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préparée à l’École nationale de la statistique et de l’administration économique
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Chapter 1

Introduction

1.1. Résumé des travaux de thèse en français

Cette thèse se donne pour but d’affiner la détection des phases du cycle économique et d’étendre
son application à l’allocation d’actifs. Les économies mondiales, et plus particulièrement les États-
Unis, ont traversé récemment la récession la plus brutale de l’histoire au travers de la crise Covid.
À la suite de ce choc macroéconomique considérable tant par son amplitude que sa courte durée,
l’identification des phases du cycle économique pose problème aux praticiens. Les spécifications
traditionnelles de modèles à facteur dynamique non linéaire ne parviennent en effet plus à identifier
précisément les récessions de plus faible envergure, les deux dernières récessions (grande crise
financière et Covid) ayant "pollué" par leur volatilité l’ensemble d’information historique. Ce travail
propose une extension du cadre méthodologique des modèles à facteurs dynamiques à changements
de régimes markoviens capable de traiter ces évènements historiques sans nuire à leur capacité
de détection des ralentissements macroéconomiques plus modérés. Cela est rendu possible en
prenant en compte des processus de volatilité dynamique spécifiques dans le facteur inobservable
à changements de régimes synthétisant le cycle macroéconomique.

Identifier la date d’entrée et de sortie d’une récession est crucial pour les décideurs politiques et
les investisseurs souhaitant suivre les fluctuations macroéconomiques sur une fréquence hebdo-
madaire. À cet égard, ce manuscrit montre la valeur ajoutée pour un praticien d’ajouter à son
ensemble d’information macroéoconomique traditionnellement utilisé des prix de marchés servant
à l’identification des phases du cycle conjoncturel en temps réel. Nous nous concentrons sur une
classe spécifique de prix d’actifs, les asset swap spreads sur crédit d’entreprise, qui matérialisent
des probabilités de défaut sur les emprunts émis et qui sont révisées continuellement. Le marché
évalue la capacité d’un émetteur d’obligations d’entreprise à rembourser à la fois les intérêts et le
capital d’un prêt. En agrégant ces probabilités à travers des catégories allant des entreprises au
profil le plus risqué ("high yield") à celle de qualité supérieure ("investment grade"), couvrant une
large partie des entreprises aux États-Unis, il est possible de capter des mouvements concomitants
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du cycle économique. Cela correspond exactement à la définition donnée par Burns and Mitchell
(1946) :

"Les cycles économiques sont un type de fluctuation que l’on retrouve dans l’activité économique
globale des nations qui organisent principalement leur travail en entreprises : un cycle consiste
en des expansions concomitantes dans de nombreuses activités économiques, suivies de ralen-
tissement, de contractions et de reprises similaires qui débouchent sur la phase d’expansion du
cycle suivant." (p. 3)

Les asset swap spreads d’emprunts d’entreprise ainsi que les probabilités de défaut sous-jacentes,
peuvent être considérés comme une évaluation partielle des dynamiques économiques globales.
Partielle parce que toutes les entreprises américaines n’ont pas accès aux marchés financiers pour
se financer (selon la Banque des Règlements Internationaux, la dette bancaire des entreprises non
financières aux États-Unis représente environ 77% du produit intérieur brut américain tandis qu’en
Europe continentale, malgré certaines disparités, la dette bancaire des entreprises représente envi-
ron 94,3%, il y aurait donc un accès approfondi des entreprises américaines aux marché financiers
désintermédiés), néanmoins, un nombre suffisant d’entreprises de taille importante nous permet
d’identifier les régimes du cycle économique de manière efficace. Être capable de détecter en temps
réel (par exemple, sur une base hebdomadaire) l’occurence d’une récession économique permet
le déploiement d’une stratégie dynamique de couverture efficiente pour un investisseur. Les in-
dices actions ont en effet tendance à réagir aux chocs négatifs affectant le cycle économique en
escomptant une dégradation des revenus futurs. Ce travail relie l’évaluation en temps réel du cycle
économique à une stratégie de couverture réduisant l’exposition aux actifs risqués proportionnelle-
ment à la probabilité d’être en récession. Ce type de stratégie de couverture améliore le rendement
ajusté de la volatilité pour un investisseur.

L’identification des phases du cycle économique est cruciale, mais ce n’est pas le seul facteur qu’un
investisseur surveille dans le cadre d’une allocation multi-actifs. Certaines tensions de marché
surviennent sans aucune dégradation macroéconomique. Les environnements de marché forte-
ment volatiles ont tendance à produire des retournement de prix sévères lors de ventes paniques
déclenchées par des rumeurs, des nouvelles exogènes ou par les structures mêmes du marché.
Une quantification du sentiment de marché est donc primordiale à intégrer dans une stratégie
d’allocation d’actifs afin de réduire les expositions du portefeuille aux actifs risqués lorsqu’un
stress apparaît. Un autre segment qu’un investisseur suit dans sa décision d’allocation est la poli-
tique monétaire. À cette fin, identifier la posture de la politique monétaire que le marché escompte
peut être d’une grande utilité pour les stratégies multi-actifs. Le portefeuille traditionnel 60%
actions / 40% obligations, qui vise à maximiser le couple rendement/rique au travers des phases
de marché, montre sa vulnérabilité lors de périodes où une politique monétaire restrictive est en
place ou est anticipée par le marché. Ce travail consistera également à l’identification, en temps
réel, d’une posture de politique monétaire basé sur des prix de marché. L’idée sera le développe-
ment d’une solution de couverture du portefeuille traditionnel 60% actions / 40% obligations avec
un désinvestissement à chaque fois qu’un régime de politique monétaire restrictive est identifié.
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Combiner les signaux de régime du cycle économique, de posture de la politique monétaire avec
un sentiment de marché permet à un investisseur d’obtenir des couples rendement/risque robustes
à travers diverses périodes de baisse de marché.

1.1.1. Motivations

Les modèles à facteurs dynamiques ont été utilisés pour résumer les sources de variation communes
entre des variables économiques et ont connu plusieurs évolutions majeures depuis leur première
utilisation (Bai and Ng (2008), Doz and Fuleky (2019), Barigozzi and Hallin (2023), entre autres,
proposent une revue exhaustive de l’histoire et des développements majeurs dans ce champ de
recherche). L’analyse factorielle a d’abord été introduite en psychologie par Spearman (1904),
qui utilisait une composante inobservée pour caractériser les capacités cognitives des individus.
Bien que ce cadre méthodologique ait avant tout été développé pour traiter des vecteurs aléatoires
indépendamment distribués, Geweke (1977) l’a étendu pour synthétiser des co-mouvements entre
séries temporelles économiques. L’intuition prend racine dans la définition du cycle économique
de Burns and Mitchell (1946), observable d’après les auteurs à travers des phases d’expansion
et de récession dans un grand nombre de séries économiques. Les travaux liminaires de Sargent
and Sims (1977) et Stock and Watson (1989), ont montré qu’un petit nombre de composantes
communes pouvait expliquer la dynamique conjointe des principaux agrégats économiques. Les
indices économiques composites produits ont rapidement été amenés à varier en fonction des phases
dans lesquelles se trouve le cycle économique. Les régimes économiques peuvent en effet être
intégrés dans un cadre de modèles à changements de régimes markoviens. Kim (1994) et Diebold
and Rudebusch (1996) ont été les premiers à incorporer des chaînes de Markov dans des modèles
à facteurs dynamiques. Diebold and Rudebusch (1996) ont d’abord considéré un seul facteur
résumant l’état sous-jacent de l’économie. Les auteurs définissent une dépendance des paramètres
du facteur à une chaîne de Markov latente à deux états. Kim and Nelson (1998) sont les premiers à
proposer une approche Bayésienne par le truchement d’un algorithme d’échantillonnage de Gibbs
pour estimer les paramètres du modèle ainsi que les deux variables latentes (le facteur et la chaîne
de Markov sous-jacente). Un premier volet de la littérature académique s’est concentré sur une
approche fréquentiste d’estimation dans laquelle une approximation proposée par Kim (1994) était
utilisée dans le calcul de la vraisemblance et du filtre de Kalman afin d’éviter l’écueil du nombre
exponentiel de trajectoires (MT ) de la chaîne rendant une solution numérique impossible (avec
M le nombre d’états de la chaîne de Markov et T le nombre d’observations). Une autre méthode
a été avancée par Diebold and Rudebusch (1996). Ils introduisent une approche en deux étapes
dans laquelle un indice coïncident est d’abord construit, puis le modèle Hamiltonien est estimé
sur cet indice par la suite. Sur la base de cette intuition, Doz and Fuleky (2019) précisent qu’on
peut utiliser une approche en deux étapes similaire à Doz et al. (2011) dans un cadre linéaire.
Un modèle à facteurs dynamiques linéaire est d’abord estimé par composantes principales. On
estime ensuite sur le facteur un modèle à changements de régimes markoviens, dans l’esprit de
Hamilton (1989), par maximum de vraisemblance. Camacho et al. (2015) comparent les deux
approches susmentionnées et soulignent la précision de l’approche en une étape lorsque le nombre
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de variables utilisées est faible. Camacho et al. (2014) déploient une spécification du modèle
prenant en compte des données multifréquentielles et au schéma de publication asynchrone. Dans
le reste de ce manuscrit de thèse, nous nous concentrerons sur l’estimation bayésienne et resterons
guidés par notre volonté de nous en tenir à des modèles avec un nombre restreint de variables
afin de conserver l’interprétabilité des relations (dans l’esprit de Stock and Watson (1989), Kim
and Yoo (1995), Doz et al. (2020) ou encore Leiva-Leon et al. (2020)). Chauvet and Piger (2008)
démontrent la capacité du modèle à facteurs dynamiques à changements de régimes markoviens
estimé à l’aide d’une méthode bayésienne de détecter avec précision les récessions datées par le
National Bureau of Economic Research (NBER).

La difficulté que ce manuscrit aborde est l’hétérogénéité croissante des récessions économiques
dans le cadre des modèles à facteurs dynamiques à changements de régimes markoviens. Comme le
soulignent Leiva-Leon et al. (2020), spécifier des paramètres constants par régime (notamment la
constante dans la dynamique du facteur) peut entraîner une identification inexacte des récessions
modérées après les épisodes de contraction macroéconomique brutaux engendrés par la grande
crise financière et l’épidémie du Covid. Les auteurs définissent une constante du facteur captant
le cycle des affaires spécifique à chaque épisode de récession en activant une variable aléatoire au
sein de chaque régime récessif. Les récessions hétérogènes peuvent également être captées par la
volatilité qui leur est associée. Cette solution est proposée pour la première fois par Chauvet (1998)
où une chaîne de Markov détermine à la fois les paramètres de la constante et de la volatilité du
cycle écomonomique. Dans des travaux plus récents, Doz et al. (2020) explorent la possibilité de
prendre en compte deux chaînes de Markov indépendantes dans la spécification du modèle, l’une
déterminant la constante du facteur et l’autre la volatilité, produisant ainsi quatre états : deux
régimes d’expansion et de récession à faible volatilité et deux régimes d’expansion et de récession
à forte volatilité. Les paramètres restent néanmoins constants dans chaque régime. Le traitement
de la récession Covid demeure de ce point de vue-là une question épineuse. On pourrait exclure
les données liées à ce choc macroéconomique historique, mais ces valeurs extrêmes ne sont pas
dénuées de contenu économique, comme le note Ng (2021). En se concentrant sur les modèles
VAR linéaires, l’auteur introduit des variables indicatrices sur la période associée au Covid pour
contrôler et distinguer les effets de la pandémie dans l’ensemble d’inforamtion. Carriero et al.
(2022) proposent une approche différente et spécifient un VAR à volatilité dynamique pour filtrer
les valeurs extrêmes. C’est l’intuition que nous suivrons de près dans le premier chapitre.

Le timing de l’occurrence de la récession est d’un intérêt capital pour les décideurs politiques et
les agents de marché. Étant donné la nature des données macroéconomiques caractérisées par
des retards et des délais de publication, il est difficile d’évaluer la positon d’une économie donnée
dans son cycle. Furno and Giannone (2024) proposent de se concentrer sur l’Indice Composite de
Stress Systémique (CISS) ainsi que sur des données d’enquête disponibles rapidement pour inférer
de façon simultanée les épisodes de récession. Ils montrent que la prise en compte de données
relatives aux conditions de marché, lorsqu’elles sont ajoutées aux indicateurs macroéconomiques,
augmentent la capacité d’un modèle logit à identifier les récessions. Cela est en ligne avec Giannone
et al. (2008), qui montrent la valeur ajoutée d’inclure des prix d’actifs financiers à un ensemble
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d’information macroéconomique afin de réduire l’incertitude dans un cadre de prévision en temps
réel et augmenter le contenu informationnel. Ce chemin de recherche motive le deuxième chapitre
de ce manuscrit en se concentrant sur la possibilité d’extraire une évaluation hebdomadaire de la
position du cycle économique.

Les dynamiques macroéconomiques sont vitales pour un investisseur qui souhaite allouer tactique-
ment son portefeuille lorsqu’une récession se produit ou déployer des stratégies de couverture. En
effet, la littérature académique tend à montrer que les régimes macroéconomiques déterminent les
distributions des rendements financiers (Ang and Timmermann (2012)). Les trajectoires prévues
des taux de politique monétaire futurs ou les régimes de politique monétaire impactent également
les variations des prix des actifs (Rigobon and Sack (2004)). Ang and Bekaert (2004) démon-
trent que le rendement d’un portefeuille peut être amélioré à travers l’adaptation de l’allocation
en fonction de l’identification de régime basée sur des moyennes, corrélations ou volatilités con-
ditionnelles dans le cadre des modèles d’équilibre des actifs financiers. Prendre en compte les
phases du cycle économique dans la construction de portefeuilles a été envisagé pour la première
fois par Brocato and Steed (1998). Jensen and Mercer (2003) proposent plutôt de considérer les
régimes de politique monétaire dans la construction de portefeuilles. Plus récemment, Kollar and
Schmieder (2019) préconisent de tenir compte des phases du cycle économique et financier dans
la stratégie d’investissement. Kritzman et al. (2012) sont les premiers à développer une identifi-
cation de régimes composés de la croissance, de l’inflation et des turbulences financières afin de
construire une stratégie d’allocation adéquate. Plus récemment, Kim and Kwon (2023) présentent
une stratégie d’investissement basée sur les dynamiques de croissance et d’inflation (impliquant
une réaction de politique monétaire). De façon similaire, Bouyé and Teiletche (2024) montrent
que les portefeuilles basés sur les régimes macroéconomiques (surchauffe, "boucle d’or", stagflation,
ralentissement) peuvent surperformer des portefeuilles plus traditionnels. Les références ci-dessus
font cependant l’économie d’une identification en "temps réel" des régimes associés. La plupart de
ces travaux sont en effet basés sur une identification a posteriori des régimes, éloignée des consid-
érations opérationnelles de gestion de portefeuille. Cette littérature demeure la base du troisième
et dernier chapitre : être capable d’évaluer, en temps réel, le sentiment du marché, les phases du
cycle économique ainsi que la posture de la politique monétaire afin de pondérer les portefeuilles
de façon idoine.

1.1.2. Principaux résultats

Dans le premier chapitre, une extension du cadre des modèles à facteurs dynamiques à changements
de régimes markoviens est proposée. Elle permet d’introduire un processus de volatilité dynamique
dans le comportement du facteur latent. Un algorithme d’échantillonnage de Gibbs est présenté
et le travail montre les bonnes performances de la nouvelle spécification dans l’identification des
points de retournement sur données simulées. De plus, l’approche est confrontée à des processus
générateurs de données mal spécifiés et à sauts artificiels (pour imiter des chocs exogènes tels que
la récession Covid) et parvient à identifier correctement la chaîne de Markov sous-jacente. Nous
comparons d’abord les performances de la nouvelle approche à des spécifications plus tradition-
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nelles dans un exercice de détection de points de retournement macroéconomique sur la totalité
de l’échantillon. Le nouveau modèle fournit une datation précise, robuste à la crise Covid, des
récessions datées par le NBER, alors que la plupart des autres spécifications captent difficilement
les récessions plus modérées. De plus, un exercice en temps réel est réalisé, montrant la capacité
du modèle proposé à identifier de manière concomitante les dates d’entrée en récession, ainsi que
sa réactivité dans la détection de futurs ralentissements (forts ou modérés).

Le second chapitre de ce manuscrit se donne pour but de mitiger le délai dans l’identification
des récessions attribuable à la nature même des données macroéconomiques : à savoir des délais
de publication et l’asynchronicité de l’information disponible. Il démontre l’utilité, pour les in-
vestisseurs désireux de suivre de près les phases du cycle économique, d’ajouter à leur ensemble
d’information macroéconomique usuellement utilisé les "asset swap spreads" de crédit d’entreprise.
La valorisation de ces produits financiers par le bais d’une mise à jour en continu des probabilités
de défaut des émetteurs d’emprunts obligataires contient une évaluation en temps réel de la posi-
tion d’une économie dans son cycle. Nous relions le sentiment du marché du crédit d’entreprise,
mesuré par une contraction ou un élargissement des spreads (à travers sept paniers de notes de
qualité d’emprunteur, de CCC à AAA), à l’état de l’économie en tenant compte de la variation
conjointe entre les asset swap spreads et les variables économiques généralement utilisées dans les
modèles de prévision en temps réel. Ce travail vise à évaluer, sur une fréquence hebdomadaire, la
position de l’économie dans son cycle. Il souligne la capacité des modèles à facteurs dynamiques
à changements de régimes markoviens, incorporant à la fois des variables macroéconomiques et
des asset swap spreads de crédit d’entreprise, à identifier avec précision les récessions tant dans
l’échantillon historique qu’en temps réel. Les contractions économiques déclenchent habituellement
de larges variations négatives de prix sur les marchés actions, car l’aversion au risque augmente
chez les investisseurs. A ce titre, ce chapitre montre également que les investisseurs qui souhaitent
construire des stratégies assurantielles doivent utiliser les probabilités de récession en temps réel
comme règle d’allocation entre un actif risqué (par exemple le S&P500) et un actif sans risque dont
le rendement correspond au taux d’intérêt de court terme dans une économie - nous utiliserons
par la suite le terme "cash" par un abus de langage fréquent dans la littérature financière. Les
stratégies basées sur les probabilités de défaut construites sur un ensemble d’information composé
d’indicateurs macroéconomiques classiques et des asset swap spreads surperforment systématique-
ment un portefeuille investi à 100% sur l’indice S&P500 et créent une utilité économique pour
l’investisseur.

Les investisseurs à la recherche de rendements stables à travers les phases économiques, tant du
point de vue du cycle économique que de la politique monétaire, font face à des questions com-
plexes dans la construction de leur portefeuille, notamment sur la pondération tactique des actifs
le composant. Le troisième chapitre de ce manuscrit introduit une nouvelle approche pour évaluer
le régime de politique monétaire à travers les dynamiques des taux d’intérêt réels en utilisant un
modèle à facteurs dynamiques à changements de régimes markoviens capturant le co-mouvement
des taux réels de long terme. Ce modèle s’avère performant dans l’identification de posture re-
strictive de la politique monétaire à la fois sur l’historique de l’échantillon mais également en
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temps réel, sur une fréquence hebdomadaire. Le chapitre étend ensuite le cadre méthodologique
d’identification de régime de marché action haussier et baissier introduit par Maheu et al. (2012)
en un modèle à facteurs dynamiques afin de capturer un sentiment de marché boursier multivarié
permettant d’identifier des épisodes de marché haussier à forte volatilité et des phases de correc-
tion à faible volatilité. Ce signal réussit à capturer un sentiment de marché sous-jacent à travers
quatre principaux indices actions américains. Enfin, ce chapitre combine le signal de posture de
la politique monétaire avec le sentiment de marché et une évaluation hebdomadaire en temps réel
du cycle économique dans un cadre d’allocation d’actifs "long-only", sans possibilité de vente à dé-
couvert. L’avantage pour un investisseur de considérer ces trois dimensions est primordial afin de
pondérer dynamiquement son portefeuille. La prise en compte de ces trois axes et l’identification
de leur régime associées à des dynamiques de prix de marché spécifiques justifient des allocations
dynamiques au-delà de la répartition constante traditionnelle en 60% actions /40% obligations.
Les backtests implémentés montrent que l’approche basée sur les trois signaux dans une stratégie
de couverture dynamique actions/obligations/cash maximise le ratio de Sharpe Sharpe (1994) sur
longue période, de janvier 2000 à février 2023. De plus, quelle que soit la période de détention
du portefeuille considérée (fenêtres de un à dix ans glissantes) ou le régime monétaire/économique
rencontré, les rendements et les ratios de Sharpe sont supérieurs à ceux du portefeuille 60/40 tra-
ditionnel, ce qui plaide en faveur de la nouvelle approche pour un investisseur à la recherche de
rendements stables à travers le temps. L’utilité économique de l’investisseur dans les stratégies
incorporant ces trois cycles s’avère maximale sur des fenêtres de un à dix ans glissantes, indépen-
damment de son profil d’aversion au risque.
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1.2. Summary of the thesis works

This manuscript aims at connecting macroeconomic business cycle phases detection and asset allo-
cation. Global economies, in particular the US one, have faced the most brutal recession in history
through the Covid crisis. In the wake of this tremendous macroeconomic shock, business cycle
phases identification poses significant hurdles for practitioners as traditional non-linear dynamic
factor specifications are unable to deal with this extreme event correctly. This work proposes a new
Markov-switching framework capable of dealing with this historic recession without hampering its
capacity to detect shallower macroeconomic downturns. We reach this goal by taking into account
specific volatility dynamics in the common factor synthesizing the unobserved underlying business
cycle changes.

Timing recessions entry and exit points is essential for policy makers and investors who intend
to monitor macroeconomic fluctuations at a high frequency basis. In that respect, this manuscript
shows the benefits for a practitioner of adding financial prices as real-time assessors of economic
fluctuations. We focus on a specific class of asset prices, corporate credit asset swaps spreads,
which materializes a continuously revised default probabilities. The market assesses the ability
of a given corporate bond issuer to pay back both interest expenses and the notional of a loan.
Aggregating these probabilities through grade buckets ranging from speculative grade enterprises
to high grade firms, covering a wide range of businesses for the US enables to capture the per-
vasiveness of business cycle comovement. This falls exactly in the definition given by Burns and
Mitchell (1946):

"Business cycles are a type of fluctuation found in the aggregate economic activity of nations
that organize their work mainly in business enterprises: a cycle consists of expansions occurring
at about the same time in many economic activities, followed by similarly general recessions,
contractions, and revivals which merge into the expansion phase of the next cycle." (p. 3)

The corporate credit asset swap spreads and their underlying default probabilities can be viewed
as a partial financial assessment of the aggregate economy dynamics. Partial because not all US
businesses have an access to financial markets for funding (according to the Bank of International
Settlements the non-financial corporate sector banking debt in the US stands at around 77% of the
GDP whereas in Continental Europe, albeit some disparities, the corporate banking debt amounts
to roughly 94.3%), a sufficient number of sizeable corporates allow us nonetheless to identify busi-
ness cycle regimes in an efficient way. Being able to detect in a real-time fashion (e.g. on a weekly
basis) economic downturns is most important to develop a flexible dynamic hedging investment
strategies. Equity indices tend to react in tandem with negative shocks affecting the business cycle
through a repricing of future revenues. This work bridges therefore the business cycles phases real-
time assessment to hedging strategies reducing the weight to a risky asset proportionally to the
probability of being in recession. This strategy improves the risk-adjusted returns for an investor.

Business cycle phases assessment is a prerequisite but this axis is not the only one an investor
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monitors when it comes to multi-asset allocation. Some market stress could arise without any
macroeconomic downturn or deceleration. Volatile capital markets tend to produce severe draw-
downs during panic sell-offs triggered by rumors, exogenous news or market structures themselves.
Market sentiment is thus vital and one should integrate it within an asset allocation strategy in
order to mitigate portfolio exposures to risky asset fluctuations. Another factor an investor keeps
track of in his/her allocation decision is the monetary policy stance. This stance plays a important
role when defining discount factors and thus valuations. To that end, identifying the monetary
policy stance the market currently expects can be of a great help when considering multi-asset
strategies. The traditional, rule of thumb, 60% equities / 40% bonds portfolio which intends to
maximise the risk-adjusted return through market phases shows its vulnerability when it comes
to periods in which a restrictive monetary policy takes place or is expected by the market. This
work will focus on deploying a market-based monetary policy stance assessor to hedge the 60%
equities / 40% bonds portfolio with a disinvestment towards a risk-free asset (we will refer to it
as "cash" throughout the rest of the manuscript, following the convention used in financial litera-
ture) whenever a hawkish monetary policy regime is identified. Combining a business cycle phase
identifier, a monetary policy stance assessor together with a market sentiment allows an investor
to get consistent risk-adjusted returns across several market downturns episodes.

1.2.1. Motivations

Dynamic factor models are widely used to summarize the sources of comovement across economic
variables and have experienced several key evolutions since their first introduction (Bai and Ng
(2008), Doz and Fuleky (2019), Barigozzi and Hallin (2023) among others propose an exhaustive
coverage of the history and major developments in this field). Factor analysis was first introduced
in psychology by Spearman (1904) who used an unobserved component to characterize individuals
capacity to process and comprehend information. This framework was originally developed to
handle random vectors independently distributed. However Geweke (1977) extended it to seize
comovements among economic time series. This builds upon Burns and Mitchell (1946) definition
of the business cycle being observable through expansion and recession phases in a broad set of in-
dividual economic series. Sargent and Sims (1977) and Stock and Watson (1989), in seminal works
showed that a small set of common components could synthesize macroeconomic series joint be-
haviour. The resulting composite economic proxies have quickly been allowed to vary in phase with
the business cycle. Business cycle regimes can indeed be cast in a Markov-switching framework.
Kim (1994) and Diebold and Rudebusch (1996) were the first to incorporate Markov-switching
into dynamic factor models. Diebold and Rudebusch (1996) defined a single factor summarizing
the unobservable state of the economy. They allowed the factor parameters to be dependent on an
latent two-state Markov-switching variable. Kim and Nelson (1998) proposed a Gibbs sampling
framework to estimate the model parameters as well as the two latent variables. A first strand of
the literature has focused on a frequentist approach in which an approximation proposed by Kim
(1994) was used in the likelihood computation and the Kalman filter to avoid untractable MT

potential paths (with M the number of states of the Markov chain, T the number of observations).
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Another method was put forward by Diebold and Rudebusch (1996). They introduced a two-step
approach in which a coincident index is first built and the Hamilton model is estimated on it
afterwards. Based on this intuition, Doz and Fuleky (2019) precise that one can use a two-step
approach similar to Doz et al. (2011) in a linear framework. A linear dynamic factor model is
first estimated by principal components on which a Markov-switching model can be estimated, in
the spirit of Hamilton (1989), by maximum likelihood. Camacho et al. (2015) compare the two
aforementioned approaches and point the accuracy of the one-step approach when it comes to
small-scale datasets. Camacho et al. (2014) deploy a specification of the model taking into account
ragged edge and mixed frequency data. We will, in the rest of the thesis manuscript, focus on
the Bayesian estimation and will remain driven by our will to stick to small-scaled models (as in
Stock and Watson (1989), Kim and Yoo (1995), Doz et al. (2020) or Leiva-Leon et al. (2020)).
Chauvet and Piger (2008) show the ability of small-scaled Markov-switching dynamic factor model
estimated with the Gibbs sampling approach to accurately detect the National Bureau of Economic
Research (NBER) dated recessions.

The hurdle this manuscript tackles is the growing heterogeneity of the recession phases within
a Markov-switching dynamic factor model framework. As pointed out by Leiva-Leon et al. (2020),
taking a regime-wise constant intercept in the factor dynamic might trigger inaccurate shallower
recession identification after the Great Financial Recession and the Covid Recession. The authors
allow the intercept to be specific to each economic downturn episode by activating a within-recession
random variable. Heterogeneous recessions could also be identified by the volatility associated to
them. This was proposed first by Chauvet (1998) where a Markov chain is driving both the constant
and the volatility. In a more recent attempt Doz et al. (2020) explore the possibility to take into
account two independent Markov chains, one driving the constant term in the factor and the other
the volatility hence yielding fours states: two low volatile expansions and recession regimes and
two high volatile expansions and recessions phases. The parameters remain nonetheless constant in
each regime. The Covid recession treatment remains a puzzling question. One could ’dummying
out’ data linked to this historic macroeconomic shock but these extreme values are not void of
economic content as noted by Ng (2021). Focusing on linear VAR models, the author introduces
Covid indicators to act as control variables and disentangle the pandemic and economic effects in
the data. Carriero et al. (2022) propose a different approach, and specify a VAR with time-varying
volatility to filter the extreme values through the volatility process. This is the intuition we will
closely follow in the first chapter.

