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NOTATIONS

This thesis employs a considerable number of notations, and in order to help the
reader’s comprehension, the following table provides a summary of all the notations that
are used.

Notation Meaning
N Set of natural numbers
Z Ring of integers
Q Field of rational numbers
R Field of real numbers
C Field of complex numbers
Zq Ring of integers modulo q ∈ N
λ The security parameter
⌊x⌋ Floor of x

⌈x⌉ Ceil of x

⌊x⌉ Closest integer to x

log The natural logarithm
logb The logarithm to the base b

O, Ω, Θ, o, ω,∼ Asymptotic notations
∥·∥2, ∥·∥ The Euclidean norm
∥·∥∞ The infinity norm
⟨·, ·⟩ The Euclidean inner product
⊗ The Kronecker product

AT The transpose of the matrix A

s1(A) The largest singular value of the matrix A

B̃ The Gram-Schmidt Orthogonalization (GSO) of B

In The identity matrix of size n

Λ A lattice
Λ⊥q The orthogonal lattice of Λ mod q

L(B) The lattice spanned by the vectors of B
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λ1(Λ) The length of a shortest non-zero vector in Λ
det(Λ) The determinant of Λ

ρσ,c The (spherical) Gaussian function of standard deviation
σ, centered on c

DΛ,σ,c The discrete (spherical) Gaussian distribution of stan-
dard deviation σ and center c, over the lattice Λ

ρ√Σ,c The (ellipsoidal) Gaussian function of covariance matrix
Σ, centered on c

DΛ,
√

Σ,c The discrete (ellipsoidal) Gaussian distribution of co-
variance matrix Σ and center c, over the lattice Λ

U(S) The uniform distribution over a set S

x← χ x sampled from the distribution χ

∆(P, Q) The statistical distance between distributions P and Q

ζm A primitive m-th root of unity
ϕm The m-th cyclotomic polynomial

Many acronyms are also used, listed in the following table.

Notation Meaning
SVP Shortest Vector Problem
CVP Closest Vector Problem
SIS Short Integer Solution
ISIS Inhomogeneous Short Integer Solution

AISIS Approximate Inhomogeneous Short Integer Solution
Ring-SIS Ring Short Integer Solution

Module-SIS Module Short Integer Solution
LWE Learning With Errors

Ring-LWE Ring Learning With Errors
Module-LWE Module Learning With Errors

PPT Probabilistic Polynomial Time
GSO Gram-Schmidt Orthogonalization
FRD Full-Rank Differences (encoding)
LHL Leftover Hash Lemma
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FFT Fast Fourier Transform
NTT Number Theoretic Transform
IBE Identity-Based Encryption

ROM Random Oracle Model
EUF− CMA Existential Unforgeability under an Adaptive Chosen-

Message Attack
IND− CPA Indistinguishability of Ciphertexts under Chosen-

Plaintext Attack
IND− sID− CPA Indistinguishability of Ciphertexts under a Selective-

Identity Chosen-Plaintext Attack
IND− ID− CPA Indistinguishability of Ciphertexts under an Adaptive-

Identity Chosen-Plaintext Attack
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RÉSUMÉ EN FRANÇAIS

C
ryptologie signifie littéralement la science des secrets. En effet, le mot vient
du grec ancien, κρυπτ óς signifiant secret et λóγoς signifiant science. Il englobe
à la fois la cryptographie, dont l’objet d’étude est de protéger des messages en

les rendant secrets, et la cryptanalyse qui, au contraire, cherche à attaquer ces protections
pour trouver les messages originaux cachés derrière ces secrets. Cependant, les préroga-
tives de la cryptographie se sont étendues bien au-delà de l’objectif initial de rendre un
message secret (confidentialité), puisqu’elle s’intéresse également à d’autres aspects de
la sécurité, tels que l’intégrité (dont l’objectif est de traiter l’altération des données) ou
l’authentification (dont l’objectif est de pouvoir tracer l’origine d’un message reçu). La
cryptographie est aujourd’hui une science riche, dont les objectifs sont vastes et qui repose
sur des bases scientifiques solides.

Un Bref Historique

Mais l’histoire de la cryptographie est longue. Dans The Codebreakers, publié en 1967,
David Kahn retrace cette histoire, en remontant jusqu’à ses premières traces d’utilisation
en Égypte ancienne, il y a 4000 ans, où des substitutions de symboles hiéroglyphiques
gravées dans la chambre principale de la tombe d’un noble par son scribe ont été observées.
Au cours de ses premiers 3000 ans d’existence, le champ de la cryptologie n’a pas connu
de croissance régulière. Au contraire, il est apparu de manière indépendante dans diverses
régions du monde, mais les progrès sont restés lents et sporadiques. Ce n’est qu’avec
l’avènement de la Renaissance occidentale que les connaissances accumulées en cryptologie
commencèrent à légèrement prendre de l’ampleur.

Avant cela, nous pouvons souligner quelques exemples d’applications pratiques de tech-
niques cryptographiques simples.

Le chiffre de César, nommé d’après Jules César et également appelé chiffrement par
décalage, est l’une des plus anciennes et plus simples techniques de chiffrement ayant
été utilisées. Il a été utilisé à des fins militaires, aux côtés d’autres méthodes plus so-
phistiquées, durant la Rome antique. Il s’agit d’une méthode cryptographique basée sur
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Résumé en français

la substitution monoalphabétique. Le chiffré d’un message est calculé en remplaçant les
lettres du texte en clair par des lettres situées k positions plus loin dans l’alphabet (et en
recommençant depuis le début de l’alphabet si l’on arrive à la lettre Z), où 1 ≤ k ≤ 25
est un nombre entier fixe, représentant la clef secrète du schéma de chiffrement.

A elle seule, cette méthode n’est pas sécurisée, en raison du très petit nombre de
clefs possibles, ce qui permet, lorsque la méthode de chiffrement est connue, de toutes les
essayer. De plus, comme tout chiffrement basé sur la substitution monoalphabétique, elle
peut être très rapidement "cassée" par l’analyse de la fréquence des lettres apparaissant
dans les messages chiffrés.

Le chiffrement de Vigenère, décrit pour la première fois par Blaise de Vigenère en
1586, est un chiffrement de substitution polyalphabétique qui utilise de manière répétée
le chiffrement de César avec un décalage différent selon la position de la lettre dans le
message. Le rang de ce décalage est donné par un autre texte qui sert de clef secrète et que
l’on peut réutiliser en boucle suivant la longueur du message à chiffrer. Par conséquent, les
mêmes lettres du texte en clair peuvent, en fonction de leur position, être remplacées par
des lettres différentes dans le message chiffré, contrairement aux systèmes de chiffrement
mono-alphabétiques qui remplacent systématiquement une lettre donnée par la même
lettre. Cette méthode est donc résistante aux attaques basiques par analyse de fréquence.
Toutefois, si l’on devine correctement la longueur de clef n du chiffrement de Vigenère, le
texte chiffré peut alors être considéré comme n chiffrés de César entrelacés, qui peuvent
facilement être cassés individuellement.

Mais le domaine de la cryptographie a réellement évolué et pris la forme et le formal-
isme que nous lui connaissons aujourd’hui à la fin du xixe et durant tout le xxe siècle.

À la fin du xxe siècle, Auguste Kerckhoffs expose dans son livre La cryptographie
militaire [Ker83] une liste de principes à respecter pour concevoir de bons systèmes de
chiffrements dans un contexte militaire. L’un des plus importants de ces principes, au-
jourd’hui appelé principe de Kerckhoffs, stipule que "la méthode de chiffrement ne doit pas
avoir besoin d’être secrète et doit pouvoir tomber entre les mains de l’ennemi sans incon-
vénient". Fondamentalement, cela signifie que la sécurité d’un système cryptographique ne
doit pas reposer sur le caractère secret de la conception de ce système, mais sur le caractère
secret de la clef, qui représente l’élément crucial du système et qui est gardé confidentiel
et connu uniquement par une ou plusieurs personnes autorisées. Aujourd’hui, le principe
de Kerckhoffs est largement reconnu et généralement interprété comme défendant l’idée
que l’ensemble de la conception d’un cryptosystème doit être rendu public. Cela contraste
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Résumé en français

fortement avec le concept de "sécurité par l’obscurité", qui cherche à garder les algorithmes
secrets afin d’en assurer leur sécurité.

Au cours du xxe siècle, les deux guerres mondiales ont joué un rôle important dans
le développement de la cryptographie et de la cryptanalyse. Alan Turing, réputé pour sa
conception mathématique des premiers modèles d’ordinateurs, a participé à leur réalisa-
tion pendant la Seconde Guerre mondiale et a joué un rôle majeur dans la cryptanalyse
de la machine Enigma utilisée par les armées nazies. L’essor des ordinateurs et des sys-
tèmes de communication au cours des années 1960 a entraîné un besoin croissant d’outils
numériques pour protéger les informations et de services garantissant la sécurité. Cette
demande a entraîné un large éventail de développements dans le domaine de la cryp-
tographie, en commençant par les travaux de Feistel chez IBM au cours des années 1970,
aboutissant finalement à l’adoption du Data Encryption Standard (DES), un algorithme
de chiffrement à clef symétrique publié en tant que standard par les Federal Informa-
tion Processing Standard (FIPS) pour les États-Unis en 1977. Par la suite, la recherche
universitaire dans le domaine de la cryptographie va considérablement s’intensifier. En
conséquence, une théorie complète a commencé à se développer, rendant possible une
étude rigoureuse de la cryptographie en tant que domaine de recherche scientifique et de
discipline mathématique.

Cryptographie à Clef Publique

Avec la cryptographie à clef secrète (ou symétrique), l’utilisation d’une clef secrète
commune entre l’expéditeur et le destinataire est nécessaire, ce qui exige une rencontre
physique entre les parties au préalable, ou qu’elles fassent appel à un tiers de confiance.
Cependant, les travaux de Diffie et Hellman [DH76] en 1976 vont changer la donne. Dans
leur article intitulé New directions in Cryptography, ils introduisent le concept de cryp-
tographie à clef publique (ou asymétrique). Chaque utilisateur peut désormais calculer une
clef accessible au public, appelée clef publique, et sa clef privée associée, qu’il est le seul à
connaître. Dans un système de chiffrement à clef publique, par exemple, la clef publique
d’un utilisateur permet à n’importe qui de chiffrer un message, mais seul le propriétaire
de la clef privée correspondante sera en mesure de le déchiffrer. Ce nouveau concept per-
met donc de résoudre le problème de la rencontre physique préalable mentionné ci-dessus
pour la cryptographie symétrique. De nos jours, dans le domaine des communications,
un système de cryptographie à clef publique est souvent utilisé conjointement avec un
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système à clef privée : le premier permet aux deux parties qui souhaitent communiquer
de se mettre d’accord sur une clef secrète commune et le second est utilisé pour le reste
des communications. En effet, les systèmes de cryptographie à clef privée sont générale-
ment plus efficaces que leurs homologues à clef publique, ce qui rend leur utilisation plus
intéressante pour les protocoles cryptographiques.

Dans [DH76], Diffie et Hellman fournissent également une nouvelle méthode d’échange
de clefs, dont la sécurité est basée sur la difficulté du problème du logarithme discret.
L’échange de clefs est un protocole qui aide deux parties à se mettre d’accord sur une
clef secrète commune, sans qu’il soit nécessaire d’échanger au préalable des informations
privées. Dans leur article original, les paramètres publics de leur protocole d’échange de
clefs sont un groupe cyclique G, son ordre q et un générateur g ∈ G. Le principe du
protocole est alors le suivant. Alice choisit a ∈ Zq uniforme et calcule ga. Elle envoie cette
quantité à Bob. Ce dernier choisit également b ∈ Zq uniforme et calcule gb, qu’il envoie
à Alice. Alice et Bob peuvent alors calculer gab = (ga)b = (gb)a, qui constitue leur clef
secrète commune.

Bien que Diffie et Hellman n’aient pas présenté de système de chiffrement à clef
publique dans leur article, en 1978, Rivest, Shamir et Adleman ont décrit dans [RSA78]
les premières réalisations pratiques d’un système de chiffrement et de signature à clef
publique. Cette fois, la sécurité des schémas RSA repose sur le problème de la factorisa-
tion d’un produit de grands nombres entiers. Quelques années plus tard, dans [Gam84],
El Gamal présente un autre système de chiffrement à clef publique, basé sur le problème
du logarithme discret.

En cryptographie à clef publique, la sécurité des protocoles est donc basée sur la diffi-
culté supposée de certains problèmes mathématiques, tels que les problèmes de factorisa-
tion de grands nombres entiers ou le problème du logarithme discret. Ces deux problèmes
spécifiques sont omniprésents dans la cryptographie classique à clef publique. Cependant,
les protocoles cryptographiques reposant sur ceux-ci sont menacés par la possible émer-
gence de l’ordinateur quantique. En effet, il existe une importante différence de nature
entre les opérations effectuées par les ordinateurs quantiques et les ordinateurs classiques.
En particulier, les ordinateurs quantiques fonctionnent avec des qubits (qui sont la version
quantique du bit binaire classique) qui possèdent un ensemble infini de valeurs alterna-
tives en plus de 0 et 1. Cela permet aux ordinateurs quantiques d’être beaucoup plus
rapides que les ordinateurs classiques pour certains problèmes spécifiques. En effet, Shor
a montré dans [Sho94] comment un algorithme quantique pouvait résoudre efficacement
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les problèmes du logarithme discret et de la factorisation, en temps polynomial.

Cependant, les ordinateurs quantiques n’existent pas encore à grande échelle et ne sont
pas encore assez puissants. Alors que les ordinateurs quantiques actuels sont supposés
pouvoir gérer jusqu’à quelques centaines de qubits, on estime que plus d’un million sont
nécessaires pour résoudre le problème de la factorisation. Néanmoins, les progrès réalisés
dans le domaine de l’informatique quantique sont constants et il est important d’envisager
des alternatives pour un avenir où les ordinateurs quantiques deviendront largement acces-
sibles. En outre, il existe un risque que des personnes malveillantes collectent aujourd’hui
des messages chiffrés dans l’intention de les déchiffrer ultérieurement, une fois que les ordi-
nateurs quantiques seront disponibles. Ce risque lié au possible avènement de ces machines
a incité la communauté scientifique à rechercher de nouvelles hypothèses de sécurité, po-
tentiellement résistantes face à cette menace, qui permettraient d’élaborer des systèmes
qui resteraient sécurisés y compris face à des adversaires disposant de tels ordinateurs. Il
s’agit d’un domaine de recherche actif connu sous le nom de cryptographie post-quantique.

Cryptographie Post-Quantique

C’est avec cette perspective en tête qu’en 2016, le National Institute of Standards
and Technology (NIST), une agence du Département du commerce des États-Unis, a
lancé le programme et compétition "Post-Quantum Cryptography Standardization", dont
l’objectif était d’établir de nouveaux standards de schémas cryptographiques post-quantiques.
Les premières soumissions de la communauté scientifique à cette compétition compre-
naient 23 schémas de signature et 59 schémas de chiffrement/de mécanisme d’encapsulation
de clefs. Les schémas cryptographiques candidats étaient basés sur une grande variété de
problèmes supposés difficiles à attaquer efficacement par un ordinateur quantique. Au-
jourd’hui, on distingue essentiellement 5 familles principales qui composent le paysage
de la cryptographie post-quantique. Ces familles reposent sur la difficulté de problèmes
définis sur des réseaux euclidiens, des codes correcteurs d’erreurs, des isogénies de courbes
elliptiques, des polynômes multivariés et des fonctions de hachage.

Dans cette thèse, nous nous intéresserons à la cryptographie post-quantique basée sur
des problèmes mathématiques définis sur des réseaux euclidiens.
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Cryptographie Basée sur les Réseaux Euclidiens

La cryptographie basée sur les réseaux euclidiens est l’une des solutions les plus
prometteuses contre la menace quantique. Ce domaine de recherche a été très actif depuis
les travaux d’Ajtai [Ajt96], qui introduit le problème Short Integer Solution (SIS) et de
Regev [Reg05], qui introduit le problème Learning With Errors (LWE). Dans ces articles,
d’intéressantes réductions pire-cas moyen-cas sont prouvées, ce qui a attiré de nombreux
chercheurs à s’intéresser au domaine de la cryptographie basée sur les réseaux euclidiens.
Fondamentalement, ces réductions indiquent que si la sécurité d’un cryptosystème est
basée sur un problème moyen-cas (tel que SIS ou LWE), attaquer des instances aléatoires
de ce cryptosystème est au moins aussi difficile que résoudre toutes les instances d’un prob-
lème pire-cas défini sur les réseaux euclidiens. Ainsi, les problèmes moyen-cas tels que SIS
et LWE sont particulièrement bien adaptés à la conception de systèmes cryptographiques.
Ces réductions fournissent donc de solides garanties de sécurité pour la cryptographie
basée sur les réseaux euclidiens. En outre, d’autres schémas efficaces ont fondé leur sécu-
rité sur des problèmes moyen-cas définis sur des réseaux euclidiens structurés, tels que le
schéma de chiffrement NTRU, qui a été introduit dans [HPS98].

Réseaux Euclidiens. Un réseau euclidien peut être considéré comme un arrangement
périodique de points formant une "grille" (voir Figure 1). Plus formellement, étant donné
un ensemble de vecteurs linéairement indépendants B = { b1, . . . , bk } ⊂ Rm, nous ap-
pelons réseau euclidien de base B et de rang k l’ensemble suivant :

L(B) := {
k∑

i=1
λibi, λi ∈ Z } .

Lorsque k = m, le réseau euclidien est dit de rang plein. Un réseau euclidien Λ admet
une infinité de bases pour m ≥ 2.

De nombreux problèmes algorithmiques liés aux réseaux euclidiens ont été introduits
et largement étudiés. L’un d’entre eux est le Shortest Vector Problem (SVP). Ce problème
consiste, à partir d’une base B d’un réseau euclidien Λ, à trouver le plus court vecteur
non nul de ce réseau euclidien (voir Figure 2). On note λ1(Λ) la norme euclidienne d’un
plus petit vecteur non nul de Λ. Une variante approchée de ce problème, notée SVPγ,
consiste à trouver x ∈ Λ de sorte que ∥x∥ ≤ γ · λ1(Λ).

18



Résumé en français

b1

b2

c1

c2

Λ

Figure 1 – Un réseau euclidien Λ de dimension 2 avec deux de ses bases : B = (b1, b2) et
B′ = (c1, c2).

Λ

b1

b2

Figure 2 – Un réseau euclidien Λ de dimension 2 avec une base B = (b1, b2) et un plus
court vecteur.

Ces problèmes sont supposés être difficiles à résoudre. Les meilleurs algorithmes à
ce jour, LLL [LLL82] et BKZ [SE94], sont basés sur la réduction de réseaux euclidiens.
L’algorithme LLL, introduit par Lenstra, Lenstra et Lovász en 1982, résout le problème
SVPγ en temps polynomial lorsque γ est exponentiel en la dimension du réseau euclidien,
tandis que l’algorithme BKZ offre un compromis entre la taille du facteur d’approximation
γ et le temps d’exécution de l’algorithme de résolution. Lorsque γ est polynomial en la di-
mension du réseau m, l’algorithme BKZ qui vise à résoudre SVPγ a un temps d’exécution
de 2Õ(m). On pense qu’il n’existe pas d’algorithme classique ou quantique en temps poly-
nomial capable de résoudre le problème SVPγ pour des facteurs d’approximation γ poly-
nomiaux en la taille de la dimension du réseau euclidien.

Cependant, les problèmes SVP et SVPγ sont des problèmes pire-cas, ce qui signifie qu’ils
sont difficiles à résoudre dans le pire des cas, mais pas qu’ils le sont pour n’importe quelle
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instance d’un réseau euclidien. Par conséquent, ils ne sont pas particulièrement adaptés
à la conception de protocoles cryptographiques, et les problèmes moyen-cas tels que SIS,
LWE ou NTRU seront préférés lorsqu’il s’agit de construire des schémas cryptographiques,
car ce sont des problèmes moyen-cas, ce qui signifie que des instances aléatoires sont diffi-
ciles à résoudre. Comme indiqué ci-dessus, les problèmes SIS et LWE bénéficient toutefois
de réductions pire-cas moyen-cas, et sont donc également considérés comme résistants aux
attaques des ordinateurs quantiques.

Variantes Structurées. Les schémas cryptographiques dont la difficulté est basée sur
ces hypothèses ont cependant l’inconvénient d’être généralement moins efficaces en termes
de taille de paramètres que leurs homologues classiques, dont la difficulté est basée sur
les problèmes du logarithme discret ou de la factorisation. Cela s’explique par le fait
qu’un réseau euclidien Λ est représenté par l’une de ses bases B ∈ Rm×m, dont la taille
est quadratique en la dimension m lorsque le réseau euclidien est de rang plein. Mais
les opérations les plus utilisées dans les cryptosystèmes basés sur les réseaux euclidiens
sont la multiplication matrice-matrice, dont le temps d’exécution est en O(m3) et la
multiplication matrice-vecteur, dont le temps d’exécution est en O(m2). Cependant, la
difficulté de la résolution de problèmes tels que SVP n’augmente qu’exponentiellement
avec m, et non avec m2. Par conséquent, pour obtenir un système cryptographique basé
sur les réseaux euclidiens avec λ bits de sécurité, il est nécessaire de travailler avec des
paramètres de taille λ2.

Pour résoudre ce problème, les réseaux euclidiens algébriques structurés offrent une
solution possible pour améliorer l’efficacité des schémas cryptographiques basés sur les
réseaux euclidiens. Des variantes structurées des problèmes difficiles mentionnés ci-dessus
ont été introduites et largement étudiées, comme Ring-SIS [PR06], Ring-LWE [SST+09;
LPR10] ou Module-SIS et Module-LWE [LS15]. Ces problèmes concernent les réseaux eu-
clidiens structurés, tels que les réseaux idéaux ou modules. Les réseaux idéaux sont un
sous-ensemble particulier des réseaux euclidiens qui possèdent des propriétés algorith-
miques intéressantes. Fondamentalement, avec les réseaux idéaux, on travaille dans un
anneau de polynômes R, par exemple R = Z[X]/(Xm + 1) au lieu de travailler sur
l’anneau des nombres entiers. Par conséquent, les vecteurs des réseaux idéaux correspon-
dent à des polynômes et un polynôme, modulo Xm +1, peut être vu comme un vecteur de
dimension m. Un réseau idéal est alors représenté par la matrice de multiplication par un
polynôme a ∈ Z[X]/(Xm + 1). L’utilisation d’algorithmes efficaces pour la multiplication
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polynomiale tels que la Transformée de Fourier Rapide (FFT) permet alors d’effectuer
une multiplication matrice-matrice en Õ(m2) (au lieu de O(m3) avec des réseaux non
structurés) et Õ(m) (au lieu de O(m2) avec des réseaux non structurés) opérations arith-
métiques.

Primitives Cryptographiques

Depuis les travaux d’Ajtai [Ajt96], les réseaux euclidiens ont été utilisés pour constru-
ire une large gamme de primitives cryptographiques, depuis les plus basiques telles que les
fonctions de hachage à sens unique et résistantes aux collisions [Ajt96; Mic02], les sché-
mas de signature [GGH97] ou les schémas de chiffrement [AD97; Reg05] à des primitives
plus avancées telles que le chiffrement basé sur l’identité [GPV08; CHK+10; ABB10a], le
chiffrement basé sur les attributs [ABV+12], les signatures de groupe [GKV10] ou le prob-
lème de longue date de la réalisation d’un chiffrement totalement homomorphe [Gen09].
Par conséquent, la cryptographie basée sur les réseaux euclidiens donne accès à de nom-
breuses fonctionnalités avancées, ce qui la distingue encore davantage des autres familles
de cryptographie post-quantique.

Présentons quelques primitives de la cryptographie basée sur les réseaux euclidiens.

Schémas de Signature. Le premier schéma de signature basé sur les réseaux euclidiens
a été présenté dans [GGH97]. Il s’agit d’un schéma de signature de type hacher et signer.
Le principe du schéma est le suivant. La clef publique est une mauvaise base d’un réseau
euclidien, tandis que la clef secrète détenue par le signataire est une bonne base (c’est-à-
dire dont les vecteurs sont courts et presque orthogonaux) de ce même réseau euclidien.
Pour signer un message M , le signataire commence par le hacher en une quantité H(M),
et utilise sa connaissance d’une bonne base du réseau euclidien pour calculer un point
du réseau euclidien ν proche de H(M). Alors le signataire renvoie ν comme signature
du message M . Toute personne ayant connaissance d’une base quelconque du réseau
euclidien peut alors vérifier que la signature est bien un point du réseau euclidien et
qu’elle est proche du message haché H(M). Cependant, ce schéma de signature tel que
présenté dans [GGH97] n’était pas sécurisé, car les signatures révélaient des informations
sur la base secrète utilisée pour les calculer, ce qui a conduit à diverses attaques [NR06].

Mais en 2008, Gentry, Peikert et Vaikuntanathan ont présenté dans [GPV08] un nou-
veau schéma de signature basé sur les réseaux euclidiens, qui évite le problème de la fuite
d’informations sur la clef secrète en utilisant l’échantillonnage Gaussien pour générer
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les signatures. En effet, une contribution cruciale de leur travail a été la présentation
d’un algorithme d’échantillonnage (connu sous le nom d’échantillonnage GPV) qui permet
d’utiliser une base courte comme trappe pour générer des vecteurs courts appartenant au
réseau euclidien.

Concrètement, imaginons que le signataire veuille signer un message M . La clef publique
du système de signature est un réseau euclidien représenté par une matrice A ∈ Zn×m

q et
la clef secrète est une trappe pour cette matrice A (une base courte du réseau euclidien).
L’échantillonnage Gaussien consiste alors à échantillonner un point suivant une distribu-
tion Gaussienne discrétisée sur les points du réseau euclidien et centrée sur le point H(M).
Avec l’échantillonnage Gaussien, les signatures ne divulguent aucune information sur la
base courte qui a été utilisée.

Depuis, cet outil est largement utilisé dans la cryptographie basée sur les réseaux
euclidiens.

Schémas de Chiffrement. Regev a présenté dans [Reg05] un système de chiffrement
à clef publique dont la sécurité est basée sur la difficulté du problème LWE. Fondamen-
talement, la clef publique du système est un couple (A, bT = sT A + eT mod q) et la clef
secrète est le vecteur s. Afin de chiffrer un message µ ∈ {0, 1}, l’utilisateur choisit r uni-
formément aléatoire dans {0, 1}m et calcule le chiffré (C = Ar, C ′ = bT r + ⌊q/2⌋ · µ). Le
destinataire peut alors déchiffrer le message en utilisant sa connaissance de la clef secrète
s en calculant C ′ − sT C = eT r + ⌊q/2⌋ · µ. Si le terme d’erreur eT r est suffisamment
petit, il permet au destinataire de récupérer le message µ en vérifiant si eT r + ⌊q/2⌋ · µ
est plus proche de 0 ou de ⌊q/2⌋.

Schémas de Chiffrement Basés sur l’Identité. Un système de chiffrement basé sur
l’identité (IBE) est un système avancé de chiffrement à clef publique dans lequel une
identité, telle qu’un nom d’utilisateur, une adresse mail ou un numéro de sécurité sociale,
joue le rôle de clef publique. Dans un tel système, l’expéditeur chiffre un message avec
l’identité unique du destinataire, et le destinataire déchiffre ensuite le texte chiffré avec
sa clef privée pour obtenir le message original. De cette manière, une partie peut envoyer
un message chiffré à n’importe quelle autre partie sans demander au préalable la clef
publique du destinataire. En effet, la paire "identité" et "clef secrète associée" agit comme
une paire classique de clefs publique et secrète dans un système classique de chiffrement
à clef publique.

22



Résumé en français

La notion de système cryptographique basé sur l’identité a été proposée par Shamir
en 1984 dans [Sha84]. L’idée était d’éliminer la nécessité d’un certificat public dans les
systèmes de messagerie électronique. En effet, ces systèmes permettent une communica-
tion sécurisée sans échange de clefs d’utilisateur. Shamir a présenté une solution pour un
système de signature basé sur l’identité, mais les premières constructions d’IBE ne sont
apparues qu’en 2001 dans [BF01; Coc01] et étaient basées respectivement sur des fonc-
tions bilinéaires et des résidus quadratiques. Cependant, ces schémas sont vulnérables aux
attaques quantiques dues à l’algorithme de Shor [Sho94].

Dans [GPV08], Gentry, Peikert et Vaikuntanathan ont décrit le premier IBE basé
sur des réseaux euclidiens, en s’appuyant sur le schéma de chiffrement Dual-Regev. Ils
introduisent notamment un échantillonneur Gaussien qu’ils utilisent pour construire un
IBE basé sur un réseau euclidien, qui s’est avéré adaptativement sécurisé dans le mod-
èle de l’oracle aléatoire contre les attaques par texte choisi. Cependant, la clef publique
maîtresse et les clefs secrètes des utilisateurs avaient des tailles importantes, en O(n2) bits.
Plus tard, une construction d’un système IBE hiérarchique (HIBE) dans le modèle stan-
dard a été proposée dans [CHK+10] sur la base d’un nouveau mécanisme de délégation de
clefs des utilisateurs. Ce système IBE s’est avéré sécurisé dans le modèle sélectif. Dans ce
modèle, l’adversaire doit cibler une identité à attaquer au préalable. En 2010, Agrawal et
al. [ABB10a] ont proposé un IBE basé sur le problème LWE avec des performances compa-
rables au schéma GPV. Cette construction considère une identité comme une séquence de
bits et attribue une matrice à chaque bit. Elle utilise un algorithme d’échantillonnage pour
obtenir une base dont la norme de Gram-Schmidt est petite pour la clef secrète maître
et forme une famille de réseaux euclidiens avec deux trappes associées pour générer des
vecteurs courts ; l’une pour tous les réseaux euclidiens de la famille et l’autre pour tous
les réseaux euclidiens à l’exception d’un seul.

Le premier IBE basé sur la variante structurée Ring-LWE a été proposé par Ducas,
Lyubashevsky et Prest [DLP14] (DLP-IBE), qui est toujours considéré comme le schéma
le plus efficace à ce jour en raison de la taille réduite des clefs. L’utilisation de la structure
d’anneau améliore l’efficacité en réduisant la taille de la clef publique et des chiffrés à O(n).
La sécurité de leur système est valable dans le modèle de l’oracle aléatoire et est liée à
l’hypothèse de difficulté NTRU. Une implémentation efficace en C de ce schéma et une
analyse détaillée des performances ont été fournies dans [MSO17]. En 2017, Campbell et
Grover ont présenté un schéma HIBE [CG17], appelé Latte, qui peut être considéré comme
une combinaison du schéma DLP-IBE avec le mécanisme de délégation de [CHK+10]. Une
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mise en œuvre optimisée et une analyse affinée de Latte ont été récemment proposées dans
[ZMS+21].

L’article [BFR+18] présente un IBE utilisant la notion de trappes gadget, introduite
par [MP12], pour des réseaux idéaux. De telles trappes peuvent être considérées comme
des applications linéaires qui transforment des instances difficiles de problèmes cryp-
tographiques sur certains réseaux euclidiens en instances faciles sur un réseau euclidien
défini par une "matrice gadget" publique. L’IBE de [BFR+18] a également utilisé les al-
gorithmes efficaces d’échantillonnage de préimages Gaussiennes de [GM18] pour proposer
une implémentation de leur schéma. Dans [ZMS+21], les auteurs ont proposé de nouveaux
algorithmes efficaces d’échantillonnage pour les trappes gadget, qui ne nécessitaient pas
d’arithmétique à virgule flottante et qui sont aussi rapides que l’échantillonneur original
[GM18].

Contributions

Ce manuscrit présente les travaux réalisés au cours de ma thèse. J’ai principalement
travaillé sur la construction et l’implémentation de schémas cryptographiques efficaces,
en particulier les schémas de chiffrement basés sur l’identité, en me concentrant sur
l’amélioration de l’efficacité des algorithmes basés sur les trappes dans la conception de
ces protocoles. Un aperçu rapide de mes contributions est présenté ci-dessous.

Trappes sur des Réseaux Modules. J’ai travaillé dans un premier temps sur le
développement et l’implémentation de techniques d’échantillonnage de préimages gaussi-
ennes sur des réseaux modules, qui s’appuient sur des travaux de Micciancio et Peikert
en 2012 [MP12], et de Micciancio et Genise en 2018 [GM18].

L’objectif était de concevoir des schémas cryptographiques efficaces basés sur des
trappes. Alors que les premières constructions basées sur les trappes GPV [GPV08] n’ont
jamais été instanciées en pratique en raison de leur inefficacité, j’ai travaillé avec une
autre notion de trappes introduite dans [MP12], appelée trappes gadget, et récemment
améliorée en 2018 dans [GM18], que j’ai adaptée pour le cas des réseaux modules.

Cet objectif de construire des algorithmes efficaces pour les schémas cryptographiques
basés sur les gadgets dans le cadre des réseaux modules semblait intéressant car ces
derniers possèdent une structure algébrique supplémentaire, s’appuyant sur un anneau
polynomial sous-jacent qui conduit à une représentation plus compacte des paramètres
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et à un temps d’exécution amélioré. Alors que les anneaux et les réseaux idéaux [PR06;
SST+09; LPR10], généralement basés sur des anneaux de la forme Rq = Zq[X]/⟨Xn + 1⟩,
sont souvent le premier choix pour les constructions efficaces basées sur les réseaux eu-
clidiens, les réseaux modules [LS15], basés sur des modules de la forme Rd

q , se situent à
mi-chemin entre les réseaux idéaux et les réseaux non structurés. Les constructions basées
sur les réseaux modules sont aussi efficaces que celles basées sur les anneaux, et présen-
tent d’autres avantages en pratique. En effet, par rapport aux réseaux idéaux, les réseaux
modules ont une structure algébrique plus faible qui se traduit en pratique par un choix
plus souple de paramètres pour les schémas cryptographiques et un meilleur contrôle du
compromis entre efficacité et sécurité.

