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1.1 Preamble

Since the day the prehistoric man crafted his first tools from stone, we have sought ways
to prevent our creations from breaking down. Today, in the age of digital intelligence,
we are rapidly revolutionizing how we optimize the maintenance of our modern machines.
Maintenance is one industrial operation with significant potential for cost reduction. With
computation capabilities advancing rapidly, using observed history of a machine to predict
its future health evolution is gaining prominence in this field of research. However, the
prerequisite of having extensive observed historical data is a bottleneck that hampers
progress. This thesis aims to bridge the gap between data-driven machine health forecasting
and the limitations of industrial data by leveraging multiple sources and types of data that
have largely been overlooked. This includes photographs, text, and other types of data,
focusing on supplementing the shortage of information from any single data source. To
mitigate the data shortage, we develop methodologies for model training techniques that
efficiently use multiple types of data and incorporate domain knowledge. By addressing
these industrial data challenges, this thesis seeks to fill the gap between state-of-the-art
academic research and practical industrial applications.

In particular, this thesis focuses on addressing the lack of sufficient data for effective
predictive maintenance. Data-driven predictive models depend heavily on historical data
to forecast future machine health accurately. However, in many industrial settings, the
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availability of such comprehensive data is limited, posing a significant challenge to devel-
oping dependable predictive models.

To overcome this challenge, this research explores the integration of various types of
data to enrich the information available for machine health monitoring. Traditional pre-
dictive maintenance models primarily rely on sensor signals. However, valuable insights
can be gained by incorporating additional data sources such as photographs, text reports,
and other relevant information. By leveraging these diverse data types, we aim to provide
a more comprehensive view of machine health.

The rationale behind this approach can be understood by considering how human
intelligence operates on information gained through the five senses — sight, hearing, touch,
smell, and taste. In contrast, neural network-based artificial intelligence models commonly
found in predictive maintenance studies typically utilize only sensor signals. This narrow
focus limits the capabilities of the models. Even in the few studies that utilize multiple
data sources, the interactions among these sources are not well-studied. Consequently,
models make predictions based on an incomplete view of machine health, thereby missing
out on many insights that could be gleaned from a holistic approach.

In the literature, using varied data sources is gaining traction in fields such as medicine
and robotics. However, its adoption in predictive maintenance has been slow. This under-
utilization potentially limits industries from realizing significant maintenance cost savings
and leaves a wealth of domain knowledge and data untapped. Developing methodologies
to harness and integrate these diverse data sources could significantly enhance predictive
maintenance practices.

In this chapter, the background and context of the thesis will be presented first, in
section 1.2. This will be followed by a discussion of the research motivation and objectives
in section 1.3. The scope and boundaries of the thesis will then be outlined. Finally, the
chapter will conclude in section 1.4 with an overview of the thesis structure.

1.2 Context and Background

From wheels to airplanes to expansive manufacturing plants, human inventions have con-
tinually sought to transcend the limitations imposed by nature. However, these creations
inevitably degrade and break down over time. Throughout history, as humans have de-
veloped new technologies, efforts have simultaneously been made to slow their natural
deterioration. As our dependence on these structures and machines increases, ensuring
their reliability, availability, and safety becomes increasingly critical.
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Since perpetual self-healing systems are still beyond our reach, it becomes necessary to
maintain our machines. Initially, maintenance in the industry was corrective — performed
after a failure. This was unacceptable for critical systems, such as aircraft, where failure
must be prevented at all costs. Consequently, regular maintenance became the norm, with
scheduled interventions regardless of the actual condition of the machine. While thorough,
this strategy leads to unnecessary expenses.

The field then advanced to condition-based maintenance (CBM), where the actual
health condition of the machine is monitored, and maintenance is performed when prede-
fined conditions are met during operations. This approach conducts maintenance before
failure, yet only when necessary, optimizing resource use.

However, there is still room for improvement. Rather than waiting for degradation to
reach a threshold before performing maintenance, predicting the future health state of a
machine based on current observations can offer greater flexibility in resource allocation
and maintenance planning. This extension of CBM, called predictive maintenance (PM),
involves evaluating the current health state (diagnostics) and forecasting future health
(prognostics). CBM or PM implementation is based on information or indicators provided
by the Prognostics and Health Management (PHM) algorithms. The terminology is heavily
inspired by medical sciences, reflecting numerous parallels to that discipline.

Prognostics can be classified into three groups: physical modeling, data-driven meth-
ods, and hybrid approaches. As machines grow more complex, physical modeling becomes
intractable, steering the field toward data-driven approaches. Data-driven PHM — particu-
larly machine health prognostics — based on condition monitoring data demands intensive
computation. Imagine an industrial machine equipped with an array of sensors, contin-
uously generating streams of data. These sensors measure various parameters such as
vibration, temperature, and pressure, producing long sequences of data over time. Making
sense of these measurements, discerning patterns and anomalies, evaluating the current
health condition, and predicting future states is not a trivial task. For large machines
with complex degradation mechanisms, this analysis exceeds the capacity of traditional
signal processing methods. Indeed, the challenge is not just the volume of data, but the
complexity in identifying features hidden in its patterns. Each sensor captures a different
aspect of the machine’s operation, and these readings can vary significantly under different
conditions. Consequently, traditional methods are insufficient for this task. The task of
integrating these disparate data, identifying anomalous symptoms, and making accurate
predictions demands assistance. This brings us to the other pillar of this thesis — artificial
intelligence (AI).

Alan M. Turing introduced machine intelligence in the 1950s (TURING (1950)), and
the term “Artificial Intelligence” was coined at the 1956 Dartmouth Conference. Early
AI research focused on symbolic methods but faced setbacks, leading to AI winters. The
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Figure 1.1: Data-driven PHM pipeline, presented as PHM cycle in Gouriveau et al. (2016a).

1980s marked a resurgence, with Japan’s Fifth Generation Computer Project and the
backpropagation algorithm Rumelhart et al. (1986). The 1990s boom, driven by internet
data and computational power, led to the rise of deep learning. Today, AI applications span
natural language processing, computer vision, autonomous vehicles, and more. Multimodal
AI, which integrates multiple types of data (text, images, sound) to create more robust
and versatile AI systems, is a rapidly advancing field with applications in healthcare and
other critical fields.