The timing of the recession occurrence is of a great interest for policy makers and market agents.
Given the nature of the macroeconomic data characterized by lags and delays in their publication,
it is hard to assess the current economic condition of a given economy. A proposal made by Furno
and Giannone (2024) is to focus on Composite Index of Systemic Stress (CISS) together with
early available survey data to infer in a timely manner the downturns episodes. They show that
financial conditions, when added to macroeconomic indicators, increase the ability of a logit model
to identify downturns. This is in line with Giannone et al. (2008) who show the marginal benefits
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of financial prices to bring news and reduce uncertainty in a linear nowcasting framework. This
research path motivates the second chapter when focusing on extracting weekly assessment of the
business cycle phases.

Macroeconomic dynamics are crucial for an asset allocator who wants to tactically weigh his/her
portfolio when a recession occurs or deploy hedging strategies against it. The literature indeed
shows macroeconomic regimes determine financial returns distributions (Ang and Timmermann
(2012)). Expected paths of future monetary policy rates or monetary policy regimes tend to im-
pact asset prices variations (Rigobon and Sack (2004)). Improving portfolio returns can be achieved
by adapting allocation through regimes identifications in conditional means, volatilities, and cor-
relations within a capital asset pricing model (Ang and Bekaert (2004)). Accounting for business
cycle phases into portfolio construction was first considered by Brocato and Steed (1998). Jensen
and Mercer (2003) proposed to rather take into account monetary policy regimes in portfolio con-
struction. On the other hand, Kollar and Schmieder (2019) advocate to consider connecting asset
allocation to both business cycle phases and financial cycles in investment allocation. Kritzman
et al. (2012) deploy a regime identification composed of growth, inflation and financial turbulences
to build an adequate allocation strategy. More recently, Kim and Kwon (2023) present an invest-
ment framework for dynamic asset allocation strategies based on changes in the growth and infla-
tion environments (implying a monetary policy reaction). In a similar vein, Bouyé and Teiletche
(2024) show macro regime-based portfolios (overheating, "goldilock", stagflation, downturn) can
outperform traditional asset-based portfolios. The literature cited above misses nonetheless the
timing dimension of those regime in a real-time framework as most of the work is based on ex-post
identification rather than "live" one. Those papers constitute the intuition we will follow in the
third chapter: being able to track in real-time, market sentiment, business cycle phases as well as
monetary policy stance and weigh asset allocation accordingly.

1.2.2. Main results

In the first chapter, a model extending the Markov-switching dynamic factor model literature
by allowing the latent factor to have a continuous-path dynamic volatility process is introduced.
A detailed MCMC Gibbs sampling algorithm is presented and the work shows the good perfor-
mance of the new specification to identify turning points on simulated data. Additionally, the
approach is confronted to misspecified data generating processes and artificial jumps to mimic
exogenous shock such as the Covid recession and still manages to properly identify the underly-
ing Markov-switching variable. We compare the performances of the new framework to text-book
multi-frequential MS-DFM models on an in-sample turning point detection exercise. The model
yields a precise, Covid-robust, dating of the NBER recessions whereas most alternative specifica-
tions hardly capture milder recessions. Moreover, a real-time exercise is carried out, showing the
ability of the model to consistently capture the entry date into recession, as well as its readiness
to detect new downturns (hard and shallower) in the future.
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The second chapter of this thesis mitigates the delay in the identification of recessionary episodes
due to hard economic data release schedules and shows the usefulness for investors willing to track
the US business cycles phases closely to add corporate credit asset swap (ASW) spreads. More
specifically, ASW spreads capture asynchronous macroeconomic data flows by continuously updat-
ing probabilities of default of given corporate bond issuers. We connect the sentiment in the credit
market, measured by a broad grade buckets-based spreads contraction/widening, to the contempo-
raneous state of the economy in a real-time fashion by taking into account the comovement between
ASW spreads and real economic variables usually used in small-scaled dynamic factor models. This
work tracks on a weekly basis the occurrence of macroeconomic downturn episodes. It highlights
the capacity of MS-DFMs incorporating both macroeconomic variables and ASW spreads to ac-
curately identify recessions both in-sample and out-of-sample. These adverse economic episodes
are known to trigger ample price variations in the equity markets as risk aversion gains investors.
The chapter also shows that investors who want to build insurance-based strategies shall use the
real-time downturn probabilities as an allocation rule between S&P500 and cash. Strategies based
on the mixed data sample consistently outperforms a portfolio 100% invested on the S&P500 index
as well as creates economic utility for the investor.

Investor seeking consistent returns across economic phases, both from a business cycle and mon-
etary policy perspective, face challenging questions regarding portfolio construction. The third
chapter introduces a novel approach to gauge the monetary policy regime through real interest
rates dynamics using a Markov-switching dynamic factor model capturing the comovement of
long-term maturities real yields. This model proves to be reliable in identifying monetary policy
restriction signals both in-sample and out-of-sample using weekly market data. The work then
extends Maheu et al. (2012) bull/bear specification into a dynamic factor model in order to cap-
ture a multivariate equity market sentiment allowing for bull corrections and bear rallies. This
signal succeeds in capturing an underlying market sentiment across four major US equity indices.
Finally the chapter combines the monetary policy stance signal with the market sentiment and a
weekly real-time business cycle phase assessor within a long-only asset allocation framework. The
benefit for an investor to take into account those three dimensions is paramount to weigh dynami-
cally his/her portfolio. The regimes along those axes and their underlying market prices dynamics
warrant allocations beyond the traditional fixed 60% equities /40% bonds split. The backtests im-
plemented show that considering the three-signal approach in a dynamic equity/bond/cash hedging
strategy maximizes the Sharpe ratio on a broad period from January 2000 to February 2023. More-
over, no matter the portfolio holding period considered (rolling 1 year to 10 year windows) or the
monetary/economic regime faced, the returns and Sharpe ratios are higher than the 60% equities
/40% bonds benchmark advocating this approach is reliable for an investor who seeks steady re-
turns. The economic utility of the investor in strategies incorporating the three signals shows to
be maximal on 1-year to 10-year rolling windows regardless of his/her risk aversion profile.
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Chapter 2

Improving the robustness of
Markov-switching dynamic factor
models with time-varying
volatility

Romain Aumond Julien Royer

Abstract: Tracking macroeconomic data at a high frequency is difficult as most time series are
only available at a low frequency. Recently, the development of macroeconomic nowcasters to
infer the current position of the economic cycle has attracted the attention of both academics
and practitioners, with most of the central banks having developed statistical tools to track their
economic situation. The specifications usually rely on a Markov-switching dynamic factor model
with mixed-frequency data whose states allow for the identification of recession and expansion pe-
riods. However, such models are notoriously not robust to the occurrence of extreme shocks such
as Covid-19. In this Chapter, we show how the addition of time-varying volatilities in the dynam-
ics of the model alleviates the effect of extreme observations and renders the dating of recessions
more robust. Both stochastic and conditional volatility models are considered and we adapt recent
Bayesian estimation techniques to infer the competing models parameters. We illustrate the good
behavior of our estimation procedure as well as the robustness of our proposed model to various
misspecifications through simulations. Additionally, in a real data exercise, it is shown how, both
in-sample and in an out-of-sample exercise, the inclusion of a dynamic volatility component is
beneficial for the identification of phases of the US economy.

Keywords: Nowcasting; Bayesian Inference; Dynamic Factor Models; Markov Switching
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2.1. Introduction

Dating economic recession and expansion periods is paramount for policy makers and asset man-
agers. However, recessions are often identified after the publication of lagged low-frequency macroe-
conomic variables, resulting in an identification process that may be severely delayed. For example,
the end of the Great Recession in June 2009 was announced by the National Bureau of Economic
Research (NBER) more than a year later. In order to track the state of the economy in real-time
and at a higher frequency, building upon nowcasting techniques popularized by Evans (2005), Gi-
annone et al. (2008) and Bańbura et al. (2013), the use of Markov-switching dynamic factor models
(MS-DFM) has recently gained popularity (Camacho et al. (2014, 2018); Doz et al. (2020)). Such
models were initially introduced by Diebold and Rudebusch (1996) to capture the co-movements of
multiple time series while allowing for the dynamic to be specific to different regimes. Chauvet and
Piger (2008) and Hamilton (2011) emphasized the benefits of this specification to time economic
recessions in the US.

The performance of these models has however been tremendously challenged by the occurrence
of extreme values observed during the Covid-19 pandemic. Figure 2.1 provides a compelling and
motivating example. Using the five variables recommended by the NBER and pursuant to Chauvet
and Piger (2008), we fit a standard MS-DFM model to obtain the in-sample probability of the US
economy being in a recession. Using a sample ranging from February 1947 to December 20191,
we observe that the model is very accurate to date the recessions. This accuracy however sharply
decreases after the introduction of Covid data in the sample. Indeed, the same model fitted on a
sample from February 1947 to June 2023 fails to identify five recessions, only capturing very large
shocks (the oil shock of 1973, the interest rates shock of 1980 and the Great Financial Crisis of
2008).
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Figure 2.1: Smoothed probability of being in a recession (Chauvet and Piger (2008)). The black line
represents a sample from February 1947 to December 2019 while the red dashed line represents a
sample from February 1947 to June 2023. Blue shades show the recessions as dated by the NBER.

1Details about the data are presented in Section 4.
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The treatment of Covid data when modeling macroeconomic phenomena has puzzled econometri-
cians as well as practitioners. While simply ’dummying out’ data linked to the pandemic shock
may seem appealing, these extreme values are not void of economic content as noted by Ng (2021).
Focusing on linear VAR models, the author introduces Covid indicators to act as control variables
and disentangle the pandemic and economic effects in the data. Carriero et al. (2022) propose
a different approach, and specify a VAR with time-varying volatility to filter the extreme values
through the volatility process. The benefits of including dynamic volatility components in VAR
models are well documented in the literature (see for example Clark (2011); Clark and Ravazzolo
(2015); Chan and Eisenstat (2018)) and have influenced models with latent variables, Antolin-
Diaz et al. (2017) introducing a linear DFM with stochastic volatility, as well as Markov-switching
models (see for example Eo and Kim (2016)). To the best of our knowledge, the development of
MS-DFM with time-varying volatility has been limited and mostly focused around dynamic but
piecewise-constant volatility processes as presented in Doz et al. (2020).

In this Chapter, we introduce new MS-DFM specifications to allow for continuous dynamic volatil-
ity processes. In particular, we will consider two well-known competing models: conditional volatil-
ity, where the dynamic variance is a measurable function of the past observations, and stochastic
volatility processes, where the volatility is a random variable not directly linked to the σ-field of
the data. We will show that, both in-sample and out-of-sample, models with dynamic volatilities
outperform standard MS-DFM model in which homoskedasticity is assumed, in particular when
large shocks occur. The remainder of the Chapter is organized as follows. Section 2 presents the
general form of the model and discusses its Bayesian inference. Section 3 presents Monte Carlo
experiments, illustrating the good-behavior of our estimation procedure. Additionally, a careful
attention is dedicated to show the ability of our proposed model to remain robust even under
misspecification and jumps in the simulated data generating process. Section 4 presents an ap-
plication on real data, emphasizing the out-performance of our model for timing US recessions
when Covid-data are considered in-sample. Section 5 provides an out-of-sample exercise where
we compare the ability to date recessions in a real-time nowcasting exercise. Section 6 concludes.
Technical details about the Bayesian estimation are relegated to the appendix.

2.2. Markov-Switching Dynamic Factor Models with contin-
uous time-varying volatility

The modelling of potentially large systems of economic time series via a small number of latent
factors has been a workhorse of the economic literature. Initially introduced by Diebold and
Rudebusch (1996), MS-DFM aim at capturing both the co-movements of multiple macroeconomic
data - possibly sampled at different frequencies - and the changes in time series dynamics induced
by latent regimes usually linked to the business cycle, in the spirit of Hamilton (1989). Chauvet
(1998) and Kim and Nelson (1998) were the first to propose estimation procedures, the former
considering a frequentist approach and the latter a Bayesian approach. Recently, the inclusion of
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time-varying volatility has proved useful in modeling linear DFM (Antolin-Diaz et al. (2017)) as
well as Markov-Switching models where no factor structure is assumed (Eo and Kim (2016)). The
aim of our specification is to bridge the gap between the latter and the MS-DFM literature.

2.2.1. Model specification

Let yt a vector of q quarterly and m monthly observable time series and let ft a set of k latent
common factors. We have the standard DFM given by

yt = Λft + ut, (2.1)

where Λ denotes the loadings matrix, ut is orthogonal to ft and for all j = 1, . . . ,m+ q

ψj(L)uj,t = ej,t, ej,t ∼ N (0, σ2
e,j), (2.2)

and the set of factors follows
ft = µSt

+ Φft−1 + Σ
1/2
t ηt (2.3)

where ηt is iid (0, Ik) and St is an independent first order Markov chain.

In most applications, a two-state (St = 0 or 1) regime-switching model is considered with a unique
factor (k = 1) capturing the co-movements of the economic time series. For the sake of simplicity,
in the remainder of the Chapter we will focus on this simplified form. We thus have

ft = ft = µSt
+ ϕft−1 + εt

εt = σtηt

(2.4)

with µSt
= µ1St + µ0(1 − St).

Among the most famous specifications, Kim and Nelson (1998) assume a constant volatility for the
factor residual (σt = σ). The inclusion of a dynamic volatility component was first proposed by
Chauvet (1998) by letting the constant volatility switch with the latent regimes, yielding σt = σSt .
More recently, Doz et al. (2020) extend this model by letting the volatility process be influenced by
an additional two-state first-order Markov chain Vt, independent from St, yielding σt = σVt

. It is
noteworthy that, while time-varying, the proposed volatility processes are piecewise-constant which
might be difficult to justify empirically. Alternatively, we consider models where the volatility is
time-varying but not piecewise constant. In particular, we introduce well-known competitors:
conditional volatility models and stochastic volatility (SV) models. In the former, the volatility is
a measurable function with regard to the σ-field Ft generated by {fu, t < u}. The simplest form
of this model was introduced by Engle (1982) through the ARCH(1) equation

σ2
t = ω + αε2

t−1 (2.5)
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which was extended by Bollerslev (1986) to yield the famous GARCH(1,1) model

σ2
t = ω + αε2

t−1 + βσ2
t−1 (2.6)

where ω, α and β are positive parameters to estimate with 0 < α + β < 1. On the contrary,
stochastic volatility models do not assume that volatility is a function of the past but a random
variable (in particular σ2

t ̸= E[ε2
t | Ft]). The standard SV model is given by

σ2
t = eht , ht = µh + ϕh(ht−1 − µh) + εh,t, εh,t ∼ N (0, ω2

h). (2.7)

where the log-volatility ht follows a stationary AR(1) process with µh, |ϕh| < 1 and ωh being
parameters to estimate. Tracking real-time economic conditions require to integrate time series
measured at different frequencies, such as quarterly GDP and monthly employment data. Following
Mariano and Murasawa (2003), the model is therefore specified at a monthly frequency where the
observed quarterly data y(q)

t can be related to unobserved synthetic monthly data y(m)
t

y
(q)
t = 1

3y
(m)
t + 2

3y
(m)
t−1 + y(m)

t−2 + 2
3y

(m)
t−3 + 1

3y
(m)
t−4 . (2.8)

Substituting quarterly series in (2.1) with the synthetic higher-frequency data in (2.8) allows us to
obtain a dynamic factor model at a monthly frequency where missing data can be inferred from
our Bayesian estimation procedure.

2.2.2. Bayesian estimation

It is useful to rewrite the MS-DFM model defined by equations (2.1)-(2.2)-(2.4) into a state-
space equation. For any j = 1, . . . ,m + q, let us denote ψj = (ψj,1, . . . , ψj,l)′ the coefficients of
the lag polynomial ψj(L) assumed of order l and Ψ = (ψ′

1, . . . ,ψ
′
m)′. Additionally, let H the

(m+ q) × (ml + 5 + 5q) matrix such that

H =



λ1hq hq . . . 0 0 . . . 0
...

... . . . ...
... . . . ...

λqhq 0 . . . hq 0 . . . 0
λq+1h

5
m 0 . . . 0 hl

m . . . 0
...

... . . . ...
... . . . ...

λq+mh
5
m 0 . . . 0 0 . . . hl

m



where hq =
[

1
3

2
3 1 2

3
1
3

]
, h5

m =
[

1 0 0 0 0
]
, hl

m =
[

1 0 . . . 0
]
.

hl
m is a 1 × l vector with the only first element equal to one. We define the lag vectors L4 =
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(1, L, . . . , L4). The vector of unobserved variables zt is given by

zt = (L4ft,L
4u1,t, . . . ,L

4uq,t, (1, L, . . . , Ll−1)uq+1,t, . . . , (1, L, . . . , Ll−1)um+q,t)′.

We can rewrite the factor model into a state-space equation as follows

yt = Hzt + ςt ςt ∼ N (0,R)
zt = δSt

+ Ξzt−1 + ζt ζt ∼ N (0,Qt)
(2.9)

with δSt = (µSt , 0, . . . , 0)′, diag(Qt) = (σ2
th

5
m, σ

2
e,1h

5
m, . . . , σ

2
e,qh

5
m, σ

2
e,q+1h

l
m, . . . σ

2
e,m+qh

l
m) where

Ξ is a ml + 5 + 5q square block diagonal matrix given by

Ξ =


ϕ

Ξ1
. . .

Ξm+q

 where ϕ =



ϕ 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



such that, for jq = 1, . . . , q and jm = q+ 1, . . . ,m+ q, Ξjq
is a 5 × 5 matrix and Ξjm

a l× l matrix
given by

Ξjq
=



0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0


and Ξjm

=



ψjm,1 ψjm,2 . . . ψjm,l−1 ψjm,l

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


.

Additionally, we follow Leiva-Leon et al. (2020) and restrict the individual components of the
quarterly observations to be white noises.
Denoting the transition probabilities

q = P(St = 0|St−1 = 0) and p = P(St = 1|St−1 = 1),

the vector of parameters to estimate is given by

ϑ = (p, q,Ψ′, σe,1, . . . , σe,m,Λ
′, µ0, µ1, ϕ,θ

(.)′
)′

where θ(.) is the vector of parameters driving the dynamic volatility equation σt

θ(ARCH) = (ω, α), θ(GARCH) = (ω, α, β), and θ(SV) = (µh, ϕh, ωh).

Let us denote z(T ) = {z1, . . . ,zT } the unobserved state vector in equation (2.9), y(T ) = {y1, . . . ,yT }
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the observed data, and S(T ) = {S1, . . . , ST } the unobserved Markov Chain. The model is esti-
mated using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algorithm in the spirit of
Kim and Nelson (1999) and Bai and Wang (2015) where conditional draws of the state vector, the
Markov Chain, and the parameters vector ϑ are obtained sequentially. In particular, we adapt the
Metropolis Hastings procedure presented in Chan and Grant (2016) and Chan (2023) to sample
stochastic and conditional volatilities. Details on the priors and a complete description of our sam-
pling algorithm are presented in Appendices 2.7.1 and 2.7.2 but the main steps can be summarized
as follows:

1. We generate conditional draws of the state vector from p(z(T )|y(T ), S(T ),ϑ) using the forward-
filtering backward-smoothing algorithm of Carter and Kohn (1994).

2. We generate conditional draws of the Markov chain from p(S(T )|y(T ), z(T ),ϑ) based on the
Hamilton filter (Hamilton (1989)).

3. We generate conditional draws for the parameters vector from p(ϑ|y(T ), z(T ), S(T )) by se-
quentially drawing in the conditional distribution of components of ϑ as follows:

• We obtain conditional draws for p and q following Albert and Chib (1993).

• We obtain conditional draws for (Ψ′, σe,1, . . . , σe,m,Λ
′) from usual priors in the litera-

ture (see for example Bai and Wang (2015)).

• To obtain conditional draws for (µ0, µ1, ϕ,θ
(.)′), we build upon the Metropolis Hastings

algorithm presented in Chan and Grant (2016). In particular, in the case of stochastic
volatility, we use the precision sampler of Chan and Jeliazkov (2009) for efficiency gains.

2.3. Monte Carlo experiments

In order to assess the performance of our estimation procedure as well as the robustness of our
model to potential misspecifications, we conduct some Monte Carlo experiments.

In all cases, we model a five-variable system, with one quarterly data and four monthly data,
driven by a single latent regime-switching factor. On all simulations, we use our MCMC procedure
to fit five competing MS-DFM models as described by (2.1)-(2.2)-(2.4): a standard model with con-
stant volatility (simply denoted MS-DFM), a model where the factor volatility follows an ARCH(1)
dynamic (denoted MS-DFM-ARCH), a model where the factor volatility follows a GARCH(1,1)
dynamic (denoted MS-DFM-GARCH), a model where the factor volatility is stochastic with dy-
namic (2.7) (denoted MS-DFM-SV), and a model where the factor volatility is piece-wise constant
and driven by an additional Markov- chain independent of St as presented by Doz et al. (2020)
(denoted 2MS-DFM). All estimation results are obtained from 1600 draws of the Gibbs sampler.

To conduct our experiments, we first simulate a two-state first order Markov chain with p = q =
0.97 and T = 1000. From the obtained Markov chain, we simulate ft under different specifications
(that we will develop in the reminder of this section), which yields the four monthly variables and
the quarterly variable from (2.8). In particular, we use β1 = · · · = β5 = 0.1 and an AR(1) structure
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for the uj,t sequence with ψj = 0.7 and σe,j = 1 for all j.

We first simulate the factor assuming the true data generating process (DGP) follows the standard
MS-DFM with constant volatility of Kim and Nelson (1998). In particular, we set µ0 = −2, µ1 = 2,
ϕ = 0, 7 and εt ∼ N (0, 1). Figure 2.2 presents the in-sample probability of being in regime 1 when
fitting a standard MS-DFM (dotted red line) and a MS-DFM-GARCH (plain black line). Shaded
areas correspond to the simulated regimes sequence. In this case, the standard MS-DFM model
is apt at identifying regime switches and performs very well in-sample. Interestingly, although
misspecified, the MS-DFM-GARCH also appears to be well behaved even if the true DGP has
constant volatility.

We then repeat the same experience, with the exact same setting, but proceed to shock the inno-
vation sequence by forcing ε460 to take an extreme value (ε460 = −35). This shock will act as a
jump, impacting the factor conditional mean through the AR(1) process. Figure 2.3 presents the
in-sample probabilities when a shock occurs at time t = 460. The occurrence of an extreme value
clearly derails the standard MS-DFM, failing at identifying most of the regime switches in-sample
and reminding us of the deterioration of the performance of this model to date NBER recessions
after the Covid-19 pandemic as emphasized by Figure 2.1. The in-sample probabilities derived from
a MS-DFM-GARCH contrast sharply. The model is able to identify most regime switches even in
the presence of an extreme shock, emphasizing the gain in robustness brought by the inclusion of
a time-varying volatility process.

To rank the performance of the competing models, we consider two standard metrics based on the
errors between the simulated state sequence S0,t (assumed observed) and the filtered probability
of being in regime 1 at time t (St = 1). More precisely, we consider the Quadratic Probability
Score (QPS) given by

1
T

T∑
t=1

(S0,t − p(St = 1|Ft−1))2 (2.10)

and the False Probability Score (QPS) given by

1
T

T∑
t=1

(S0,t − 1p(St=1|Ft−1)>0.5)2. (2.11)

Table 2.1 presents FPS and QPS metrics for our five competing models in the two presented cases
(no jump and one jump), as well as an additional case where two shocks of lower intensities occur
(ε460 = −30 and ε800 = −20). Although misspecified, the four competing time-varying volatility
models appear well suited both without shocks and in the presence of extreme values.
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Figure 2.2: Simulated recession regimes and smoothed recession probabilities from the MS-DFM
model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-DFM model
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Figure 2.3: Simulated recession regimes and smoothed recession probabilities from the MS-DFM
model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-DFM model but a
large jump occurs at t = 460

Models No jump One jump Two jumps
FPS QPS FPS QPS FPS QPS

MS-DFM 0.071 0.053 0.362 0.252 0.354 0.329
MS-DFM-ARCH 0.090 0.072 0.072 0.053 0.073 0.053
MS-DFM-GARCH 0.114 0.093 0.079 0.059 0.072 0.054
MS-DFM-SV 0.079 0.055 0.072 0.054 0.084 0.059
2MS-DFM 0.075 0.055 0.081 0.055 0.082 0.060

Table 2.1: Simulated regime dating under jumps and misspecifications when the true DGP is a
standard MS-DFM

We then simulate the factor assuming the true (DGP) follows the standard MS-DFM-GARCH with
dynamic volatility following (2.6). In particular, we let µ0 = −2, µ1 = 2, ϕ = 0.7 and set ω = 1,
α = β = 0.4 with ηt ∼ N (0, 1). Figure 2.4 presents the in-sample probability of being in regime
1 when fitting a standard MS-DFM (dotted red line) and a MS-DFM-GARCH (plain black line).
Surprisingly, spuriously assuming constancy of the volatility process does not appear to penalize
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the inference of the regimes as the MS-DFM proves able to accurately detect regime switches.
This relative irrelevance of heteroskedasticity on the Bayesian estimation of such MS-DFM models
may explain the only recent attention to MS-DFM with dynamic volatility. The behavior of the
MS-DFM-GARCH on this exercise illustrate the good performance of our Bayesian estimation
procedure detailed in Appendices 2.7.1 and 2.7.2.

We again repeat the experience and shock the innovation sequence with the same amplitude as the
previous simulation. This extreme value will, this time, impact both the factor conditional mean
through the AR(1) process and the conditional volatility through the GARCH process. Figure 2.5
presents the in-sample probabilities when a shock occurs at time t = 460. The occurrence of an
extreme value once again strongly deteriorates the performance of the standard MS-DFM, while
the in-sample probabilities derived from a MS-DFM-GARCH remain relatively unchanged.
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Figure 2.4: Simulated recession regimes and smoothed recession probabilities from the MS-DFM
model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-DFM-GARCH
model
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Figure 2.5: Simulated recession regimes and smoothed recession probabilities from the MS-DFM
model (in red) and MS-DFM-GARCH model (in black) when the DGP is a MS-DFM-GARCH
model but a large jump occurs at t = 460
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Models No jump One jump Two jumps
FPS QPS FPS QPS FPS QPS

MS-DFM 0.074 0.050 0.364 0.359 0.357 0.348
MS-DFM-ARCH 0.084 0.063 0.086 0.065 0.085 0.068
MS-DFM-GARCH 0.087 0.072 0.097 0.077 0.082 0.062
MS-DFM-SV 0.078 0.055 0.075 0.059 0.102 0.072
2MS-DFM 0.069 0.050 0.092 0.067 0.095 0.067

Table 2.2: Simulated regime dating under jumps and misspecifications when the true DGP is a
MS-DFM-GARCH
Results in Table 2.2 confirm the previous findings and emphasize the robustness to extreme values
stemming from the inclusion of time-varying volatility. Interestingly, in this case, although better
than the standard MS-DFM, the MS-DFM-ARCH and the 2MS-DFM of Doz et al. (2020) appear
less apt than the MS-DFM-GARCH to identify regime switches. This could be due to the slow
decay of the volatility path after the shocks, induced by the GARCH(1,1) equation, that is in-
compatible with short memory feature of the ARCH(1) model and the piecewise-constant nature
of the volatility in the 2MS-DFM. The MS-DFM-SV and MS-DFM-GARCH specifications appear
difficult to discriminate in this simulation exercise.

2.4. A Covid-robust timing of US recessions

The main application of MS-DFM is the timing of recession and expansion periods underlying
economic data. Tracking these recurring cycles is paramount for policy makers and asset managers,
but Covid-data have tremendously complicated the identification process as emphasized by Figure
2.1. In a recent exercise, Doz et al. (2020) show that the inclusion of time-varying volatility
improves the detection of recessions in the US. However, their sample stops before the occurrence
of the Covid-19 pandemic. Simulations presented in the previous section yield promising results on
the ability of MS-DFM models, when extended with continuous volatility processes, to be robust
to extreme values. In this section, we propose to confront this assumption to a real-data exercise.

Following the NBER Business Cycle Dating Committee recommendations, we consider a five-
variable system, as presented in Table 2.3. The US quarterly GDP is obtained from the ALFRED
database while the four monthly series are extracted from the FRED-MD database, both main-
tained by the Federal Reserve Bank of St Louis (see McCracken and Ng (2016)). All series are
seasonally adjusted. The sample ranges from January 1947 to June 2023.