J’ai donc travaillé à l’adaptation de différents algorithmes basés sur les trappes gadget,
tels que les algorithmes de génération de trappes et d’échantillonnage gaussien, dans
le cadre des réseaux modules. Afin d’évaluer les performances de ces algorithmes, j’ai
également travaillé sur une implémentation en C. Cette implémentation bénéficie d’une
grande modularité : elle ne nécessite pas de dépendances externes, est facile à modifier
si nécessaire et les blocs peuvent être facilement substitués par d’autres (il est possible
de changer l’arithmétique sur l’anneau Rq, le générateur de nombres pseudo-aléatoires et
l’échantillonneur gaussien peuvent aisément être remplacés par d’autres instanciations).
Par conséquent, je pense que cette implémentation pourrait être utile en tant qu’outil
pour mettre en œuvre diverses constructions cryptographiques basées sur les réseaux et
utilisant des trappes gadgets.

En m’appuyant sur ces outils, en guise d’applications, j’ai travaillé sur deux instancia-
tions et implémentations de schémas de signature à base de trappes, basés sur les réseaux
modules : GPV dans le modèle de l’oracle aléatoire et une variante de celui-ci dans le
modèle standard. À ma connaissance, il s’agit de la première mise en œuvre efficace d’un
système de signature basé sur les réseaux dans le modèle standard. En m’appuyant sur
cette dernière signature, j’ai également travaillé à la mise en œuvre d’un IBE dans le mod-
èle standard reposant sur les réseaux modules. Bien que les schémas résultants ne soient
pas compétitifs avec les schémas les plus efficaces sélectionnés par le NIST, ils restent
efficaces en pratique, ce qui ouvre la voie à des constructions pratiques avancées basées
sur les trappes.

Ce travail est l’objet principal du Chapitre 2 de ce manuscrit.

• [BEP+21] Pauline Bert, Gautier Eberhart, Lucas Prabel, Adeline Roux-Langlois,
Mohamed Sabt: Implementation of Lattice Trapdoors on Modules and Applications.
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Trappes Approchées et Applications. Par la suite, le reste de mes travaux s’est
naturellement orienté vers la recherche de nouvelles méthodes pour améliorer l’efficacité
des schémas cryptographiques utilisant des trappes gadget.

Sur la base de mes travaux brièvement présentés dans le paragraphe précédent, j’ai
travaillé sur l’amélioration de l’efficacité du schéma de chiffrement basé sur l’identité. J’ai
étudié la possibilité d’utiliser des trappes approchées, avec des hypothèses SIS et LWE,
plutôt que les trappes exactes de [MP12], afin d’obtenir un schéma plus efficace, sans
réduire drastiquement la sécurité intrinsèque.

Les trappes approchées ont été introduites par Chen, Genise et Mukherjee dans [CGM19].
Dans leur article, ils introduisent le problème approché (AISIS), qui demande, étant don-
nés A ∈ Rd×m

q et y ∈ Rd
q , de trouver un vecteur x ∈ Rm tel que ||x|| ≤ β et tel qu’il

existe un vecteur z ∈ Rd satisfaisant : ||z|| ≤ α et Ax = y + z mod q.
Ils montrent que ce problème est aussi difficile que le problème original ISIS pour cer-

tains ensembles de paramètres, et introduisent le concept de trappes gadget approchées, lié
à ce problème AISIS. En pratique, les trappes approchées sont générées en supprimant les
entrées ℓ correspondant aux petites puissances de b de la matrice gadget G afin d’obtenir
la matrice suivante : F = Id ⊗ fT = Id ⊗

[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rd×d(k−ℓ).

Cela permet de réduire la taille de la matrice publique, de la trappe et des préimages
utilisées dans les constructions cryptographiques par un facteur 2 sans drastiquement
impacter la sécurité concrète de ces schémas.

Cependant, l’utilisation de trappes approchées conduit à l’apparition de termes d’erreur
qui doivent être pris en compte dans la phase de déchiffrement. J’ai travaillé sur l’utilisation
de ces trappes approchées pour concevoir un IBE qui peut gérer ce terme d’erreur tout
en utilisant des matrices tags. Le schéma que j’ai obtenu vérifie la sécurité IND-sID-CPA
dans le modèle standard et a donné lieu à une implémentation montrant qu’il est plus
efficace que l’équivalent IBE utilisant des trappes exactes.

• [IPR23] Malika Izabachène, Lucas Prabel and Adeline Roux-Langlois: Identity-
Based Encryption From Lattices Using Approximate Trapdoors, ACISP 2023

NTRU Lattices. Pendant ma thèse, je me suis aussi intéressé à l’étude des réseaux
NTRU, à l’efficacité (en termes de taille des paramètres et de temps d’exécution) de sché-
mas cryptographiques utilisant cette famille de réseaux, aux perspectives d’implémentation
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et à la sécurité concrète des systèmes cryptographiques basés sur une variante de cette
hypothèse de difficulté.

J’ai donc travaillé sur cette variante de NTRU, appelée iNTRU, introduite dans [GGH+19].
Elle peut être considérée comme une variante inhomogène de NTRU. Fondamentalement,
la version matricielle de iNTRU demande de distinguer entre une matrice A ∈ Zn×m

q

définie comme A = S−1(G−E) mod q (où S ∈ Zn×n
q est une matrice aléatoire inversible,

E est une matrice de petite norme et G est la matrice gadget) à partir d’une matrice
choisie uniformément aléatoire dans Zn×m

q .
L’utilisation de trappes gadget n’étant pas directement compatible avec l’hypothèse

de difficulté de NTRU, j’ai utilisé cette variante particulière de NTRU pour construire
un schéma de chiffrement basé sur l’identité et reposant sur le paradigme [MP12], afin
d’obtenir un IBE plus efficace en termes de temps d’exécution et de tailles de paramètres.
Ce nouveau schéma, dont la sécurité est prouvée dans le modèle de l’oracle aléatoire, a
également donné lieu à une implémentation, ce qui a permis d’évaluer ses performances
en termes de temps et de les comparer à celles de mon précédent IBE.

Je me suis également intéressé à la sécurité concrète des schémas cryptographiques
basés sur l’hypothèse de difficulté iNTRU, la littérature étant encore récente sur ce sujet,
ce nouveau problème ayant été introduit en 2019. Je me suis plus particulièrement intéressé
à l’adaptation des attaques de type "overstretched" sur cette variante. Ces attaques ont
été introduites dans [KF17] dans le cas des réseaux NTRU, et s’appliquent aux instances
qui nécessitent un grand module q par rapport à la dimension 2n du réseau sous-jacent
au schéma.

En outre, je me suis intéressé plus récemment aux résolutions des équations NTRU,
qui apparaissent en particulier dans plusieurs cryptosystèmes tels que Falcon [FHK+17] ou
BAT [FKP+22], pendant la phase de génération de clefs. Mon objectif était d’étudier les
techniques permettant de résoudre efficacement les équations NTRU, lorsque l’on travaille
avec des corps de nombres qui n’admettent pas de tour de sous-corps. Dans ce cas, la
résolution efficace de ces équations telle que présentée dans [PP19] en utilisant la norme
et la structure de sous-corps n’est plus possible, et d’autres solutions doivent être trouvées.
Je me suis également intéressé à la possibilité d’éviter l’arithmétique en virgule flottante
pendant la phase de réduction des algorithmes de résolution des équations NTRU, afin
d’obtenir une implémentation efficace.

• [IPR23] Malika Izabachène, Lucas Prabel and Adeline Roux-Langlois: Identity-
Based Encryption From Lattices Using Approximate Trapdoors, ACISP 2023
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Une partie de ce travail a également été publiée dans l’article [IPR23] cite précédem-
ment, et une autre partie est toujours en cours et n’a pas encore été soumise pour publi-
cation.
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INTRODUCTION

C
ryptology is literally the science of secrets. Indeed, the word comes from an-
cient Greek, κρυπτ óς meaning secret and λóγoς meaning science. It encompasses
both cryptography, whose object of study is to protect messages by making them

secret; and cryptanalysis, which, on the contrary, seeks to attack these protections to find
the original messages hidden behind those secrets. However, the prerogatives of cryptog-
raphy have extended well beyond the original objective of making a message secret (called
confidentiality), since it is also concerned with other aspects of security, such as integrity
(whose objective is to deal with alterations of data) or authentication (whose objective is
to track the origin of a received message). Cryptography is nowadays a rich science, with
broad objectives and based on strong scientific foundations.

A Brief History

But the history of cryptography is a long one. In The Codebreakers, published in 1967,
David Kahn recounts this history, going back to its first traces of use in ancient Egypt
4,000 years ago, with hieroglyphic symbol substitutions carved in the main chamber of
the tomb of a nobleman by his scribe.

During its initial 3,000-year span, the field of cryptology did not experience steady
growth. Instead, cryptology independently emerged in various regions but progress re-
mained slow and sporadic, with more knowledge being lost than preserved. It is only with
the advent of the Western Renaissance that accumulated knowledge in cryptology begins
to gain momentum.

Prior to this, we can highlight a few occurrences of practical applications of simple
cryptographic techniques.

The Caesar cipher, named after Julius Caesar, is one of the earliest and simplest known
encryption techniques. It has been used, along with other more sophisticated techniques,
in Ancient Rome for military purposes. It is a cryptographic method based on monoal-
phabetic substitution. A cipher is computed from a plaintext by replacing letters from
the plaintext with letters standing k positions further down the alphabet (and starting
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again from the beginning for the last letters of the alphabet), where 1 ≤ k ≤ 25 is a
fixed integer, representing the secret key of the scheme. On its own, this method does not
satisfy communication security, because of the very small number of possible keys, which
means that they can be systematically tried out when the encryption method is known,
but also because, like any encryption based on monoalphabetic substitution, it can very
quickly be "broken" by frequency analysis of the letters appearing in the ciphers.

The Vigenère cipher, described for the first time during Late Renaissance, is a polyal-
phabetic substitution cipher which uses a Caesar cipher with a different shift at each
position in the plaintext. The value of this shift is given by another text which serves as a
secret key which can be reused repeatedly depending on the plaintext’s length. Therefore,
the same letters of the plaintext can, depending on their position in it, be replaced by
different letters, unlike mono-alphabetic encryption systems such as the Caesar cipher.
This method is thus resistant to a straightforward frequency analysis attack. However,
correctly guessing the key’s length n of the Vigenère cipher, the ciphertext can be seen
as n interleaved Caesar ciphers, which can easily be broken individually.

But the field of cryptography really evolved and took the form and the formalism we
know today during the late 1890s and the 20th century.

In the late 19th century, Auguste Kerckhoffs expounded in his book La cryptographie
militaire [Ker83] a few principles to respect to design good military ciphers. One of the
most important of these principles, which is now called Kerckhoffs’ principle, states that
"the cipher method must not be required to be secret, and it must be able to fall into the
hands of the enemy without inconvenience". Basically, it means that the security of an
encryption scheme should not rely on the encryption scheme’s design being secret but on
the secrecy of the key, which represents the crucial element of the system and which is kept
confidential and known only by one or more authorised persons. Nowadays, Kerckhoffs’
principle is widely acknowledged and commonly interpreted as promoting the idea that
the entire design of a cryptosystem should be openly available to the public. This stands
in sharp contrast to the concept of "security through obscurity," which considers design or
implementation secrecy as the main method to guarantee the security of a cryptosystem.

During the 20th century, both World Wars played an important role in the development
of cryptography and cryptanalysis. Alan Turing, renowned for his mathematical design
of the early computer models, participated in their realization during the Second World
War and played a major role in the cryptanalysis of the Enigma machine used by the Nazi
armies.
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The rise of computers and communication systems during the 1960s led to a growing
need for digital tools to protect information and services ensuring security. This demand
sparked a wide range of developments in the field of cryptography, from Feistel’s work
at IBM during the 1970s, ultimately resulting in the adoption of the Data Encryption
Standard (DES), a symmetric-key algorithm published as an official Federal Information
Processing Standard (FIPS) for the United States in 1977. Consequently, from this point,
academic research in the field of cryptography will greatly intensify. As a result, a com-
prehensive theory started to unfold, making possible a rigorous study of cryptography as
both a scientific and mathematical field of research.

Since the 1990s, the development of the use of the Internet for various purposes in-
cluding commercial operations advocated for a widespread standard for encryption. Once
largely confined to military and government use, cryptography is now ubiquitous in our
daily lives.

Public-Key Cryptography

With symmetric (or private) key cryptography, the use of a common secret key between
the sender and the receiver is necessary, thus requiring both parties to have a physical
meeting beforehand, or to use a trusted third party beforehand. However, the break-
through work [DH76] of Diffie and Hellman in 1976 would change the deal. In their article
New Directions in Cryptography, they introduce the concept of public (or asymmetric) key
cryptography. Each user can now compute a publicly accessible key known as a public-key,
and its associated private-key, which is only known by him. In a public-key encryption
scheme for example, the public-key of a user allows anyone to encrypt a message, but
only the owner of the corresponding private-key would be able to decrypt it. Therefore,
this new concept makes it possible to solve the problem of a prior physical meeting men-
tioned above for symmetric key cryptography. Nowadays, in communications, a public-key
cryptographic scheme will often be used together with a private-key scheme: the first one
allows two parties who wish to communicate to agree on a common secret key and the
second one is used for the rest of the communications. Indeed, private-key cryptography
schemes are usually more efficient than their public-key counterparts, which makes them
more attractive to use for cryptographic protocols.

In [DH76], Diffie and Hellman also provide a new method for key exchange, whose
security is based on the hardness of the discrete logarithm problem. Key exchange is
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a protocol that helps two parties to agree on a common secret key, without the need
to exchange some private information beforehand. In their original paper, the public
parameters of their key exchange protocol are a cyclic group G, its order q and a generator
g ∈ G. Then, Alice chooses a ∈ Zq uniform and computes ga. She sends this quantity to
Bob. The latter also chooses b ∈ Zq uniform and computes gb, which he sends to Alice.
Then, both Alice and Bob can compute gab = (ga)b = (gb)a, which becomes their common
secret key.

While Diffie and Hellman didn’t present a public-key encryption scheme in their article,
in 1978, Rivest, Shamir, and Adleman introduced in [RSA78] the first practical realization
of public-key encryption and signature schemes. This time, the security of RSA schemes
relies on the factorization problem of a product of large integers. In [Gam84], another
public-key encryption scheme is introduced by El Gamal, based on the discrete logarithm
problem.

In public-key cryptography, the security of protocols is therefore based on the conjec-
tured hardness of some mathematical problems, such as the discrete logarithm or large
integers factorization problems. Those two specific problems are omnipresent in classical
public-key cryptography. However, cryptographic protocols relying on these two prob-
lems are threatened by the possible emergence of quantum computers. Indeed, there is an
important difference in nature between operations done by quantum and classical com-
puters. In particular, quantum computers work with quantum bit or qubit (which is the
quantum version of the classical binary bit) which has an infinite set of alternative values
besides 0 and 1. This allows quantum computers to become much more efficient than
classical computers for some specific problems. Indeed, Shor showed in [Sho94] how quan-
tum algorithms could efficiently solve the discrete logarithm and factorization problems
in polynomial time.

However, quantum computers do not currently exist on a large scale and are not
powerful enough yet. While the current quantum computers can handle around a couple
of hundred qubits, it is believed that more than 1 million are necessary for breaking the
factorization problem. Nonetheless, progress made in quantum computing is steady, and it
is important to contemplate alternatives for a future in which quantum computers become
widely accessible. Additionally, there exists the risk of malicious individuals collecting
encrypted messages today with the intent to decrypt them at a later time, once quantum
computers are available. This potential risk of the advent of such machines has prompted
the scientific community to search for new security assumptions, potentially resistant
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against this threat, which would make it possible to build schemes that remain secure
even when adversaries have such computers at their disposal. This is an active research
field known as post-quantum cryptography.

Post-Quantum Cryptography

It is with this perspective in mind that in 2016, the National Institute of Standards and
Technology (NIST), an agency of the United States Department of Commerce, launched
the Post-Quantum Cryptography Standardization program and competition, whose goal
was to update their standards to include post-quantum cryptographic schemes. The ini-
tial submissions from the scientific community to this competition included 23 signature
schemes and 59 encryption/key encapsulation mechanism schemes. The candidate cryp-
tographic schemes were based on a wide variety of problems supposedly difficult to attack
efficiently by a quantum computer. Nowadays, we can distinguish in particular 5 main
families that make up the landscape of post-quantum cryptography. Those families rely on
the hardness of problems defined over lattices, error-correcting codes, isogenies of elliptic
curves, multivariate polynomials, and hash functions.

In this thesis, we will be interested in post-quantum cryptography based on mathe-
matical problems defined over lattices.

Lattice-Based Cryptography

Indeed, lattice-based cryptography is one of the most promising solutions against the
quantum threat. This field of research has been very active since the works of Ajtai [Ajt96],
which introduces the Short Integer Solution problem (SIS) and Regev [Reg05], which in-
troduces the Learning With Error problem (LWE). In those articles, interesting worst-case
to average-case reductions are proved, which attracted many researchers into the field of
lattice-based cryptography. Basically, those reductions state that if the security of a cryp-
tosystem is based on an average-case problem (such as SIS or LWE), attacking random
instances of this cryptosystem is at least as hard as solving all instances of the under-
lying worst-case lattice problem. Thus, average-case problems such as SIS and LWE are
particularly well-suited for designing cryptographic schemes. Therefore, those reductions
provide strong security guarantees for lattice-based cryptography. Besides, other efficient
schemes have based their security on average-case problems over structured lattice such

33



Introduction

as the NTRU encryption scheme, which was introduced in [HPS98].

Euclidean Lattices. A lattice can be seen as a periodic arrangement of points forming
a "grid" (see Figure 3). More formally, given a set of linearly independent vectors B =
{ b1, . . . , bk } ⊂ Rm, we call lattice with basis B and rank k the following set:

L(B) := {
k∑

i=1
λibi, λi ∈ Z } .

When k = m, the lattice is said to be full-rank. A lattice Λ admits infinitely many
bases for m ≥ 2.

b1

b2

c1

c2

Λ

Figure 3 – A 2-dimensional lattice Λ with two of its basis: B = (b1, b2) and B′ = (c1, c2).

Many algorithmic problems related to lattices have been introduced and widely stud-
ied. One of them is the Shortest Vector Problem (SVP). This problem asks, when given
a basis B of a lattice Λ, to find a shortest non-zero vector of this lattice (see Figure 4).
We denote λ1(Λ) the Euclidean norm of any smallest non-zero vector of the lattice Λ.
An approximate variant of this problem, denoted SVPγ, asks to find x ∈ Λ such that
∥x∥ ≤ γ · λ1(Λ).

Those problems are supposed to be difficult to solve. The best algorithms to date
seeking to solve them, LLL [LLL82] and BKZ [SE94], are based on lattice reductions.
The LLL algorithm, introduced by Lenstra, Lenstra and Lovász in 1982, solves the SVPγ

problem in polynomial time when γ is exponential in the dimension of the lattice, while
the BKZ algorithm offers a trade-off between the size of the approximation factor γ and
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Λ

b1

b2

Figure 4 – A 2-dimensional lattice Λ with basis B = (b1, b2) and a shortest vector.

the running time of the solving algorithm. When γ is polynomial in the lattice dimension
m, the BKZ algorithm which aims to solve SVPγ has a running time of 2Õ(m). It is believed
that there is no polynomial time classical or quantum algorithm able to solve the SVPγ

problem for approximation factors γ polynomial in the size of the dimension of the lattice.
However, the SVP and SVPγ problems are worst-case problems, meaning they are hard

to solve in the worst-case, and not for any instance of a lattice. Therefore, they are not
particularly well-suited for designing cryptographic protocols, and average-case problems
such as SIS, LWE or NTRU will be preferred when it comes to building cryptographic
schemes, because they are average-case problems, meaning random instances are hard to
solve. As written above, SIS and LWE do however benefit from worst-case to average-case
reductions, and are thus also believed to be quantum resistant.

Structured Variants. Cryptographic schemes whose hardness is based on those lat-
tice assumptions however have the disadvantage of being usually less efficient in terms of
parameter sizes than their classical counterparts, whose hardness is based on the discrete
logarithm of factorization problems. This is explained by the fact that a lattice Λ is rep-
resented by one of its basis B ∈ Rm×m, whose size is quadratic in the dimension m when
the lattice is full-rank. But the most used operations in lattice-based cryptosystems are
matrix-matrix multiplication, whose running time is in O(m3) and matrix-vector multi-
plication, whose running time is in O(m2). However, the hardness of solving problems
such as SVP only increases exponentially with m, and not with m2. Therefore, in order to
have a lattice-based cryptographic scheme with λ bits of security, we need to work with
parameters of sizes λ2.

In order to deal with this problem, algebraically structured lattices offer a possible
solution to improve the efficiency of lattice-based cryptographic schemes. Structured vari-
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ants of the hard problems mentioned above have been introduced and widely studied, such
as Ring-SIS [PR06], Ring-LWE [SST+09; LPR10] or Module-SIS and Module-LWE [LS15].
These problems deal with structured lattices, such as ideal or module lattices. Ideal lattices
are a special subset of lattices that possess interesting computational properties. Basically,
when working with ideal lattices, we work in a ring of polynomials R, often chosen as
R = Z[X]/(Xm + 1) instead of working over the ring of integers. Therefore, vectors of
ideal lattices correspond to polynomials and a polynomial, modulo Xm + 1, can be seen
as a vector of dimension m. An ideal lattice is then represented by the skew-circulant
matrix of multiplication by a polynomial a ∈ Z[X]/(Xm + 1). Using efficient polynomial
multiplication algorithms such as the Fast Fourier Transform (FFT) then allows perform-
ing matrix-matrix multiplication in Õ(m2) (instead of O(m3) with unstructured lattices)
and Õ(m) (instead of O(m2) with unstructured lattices) arithmetic operations.

Cryptographic Primitives

Since the work of Ajtai [Ajt96], lattices have been used to construct a wide range
of cryptographic primitives, from basic primitives such as one-way and collision-resistant
hash functions [Ajt96; Mic02], signature schemes [GGH97] or encryption schemes [AD97;
Reg05] to more advanced primitives such as identity-based encryption [GPV08; CHK+10;
ABB10a], attribute-based encryption [ABV+12], group signatures [GKV10] or the long-
standing problem of realizing fully homomorphic encryption [Gen09]. Therefore, lattice-
based cryptography enables many advanced functionalities, which further sets it apart
from other families of post-quantum cryptography.

Let’s start by presenting some primitives of lattice-based cryptography.

Lattice-Based Signature Schemes. The first lattice-based signature scheme was in-
troduced in [GGH97]. It is a hash-and-sign signature scheme. The principle of the scheme
is as follows. The public key is a bad basis of a lattice, while the secret key owned by the
signer is a good basis of this same lattice. To sign a message M , the signer first hashes it
to a quantity H(M), and uses his knowledge of a good basis of the lattice to compute a
lattice point ν close to H(M). Then, the signer outputs ν as a signature of the message
M . Anyone knowing a basis of the lattice can then check that the signature is indeed a
lattice point and that it is close to the hashed message H(M). However, this signature
scheme as presented in [GGH97] was not secure, because signatures revealed information
about the secret basis used to compute them, leading to various attacks breaking the

36



Introduction

scheme [NR06].
However, in 2008, Gentry, Peikert and Vaikuntanathan presented in [GPV08] a new

lattice-based signature scheme, which avoids the problem of the signatures leaking infor-
mation about the secret key by using Gaussian sampling in order to generate signatures.
Indeed, a crucial contribution of their work was a sampling algorithm (known as GPV
sampling) which allows using a short basis as a trapdoor for generating short lattice
vectors.

Concretely, imagine the signer wants to sign a message M . The public key of the
signature scheme is a lattice represented by a matrix A ∈ Zn×m

q and the secret key is
a trapdoor for this matrix A (basically a short basis of the lattice). Then, Gaussian
sampling consists to sample a point following a Gaussian distribution discretized on the
lattice points and centered on the point H(M). With Gaussian sampling, signatures don’t
leak any information about the short basis which was used.

This tool has been widely used in lattice-based cryptography ever since.

Lattice-Based Encryption Schemes. Regev introduced in [Reg05] a public-key en-
cryption scheme whose security was based on the hardness of the LWE problem. Basically,
the public key of the scheme is a couple (A, bT = sT A + eT mod q) and the secret key
is the vector s. In order to encrypt a message µ ∈ {0, 1}, the user chooses r uniformly
random in {0, 1}m and computes the ciphertext (C = Ar, C ′ = bT r + ⌊q/2⌋ · µ). Then
the recipient can find the message using his knowledge of the secret key s by computing
C ′− sT C = eT r + ⌊q/2⌋ · µ. If the error term eT r is small enough, it allows the recipient
to recover the message µ by checking if eT r + ⌊q/2⌋ · µ is closer to 0 or ⌊q/2⌋.

Identity-Based Encryption Schemes. An Identity-Based Encryption (IBE) scheme
is an advanced public-key encryption scheme in which an identity, such as a username,
an email address, or a social security number, acts as the public-key. In such a scheme,
the sender encrypts a message with the unique identity of the recipient, and the recipient
then decrypts the ciphertext with their private-key to obtain the original message. By
doing so, one party can send an encrypted message to any other party without requesting
the recipient’s public key beforehand. Indeed, the pair "identity" and "associated secret
key" acts as a classical public-key and secret key-pair in a classical public key encryption
scheme.

The notion of identity-based schemes was proposed by Shamir in [Sha84]. The idea
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was to eliminate the need for a public certificate across email systems. Indeed, these
schemes allow secure communication without exchanging user keys. Shamir presented a
solution for an identity-based signature scheme but the first IBE constructions appeared
only in 2001 in [BF01; Coc01] and were based respectively on bilinear maps and quadratic
residue based assumptions. However, these schemes are vulnerable to quantum attacks
due to Shor’s algorithm [Sho94].

In [GPV08], Gentry, Peikert and Vaikuntanathan described the first lattice-based IBE,
relying on the Dual-Regev encryption scheme. The Gaussian sampler they introduce was
used to construct a lattice-based IBE scheme, proven adaptively secure against chosen-
plaintext attacks in the random oracle model. However, the master public key and user
secret keys had large sizes in O(n2) bits. Later on, a construction of a Hierarchical IBE
(HIBE) scheme in the standard model was proposed in [CHK+10] based on a new mecha-
nism for users’ keys delegation. This IBE scheme was proven secure in the selective model.
In this model, the adversary needs to target an identity beforehand. In 2010, Agrawal et
al. [ABB10a] proposed a LWE-based IBE scheme with a trapdoor structure and with
performance comparable to the GPV scheme. Their construction viewed an identity as a
sequence of bits and then assigned a matrix to each bit. It used a sampling algorithm to
obtain a basis with a low Gram-Schmidt norm for the master secret key and formed a
lattice family with two associated trapdoors to generate short vectors; one for all lattices
in the family and the other one for all but one.

The first Ring-LWE based IBE scheme has been proposed by Ducas, Lyubashevsky and
Prest [DLP14] (DLP-IBE), which is still considered the most efficient scheme to date due to
smaller key sizes. The use of the ring variant improved efficiency by reducing the public key
size and ciphertext size to O(n). The security of their scheme holds in the random oracle
model and is related to the NTRU hardness assumption. An efficient C implementation
of this scheme and a detailed performance analysis was provided in [MSO17]. In 2017,
Campbell and Grover introduced a HIBE scheme [CG17], called Latte, which can be viewed
as a combination of the DLP-IBE scheme with the delegation mechanism from [CHK+10].
An optimized implementation and refined analysis of Latte, has recently been proposed
in [ZMS+21].

The work from [BFR+18] constructed an IBE using the notion of gadget-based trap-
doors in the ring setting, introduced by [MP12]. Such trapdoors can be seen as linear
transformations mapping hard instances of cryptographic problems on some lattices to
easy instances on a lattice defined by a public "gadget matrix". The IBE from [BFR+18]
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also made use of the efficient Gaussian preimage sampling algorithms from [GM18] to
propose an implementation of their scheme. In [ZMS+21], the authors proposed new effi-
cient gadget sampling algorithms which didn’t need floating-point arithmetic, and as fast
as the original [GM18] sampler.

All those constructions generally make use of dedicated trapdoors, needed by the
authority to generate the secret key of a user. In that case, building the trapdoor and
sampling particular short vectors are quite costly, and represent the main bottleneck in
the efficiency of such schemes.

Contributions

This manuscript presents the work done during my PhD. I mainly worked on the
constructions and implementations of efficient cryptographic schemes, especially identity-
based encryption schemes, focusing on improving the efficiency of trapdoor-based algo-
rithms in the design of these protocols. A quick overview of my contributions is presented
below.

Lattice Trapdoors on Modules. I worked on the development and implementation
of Gaussian preimage sampling techniques on module lattices, which rely on the works of
Micciancio and Peikert in 2012 [MP12], and Micciancio and Genise in 2018 [GM18].

The objective was to design efficient trapdoor-based cryptographic schemes. While
early constructions based on GPV trapdoors [GPV08] were never instantiated in practice
because of their inefficiency, I worked with another notion of trapdoors introduced in
[MP12], called gadget trapdoors, and recently improved in 2018 in [GM18] that I adapted
to the module setting.

This objective of constructing efficient algorithms for gadget-based cryptographic
schemes in the module setting seemed interesting because module lattices possess addi-
tional algebraic structure, relying on an underlying polynomial ring which leads to a more
compact representation and an improved running time. While the ring setting and ideal
lattices [PR06; SST+09; LPR10], usually based on rings of the formRq = Zq[X]/⟨Xn + 1⟩,
are often the first choice for efficient lattice-based constructions, module lattices [LS15],
based on modules of the form Rd

q , lie somewhere between ideal lattices and unstructured
ones. Constructions in the module setting are as efficient as ring-based ones, and have
other advantages for practical schemes. Indeed, compared to the ring setting, module
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lattices have a weaker algebraic structure which translates in practice to a more flexi-
ble choice of parameters for cryptographic schemes and more control over the trade-off
between efficiency and security.

Thus, I worked on adapting different algorithms based on gadget trapdoors, such as
trapdoor generation and Gaussian sampling algorithms, in the module setting. In order
to assess the performance of these algorithms, I also worked on a C implementation from
scratch. This implementation is really modular: it does not require external dependencies,
is easy to modify if needed and blocks can be easily swapped out (it is possible to change
the arithmetic over the ring Rq, the pseudorandom number generator and the (constant-
time) sampler of discrete Gaussian distributions can be swapped for other instantiations,
. . . ). Therefore, I believe this implementation could be useful as a tool to implement
various lattice-based cryptographic constructions using gadget trapdoors.

Relying on these tools, as applications, I worked on two instantiations and implemen-
tations of proven trapdoor-based signature schemes in the module setting: GPV in the
random oracle model and a variant of it in the standard model. To the best of my knowl-
edge, this is the first efficient implementation of a lattice-based signature scheme in the
standard model. Relying on that last signature, I also worked on the implementation of
a standard model IBE in the module setting. While the resulting schemes may not be
competitive with the most efficient schemes selected by the NIST, they are practical and
run on a standard laptop in acceptable time, which paves the way for practical advanced
trapdoor-based constructions.

This work is the main object of the Chapter 2 of this manuscript.

• [BEP+21] Pauline Bert, Gautier Eberhart, Lucas Prabel, Adeline Roux-Langlois,
Mohamed Sabt: Implementation of Lattice Trapdoors on Modules and Applications.
PQCrypto 2021: 195-214

Approximate Trapdoors and Applications. Afterward, the rest of my work has
naturally been directed towards the search for new methods to improve the efficiency of
cryptographic schemes making use of gadget trapdoors.

Based on my work briefly presented in the previous paragraph, I worked on improving
the efficiency of the identity-based encryption scheme. I study the possibility of using
approximate trapdoors, with SIS and LWE assumptions, rather than the exact trapdoors
of [MP12], in order to obtain a more efficient scheme, without drastically reducing the
intrinsic security.
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Approximate trapdoors were introduced by Chen, Genise and Mukherjee in [CGM19].
In their paper, they introduce the Approximate Inhomogeneous Short Integer Solution
(AISIS) problem, which asks, given A ∈ Rd×m

q and y ∈ Rd
q , to find a vector x ∈ Rm

such that ||x|| ≤ β and such that there is a vector z ∈ Rd satisfying: ||z|| ≤ α and
Ax = y + z mod q.

They showed that this problem is as hard as the original ISIS problem for some sets of
parameters, and introduce the concept of approximate gadget trapdoors, related to this
AISIS problem. In practice, approximate trapdoors are generated by dropping ℓ entries
corresponding to the small powers of b from the gadget matrix G to get the following
matrix: F = Id ⊗ fT = Id ⊗

[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rd×d(k−ℓ).

Doing so allows to reduce the sizes of the public matrix, the trapdoor and the preimage
used in cryptographic constructions by a factor of 2 without losing too much on the
concrete security of those schemes.

However, the use of approximate trapdoors leads to the appearance of error terms
which must be taken care of in the decryption phase of encryption schemes. I worked on
making use of those approximate trapdoors to design an identity-based encryption scheme
that can handle this error term while using tag matrices. The resulting scheme I got is
IND-sID-CPA secure in the standard model and resulted in an implementation showing
that it is more efficient than the counterpart IBE using exact trapdoors.

• [IPR23] Malika Izabachène, Lucas Prabel and Adeline Roux-Langlois: Identity-
Based Encryption From Lattices Using Approximate Trapdoors, ACISP 2023

NTRU Lattices. During my PhD, I was also interested in the study of NTRU lattices,
in the efficiency (in terms of parameter sizes and running time) of cryptographic schemes
making use of such a family of lattices, in implementation perspectives and in the concrete
security of cryptographic schemes based on a variant of this hardness assumption.

This variant of NTRU, called iNTRU, was introduced in [GGH+19]. It can be seen
as an inhomogeneous variant of NTRU. Basically, the matrix version of iNTRU asks to
distinguish between a matrix A ∈ Zn×m

q defined as A = S−1(G − E) mod q (where
S ∈ Zn×n

q is a random invertible matrix, E is a low-norm matrix and G is the gadget
matrix) from a matrix chosen uniformly at random in Zn×m

q .
The use of gadget trapdoors not being straightforwardly compatible with the NTRU

hardness assumption, I used that particular variant of NTRU in order to build an identity-
based encryption scheme based on the [MP12] paradigm, in order to obtain a more efficient
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IBE in terms of timings and parameter sizes. This new scheme, whose security has been
proven in the random oracle model, also resulted in an implementation, making it possible
to assess its timings performance and to compare it with my previous IBE.

