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Résumé 

Cette thèse explore des méthodes basées sur la généalogie pour partitionner le gain 

génétique et le fardeau génétique (FG) dans les races ovines laitières françaises : Lacaune 

(LAC), Basco-Béarnaise (BB), Manech Tête Noire (MTN) et Manech Tête Rousse (MTR). 

Le Chapitre 2 a utilisé une analyse rétrospective pour affiner la partition de la tendance 

génétique dans les échantillonnages mendéliens par catégorie d'animaux définies par le sexe et 

par la voie de sélection, ainsi que pour caractériser les contributions génétiques à long terme. 

Nous avons analysé le gain génétique pour la production laitière dans quatre races : LAC, BB, 

MTN et MTR. Les mères à béliers (MAB) et les mâles d’insémination artificielle (IA) ont été 

les sources les plus importantes de progrès génétique, comme l'a montré la décomposition des 

tendances de l'échantillonnage mendélien. Les contributions annuelles étaient plus variables 

pour les mâles d'IA que pour les MAB, étant donné que ces contributions ont été calculées en 

moyenne sur un plus petit nombre d'individus. En termes d'échantillonnage mendélien, les 

femelles ont contribué davantage que les mâles au gain génétique total, et nous interprétons 

cela comme étant dû au fait les femelles constituent un plus grand réservoir de diversité 

génétique. En outre, nous avons calculé les contributions à long terme de chaque individu aux 

pseudo-générations suivantes. L'échantillonnage mendélien était plus important que la 

moyenne des parents pour déterminer la sélection des individus et leurs contributions à long 

terme. Ces contributions étaient plus significatives pour les mâles d'IA (dont la descendance 

est plus importante que celle des femelles) et en BB qu’en LAC (étant une race de taille plus 

importante). 

Au Chapitre 3, la théorie qui montre la nature additive du FG est présentée. L'effet du 

FG et l'effet génétique additif (dans une population non consanguine) ont une corrélation 

négative dépendant de la fréquence des allèles, de la consanguinité et de la dominance. Nous 

avons calculé et décrit les coefficients de consanguinité partielle dans trois races : BB, MTN et 

MTR. Ensuite, nous avons inclus ces coefficients dans un modèle mixte en tant que covariables 

de régression aléatoire pour estimer la variance et les valeurs génétiques du FG pour la 

production laitière. Il existe une variance génétique pour le FG dans les races MTN et MTR, 

mais elle n'était pas différente de zéro pour BB. Comme attendu, nous avons estimé des 

corrélations génétiques négatives entre le FG et les valeurs génétiques estimées ; cependant, 
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elles étaient proches de zéro dans les trois races. La faible magnitude du FG ne justifie pas une 

sélection fondée sur ce critère. 

Dans le Chapitre 4, nous avons évalué l'efficacité de l'intégration du FG dans les 

stratégies de sélection chez les ovins laitiers. Nous avons simulé 10 générations de sélection. 

Six scénarios qui diffèrent par les critères de sélection (uniquement les valeurs génétiques 

additive estimées du caractère, uniquement les valeurs génétiques estimées du FG, ou à la fois 

les deux) et les stratégies d’accouplement (minimiser le FG ou la consanguinité attendue dans 

la descendance) ont été évalués. Les scénarios ont été comparés en termes de gain génétique, 

coefficients et taux de consanguinité, taille efficace et précision de la sélection. Il est possible 

d'utiliser les prédictions des effets du FG pour sélectionner les animaux directement ou dans le 

cadre de stratégies d'accouplement. Cependant, la sélection basée sur le FG (en raison de sa 

variation et de sa magnitude) ne présente pas d'intérêt pratique. À la lumière de nos résultats, 

l'inclusion d'animaux génotypés pourrait améliorer la précision de la prédiction des FG 

individuelles. D'autres recherches sont nécessaires. 
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Summary 

This thesis explores pedigree-based methods to partition genetic gain and inbreeding 

load in French dairy sheep breeds: Lacaune (LAC), Basco-Béarnaise (BB), Manech Tête Noire 

(MTN) and Manech Tête Rousse (MTR).  

The Chapter 2 used a retrospective analysis to fine partitioning genetic trend in 

Mendelian samplings by categories of animals defined by sex and by selection pathways, and 

to similarly characterize long-term genetic contributions. We analysed genetic gain for milk 

yield in four dairy sheep breeds: LAC, BB, MTN and MTR. Dams of males and Artificial 

Insemination (AI) males were the most important sources of genetic progress as observed in 

the decomposition in Mendelian sampling trends. The yearly contributions were more erratic 

for AI males than for dams of males as they are averaged across a smaller number of 

individuals. Overall, in terms of Mendelian sampling, females contributed more than males to 

the total genetic gain, and we interpret that this is because females constitute a larger pool of 

genetic diversity. In addition, we computed long-term contributions from each individual to the 

following pseudo-generations. Mendelian sampling was more important than Parent Average 

to determine the selection of individuals and their long-term contributions. Long-term 

contributions were larger for AI males (with larger progeny sizes than females) and in BB than 

in LAC (with the latter being a larger population).  

In Chapter 3, we presented theory that show the additive nature of the inbreeding load. 

The inbreeding load effect and the regular (in non-inbred population) additive genetic effect 

have a negative correlation depending on allele frequencies, inbreeding and dominance. We 

calculated and described the partial inbreeding coefficients in three French dairy sheep 

populations: BB, MTN and MTR. Then, we included these coefficients in a mixed model as 

random regression covariates, to predict genetic variance and breeding values of the inbreeding 

load for milk yield in the same breeds. There is genetic variance for inbreeding load in MTN 

and MTR breeds, but it was not different from zero for BB. As expected, we estimated negative 

genetic correlations between inbreeding load and breeding values; however, estimates were 

close to zero in the three sheep breeds. The small magnitude of inbreeding load does not 

warrant selection based on this criterion. 

In Chapter 4, we evaluated the effectiveness of involving inbreeding load in selection 

strategies in a dairy sheep breeding scheme. We did this by simulation of 10 generations of 
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evaluations and selection. Six scenarios that differ in the criteria of selection (only breeding 

values, only breeding values of inbreeding load, or both genetic and inbreeding load breeding 

values) and mate allocation strategies (minimising inbreeding load or minimising expected 

future inbreeding) were evaluated. Scenarios were compared in terms of genetic gain, 

inbreeding coefficients, rate of inbreeding, effective population size, and accuracy of selection. 

The use of predictions of inbreeding load effects to select animals directly or in mating 

strategies is feasible. However, selection based on inbreeding load (due to its variation and 

magnitude) is not of practical interest. In light of our results, the inclusion of genotype animals 

could improve the accuracy of predicting individual inbreeding loads. Further research is 

needed.  
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1.1 Mendelian sampling 

The breeding value of an animal can be expressed as the average of its parental breeding 

values plus a Mendelian sampling term. The recombination and segregation of parental 

chromosomes during meiotic division creates new variation. Mendelian sampling is the unique 

portion of genetic variation that an individual can bring to the population (Avendaño et al., 

2004; Woolliams, 2007). Mendelian sampling captures the originality of the individual with 

respect to its parents.  

The breeding value for an animal ! ("!) is the average of the breeding values for its 

sire and dam ("" and "#), known as parental average, plus its Mendelian sampling (#!), it is 

as follows: 

"! = $
%"" + $

%"# + #!                 (1.1) 

In matrix notation, the vector of breeding values is '~)(0, -.&%) where .&% is the 

additive genetic variance and - is the additive genetic relationship matrix. The matrix - can 

be written as - = /0/', where / describes the flow of genes through the pedigree (Woolliams 

et al., 1999), and explains the relatedness between each individual and its ancestors (García-

Cortés et al., 2008). / draws the flow of genes from one generation to another, thereafter 

accounts for the direct relationships for parent-offspring. / is a lower triangular matrix with 

one along the diagonal and all the non-zero element (to the left of the diagonal). The element 

of /, say 1!!', is the coefficient of relationship between animals ! and !′, and is computed as 

follows: (1) if both !’s parents (3 and 4) are known, 1!!' = $
% (1"!' + 1#!'); (2) if one !’s parent 

(3) is known, then 1!!' = $
% (1"!'); and (3) if none of !’s parents are known, then 1!!' = 0 

(Mrode, 2014). 

The diagonal matrix 0 contains Mendelian sampling variances for non-founders and 

genetic variances for founders; 4!! is the element of 0 for each individual !. To explain more 

in details the matrices 0 and /, we use a small pedigree of 7 individuals (Table 1.1 and Figure 

1.1). 
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4!! = 1 − $
) (1 + =") − $

) (1 + =#) = $
% − $

) (=" + =#). 
If only one parent is known: 

4!! = 1 − $
) (1 + =") = *

) − $
) (="). 

If neither parent is known: 

4!! = 1. 

For the pedigree in Table 1.1, and the above calculation, the diagonal of matrix 0 is 

4E:F(1.0, 1.0, 0.75, 0.5, 0.5, 0.5, 0.406). The (co)variance matrix of Mendelian sampling is 

0.&% = 4E:F(1.0, 1.0, 0.75, 0.5, 0.5, 0.5, 0.406)	.&%. 

The equation (1.1) is presented for individual !. However, using it recursively reveals 

that breeding values are linear combinations of Mendelian sampling terms. The breeding value 

of an individual x can be expressed (using equation 1.1) in terms of its parents’ breeding values 

and the Mendelian sampling term. The sire’s (or dam’s) breeding value can also be written 

using equation (1.1) and so on. Thus, this equation used recursively goes back through the 

pedigree and we can partition each breeding value (for an individual x) as "! = ∑ 1!+#+,+-$ , 

(M total number of animals) where "! is decomposed into a sum of N independent terms or 

contributions that involve the breeding value of founders and the Mendelian sampling of non-

founders. 

Taking our pedigree of 7 individuals (Figure 1.1), and using the equation (1.1), we 

partitioned the breeding value of the individuals into Mendelian sampling terms. The breeding 

values of founders are equal to their Mendelian sampling. Note in the example, that each colour 

represents an individual and it shows the flow of genes from this individual throw the pedigree.  

"$ = #$, 

"% = #%, 

"* = $
%"$ + #* = $

%#$ + #*, 

") = $
%"$ + $

%"% + #) = $
%#$ + $

%#% + #), 



Chapter 1. Introduction 

 
6 

". = $
%"* + $

%") + #. = $
% 7$%#$ + #*8 + $

% 7$%#$ + $
%#% + #)8 + #. = $

%#$ + $
)#% +

$
%#* + $

%#) + #., 
"/ = $

%"$ + $
%") + #/ = *

)#$ + $
)#% + $

%#) + #/, 

"0 = $
%"/ + $

%". + #0 = .
1#$ + $

)#% + $
)#* + $

%#) + $
%#. + $

%#/ + #0. 

We can see that the breeding value of each individual is equal to the sum of the ancestral 

Mendelian samplings weighted, plus its individual’s Mendelian sampling. In matrix notation, 

we can write a general expression, ' = /O, showing that the vector of breeding values (') is 

a linear combination of Mendelian sampling terms and their ancestors. The vector O	also 

includes the breeding values of the pedigree founders. For our 7-animals pedigree (Figure 1.1), 

' = /O is equal to:  

⎣⎢
⎢⎢
⎢⎢
⎡"$"%"*")"."/"0⎦

⎥⎥
⎥⎥
⎥⎤
=

⎣⎢
⎢⎢
⎢⎢
⎡ 1 0 0 0 0 0 00 1 0 0 0 0 01 2⁄ 0 1 0 0 0 01 2⁄ 1 2⁄ 0 1 0 0 01 2⁄ 1 4⁄ 1 2⁄ 1 2⁄ 1 0 03 4⁄ 1 4⁄ 0 1 2⁄ 0 1 05 8⁄ 1 4⁄ 1 4⁄ 1 2⁄ 1 2⁄ 1 2⁄ 1⎦⎥

⎥⎥
⎥⎥
⎤

⎣⎢
⎢⎢
⎢⎢
⎡#$#%#*#)#.#/#0⎦

⎥⎥
⎥⎥
⎥⎤
. 

To explain the / matrix in the example (Figure 1.1), we take the individual 5. Individual 5 is 

the offspring of individuals 3 and 4. Individual 5 inherited 50% of his genes from his sire 

(individual 3), and 50% of his genes from his dam (individual 4), as 7$%"* + $
%")8 . From these 

50% that he inherited from his dam (individual 4), 25% is from individual 1 (individual 4’s 

sire), and 25% from individual 2 (individual 4’s dam), and 50% from individual 4’s Mendelian 

sampling>$%") = $
% 7$%#$ + $

%#% + #)8B. Likewise, from the 50% of individual 5’s genes that 

he inherited from his sire (individual 3), 25% is from individual 1 (the sire of individual 3) and 

50% from individual 3’s Mendelian sampling >$%"* = $
% 7$%#$ + #*8B. The ancestors for 

individual 5 are animals 1, 2, 3 and 4. Taking into account both sides (paternal and maternal) 

for individual 5, individual 1 contributes 
$
% from >$% 7$%#$8 + $

% 7$%#$8B, individual 2 contributes 

$
) from >$% 7$%#%8B, individual 3 contributes 

$
% from >$% (#*)B, and individual 4 contributes 

$
% from 

>$% (#))B. Note that these coefficients (contributions) given for the ancestor Mendelian 
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sampling of individual 5 are the values in the / matrix (line 5). This example shows the gene 

flow through the pedigree, where / relates the individual 5 and its ancestors (animals 1, 2, 3 

and 4). The coefficients (contributions) given for the ancestors Mendelian sampling of 

individual 5 are 1.$ = $
%, 1.% = $

), 1.* = $
% and 1.) = $

%. The coefficient 1!+ is the genetic 

contribution of an ancestor N to an individual x, called ;+(!) by Woolliams et al. (1999). 

Woolliams et al. (1999) defined the long-term genetic contribution (;+(!), the same as 1!+), as 

the proportion of the genes in individual ! transmitted from N. 
The equation (1.1) also holds for unbiased predictors, such as the Best Linear Unbiased 

Predictor (BLUP, Henderson, 1973) of the estimated breeding values ('Y) (García-Cortés et al., 

2008) as follows: 'Y = /OZ , where 'Y is a vector that contains the estimated breeding values 

(EBV), and the Mendelian samplings can be estimated as OZ = [4$'Y.  

Animals are selected based on EBV. The focus on EBV may hide the role of Mendelian 

sampling in creating genetic progress (Bijma et al., 2018). The role of Mendelian sampling on 

the selection process are expanded below. 

 

1.2 Genetic contributions 

The genetic contribution of an ancestor is defined as the proportion of all distinct 

genealogical pathways that travel from this ancestor to a group of descendants (Woolliams et 

al., 1999, Woolliams, 2007). In breeding programs, some groups or individuals are prioritized 

over the others by their superiority (e.g. AI males). These superior animals may have higher 

contributions than the others for the upcoming generations (Wray and Thompson, 1990). This 

concept was used to account for the genetic gain, inbreeding and other phenomena. The genetic 

contribution of an individual represents the genetic contribution of the individual’s Mendelian 

sampling to the long-term gene pool. This definition of the contribution allows to know the 

future gene pool represents the contributions of all ancestors (founders and non-founders) and 

not only founders (Woolliams, 2007). The genetic contribution (;+(!)) of an ancestor N born at 

time 1$ to a descendant ! born at time 1%(> 1$), is the proportion of the genes of ! that are 

expected to be inherited from ancestor N (Woolliams et al., 1999). In the long-term, the 

contribution of N, as 1% − 1$ → ∞, ;+(!) tends to stabilize. The long-term genetic contribution 



Chapter 1. Introduction 

 
8 

differs among individual ancestors depending on the lifetime breeding use of different 

ancestors, their EBV, and other factors (Woolliams et al., 1999).  

Woolliams and Thompson (1994) defined the breeding value of an individual as the 

weighted sum of all the Mendelian sampling of its ancestors, which led to the genetic gain 

expressed as _(Δa) = ∑ 1!+#+,+-$ . The genetic gain is a function of the long-term contributions 

and Mendelian sampling. Thus, genetic progress can be understood as the selection of positive 

ancestors’ Mendelian samplings to their descendants and also candidates’ own Mendelian 

samplings (Woolliams and Thompson, 1994). 

 

1.3 Decomposition of genetic trend 

From the equation: OZ = /45'Y, García-Cortés et al. (2008) proposed to define a set of 

k partitions such that b5 +	b6 +⋯+	b7 = d. where b is a diagonal matrix, that contains 

zeros and ones and it selects the corresponding columns of /, or the corresponding ancestor 

effects for a given 'Y. These partitions are based on groups or categories of interest. For 

example, the genetic gain can be partitioned using a category defined by sex or e categories 

defined by group of animals (e.g. AI males, dams of sires, etc.). The EBV can be partitioned 

into e categories as follows: 'Y = 'Y5 + 'Y6 +⋯+ 'Y7, where 'Y7 is a part of the breeding value 

contributed by the category k. This decomposition enables the calculation of the partial genetic 

trends directly from the EBV, and allows us to inspect the contributions of each category to the 

genetic gain. By following our example of the pedigree of 7 individuals, we can partition the 

EBV according to sex (k = 2) using b8 and b9 for males and females (b8 + b9 = d) as 

b8 =

⎣⎢
⎢⎢
⎢⎢
⎡1 0 0 0 0 0 00 0 0 0 0 0 00 0 1 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 1 00 0 0 0 0 0 0⎦

⎥⎥
⎥⎥
⎥⎤
 and b9 =

⎣⎢
⎢⎢
⎢⎢
⎡0 0 0 0 0 0 00 1 0 0 0 0 00 0 0 0 0 0 00 0 0 1 0 0 00 0 0 0 1 0 00 0 0 0 0 0 00 0 0 0 0 0 1⎦

⎥⎥
⎥⎥
⎥⎤
, 

The ones in the diagonal in b8 (and b9), represent the individuals 1, 3 and 6 (2, 4, 5 and 7) in 

Figure 1.1 that are males (females). Then, following García-Cortés et al. (2008)  

'Y = /OZ = /fb8 + b9gOZ = /b8OZ + /b9OZ , 
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and replacing OZ  by /45'Y, 

'Y = /b8/45'Y + /b9/45'Y = 'Y8 + 'Y9, 

where, 'Y8 = 	/b8/45'Y and 'Y9 = /b9/45'Y for males and females, respectively. 

Note that by doing this, we have split, for each individual, the EBV into contributions due to 

Mendelian samplings of their ancestors, which, in turn, we then assign into categories (by sex 

in our 7-individuals pedigree). This is why García-Cortés et al. (2008) consistently uses the 

naming “Mendelian sampling” for this decomposition. More details about this method and its 

use are presented in chapter 2. 

 

1.4 Decomposition of inbreeding  

Selection in animal populations results in remarkable genetic gain but also in an 

unavoidable accumulation of inbreeding. The partitioning of inbreeding among the ancestors 

of an individual is called Mendelian decomposition of inbreeding, and involves inbreeding 

contributed by founders and by so-called Mendelian sampling of non-founders (Caballero and 

Toro, 2000). Mendelian decomposition of inbreeding traces back the specific ancestral paths 

through which the identical by descent (IBD) alleles are inherited. Using pedigree analysis, we 

can determine the proportion of total inbreeding that can be attributed to each ancestor (García-

Cortés et al., 2010). 

The inbreeding coefficient of individual !, =! may be decomposed in a sum of partial 

inbreeding coefficients each due to an ancestor N, e.g. =!(+) where N is an ancestor of !. To 

calculate partial inbreeding coefficients attributed to an animal !, we used the approach 

proposed by García-Cortés et al. (2010) which modified the conventional tabular method with 

a set of recursively formulas. The method operates recursively over :(!,+) = $
% f:(!,"') +

:(!,#')g 	+ #!+, where :(!,+) is the additive genetic relationship between individuals ! and N (or 

two times the coancestry between those two individuals), and 3′ and 4′ are the sire and dam of 

N and #!+ is the Mendelian sampling variation and it is related to within-family variation. For 

a given matrix O = {#!+}, O = 0	except at the diagonal element #!! of the self-additive 

genetic relationship that are handled as one of the following options: (1) when both parents are 
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known, we use #!! = $
) (1 − =") + $

) (1 − =#) where =" (=#) is the inbreeding coefficient of the 

sire (or dam); (2) when only one parent (j = 3, 4) is known, we use #!! = $
% +	$) (1 − =;) and 

(3) when both parents are unknown we use #!! = 1. Each individual in the population is 

considered as a partial founder where it contributes to the genetic variability. The term # 

includes the Mendelian sampling variability and the ignorance about the knowledge of the 

parents (García-Cortés et al., 2010). Most of ancestors do not generate partial inbreeding; only 

those ancestors that are common to the mother and father of !. 