While the PHM community has embraced some AI tools, data limitations continue
to cage progress to simulations and testbench environments. Factors contributing to this
gap between literature and industrial applications include the slow investment in data
collection, the novelty of deep learning architectures for image and text modalities, the
computational resources required, and the hesitation of domain experts to rely on black-
box models. Additionally, many state-of-the-art methods remain untested on real-world
data.

Generally, data acquisition in the data-driven PHM pipeline (Figure 1.1) is predomi-
nated by one-dimensional sensor signals like vibration and temperature. However, inter-
preting these long sequences of high-frequency data to predict future trends is not intuitive
for humans. Indeed, for most tasks in the real world, the human brain relies on multiple
modalities of information. Sight and sound are often needed for most of our comprehen-
sion of the world. Figure 1.2 shows an illustrated comparison between multimodal data
received by the human brain through the five senses and industrial condition monitoring
data processed by an artificial neural network.

In the industry, vast amounts of domain knowledge are buried in manuals, maintenance
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Figure 1.2: Data modalities processed by human brain versus industrial data.

reports, and other texts. Visual inspection by reliability personnel is a practice still carried
out in many industries. For human decision-makers, it is natural to consider photographs,
descriptions, and numerical observations together to make informed maintenance decisions.
Each modality complements and reinforces the others, providing a more complete picture.
There is a gap between how humans think and how data-driven models approach machine
health prognostics, and bridging this gap could also potentially provide a route for PHM
research to cope with the data shortage from industry.

With the latest advancements in deep learning, it is time for the PHM community
to explore the use of multimodal data. Understudied modalities in PHM include images
and text, and the challenges of integrating these with other diverse data sources must be
addressed. The following section will identify the specific challenges to be overcome to
achieve this, synthesize the objectives that drive this thesis, and clarify the boundaries
within which this research project will be conducted.

1.3 Research Issues and Main Contributions

The current state of the art (as will be presented in Chapter 2) is lacking in multimodal data
studies within PHM. In the few studies that even tangentially address this direction, there
is no mention of the practical challenges of industrial multimodal data, and the studies
remain within simulated datasets that are clean and balanced, far from real data conditions.
This is mostly because the industry does not typically follow rigorous multimodal data
collection practices conducive to training deep learning models. The general practice of
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data scientists, when faced with one modality of high sparsity, is often to discard that
modality entirely.

Indeed, it is highly challenging to perform prognostics tasks without sufficient data
in the absence of physical models. Yet, the literature rarely seeks to apply the available
sparse data, such as through the incorporation of the knowledge of domain experts who
already analyze samples of visual inspection images to augment model training on image
data. Moreover, black-box deep learning model predictions are difficult for domain experts
to interpret. Additionally, training a health forecasting model requires run-to-failure tra-
jectories from each machine, which are unattainable for expensive, operational machines
in the real world. Consequently, prognostics remains a challenging task.

From an eagle’s eye view, this thesis aims to address the aforementioned gaps in the
current state of the art by developing methodologies to perform PHM tasks from multi-
modal data, integrating domain knowledge and cross-modal interactive learning, addressing
multimodal data challenges of industrial condition monitoring data, exploiting untouched
expertise repositories such as industrial texts, and performing end-to-end prognostics un-
der the constraints of high data scarcity often seen in industrial data. The developed
methodologies must be applied to real industrial data and validated by domain experts
while maintaining generalizability and reproducibility. Achieving these ambitious objec-
tives requires addressing the following critical challenges:

1. Limitation of data quality and availability: Multimodal datasets obtained from
industrial condition monitoring often suffer from issues such as missing data and
noise. These limitations can significantly impact the performance of prognostic mod-
els. It is crucial to develop techniques that can robustly handle incomplete and noisy
datasets to maintain reliability of predictions under poor data conditions.

2. Variable sparsity of multimodal condition monitoring data: Industrial datasets
are often sparse and irregular, with certain data modalities being more frequently
recorded than others. This variability poses a challenge for training robust models.
Methods need to be developed to ensure that predictions are unbiased regardless of
the absence or dominance of certain condition monitoring data.

3. Label imbalance: Multimodal monitoring data often exhibits high label imbalance,
especially in the context of multi-fault diagnostics for complex machines. Handling
this imbalance is crucial to avoid biased predictions and ensure that the models can
accurately diagnose a wide range of faults.

4. Agreement with expert knowledge: Incorporating domain expertise and subjec-
tive elements present in certain PHM tasks is essential for improving model reliability
and acceptance. This requires exploring methods to integrate expert knowledge, par-
ticularly the knowledge accumulated in textual form within the industry, into the AI
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models. This integration can help create more interpretable models that align with
human understanding and reasoning.

5. Lack of run-to-failure data: Performing machine health prognostics without com-
plete run-to-failure data is a significant challenge in industrial PHM. Most expensive
and critical machines do not have comprehensive failure histories due to maintenance
interventions.

Implications for industry and academia

Addressing the aforementioned challenges, this thesis will not only advance the theo-
retical understanding of multimodal learning and predictive maintenance but also provide
practical solutions for improving the reliability and safety of industrial machines.

Contributions to academia

1. Bridging the gap between theory and practice: The thesis aims to advance the state
of the art in PHM by bridging the gap between simulated data conditions and real-
world industrial data. It will provide a framework for developing predictive models
that are applicable in real industrial settings.

2. Multimodal data integration: This study will highlight the importance of multimodal
data integration and demonstrate effective techniques for combining different data
types. This will pave the way for further research in multimodal learning techniques
and their applications in PHM.

3. Incorporation of domain expertise: By incorporating domain expertise into predictive
models, this research will enhance the interpretability and acceptance of AI models
in the industry. This will foster greater collaboration between data scientists and
industry practitioners.

4. Advancing predictive maintenance models: The resilience of models to poor condition
monitoring data and their ability to provide comprehensive health state evaluations
will set a new benchmark for predictive maintenance. This will promote the devel-
opment of more accurate and reliable prognostic models.

