSS data
	The role of EFT priors
	The two EFT priors
	Prior weight and volume projection effects
	Pipeline validation check

	Impact of EFT priors in bold0mu mumu CDM
	Highlighting the role of the priors
	How to beat the prior weights and volume effects

	Comparison of BOSS measurements
	Contenders
	The matchups
	Measurements comparison summary

	Comparison of Reconstructed BAO
	Inconsistency between post-reconstructed measurements
	Comparison of extraction methods of reconstructed BAO parameters

	Conclusions

	Frequentist investigation of EFTofLSS analyses of the BOSS and eBOSS data
	Analysis Methods
	Profile Likelihood and Markov Chain Monte Carlo
	Datasets and analysis choices

	The EFTofLSS parametrizations
	Different parametrizations
	Priors

	Consistency of EFTofLSS from profile likelihood analyses
	EC vs. WC parametrizations and comparison to MCMC
	Role of EFT ``priors'' in the frequentist setting
	Effect of more constraining data

	Profile likelihood results on cosmological parameters 
	Conclusions


	III Constraining models beyond bold0mu mumu CDM with the effective field theory of large-scale structures
	EFTofLSS' take on the Hubble tension and the early dark energy
	Early Dark Energy Model and Data
	Review of the EDE model
	Data and method
	Details on the BOSS measurements and EFT likelihoods

	Updated EFTBOSS constraints on EDE
	Preliminary study
	Constraints from various BOSS data
	Primary CMB-free constraints on EDE

	EFTBOSS combined with CMB data
	EFTBOSS+PlanckTTTEEE
	EFTBOSS+PlanckTT650TEE+ACT
	EFTBOSS+PlanckTTTEE+ACT
	Impact of Pantheon+ data

	Conclusions
	EFTBOSS constraints on EDE alone
	Planck+EFTBOSS constraints on EDE
	ACT+EFTBOSS constraints on EDE
	Final comments


	EFTofLSS' take on the Hubble tension and the acoustic dark energy
	The model and the data
	Review of the ADE model
	Review of the axion-like EDE model
	Data and analysis methods

	Cosmological results
	Impact of the EFTofLSS analysis
	Impact of the Pantheon+ data

	Model variations
	Variation of cs2
	The cADE model

	Conclusions

	EFTofLSS' take on the bold0mu mumu S8S8S8S8S8S8 tension and the decaying dark matter
	Nonlinear power spectrum in DCDM cosmologies
	Dark radiation decay products (DCDM  DR model)
	Warm dark matter decay products (DCDM  WDM+DR model)

	A comprehensive MCMC analysis of the DCDM models
	Data and method
	Dark radiation decay products
	Warm dark matter decay products

	Conclusions

	Conclusion
	Cosmological inference from the EFTofLSS: the eBOSS QSO  full-shape analysis
	What happens if we vary ns and b in the LSS analyses?

	Consistency of EFTofLSS analyses of the BOSS data
	Impact of scale cut and multipoles
	PyBird vs CLASS-PT: direct comparison

	Frequentist investigation of EFTofLSS analyses of the BOSS and eBOSS data
	Impact of priors on EFT parameters
	Full profile and MCMC results
	Best-fit parameters

	EFTofLSS' take on the Hubble tension and the early dark energy
	Window function normalization
	Additional comparison between the PyBird and CLASS-PT likelihood in EDE
	2 per experiment

	EFTofLSS' take on the Hubble tension and the acoustic dark energy
	Mb prior
	2 table

	EFTofLSS' take on the bold0mu mumu S8S8S8S8S8S8 tension and the decaying dark matter
	Comparison between the EFTofLSS and N-body methods for the DCDM  DR model
	Assessing the validity of the EFTofLSS in the DCDM  WDM+DR model
	The role of the S8 prior
	Supplementary tables of 2min values per experiment
	CDM parameters of the DCDM  WDM+DR model

	Résumé en français