Data Frequency Start date Transformation

Real GDP Quarterly Q1 1947 Diff Log
Industrial production Monthly Jan. 1947 Diff Log
Real personal income excluding Monthly Jan. 1959 Diff Log
transfer payments
Real manufacturing trade and sales Monthly Jan. 1959 Diff Log
Non-agricultural civilian employment Monthly Jan. 1948 Diff Log

Table 2.3: Data description
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Figure 2.6: Smoothed recession probability based on the MS-DFM-GARCH model
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Figure 2.7: Smoothed recession probability based on the MS-DFM-SV model
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Figure 2.8: Smoothed recession probability based on the 2MS-DFM model

Similarly to Kim and Nelson (1998), Chauvet and Piger (2008) and Doz et al. (2020), we assume a
single-factor structure driven by a two-state Markov chain corresponding to recessions (St = 1) and
expansion periods (St = 0). On our data, we fit five competing models as presented in the previous
section. In addition, we also include constrained specifications where the autoregressive term in
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the latent factor dynamic is constrained to 0 (ϕ = 0 in (2.4)). Figures 2.6, 2.7 and 2.8 present
the smoothed recession probabilities for the unconstrained MS-DFM-GARCH, MS-DFM-SV and
2MS-DFM respectively (black lines). It is remarkable that the inclusion of time-varying volatility
proves very effective for a Covid-robust timing of US recessions. However, the 2MS-DFM, clearly
underperforms the MS-DFM-GARCH and MS-DFM-SV in-sample, emphasizing the need for a
continuous volatility process. The MS-DFM-SV, although outperforming the standard MS-DFM,
fails at identifying the shallow early-1970s recession.

To quantify the performance of the competing models, we evaluate the QPS and FPS by replacing
S0,t in (2.10) and (2.11) with the recessions regimes as provided by the NBER. Results are re-
ported in Table 2.4. In addition, we report the Portmanteau test statistics of Li and Mak (1994),
an extended version of the standard goodness-of-fit test for conditional volatility models. Inter-
estingly, the MS-DFM-GARCH is the only unconstrained specification to pass this test of at all
considered lags. All other models reject the goodness-of-fit hypothesis, which emphasizes the het-
eroskedasticity of the latent factor, often neglected in the literature. Moreover, volatility exhibits
some persistence, the short-memory feature of volatility induced by the ARCH(1) equation yielding
autocorrelated squared residuals. It is noteworthy that the constrained MS-DFM-GARCH with
ϕ = 0 both present the smallest FPS and QPS and does not reject the goodness-of-fit test.

Models QPS FPS Portmanteau test
qmax = 3 qmax = 5 qmax = 10

MS-DFM 0.045 0.045 129.2 129.2 130.8
MS-DFM (ϕ = 0) 0.054 0.052 49.7 49.8 50.8
MS-DFM-ARCH 0.031 0.019 169.1 169.6 170.6
MS-DFM-ARCH (ϕ = 0) 0.035 0.041 28.0 28.8 30.1
MS-DFM-GARCH 0.022 0.026 3.7 3.8 4.0
MS-DFM-GARCH (ϕ = 0) 0.019 0.026 6.5 6.8 7.1
MS-DFM-SV 0.041 0.041 17.8 20.5 21.6
MS-DFM-SV (ϕ = 0) 0.036 0.033 19.8 22.5 23.0
2MS-DFM 0.041 0.048 88.2 90.2 91.9
2MS-DFM (ϕ = 0) 0.059 0.067 52.4 53.4 53.6

threshold 7.81 11.07 18.31

Table 2.4: Empirical results on US recessions dating; Li and Mak (1994) Portmanteau test on
factor residuals

2.5. Real-time assessment: nowcasting US recessions

We proceed to a real-time downturn assessment of the five competing models. The monthly
seasonally adjusted macroeconomic aggregates building up our information sample come from
the FRED-MD database provided by the Federal Reserve Bank of St Louis McCracken and Ng
(2016). We carry the exercise on vintages available from January 2001 onwards. In the FRED-
MD database, for a given month M, industrial production and non farm payroll employment are
displayed up until month M-1, real personal income excluding transfer payments up until month
M-1 or M-2, and real manufacturing and trade sales up until month M-2 or M-3. We also use real
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seasonally adjusted quarterly GDP vintages from the ALFRED database. The first estimate of a
quarterly GDP figure for a given quarter is usually available at the end of the first month following
the reference period. It is then revised up to two times with the third estimate available at the
end of the following quarter. We run the competing models on a monthly basis from January
2000 to June 2023 adding the new information available this given month (it means the only data
available in March 2009 is employment and industrial production reports from February 2009).
To fit best the day to day monitoring of macroeconomic conditions by practitioners we attribute
the probability extracted from a given month data vintage to this month as the macroeconomic
information availability is known to be lagging and asynchronous. The models filtered probabilities
associated to downturns from the competing models are reported in Figure 2.9.
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Figure 2.9: Real-time probabilities of being in a recession. The black line represents the MS-DFM-
GARCH probabilities, the red line displays the MS-DFM-SV probabilities. The blue line represents
the Constant variance model probabilities. Blue shades show the recessions as dated by the NBER.

Given the fact that both amplitude and heterogeneity of downturn episodes have been increasing
over the three recession episodes available in our vintages, a constant-volatility model seems to
be performing well in capturing the entry date and the exit date of the downturns. This fact
is depicted in the QPS and FPS identification measures reported in the first columns of Table
2.4. However, one could argue that this good performance of the standard MS-DFM model on
this out-of-sample exercise is misleading, as the real-time datasets were not polluted by abnormal
episodes. Indeed, Covid-data may have deteriorated the ability of the MD-DFM to identify softer
low growth regimes. Because no recession has occurred in the recent post-Covid era, it is difficult
to outperform standard MS-DFM in nowcasting the US economy from 2001 to 2023. In order to
assess the benefits of our model, we thus propose to simulate the real-time occurrence of a crisis.
Focusing on a GFC-type crisis and a dotcom-type crisis, we investigate the ability of the competing
models to capture, in a timely manner, the entry in these of recessions, should they repeat after
the shock produced by the Covid crisis. Therefore, two datasets are built. We first extend the
observation sample from July 2023 by adding an expanding information sample composed of the
observations from January 2008 up until May 2009 — the artificial GFC. A second observation
sample is composed of data observed up until July 2023 to which we add observations from March
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to November 2001 — the artificial dotcom bubble. Figures 2.10a and 2.10b focus on the real
GFC crisis and the artificial GFC as well as the corresponding filtered probabilities of being in a
recession regime in real-time. Figures 2.10c and 2.10d focus on the dotcom crisis.
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Figure 2.10: Real-time probabilities of being in a recession obtained from a MS-DFM-GARCH
(black line), MS-DFM-SV (red dashed line) and standard MS-DFM (blue dotted line). Blue shades
show the GFC recession as dated by the NBER.

In both cases, extended MS-DFM with dynamic volatility do not seem to outperform the standard
MS-DFM when the crisis occur prior to the Covid-19 shock. However, when the crisis repeat after
the Covid-induced recession of 2020, the MS-DFM-GARCH is clearly outperforming its competitors
at timing the artificially created recessions, as emphasized in the last columns of Table 2.5. This
feature is a further evidence to the observations brought by Camacho et al. (2018) and Leiva-Leon
et al. (2020) regarding the weakness of constant-variance model to identify in a timely fashion
the occurrence of a downturn episode. The results defer from the above-mentioned papers to
the extent that the exit of the recession episode as given by the real-time filtered probabilities
intervenes around 6 months after the official dating given by the NBER.
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Models All sample True GFC True .com Art. GFC Art. .com
FPS QPS FPS QPS FPS QPS FPS QPS FPS QPS

MS-DFM-ARCH 0.11 0.08 0.50 0.30 0.88 0.53 0.47 0.31 1.00 0.78
MS-DFM-GARCH 0.12 0.09 0.28 0.20 0.88 0.48 0.18 0.09 0.75 0.49
MS-DFM-SV 0.10 0.08 0.28 0.22 0.50 0.34 0.41 0.26 1.00 0.79
MS-DFM 0.10 0.07 0.56 0.31 0.50 0.26 0.65 0.54 1.00 0.91
2MS-DFM 0.10 0.08 0.44 0.23 0.50 0.31 0.59 0.39 1.00 0.81

Table 2.5: Performance of the competing models on the whole out-of-sample exercise, the GFC and
dotcom recessions, and their artificial counterparts. Bold numbers display the minimum statistics
while italic indicate the artificially created samples.

2.6. Conclusion

Coping with the Covid shock in macroeconomic aggregates is a new challenge for econometricians
and practitioners. Given the increasing heterogeneity of downturn phases - and the amplitude
of the last recessionary episode - this challenge is even more essential for dating business cycles.
In this Chapter, we introduce a novel Markov-switching dynamic factor model that proves highly
robust to extreme shocks. This model extends the existing literature by allowing the latent factor
to have a continuous-path dynamic volatility process. We present a detailed MCMC Gibbs sam-
pling algorithm and show its good performance on simulated data. Additionally, we establish the
robustness of this framework in its capacity to properly identify regimes under misspecified data
generating processes and artificial jumps through Monte Carlo experiments. We compare the per-
formances of the new framework to text-book multi-frequency MS-DFM models on an in-sample
turning point detection exercise. In particular, our model yields a precise, Covid-robust, dating
of the NBER recessions. Finally, a real-time exercise is carried out, showing the ability of our
model to consistently capture the entry date into recession, as well as its readiness to detect new
downturns in the future. The addition of alternative data, supposed to be contemporaneous with
the business cycle and observable at a higher frequency (such as market prices) could however
improve the timing of recessions ends. We leave this problem for future research.
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2.7. Appendix

2.7.1. Priors

This section describes the priors used for the distributions of the parameter vector ϑ.
λ1 is set to one for identification purposes. For all j = 2, . . . ,m+ q, we use the following prior to
sample λj the j-th element of the factor loading matrix Λ in (2.1)

λj ∼ N (aj , Aj) (2.12)

where hyperparameters are set to aj = 0 and Aj = 0.1. To sample the parameters linked to the
residuals uj,t in (2.2), we use the following priors, for l = 1, 2,

ψj,l ∼ N (π,Π) π = 0,Π = 0.1
σ2

e,j ∼ IG(νi, Zi) νi = 10, Zi = 2
(2.13)

where IG denotes the inverse-gamma distribution. Additionally, independent beta distributions
can be used as conjugate prior for each transition probability

π(q, p) ∝ qu00(1 − q)u01pu11(1 − p)u10 (2.14)

As in Doz et al. (2020), we put an informative prior and set u00 = 470, u01 = 9, u10 = 9, u11 =
90 in order to take into account the relative persistence of each of the regimes as observed on
macroeconomic data. The prior for the Markov-switching intercept in equation (2.4) is given by :

µ = (µ0, µ1)′ ∼ N (α∗, A∗) (2.15)

with α∗ = (4,−2)′ and A∗ = diag(0.02, 0.02). We acknowledge that, in the spirit of Leiva-Leon
et al. (2020), relatively tight priors are used for identification purposes. The informativeness
brought by the first moment is indeed needed to discriminate between the regimes over the param-
eters space. The prior for the autoregressive parameter ϕ in equation (2.4) is given by

ϕ ∼ N (α,A) (2.16)

where α = 0, A = 0.1. In the case of a MS-DFM-ARCH, we use the following prior for the vector
θ(ARCH) = (ω, α)

log θ(ARCH) ∼ N (θ(ARCH)
0 , Vθ)1(α < 1).

θ(ARCH) thus follows a truncated log-normal distribution with the stationarity restriction that
α < 1. We set the hyperparameters to θ(ARCH)

0 = log(1, 0.5) and Vθ = diag(1, 1). In the case of
MS-DFM-GARCH, we use the following prior for the vector θ(GARCH) = (ω, α, β)

log θ(GARCH) ∼ N (θ(GARCH)
0 , Vθ)1(α+ β < 1).
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Similarly to the ARCH(1) specification, θ(GARCH) follows a truncated log-normal distribution
with the adapted stationarity restriction α + β < 1. Hyperparameters are set to θ

(GARCH)
0 =

log(1, 0.5, 0.4) and Vθ = diag(1, 1, 1). Note that in both cases, the priors are relatively non-
informative. Finally, in the MS-DFM-SV, we use the following prior for the vector θ(SV) =
(µh, ϕh, ωh)

µh ∼ N (µh0, Vµh
) ϕh ∼ N (ϕh0, Vϕh

) ωh ∼ IG(νh, Sh)

where µh0 = 1, Vµh
= 50, ϕh0 = 0.9, Vϕh

= 1, νh = 1, and Sh = 1. These priors are intended to
make the stochastic volatility process exhibits persistence in a similar fashion as the conditional
variance in the GARCH framework.

2.7.2. Bayesian Estimation

Let z(T ) = {z1, ...,zT } the unobserved state, y(T ) = {y1, ...,yT } the observed data and S(T ) =
{S1, ..., ST } the first order Markov-Chain. We describe the Gibbs sampler steps based on Kim
and Nelson (1999) and follow their notations. The Gibbs sampler consists of iterating between the
three following steps sequentially.

2.7.2.1. Generation of the state vector

The joint distribution of z(T ), given y(T ), S(T ) and ϑ can be defined as

p(z(T ) | y(T ), S(T ),ϑ) = p(zT | y(T ), S(T ),ϑ)
T −1∏
t=1

p(zt | y(t), S(t),ϑ, zt+1)

which boils down to generating zt for t = T, T − 1, ..., 1 from

zT | y(T ), S(T ),ϑ ∼ N (zT |T ,VT |T )
zt | y(t), S(t), zt+1,ϑ ∼ N (zt|t,zt+1 ,Vt|t,zt+1)

(2.17)

where zt|t = E(zt | y(t)) and Vt|t = V ar(zt | y(t)) for t = 1, ..., T . In equation (2.17), zT |
y(T ), S(T ),ϑ can be generated using the Multi-move Gibbs sampling introduced by Carter and
Kohn (1994) as follows

1. We use the Kalman filter to obtain zt|t and Vt|t for t = 1, ..., T . The last iteration of the
filter gives zT |T and VT |T which are then used to generate zT .

2. For t = T − 1, T − 2, ..., 1, zt|t and Vt|t, zt+1 can be considered as an incremental vector of
observations in the system. The distribution p(zt | y(T ), S(t),ϑ, zt+1) is then deduced from
the Kalman smoother. From equation (2.9), updating equation are then given by

zt|t,zt+1 = zt|t + Vt|tΞς̃t/Rt

Vt|t,zt+1 = Vt|t − Vt|tΞ
′ΞV ′

t|t/Rt

where ς̃t = zt+1 − δSt+1 − Ξzt|t and Rt = ΞVt|tΞ
′ + σ2

t+1.
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2.7.2.2. Generation of the Markov Chain

Once z(T ) has been simulated, given ϑ, the Markov Chain S(T ) can be generated from the following
distribution

p(S(T ) | y(T ), z(T ),ϑ) = p(ST | y(T ), z(T ),ϑ)
∏T −1

t=1 p(St | y(t), z(t), St+1,ϑ)
= p(ST | z(T ),ϑ)

∏T −1
t=1 p(St | z(t), St+1,ϑ)

as the distribution of S(T ) is orthogonal to y(T ) given z(T ). We can thus obtain conditional draws
for S(T ) as follows

1. We use the Hamilton (1989) filter on (2.3) to generate p(St | z(t),ϑ) for t = 1, 2, ..., T and
save them. The last iteration gives p(ST | z(T ),ϑ) from which we get ST .

2. To draw St given z(T ) and St+1, for t = T − 1, T − 2, ..., 1 the following result is used

p(St | z(t), St+1,ϑ) = p(St+1 | St)p(St | z(t),ϑ)
p(St+1 | z(t),ϑ) ∝ p(St+1 | St)p(St | Z(t),ϑ)

where p(St+1 | St) is the transition probability in ϑ and p(St | z(t),ϑ) is obtained form the
values saved in the previous step.

3. The last step consist of drawing from

Pr(St = 1 | z(t), St+1,ϑ) = p(St+1 | St = 1)p(St = 1 | z(t),ϑ)∑1
j=0 p(St+1 | St = j)p(St = j | z(t),ϑ)

where St is drawn from a uniform distribution St ∼ U(0, 1). If the generated number is
smaller than Pr(St = 1 | St+1, z

(t),ϑ), St = 1, otherwise St = 0.

2.7.2.3. Generation of the parameters vector

We now turn to the generation of draws for the vector of parameters. To do so, we will sequentially
draw components of the ϑ vector as follows.

We obtain conditional draws for the transition probabilities p and q following Albert and Chib
(1993). In particular, given S(T ) and the initial state, we denote the transition from the state
St−1 = i to St = j by nij , the log-likelihood is given by

L(q, p) = qn00(1 − q)n01pn11(1 − p)n10 .

By combining the likelihood function and the conjugate priors presented in the previous section,
from equation (2.14), we get the conditional distributions of (p, q) as the product of the independent

45



beta distributions from which we generate p and q as

q | S(T ) ∼ Beta(u00 + n00, u01 + n01)
p | S(T ) ∼ Beta(u11 + n11, u10 + n10).

Given y(T ) and f (T ), we can rewrite equation-by-equation equation (2.1) with

y∗
j,t = λjf

∗
j,t + ej,t

for j = 2, . . . ,m+ q, where y∗
j,t and f∗

j,t are the j-the respective components of

y∗
t = yt − ψ̄1 ◦ yt−1 + ψ̄2 ◦ yt−2

f∗
t = emft − ψ̄1ft−1 + ψ̄2ft−2

(2.18)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1, . . . , L; L = 2 being
the order of the AR specification in equation (2.2). From (2.12) and (2.18), we obtain conditional
draws for λj from the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.

Given y(T ) and f (T ), from (2.1) we can measure u(T ) and from equation (2.2) and the prior
distribution (2.13), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)′. Similarly, from the generated ψj and from (2.13), we can draw σ2

e,j

from the posterior distribution

IG

νj + T

2 , Zj +

(
u

(T )
j −ψ′

jw
(T )
j

)′ (
u

(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ,θ
(.)′). As the Gibbs sampling methods differ between

conditional and stochastic volatility, we will detail our algorithm for the different models, starting
with the latter.

For the MS-DFM-SV, we draw the individual parameters in (µ0, µ1, ϕ,θ
(SV )′) sequentially. Rewrit-

ing equation (2.4), we have

ft − ϕft−1

σt
= µ0(1 − St) + µ1St

σt
+ ηt

Let us denote G∗
t the left-hand side of the above equation and Let us denote G∗

t the left-hand side
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of the above equation and
Q∗(T ) =

[
1 − S(T ) S(T )

]
From the prior distribution (2.15), µ can be drawn from the posterior distribution

µ ∼ N ((A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1),

and only draws verifying the condition µ0 > µ1 are kept. Rewriting again equation (2.4) yields

ft − µ0(1 − St) − µ1St

σt
= ϕ

ft−1

σt
+ ηt.

Denoting G̃t the left-hand side of the above equation and Q̃t the right-hand side, from (2.16) ϕ
can be drawn from the following posterior distribution

ϕ ∼ N ((A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃), (A−1 + Q̃′Q̃)−1).

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. We then jointly sample the
log-volatility from the conditional density

p(h(T ) | z(T ), S(T ), µ0, µ1, ϕ,θ
(SV )′

)

based on the acceptance-rejection Metropolis Hastings algorithm described in Chan (2017) us-
ing the precision sampler of Chan and Jeliazkov (2009). To that end, we compute the mode of
p(h(T ) | z(T ), S(T ), µ0, µ1, ϕ,θ

(SV )′) and the Hessian of the log-density evaluated at this mode
denoted ĥ and Kh. We then use N (ĥ,K−1

h ) as a proposal distribution in the acceptance-rejection
Metropolis Hastings step from which we can directly sample h(T ).
For the MS-DFM-GARCH, we draw the parameters from the three full conditional distributions
p(µ | z(T ), S(T ), ϕ,θ(GARCH)), p(ϕ | z(T ), S(T ),θ(GARCH)) and p(θ(GARCH) | z(T ), S(T ), ϕ) sequen-
tially. Since µSt

and ϕ appear in the conditional variance equation, those distributions are non-
standard, as noted by Chan and Grant (2016), and Metropolis Hastings algorithms are required.
To sample ϕ we use a Gaussian proposal with mean ϕ̄ and variance Vϕ given by

ϕ̄ = (A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃)
Vϕ = (A−1 + Q̃′Q̃)−1.

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. To sample µ, we use a multi-
variate Gaussian proposal

N
[
(A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1

]
and only keep draws verifying µ0 > µ1. Finally to sample θ(GARCH), we use a Gaussian proposal
centered at the mode of p(θ(GARCH) | z(T ), St, ϕ) with covariance matrix set to be the outer product
of the scores.
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2.7.2.4. GARCH model parameters posteriors
Table 2.6: MS-DFM-GARCH model parameters posteriors

Variables Parameters Mean Std

GDP λ 1 0
IP λ 0.49 0.24
RS λ 0.50 0.02
PI λ 0.24 0.01
E λ 0.26 0.01

GDP ψ1 0.00 0.08
IP ψ1 0.31 0.05
RS ψ1 -0.45 0.04
PI ψ1 -0.08 0.04
E ψ1 -0.13 0.04

GDP ψ2 0.00 0.08
IP ψ2 0.04 0.04
RS ψ2 -0.22 0.04
PI ψ2 0.02 0.04
E ψ2 0.05 0.04

GDP σ2
e 0.28 0.09

IP σ2
e 0.38 0.04

RS σ2
e 0.69 0.05

PI σ2
e 0.27 0.02

E σ2
e 0.23 0.02

Factor
µ1 -1.05 0.01
µ0 1.11 0.01
ϕ -0.30 0.04
ω 2.01 0.38
α 0.46 0.06
β 0.22 0.07
q 0.98 0.01
p 0.90 0.02
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Chapter 3

Asset swap spreads as business
cycle phases assessors: when
real-time tracking of
macroeconomic fluctuations is
useful in asset allocation

Abstract: Asynchronous and lagging macroeconomic information in nowcasting models are chal-
lenging for both practitioners and policy makers. Timing the entry and the exit of macroeconomic
downturns is nonetheless of greatest importance. Adding asset swap spreads to the information
sample to mitigate the usual macroeconomic data-related caveats can be helpful. This work sheds
light on the capability of this weekly market information to correctly assess the business cycle
phases. We build upon the existing literature of Markov-Switching Dynamic Factor Models with
dynamic volatility in the factor auto-regressive behavior. This approach demonstrates the benefits
of using this information flow to infer business cycle phases and implement macro-based allocation
strategies. Using asset swap spreads as a proxy for market sentiment regarding current macroeco-
nomic conditions enhances the detection of turning points and improves the risk-adjusted return
of allocation strategies that seek business cycle downturn hedging signals.

Keywords: Nowcasting; Bayesian Estimation; Dynamic Factor; Non-linearity
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3.1. Introduction

Real-time assessment of the state of the business economy has become an overarching question in
the past decade for policy makers and market participants. In the wake of the Great Financial Cri-
sis and the more recent Covid Pandemic, heterogeneity of the contractionary episodes in terms of
duration and amplitude has triggered hurdles for practitioners to identify econominc turning points
in a timely fashion. This work intends to show the credit market asset swap spreads capability
to improve economic downturns identification. Those spreads are interpreted as a compensation
of the Asset Swap (ASW) buyer for taking credit risk (O’Kane (2000)). A key advantage of this
information sample is the daily availability of the market prices which in turn, enables to bypass
the caveats related to the nowcasting literature; namely the asynchronicity in the publication of
lagged economic data. Ideed, the first hard macro-data available for a given month M in the US is
the job report published by the Bureau of Labor statistics the first friday of the following month.
When looking at GDP, the first estimate of the figure is available one month after the reference
quarter period. The Chapter’s bedrock is to consider the default pricing capacity of the credit
market as a relevant real-time assessor of the real economy booms and busts. We thus rely on the
market efficiency hypothesis through the financial accelerator mechanism highlighted by Bernanke
and Gertler (1989) and Kiyotaki and Moore (1997): a negative shock to business economy triggers
an immediate alteration in corporate balance sheets and a decline in expected revenues. This
deterioration hampers investment capabilities and ultimately output. This development is embod-
ied in the widening of the spreads : among the rate buckets of corporate asset swaps, a broad
-sometimes distorted- repricing of default probabilities occurs. If this tension in the credit market
arises the information can be valuable in the economic turning point detection process. We develop
a market-based real-time indicator of US activity which tracks the changes alongside the business
cycle phases and captures the asymmetry and heterogeneity of the contractionary episodes. These
market prices bring additional and valuable information to the usual macroeconomic datasets com-
posed of lagged hard data.

One can observe a non-linear pattern in the co-movement of risks re-pricing through securities
spreads grade buckets. We embed this non-linear behavior into an econometric framework allow-
ing for regime switching in the dynamics of an unobserved factor, in a Markov Switching Dynamic
Factor Model (MS-DFM). This class of models in the nowcasting literature unifies two properties
of the business cycle dynamics observed by Burns and Mitchell (1946) : a co-movement diffused
across several economic aggregates and asymmetries along the regime phases. These properties
are also observed in the ASW markets. MS-DFMs are based on the seminal work of Diebold and
Rudebusch (1996) that bridged contributions of Stock and Watson (1991) who developed a linear
coincident indicator summarizing the co-movement of several aggregate time series and Hamilton
(1989) in identifying regimes in a given time-series model through a Markov-Chain specification.
Kim and Yoo (1995) further expanded the specification in a multivariate case and alternative
specifications were used by Chauvet (1998) and Kim and Nelson (1998). We build upon the first
Chapter of this manuscript by using a MS-DFM specification including a time-varying volatility in
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the common factor dynamic which follows a autoregressive conditional heteroskedastic (ARCH) or
a generalized autoregressive conditional heteroskedastic (GARCH) process. It aims at capturing
the broader heterogeneity in the amplitude of the shocks affecting the cycle. This works is thus
related to the recent developments of treating time-varying volatility in dynamic factor models in
order to overcome the Covid shock in the data. One can mention the work of Marcellino et al.
(2016) and Antolin-Diaz et al. (2023) who develop time-varying volatility in MIDAS and linear
dynamic factor models in a linear framework respectively. This econometric structure allows us to
track the business cycle and to infer in a timely fashion the occurrence of the adverse shocks.

This Chapter builds upon a vast strand of literature using asset prices variations as predictors
of economic activity1. Nonetheless it differs from the above cited literature in its objective : we
are not interested into projecting economic dynamics to a short or medium term horizon (Gilchrist
et al. (2009), De Santis (2016)). This exercise rather undertakes an assessment on a high frequency
basis of the current economic conditions as being "filtered" by the credit markets. This approach
is more in line with Chauvet and Senyuz (2016) who use the information content of US Bond
market to produce an assessment of real economy downturns. More recently, Furno and Giannone
(2024) have undertaken a similar work looking at financial conditions and monthly economic sur-
veys embedded in Purchasing Managers’ Indices (PMI) to develop a robust framework of activity
monthly nowcast. The interactions between the credit market sentiment and the real economy and
the leading relationship between the both (López-Salido et al. (2016)) is however out of scope. A
considerable literature depicts the fact that spreads do not only reflect a contemporaneous state
of the economy but also a hedge against adverse economic scenario (Driessen (2005), Philippon
(2009), De Santis (2016)). A complementary work by De Santis (2018) also provides a measure
of excess bond premia and therefore fragmentation for the Euro Zone. This work refers to the
co-movement across a broad range of asset swap spreads as a coherent real-time macroeconomic
risk repricing. This repricing occurs when the expected contractionary macroeconomic episode
becomes the core market concern. The co-movement also falls into Burns and Mitchell (1946)
definition of pervasiveness characterizing the business cycle : nations organizing their work mainly
in business enterprises face expansions in many economic activities but also recessions. We capture
the co-movement by the exhaustive coverage of asset swap spreads synthetic indices we use from
sectors depicted in Appendix 3.10.1. This broad scope of sectors and firms can be represented in
credit grade buckets from high-grades to speculative-grades credit ratings which enables to seize,
beyond the rating buckets subject to specific stresses, a repricing of credit risk signalling macroe-
conomic vulnerability in real-time.

This work exhibits the usefulness of incorporating this highly valuable credit data by compar-
ing specifications taking both the real monthly economic data and the ASW spreads or taking
the hard macroeconomic data only. Considering both macroeconomic and financial data in the
information set does not hamper in-sample recession identification and proves to be highly reliable

1Among others Fama (1981), Harvey (1988), Hamilton and Kim (2002), Stock and Watson (2003), more precisely
upon corporate credit spreads as in the vein of Gilchrist et al. (2009) and Faust et al. (2011)
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in out-of-sample exercises. This work also bridges this macroeconomic turning point real-time
identification to allocation strategy in which the high frequency signals of macroeconomic down-
turn is used to weigh a cash (risk-free) allocation allowing to modulate an exposure to a risky
asset. Indeed, previous studies have emphasized the critical role of business cycle phases for in-
vestors to take in portfolio construction. We can mention here the work introduced by Brocato
and Steed (1998) who deploy portfolio optimization à la Markowitz (1952) conditional on business
cycle phases. van Vliet and Blitz (2011) propose a dynamic strategic asset allocation across the
economic cycle. de Longis and Ellis (2023) deploy a tactical asset allocation across recovery, ex-
pansion, slowdown, and contraction. Those applications fail nonetheless to identify business cycle
phases in a real-time fashion. This is the main contribution of this Chapter. The application
demonstrates the need to incorporate ASW spreads to the information sample in order to be able
to follow in a timely manner coincident macroeconomic dynamics and deploy a robust hedging
strategy.