Let’s go back to our 7-individuals pedigree (Figure 1.2), this figure 

is the same as Figure 1.1 but we changed the colours to show 

individual 7 in blue and his parents (5 and 6) in purple. Parents of 

individual 7 are animals 5 and 6 (presented in purple), and the sources 

of the coancestry between the parents of 7 are: animals 1 and 2 

(founders) and Mendelian sampling of animal 4 (non-founder). Thus, 

the ancestors, source of coancestry, of 7 are animals 1, 2 and 4. Now 

we will calculate the partial inbreeding coefficients from the source 

of coancestry of 7 (1, 2 and 4). Founders 1 and 2 have none of their 

parents known, then #$$ = #%% = 1; for animal 4, both parents are 

known and both parents are not inbred, then #)) = $
) (1 − =.) +

$
) (1 − =/) = $

%. Then, the partial inbreeding coefficient of animal 7 attributed to ancestor 1 

(=0($)) is calculated as in Figure 1.3. This partial inbreeding coefficient of animal 7 attributed 

to ancestor 1 is equal to the coancestry coefficient of it parents and is equal to the half of the 

additive genetic relationship coefficient of its parents 5 and 6 (
$
% :./($)). 

 

Figure 1.3. Partial inbreeding coefficient of animal 7 from founder 1 

5    61    43     41    21     00    00    0

7654321

0.6250.750.50.50.5011

00000002

0.31250.3750.250.250.2500.53

0.31250.3750.250.250.2500.54

0.31250.3750.250.250.2500.55

0.468750.56250.3750.3750.37500.756

0.3906250.468750.31250.31250.312500.6257

!! " =
1

2
%#$ " = 0.1875

Figure 1.2. Pedigree 
of animal 7 

1 2

3 4

56

7
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Figure 1.4. Partial inbreeding coefficient of animal 7 from founder 2 

 

 

Figure 1.5. Partial inbreeding coefficient of animal 7 from animal 4 

 

The partial inbreeding coefficient of animal 7 attributed to ancestor 2 (=0(%)) and 4 (=0())) are 

calculated as in Figure 1.4 and 1.5 respectively. Thereafter, Mendelian decomposition for 

animal 7 from ancestors 1, 2 and 4 allows to partition inbreeding coefficient of individual 7 in:  

1 =0($) = k./($) = 0.1875 

2 =0(%) = k./(%) = 0.03125 

3 =0()) = k./()) = 0.0625 

Inbreeding coefficient of individual 7 (=0) is the sum of the partial inbreeding coefficients from 

the 3 ancestors =0 = 0.1875 + 0.03125 + 0.0625 = 0.28125. 
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1.5 Inbreeding load 

 Inbreeding load (IL) is the fraction of the mutation load that is due to hidden recessive 

alleles in heterozygous state. This load, when exposed by inbreeding, is responsible for 

inbreeding depression, the decrease in performance and fitness in inbred individuals (Leroy, 

2014). This load is unevenly distributed through individuals. According to population genetics 

theory, this load depends on the selection process, mutations, allelic recombination and 

crossing-overs (Bosse et al., 2019). Accordingly, some individuals carry less recessive 

deleterious mutations than others (Gulisija et al., 2006; Casellas et al., 2008). For instance, one 

could in principle find out if different individuals carry different IL by producing e.g. equally 

inbred descendance (say mating sires to their daughters) and comparing descendants across 

sires. In complex pedigrees this becomes more complex because each individual possesses 

parts of inbreeding coming potentially from different ancestors. These fractions can however 

be computed using pedigree by the Mendelian decomposition of inbreeding. IL is a heritable 

trait, and it acts additively in the progeny from the perspective of the ancestors (Varona et al., 

2019). Even if IL is an additive trait, it is expressed only in inbred individuals. 

Using the Mendelian decomposition of inbreeding, a linear model can estimate genetic 

variance and breeding values of the IL for a specific trait (e.g. milk yield) (Varona et al., 2019). 

Variance of IL has been estimated in growth traits in rabbits (Casellas, 2018), pigs (Casellas et 

al., 2008) and beef cattle (Varona et al., 2019); to morphological traits in horses (Poyato-

Bonilla et al., 2020) and fertility traits (Perdomo-González et al., 2021) in horses and dairy 

cattle (Martinez-Castillero et al., 2021). 

The theory that shows the additive nature of the IL; and the genetic correlation between 

IL and the additive genetic or breeding values is always negative, is present in chapter 3.  

 

1.6 Dairy sheep in France 

Dairy sheep farming has an undeniable economic, social and environmental value in France. 

Genetic improvement of dairy sheep breeds involves five local breeds: Basco-Béarnaise (BB), 

Corse (COR), Lacaune (LAC), Manech Tête Noire (MTN) and Manech Tête Rousse (MTR). 

These breeds are distributed in 3 geographic areas (Figure 1.6): Southern Massif Central with 

the LAC breed (44% of the flocks), Western Pyrenees with the BB, MTN and MTR breeds 
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 The selection scheme has a pyramidal organisation (Figure 1.8), with the breeders of 

nucleus flocks (where the official milk recording is done) at the top, and the commercial flock 

(practicing a simplified milk recording) at the bottom. Selection flocks are limited to 15 to 25% 

of the total ewes of each breed and generate the genetic gain and produce rams for the whole 

population (Barillet, 1997). In the nucleus, pedigree and official milk recording, AI, controlled 

natural mating, and breeding value estimation are carried out to generate genetic progress. The 

genetic progress is then transferred to the commercial flocks through AI or natural-mating rams 

(Barillet, 1997; Carta et al., 2009). The size of the selection scheme differs among breeds. LAC 

and MTR are the two most significant populations. 

 

Figure 1.8. The selection scheme of French dairy sheep breeds (Barillet, 1997). 

 

The breeding goals differ between LAC, Pyrenean and COR breeds. The breeding 

objectives for BB, MTN, MTR and LAC breeds include milk yield, fat and protein content and 

somatic cell score. Additionally, the breeding objective for the LAC breed (and only the LAC 

breed), includes selection for udder morphology traits. However, for the COR breed, the 

selection objective only includes milk yield. Additionally, LAC system still has dual purpose, 
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milk and meat production, whereas the other breeds are only for milk production (Astruc et al., 

2016). 

1.6.1 Conventional breeding schemes 

Conventional breeding schemes were based on performance recording and progeny 

testing of artificial insemination (AI) rams. All concerned breeds have performance recording 

according to the International Committee for Animal Recording (ICAR) rules. The AI rate in 

the nucleus varied from 45% (COR) to 85% (LAC). The number of yearly progeny-tested rams, 

in the AI center, varied from 30 rams in COR breed to 440 in LAC breed (Table 1.2). The AI 

center plays an important role in the selection and in the genetic dispersion progress. Rams in 

the progeny test had around 30 to 40 daughters in their first lactation. The progeny test and the 

genetic diffusion were done with the AI fresh semen which imposes some limitations (seasonal 

and geographical) and it led to the presence in the AI centre of a great number of rams (Astruc 

et al., 2016). Annually, no more than 1,500 doses of fresh semen were distributed. Generation 

interval between sire and male offspring varied between 4 years (LAC) to 7 years (MTN) 

before the genomic era. 

 

Table 1.2. Number of individuals in the selection scheme in 2014 before genomic selection 
(Astruc et al., 2016). 

Breed Female 
population 

size 

Percentage of 
female in the 
nucleus (%) 

Tested 
rams 

Rams in the 
AI center 

Sire of sire in 
the AI center 

BB1 80,000 32 50 200 17 
COR2 83,000 19 30 150 22 
MTN3 80,000 16 30 175 17 
MTR4 274,000 29 150 600 30 
LAC5 890,000 19 440 1,400 70-80 

1BB = Basco-Béarnaise; 2COR = Corse; 3MTN = Manech Tête Noire; 4MTR = Manech Tête Rousse; 5LAC = 

Lacaune. 

 

The efficiency of these schemes was very good, characterized by an annual genetic gain 

between 0.10 (COR) to 0.23 (LAC) genetic standard deviation depending on the number of 

rams tested by year and their oldness (2 to 5 decades) (Astruc et al., 2016). 
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1.6.2 Genomic selection 

After genomic selection (GS) started, approximately in 2015 for the LAC, 2017 for 

Pyrenean breeds and 2020 for COR breed, the progeny testing was replaced by the use of the 

genomic rams. The GS allows to predict accurately the genetic value of young males. With GS, 

a quicker turnover of male is obtained by the use of AI rams without waiting for progeny testing 

leading to a reduction of the total number of rams in the AI center (Table 1.3) (Legarra et al., 

2014). The rate of AI in the nucleus flock varies between 62% (LAC) to 88% (MTN) (Astruc 

et al., 2022). The use of GS leads also to a reduction of the gap on the genetic gain between the 

nucleus and the commercial flocks, and opens new opportunities for selection criteria on new 

traits (Duchemin et al., 2012). The annual genetic gain varies between 0.11 (COR) to 0.35 

(LAC) genetic standard deviation (Astruc et al., 2022). Generation interval between sire and 

male offspring varies between 2.8 years (BB, MTN, LAC and MTR) to 5.1 years (COR) in 

2022 (Astruc et al., 2022). 

Table 1.3. Genomic breeding schemes in French dairy sheep in 2021 (Astruc et al., 2022). 

Breed First 
year of 

GS6 

Females in 
selection 

New AI 
rams per 

year 

Number of 
AI rams 

Rams 
genotyped per 

year 

Reference 
population* 

BB1 2017 28,061 60 110 240 880 
COR2 2020 18,863 21 28 374 326 
MTN3 2017 10,547 28 68 102 585 
MTR4 2017 84,286 174 302 714 2,842 
LAC5 2015 192,928 297 674 2,974 6,397 

1BB = Basco-Béarnaise; 2COR = Corse; 3MTN = Manech Tête Noire; 4MTR = Manech Tête Rousse;  
5LAC = Lacaune; 6GS = Genomic selection. 

* Rams genotyped with daughters 

 

1.7 Objectives 

This thesis explores pedigree-based methods to partition genetic gain and inbreeding 

load in French dairy sheep breeds: BB, LAC, MTN and MTR. 

 

1.8 Outlines 

This thesis is organised in 5 chapters. A general introduction and the objectives of the 

thesis are presented first (chapter 1). The body of the thesis is a compilation of three scientific 



Chapter 1. Introduction 

 
17 

papers or manuscripts (chapter 2 to chapter 4), followed by a general discussion, perspectives 

and general conclusions (chapter 5). 

The chapter 2 used a retrospective analysis to decompose the genetic trend of milk yield 

in Mendelian samplings by categories of animals defined by sex and by selection pathways, 

and to similarly characterize long-term genetic contributions. We analysed genetic gain for 

milk yield in four French dairy sheep breeds: LAC, BB, MTN and MTR. 

Chapter 3 showed that inbreeding load can be expressed as an additive genetic effect 

based on substitution effect under non-random matings. Second, we calculated and described 

the partial inbreeding coefficients in three French dairy sheep populations (BB, MTN and 

MTR). Third, we included these coefficients in a mixed model as random regression covariates, 

to predict genetic variance and breeding values of the inbreeding load for milk yield in the 

same breeds. 

In the chapter 4, we evaluated the effectiveness of involving inbreeding load in selection 

strategies in a dairy sheep breeding scheme. We did this by computer simulation of 10 

generations of evaluation and selection. Six scenarios that differ in the criteria of selection 

(only breeding values, only breeding values of inbreeding load, or both genetic and inbreeding 

load breeding values) and mate allocation strategies (minimising inbreeding load or minimising 

expected future inbreeding) were evaluated. Scenarios were compared in terms of genetic gain, 

pedigree-based inbreeding coefficients, rate of inbreeding, effective population size, and 

accuracy of selection. 
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ABSTRACT

The genetic trend of milk yield for 4 French dairy 
sheep breeds (Lacaune, Basco-Béarnaise, Manech Tête 
Noire, and Manech Tête Rousse) was partitioned in 
Mendelian sampling trends by categories of animals de-
fined by sex and by selection pathways. Five categories 
were defined, as follows: (1) artificial insemination (AI) 
males (after progeny testing), (2) males discarded after 
progeny testing, (3) natural mating males, (4) dams of 
males, and (5) dams of females. Dams of males and AI 
males were the most important sources of genetic prog-
ress, as observed in the decomposition in Mendelian 
sampling trends. The yearly contributions were more 
erratic for AI males than for dams of males, as AI males 
are averaged across a smaller number of individuals. 
Natural mating males and discarded males did not con-
tribute to the trend in terms of Mendelian sampling, as 
their estimated Mendelian sampling term is either null 
(natural mating males) or negative (discarded males). 
Overall, in terms of Mendelian sampling, females con-
tributed more than males to the total genetic gain, and 
we interpret that this is because females constitute a 
larger pool of genetic diversity. In addition, we comput-
ed long-term contributions from each individual to the 
following pseudo-generations (one pseudo-generation 
spanning 4 years). With this information, we studied 
the selection decisions (selected or not selected) for 
females, and the contributions to the following genera-
tions. Mendelian sampling was more important than 
parent average to determine the selection of individuals 
and their long-term contributions. Long-term contribu-
tions were greater for AI males (with larger progeny 
sizes than females) and in Basco-Béarnaise than in 
Lacaune (with the latter being a larger population).

Key words: genetic gain, genetic trend, Mendelian 
sampling, long-term contributions, selection scheme

INTRODUCTION

In animal genetic improvement, selection is based on 
EBV of candidates for selection. The methodological 
focus on EBV prediction may hide the role of Mende-
lian sampling in creating genetic progress. The breeding 
value of an individual can be expressed as the average 
of its parental breeding values plus a Mendelian sam-
pling term. As the Mendelian sampling is the unique 
portion of genetic variation that the individual brings 
into the population (Woolliams, 2007), this term cap-
tures the “originality” of the individual with respect to 
its parents. In fact, the Mendelian sampling represents 
the deviation arising from recombination and segrega-
tion of parental chromosomes. The breeding value of an 
individual can be decomposed as a sum of Mendelian 
samplings of all its ancestors. Thus, the genetic prog-
ress can be understood as the selection of positive an-
cestors’ Mendelian samplings to their descendants and 
also candidates’ own Mendelian samplings (Woolliams 
and Thompson, 1994).

The long-term genetic contribution of an individual 
is its proportional contribution to the long-term genetic 
background of the population (Bijma, 2000). The con-
tribution, ri(j), is defined as the expected fraction of 
genes from ancestor i (born at time t1) transmitted to 
descendant j (born at a later time, t2; Woolliams et al., 
1993; Woolliams, 2007). When t t2 1− → +∞, this dis-
tant future implies that contributions fluctuate at the 
beginning and stabilize in the long run. The long-term 
genetic contribution of an individual depends on the 
genetic superiority for selection of the animal; for ex-
ample, when selecting based on EBV, the individuals 
with highest intrageneration EBV will be selected to 
have more offspring, which increases their long-term 
genetic contribution (Woolliams et al., 1999).
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The study of Mendelian sampling trends by groups 
and categories of animals allows understanding of se-
lection decisions (García-Cortés et al., 2008), whereas 
analyzing long-term contributions of ancestors to de-
scendants allows understanding of the gene flow across 
generations and by categories of animals (Woolliams 
et al., 1999). For a better understanding of the selec-
tion schemes and their implementation, the dynamics 
of the contributions, and the sources of “originalities,” 
we used a retrospective analysis of Mendelian sampling 
trends and long-term genetic contributions in selected 
populations.

Partitioning the genetic gain by categories of animals 
and Mendelian samplings as described above has main-
ly been evaluated in breeding schemes importing ani-
mals from foreign populations. Examples can be found 
in the literature dealing with cattle (Gorjanc et al., 
2011) and pig (Škorput et al., 2015) breeding schemes. 
However, to date, this method has not been used in 
closed breeds within country. Our work focuses in 4 
French dairy sheep pure breeds: Lacaune (LAC) and 
the Western Pyrenees breeds Basco-Béarnaise (BB), 
Manech Tête Noire (MTN), and Manech Tête Rousse 
(MTR), which are local dairy sheep breeds with no 
introduction from other breeds or countries. Breeding 
schemes of these breeds were based on performance re-
cording and progeny testing via AI rams (Astruc et al., 
2002) until 2016, from which time they have been based 
on performance recording and genomic selection, with 
early selection of rams and widespread use of AI. The 
breeding goals include, depending on the breed, milk 
yield, fat and protein yields, fat and protein contents, 
somatic cell score, udder morphology, and other traits 
(Astruc et al., 2018); however, milk yield is highly se-
lected in all breeds. Although some of the traits (e.g., 
fat and protein yields) are correlated with this trait, we 
will focus on milk yield alone, as otherwise the analyses 
become too complex and difficult to compare across 
breeds.

The objective of this work was to fine partition 
genetic trends in Mendelian samplings by categories 
of animals defined by sex and by selection pathways, 
and to similarly characterize long-term genetic con-
tributions. We analyzed genetic gain for milk yield 
in 4 French dairy sheep breeds: LAC, BB, MTN, and 
MTR.

MATERIALS AND METHODS

Because no human or animal subjects were used, this 
analysis did not require approval by an Institutional 
Animal Care and Use Committee or Institutional Re-
view Board.

Decomposition of Genetic Trend in Mendelian 

Samplings and Long-Term Genetic Contributions

The breeding or additive genetic value for an animal 
i (ui) can be expressed in terms of its parent (sire and 
dam) breeding values (us and ud, respectively), whose 
average is called parent average, plus the Mendelian 
sampling of animal i (ϕi; Thompson, 1979) as

 u u ui s d i= + +
1

2

1

2
φ . [1]

In matrix notation, the vector of breeding values (u) 
can be written as a linear combination of Mendelian 
sampling terms and their ancestors as u = Tϕ (where 
vector ϕ also includes the breeding values of the pedi-
gree founders). The triangular matrix T describes the 
flow of genes through pedigree (Woolliams et al., 1999) 
and shows the relatedness between each individual and 
his ancestor (García-Cortés et al., 2008). Accordingly, ϕ 
is the vector of Mendelian sampling terms, assumed 
distributed as φ ~ ,N u0

2
Dσ( ) (García-Cortés et al., 

2008), where D is a diagonal matrix with Mendelian 
sampling variances for nonfounders and additive genetic 
variances for founders. The vector of breeding values is 
thus distributed as u A~ , ,N u0

2
σ( )  where A = TDTʹ is 

the additive genetic relationship matrix and σu
2 is the 

additive genetic variance.
Equation [1] and its matrix notation reveal that 

breeding values are linear combinations of Mendelian 
sampling terms. The breeding value of an individual i 
born can be expressed using Equation [1] in terms of its 
parents’ breeding values and the Mendelian sampling 
term. The sire’s breeding value can also be written us-
ing Equation [1] and so on. Thus, Equation [1] can be 
used recursively going back through the pedigree, and 
we can partition each breeding value (for an individual 

i) as u Ti

j

m

ij j=

=

∑
1

φ  (m total number of animals), where ui 

is decomposed into a sum of i independent terms or 
contributions that involve the breeding value of found-
ers and the Mendelian sampling of nonfounders. The 
coefficient Tij is the genetic contribution of an ancestor 
j to an individual i, called rj(i) by Woolliams et al. 
(1999). Woolliams et al. (1999) defined the long-term 
genetic contribution [rj(i), the same as Tij] as the pro-
portion of the genes in individual i transmitted from j. 
Using this definition, for a defined cohort (generation), 
the average of contributions ri(j) of each ancestor i 
across all individuals (descendants or not) j belonging 
to a defined cohort, defines its long-term contribution 
to that cohort, ri (as per Howard et al., 2018), as
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 r
n

ri j

n

i j
=

= ( )∑
1

1
. [2]

The sum is computed was over all individuals j (j = 1, 
..., n) born in the defined cohort, and n was the total 
number of animals in the defined cohort.