I was also interested in the concrete security of cryptographic schemes based on the
iNTRU hardness assumption, as the literature on this subject is relatively new, this prob-
lem having been introduced recently. I was more particularly interested in overstretched
attacks. Those attacks were introduced in [KF17] in the case of NTRU lattices, and ap-
plied to instances that need a large modulus q compared to the dimension 2n of the lattice
underlying the scheme.

In addition, I have also been interested more recently in the resolutions of NTRU equa-
tions, which are involved in particular in several cryptosystems such as Falcon [FHK+17]
or BAT [FKP+22], during the key generation phase. My goal was to investigate techniques
for effectively solving NTRU equations, when working with number fields that don’t admit
a subfields tower. In this case, solving these equations efficiently as presented in [PP19]
using the field norm and the subfield structure is no longer possible, and other solutions
must be found. I was also interested in the possibility of avoiding floating point arith-
metic during the reduce phase of the NTRU equation solving algorithms, in order to get
an efficient implementation.

• [IPR23] Malika Izabachène, Lucas Prabel and Adeline Roux-Langlois: Identity-
Based Encryption From Lattices Using Approximate Trapdoors, ACISP 2023

Part of this work has also been published in the article [IPR23] cited above, and
another part is still ongoing and has not yet been submitted for publication.
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Chapter 1

PRELIMINARIES

In this first chapter, we introduce different mathematical and cryptographic notions,
through some definitions and properties, on which we will rely multiple times in the rest
of this thesis. In particular, we define what a lattice is, state some of its properties, the
hard problems on which lattice-based cryptography is built, and introduce several tools
that will be useful later in this manuscript. Next, we recall some mathematical defini-
tions and properties in probability theory. Finally, we present some basic cryptographic
notions and primitives which will reappear several times later, when presenting advanced
cryptographic constructions.
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1.1 Notations

Sets. We denote by Z and Zq the rings of integers and integers modulo q, by R and C the
fields of real and complex numbers. Elements of these sets are denoted by standard low-
ercase letters, (column) vectors by bold lowercase letters, and matrices by bold uppercase
letters.

Norms. The Euclidean inner product of two vectors x, y ∈ Cn is defined as ⟨x, y⟩ =
n∑

i=1
xiyi. The norm ∥·∥2 (or just ∥·∥) denotes the Euclidean norm, induced by the Euclidean

inner product ⟨·, ·⟩. The norm of a vector over Zq is the norm of the corresponding vector
over Z with entries in {−⌊q/2⌋, . . . , ⌊q/2⌋}, the norm of a polynomial a = ∑n−1

i=0 aiX
i is

the norm of the vector (a0, . . . , an−1), and the norm of a matrix is the maximum norm of
its column vectors. We also denote ∥·∥∞ the infinity norm, defined as ∥x∥∞ = max

i
|xi|

for a vector x and ∥A∥∞ = max
i,j
|ai,j| for a matrix A = (ai,j)i,j.

Asymptotic Notations. We use the standard Landau notations. A function f is neg-
ligible when f(n) = o(n−c) for all c > 0 as n→∞. An event happens with overwhelming
probability if its probability of not happening is negligible.

Distributions. If x is sampled from a distribution D, we write x←D. The uniform
distribution over a finite set S is denoted U(S) and if x is sampled uniformly from a
set S, we write x

$← S. Two distributions D0 and D1 over the same countable domain
Ω are said to be statistically indistinguishable if their statistical distance ∆(D0, D1) =
1
2
∑

ω∈Ω |D0(ω) − D1(ω)| is negligible. They are computationally indistinguishable if no
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probabilistic polynomial time algorithm can distinguish them with non-negligible advan-
tage.

Matrices. We denote In (or just I if the size is clear from context) the identity matrix
of size n×n. A symmetric matrix M ∈ Rn×n is said to be positive definite (resp. positive
semidefinite) if for all nonzero x ∈ Rn we have xT Mx > 0 (resp. xT Mx ≥ 0), in which
case we write M ≻ 0 (resp. M ⪰ 0). Positive semidefiniteness induces a partial order on
Rn×n, as we say that M ⪰ N when M −N ⪰ 0. For simplicity of notation, we write
M ⪰ η instead of M ⪰ ηI, for a real η ≥ 0.

1.2 Lattices

This section contains general definitions and properties concerning Euclidean and
structured lattices. It will also present some computational problems based on lattices.

1.2.1 First Definitions

Informally speaking, a lattice Λ can be seen as a periodic arrangement of points forming
a "grid" (see Figure 1.1). More formally, it is a discrete subgroup of Rm.

Definition 1 (Lattice) Given a set of linearly independent vectors B =
{ b1, . . . , bk } ⊂ Rm, we call lattice with basis B the following set:

L(B) := {
k∑

i=1
λibi, λi ∈ Z } .

The dimension of the lattice is m and its rank is k.
When k = m, the lattice is said to be full-rank.

For m ≥ 2, a lattice Λ admits infinitely many bases. Indeed, if B is a basis of the
m-dimensional lattice Λ, then any UB where U ∈ Zm×m is unimodular is also a basis
of Λ.

Definition 2 (Sublattice) Let Λ, Λ′ ⊂ Rm be lattices. We say that Λ′ is a sublattice
of Λ if Λ′ ⊂ Λ.

In cryptographic applications, we will mostly work with q-ary lattices, meaning that
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b1

b2

c1

c2

Λ

Figure 1.1 – A 2-dimensional lattice Λ with two of its basis: B = (b1, b2) and B′ = (c1, c2).

they have qZm = {qx | x ∈ Zm} as a sublattice. In practice, this enables us to carry
out all of our computations using integers modulo q. For A ∈ Zn×m

q and u ∈ Zn
q , we will

regularly make use of the following m-dimensional q-ary lattices:

Λ⊥q (A) = { x ∈ Zm | Ax = 0 mod q }

and its coset
Λu

q (A) = { x ∈ Zm | Ax = u mod q } .

Definition 3 (Dual of a lattice) Given a lattice Λ ⊂ Rm, the dual lattice of Λ is
the lattice

Λ∗ = {x ∈ Rm | ∀y ∈ Λ, ⟨x, y⟩ ∈ Z}.

Moreover, if B is a basis of the lattice Λ, then B(BT B)−1 is a basis of the dual lattice Λ∗.

Definition 4 (First minimum) Given a lattice Λ ⊂ Rm, the first minimum λ1(Λ)
of the lattice Λ is the length of a shortest non-zero vector in Λ:

λ1(Λ) = min
x∈Λ\{0}

∥x∥2.

We can also define the i-th successive minimum of a lattice (see Figure 1.2), which is
the smallest real r such that the lattice Λ has i linearly independent vectors of norms at
most r.
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Definition 5 (Successive Minimum) Given a lattice Λ ⊂ Rm, the i-th successive
minimum λi(Λ) of the lattice Λ is the following quantity:

λi(Λ) = min{r | dim(span(Λ ∩ Br)) ≥ i}.

λ1

λ2

Λ

Figure 1.2 – The first two successive minima of a 2-dimensional lattice Λ.

The determinant det(Λ) of a lattice Λ, defined below, is independent of the choice of
the basis B, and thus constitutes an invariant of Λ.

Definition 6 (Determinant of a lattice) Let Λ = L(B) ⊂ Rm be a lattice of
rank m. The determinant of Λ is the following quantity:

det(Λ) =
√

det(BBT ).

Minkowski’s theorem allows to bound the value of the first minimum of a lattice given
its determinant:

Theorem 1 (Minkowski’s theorem) Let Λ = L(B) ⊂ Rm be a lattice of rank m.
Then λ1(Λ) ≤

√
m det(Λ)1/m.
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1.2.2 Structured Lattices

In the early days of lattice-based cryptography, the schemes were not practical due to
their inefficiency. Compared to more recent schemes, they required significantly larger sizes
and computational times for equivalent security. To address this problem, cryptosystems
have leveraged structured lattices in order to gain in efficiency. These lattices have an
additional algebraic structure, which allows for a more compact representation in terms
of storage and faster operations. By using structured lattices, lattice-based cryptographic
schemes have become much more practical and efficient.

More precisely, ideal lattices (introduced in [PR06; SST+09; LPR10]) and module
lattices (introduced in in [LS15; HPS98; SS13]) are particular lattices that have a polyno-
mial structure. Briefly, if K is a number field of degree n with R its ring of integers, the
canonical embedding σ defines a field homomorphism σ : K −→ Rn. Then, a R-module
M ⊂ Kd of rank d defines a module lattice σ(M) ⊂ Rdn. Similarly, any ideal I over
R, which is a module of rank 1, defines an ideal lattice σ(I) ⊂ Rn. When construct-
ing cryptographic schemes, we will mostly consider the ones that are based on the rings
R = Z[X]/⟨Xn + 1⟩ and Rq = Zq[X]/⟨Xn + 1⟩, where n is a power of two and q is a
prime. They are sublattices of the full lattice Rm, itself isomorphic to the integer lattice
Znm.

Consequently, when working with structured lattices, using efficient polynomial multi-
plication algorithms such as the Fast Fourier Transform (FFT) allows performing matrix-
matrix multiplication in Õ(m2) (instead of O(m3) with unstructured lattices) and Õ(m)
(instead of O(m2) with unstructured lattices) arithmetic operations.

Therefore, working with lattices that possess a polynomial structure allows to ef-
fectively speed up computations and to reduce storage costs compared to constructions
relying on Euclidean lattices.

1.2.3 Computational Problems

Lattice-based cryptography now constitutes a viable candidate for replacing number
theoretic cryptography in the future. Hardness assumptions on lattices are conjecturally
quantum resistant, whereas the discrete logarithm and factorization problems are known
to be solvable in polynomial time in a quantum setting [Sho94]. Worst-case to average-
case reductions from fundamental lattice problems (relaxations of NP-hard problems) also
provide strong theoretical security guarantees for lattice-based primitives.
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1.2.3.1 Worst-case Problems

We begin by defining some important problems which naturally appear when studying
lattices. Those problems are hard to solve on classical computers, and it remains still
unknown if quantum computers can solve them substantially faster. This is in contrast
to problems such as discrete logarithms and factoring, which can be solved in polynomial
time by quantum computers [Sho94].

Definition 7 (Shortest Vector Problem (SVP)) Let Λ be a lattice. The Shortest
Vector Problem (SVP) asks to find a lattice vector x ∈ Λ such that ∥x∥ = λ1(Λ).

The SVP problem is illustrated in Figure 1.3 for the two-dimensional case.

Λ

b1

b2

Figure 1.3 – A 2-dimensional lattice Λ with basis B = (b1, b2) and a shortest vector.

This problem admits approximate and decisional variants.

Definition 8 (Approximate Shortest Vector Problem (SVPγ)) Let Λ be a
lattice and γ ≥ 1 the approximate factor. The Approximate Shortest Vector Problem
(SVPγ) asks to find a lattice vector x ∈ Λ such that ∥x∥ ≤ γ · λ1(Λ).
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Definition 9 (Decisional Approximate Shortest Vector Problem (GapSVPγ))
Let Λ be a lattice, δ > 0 be a real number and γ ≥ 1 the approximate factor.
The Decisional Approximate Shortest Vector Problem (GapSVPγ) asks to distinguish
between the two following cases:

— λ1(Λ) ≤ δ;

— λ1(Λ) > γ · δ.

In the case where δ < λ1(Λ) ≤ γ · δ, any answer is correct.

1.2.3.2 Average-case Problems

However, problems such as SVP or SVPγ are worst-case problems, meaning they are
hard to solve in the worst-case, and not for any instance of a lattice. Therefore, they
are not particularly well-suited for designing cryptographic protocols. On the contrary,
average-case problems will be preferred when it comes to building cryptographic schemes,
because with such problems, random instances are hard to solve.

Therefore, let’s begin by defining some average-case problems, which naturally appear
when studying cryptographic constructions. The Short Integer Solution (SIS) problem
was introduced in [Ajt96] and the Learning With Error (LWE) problem was introduced
in [Reg05].

Definition 10 (Short Integer Solution (SISn,q,m,β)) Given a uniformly random
matrix A ∈ Zn×m

q , the Short Integer Solution (SISn,q,m,β) problem asks to find a
non-zero vector x ∈ Zm such that Ax = 0 mod q.

Definition 11 (Learning With Error (Decisional-LWEn,q,m,DZ,αq
)) Given a uni-

formly random matrix A ∈ Zn×m
q and a vector bT = sT A + eT where s

$← Zn
q and

e← DZm,αq:

— The Decisional Learning With Error (Decisional-LWEn,q,m,DZ,αq
) problem asks

to distinguish between (A, bT ) and (A, u) where u is uniformly distributed over
Zm

q .

— The Search Learning With Error (LWEn,q,m,DZαq
) problem asks to find s.

SIS and LWE do benefit from worst-case to average-case reductions, and are thus
also believed to be quantum resistant. Those reductions state that if the security of a
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cryptosystem is based on an average-case problem, attacking random instances of this
cryptosystem is at least as hard as solving all instances of the underlying worst-case lattice
problem. Thus, average-case problems such as SIS and LWE are particularly well-suited
for designing cryptographic schemes.

Another standard problem in lattice-based cryptography is the NTRU hardness as-
sumption [HPS98].

Definition 12 (NTRU) Given an integer polynomial ϕ defining the ring R =
Z[X]/(ϕ), a modulus q ∈ Z and a polynomial h = f · g−1 mod q where f, g ∈ R
are polynomials with small coefficients, the NTRU problem asks to recover the pair
(f, g).

We don’t know any worst-case to average-case reduction for the NTRU problem, as
opposed to the SIS and LWE, but the NTRU hardness assumption having been widely
studied since the original article [HPS98], it is now seen as a standard lattice problem.
For particular polynomials ϕ (such as powers-of-two cyclotomic polynomials for example),
the NTRU problem is believed to be hard to solve for a quantum computer.

1.2.3.3 Structured Variants

A cryptographic scheme whose security is based on the hardness of the SIS and LWE
problems defined in Section 1.2.3.2 however presents the drawback of being usually less
efficient in terms of parameter sizes than the classical counterpart of this scheme, whose
hardness is based on the discrete logarithm of factorization problems. Indeed, in such
a scheme, the public key usually includes a matrix A, whose size is quadratic in the
dimension n, with n at least as large as the security parameter of the scheme. The most
used operations in lattice-based cryptosystems being matrix-matrix multiplication, whose
running time is in O(n3) and matrix-vector multiplication, whose running time is in O(n2),
this has a major impact on the efficiency of the cryptosystem.

However, to address this efficiency concern, structured variants of LWE and SIS have
been introduced and widely studied, such as Ring-SIS [PR06], Ring-LWE [SST+09; LPR10]
or Module-SIS and Module-LWE [LS15]. These problems deal with structured lattices (see
Section 1.2.2), such as ideal or module lattices. Ideal lattices are a special subset of lattices
that possess interesting computational properties. Basically, when working with ideal
lattices, we work in a ring of polynomials R, often chosen as R = Z[X]/(Xn + 1) instead
of working over the ring of integers. Therefore, vectors of ideal lattices correspond to
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polynomials and a polynomial, modulo Xn + 1, can be seen as a vector of dimension n.
An ideal lattice is then represented by the skew-circulant matrix of multiplication by a
polynomial a ∈ Z[X]/(Xn + 1). Using efficient polynomial multiplication algorithms such
as the Fast Fourier Transform (FFT) then allows performing matrix-matrix multiplication
in Õ(n2) (instead of O(n3) with unstructured lattices) and Õ(n) (instead of O(n2) with
unstructured lattices) arithmetic operations.

Therefore, as in most practical lattice-based constructions [ADP+16; BFR+18; DKL+18;
FHK+17], we consider rings of the form R = Z[X]/⟨Xn + 1⟩ and Rq = Zq[X]/⟨Xn + 1⟩,
where n is a power of two and q a prime modulus. The polynomial Xn+1 is the cyclotomic
polynomial of order 2n, and R is the corresponding cyclotomic ring.

Let us begin by defining the Ring-SIS and Ring-LWE structured variants of SIS and
LWE.

Definition 13 (Ring-SISn,m,q,β) Given a uniformly random a ∈ Rm
q , find a vector

x ∈ Rm such that aT x = 0 mod q, and 0 < ∥x∥ ≤ β.

Definition 14 (Decision Ring-LWEn,q,σ) Given a uniformly random a ∈ Rm
q

and the vector b = sa + e mod q, where s
$← Rq and e ← DRm,σ, distinguish the

distribution of (a, b) from the uniform distribution over Rm
q ×Rm

q .

The module variants, generalizing Ring-SIS and Ring-LWE, were introduced in [LS15].
The parameter d corresponds to the rank of the module, and nd is the dimension of the
corresponding module lattice.

Definition 15 (Module-SISn,d,m,q,β) Given a uniformly random A ∈ Rd×m
q , find a

vector x ∈ Rm such that Ax = 0 mod q, and 0 < ∥x∥ ≤ β.

Definition 16 (Decision Module-LWEn,d,q,σ) Given a uniform A ∈ Rm×d
q and the

vector b = As+e mod q, where s
$← Rd

q and e← DRm,σ, distinguish the distribution
of (A, b) from the uniform distribution over Rm×d

q ×Rm
q .

If we specialized the previous definitions of the module variants with d = 1, we get
the Ring-LWE and Ring-SIS problems.

We also rely on variants of these problems, which have been proven to be as hard.
The inhomogeneous variant of Module-SIS, called Module-ISIS, consists in finding a small
x such that Ax = u, given the vector u. In the normal form of Module-LWE, the secret
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s follows the same distribution DRm,σ as the error e.

1.2.3.4 Worst-Case to Average-Case Reductions

One of the major points of interest in lattice-based cryptography is the existence of
worst-case to average-case reductions. Indeed, Ajtai showed in [Ajt96] that it is possible
to construct cryptographic schemes whose security is based on the worst-case hardness of
lattice problems. Basically, if the security of a cryptosystem is based on an average-case
problem (such as SIS or LWE), then attacking this cryptosystem will be as hard as solving
all instances of the underlying worst-case lattice problem. That makes intermediate lattice
problems such as SIS and LWE, which benefit from the existence of worst-case to average-
case reductions, particularly well-suited for designing cryptographic schemes. Therefore,
those reductions provide strong security guarantees for lattice-based cryptography.

First, concerning the SIS problem, a wide range of articles have progressively shown
that several standard worst-case problems over Euclidean lattices reduce to the SIS prob-
lem ([Ajt96; MR07; GPV08]). We give a simplified result below.

Theorem 2 For any m = poly(n), β > 0 and q ≥ β · poly(n), solving SISn,q,m,β

with non-negligible probability is as least as hard as solving GapSVPγ on arbitrary
n-dimensional lattices with overwhelming probability for some γ = β · poly(n).

Similarly, such reductions also exist for the LWE problem. Indeed, this problem has
been shown to enjoy both quantum [Reg05] and classical [Pei09; BLP+13] worst-case
to average-case reductions for appropriate parameters. We state the result from [Reg05]
below.

Theorem 3 ([Reg05]) For any m = poly(n), q ≤ 2poly(n) and αq ≥ 2
√

n, solving
LWEn,q,m,DZ,αq

is as least as hard as quantumly solving GapSVPγ on arbitrary n-
dimensional lattices for some γ = Õ(n/α).

While this result only shows that having an efficient algorithm (classical or quantum)
solving LWE implies having an efficient quantum algorithm solving GapSVPγ, a classical
reduction was first given in [Pei09] (but requiring an exponentially large modulus q), and
another classical reduction was shown in [BLP+13], only requiring polynomially large
modulus.

Finally, structured variants of SIS and LWE also enjoy worst-case to average-case reduc-
tions for suitable parameter choices, where the underlying lattice problems are specialized
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to ideal (for ring variants) and module (for module variants) lattices (see [LPR10; LS15]).

1.3 Probabilities

This section introduces different notions and tools of probability theory, through some
definitions and properties, which we will use extensively throughout this thesis.

1.3.1 Basic Definitions

We begin by introducing the statistical distance, a tool which allows to tell how dif-
ferent two distributions are from one another.

Definition 17 Let P and Q be two distributions over a countable domain E. The
statistical distance between P and Q, denoted ∆(P, Q) is defined as:

∆(P, Q) = 1
2
∑
x∈E

|P (x)−Q(x)|.

The statistical distance ∆ is a distance, and it is widely used in cryptography. We
recall some of its basic properties here.

Proposition 1 Let Pi and Qi be some distributions over a countable domain E for
i ∈ {1, 2}. The statistical distance verifies the following properties:

— Sub-additivity: ∆(P0 × P1, Q0 ×Q1) = ∆(P0, Q0) + ∆(P1, Q1).

— Preservation under any transformation: for every function f , it holds that
∆(f(P1), f(Q1)) ≤ ∆(P1, Q1).

— For any measurable event X, we have Q1(X) ≥ P1(X)−∆(P1, Q1).

The last property shows that if a given cryptographic scheme has a distribution P as
input and if we call X the event of an attacker successfully breaking the scheme, then
if ∆(P, Q) is negligible, the scheme will be as hard to break when using distribution Q

instead of P . This will be extensively used later in security proofs of our constructions.

Another distance, called the max-log distance, which also measures the closeness be-
tween two distributions was introduced in [MW17]. This metric is also quite simple to
use and compute, and we will make use of it in Chapter 3 and 4 to get sharper security
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estimates than if we had used the statistical distance. We define the max-log distance in
Definition 18.

Definition 18 Let P and Q be two distributions over a countable domain E. The
max-log distance between P and Q, denoted ∆ML(P, Q) is defined as:

∆ML(P, Q) = max
x∈E
| log P (x)− log Q(x)|.

We can show that the max-log distance is indeed a distance. This metric also verifies
the sub-additivity and the preservation under any transformation properties.

1.3.2 Discrete Gaussians

1.3.2.1 Definitions

The discrete Gaussian distribution of center c ∈ Rn and parameter σ > 0 over a
full-rank lattice Λ ⊂ Zn is denoted DΛ,σ,c. It is the probability distribution over Λ such
that each x ∈ Λ is assigned a probability proportional to ρσ,c(x) = exp(−π∥x−c∥2

σ2 ).
For a positive definite matrix Σ ∈ Rn×n, we also define the (skewed) density ρ√Σ,c(x) =

exp(−π(x − c)T Σ−1(x − c)), and the corresponding discrete Gaussian distribution of
center c and covariance Σ denoted DΛ,

√
Σ,c.

We represent in Figure 1.4 the graph of a continuous and discrete Gaussian in dimen-
sion n = 1.

Figure 1.4 – Continuous and discrete Gaussian distributions in dimension n = 1.
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1.3.2.2 Gaussian Tailcut

We denote by t the tailcut of the discrete Gaussian of parameter σ. It is a posi-
tive number such that samples from DZ,σ land outside of [−tσ, tσ] only with negligible
probability. We choose it using the fact that Prx←DZ,σ

[|x| > tσ] ≤ erfc
(
t/
√

2
)
, where

erfc(x) = 1 − 2
π

∫ x
0 exp−u2 du. This generalizes to higher dimensions using the following

lemma.

Lemma 1 ([MR07, Lemma 4.4]) For any n-dimensional lattice Λ, vector c ∈ Rn,
reals 0 < ε < 1 and σ ≥ ηε(Λ), if x is distributed according to DΛ,σ,c, then we have
Pr [∥x− c∥ > σ

√
n] ≤ 1+ε

1−ε
· 2−n.

1.3.2.3 The Gram-Schmidt Orthogonalization

Having an orthogonal basis is useful to decompose a vector. Therefore, when working
with a basis B, it is often desirable to compute an orthogonal basis B̃ which generates the
same linear subspace. The Gram-Schmidt Orthogonalization (GSO) is an algorithm that
allows to do so. Concerning lattices, if B is the basis of a lattice Λ, B̃ will not necessarily
be a basis of the same lattice Λ. Nonetheless, the Gram-Schmidt of a lattice basis is still
a valuable analysis tool, as we will see multiple times in this manuscript.

We give the definition of the Gram-Schmidt Orthogonalization (GSO) of a matrix in
Definition 19.

Definition 19 (Gram-Schmidt Orthogonalization)
Let B = [b1, . . . , bd] ∈ Rm×d be a matrix composed of d linearly independent
vectors. We call Gram-Schmidt Orthogonalization (GSO) of B the unique matrix
B̃ = [b̃1, . . . , b̃d] ∈ Rm×d verifying:

b̃1 = b1,

b̃i = π{b1,...,bi−1}⊥(bi) for 2 ≤ i ≤ d.

For 1 ≤ i ≤ d, we also write πi the orthogonal projection over {b1, . . . , bi−1}⊥.
Thus, b̃i is the i-th Gram-Schmidt vector of B̃, which is defined as b̃i = πi(bi).
We also denote B[l:r) the projected block [πl(bl), . . . , πl(br−1)] and L[l:r) := L(B[l:r))
the lattice spanned by B[l:r), whose rank is r − l. The b̃i will also be denoted b∗i .

The following Algorithm 1 computes the GSO B̃ of a basis B.
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Algorithm 1 GramSchmidtOrthogonalization(B)
Input: B = {b1, . . . , bn} a basis
Output: B̃ the GSO of B

1: for i = 1, . . . , n do
2: Let b̃i ←− bi

3: for j = 1, . . . , i− 1 do
4: Compute µi,j = ⟨bi,b̃j⟩

∥b̃j∥2

5: Let b̃i ←− b̃i − µi,j b̃j

6: return B̃ = {b̃1, . . . , b̃n}

1.3.2.4 Smoothing Parameter

The smoothing parameter ηε(Λ) of a lattice Λ was introduced in [MR07]. Informally,
this quantity represents the smallest Gaussian parameter σ > 0 such that the discrete
Gaussian distribution DΛ,σ,c "behaves" like a continuous Gaussian.

Definition 20 ([MR07, Definition 3.1]) For a n-dimensional lattice Λ and a real
ϵ > 0, the smoothing parameter ηε(Λ) of Λ is defined as the smallest real s > 0 such
that ρ1/s(Λ∗ \ {0}) ≤ ϵ.

The following lemma allows to find a lower bound of this smoothing parameter.

Lemma 2 ([GPV08, Lemma 3.1]) Let Λ ⊂ Rn be a lattice with basis B, and B̃

the Gram-Schmidt orthogonalization of B. Then, for any ε > 0, we have

ηε(Λ) ≤ ∥B̃∥ ·
√

log(2n(1 + 1/ε))/π.

1.3.2.5 Gaussian Samplers

In this section, we will briefly review some basic Gaussian samplers which aim at
sampling discrete Gaussian distribution over a lattice.

The Klein Sampler. Klein introduced in [Kle00] a Gaussian sampler, whose goal was to
solve a variant of the closest vector problem. This sampler was used in another context in
[GPV08] to construct a signature scheme. This sampling algorithm is a randomized variant
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of Babai nearest-plane algorithm [Bab86], a deterministic algorithm that, given a lattice Λ
and a point c, aims at finding a point x ∈ Λ close to c. The only difference between the two
algorithms comes from the rounding step, which is replaced by a randomized rounding in
the case of the Klein’s algorithm, thus turning the Babai’s solver into a Gaussian sampler.
Klein’s sampler is described in Algorithm 2.

Algorithm 2 KleinSampler(B, c, σ) for sampling x← DL(B),σ,c

1: function KleinSampler(B = {b1, . . . , bn} ∈ Zm×n, c ∈ Rm, σ > 0)
2: cn ← c, xn ← 0
3: for i = n to 1 do
4: di ← ⟨ci,b̃i⟩

∥b̃i∥2 ▷ B̃ = {b̃1, . . . , b̃n} is the GSO of B.
5: σi ← σ

∥b̃i∥
6: zi ← DZ,σi,di

7: ci−1 ← ci − zibi

8: xi−1 ← xi + zibi

9: return v0

We state the correctness of KleinSampler in the following Theorem 4.

Theorem 4 ([DN12a, Theorem 1]) For positive integers m ≥ n, a real ϵ > 0 and
σ ≥ ηϵ(Z) · ∥B̃∥, for any basis B ∈ Zm×n and vector c ∈ Rm, the statistical distance
between the output distribution of KleinSampler(B, c, σ) and the discrete Gaussian
distribution DL(B),σ,c is less than 2−λ.

The Peikert Sampler. Another widely used Gaussian sampler is the Peikert sampler,
introduced in [Pei10]. It is a randomized variant of the round-off algorithm, a deterministic
algorithm which offers an easy way, when given a lattice Λ a point c, to find a close x ∈ Λ
close to c. We describe the Peikert sampler in Algorithm 3.

Algorithm 3 PeikertSampler(B, c, r, Σ) for sampling x← DL(B),
√

Σ,c

1: function PeikertSampler(B ∈ Zn×n, c ∈ Rn, r = ω(
√

log n), Σ > r2BBT .)
2: y ← D1 ·

√
Σ− r2BBT

3: return x← DZn,r,(c−y)B−1B

We state the correctness of this algorithm in the following Theorem 5.
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Theorem 5 ([Pei10, Theorem 3.1]) Let Σ1, Σ2 > 0 with Σ1 = r2BBT (where
r = ω(

√
log n) which define Σ = Σ1 +Σ2 > 0. Ror Λ a lattice such that

√
Σ1 ≥ ηϵ(Λ),

for ϵ < 1
2 and for c ∈ Rn, the statistical distance between the output distribution of

PeikertSampler(B, c, r, Σ) and DΛ,
√

Σ,c is less than 8ϵ.

Both Klein and Peikert samplers present pros and cons. While Klein’s algorithm is
sequential and doesn’t benefit from efficiency improvement when working on structured
lattices, Peikert’s algorithm on the other hand is parallelizable and enjoys some speed-up
when used in ring-based cryptosystems. However, the Peikert sampler generates longer
vectors compared to the Klein sampler.

1.3.3 Leftover Hash Lemma

We give below two particular cases of the Leftover Hash Lemma ([HIL+99]), a stan-
dard result in cryptography that will appear repeatedly as an argument in security proofs.
Indeed, in our cryptographic constructions, this lemma will allow us to argue that the
distribution of our ciphertexts is statistically indistinguishable from the uniform distribu-
tion.

Lemma 3 ([GPV08, Corollary 5.4]) Let q be a prime integer and n, m be positive
integers such that m ≥ 2n log q. Let x← DZm,σ for σ ≥ ω(

√
log m) and A

$← Zn×m
q .

Then, the distribution of u = Ax mod q is statistically close to uniform over Zn
q .

Besides, when given u, the conditional distribution of x is DΛu
q (A),σ.

Lemma 4 ([ABB10a, Lemma 13]) Let q > 2 be a prime integer and n, m, l be in-
tegers such that m ≥ (n+1) log q+ω(log n) and l = poly(n). Let R← U({−1, 1}m×l),
A← U(Zn×m

q ) and B ← U(Zn×l
q ).

Then, for all w ∈ Zm
q , the distribution of (A, AR, RT w) is statistically close to the

distribution of (A, B, RT w).

1.4 Cryptographic Primitives

In this section, we introduce some cryptographic primitives.
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1.4.1 Basic Public-Key Primitives

1.4.1.1 Public-Key Encryption Scheme

Definition. In a public-key encryption scheme, one can use a public key pk to encrypt
a message such that the recipient can decrypt it using its associated private key sk.

We give a more formal definition below.

Definition 21 A public-key encryption scheme for a message space M is a tuple
(KeyGen, Encrypt, Decrypt) of probabilistic polynomial-time algorithms which verify:

KeyGen(1n) −→ (pk, sk): takes as input the security parameter and outputs
the public key pk and the secret key sk.

Encrypt(pk, µ) −→ C: takes as input the public key pk and a message µ ∈ M
and outputs a ciphertext C of the message µ.

Decrypt(sk, C) −→ {µ,⊥}: takes as input the secret key sk, a ciphertext C

and outputs either the message µ or an error ⊥.

Correctness. The correctness of a public-key encryption scheme requires that for all
(pk, sk)←− KeyGen(1n) and µ ∈M,

Decrypt(sk, Encrypt(pk, µ)) = µ

with overwhelming probability.

Security. The most common security required for a public key encryption scheme is
called Ciphertext Indistinguishability under Chosen-Plaintext Attack (IND-CPA), whose
definition is given below.

Definition 22 A public-key encryption scheme Π = (KeyGen, Encrypt, Decrypt) is
said to be IND-CPA secure if, for all PPT adversaries A:

Pr(IND-CPAAΠ(n) = 1) <
1
2 + negl(n),

where IND-CPAAΠ is the security game defined in Figure 1.5.
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IND-CPAAΠ
1 : b

$← {0, 1}
2 : (pk, sk)← KeyGen(1n)
3 : (µ0, µ1)← A(1n, pk)
4 : c← Encrypt(pk, µb)
5 : b′ ← A(1n, pk, c)
6 : return b = b′

Figure 1.5 – The IND-CPA security game

The Dual-Regev Encryption Scheme. We present a public-key encryption scheme,
which was introduced in [GPV08] and is called the Dual-Regev encryption scheme. This
scheme is a variant of the original Regev’s encryption scheme presented in [Reg05], in
which the key generation and encryption algorithms are swapped. It represents an im-
portant tool for the construction of identity-based encryption, as we will see later. Let’s
describe the three PPT algorithms composing this scheme.

• KeyGen(1n) −→ (pk, sk). The secret key sk is a vector x ∈ Zm sampled from a
discrete Gaussian distribution: x← DZm,σ. The public key pk is then composed of
a uniformly random matrix A

$← Zn×m
q and of the vector u = Ax ∈ Zn

q .

• Encrypt(sk, b) −→ C. To encrypt a bit b ∈ {0, 1}, a vector s
$← Zn

q is sampled
uniformly at random, and error vectors e ← DZm,τ and e′ ← DZ,τ are sampled
from discrete Gaussian distributions of standard deviation τ . The ciphertext is then
defined as C = (b, c) ∈ Zm

q × Zq, where:

b = AT s + e ∈ Zm
q ,

c = uT s + e′ + b · ⌊q/2⌋ ∈ Zq.