5. Promotion of interdisciplinary research: The methodologies developed will serve as
a foundation for interdisciplinary research, combining AI, data science, and domain-
specific knowledge. This will encourage more collaborative efforts to address complex
problems in PHM.

Contributions to industry
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1. Enhanced reliability and safety: The developed methodologies aim to provide ro-
bust tools to improve the reliability, availability, and safety of critical machinery.
By leveraging multimodal data sources, industries can achieve more accurate and
comprehensive machine health assessments.

2. Encouragement of rigorous data collection: The adoption of these methodologies
could encourage industries to invest in more rigorous data collection practices. This
will involve integrating diverse data types, such as sensor readings, images, and
textual reports, into their maintenance strategies.

3. Utilization of limited data: The techniques developed must demonstrate the value
of utilizing available data, even when sample sizes are small or data is incomplete.
This will help industries make better use of their existing data resources rather than
discarding potentially useful information due to perceived limitations.

4. Improved maintenance planning: The ability to integrate multimodal data and expert
knowledge could lead to more effective maintenance planning and resource allocation.
This will help in predicting future states of machinery more accurately, thereby re-
ducing downtime and maintenance costs.

Scope and limitations of the thesis

The scope of this thesis will remain within industrial machine health diagnostics and
prognostics. The applications could include energy systems, transport systems, and other
large and expensive machines with complex degradation mechanisms. The contributions
of this thesis will be suited to systems where multimodal condition monitoring data can be
collected. In terms of scientific approaches, only data-driven methods will be studied, and
physics-based models are not addressed due to the impracticality of designing such models
for the scale of application systems of interest. Detailed analysis of well-studied signals in
the literature, such as vibration and temperature, will not be revisited. Instead, the focus
will be on learning from multiple data modalities together, with detailed analysis centered
on less-studied modalities in the field, such as images and text.

Because these areas are not extensively addressed in the literature, this thesis faces sev-
eral challenges due to the novelty of the questions addressed and the scarcity of comparable
studies in the literature. Although multiple methods are compared throughout the thesis,
no existing work directly addresses the specific questions explored here. Furthermore, the
methodologies developed are applied to industrial data that are not publicly available at
the time of writing.

It is important to note that the development and results of this thesis were achieved
under certain resource constraints. While the use of larger pre-trained models and greater
computational resources could potentially improve quantitative metrics, the methodologies
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themselves are designed to be independent of these limitations. Additionally, this thesis
focuses on diagnostics and prognostics within the PHM discipline and does not explore
maintenance optimization based on prognostic information.

1.4 Thesis Outline

In Chapter 1, we presented the overall introduction to the thesis, the background, objec-
tives, and its scope.

Chapter 2 presents the overview of the literature on multimodal learning, and the existing
works on data-driven PHM using multimodal data. This chapter identifies the literature
gap and positions the thesis.

Chapter 3 presents the first exploration of multimodal learning within the PHM context,
studying in depth the impact of missing and noisy data. The chapter also develops a
methodology to make a model resilient to poor data quality conditions.

Chapter 4 develops a diagnostics methodology from multimodal data and applies it to
industrial data from a fleet of hydrogenerators, addressing several challenges such as align-
ment, missing data, and sparsity. This chapter also presents a methodology for incorpo-
rating expert knowledge into the model design pipeline to mitigate data shortage, as well
as learning from text data to account for subjectivity in health-level quantification.

Chapter 5 addresses prognostics in the industry from the context of multimodal data.
Specifically, it addresses the challenge of huge data scarcity and class imbalance. This
chapter also presents a graph-based method to perform health state prognostics without
any run-to-failure data.

Finally, Chapter 6 will summarize the thesis, conclude, and discuss perspectives for the
research community to carry forward the work.
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“We can only see a short distance ahead, but we can see plenty there that needs
to be done.”

— Computing Machinery and Intelligence by Alan M.
Turing (TURING (1950)).
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2.1 Introduction

In this chapter, we introduce the preliminaries and background needed to motivate and
appreciate the development in the subsequent chapters of the thesis. We start with a
brief introduction to prognostics and health management (PHM) in the industrial context,
focusing on data-driven approaches. In section 2.2, we present some well-known benchmark
datasets in this domain and highlight the current field focus on unimodal sensor signal
analysis. Exploring alternative data sources leads to an introduction to multimodal data
and the field of multimodal learning in section 2.3. We then review existing literature within
the PHM domain that addresses the exploitation and challenges of industrial multimodal
data in section 2.4, divided into studies on diagnostics, prognostics, and maintenance
optimization. The literature discussed in these sections leads to identifying specific gaps in
knowledge to be explored. The positioning of this thesis to existing literature is presented
in section 2.5, and the conclusion of this chapter in section 2.6.

2.2 Brief Introduction to Data-driven Industrial PHM

Maintenance in the industrial context comprises the actions taken during the life cycle of
a production system to allow it to continue performing its intended function. Maintenance
activity can be performed correctively (after failure) or preventively (before failure). Pre-
ventive maintenance can be either periodic or condition-based (Gouriveau et al. (2016b)).
A subdomain within condition-based maintenance (CBM), called predictive maintenance,
is the main focus of this thesis. Successful implementation of a predictive maintenance
policy allows for reducing maintenance costs and increasing the availability and reliability
of manufacturing systems. However, the effectiveness of predictive maintenance is signifi-
cantly dependent on the development of a reliable process for prognostics of system health
evolution.

Early studies of prognostics are based on developing a physics model of system degrada-
tion processes, known as physics-based prognostics (Kim et al. (2017)). Although physics-
based approaches can offer precise long-term remaining useful life (RUL) predictions, de-
veloping physics-of-failure models for real systems is highly challenging. This difficulty is
exacerbated by the increasing complexity of manufacturing systems, particularly within
the context of Industry 4.0 (Zio (2022)).