Equation [1] also holds for unbiased predictors, such 
as the BLUP (Henderson, 1973) of the breeding or ad-
ditive genetic values (û; García-Cortés et al., 2008) as 
follows:

 ˆ ˆu = Tφ, [3]

where û is a vector that contains the EBV, and the 
Mendelian samplings can be estimated as ˆ ˆφ = −

T
1
u. 

García-Cortés et al. (2008) proposed to define a set of 
k partitions such that P1 + P2 + ... + Pk = I. These 
partitions are based on groups or categories of interest; 
for instance, males and females. From this idea and 
using the Equation [3], we can write

 ˆ ˆ ˆ ˆ ˆu T P P P TP TP TP= + +…+( ) = + +…+1 2 1 2k kφ φ φ φ, 

where Pi (with i = 1, ... , k) is a diagonal matrix con-
taining zeros and ones, and it selects the corresponding 
columns of the T matrix; in other words, the corre-
sponding ancestor effects for a given û (García-Cortés 
et al., 2008). Replacing the Mendelian sampling term 
by T−1û, we obtain

 û = TP1T
−1û + TP2T

−1û + ... + TPkT
−1û; 

 û = û1 + û2 + ... + ûk. 

Note that ûk is a part of the breeding value contrib-
uted by the category k. From these partitions (û1, ... 
ûk), the partial genetic response can be obtained for a 
group or category. For example, the genetic gain can 
be partitioned using a category defined by sex, where 
Pm and Pf are the partition matrices defined for males 
and females, respectively. The matrix Pm (or Pf) is a 
diagonal matrix with ones in the male (female) posi-
tions and zeros in the female (male) positions. The 
method presented above enables the calculation of par-
tial genetic trends directly from the EBV and allows 
us to inspect the contributions of each category to the 
genetic gain. Note that by doing this, we have split, for 
each individual, the parent average into contributions 
due to Mendelian sampling of their ancestors, which, 
in turn, then we assign into categories. This is why 
García-Cortés et al. (2008) consistently use the term 
“Mendelian sampling” for this partition.

Phenotypic and Pedigree Data

This study considered the breeding schemes of the 
BB, MTN, MTR, and LAC breeds until 2016, at which 
time genomic selection was introduced. Based on the 
2021 official national genetic evaluation (single-step 
Genomic BLUP). In a single-step Genomic BLUP 
evaluation, the addition of genomic data to the evalu-
ation can be seen as “more information,” and genomic 
EBV (GEBV) can be seen as the EBV obtained at 
the same time but with genomic information (Macedo 
et al., 2020). Thus, it is possible to analyze the selec-
tion decisions in an individual and its ancestors based 
on GEBV. The EBV or GEBV for milk yield (liters 
per ewe per lactation) of animals born between 1985 
and 2016 and their pedigree were used in the analy-
ses (Table 1). By 1985 all breeds had ongoing, routine 
pedigree and milk yield recordings. The breed with the 
greatest population size is LAC, followed by MTR, BB, 
and MTN. Pedigree completeness of rams was very 
high: as these are elite animals, all AI rams have at 
least 2 parents and 4 grandparents known. Because 3% 
of LAC, 11% of MTR, 18% of BB, and 20% of MTN 
dams have unknown sires, the genetic evaluation model 
includes unknown parent groups (UPG; see Table 1), 
to take into account the different genetic levels of miss-
ing sires (Quaas, 1988). Use of UPG allows for realistic 
estimates of genetic trends. We did not attempt alter-
native definitions of UPG. Macedo et al. (2022) showed 
that an adequate genetic trend requires correct defini-
tion of UPG, which was the case here. Because EBV in 
models with UPG are not estimable functions, in order 
to obtain meaningful partitions, we shifted the EBV by 
a constant such that the average EBV of the first co-
horts of animals was 0. To estimate animals’ Mendelian 
sampling, we discounted the solution of the UPG from 
its progeny; but otherwise, we did not include UPG 
solutions when presenting contributions or trends.

We decomposed the total genetic gain in 2 differ-
ent manners: first, into contributions from males and 
females; second, into contributions from categories 
defined by different selection pathways. Thus, animals 
were classified into 5 categories (Table 2): (1) AI 
Males, the best males kept after progeny testing; (2) 
Discarded AI Males, the males discarded after progeny 
testing; (3) Natural Mating (NM) Males; (4) Dams of 
Males, which are the elite females chosen to generate 
AI Males; and (5) Dams of Females, those that were 
not chosen as elite females, because their estimated 
genetic merit was lower than that of Dams of Males. 
In dairy sheep selection schemes, there are females 
(recorded for milk yield and other traits) and males, 
which can be either AI or NM Males. Artificial in-
semination is used for spread of genetic improvement 
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and (until 2016) for selection of elite males by progeny 
testing. The AI Males produce 76% of the females, 
with the remaining 24% coming from NM Males (on 
average of all breeds). In turn, elite females are also 
selected to give birth to best males. All males are 
offspring of AI Males and AI-born females; in other 
words, there is no AI Male son (or grandson) of an 
NM Male. The categories of females and males with-
out progeny (“Females No Progeny” and “Males No 
Progeny,” respectively) were present in the pedigree, 
but they were not analyzed, as their genes do not 
contribute to the genetic progress. Table 2 shows the 
number of animals per breed and defined category, as 
well as the proportion selected in the 4 classical path-
ways (sire of sire, sire of dam, dam of sire, and dam 
of dam) in the 4 breeds. Note that these categories 
describe correctly the pre-2016 scheme even if some 
(e.g., Discarded AI Males) are no longer valid in the 
current scheme, which is a genomic one with no for-
mal progeny testing (although eventually daughters’ 
performances contribute greatly to the EBV of the AI 
Males).

Finally, to understand some of the results, we com-
puted generation intervals (average age of the ancestor 
when its selected offspring was born) and family size 
per category of animals for the BB and LAC breeds. 
Table 3 shows the generation intervals and the family 
size per category of animals for BB (as representative of 
Western Pyrenees breeds) and LAC breeds. Generation 
intervals for LAC are lower (~3 yr) than the generation 
intervals for BB (~4 yr). Family size of the LAC AI 
Males is larger compared with BB. The numbers of 

progenies of AI Males that are males and females are 
greater for LAC than for BB.

Analyzing Mendelian Samplings

Although pedigree and performance recording start-
ed earlier in some breeds (notably LAC), our analyses 
begin in 1985, when the dairy sheep selection schemes 
started to extensively use performance and pedigree 
recording.

The AlphaPart R package (Obšteter et al., 2021), 
available at http: / / CRAN .R -project .org/ package = 
AlphaPart, which implements the method of García-
Cortés et al. (2008), was used for the Mendelian sam-
pling decomposition of EBV and genetic trends. The 
output of AlphaPart contains for each individual i the 
EBV (ui), which is partitioned in 2 different manners. 
First, the EBV is split into the parent average plus the 
Mendelian sampling of the individual; in our notation, 

ˆ ˆ ˆ .ˆ ˆu PA u u
i i i sire i dam i i
= + = + +

( ) ( )

! φ φ
1

2

1

2
 Second, the EBV 

is split into a series of values (EBV_“category” in the 
AlphaPart output) per each of the k categories, such 
that the sum across categories yields the EBV; in our 
notation, ûi = û(i)1 + û(i)2 + ... û(i)k. In turn these û(i)1, 
û(i)2, ... û(i)k are aggregated across (and not within) in-
dividuals into Mendelian sampling trends for each of 
the k categories (e.g., Figure 1). Note that the decom-
position into trends due to Mendelian samplings sum to 
the overall genetic trend. In addition, it is of interest to 
obtain the genetic gain per year per category, in terms 
of Mendelian samplings. In practice this was carried 
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Table 1. Number of animals in pedigree per breed

Breed1 Number of animals Number of females Number of males Number of dams Number of sires Number of UPG2

BB 145,047 142,614 2,433 66,077 2,249 32
MTN 100,764 99,328 1,436 43,822 1,353 40
MTR 489,098 480,157 8,941 230,632 8,409 40
LAC 1,474,543 1,452,032 22,511 721,567 17,346 17

1BB = Basco-Béarnaise; MTN = Manech Tête Noire; MTR = Manech Tête Rousse; LAC = Lacaune.
2UPG = unknown parent groups.

Table 2. Number of animals and selection proportions per breed and category

Breed1

Category

 

Selection proportion

AI Males
Discarded 
AI Males2

Natural 
Mating Males

Dams of 
Males

Dams of 
Females

Females, No 
Progeny

Males, No 
Progeny

Sire of 
sire

Sire of 
dam

Dam of 
sire

Dam of 
dam

BB 633 866 750 1,941 64,136 76,537 184 0.47 0.66 0.26 0.94
MTN 402 507 444 1,183 42,639 55,506 83 0.46 0.65 0.48 0.89
MTR 2,843 2,923 2,643 6,979 223,653 249,525 532 0.34 0.50 0.35 0.90
LAC 8,841 6,136 2,369 17,916 703,651 730,465 5,165 0.06 0.14 0.32 0.91

1BB = Basco-Béarnaise; MTN = Manech Tête Noire; MTR = Manech Tête Rousse; LAC = Lacaune.
2Discarded AI Males are the males discarded after progeny testing.
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out after processing the output of AlphaPart: the con-
tribution in terms of Mendelian sampling of year t in 
category j was obtained as the difference between 
yearly averages: MSgain u u

j t j t j tyear year year
=( ) =( ) = −( )= −ˆ ˆ .1

Analyzing Long-Term Genetic Contribution

Long-term genetic contributions (r) were computed 
using self-made software in BB (again, as representa-
tive of Western Pyrenees breeds) and LAC breeds. This 
concept (and value) of long-term genetic contribution 
represents the contribution of an individual’s Mendelian 
sampling term to the long-term genetic pool (Wool-
liams, 2007). Note that the gene pool of the population 
has contributions from all ancestors and not just the 
founders.

To determine the value of ri for individual i, a scale 
of pseudo-generations (hereinafter “generations,” for 
simplicity) was used to group the individuals depend-
ing on their year of birth. In dairy sheep, the genera-
tion interval is around 4 years. Base generation (G0) 
consisted of individuals born from 1985 to 1988. Seven 
more generations were defined, with the last generation 
(G7) consisting of individuals born between 2013 and 
2016. The contributions ri are highly left-skewed, and, 
for ease of presentation, we use histograms or boxplots 
of log10(ri) (i.e., −2 means 0.01).

In addition to ri, a selection score (xi) was determined 
for all individuals (Howard et al., 2018). If the indi-
vidual had offspring, xi = 1, and xi = 0 otherwise. Note 
that xi = 0 implies ri = 0, and therefore 3 categories 
can be established: unselected (xi = 0, ri = 0), selected 
but with no contribution to the defined generation  
(xi = 1, ri = 0), and selected with contribution to the 
defined generation (xi = 1, ri > 0). The case (xi = 1, ri 
= 0) occurs when individual i produces offspring in the 
next generation but its descendants at some point do 
not produce further offspring in the following genera-
tions; its genetic line goes extinct. Table 4 shows the 
number of individuals in each category per breed (BB 

and LAC) and sex. However, the scores were not used 
in our further analyses for males, because males that 
are recorded into the pedigree files are live, breeding 
males (AI or NM rams) and therefore selected, whereas 
females are recorded if they have at least 1 lactation 
and may then be selected or not. Thus, pedigree record-
ing is highly biased in males toward selected animals. 
For females, 2 further analyses, detailed below, were 
performed with scores.

The relationships between long-term genetic contri-
butions, estimated Mendelian sampling terms ˆ ,φ( )  and 

EBV were also studied. First, we studied the impor-
tance of parent average PA EBVi i i

!
= −( )φ̂  or φ̂i as source 

of selective advantage. Second, we examined the main-
tenance of contributions over time for selected individ-
ual. We used bivariate regressions to determine wheth-
er PAi
! (corrected by year of birth to compare properly 

across successive years) or φ̂i were involved in the selec-
tion of an individual (xi = 1 for individuals whose off-
spring were kept) and in the persistence of the contri-
bution over time [which parents made a nonzero contri-
bution (ri > 0) to the population at the last, G7, pseu-
do-generation].

A generalized linear model with a binomial distribu-
tion and a logistic link function was fitted to assess the 
weight placed on PAi

! versus ˆ.φi  Let the probability of 
selection for individual i be µi = E[xi], then if f(.) is the 
logistic link function, the following model was fitted: 
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Table 3. Generation intervals (years) and number of offspring (males and females) per category1

Category2

BB

 

LAC

GIM GIF NPM NPF GIM GIF NPM NPF

AI Males 4.3 3.1 8.3 86.2 3.9 3.1 13.8 109.0
Discarded AI Males 3.4 2.6 1.2 22.2 3.9 2.6 1.6 15.2
NM Males 3.2 2.7 1 4.4 3.5 2.9 1 4.5
DM 4.0 4.6 1.2 2.5 3.3 3.7 1.2 2.3
DF — 4.2 — 1.8 — 3.4 — 1.9

1BB = Basco-Béarnaise; LAC = Lacaune. GIM = generation interval of the individual when the male progeny 
was born; GIF = generation interval of the individual when the female progeny was born; NPM = number of 
progeny that are males; NPF = number of progeny that are females.
2NM = natural mating; DM = dam of males; DF = dam of females.

Table 4. Number of females and males in each breed1 depending on 
the selection score (xi) and the long-term genetic contribution (ri) to 
generation 7

Constraint

 

BB

 

LAC

xi ri Females Males Females Males

≥0 ≥0 142,614 2,433 1,452,032 22,511
>0 ≥0 66,077 2,249 721,567 17,346
>0 >0 31,567 1,882 308,514 15,419

1BB = Basco-Béarnaise; LAC = Lacaune.
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f yr PAi PA i i i
−
( )= + + + +
1 µ α β β β φ εφ

! " , where α is an 

intercept, yr is the year of birth, and βPA and βϕ are the 

respective regression coefficients on PAi
! and ˆ.φi  The 

odds ratios were computed as exp ˆ .β( )






 This analysis 

was conducted using the “binomial” option in the “glm” 

package of R.

RESULTS

Between 1985 and 2016, the total genetic progress for 
milk yield (estimated from the regression of the EBV 
on the year of birth) was 4.6 l/yr, 3.3 l/yr, 2.9 l/yr, and 
2.7 l/yr for the LAC, MTR, MTN, and BB breeds, re-
spectively. This implies an increment of more than 100 
L for all the evaluated breeds between 1985 and 2016. 
The use of AI differs among breeds. In LAC flocks, AI 
rate reaches 85% (420 progeny-tested males by year), 
whereas this rate is 55% (with 30–130 males tested by 
year) in BB, MTN, and MTR (Astruc et al., 2002). 
This leads to different selection proportions among cat-
egories, as observed in Table 2; most notably, LAC has 
greater selection pressures in the “sire of” pathways. 
For all the following results, the genetic progress was 
stable for all 4 breeds only after approximately 1992, 
so some fluctuations in the results are apparent in the 
first years.

Figure 1 shows the decompositions of genetic trends 
of milk yield, in Mendelian sampling terms, contributed 
by males and contributed by females for the 4 breeds, 
in addition to the overall genetic trend. It can be veri-
fied that the genetic trend is the sum of the trends of 
Mendelian samplings contributed by males and females. 
Looking at the trends of contribution of Mendelian 
sampling by sex, the highest difference among breeds 
was between LAC and other breeds, as the contribution 
of the Mendelian sampling terms of females was greater 
than the contributions of Mendelian sampling terms 
of males in the LAC breed across the entire period. 
In 2016, LAC females and males’ Mendelian sampling 
contributions were (at the end of the genetic trends 
in 2016) 101 (69%) and 45 L (31%), respectively. The 
Western Pyrenees dairy sheep breeds (BB, MTN, and 
MTR) showed quite similar shapes of trends, where in 
all cases the Mendelian sampling contributions cumu-
lated around 50% for females and males in 2016.

Figure 2 presents the decomposition of genetic trends 
of milk yield to the contributions of each category pre-
viously defined, for each breed. The categories’ con-
tributions to the total genetic gain in the LAC breed 
differed from those of the Pyrenees dairy sheep breeds. 
In LAC, the contributions of the AI Males, Dams of 
Males, and Dams of Females were of the same order. 

Looking at the year 2016, AI Males contributed 33% 
of the total genetic gain, and the females’ categories 
contributed to the total genetic gain as follows: dam of 
males contributed 39%, and dam of females contributed 
27%. In the Western Pyrenees breeds, the AI Males’ 
category made the highest contribution to the total ge-
netic gain at the end in 2016, with 47%, 47%, and 49% 
for the BB, MTN, and MTR breeds, respectively. The 
contribution to the total genetic gain by AI Males was 
followed by that made by Dams of Males and then by 
the contribution by Dams of Females. Dams of Males 
contributed 36%, 35%, and 39% to the total genetic 
gain for the BB, MTN, and MTR breeds, respectively. 
Finally, the dam of females category contributed 19%, 
18%, and 10% to the total genetic gain in the BB, 
MTN, and MTR breeds, respectively. As expected, the 
categories that Discarded AI Males and NM Males did 
not contribute to the genetic gain in Mendelian sam-
pling terms.

Figure 3 shows the average gains in terms of Men-
delian samplings (selected for) by year of birth of the 
categories dam of males, dam of females, and AI Males. 
For example, in the AI Males category, the average con-
tribution due to Mendelian sampling in 2001 is the dif-
ference between the point at the year 2001 in the trend 
of Mendelian samplings for AI Males in Figure 2, minus 
the value from the year 2000. The average contribution 
due to Mendelian sampling for the 2 categories of dams 
(dam of males and dam of females) varied between 0 
and 2 L for the Western Pyrenees breeds and between 
1 and 3 L for the LAC breed. The generated gain was 
relatively constant over time. For AI Males, the aver-
age was between −1 and 4 L. Depending on the breed, 
males contributed equally to or more than females, 
although their contribution was more irregular because 
at any point the number of males included in the av-
erages shown in Figure 3 is smaller than the number 
of females. Similarly, less dispersion occurred in LAC 
compared with other breeds, due to a greater number 
of animals included in the averages.

The average contribution to gain due to Mendelian 
sampling terms for the 4 breeds varied between −1 and 
1 L for Discarded AI Males (randomly, as their number 
is small), and it is around 0 for NM Males (with a 
larger number). The Discarded AI Males are not “good 
enough” after progeny testing, and they stop contrib-
uting their genes. Accordingly, after initial selection 
based on parent average, NM Males were not further 
selected. Thus, no contribution was obtained through 
their progeny to the selection response.

Now we present results on genetic contributions 
(measured on a scale from 0 to 1) for the BB and LAC 
breeds. Figure 4 shows the distribution of the log10 of 
the contributions of G0 to the following generations. 
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For instance, in G7, the boxplot describes the final con-
tributions from individuals in G0 (cohort 1985–1988) 
to individuals in G7 (cohort 2013–2016), as obtained 
from Equation [2] (i.e., their average contribution ~28 
yr later). Males had greater average individual genetic 
contributions to the genetic pool of the population than 
females, in both breeds, and that is because of males’ 
larger numbers of offspring because of AI. Greater con-
tributions were observed for BB, because the number 
of animals at each generation is around 10 times lower 
than the number of LAC-contributed animals. For ex-
ample, in the last generation (G7), the total number of 
individuals is 21,656 animals for BB and 185,247 for 
LAC. Therefore contributions in LAC tend to average 
more rapidly with time.

Genetic contributions of different categories (AI 
Males, Dams of Males, and Dams of Females) are 

presented for both breeds in Supplemental Figure S1 
(https: / / doi .org/ 10 .6084/ m9 .figshare .22325413 .v1, An-
tonios et al., 2023a). In the LAC and BB breeds, AI 
Males rated the highest average individual genetic con-
tributions among all categories, followed by the genetic 
contributions of Dams of Males and then by the genetic 
contributions of Dams of Females. As mentioned above, 
the number of animals in the last generation (G7) in 
LAC is higher (10 times) than in the BB breed.