• Decrypt(sk, C) −→ {b,⊥}. To recover the message b, the recipient computes

res = c− bT x = e′ − eT x + b · ⌊q/2⌋ ∈ Zq.

Then, b = 0 if res is closer to 0 than ⌊q/2⌋, and b = 1 otherwise.

The Dual-Regev encryption scheme is correct when the Euclidean norm of the error
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term of res verifies ∥e′ − eT x∥ ≤ ⌊q/4⌋.
The scheme is also proven to be IND-CPA secure in [GPV08], under the hardness of

LWEn,q,m,DZ,τ
.

1.4.1.2 Public-Key Digital Signature Scheme

Definition. In a public-key digital signature scheme, a signer S with public key pk can
sign a message using its associated private key sk such that any other party who knows
pk (and knows that this public key was established by S) can check if this message has
been sent by S without having been modified.

We give a more formal definition below.

Definition 23 A public-key digital signature scheme for a message space M is a
tuple (KeyGen, Sign, Verify) of probabilistic polynomial-time algorithms which verify:

KeyGen(1n) −→ (pk, sk): takes as input the security parameter and outputs
the public key pk and the secret key sk.

Sign(sk, µ) −→ ν: takes as input the secret key sk and a message µ ∈ M and
outputs a signature ν associated to the message µ.

Verify(pk, µ, ν) −→ {0, 1}: takes as input the public key pk, a message µ and
a signature ν and outputs 1 (accept) if the signature is valid and 0 (reject)
otherwise.

Correctness. The correctness of a public-key digital signature scheme requires that for
all (pk, sk)←− KeyGen(1n) and µ ∈M,

Verify(pk, µ, Sign(sk, µ)) = 1

with overwhelming probability.

Security. The most common security required for a public key digital signature scheme
is called Existential Unforgeability under an Adaptive Chosen-Message Attack (EUF-
CMA). A forgery is a message µ along with a valid signature ν, with µ not having been
previously signed by the signer S. The EUF-CMA security of a signature scheme then
requires that an adversary A is unable to output a forgery even after getting signatures
for numerous other messages of its choice. We give a formal definition below.
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Definition 24 A public-key signature scheme Π = (KeyGen, Sign, Verify) is said to
be EUF-CMA secure if, for all PPT adversaries A:

Pr(EUF-CMAAΠ = 1)(n) < negl(n),

where EUF-CMAAΠ is the security game defined in Figure 1.6.

EUF-CMAAΠ
1 : (pk, sk)← KeyGen(1n)

2 :
(µ, ν)← ASign(sk,·)(1n, pk)
Let Q denote the set of queries that A asked to
the oracle Sign(sk, ·)

3 : return
{

1 if Verify(pk, µ, ν) = 1 and µ /∈ Q
0 otherwise

Figure 1.6 – The EUF-CMA security game

The GPV Signature Scheme. The earliest constructions for proven lattice-based sig-
nature schemes were presented in 2008. In [GPV08], Gentry, Peikert and Vaikuntanathan
proposed a hash-and-sign signature scheme which they proved secure in the Random
Oracle Model (ROM).

The GPV signature scheme [GPV08] was the first of a family of proven trapdoor-based
signature schemes. In this scheme, the public key is a matrix A ∈ Zn×m

q that defines the q-
ary lattice Λ⊥q (A) = { x ∈ Zm | Ax = 0 mod q }. The secret key is defined by a trapdoor
for A, which is a short basis T ∈ Zm×m of the lattice Λ⊥q (A). Then, to sign a message
M ∈ {0, 1}∗, the signer first hashes it to a vector u = H(M) ∈ Zn

q , and then computes a
small preimage of u under the function fA : x 7−→ Ax.

Message M ∈ {0, 1}∗ u = H(M) ∈ Zn
q x small such that Ax = u mod q

hash

Gaussian Preimage
sampling

using T

Figure 1.7 – The [GPV08] signature algorithm.

This operation, known as Gaussian preimage sampling, is made possible by knowledge
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of the trapdoor: using T , one can sample a vector x ∈ Zm following a narrow discrete
Gaussian distribution and which is such that Ax = u mod q. Verification simply consists
in checking that Ax = H(M) mod q and that x is sufficiently short. This scheme admits
strong EU-CMA security in the ROM, under the hardness of the SIS problem.

There are several direct constructions of lattice-based signatures in the standard model
[CHK+10; Boy10; MP12], which are often similar to identity-based encryption schemes
[CHK+10; ABB10b]. In these schemes, a message M is encoded into a lattice Λ⊥q (AM),
where AM is a matrix that depends on the public key and M . Signing M then consists
in sampling Gaussian preimages on Λ⊥q (AM), similarly to [GPV08]. In [Boy10], AM =
[A | A0 +∑i MiAi], where the Mi are the bits of M , and the Ai are part of the public key.
This results in very large public keys. In [BFR+18], AM = A + [0 | H(M)G], where H

is a function with a strong injectivity property and G is the structured gadget matrix
of [MP12]. This yields much lighter public keys, and combines particularly well with
the trapdoors from [MP12]. As far as we know, [BFR+18] provides the previously only
implementation of a lattice-based standard model signature.

1.4.2 More advanced primitives

1.4.2.1 Identity-Based Encryption Scheme

The concept of Identity Based Encryption (IBE) was defined by Shamir in [Sha84]. The
first IBE constructions were based respectively on bilinear maps and on quadratic residue
assumptions. The first supposedly post-quantum IBE scheme was introduced in [GPV08]
and was based on hard lattice problems. It was then followed by many improvements
[CHK+10; ABB10a; DLP14; Yam16]. Note that both [DLP14] and more recently [ZMS+21]
provide an implementation of an IBE scheme based on NTRU lattices.

Definition. Let’s begin by giving a formal definition of an Identity-Based Encryption
scheme.
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Definition 25 An IBE scheme is composed of 4 algorithms:

Setup(1n) −→ (mpk, msk): takes as input the security parameter and outputs
the master public key mpk and the master secret key msk.

Extract(1n, mpk, msk, id) −→ skid: takes as input the security parameter, the
master keys mpk and msk and an identity id ∈ ID and outputs a private key
skid associated to the identity id.

Encrypt(1n, mpk, id, M) −→ C: takes as input the security parameter, the mas-
ter public key mpk, an identity id and a message M and outputs a cyphertext
C.

Decrypt(1n, skid, C) −→ {M, Error}: takes as input the security parameter,
the master public key mpk, a private key skid associated to the identity id and
a cyphertext C and outputs either a message M or the word "Error" if the
cyphertext is invalid.

Correctness. The correctness of an identity-based encryption scheme requires that
for all messages M , all identities id, (mpk, msk) ← Setup(1n) and skid ←
Extract(1n, mpk, msk, id),

Decrypt(1n, skid, Encrypt(1n, mpk, id, M)) = M

with overwhelming probability.

Security. The most common security required for an identity-based encryption scheme
is called Indistinguishability of Ciphertexts under a Selective-Identity Chosen-Plaintext
Attack (IND-sID-CPA). In the selective security model, the adversary A has to choose its
target identity id∗ at the beginning of the game. In the security game, he has access to
a key extraction oracle Extract(1n, mpk, msk, ·) which allows him to get secret keys skid

associated to identities id ̸= id∗. We give a formal definition below.
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Definition 26 An identity-based encryption scheme Π =
(Setup, Extract, Encrypt, Decrypt) is said to be IND-sID-CPA secure if, for all
PPT adversaries A:

Pr(IND-sID-CPAAΠ = 1)(n) <
1
2 + negl(n),

where IND-sID-CPAAΠ is the security game defined in Figure 1.8.

IND-sID-CPAAΠ
1 : id∗ ← A(1n)
2 : (mpk, msk)← Setup(1n)
3 : (µ0, µ1)← AExtract(1n,mpk,msk,·)(1n, pk)

4 : b
$← {0, 1}

5 : C∗ ← Encrypt(1n, mpk, id∗, µb∗)
6 : b← AExtract(1n,mpk,msk,·))(1n, C∗)
7 : return b = b∗

Figure 1.8 – The IND-sID-CPA security game

In the stronger security variant of Indistinguishability of Ciphertexts under an
Adaptive-Identity Chosen-Plaintext Attack (IND-ID-CPA), the adversary has first ac-
cess to the master public key mpk and is allowed to ask queries to the oracle
Extract(1n, mpk, msk, ·) before choosing the target identity id∗.

The GPV Identity-Based Encryption Scheme. In [GPV08], the authors also
present an identity-based encryption scheme, based on their hash-and-sign signature
scheme mentioned above and using the Dual-Regev encryption scheme for the encryp-
tion part of the IBE. In this IBE, the master public key mpk corresponds to the public
key pk of the signature scheme and the master public key msk to the signing key sk.
Then, identities id correspond to messages µ in the signature scheme and a user private
key skid corresponds to a signature ν. Let’s finally describe the resulting IBE.

• Setup(1n) −→ (mpk, msk). The master public key A ∈ Zn×m
q is a uniformly random

matrix and the master secret key TA ∈ Zm×m is a trapdoor associated to A.
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• Extract(1n, A, TA, id) −→ skid. The private secret key skid associated to the identity
id is a short preimage sample x ∈ Zm of H(id) under the function fA : x 7−→ Ax,
computed thanks to TA.

• Encrypt(1n, A, id, M) −→ C. A ciphertext C is computed using
Encrypt((A, H(id)), M) from the Dual-Regev encryption scheme.

• Decrypt(1n, skid, C) −→ {M, Error}. Similarly, Decrypt(skid, C) from the Dual-
Regev encryption scheme is used to recover the message M .

This IBE is proven to be IND-ID-CPA secure in the random oracle model ([GPV08,
Theorem 7.2]).

1.4.2.2 Encoding Messages with Full-Rank Differences

We begin by describing the notion of encoding with Full-Rank Differences (FRD). The
original definition comes from [ABB10b] and Definition 27 extends it by requiring H(m)
to be invertible.

Definition 27 (adapted from [ABB10b]) An encoding with full-rank differences
from the set M to a ring R is a map H :M−→ R such that:

— for any m ∈M, H(m) is invertible,

— for any m1, m2 ∈M such that m1 ̸= m2, H(m1)−H(m2) is invertible,

— H is computable in polynomial time.

Before constructing an FRD encoding in the module setting (that is, taking values
in Rd×d

q ), we first construct one in the ring setting (taking values in Rq). Our construction
is based on the following result from [LS18], which allows us to find invertible elements
in Rq.

Theorem 6 ([LS18, Corollary 1.2]) Let n ≥ r > 1 be powers of 2, and q a prime
such that q ≡ 2r + 1 (mod 4r). Then the cyclotomic polynomial Xn + 1 factors
in Zq[X] as Xn + 1 = ∏r

i=1

(
Xn/r − si

)
, for some distinct si ∈ Z∗q such that the(

Xn/r − si

)
are irreducible in Zq[X]. Moreover, any f ∈ Rq such that 0 < ∥f∥∞ <

q1/r/
√

r or 0 < ∥f∥ < q1/r is invertible.

This result can be used to build two different types of FRD encodings. The first one
is a "low-degree" FRD, described in Proposition 2.
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Proposition 2 Let n ≥ r > 1 be powers of 2, q a prime such that q ≡ 2r + 1
(mod 4r), and M = Zn/r

q \ {0} the set of messages. Then the following map H :
M−→ Rq is an FRD encoding.

H :M−→ Rq

(m0, . . . , mn/r−1) 7−→
n/r−1∑

i=0
miX

i

Proof. According to Theorem 6 on the factorization of Xn +1 and the Chinese remainder
theorem, we have that Rq = Zq [X]

⟨Xn+1⟩ ≃
∏r

i=1
Zq [X]
⟨Xn/r−si⟩ , with the Xn/r−si being irreducible,

meaning that the r rings of the product are actually fields (isomorphic to Fqn/r).
Under the canonical map from the Chine Remainder Theorem (CRT), a nonzero poly-

nomial f of degree less than n/r is sent to (f mod Xn/r − s1, . . . , f mod Xn/r − sr) =
(f, . . . , f). Each coordinate of the image vector is then invertible (since nonzero) in Fn/r

q ,
which makes f itself invertible in Rq. This proves that all the H(m) are invertible.

For distinct m1, m2 ∈M, H(m1)−H(m2) is a nonzero polynomial of degree less than
n/r, so it is invertible in Rq by the previous reasoning. Finally, H is clearly computable
in polynomial time.

But one could also encode messages as polynomials of infinity norm smaller than q1/r

2
√

r

with an injective map and thus obtain this way a "small-norm" FRD, rather than the pre-
vious "low-degree" one. We present such an FRD encoding in the following Proposition 3.

Proposition 3 Let n ≥ r > 1 be powers of 2, q a prime such that q ≡ 2r+1 (mod 4r)
and 1 ≤ D ≤ q1/r

2
√

r
an integer. We define M = {−D, . . . , D}n \ {(0, . . . , 0)} the set of

identities. Then the following map H : M −→ Rq, such that HM(m0, . . . , mn−1) =∑n−1
i=0 miX

i is an FRD encoding.

H :M−→ Rq

(m0, . . . , mn−1) 7−→
n−1∑
i=0

miX
i

Proof. We have ∥HM(m)∥∞ ≤ D < q1/r

2
√

r
for all m because of the choice of M.

So according to Lemma 6, HM(m) is invertible. For all m1, m2 ∈ M, we also have
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∥HM(m1)−HM(m2)∥∞ ≤ 2D < q1/r
√

r
so HM(m1)−HM(m2) is invertible. Finally, HM is

an FRD encoding.

Finally, we can build an FRD encoding in the module setting using an existing FRD
encoding in the ring setting HR :M−→ Rq by constructing:

HM :M−→ Rd×d
q

m 7−→ HR(m) · Id =


HR(m)

. . .
HR(m)

 ,

where Id ∈ Rd×d
q is the identity matrix.

Lemma 5 If HR is an FRD (in the ring setting) from M to Rq, then HM as con-
structed above is an FRD (in the module setting) from M to Rd×d

q .
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Chapter 2

LATTICE TRAPDOORS ON MODULES:

IMPLEMENTATION AND APPLICATIONS

This chapter’s content is mainly based on a joint work [BEP+21] with Pauline
Bert, Gautier Eberhart, Adeline Roux-Langlois, and Mohamed Sabt. The corresponding
implementation is available at https://github.com/lucasprabel/module_gaussian_
lattice.
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2.1 Introduction

2.1.1 Presentation

As explained in Section 1.2.3.3, ideal lattices [PR06; SST+09; LPR10], usually based
on rings of the form Rq = Zq[X]/⟨Xn + 1⟩, are often the first choice for efficient lattice-
based constructions, preferred to unstructured lattices. On the other hand, module lattices
[LS15], based on modules of the form Rd

q , lie somewhere between ideal lattices and un-
structured ones. Constructions in the module setting are (almost) as efficient as ring-based
ones, and have other advantages for practical schemes.

Typically, module schemes fix a modulus q and a degree n for all parameter sets, and
the security parameter is the rank d of the module. This leads to a more flexible choice
of parameters, and potentially easier optimization (since one only has to optimize arith-
metic in the base ringRq to obtain a faster arithmetic for all parameter sets). Additionally,
fundamental problems on module lattices might not suffer from the same structural weak-
nesses as on ideal lattices (see [PHS19]). As an example of the interest of module lattices,
several NIST candidates of the 3rd round of the post-quantum cryptography standardiza-
tion process relied on them [DKL+18; DKR+18], and a recent result [CPS+19] proposed
a module variant of the Falcon signature scheme [FHK+17].

Thus, module lattices seem to constitute an interesting subject to meet the needs of
efficiency and parameters’ flexibility of recent constructions. Therefore, developing tools
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to build efficient lattice-based schemes constitutes an important objective.
In this perspective, this chapter presents the development and the implementations

of efficient Gaussian preimage sampling techniques on module lattices, which rely on the
works of Micciancio and Peikert in 2012 [MP12], and Micciancio and Genise in 2018
[GM18]. Our implementation has a major benefit in terms of modularity, which makes it
practical to use for signature schemes, but also for more advanced constructions that rely
on trapdoors such as identity-based encryption. Specifically, it is easy to use in the ring
or module setting, and easy to modify the arithmetic on Rq (as different schemes have
different conditions on q).

Relying on these tools, we also present two instantiations and implementations of
proven trapdoor-based signature schemes in the module setting: GPV in the random oracle
model and a variant of it in the standard model presented in [BFR+18]. Concerning
this last scheme, we address a security issue and correct obsolescence problems in the
implementation of [BFR+18] by building ours from scratch. To the best of our knowledge,
this is the first efficient implementation of a lattice-based signature scheme in the standard
model. Relying on that last signature, we also present the implementation of a standard
model IBE in the module setting. We show that while the resulting schemes may not
be competitive with the most efficient NIST candidates, they are practical and run on a
standard laptop in acceptable time, which paves the way for practical advanced trapdoor-
based constructions.

2.1.2 Contributions: A Technical Overview

Our main contribution is the development and the implementation of efficient Gaussian
preimage sampling techniques on module lattices together with an implementation that
offers the advantages of being constant-time and modular, thereby making it practical
for both signature schemes and more complex constructions that make use of trapdoors.
Our resulting C implementation is public and open-source, available at https://github.
com/lucasprabel/module_gaussian_lattice.

2.1.2.1 Preimage Sampling

Gaussian preimage sampling is a crucial operation in trapdoor-based schemes, but no
method adapted to module lattices existed previously. We develop efficient algorithms for
trapdoor generation and Gaussian preimage sampling in the module setting, by general-
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izing existing tools in the unstructured and ring settings [MP12; GM18]. This adaptation
has to be done carefully to correctly work over modules. In particular, the perturbation
sampling step does not directly adapt, and we resort to our own algorithm, using some
subroutines from [GM18]. We also provide a detailed description of those algorithms and
of the conditions needed to choose their parameters. Our contributions can serve as an im-
portant building block for advanced trapdoor-based constructions, such as identity-based
encryption, attribute-based encryption, or group signature.

Our implementation requires no external dependencies, and is easily customizable as
needed. Its modularity is a key feature, achieved through the use of several interchange-
able basic building blocks as illustrated in Figure 2.1: the arithmetic over Zq and Rq,
a pseudorandom number generator, and a (constant-time) sampler of discrete Gaussian
distributions over Z. Additionally, our two signature schemes require different structures
for the ring Rq, making use of distinct arithmetic operations. These modifications are
easily achieved given the modularity of our implementation.

Zq

arithmetic
Rq

arithmetic
arithmetic.c

PRNG
DZ

sampler

random.c

TrapGen

SamplePre

sampling.c

Figure 2.1 – Basic structure of our implementation and relationships between the blocks.

Table 2.1 – Overview of the performances of our trapdoor tools and cost of sampling
scalar Gaussians for degree n = 256 and rank d = 4.

Phase TrapGen SamplePre
Perturb. sampling G-sampling Global

Running time 36.56 ms 5.48 ms 8.28 ms 14.87 ms
Sampling DZ 74% 60% 84% 70%

In Table 2.1 we give an overview of the running times of our trapdoor algorithms on an
Intel i7-8650U CPU running at 1.90 GHz. More specifically, we emphasize the proportion
of time taken to sample Gaussians over Z and observe that having a fast and effective
sampler is crucial, as it constitutes the largest part of the computational costs.
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2.1.2.2 Applications

As an application, we propose an implementation of two trapdoor-based signature
schemes and of an identity-based encryption scheme. The GPV signature is the simplest
trapdoor-based scheme one can think of, since key generation is exactly the trapdoor
generation algorithm, and signing essentially consists in Gaussian preimage sampling.
As such, it makes for a natural way of evaluating trapdoor tools and techniques. Our
second signature scheme, proven secure in the standard model, is a variation on GPV,
and has been constructed by adapting the scheme from [BFR+18] to the module setting.
The original construction was using an encoding function that should satisfy a strong
injectivity property but it was not the case in practice. To avoid this issue, we propose a
construction for this encoding using a result of [LS18], which allows us to find invertible
elements in Rq, and which needs a specific q as a consequence. Relying on this signature
scheme, we also implement the standard model IBE scheme from [BFR+18], which was
inspired by the IBE [ABB10a], in the module setting.

Our GPV implementation relies on our trapdoor tools, as well as a Number Theoretic
Transform for fast multiplication in Rq, adapted from CRYSTALS-Kyber [DKL+18]. In
our standard model schemes, the particular structure of the ring, due to the particular
choice of q, is incompatible with the NTT. As such, the main difference with GPV in
terms of implementation is the use of a partial NTT inspired by [LS18], instead of a full
one. An example of the performances of our signatures is given in Table 2.2. For this set
of parameters, the public key has size 508kB, the private key 5.06MB and the signature
131kB.

Table 2.2 – Performances of our signatures implementation and comparison with previous
GPV implementation (96-bit security parameter sets, lattice dimension 1024, modulus
q ≈ 230).

Scheme KeyGen Sign Verify
GPV ([GPR+19]) 5.86 ms 32.42 ms 0.28 ms
GPV (this work) 8.94 ms 13.08 ms 0.29 ms
BFRS (this work) 9.46 ms 15.66 ms 1.19 ms

2.1.2.3 Comparison with Previous Works

From a theoretical point of view, the adaptation of the algorithms from [MP12; GM18]
to the module setting is quite direct but has to be done carefully, in particular concerning

75



Chapter 2 – Lattice Trapdoors on Modules: Implementation and Applications

the perturbation sampling algorithm which is an important step in those algorithms. This
algorithm over rings is iteratively sampling vectors with a covariance matrix of dimension
2×2 over R, whereas in our case, the matrix has size 2d×2d, where d is the module rank.
As a consequence, we have to decompose the covariance matrix into blocks of different
sizes at each iteration instead of simply updating ring elements.

We chose to only compare our GPV implementation with the recent work of Gür et
al. [GPR+19], as it already outperforms previous implementations of Gaussian preimage
sampling [BB13; GPR+18]

We provide a new encoding function for the signature and the IBE schemes (pre-
sented in 1.4.2.2), which allows correcting a security issue in the corresponding schemes
in [BFR+18]. Our implementation does not rely on the [BFR+18] one and does not
use the NFLlib library. We do not compare the original implementation of the BFRS
scheme [BFR+18] with our corrected version, as the former’s limited security would make
the comparison irrelevant.

We also present a public and open-source implementation of a standard model IBE
scheme in the module setting, relying on our standard model signature scheme.

2.2 Gaussian Preimage Sampling on Module Lattices

Our implementation builds upon the notion of trapdoors introduced in [MP12], which
is a crucial ingredient for efficient trapdoor-based schemes such as the two signatures and
the IBE we implemented. Compared to the short bases of [GPV08], these trapdoors are
more compact and enjoy faster algorithms, both asymptotically and in practice. They
were later generalized to ideal lattices in [LCC14], and an efficient instantiation of the
associated algorithms was given in [GM18]. However, to the best of our knowledge, neither
the trapdoors nor their algorithms had been adapted to the module setting until our work.

In this section, we generalize in detail these constructions to module lattices, following
the ideas from [MP12], by accomplishing two goals:

— We derive an algorithm TrapGen from [MP12, Section 5.2]. It generates a uniform
matrix A ∈ Rd×m

q along with its trapdoor T ∈ R2d×dk, where k = ⌈logb q⌉ and
m = d(k+2). The trapdoor T is sampled from a Gaussian distribution of parameter
σ. The matrix A defines hard module SIS and ISIS problems.

— We give an algorithm SamplePre, that uses T ∈ R2d×dk to perform efficient Gaussian
preimage sampling with parameter ζ, effectively solving the module SIS and ISIS
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problems.

Gaussian preimage sampling consists in sampling from a spherical discrete Gaussian
distribution on cosets of the lattice Λ⊥q (A) (that is, the sets Λu

q (A) for u ∈ Rd) using T .
The standard deviation ζ of this distribution should be small (so that it is hard to sample
from it without knowing T ), and the produced vectors should not leak any information
about T . To this end, we follow the method introduced in [MP12] where sampling from
DΛu

q (A),ζ is divided into two complementary phases:

— G-sampling of parameter α, which ensures that our samples actually lie in the good
coset.

— Perturbation sampling with parameters ζ and α, which conceals the information
about T in the output distribution.

2.2.1 Module G-Lattice

We recall that we work with the rings R = Z[X]/⟨Xn + 1⟩ and Rq = Zq[X]/⟨Xn + 1⟩,
where n is a power of two and q a prime modulus.

We first define a specific lattice named the module G-lattice, where the Module-SIS
problem is easy. Then, we describe how we can generate simultaneously a random-looking
lattice and its trapdoor, which is a way of mapping the module G-lattice to it. Finally,
we show how to use this trapdoor to solve Module-SIS on the random lattice.

In the case of ideal lattices, the construction starts with the ring gadget vector

gT =
[
1 b b2 · · · bk−1

]
∈ R1×k

q , where k = ⌈logb q⌉,

whose entries are constant power-of-b polynomials, and the ring G-lattice Λ⊥q (gT ) ⊂
Rk. Typically, we take b = 2 (which allows us to use efficient bitwise operations in our
implementation) but choosing larger values for b is possible in our implementation and
could bring some interesting trade-offs in terms of efficiency. In the module setting, we
use these to create the matrix

G = Id ⊗ gT =


gT

gT

. . .
gT

 ∈ R
d×dk,
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and the associated module G-lattice Λ⊥q (G) ⊂ Rdk, which is isomorphic to d copies of
Λ⊥q (gT ). Having introduced the G-lattice, we can now define trapdoors.

Definition 28 A trapdoor for a matrix A ∈ Rd×m
q is a matrix T ∈ R(m−dk)×dk such

that

A

 T

Idk

 = HG

for some invertible H ∈ Rd×d
q , called the tag of A.

We now describe the algorithm TrapGen, which outputs a matrix A along with its asso-
ciated trapdoor T , given a tag H . So that A’s uniformity is guaranteed by a Module-LWE
instance, we instantiate TrapGen with m = d(k + 2).

Algorithm 4 TrapGen(H , σ) for the generation of a matrix A and its trapdoor T

1: function TrapGen(H ∈ Rd×d
q , σ > 0)

2: Â←U(Rd×d
q ) ▷ Â ∈ Rd×d

q

3: A′ ← [ Id Â ] ▷ A′ ∈ Rd×2d
q

4: T ←DR2d×dk,σ ▷ T ∈ R2d×dk

5: A← [ A′ HG−A′T ] ▷ A ∈ Rd×m

6: return (A, T )

We state the correctness of the trapdoor generation algorithm in the following
Lemma 6.

Lemma 6 Let q, d be positive integers, k = ⌈logb q⌉, m = d(k + 2), H ∈ Rd×d
q ,

σ > 0, and (A, T )← TrapGen(H , σ). Then, the following points hold:

— T is a trapdoor for A with tag H;

— A is computationally indistinguishable from uniform (excluding the identity
submatrix in the first d columns) based on the hardness of the decision version
of Module-LWEn,d,q,σ.

Proof. Following the structure of the matrix A returned by the algorithm TrapGen, the

equality A

 T

Idk

 = HG is verified and thus T is a trapdoor for A.
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Moreover, writing T =
T1

T2

 we have A′T = T1 + ÂT2. Therefore, [ A′ −A′T ]

is an instance (ignoring the identity submatrix in the first d columns) of the decision
version of Module-LWEn,d,q,σ in its normal form (the secret and the error following the
same distribution).

These trapdoors are useful as they allow one to compute small vectors on any coset of
a random lattice if they can do so on the G-lattice. Indeed, a small vector on the G-lattice
can be mapped to a small vector on the random lattice using its trapdoor.

Now that we know how to generate trapdoors, we need to understand how to use
them to perform Gaussian preimage sampling. Gaussian preimage sampling consists in
sampling from a spherical discrete Gaussian distribution on cosets of the lattice Λ⊥q (A)
(that is, the sets Λu

q (A) for u ∈ Rd) using the trapdoor T . The standard deviation ζ

of this distribution should be as small as possible (so that it is hard to sample from it
without the knowledge of T ), and the produced vectors should not leak any information
about T . To this end, we follow the method introduced in [MP12] where sampling from
DΛu

q (A),ζ is divided into two complementary phases: the G-sampling, which ensures that
our samples actually lie in the good coset, and the perturbation sampling, which conceals
the information about T in the output distribution.

2.2.2 G-Sampling

We now describe one of the two main steps of the Gaussian preimage sampling. Given
a target vector v ∈ Rd, the goal of G-sampling is to compute a vector z following a
discrete Gaussian of parameter α over the coset Λv

q (G) of the module G-lattice defined
by G ∈ Rd×dk.

2.2.2.1 How to Perform G-Sampling

We make use of an efficient algorithm [GM18, Section 3] designed for G-sampling in
the unstructured setting, running in O(k) time. It samples on cosets of the scalar G-lattice
Λ⊥q (gT

s ) ⊂ Zk, defined by the scalar gadget vector gT
s =

[
1 b b2 · · · bk−1

]
∈ Z1×k

q used
in the construction of trapdoors on unstructured lattices. While we do not go into detail
about the algorithm, and treat it as a black box, we need to take into account the following
constraint for its instantiation. According to [GM18, Corollary 3.1 and Proposition 3.1],
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we need to take α ≥
√

2b · (2b + 1) ·
√

log(2k(1 + 1/ε))/π and α ≥ (b + 1)ηε(Z) for the
algorithm to be correct.

To sample a vector zr ∈ Rk from a coset of the ring G-lattice, one can do the following:
independently sample n column vectors from the scalar G-lattice, arrange them into an
k × n matrix, and form each of the k entries of zr by reading the rows in order. In turn,
module G-sampling consists of d independent operations of ring G-sampling. In summary,
we make nd calls to the scalar G-sampling algorithm, leading to a procedure for module
G-sampling running in optimal O(ndk) time.

2.2.2.2 What to Do with G-Samples

Now that we are able to sample such vectors, let us explain how to use them, along with
the trapdoor T , to compute a Gaussian vector x ∈ Λu

q (A) for a given u ∈ Rd. Letting
v = H−1u, we sample z←DΛv

q (G),α, and output x =
[

T
I

]
z. One can check that such an

x then lies in the desired coset. Nevertheless, its distribution is degenerate (the support is
not full-rank) and skewed (the covariance matrix is α2

[
T
I

]
[ T T I ]), which leaks information

about the trapdoor. To solve this problem, we make use of perturbation vectors, as first
described in [Pei10].

2.2.3 Perturbation Sampling

Perturbation sampling aims at sampling vectors following the Gaussian distribution
over Rm of covariance Σp = ζ2I − α2

[
T
I

]
[ T T I ]. In a way, this covariance matrix is

complementary to the one of
[

T
I

]
z, where z is the output of the G-sampling. This is so that

when we sum the perturbation p and
[

T
I

]
z, the final covariance matrix Σp+α2

[
T
I

]
[ T T I ] =

ζ2I does not leak any information about the trapdoor T .

2.2.3.1 Schur Complements

Internally, perturbation sampling takes place in the ring P = R[X]/⟨Xn + 1⟩ rather
than the usual ring R. As in most discrete Gaussian sampling algorithms, computations
are done with real numbers even if the final result is composed of integers only. Since
R can naturally be embedded in P , we can consider T and covariance matrices to have
entries in P .

We denote by ϕ the ring homomorphism from P = R[X]/⟨Xn + 1⟩ to Rn×n that maps
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a polynomial a = ∑n−1
i=0 aiX

i to the matrix

ϕ(a) =



a0 −an−1 · · · −a1

a1 a0
...

... . . . −an−1

an−1 · · · a1 a0

 ,

which represents multiplication by a in P when polynomials are represented as vectors over
R. This definition is naturally extended to matrices over P by component-wise application.

Sampling a vector of m polynomials with covariance Σ ∈ Pm×m is then equivalent to
sampling a vector of nm scalars with covariance ϕ(Σ) ∈ Rnm×nm. While our algorithm
is described in terms of matrices over P , it is easier to understand it when viewing the
covariance matrix as a real matrix.

As a reminder, for a symmetric matrix M =
[

A B
BT D

]
over R where the lower-right block

D is invertible, the Schur complement of D is defined as M/D := A−BD−1BT . Then,
M is positive definite if and only if both D and M/D are positive definite themselves.
If we write out the blocks of a structured scalar covariance matrix

ϕ(Σ) =
 ϕ(A) ϕ(B)
ϕ(B)T ϕ(D)

 ∈ Rnm×nm,

then we can consider ϕ(Σ)/ϕ(D) = ϕ(A)−ϕ(B)ϕ(D−1)ϕ(B)T . For a similar definition to
make sense in terms of matrices over P (that is, we want to define the Schur complement
Σ/D = A−BD−1BT ), we first need to construct a matrix BT such that ϕ(BT ) = ϕ(B)T .

Since our perturbation sampling algorithm deals with Schur complements, and that
computing a Schur complement in a symmetric matrix involves matrix transposition, we
need to take a closer look at transposing structured matrices. More precisely, let ϕ(B)
be a structured matrix over R. Because of its structure, it can be described by some
polynomials bij ∈ P . We want to find out the polynomials with which ϕ(B)T can be
described.

For any polynomial a = ∑n−1
i=0 aiX

i ∈ P , we define its transpose to be aT = a0 −∑n−1
i=1 an−iX

i ∈ P . It is the polynomial such that ϕ(aT ) = ϕ(a)T . The transpose of a
matrix B over P is the matrix BT such that BT [i, j] = B[j, i]T . We then have that
ϕ(BT ) = ϕ(B)T , which is what we needed to be able to define Schur complements of
matrices over P . For a real η ≥ 0, we will write Σ ⪰ η instead of ϕ(Σ) ⪰ η for ease of
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notation.