With the advancement of sensor technologies and data acquisition systems, data-driven
approaches to PHM have gained prominence. The advanced sensing techniques and data
analysis tools emerging from machine learning and deep learning disciplines enable the
rise of data-driven prognostics, offering an alternative solution to overcome the limitations
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of model-based prognostics. Data-driven PHM leverages the condition monitoring data
generated by modern industrial systems to develop predictive models for machine health
diagnostics and prognostics. These models utilize statistical, machine learning, and deep
learning techniques to analyze sensor data, identify patterns, and predict the future health
states of the machines.

Definition

Definition 2.1 (Diagnostics and Prognostics):
Diagnostics: The process of detecting, isolating, and analyzing anomalies or faults
in machines after their occurrence. The primary goal of diagnostics is to understand
the current health state of equipment and pinpoint the exact nature and location of any
issues. These are often grouped together as fault detection and diagnostics (FDD).
Prognostics: The process of predicting the future health state of machines and equip-
ment, including the estimation of the time to failure (TTF) or remaining useful life
(RUL). The objective of prognostics is to provide actionable insights that allow for
proactive maintenance planning, thereby preventing unexpected breakdowns and opti-
mizing maintenance schedules.
While diagnostics focuses on identifying existing problems, prognostics aims to foresee
potential future issues. Together, diagnostics and prognostics form the foundation of
a robust predictive maintenance framework, enhancing the reliability, availability, and
safety of industrial systems.

In literature, data-driven prognostics is a rapidly developing field (Xu et al. (2019))
with numerous bench-marking datasets being published (Jia et al. (2018)). The most
common data used for data-driven PHM in industry include vibration, temperature (Zhao
et al. (2017), Falk et al. (2021), Yan et al. (2017)), electric current (Tian et al. (2014),
Hendrickx et al. (2020)), sound (Lu et al. (2018) Lu et al. (2017)), pressure (Zhao et al.
(2017)), speed (Pittino et al. (2020), Schlechtingen and Santos (2011)), and voltage signals
(Bzymek (2017)). Indeed, the shift from model-based to data-driven prognostics marks a
significant advancement in PHM. However, leveraging the full potential of data-driven ap-
proaches requires addressing the limitations of unimodal data and exploring the integration
of multimodal data sources.

Table 2.1 synthesizes the benchmark data sets which are highly cited in PHM literature.
One can see that most of the datasets contain unimodal data, i.e., one-dimensional numeric
data. These benchmark datasets have played a crucial role in advancing data-driven PHM.
Nevertheless, their reliance on unimodal data underscores the need to investigate how
multimodal data can be utilized to gain a more comprehensive understanding of machine
health. In the manufacturing industry, other data such as visual inspection photographs,
operator reports, and more information are collected and stored without being exploited
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for training diagnostics or prognostics models. Such data can become a valuable additional
source to improve the performance of PHM models (Yang et al. (2021)).

In fact, multimodal data are widely used in the healthcare industry (Tekin et al. (2015),
Yoon et al. (2016), Rahimi et al. (2016)). For example, integrating medical imaging, patient
records, and genetic data has significantly improved diagnostic accuracy and personalized
treatment plans. A detailed overview of the application of multimodal data in healthcare
is given by Cai et al. (2019). The success of multimodal data integration in healthcare
demonstrates its potential to address similar challenges in PHM. Exploring multimodal
data not only aims to fill the gaps left by unimodal data but also seeks to provide addi-
tional layers of information that can be critical when traditional sensor data is sparse or
incomplete.

In this view, it is necessary to investigate the question of how to seek and utilize
supplementary sources of manufacturing information to complement the machine health
indicators obtained from sensors and therefore improve PHM performance. The potential
for using multimodal data for PHM purposes, such as RUL prediction, was demonstrated
by the study by Yang et al. (2021). However, the complexity of these data in terms of
structure, as well as the requirements of high computation resources, pose considerable
challenges that need to be solved before these data can be exploited to support the RUL
prediction. This study demonstrates the value added to PHM tasks by multimodal data,
but uses simulated data. Indeed, the constructed signal curve images and repeated simple
texts in this dataset does not capture the real complexity of industrial multimodal condition
monitoring data.

Although both academia and industry pay some attention to mining multimodal data
for improving PHM performance, this avenue of research is still in its infancy. Before
reviewing the few works that use multimodal data for PHM, the next section presents
a detailed introduction to the concepts of multimodality and an overview of multimodal
learning research. The concepts presented in the next section are essential for reviewing
existing related works, identifying gaps in the literature, and formulating the research plan
for this thesis.
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Table 2.1: Benchmark datasets for PHM.

Dataset Name Data type Purpose
CWRU Bearing
Dataset (Case
Western Reserve
University (2021))

• Drive end accelerometer
data

• Fan end accelerometer
data

• Base accelerometer data

• Motor bearing condition
assessment

• Fault diagnosis

Tennessee Eastman
Process Dataset
(Chen (2019)) • Reactor Pressure

• Reactor Level

• Reactor Temperature

• Stripper Level

• Stripper Pressure

• and other measurements

• Fault detection

SEU Bearing Dataset
(Shao (2022))

• Vibration signals

• Fault positions

• Fault detection

NASA Bearing
Dataset (Lee et al.
(2007)) • Vibration signals • Anomaly detection

• RUL prediction

PHM2012 Data
Challenge Dataset
(Nectoux et al.
(2012))

• Vibration signals

• Temperature

• RUL prediction

Continued on next page
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Table 2.1 continued from previous page
Dataset Name Data type Purpose
Airbus Helicopter
Accelerometer
Dataset (Sas (2020)) • Vibration signals • Anomaly detection

• Fault detection

AMPERE Dataset
(Soualhi et al. (2023))

• Speed

• Current

• Voltage

• Vibration

• Motor system monitoring

• Fault detection

• Fault diagnostics

Numenta Anomaly
Benchmark (Ahmad
et al. (2017)) • Artificially generated

numerical data
• Anomaly detection

NASA Turbofan
Dataset (CMAPPS)
(Saxena and Goebel
(2008))

• Total temperature at fan
inlet

• Total temperature at
LPC outlet

• Total temperature at
HPC outlet

• Total temperature at
LPT outlet

• Pressure at fan inlet

• And other numerical data

• Anomaly detection
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2.3 Introduction to Multimodality

This section introduces multimodal data to the reader and aims to highlight how it differs
from unimodal data in its form and treatment. First, key terminologies in the domain are
presented. Then, the rest of this section progresses through an overview of the evolution of
multimodal learning and its key challenges. Finally, the latest developments and techniques
for multimodal learning with deep learning networks and foundation models are discussed,
setting up the necessary background for the subsequent chapters.