The Chapter is organized as follows. Section 3.2 justifies the use of assets swap spreads as real-time
business cycle assessors. Section 3.3 describes the data used. Section 3.4 covers the MS-DFMs
specifications used. Section 3.5 present the Gibbs sampler algorithm implemented to estimate the
models. Section 3.7 analyses the real-time weekly backtests implemented. Section 3.8 gauges the
usefulness of the signals extracted through the backtest of allocation strategies using the signals
developped. Section 3.9 concludes.

3.2. Asset swap spreads, a rational gauge of real economy
developments

Asset swaps belong to the class of over-the-counter (OTC) contracts. This is a synthetic floating-
rate note which enables the investor (asset swapper) to exchange a fixed-coupon bond against a
floating rate (SOFR + ASW spread). The investor takes exposure to credit risk without bearing
the interest movements risk related to it (i.e. the duration risk). As a matter of fact if the bond
issuer defaults, the asset swapper gets the recovery value but needs to honour the swap contract
without the side funding of the bond coupon -if the position is not closed at mark-to-market value.
ASW spreads can be interpreted as default risk compensations and are defined as the difference
between the floating rate and the SOFR rate. They are derived from the bond yield, prices and
the forward SOFR rate as follows solving for SASW taking notations from De Santis (2016):

(100 − P ) +
M∑

m=1
Cztm

=
M∑

m=1
(Ltm−1,tm

+ SASW )ztm
m = 1, 2, ...,M (3.1)

where 100−P is the asset value to get the full price of par, P is the full market price of the bond, M
the residual maturity of the bond, C the annual bond coupon, ztm

the discount factor, Ltm−1,tm
is

the forward SOFR rate between the two cash flow dates tm−1, tm and SASW the asset swap spread.
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The pricing of the ASW spreads captures asynchronous and multi-frequential macroeconomic data
flows materialized by a continuously updated probability of default. As De Santis (2016) stresses
it out, "the ASW spreads are primarily driven by the credit quality of the issuer" and are also
"less confounded by tax and various market micro-structure effects, because the bond is not sold
and investment banks’ business model rotate around swap contracts". De Santis (2016) shows that
ASW spreads are highly correlated with yield spreads, the spreads between the yield to matu-
rity of a bond and a risk free rate of same remaining maturity. They are moreover homogeneous
across countries and over time. However, during stressed periods, liquidity premia in the ASW
market is lower than the bond market one, making the ASW spread less sensitive to those periods
compared to yield spreads. The basis of this Chapter is to consider one major feature of credit
risk pricing associated to the ASW spread, as highlighted by Aussenegg et al. (2016), i.e. the
negative relationship between the spread and the enterprise value which in turns depends, from a
macroeconomic point of view and on synthetic indices, on the business cycle phases as perceived
by market participants. Finally, one could have thought of asset backed credit default swaps data
for instance, but those swaps do not display sufficient history of data (starting back in 2005). ASW
spreads display thus a broader history, making the backtest exercise more relevant.

3.3. Data Used

We use in our analysis for the US seven asset swap synthetic spreads splitted in grade buckets
illustrated in Figure 3.1 as well as four coincident monthly macroeconomic variables in Figure
3.2. The data commonly used by the NBER to date recessions constitute our information sample:
industrial production (dIP), real manufacturing and trade sales (dRS), real personal income ex-
cluding transfer payments (dPI) and non farm payroll employment (dE). Following Camacho et al.
(2015) we decide to keep the information sample as small as possible in terms of number of time
series. Shaded areas correspond to periods of recessions as defined by the NBER. Those periods
correspond to the time span between the peak to the trough along the business cyle phases.
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Figure 3.1: Asset swap spreads
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The four US monthly seasonally adjusted macroeconomic variables we use (what we we will here-
after call hard data) stem from the FRED-MD database developed and updated by the Federal
Reserve Bank of St Louis (McCracken and Ng (2016)). Monthly vintages are available from August
1999 onwards. In the FRED-MD database, for a vintage of month M, industrial production and
non farm payroll employment are displayed up until month M-1, real personal income excluding
transfer payments up until month M-1 or M-2, and real manufacturing and trade sales up until
month M-2 or M-3. ASW spreads are available all working days of a year and can be considered
as the market assessment of the current economic situation.

In this Chapter we focus on the contemporaneous relationships between ASW spreads and real
economic activity data which are usually observed with a delay. There is at least one month lag
between the first available macroeconomic data for a given monthly reference period. These data
are moreover published in an asynchronous fashion. Practitioners who want to get a hint on the
actual state of the economy have to wait at least one week to get new informational content on
the reference period. This time span is costly when developping allocation strategies based on
high frequency macroeconomic signal extraction. We use the ASW spreads to "bridge" the sen-
timent in the credit market, measured by a broad grade-based spread contraction/widening, to
the contemporaneous state of the economy in a real-time fashion. We achieve the later by taking
into account the co-movement between ASW spreads and real economic variables. Our frame-
work aims at identifying business cycle regime in real-time rather than predicting real activity in
the sense of Gilchrist and E.Zakrajšek (2012) 2. We therefore ignore the information from credit
markets not attributable to current economic conditions. To that extent we diverge from the two-
factor approach developed by Leiva-León et al. (2022) intending to provide a real-time gauge of a
"sentiment" in credit markets, above and beyond that attributable to contemporaneous economic
conditions which can cause strong asymmetric and nonlinear effects on economic activity.

3.4. Model

First introduced by Diebold and Rudebusch (1996) based on the seminal work of Hamilton (1989),
Markov-switching dynamic factor models (MS-DFM) derived in their multivariate form by Kim
and Yoo (1995) and afterwards used by Chauvet (1998) were initially applied to a set of U.S. real
activity indicators at a monthly frequency. Their aim was to summarize this information into a
single index subject to regime changes, showing its ability to identify turning points in a timely
fashion. This class of models manages indeed two characteristics of economic cycles defined by
Burns and Mitchell (1946) : a comovement across economic series and the regime-specific nature
of economic dynamics navigating through expansions and recessions. The common factor embeds
the information relative to economic growth. Its dynamics defined as a Markov-chain process
enable to seize the two-regime nature of the economic cycle. Chauvet and Piger (2008) highlight
that Markov-switching dynamic factor models beat other non-parametric approaches in identifying

2The authors do allow in their regression the possibility of forecasting at a zero-horizon falling into our nowcasting
framework.
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U.S. recessions as dated by the NBER. Building on the work of Hamilton (1989), earlier MS-DFMs
specifications were characterized by a MS-constant applying uniformly across all expansion and
recession periods. We compare two competitive MS-DFM specifications using an information sam-
ple composed only of hard macroeconomic data or both hard macroeconomic and ASW spreads
data to show the added value of more timely available information. Camacho et al. (2018) high-
lighted the ability of this class of models to handle asynchronous data releases, which is a key
aspect of the real-time analysis we want to dig into. We compare two specifications proposed in
the first Chapter of this manuscript where a unique Markov process drives the constant in the
state-space transition equation of the unobserved component synthesizing the co-movement of the
observable variables. We allow the volatility of the factor to be dynamic, absorbing heterogeneous
macroeconomic shocks without impairing its regime detection ability. We nonetheless remain in a
uni-frequential framework.

Let yt a vector of m monthly observable time series and let ft a latent common factor. We
have the standard DFM given by :

yt = Λft + ut, (3.2)

where Λ denotes the loadings matrix, ut is orthogonal to ft and for all j = 1, . . . ,m

ψj(L)uj,t = ej,t, ej,t ∼ N (0, σ2
e,j), (3.3)

let us denote ψj = (ψj,1, . . . , ψj,l)′ the coefficients of the lag polynomial ψj(L) of order l = 1 and
the set of factor follows

ft = µSt
+ ϕft−1 + εt

εt = σtηt

(3.4)

where ηt is iid (0, 1) and St is an independent first order Markov chain. A two-state (St = 0 or
1) regime-switching model is considered with µSt

= µ1St + µ0(1 − St). St = 1 is the recession-
ary episode and µ1 < µ0. Based on the first Chapter of this manuscript we consider after two
conditional volatility models for σt. The ARCH(1) version

σ2
t = ω + αε2

t−1 (3.5)

where ω > 0, 0 < α < 1 and a GARCH(1,1)

σ2
t = ω + αε2

t−1 + βσ2
t−1 (3.6)

where ω > 0, 0 < α+ β < 1
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3.5. Gibbs sampling

The general model from (3.2) to (3.4) can be cast in state space form :

yt = Hzt + ςt ςt ∼ N (0,R)
zt = δSt + Ξzt−1 + ζt ζt ∼ N (0,Qt)

(3.7)

H the (m) × (ml+ 1) matrix, Ξ the (ml+ 1) × (ml+ 1) matrix, and Ξj=1...m the l× l matrix such
that

H =


λ1 hl . . . 0
...

... . . . ...
λm 0 . . . hl

 Ξ =


ϕ

Ξ1
. . .

Ξm



with Ξj=1...m =



ψj,1 ψj,2 . . . ψj,l−1 ψj,l

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


.

λ1 = 1 for identification purpose. hl is a 1 × l vector with the only first element equal to one.
δSt

= (µSt
, 0, . . . , 0)′, diag(Qt) = (σ2

t , σ
2
e,1h

l, . . . σ2
e,mh

l). The vector (ml + 1) of unobserved
variables zt is given by

zt = (ft, (1, L, . . . , Ll−1)u1,t, . . . , (1, L, . . . , Ll−1)um,t)′.

Defining the transition probabilities

q = P(St = 0|St−1 = 0) and p = P(St = 1|St−1 = 1),

the vector of parameters to be estimated is characterized as follows

ϑ = (p, q,Ψ′, σe,1, . . . , σe,m,Λ
′, µ0, µ1, ϕ,θ

(.)′
)′

where θ(.) is the vector of parameters driving the dynamic volatility equation σt

θ(ARCH) = (ω, α), θ(GARCH) = (ω, α, β).

We denote z(T ) = {z1, . . . ,zT } the unobserved state vector in equation (3.7), y(T ) = {y1, . . . ,yT }
the monthly observed data, and S(T ) = {S1, . . . , ST } the unobserved Markov Chain. The model
is estimated using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algorithm in the spirit
of Kim and Nelson (1999) and Bai and Wang (2015) where conditional draws of the state vector,
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the Markov Chain, and the parameters vector ϑ are obtained sequentially. In particular, we
adapt the Metropolis Hastings procedure presented in Chan (2023) to sample the conditional
volatilities. Details on the priors and a complete description of the sampling algorithm are presented
in Appendices 3.10.2 and 3.10.3. The general form of the algorithm can be summarized as follows:

1. We generate conditional draws of the state vector from p(z(T )|y(T ), S(T ),ϑ) using the forward-
filtering backward-smoothing algorithm of Carter and Kohn (1994).

2. We generate conditional draws of the Markov chain from p(S(T )|y(T ), z(T ),ϑ) based on the
Hamilton filter (Hamilton (1989)).

3. We generate conditional draws for the parameters vector from p(ϑ|y(T ), z(T ), S(T )) by se-
quentially drawing in the conditional distribution of components of ϑ as follows:

• We obtain conditional draws for p and q following Albert and Chib (1993).

• We obtain conditional draws for (Ψ′, σe,1, . . . , σe,m,Λ
′) from usual priors in the litera-

ture (see for example Bai and Wang (2015)).

• To obtain conditional draws for (µ0, µ1, ϕ,θ
(.)′), we build upon the Metropolis Hastings

algorithm presented in Chan and Grant (2016).

3.6. In-sample probabilities

We first estimate the models on the monthly datasets based either solely on the hard macroeco-
nomic data sample or on the dataset composed of both seven ASW spreads grade buckets and
macroeconomic hard data. The time spans from January 1959 to February 2023 for monthly
macroeconomic data. The ASW spreads are available from 1997 onwards. We compare the prob-
abilities of being in recession with regards to shaded NBER dated recessions in Figure 3.3.
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Figure 3.3: In-sample smoothed probabilities to be in a contraction regime from the ARCH extension
(left hand side) and GARCH extension (right hand side). Red dashed line : macro variables used
only. Black line: macro and financial data used

At first sight adding the ASW spreads to the hard data sample does not hamper nor improve
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the identification of turning points. Regime identification is less pronounced than using a multi-
frequential framework as shown by Camacho et al. (2018) but we still recover eight out of nine
recessionary episodes. We will show in the following section that the gain of adding the asset swap
spreads to the hard data sample arises when assessing in real-time the macroeconomic downturn
episodes.

3.7. Real-time assessments of downturns

We perform a weekly real-time backtest of the models compared on the basis of an information
sample either composed of macroeconomic data only or hard and spread data combined together.
To achieve this exercise we use the rules of weekly publication of Table 3.1 in a given month for
the data described in Section 3.3.

Table 3.1: Usual weekly publication schedule of US data in a given month of 5 weeks

Reference M M-1 M-2 or 3 M-1 or 2 M-1
IP RS PI E

1st week x
2nd week x x
3rd week x x
4th week x x x x
5th week x x x x

For a given month in the United States, only employment data for the reference period M-1 are
available at the end of the first week of the following month M. One can easily get a hint of
the added value for a practitioner to get valuable market information up until the moment he
runs his turning point nowcast. We measure the performance of adding ASW spread data to our
information sample using the quadratic probability score (QPS) and the False Probability Score
(FPS). We show below the benefit of adding ASW spreads as business cycle real-time assessors.
The main drawback of the information sample used is the availability of the data. Indeed, asset
swap spreads indices are available since 1997 in the US. However, adding this valuable information
in a timely fashion due the ever-growing interactions between wall and main street economics shall
be taken into account. The QPS is defined as follows:

QPS = 1
T

T∑
t=1

(St − P (St = 1 | It))2 (3.8)

With St the recession dummy provided by the NBER business cycle dating committee. As the
carried out backtest is implemented on a weekly basis to match the practitioner usual usage of
nowcasting tools we make the hypothesis that the recession start at the first week of the month
of the recession dating. This hypothesis might underestimate the ability of the ASW market to
correctly track economic downturns. P (St = 1 | It) is the filtered probability inferred by the model
regarding the occurrence of the regime switch to a contractionnary episode given an information
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sample available It. The FPS is given by :

FPS = 1
T

T∑
t=1

(St − IP (St=1|It)>0.5)2 (3.9)

We compare the two models defined in Section 3.4 on two data information samples. The backtest
is ran, for comparison from 7th of January 2000 to the 24th February 2023. Results of the real-
time exercise are reported in Table 3.2. The weekly backtest displays the ability of spread data to
accurately assess the downturns episodes when added to the hard data information sample. This
confers a highly valuable information regarding the state in which the economy currently is. This
also confirms our intuition on linkages between macroeconomic and ASW spreads. Regarding the
model specifications, adding a dynamic variance to the common factor proves to be effective in
discriminating between states of the economy. The ARCH extension is the specification which
performs best across the FPS and QPS performance metrics.

M & F M

Models QPS FPS QPS FPS

MS-DFM-GARCH 0.053 0.060 0.093 0.133
MS-DFM-ARCH 0.052 0.046 0.094 0.127

Table 3.2: Identification statistics. Bold figures display the minimal values. M&F refers to the
model using both asset swap spreads and macro variables whereas M refers to the model using only
macro variables.

Moreover, looking at the filtered probabilities in Figures 3.4 and 3.5, we can see the ability of the
new information sample to catch in a very simultaneous way the downturn signals. This fact is
also highlighted in Appendix 3.10.5 during the selected downturn episodes composed of the Great
Financial Crisis and the Covid recession. The interesting pattern of the filtered probabilities from
the models based on the both samples combined is their ability to capture the occurrence of the
downturn signal before the models only based on the hard data sample. They also display the
capacity to react more quickly to the end of the recessions. This timing ability is of a great help
in asset allocation strategies described in the following section.
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Figure 3.4: Out-of-sample probabilities of being in a downturn episode with the ARCH specification.
The dashed red line is the probability from macroeconomic variables only whereas the black solid
line is the probability from macro variables and asset swap spreads.
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Figure 3.5: Out-of-sample probabilities of being in a downturn episode with the GARCH specifica-
tion. The dashed red line is the probability from macroeconomic variables only whereas the black
solid line is the probability from macro variables and asset swap spreads.

3.8. Asset allocation strategies based on signals extracted

One of a the well-known features of financial markets is to follow closely the developments of
the business cycles as phenomena such as fly-to-quality reactions and forward looking valuations
tend to impose a specific temporality in the market sentiment about real economy phases. A
vast strand of literature has focused on the links between real business conditions and stock price
variations, among others McQueen and Roley (1993) and more recently Kroencke (2022), Heinlein
and Lepori (2022). Markets usually react in a contemporaneous manner to the downturn, forward
earnings for equity markets being revised and investors looking for more secure assets. This
bridges to fundamental valuation as exposed by Shiller et al. (1981) and Campbell and Shiller
(1988) discounted dividends models. The markets display an interesting behavior when it comes
to the recovery phases. In the past major economic downturns one can observe the a rebound in
the risky assets classes before the end of main street downturn. This fact is depicted in Figure
3.6. The expectation component in the equity valuation plays a major role as market participants
revise gradually the future earnings and dividends around the recession exit date .

Figure 3.6: S&P 500 Cumulative Total Return and selected economic downturns

We use the filtered weekly macro signals obtained in Section 3.7 to gauge the benefits of using
asset swap spreads as real-time business cycle phase assessor in asset allocation. We develop and
backtest a strategy based on two securities, a risky one, the equity indices S&P 500 for the US and
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3M deposit rate as risk-free asset in Dollar. We define the weight of the asset equity and cash at
the end of a given week t as follows:

wequity
t = 1 − P (St = 1 | It) wcash

t = P (St = 1 | It) (3.10)

The bigger the probability of recession the lower the exposure to the risky asset. The underlying
intuition is based on Figure 3.7. We show the total return of the equity indices and the cash hold-
ing from January 2000 onwards as well as a hypothetical strategy built upon the recession dates
produced by the NBER. Whenever a recession occurs, the weight of the risky asset in the portfolio
is set to 0 and the weight of cash is set to 1. This is a typical insurance-based allocation where the
investor discards his/her exposition to the risky asset. This strategy is considered hypothetical as
the NBER dating committee produces ex-post recession dates (determinations can take between
4 and 21 months). The practitioner does not observe in real-time the downturn dated. Avoiding
the recession-induced drawdown and being able to catch-up the recovery phase is key for market
performances as highlighted by the Figure 3.7. We thus track the macroeconomic environment by
the use of our recession signals from the two competitive models implemented on the two differ-
ent types of datasets. We compare the performances of the strategies through annualised returns
and Sharpe ratios3 (Sharpe (1994)) we want to maximize, annualised volatility and annualised
maximum drawdown we seek to reduce. The exercise is also augmented by the same descriptive
statistics computed on weekly rolling windows ranging from 1 to 10 years portfolio holding periods
to mitigate the entry point impact in the backtest exercise. The end of week prices used are the
Friday ones as the impact of the economic news releases embedded in the Employment Situation
Summary produced by the BLS is fully incorporated in the prices of ASW spreads and S&P 500.
The allocation rule defined in (3.10) defines a dynamic allocation rule rebalancing the portfolio at
the end of each week. We assume in our backtest exercise transaction costs of 2 basis points for
the risky asset and none for the risk-free securities. Finally, the backtest is carried out on a weekly
basis from 7th January 2000 to 24th February 2023.

Figure 3.7: Total return of the securities used in the allocation strategy
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3The Sharpe ratio is defined in our case as the difference between the return of the strategy and the risk-free
asset return divided by the volatility of the strategy

61



We denote wt = [wequity
t , wcash

t ] and the return of each asset rt = [requity
t , rcash

t ]. The weekly
total return of a specific asset a, is given by ra

t = (P a
t /Pt−1)a − 1, P a

t being the price of asset
a at time t. The strategy s return at time t, rt,s is given by wt−1r

′
t. Results of the backtest

exercises are reported in Table 3.3. We compare the allocation strategies to three benchmarks :
the hypothetical NBER categorical allocation, the constant holding of 100% of equity and 100%
holding of cash. The reported statistics shed light on the capability of the datasets composed of
both hard data and ASW spreads (M & F) to perform very well in terms of risk-adjusted return
maximization either on a annualised basis or on portfolio holding rolling windows from one to
ten years. This is true compared to datasets incorporating only macro data (M) Secondly, the
strategies beat their benchmarks of holding 100% of the risky asset both from return perspective
and volatility minimization. The NBER remains the best strategy but given only as theoretical
benchmark as we do not observe the recession in real-time. Log cumulative returns are depicted in
Figure 3.8. On 23 years of weekly backtest, the hard macro data and ASW spread specifications
are the best, the ARCH extension being slightly the best.

Table 3.3: Performances of Portfolios

M & F ARCH M ARCH M & F GARCH M GARCH 100 S&P500 NBER 100 Cash

Ann. Return 7.3% 6.4% 6.9% 6.1% 6.5% 10.7% 1.7%
Ann. Vol 15.0% 14.2% 14.7% 14.3% 18.1% 14.6%

Ann. Sharpe 0.37 0.33 0.36 0.31 0.26 0.61
Ann. Max DD 46.7% 38.3% 48.1% 40.4% 54.7% 37.5%

1 Year Av. Return 8.8% 7.5% 8.4% 7.2% 8.3% 12.2% 1.6%
1 Year Av. Volatility 13.9% 12.9% 13.6% 12.9% 16.3% 13.2%
1 Year Av. Sharpe 0.52 0.46 0.50 0.44 0.42 0.81

1 Year Av. Max DD 12.0% 11.0% 11.7% 11.2% 14.3% 9.8%
2 Year Av. Return 8.9% 7.7% 8.6% 7.6% 8.1% 12.3% 1.6%

2 Year Av. Volatility 13.8% 12.9% 13.5% 13.1% 16.5% 13.3%
2 Year Av. Sharpe 0.53 0.47 0.52 0.46 0.39 0.81

2 Year Av. Max DD 16.1% 14.9% 15.7% 15.2% 20.2% 12.8%
5 Year Av. Return 9.4% 8.3% 9.2% 8.3% 7.5% 11.1% 1.7%

5 Year Av. Volatility 13.6% 12.3% 13.1% 12.5% 16.6% 13.0%
5 Year Av. Sharpe 0.57 0.53 0.57 0.52 0.35 0.72

5 Year Av. Max DD 23.1% 18.2% 22.0% 18.6% 31.4% 16.8%
10 Year Av. Return 9.7% 7.7% 9.4% 7.8% 7.0% 11.5% 1.7%

10 Year Av. Volatility 14.2% 12.5% 13.5% 12.8% 18.1% 13.3%
10 Year Av. Sharpe 0.56 0.48 0.57 0.48 0.29 0.74

10 Year Av. Max DD 31.7% 22.5% 28.9% 22.7% 49.9% 20.9%
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Figure 3.8: Total return of the competitive strategies based on defined information sample and
models specifications

Taking into account the economic regime specification is of high interest for practitioners. We
observe nonetheless the lag associated with the economic downturn detection using only macroe-
conomic vintaged data on a weekly basis. This fact is depicted in the Figures 3.4 and 3.5. The
strategies integrating spread data to the macro information set tend to be more reactive during
contraction episodes. It allows for a timely rebalancing towards the risky asset at the very end
of recessionary episode as the ASW market already prices in the exit of the downturn episode.
This is shown by the Figures 3.14 and 3.15 during the Great Financial Crisis and the Covid re-
cession. We focus on calendar years returns during recessions in Table 3.4. The strategy based on
signals incorporating ASW spreads and hard macro data (M & F) are the ones enabling to limit
average drawdown compared to the strategies incorporating macro data only (M). Moreover the
specification combining the datasets beat the 100% holding S&P500 providing a robust hedging
solution. Worth to be noted is the capacity of the ARCH-extension to beat on average the 100%
cash holding strategy. NBER is once again put as theoretical benchmark as this is the allocation
rule our competing strategies are supposed to mimic.

Table 3.4: Yearly returns during macroeconomic downturns years

2001 2008 2009 2020 Average

M & F ARCH -18.4% -9.2% 26.5% 10.8% 2.4%
M ARCH -9.7% -12.7% 2.4% -3.2% -5.8%

M & F GARCH -19.5% -12.7% 29.2% 8.4% 1.4%
M GARCH -10.6% -12.6% 3.5% -4.3% -6.0%

100% S&P500 -10.7% -39.0% 31.5% 16.1% -0.5%
NBER 2.7% 3.0% 21.3% 53.8% 20.2%

100% cash 3.7% 3.0% 0.7% 0.2% 1.9%

We focus on calendar years returns during expansion periods in Table 3.5. On average combining
macro and financial data (M & F) does not hamper yearly returns significantly compared to holding
a constant 100% weight in the risky asset. The GARCH extension even yield similar returns with
regards to the benchmarks. This validates the idea that the insurance premium is very low during
macroeconomic expansions periods.
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Table 3.5: Yearly returns during years of macroeconomic expansion

2000 2002 2003 2004 2005 2006 2007 2010 2011 2012

M & F ARCH -4.3% -22.6% 26.4% 12.0% 4.6% 15.3% 4.8% 12.4% 0.4% 13.1%
M ARCH -4.7% -23.1% 26.5% 11.9% 4.4% 15.4% 3.6% 12.6% 1.3% 12.8%

M & F GARCH -6.4% -14.3% 23.5% 12.1% 4.2% 15.1% 5.9% 12.8% 3.2% 13.8%
M GARCH -6.8% -16.1% 23.9% 11.9% 3.9% 15.3% 5.8% 12.9% 3.2% 13.5%
100 S&P500 -7.4% -23.0% 26.8% 12.1% 4.8% 15.5% 6.1% 13.4% 2.1% 13.8%

NBER -7.4% -23.0% 26.8% 12.1% 4.8% 15.5% 8.1% 13.4% 2.1% 13.8%
100 cash 6.5% 1.7% 1.1% 1.5% 3.5% 5.1% 5.3% 0.4% 0.3% 0.4%

2013 2014 2015 2016 2017 2018 2019 2021 2022 Average

M & F ARCH 33.0% 15.4% 0.2% 10.1% 21.2% -4.7% 31.2% 29.1% -18.6% 9.4%
M ARCH 33.2% 15.3% 0.1% 9.7% 21.3% -5.1% 31.0% 29.2% -18.3% 9.3%

M & F GARCH 31.7% 15.2% 0.7% 10.2% 20.8% -5.2% 31.2% 27.1% -17.0% 9.7%
M GARCH 32.2% 15.3% 0.5% 10.3% 20.8% -5.1% 31.3% 25.1% -17.4% 9.5%
100 S&P500 33.4% 15.4% 0.8% 10.6% 21.4% -5.1% 32.3% 29.3% -17.8% 9.7%

NBER 33.4% 15.4% 0.8% 10.6% 21.4% -5.1% 32.3% 29.3% -17.8% 9.8%
100 cash 0.2% 0.2% 0.4% 0.8% 1.2% 1.0% 0.7% 0.0% 0.8% 1.6%

Given that first moments of the statistics depicted in Table 3.3 for the rolling window holding
periods are auto-correlated, we now focus on empirical cumulative Sharpe Ratios and Returns
distributions. The cumulative distributions of the Sharpe ratios are plotted in Figure 3.9 whereas
returns cumulative distributions are displayed in Appendix 3.11. The 10 year rolling holding period
portfolio shows the strategies embedding ASW spreads and macro data yields significantly higher
Sharpe ratios as the cumulative distribution curves are below the competing specifications and
benchmarks on the whole support. For the 5Y rolling holding period, only 12% of the distribution
is below the competing strategies and 5% below the 100% equity portfolio Sharpe ratios. Looking
at the 1 to 2 year holding periods the curves are more alike. Regarding the returns cumulative
distributions presented in Figure 3.16, the same conclusion holds: on 5 to 10 year rolling holding
periods, the specification incorporating financial and macro data yield better returns on a vast
majority of the support. Short-term holding periods are more similar in the pattern behaviour.
This brings us to consider Fleming et al. (2003) approach in order to measure the economic utility
for an investor to detain a given portfolio. This economic utility has ties with the mean-variance
and the quadratic utility frameworks. The realized weekly utility generated by a strategy s is given
by :

U(rt,s) = W0

(
(1 + rf

t + rt,s) − γ

2(1 + γ) (1 + rf
t + rt,s)2

)
(3.11)

W0 is the initial wealth invested, rf
t the 3-month deposit return, rt,s the portfolio return and γ

a constant aversion parameter. We quantify the value of a strategy compared to another one by
defining a constant ∆ which equalizes :

T∑
t=1

U(rt,s1) =
T∑

t=1
U(rt,s2 − ∆)