2.2.3.2 An Efficient Algorithm for Sampling Perturbations

Genise and Micciancio [GM18] made the sampling perturbations operation efficient in
the ring setting. In particular, they describe an algorithm SampleFz which takes as input
a covariance polynomial f and a center c, and returns a sample from the correspond-
ing Gaussian distribution over R. While their method cannot be applied directly to the
module setting, we use the same general ideas, some of their lemmas, and SampleFz to de-
rive an algorithm that samples perturbation vectors in the module setting. Their method
cannot be applied directly to the module setting because of the additional rank module
parameter d. Instead of having to sample vectors with a covariance matrix of dimension
2 × 2 over R and with a center (c0, c1) ∈ R2 as in [GM18], we have to work with a co-
variance matrix Σ ∈ P2d×2d and a center c ∈ P2d. However, by using [GM18, Lemma 4.3]
and the SampleFz algorithm, we wisely decompose the covariance matrices into blocks of
different sizes at each iteration and update our center, allowing us to iteratively sample
the perturbations pi ∈ R.

We now give a description of the algorithm SamplePerturb which, given the trapdoor
T and the Gaussian parameters ζ and α, returns a vector p sampled from the centered
discrete Gaussian over Rm of covariance Σp = ζ2I − α2

[
T
I

]
[ T T I ]. This algorithm does

not explicitly use Σp ∈ Pm×m, but only a much smaller matrix Σ ∈ P2d×2d, which can be
computed in advance. It uses the algorithm SampleFz [GM18, Section 4] to sample from
discrete Gaussians over R.

Note that in lines 6 and 7 of Algorithm 5, no computation is actually performed: dif-
ferent parts of the variables Σ and c are just given names, for a clearer understanding.

Algorithm 5 has a complexity of Θ(d2n log n) scalar operations, if we ignore the updates
to Σ (which only depend on T and can actually be precomputed in Θ(d3n log n) in the
trapdoor generation). This stems from the fact that multiplication in P and SampleFz
both take Θ(n log n) time.

2.2.3.3 Correctness

The correctness of SamplePerturb relies on the two following lemmas. The first one is
a convolution lemma, which justifies that the output distribution is correct.
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Algorithm 5 SamplePerturb(T , ζ, α) for sampling a perturbation vector
1: function SamplePerturb(T ∈ P2d×dk, ζ > 0, α > 0)
2: ps ← DRdk,ζ2−α2 ▷ ps ∈ Rdk

3: c← − α2

ζ2−α2 T ps ▷ c ∈ P2d

4: Σ← ζ2I − (α−2 − ζ−2)−1T T T ▷ Σ ∈ P2d×2d

5: for i = 2d− 1 . . . 0 do

6: Σ =
 A B

BT f

 ▷ A ∈ P i×i, B ∈ P i×1, f ∈ P

7: c = (c′, ci) ▷ c′ ∈ P i, ci ∈ P
8: pi ← DR,

√
f,ci

▷ pi ∈ R
9: c← c′ + f−1B(pi − ci) ▷ c ∈ P i

10: Σ← A− f−1BBT ▷ Σ ∈ P i×i

11: p← (p0, . . . , p2d−1, ps) ▷ p ∈ Rm

12: return p

Lemma 7 ([GM18, Lemma 4.3]) For any real 0 < ε ≤ 1/2, positive integers r and
s, vector c = (c0, c1) ∈ Rr+s, positive definite Σ =

[
A B

BT D

]
∈ R(r+s)×(r+s) composed

of blocks A ∈ Rr×r, B ∈ Rr×s, D ∈ Rs×s, we define the following random process:

— x1←DZs,
√

D,c1
;

— x0←DZr,
√

Σ/D,c0+BD−1(x1−c1).

If Σ ⪰ η2
ε(Zr+s), then this process outputs a vector x = (x0, x1) ∈ Zr+s whose

distribution is statistically indistinguishable from DZr+s,
√

Σ,c.

The second one ensures that all covariance matrices manipulated during our algorithm
are "positive definite enough" so that we can rigorously apply Lemma 7 at each step of
the algorithm.

Lemma 8 ([GM18, Lemma 4.2]) Let ε > 0, r and s be positive integers, and
Σ =

[
A B

BT D

]
∈ R(r+s)×(r+s) be a positive definite matrix made out of blocks A ∈ Rr×r,

B ∈ Rr×s, D ∈ Rs×s.
If Σ ⪰ η2

ε(Zr+s), then D ⪰ η2
ε(Zs) and Σ/D ⪰ η2

ε(Zr).

The correctness of SamplePerturb is then stated in the following Theorem.
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Theorem 7 Let T ∈ P2d×dk, ζ, α > 0, and Σp = ζ2I −α2
[

T
I

]
[ T T I ] ∈ Pm×m be the

derived perturbation covariance matrix.
If Σp ⪰ η2

ε(Znm), then SamplePerturb(T , ζ, α) returns a vector p ∈ Rm whose dis-
tribution is statistically indistinguishable from DRm,

√
Σp

.

Proof. From a high-level point of view, our algorithm works in the following way, sampling
a vector p ∈ Rm from right to left. First, it samples the last dk entries of p from a centered
spherical discrete Gaussian. Then, it samples the remaining 2d polynomials one by one,
from p2d−1 down to p0, each time updating the covariance matrix and the center before
sampling the next one. The sampling of a single polynomial with given covariance and
center is done using the algorithm SampleFz from [GM18]. First, let us observe that Σp

has a particular structure. Indeed,

Σp = ζ2I − α2

T

I

 [T T I
]

=

 A −α2T

−α2T T (ζ2 − α2)I

 ,

where A = ζ2I − α2T T T ∈ P2d×2d. This allows us to use Lemma 7 to first sample a
centered vector ps ∈ Rdk with covariance (ζ2− α2)I (which is easy since the distribution
is spherical), and then sample a vector with covariance Σp/(ζ2 − α2)I and center c =
− α2

ζ2−α2 T ps.

However, ζ2I − (α−2− ζ−2)−1T T T is precisely the Schur complement of (ζ2−α2)I in
Σp. The goal of what comes after sampling ps is sampling a vector (p0, . . . , p2d−1) ∈ R2d

with this covariance and an updated center c.

To this end, we make use of Lemma 7 iteratively during the loop. More precisely, at
each iteration of the loop, we sample the rightmost remaining entry of p using SampleFz.
This entry’s covariance is the lower-right entry of Σ, and its center is the last entry of c.
We then update both Σ and c according to Lemma 7, and proceed with the sampling of
the other entries in the same way, until we have sampled all of p.

The only missing argument is that we can actually apply Lemma 7 at each step of
the algorithm. Lemma 8 takes care of that, assuring that at each iteration of the loop we
have Σ ⪰ η2

ε(Zi+1).
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2.2.3.4 Gaussian Parameters for Perturbation Sampling

As seen in Theorem 7, we need to have Σp ⪰ η2
ε(Znm) for SamplePerturb to be correct.

Let us show how this leads to a lower bound on ζ.

Lemma 9 Let T ∈ P2d×dk, ζ, α > 0, and Σp = ζ2I − α2
[

T
I

]
[ T T I ]. For any

positive real 0 < ε ≤ 1/2, if ζ is such that ζ >
√

(α2 + 1)s2
1(T ) + η2

ε(Znm) and
ζ >

√
α2 + η2

ε(Znm), then we have Σp ≻ η2
ε(Znm).

Proof. For the sake of simplicity, we will write η = ηε(Znm). We want the matrix Σp−η2I

to be positive definite. Since

Σp − η2I =

 M −α2T

−α2T T (ζ2 − α2 − η2)I

 ,

where M = (ζ2−η2)I−α2T T T ∈ R2d×2d, this condition is equivalent to having both the
block (ζ2 − α2 − η2)I and its Schur complement be positive definite. The former trivially
is if ζ2−α2−η2 > 0; for the latter we need to take a closer look at the Schur complement
in question.

This Schur complement is equal to (ζ2−η2)I−α2 ζ2−η2

ζ2−α2−η2 T T T . It is positive definite if
and only if I− α2

ζ2−α2−η2 T T T is. A sufficient condition for that is having α2

ζ2−α2−η2 s2
1(T ) < 1,

which in turn yields ζ2 > (α2 + 1)s2
1(T ) + η2.

To instantiate concretely SamplePerturb, we then need to determine an upper bound
on s1(T ), knowing that T follows a Gaussian distribution over P2d×dk of parameter σ. If
T was a 2nd×ndk unstructured matrix over R, one could apply Lemma 2.9 of [MP12], it
would state that s1(T ) < Cσ(

√
2nd +

√
ndk + c) for a certain universal constant C > 0,

except with probability at most 2 exp(−πc2). While in the case where T is structured,
there is no similar result that we know of, we can assume that such a property still holds
in our case, which we confirmed empirically.

We choose c = 4.7 to ensure that the probability 2 exp(−πc2) is less than 2−100.
During our experiments, we found the constant C to be less than 1.1. We generated
matrices T with the same structure and size as the ones used in our signature schemes
(see Table 2.5 for concrete values for n, k, d and σ), computed their exact spectral norm
and their expected spectral norm, and deduced the constant C.
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2.2.4 Sampling Gaussian Preimages

Once we are able to perform both G-sampling and perturbation sampling, we combine
these two operations to sample from the spherical Gaussian of parameter ζ on a coset
Λu

q (A). The method is adapted from [MP12] to the module setting, yielding Algorithm 6
called SamplePre.

We remind the following conditions on α and ζ for the correctness of the algorithm:

— α ≥
√

2b · (2b + 1) ·
√

log(2k(1 + 1/ε))/π,

— ζ >
√

(α2 + 1)s2
1(T ) + η2

ε(Znm),
knowing that s1(T ) < 1.1σ(

√
2nd +

√
ndk + 4.7) with high probability.

Under those conditions, the preimage sampling algorithm, described in Algorithm 6
below, is correct.

Algorithm 6 SamplePre(A, T , H , u, ζ, α) for sampling from a discrete Gaussian of pa-
rameter ζ over Λu

q (A)

1: function SamplePre(A ∈ Rd×m
q , T ∈ R2d×dk, H ∈ Rd×d

q , u ∈ Rd
q , ζ > 0, α > 0)

2: p← SamplePerturb(T ) ▷ p ∈ Rm

3: v ←H−1(u−Ap) ▷ v ∈ Rd
q

4: z ← DΛv
q (G),α ▷ z ∈ Rdk

5: x← p +
[

T
I

]
z ▷ x ∈ Rm

6: return x

Theorem 8 Let T ∈ R2d×dk be a trapdoor for the matrix A ∈ Rd×m
q with tag

H ∈ Rd×d
q , u ∈ Rd

q be a target vector, and ζ and α be Gaussian parameters with
the above constraints. Then, SamplePre(A, T , H , u, ζ, α) outputs a vector whose
distribution is statistically close to DΛu

q (A),ζ .

2.2.5 Implementation and Performance

2.2.5.1 Implementation Choices

To generate our specific discrete Gaussian distributions, we make use of the follow-
ing building blocks: the AES-based pseudorandom number generator from [MN17] (im-
plemented using AES-NI instructions for x86 architectures), and a sampler of discrete
Gaussians over Z similar to Karney’s sampler [Kar16]. We chose this sampler as it can
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generate samples in constant time, independently of the center, Gaussian parameter, and
output value. All of the computations that deal with non-integers are carried out with
floating-point operations that do not involve subnormal numbers.

To obtain an efficient arithmetic in P = R[X]/⟨Xn + 1⟩ we used the Chinese Remain-
der Transform (CRT, as defined in [LPR13]), as in several other works [DP16; GM18;
GPR+18]. It is a kind of fast Fourier transform that evaluates a polynomial f ∈ P
at the complex primitive 2nth roots of unity, the n points of the form ωi = e

kiπ
n for

i ∈ {1, 3, . . . , 2n− 1}, in time Θ(n log n). As explained in [GM18, Section 4.1], this CRT
transform combines especially well with the algorithm SampleFz whose recursive structure
is similar to that of an FFT.

Also, the matrix Σ is not actually updated during a run of SamplePerturb. Instead,
we precompute (during the trapdoor generation) all of the 2d values that it would take
during the execution of the algorithm, and store them in a single 2d×2d triangular matrix
by "stacking" them. This is possible because at each iteration of the loop, Σ is an i × i

matrix of which we only use the last line and column. This comes with an additional
storage cost of d(2d + 1) elements from P in the secret key, and Table 2.3 quantifies the
time gains in practice.

Our implementation is constant-time, assuming the compiler produces constant-time
code for reduction modulo q and basic operations such as integer division and multipli-
cation. Indeed, our algorithms do not require branching or memory access that depend
on secret values. In particular, our sampler of discrete Gaussians over Z’s running time is
independent of both the input parameters and the output value.

2.2.5.2 Timings

We now present running times for our trapdoor generation and preimage sampling
algorithms, and the cost of their different components. Our experimentations were carried
out with n = 256, k = ⌈logb q⌉ = 30, and values of d up to 10. We ran them on an Intel
i7-8650U CPU running at 1.90 GHz.

In Table 2.3, we see how the trapdoor generation is divided into three main opera-
tions: sampling from DZ,σ for the construction of T , the precomputations concerning the
covariance matrices, and arithmetic, which is mainly computing the matrix product.

Table 2.4 concerns the algorithm SamplePre. We also measured that sampling from
discrete Gaussians over Z constitutes 57-64% of the perturbation sampling (decreasing
with d) and about 85% of the G-sampling, for a total of 67-72% of the whole presam-
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Table 2.3 – Running time of the TrapGen algorithm.

d 4 6 8 10
DZ,σ sampling 27.17 ms (74%) 56.37 ms (72%) 100.22 ms (67%) 159.10 ms (64%)

Σ computations 7.03 ms (19%) 17.11 ms (22%) 39.40 ms (26%) 71.92 ms (29%)
Arithmetic 2.34 ms (6%) 1.11 ms (1%) 2.60 ms (2%) 5.25 ms (2%)

Total 36.56 ms 78.52 ms 149.57 ms 248.09 ms

pling. Gaussian sampling over Z makes up most of the running times of both TrapGen
and SamplePre. As such, it is important for efficiency to use a fast sampler of discrete
Gaussians over Z as a building block. As a reminder, in our implementation, this sampler
can easily be swapped out for another if needed.

Table 2.4 – Running time of the SamplePre algorithm.

d 4 6 8 10
Perturb. sampling 4.73 ms (36%) 6.63 ms (38%) 9.43 ms (38%) 12.03 ms (39%)

G-sampling 7.48 ms (57%) 9.83 ms (56%) 13.29 ms (54%) 16.43 ms (53%)
Arithmetic 0.82 ms (6%) 1.20 ms (7%) 1.98 ms (8%) 2.64 ms (8%)

Total 13.28 ms 17.66 ms 24.70 ms 31.10 ms

2.3 A GPV Signature Scheme on Modules

In 2008, Gentry, Peikert and Vaikuntanathan [GPV08] proposed a generic framework
to construct lattice-based hash-and-sign signature schemes originally described with gen-
eral lattices. In [BB13], the authors proposed an instantiation of the GPV framework using
the trapdoor from [MP12] both for general and for ring lattices. We propose to instantiate
the GPV signature scheme using [MP12; GM18] but adapted to the module setting.

2.3.1 The Scheme

A direct application of our Gaussian preimage sampling techniques on module lattices
is the GPV signature [GPV08] in the module setting. It was originally formulated on
unstructured lattices, and has previously been implemented using improved trapdoors
and algorithms [MP12; GM18] in the ring setting [BB13; GPR+18; GPR+19].

Our goal here is not to obtain a competitive signature scheme, but rather to show the
relevance of the tools we developed.
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In this hash-and-sign scheme, key generation is simply trapdoor generation, and sign-
ing consists in hashing a message to a point in space and then sampling a Gaussian
preimage of that point.

We base ourselves on the probabilistic GPV signature [GPV08, Section 6.2], where a
random salt is appended to a message before hashing it. Then, if the same message M is
signed several times, one does not obtain multiple samples from the same coset Λu

q (A),
which would compromise the security of the scheme.

Parameters. The parameters are: n a power of two, q a prime modulus such that q ≡ 1
(mod 2n), k = ⌈logb q⌉ its size in the base-b expansion, d a positive integer, m = d(k + 2),
σ, ζ, and α Gaussian parameters, t the Gaussian tailcut, and s the length of the salt.

Description. We describe the resulting scheme below, where H : {0, 1}∗ −→ Rd
q is a

collision-resistant hash function. We added a random salt to the message before hashing
it, as described in [GPV08, Section 6.2]. This is so that if the same message M is hashed
multiple times, one does not obtain multiple samples from the same coset Λu

q (A), which
is needed for the security proof.

— KeyGen(1n) −→ (vk, sk)

(A, T )← TrapGen(I, σ)
vk ← A ∈ Rd×m

q

sk ← T ∈ R2d×dk

— Sign(1n, sk, M) −→ ν

S ← U({0, 1}s)
u← H(M ∥ S)
x← SamplePre(A, T , I, u, ζ, α)
ν ← (x, S) ∈ Rm × {0, 1}s

— Verify(1n, vk, M, ν) −→ {accept, reject}

u← H(M ∥ S)
Accept if Ax = u mod q and 0 < ∥x∥ ≤ tζ

√
mn

Correctness. The following Theorem 9 states the correctness of this signature scheme.
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Theorem 9 Let n, q, k, d, m, σ, ζ, α, t, s be the parameters of the scheme as above.
Then, the scheme is correct, and admits EU-CMA security in the random oracle model
under the hardness of Module-LWEn,d,q,σ and Module-SISn,d,m,q,β, with β = 2ζ

√
mn.

2.3.2 Parameters and Security

We describe how we chose the parameters for our GPV signature scheme, estimating
the difficulty of the underlying lattice problems. Our Gaussian sampling algorithms also
impose constraints on our parameters.

Length of the Salt. To make sure the probability of collision (two messages landing
in the same coset) is negligible, we follow [FHK+17] and take the length of the random
salt to be s ≥ λ + log qs, where λ is the security parameter and qs the number of allowed
signing queries.

Key Recovery. The computational instantiation of the trapdoors we use is based on the
hardness of Module-LWEn,d,q,σ, where we choose the Gaussian parameter σ to be at least
the smoothing parameter ηε(Znd) where ε is taken as 2−λ where λ is the target security
parameter of the scheme. To get an idea of the security provided by such a Module-LWE
instance, we use the estimator of [APS15] 1 and approximate it by an instance of an
unstructured LWE problem in dimension nd.

Signature Forgery. Forging a signature consists in finding a short vector x ∈ Rm of
norm less than β = tζ

√
mn satisfying the relation Ax = u mod q for some u ∈ Rn

q

that depends on the message. This is exactly an instance of Module-ISISn,d,m,q,β, which we
approximate by an instance of unstructured ISISnd,nm,q,β. This ISIS problem can be solved
by finding a short vector in Λu

q (A′) for some sub-matrix A′ of A. To estimate the cost of
computing such a solution, we look at the cost of running the BKZ algorithm [SE94] to
reduce a basis of Λu

q (A′) in order to get a sufficiently short vector.

BKZ Reduction Cost Model. The BKZ algorithm reduces a basis by calling an
exact SVP oracle in a smaller dimension b, called the BKZ blocksize. We follow the
(very pessimistic) core-SVP hardness introduced in [ADP+16], where the cost of a BKZ

1. https://bitbucket.org/malb/lwe-estimator (commit a2296b8)
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algorithm with blocksize b is taken to be the cost of only one call to an SVP oracle in
dimension b, rather than a polynomial number of calls. We consider the sieving algorithm
as our exact SVP oracle, its complexity in dimension b is estimated to 2cb, where c =
log

√
3/2 ≈ 0.292 in the classical setting, and c = log

√
13/9 ≈ 0.265 in the quantum

setting.

Estimating Security and Choosing Parameters. In Table 2.5, we propose four
parameter sets and corresponding security estimates, taking the prime modulus q =
1073738753 of bitsize k = 30. The sets I and IV correspond to the ring setting, where n is
a power of two and d = 1. The sets II and III are intermediate using the module setting.

Table 2.5 – Suggested parameter sets for our instantiation of the GPV signature.

Parameter set I II III IV
nd 1024 1280 1536 2048
n 1024 256 512 2048
k 30 30 30 30
d 1 5 3 1
σ 7.00 5.55 6.15 6.85
α 48.34 54.35 60.50 67.40
ζ 83832 83290 112522 160778

BKZ blocksize b to break LWE 367 478 614 896
Classical security 107 139 179 262
Quantum security 97 126 163 237

BKZ blocksize b to break SIS 364 482 583 792
Classical security 106 140 170 231
Quantum security 96 127 154 210

2.3.3 Implementation and Performance

Our GPV implementation relies on our trapdoor tools, as well as a Number Theoretic
Transform for fast multiplication in Rq, adapted from CRYSTALS-Kyber [DKL+18].

We now present in Table 2.6 the running times for our implementation of the GPV
signature scheme. While it is practical and runs on a standard laptop in acceptable time,
the comparison with lattice-based NIST candidates given in Table 2.11 shows that it is
not competitive.
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Table 2.6 – Performances of our GPV signature.

Parameter set KeyGen Sign Verify
I 7.48 ms 11.47 ms 0.73 ms
II 51.34 ms 15.25 ms 1 ms
III 36.49 ms 17.45 ms 1.12 ms
IV 15.55 ms 22.64 ms 1.48 ms

2.3.3.1 Comparison Between Rings and Modules

As already explained, one goal of using a module variant instead of a ring variant is to
be more flexible in the choice of parameters. The comparison between the different levels
of security shows that the running time for signing and verifying is increasing with nd,
and then that having intermediate levels allow to be faster to sign and verify.

On the other hand, the KeyGen algorithm does not depend only on nd but is slower
for larger d. We give a more concrete example of this in Table 2.7. When nd is constant,
so is the estimated security provided. With a higher n and a lower d (d = 1 being the
ring setting), the underlying lattices have a stronger structure and the signature is more
efficient. With a lower n and a higher d (the extreme being n = 1 in the unstructured
setting), the lattices have less structure, leading to increased flexibility at the cost of
efficiency.

Table 2.7 – Cost of KeyGen, Sign and Verify depending of the parameter d for nd = 1024.

(n, d) KeyGen Sign Verify
(1024, 1) 7.62 + 1.32 = 8.94 ms 13.08 ms 0.79 ms
(512, 2) 15.32 + 2.81 = 18.13 ms 13.20 ms 0.79 ms
(256, 4) 29.53 + 7.03 = 36.56 ms 13.36 ms 0.74 ms

2.3.3.2 Comparison with [GPR+19]

In Table 2.8, we compare our timings with the work of [GPR+19]. In their paper,
the authors present some software implementations of the GPV digital signature scheme.
Their implementation benefits in particular from the use of bases larger than 2 for the
definition of the gadget vector. We also did use larger bases in our implementation, which
allows better performance for the execution times and storage requirements of our algo-
rithms.
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Their parameter set where (n, k) = (1024, 27) is compared with ours where (nd, k) =
(1024, 30), which provides approximately the same security.

Table 2.8 – Comparison of GPV implementations.

Implementation KeyGen Sign Verify
[GPR+19] n = 1024 5.86 ms 32.42 ms 0.28 ms
This work (n, d) = (1024, 1) 7.62 + 1.32 = 8.94 ms 13.08 ms 0.79 ms

2.4 A Standard Model Signature Scheme on Modules

The second application of our tools is an implementation of a signature scheme that
is proven secure in the standard model, as opposed to the GPV signature and the NIST
schemes.

This scheme is the signature from [BFR+18], which is a variant of GPV, adapted
to the module setting. For the security proof to hold, the encoding must fulfil a strong
injectivity property. However, the original encoding described in [BFR+18] did not meet
these requirements, leading to a limited security. We propose a modified version of this
scheme: we translated it to the module setting, and instantiated it with a correct encoding.

We give a complete description of our scheme and state its correctness and security in
this section.

2.4.1 The Scheme

The proposed signature scheme is a module adaptation of the scheme from [BFR+18]
with a different instantiation of the FRD encoding.

Parameters. We have: n ≥ r > 1 two powers of 2, q a prime modulus such that
q ≡ 2r + 1 (mod 4r), k = ⌈logb q⌉, d a positive integer, m = d(k + 2), σ, ζ, and α

Gaussian parameters, and t the tailcut for the Gaussian DZ,σ.

Description. We describe this scheme below, where H : M −→ Rd×d
q is an FRD

encoding instantiated as explained above. Note that during the trapdoor generation, we
use the tag H = 0, meaning that T is not technically a trapdoor for A since H is
singular. Still, the scheme is correct because, for any message M ∈ M, T is a trapdoor
for AM = A + [0d,2d | H(M)G] with tag H(M).

93



Chapter 2 – Lattice Trapdoors on Modules: Implementation and Applications

— KeyGen(1n) −→ (vk, sk)

(A, T )← TrapGen(0, σ)
vk ← A ∈ Rd×m

q

sk ← T ∈ R2d×dk
q

— Sign(1n, sk, M) −→ ν

HM ← H(M)
AM ← A +

[
0d,2d HMG

]
ν ← SamplePre(AM , T , HM , 0, ζ, α)

— Verify(1n, vk, M, ν) −→ {accept, reject}

HM ← H(M)
AM ← A +

[
0d,2d HMG

]
Accept if AMν = 0 mod q and 0 < ∥ν∥ ≤ tζ

√
mn

Correctness. We state the correctness of this scheme in the following Theorem 10.

Theorem 10 Let n, r, q, k, d, m, σ, ζ, α, t be the parameters of the scheme as
above. Then, the scheme is correct, and is SU-CMA secure under the hardness of
Module-LWEn,d,q,σ and MSISn,d,2d,q,β, where β = (1 + s1(T ))tζ

√
mn.

2.4.2 Parameters and Security

Concerning the choice of parameters, we take into account the best-known attacks
rather than the proof of security, as is the case in most schemes [ABB+19; DKL+18].
In our case, it consists in finding a vector of norm at most ζ in Λ⊥q (AM), given A and
M ∈ M. As such, the analysis of security is exactly the same as the one we did for GPV
in Section 2.3.

The only factor influencing the choice of r is the number of bits of security we aim at.
For a given level of security of λ bits, we want to be able to encode at least 2λ messages
to prevent brute-force attacks. Since the message space M is of size qn/r, this yields
the relation r < n log q

λ
. We would like to take the biggest r possible to have an efficient

arithmetic in Rq.
This scheme’s suggested parameter sets are then the same as those of our ROM scheme

(described in Table 2.5), except for r and q. For the parameter sets I and II we take
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(r, q) = (64, 1073741441), and for set III we take (r, q) = (32, 1073740609). The prime
moduli are chosen so that they fulfill the congruence condition involving r.

2.4.3 Implementation and Performance

The main point that differs from our ROM scheme in the implementation is the arith-
metic over Rq. While without having q ≡ 1 (mod 2n) one cannot use the NTT, we can
still make use of the structure of our ring to speed up the multiplication of polynomials.
Described at a high level, what we perform is a "partial NTT". To multiply polynomials,
we first reduce them modulo all the Xn/r−si in Θ(n log r) operations (see Section 1.4.2.2).
Then, we multiply them in the smaller rings Zq[X]/

〈
Xn/r − si

〉
by using the Karatsuba

multiplication algorithm, and reducing them both modulo q and modulo the Xn/r − si.
The result can then be mapped back to the ring Rq in time Θ(n log r) using an inverse
transform. These ideas were formulated in [LS18].

As such, the main difference with GPV in terms of implementation is the use of a
partial NTT inspired by [LS18], instead of a full one. An example of performances of our
signatures is given in Table 2.9. For this set of parameters, the public key has size 508kB,
the private key 5.06MB and the signature 131kB.

Table 2.9 – Performances of our signatures and comparison with previous GPV implemen-
tation (96-bit security parameter sets, lattice dimension 1024, modulus q ≈ 230).

Scheme KeyGen Sign Verify
GPV ([GPR+19]) 5.86 ms 32.42 ms 0.28 ms
GPV (this work) 8.94 ms 13.08 ms 0.29 ms
BFRS (this work) 9.46 ms 15.66 ms 1.19 ms

In Table 2.10, we present the performance of our implementation of this standard
model scheme and, in particular, we highlight the additional cost compared to our ROM
scheme.

Table 2.10 – Performances of our standard model signature.

Parameter set KeyGen Sign Verify
I 9.46 ms (+27%) 15.66 ms (+37%) 1.19 ms (+63%)
II 73.41 ms (+43%) 21.92 ms (+44%) 2.23 ms (+123%)
III 51.79 ms (+42%) 29.11 ms (+66%) 2.37 ms (+112%)
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We do not give a comparison with the implementation of [BFR+18] as it would not be
relevant, given the limited security provided by their instantiation of the FRD encoding.

Here we compare our signature schemes with the three lattice-based signa-
tures of the second round of the NIST standardization process: Dilithium [DKL+18],
qTESLA [ABB+19], and Falcon [FHK+17]. The timings are shown in Table 2.11. They
were obtained using an Intel i7-8650U CPU running at 1.90 GHz. We also explain why
GPV is much less efficient than those, which is not only because our implementation is
not as optimized.

Table 2.11 – Performances of our signatures and comparison with other schemes (128-bit
security parameter sets).

Scheme KeyGen Sign Verify
Dilithium (ROM) 0.04 ms 21 530 op/sec 30 709 op/sec
qTESLA (ROM) 0.33 ms 7 213 op/sec 46 570 op/sec
Falcon (ROM) 6.24 ms 7 789 op/sec 38 647 op/sec

This work (ROM) 7.48 ms 87 op/sec 1 370 op/sec
This work 9.46 ms 64 op/sec 840 op/sec

On the one hand, Fiat-Shamir schemes such as Dilithium and qTESLA do not come
with the high cost of trapdoors associated to hash-and-sign lattice-based schemes. On the
other hand, Falcon does use lattice trapdoors, but still remains efficient because it uses a
Klein-like sampler (see Section 1.3.2.5) and relies on NTRU lattices. This leads to smaller
parameters for the scheme, which in turn yields better performances. However, this gain
in efficiency comes at the expense of an additional assumption due to the class of lattices
used, which is not our case. The two schemes that use discrete Gaussian sampling, qTESLA
and Falcon, then require many fewer calls to the discrete Gaussian sampler over Z, which
is the main practical cost of our scheme (see Table 2.1).

2.5 An Identity-Based Encryption Scheme on Mod-
ules

Finally, we built a more advanced construction based on our tools: a standard model
identity-based encryption scheme. The definitions of such a scheme as well as the notions
of correctness and security can be found in Section 1.4.2.1.

This IBE scheme is the identity-based encryption from [ABB10a; BFR+18] but

96



2.5. An Identity-Based Encryption Scheme on Modules

adapted to the module setting, with a different instantiation of the FRD encoding (see
Section 1.4.2.2). Basically, it is the signature scheme presented in Section 2.4 combined
with the Dual-Regev encryption scheme, which was presented in Section 1.4.1.1.

The Scheme The scheme is as follows, where H : M −→ Rd×d
q is an FRD encoding

instantiated as explained in Section 1.4.2.2.

— Setup(1n) −→ (mpk, msk)

(A, T )← TrapGen(0, σ)

u←U(Rd
q)

mpk ← (A, u) ∈ Rd×(m+1)
q

msk ← T ∈ R2d×dk
q

— Extract(1n, mpk = (A, u), msk = T, id ∈ ID) −→ skid

Hid ← H(id)

Aid ← A +
[

0d,2d HidG
]

skid ← SamplePre(Aid, T , Hid, u, ζ, α)

— Encrypt(1n, mpk = (A, u), id, M) −→ C

Hid ← H(id)

Aid ← A +
[

0d,2d HidG
]

s←U(Rd
q), e0←DRm−k,τ , e1←DRk,γ, e′ ←− DR,τ .

b← (stAid)t + (et
0 | et

1)t et c← stu + e′ + ⌊q/2⌋M

C ← (b, c) ∈ Rm+1
q

— Decrypt(1n, skid = x, C = (b, c)) −→M

res← c− btx.

For each resi, if it is closer to ⌊q/2⌋ than to 0, Mi = 1, otherwise Mi = 0.

Correctness. Let us note x = (xt
0 | xt

1)t with x0 ∈ Rm−k
q and x1 ∈ Rk

q . Decrypting
a ciphertext then needs the error term e′ − (et

0 | et
1)(x0 | xt

1)t = e′ − et
0x0 − et

1x1 to be
bounded by ⌊q/4⌋.
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Parameters and Security. The correctness imposes the following conditions on the
parameters γ and τ (see [BFR+18], Section 4.4): tτ

√
n + 2t2τζn + t2γζkn < ⌊q/4⌋. More-

over, we take γ = 2tστ
√

n so that the security proof of the scheme holds.

Theorem 11 Our IBE construction with parameters n, m, q, k, σ, α, γ, τ and
ζ is IND-sID-CPA secure in the standard model under the hardness of
Module-LWEn,q,DR,τ .

2.5.1 Implementation and Performance

As in our standard model signature scheme, we make use of our ring to speed up the
multiplication of polynomials by performing a partial NTT. We make use of the same
encoding as in the previous section, which imposes the condition q ≡ 2r + 1 (mod 4r)
on the modulus, to map identities in M = Zn/r

q \ {0} to invertible elements in Rd×d
q . In

Table 2.12, we present the performance of our implementation of this standard model IBE
scheme.

Table 2.12 – Timings of the operations of our scheme: Setup, Extract, Encrpt, and Decrypt

Parameter Set Setup Extract Encrypt Decrypt
I 9.82 ms 16.54 ms 4.87 ms 0.99 ms
II 44.91 ms 18.09 ms 5.48 ms 1.04 ms

In Table 2.13, we give timings for the different operations of some IBE schemes. Our
timings could seem worse than the ones in [BFR+18] but the two implementations cannot
be compared as the latter’s limited security would make the comparison irrelevant. A part
of the difference comes from the arithmetic we need to use in order to build a proper FRD
encoding (see Section 1.4.2.2). Moreover, in contrast to [DLP14], we did not use NTRU
lattices, which explains the differences in the timings.

Table 2.13 – Timings of the operations for some IBE schemes.

Scheme (λ, n) Setup Extract Encrypt Decrypt
BF-128 [Fou13] (128, –) – 0.55 ms 7.51 ms 5.05 ms

DLP-14 [MSO17] (80, 512) 4.034 ms 3.8 ms 0.91 ms 0.62 ms
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Chapter 3

IDENTITY-BASED ENCRYPTION SCHEME

USING APPROXIMATE TRAPDOORS

This chapter’s content is mainly based on a joint work [IPR23] with Malika Izabachène
and Adeline Roux-Langlois. The corresponding implementation is available at https:
//github.com/lucasprabel/approx_lattice.