The distribution of the log10 of contributions ri is 
shown in Figure 5 (with different scales on the Y-
axis). The contributions of the males are more shifted 
to the right (the mean of ri is approximately 10−4 for 
BB males and 10−5 for LAC males), which indicates 
higher contributions for males than for females, where 
the females’ mean of ri is approximately 10−5 for BB 
and 10−6 for LAC. In the real 0-to-1 scale, the maximal 
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Figure 1. Total genetic trends for milk yield (L) and partitioning into contributions due to Mendelian samplings by sex. Breeds: (a) Basco-
Béarnaise, (b) Lacaune, (c) Manech Tête Noire, (d) Manech Tête Rousse.
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contributions of the males are approximately 0.09 for 
BB and 0.02 for LAC. For the females, the maximal 
contributions are approximately 0.03 and 0.01 for BB 
and LAC, respectively.

Long-term contributions (log10 of the contributions) 
were plotted against the EBV of the first-generation 
individuals to their EBV in the BB and LAC breeds 
(see Supplemental Figure S2; https: / / doi .org/ 10 .6084/ 
m9 .figshare .21973358 .v1, Antonios et al., 2023b) and 
followed the expected relationship that individuals with 
highest EBV intrageneration will have more offspring, 
increasing their long-term contribution.

The logistic regression of the selection score xi on PA
i

! 
and φ̂

i
 for females showed that both PA

i

! and φ̂
i
 were 

significant factors (P < 0.001) in promoting selection as 
a parent. Estimates of odds ratio (95% CI) for Mende-
lian samplings were 1.0309 (1.0299–1.0317) for BB and 

1.0203 (1.0200–1.0205) for LAC and, for parent aver-
age, were 1.0154 (1.0146–1.0162) for BB and 1.0149 
(1.0147–1.0151) for LAC. Odds ratio for Mendelian 
sampling (1.0309 for BB and 1.0203 for LAC) is greater 
than PA

i

! (1.0154 for BB and 1.0149 for LAC). This 
means that for a one-unit (1-L) increase in ˆ,φ

i
 the odds 

of being selected increase 3% and 2% in BB and LAC, 
respectively. In males, it was not possible to perform 
this analysis because males registered in the pedigree 
are registered because they have offspring, and there-
fore have already been selected (xi = 1), whereas the 
others go to the slaughterhouse.

Among selected animals, we analyzed which animals 
contributed over time to G7 (if ri > 0 in G7, then the 
binomial variable is equal to 1; otherwise, it is 0) in 
both sexes. Odds ratios from the logistic regression on 
PA
i

! and φ̂
i
 are shown in Table 5. In both sexes, PA

i

! and 
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Figure 2. Yearly partition of the genetic trends for milk yield into contributions due to Mendelian samplings by categories. Breeds: (a) 
Basco-Béarnaise, (b) Lacaune, (c) Manech Tête Noire, (d) Manech Tête Rousse. NM = natural mating.
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φ̂
i
 were positively associated with maintaining a contri-

bution across generations conditionally on being ini-

tially selected as parent. In BB, the effect of PA
i

! is 
greater than the effect of φ̂

i
 in both sexes. However, the 

opposite was observed in LAC. This result is in agree-
ment with Figure 1. In LAC, φ̂

i
 increases more in fe-

males than in males, and the odds of maintaining the 
contributions over time are 1% higher for LAC-selected 
females relative to males.
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Figure 3. Average contribution due to Mendelian sampling for milk yield by year of birth of the categories Dams of Males, Dams of Females, 
and AI Males. The red horizontal lines indicate the zero value on the contribution due to Mendelian sampling, which occurs when no additional 
gain is contributed to the next generation. Breeds: BB = Basco-Béarnaise; LAC = Lacaune; MTN = Manech Tête Noire; MTR = Manech Tête 
Rousse.
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DISCUSSION

The decomposition of genetic trend into Mendelian 
sampling contributions by sex or categories showed that 
females play an important role in selection schemes. 
Across generations, females contribute to genetic prog-
ress as much as the males (BB, MTN, and MTR) and 
even more (LAC) to the final genetic gain, as shown 
in Figure 1. We interpret that, even if males are more 
heavily selected, half of their genetics come from their 
dam, whose positive Mendelian samplings are even-
tually selected and spread (often through AI Males) 
throughout the population. Indeed, this was observed 
by García-Cortés et al. (2008).

Most females are Dams of Males or Dams of Females 
(Figure 2). Dams of Males are progeny of AI Males, 
whereas Dams of Females can be progeny of AI or NM 

Males. Dams of Males are expected to contribute more 
descendants than Dams of Females because only the 
sons of Dams of Males are selected. However, a dam of 
females can be the maternal grandmother of an AI male. 
The long-term contribution of an individual is given 
by the sum over its male and female selected offspring 
(Woolliams et al., 1999). The Mendelian sampling term 
in Dams of Males is estimated from their milk records, 
and also from granddaughter records when a son is 
selected as an AI male. In Dams of Females, their own 
phenotype, the daughters’ milk records when they are 
selected as Dams of Males, and great-granddaughters’ 
records (if a dam of females is the grandmother of an AI 
male) contribute to estimation of Mendelian sampling 
term. Accurate estimates of Mendelian samplings occur 
when the animal has a large number of progeny (e.g., 
Dams of Males) or even grand-progeny (e.g., Dams of 
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Figure 4. Boxplots of log10 of contributions of males and females per generation from G0 (base generation) to G7 (the last generation) in 
Basco-Béarnaise (BB) and Lacaune (LAC) breeds. Lower whisker = minimum observation above 25% quantile − 1.5 × interquartile range 
(IQR); lower line of the box = 25% quantile (Q1); horizontal line inside the box = median; upper line of the box = 75% quantile (Q3); upper 
whisker = maximum observation below 75% quantile + 1.5 × IQR; dots outside the box = outliers, values which either exceed Q3 + 1.5 IQR 
or fall below Q1 − 1.5 IQR.
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Males and Dams of Females). This shows that dams are 
as important as AI Males in driving changes in milk 
yield.

The decomposition of genetic trend was different in 
the LAC breed compared with the Western Pyrenees 

breeds. The difference between female and male contri-
bution is greater in the LAC breed (Figure 1). In LAC, 
the fact that both categories of dams contribute to ge-
netic gain in the same order as AI Males may be due to 
a shorter generation interval (~3 yr in LAC and ~4 yr 
in BB in average for dams and AI Males, as observed 
from averages of values in Table 3) and to the intense 
use of AI in the nucleus flock (greater numbers of fe-
male progenies for the AI Males in LAC than in BB, 
Table 3). In LAC, AI Males produced a greater number 
of female offspring than in the other breeds (Table 3). 
Thus, the EBV of LAC AI Males is more accurate, and 
the selection for originality (Mendelian sampling) will 
be more efficient. Additionally, the greater offspring 
numbers of LAC AI Males make possible a more intense 
within-family selection, as shown in Table 3. The differ-
ence in the relative importance of the Mendelian sam-
pling and PA

i

! between breeds across generations could 

Antonios et al.: PARTITIONING GENETIC TRENDS IN DAIRY SHEEP

Figure 5. Histograms of the log10 of the genetic contributions of males and females to the G7 (last generation) by sex in Basco-Béarnaise 
(BB) and Lacaune (LAC) breeds.

Table 5. Estimates of odds ratios, with 95% CI, from the bivariate 
logistic regression of maintenance of nonzero contributions (ri > 0 | xi 

= 1) on estimated parent average PA"( ) and estimated Mendelian 

sampling terms φ̂( ) for females and males per breed1

Variable BB LAC

Females   

 PA" 1.0334 (1.0319–1.0348) 1.0057 (1.0054–1.0061)
 φ̂ 1.0303 (1.0288–1.0317) 1.0202 (1.0199–1.0205)

Males   

 PA" 1.0496 (1.0372–1.0622) 1.0035 (1.0000–1.0069)
 φ̂ 1.0061 (0.9995–1.0131) 1.0134 (1.0109–1.0158)

1BB = Basco-Béarnaise; LAC = Lacaune.
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reflect different selection strategies in practice. Mende-
lian sampling relies on within-family selection, whereas 
parent average is more related to across-family varia-
tion. A larger family size in LAC than in BB is in 
agreement with a greater importance of within-family 
selection in LAC, which could be because it is possible 
to exercise greater selection intensities within family 
when families are larger, as is the case.

To improve a population, we need certain animals to 
be better than their parents. For this, the originality 
of the animals with respect to their parents (i.e., the 
Mendelian sampling) has to be captured. The latter is 
estimated from different sources of information: (1) own 
phenotype (milk yield for females, collected in the se-
lection scheme), (2) phenotypes of the progeny of males 
(progeny test; i.e., in the AI Males in these schemes), 
or (3) by genomic evaluation (not studied in this work, 
because genomic selection was not yet implemented in 
2016). Although the precision in capturing Mendelian 
sampling is greater in males (by progeny testing), the 
final genetic progress is largely given by the originality 
(or genetic variability) of the females, even if their pre-
diction (by own phenotype) is less accurate and their 
progeny number is smaller. This is true in this study 
and possibly in most ruminant selection schemes based 
on intensive use of AI. Note that a selected female 
can be the mother or grandmother of an AI male and 
consequently have a large number of grand-offspring. 
Moreover, because the number of eligible females is very 
high, the selection intensity to be a dam of males can 
be very high. Therefore, fine partitioning in Mendelian 
sampling trends can be interpreted as females being a 
large and easily accessible reservoir of genetic variabil-
ity for selection. Still, AI Males are crucially important 
because they allow the spread of best genetics in the 
population (Figure 4 and Supplemental Figure S1) and 
genetically connect the herds. The smaller the number 
of the animals, the greater the contributions of those 
animals will be for future years. Additionally, males 
had greater contributions than females in both breeds 
because the AI Males, despite their smaller number 
compared with the dams, contribute more than dams 
to the gene pool of the population due to their larger 
number of offspring.

CONCLUSIONS

This study decomposed the genetic gain in Mende-
lian samplings by categories of animals defined by sex 
and by selection pathways, and explored long-term 
genetic contributions. This allowed identification of the 
different contributions of categories of individuals, and 
better understanding of the selection scheme. Dams 
contribute largely to the final genetic gain by their orig-

inality, whereas AI males are crucially important in the 
spread of the best genetics in the population and make 
a proportionally greater contribution to the gene pool 
of the population. The relative weights of parent aver-
age and Mendelian sampling in selection decisions seem 
to depend on family sizes. In this study, the Mendelian 
sampling term was observed to be the most important 
factor determining the selection of a female to become 
dam and maintaining genetic contributions over time.
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2.1 Appendix 

Supplemental material 

 

Supplemental Figure S1. Boxplot of log10 of contributions of AI Males, Dam of Males and 

Dam of Females per generation from G0 (base generation) to G7 (the last generation) in Basco-

Béarnaise (BB) and Lacaune (LAC) breeds. 
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Supplemental Figure S2. Long-term contribution (log10 of the contributions) plotted against 

EBV of the first-generation (G0) individuals in Basco-Béarnaise (BB) and Lacaune (LAC) 

breeds.
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Abstract 

Background 

The magnitude of inbreeding depression depends on the hidden (recessive) inbreeding load 

among ancestors. However, animals carry different alleles at potentially deleterious loci and 

therefore there is individual variability of this inbreeding load. Estimation of the additive 

genetic value for inbreeding load is possible using a decomposition of inbreeding in partial 

inbreeding components. Both the magnitude of variation in partial inbreeding components and 

the additive genetic variance of inbreeding loads are largely unknown. The objectives of this 

work were three. First, we showed that inbreeding load can be expressed as an additive genetic 

effect based on substitution effect under non-random matings. Second, we calculated and 

described the partial inbreeding coefficients in three French dairy sheep populations (Basco-

Béarnaise, Manech Tête Noire and Manech Tête Rousse). Third, we included these coefficients 

in a mixed model as random regression covariates, to predict genetic variance and breeding 

values of the inbreeding load for milk yield in the same breeds. 

Results 

Pedigrees included 190,276, 166,028 and 633,655 animals of Basco-Béarnaise, Manech Tête 

Noire and Manech Tête Rousse, respectively, born between 1985 and 2021. A fraction of 

99.1% of the partial inbreeding coefficients were lower than 0.01 in all breeds, meaning that 

inbreeding is created in loops that go several generations back. Less than 5% ancestors generate 

inbreeding, because mating is essentially between unrelated individuals. Inbreeding load 

estimations involved 658,731, 541,180 and 2,168,454 records of yearly milk yield from 

178,123, 151,863 and 596,586 females in Basco-Béarnaise, Manech Tête Noire and Manech 

Tête Rousse, respectively. Adding the inbreeding load effect to the model improved the fitting 

(values of the statistic Likelihood Ratio Test between 132 to 383) for milk yield in the three 

breeds. The inbreeding load variances were equal to 11,804 and 9435 liters squared of milk 

yield for a fully inbreed (100%) descendant in Manech Tête Noire and Manech Tête Rousse. 

In Basco-Béarnaise, the estimate of the inbreeding load variance was zero. The correlations 

between additive genetic and inbreeding load effects were -0.09, -0.08 and -0.12 in Basco-

Béarnaise, Manech Tête Noire and Manech Tête Rousse.  
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Conclusions 

The decomposition of inbreeding in partial coefficients in these populations shows that 

inbreeding is mostly due to several small contributions of ancestors going back several 

generations, which is according to the policy of avoiding close matings. There is variation of 

inbreeding load among animals, although its magnitude does not seem enough to warrant 

selection based on this criterion. 

 

 

Background 

Inbreeding load is the fraction of the mutation load that is due to hidden recessive alleles in 

heterozygous state. This load, when exposed by inbreeding, is responsible for inbreeding 

depression, the decrease in performance and fitness in inbred individuals [1].  

Inbreeding depression is thought to be due to the presence of recessive alleles in populations 

or from the reduction of heterozygous loci under overdominance. Usually, inbreeding 

depression is more expected in fitness traits (e.g. fertility) than in traits less related to fitness 

(e.g. milk yield). However, there is evidence that inbreeding depression can occur in any trait 

[2]. For fitness traits, inbreeding depression is mainly endorsed to recessive deleterious 

mutations. However, for traits under directional selection such as milk yield (for increasing the 

mean), dominance deviation effects are on average favourable; and inbreeding depression is 

due to the reduced expression of dominance effects by an increase in homozygosity [2]. 

In livestock, inbreeding load can vary among founders, moreover if the founder families were 

exposed to different selection pressures on deleterious alleles [3]. Inbreeding load of 

individuals can be predicted in the same manner that we do for additive genetic values based 

on linear models [4, 5]. However, previous authors have never expressed inbreeding load in 

terms of simple locus effects, e.g. as a substitution effect. The inbreeding load of individuals is 

a heritable additive trait that is only expressed when inbreeding occurs in their offspring [5] 

and that can have a favorable or unfavorable effect of the studied trait (e.g. milk yield) [6]. For 

instance, one could in principle find out if different individuals carry different inbreeding load 

by producing e.g. equally inbred descendance (say mating sires to their daughters) and 

comparing descendants across sires. In complex pedigrees this becomes more complex because 
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each individual possesses parts of inbreeding coming potentially from different ancestors. The 

fractions attributed to each ancestor can be computed using pedigree by the Mendelian 

decomposition of inbreeding which traces back the specific ancestral paths through which the 

identical by descent (IBD) alleles are inherited. Using these fractions, a linear model can 

predict the inbreeding load of the individuals [4, 5] in the same manner that we do for additive 

genetic values.  

The objectives of this work are three. First, we showed that the inbreeding load can be 

expressed as a genetic additive effect based on substitution effect under non-random matings. 

Second, we computed and described the partial inbreeding coefficients due to ancestors in 3 

French dairy sheep breeds: Basco-Béarnaise (BB), Manech Tête Noire (MTN) and Manech 

Tête Rousse (MTR). Third, we used these partial inbreeding coefficients as covariates in a 

random regression mixed model to estimate genetic variance and breeding values of the 

inbreeding load for milk yield in the three breeds. 

 

Theory 

Under the assumption of random mating, the substitution effect of a gene is the regression of 

genotypic values on gene content. However, if mating is non-random, the substitution effect 

(l) is defined (equation 10 in Falconer [7] and equation 4.22 in Lynch and Walsh [8]) as 

l = <
($=>), 

where m is the average excess and = is the inbreeding coefficient which is the reduction of 

heterozygote frequencies relative to those expected in random mating. Substituting m, the 

substitution effect in a non-random mating can be written as  

l = : + 4(n − o) 7$4>$=>8. 

Looking at the term involving =, we can write  

7$4>$=>8 = 7$=>4%>$=> 8 = 1 − 2 >
$=>. 

So, we can split l in two components, one if there is no inbreeding 
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l?@> = : + (n − o)4, 

and another one, that involves inbreeding 

l> = −2 >
$=> (n − o)4. 

If = = 0 then l> = 0 and we get the usual expression for l = : + 4(n − o). If = = 1 then  

l> = −2 >
$=> (n − o)4 = −2 $% (n − o)4 = −(n − o)4. 

In which case we get l = l?@> + l> = :. This make sense because if = = 1  there are only 

homozygotes. 

The inbreeding load (E) for an individual is therefore the gene content times the substitution 

effect with inbreeding, l>, as follows: 

!!!!! = (2 − 2&)(" = (2 − 2&) )−2 "

#$"
(* − &)+, = −4 "

#$"
*(* − &)+,	

!!!!" = (1 − 2&)(" = (1 − 2&) )−2 "

#$"
(* − &)+, = −2 "

#$"
(* − &)%+,	

!!"!" = (−2&)(" = (−2&) )−2 "

#$"
(* − &)+, = 4 "

#$"
&(* − &)+. 

Note that the inbreeding load is related to the analyzed trait (e.g. milk yield) and the amount of 

it will depend on the direction of dominance for loci affecting the trait.  

At a single locus, the genetic variance due to l> is  

.A% = 2onl>% = 8on >!
($=>)! (n − o)%4%. 

Note that this variance has to be very small, because 
>!

($=>)! ≈ =% which is usually very small. 

The variance due to l?@> is the usual expression 

.&% = 2on:% + 2on(n − o)%4%. 

In addition, the covariance between E and " (the last is the usual BV) is  

.&,A = −4on >
$=> (n − o)%4%. 
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Note that the correlation between the breeding value of the trait and its inbreeding load is 

always negative. Looking at the magnitude of the squared correlation 

$
B(#,%)! 	= C1DE '!

(()')!
(E4D)!#!FG%DEH!=%DE(E4D)!#!I
$/D!E!J '

()'
K!(E4D)*#*

= G%DEH!=%DE(E4D)!#!I
%DE(E4D)!#! , 

or in other words 

;(&,A)% = %DE(E4D)!#!
(%DEH!=%DE(E4D)!#!), 

the squared correlation is simply the fraction of additive variance in non-inbred population 

(.H% = 2onl%) due to dominance gene action.  

 

Methods 

Data for this study were extracted from the French National dairy sheep database. Animal care 

and use committee approval was not necessary for this study because the data were obtained 

from an existing database. 

Phenotypic and pedigree data 

Dairy sheep selection schemes have clearly defined and consensual selection objectives that 

have been updated periodically. Depending on the breed, the breeding objectives include milk 

yield, fat and protein yields, fat and protein contents, somatic cell score, udder morphology [9]. 

All these traits are recorded on farm. A total of 658,731, 541,180 and 2,168,454 records of milk 

yield from 178,123, 151,863 and 596,586 females of BB, MTN and MTR, respectively, were 

included. Milk recording is performed according to the International Committee for Animal 

Recording (ICAR). Average milk yields (±SD) were 193.00 (± 76.25) liters, 144.31 (± 60.25) 

liters and 197.52 (± 83.66) liters, in BB, MTN and MTR respectively. Pedigrees included 

190,276 (186,581 females and 3695 males in BB,), 166,028 (162,584 females and 3444 males 

in MTN) and 633,655 (622,425 females and 11,230 males in MTR) animals born between 1985 

and 2021. By 1985 all breeds had ongoing, routine, pedigree and milk yield recordings. To 

assess pedigree completeness, the number of equivalent complete generations was computed 
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using PEDIG software [10]. In all breeds, inbreeding is managed through (i) avoiding mating 

between individuals with common grandparents and (ii) trying to keep balanced numbers of 

rams within family of paternal grand-sires at each step of selection. 