The constant ∆ is defined as the maximum performance fee an investor would accept to pay for
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switching from strategy s1 to s2 under the hypothesis that he is indifferent between both. The
strategy s2 is more valuable for the investor when the ∆ is high. Table 3.6 and Table 3.7 display
the ∆s associated to 1 year and 2 year rolling holding portfolios. The tables depict the maximum
fee an investor would agree to pay for switching from the strategies at a given aversion coefficient γ
in columns towards the strategy in line, namely from strategies incorporating only hard macro data
(M) or benchmarks of holding 100% equity or 100% cash to strategies incorporating both ASW
spreads data and hard macro data (M&F). Table 3.6 shows that no matter the aversion coefficient
γ, an investor is willing to switch from competing specifications only based on hard macro data or
the 100% equity portfolio towards macro and ASW spreads combined, and more specifically on the
M&F ARCH extension. An investor with a low aversion profile γ = 1 will also be eager to switch
from cash to the alternative strategies. Nevertheless, an investor with a high aversion profile will
always prefer cash with regards to other strategies. Table 3.7, for a 2-year rolling holding period
displays exactly the same conclusion.
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Figure 3.9: Cumulative distribution functions of rolling window Sharpe from 1Y to 10Y holding
horizons
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Table 3.6: 1 Year rolling ∆s

M ARCH M GARCH S&P Cash

γ 1 10 1 10 1 10 1 10
M&F ARCH 1.18% 0.23% 1.39% 0.50% 1.09% 6.93% 7.36% -2.03%

M&F GARCH 0.82% 0.36% 1.02% 1.02% 0.74% 7.19% 7.01% -1.87%

Table 3.7: 2 Year rolling ∆s

M ARCH M GARCH S&P Cash

γ 1 10 1 10 1 10 1 10
M&F ARCH 1.05% 0.02% 1.18% 0.29% 1.15% 6.79% 7.35% -1.87%

M&F GARCH 0.71% 0.22% 0.84% 0.84% 0.80% 7.05% 7.01% -1.66%

3.9. Conclusion

Tracking business cycle phases in a real time fashion usually induces difficulties for practitioners
who want to develop suitable asset allocation strategies. Macroeconomic data are indeed charac-
terised by lags and asynchronous releases which make a real-time tracking of downturn episodes
challenging. The asymmetry and heterogeneity of adverse economic phases advocate for the use
of non-linear models to properly identify them. Markov Switching Dynamic Factor models (MS-
DFM) have shown to be a convenient class of models to handle the latter features. To mitigate the
delay in the identification of recessionary episodes due to hard macro data release schedules this
work shows the usefulness for investors willing to track the US business cycles phases closely to add
asset swap (ASW) spreads. More specifically, ASW spreads pricing capture asynchronous macroe-
conomic data flows by continuously updating probabilities of default. We narrow the sentiment
in the credit market, measured by a broad grade buckets-based spreads contraction/widening, to
the contemporaneous state of the economy in a real-time fashion. To fulfill this bridging exercise
we take into account the co-movement between ASW spreads and real economic variables used
in the literature. We thus track on a weekly basis the occurrence of macroeconomic downturn
episodes. This work sheds light on the capacity of MS-DFMs incorporating both macroeconomic
variables and ASW spreads to accurately identify recessions both in-sample and out-of-sample.
These adverse economic episodes usually trigger ample price variations in the equity markets as
risk aversion gains investors. We put forward the need for investors who want to build insurance-
based strategies to use the real-time downturn probabilities as an allocation rule between S&P500
and cash. This Chapter further shows that implementing strategies based on the new data sample
specification consistently outperforms a 100% S&P500 portfolio as well as creates economic utility
for the investor.
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3.10. Appendix

3.10.1. Sectoral coverage of ICE BofA Indices

Sectors Financial Services Insurance Automotive

Subsectors

Banking Life Insurance Auto Loans
Brokerage Monoline Insurance Auto Parts & Equipment

Cons/Comm/Lease Financing Multi-Line Insurance Automakers
Investments & Misc Financial Services P&C

Sectors Consumer Goods Energy Healthcare

Subsectors

Beverage Energy - Exploration & Production Health Services
Food - Wholesale Integrated Energy Medical Products

Personal & Household Products Oil Field Equipment & Services Pharmaceuticals
Tobacco Oil Refining & Marketing

Sectors Basic Industry Capital Goods Leisure

Subsectors

Building & Construction Aerospace/Defense Gaming
Building Materials Diversified Capital Goods Hotels

Chemicals Machinery Recreation & Travel
Forestry/Paper Packaging

Metals/Mining Excluding Steel
Steel Producers/Products

Sectors Media Real Estate Retail

Subsectors

Advertising RealEstate Dev & Mgt Food & Drug Retailers
Cable & Satellite TV REITs Restaurants
Media - Diversified Specialty Retail

Media Content

Sectors Telecommunications Services Technology & Electronics

Subsectors

Telecom - Satellite Environmental Electronics
Telecom - Wireless Support-Services Software/Services

Telecom - Wireline Integrated & Services Tech Hardware & Equipment

Sectors Transportation Utilities

Subsectors

Air Transportation Electric-Distr/Trans
Rail Electric-Generation

Transport Infrastructure/Services Electric-Integrated
Trucking & Delivery Non-Electric Utilities
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3.10.2. Priors

This section describes the priors used for the distributions of the parameter vector ϑ.
λ1 is set to one for identification purposes. For all j = 2, . . . ,m, we use the following prior to
sample λj the j-th element of the factor loading matrix Λ in (3.2)

λj ∼ N (aj , Aj) (3.12)

where hyperparameters are set to aj = 0 and Aj = 0.1. To sample the parameters linked to the
residuals uj,t in (3.3), we use the following priors, for l = 1, 2,

ψj,l ∼ N (π,Π) π = 0,Π = 0.1
σ2

e,j ∼ IG(νi, Zi) νi = 2, Zi = 1
(3.13)

where IG denotes the inverse-gamma distribution. Additionally, independent beta distributions
can be used as conjugate prior for each transition probability

π(q, p) ∝ qu00(1 − q)u01pu11(1 − p)u10 (3.14)

As in Doz et al. (2020), we put an informative prior and set u00 = 470, u01 = 9, u10 = 9, u11 =
90 in order to take into account the relative persistence of each of the regimes as observed on
macroeconomic data. The prior for the Markov-switching intercept in equation (3.4) is given by :

µ = (µ0, µ1)′ ∼ N (α∗, A∗) (3.15)

with α∗ = (.3,−.3)′ and A∗ = diag(0.04, 0.04). We acknowledge that, in the spirit of Leiva-
Leon et al. (2020), relatively tight priors are used for identification purposes. The informativeness
brought by the first moment is indeed needed to discriminate between the regimes over the param-
eters space. The prior for the autoregressive parameter ϕ in equation (3.4) is given by

ϕ ∼ N (α,A) (3.16)

where α = 0, A = 0.1. In the case of a MS-DFM-ARCH, we use the following prior for the vector
θ(ARCH) = (ω, α)

log θ(ARCH) ∼ N (θ(ARCH)
0 , Vθ)1(α < 1)

θ(ARCH) thus follows a truncated log-normal distribution with the stationarity restriction that
α < 1. We set the hyperparameters to θ(ARCH)

0 = log(1, 0.5) and Vθ = diag(1, 1). In the case of
MS-DFM-GARCH, we use the following prior for the vector θ(GARCH) = (ω, α, β)

log θ(GARCH) ∼ N (θ(GARCH)
0 , Vθ)1(α+ β < 1)
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Similarly to the ARCH(1) specification, θ(GARCH) follows a truncated log-normal distribution
with the adapted stationarity restriction α + β < 1. Hyperparameters are set to θ

(GARCH)
0 =

log(1, 0.5, 0.4) and Vθ = diag(1, 1, 1). Note that in both cases, the priors are relatively non-
informative.

3.10.3. Bayesian Estimation

Let z(T ) = {z1, ...,zT } the unobserved state, y(T ) = {y1, ...,yT } the observed data and S(T ) =
{S1, ..., ST } the first order Markov-Chain. We describe the Gibbs sampler steps based on Kim
and Nelson (1999) and follow their notations. The Gibbs sampler consists of iterating between the
three following steps sequentially.

3.10.4. Generation of the state vector

The joint distribution of z(T ), given y(T ), S(T ) and ϑ(.) can be defined as

p(z(T ) | y(T ), S(T ),ϑ(.)) = p(zT | y(T ), S(T ),ϑ(.))
T −1∏
t=1

p(zt | y(t), S(t),ϑ(.), zt+1)

which boils down to generating zt for t = T, T − 1, ..., 1 from

zT | y(T ), S(T ),ϑ(.) ∼ N (zT |T ,VT |T )
zt | y(t), S(t), zt+1,ϑ

(.) ∼ N (zt|t,zt+1 ,Vt|t,zt+1)
(3.17)

where zt|t = E(zt | y(t)) and Vt|t = V ar(zt | y(t)) for t = 1, ..., T . In equation (3.17), zT |
y(T ), S(T ),ϑ(.) can be generated using the Multi-move Gibbs sampling introduced by Carter and
Kohn (1994) as follows

1. We use the Kalman filter to obtain zt|t and Vt|t for t = 1, ..., T . The last iteration of the
filter gives zT |T and VT |T which are then used to generate zT .

2. For t = T − 1, T − 2, ..., 1, zt|t and Vt|t, zt+1 can be considered as an incremental vector
of observations in the system. The distribution p(zt | y(T ), S(t),ϑ(.), zt+1) is then deduced
from the Kalman smoother. From equation (3.7), updating equation are then given by

zt|t,zt+1 = zt|t + Vt|tΞς̃t/Rt

Vt|t,zt+1 = Vt|t − Vt|tΞ
′ΞV ′

t|t/Rt

where ς̃t = zt+1 − δSt+1 − Ξzt|t and Rt = ΞVt|tΞ
′ + σ2

t+1.
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3.10.4.1. Generation of the Markov Chain

Once z(T ) has been simulated, given ϑ(.), the Markov Chain S(T ) can be generated from the
following distribution

p(S(T ) | y(T ), z(T ),ϑ(.)) = p(ST | y(T ), z(T ),ϑ(.))
∏T −1

t=1 p(St | y(t), z(t), St+1,ϑ
(.))

= p(ST | z(T ),ϑ(.))
∏T −1

t=1 p(St | z(t), St+1,ϑ
(.))

as the distribution of S(T ) is orthogonal to y(T ) given z(T ). We can thus obtain conditional draws
for S(T ) as follows

1. We use the Hamilton (1989) filter on (3.4) to generate p(St | z(t),ϑ(.)) for t = 1, 2, ..., T and
save them. The last iteration gives p(ST | z(T ),ϑ(.)) from which we get ST .

2. To draw St given z(T ) and St+1, for t = T − 1, T − 2, ..., 1 the following result is used

p(St | z(t), St+1,ϑ
(.)) = p(St+1 | St)p(St | z(t),ϑ(.))

p(St+1 | z(t),ϑ(.)) ∝ p(St+1 | St)p(St | Z(t),ϑ(.))

where p(St+1 | St) is the transition probability in ϑ(.) and p(St | z(t),ϑ(.)) is obtained form
the values saved in the previous step.

3. The last step consists in drawing from

Pr(St = 1 | z(t), St+1,ϑ
(.)) = p(St+1 | St = 1)p(St = 1 | z(t),ϑ(.))∑1

j=0 p(St+1 | St = j)p(St = j | z(t),ϑ(.))

where St is drawn from a uniform distribution St ∼ U(0, 1). If the generated number is
smaller than Pr(St = 1 | St+1, z

(t),ϑ(.)), St = 1, otherwise St = 0.

3.10.4.2. Generation of the parameters vector

We now turn to the generation of draws for the vector of parameters. To do so, we will sequentially
draw components of the ϑ vector as follows.
We obtain conditional draws for the transition probabilities p and q following Albert and Chib
(1993). In particular, given S(T ) and the initial state, we denote the sum of transitions from the
state St−1 = i to St = j by nij , the log-likelihood is given by

L(q, p) = qn00(1 − q)n01pn11(1 − p)n10 .

By combining the likelihood function and the conjugate priors presented in the previous section,
from equation (3.14), we get the conditional distributions of (p, q) as the product of the independent
beta distributions from which we generate p and q as

q | S(T ) ∼ Beta(u00 + n00, u01 + n01)
p | S(T ) ∼ Beta(u11 + n11, u10 + n10).
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Given y(T ) and f (T ), we can rewrite equation-by-equation equation (3.2) with

y∗
j,t = λjf

∗
j,t + ej,t

for j = 2, . . . ,m, where y∗
j,t and f∗

j,t are the j-the respective components of

y∗
t = yt − ψ̄1 ◦ yt−1

f∗
t = emft − ψ̄1ft−1

(3.18)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1 being the order of
the AR specification in equation (3.3). From (3.12) and (3.18), we obtain conditional draws for λj

from the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.

Given y(T ) and f (T ), from (3.2) we can measure u(T ) and from equation (3.3) and the prior
distribution (3.13), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)′. Similarly, from the generated ψj and from (3.13), we can draw σ2

e,j

from the posterior distribution

IG

νj + T

2 , Zj +

(
u

(T )
j −ψ′

jw
(T )
j

)′ (
u

(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ,θ
(.)′). The parameters are drawn from the three full

conditional distributions p(µ | z(T ), S(T ), ϕ,θ(.)), p(ϕ | z(T ), S(T ),θ(.)) and p(θ(.) | z(T ), S(T ), ϕ)
sequentially. Since µSt

and ϕ appear in the conditional variance equation, those distributions are
non-standard, as noted by Chan and Grant (2016), and Metropolis Hastings algorithms are re-
quired. Rewriting equation (3.4), we have

ft − ϕft−1

σt
= µ0(1 − St) + µ1St

σt
+ ηt

Let us denote G∗
t the left-hand side of the above equation and Let us denote G∗

t the left-hand side
of the above equation and

Q∗(T ) =
[

1 − S(T ) S(T )
]

From the prior distribution (3.15), to sample µ, we use a multivariate Gaussian proposal :

N
[
(A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1

]
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and only keep draws verifying µ0 > µ1. Rewriting again equation (3.4) yields

ft − µ0(1 − St) − µ1St

σt
= ϕ

ft−1

σt
+ ηt.

Denoting G̃t the left-hand side of the above equation and Q̃t the right-hand side. To sample ϕ we
use a Gaussian proposal with mean ϕ̄ and variance Vϕ given by

ϕ̄ = (A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃)
Vϕ = (A−1 + Q̃′Q̃)−1.

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. Finally to sample θ(.), we use
a Gaussian proposal centered at the mode of p(θ(.) | z(T ), St, ϕ) with covariance matrix set to be
the outer product of the scores.

3.10.4.3. Posterior distributions of the parameters

Table 3.8: ARCH MS-DFM model parameters with
macro data only

Variables Parameters Mean Std

IP λ 1 0
RS λ 1.86 0.70
PI λ 1.57 0.59
E λ 1.91 0.72
IP ψ 0.24 0.06
RS ψ -0.35 0.04
PI ψ -0.12 0.04
E ψ -0.01 0.06
IP σ2

e 0.54 0.17
RS σ2

e 0.47 0.05
PI σ2

e 0.68 0.04
E σ2

e 0.49 0.07
Factor

µ1 -0.25 0.10
µ0 0.01 0.02
ϕ 0.02 0.04
ω 0.22 0.34
α 0.59 0.09
q 0.99 0.01
p 0.91 0.02

Table 3.9: GARCH MS-DFM model parameters with
macro data only

Variables Parameters Mean Std

IP λ 1 0
RS λ 2.66 0.23
PI λ 2.20 0.17
E λ 2.68 0.21
IP ψ 0.27 0.04
RS ψ -0.33 0.04
PI ψ -0.10 0.04
E ψ 0.00 0.05
IP σ2

e 0.70 0.04
RS σ2

e 0.50 0.05
PI σ2

e 0.70 0.05
E σ2

e 0.53 0.08
Factor

µ1 -0.20 0.04
µ0 0.00 0.01
ϕ 0.01 0.03
ω 0.01 0.00
α 0.39 0.07
β 0.16 0.10
q 0.99 0.01
p 0.91 0.03
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Table 3.10: ARCH MS-DFM model parameters with
macro and spreads data

Variables Parameters Mean Std

IP λ 1 0
RS λ 1.17 0.60
PI λ 1.52 0.55
E λ 1.85 0.67

AAA λ 0.01 0.14
AA λ -0.22 0.17
A λ -0.23 0.16

BBB λ -0.28 0.17
BB λ -0.19 0.17
B λ -0.10 0.16

CCC λ 0.08 0.16
IP ψ 0.24 0.06
RS ψ -0.33 0.04
PI ψ -0.13 0.04
E ψ -0.01 0.06

AAA ψ 0.29 0.06
AA ψ 0.26 0.05
A ψ 0.29 0.06

BBB ψ 0.29 0.06
BB ψ 0.15 0.06
B ψ 0.16 0.06

CCC ψ 0.25 0.06
IP σ2

e 0.53 0.15
RS σ2

e 0.49 0.05
PI σev 0.67 0.04
E σ2

e 0.47 0.07
AAA σ2

e 0.91 0.08
AA σ2

e 0.93 0.07
A σ2

e 0.92 0.08
BBB σ2

e 0.92 0.08
BB σ2

e 0.98 0.08
B σ2

e 0.98 0.08
CCC σ2

e 0.94 0.08
Factor

µ1 -0.23 0.10
µ0 0.01 0.02
ϕ 0.02 0.04
ω 0.27 0.37
α 0.60 0.06
q 0.98 0.01
p 0.91 0.03

Table 3.11: GARCH MS-DFM model parameters
with macro and spreads data

Variables Parameters Mean Std

IP λ 1 0
RS λ 2.48 0.26
PI λ 2.12 0.20
E λ 2.56 0.24

AAA λ 0.05 0.19
AA λ -0.23 0.22
A λ -0.23 0.23

BBB λ -0.29 0.23
BB λ -0.17 0.24
B λ -0.07 0.23

CCC λ 0.18 0.22
IP ψ 0.27 0.04
RS ψ -0.33 0.04
PI ψ -0.11 0.04
E ψ 0.01 0.05

AAA ψ 0.29 0.05
AA ψ 0.25 0.05
A ψ 0.27 0.06

BBB ψ 0.27 0.06
BB ψ 0.14 0.06
B ψ 0.15 0.06

CCC ψ 0.24 0.06
IP σ2

e 0.68 0.05
RS σ2

e 0.50 0.05
PI σ2

e 0.69 0.05
E σ2

e 0.52 0.08
AAA σ2

e 0.91 0.08
AA σ2

e 0.94 0.08
A σ2

e 0.93 0.08
BBB σ2

e 0.94 0.08
BB σ2

e 0.98 0.08
B σ2

e 0.98 0.08
CCC σ2

e 0.93 0.08
Factor

µ1 -0.19 0.04
µ0 0.01 0.01
ϕ 0.03 0.04
ω 0.02 0.00
α 0.46 0.10
β 0.17 0.06
q 0.99 0.01
p 0.91 0.02
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3.10.5. Specific downturn episodes week by week filtered probabilities
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Figure 3.10: Out-of-sample probabilities of being in a downturn episode with the ARCH specifica-
tion. The dashed red line is the probability from macroeconomic variables only whereas the black
solid line is the probability from macro variables and asset swap spreads.
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Figure 3.11: Out-of-sample probabilities of being in a downturn episode with the GARCH specifi-
cation. The dashed red line is the probability from macroeconomic variables only whereas the black
solid line is the probability from macro variables and asset swap spreads.
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Figure 3.12: Out-of-sample probabilities of being in a downturn episode with the ARCH specifica-
tion. The dashed red line is the probability from macroeconomic variables only whereas the black
solid line is the probability from macro variables and asset swap spreads.
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Figure 3.13: Out-of-sample probabilities of being in a downturn episode with the GARCH specifi-
cation. The dashed red line is the probability from macroeconomic variables only whereas the black
solid line is the probability from macro variables and asset swap spreads.

3.10.6. Specific downturn episodes and allocation strategies returns
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Figure 3.14: Total cumulative return of the competitive specification during the Great Financial
Crisis
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Figure 3.15: Total cumulative return of the competitive specification during the Covid Crisis
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3.11. Rolling window returns
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Figure 3.16: Cumulative distribution functions of rolling window Returns from 1Y to 10Y holding
horizons
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Chapter 4

Bridging business cycle dynamics
and monetary policy in asset
allocation

Abstract: Multi-asset allocation seeks consistent returns across business and monetary policy
cycles phases. This work proposes a new allocation framework embedding market sentiment, busi-
ness cycle phase and monetary policy stance signals. First, a new way of gauging monetary policy
stance in a contemporaneous fashion is presented building upon Markov Switching Dynamic Fac-
tor Models. Secondly, this Chapter shows the value to combine this monetary policy signal with
existing methodologies identifying in real-time regime switches in both business cycle phases and
market sentiment when constructing portfolios. Encompassing macroeconomic and monetary pol-
icy regimes in building asset allocation strategies outperforms the well known 60-40 portfolio both
in return maximization and risk minimization. During market downturns driven either by recession
or monetary policy restriction, the proposed methodology outperforms several benchmark strate-
gies. In more "normal" periods, the signals developed do not significantly hamper the performance
of the considered portfolios compared to more "passive" strategies.

Keywords: Bayesian Estimation; Dynamic Factor; Non-linearity; Business Cycle Analysis, Mon-
etary Policy; Asset allocation
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4.1. Introduction

Navigating through US business cycle and monetary policy phases might be challenging for a multi-
asset investor who seeks consistent risk-adjusted returns. There are evidences macroeconomic
regimes determine financial returns distributions (Ang and Timmermann (2012)). Expected paths
of future monetary policy rates or monetary policy regimes also play a major role in asset prices
variations (Rigobon and Sack (2004)). A substantial body of literature has focused on improving
portfolio returns by adapting allocation through regime identifications (Ang and Bekaert (2004)).
Accounting for business cycle phases into portfolio construction was brought by Brocato and Steed
(1998). Jensen and Mercer (2003) propose to rather take into account monetary policy regimes
in portfolio construction. Kollar and Schmieder (2019) advocate to consider narrowing asset al-
location to both business cycle phases and financial cycles in investment allocation. Kritzman
et al. (2012) are the first to deploy a regime identification composed of growth, inflation and finan-
cial turbulence regimes to build an adequate allocation strategy. More recently, Kim and Kwon
(2023) present an investment framework for dynamic asset allocation strategies based on changes
in the growth and inflation environments (implying a monetary policy reaction). In a similar vein,
Bouyé and Teiletche (2024) show macro regime-based portfolios (overheating, "goldilock", stagfla-
tion, downturn) can outperform traditional asset-based portfolios. This literature mainly faces
two drawbacks: one is the frequency at which regimes are identified (mainly monthly or quarterly
regimes), the other is the nature of the identification when looking at optimal portfolios, most of
it is ex-post identification rather than real-time.

The race-horse 60% equity / 40% bond constant portfolio is sensitive to restrictive monetary
policy phases where both equity and bond prices fall because of an increase in the discount factor.
This salient fact motivates regime-contingent asset allocation in a real-time fashion. Indeed, a
multi-asset investor seeking consistent return across business and monetary policy phases has to
be able to identify them in a timely manner. This Chapter intends to narrow tactical dynamic
long-only asset allocation to business cycle phases real-time identification, existing and new market
sentiment measures as well as a novel framework gauging monetary policy stance through long-
term expected real rates. Real rates variations are modelled within a four-state Markov-switching
dynamic factor model (MS-DFM) encompassing hard and soft hawkish and dovish regimes. Real
rates are known to move according to monetary policy and information shocks (Nakamura and
Steinsson (2018)). When computed as the difference of nominal interest rates and inflation-linked
swap rates they capture a market assessment of the monetary regime. A new market sentiment
is also proposed in the (MS-DFM) framework building on a four-state Markov-Chain allowing for
bull correction and bear rallies inter-states. Finally, we use the asset swap spreads extension of the
second Chapter to assess the business cycle regime. The signals are computed on a weekly basis.
The macroeconomic turning point signals and market sentiment are used to dynamically allocate
equity/bond assets while the monetary policy stance signal is used as a hedging signal towards
cash whenever a restrictive phase is identified.
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The Chapter is organized as follows: Section 4.2 describes the Markov switching framework as
well as the specifications used to build the monetary, business cycle regimes and market sentiment
probabilities. Section 4.3 describes the general Bayesian estimation with details on priors and
MCMC algorithms given in Appendices 4.7.1 and 4.7.2. Section 4.4 presents in-sample and out-of-
sample probabilities of the monetary policy stance identifier and the market sentiment. Section 4.5
defines the allocation rules as well as the weekly backtest performances of the strategies together
with an event study regarding specific macroeconomic and monetary phases. Section 4.6 concludes.

4.2. Markov-switching Models

The use of Markov-switching models to capture cyclical dynamics in market returns and macroe-
conomic aggregates is widespread in the literature. The work of Chauvet (1998), Kim and Nelson
(1998), Camacho et al. (2014), among others, using non-linear dynamic factor models to infer
business cycle phases are worthwhile. Maheu and McCurdy (2000), Maheu et al. (2012) allow for a
broad partition of market returns into bull and bear regimes. The latter deploy a methodology to
identify bull corrections and bear rallies. Hamilton and Gang (1996) were the first to narrow busi-
ness cycle phases and market volatility regimes. Regarding Monetary policy regimes, a vast strand
of the literature focuses on monetary policy rules switches via a MS-Taylor rule as in Perruchoud
(2009), on a simultaneous multivariate system as in Sims and Zha (2004) or in MS-DSGE as in
Chang et al. (2021). Worth noting that the first analysis of regime-switching in the term-structure
of interest rates was proposed by Hamilton (1988). We introduce a new approach to identify mone-
tary policy regimes which builds upon the market sentiment of equity returns framework presented
in section 4.2.3. We will consider in this section three independent MS-DFMs to identify monetary
policy phases, business cycle phases in real-time and markets stressed episodes. A market senti-
ment signal stemming from an univariate time series S&P 500 returns will be characterized by a
textbook Hidden Markov Model (HMM) as benchmark. The general form of the models will take
the following form.

Let yt a vector of m monthly or weekly observable time series and let ft a single latent com-
mon factor. We have the standard DFM given by :

yt = Λft + ut, (4.1)

where Λ denotes the loadings matrix, ut is orthogonal to ft and for all j = 1, . . . ,m

ψj(L)uj,t = ej,t, ej,t ∼ N (0, σ2
e,j), (4.2)

let us denote ψj = (ψj,1, . . . , ψj,l)′ the coefficients of the lag polynomial ψj(L) of order l and let
the factor follows

ft = µSt
+ ϕft−1 + εt

εt = σtηt

(4.3)
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where ηt is iid (0, 1) and St is an independent first order n-state Markov chain of constant transition
probability matrix P with dimensions n × n. Depending on the specified model, the dynamic
volatility of the dynamic factor σt will be conditional or Markov-switching, thus we keep the t

notation in the general notation.

4.2.1. Monetary policy stance identification

As introduced by Woodford (2003) in the wake of Clarida et al. (1999), in many New Keynesian
models, the real interest rate gap is a measure of monetary policy stance. The gap is defined as
a difference between a real interest rate and a natural rate of interest. The forward dimension of
the real interest rates is paramount as the information content of market expectations concerning
inflation gives us a hint regarding the dynamics the market participants are pricing. According to
Woodford (2003), the role of monetary policy is to keep agent’s inflation expectations anchored
at central banks’ target. This theory builds upon rational expectations. Inflation expectations
implied by market prices have now become a pivotal information set entering the monetary policy
reaction function. A race-horse model for this reaction function is the Tayor Rule (Taylor (1993))
which specify the short-term nominal interest rate as a function of output gap and and the per-
centage deviation of inflation from its target.

The intuition behind the novel approach we propose is the need for practitioners to grasp the
intensity or amplitude of forward real rates interest dynamics. Financial markets, compared to
textbook macroeconomic models, are indeed very sensitive to forward real interest rates moves
rather than absolute levels or gaps. The drifts and inertia related to real rates are moreover chal-
lenging. We draw from Orphanides (2003) approach in modelling interest rates in first difference.
At the effective lower bound or very far from natural rate of interest, strong variations of real
interest rates had historically a dramatic impact on risky assets, in line with the duration model
proposed by Leibowitz et al. (1989) showing that equity prices display a negative sensitivity to
real interest rates. We thus need to capture the common dynamics of a set of forward real inter-
est rates. In our approach, because of data availability we will use the weekly 5 year-, 7 year-,
10 year- forward real interest rates. Those forward real interest rates are defined as the differ-
ence between the nominal interest rate of a given maturity measured in our case by Overnight
Index Swap (OIS) and an inflation expectation component measured by Inflation-Linked Swap
(ILS) of corresponding maturity. We take the absolute variations of the negative values of the data
so that a negative variation corresponds to a restrictive movement in the forward real interest rates.