Contents

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.1 Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.3 Contributions: A Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.2. Approximate ISIS Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2.2 Hardness of AISIS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3. Approximate Gadget Trapdoors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.1 Approximate Gadget Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.2 Approximate F-Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.3 Approximate Perturbation Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3.4 Sampling Approximate Gaussian Preimages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.4. Application to an Identity-Based Encryption Scheme . . . . . . . . . . . . . . . 107
3.4.1 The Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.4.3 Parameters and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.4.3.1 Concrete Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.4.3.2 Asymptotic Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.5. Performance and Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

99

https://github.com/lucasprabel/approx_lattice
https://github.com/lucasprabel/approx_lattice
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3.1 Introduction

3.1.1 Presentation

Practical implementations of advanced lattice-based constructions have received much
attention since the first practical scheme instantiated over NTRU lattices, proposed in
[DLP14]). They are using powerful lattice-based building blocks which allow them to
build Gaussian preimage sampling and trapdoor generation efficiently. In this chapter, we
propose a construction and implementation of an identity-based encryption scheme using
approximate variants of the "gadget-based" trapdoors introduced in [CGM19]. This con-
struction will use techniques presented in Chapter 2 adapted to the approximate setting,
will rely on the Module-LWE hardness assumption and will make use of the Micciancio-
Peikert paradigm with approximate trapdoors. We will prove that our scheme is secure,
and we will provide details on its implementation, several timings, and a comparison
analysis to explain our results.

More precisely, we study the possibility of using approximate trapdoors, with SIS /
LWE assumptions, rather than the exact trapdoors of [MP12], in order to obtain a more
efficient scheme, without drastically reducing the intrinsic security. The use of approximate
trapdoors leads to the appearance of error terms which must be taken care of in the
decryption phase of the scheme. The resulting scheme is IND-sID-CPA secure in the
standard model and resulted in an implementation showing that it is more efficient than
the counterpart IBE using exact trapdoors that we presented in Section 2.5.

Therefore, this chapter provides different solutions in order to obtain schemes that can
be used in practice, by reducing the size of their parameters (keys and ciphers) and the
execution time of their different algorithms. We hope these new constructions and imple-
mentations will pave the way for more practical advanced trapdoor-based constructions.

3.1.2 Related Work

In [GPV08], Gentry, Peikert and Vaikuntanathan described the first lattice-based IBE,
relying on the Dual-Regev encryption scheme. This scheme is presented in Section 1.4.2.1.
An important contribution of their work was a sampling algorithm (known as GPV sam-
pling) which showed how to use a short basis as a trapdoor for generating short lattice
vectors. This sampler was then used to construct a lattice-based IBE scheme, proven
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adaptively secure against chosen-plaintext attack in the random oracle model as defined
in [BF01; Coc01]. However, the master public key and user secret keys had large sizes in
O(n2) bits. Later on, a construction of a Hierarchical IBE (HIBE) scheme in the standard
model was proposed in [CHK+10] based on a new mechanism for users’ keys delegation.
This IBE scheme was proven secure in the selective model where the adversary needs
to target an identity beforehand. In 2010, Agrawal et al. [ABB10a] proposed a Learning
With Errors (LWE)-based IBE scheme with a trapdoor structure and with performance
comparable to the GPV scheme. Their construction viewed an identity as a sequence of
bits and then assigned a matrix to each bit. It used a sampling algorithm to obtain a
basis with low Gram-Schmidt norm for the master secret key and formed a lattice family
with two associated trapdoors to generate short vectors; one for all lattices in the family
and the other one for all but one. The principle of their scheme was the basis of our own
construction presented in Section 2.5.

The first Ring-LWE based IBE scheme has been proposed by Ducas, Lyubashevsky
and Prest [DLP14] (DLP-IBE), which is still considered the most efficient scheme to date
due to smaller key sizes. The use of the ring variant increased efficiency by reducing the
public key size and ciphertext size to O(n). The security of their scheme holds in the
random oracle model and is related to the NTRU hardness assumption. An efficient C
implementation of the DLP-IBE scheme and a detailed performance analysis was provided
in [MSO17]. In 2017, Campbell and Grover introduced a HIBE scheme, called Latte, which
can be viewed as a combination of the DLP-IBE scheme with the delegation mechanism
from [CHK+10]. An optimized implementation and refined analysis of Latte, has recently
been proposed in [ZMS+21].

The work from [BFR+18] constructed an IBE using the notion of gadget-based trap-
doors in the ring setting, introduced by [MP12]. Such trapdoors can be seen as linear
transformations mapping hard instances of cryptographic problems on some lattices to
easy instances on a lattice defined by a public "gadget matrix". The IBE from [BFR+18]
also made use of the efficient Gaussian preimage sampling algorithms from [GM18] to
propose an implementation of their scheme. In Chapter 2, this IBE and its associated
sampling algorithms were adapted to the module setting and instantiated. The use of
module lattices of dimension nd, where d is the rank module, led to a more flexible choice
of parameters. In [ZY22], the authors proposed new efficient gadget sampling algorithms
which didn’t need floating-point arithmetic, and as fast as the original [GM18] sampler.
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3.1.3 Contributions: A Technical Overview

All those constructions generally make use of dedicated trapdoors, needed by the
authority to generate the secret key of a user. In that case, building the trapdoor and
sampling particular short vectors are quite costly, and represent the main bottleneck in
the efficiency of such schemes.

Therefore, the main contribution presented in this chapter is to provide and imple-
ment a lattice-based IBE scheme which makes use of families of gadget-based approximate
trapdoors. This construction relies on the Module-LWE problem. We investigate how to
instantiate and parametrize the approximate trapdoor preimage sampling over these fam-
ily of trapdoors in a way to obtain a provable and efficient quantum-safe IBE scheme. As
in previous IBE constructions, encryption is based on the Dual-Regev encryption scheme.
We provide a complete public and open-source C implementation 1 with performance
benchmarking. The implementation is modular and makes it easy to change the building
blocks of our algorithms according to the desired properties that we want to get.

Our work explores the use of approximate trapdoors for the construction of IBE
schemes and the potential practical insights we can gain from it. We first adapted the con-
struction presented in Chapter 2 using approximate trapdoors. The error induced by the
approximate setting requires changes at several levels, either for the choice of encoding or
for the sampling algorithms. As expected, we obtain better timings for all four algorithms
composing our IBE by using approximate trapdoors rather than exact ones.

3.2 Approximate ISIS Problem

3.2.1 Definitions

As shown in [CGM19], the gadget trapdoor proposed by Micciancio and Peikert in
[MP12] can be modified to an approximate trapdoor. Doing so allows to additionally
decrease the sizes of different parameters involved in cryptographic schemes making use
of trapdoors such as the public matrix, the trapdoor or the preimage, without affecting
the scheme’s concrete security.

We begin by defining the AISIS problem in Definition 29, which is a key aspect of the
concept of approximate trapdoors. The definition is close to the one of the ISIS problem,
but the equality is more relaxed, by involving an error term.

1. https://github.com/lucasprabel/approx_lattice
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3.2. Approximate ISIS Problem

Definition 29 (AISISn,d,m,q,α,β) For any n, d, m, q ∈ N and α, β ∈ R, given A ∈
Rd×m

q , y ∈ Rd
q , the Approximate Inhomogeneous Short Integer Solution problem

AISISn,d,m,q,α,β asks to find a vector x ∈ Rm such that ||x|| ≤ β and there is a vector
z ∈ Rd satisfying: ||z|| ≤ α and Ax = y + z mod q.

Then, approximate trapdoors allow to solve the AISIS problem in the same way exact
trapdoors allowed us to solve the ISIS problem.

Definition 30 (Approximate Trapdoor) A string τ is called an (α, β)-approxi
mate trapdoor for a matrix A ∈ Rd×m

q if there is a probabilistic polynomial time
algorithm that given τ, A and any y ∈ Rd

q , outputs a non-zero vector x ∈ Rm such
that ||x|| ≤ β and there is a vector z ∈ Rd satisfying: ||z|| ≤ α and Ax = y+z mod q.

3.2.2 Hardness of AISIS

The following theorem shows that the AISIS problem is hard to solve when not know-
ing an approximate trapdoor for specific parameters. More precisely, the reduction in
Theorem 12 establishes the hardness of solving the AISIS problem based on the hardness
of solving decisional LWE with low-norm secret.

Theorem 12 ([CGM19, Theorem 3.3]) For n, m, q ∈ Z, α, β ∈ R+ and θ, χ

distributions over Z such that q > 4(∥θ∥ · (α + 1) + ∥θ∥n · α ·
√

n + ∥χ∥m · β ·
√

m).
Then LWEn,m,q,θ,U(Zq),χ ≤ AISISn,m,q,α,β.

The AISIS problem is also proven as hard as the exact ISIS problem. The reduction
proofs in [CGM19] make use of a series of reductions between the HNFs versions of the
ISIS and AISIS problems.

Theorem 13 ([CGM19, Theorem 3.4]) The following reductions hold:

— ISISn,m+m,q,β ≥ AISISn,m,q,α+β,β;

— AISISn,m,qα,β ≥ ISISn,n+m,q,α+β.

103



Chapter 3 – Identity-Based Encryption Scheme Using Approximate Trapdoors

3.3 Approximate Gadget Trapdoors

In this section, we define the approximate variant of the G-lattice presented in Sec-
tion 2.2. We also see how to adapt the trapdoor generation and the different sampling
algorithms we had when working in the exact setting.

3.3.1 Approximate Gadget Lattices

The core idea behind approximate trapdoors is to work with an approximate gadget
matrix F instead of working with the usual gadget matrix G introduced in [MP12]:

G = Id ⊗ gT = Id ⊗
[
1 b b2 · · · bk−1

]
∈ Rd×dk.

The simple proposition from [CGM19] is to modify this gadget matrix G by dropping
an arbitrary number ℓ of the smaller entries from the gadget vector

[
1 b b2 · · · bk−1

]
to get an approximate gadget matrix F , defined as:

F = Id ⊗ fT = Id ⊗
[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rd×d(k−ℓ).

This allows to introduce the notion of approximate gadget trapdoor, in the same
fashion we did in Definition 28 with the exact G-lattice.

Definition 31 An approximate trapdoor for a matrix A ∈ Rd×m
q is a matrix T ∈

R(m−d(k−ℓ))×d(k−ℓ) such that

A


T

Id(k−ℓ)

 = HF

for some invertible H ∈ Rd×d
q , called the tag of A.

The differences between the exact and approximate settings are recalled in Figure 3.1.

Having defined the notion of approximate F -trapdoor, we now describe the
ApproxTrapGen algorithm, which outputs a matrix A along with its associated approxi-
mate trapdoor T , given a tag H . We denote ω = d(k − ℓ), m̄ = d log q and m = m̄ + ω.
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f T =
[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
gT =

[
1 b b2 · · · bk−1

] Dropping ℓ entries

Exact Trapdoors

A =
[

A′ HG − A′T
]

Preimage: x verifies Ax = u mod q.

Definition (ISISq,β problem)

Given (A, u), find a non trivial short x such that

∥x∥ ≤ β and Ax = u mod q.

Definition (AISISq,β problem)

Given (A, u), find a non trivial short x such that

∥x∥ ≤ β and Ax ≈ u mod q.

Approximate Trapdoors

A =
[

A′ HF − A′T
]

Approximate Preimage: x verifies Ax ≈ u mod q.

• Smaller parameters.

• AISIS as hard as ISIS.

Figure 3.1 – The exact and approximate settings.

Algorithm 7 ApproxTrapGen(H , σ)
1: Sample Ā←U(Rd×m̄

q ).
2: Sample T ←DRm̄×ω ,σ

3: Set A = [ Ā HF − ĀT ] ∈ Rd×m
q

4: return (A, T ).

The correctness of the ApproxTrapGen algorithm is stated in Theorem 14.

3.3.2 Approximate F-Sampling

As when working with exact trapdoors, if we want to make use of approximate trap-
doors in order to build cryptographic schemes, we must ensure beforehand to have efficient
sampling algorithms available. As with the exact setting, sampling approximate Gaussian
preimages will be done in 2 steps: the approximate F -sampling and the perturbating
sampling.

Here, we begin by describing the Approximate F -sampling phase. Given a target vec-
tor v ∈ Rd, the goal of approximate F -sampling is to compute a vector z ∈ Rk−l following
a discrete Gaussian of parameter α such that F z ≈ v mod q. We can perform approxi-
mate F -sampling very easily using the previous exact G-sampling algorithm described in
Section 2.2.2:
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Algorithm 8 ApproxFSampling(v, α)
1: Sample x← GSampling(v, α)
2: Set z = (xk−l, . . . , xk−1)
3: return z

3.3.3 Approximate Perturbation Sampling

The second phase of the approximate Gaussian preimage sampling is the perturbation
sampling. We recall that perturbation sampling aims at sampling vectors following the
Gaussian distribution over Rm of covariance Σp = ζ2I − α2

[
T
I

]
[ T T I ] so that when we

sum the perturbation p and
[

T
I

]
z, the final covariance matrix Σp + α2

[
T
I

]
[ T T I ] = ζ2I

does not leak any information about the trapdoor T .

We can perform such a step using the exact version of the perturbation algorithm
presented in Section 2.2.3.

3.3.4 Sampling Approximate Gaussian Preimages

We’ve previously described the approximate F -sampling and the perturbation sam-
pling algorithms. We can combine those two phases to get the ApproxSamplePre algo-
rithm, described in Algorithm 9.

Algorithm 9 ApproxSamplePre(A, R, H , u, ζ)
1: Sample perturbation p←DRm,

√
Σp

2: Set coset v = H−1(u−Ap)
3: Sample z = (zT

1 , zT
2 )T ←DΛv

q (G),σg

4: Set x = p +
[

R
I

]
z2 ∈ Rm

5: return x

We state the correctness of the trapdoor generation algorithm ApproxTrapGen and of
the approximate preimage sampling algorithm ApproxSamplePre in Theorem 14.
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Theorem 14 ([CGM19, Theorem 4.1]) There exists probabilistic, polynomial
time algorithms ApproxTrapGen(·) and ApproxSamplePre(·) such that:

1. ApproxTrapGen(H , σ) takes as input public parameters, a tag matrix H ∈
Rd×d and parameter σ > 0 and returns a matrix-approximate trapdoor pair
(A, R) ∈ Rd×m

q × Rm̄×ω where R coefficients are drawn from a Gaussian dis-
tribution of parameter σ over R .

2. Let A be generated with an approximate trapdoor as above. The following two
distributions are statistically indistinguishable:

{(A, x, u, y) | u←U(Rd
q), x←ApproxSamplePre(A, R, 0, u, ζ), y = u−Ax mod q}

and {(A, x, u, y) | x←DRm,ζ , y←DRd,σ
√

(b2ℓ−1)/(b2−1), u = Ax + y mod q}

for any σ ≥
√

b2 + 1 · ω(
√

log d) and ζ ≳
√

b2 + 1 s2
1(R)

s2d(R)ηϵ(Zdk).

3.4 Application to an Identity-Based Encryption
Scheme

In this section, we present our IBE scheme which makes use of approximate trapdoors.
At a high level, the scheme will make use of the following blocks:

— The master secret key is a F -approximate trapdoor R ∈ Rm̄×ω associated to A with
tag 0, with subgaussian coefficients of parameter σ, with ω = d(k − ℓ). The master
public key is a tuple consisting of a uniformly random vector u ∈ Rd

q and the matrix
A ∈ Rd×m

q , with m = m̄ + ω chosen as: A =
[

Ā −ĀR
]
. Taking m̄ = d log q, we

get that Ā is full rank with high probability according to [BJR+22, Lemma 2.6].
Moreover, by taking σ > 4 ·4 1

nd
√

n, we obtain that A is statistically close to uniform
by Corollary 7.5 from [LPR13].

— A "small-norm" FRD encoding HM as described in Section 1.4.2.2. This allows any-
one, with the knowledge of the master public key A, to compute a public matrix
Aid = A +

[
0d,m̄ HidF

]
associated to the identity id of a user. Then, the se-

cret key for id is an approximate short vector xid ∈ Rm obtained by using the
ApproxSamplePre algorithm with the matrix Aid as input. Such a vector satisfies
the relation Aidxid ≈ u mod q. We can bound the approximate error in this relation
by using Theorem 14 and the fact that we use a small-norm FRD encoding.
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— Finally, we use the Dual-Regev encryption scheme (described in Section 1.4.1.1) for
the encryption and decryption algorithms, taking care of the additional error which
appears when using approximate trapdoors.

3.4.1 The Scheme

We detail our IBE where users’ keys are defined based on the approximate preimage
sampling from Theorem 14 and encryption is based on the Dual-Regev scheme.

— Setup(1n) −→ (mpk, msk):

— (A, R)← ApproxTrapGen1(0, σ) ∈ Rd×m
q ×Rm̄×w, u←U(Rd

q);
— mpk = (A, u), msk = R.

— Extract(mpk, msk, id) −→ skid x ∈ Rm:

— Hid ← HM(id); Aid ← A +
[

0d,m̄ HidF
]
∈ Rd×m

q ;
— x← ApproxSamplePre(Aid, R, Hid, u, ζ);

— Encrypt(mpk, id, M) −→ C = (b, c) ∈ Rm+1
q :

— Hid ← HM(id); Aid ← A +
[

0d,m̄ HidF
]
∈ Rd×m

q ;
— s←DRd

q ,τ , e0←DRm−w,τ , e1←DRw,γ, and e′ ←− DR,τ ;
— b← (sT Aid)T + (eT

0 | eT
1 )T and c← sT u + e′ + ⌊q/2⌋M ;

— Decrypt(skid, C)→M :

— set x = skid and compute res← c− bT x which has integer coefficients;
— for each i, if the coefficient resi ∈ Z is closer to ⌊q/2⌋ than to 0, then Mi = 1,

otherwise Mi = 0.

3.4.2 Correctness

To use approximate trapdoors with the Dual-Regev approach, we need to sample the
LWE secret term with a small norm instead of sampling from the uniform distribution,
in order to maintain the correctness of the schemes. Let’s write y ∈ Rd

q the additional
error we get by using approximate trapdoors instead of exact ones. The correctness of the
decryption holds if the error term ∥e′ − (eT

0 | eT
1 )x− sT y∥ is small enough, i.e. less than

⌊q/4⌋.
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res = c− bT x

= u · s + e′ + ⌊q/2⌋M −
[
(sT Aid)T + (eT

0 | eT
1 )T

]T
x

= u · s + e′ + ⌊q/2⌋M − sT Aidx− (eT
0 | eT

1 )x

= u · s + e′ + ⌊q/2⌋M − sT (u + y)− (eT
0 | eT

1 )x

= e′ − (eT
0 | eT

1 )x− sT y︸ ︷︷ ︸
error term

+⌊q/2⌋M ∈ R.

So we need to choose our parameters properly for the correctness of the Dual-Regev
encryption to hold. We can bound as follows the Euclidean norms of the quantities that
appear in the error term:

— ∥e′∥ ≤ tτ
√

n from Lemma 1.

— ∥eT
0 x0∥ ≤ 2t2τζnd from Lemma 1 and Theorem 14.

— ∥eT
1 x1∥ ≤ t2γζnd(k − ℓ) from Lemma 1 and Theorem 14.

— ∥sT y∥ ≤ t2τn5/2dσg
q1/r
√

r

√
(b2ℓ − 1)/(b2 − 1) from Lemma 1 and Theorem 14.

By substituting these bounds, we get the following constraints:

∥e′ − (eT
0 | eT

1 )x− sT y∥ ≤ ∥e′∥+ ∥(eT
0 | eT

1 )∥+ ∥sT y∥

≤ tτ
√

n + t2nd

[
ζ (2τ + γ(k − ℓ)) + τn3/2σg

q1/r

√
r

√
(b2ℓ − 1)/(b2 − 1)

]
≤ ⌊q/4⌋.

3.4.3 Parameters and Security

The following constraints, combined with the bounds of the norms above, must be met
to ensure the correctness:

— The Gaussian parameter σg used for the G-sampling in the ApproxSamplePre al-
gorithm must verify σg ≥

√
2b · (2b + 1) ·

√
log(2nw(1 + 1/ϵ))/π (see [GM18], Corol-

lary 3.1).

— The Gaussian width for preimage sampling ζ must follow the condition ζ >√
(σ2

g + 1)s2
1(R) + η2

ε(Znm), knowing that s1(R) < 1.1σ(
√

2nd +
√

nw + 4.7) with
high probability (see Chapter 2), where s1(R) is the spectral norm of the trapdoor
R.
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— The Gaussian width for approximate trapdoor generation σ must verify σ > 4 ·
4 1

nd
√

n to ensure the public matrix A we use is statistically close to uniform (see
[LPR13], Corollary 7.5).

— We choose to set the Gaussian parameter γ of the Gaussian error e1 ∈ Rw as
γ2 = σ2∥e0∥2 + 2nt2σ2τ 2.

3.4.3.1 Concrete Security

To assess the concrete security of each parameter set of our scheme, we estimate the
pseudorandomness of the public-key (corresponding to the Module-LWE security) and the
hardness of breaking AISIS. The estimation of the Module-LWE security is done with the
Module-LWE estimator from [APS15] with BKZ as the reduction model. We approximate
our instances by an instance of an unstructured LWE problem in dimension nd. We follow
a very pessimistic core-SVP hardness, where the cost of a BKZ algorithm with blocksize
κ is taken to be the cost of only one call to an SVP oracle in dimension κ. For the AISIS
problem, we follow the approach of [CGM19] which consists in computing the smallest
block size achieving the target root hermite factor corresponding to forging a signature.

3.4.3.2 Asymptotic Security

We prove the asymptotic security of our scheme, which is stated in the following
Theorem 15.

Theorem 15 The IBE construction with parameters n, d, m, q, k, ℓ, σ, α, ζ, τ and γ,
chosen as in the above description, is IND-sID-CPA secure in the standard model
under the hardness of Module-LWEn,d,q,τ .

Proof. The proof proceeds in a sequence of games Gi where the first game G0 is identical
to the original IND–sID-CPA game. In the last game G2 in the sequence, the adversary
has no information left about the initial message and hence has advantage zero. We then
show that a PPT adversary cannot distinguish between the intermediate games, which
will prove that the adversary has negligible advantage in winning the original one.

Game G0. This is the initial IND-sID-CPA game between an adversary A and an IND-
sID-CPA challenger.
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Game G1. In this game, we change the way the challenger generates the public matrix A

by adding information about the identity id∗ that A targets for his attack. In Game 0, A

was generated thanks to ApproxTrapGen1(0, σ), together with the associated trapdoor R.
We had A = [ Ā −ĀR ]. The public matrix A is now generated in G1 thanks to the algo-
rithm ApproxTrapGen1(−Hid∗ , σ), so that we have A = [ Ā −Hid∗F − ĀR ] ∈ Rd×m

q .

This matrix A is statistically indistinguishable from a uniformly random matrix.
The challenger answers A’s private key queries on identities id ̸= id∗ by call-

ing Extract((A, u), R, id) and then using ApproxSamplePre(Aid, R, Hid, u, ζ). We have
Aid = [ Ā (Hid −Hid∗)F − ĀR ] and Hid −Hid∗ is invertible because of the FRD con-
struction, which allows the challenger to get a private key associated to the identity id.

Game G2. This game is identical to G1 except that the challenge ciphertext C∗ is
chosen as a uniformly random element in Rm+1

q instead of being chosen by calling
Encrypt((A, u), id∗, Mb∗).

Reduction from Module-LWE. We show that G2 and G1 are computationally indistinguish-
able for the adversary A under the Module-LWE assumption.

Suppose A has a non-negligible advantage in distinguishing G2 and G1. We will use
A to construct a simulator B who will be able to solve the Module-LWE problem with
non-negligible advantage.

The simulator B receives m̄ + 1 samples (Ai, bi)0≤i≤m̄ with Ai ∈ Rd
q and bi ∈ Rq

as an instance of the decisional Module-LWE problem. The simulator also receives the
identity id∗ targeted by the adversary A. The simulator sets A′ = (A1, . . . , Am̄) ∈ Rd×m̄

q

and b′ = (b1, . . . , bm̄) ∈ Rm̄
q and then runs ApproxTrapGen1(−H id∗ , σ) to get A =

[ A′ −H id∗F −A′R ] together with the trapdoor. Next, B sets u = A0 ∈ Rd
q and he

sends (A, u) to A as the master public key. Then, B answers A’s private key queries as
in G1.

Afterward, the adversary outputs two plaintexts M0, M1 and sends them to B. The
simulator generates a random bit b∗, and the challenge ciphertext C∗ = (b∗, c∗) as follows:

b∗ = (b′T | − b′T R + êT )T , c∗ = b0 + ⌊q/2⌋Mb∗ ,

where ê← DRw,µ for some real µ, that is explicited below.

Samples from the LWE distribution. If the Module-LWE samples are drawn from the
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Module-LWE distribution, we have:

b′T = sT A′ + e′T and b0 = sT A0 + e0,

for some s ∈ Rd
q , e′ ← DRm̄,τ and e0 ← DR,τ . Therefore, the first part of the ciphertext

is b∗ = Aid∗ T s + (e′T | − e′T R + êT )T and the second part is c∗ = sT A0 + e0 + ⌊q/2⌋Mb∗ .
Then, for a fixed error e′, the term −e′T R is distributed as DRw,σ||e′|| since E[e′T R] =

e′TE[R] = 0 and cov(e′T R) = σ2e′T e′Iw = σ2||e′||2Iw by linearity of expectation and
bilinearity of covariance. Moreover, the random variable ê follows the Gaussian distribu-
tion DRw,µ and is independent from the random variable e′T R. Therefore, −e′T R + ê

is indistinguishable from a sample drawn from the distribution DRw,γ for µ satisfying
γ2 = (σ||e′||)2 + µ2.

Then, the challenge ciphertext (b∗, c∗) follows the same distribution as in G1.

Samples from the uniform distribution. If the Module-LWE samples are drawn from the
uniform distribution, the ciphertext challenge also looks uniform as in G2.

Finally, the adversaryA outputs a guess b. Because we supposedA has a non-negligible
advantage in distinguishing G1 and G2, if b = b′ with overwhelming probability, the simu-
lator concludes that the challenged instance was drawn from the Module-LWE distribution.
Otherwise, B concludes that the Module-LWE instance was drawn from the uniform dis-
tribution.

3.4.4 Implementation

Our IBE proof relies on a statistical trapdoor instantiation. Although the size of
the parameters increases consequently, the use of approximate trapdoors allowed us to
mitigate this loss in efficiency induced by the use of a statistical instantiation. In order
to ensure decryption correctness, we also need to use a large modulus. This leads us to
perform calculations carefully on 64-bit integers, so as not to affect our scheme efficiency.
The IBE also makes use of a small-norm encoding, instead of the low-degree encoding
used in Chapter 2, to ensure that the noise is still not too large in order to decrypt. The
encoding we use sets constraints on the structure of the ring Rq which is not compatible
with the NTT for polynomial multiplications. Instead, we use a "partial NTT" based on
[KLS18] results, which reduces multiplication in Rq to multiplication in smaller rings.
Finally, the sampling algorithms have been adapted to the approximate setting.
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The scheme is implemented in C, inheriting the modularity of the implementation
presented in Chapter 2. It relies on several basic blocks that can be swapped out: the
arithmetic over Zq and Rq, a pseudorandom number generator, and a (constant-time)
sampler of discrete Gaussian distributions over Z. To generate our specific discrete Gaus-
sian distributions, we make use of the following building blocks: an AES-based pseudoran-
dom number generator (implemented using AES-NI instructions for x86 architectures),
and a sampler of discrete Gaussians over Z similar to Karney’s sampler [Kar16]. We chose
this sampler as it can generate samples in constant time, independently of the center,
Gaussian parameter, and output value. All the computations that deal with non-integers
are carried out with floating-point operations that do not involve subnormal numbers. We
rely on results from [KLS18, Lemma 3] to reduce multiplications in Rq to polynomials
multiplications in rings of the form Zq[X]/⟨Xn + 1⟩. The CRT reduction we used then
allowed us to speed up polynomial arithmetic in Rq.

3.5 Performance and Comparison

In Table 3.1, we show some applicable parameter sets together with their concrete
bit security using the Module-LWE estimator from [APS15] with BKZ as a reduction cost
model. All the algorithms comprising the IBE over module lattices are more efficient
than their exact counterpart at the same security level. This improvement concerns in
particular Setup and Extract which are optimized by a factor ≈ 1.5.

As expected, the 4 algorithms are more efficient for low values of d. Concerning the
Decrypt algorithm, its execution time relies mostly on the value of n rather than d. Our
timings have been obtained on an Intel i7-8650U CPU running at 4.2 GHz. We provide
concrete parameter sets and the associated concrete results in Table 3.1.
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⌈logb q⌉ (n, d) ℓ ζ Setup Extract Encrypt Decrypt M− LWEn,d,q,τ

58 (256, 4) 0 1137729 203.52 56.88 17.69 2.72 81
58 (256, 4) 8 1068989 174.94 49.82 15.00 2.40 80
58 (256, 4) 15 1004226 152.70 41.57 12.79 2.19 78
60 (512, 3) 0 1398812 210.85 67.28 19.20 4.06 110
60 (512, 3) 8 1315427 189.35 59.33 17.13 3.80 109
60 (512, 3) 15 1236981 160.33 53.39 14.00 3.22 107

Table 3.1 – Proposed IBE parameters for our IBE with different pairs of polynomial ring
dimension n and rank d, for different modulus sizes and taking σg = 54.9, σ = 64.1. σg is
the Gaussian parameter for the G-sampling, σ is the Gaussian width of the trapdoor R
used in the Setup algorithm and ζ is the standard deviation for the Gaussian preimage
sampling in the Extract algorithm. Timings in columns Setup-to-Encrypt are given in ms.

We also compare our IBE performance with the IBE presented in Chapter 2, which
corresponds to the case ℓ = 0, that is to say the use of exact trapdoors instead of ap-
proximate ones. We observe that for a fixed pair (n, d), the larger ℓ is, the better timings
are. Overall, the use of approximate trapdoors allows to obtain better timings for all the
algorithms comprising the IBE scheme.
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Chapter 4

IMPROVING EFFICIENCY USING NTRU

LATTICES

This chapter’s content is mainly based on a joint work [IPR23] with Malika Izabachène
and Adeline Roux-Langlois. The corresponding implementation is available at https:
//github.com/lucasprabel/approx_lattice.
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Chapter 4 – Improving Efficiency Using NTRU Lattices

4.1 Introduction

4.1.1 Presentation

As we have seen in Chapter 2 and Chapter 3, schemes based on structured lattices
greatly benefit from the underlying polynomial structure, to the point that they can
become faster than some widely deployed cryptosystems based on classical assumptions
and can achieve reasonably small parameter sizes. But with the future deployment of
post-quantum cryptography getting closer, it is important to explore new lattice-based
cryptosystems which would help to further improve the efficiency of those schemes.

This chapter deals with the study of NTRU lattices and the efficiency (in terms of
parameter sizes and running time), implementation perspectives and concrete security of
cryptographic schemes based on the NTRU hardness assumption.

My work starts with a variant of NTRU, called iNTRU, which was introduced in
[GGH+19]. This assumption can be seen as an inhomogeneous variant of NTRU: basi-
cally, the matrix version of iNTRU asks to distinguish between A ∈ Zn×m

q defined as
A = S−1(G−E) mod q (where S ∈ Zn×n

q is a random invertible matrix, E is a low-norm
matrix and G is the gadget matrix) from a matrix chosen uniformly at random in Zn×m

q .
Because the use of gadget trapdoors is not directly compatible with the NTRU hardness
assumption, I used that particular variant of NTRU in order to build an identity-based
encryption scheme based on the [MP12] paradigm. This allows to obtain a more efficient
IBE than the one presented in Chapter 3, in terms of timings and parameter sizes. This
new scheme also resulted in an implementation, making it possible to assess its timings
performance and to compare it with the previous IBE presented in this manuscript.

Afterward, I worked on analysing the concrete security of cryptographic schemes based
on this iNTRU hardness assumption. Because this new problem has been introduced re-
cently, the literature is still scarce on this subject, hence the importance of carrying
out detailed analyses of its practical security. I was more particularly interested in over-
stretched attacks. Those attacks were introduced in [KF17] in the case of NTRU lattices,
and applied to cryptosystems that need a large modulus q compared to the dimension 2n

of the lattice underlying the scheme. Thus, in this chapter, I analyze the possibility of
extending these overstretched attacks to iNTRU, based on recent results from [DvW21],
the later article dealing with NTRU instances.
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In addition, I present a work concerning the resolutions of NTRU equations, which are
involved in particular in several cryptosystems such as Falcon [FHK+17] or BAT [FKP+22],
during the key generation phase. The objective is to investigate techniques for effectively
solving NTRU equations, when working with number fields that don’t admit a subfields
tower. In this case, solving these equations efficiently as presented in [PP19] using the
field norm and the subfield structure is no longer possible, and other solutions must be
found. Another goal is also to avoid floating point arithmetic during the reduce phase of
the NTRU equation solving algorithms, in order to get an efficient implementation.

4.2 The DLP-IBE Scheme

While the first signature schemes based on NTRU lattices were proven to be insecure,
Ducas, Lyubashevsky and Prest [DLP14] brought those specific lattices in the [GPV08]
framework, thus constructing proven secure schemes: a signature and an identity-based
encryption scheme. By using the structure of NTRU lattices, [DLP14] has shown that
GPV-based schemes can be made efficient and practical for lattice-based cryptography.

Their signature would later constitute an important basis for Falcon [FHK+17], se-
lected by the NIST in 2022 as a post-quantum cryptography standard for digital signa-
tures.

4.2.1 The Scheme

In the [DLP14] scheme, operations take place over the polynomial rings R =
Z[X]/(XN + 1) and Rq = Zq[X]/(XN + 1). Here, N is a power of 2 and q is a prime con-
gruent, verifying q = 1 mod 2N . This latter equality implies that the polynomial xN + 1
splits into N factors, thus allowing efficient computations over the ring Rq.