Mendelian decomposition of inbreeding 

Based on pedigree data, = can be decomposed into coefficients attributed to specific founders 

known as partial inbreeding coefficients. The inbreeding coefficient of individual N (=+) can be 

decomposed in a sum of partial inbreeding coefficients each due to an ancestor e, e.g. =+(L) 
where e is an ancestor of N. Thus =+ = ∑ =+(L)L	∈	H?O<"P@B"(+) . Note that most ancestors do not 

generate partial inbreeding; only those ancestors common to both sides of the pedigree (mother 

and father of N ) have =+(L) ≠ 0. 

Partial inbreeding coefficient for animal N attributed to ancestor e, (=+(L)), is therefore the 

probability that N inherit IBD alleles from ancestor e [11, 4, 5]. In this study, =+(L) were 

computed following Mendelian decomposition of inbreeding, based on the source of 

coancestry between the parents of each individual, with values between 0 and 1. This 

decomposition of inbreeding splits inbreeding among founders and the Mendelian sampling of 

the non-founders [12]. To calculate partial inbreeding coefficients attributed to an animal N, we 

used the approach proposed by García-Cortés et al. [11] which modified the conventional 

tabular method with a set of recursively formulas. The method operates recursively over 

r(+,L) = $
% fr(+,"AB<) + r(+,#H,)g 	+ #+L, where r(+,L) is the additive genetic relationship 

between individuals N and e (or two times the coancestry between those two individuals), and 

#+L is the Mendelian sampling variation and it is related to within-family variation. For a given 

matrix s = {#+L}, s = 0	except at the element #++ of the diagonal that are handled as one of 

the following options: (1) when both parents are known, we use #++ = $
) (1 − =") + $

) (1 − =#) 
where =" (=#) is the inbreeding coefficient of the sire (or dam); (2) when only one parent (j =
3, 4) is known, we use #++ = $

% + $
) (1 − =;) and (3) when both parents are unknown we use 

#++ = 1. Each individual in the population is considered as a partial founder where it 

contributes to the genetic variability. The term # includes the Mendelian sampling variability 

and the ignorance about the knowledge of the parents [11]. 
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The partial inbreeding coefficients were calculated using a Fortran program available at 

https://github.com/alegarra/getPartialInbreeding. Partial inbreeding coefficients from the 

Mendelian decomposition of inbreeding were used later on mixed models for the genetic 

analysis of milk yield.  

Models 

The partial inbreeding coefficients were included in a mixed model as random regression 

covariates, to predict genetic variance and breeding values of the inbreeding load for milk yield. 

The effects: flock-year-parity where parity has three classes (1, 2, 3 and more), the age at 

lambing within year and parity, the period of lambing within year and parity and the lambing-

first test-day interval within year and parity, were included in the model as fixed effects. The 

model including the inbreeding load can be written as 

t = 	uv + wx + yQz + yQ{| + yR} + ~     (1) 

where t is the vector of phenotypic records (milk yield), v is the vector of fixed effects, x is 

the inbreeding depression parameter per unit of inbreeding and the covariate w is the vector of 

total inbreeding coefficients. The vectors of genetic effects, z and |, are the additive genetic 

and the inbreeding load effects, respectively; such as 7z|8~� 700, Ä⨂Ç8; where Ä =
É .&% .&,A.&,A .A% Ñ, and .&,A is the covariance between the additive genetic and the inbreeding load 

effects. The genetic correlation between the breeding value of milk yield and its inbreeding 

load was computed as ;(&,A) = S#,%
TS#!S%!

 [6]. The models also included a random permanent effect 

for each animal (}~�(0, Ö.D%)) and the residual (~~�(0, Ö.<%)). The incidence matrices u, yQ, 

and yR relate records to fixed effects, and additive genetic and permanent environmental 

effects, respectively. The matrix { is a lower triangular matrix, { = [(Ö − Ü), where [ 

contains the partial inbreeding coefficients of all individuals, Ö is the identity matrix and the 

product yQ{ links the phenotypes of those animals and their ancestors causing inbreeding. 

Matrix { considers the fact that it is not the inbreeding load of the individual that affects the 

phenotype, but the combined load of their ancestors. Thus, it is an indirect genetic effect (in a 

way similar to maternal effects, but more complex) and needs a custom incidence matrix. The 

https://github.com/alegarra/getPartialInbreeding
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matrix Ü has 0 in its diagonal and its elements 0.5 connect an individual with its sire and dam 

[5]. 

The full model (FM) in equation (1) was compared to a model without the inbreeding load 

called the reduced model (RM): t = 	uv + wx + yQz + yR} + ~. (Co)variance components 

were estimated using restricted maximum likelihood (REML) for FM and RM. The superiority 

of the FM over RM was tested by a likelihood ratio test, which was calculated as -2ln(likelihood 

for RM) + 2ln(likelihood for FM). The likelihood ratio follows a mixture of χ2-distributions 

with 0 and 1 degree of freedom [13].  

The matrix { was computed using a program in Julia available at 

https://github.com/alegarra/getPartialInbreeding. To avoid computational problems per 

numerical over/underflows, we included only absolute values of { matrix higher than 0.01.  

Inbreeding w was calculated with the inbupgf90 program [14] available at 

http://nce.ads.uga.edu/wiki/doku.php?id=readme.inbupgf90. Programs of the BLUPF90+ 

family [15] were used to estimate variance components, and are available at 

http://nce.ads.uga.edu/wiki/doku.php. 

 

Results 

Inbreeding and its Mendelian decomposition 

Pedigree-based inbreeding coefficients for each breed are shown in Table 1. Low inbreeding 

coefficients were estimated for the whole population (less than 1%). Our inbreeding estimates 

agreed with values obtained in other dairy sheep breeds: Latxa Cara Negra from Euskadi 

(0.018), Latxa Cara Rubia (0.016), and Latxa Cara Negra from Navarre (0.018) [16]. Among 

inbred animals, inbreeding coefficients were higher (~0.03) and agreed with estimates obtained 

on genotyped animals on the same breeds [17]. Few animals (less than 1%) presented 

inbreeding coefficients greater than 0.10 (Table 1). 

 

 

https://github.com/alegarra/getPartialInbreeding
http://nce.ads.uga.edu/wiki/doku.php?id=readme.inbupgf90
http://nce.ads.uga.edu/wiki/doku.php
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Table 1 Descriptive statistics for inbreeding in the three breeds 

Breed Inbred 

animals 

(%) 

Fraction (%) 

of inbred 

animals with á < â. âä 

Fraction (%) 

of inbred 

animals with á > â. ã 

Average á 

among inbred 

animals 

Average á in 

the whole 

population 

BB 41 85 0.6 0.032 0.013 
MTN 24 88 0.9 0.030 0.007 
MTR 56 96 0.5 0.025 0.014 

BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse  

F: coefficient of inbreeding 

The partial inbreeding coefficients from the Mendelian decomposition of inbreeding are 

presented in Table 2. A total of 9,775,475, 2,235,928 and 75,119,288 coefficients were 

generated, belonging to 3855, 3124 and 12,344 ancestors (917, 828 and 2716 sires and 2938, 

2296, 9628 dams) in the BB, MTN and MTR breeds, respectively. Note that these are only 

some of the ancestors, i.e. most ancestors do not generate inbreeding (although they would give 

a very large number of generations). The total number of ancestors in the three breeds was 

actually 91,476, 72,467 and 308,848 individuals in BB, MTN and MTR, respectively. 

Table 2 Distribution of partial inbreeding coefficients in the three breeds 

Breed Nb of coefficients Average (SD) Max Nb of 

Ancestors 

involved* 

BB 9,775,475 2.4 × 10−4 (9.9 × 10−4) 0.25 3855 
MTN 2,235,928 5.5 × 10−4 (2.1 × 10−3) 0.25 3124 
MTR 75,119,288 1.2 × 10−4 (7.2 × 10−4) 0.25 12,344 

Nb: Number; SD: Standard Deviation; Max: Maximum 

BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse 

*Ancestors involved: ancestors that generate partial inbreeding coefficients 

Note that if the ancestor is distant, the partial inbreeding coefficient is small and if the ancestor 

is close, the partial coefficient is large. Very few individuals had a partial inbreeding 

coefficients of 0.25: only 4 animals in BB, 7 animals in MTN and 32 animals in MTR. In BB, 

the partial inbreeding coefficient of 0.25 was due to a relationship where the animal was the 

result of a couple mother and son. All these high values are old (<1995) and precede the current 

organization of artificial insemination and matings in the selection schemes. 

Figure 1 shows the distribution of the log10 of the partial inbreeding coefficients. Most of the 

partial inbreeding coefficients, 97.7% and 95.8%, were lower than 0.01 (-2 in the log10 scale) 
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and 0.001 (-3 in the log10 scale) on average in the three breeds. Partial inbreeding coefficients 

greater than 0.01 (-2 in the log10 scale in Figure 1) were generated by 732, 519 and 2380 

ancestors in BB, MTN and MTR, respectively. Among these ancestors, 13%, 22% and 12% of 

them were founders in BB, MTN, MTR, respectively. Among all the ancestors that generated 

inbreeding (Table 2), 20%, 25% and 17% of them were founders in BB, MTN and MTR, 

respectively. 

 

Figure 1 Distribution of the log10 of the partial inbreeding coefficients for animals that 

generate inbreeding. 

BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse; Partial F: 
partial inbreeding coefficient. 
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Figure 2 shows the number of times an animal appeared as a common ancestor from maternal 

and paternal lineages, which are the ones that generate inbreeding (=+(L) > 0). A large number 

of ancestors appeared few times as ancestors generating inbreeding in the three breeds. There 

were 1456 animals in BB, 1201 animals in MTN and 5256 animals in MTR which were present 

less than 3 times as ancestors generating inbreeding. The number of animals which contributed 

to partial inbreeding more than 10).. ≈ 32,000 times was reduced: only 89, 3 and 548 

ancestors in BB, MTN and MTR respectively. It is on this kind of animals (animals whose 

inbreeding load is expressed across several descendants) that accurate estimation of variance 

components relies. The number of equivalent complete generations was computed for the three 

breeds and it was equal to 7.04, 6.18 and 7.82 for BB, MTN and MTR breeds, respectively. 

 

Figure 2 Distribution of the log10 of the number of times that an animal is ancestor and 

generates inbreeding (NTA). 

BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse 
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Genetic analysis 

Genetic parameters obtained using models with (FM) and without the inbreeding load (RM) 

are presented in Table 3. The estimate of inbreeding load genetic variance (.A%) was very 

inaccurate with large standard error in BB. On the contrary, .A% was highly different from zero 

for MTN and MTR. When we look at the likelihood ratio test (LRT) (Table 4) the perspective 

is somewhat different, and the null hypothesis of null inbreeding load genetic variance has to 

be rejected for all breeds. This, however, does not imply that .A% to be high, only that is different 

from 0. The obtained estimates of .A% clearly indicates variability of inbreeding load for milk 

yield among ancestor families in MTN and MTR breeds. For BB, it is not possible to definitely 

affirm that there is sizeable genetic variance of inbreeding load for milk yield. 

 

Table 3 Parameter estimates for milk yield (liters) obtained using the two models RM 

and FM (SE) 

Breed Model !!
"
 !#

"
 !!,#	 #(!,#) !'

"
 !(

"
 $ 

BB RM 847.7 (10.9) - - - 417.3 

(7.2) 

1325.1 

(2.7) 

-111.8 

(8.2) 

FM 847.9 (10.9) 11,804.0 

(7356.2) 

-289.0 

(514.8) 

-0.09 

(0.3) 

417.0 

(7.2) 

1325.1 

(2.7) 

-109.0 

(11.4) 

MTN RM 681.1 (9.5) - - - 363.1 

(6.8) 

958.5 

(2.2) 

-95.9 

(9.3) 

FM 678.3 (9.5) 9434.7 

(4089.5) 

- 192.5 

(436.5) 

-0.08 

(0.2) 

364.9 

(6.8) 

958.5 

(2.2) 

-73.0 

(13.9) 

MTR RM 1206.4 (8.0) - - - 513.0 

(4.8) 

1492.9 

(1.7) 

-70.9 

(4.5) 

FM 1205.7 (8.0) 12,923.0 

(3627.1) 

- 460.1 

(269.6) 

-0.12 

(0.1) 

513.2 

(4.8) 

1492.9 

(1.7) 

-50.6 

(7.5) 

BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse 

RM: reduced model (without inbreeding load effect); FM: full model (with inbreeding load effect) 

!+
,: additive genetic variance; !-

,: inbreeding load variance; !+,-: covariance between additive genetic and 

inbreeding load effects; "(+,-): correlation between additive genetic and inbreeding load effects; !.
,: permanent 

environment variance; !/
,: residual variance; #: inbreeding depression expressed by completely inbred (100%) 

descendants 
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Table 4 Likelihood ratio test (LRT) of models included inbreeding load (FM) or not 

(RM)  

Breed -2 log Likelihood LRT 

FM RM å6 P-value 

BB 6,759,011.664 6,759,143.696 132.032 7.4 × 10-31 
MTN 5,379,562.702 5,379,715.675 152.973 1.9 × 10-35 

MTR 22,626,973.729 22,627,357.574 383.845 9.1 × 10-86 
BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse 

FM: full model (with inbreeding load effect); RM: reduced model (without inbreeding load effect) 

$,: chi-square value 

 

The inbreeding load genetic variance was larger than the additive genetic variance. This is 

largely a scale effect due to the small numbers involved in partial inbreeding coefficients. Note 

that the model gives estimates of the inbreeding load genetic effect that must be understood as 

the effect expressed on the phenotype (milk yield) by completely inbred (100%) descendants 

from a single ancestor. We rescaled the .A% to a meaningful average value of = of 0.10.  

Considering this value of =, the rescaled inbreeding load variances were 118.04 (118.04 =
.A%(0.10)% = 11,804.0(0.10)%, Table 3) in BB, 94.35 in MTN and 129.23 in MTR. This 

rescaled variance corresponds to 4.3%, 4.5% and 4.0% of the phenotypic variance in BB, MTN 

and MTR, respectively. 

From estimates of the genetic parameters, the genetic correlation between additive genetic and 

inbreeding load effects (;(&,A)) is negative (as expected), small and with large standard errors 

in all cases (Table 3). An additional file includes the bivariate plot showing the relationship 

between additive genetic and inbreeding load effects for the three breeds [see Additional file 

1]. 

Inbreeding depression, based on the total inbreeding coefficients, was detected for milk yield 

in the three breeds (Table 3). With both models, the estimate of inbreeding depression was on 

average equal to -110.4 liters of milk yield in BB breed. This means that a 10% increase in 

inbreeding would result in a reduction of 11 liters of milk yield in this breed. In MTN and 

MTR, estimates of inbreeding depression differed between the FM and RM models. When the 

model included the inbreeding load (FM), a reduction of around 26% or 2.2 liters for 10% 

increase in inbreeding, was observed in the estimates of inbreeding depression in MTN and 

MTR. 
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The distribution of the predicted inbreeding load was presented in Figure 3. The averages of 

the predicted inbreeding loads were –116.26, 6.42 and -47.91 for BB, MTN and MTR 

respectively. The proportion of individuals with a positive predicted inbreeding load was 44%, 

24% and 30% in BB, MTN and MTR, respectively. Additionally, 9%, 16% and 11% of the 

individuals in the three breeds (BB, MTN and MTR respectively) have positive predicted 

inbreeding loads (higher than minus the inbreeding depression estimate, −x), i.e. they would 

compensate it and even produce a positive inbreeding effect. That indicates an improving in 

milk yield of their inbred descendants. 

 

Figure 3 Distribution of the predicted inbreeding load genetic effects in the three breeds 

(all animals). 
BB: Basco-Béarnaise; MTN: Manech Tête Noire; MTR: Manech Tête Rousse 
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308,848), only 4.2%, 4.3%, 4.0% of them generate partial inbreeding, in BB, MTN and MTR, 

respectively. Among these ancestors generating inbreeding, only ~25% in MTN (and even less 

in the other 2 breeds) of them were founders (animals whose ancestors are unknown). Thus, 

inbreeding comes mainly from the Mendelian sampling of non-founders. Most partial 

inbreeding coefficients (~ 90%) had values lower than 0.001. These results highlight the good 

management of inbreeding achieved in these breeds through mating plans that avoid mating 

among cousins (in particular for inseminations) and through husbandry practices (for natural 

mating, e.g. not using rams from the same farm). 

Estimates of additive genetic variance of inbreeding loads were significantly different from 

zero in milk yield in MTN and MTR, but not in BB. We do not find a clear explanation. The 

reason is not pedigree length harming the estimation - BB has a pedigree less deep than MTR 

(7.04 vs. 7.82 generations) but deeper that MTN (7.04 vs. 6.18 generations). An alternative 

hypothesis would be removal of variation in inbreeding load due to purging. In the context of 

inbreeding load, old inbreeding would correspond to low values of partial inbreeding and new 

inbreeding to high values. If selection for milk yield is strong relative to drift, purge occurs 

leading to elimination of deleterious alleles, and therefore there would be no variation left. 

However, Antonios et al. [18] could not confirm purge in BB using Kalinowski’s inbreeding 

coefficients. Still, BB has the smallest effective population size of the three breeds (59 based 

on Runs of Homozygosity, compared to 81 for MTN and 109 for MTR) [17], and this could 

have led to purge. However, we cannot confirm this hypothesis. 

Estimates of the genetic correlation between the additive genetic value and the inbreeding load 

were negative (as expected from the theory presented above) and low (~ -0.1). For all the 

breeds, the correlations were near zero and with large standard error. Compared to Varona et 

al. [5], our estimates were much lower than their estimate of genetic correlation for Pirenaica 

beef cattle (~ -0.4). Small and negative genetic correlations were also reported in Brown Swiss 

dairy cattle for fertility traits [6]. Milk yield is highly selected for in the breeds in this study 

[9]. The low values of genetic correlation between inbreeding load and breeding values imply 

that selection for milk yield will not cause increase inbreeding depression in milk yield in 

inbred animals.  

Prediction of inbreeding load of individuals without progeny is possible based on relatives with 

inbred descendants. Artificial purging based on predicted inbreeding load effects could be 
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performed to reduce the effect of inbreeding depression as suggested by Varona et al. [5] and 

Martinez-Castillero et al. [6]. Even if this artificial purging is feasible in theory, the magnitude 

of inbreeding load effects predicted in this study does not seem enough to warrant selection 

based on this criterion.  

Accurate estimates of inbreeding load effects are also an issue. Here we use pedigree 

information to estimate inbreeding coefficients, whereas use of SNP markers would be more 

accurate. Even if genomic selection was introduced in these dairy sheep breeds in 2016, there 

are not enough animals genotyped for that purpose (essentially all females would need to be 

genotyped), so the accuracy of inbreeding load prediction with genomic selection needs to be 

quantified [19]. 

Selecting individuals based on predicted inbreeding load for milk yield would basically remove 

recessive alleles reducing milk yield in homozygote carriers. However, recessive alleles for 

milk yield may have a pleiotropic effect on fitness traits, and selection to eliminate them may 

increase or decrease fitness. Currently, options to deal with decrease in fitness due to selection 

for economical traits include selection for fitness traits such as fertility, or mate allocation 

strategies to avoid genetic effects [20]. Thus, instead of using the inbreeding load predictions 

for selection, they could be used to avoid undesirable matings. Still the magnitude of these 

effects in this study precludes this strategy. Further research in other species and traits is needed 

to explore the possible, if any, benefits of these genetic management strategies. 

 

Conclusions 

We present theory that show the additive nature of the inbreeding load. The inbreeding load 

effect and the regular (in non-inbred population) additive genetic effect have a negative 

correlation depending on allele frequencies, inbreeding and dominance. There is genetic 

variance for inbreeding load MTN and MTR breeds, but it was not different from zero for BB. 