We consider the factor model presented in equations (4.1) to (4.3). The approach intends to
identify four states : high or low volatile hawkish or dovish dynamics in a factor capturing the co-
movement of the forward real interest rates. This can also be interpreted as "hard" or "soft" dovish
or hawkish moves in markets’ participants views. The first order Markov Chain displays four states
(n = 4). The first element of Λ is set to one for the sake of identification in equation (4.1). The
residuals ut in (4.2) follow an AR(1) process. In equation (4.3), we impose µ1 < µ3 < 0 < µ2 < µ4.
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The volatility σt = σSt is also Markov-switching with σ1 > σ3 and σ2 > σ4. ϕ = 0, the factor does
not follow an autoregressive process. P(MP) is unrestricted. The absence of restriction in P(MP)

enables to capture the idea that the chain can switch from a hard hawkish surprise to a hard dovish
interpretation, as we can have noticed during the 2008-2009 great financial crisis. Given monetary
policy surprises or events the market participants face and interpret, dynamics of the monetary
policy stance perception can vary a lot. We will refer to the work of Jarociński and Karadi (2020)
who perform a thorough analysis of markets reactions to Monetary policy communication in a
structural VAR framework.

4.2.2. Business cycle turning point detection

The business cycle turning point model builds upon the second Chapter based on the first Chapter
of this manuscript. It is an MS-DFM model with an ARCH extension in the volatility process for
the factor. The information sample is composed of eleven monthly variables: industrial produc-
tion, real manufacturing trade and sales, civilian employment, real personal income as well as seven
grade buckets of USD asset swap spreads ranging from Investment grade (AAA) to Speculative
grade (CCC).

We consider again the factor model presented in equations (4.1) to (4.3). The first order Markov
chain displays two states (n = 2). The first element of Λ is set to one for the sake of identification
in equation (4.1). The residuals ut in (4.2) follow an AR(1) process. In equation (4.3), we impose
µ1 < µ0. The volatility σt follows a ARCH(1) dynamic: σ2

t = ω+αε2
t−1 with ω > 0 and 0 < α < 1.

The factor follows an auto-regressive process of order 1. P(BC) is unrestricted. We thus identify
two states : a recession regime (St = 1) and an expansion regime (St = 0). We can rewrite P(BC)

:

P(BC) =
[

q 1 − q

1 − p p

]
The transition probabilities are defined as

q = P(St = 0|St−1 = 0) and p = P(St = 1|St−1 = 1),

The second Chapter of this manuscript shows the ability of this specification to contemporaneously
capture economic downturn episodes.

4.2.3. Market sentiment

We build here on the work of Maheu et al. (2012) who introduce a framework in which bull and bear
regimes in the returns of S&P 500 allow for bull corrections and bear rallies. The framework takes
into account short-term reversals within each regime of the market. As such, a bull regime can
face a series of persistent negative returns (a bull correction), even if the expected long-run return
(primary trend) is positive in that regime. We extend this framework by taking into account a
dynamic factor model approach enabling to partition the common dynamics of four equity indices
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: the returns of the S&P 500, the Russell, the Dow Jones and the NASDAQ. The underlying
idea is to be able to capture a global stress in the equity market which would not be tilted to a
specific market profile, either Large/Small or Value/Growth, given the growing concentration of
the S&P 500 index. This factor extension is different from the multivariate extension adopted by
Liu et al. (2024) with a hierarchical Markov switching model. This specification assumes that a
common discrete state variable drives all the asset returns from a hierarchical Markov switching
model which allows the cross-section of state-specific means and variances to vary over bull and
bear markets.

This factor extension can be described as follows. Taking equations (4.1) to (4.3) into consideration.
The first order Markov Chain displays four states (n = 4). The first element of Λ is set to one for
the sake of identification in equation (4.1). The residuals ut in (4.2) follow an AR(1) process. In
equation (4.3), we impose

Bear Regime
{

µ1 < 0 (bear market state)
µ2 > 0 (bear market rally)

Bull Regime
{

µ3 < 0 (bull market correction)
µ4 > 0 (bull market state)

There is no restriction on σt. ϕ = 0, the factor does not follow an auto-regressive process. P(MS)

is restricted.

P(MS) =


p11 p12 0 p14

p21 p22 0 p24

p31 0 p33 p34

p41 0 p43 p44


The movement of a bull (bear) regime to a bear rally (bull correction) state is not allowed for
identification, but Maheu et al. (2012) justify it through the data. To allow for short-term de-
viation from the long-term trend the authors use the Hamilton and Susmel (1994) resolution of
unconditional probabilities of P(MS) given by :

Π = (A′A)−1A′e

with A′ = [P(MS)′ −I, ι] and e′ = [0, 0, 0, 1] and ι = [1, 1, 1, 1]′. This matrix of unconditional state
probabilities Π allows to constrain long-run market returns in the bear and bull regimes:

E[ft | bear regime, St = 1, 2] = π1

π1 + π2
µ1 + π2

π1 + π2
µ2 < 0

E[ft | bull regime, St = 3, 4] = π3

π3 + π4
µ3 + π4

π3 + π4
µ4 < 0

The bull (bear) market regime is defined with long-run positive (negative) returns but the mar-
ket regimes can have short-term reversals from their long-run mean. We will also consider the
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univariate version of the above specification as in Maheu et al. (2012) as benchmark.

4.3. Bayesian estimation

The general model from (4.1) to (4.2) can be cast in state space form :

yt = Hzt + ςt ςt ∼ N (0,R)
zt = δSt + Ξzt−1 + ζt ζt ∼ N (0,Qt)

(4.4)

H the (m) × (ml+ 1) matrix, Ξ the (ml+ 1) × (ml+ 1) matrix, and Ξj=1...m the l× l matrix such
that

H =


λ1 hl . . . 0
...

... . . . ...
λm 0 . . . hl

 Ξ =


ϕ

Ξ1
. . .

Ξm



with Ξj=1...m =



ψj,1 ψj,2 . . . ψj,l−1 ψj,l

1 0 . . . 0 0
0 1 . . . 0 0
...

... . . . ...
...

0 0 . . . 1 0


.

λ1 = 1 for identification purpose. hl is a 1 × l vector with the only first element equal to one.
δSt

= (µSt
, 0, . . . , 0)′, diag(Qt) = (σ2

t , σ
2
e,1h

l, . . . σ2
e,mh

l). The vector (ml + 1) of unobserved
variables zt is given by

zt = (ft, (1, L, . . . , Ll−1)u1,t, . . . , (1, L, . . . , Ll−1)um,t)′.

The vector of parameters to estimate is given will be specific to the model specification we use. We
denote by ϑ(MP), the vector of parameters of the Monetary Policy stance model. ϑ(BC) refers to
the parameters vector for the business cycle phases assessor. Finally ϑ(MS) will refer to the vector
of parameters for the Market sentiment model. We have the following set of parameters vectors :

ϑ(MP) = (P(MP),Ψ′, σe,1, . . . , σe,m,Λ
′, µ1, µ2, µ3, µ4, σ1, σ2, σ3, σ4)′

ϑ(BC) = (P(BC),Ψ′, σe,1, . . . , σe,m,Λ
′, µ0, µ1, ϕ, ω, α)′

ϑ(MS) = (P(MS),Ψ′, σe,1, . . . , σe,m,Λ
′, µ1, µ2, µ3, µ4, σ1, σ2, σ3, σ4)′

Let us denote z(T ) = {z1, . . . ,zT } the unobserved state vector in equation (4.4), y(T ) = {y1, . . . ,yT }
the observed data, and S(T ) = {S1, . . . , ST } the unobserved Markov Chain. The models are es-
timated using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algorithm in the spirit of
Kim and Nelson (1999) and Bai and Wang (2011) where conditional draws of the state vector, the
Markov Chain, and the parameters vector ϑ(.) are obtained sequentially.
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• We generate conditional draws of the state vector from p(z(T )|y(T ), S(T ),ϑ(.)) using the
forward-filtering backward-smoothing algorithm of Carter and Kohn (1994).

• We generate conditional draws of the Markov chain from p(S(T )|y(T ), z(T ),ϑ(.)) based on the
Hamilton filter (Hamilton (1989)).

• We generate conditional draws for the parameters vector from p(ϑ(.)|y(T ), z(T ), S(T )) by
sequentially drawing in the conditional distribution of components of ϑ(.)

Details of priors used and the MCMC algorithms for each model specification can be found respec-
tively in Appendices 4.7.1 and 4.7.2.

4.4. Results

4.4.1. In-sample

This section presents the in-sample probabilities of the MS-DFMs presented in Section 4.2. Figure
4.1 shows the 4 regimes identified by our monetary policy stance identifier. Five hard hawkish
phases are noticeable. The first phase is the one taking place from mid-2004 until the end of the
year. This event materializes policy rates normalisation following the gradual US recovery which
took place from June 2004 to June 2006. We catch the early stage of the tightening with the soft
hawkish probability which then transitions to hard hawkish regime as the market expectations
for long-term maturities are more ample at the beginning of a hiking cycles or monetary policy
shock as shown by Boeck and Feldkircher (2021). According to the authors this is not the case for
short-term maturities yields that under-react first and exhibit then a period of overcompensation
called delayed overshooting. The hard hawkish regime then flips again to soft hawkish regime and
fades away at the end of 2004. The second hawkish regime identified corresponds to the noisy
period surrounding Federal Open Market Committee (FOMC) communications during the Great
Financial Crisis. Jarociński and Karadi (2020) identify likewise restrictive monetary policy shocks
during this period. Moreover, the information shock as identified by the authors induces a bearish
guidance regarding future activity provoking a fall in long-term inflation expectations and thus
a rise in real interest rates, which in turn transposes itself into a overarching hawkish regime.
From late 2010 to February 2011, the recovery and reflation expected in the US has brought a
soft hawkish signal into place. Another hard hawkish period identified is the "taper tantrum"
period in may 2013 triggered by Bernanke’s speech regarding the possibility the Federal Reserve
could reduce the speed of its balance sheet expansion. It ignited a massive bond sell-off dragging
rates upwards, this is a clear hawkish perception the market had regarding the Federal Reserve
even though the monetary regime was clearly dovish at the time. This is also the reason why
the Federal Reserve has put a lot of effort to divorce expectations of future rate increases from
balance sheet reductions afterwards (Smith and Valcarcel (2023)). The Covid outbreak in February
2020, by the uncertainty it has brought regarding economic prospects yielded hard deflationary
expectations for a short period of time (before the massive monetary and fiscal stimulus). This
is captured by the spike in the hard hawk probability regime and surrounded by a slight move
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in the soft hawkish probability. The last hawkish period identified by our specification is the one
referring to the expeditive action undertaken by the Federal Reserve from 2022 onwards to dampen
the supply/demand unbalances provoked by the global economy reopening and amplified by the
Russian invasion of Ukraine.
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Figure 4.1: Dovish/hawkish 4-regimes in-sample probabilities

If we recombine the inter-state regimes into two broad measures of hawkishness and dovishness
by summing up the soft/hard dovish hawkish probabilities we get the two symmetric probabilities
presented in Figure 4.2. What we are interested in is the capacity of the monetary policy stance
signal to detect a hawkish regime (implied by expected long-term real rates) in order to deploy a
specific hedging asset allocation strategy.
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Figure 4.2: Dovish/hawkish 2-regimes in-sample probabilities
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Figure 4.3 displays the 4-states market sentiment in-sample probabilities. The bear regime proba-
bility manages to capture seven ample market downturns from 1989 to 2023. Those downturns are
the dotcom bubble burst in march 2000 and specific stresses associated to it afterwards, specifically
in 2002. The Great financial crisis and the market stress associated to it is labelled as bear regime
in early September 2008 until March 2009. Lastly the Covid outbreak in China followed by a
broad shutdown in world economy provoked a fall in equity markets from 19th February until the
massive Monetary and State supports announced mid-march 2020. Bull correction phases appear
more frequently in our dataset. Significant periods are the 1990 recession in the US in the wake
of the Gulf crisis and the rise in oil products as consequence. 1998 is worth to be noted as a
pre-dotcom bubble burst triggered by the Russian debt crisis. A significant bull correction regime
appears during the beginning of June 2004 hiking cycle. The Great Financial Crisis is captured
as a bull correction from October 2007 to September 2008. The "flash crash" of May 2010 and the
correction of 2011 in the wake of the Greek debt stress and European debt crisis are captured as
bull correction events. The "taper tantrum" is also identified as bull correction regime. The 2015
slowing in corporate earnings is labelled as bull correction phase. The 2018 market correction is
associated with fears regarding Federal Reserve decisions and the uncertainty in the tariffs war
between Trump’s administration and China. Finally, one can observe that the correction induced
by the Federal Reserve expeditive action to dampen 2022 inflationary pressures is labelled as bull
correction regime.
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Figure 4.3: In-sample probabilities from the multivariate specification of the market sentiment

Figure 4.4 displays the recombined bull/bear market sentiment in-sample probabilities. This par-
titioning is globally consistent with the multivariate bull/bear approach probabilities obtained by
Liu et al. (2024) on this specific time span.
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Figure 4.4: Bull/bear in-sample probabilities from the multivariate specification of the market
sentiment

Figures 4.13 and 4.14 in Appendix 4.7.3 display the 4-states market sentiment in-sample probabil-
ities and the recombined bull/bear probabilities based on the univariate specification as in Maheu
et al. (2012), taking only into account the S&P500 time series.

4.4.2. Out-of-sample

This section presents the out-of-sample exercise undertaken on a weekly basis from January the
7th 2000 until 24th February 2023. Figure 4.5 displays the real-time probabilities to be in a
hard hawkish regimes. The signal manages to capture, from a real-time market perspective the
restrictive monetary policy events described in subsection 4.4.1 and thus, validating the proposed
approach.
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Figure 4.5: Hard hawkish regime out-of-sample probabilities

Figures 4.6 and 4.7 show the real-time probabilities of the market sentiment signal. Compared to
the in-sample probabilities displayed in Figures 4.3 and 4.4, we get a more sensitive signal which
manages to identify in a timely manner the bearish events described in subsection 4.4.1.
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Figure 4.6: Real-time probabilities from the multivarite specification of the market sentiment
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Figure 4.7: Real-time bull/bear probabilities from the multivariate specification of the market
sentiment

4.5. Asset allocation

A substantial litterature has focused on relationships between monetary policy and equity prices
(Thorbecke (1997), Bernanke and Kuttner (2005), among others). We can mention Hamilton and
de Longis (2015) who bring a coherent allocation strategy along business cycle phases measured
on a real-time monthly basis. The need to take into account business cycle phases into portfo-
lio construction has been documented by Brocato and Steed (1998). Jensen and Mercer (2003)
advocate taking into account the monetary policy cycle into portfolio optimization would be of a
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better help than the latter approach. The need to bridge asset allocation to both business cycle
phases and financial cycles has been put forward by Kollar and Schmieder (2019). Kritzman et al.
(2012) identify monthly or quarterly regimes defined as financial market turbulences, inflation and
economic growth and deploy a tactical asset allocation. To the best of our knowledge, this is the
first try to narrow in a single allocation framework macroeconomic turning point real-time signals,
monetary policy stance regimes and market sentiment on a weekly rebalancing basis, making our
investment strategy "live".

This section introduces rules of allocation based on signals extracted in the former section. A
race-horse allocation strategy in the asset management industry consists in attributing a constant
60% weight to equity and a 40% weight to bonds. This allocation rule is attributed to the Modern
Portfolio theorists in the 50’s. This strategy has proven to be efficient to capture equity markets
long run returns as well as offering the safe heaven characteristics of the bond market when it
comes to risky assets downturns. This induces a less volatile profile of total long run returns. This
strategy shows nonetheless a vulnerable return profile during monetary policy restrictive periods or
hawkish phases in the market. As interest rates increase, bond prices fall as well as equity prices.
We propose an asset allocation to circumvent this issue. By taking into account a monetary policy
stance signal, the investor can opt for a hedging strategy to cap the losses incurred by reducing
its exposure to the equity/bond market. We define in this section a range of alternative portfolio
strategies that mimic the 60 % equities / 40 % bonds strategy by allowing weights to be dynamic.
The turning point probability and the market sentiment probability are used as inputs in the
dynamic weighting scheme. Moreover, the monetary stance probability will be used as hedging
weight when incorporated to the allocation decision. We compare the constructed portfolios to
well-known benchmark strategies : 100% cash, 100% equity, 60% equity / 40% bond. Rebalancing
of the portfolio is implemented on a weekly basis, at the time when the market sentiment, business
cycle phase assessor and monetary policy stance signal are computed. Finally, we apply a 2 basis
point transaction cost to the S&P500 rebalancing and none for cash or 10 Year US Treasuries,
given the liquidity of those markets.

4.5.1. Rules

We consider a set of rules taking into account a portfolio universe composed of a risky asset (S&P500
index), a fixed income asset (10 Year US Bond) and Cash (3-month Treasury Bill). Business cycle
and market sentiment regimes will serve as weights in the equity/bonds allocation weights, making
the 60 % equities / 40 % bonds allocation portfolio dynamic. If a stressed market or a recession
signal occur, the weight applied to the risky asset can be reduced up to 0%. High volatile markets
are generally associated with negative future returns. This stylized fact, known as leverage effect
has been extensively studied in the literature. One can refer to Black (1976), Kim et al. (2000) for
the volatility feedback analysis.

Business cycle phases also play a major role in equity returns profiles. When a fear of a downturn or
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a recession occurs, expected revenues of firms fall triggering equity prices to drop. As mentioned by
Siegel (1991) there is a positive relationship between firm profits and earnings as well as dividends
for stakeholders. Balance sheet effects through increase of debt ratio also amplify the deterioration
in valuation ratios. On the other hand, bond markets are then considered as a safer place for in-
vestors, especially for Government debt with good credit grades. This so-called "flight to quality"
phenomenon tends to reduce bond yields and increase the market price of the already-issued bonds.

A restrictive monetary policy is carried out in a inflationary regime central banks want to cool
down. The main tool is the increase of the cost of credit by setting its policy rates higher. It tames
the aggregate demand into a better balance with respect to the aggregate supply of the economy.
The impact of such moves is an increase of bond yields across the maturity curve. It implies a drop
in bond indices prices. In such events, equity markets tend also to suffer as the discount factors in
cash flow models increase. The anticipated slowdown in activity also brings the expected revenues
of firms down. One of the only asset class which does not suffer from such restrictive monetary
environments is cash. Short-term rates increase, making the carry of money markets attractive
compared to deterioration in other asset classes valuations, especially the most risky ones. A 60
% equities / 40 % bonds portfolio, in a restrictive monetary environment, faces negative returns
on each leg of the asset allocation rule.

We will thus build up some allocation rules taking into account monetary policy stance and giving
a specific weight to cash. In the remaining part of the Chapter, we will always consider long-
only portfolios. We define wcash

t as the weight allocated to cash at time t, wequity
t the weight

for the S&P 500 and wbond
t the weight attributed to the 10 Year Treasury bond. Moreover

wequity
t + wcash

t + wbond
t = 1. Finally, P (SBC

t = 1 | It) will denote the filtered probability to
be in a recession phase, P (SMS

t = {1, 2} | It) in a bear regime phase, P (SMS
t = {1, 3} | It) the

probability to be in a negative return equity market regime and P (SMP
t = {1} | It) to be in a

restrictive monetary regime. Five broad asset allocation cases will be considered. One which takes
only the probability of being in a bear regime or a negative return market. The second approach
will modulate the latter probability by averaging the signal with a business cycle regime. The third
approach will take into account Monetary policy stance with the market sentiment. The fourth
one will mix the three axes. Finally the latter approach will exclude the market sentiment and
look at the utility of business cycle and monetary policy stance together.

4.5.1.1. Market sentiment only

We consider two alternative signals. The multivariate model presented in section 4.2.3 and the
univariate specification as the one introduced by Maheu et al. (2012). It aims at comparing the
added value of considering a broad definition of US equity markets compared to the single S&P 500
total return index when extracting a sentiment index. The weighting scheme of bond and equity
is either given by :

wbond
t = P (SMS

t = {1, 2} | It) wequity
t = P (SMS

t = {3, 4} | It)

90



looking specifically to bull/bear partition or

wbond
t = P (SMS

t = {1, 3} | It) wequity
t = P (SMS

t = {2, 4} | It)

when trying to capture negative return phases, allowing for within-regime partitions.

4.5.1.2. Market sentiment and Business cycle

Based on both univariate and multivariate market sentiment specifications as well as bull/bear
or positive/negative return partitions, we then consider using the turning point signal to mitigate
market stress not induced by macroeconomic fundamentals. The weighting scheme is given by:

wbond
t = P (SMS

t = {1, 2} | It) + P (SBC
t = 1 | It)

2

wequity
t = P (SMS

t = {3, 4} | It) + P (SBC
t = 0 | It)

2

considering bull/bear partition or

wbond
t = P (SMS

t = {1, 3} | It) + P (SBC
t = 1 | It)

2

wequity
t = P (SMS

t = {2, 4} | It) + P (SBC
t = 0 | It)

2

looking for a positive/negative short-term returns.

4.5.1.3. Market sentiment and Monetary Policy stance

The set of rules described in this section intends to gauge whether adding the monetary policy
stance is valuable. The market sentiment defines the equity/bond allocation, the cash is weighted
by the monetary policy stance signal, used as a hedging extension. The weighting scheme of bond,
equity and cash is either given by :

wbond
t = P (SMS

t = {1, 2} | It) × (1 − P (SMP
t = 1 | It))

wequity
t = P (SMS

t = {3, 4} | It) × (1 − P (SMP
t = 1 | It))

wcash
t = 1 − wbond

t − wequity
t

through the bull/bear partition or

wbond
t = P (SMS

t = {1, 3} | It) × (1 − P (SMP
t = 1 | It))

wequity
t = P (SMS

t = {2, 4} | It) × (1 − P (SMP
t = 1 | It))

wcash
t = 1 − wbond

t − wequity
t

considering specifically the positive/negative return partition.
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4.5.1.4. Business cycle and Monetary policy stance

The rules in this section enable to gauge the benefit of using the market sentiment. The multi-asset
allocation is only driven by fundamental macroeconomic signals and the monetary policy stance.
The underlying hypothesis is that once looking at macroeconomic or monetary policy stress, there
is no need to take into account other kind of market stress not attributable to the former ones.
Hence, the unique set of rules is given by:

wbond
t = P (SBC

t = 1 | It) × (1 − P (SMP
t = 1 | It))

wequity
t = P (SBC

t = 0 | It) × (1 − P (SMP
t = 1 | It))

wcash
t = 1 − wbond

t − wequity
t

The equity/bond weighting scheme is defined by the real-time turning point signal whereas the
monetary policy stance signal enables to migrate the allocation towards cash whenever a monetary
policy appears to be increasingly tight.

4.5.1.5. Market sentiment, Business cycle and Monetary policy stance

Finally, a last set of rules we characterize as all-weather will embrace the three signals used con-
comitantly. The weighting scheme is a mix of the intuitions described in subsections 4.5.1.2 and
4.5.1.3. The macroeconomic turning point signal mitigate the market sentiment in the equity/bond
allocation while the monetary policy stance signal allows for a dynamic hedging with cash. The
weighting scheme is given by:

wbond
t = P (SMS

t = {1, 2} | It) + P (SBC
t = 1 | It)

2 × (1 − P (SMP
t = 1 | It))

wequity
t = P (SMS

t = {3, 4} | It) + P (SBC
t = 0 | It)

2 × (1 − P (SMP
t = 1 | It))

wcash
t = 1 − wbond

t − wequity
t

when focusing on a market bull/bear partition or by :

wbond
t = P (SMS

t = {1, 3} | It) + P (SBC
t = 1 | It)

2 × (1 − P (SMP
t = 1 | It))

wequity
t = P (SMS

t = {2, 4} | It) + P (SBC
t = 0 | It)

2 × (1 − P (SMP
t = 1 | It))

wcash
t = 1 − wbond

t − wequity
t

when concentrating on a positive/negative return real-time identification.

4.5.2. Performance comparison

We compare the performances of the competing strategies in a real-time backtest exercise. The
backtest is ran from 7th January 2000 to 24th February 2023 on weekly basis. The portfolios
rebalancing occurs at the end of a given week. The macroeconomic turning point signal stems
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from the second Chapter real-time backtest. The filtered probabilities P (SBC
t | It), P (SMS

t | It)
and P (SMP

t | It) are computed at the same date t.
We denote wt = [wbond

t , wequity
t , wcash

t ] and the return of each asset rt = [rbond
t , requity

t , rcash
t ].

The weekly total return of a specific asset a, is given by ra
t = (P a

t /P
a
t−1) − 1, P a

t being the
price of asset a at time t. For the Market sentiment strategies and the Market sentiment and
Business cycle strategies in sections 4.5.1.1 and 4.5.1.2, wbond

t = 0. The return of a strategy s

between t− 1 and t, rt,s is given by wt−1r
′
t. In this section, we will focus on annualised returns,

volatilities, Sharpe ratios (Sharpe (1994)) and maximum drawdowns as well as the same statistics
for portfolio holding rolling windows ranging from 1 year to 10 years. Given that first moments
of the descriptive statistics are auto-correlated on the rolling window holding periods, we will
focus on empirical cumulative distributions albeit we put the average statistics in the performance
comparison tables. Moreover, we will use Fleming et al. (2003) approach to measure the economic
utility for an investor to hold a specific portfolio. This approach relates to the mean-variance
analysis and the quadratic utility framework. The realized weekly utility generated by a strategy
s is given by :

U(rt,s) = W0

(
(1 + rf

t + rt,s) − γ

2(1 + γ) (1 + rf
t + rt,s)2

)
(4.5)

W0 is the initial wealth invested, rf
t the 3-month cash return, rt,s the portfolio return and γ a fixed

aversion parameter. To measure the value of a strategy compared to another one, we can define a
constant ∆ which equalizes :

T∑
t=1

U(rt,s1) =
T∑

t=1
U(rt,s2 − ∆)

This constant ∆ can be considered as the maximum performance fee that an investor would agree
to pay for switching from strategy s1 to s2 under the hypothesis that he is indifferent between
both. The higher the ∆, the more strategy s2 is valuable for the investor.

Table 4.1 displays the annualised performances for the five groups of competing strategies. Bold
lines highlight the strategies for which the annualised Sharpe ratio is maximised. From the Mod-
ern Portfolio Theory (Markowitz (1952)), an investor is interested in maximizing the risk-adjusted
return of his/her portfolio, and will not be eager to increase return if it comes at a higher cost
in terms of returns dispersion, e.g. volatility. The strategy embedding the bull/bear sentiment,
the macroeconomic real-time downturn signal and the Monetary policy stance signal (MS-Bull-
Bear-Return-Uni-MP-BC) tend to outperform the other strategies. The strategy only relying on
the market sentiment (MS-Bull-Bear-Return-Uni) is the one which performs worst compared to its
counterparts incorporating either a monetary policy stance signal, a business cycle phase assessor
or both. From the tabled results, the multivariate extension of the equity market sentiment does
not improve the performances statistics. Moreover, the strategy consisting in taking exposure to
the risky asset whenever a signal of bear rally materialize appears to be inefficient. This is at-
tributable to the fact that short-term reversal identified are not persistent enough to yield higher
returns.
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Bottom line of those preliminary annualised results is: each highlighted strategy outperforms
the benchmarks of holding a constant 100% exposure to the risky asset, 100% exposure to cash or
60 % equities / 40 % bonds. Remarkably, the constant 60 % equities/40 % bonds portfolio tends
to underperform a vast majority of competitive specifications, highlighting the necessity to adopt a
dynamic weighting scheme based on regime identification. The Market Sentiment-Business Cycle-
Monetary Policy strategy is nearly two times higher in terms of annualised Sharpe ratio compared
to this race-horse allocation.