2.3.1 Modality in datasets

The word modality has multiple definitions. The first comes from the word ‘mode’, which
refers to the point of maximum frequency in a distribution. The term multimodal in this
space refers to a population distribution that has multiple local maxima in the probability
density function (Silverman (1981)). Another definition refers to the way information is
perceived and understood (Leahy and Sweller (2011)). This definition of modality is more
relevant to our study. This is illustrated by the way our human brain receives information
from the world and processes it into an understanding of a scenario (Norris (2019)). In
detail, we perceive the world through our five senses (sight, hearing, taste, smell, and
touch). These are the sensory modalities.

Further, in the context of computing, modality of data refers to the structure in which a
computer program receives the data and the way the data are processed to gain knowledge
(Lahat et al. (2015)). In computing, the most common modalities are vision, audition,
language, proprioception, haptics, and so on.

Multimodality refers, in the context of information and data, to the existence of multiple
modalities in the same set of data (Caesar et al. (2020), Chen et al. (2015)). A key concept
to understand here is that a dataset is called multimodal when it contains information on
multiple modalities to describe features of the same function.

An example comes from the study of communicative behaviors. In-person communication
between people consists of three types of communicative behaviors: verbal, vocal, and
visual. It is important to understand that even as a person is speaking verbally, information
can be conveyed at the same time through vocal expression such as intonation, laughter,
etc. (Tsiourti et al. (2017)). Visual information such as gestures, body language, and
expressions add to the information. Also to be noted is that within the verbal modality
are features such as the lexicon (choice of words), the choice of grammatical structures,
and so on.
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This leads to an important idea: multiple modalities of data can serve one of two purposes.
It can either reinforce the information conveyed through one modality, or it can provide
complementary information.

Definition

Definition 2.2 (Multimodal Data):
Datum: A single piece of factual information, typically an observation or measure-
ment collected through various means. It represents the most granular level of data,
such as a single temperature reading or a specific timestamped event. Data is the
plural of datum.
Dataset: An organized collection of data, typically structured in a way that facilitates
analysis. A dataset may consist of multiple attributes or features collected over time
and stored in formats such as tables, databases, or spreadsheets.
Modality: A specific type or channel of data, representing a particular method of
capturing information. Modalities can include various forms such as sensor signals,
images, text, audio, and video.
Multimodal Dataset: A dataset that contains data points of multiple modalities.
These modalities can include a combination of sensor signals, images, text, audio,
and other types of data.
In this thesis, the term multimodal data refers to a multimodal dataset.

There is much overlap between the usage of the terms multimodal and multimedia.
Multimedia data is data including media data types such as text, images, video, audio,
drawings, and so on. Multimodal data can include also non-media data such as propri-
oception, point clouds, etc. In summary, multimedia data can be considered a subset of
multimodal data.

Heterogeneous data refers to data that differ in some property. Among the possible
differences, one is structural heterogeneity. For our purpose of studying data process-
ing in PHM, structurally heterogeneous data can be considered the same as multimodal
data. However, the two terms multimodal data and heterogeneous data are different in
some particular contexts. For example, if two sets of data have the same structural rep-
resentation format, but differ in their population distribution, the term “heterogeneous”
is more relevant than the term “multimodal”. Particularly, data coming from two sen-
sors, e.g., temperature and pressure, that have similar numerical structures, are considered
unimodal data.

The definitions and approaches to understanding the term multimodality have been
compiled by Parcalabescu et al. (2021). As seen so far, the definitions of multimodal data
and multimodality are not conclusive in the literature yet. However, in this study, the
definition of multimodal data as structurally heterogeneous data is adequate.
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2.3.2 Multimodal learning

Multimodal learning is defined as an activity of extracting useful knowledge from mul-
timodal data while giving due consideration to cross-modal influences. Learning from
multiple modalities is important because the information in the real world often involves
more than one modality. In fact, in a dataset containing data from different modalities,
one modality could carry information that is not available from the other modality. An
example is an image of a city with its caption mentioning the name of the city (Srivastava
and Salakhutdinov (2012)). Without the textual information, the name of the city could
be hard or impossible to deduce from the image alone.

This section aims to give an overview of multimodal machine learning. It begins with
a brief look at the historical evolution of multimodal learning in subsection 2.3.3, and
the impact of multimodal data in different scientific fields, particularly life sciences and
robotics.

2.3.3 Evolution of multimodal machine learning

In the literature, the evolution of multimodal learning is seen to be chronologically sepa-
rated into four time periods (Morency et al. (2022), Baltrušaitis et al. (2018)): 1970 - 1980,
1980 - 2000, 2000 - 2010, and after 2010. This is shown in Figure 2.1. There is fifth, very
recent trend that could be considered a new age, but is still nascent.

As shown in the figure, the field saw a groundbreaking shift around 2010 from mul-
timodal research to multimodal machine/deep learning. As further discussion and later
chapters will heavily rely on artificial neural network-based deep learning methods, a for-
mal definition is given in Definition 2.3. For a more detailed background of deep learning,
readers are directed to LeCun et al. (2015). With an understanding of neurons and learn-
ing algorithms, it is relevant to know that the transition of multimodal learning research
to these tools was due in large part to the following factors. Firstly, the creation and free
sharing of new large-scale multimodal datasets. The easy availability of cheap data stor-
age and ease of sharing data through the internet contributed to this. Faster computers
and GPU (Graphical Processing Unit) development enabled researchers and developers to
implement deep neural networks and train them on large datasets. These two factors -
availability of data and high computing capacity - have been touted as the reasons for
the renewal of neural architectures in general (Toosi et al. (2021)). The third reason is
that very high dimensional data such as vision and language could now be represented
in a uniform neural encoding in the form of vectors. In the case of vision, the success of
convolutional networks in representing features (LeCun et al. (1999)) was an influential
milestone for deep learning. Then, vision and language being two modalities around which
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1970

∼1970 - 1980
Behavioral Studies:
In the 1970s, combining information from mul-
tiple modalities originated from behavioral
studies, including psychology and linguistics.
For example, Blank (1974) studied the connec-
tion between linguistic development of chil-
dren, sensorimotor skills, and visual spatial
information. The first multimodal studies fo-
cused on understanding linguistic development
in early childhood (Roeper and McNeill (1973),
Keller-Cohen (1978)).