As expected, we estimated negative genetic correlations between inbreeding load and breeding 

values; however, estimates were close to zero in the three sheep breeds. The small magnitude 

of inbreeding load does not warrant selection based on this criterion. 
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3.1 Appendix 

Additional file 1 

 

Figure S1. Bivariate plot showing the relationship between additive genetic and inbreeding load 

effects for Basco-Béarnaise (BB), Manech Tête Noire (MTN) and Manech Tête Rousse (MTR) 

breeds. 
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Abstract 

Individual inbreeding load, which is the fraction of the mutation load, is considered a hereditary 

additive trait. This load is only expressed when inbreeding occurs in the individual’s offspring, 

and it is related to the analysed trait. Inbreeding load shows heterogeneity among individuals. 

Thus, inbreeding load can be used as a criterion of selection. Then individuals could be selected 

based on both, their estimated breeding values and their breeding values of inbreeding load. 

Those results led us to evaluate the effectiveness of involving inbreeding load in selection 

strategies in a dairy sheep breeding scheme. Where we computed a simulation of 10 generations 

of evaluations and selection. Six scenarios that differ in the criteria of selection (only estimated 

breeding values, only inbreeding load predictions, or both, estimated breeding values and 

inbreeding load predictions) and mate strategies minimising inbreeding load or adjusting 

estimated breeding values by the expected future inbreeding were evaluated. Scenarios were 

compared in terms of genetic gain, pedigree-based inbreeding coefficients, rate of inbreeding, 

effective population size, accuracy of selection. Results showed that there was no significant 

difference between the five scenarios where selection was based on estimated breeding values 

over the ten years of selection. As expected, the scenario selecting only on the inbreeding load 

predictions was significantly different from those five scenarios in terms of genetic gain. To 

conclude, selecting animals using inbreeding load was feasible. However, the magnitude of 

inbreeding load effects and its accuracy did not show a clear practical interest. Furthermore, 

the benefit of using inbreeding load in mate allocation strategies was negligible. 

 

Introduction 

Inbreeding load (IL) is the fraction of the mutation load that is due to recessive variants which 

can be hidden in heterozygous condition. The IL is trait specific and the amount of it will 

depend on the direction of dominance for loci affecting the trait. Inbreeding load of individuals 

is a heritable additive trait that is only expressed when the inbreeding occurs in their offspring 

(Varona et al., 2019). 

Genetic parameters for IL had been estimated for growth traits in rabbits (Casellas, 2018), pigs 

(Casellas et al., 2008) and beef cattle (Varona et al., 2019); for morphological traits in horses 
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(Poyato-Bonilla et al., 2020); and for fertility traits (Perdomo-González et al., 2021) in horses 

and dairy cattle (Martinez-Castillero et al., 2021). Recently, Antonios et al. (2024) estimated 

IL variances for milk yield in Manech Tête Noire (MTN) and Manech Tête Rousse (MTR) 

breeds and showed variability in IL in both breeds.  

In their previous work Antonios et al. (2024) showed that the genetic correlations between the 

additive genetic (breeding) values and the inbreeding load were negative and close to zero (~ -

0.1) for milk yield in MTN and MTR sheep breeds. Similarly, for Pirenaica beef cattle Varona 

et al. (2019) also reported negative (-0.4) genetic correlations between the additive genetic 

values and the inbreeding load. Such negative correlations indicate that animals with high 

breeding values tend to cause worse inbreeding depression if their descendants are inbred 

(Varona et al., 2019). Furthermore, close to zero correlations imply that the ILs are not 

genetically correlated with the additive genetic effects, which means that individuals could be 

selected based on both; their standard estimated additive breeding values (EBV) and their 

estimated IL values. For example, by selecting individuals based on the predicted inbreeding 

load for milk yield we could basically remove recessive alleles that reduce the milk yield in 

homozygote carriers. Other possibility could be to use IL predictions for avoiding undesirable 

matings. Mate allocation strategies have been used in animal breeding with different purposes, 

for instance, for exploiting dominance (González-Diéguez et al., 2020; Toro and Varona, 2010) 

or managing genetic defects (Bengtsson et al., 2022). To our knowledge, inbreeding load 

predictions have not yet been used in mate allocation strategies. Thus, matings involving 

individuals with ancestors with favorable inbreeding load (positive inbreeding load for milk 

yield or other trait of interest) could be prioritised; while matings with ancestors with low and 

negative inbreeding load (that generate worse inbreeding depression in inbred offspring) could 

be efficiently avoided. In this context, there are no studies that explore the possible benefits of 

involving inbreeding load predictions in such selection strategies.  

The aim of this study was to evaluate the effectiveness of including the inbreeding load in 

selection strategies for a dairy sheep breeding scheme via stochastic simulations. In this sense, 

we deployed different scenarios that differed in the selection criteria: (i) selection only on 

estimated breeding values (EBV), (ii) selection on both EBV and IL predictions, (iii) selection 

only on IL predictions, (iv) selection on both EBV and IL predictions coupled with the mate 

allocation strategies or (v) adjusting EBV by the expected future inbreeding. Scenarios were 
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compared in terms of genetic gain, pedigree-based inbreeding coefficients, rate of inbreeding, 

effective population size, and the accuracy of selection. 

 

Materials and Methods 

In this study, we analysed how inclusion of the inbreeding load in selection strategies impacts 

the genetic trends, prediction accuracies and inbreeding parameters in dairy sheep selection 

scheme over 20 years. The selection strategies (scenarios) includled: (i) selection based on 

EBV, (ii) selection based on EBV and IL assuming an inbreeding of 1%  or (iii) of 10%, (iv) 

selection based only on IL, (v) after selection based on EBV, a mate allocation strategy was 

used to minimize the IL in matings, (vi) selection was based on EBV adjusted by the expected 

future inbreeding. 

The material and methods are subdivided into two sections. The first section describes the 

simulation of the founder population, and the second section describes the simulation of the 

selection scheme. 

 

Simulation of the founder population 

We used AlphaSimR (Gaynor et al., 2021) to simulate a realistic dairy sheep selection scheme 

that closely mimics the French dairy sheep selection scheme. ur simulation is driven by a set 

of parameters (Table 1) imitating the French dairy sheep selection scheme. 

Historical population 

We added a historical demography of the sheep population (Figure 1), by setting the effective 

population size (�m) for the base population to 150 (Rodríguez-Ramilo et al., 2019) with a 

decrease of �m from 7,500 at around 10,000 generations ago in line with the estimates used by 

Villa-Angulo et al. (2009). Successive reduction of �m was used to reflect a progressive 

restriction of genetic variance due to natural and artificial selection. 
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dams of sires, dams of dams, testing sires, natural mating sires and lambs) in order to initiate a 

dairy sheep scheme. 

A trait, such as milk yield, controlled by additive and dominance QTL action was simulated. 

We used a heritability of 0.33, an overal population mean of 200 liters for milk yield and other 

parameters presented in Table 1. We fixed a flock size of 320 ± 129 animals, and a total number 

of flock of 237. We defined three fixed effects: flock, year and flock-year. 

 

Table 1. Dairy sheep simulation parameters 

.&% .A% .&,A ;(&,A) .#% .D<%  .<% 

1000.0 12923.0 -359.5 -0.1 100.0 1500.0 400.0 

!+
,: additive genetic variance; !-

,: inbreeding load variance; .&,A: covariance between additive genetic and 

inbreeding load; "(+,-): correlation between additive genetic and inbreeding load; !0
,: dominance genetic variance; 

!./
, : permanent environment variance; !/

,: residual variance 

 

 

Genetic values  

Genetic values for milk yield were simulated by summing the genetic effects at the 251 QTL. 

The additive biological QTL effects (:) were sampled from a standard normal distribution and 

scaled to obtain an additive genetique variance of .&% = 1000 in the founder population.  

Dominance variance (.V%) was fixed to .V% = 0.1.&% based on Aliloo et al.’s (2017) paper. 

Phenotypes 

Only females had records (milk yield). Phenotypes were generated by adding fixed effects, 

random permanement environmental effect (éç) and random residual effect (ç) to the genetic 

values. The fixed effects were flock, year, flock-year and class of parity and their values were 

obtained from real data. The random effects, éç and ç, were sampled from éç~�(0, Ö.D<% ) and 

from ç~�(0, Ö.<%), where .D<%  was the permanement environmental variance, .<% was the error 

variance and Ö was an identity matrix. Values for .D<%  and .<% were obtained from real data 

(Table 1). Milk yield phenotype was calculated by class of parity (1, 2, 3 and 4 lactation), by 

adding a general mean for each lactation. The milk yield’s means were calculated from real 

data (209, 213, 207 and 180 liters in 1st, 2nd, 3rd and 4th lactation, respectively). The dams (dams 

of sires and dams of dams) that are in the same class of parity had the same milk yield mean. 
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Conventional pedigree-based selection (burn-in) 

In the burn-in phase, selection was based on the EBV. Sires were selected based on their EBV 

estimated from their progeny testing. From matings between elite sires and elite dams, we 

selected the best 150 males (testing sires) based on the parents’ EBV to enter to artificial 

insemination (AI) center at around 8 months of age. Testing sires are mated only with dams of 

dams (Figure 3) and each testing sire contributed 30 offspring. At 2.5 years old, we selected 

the best 10 males of the testing males as sires of sires and the next best 55 males as sires of 

dams, to be the AI sires. All of them were selected based on their breeding values estimated 

from their daughters records. Each AI sire stayed in service for 3 years, so in total, the number 

of AI sires in each year of simulation was around ~200 sires, composed of 30 AI sires of sires 

(the ones with the highest EBV, and selected from different families) and 165 AI sires of dams 

(the ones highests EBV among the remaining ones). Each AI sire of sires contributed 144 

offspring per year and each AI sire of dams contributed 33 offspring per year. The natural 

mating (NM) sires composed of 1000 sires and were replaced every year. NM sires were 

selected from the progeny of AI sires, among the ones that were not selected for the testing 

(were not among the best 150 males). Each NM sires contributed to 19 offspring. Note that the 

final number of offspring per sire was calculated by taking into consideration the real breeding 

scheme survival rates that were equal to 0.75, a fertility of 0.6 (0.9) in AI (NM) and a prolificacy 

of 1.6 (1.4) in AI (NM). 

Mating generated 16K female lambs in each year, and this was the final number of lambs that 

survived after lambing, thus accounting for the stillbirths and early deaths. The female lambs 

were inseminated or naturally mated at 8 months old, and became dams in the first year. In the 

simulation, this scheme totalled to about 33K active dams each year (Figure 3). Ten percent of 

the dams are dams of sires; they are the future mother of AI sires, and in this case, they are only 

mated with the AI sires of sires. Note that the dams of sires must be the progeny of AI sires and 

they are selected based on their estimated breeding values. Dams of dams were inseminated 

randomly from the AI sires of dams and the testing sires and the rest is naturally mated with 

the NM sires. In this simulation, we avoided parent offspring’s mating, and mating between 

siblings. The replacement rate of the dams is around 23%. In this simulation, dams have 4 

lactations when they are 4 years old. Thereafter, among the total number of dams of sires (3K), 

35%, 26%, 23% and 18% of dams of sires are in lactation 1 (Lac 1, see Figure 3), lactation 2 

(Lac 2), lactation 3 (Lac 3) and lactation 4 (Lac 4), respectively. In dams of dams’ group (30K 
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sMA scenario took place between the 30 sires of sires and 3,000 dams of sires (90,000 possible 

matings). Optimization of matings was addressed via linear programming (Jansen and Wilton, 

1985) using the R lpsolve package (Berkelaar et al., 2004). Three constraints were used in the 

optimization: (i) each sire mated with 100 dams, (ii) each dam mated only once and it gave 

birth to only one lamb, (iii) mating between parent and offspring as well as mating between 

siblings were avoided. In the MA scenario, we allowed first matings between individuals with 

no common ancestors, and second matings between individuals with common ancestors where 

the priority was for matings with a parents’ average IL as high as possible (positive). 

In sEFI scenario, each testing sire (150 males) was selected as AI sire (10 males), based on the 

best adjusted EBV (EBVp). For each testing sire, we computed its average relationship with 

all the contemporary females (3,000 dams of sires) in order to obtain the EFI (expected future 

inbreeding) as half the average relationship of this male to the contemporary females. The 

EBVp was equal to (_êëo = _êë + $
%_=í ∗ x) where x was the inbreeding depression 

coefficient. Males that are highly related with their contemporary females were more penalized. 

Prediction model 

Milk yield was analysed using single-trait animal model. We estimated breeding values and 

inbreeding load effects using BLUPF90+ (Lourenco et al., 2022) available at 

http://nce.ads.uga.edu/wiki/doku.php. The partial inbreeding coefficients were calculated using 

a Fortran program available at https://github.com/alegarra/getPartialInbreeding. Variance 

components were assumed to be known from initial simulation parameters.  

Pedigree-based EBV (BLUP) were obtained in scenarios sEBV and sEFI using the following 

model: î = 	ïñ + óx + ò&' + òDéç + ç, where î is the vector of phenotypic records (milk 

yield), ñ is the vector of fixed effects (flock, year, flock-year, and rang of lactation), x is the 

inbreeding depression parameter, ó is the vector of total inbreeding coefficients, ' is the vector 

of additive genetic effects, éç is vector of random permanent effects and ç is the vector of 

residuals. The incidence matrices ï, ò&, and òD relate records to fixed effects, and additive 

genetic and permanent environmental effects, respectively. 

In scenarios sEBV-IL-01, sEBV-IL-10, sIL and sMA, the model included a new effet, ô, the 

vector of inbreeding load effects. This model can be written as: î = ïñ + óx + ò&' +
ò&öô + òDé + ç, where the matrix ö is a lower triangular matrix, ö = /(d − b), where / 

http://nce.ads.uga.edu/wiki/doku.php
https://github.com/alegarra/getPartialInbreeding
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contains the partial inbreeding coefficients of all individuals, d is the identity matrix and the 

product ò&ö links the phenotypes of those animals and their ancestors causing inbreeding. 

Matrix The matrix b has 0 in its diagonal and its elements 0.5 connect an individual with its 

sire and dam. Note that 7'ô8~� 700, õ⨂-8; where õ = É .&% .&,A.&,A .A% Ñ, - is the pedigree-based 

additive relationship matrix, .&% is additive genetic variance, .A% is the inbreeding load variance, 

and .&,A is the covariance between additive genetic and inbreeding load effects.  

 

Measures for comparison 

The six different scenarios (sEBV, sEBV-IL-01, sEBV-IL-10, sIL, sMA and sEFI, were 

compared in terms of genetic gain, inbreeding, rate of inbreeding, effective population size 

(Ne), inbreeding depression parameter (b) and selection accuracy. To make the breeding 

scenarios comparable, all scenarios were normalized to the last year of burn-in (year 10), so 

that the mean genetic value was 0 and the standard deviation was 1. 

The average true total genetic value (TTGV) of animals was computed for each generation 

expressed relative to the TTGV at the generation 0 (last year of burn-in) to evaluate the genetic 

trend. For each simulated scenario, the total genetic gain for milk yield was estimated from the 

regression of the TTGV on the year of birth. We also calculated individual pedigree-based 

inbreeding coefficients using the Meuwissen and Luo (1992) algorithm as implemented in 

renumf90 program (available at http://nce.ads.uga.edu/html/projects/programs/). From the 

average inbreeding coefficients per year, we computed the rate of inbreeding (Δ=) as the 

regression coefficient of the average inbreeding coefficients on the year of birth over all 

replicates. The Ne was calculated as �m = $
%WX>, where ΔF is the rate of inbreeding per year 

and L is the generation interval defined as the average age of the parents at the birth of their 

offspring. We used L = 4 as estimated prevouisely for the Pyrenean breeds (Antonios et al., 

2023). Selection accuracy was measured as the correlation between the estimated breeding 

values and the true breeding values. Results were the average of the 10 replicates of each 

scenario. 

 

http://nce.ads.uga.edu/html/projects/programs/
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Results and discussion 

Response to selection 

Figure 5 shows the mean TTGV trends. As expected, a positive trend (genetic gain) in milk 

yield over the ten years of selection was observed in the five scenarios where selection was 

based on EBV (sEBV, sEBV-IL-01, sEBV-IL-10, sMA, and sEFI). Howerver, in the sIL 

scenario, the trend of the mean TTGV was different. Note that the EBV was not included in the 

selection criterion in sIL scenario. The genetic trend (sIL) was positive for the first 4 years and 

then it started to decline. In the sIL scenario, the gain in the first four years may be attributed 

to animals that were previously selected based on their EBVs in the in the burn-in phase and 

those animals had high EBVs (high TTGV). Thus, the positive trend in the mean TTGV during 

four years is because there were animals, that were selected based on their EBVs (sires, dams 

of sires) from previous step (burn-in), they stayed for certain number of years (until they will 

be completely replaced) transmitting their relatively high genetic merit to their offspring. 

 

Figure 5. True total genetic value trends during 10 years of selection in the 6 different 

scenarios. sEBV: scenario selecting based on estimated breeding values (EBV); sEBV-IL-01: 
scenario selecting based on EBV + 0.01 of inbreeding load (IL); sEBV-IL-10: scenario 
selecting based on EBV + 0.1IL; sIL: scenario selecting based IL; sMA: scenario implementing 
mate allocation; sEFI: scenario selecting based on EBV adjusted by the expected future 
inbreeding. 
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All the scenarios where selection was based on EBV had similar total genetic gain for the milk 

yield. Five scenarios: sEBV, sEBV-IL-01, sEBV-IL-10 and sMA, had a total genetic gain of 

around 9 liters followed by sEFI around 8 liters (Figure 6); no significatively differences (p-

value>0.05) were observed among them. Whereas, sIL scenario had a negative genetic gain, 

which means a loss in the milk yield by around 4 liters, pointing towards negative impact of 

selecting individuals based on their IL only. In addition, we assumed a low genetic correlation 

(-0.1) between the true breeding value and the inbreeding load in the simulation, thus the 

animals with the highest estimated IL were not necessarily those with the highest EBV which 

caused a loss in the milk yield. 

Selection accuracy was calculated as the correlation between the true and the estimated 

breeding values in selection candidates. All scenarios achieved comparable accuracies of about 

0.5. 

 

Figure 6. Total genetic gain for milk yield in the different scenarios. sEBV: scenario 
selecting based on estimated breeding values (EBV); sEBV-IL-01: scenario selecting based on 
EBV + 0.01 of inbreeding load (IL); sEBV-IL-10: scenario selecting based on EBV + 0.1IL; 
sIL: scenario selecting based IL; sMA: scenario implementing mate allocation; sEFI: scenario 
selecting based on EBV adjusted by the expected future inbreeding. 

 

 

−3

−2

−1

0

1

2

3

4

5

6

7

8

9

10

sE
BV

sE
BV−

IL
−
01

sE
BV−

IL
−
10 sI

L
sM

A
sE

FI

Scenarios

G
e

n
e

ti
c
 g

a
in

 (
L

it
e

rs
)



Chapter 4: Exploring options to select based on inbreeding load via simulation 

 
74 

Inbreeding, inbreeding depression and rate of inbreeding 

The trend of the mean of inbreeding coefficients per year are shown in Figure 7 for each 

scenario. Inbreeding increased from 0.3% in the last year of the the burn-in phase to around 

1% in the last year of simulation. The increase of inbreeding was similar in all the scenarios 

with the expection of sIL (p-value > 0.05). The scenario sIL showed the lowest inbreeding. 

This shows that selection on IL favorised matings that are less related, leading to a reduction 

in the inbreeding level of the upcoming generations compared to the other scenarios. More 

complex mating strategies, such as sMA and sEFI, did not show any advantage in reducting 

inbreeding (respect to selection on EBVs). 

 

 

Figure 7. Evolution of the mean of inbreeding coefficients during 10 years of selection in 

the 6 diferent scenarios. sEBV: scenario selecting based on EBV; sEBV-IL-01: scenario 
selecting based on EBV + 0.01IL; sEBV-IL-10: scenario selecting based on EBV + 0.1IL; sIL: 
scenario selecting based IL; sMA: scenario implementing mate allocation; sEFI: scenario 
selecting based on EBV adjusted by the expected future inbreeding. 
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To understand more the difference in the inbreeding between the scenarios involving both, EBV 

and IL (sEBV-IL-01, sEBV-IL-10, sMA) and only IL (sIL), we checked the partial inbreeding 

coefficient and the number of ancestors generating inbreeding. Three scenarios (sEBV-IL-01, 

sEBV-IL-10 and sMA) had around the same number of partial inbreeding coefficients (Table 

2), while sIL had the lowest number of partial inbreeding coefficients with the highest number 

of ancestors generating them (9K instead of 7K for the other scenarios). The number of partial 

inbreeding coefficient per ancestor was lower in sIL and explained the lower inbreeding 

recorded in the sIL (Table 2).  