The 1-year to 10-year portfolio holding rolling windows depicted in Appendix 4.7.4.1 validate
partially this first assessment. Tables 4.11 to 4.14 show the superiority of the highlighted strate-
gies for each holding period considered. The strategy based on the univariate bull/bear market
sentiment, the business cycle phase assessor and the monetary policy stance signal maximize the
rolling Sharpe ratios. For 1-year to 2-year rolling holding periods, the strategy composed of the eq-
uity market sentiment and the monetary policy stance is the second best. For longer rolling holding
periods however, the strategy based on the univariate bull/bear market sentiment performs quite
well even though it remains below the 3-signal allocation approach. Finally, the more the holding
period increases (e.g. from rolling 1-year to rolling 10-year) the better strategies incorporating
monetary policy stance and business cycle phase assessors perform.
Table 4.1: Annualised performances for the five groups of competing strategies and benchmarks from
January 2000 to February 2023

Ann. Return Ann. Vol Ann. SR Ann. Max DD

MS-Sign-Return-Multi 5.1% 9.8% 0.33 25.4%
MS-Bull-Bear-Return-Multi 5.6% 10.0% 0.37 22.8%
MS-Sign-Return-Uni 2.6% 11.0% 0.06 40.3%
MS-Bull-Bear-Return-Uni 5.7% 9.3% 0.41 25.8%
MS-Sign-Return-Multi-BC 5.9% 12.1% 0.33 37.2%
MS-Bull-Bear-Return-Multi-BC 7.4% 12.8% 0.43 36.9%
MS-Sign-Return-Uni-BC 5.4% 11.9% 0.30 36.8%
MS-Bull-Bear-Return-Uni-BC 6.8% 10.6% 0.46 27.6%
MS-Sign-Return-Multi-MP 4.1% 9.4% 0.23 24.8%
MS-Bull-Bear-Return-Multi-MP 6.3% 10.7% 0.41 21.9%
MS-Sign-Return-Uni-BC 3.6% 8.1% 0.21 21.4%
MS-Bull-Bear-Return-Uni-MP 5.8% 8.2% 0.48 15.9%
MP-BC 7.4% 12.8% 0.43 42.6%
MS-Sign-Return-Multi-MP-BC 5.8% 10.4% 0.38 33.3%
MS-Bull-Bear-Return-Multi-MP-BC 6.9% 11.3% 0.44 32.8%
MS-Sign-Return-Uni-MP-BC 5.6% 9.4% 0.40 27.9%
MS-Bull-Bear-Return-Uni-MP-BC 6.8% 9.3% 0.52 22.9%
S&P500 6.5% 18.1% 0.26 54.7%
60%Equity/40%Bond 4.8% 10.4% 0.28 32.1%
Cash3m 1.7%

The Figure 4.8 displays the cumulative distribution of the rolling window Sharpe Ratios from
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1 year to 10 year holding periods. An investor seeks thin left tails and the most right-skewed
cumulative distributions. Albeit 1 year and 2 year rolling Sharpe ratios tend to display quite
similar distributive patterns, longer rolling holding periods show that strategies implementing a
broader set of signals yield a greater Sharpe ratio on a large part of the distribution support. The
Market Sentiment-Business Cycle-Monetary Policy strategy yield on each point of the support a
higher Sharpe ratio on a 10 year holding period. The longer the holding period, the more likely the
investor will face an adverse shock, arising from a monetary policy restriction or a macroeconomic
downturn. Thus, strategies incorporating business cycle or monetary policy regimes will be able
to cope with those negative shocks by rebalancing the portfolio in a timely manner.
Figure 4.17 in Appendix 4.7.4.2 shows the cumulative distribution of rolling returns for the 1
year to 10 year portfolio holding periods. Again we seek strategies with thin left tails (capped
drawdowns) and right-skewed profile. Strategies taking into account market sentiment and either
business cycle regimes, monetary policy stance or both highlight globally lower downside risks for
the entire holding periods considered.
Figure 4.9 shows the log-total cumulative return of the strategies backtested on a weekly basis from
7th January 2000 to 24th February 2023. Strikingly, being capable of timely identifying monetary
and macroeconomic regimes yield far better long-term returns than the considered benchmarks.
The log-scale enables to capture accelerations in the cumulative returns, this is the reason why
fixed income assets (bond or cash) display flattened curves. Hence the pay-off is linear as the
composed yield is timely incremental.
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Figure 4.8: Cumulative distribution functions of rolling window Sharpe ratios from 1 year to 10
year holding horizons
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Figure 4.9: Log total cumulative return of the selected strategies and benchmarks from 7th
January 2000 to 24th February 2023.

We now focus on the economic utility for the investor to invest in a specific strategy. Tables 4.2 and
4.3 report the rolling annual average fees ∆ for respectively 1-year and 10-year holding periods.
The values in the columns are the strategy fees that would make an investor with a given risk
aversion indifferent between the strategy and the benchmark allocation. For each benchmark, two
columns are presented referring to two aversion parameters γ in the quadratic utility in equation
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(4.5). On a 1 year rolling holding period (4.2), and for each aversion coefficient, an investor will
tend to prefer any competitive strategy compared to holding a constant 100% exposure to S&P500
or a fixed 60 % equities / 40 % bonds allocation. Ranking strategies based on absolute values
of annual average fees ∆s, one can highlight that an investor with low risk aversion (γ = 1) will
tend to prefer a strategy mainly composed of the business cycle phase assessor and the monetary
policy stance signal (MP-BC). An investor with a higher risk aversion (γ = 10) will prefer the
strategy adding the market sentiment to the monetary policy stance signal (MS-Bull-Bear-Return-
Uni-MP). The 3-signal approach (MS-Bull-Bear-Return-Uni-MP-BC) compares fairly well to the
other strategies as it is globally always the second preferred except for a switch with low aversion
from a 100% cash strategy, making it the most robust strategy.

Table 4.2: 1-year rolling window fees

1Y S&P500 60/40 Cash

γ 1 10 1 10 1 10
MS-Bull-Bear-Return-Uni 0.92% 13.80% 1.69% 2.60% 5.17% 1.16%

MS-Bull-Bear-Return-Uni-BC 0.66% 11.98% 2.00% 1.72% 5.99% 0.84%
MS-Bull-Bear-Return-Uni-MP 0.65% 14.45% 1.38% 3.14% 4.75% 1.55%

MP-BC 1.26% 10.59% 2.65% 0.42% 6.81% -0.32%
MS-Bull-Bear-Return-Uni-MP-BC 0.97% 13.93% 2.03% 3.03% 5.78% 1.84%

On a 10 year rolling holding period (4.3), and for each aversion coefficient, an investor prefers any
competitive strategy compared to holding a constant 100% exposure to S&P500 or a fixed 60 %
equities / 40 % bonds allocation. Ranking strategies based on absolute values of annual average
fees ∆s again, an investor with low risk aversion (γ = 1) prefers a strategy mainly composed of
the business cycle phase assessor and the monetary policy stance signal. An investor with a higher
risk aversion (γ = 10) will prefer the strategy adding the market sentiment to the two signals
mentioned previously (MS-Bull-Bear-Return-Uni-MP-BC). Globally, the strategy applying the 3-
signal approach compares very well and is the most reliable strategy when considering different
aversion profiles and holding periods.

Table 4.3: 10-year rolling window fees

10 Year S&P500 60/40 Cash

γ 1 10 1 10 1 10
MS-Bull-Bear-Return-Uni 1.20% 13.21% 2.49% 3.32% 6.37% 2.40%

MS-Bull-Bear-Return-Uni-BC 1.41% 12.46% 2.72% 2.63% 6.63% 1.73%
MS-Bull-Bear-Return-Uni-MP 0.28% 13.24% 1.56% 3.36% 5.40% 2.43%

MP-BC 2.24% 11.79% 3.57% 2.00% 7.52% 1.12%
MS-Bull-Bear-Return-Uni-MP-BC 1.39% 14.04% 2.70% 4.09% 6.60% 3.18%

4.5.3. Event study

In this subsection we focus on specific monetary and macroeconomic events to understand precisely
the added value of the 3-signal strategy compared to the alternative ones. In our dataset, there
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are three occurrences of macroeconomic downturns. The Dot com recession in 2001, the Great
Financial Crisis from December of 2007 to May 2009 and the Covid recession. From the monetary
policy standpoint, our dataset is composed of four rate hiking cycles as well as four cutting cycles.
We have first the January to May 2000 monetary restriction phase, which in fact started in June
1999, intended to deflate the Dot com growing bubble and cooling down an economy at the time
around its potential. The equity bubble started to crack in March 2000 and slowly to diffuse into
the real economy, hence forcing the Federal Reserve to react and cut rates from January 2001
to December 2001, fighting the 8-month long recession and following a Taylor-type rule (Taylor
(2007)). The recovery at the time was muted (jobless recovery as mentioned by Bernanke (2010))
and the geopolitical uncertainty brought by middle east wars made the Federal Market Committee
decide two rate cuts in November 2002 and June 2003 to fight deflation fears. Starting from this
final cut, US growth picked up again in 2004 and 2005. In the wake of this economic expansion,
real estate imbalances started to appear obliging the Fed to dampen inflationary pressures from
June 2004 to June 2006. The following housing burst started to spread to real economy with rising
unemployment and triggered an easing cycle starting from September 2007 to April 2008. The Fed
paused the easing cycle afterwards to evaluate the effects of its action. Recession began in Decem-
ber 2007 inducing financial confusion translating into the worst banking crisis in history deepening
the macroeconomic downturn and forcing the Fed to reach the zero-lower bound (first-time in his-
tory) and to provide ample liquidity to the markets by implementing balance-sheet tools. By its
amplitude and duration, the great financial recession became the worst economic downturn in US
economic history. Hence bringing the necessity for monetary policy to use a set of new tools such
as forward guidance and quantitative easing (Bernanke (2020)). After a false hawkish signal known
as "taper tantrum" in May 2013 and in the wake of a recovering economy the FOMC proceeded to
a gradual policy normalisation from December 2015 to December 2018. Growing concerns about
inflation path and economic uncertainty induced by the Trade War between the US and China
drove the FOMC to proceed to a "mid-cycle policy adjustment" in 2019. The outbreak of Covid-19
led to a two-month recession far fom historical standards by its duration and amplitude but obliged
the FOMC to reach the zero-lower bound and provide historically ample liquidity to the markets
again. The historic expansive policy mix in a supply-constrained world economy, amplified by
the energy shock provoked by Ukraine War in February 2022 forced the FOMC to proceed to an
expeditive monetary restriction from March 2022 to July 2023.

Figure 4.9 shows us that S&P500 was the asset class benefiting the most of the sequence de-
scribed above compared to cash or long-term treasury bonds. The 60 % equities / 40 % bonds
portfolio suffers from being constantly underexposed to the equity market. This fact is also de-
picted in Table 4.1. We now turn to the analysis of the strategies during "normal" and "abnormal"
times. We characterize "abnormal" times as periods during which macroeconomic downturns occur
or tightening monetary policy are implemented. "Normal" times are periods of economic expansion
and either neutral monetary policy stance or easing ones. Only two years over our 23 year long
sample have experienced a monetary easing cycle: 2007 and 2019.
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Table 4.4 displays annual Sharpe ratios during recession years. Given the "safe heaven" nature
of long-term Treasury bonds, this is the only asset class which performs on average positively
during recession years. Moreover, recession periods are accompanied with monetary policy easing
to counter deflationary pressures or unsustainable high employment with respect to the Federal
Reserve dual mandate. Yet, the profile remain very heterogeneous across downturn years as the
2009 recovery has pushed long term yields up,as part of market reflation expectations mechanism.
Equity indices suffer from macroeconomic headwinds, on average the Sharpe ratios are slightly
negative. Yet, 2009 recession exit and ample monetary support made the S&P500 skyrocket in the
second part of the year, thus yielding a positive annual Sharpe ratio (the 2009 market recovery
was steady as displayed in Figure 4.10). Likewise, the 2020 recession brought the Sharpe ratio
in positive territories given the historical monetary and budgetary stimulus in US economy (as
the cumulative returns show in Figure 4.11). The constant 60 % equities / 40 % bonds portfolio
also displays a slightly negative Sharpe ratio on average during recession years. Two competi-
tive strategies outperform the 60 % equities / 40 % bonds constant portfolio on average during
recession years: the strategy implementing a monetary stance/business cycle detection (MP-BC)
with a positive Sharpe ratio on average. The second best remains the strategy adding the Market
sentiment to the above mentioned 2 signals (MS-Bull-Bear-Return-Uni-MP-BC). This result is also
even more striking when looking at returns themselves in Table 4.16 showed in Appendix 4.7.4.3.

Table 4.4: Annual Sharpe Ratios during recessions

2001 2008 2009 2020 Average

MS-Bull-Bear-Return-Uni -1.24 1.16 -0.86 -0.11 -0.26
MS-Bull-Bear-Return-Uni-BC -1.34 -1.53 1.29 0.13 -0.36
MS-Bull-Bear-Return-Uni-MP -1.15 1.05 -1.05 -0.24 -0.35

MP-BC -1.29 0.44 1.15 0.39 0.17
MS-Bull-Bear-Return-Uni-MP-BC -1.56 0.84 0.54 0.15 -0.01

S&P500 -0.65 -1.29 1.20 0.50 -0.06
60/40 -0.78 -1.17 0.87 0.83 -0.06

10 Year Bond -0.63 1.54 -1.28 1.28 0.23

Table 4.5 displays annual Sharpe ratios during monetary tightening cycles. Long term Treasuries
generally suffer from Monetary policy tightening cycles as yield rise along the maturity curve.
This explains the negative average Sharpe ratio. The 60 % equities / 40 % bonds portfolio suffers
from this Bond dynamic. Surprisingly the S&P500 index resists quite well to those monetary
restriction periods with a positive average Sharpe ratio. The Table shows nonetheless the ability of
strategies incorporating business cycle phases and monetary policy stance or the 3-signal approach
to outperform the 60 % equities / 40 % bonds portfolio. When looking at yearly returns in Table
4.17, Appendix 4.7.4.3, adding the monetary policy stance signal always enable to limit losses.
2022 is a text-book case of restrictive monetary policy. Table 4.17 shows the ability of strategies
incorporating either the market sentiment and monetary policy stance or the 3-signal approach
to drastically reduce the loss incurred. The profile of the cumulative returns shown in Figure
4.12 confirm this fact. Adding the monetary policy stance to the market sentiment or to the
market sentiment and business cycle phase assessor combined during 2022 allows the investor with
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a quadratic utility function to always prefer being invested in those strategies compared to the
S&P500 or the 60 % equities / 40 % bonds portfolio (Table 4.7). The results in the Table 4.7 are
quite intuitive: the investor would always have chosen to remain fully cash invested, no matter
his aversion profile. Nonetheless, compared to the other two benchmark strategies and for each
aversion parameter γ, he would have chosen a strategy capable of tracking the monetary policy
risk. This is in line with Cochrane (1999) who highlights that risk-averse investors might favour a
portfolio with lower Sharpe ratio in a context of time-varying risk and return, if it is able to offer
a hedge during times of financial distress.

Table 4.5: Annual Sharpe Ratios during monetary policy tightening

2000 2004 2005 2006 2015 2016 2017 2018 2022 Average

MS-Bull-Bear-Return-Uni -0.73 0.73 0.10 1.03 -0.61 1.45 3.56 -0.40 -2.40 0.30
MS-Bull-Bear-Return-Uni-BC -0.59 0.94 0.12 1.05 -0.21 0.94 3.56 -0.44 -1.18 0.47
MS-Bull-Bear-Return-Uni-MP -0.69 1.06 0.09 0.76 -0.42 1.55 3.40 -0.37 -1.66 0.41

MP-BC -0.46 1.31 0.11 0.77 0.17 0.81 3.41 -0.37 -0.95 0.53
MS-Bull-Bear-Return-Uni-MP-BC -0.55 1.19 0.10 0.77 -0.06 1.22 3.40 -0.39 -1.38 0.48

S&P500 -0.62 1.02 0.14 1.05 0.03 0.80 3.57 -0.41 -0.89 0.52
60/40 -0.52 0.94 -0.21 0.41 0.05 0.76 3.19 -0.59 -1.33 0.30

10 Year Bond 0.32 -0.30 -1.00 -1.78 -0.07 -0.28 -0.28 -1.14 -2.11 -0.74

Table 4.6 displays the annual Sharpe ratios of the competing strategies in normal times. At first
glance, the 60 % equities / 40 % bonds portfolio is the one yielding the higher risk-scaled return on
average. S&P 500 is the second asset class with regard to historical standards. The strategies we
propose exhibit Sharpe ratios superior to 1 and beat the 100% Bond portfolio. This result validates
the idea that the investor pays an insurance fee against "abnormal episodes". If the economic and
monetary cycles were only composed of steady expanding periods one could consider the 60 %
equities / 40 % bonds portfolio as the best solution for asset allocation. This is also the reason
why this allocation strategy has been the race-horse for decades in asset management industry. The
annual returns in "normal" periods displayed in Appendix 4.7.4.3, Table 4.15 confirm the S&P500
yields the better performance. At a cost of higher volatility, all alternative strategies except the
one incorporating the risk sentiment and the monetary policy stance signal tend to outperform the
60 % equities / 40 % bonds portfolio on average.

Table 4.6: Annual Sharpe Ratios during "normal times"

2002 2003 2007 2010 2011 2012 2013 2014 2019 2021 Average

MS-Bull-Bear-Return-Uni 0.88 0.33 0.05 0.91 1.55 0.25 3.1 1.16 1.91 1.48 1.17
MS-Bull-Bear-Return-Uni-BC -1.56 1.68 -0.04 0.72 0.23 0.71 3.2 1.27 2.29 2.36 1.09
MS-Bull-Bear-Return-Uni-MP 1.23 0.07 -0.04 0.84 1.81 0.18 2.5 1.13 1.89 1.51 1.12

MP-BC -1.62 1.63 -0.07 0.61 0.14 1.06 2.6 1.38 2.70 2.55 1.10
MS-Bull-Bear-Return-Uni-MP-BC -1.39 1.51 -0.06 0.92 0.99 0.71 2.6 1.25 2.47 2.16 1.12

S&P500 -1.25 1.69 0.06 0.77 0.08 1.16 3.3 1.38 2.74 2.51 1.24
60/40 -1.17 1.70 0.08 1.11 0.70 1.72 2.1 2.12 3.36 2.18 1.39

10 Year Bond 1.17 -0.33 -0.14 0.64 1.51 0.34 -1.4 1.30 0.82 -0.71 0.32
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Figure 4.10: Cumulative return of the selected strategies and benchmarks during the Great
Financial Crisis and its aftermath
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Figure 4.11: Cumulative return of the selected strategies and benchmarks during the Covid crisis
and its aftermath
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Figure 4.12: Cumulative return of the selected strategies and benchmarks during the 2022
monetary policy tightening
Table 4.7: 2022 annual fees

2022 S&P500 60/40 Cash

γ 1 10 1 10 1 10
MS-Bull-Bear-Return-Uni -7.39% 10.13% -7.18% -2.63% -25.32% -29.34%

MS-Bull-Bear-Return-Uni-BC 6.02% 23.53% 6.27% 9.19% -14.45% -20.82%
MS-Bull-Bear-Return-Uni-MP 8.91% 32.70% 9.17% 17.45% -12.11% -14.52%

MP-BC 8.13% 23.88% 8.38% 9.45% -12.74% -20.73%
MS-Bull-Bear-Return-Uni-MP-BC 8.77% 30.94% 9.03% 15.85% -12.22% -15.76%
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4.6. Conclusion

Investors seeking consistent returns across economic phases, both from a business cycle and mon-
etary policy perspective, face challenging questions regarding portfolio construction. Trying to
time the occurrence of the phases on each of those axes can be of a great relevance to that aim.
This work shows the added value for an investor who wants to diversify its portfolio to take into
account business cycle dynamics, market sentiment and monetary policy stance. The Chapter
contributions to the regime-contingent asset allocation literature are three-fold.

It first introduces a novel approach to gauge the monetary policy regime through real interest
rates dynamics using a Markov-switching dynamic factor model capturing the co-movement of
long-term maturities real yields. This model proves to be reliable in identifying monetary policy
restriction signals both in-sample and out-of-sample using weekly market data.

It then extends Maheu et al. (2012) bull/bear specification into a dynamic factor model in order to
capture a multivariate equity market sentiment allowing for bull corrections and bear rallies. This
signal succeeds in capturing an underlying market sentiment across four major US equity indices.

This Chapter finally combines the monetary policy stance signal with the market sentiment and
a weekly real-time business cycle phase assessor within a long-only asset allocation framework.
The benefit for an investor to take into account those three dimensions is paramount to weigh
dynamically its portfolio. The regimes along those axes and their underlying market prices dy-
namics warrant allocations beyond the traditional fixed 60 % equities / 40 % bonds portfolio.
The backtests implemented show that taking into account the three-signal approach in a dynamic
equity/bond/cash hedging strategy maximizes the Sharpe ratio between the 7th of January 2000
to the 24th February 2023. Moreover, no matter the portfolio holding period considered (rolling 1
year to 10 year windows) or the monetary/economic regime faced the returns and Sharpe ratios are
higher than the 60 % equities / 40 % bonds benchmark advocating this approach is reliable for an
investor who seeks steady returns. The economic utility of the investor in strategies incorporating
those three cycles shows to be maximal on 1 year to 10 year rolling windows regardless of his/her
risk aversion profile.

This promising framework could be used in a bigger investment universe. One could also con-
sider the assets weighting scheme being defined by traditional portfolio construction optimizations
such as mean-variance, constant volatility or a risk parity approach. A multi-country adaptation
of this model would be relevant to allow for a geographical diversification. Those questions are left
for further research.
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4.7. Appendix

4.7.1. Priors

4.7.1.1. Monetary policy stance identification

This section describes the priors used for the distributions of the parameter vector ϑ(MP ).
λ1 is set to one for identification purposes. For all j = 2, . . . ,m, we use the following prior to
sample λj the j-th element of the factor loading matrix Λ in (4.1)

λj ∼ N (aj , Aj) (4.6)

where hyperparameters are set to aj = 0 and Aj = 1. To sample the parameters linked to the
residuals uj,t in (4.2), we use the following priors, for l = 1,

ψj,l ∼ N (π,Π) π = 0,Π = 1
σ2

e,j ∼ IG(νi, Zi) νi = 20, Zi = 20
(4.7)

where IG denotes the inverse-gamma distribution. Each row of P(MP) follows a Dirichlet distri-
bution.

{p1,1, p1,2, p1,3, p1,4} ∼ Dir(2000, .5, 150, .5)

{p2,1, p2,2, p2,3, p2,4} ∼ Dir(.5, 2000, .5, 150)

{p3,1, p3,2, p3,3, p3,4} ∼ Dir(150, 15, 2000, 100)

{p4,1, p4,2, p4,3, p4,4} ∼ Dir(.5, 150, 100, 2000)

The prior for the Markov-switching intercept in equation (4.3) is given by :

µ = (µ1, µ2, µ3, µ4)′ ∼ N (α∗, A∗) (4.8)

with α∗ = (−1, 1, 0, 0)′ and A∗ = I4.

The prior for the factor variance in equation (4.3) is given by, for i = 1, ..., 4:

σ2
i ∼ IG(ν∗

i , Z
∗
i ) ν∗

i = 20, Z∗
i = 20

4.7.1.2. Business Cycle turning point detection

This section describes the priors used for the distributions of the parameter vector ϑ(BC).
λ1 is set to one for identification purposes. For all j = 2, . . . ,m, we use the following prior to
sample λj the j-th element of the factor loading matrix Λ in (4.1)

λj ∼ N (aj , Aj) (4.9)
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where hyperparameters are set to aj = 0 and Aj = 0.1. To sample the parameters linked to the
residuals uj,t in (4.2), we use the following priors, for l = 1, 2,

ψj,l ∼ N (π,Π) π = 0,Π = 0.1
σ2

e,j ∼ IG(νi, Zi) νi = 2, Zi = 1
(4.10)

where IG denotes the inverse-gamma distribution. Additionally, independent beta distributions
can be used as conjugate prior for each transition probability

π(q, p) ∝ qu00(1 − q)u01pu11(1 − p)u10 (4.11)

As in Doz et al. (2020), we put an informative prior and set u00 = 470, u01 = 9, u10 = 9, u11 =
90 in order to take into account the relative persistence of each of the regimes as observed on
macroeconomic data. The prior for the Markov-switching intercept in equation (4.3) is given by :

µ = (µ0, µ1)′ ∼ N (α∗, A∗) (4.12)

with α∗ = (.3,−.3)′ and A∗ = diag(0.04, 0.04). We acknowledge that, in the spirit of Leiva-
Leon et al. (2020), relatively tight priors are used for identification purposes. The informativeness
brought by the first moment is indeed needed to discriminate between the regimes over the param-
eters space. The prior for the autoregressive parameter ϕ in equation (4.3) is given by

ϕ ∼ N (α,A) (4.13)

where α = 0, A = 0.1. In the case of a MS-DFM-ARCH, we use the following prior for the vector
θ(ARCH) = (ω, α)

log θ(ARCH) ∼ N (θ(ARCH)
0 , Vθ)1(α < 1).

θ(ARCH) thus follows a truncated log-normal distribution with the stationarity restriction that
α < 1. We set the hyperparameters to θ(ARCH)

0 = log(1, 0.5) and Vθ = diag(1, 1).

4.7.1.3. Market sentiment

This section describes the priors used for the distributions of the parameter vector ϑ(MP ).
λ1 is set to one for identification purposes. For all j = 2, . . . ,m, we use the following prior to
sample λj the j-th element of the factor loading matrix Λ in (4.1)

λj ∼ N (aj , Aj) (4.14)

where hyperparameters are set to aj = 0 and Aj = 1. To sample the parameters linked to the
residuals uj,t in (4.2), we use the following priors, for l = 1,

ψj,l ∼ N (π,Π) π = 0,Π = 1
σ2

e,j ∼ IG(νi, Zi) νi = 2, Zi = σ2
yj

(4.15)
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where IG denotes the inverse-gamma distribution. Each row of P(MS) follows a Dirichlet distri-
bution.

{p1,1, p1,2, p1,4} ∼ Dir(8, 1.5, 0.5)

{p2,1, p2,2, p2,4} ∼ Dir(1.5, 8, 0.5)

{p3,1, p3,3, p3,4} ∼ Dir(0.5, 8, 1.5)

{p4,1, p4,3, p4,4} ∼ Dir(0.5, 1.5, 8)

The prior for the Markov-switching intercept in equation (4.3) is given by :

µ = (µ1, µ2, µ3, µ4)′ ∼ N (α∗, A∗) (4.16)

with α∗ = (−.7, .2,−.2, .3)′ and A∗ = I4.

The prior for the factor variance in equation (4.3) is given by, for i = 1, ..., 4:

σ2
i ∼ IG(ν∗

i , Z
∗
i ) ν∗

i = 2, Z∗
i = σ2

y1

4.7.2. Bayesian Estimation

Let z(T ) = {z1, ...,zT } the unobserved state, y(T ) = {y1, ...,yT } the observed data and S(T ) =
{S1, ..., ST } the first order Markov-Chain. We describe the Gibbs sampler steps based on Kim
and Nelson (1999) and follow their notations. The Gibbs sampler consists of iterating between the
three following steps sequentially.

4.7.2.1. Generation of the state vector

The joint distribution of z(T ), given y(T ), S(T ) and ϑ(.) can be defined as

p(z(T ) | y(T ), S(T ),ϑ(.)) = p(zT | y(T ), S(T ),ϑ(.))
T −1∏
t=1

p(zt | y(t), S(t),ϑ(.), zt+1)

which boils down to generating zt for t = T, T − 1, ..., 1 from

zT | y(T ), S(T ),ϑ(.) ∼ N (zT |T ,VT |T )
zt | y(t), S(t), zt+1,ϑ

(.) ∼ N (zt|t,zt+1 ,Vt|t,zt+1)
(4.17)

where zt|t = E(zt | y(t)) and Vt|t = V ar(zt | y(t)) for t = 1, ..., T . In equation (4.17), zT |
y(T ), S(T ),ϑ(.) can be generated using the Multi-move Gibbs sampling introduced by Carter and
Kohn (1994) as follows

1. We use the Kalman filter to obtain zt|t and Vt|t for t = 1, ..., T . The last iteration of the
filter gives zT |T and VT |T which are then used to generate zT .
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2. For t = T − 1, T − 2, ..., 1, zt|t and Vt|t, zt+1 can be considered as an incremental vector
of observations in the system. The distribution p(zt | y(T ), S(t),ϑ(.), zt+1) is then deduced
from the Kalman smoother. From equation (4.4), updating equation are then given by

zt|t,zt+1 = zt|t + Vt|tΞς̃t/Rt

Vt|t,zt+1 = Vt|t − Vt|tΞ
′ΞV ′

t|t/Rt

where ς̃t = zt+1 − δSt+1 − Ξzt|t and Rt = ΞVt|tΞ
′ + σ2

t+1.

4.7.2.2. Generation of the Markov Chain

Once z(T ) has been simulated, given ϑ(.), the Markov Chain S(T ) can be generated from the
following distribution

p(S(T ) | y(T ), z(T ),ϑ(.)) = p(ST | y(T ), z(T ),ϑ(.))
∏T −1

t=1 p(St | y(t), z(t), St+1,ϑ
(.))

= p(ST | z(T ),ϑ(.))
∏T −1

t=1 p(St | z(t), St+1,ϑ
(.))

as the distribution of S(T ) is orthogonal to y(T ) given z(T ). We can thus obtain conditional draws
for S(T ) as follows

1. We use the Hamilton (1989) filter on (4.3) to generate p(St | z(t),ϑ(.)) for t = 1, 2, ..., T and
save them. The last iteration gives p(ST | z(T ),ϑ(.)) from which we get ST .

2. To draw St given z(T ) and St+1, for t = T − 1, T − 2, ..., 1 the following result is used

p(St | z(t), St+1,ϑ
(.)) = p(St+1 | St)p(St | z(t),ϑ(.))

p(St+1 | z(t),ϑ(.)) ∝ p(St+1 | St)p(St | Z(t),ϑ(.))

where p(St+1 | St) is the transition probability in ϑ(.) and p(St | z(t),ϑ(.)) is obtained form
the values saved in the previous step.