1980

1980 - 2000
Computational Approach:
In the mid-1980s, studies on processing mul-
tiple modalities via computational approaches
emerged (McNeill (1985), Butterworth and
Hadar (1989)). This period also saw develop-
ments in affective computing, focusing on emo-
tion recognition (Picard (2000)). Post second
AI winter, there was renewed interest in affec-
tive computing (Toosi et al. (2021), Vesterinen
et al. (2001)) and multimedia computing, such
as video content search (Chang et al. (1998)).

2000

2000 - 2010
Multi-Agent Interaction Studies:
Around 2000, research shifted to studying in-
teractions between multiple people. Popescu
et al. (2002) discussed the tradeoff between
added value from multimodal data and in-
creased computational complexity in human-
computer interaction systems. By the end of
this period, Zara et al. (2007) presented pro-
tocols for collecting and annotating datasets of
multimodal human-human interactions, indi-
cating a shift towards the deep learning era.

2010

2010 - 2015
Deep Learning Era:
Around 2010, the field began leveraging neu-
ral architectures, marking the deep learning
era. Ngiam et al. (2011) demonstrated using
deep neural networks to learn features from
audio and video. Srivastava and Salakhutdi-
nov (2012) used a deep Boltzmann Machine to
create fused representations of bi-modal image-
text and audio-video data. Xu et al. (2015)
proposed using attention mechanisms (Vaswani
et al. (2017)) for cross-modality attention in
image caption generation.

2015

2015 - Present
Foundation Models:
The deep learning era still continues. But
around 2015, the advent of pre-trained large
models, known as foundation models, began
transforming the field. Models like BERT (De-
vlin et al. (2018)) and VGG (Simonyan and
Zisserman (2014)) demonstrated the power
of large-scale pre-training for NLP, vision, and
multimodal tasks. These models serve as a
base for a wide range of applications, leading
to a new era of multimodal learning.

Figure 2.1: Timeline of the evolution of multimodal learning



20 Chapter 2. Literature Review and Research Positioning

a large part of multimodal research was oriented, these advancements were key to the rise
in research trend on multimodal deep learning.

Definition

Definition 2.3 (Artificial Neural Network):
Neuron: An artificial neuron is a mathematical function that takes a vector of inputs
x = [x1, x2, . . . , xn] and produces an output y. Formally, a neuron computes:

y = σ(w · xT + b) (2.1)

where w = [w1, w2, . . . , wn] is the weight vector, b is the bias, and σ is an activation
function such as sigmoid, ReLU, or tanh.
Neural Network: An artificial neural network is a composition of neurons arranged
in layers. If L denotes the number of layers, the output of layer l is h(l). For input
x, the layers compute:

h(1) = σ(W(1)xT + b(1)) (2.2)

h(l) = σ(W(l)h(l−1) + b(l)), for l = 2, . . . , L− 1 (2.3)

y = h(L) = σ(W(L)h(L−1) + b(L)) (2.4)

where W(l) and b(l) are the weight matrix and bias vector of the l-th layer, respectively.
Deep Learning: Deep learning involves neural networks with at least one hidden
layer (typically more) between the input and output layers. The term “deep” refers
to the depth of the network, i.e., the number of layers.
Training: Training or learning in neural networks involves finding the optimal
weights W(l) and biases b(l) that minimize a loss function L(y, ŷ), where ŷ is the
predicted output and y is the true output. This is achieved through iterative optimiza-
tion techniques such as gradient descent:

W(l) ←W(l) − η
∂L

∂W(l) (2.5)

b(l) ← b(l) − η
∂L

∂b(l) (2.6)

where η is the learning rate, which controls the step size in the optimization process.

As the scientific development of multimodal learning evolved, the interest and therefore
the production of research volume in this field also rose rapidly. In the rest of this sec-
tion, we will look quantitatively at the development of multimodal learning. As shown in
Figure 2.2, with the remarkable success of deep learning methods in the field of computer
vision and natural language processing, the interest in the field of multimodal learning has
risen rapidly in recent years.
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When investigating the fields where most of the work in multimodal learning is done,
one can see that a large part of it is in computer science and AI research. Looking at the
distribution shown in Figure 2.3, it can be noted that other than computer science and
AI domains, a significant share of the work is done in medical science and related fields.
It can be inferred that most of the work in computer science and AI would involve the
development of algorithms and tools for working on multimodal data, whereas research on
medical sciences and robotics would be application-oriented. In the next subsections, we
take a global look at the existing works in those fields that apply multimodal data to solve
their specific problems. This study is done with a view to examining their potential to
solve domain-specific challenges in the PHM field.

Figure 2.2: Trend of publications on multimodal learning over the years.

2.3.3.1 Multimodal learning in life sciences, medicine, and related fields

From an intuitive point of view, certain analogies can be drawn between healthcare and
industrial maintenance. In healthcare, the health state of a human being is observed
and treatments are administered as and when necessary to prolong his or her life in the
best condition. This is similar to the health management activity of machine systems in
industry. Therefore, observations made from studying the application of multimodal data
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Figure 2.3: Main domains where multimodal research is conducted.

in healthcare could potentially be exploited to apply multimodal data in PHM.

The use of multimodal data along with machine learning techniques is gaining impor-
tance in life sciences, medical science, psychology, and other related fields. The associated
science is progressing at a rapid pace, with several reviews published every year. Some
of the notable papers include Stoyanov et al. (2018), Huang et al. (2020), Heiliger et al.
(2022) and Behrad and Abadeh (2022).