 

Table 2. Mean and number of partial inbreeding coefficients and the number of ancestors 

generating inbreding in different scenarios. 

Scenarios1 

Number of partial 
inbreeding 

coefficients ± se2 

Number partial 
inbreeding coefficients > 

0.01 ± se (%) 

Number of 
ancestors 
generating 

inbreeding ± se 
(%) 

Average 
number 
of PF3 

sEBV-IL-01 
14,400,624 ± 

272,977 
28,531 ± 1,252.7 (0.2%) 7,395 ± 82.9 1,978 

sEBV-IL-10 
14,487,610 ± 

233,151 
28,290 ± 962.0 (0.2%) 7,323 ± 104.0 1,947 

sIL 
11,756,042 ± 

174,884 
22,373 ± 990.3 (0.2%) 9,283 ± 96.9 1,266 

sMA 
14,338,185 ± 

298,147 
28,309 ± 1,136.6 (0.2%) 7,546 ± 36.0 1,774 

1scenarios: sEBV: scenario selecting based on EBV; sEBV-IL-01: scenario selecting based on 
EBV + 0.01IL; sEBV-IL-10: scenario selecting based on EBV + 0.1IL; sIL: scenario selecting 
based IL; sMA: scenario implementing mate allocation; sEFI: scenario selecting based on EBV 
adjusted by the expected future inbreeding.  
2se: standard error. 
3PF: partial inbreeding per ancestor. 

 

Inbreeding depresssion for 100% of inbreeding is presented in Table 3. This means that a 10% 

increase in inbreeding would result in a reduction of 10.7, 10.6, 10.6, 10.5, 10.5 and 10.7 liters 

of milk yield in sEBV, sEBV-IL-01, sEBV-IL-10, sIL, sMA and sEFI, respectively. The 

differences between the scenarios were not significant. Selection against low IL (the fraction 

of the mutation load that is due to hidden recessive alleles in heterozygous state) did not 

reduced inbreeding depression compared to other scenarios. We expected a lower inbreeding 
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depression for the sIL scenario. However, the IL presented in the population, when exposed by 

inbreeding (even if it was lower than in the other scenarios), was responsible for inbreeding 

depression in milk yield. This result showed that selecting individuals on IL alone did not 

prevent or reduce the inbreeding depression on the trait. 

The rate of inbreeding per year (Δ=Y<HB) was calculated from the regression of the average 

inbreeding coefficient on the year of birth for the 10 years of simulation. Only the Δ=Y<HB in 

sIL was significantly different (lower) from other scenarios (Table 3). Relying on previous 

researches results (Fu et al., 1998; Hedrick, 1994) they showed that the ability of a population 

to purge deleterious alleles is impacted by the rate at which inbreeding accumulate within the 

population overtime. It was proved in previous long-term selection experiments (~200 

generations) in Drosophila strains conducted by Latter et al. (1995), they showed that the 

higher the rate the inbreeding the slower is the removal of the deleterious alleles. Here, we 

selected against hidden recessive alleles (low IL); it is as an artificial purge and for this reason 

the rate of inbreeding is lower in sIL. Lower Δ= compared to other scenarios was in agreement 

with the higher number of ancestors (9,283 ancestors generating inbreeding) found in this study 

(Table 2) (Woolliams, 2007). As expected, �m in sIL was significantly different form the other 

scenarios. 

 

Table 3. Inbreeding depression, rate of inbreeding per year (úáZ[\]) and effective 

population size ()ç) for the six scenarios in the last year of simulation. 

 sEBV sEBV-IL-01 sEBV-IL-10 sIL sMA sEFI 

ID* -107.1 ± 
3.6 

-105.8 ± 2.6 -105.9 ± 2.3 -105.2 ± 3.5 -104.7 ± 3.5 -106.7 ± 2.6 

Δ=Y<HB  2.42×10-3 ± 
1.51×10-4 a 

2.41×10-3 ± 
1.70×10-4 a 

2.41×10-3 ± 
1.48×10-4 a 

1.28×10-3 ± 
1.20×10-4 b 

2.27×10-3 ± 
1.69×10-4 a 

2.29×10-3 ± 
1.60×10-4 a �m  52a 52a 52a 98b 55a 55a 

*ID: inbreeding depression expressed by completely inbred (100%) descendants. 

sEBV: scenario selecting based on EBV; sEBV-IL-01: scenario selecting based on EBV + 
0.01IL; sEBV-IL-10: scenario selecting based on EBV + 0.1IL; sIL: scenario selecting based 
IL; sMA: scenario implementing mate allocation; sEFI: scenario selecting based on EBV 
adjusted by the expected future inbreeding. 
a,b Values with different lowercase letters denote statistically significant differences between 
scenarios (p < 0.05). 
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Genetic correlation 

In the simulation, the genetic correlation between additive genetic and inbreeding load effects 

was assumed to be -0.1, based on the previous estimates obtained for the dairy sheep. In the 

last year, the bivariate plot between EBV and estimates of the inbreeding load effects (Figure 

9) permited to see the degree and pattern of relation between both. In accordance with the 

theory presented in our previous work (Antonios et al., 2024), the correlation between the EBV 

for milk yield and the estimates of the inbreeding load was negative in all the scenarios. It was 

not possible to analyse the relationship between the true breeding value and the true inbreeding 

load, because the last one was not explicitly simulated in this work.  

 

Figure 9. Bivariate plot showing the relationship between additive genetic and inbreeding 

load effects in four scenarios. sEBV-IL-01: scenario selecting based on EBV + 0.01IL; sEBV-
IL-10: scenario selecting based on EBV + 0.1IL; sIL: scenario selecting based IL; sMA: 
scenario implementing mate allocation. 

 

The accuracy of estimating inbreeding load effects was very low; for instance it was -13.46 

(111.77) for sEBV-IL-01 scenario. This was in accordance with other studies (Varona et al., 

2019; Varona et al., 2022; Antonios et al. 2024). Varona et al. (2022) showed in their study that 

the use of SNP markers can improve the accuracy of the estimation of the inbreeding load 

effects in selection candidates. But, in French dairy sheep breeds, even if genomic selection 

was introduced in 2016, up to now, there are not enough genotyped animals for that purpose, 

especially that all females are not genotyped. 
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Conclusion 

To conclude, we showed that selecting animals using inbreeding load is feasible. However, the 

magnitude of inbreeding load effects and its accuracy did not show a clear benefit of including 

it in genetic evaluation models. Furthermore, the benefit of using inbreeding load in mate 

allocation strategies was negligible. In light of this, those results could be used as a reference 

for further research in other species and traits to explore the possible benefits of these genetic 

management strategies as well as to test the alternatives. 
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Livestock breeding is always aimed at the future and breeding programs are set up to 

create genetic improvement. The improvement of the average performance, in livestock 

populations, requires selecting individuals with average additive genetic value better than the 

average of the population. In most cases, the methodological focus on EBV prediction may 

hide the role of Mendelian sampling in creating genetic progress. A sustained genetic gain is 

related to the use of the Mendelian sampling variation – i.e. the new genetic variation generated 

at each meiosis (Woolliams et al., 1999). In the first part of my PhD, we fine partitioned genetic 

trend into Mendelian sampling components, by categories of animals defined by sex and by 

selection pathways, and we also characterized long-term genetic contributions in order to 

identify the different contributions of categories of individuals, and for a better understanding 

of the selection scheme. 

Even if maximizing the genetic gain is the target in selection schemes, it is important 

to limit the increase of coancestry and inbreeding, and different strategies have been developed 

to deal with this. Inbreeding, which is unavoidable in finite size populations, changes genotype 

frequencies by increasing the homozygosity at the expense of the heterozygous genotypes 

(Curik et al., 2014). The inbreeding load is the fraction of the mutation load which is due to 

recessive variants concealed in heterozygous condition. In populations where recessive 

mutations (inbreeding load) are masked by the heterozygosity state, inbred matings can 

increase the likelihood of expressing those mutations, because they will be in a homozygote 

state in the offspring (Caballero, 2020). During the second part of my PhD, we proved the 

additive nature of the inbreeding load and developed a, to our knowledge, original theory that 

shows explicitly the genetic correlation of inbreeding load with the additive genetic effect. 

Then, we applied this theory, we estimated the genetic correlation for the trait milk yield, and 

evaluated the effectiveness of involving inbreeding load in selection strategies by simulation. 

The objective of this chapter is to discuss the main findings of this thesis in a broader 

and joint perspective, highlighting the strengths and weaknesses of the models and strategies 

used and guiding future research. 
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5.1 Partition of the genetic trends  

5.1.1 Selection pathways 

In the process of breeding and selection, genes may be transmitted to the next 

generation using different pathways. Four selection pathways are taken into consideration: (1) 

sires of sires (SS) are the sires of the AI sires, (2) sires of dams (SD), these sires will be the 

fathers of dams, (3) dams of sires (DS) are the mothers of sires, and (4) dams of dams (DD). 

SS is the most stringent selection path to breed new SS. Within the sire category, SD, is the less 

stringent selection path. DS are the most stringent selection path within the dams and they 

produce mainly the AI sires. Among all paths, DD is the less stringent selection path and they 

produce dams (although they are by no means unimportant, e.g. dams can be the maternal 

grand-mother of an AI sire). Selection response can be divided into a number of selection paths, 

the number depending on the number of differences in selection intensity and the accuracy of 

selection. 

In French dairy sheep breeds, all four selection paths can be recognised (Astruc et al., 

2022). SS, elite sires, are the ones with the highest total merit index (named ISOL), and they 

are used for AI mainly in the selection nucleus and they are mated in assortative mating with 

DS to produce the future AI sires. The best SD are used for AI to produce the future dams, and 

the rest of sires are used for the diffusion of the AI mainly in the stockbreeders (practicing, or 

not, simplified milk recording), the later are known as the “users of genetic progress” but do 

not contribute selected animals themselves. The ISOL of SD is lower than that for SS. The 

passage of genes from the nucleus to the “out of the nucleus” flocks is based partly on AI sires 

and partly on natural mating sires by sons of AI sires. To estimate the annual genetic gain 

(AGG), we can use the classical theory of response to selection (Rendel and Robertson, 1950) 

and take into account those selection pathways as follows: raa = X^11=X^12=X^21=X^22
W11=W12=W21=W22 , 

where ù is the average age of the selected individuals in each selection pathway when their 

progeny was born, and Δa is the estimated genetic superiority of the selected group over the 

contemporary individual born in the same year (Astruc et al., 2022). The selection pathways 

methodology permits a vision of the flow of genes from each category to the next generation 

and of the effort of selection each year. Genetic improvement in dairy sheep is the result of the 
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joint effort of breeders and research (chapter 1, Figure 1.3). For example, in LAC, between 

2000 and 2014, the estimated yearly AGG (expressed in equivalent litres) is 5.23 in ewes. After 

2015 (after the implementation of genomic selection), the AGG is 7.96 in ewes (Astruc et al., 

2022).  

5.1.2 Partitioning of the genetic trend 

To improve a population, we need certain animals to be better than their parents. For 

this, the originality of the animals with respect to their parents (i.e., Mendelian sampling) has 

to be captured. In chapter 2, we showed that breeding values of any generation can be 

partitioned into a sum of ancestors’ Mendelian sampling terms weighted by their long-term 

genetic contribution and individuals’ Mendelian sampling terms (Bijma, 2000). This partition 

is useful, because it shows that long-term contribution represents the contribution of the 

individual’s unique bit of genetic variation, Mendelian sampling, to the long-term gene pool. 

This helps to understand that the future gene pool has contributions from the founders and non-

founders. Additionally, this chapter outlined a procedure to partition the genetic response into 

smaller parts that align with different categories of animals defined by sex and selection 

pathways. This method enabled the calculation of the partial genetic trends directly from the 

EBV according to different groups (e.g. selection pathway or sex) providing a way to inspect 

the contribution of each category to the genetic gain. Note that by doing this, we have split, for 

each individual, the parent average into contributions due to Mendelian sampling of their 

ancestors, which, in turn, then we assign into categories. Results obtained in chapter 2 

highlighted the difference in the contribution of different categories of animals to better 

understand the selection decisions. Although the precision in capturing Mendelian sampling is 

greater in males (by progeny testing), the final genetic progress is largely given by the 

originality of the females, even if their prediction (by own phenotype) is less accurate and their 

progeny number is smaller. This study allows us to say that the females (dams) play an 

important role in the total genetic gain of the population by their originality (or genetic 

variabilities). Usually, this role of the dams is being neglected by the importance of the 

contribution of the AI males to the total genetic merit of the population. But in fact, half of the 

AI males’ genes come from their dams and which also include half of the Mendelian sampling 

term of their dams, which means that dams’ positive Mendelian sampling are eventually 

selected and spread through the AI. Additionally, the long-term genetic contribution of the 

animal comes from the sum of its males and females’ offspring selected, and this further 
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justifies the importance of females in participating in the genetic progress (Woolliams et al., 

1999). The fine partitioning of the genetic gain in Mendelian sampling trends can be interpreted 

as females being a large and easily accessible reservoir of genetic variability for selection. Still, 

AI sires are crucially important in the diffusion of best genetics in the population and in 

connecting genetically the flock (nucleus and commercial flock) through the AI. With the small 

number of AI sires compared to the females’ number, they have higher contribution for the 

upcoming years and that is because of the use of AI. Use of AI means that AI sires contribute 

more than dams to the gene pool of the population due to their larger number of offspring. 

Additionally, there were differences between LAC breed and the Pyrenean breeds in terms of 

the contribution to genetic progress of females versus males. In LAC, females had higher 

contribution to the overall genetic trend than the males, whereas in the Pyrenean breeds both 

sexes had around the same contribution to the overall genetic trend. The difference in the 

relative importance of Mendelian sampling and the parent average between breeds should 

reflect the different selection strategies in practice. In LAC breed, Mendelian sampling was 

more important than parent average to determine the selection of individuals and their long-

term contributions. Since Mendelian sampling is related to within-family selection, we can say 

that a greater importance of within-family selection is given in LAC breed, and this greater 

importance may be due to a larger family size than in the other breeds. Additionally, the greater 

offspring numbers of LAC AI males make possible a more intense within-family selection. 

Whereas in the Pyrenean breeds, the effect of parent average is more important than the effect 

of Mendelian sampling, and the between family selection is more important. Long-term 

contributions were larger for AI males (with larger progeny sizes than females) and in BB than 

in LAC (with the latter being a larger population). 

In the selection pathway part, we showed the formula of Rendel and Robertson (1950) 

for estimating the AGG and used by Astruc et al. (2022). This method considers the gain from 

selection in a single cycle of selection arising from all previous cohorts. The genetic 

improvement that results from a single year of selection in a group of animals may take many 

years to pass through the population when generations overlap. The rates of response predicted 

by the classical theory are therefore reached only asymptotically. 

Hill (1974) pointed out that the effect of one year of selection on the successive 

generations is mostly erratic for many years after the selection is practised. Hill (1974) 

proposed an alternative approach based on a matrix which specify the passage of genes (gene 
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flow) between different groups. In our work, we used the gene flow approach of Woolliams et 

al. (1999), which is a modified version of the conventional gene flow proposed by Hill (1974). 

In the modified gene flow approach, they have defined a modified gene flow matrix (G) that 

represents the parental origin of the genes of selected individuals, and this matrix G takes into 

account the selection degree that is taking place changes and may vary with e.g. age. This 

modified gene flow accounts for individual long-term genetic contributions [by including 

ûL("!(L) − "L) in the model for expected contributions], where û is the regression of the 

contribution of individual ! in a category e on its breeding value "!(L), and "L the mean 

breeding value of selected contemporaries of ! in category e. Whereas, the conventional gene 

flow accounts for the average genetic contribution (û = 0) (Bijma and Wolliams, 1999). 

Following this approach, by partitioning the breeding values into Mendelian sampling terms, 

Woolliams et al. (1999) defined the rate of genetic gain (Δa) for an annual cohort as the product 

of the genes that derive from an individual and its Mendelian sampling term summed over all 

parents per year as: 

Δa = ∑1! #!                   (5.1) 

where 1! is the proportion of genes deriving from an individual ! (the long-term contribution 

of !) and #! is the Mendelian sampling of individual !, we can define the genetic gain by 

category (Woolliams et al.,1999). This equation shows the long-term impact of the individual 

on the population mean, and it traces the flow of genes through the pedigree (Woolliams et al., 

1999). Δa is calculated with the Mendelian sampling and not the breeding values because the 

breeding value of an individual contains its Mendelian sampling and its ancestors’ Mendelian 

sampling, which means that substituing Mendelian sampling with breeding values will be 

double counting. Thus, with this equation the higher the genetic contribution of a group or 

category, the higher the genetic gain. By using this approach, we have found that the gene pool 

in dairy sheep populations has contributions from females and males. Males had higher 

contribution than females in both breeds, and this is because of their smaller number compared 

to the dams and they contribute more to the gene pool by their higher number of offspring. 

From this study, we confirm that the Mendelian sampling term was observed to be the most 

important factor determining the selection of the females to become dams and to maintain their 

long-term genetic contribution.  
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Why using Woolliams et al.’s approach (1999)? - On the light of equation 5.1, it 

considers that the genetic gain is coming from a cohort over all subsequent cycles of selection, 

unlike Rendel and Robertson’s equation that considers gain from selection in a cycle coming 

from all previous cohorts (which results in double counting). Woolliams et al.’s approach 

(1999) shows how asymptotic proportions of genes can be predicted accurately, either on an 

individual or on a group level. According to Wray et al. (1989), accounting for the effect of 

selection between individuals is crucial for prediction the rates of inbreeding. Bijma and 

Woolliams (1999) pointed out that predicting the rate of inbreeding is not possible with the 

conventional gene flow method. In selected populations, the accuracy of the prediction of long-

term genetic contributions is a crucial step for predicting the rate of inbreeding (Bijma and 

Woolliams, 1999). Thus, Woolliams et al.’s approach (1999) is suitable for calculating the rates 

of inbreeding.  