As explained above, the security underlying the DLP-IBE scheme comes from the NTRU
as well as the Ring-LWE hardness assumptions (see Section 1.2.3.2). We give below a full
description of the four algorithms comprising the DLP-IBE [DLP14] scheme.

The Setup algorithm outputs the master public key, which is a polynomial h ∈ Rq

and the master secret key B, which can be seen as a "good" basis of the 2N -dimensional
public NTRU lattice.
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Algorithm 10 Setup(N, q)

1: Let σf = 1.17
√

q
2N

2: Sample f, g ← DN,σf

3: Let Norm = max
(
∥(g,−f)∥,

∥∥∥ gf̄
f f̄+gḡ

, gḡ
f f̄+gḡ

∥∥∥). If Norm > 1.17√q, go back to Step 2
4: Compute ρf , ρg ∈ R and Rf , Rg ∈ Z such that ρf ·f = Rf mod xN +1 and ρg ·g = Rg

mod xN + 1. If gcd(Rf , Rg) ̸= 1 or gcd(Rf , q) ̸= 1, go to Step 2
5: Compute u, v ∈ Z such that u ·Rf + v ·Rg = 1
6: Set F = −qvρg and G = −quρf

7: Let k = ⌊F∗f̄+G∗ḡ
f∗f̄+g∗ḡ ⌉ ∈ R

8: Let F ←− F − k ∗ f and G←− G− k ∗ g

9: Set h = g ∗ f−1 mod q and B =
g −f

G −F


10: return mpk = h ∈ Rq and msk = B

The standard deviation σf of the Gaussian distribution from which the polynomials
f and g are sampled is chosen to ensure that E[∥b1∥] = 1.17√q, which is the bound
computed from heuristics in [DLP14] for how short the standard deviation can be set
using the Klein sampler (described in Section 1.3.2.5). In Step 3 of the algorithm, a bound
on the Gram-Schmidt norm of the matrix B is computed, and the algorithm returns to
Step 2 if it is not small enough. Indeed, the Gram-Schmidt norm of the master secret
key B needs to be small because it has an impact on the size of the user’s secret keys
computed by the Extract algorithm, thus impacting the security and the efficiency of the
scheme. Then, the algorithm uses an extended Euclidean algorithm to compute F, G such
that f ∗G−g∗F = q. We give more detailed explanations about this step in Section 4.3.2.
Then, F and G are reduced by computing F − k ∗ f and G− k ∗ g where k ∈ R is defined
as k = ⌊F∗f̄+G∗ḡ

f∗f̄+g∗ḡ ⌉, where f̄ (resp. ḡ) is the adjoint of f (resp. g) defined in Definition 4.2.1.

Definition 32 Let f ∈ C[X]/(ϕ) where ϕ ∈ Q[X] is a monic polynomial with distinct
complex roots (zj)j ∈ C. The adjoint of f , denoted f̄ , is the unique polynomial
f̄ ∈ C[X]/(ϕ) such that for each zj, we have:

f̄(zj) = f(zj).

This step simply consists in a straightforward generalization of the nearest plane algo-
rithm from Babai, and allows to compute a solution (F, G) with small norm of the NTRU
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equation:

f ∗G− g ∗ F = q.

Finally, the algorithm outputs h = g ∗ f−1 mod q as the master public key and the
basis B as the master secret key.

For the Extract algorithm, the public key associated to an identity id is H(id), where
H is a cryptographic hash function mapping identities to Zq[x]/(xN + 1). Then, a secret
key associated to the identity id is computed using the GPV preimage Gaussian sampling
algorithm KleinSampler, and consists of a polynomial s2 verifying s2h+s1 = H(id), where
s1 is another polynomial with small coefficients. The KleinSampler algorithm has been
defined in Algorithm 2.

Algorithm 11 Extract(B, H, id)
1: Set t = H(id)
2: Set (s1, s2) = (t, 0)−KleinSampler(B, (t, 0), σ)
3: return skid = s2

Finally, the Encrypt and Decrypt algorithms are based on the classical Dual-Regev
encryption scheme [LPR13], already mentioned multiple times in this manuscript. Basi-
cally, a user public key consists of h and t = H(id) and it is used to encrypt a message
m ∈ R with binary coefficients, by computing u = r ∗ h + e1, v = r ∗ t + e2 + ⌊q/2⌋ · k
and c = m⊕H ′(k) where the hash H ′(k) of a uniformly sampled element k is used as a
one-time pad with the message m.

Algorithm 12 Encrypt(h, id, m, H, H ′)
1: Sample r, e1, e2 ← {−1, 0, 1}N and k ← {0, 1}N

2: Set t = H(id)
3: Set u = r ∗ h + e1 ∈ Rq

4: Set v = r ∗ t + e2 + ⌊q/2⌋ · k ∈ Rq

5: Let v ←− 2l⌊v/2l⌋
6: return (u, v, c) = (u, v, m⊕H ′(k))

Finally, with a proper choice of parameters, the receiver can decrypt the ciphertext
(u, v, c) using his secret key skid = s2, which allows him to recover the key k by rounding.
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Algorithm 13 Decrypt(skid, (u, v, c))
1: Set w = v − u ∗ s2

2: Set k =
⌊

w
q/2

⌋
3: return c⊕H ′(k)

4.2.2 Parameters and Security

For the sake of comparison with the IBE based on a family of NTRU lattices that will
be presented in Section 4.5, the original suggestion of parameter sets by the authors of
[DLP14] are given in Table 4.1.

Table 4.1 – Sets of parameters proposed in [DLP14; MSO17] for the DLP-IBE scheme.

Parameter Set (N, ⌈log2(q)⌉) Security Level Root Hermite Factor
0 (512, 23) 1.0075 80
1 (512, 24) 1.0079 80
2 (512, 26) 1.0085 < 80
3 (1024, 18) 1.0038 192
4 (1024, 20) 1.0039 192
5 (1024, 22) 1.0043 < 192

The concrete security level of the parameter sets proposed in [DLP14; MSO17] is
estimated using the root Hermit factor [GN08; DDL+13]. This quantity, denoted δ, allows
to measure the hardness of a given lattice problem. In [DLP14], the authors use that
δ ≈ 1.007 gives an estimation of 80 bits of security and for δ < 1.004, 192 bits of security
is guaranteed.

For the problem of finding a vector v in a lattice Λ of dimension n and whose norm is
larger than the nth root of det(Λ), the root Hermite factor is defined as δn = ∥v∥

det(Λ)1/n
.

In [DDL+13], the authors made some experiments that lead them to estimate the value
of the root Hermite factor for the problem of finding an unusually-short vector in a NTRU

lattice as δn =

√
n/(2πe) det(Λ)1/n

0.4∥v∥ .

The security analysis carried out in [DLP14] then used those equalities to estimate the
concrete security of their DLP-IBE scheme. They distinguish 3 different vulnerable parts
in their IBE, for which they compute the value of the associated root hermite factor.
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The first one involves the master public key h of the scheme. Given the description
of the Setup algorithm, h is generated as a NTRU polynomial h = g ∗ f−1. The best
attacks to distinguish such a polynomial from a random one then consists in finding 2
short polynomials f, g such that h ∗ f − g = 0 mod q. This is equivalent to finding an
unusually short vector (f, g) in a NTRU lattice of dimension 2N and derterminant qN .
Given the above expression of the root Hermite factor for such a problem, we thus have
δ = (

√
N/1.368) 1

2N .
The second one involves the user secret keys skid. A secret key vector (s1, s2) has a

norm of σ
√

2N where σ = 1.17ηϵ(Z) · ∥B̃∥, and thus, given the above expression of the
root Hermite factor, we find δ2N = σ

√
2N√
q

.
Finally, the last one concerns the encryption part of the scheme. In order to break

the CPA-security of the scheme, the best attacks consists in recovering the errors e1

and e2 sampled in the Encrypt algorithm. Knowing a ciphertext (u, v, c), we then have
(t ∗ h−1) ∗ e1 − e2 = (t ∗ h−1) ∗ u − v mod q, which is equivalent to the problem of
finding a vector (e1, e2, 1) of dimension 2N + 1 in a NTRU lattice of dimension 2N + 1
with determinant qN . Again, using the above expression for the root Hermite factor gives
δ = (0.74√q) 1

2N .
After having considered these 3 different cases and pointing out the underlying lattice

problems, the computations of the root Hermite factor for each case highlights the fact
that the attack against the CPA-security of the scheme is the most vulnerable part.
Therefore, the security level displayed in Table 4.1 comes from the computations of the
root Hermite factor δ = (0.74√q) 1

2N .

4.3 Solving the NTRU Equation

In the DLP-IBE scheme presented in Section 4.2, the key generation is the most costly
component, mainly due to the need to solve the NTRU equation, which consists in finding
a small (F, G) satisfying

fG− gF = q mod xN + 1.

Therefore, in this section, we focus on the resolution of NTRU equations, which are
involved in particular in several cryptosystems such as the DLP-IBE scheme as we’ve seen,
but also Falcon [FHK+17] or BAT [FKP+22]. Resolving NTRU equation is generally done
during the key generation phase of those schemes. This phase aims to generate short
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polynomials f and g and then solve the NTRU equation to obtain F and G, which define

the trapdoor basis Bf,g =
g −f

G −F

.

Solving this kind of equation is the main bottleneck involved in the NTRU key gener-
ation algorithm. This essentially comes from the large coefficients of the intermediate F

and G. However, many efforts have been made those last few years toward accelerating
this step of the key generation phase ([FHK+17; PP19]).

Another interesting question regarding this problem is to investigate techniques for
effectively solving NTRU equations when working with number fields that don’t admit a
subfields tower. In this case, using a solver such as the one presented in [PP19], which
uses the field norm and the subfield structure is no longer possible, and other solutions
must be found.

Let’s start by presenting classical and more recent methods which aim at efficiently
solving NTRU equations.

4.3.1 HNF Method

First, we recall a method, exposed in particular in the Extended Euclid algorithm in
Dedekind Domains from [Coh93] by Henri Cohen and used for example in the revised
NTRUSign key generation algorithm of [SS13].

We denote K a number field of degree d = [K : Q] and OK its ring of integers.
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Algorithm 14 CompleteBasis(M, (c1, d1))
Input: A rank 2 module M = a1b1 ⊕ a2b2 and a submodule (c1, d1).
Output: A module (c2, d2) ⊂M such that c1d1 ⊕ c2d2 =M

1: Let B = [b1, b2] and (u, v)←− B−1d1

2: if u = 0 then x = 0 and y = 1/v

3: if v = 0 then x = 1/u and y = 0
4: I ←− a Z-basis of ua−1

1 c1

5: J ←− a Z-basis of va−1
2 c1

6: C ←− (I | J) the concatenation of the matrices I and J

7: Compute the HNF decomposition of C: CZ = (Id | 0). Let’s denote (zT
I , zT

J ) the
first column of Z

8: x′ ←− the OK element corresponding to JzJ

9: x←− x′/v and y ←− −(1− x′)/u

10: return (a1a2c
−1
1 , xb1 + yb2)

This method doesn’t exploit the presence of a tower of subfields, and uses the compu-
tation of Hermite Normal Form (HNF) in step 7, which makes it not so efficient, having
to deal with big integers. Indeed, this algorithm has quadratic space and quasi-cubic
time complexities which represents a significant drawback for the efficiency of the key
generation algorithm.

4.3.2 Resultant Method

Another approach makes use of the computations of resultants. We give the definition
of the resultant of two complex polynomials in Definition 33.

Definition 33 (Resultant) Let f, g ∈ C[X] be two polynomials of degree n and m.
We assume that f (resp. g) can be written as f(x) =

n∑
i=0

fix
i = fn

n−1∏
i=0

(x− αi) (resp.

as g(x) =
m∑

i=0
gix

i = gm

m−1∏
i=0

(x− βi)). Then, the resultant of f and g is defined as:

Res(f, g) = fm
n gn

m

∏
i,j

(αi − βj) = fm
n

∏
i

g(αi) = (−1)nmgn
m

∏
i

f(βi).

We give a brief description of the method below, presented in [PP19]. It is used in
different cryptographic schemes such as NTRUSign [HHP+03], the original Latte scheme
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[CG17] or DLP-IBE [DLP14] that we’ve presented in Section 4.2.

In the following algorithm, we work in the ring R = Z[X]/(ϕ) where ϕ can be any
monic irreducible polynomial over Q[X].

Algorithm 15 NTRUSolveResultant(f, g)
Input: f, g ∈ Z[X]/(ϕ)
Output: F, G ∈ Z[X]/(ϕ) such that fG− gF = q

1: Compute Rf ∈ Z and s ∈ Z[X] such that sf = Rf mod ϕ

2: Compute Rg ∈ Z and t ∈ Z[X] such that tg = Rf mod ϕ

3: Compute the Bézout coefficients u, v ∈ Z such that uRf + vRg = δ where δ =
gcd(Rf , Rg)

4: if δ doesn’t divide q then abort
5: (F, G)←− (−(vq/δ)t, (uq/δ)s)
6: Reduce(f, g, F, G)
7: return (F, G)

Steps 1 and 2 make use of the extended Euclidean algorithm to compute the Bézout
coefficients s, s′, t, t′ ∈ Z[X] and Rf , Rg ∈ Z such that sf + s′ϕ = Rf and tg + t′ϕ = Rg,
but s′ and t′ don’t need to be stored. Then, in step 3, the gcd of Rf and Rg is computed,
with its Bézout coefficients u, v ∈ Z. In step 5, if δ is a divisor of q, it then provides a
solution to the NTRU equation.

However, while F and G verify fG − gF = q mod ϕ after step 5, the sizes of their
coefficients are too big and need to be reduced with respect to (f, g) for efficiency purposes,
hence the call to the Reduce subroutine in step 6. The Reduce algorithm was also used
during the Setup algorithm of the DLP-IBE scheme presented in Section 4.2. We recall
this subroutine in Algorithm 16. This simply consists in a generalization of the nearest
plane algorithm by Babai [Bab86].

124



4.3. Solving the NTRU Equation

Algorithm 16 Reduce(f, g, F, G)
Input: f, g, F, G ∈ Z[X]/(ϕ)
Output: F̃ , G̃ ∈ Z[X]/(ϕ) such that fG̃− gF̃ = fG− gF mod ϕ

1: Let (F̃ , G̃) = (F, G).
2: while k ̸= 0 do
3: Compute k = ⌊F∗f̄+G∗ḡ

f∗f̄+g∗ḡ ⌉
4: Let (F̃ , G̃) = (F̃ − kf, G̃− kg)

5: return (F̃ , G̃)

Nonetheless, Algorithm 15 also presents a quadratic space and quasi-cubic time com-
plexities, which makes it the main bottleneck of the efficiency of the NTRU key generation
algorithm. This reduces the performance of schemes like [HHP+03] or [DLP14] which rely
on that method. Furthermore, for some schemes like Latte [CG17], that require to solve
an NTRU equation during every extraction of a user secret key, this represents an all the
more significant drawback.

4.3.3 Using the Field Norm for Power-of-Two Cyclotomic Fields

Therefore, to gain in efficiency, schemes like Falcon [FHK+17] make use of a new solver
in its key generation process to compute the NTRU polynomials F, G from the sampled
polynomials f and g. Their technique exploits the tower of rings structure of the fields
they are working on, in order to deal with larger coefficients more efficiently.

This technique was introduced in [PP19], in which the authors present new methods
and algorithms for solving the NTRU equation. These algorithms result both from the
recursive application of the field norm to the classic NTRU solver NTRUSolveResultant
described in Section 4.3.2, and from improvements made to the calculations of resultants.
We give a definition of the field norm below.

Definition 34 (Field norm) If K is a number field, L a Galois extension of K
and Gal(L/K) the Galois group associated to L/K, then the field norm, denoted
NL/K : L −→ K (or simply N when clear from context) is defined on L by:

NL/K(f) =
∏

g∈Gal(L/K)
g(f).
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The improvement concerning the computations of the resultant comes from the obser-
vation that for integers p and m, we have Res(Φpm, f) = Res(Φm, N(f)).

When working in a power-of-two cyclotomic fields, for some n = 2k, we have Φ2n =
xn + 1. Taking p = 2 and m = n, we can then apply the above equality repeatedly, which
gives the following recursive algorithm to compute Res(xn + 1, f).

Algorithm 17 Resultant(n, f)
Input: f ∈ Z[X] and n = 2k

Output: The resultant Res(xn + 1, f) of f with xn + 1
1: if n = 1 then return f0
2: return Resultant(n/2, N(f))

But the main improvement presented in [PP19] concerning the NTRU solver comes
from recursively applying the field norm in the NTRUSolveResultant algorithm presented
in Section 4.3.2. We describe the recursive algorithm making using of the field norm below.

Algorithm 18 NTRUSolveTower(n, f, g)
Input: f, g ∈ Z[X]/(xn + 1) and n = 2k

Output: F, G ∈ Z[X]/(xn + 1) such that fG− gF = q

1: if n = 1 then
2: Compute the Bézout coefficients u, v ∈ Z such that uf−vg = δ where δ = gcd(f, g)
3: if δ doesn’t divide q then abort
4: (F, G)←− (vq/δ, uq/δ)
5: return (F, G)
6: else
7: (F ′, G′)←− NTRUSolveTower(n/2, N(f), N(g))

8: F ←−
( ∏

ϕ∈Gal(L/K)
ϕ(g)

)
F ′(x2) and G←−

( ∏
ϕ∈Gal(L/K)

ϕ(f)
)

G′(x2)

9: Reduce(f, g, F, G)

10: return (F, G)

With this new solver, exploiting the tower of subfields of the cyclotomic field we are
working on helps to reduce the space and time complexities. They are now quasi-linear,
and this new method thus represents an important improvement over the two solvers
presented previously. This comes from the fact that the degree of the polynomials is
divided by 2 after each recursion step.

126



4.3. Solving the NTRU Equation

We sum up the complexities of the 3 solvers we’ve described in Table 4.2.

Table 4.2 – Comparison of the complexities of 3 algorithms for solving the NTRU equation,
where n is the dimension of the underlying ring.

NTRU Solver Time Complexity Space Complexity
HNF ([Coh93]) Õ(n3) O(n2)

Resultant ([HHP+03]) Õ(n3) O(n2)
Tower ([PP19]) Õ(n) O(n log(n))

4.3.4 Tools for More General Fields

In order to have an efficient NTRU key generation algorithm for more general fields than
power-of-two cyclotomic fields (for which the NTRUSolveTower algorithm is not usable),
I studied in particular some implementation techniques which could help to speed up the
resolution of NTRU equations when used with a classical NTRU solver. Some of those
methods are presented below.

Residue Number System. The Residue Number System (RNS) allows to represent an
integer z by smaller integers (z1, . . . , zn) by using a base of coprime integers (m1, . . . , mn),
where zi = z mod mi is called the residue of z modulo mi. By doing so, it helps to get
rid of the large integers involved in the computations done by the NTRU solver.

Representing an integer z in RNS is straightforward, while going back from the RNS
representation to the standard representation is done using the Chine Remainder Theo-
rem. In the RNS representation, operations such as addition, subtraction or multiplication
are done very efficiently. Indeed, those operations can simply be performed for each moduli
mi. Therefore, it could help to speed up the computations of our NTRU solver. For other
operations in the RNS representation such as modular reduction, some results [BT15]
present particular methods which help to perform them efficiently.

NTT. Alongside the use of RNS, it is possible to use the NTT to represent polynomials.
As explained in [PP19], using RNS together with NTT representations means that a
polynomial f is replaced thanks to the RNS representation with n polynomials fi with
coefficients being integers modulo mj and we can then applied, depending on the number
field, the NTT representation to each of the fi.
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This further improves the efficiency of the classical NTRU solver when working on
more general number fields.

Rejecting solutions. The key generation algorithm will occasionally fail, for example
when the polynomial f is not invertible. As suggested in [PP19], we could also arbitrarily
reject a couple (f, g) during the key generation process if it implies slower future compu-
tations in our implementation of the NTRU solver. In this case, as long as the rejection
rate remains quite low, this could help improve further the efficiency of the key generation
algorithm. Doing so, a trade-off between the time complexity of the NTRU solver and the
rejection rate appears.

In [Por23], the authors thus explain that for some parameter sets for 3 different
schemes, BAT [FKP+22], Falcon [FHK+17] and Hawk [DPP+22], the NTRU solver fails
less than 36% of the time for n = 1024, in favor of greater efficiency.

4.4 A New Assumption: iNTRU

Given that NTRU cryptosystems are generally efficient in practice and allow to work
with compact parameters, we explored the possibility of using gagdet trapdoors, as de-
scribed in Chapter 2, together with the NTRU hardness assumption. Our goal was to then
obtain more efficient schemes in terms of timings and parameter sizes. In particular, we
wanted to improve the efficiency of the IBE scheme described in Chapter 3 in order to
close the gap between our IBE using gadget trapdoors and the DLP-IBE scheme, using
GPV trapdoors together with the NTRU hardness assumption.

However, this novel approach is not straightforwardly compatible with NTRU lattices
and in order to achieve the possibility of working with the NTRU hardness assumption
together with gadget trapdoors, we used a variant of the NTRU hardness assumption,
called iNTRU (for inhomogeneous NTRU), which was first defined in [GGH+19]. This
new scheme also resulted in an implementation 1, making it possible to assess its timings
performance and comparing it with the previous IBE described in Chapter 3 and with the
different existing IBE schemes of the literature ([DLP14] and [ZMS+21] in particular).

1. https://github.com/lucasprabel/approx_lattice
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4.4. A New Assumption: iNTRU

4.4.1 Definition

We first define the iNTRU hardness assumption, introduced in [GGH+19].

Definition 35 (iNTRUq,χ) Let k, q be integers and χ a distribution over R. The
input of the iNTRUq,χ problem is a vector a ∈ Rk

q which is either taken uniform in
Rk

q or either set as a = r−1(g + e) where (r, e) is drawn from χk+1. The goal is to
decide which is the case.

4.4.2 Hardness of iNTRU

In their paper, the authors from [GGH+19] showed a reduction of a matrix-variant
of iNTRU called MiNTRU from a non-standard Ring-LWE with a trapdoor oracle access
problem that they introduce. We adapted the reduction to the iNTRU problem as well.

First, let us define the n-secret LWE distribution as

{(A, B = SA + E) | A←− Zn×m
q , S ←− Zn×n

q , E ←− χn×m}

for some distribution χ.
In n-secret LWE, introduced in [GGH+19], we are given two matrices A, B ∈

Zn×m
q (m > n) with A a uniformly random matrix, and need to decide if B is also a

uniformly random matrix or is chosen as B = SA + E with a uniform S ∈ Zn×n
q and a

low norm E ∈ Zn×m
q . This problem becomes easy if we are also given a trapdoor for the

matrix A. But we don’t know any effective distinguisher if we are given a trapdoor for
the matrix B instead.

We define a trapdoor oracle for an arbitrary matrix B ∈ Zn×m
q as an oracle which

takes as input B, a vector v ∈ Zn
q and outputs a discrete Gaussian integer vector x ∈ Zm

conditioned on Bx mod q = v.
We then assume that the decision problem of this new version of LWE is still hard. In

[GGH+19], the authors show a hardness reduction from this version of LWE to the iNTRU
hardness assumption.

Proposition 4 (Adapted from [GGH+19]) Let n ∈ N, q < 2poly(n), χ be a distri-
bution over Zq and m ≥ n log q. Further, let q = ω(

√
m). Then, the pseudorandom-

ness of iNTRU with error distribution χm ·b−1(g) follows from the pseudorandomness
of Ring-LWE with a trapdoor oracle for b.
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Proof. We show a reduction from Ring-LWE with a trapdoor oracle for b to iNTRU with
error distribution χm·b−1(g). We are given the input (a, b) where a, b ∈ Rm

q as a Ring-LWE
instance. By calling k times the trapdoor oracle for b, we get X ←− b−1(g) ∈ Rm×k such
that bT X = gT mod q.

If (a, b) is generated uniformly and independently, then aX mod q is negligibly close
to uniformly random by the leftover hash lemma. Otherwise, we have b = sa + e when
(a, b) is sampled from the Ring-LWE distribution where s ∈ Rq is the secret. Therefore,
aT X = s−1(bT − eT )X = s−1(gT − eT X) = s−1(gT − e′) mod q. Hence, aT X mod q is
an instance of iNTRU with error distribution χm · b−1(g).

4.4.3 Approximate Trapdoors Based on iNTRU

In [GL20], Genise and Li introduced a family of Ring-SIS approximate trapdoors whose
pseudorandomness is based on the iNTRU problem. They showed that the efficient gadget-
based trapdoor framework of [MP12] exists on a family of NTRU lattices. Their trapdoor
scheme enjoys small secret keys and we have shown that it is compatible with applications
requiring tag matrices.

In their second trapdoor scheme, the matrix
−eT

rI

 is used as a f -trapdoor for[
1 a

]
=
[
1 r−1(fT + eT )

]
where (r, e) ←− χk−ℓ+1 is drawn from a distribution with

small entries and f is the approximate gadget vector.
We begin by describing the ApproxTrapGen algorithm which generates a public matrix

a together with an approximate trapdoor R, whose pseudorandomness is based on the
iNTRU problem.

Algorithm 19 ApproxTrapGen(σ)
1: Sample r ←− DR,σ, e←− DRm,σ

2: Set a′ = r−1(f + e) ∈ Rm

3: Set a = (1, a′) ∈ Rm+1
q

4: Set R =
−eT

rIm

 ∈ R(m+1)×m

5: return (a, R)

As when working with exact trapdoors, if we want to make use of approximate trap-
doors in order to build cryptographic schemes, we must ensure beforehand to have efficient
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sampling algorithms available. As with the exact setting, sampling approximate Gaussian
preimages will be done in 2 steps: the approximate F -sampling and the perturbating
sampling.

The following algorithm ApproxSamplePre shows how to perform efficient preimage
sampling algorithm for a public a when given an iNTRU approximate trapdoor R.

Algorithm 20 ApproxSamplePre(a, R, u, ζ)
1: Sample perturbation p← DRm+1,

√
Σp

2: Set coset v = (u− aT p) ∈ Rq

3: Sample z = (zT
1 , zT

2 )T ← DΛv
q (gT ),σg

4: Set x = p + Rz2 ∈ Rm+1

5: return x

The authors from [GL20] then got the following results, which can be compared with
those described in Theorem 14 from Chapter 3.

Theorem 16 Let r←χ and eT ←χm and set the trapdoor function description as
a =

[
1 a′

]
=
[
1 r−1(f + e)

]
∈ Rm+1

q . Let η = ηϵ(Zn×m) and σg = ηϵ(Λ⊥q (gT )) ≥
√

b2 + 1·ηϵ(Zn×m) for some ϵ ∈ (0, 1) and ζ ⪰
√

σ2
gRRT + η2Im+1. Then, the following

distributions are within a max-log distance 3 log 1+ϵ
1−ϵ
≤ 6ϵ

1−ϵ
:

{(a, x, u, y) | u←U(Rq), x←ApproxSamplePre(a, R, u, ζ), y = u− aT x ∈ Rq}

and {(a, x, u, y) | x←DRm+1,ζ , y←DR,σe mod q, u = aT x + y ∈ Rq}

for σe = σg

√
(b2ℓ − 1)/(b2 − 1).

4.5 Application to a NTRU-Based IBE Scheme

In this section, we introduce an IBE scheme based on the iNTRU hardness assumption,
instantiated using gadget-based approximate trapdoors over iNTRU trapdoors combined
with the Dual-Regev encryption scheme over rings.
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4.5.1 The Scheme

We recall that m = k − ℓ where k = ⌈logb q⌉ and that the approximate gadget vector
f is defined as fT =

[
bℓ bℓ+1 bℓ+2 · · · bk−1

]
∈ Rk−ℓ . Here, the master public key is

a vector a ∈ Rm+1
q generated with the ApproxTrapGen algorithm and whose pseudoran-

domness is based on the iNTRU problem. The master secret key r, e ∈ Rm+1 defines an
f -approximate trapdoor associated with a. An identity is mapped to an element in Rq

by the use of a hash function modeled as a random oracle in the security proof; the secret
key associated with an identity id is an approximate short vector x ∈ Rm+1.

We give below a full description of the four algorithms comprising our IBE:
— Setup(1n) −→ (mpk, msk):

— let a =
[
1 aT

0

]T
∈ Rm+1

q and R =
−eT

rIm

 ∈ R(m+1)×m output by

ApproxTrapGen(σ); and let H : {0, 1}⋆ → Rq a hash function;
— output mpk = (a,H) and msk = R.

— Extract(mpk, msk, id)→ xid = x2 ∈ Rm:
— define the tag hid = H(id) ∈ Rq;
— sample a short preimage x = (x1, x2

T )T ← ApproxSamplePre(a, R, hid, ζ);

— Encrypt(mpk, id, M)→ C = (b, c) ∈ Rm+1
q :

— compute hid = H(id); sample s←DR,τ , e1←DRm,τ , e2←DR,τ ;
— compute b = sa0 + e1 ∈ Rm

q and c = hid · s + e2 + ⌊q/2⌋M ∈ Rq, where a
message is encoded as M ∈ R2;

— Decrypt(xid, C)→M :
— parse xid as (x1, x2); and compute res← c− bT x2;
— for each i, if the coefficient resi ∈ Z is closer to ⌊q/2⌋ than to 0, Mi = 1,

otherwise Mi = 0.

4.5.2 Correctness

Following the description of the Encrypt algorithm, we have the following equality:

c− bT x2 = hid · s + e2 + ⌊q/2⌋M − (sa0 + e1)T x2

= s · x1 + saT
0 x2 − y · s + e2 + ⌊q/2⌋M − saT

0 x2 − eT
1 x2

= ⌊q/2⌋M + s · (x1 − y) + e2 − eT
1 x2.
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Furthermore, the following bounds apply:

— ∥s · x1∥ ≤ t2τζn from Lemma 1 and Theorem 16.

— ∥y · s∥ ≤ t2τσg

√
(b2ℓ − 1)/(b2 − 1)n from Lemma 1 and Theorem 16.

— ∥e2∥ ≤ tτ
√

n from Lemma 1.

— ∥eT
1 x2∥ ≤ t2τζnm from Lemma 1 and Theorem 16.

By substituting these bounds, we obtain:

∥s · (x1 − y) + e2 − eT
1 x2∥ ≤ ∥s · x1∥+ ∥y · s∥+ ∥e2∥+ ∥eT

1 x2∥

≤ t2τ
[
ζ (m + 1) + σg

√
(b2ℓ − 1)/(b2 − 1)

]
+ tτ
√

n

≤ ⌊q/4⌋.

Then, fhe following constraints combined with the errors norm constraints above
should be satisfied to ensure the correctness of the scheme:

— The Gaussian parameter σg used for the G-sampling in the ApproxSamplePre al-
gorithm must verify σg ≥

√
2b · (2b + 1) ·

√
log(2nw(1 + 1/ϵ))/π (see [GM18], Corol-

lary 3.1).

— The Gaussian width for preimage sampling ζ must follow the condition ζ >√
(σ2

g + 1)s2
1(R) + η2

ε(Znm), where s1(R) is the spectral norm of the trapdoor R

(see Chapter 2, Lemma 9).

4.5.3 Parameters and Security

Asymptotic Security. The following theorem states the IND-sID-CPA of our IBE
scheme.

Theorem 17 Our IBE construction with parameters n, m, q, k, ℓ, σ, σg, ζ, τ and γ is
IND-sID-CPA secure in the random oracle model under the hardness of iNTRUq,DR,σ

and Ring-LWEn,q,τ .

We now a give a proof of Theorem 17.

Proof. The idea of the proof is to simulate the view of the adversary given a Ring-LWE
instance (a′i, b′i) for 0 ≤ i ≤ m for which we build an attacker S who makes QH queries to
H.
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We construct a new simulation game given a0 = [a′1 . . . a′m]. S chooses an index i∗ at
random in [1, QH] and sets hid⋆ = a′0.

A hash query on input id is answered as follows: it first checks whether an entry
of the form (id, ∗, ∗, ∗) already exists in the hash table. If it is not the case, it re-
sponds with a value uid such that an approximated preimage for H(id) = hid is known
i.e: it samples x←DRm+1,ζ and yid←DR,σe such that yid = (xT

1 , x2
T )T

[
1 a0

]
, sets

hid = (xT
1 , x2

T )T
[
1 a0

]
− yid and adds the tuple (id, hid, x2, yid) in the hash table.

An extraction query for an identity id is responded as follows: assuming that an entry
for id already exists in the table, the corresponding x2 is output by S.

Note that the response to the extract queries is close to the response provided in the
real game by Theorem 16 if H is modeled as a random oracle and the way the public key
is generated is indistinguishable from that in the real game under the iNTRU assumption.

When the attacker outputs two messages m0, m1 and id∗, if id∗ has not been queried
to H, then S aborts; otherwise the challenger sets the challenger ciphertext as:

(b, c) =
([

b′1 ... b′m

]
, b′0 + ⌊q/2⌋mb

)
∈ Rm+1

q .

The attacker S outputs the same bit as A. Assuming no abort has occurred, they both
have the same advantage, which concludes the proof.

Concrete Security. In [GGH+19], the authors only propose a reduction from a non-
standard version of LWE to iNTRU. Therefore, in the absence of a thorough study on the
asymptotic and practical security of the iNTRU problem, which we leave for future work,
we have chosen to estimate the security of our iNTRU instances by relying on the existing
cryptanalysis on NTRU. As explained in [GGH+19], there is a syntactic link between
NTRU and iNTRU. To the best of our knowledge, there is no known reduction between
the two problems and the analysis of the iNTRU assumption might deserve additional
study. Still, we additionally consider the practical security of NTRU for our targetted sets
of parameters and we take into account the known cryptanalysis efforts on iNTRU.

For security estimation, we follow the same approach as in [GL20] to assess the concrete
security of the IBE scheme. We determine the hardness of our underlying lattice problem
by computing the root Hermite factor, introduced in [GN08]. Then, we use the following
heuristic relation between the blocksize κ and the root Hermite factor δ to find the smallest
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blocksize which would break our underlying lattice problem:

δ ≈ ( κ

2πe
(πκ)1/κ)1/2(κ−1).