Multimodal data in these disciplines not only include medical imaging, data from var-
ious scans such as computed tomography (CT), positron emission tomography (PET),
magnetic resonance imaging (MRI), and so on, but also omics data, clinical data such
as various measurements, demographic information, real-time signals such as electrocar-
diogram (ECG), electroencephalogram (EEG), etc. Depending on the type of disease or
condition, other types of data can also be available.

Spasov et al. (2018), Yala et al. (2019) and Yoo et al. (2019) used convolutional neural
networks (CNNs) for medical images and fused the learned features with clinical records to
identify a medical condition. Spasov et al. (2018) and Yala et al. (2019) used simple con-
catenation to fuse the multimodal data. Yoo et al. (2019) reported duplicating the clinical
information to solve the dimensionality difference problem between features from images
and clinical records. In Huang et al. (2020), the authors synthesized fusion techniques used
according to the characteristics of the problem to solve. The findings compiled in Table 2.2
are not limited to medical data and can be potentially used for industrial maintenance as
well.

Cao et al. (2020) discussed the use of Auto-GAN to synthesize data and address the
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Comparison of fusion strategies
Scenario Early

Fusion
Feature fu-
sion

Late fu-
sion

Prediction without all modalities × × ✓
Feature level interaction ✓ ✓ ×
Cross-modal compatible feature
extraction

× ✓ ×

Training on sparse data × × ✓
Training on only one model ✓ ✓ ×
Ease of model design ✓ × ×
Input concatenation at different
abstraction levels

× ✓ ×

Table 2.2: Comparison of early, feature level, and late fusion. Adapted from Huang et al.
(2020).

problem of data sparsity. Li et al. (2020) introduced a GAN for retinal disease diagnosis
with multimodal images. Hervella et al. (2019) used a U-Net for retinal vessel segmentation
using multimodal data. Chen et al. (2019) used an attention-based method for prognosis
of breast cancer from omics and clinical data. This work is particularly interesting to our
study because it discusses the design of an architecture for prognostics of the future health
state of the system under study.

Maghdid et al. (2020) introduced transfer learning with X-ray and CT images from
a network trained on pneumonia data to detect COVID-19. Lassau et al. (2021) used a
deep learning model to extract features from CT images, and then concatenated them with
lab tests and other clinical data to input to a logistic regression model for predicting case
severity of COVID-19 patients. A notable observation to be made here is that deep learning
methods are hard to replace when image modality is involved. A detailed overview of deep
learning architectures that have been used with multimodal data in medicine is given in
Behrad and Abadeh (2022). Wang et al. (2018) introduced TieNet in which radiology
images are converted to language-embedded reports by converting the image modality to
text. A prerequisite of these methods is the availability of data from multiple modalities.

One significant advantage provided by the comparative maturity of multimodal study in
a field such as medicine is the availability of real-world datasets. Notable datasets include:

• MIMIC-CXR dataset Johnson et al. (2019) containing 227,835 imaging studies for
65,379 patients along with free-text radiology reports.

• PADCHEST dataset Bustos et al. (2020) containing chest X-rays with multi-label
annotated reports.
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• ImageCLEF challenges Abacha et al. (2019) datasets containing image and text for
multimodal information retrieval.

From this section, it can be concluded that the use of multimodal data is thriving in
life sciences and medical fields, and this is one of the drivers of multimodal deep learning
research. The techniques identified in this field could be adapted to other fields, particularly
PHM, with promising results.

As discussed at the beginning of this section, healthcare, and industrial maintenance
can be compared in certain aspects. Therefore, the increasing use of multimodal data in
healthcare provides a promising perspective of multimodal learning in industrial health
management.

2.3.3.2 Multimodal learning in robotics, affective computing and other do-
mains

Multimodal data are particularly important for human-robot interaction, where the visual,
auditory, language, and proprioception modalities, at the least, have to be combined. Even
though the scale of this field cannot be compared to the medical science domain, the
scientific advancements made here are significant. A comprehensive review has been made
by Spezialetti et al. (2020). This study, which focuses on emotion recognition for human-
robot interaction, is closely tied to affective computing. Data such as thermal facial images
and brain activity signals were studied.

In literature, several works demonstrate the use of CNN-type networks on image data.
Barros et al. (2015) used a cross-channel CNN to extract features from face expression
and body motion data. Álvarez-Sánchez JR (2020) also used a CNN variant for emotion
recognition from facial images, EEG, Galvanic Skin Response (GSR), and blood pressure.

Robot manipulation task failures are studied by Inceoglu et al. (2021), where the au-
thors present a multimodal dataset comprising RGB images, depth images, and audio
from robots. The dataset is then used to train a multimodal neural network to detect
incomplete or failed task scenarios. The network design is particularly inspiring for fault
detection tasks in the PHM domain. In the network structure proposed by the authors,
called FINO-Net, data from comparable modalities such as RGB and depth images are
stacked on top of each other and input to the same convolutional path. A separate path
for audio data begins with a log mel spectrogram rendering of the audio data which con-
verts the audio into mel frequency spectral coefficient representation. Features from this
representation are input into a convolution block. The separate paths are later fused with
a dense layer. This philosophy of designing individual paths suited for the treatment of
each data modality and fusing the features near the end decision level can be adapted to
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PHM purposes, as will be shown in later chapters.

This section has demonstrated that the use of multimodal data is widespread in other
fields, with a wide range of techniques applied to solve several challenges. The advancement
of neural network-based multimodal learning applications suggests that it is high time for
the PHM community to turn their attention to exploring this direction. In the next section,
some of the challenges of working with multimodal data will be discussed.

2.3.4 Challenges of multimodal machine learning

In this section, we look at the core technical and scientific challenges that arise when we
attempt to perform machine learning or deep learning on multimodal data. According to
the studies by Baltrušaitis et al. (2018), Gao et al. (2020) and Gaw et al. (2021), one can
cite five principal challenges of multimodal learning: representation, alignment, fusion, co-
learning, and translation. Among them, representation and alignment are crucial challenges
that need to be solved in many tasks involving multimodal deep learning. The other three
challenges are not common to all multimodal deep learning problems but depend on the
particular problem addressed.