 

5.1.3 Link between partition of genetic trend and the evolution of inbreeding. 

Genetic diversity within a population is maintained by reducing the rate of inbreeding 

or coancestry, or by increasing the Ne of a population (de Cara et al., 2013). In the ideal 

scenario, population genetics theory recommends keeping equal numbers of males and females 

and maintaining a constant population size over time. In such case, having the same 

contributions for males and females (each couple of animals contributes to one male and one 

female) would maximize the Ne. But in livestock populations, it is impossible to maintain a 1:1 

sex ratio and we have far fewer males (e.g. 11,230 males in MTR) than females (e.g. 622,425 

females in MTR), which impacts the Ne of a population and thereafter the rate of inbreeding 

(Howard, 2017). Furthermore, some families are superior concerning the selected trait (e.g. 

milk yield) compared to the other families. Thereafter, the contributions among groups are 

different and the rate of inbreeding is higher than in randomly mated populations (Wray and 

Thompson, 1990). Thus, it is important to monitor the rate of inbreeding in populations 

undergoing selection. Wray and Thompson (1990) demonstrated that there is a relation between 

the rate of inbreeding per generation and the long-term contributions, and this relation was 

extended by Woolliams and Bijma (2000) as: 

Δ= = $
) (1 − 	@)∑1!%                  (5.2) 
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where @ measures the departure from fully random mating; being @ positive for matings 

between relatives and negative in the case of avoidance of relatives; and the sum is taken over 

contributions t of all the individuals. From this equation, we can see that to minimize Δ=, we 

have to increase the number of ancestors that will contribute, and thereafter the average 

contribution will decrease together with Δ=. The long-term contributions that will develop over 

time are clearly related to Δ=. This reveals the necessity to control by selection, and by good 

choosing and mating systems, how the long-term contributions of individuals will develop over 

time for better management of Δ= (Woolliams, 2007). The long-term genetic contribution is a 

measure of the level of relatedness between animals in a population because of a shared 

common ancestor. Equations (5.1 and 5.2), show the relationships between genetic gain (üa), 

the rate of inbreeding (Δ=) and long-term genetic contribution. It is important to improve the 

genetic gain whilst managing the rate of loss of genetic variation. Which means that in our 

study, the attention not to increase Δ= is mostly concentrated on the AI sires, and on both dams’ 

categories because they have the higher genetic contribution and the higher genetic gain 

(chapter 2). The long-term genetic contributions of individuals is not stable, it changes with 

time because the genetic merit of their progeny changes with time. Moreover, if a family or 

category had a high contribution compared to the other families, this can be controlled in the 

following years of selection to limit their contribution in a way to keep the genetic gain but at 

the same time maintaining the rate of inbreeding in acceptable limits. Since the long-term 

contribution of parents is half of the long-term contribution of the offspring, a change in the 

contributions of those later will cause a change of the parental long-term contribution 

(Woolliams, 2007). To safe guard the long-term selection response and fitness, the rate of 

inbreeding needs to be maintained to a certain level in a way to preserve the genetic variation 

and keep the accumulation of mutational variation (e.g., Lynch and Hill, 1986; Keightley and 

Hill, 1987). With time and after many generations, more progeny will be produced, causing a 

change in the long-term genetic contribution of individuals which mean that for the groups that 

have high long-term genetic contributions (AI sires, dams) can be managed and controlled in a 

way to minimize the rate of inbreeding while improving the genetic gain. This helps to maintain 

the genetic variation of the population in the long-term, by maintaining the rate of inbreeding 

to an acceptable level (Woolliams, 2007). Our results showed the low rate of inbreeding in the 

studied breeds (average inbreeding of 1% of in the whole population).  
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5.2 Approaches to control inbreeding 

Different approaches have been developed in livestock to control the increase in 

inbreeding resulting from selection programs, we will discuss about some of them. 

5.2.1 Optimum contribution selection 

The Optimum Contribution Selection (OCS, Meuwissen, 1997; Grundy et al., 1998; 

Colleau et al., 2004) method takes into consideration the genetic merit of candidates and their 

relationship in order to determine the optimum number of progenies for each candidate. The 

OCS strategy maximizes the average breeding value of the selected individuals while 

restricting their average genetic relationships to a predefined level. The restriction is on the 

average relationship between selected animals, because the increase in average relationship 

approximately equals the future increase in inbreeding. The aim of OCS is to increase the 

genetic gain to let it reach a stable rate while increasing or maintaining the genetic diversity. 

Therefore, the OCS could control the short and long-term effects of selection on inbreeding. 

Compared to the truncation selection, OCS highlights the managing between and within family 

(Mendelian sampling) variation (Howard et al., 2018), which gives the advantage of controlling 

the total genetic variance. Therefore, if the average relationships of the selected parents are 

controlled, the change in inbreeding in the future generations is also controlled, and this is the 

primary mechanism behind OCS (Howard, 2017). The OCS method can control the total 

genetic variance, but it does not take into account recessive alleles explicitly. The reproduction 

in dairy sheep breeds is done based on AI with fresh semen, making it difficult to apply OCS 

methods (Macedo, 2020). 

 

5.2.2 Expected future inbreeding 

To achieve maximum genetic progress while preserving genetic diversity, it is essential 

to identify and select sires that are least related to the dams being mated. VanRaden and Smith 

(1999) introduced the concept of Expected Future Inbreeding (EFI) to achieve this. Expected 

Future Inbreeding is the average inbreeding produced by an animal in the next generation. The 

EFI is an individual based estimation of the anticipated level of inbreeding in a population. By 

considering the EFI, breeders can make informed decisions to minimize inbreeding and to 
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assess and reduce its impact on the future generation. With random mating, the EFI of an animal 

is the average inbreeding of all possible offspring, i.e. half of the mean relationship of the 

animal to its contemporary mates. The resulting estimates can then be used to adjust the 

breeding values for each trait of potential selection candidates that are either highly or lowly 

related to individuals in the whole population. The EFI provides a premium to animals which 

have a lower relatedness, and a penalty to more related animals. Preventing high levels of 

inbreeding by managing matings is important to reduce the number of lethal recessive alleles 

and genome homozygosity in the offspring (Howard et al., 2017). The definition of EFI is 

simple and its implementation through the adjusted EBV is straightforward (e.g. in dairy cattle). 

Expected inbreeding of future progeny helps breeders to avoid inbreeding. In chapter 4, we 

used the concept of adjusted EBV (by adjusting EBV by the EFI) as a selection criterion, in 

one of the scenarios of our simulation. EFI was used on the waiting sires (potential AI sires 

after the progeny test) with all the contemporary females. However, in 10 generations of 

selection, similar inbreeding was observed in the scenarios with and without EFI. 

 

5.2.3 Inbreeding load 

Inbreeding Load (IL) is the fraction of the mutation load that is due to recessive variants, 

which can be hidden in heterozygous condition. The IL of individuals can equivalently be 

presented as a heritable additive trait that is only expressed when inbreeding occurs in their 

offspring (Varona et al., 2019). This trait have a favourable or an unfavourable effect on the 

studied trait (e.g. milk yield) (Martinez-Castillero et al.,2021). Inbreeding load of individuals 

can be predicted in the same manner that we do for additive genetic values, using linear models 

(Casellas, 2018; Varona et al., 2019). This requires the split of total inbreeding coeffcients into 

fractions due to ancestors – partial inbreeding coefficients. In chapter 3, first, we computed 

these partial inbreeding coefficients due to ancestors in the three Pyrenean dairy sheep breeds. 

Second, we used these partial inbreeding coefficients as covariates in a random regression 

mixed model to estimate genetic variance and breeding values of the IL for milk yield in the 

three breeds. Our analyses were the most important in the literature, in terms of number of 

animals in the pedigree and number of records. We had around 633,655 animals in MTR versus 

73,246 animals in the pedigree in the paper of Martinez-Castillero et al. (2021) and 384,434 

animals in the work of Varona et al. (2019). In terms of number of records, we had 2,168,454 
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records of milk yield in MTR versus 75,194 records in Varona et al. (2019) and 59,864 records 

in Martinez-Castillero et al. (2021). Additionally, an available online Fortran program was 

made for our study because the available programs from the literature (R program in Martinez-

Castillero et al. (2021) and Varona et al.’s code (2019)) were unable to deal with our large data.  

Adding the IL effect to the model improved the fitting (values of the statistic likelihood 

ratio test between 132 to 383) for milk yield in the three breeds. Estimates of the IL variances 

were different from zero except for BB. Estimates of the genetic correlation between the 

additive genetic value and the inbreeding load effect were negative (as expected from the theory 

presented in chapter 3) and low  (~ -0.1) for milk yield in MTN and MTR. Our estimates were 

comparable to previous studies, where genetic correlations were close to zero in Brown Swiss 

dairy cattle for days open (Martinez-Castillero et al., 2021) and for weaning weight in the Rubia 

Gallega beef cattle breed (Varona et al., 2019). Compared to Varona et al. (2019), our estimates 

were also negative but much lower than the values obtained for Pirenaica beef cattle (~ -0.4). 

A negative correlation means that animals with high (desirable) breeding values for the trait 

tend to cause negative (undesirable) inbreeding depression affecting the same trait if their 

descendants are inbred (Varona et al., 2019). But, in our case, our correlation estimates close 

to zero imply that the IL are not genetically correlated with the additive genetic effect of milk 

yield. This implies that selection for milk yield will not cause increase inbreeding depression 

in milk yield in inbred animals. Artificial purging based on predicted IL effects could be 

performed to reduce the effect of inbreeding depression as suggested by Varona et al. (2019) 

and Martinez-Castillero et al., (2021). In this case individuals could be selected based on both 

their EBV for the trait and their EBV for IL. We analysed this scenario of selection by 

simulation in chapter 4. Because selecting individuals based on predicted IL for milk yield 

would basically remove recessive alleles that reduce milk yield in homozygote carriers, we 

expected a reduction of the inbreeding depression and higher genetic gain in those scenarios. 

However, this was not the case, we had the same results than in the conventional scenario 

(selection based only on EBV). This may be due to the fact that the prediction of IL effect was 

not accurate.  

5.2.3.1 Mate allocation 

In another scenario of the simulation, we included the IL in a mate allocation strategy 

for avoiding undesirable mating. To our knowledge, IL predictions have not been used in mate 
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allocation strategies elsewhere. In animal breeding, mate allocation has been proposed with 

different objectives (Howard, 2017): to control the inbreeding of the progeny by using pedigree 

information to avoid matings between related animals (VanRaden and Smith, 1999; Kinghorn, 

2011), to exploit dominance variation either within-breed or/and across-breeds (DeStefano and 

Hoeschele, 1992; Hayes and Miller, 2000; Toro and Varona, 2010; González-Diéguez et al., 

2020), and to increase connectedness among herds. Here, we prioritized matings between 

individuals with no common ancestors, and then with ancestors with favourable IL (positive IL 

for milk yield); and we avoided matings with common ancestors with low and negative IL (that 

can generate worse inbreeding depression in inbred offspring). The genetic gain was similar as 

the conventional selection scenario. Selecting animals using IL was feasible. However, the 

small magnitude of IL effects and its low accuracy showed that there is not a clear interest in 

using it in genetic evaluation and selection. Furthermore, the benefit of using IL in mate 

allocation strategies was negligible. 

 

5.3 General conclusions 

In this study, we partitioned the genetic gain in Mendelian sampling by categories of 

animals defined by sex and by selection pathways, and explored long-term genetic 

contributions. This allowed identification of the contributions of different categories of 

individuals, and better understanding of the selection scheme. These results highlighted the 

importance of the dams in the contribution to the final genetic gain by their originality. The 

Mendelian sampling term was observed to be the most important factor determining the 

selection of a female to become dam and maintaining genetic contributions over time.  

An accurate estimate of IL is an issue, in this work we used pedigree data to estimate 

inbreeding load whereas the use of SNP markers could be more accurate (Varona et al., 2022). 

Further studies are needed. We did not use genomic data because genomic selection was 

introduced in 2016 which means that there were not enough animals genotyped for that 

purpose, and we needed females to be genotyped which is not the case in our dairy sheep 

breeds.  

Estimates of variances of IL were low, and even if there was no warranty about selection 

criterion, we explored the possible benefits of involving inbreeding load predictions in 
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selection strategies. Predictions of IL effects for milk yield were used directly to select animals 

or in mating strategies. Mate allocation using IL effects was feasible but not interesting in terms 

of genetic gain or level of inbreeding. In addition, mate allocation would be complex and not 

easy to implement in the dairy sheep breeds. To conclude, selection based on IL (due to its 

variation and its magnitude) is not of practical interest.
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Training, education, teaching and awards 

during the PhD thesis  

Year Training course Hours 

2024 • Course on programming and computer algorithms in animal 
breeding with focus on single-step GBLUP and genomic selection 
in practice (Modules A & B). University of Georgia, Athens, USA, 
13th – 31th May 2024. 

75 

• Researcher Connect Online Programme. British Council, 11th 
March 2024 – 21th March 2024. 

24 

2023 • Abroad Internship, The Roslin Institute, university of Edinburgh, 
1st April – 26th August 2023. 

- 

• TOEFL, score 88. 5th April 2023. - 

• Breeding programme modelling with AlphaSimR. University of 

Edinburgh, MOOC – EdX, 19th January 2023. 

25 

• The fundamentals of quantitative genetics: concepts and in-depth 
methodology. Sète, France, 4th– 8th December 2023. 

35 

• Scientific integrity in the research field (on line). 6 

• Training on methodology for biology-driven selection. Centre 
for Quantitative Genetics and Genomics at Aarhus University, 
Aahrus, Denmark, 25th September 2023 – 28th September 2023. 

20 

2022 • SMARTER Short course, Population Genomics and data analyses. 
Universidad de León, Léon, Spain, 16th – 17th Mai 2022. 

12 

• TOEIC, score 815. 21th April 2022. - 

• Algorithm base. INRAE, Toulouse, France, 7th – 8th April 2022. 14 

• Papirus, training course for doctoral students to help optimize 
their collection, monitoring, management and exploitation 
activities of bibliographic information and then facilitate the 
writing, publication and communication of their results. INRAE, 
14th January 2022 – 11th March 2022. 

35 

2021 • Linux & cluster. Genotoul bioinformatics platform, INRAE, 
Toulouse, France, 11th – 12th October 2021. 

14 
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• First step in AWK programming. Genotoul bioinformatics 
platform, INRAE, Toulouse, France, 14th October 2021. 

7 

• Genetic Models for Animal Breeding. Wageningen University and 
Research (MOOC – EdX), 8th November 2021.  

30 

 Total hours of training courses 297 

Year Teaching Hours 

2022-

2024 

Animal breeding and genetics 

Practical courses: Population effective size and inbreeding 
(ENSAT – Licentiate 3rd year); Relatedness, genetic evaluation 
and genetic progress (ENSAT – Master 1st year). 34 

Practical courses: Allele and genotype frequencies under the 
Hardy-Weinberg equilibrium, or migration and genetic drift 
scenarios (ENSAT – Licentiate 3rd year). 

Year Awards Place 

2023 AGBT Ag – poster (Partition of the genetic trend of French dairy sheep 
breeds in Mendelian sampling) (prize recipient) 

Texas, 

USA 

2022 180 seconds presentation on breeding durability (prize recipient) Rennes, 

France 
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Titre : Méthodes basées sur la généalogie pour partitionner le gain génétique et le fardeau génétique chez les ovins laitiers
Mots clés : Originalité génétique, Fardeau génétique, Sélection, Ovins laitiers
Résumé : Cette thèse explore des méthodes basées sur la généalogie pour partitionner le gain génétique et le fardeau génétique (FG) dans les
races ovines laitières françaises : Lacaune (LAC), Basco-Béarnaise (BB), Manech Tête Noire (MTN) et Manech Tête Rousse (MTR).



Le Chapitre 2 a utilisé une analyse rétrospective pour affiner la partition de la tendance génétique dans les échantillonnages mendéliens par
catégorie d'animaux définies par le sexe et par la voie de sélection, ainsi que pour caractériser les contributions génétiques à long terme. Nous
avons analysé le gain génétique pour la production laitière dans quatre races : LAC, BB, MTN et MTR. Les mères à béliers (MAB) et les mâles
d’insémination artificielle (IA) ont été les sources les plus importantes de progrès génétique, comme l'a montré la décomposition des tendances
de l'échantillonnage mendélien. Les contributions annuelles étaient plus variables pour les mâles d'IA que pour les MAB, étant donné que ces
contributions ont été calculées en moyenne sur un plus petit nombre d'individus. En termes d'échantillonnage mendélien, les femelles ont
contribué davantage que les mâles au gain génétique total, et nous interprétons cela comme étant dû au fait les femelles constituent un plus
grand réservoir de diversité génétique. En outre, nous avons calculé les contributions à long terme de chaque individu aux pseudo-générations
suivantes. L'échantillonnage mendélien était plus important que la moyenne des parents pour déterminer la sélection des individus et leurs
contributions à long terme. Ces contributions étaient plus significatives pour les mâles d'IA (dont la descendance est plus importante que celle
des femelles) et en BB qu’en LAC (étant une race de taille plus importante).



Au Chapitre 3, la théorie qui montre la nature additive du FG est présentée. L'effet du FG et l'effet génétique additif (dans une population non
consanguine) ont une corrélation négative dépendant de la fréquence des allèles, de la consanguinité et de la dominance. Nous avons calculé et
décrit les coefficients de consanguinité partielle dans trois races : BB, MTN et MTR. Ensuite, nous avons inclus ces coefficients dans un modèle
mixte en tant que covariables de régression aléatoire pour estimer la variance et les valeurs génétiques du FG pour la production laitière. Il existe
une variance génétique pour le FG dans les races MTN et MTR, mais elle n'était pas différente de zéro pour BB. Comme attendu, nous avons
estimé des corrélations génétiques négatives entre le FG et les valeurs génétiques estimées ; cependant, elles étaient proches de zéro dans les
trois races. La faible magnitude du FG ne justifie pas une sélection fondée sur ce critère.



Dans le Chapitre 4, nous avons évalué l'efficacité de l'intégration du FG dans les stratégies de sélection chez les ovins laitiers. Nous avons simulé
10 générations de sélection. Six scénarios qui diffèrent par les critères de sélection (uniquement les valeurs génétiques additive estimées du
caractère, uniquement les valeurs génétiques estimées du FG, ou à la fois les deux) et les stratégies d’accouplement (minimiser le FG ou la
consanguinité attendue dans la descendance) ont été évalués. Les scénarios ont été comparés en termes de gain génétique, coefficients et taux
de consanguinité, taille efficace et précision de la sélection. Il est possible d'utiliser les prédictions des effets du FG pour sélectionner les animaux
directement ou dans le cadre de stratégies d'accouplement. Cependant, la sélection basée sur le FG (en raison de sa variation et de sa
magnitude) ne présente pas d'intérêt pratique. À la lumière de nos résultats, l'inclusion d'animaux génotypés pourrait améliorer la précision de
la prédiction des FG individuelles. D'autres recherches sont nécessaires.

Title: Pedigree-based methods to partition genetic gain and inbreeding load in dairy sheep
Key words: Genetic originality, Inbreeding load, Selection, Dairy sheep
Abstract: This thesis explores pedigree-based methods to partition genetic gain and inbreeding load in French dairy sheep breeds: Lacaune
(LAC), Basco-Béarnaise (BB), Manech Tête Noire (MTN) and Manech Tête Rousse (MTR).

The Chapter 2 used a retrospective analysis to fine partitioning genetic trend in Mendelian samplings by categories of animals defined by sex
and by selection pathways, and to similarly characterize long-term genetic contributions. We analysed genetic gain for milk yield in four dairy
sheep breeds: LAC, BB, MTN and MTR. Dams of males and Artificial Insemination (AI) males were the most important sources of genetic
progress as observed in the decomposition in Mendelian sampling trends. The yearly contributions were more erratic for AI males than for dams
of males as they are averaged across a smaller number of individuals. Overall, in terms of Mendelian sampling, females contributed more than
males to the total genetic gain, and we interpret that this is because females constitute a larger pool of genetic diversity. In addition, we
computed long-term contributions from each individual to the following pseudo-generations. Mendelian sampling was more important than
Parent Average to determine the selection of individuals and their long-term contributions. Long-term contributions were larger for AI males
(with larger progeny sizes than females) and in BB than in LAC (with the latter being a larger population).



In Chapter 3, we presented theory that show the additive nature of the inbreeding load. The inbreeding load effect and the regular (in non-
inbred population) additive genetic effect have a negative correlation depending on allele frequencies, inbreeding and dominance. We calculated
and described the partial inbreeding coefficients in three French dairy sheep populations: BB, MTN and MTR. Then, we included these
coefficients in a mixed model as random regression covariates, to predict genetic variance and breeding values of the inbreeding load for milk
yield in the same breeds. There is genetic variance for inbreeding load in MTN and MTR breeds, but it was not different from zero for BB. As
expected, we estimated negative genetic correlations between inbreeding load and breeding values; however, estimates were close to zero in
the three sheep breeds. The small magnitude of inbreeding load does not warrant selection based on this criterion.



In Chapter 4, we evaluated the effectiveness of involving inbreeding load in selection strategies in a dairy sheep breeding scheme. We did this by
simulation of 10 generations of evaluations and selection. Six scenarios that differ in the criteria of selection (only breeding values, only breeding
values of inbreeding load, or both genetic and inbreeding load breeding values) and mate allocation strategies (minimising inbreeding load or
minimising expected future inbreeding) were evaluated. Scenarios were compared in terms of genetic gain, inbreeding coefficients, rate of
inbreeding, effective population size, and accuracy of selection. The use of predictions of inbreeding load effects to select animals directly or in
mating strategies is feasible. However, selection based on inbreeding load (due to its variation and magnitude) is not of practical interest. In light
of our results, the inclusion of genotype animals could improve the accuracy of predicting individual inbreeding loads. Further research is
needed.
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