3. The last step consists in drawing from

Pr(St = 1 | z(t), St+1,ϑ
(.)) = p(St+1 | St = 1)p(St = 1 | z(t),ϑ(.))∑1

j=0 p(St+1 | St = j)p(St = j | z(t),ϑ(.))

where St is drawn from a uniform distribution St ∼ U(0, 1). If the generated number is
smaller than Pr(St = 1 | St+1, z

(t),ϑ(.)), St = 1, otherwise St = 0.

4.7.2.3. Generation of the parameters vector

4.7.2.3.1 Monetary policy stance identification

To generate P(MP), we follow Geweke (2005). We denote the sum of transitions from the state
St−1 = i to St = j by nij . Each row of (MP) are drawn from posteriors:
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Dir(2000 + n11, .5 + n12, 150 + n13, .5 + n14)

Dir(.5 + n21, 2000 + n22, .5 + n23, 150 + n24)

Dir(150 + n31, 15 + n32, 2000 + n33, 100 + n34)

Dir(.5 + n41, 150 + n42, 100 + n43, 2000 + n44)

Given y(T ) and f (T ), we can rewrite equation-by-equation equation (4.1) with

y∗
j,t = λjf

∗
j,t + ej,t

for j = 2, . . . ,m, where y∗
j,t and f∗

j,t are the j-the respective components of

y∗
t = yt − ψ̄1 ◦ yt−1

f∗
t = emft − ψ̄1ft−1

(4.18)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1 being the order of the
AR specification in equation (4.2). From (4.6) and (4.18), we obtain conditional draws for λj from
the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.

Given y(T ) and f (T ), from (4.1) we can measure u(T ) and from equation (4.2) and the prior
distribution (4.10), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)′. Similarly, from the generated ψj and from (4.10), we can draw σ2

e,j

from the posterior distribution

IG

νj + T

2 , Zj +

(
u

(T )
j −ψ′

jw
(T )
j

)′ (
u

(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ). Rewriting equation (4.3), we have

ft

σSt

= µSt

σSt

+ ηt

Let us denote G∗
t the left-hand side of the above equation and

Q∗(T ) =
[
S(T ) = 1 S(T ) = 2 S(T ) = 3 S(T ) = 4

]
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From the prior distribution (4.12), µ can be drawn from the posterior distribution :

µ ∼ N ((A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1),

and only draws verifying the condition µ1 < µ3 < 0 < µ4 < µ2 are kept. For i = 1...n, σ2
St=i is

drawn from the posterior distribution:

IG

(
.5 +

∑T
t=1 (St = i)

2 , 20 + (fS(T )=i − µSt=i)′ (fS(T )=i − µSt=i)
2

)
.

and only draws verifying the condition σ1 > σ3 and σ2 > σ4

4.7.2.3.2 Business Cycle turning point detection

We now turn to the generation of draws for the vector of parameters. To do so, we will sequentially
draw components of the ϑ vector as follows.
We obtain conditional draws for the transition probabilities p and q following Albert and Chib
(1993). In particular, given S(T ) and the initial state, we denote the sum of transitions from the
state St−1 = i to St = j by nij , the log-likelihood is given by

L(q, p) = qn00(1 − q)n01pn11(1 − p)n10 .

By combining the likelihood function and the conjugate priors presented in the previous section,
from equation (4.11), we get the conditional distributions of (p, q) as the product of the independent
beta distributions from which we generate p and q as

q | S(T ) ∼ Beta(u00 + n00, u01 + n01)
p | S(T ) ∼ Beta(u11 + n11, u10 + n10).

Given y(T ) and f (T ), we can rewrite equation-by-equation equation (4.1) with

y∗
j,t = λjf

∗
j,t + ej,t

for j = 2, . . . ,m, where y∗
j,t and f∗

j,t are the j-the respective components of

y∗
t = yt − ψ̄1 ◦ yt−1

f∗
t = emft − ψ̄1ft−1

(4.19)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1 being the order of the
AR specification in equation (4.2). From (4.9) and (4.19), we obtain conditional draws for λj from
the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.
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Given y(T ) and f (T ), from (4.1) we can measure u(T ) and from equation (4.2) and the prior
distribution (4.10), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)′. Similarly, from the generated ψj and from (4.10), we can draw σ2

e,j

from the posterior distribution

IG

νj + T

2 , Zj +

(
u

(T )
j −ψ′

jw
(T )
j

)′ (
u

(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ,θ
(ARCH)′). The parameters are drawn from the

three full conditional distributions p(µ | z(T ), S(T ), ϕ,θ(ARCH)), p(ϕ | z(T ), S(T ),θ(ARCH)) and
p(θ(ARCH) | z(T ), S(T ), ϕ) sequentially. Since µSt

and ϕ appear in the conditional variance equa-
tion, those distributions are non-standard, as noted by Chan and Grant (2016), and Metropolis
Hastings algorithms are required. Rewriting equation (4.3), we have

ft − ϕft−1

σt
= µ0(1 − St) + µ1St

σt
+ ηt

Let us denote G∗
t the left-hand side of the above equation and Let us denote G∗

t the left-hand side
of the above equation and

Q∗(T ) =
[

1 − S(T ) S(T )
]

From the prior distribution (4.12), to sample µ, we use a multivariate Gaussian proposal :

N
[
(A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1

]
and only keep draws verifying µ0 > µ1. Rewriting again equation (4.3) yields

ft − µ0(1 − St) − µ1St

σt
= ϕ

ft−1

σt
+ ηt.

Denoting G̃t the left-hand side of the above equation and Q̃t the right-hand side. To sample ϕ we
use a Gaussian proposal with mean ϕ̄ and variance Vϕ given by

ϕ̄ = (A−1 + Q̃′Q̃)−1(A−1α+ Q̃′G̃)
Vϕ = (A−1 + Q̃′Q̃)−1.

Only draws satisfying the stationarity condition |ϕ| < 1 are kept. Finally to sample θ(ARCH), we
use a Gaussian proposal centered at the mode of p(θ(ARCH) | z(T ), St, ϕ) with covariance matrix
set to be the outer product of the scores.
4.7.2.3.3 Market sentiment

To generate P(MS), we follow Geweke (2005). We denote the sum of transitions from the state
St−1 = i to St = j by nij . Each row of P(MS) are drawn from posteriors:
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Dir(8 + n11, 1.5 + n12, 0.5 + n14)

Dir(1.5 + n21, 8 + n22, 0.5 + n24)

Dir(0.5 + n31, 8 + n33, 1.5 + n34)

Dir(0.5 + n41, 1.5 + n43, 8 + n44)

Given y(T ) and f (T ), we can rewrite equation-by-equation equation (4.1) with

y∗
j,t = λjf

∗
j,t + ej,t

for j = 2, . . . ,m, where y∗
j,t and f∗

j,t are the j-the respective components of

y∗
t = yt − ψ̄1 ◦ yt−1

f∗
t = emft − ψ̄1ft−1

(4.20)

with em denoting a vector of 1 of length m qnd ψ̄l = (ψ1,l, . . . , ψm,l), l = 1 being the order of
the AR specification in equation (4.2). From (4.14) and (4.20), we obtain conditional draws for λj

from the posterior distribution

N
[(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1 (
Ajaj + σ−2

e,j f
∗(T )′

j y
∗(T )
j

)
,
(
A−1

j + σ−2
e,j f

∗(T )′

j f
∗(T )
j

)−1
]
.

Given y(T ) and f (T ), from (4.1) we can measure u(T ) and from equation (4.2) and the prior
distribution (4.10), for all j = 1, . . . ,m, we can draw ψj from the posterior distribution

N
[(

Π−1
j + σ−2

e,jw
(T )′

j w
(T )
j

)−1 (
Π−1

j πj + σ−2
e,jw

(T )′

j u
(T )
j

)
,
(
Π−1

j + σ−2
e,jw

(T )′

j w
(T )
j )−1

)]
where wj,t = (uj,t−1, uj,t−2)′. Similarly, from the generated ψj and from (4.10), we can draw σ2

e,j

from the posterior distribution

IG

νj + T

2 , Zj +

(
u

(T )
j −ψ′

jw
(T )
j

)′ (
u

(T )
j −ψ′

jw
(T )
j

)
2

 .

Finally, we turn to the generation of (µ0, µ1, ϕ). Rewriting equation (4.3), we have

ft

σSt

= µSt

σSt

+ ηt

Let us denote G∗
t the left-hand side of the above equation and

Q∗(T ) =
[
S(T ) = 1 S(T ) = 2 S(T ) = 3 S(T ) = 4

]
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From the prior distribution (4.12), µ can be drawn from the posterior distribution :

µ ∼ N ((A∗−1 +Q∗(T )′Q∗(T ))−1(A∗−1α+Q∗(T )′G∗(T )), (A∗−1 +Q∗(T )′Q∗(T ))−1),

and only draws verifying the condition µ1 < 0, µ2 > 0, µ3 < 0, µ4 > 0, and the long run conditions
π1

π1+π2
µ1 + π2

π1+π2
µ2 > 0, π3

π3+π4
µ3 + π4

π3+π4
µ4 < 0. For i = 1...n, σ2

St=i is drawn from the posterior
distribution:

IG

(
.5 +

∑T
t=1 (St = i)

2 , 20 + (fS(T )=i − µSt=i)′ (fS(T )=i − µSt=i)
2

)
.

For the univariate specification of the market sentiment, the dynamic factor structure presented
in equations (4.1) to (4.3) is not used. We have yt | St ∼ N (µSt

, σ2
St

). We thus discard the step
generating the state vector presented in 4.7.2.1.
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4.7.2.4. Posterior distributions of the parameters

Table 4.8: Monetary Policy stance model parameters posteriors

Variables Parameters Mean Std

5Y λ 1 0
7Y λ 0.96 0.02
10Y λ 0.88 0.02
5Y ψ -0.27 0.04
7Y ψ -0.28 0.06
10Y ψ -0.13 0.03
5Y σ2

e 0.15 0.01
7Y σ2

e 0.10 0.01
10Y σ2

e 0.32 0.02
Factor

µ1 -0.31 0.17
µ2 0.02 0.02
µ3 -0.06 0.05
µ4 0.05 0.03
σ1 4.10 0.72
σ2 0.54 0.13
σ3 1.08 0.17
σ4 0.36 0.05
P11 0.93 0.01
P12 0.00 0.00
P13 0.07 0.01
P14 0.00 0.00
P21 0.00 0.00
P22 0.93 0.01
P23 0.00 0.00
P24 0.07 0.01
P31 0.06 0.01
P32 0.01 0.00
P33 0.89 0.01
P34 0.04 0.00
P41 0.00 0.00
P42 0.07 0.01
P43 0.04 0.00
P44 0.89 0.01
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Table 4.9: Multivariate Market Sentiment model parameters posteriors

Variables Parameters Mean Std

S&P500 λ 1 0
Russell λ 1.1524 0.0172
Nasdaq λ 1.0996 0.0126

Dow Jones λ 0.946 0.0294
S&P500 ψ -0.2953 0.0506
Russell ψ -0.0123 0.0288
Nasdaq ψ 0.0466 0.0463

Dow Jones ψ -0.379 0.0221
S&P500 σ2

e 0.0536 0.0059
Russell σ2

e 0.3298 0.0146
Nasdaq σ2

e 0.1081 0.0078
Dow Jones σe 1.6205 0.0548

Factor
µ1 -0.7168 0.3338
µ2 0.1294 0.104
µ3 -0.0453 0.066
µ4 0.191 0.0232
σ1 6.9455 1.9506
σ2 1.3513 0.25
σ3 1.0703 0.2164
σ4 0.2868 0.0315
P11 0.7823 0.0751
P12 0.2001 0.0736
P14 0.0176 0.0233
P21 0.0263 0.0191
P22 0.9468 0.0255
P24 0.0269 0.0186
P31 0.0188 0.0112
P33 0.8818 0.0412
P34 0.0994 0.0377
P41 0.0014 0.0016
P43 0.0519 0.0201
P44 0.9467 0.0203

113



Table 4.10: Univariate Market Sentiment model parameters posteriors

Parameters Mean Std

µ1 -0.65 0.34
µ2 0.10 0.07
µ3 0.02 0.09
µ4 0.02 0.04
σ1 7.05 2.43
σ2 1.25 0.16
σ3 0.97 0.47
σ4 0.27 0.08
P11 0.78 0.08
P12 0.21 0.08
P14 0.01 0.02
P21 0.02 0.01
P22 0.96 0.02
P24 0.02 0.01
P31 0.02 0.01
P33 0.89 0.06
P34 0.10 0.05
P41 0.00 0.01
P43 0.09 0.07
P44 0.90 0.08

4.7.3. Market sentiment univariate specification in-sample and out-of-
sample probabilities
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Figure 4.13: In-sample probabilities from the univariate specification of the market sentiment

114



1990 1995 2000 2005 2010 2015 2020
0

0.5

1

Pr
ob
ab
ili
ty

bear regime

1990 1995 2000 2005 2010 2015 2020
0

0.5

1

Pr
ob
ab
ili
ty

bull regime

Figure 4.14: Bull/bear in-sample probabilities from the univariate specification of the market
sentiment
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Figure 4.15: Real-time probabilities from the univariate specification of the market sentiment
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Figure 4.16: Real-time bull/bear probabilities from the univariate specification of the market
sentiment

4.7.4. Performances of the portfolios

4.7.4.1. Rolling window performances

Table 4.11: 1Y rolling performances for the five groups of competing strategies and benchmarks

1 Y Return 1 Y Vol 1 Y SR 1 Y Max DD

MS-Sign-Return-Multi 6.1% 8.6% 0.51 6.5%
MS-Bull-Bear-Return-Multi 6.5% 9.7% 0.49 7.8%
MS-Sign-Return-Uni 3.8% 9.2% 0.22 8.2%
MS-Bull-Bear-Return-Uni 6.7% 9.0% 0.56 7.2%
MS-Sign-Return-Multi-BC 7.0% 11.4% 0.46 10.0%
MS-Bull-Bear-Return-Multi-BC 8.2% 11.7% 0.55 9.9%
MS-Sign-Return-Uni-BC 6.3% 10.8% 0.43 9.5%
MS-Bull-Bear-Return-Uni-BC 7.5% 10.3% 0.56 8.6%
MS-Sign-Return-Multi-MP 4.8% 8.8% 0.35 7.5%
MS-Bull-Bear-Return-Multi-MP 6.9% 9.5% 0.54 8.0%
MS-Sign-Return-Uni-BC 4.1% 7.3% 0.32 6.3%
MS-Bull-Bear-Return-Uni-MP 6.3% 8.0% 0.58 6.1%
MP-BC 8.3% 12.0% 0.55 10.1%
MS-Sign-Return-Multi-MP-BC 6.5% 9.8% 0.49 8.3%
MS-Bull-Bear-Return-Multi-MP-BC 7.6% 10.2% 0.57 8.6%
MS-Sign-Return-Uni-MP-BC 6.1% 8.7% 0.51 7.1%
MS-Bull-Bear-Return-Uni-MP-BC 7.3% 8.9% 0.63 7.0%
S&P500 8.3% 16.3% 0.42 14.3%
60Bond/40Equity 5.6% 9.2% 0.42 8.2%
Cash3m 1.6%
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Table 4.12: 2Y rolling performances for the five groups of competing strategies and benchmarks

2 Y Return 2 Y Vol 2 Y SR 2 Y Max DD

MS-Sign-Return-Multi 6.4% 8.5% 0.54 8.4%
MS-Bull-Bear-Return-Multi 7.2% 9.7% 0.56 9.5%
MS-Sign-Return-Uni 4.0% 9.4% 0.23 11.2%
MS-Bull-Bear-Return-Uni 7.7% 9.1% 0.65 8.2%
MS-Sign-Return-Multi-BC 7.1% 11.4% 0.47 13.8%
MS-Bull-Bear-Return-Multi-BC 8.2% 11.7% 0.55 13.4%
MS-Sign-Return-Uni-BC 6.4% 10.8% 0.43 13.1%
MS-Bull-Bear-Return-Uni-BC 7.8% 10.3% 0.59 11.1%
MS-Sign-Return-Multi-MP 5.1% 8.9% 0.37 10.0%
MS-Bull-Bear-Return-Multi-MP 6.9% 9.4% 0.55 10.2%
MS-Sign-Return-Uni-BC 4.3% 7.3% 0.35 8.3%
MS-Bull-Bear-Return-Uni-MP 6.9% 8.1% 0.64 7.0%
MP-BC 8.4% 11.9% 0.56 13.2%
MS-Sign-Return-Multi-MP-BC 6.8% 9.8% 0.52 11.1%
MS-Bull-Bear-Return-Multi-MP-BC 7.7% 10.2% 0.59 11.1%
MS-Sign-Return-Uni-MP-BC 6.4% 8.6% 0.55 9.0%
MS-Bull-Bear-Return-Uni-MP-BC 7.8% 8.9% 0.68 8.6%
S&P500 8.1% 16.5% 0.39 20.2%
60Bond/40Equity 6.0% 9.3% 0.45 11.2%
Cash3m 1.6%

Table 4.13: 5Y rolling performances for the five groups of competing strategies and benchmarks

5 Y Return 5 Y Vol 5 Y SR 5 Y Max DD

MS-Sign-Return-Multi 5.4% 8.5% 0.42 13.5%
MS-Bull-Bear-Return-Multi 7.7% 9.7% 0.62 11.1%
MS-Sign-Return-Uni 2.1% 9.8% 0.03 19.9%
MS-Bull-Bear-Return-Uni 8.3% 9.1% 0.71 9.1%
MS-Sign-Return-Multi-BC 7.6% 11.1% 0.53 19.4%
MS-Bull-Bear-Return-Multi-BC 8.7% 11.2% 0.62 18.3%
MS-Sign-Return-Uni-BC 5.9% 10.8% 0.38 21.5%
MS-Bull-Bear-Return-Uni-BC 8.4% 10.1% 0.66 14.0%
MS-Sign-Return-Multi-MP 5.4% 8.4% 0.44 12.5%
MS-Bull-Bear-Return-Multi-MP 7.2% 8.6% 0.63 11.6%
MS-Sign-Return-Uni-BC 3.3% 6.9% 0.22 12.5%
MS-Bull-Bear-Return-Uni-MP 7.4% 8.0% 0.71 7.7%
MP-BC 9.0% 11.4% 0.64 16.2%
MS-Sign-Return-Multi-MP-BC 7.3% 9.3% 0.60 13.3%
MS-Bull-Bear-Return-Multi-MP-BC 8.2% 9.4% 0.68 13.5%
MS-Sign-Return-Uni-MP-BC 6.2% 8.1% 0.55 12.2%
MS-Bull-Bear-Return-Uni-MP-BC 8.3% 8.5% 0.77 9.4%
S\&P500 7.5% 16.6% 0.35 31.4%
60Bond/40Equity 5.6% 9.2% 0.42 17.5%
Cash3m 1.7%
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Table 4.14: 10 year rolling performances for the five groups of competing strategies and benchmarks

10 Y Return 10 Y Vol 10 Y SR 10 Y Max DD

MS-Sign-Return-Multi 6.3% 9.3% 0.49 18.7%
MS-Bull-Bear-Return-Multi 7.3% 9.8% 0.57 13.1%
MS-Sign-Return-Uni 1.2% 11.5% -0.04 36.8%
MS-Bull-Bear-Return-Uni 8.2% 9.1% 0.71 10.2%
MS-Sign-Return-Multi-BC 7.7% 11.5% 0.52 27.3%
MS-Bull-Bear-Return-Multi-BC 8.9% 11.8% 0.61 24.3%
MS-Sign-Return-Uni-BC 5.5% 11.6% 0.33 34.0%
MS-Bull-Bear-Return-Uni-BC 8,4% 10,2% 0,66 18,2%
MS-Sign-Return-Multi-MP 5,5% 8,6% 0,44 16.6%
MS-Bull-Bear-Return-Multi-MP 7.5% 9.0% 0.63 13.3%
MS-Sign-Return-Uni-BC 3.0% 7.3% 0.17 19.9%
MS-Bull-Bear-Return-Uni-MP 7.2% 7.9% 0.69 9.0%
MP-BC 9.3% 11.6% 0.66 19.6%
MS-Sign-Return-Multi-MP-BC 7.5% 9.4% 0.61 16.4%
MS-Bull-Bear-Return-Multi-MP-BC 8.5% 9.7% 0.69 16.5%
MS-Sign-Return-Uni-MP-BC 6.3% 8.3% 0.55 16.3%
MS-Bull-Bear-Return-Uni-MP-BC 8.4% 8.5% 0.79 10.7%
S\&P500 7.0% 18.1% 0.29 49.9%
60Bond/40Equity 5.6% 10.0% 0.38 29.4%
Cash3m 1.7%
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4.7.4.2. Cumulative distributions of rolling window returns for selected
strategies
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Figure 4.17: Cumulative distribution functions of rolling window Returns from 1 year to 10 year
holding horizons

4.7.4.3. Yearly returns of the strategies in "normal" and "abnormal"
times

Table 4.15: Annual returns during "normal" times

2002 2003 2007 2010 2011 2012 2013 2014 2019 2021 Average

MS-Bull-Bear-Return-Uni 7.1% 3.8% 5.7% 6.1% 16.0% 2.6% 30.7% 12.2% 15.4% 12.9% 11.3%
MS-Bull-Bear-Return-Uni-BC -12.1% 16.6% 4.9% 7.5% 3.1% 7.6% 31.9% 13.8% 22.2% 23.0% 11.9%
MS-Bull-Bear-Return-Uni-MP 8.0% 1.5% 4.9% 5.3% 16.1% 1.9% 22.2% 11.5% 14.9% 12.7% 9.9%

MP-BC -21.6% 20.8% 4.5% 9.7% 2.4% 12.0% 24.1% 14.7% 30.4% 28.8% 12.6%
MS-Bull-Bear-Return-Uni-MP-BC -7.6% 11.0% 4.7% 7.8% 9.4% 6.9% 23.1% 13.1% 22.4% 20.5% 11.1%

S&P500 -23.0% 26.8% 6.1% 13.4% 2.1% 13.8% 33.4% 15.4% 32.3% 29.3% 15.0%
60/40 -10.4% 15.1% 5.8% 10.5% 7.5% 9.6% 14.3% 12.4% 22.2% 15.3% 10.2%

10 Year Bond 10.2% -1.9% 4.5% 4.9% 13.6% 2.7% -9.7% 7.3% 7.8% -3.4% 3.6%
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Table 4.16: Annual returns during recession periods

2001 2008 2009 2020 Average

MS-Bull-Bear-Return-Uni -6.7% 14.0% -7.7% -1.0% -0.3%
MS-Bull-Bear-Return-Uni-BC -10.0% -4.4% 16.0% 2.5% 1.0%
MS-Bull-Bear-Return-Uni-MP -4.6% 10.3% -6.8% -2.8% -1.0%

MP-BC -15.7% 6.0% 15.8% 8.0% 3.5%
MS-Bull-Bear-Return-Uni-MP-BC -10.0% 8.2% 4.3% 2.8% 1.3%

S&P500 -10.7% -39.0% 31.5% 16.1% -0.5%
60/40 -6.6% -19.1% 13.0% 15.5% 0.7%

10 Year Bond -2.0% 18.3% -12.7% 10.5% 3.6%

Table 4.17: Annual returns during tightening cylces

2000 2004 2005 2006 2015 2016 2017 2018 2022 Average

MS-Bull-Bear-Return-Uni 1.2% 8.4% 4.4% 15.0% -5.3% 12.3% 21.0% -1.6% -23.6% 3.5%
MS-Bull-Bear-Return-Uni-BC -0.6% 10.9% 4.6% 15.3% -1.9% 9.7% 21.1% -3.4% -12.8% 4.8%
MS-Bull-Bear-Return-Uni-MP 1.8% 10.1% 4.2% 11.5% -2.6% 12.5% 19.6% -1.2% -10.4% 5.1%

MP-BC -2.4% 13.2% 4.4% 11.6% 2.2% 10.2% 19.8% -4.1% -11.2% 4.9%
MS-Bull-Bear-Return-Uni-MP-BC 0.1% 11.7% 4.3% 11.6% -0.1% 11.4% 19.7% -2.4% -10.6% 5.1%

S&P500 -7.4% 12.1% 4.8% 15.5% 0.8% 10.6% 21.4% -5.1% -17.8% 3.9%
60/40 -0.7% 7.1% 2.2% 7.8% 0.8% 6.1% 12.3% -3.9% -17.7% 1.6%

10 Year Bond 8.5% -0.4% -1.9% -3.1% -0.2% -1.0% -0.2% -3.1% -18.8% -2.2%
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Résumé : Ce manuscrit de thèse se donne pour objet
de rapprocher le cadre méthodologique d’identification en
temps réel des dynamiques du cycle économique à la ges-
tion d’actifs. Le cycle économique est caractérisé par des
phases d’expansion et de récession dont la durée et l’am-
plitude sont hétérogènes. Les données macroéconomiques
qui servent à identifier les phases du cycle sont marquées
par des délais de publication et une asynchronicité dans
leur disponibilité. Les modèles à facteurs dynamiques à
changements de régimes markoviens sont une solution
privilégiée pour gérer ces spécificités. Dans le sillage de
l’événement extrême du Covid-19 (du point de vue de l’am-
plitude du choc et de sa relative courte durée), une grande
partie des modèles employés jusque-là pour identifier et da-
ter les changements de régimes dans le cycle économique
sont devenus inaptes à capter des retournements de plus
faible envergure.
Le premier chapitre de cette thèse s’emploie à développer
une extension des modèles mentionnés plus haut par le
biais d’une volatilité dynamique dans le mouvement du
cycle économique sous-jacent. Cette solution minore l’im-
pact des chocs extrêmes dans le processus d’identification
des régimes tout en les conservant dans le but d’établir une
détection plus robuste des futurs retournements conjonctu-
rels.
Le délai et l’asynchronicité de disponibilité des données ma-

croéconomiques sont un enjeu crucial pour les décideurs
politiques et les agents de marché. Le deuxième chapitre
de ce manuscrit introduit et démontre l’utilité de considérer
des données de prix de marchés afin d’établir une mesure
plus concomitante des retournements conjoncturels. Une
classe particulière d’actifs, les ”asset swap spreads”, lors-
qu’ils sont agrégés, se révèlent produire des évaluations
coı̈ncidentes des retournements conjoncturels. Ces prix
permettent de mitiger le coût d’opportunité induit par l’ab-
sence ou le délai d’information conjoncturelle officielle. Ap-
pliqués dans le cadre de stratégies de couverture, ces si-
gnaux se révèlent être d’une grande utilité pour l’investis-
seur.
L’allocation d’actifs se doit de prendre en compte les dy-
namiques conjoncturelles mais ce seul facteur n’est pas
suffisant dans le processus de construction de portefeuille.
Le troisième chapitre déploie une allocation de portefeuille
basée sur l’identification de régimes macroéconomiques
en ajoutant des signaux relatifs au sentiment de marché
ainsi qu’à la posture de politique monétaire. Comparées à
celles d’un portefeuille classique 60% actions/40% obliga-
tions, les performances basées sur l’approche à trois si-
gnaux permettent à l’investisseur d’optimiser le couple ren-
dement/risque tant dans les périodes de stress que de
croissance.

Title : Cyclical non-linearity, nowcasting and asset allocation
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Abstract : This thesis aims to reconcile real-time identifi-
cation of business cycle phases with asset management.
The business cycle is characterized by phases of expan-
sion and recession, with varying durations and amplitudes.
Macroeconomic data used to identify these phases are mar-
ked by publication delays and asynchronicity in their avai-
lability. Markov-switching dynamic factor models are a ty-
pical econometric framework to manage these characteris-
tics. In the wake of the extreme event of Covid-19 (in terms
of the shock’s magnitude and its relatively short duration),
many models previously employed to identify and date re-
gime changes in the economic cycle have become inade-
quate for capturing smaller-scale reversals.
The first chapter of this thesis develops an extension of the
aforementioned methodological framework by introducing
dynamic volatility into the unobserved business cycle dy-
namics. This solution reduces the impact of extreme shocks
in the regime identification process while retaining them to
establish a more robust detection of future cyclical rever-
sals. The delay and asynchronicity of macroeconomic data
availability are crucial issues for policymakers and market
participants.

The second chapter of this manuscript introduces and de-
monstrates the utility of considering market price data to es-
tablish a more concurrent measure of cyclical downturns. A
particular class of assets, the ”Asset Swap spreads” (a risk
premium fixed between two counterparts exchanging future
corporate bond coupons for a risk-free rate), when aggrega-
ted, produce coincident evaluations of macroeconomic re-
cessions. These prices help mitigate the opportunity cost
induced by the absence or delay of official macroeconomic
information. When applied in the context of hedging strate-
gies, these signals prove to be highly useful for investors.
Asset allocation must take into account economic down-
turns, but this factor alone is not sufficient in the portfolio
construction process.
The third chapter deploys a portfolio allocation based on
the identification of macroeconomic regimes, adding signals
related to market sentiment and monetary policy stance.
Compared to a classic 60% equities/40% bonds portfolio,
the performance based on the three-signal approach allows
investors to optimize the risk-adjusted return during both
stressed and expansion periods.
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