Finally, our experiments estimate the running time of the BKZ algorithm to analyze
the concrete security of the scheme. This algorithm makes use of an oracle to solve the
Shortest Vector Problem (SVP) in smaller lattices. We chose the "Core-SVP" model in-
troduced in [ADP+16] in the sieving regime as the SVP oracle for the BKZ algorithm
with time complexity 20.292κ+16.4 in the blocksize κ.

Cryptanalysis in the Overstretched Regime. In [LW20], the authors adapt the
attack from [KF17] to iNTRU, which they apply to the parameters originally proposed
for the homomorphic encryption scheme from [GGH+19]. The attack, as in [KF17], can
be performed when the modulus q is much larger than the dimension of the associated
lattices (this situation is thus called the overstretched regime).

The targetted iNTRU instance in [LW20] has an error and secret that follow a uniform
ternary distribution. Following [KF17] attack, [LW20] uses the fact that a very dense
sublattice can be found in this NTRU-like lattice, because of the overstretched regime.
Relying on a lemma from Pataki and Tural [PT08, Lemma 1], they can bound the volume
of this sublattice and run a BKZ-reduction that leads to a full recovery of the iNTRU
secret.

More recently, [DvW21] has improved the asymptotic bound given by Kirchner and
Fouque [KF17] of q ≤ n2.783+o(1) by conducting a refined analysis which lowers the over-
stretched regime for NTRU with ternary distribution to the value q = n2.484+o(1). They also
provide a concrete analysis, computing a bound on the modulus q for which the attacks
exploiting the overstretched regime are more efficient than standard secret key recovery
attacks. The authors of [DvW21] ran experiments that allow the detection of the "fatigue
point", which separates these two regimes.

Therefore, a natural question would be to adapt the cryptanalysis carried out by
[DvW21] to iNTRU instances, just as [LW20] leveraged the analysis from [KF17] to attack
the cryptosystem [GGH+19] whose security is based on iNTRU. We found that the attack
from [LW20] could thus be improved in different ways, relying on the refined analysis from
[DvW21], which can indeed be adapted for the iNTRU instances we consider, where the
secret and the error both follow a Gaussian distribution. Indeed, in both cases, the crypt-
analysis in the overstretched regime requires performing lattice reductions on sublattices
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of a NTRU-like lattice, in order to retrieve the very dense sublattice.
We present in Section 4.5.4 a detailed adaptation of this attack to iNTRU. Concerning

the concrete parameters analysis of our IBE scheme, we took care to fall outside the range
of parameters affected by the attack in such overstretched regimes.

First, it could be adapted using, as done in [DvW21], strong lattice reduction with
progressive-BKZ instead of LLL/BKZ with blocksize 20 used in [LW20]. Preliminary ex-
periments also give [DvW21] concrete estimates for blocksize values and BKZ insertion’s
positions in order to make the attack successful. They also rely on a more precise Heuris-
tic than the GSA used in [LW20], that they call ZGSA. This heuristic, combined with
the Pataki-Tural lemma, brings a more precise estimation of the profile of a random lat-
tice basis after performing BKZ reduction. Finally, they propose a finer analysis of the
estimation of the sublattices’ volumes involved in the reduction phase of the attack. In
particular, they do not rely on binary distributions as [LW20] does to estimate volumes.

4.5.4 Cryptanalysis in the Overstretched Regime.

Therefore, we show how to adapt the cryptanalysis of the iNTRU instance carried out
by [LW20] against the scheme [GGH+19] defined over random binary secrets using the
recent analysis from [DvW21].

The considered attack handles iNTRU instances where the secret and the error follow
Gaussian distributions and is built on the refinements of the cryptanalysis of NTRU in
the overstretched regime provided by [DvW21]. The cryptanalysis carried out by [LW20]
and [DvW21] both use the fact that we are able to bound the volume of an appropriate
very dense sublattice of the iNTRU-lattice.

Let S ← χn×n be an invertible matrix and E ← χn×m where χ is some Gaussian
distribution with small standard deviation. The MiNTRU problem asks to recover S from
C ∈ Zn×m

q , where C is defined as

C = (G−E)S−1 mod q.

We will call this version the "matrix" version of iNTRU. In this version, the coefficients
of F and G are independently sampled from a discrete Gaussian and the matrices have
no additional structure. An additional "circulant" version is considered in [DvW21] where
the NTRU secret key (f , g) defines the matrices F and G by setting Fi,j := f(i+j mod n)

and Gi,j := g(i+j mod n). In this analysis, we only consider the matrix variant of iNTRU,

136



4.5. Application to a NTRU-Based IBE Scheme

as it was also the case in [LW20].
We’ll come down to square matrices by denoting C0 the n× n upper left block of the

matrix C. This allows us to define the following NTRU-like lattice:

Λq(C0) = {(u, v) | C0v − u = 0 mod q}.

One can notice that this lattice has the following public basis matrix B:

B :=
qIn C0

0n In

 ∈ Z2n×2n

which admits a dense sublattice of rank n defined by the following basis matrix

BS,E0 :=
In −E0

S

 ∈ Z2n×n

where E0 denotes the n× n upper left block of the matrix E.

Solving the iNTRU problem amounts to recovering the dense sublattice spanned by
BS,E0 .

Our asymptotic analysis will use several heuristics, which we define below.

Heuristic 1 (Gaussian heuristic). Let Λ be a lattice of rank n. Then,

λ1(Λ) =
√

n

2πe
· vol(Λ)1/n

Furthermore, we denote gh(n) :=
√

n
2πe

the expected value of the first minimum of a n-
dimensional lattice of volume 1.

Heuristic 2 (Geometric Series Assumption (GSA)). Let B = (b1, . . . , bd) be a BKZ-β
reduced basis. Then, the Gram-Schmidt vectors have norms satisfying:

log(∥b∗i ∥) = d− 1− 2i

2 · log(αβ) + log(det(B)
d

,

where αβ := gh(β)2/(β−1).

Heuristic 3 (Z Geometric Series Assumption (ZGSA)). Let B = (b1, . . . , b2n) be a basis
of a q-ary lattice of dimension 2n with n vectors (q, 0, . . . , 0), (0, q, 0, . . .), . . .. After a
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BKZ-β reduction, the Gram-Schmidt vectors have norms satisfying for all i ∈ [1, n]:

∥b∗i ∥ =


q if i ≤ n−m
√

q · α
2n−1−2i

2
β if n−m < i ≤ n + m− 1

1 if i ≥ n + m− 1

where αβ = gh(β)2/(β−1) and m = 1
2 + log(q)

2 log(αβ) .

If we want to apply Heuristic 1 to our iNTRU instance, then the expected minimal
length of the lattice spanned by B should be λ1(Λ(B)) ≈

√
nq

πe
. However, column vectors

of BS,E0 have a length of about
√

2nσ2 + (1− 2σ) since coefficients of S and E are
independently sampled from the discrete Gaussian χ of standard deviation σ. Indeed, if
we denote (a, s) the j-th column vector of BS,E0 for 1 ≤ j ≤ n, with a, s ∈ Zn, we have:

||(a, s)||2 = ||a||2 + ||s||2

= ||ã||2 + a2
j + ||s||2 where ã = (a1, . . . , aj−1, aj+1, . . . , an)

≈ σ2(n− 1) + (1− σ)2 + σ2n

= 2nσ2 + (1− 2σ).

In [DvW21], the column vectors of the secret basis have a length of about
√

2nσ2.
In their article, the authors state that recovering elements from the dense sublattice is
enough to be able to decrypt the messages. In the same way, our objective is to recover
those short vectors, so that we can retrieve the secret key S.

More precisely, we wish to identify the value of the blocksize β for which the BKZ
algorithm allows to either retrieve a vector as short as the secret key, or a vector from
the dense sublattice. As in [DvW21], we define two different events in order to distinguish
this standard regime from the overstretched regime. The Secret Key Recovery event SKRκ

happens when a vector as short as a secret key vector is inserted by BKZ in the basis at
position κ. The Dense Sublattice Discovery DSDκ happens when a dense lattice vector
longer than a secret key vector is inserted by BKZ in the basis at position κ.

During the lattice reduction of the cryptanalysis, the first event which occurs defines
into which regime we fall. For a fixed n, the "fatigue point", as it is called in [DvW21], is
the value of the modulus q where the overstretched regime starts.
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Kirchner-Fouque Estimate. First, let’s begin by computing estimates for the block-
size β following the analysis of [KF17] for our iNTRU instance.

The attack’s principle in the overstretched regime relies on the Lemma 10 by Pataki
and Tural [PT08] which allows to bound the volume of a sublattice. Indeed, the existence
of the n-dimensional dense sublattice Λ(BS,E0) gives a constraint on the Gram-Schmidt
norms of the basis vectors of Λ(B).

Lemma 10 (Pataki and Tural) Let L be a d-dimensional lattice and b1, . . . , bd

be a basis of L. Then, if L′ ⊂ L is a n-dimensional sublattice of L, we have:

vol(L′) ≥ min
J⊂[n]
|J |=n

∏
j∈J

||b∗j ||.

Let’s apply Lemma 10 with the 2n-dimensional lattice L = Λ(B) and the n-dimensional
sublattice L′ = Λ(BS,E0) ⊂ L. Then, the right hand side of the inequality gives the
volume of the projected sublattice Λ(B[n,2n[). Thus, we obtain:

vol(Λ(BS,E0)) ≥ vol(Λ(B[n,2n[)).

Following Heuristic 3, we assume that the norms of the Gram-Schmidt vectors form a
decreasing sequence. Thus, the right-hand side volume increases when we run the BKZ-β
algorithm with increasing blocksizes β. Indeed, we have:

2n∏
i=n+1

∥b∗i ∥ =
2n∏

i=n+m

∥b∗i ∥ ·
n+m−1∏
i=n+1

∥b∗i ∥

=
n+m−1∏
i=n+1

∥b∗i ∥

=
n+m−1∏
i=n+1

√
q · α

2n−1−2i
2

β

=
m−1∏
i=1

√
q · α

−1−2i
2

β

= q
m−1

2 · α−
1
2 (m−1)2

β

with αβ = gh(β)2/(β−1) and m = 1
2 + log(q)

2 log(αβ) .

Therefore, we can assume that for a large enough value of β, the right-hand side of
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the previous inequality will not be upper bounded by vol(Λ(BS,E0)) anymore, indicating
the presence of vectors from the dense sublattice.

This allows to get an estimate, similar to the one from [KF17], which states that the
DSD event happens when

vol(Λ(BS,E0)) < q
m−1

2 · α−
1
2 (m−1)2

β . (4.1)

By Hadamard inequality, we have:

vol(Λ(BS,E0)) = | det(BS,E0)| ≤
n∏

i=1
∥xi∥ ≈ (

√
2nσ2 + (1− 2σ))n.

where xi denotes the i-th column vector from BS,E0 .

We are looking for an asymptotic estimate of the value of the blocksize β for which
the BKZ algorithm recovers a vector from the dense sublattice. Therefore, we want an
asymptotic bound on the blocksize β which implies the DSD event.

As in [DvW21], let’s write q = Θ(nQ), ||(a, s)|| = Θ(nS) (where (a, s) denotes a
column vector of BS,E0) and β = (B + o(1))n, for some unknown constants Q, S and B.
We are therefore looking for an asymptotic bound on B, involving Q and S, that leads to
the DSD event.

By definition, αβ = gh(β)2/(β−1) with gh(β) =
√

n
2πe

. Therefore, we have αβ =[
Bn
2πe

+ o(n)
]1/(Bn+o(n))

. Then, asymptotically, αβ ≈ (Bn)1/(Bn).
We also have by definition m = 1

2 + log(q)
2 log(αβ) . Therefore, asymptotically, m ≈ BQ

2 n.
Finally, the Hadamard inequality above gives that vol(Λ(BS,E0)) is upper bounded

by nnS+o(n). Moreover, we have q
m−1

2 · α−
1
2 (m−1)2

β = n
BQ2

8 +o(n). Therefore, solving Condi-
tion (4.1) gives B ≥ 8S

Q2 as an asymptotic estimate. The obtained bound for B is similar
to the Kirchner-Fouque estimate computed in [DvW21], associated to the condition the
blocksize β has to meet so that the DSD event happens.

Therefore, we get a similar asymptotic estimate when working with iNTRU instances
instead of NTRU instances, in the case where we follow the analysis from [KF17].

Ducas-van Woerden Asymptotic Estimate. In [DvW21], Ducas and van Woerden
run some experiments by making use of progressive BKZ up to blocksize 60 on their NTRU
lattice, for fixed values n and σ and for several moduli q. Then, they looked at when the
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BKZ algorithm triggered the SKRκ or DSDκ events.
They noticed that the DSDκ event appeared most of the time at positions κ = n+k−β

for 0 < k ≪ n. That is to say the BKZ algorithm selects w as a shortest vector in
L(B[κ:min(κ+β,2n)[) and lifts it to a full vector v ∈ L(B[0:min(κ+β,2n)[) which is then inserted
in B at position κ = n + k − β. Therefore, they we have πn+k−β(v) = w.

The resulting norm ||πn+k−β (v)|| is then close to the expected value we got when
assuming the norm of v is well balanced over all the vectors b∗1, . . . , b∗n+k, that is to say
||πn+k−β(v)|| is close to

√
β

n+k
||v||. Therefore, the inserted vector v must necessarily be

close to a shortest vector of the sublattice L(B)[1,n+k] ∩ L(BS,E0). Indeed, if it was not
the case, we could assume that the projection of such a shortest vector would have a
norm smaller than πn+k−β(v) and would have been inserted instead of v. This argument
gives a similar claim to the one from [DvW21], which provides an equivalent of their new
estimate:

Claim 1 (Ducas-van Woerden Estimate). Let v be a shortest vector of the sublattice
L(B)[1,n+k] ∩ L(BS,E0) for some 0 < k ≤ n. Then, the BKZ algorithm with blocksize
β triggers the DSD event when ||πn+k−β(v)|| < ||b∗n+k−β||.

In our case, working with iNTRU instances, let’s write LS,E0
∩[1,n+k] := L(B)[1,n+k] ∩

L(BS,E0) the intersected sublattice. In order to apply Claim 1, we want to bound
λ1(LS,E0

∩[1,n+k]). To do so, we start by looking at the volume of LS,E0
∩[1,n+k].

We recall a result from [DvW21], which can be seen as a generalization of Lemma 10.

Lemma 11 ([DvW21], Lemma 3.3) Let L denote a n-dimensional lattice and
b1, . . . , bn a basis of L. For s > 1 and for L′ ⊂ L a k-dimensional sublattice of L, we
denote d := dim(L[1,s] ∩ L′). Then, we have:

vol(L[1,s] ∩ L′) ≤ vol(L′) ·
(

min
I

∏
i∈I

||b∗i ||
)−1

.

where I ranges over all subsets of {s + 1, . . . , n} of size k − d.

Let’s assume, as in [DvW21], that the span of b1, . . . , bn and the span of LS,E0 behave
like random n-dimensional subspace. Then, we can assume with high probability that
they have a trivial intersection in the 2n-dimensional ambient space. Therefore, because
the dense sublattice LS,E0 is of rank n, we have dim(LS,E0

∩[1,n+k]) = k for all k ∈ {0, . . . , n}.
Then, let’s use this result to apply Lemma 11 for s = n + k and L := L(B) a 2n-
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dimensional lattice with basis b1, . . . , b2n and its sublattice L′ := LS,E0 of rank n. We get
the following Corollary 1.

Corollary 1 Let’s denote LC0,q an iNTRU lattice with a n-dimensional dense sub-
lattice LS,E0 such that dim(LS,E0

∩[1,n+k]) = k for some k ≤ 0. Then, we have:

vol(LS,E0
∩[1,n+k]) ≤ vol(LS,E0) ·

 2n∏
i=n+k+1

||b∗i ||

−1

.

To apply Corollary 1, we will use Hadamard inequality again to bound vol(LS,E0):
vol(Λ(BS,E0)) ≤ (

√
2nσ2 + (1− 2σ))n.

Applying Corollary 1 together with Heuristic 3 finally gives the following asymptotic
estimate.

Claim 2. Let’s write q = Θ(nQ), ||(a, s)|| = Θ(nS) (where (a, s) denotes a column
vector of BS,E0) and β = (B + o(1))n, for some unknown constants Q, S and B.
Then, the BKZ algorithm with blocksize β triggers the DSD event when

B = 8S
Q2 + 1 + o(1).

Proof. As before, let’s apply the Hadamard inequality: vol(LS,E0) ≤ ||(a, s)||n. Therefore,
given ||(a, s)|| = Θ(nS), we have:

log(vol(LS,E0) ≤ n log(||(a, s)||)

= n log(O(nS))

= Sn log(n) + O(n).

As above, we assume that dim(LS,E0
∩[1,n+k]) = k. Therefore, we can apply Corollary 1,

which gives:
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log(vol(LS,E0
∩[1,n+k]) ≤ ln vol(LS,E0))− ln

 2n∏
j=n+1+k

||b∗j||∗


≤ Sn log(n)− ln
 n+m−1∏

j=n+1+k

||b∗j||∗ ·
2n∏

j=n+m

||b∗j||∗
+ O(n)

≤ Sn log(n)−
n+m−1∑

j=n+1+k

log(||b∗j||) + O(n) according to the ZGSA Heuristic.

The ZGSA Heuristic also gives log(||b∗j||) = log(√q · α
2n−1−2j

2
β ). Moreover, log(αβ) =

1
NB log(N) + O( 1

N
), which finally gives

log(||b∗j||) = 1
2

[
Q + 2n− 1− 2j

Bn

]
log(n) + O(1).

Now, we can compute the sum:

n+m−1∑
j=n+1+k

log(||b∗j||) =
n+m−1∑

j=n+1+k

1
2

[
Q + 2n− 1− 2j

Bn

]
log(n)

=
m−k−1∑

j=0

1
2

[
Q− 2k + 2i + 1

Bn

]
log(n)

= 1
2 log(n)

[
(m− k)

(
Q− k + m

Bn

)]

= 1
2n log(n)

[
BQ− 2K

2 Q− B
2Q2 −K2

4B

]
+ O(n) because m = BQ2 n + O(n)

= 1
2n log(n)

[BQ− 2K
2

(
Q− BQ+ 2K

2B

)]
+ O(n)

= n log(n)
8B (BQ− 2K)2 + O(n).

Therefore,

log(vol(LS,E0
∩[1,n+k]) ≤ Sn log(n)− (BQ− 2K)2

8B n log(n) + O(n).

We use this bound in conjunction with Minkowski’s bound to get the following in-
equality on the first minimum of the intersected sublattice:
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log(λ1(LS,E0
∩[1,n+k])) ≤

(
−(BQ− 2K)2

8BK + S
K

+ 1
2

)
log(n) + O(1).

The projection of such a vector is detected by the BKZ algorithm at position κ = n+k−
β if its length is shorter than ||bn+k−β|| where log(||bn+k−β||) =

(
1
2Q+ B−K

B log(n)
)
+O(1)

according to the ZGSA Heuristic.
Combining this condition with the above bound on the first minimum of the intersected

sublattice gives us the following condition on B:

B ≥
2
√

(2S − K)2 +K2Q2 + 2(2S − K)
Q2 .

Choosing K = 4S
Q2+1 minimizes the right hand side of the inequality and reduces the

condition to

B = 8S
Q2 + 1 .

Therefore, Claim 2 allows to estimate the value of the fatigue point to q = n2.484+o(1),
and we got a similar result for iNTRU instances than the one presented in [DvW21], which
involved NTRU instances.

However, our asymptotic analysis needs to be backed up by additional experimental
results. I have adapted the implementation proposed by [DvW21] for iNTRU instances,
but our experiments concerning estimates on the size of the blocksize for different sets
of parameters are still in progress. Nonetheless, the asymptotic analysis above seems to
suggest that the attack for iNTRU instances in the overstretched regime is similar to that
on iNTRU instances, and that in particular, we have no particular loss of security working
with this variant of NTRU, in the case of overstretched attacks.

4.5.5 Implementation and Performance

Timings. Our timings have been obtained on an Intel i7-8650U CPU running at 1.9
GHz, and then scaled at 4.2GHz to compare ourselves with other schemes. Results are pro-
vided in Table 4.3. The use of the efficient gadget-based approximate trapdoor framework
together with the iNTRU hardness assumption allows us to obtain efficient algorithms.
The slowest of the 4 algorithms of the IBE scheme are the Setup and Extract algorithms,
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(n, q) ⌈log2(q)⌉ Setup Extract Encrypt Decrypt Bit security
(256, 1073741441) 30 1.01 2.13 0.39 0.03 64
(512, 1073741441) 30 2.12 3.79 0.74 0.06 115
(1024, 1073741441) 30 4.08 7.65 1.49 0.11 223

(256, 16777601) 25 0.78 1.66 0.23 0.02 35
(512, 16777601) 25 1.48 3.00 0.49 0.04 82
(1024, 16777601) 25 3.32 5.92 1.10 0.07 159

Table 4.3 – Timings of the operations for different values of n, given in ms from Setup to
Decrypt.

which correspond respectively to the approximate trapdoor generation and preimage sam-
pling phases of the scheme. However, the Setup algorithm is usually not performed often,
and the subroutine algorithms used by Extract for sampling are really modular, leaving
the way for possible future improvements. Moreover, our Setup and Extract algorithms
are competitive with other NTRU-based IBE (see Table 4.4 and Table 4.5).

Comparisons. We compare our IBE timings with the ones of [DLP14] (re-implemented
in [MSO17]) and with [ZMS+21], two IBE schemes whose security is based on the NTRU
hardness assumption. Our comparison experiments were carried out using equivalent pa-
rameters sets between the different schemes. In particular, we have been careful to use
equivalent module sizes and equivalent noise rates when performing Gaussian sampling.

Scheme (n, ⌈log2(q)⌉) Security level Setup Extract Encrypt Decrypt
[DLP14] (512, 26) < 80 3.84s 1.77 0.10 0.05
[DLP14] (1024, 26) < 192 23.93s 6.95 0.27 0.09

Our scheme (512, 25) 82 1.48 3.00 0.49 0.04
Our scheme (1024, 25) 159 3.32 5.92 1.10 0.07

Table 4.4 – Timings comparison of the different operations of our IBE scheme and the one
from [DLP14] (the timings are extracted from the [MSO17] article, scaled up to account
for CPU differences) for different parameter sets. The timings are given in ms, except for
the Setup algorithm from [DLP14], which is given in seconds.
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Scheme (n, ⌈log2(q)⌉) Security level Setup Extract Encrypt Decrypt
[ZMS+21] (1024, 24) 128 102 0.82 0.05 0.06
[ZMS+21] (2048, 25) 256 292 2.62 0.10 0.13
[ZMS+21] (1024, 36) 80 165 26.4 0.08 0.09
[ZMS+21] (2048, 38) 160 643 57.8 0.16 0.18

Our scheme (1024, 25) 159 3.32 5.92 1.10 0.07
Our scheme (2048, 25) 293 10.21 12.79 2.96 0.16
Our scheme (1024, 30) 191 4.08 7.65 1.49 0.11
Our scheme (2048, 30) 412 12.51 16.03 3.89 0.23

Table 4.5 – Timings comparison in ms of the different operations of our IBE scheme and
the one from [ZMS+21] for different sets of parameters.

We observe that we obtain better timings for the Setup algorithm than [DLP14] and
[ZMS+21] and for the Extract for some sets of parameters. Furthermore, our Decrypt
algorithm is slightly faster than [DLP14]. However, the Encrypt algorithm is less efficient
than theirs. The use of binomial distribution improves the timings for encryption. An
improvement can be obtained in our case by using the binomial distribution, but we need
more samples in our case which still affects performance for encryption; we make n(2+m)
calls to the integer Gaussian sampler while encryption in [DLP14] and [ZMS+21] can make
use of only 3n binomial sampling calls. As in [ZMS+21], our Extract algorithm is slower
than the Sign algorithm from the Falcon signature scheme [FHK+17]. Note also that for
a similar security level, Falcon can use smaller parameters than us.

We obtain an overhead in terms of parameter sizes compared to [DLP14] and
[ZMS+21], but the trapdoor generations rely on a different paradigm. However, for com-
pleteness, we provide comparisons with [DLP14] in Table 4.6 and with [ZMS+21] in Ta-
ble 4.7 in terms of parameters’ sizes.
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Table 4.6 – Parameters sizes comparison between our IBE and [DLP14] for different sets
of parameters at a similar security level, in Bytes.

Scheme (n, ⌈log2(q)⌉) Security mpk msk skid Ciphertext
[DLP14] (512, 23) < 80 1536 6144 1375 1625
[DLP14] (1024, 27) < 192 3584 14336 3375 3750

Our scheme (512, 25) ≈ 80 14720 16192 16192 16192
Our scheme (1024, 25) ≈ 192 32000 35200 35200 35200

Table 4.7 – Parameters sizes comparison between our IBE and [ZMS+21] for different sets
of parameters at a similar security level, in Bytes.

Scheme (n, ⌈log2(q)⌉) Security mpk msk skid Ciphertext
[ZMS+21] (1024, 36) 80 4608 18432 4608 9248
[ZMS+21] (1024, 24) 128 3072 12288 3072 6176
[ZMS+21] (2048, 25) 256 6400 25600 6400 12832

Our scheme (512, 25) > 80 14720 16192 16192 16192
Our scheme (1024, 25) > 128 32000 35200 35200 35200
Our scheme (2048, 25) > 256 64000 70400 70400 70400

Nonetheless, as stated in [CGM19], the use of approximate trapdoors instead of exact
ones helps us to reduce the sizes of the public key and signatures by up to two times.
Therefore, as expected, our obtained sizes for the master and the users’ private keys and
the ciphertexts are close to the ones of [GL20] whose signature scheme relies on the same
paradigm as our IBE scheme.
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CONCLUSION

T
he last few years have been particularly exciting for the development of lattice-
based cryptography. The announcement by the NIST of the candidates of its
post-quantum cryptography competition to be standardized is a particularly

good illustration of the interest and promise offered by lattice-based cryptography. It
has established itself as the most promising candidate among the major families of post-
quantum cryptography, offering a wide range of attractive features: strong theoretical
results for security such as worst-case to average-case reductions ; a broad spectrum of
advanced primitives such as identity-based encryption, signature with efficient protocols
or fully-homomorphic encryption ; sophisticated implementation techniques and detailed
concrete security analyzes of cryptosystems, . . .

The work conducted during my thesis allowed me to be part of the research works
that led to this variety of characteristics, and to contribute to the growth of lattice-based
cryptography.

Lattice Trapdoors on Modules. I presented in Chapter 2 the work I did on the
development and implementation of Gaussian preimage sampling techniques on module
lattices. Module lattices possess additional algebraic structure compared to unstructured
ones, which leads to a more compact representation of parameters and an improved run-
ning time of the algorithms. They also have a weaker algebraic structure compared to
ideal lattices, which translates in practice to a more flexible choice of parameters for cryp-
tographic schemes and more control over the trade-off between efficiency and security.
Thus, I worked on adapting different algorithms based on gadget trapdoors, such as the
trapdoor generation and Gaussian sampling algorithms, in the module setting. In order
to assess the performance of these algorithms, I also worked on a C implementation from
scratch. Finally, relying on these tools, as applications, I worked on two instantiations
and implementations of proven trapdoor-based signature schemes in the module setting,
and on an identity-based encryption scheme.
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Approximate Trapdoors and Applications. Chapter 3 follows on from the previous
chapter, by presenting my researches for new methods to improve the efficiency of crypto-
graphic schemes making use of gadget trapdoors. I worked on improving the efficiency of
the previous identity-based encryption scheme by making use of approximate trapdoors
instead of exact ones. The use of approximate trapdoors leads to the appearance of er-
ror terms which must be taken care of in the decryption phase of encryption schemes.
I worked on making use of those approximate trapdoors to design an identity-based en-
cryption scheme that can handle this error term while using tag matrices, and proposed a
concrete implementation of approximate trapdoor generation and approximate Gaussian
sampling algorithms, together with an implementation of this new identity-based encryp-
tion scheme, showing that the new scheme was more efficient than the counterpart IBE
using exact trapdoors.

NTRU Lattices. Finally, I presented in Chapter 4 my work concerning NTRU lattices.
I studied a variant of NTRU, called iNTRU, which allows to build cryptographic schemes
making use of gadget trapdoors, while the use of gadget trapdoors is not straightforwardly
compatible with the standard NTRU hardness assumption. I used that particular variant
of NTRU in order to build another identity-based encryption scheme based on the [MP12]
paradigm, in order to obtain a more efficient IBE in terms of timings and parameter
sizes. This new scheme also resulted in an implementation, making it possible to assess its
timings performance and comparing it with my previous IBE. I was also interested in the
concrete security of cryptographic schemes based on the iNTRU hardness assumption, the
literature being still scarce on this subject, this new problem having been introduced re-
cently. I was more particularly interested in overstretched attacks, introduced in [KF17],
which apply when the size of the modulus q is way larger compared to the dimension
2n of the underlying NTRU lattice. In addition, I have also worked on the resolutions of
NTRU equations, for which solvers are used during the key generation phase of several
cryptosystems such as Falcon [FHK+17] or BAT [FKP+22]. My goal was to investigate
techniques for effectively solving NTRU equations, when working with number fields that
don’t admit a tower of subfields. In this case, solving these equations efficiently as pre-
sented in [PP19] using the field norm and the subfield structure is no longer possible, and
other solutions must be found. I was also interested in the possibility of avoiding floating
point arithmetic during the reduce phase of the NTRU equation solving algorithms, in
order to get an efficient implementation.
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Perspectives. Therefore, during this thesis, I was able to explore ideas whose common
objective was to improve the efficiency of cryptographic schemes based on lattices, keeping
in mind in particular the potential future advent of quantum computers. Between the var-
ious schemes selected by the NIST for standardization and new ideas, some of which have
been outlined in this manuscript, more recently published, lattice-based cryptography
thus appears to be a sound proposal that can be used in practice.

The NIST wrote:

The question of when a large-scale quantum computer will be built is a com-
plicated one. While in the past it was less clear that large quantum computers
are a physical possibility, many scientists now believe it to be merely a signif-
icant engineering challenge. Some engineers even predict that within the next
twenty or so years sufficiently large quantum computers will be built to break
essentially all public key schemes currently in use.

This thesis is therefore part of these efforts to strengthen information security systems
to withstand the capabilities of quantum computing.

However, many questions remain unanswered. Even after the NIST announcement of
the schemes selected to be standardized, those schemes are not mature enough to com-
pletely ensure their security. For instance, progress needs to be made on the understanding
of the hardness of the underlying lattice problems, the choice of concrete parameters to
be used still requires further research, and the design of secure implementations, which
must take into account aspects such as side-channel attacks, awaits extended analysis.

Some of these issues were highlighted in the new call for proposals for quantum-
resistant public-key digital signature schemes issued by the NIST in 2022. In particular,
they looked to broaden their range of signature schemes and desired alternatives that do
not rely on structured lattices. This choice of not using structured lattices is seen as a
more conservative choice for long-term security since structured lattices may suffer from
specific vulnerabilities exploiting their algebraic structure.

Therefore, while lattice-based cryptography has established itself as a promising can-
didate among the major families of post-quantum cryptography, offering a wide range of
attractive features and increasingly effective cryptographic schemes in practice, there are
still many interesting challenges to explore.
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Titre : Trappes en Cryptographie Basée sur les Réseaux Euclidiens : Applications et Implé-
mentation
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Résumé : La cryptographie basée sur les
réseaux euclidiens s’est imposée comme un
candidat prometteur parmi les principales fa-
milles de cryptographie post-quantique, of-
frant un large éventail de caractéristiques at-
trayantes. Mes travaux s’inscrivent dans cet
effort de recherche, en contribuant au déve-
loppement de la cryptographie basée sur les
réseaux euclidiens. Je commence par présen-
ter le travail sur le développement et l’implé-
mentation de techniques d’échantillonnage de
préimages gaussiennes sur les réseaux mo-
dules, dont la structure algébrique conduit à
une représentation plus compacte des para-
mètres et à une amélioration du temps d’exé-
cution des algorithmes comparé aux réseaux

euclidiens non structurés. Deux signatures et
un système de chiffrement basé sur l’iden-
tité, ainsi que leur implémentation, sont don-
nés comme applications. Ensuite, je présente
des améliorations par rapport au schéma de
chiffrement basé sur l’identité précédent en
utilisant des trappes approchées au lieu de
trappes exactes, et je propose des implémen-
tations concrètes de ce schéma et des algo-
rithmes de génération de trappes approchées
et d’échantillonnage gaussien. Enfin, je pré-
sente un travail sur les réseaux NTRU. J’ai no-
tamment étudié une variante de NTRU, appe-
lée iNTRU, qui permet de construire des sché-
mas cryptographiques utilisant des trappes
gadget.

Title: Trapdoors in Lattice-Based Cryptography: Applications and Implementation

Keywords: Lattice-Based Cryptography, Trapdoors, Identity-Based Encryption, Structured

Variants, Implementation

Abstract: Lattice-based cryptography has es-
tablished itself as a promising candidate
among the major families of post-quantum
cryptography, offering a wide range of at-
tractive features. The work conducted during
my thesis allowed me to be part of the re-
search works that led to this variety of char-
acteristics, and to contribute to the growth
of lattice-based cryptography. I first present
the work on the development and implemen-
tation of Gaussian preimage sampling tech-
niques on module lattices, which possess ad-
ditional algebraic structure compared to un-
structured ones, which leads to a more com-

pact representation of parameters and an im-
proved running time. Two signatures and an
identity-based encryption scheme, together
with their implementation, are given as appli-
cations. Next, I present improvements over the
previous identity-based encryption scheme by
making use of approximate trapdoors instead
of exact ones, and proposed concrete imple-
mentations of this scheme and of approximate
trapdoor generation and Gaussian sampling
algorithms. Finally, I present a work on NTRU
lattices. I studied a variant of NTRU, called
iNTRU, which allows to build cryptographic
schemes making use of gadget trapdoors.
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