Figure 2.4: Illustration of time alignment issue in multimodal condition monitoring data.

• Representation: This challenge involves joining data from multiple modalities into
a uniform representation space. The two main approaches are:

– Joint representation: Transforming all modalities into a single combined
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representation. For example, the bimodal deep belief network by Ngiam et al.
(2011) enables arithmetic operations on image and text representations.

– Coordinated representation: Each modality is transformed separately, and
a coordination spectrum (from strong to weak) is defined. Notable examples
include the deep Boltzmann Machine for image captioning (Srivastava and
Salakhutdinov (2012)) and audio-visual emotion recognition (Lu et al. (2018)).

Representation is a tradeoff problem, balancing information loss from each modality
while exploiting complementarity and redundancy.

• Alignment: This involves identifying direct relations between elements of different
modalities, crucial for temporal data due to synchronization challenges. While several
factors contribute to this, the differences in sample collection rate, sequence length,
and so on between data from different modalities are crucial. An illustration of
the time alignment issue in condition monitoring data is depicted in Figure 2.4.
Alignment resolution can be:

– Explicit alignment: Directly finding correspondences using techniques like
deep canonical time warping (Trigeorgis et al. (2016)), useful for tasks like event
reconstruction from partial video, text, and audio descriptions.

– Implicit alignment: Achieving latent alignment as an intermediate step, often
using context information methods like attention mechanisms (Vaswani et al.
(2017)). In PHM, alignment should typically be solved implicitly while training
a model to tackle a PHM task such as fault detection.

• Fusion: The challenge is to combine different modalities to infer higher-level in-
formation, such as emotion from a video. In the context of PHM, this could be
inferring the health state of a machine from multimodal condition monitoring data.
Key considerations include:

– Level of fusion: The challenge is to determine at what level to fuse one modal-
ity with another. Taking the example of image and text, the raw information
level for an image is a pixel, and for text, is a word. However, fusing at the level
of pixels and words does not necessarily produce useful features. In the case of
images, useful features emerge after multiple levels of convolution and pooling.
The difficulty lies in learning at what level a feature is mature or insightful
enough to benefit from the information from another modality.

– Fusion techniques: Include model-agnostic approaches (D’mello and Kory
(2015)) and model-based approaches like deep neural networks (Ngiam et al.
(2011)), kernel-based methods (Liu et al. (2013)), and graphical methods (Laf-
ferty et al. (2001)).
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• Co-learning: This involves transferring learning between modalities, ensuring mod-
els can perform tasks with one modality at test time even if trained on multiple
modalities. This is important for industrial PHM because, in many cases, a model
may be able to learn useful information from one modality when it is trained, but that
modality may not be available at use time, due to sensor failure or other constraints.
Approaches include:

– Strong and weak pairing: Defining close or loose relationships between
datasets.

– Joint representation learning: Learning representations through cyclic trans-
lations between modalities, as demonstrated by Pham et al. (2019).

• Translation: This is the task of converting data from one modality to another, such
as generating image captions. Approaches include:

– Example-based translation: Mapping from source to target examples, like
nearest neighbor methods.

– Model-based translation: Learning rules to generate translations from exam-
ples. An example is forecasting human poses from language descriptions (Ahuja
and Morency (2019)).

For industrial machine fault diagnostics and health state prognostics, all the challenges
except translation are highly relevant. Thus representation, alignment, co-learning and
fusion will be addressed later on.

2.3.5 Tools and techniques used in multimodal deep learning

This section summarizes the most commonly used tools and techniques in multimodal deep
learning to solve the challenges described above. The classification (Figure 2.5) is based
on the principle behind the network mechanism.

• CNN variants: CNNs are among the best architectures to work on image data. The
architecture consists of a convolution operation followed by a pooling and, usually,
a fully connected layer. CNNs can capture spatially correlated features in an image,
and also from any data that can be represented as an image (Zhang and Wallace
(2016)).

• U-Net: The U-Net architecture was primarily developed for image segmentation
(Ronneberger et al. (2015a)). It consists of a convolutional “shrinking” path where an
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image is shrunk to a small dimension, followed by a deconvolutional “expanding” path
where the small dimension feature representation is expanded back to the original
large dimension. U-Net has been used in multimodal applications in medicine where
segmentation is required (Hervella et al. (2019)).

• ResNets: ResNet stands for a residual network (Szegedy et al. (2017)). It was origi-
nally developed to allow neural networks to be very deep without causing vanishing
or exploding gradient problems. This was done by adding a residual or skip connec-
tion, which is a parallel connection between one layer and the layer after the next
one, skipping the layer in between. ResNets have since been used to create many pre-
trained networks, which have then been used for transfer learning with multimodal
data (Zhang and Shi (2020)).

• RNN variants: RNNs are a class of neural networks that work best to model sequence
data. Therefore, this is particularly useful for PHM, where the majority of data are
temporal sequences (Pascanu et al. (2013)). The basic principle of RNN is to parse
items in an input series one after the other while updating a hidden state that stores
the history of what it has seen before. In this way, RNNs succeed in capturing the
sequential relationship in the data.
However, RNNs are not very good at capturing long-sequence data. Gated Re-
current Unit (GRU) (Chung et al. (2014)) and Long Short Term Memory (LSTM)
(Staudemeyer and Morris (2019)) are extensions of RNN which overcome some of its
disadvantages.

• Attention based: Attention mechanism was originally implemented to solve the nat-
ural language translation problem (Vaswani et al. (2017)). It is based on the premise
of human visual attention. To put it simply, attention mechanism assigns weights to
the data depending on how important a piece of data is to the task at hand. Atten-
tion based methods, particularly transformer attention, and variants, have succeeded
in achieving state-of-the-art performance in both image and text-related tasks. The
multimodal-BERT by Khare et al. (2021) and the Perceiver model by Jaegle et al.
(2021) are notable examples. Transformer-based models are widely used as founda-
tion models, which will be discussed in the next section.

• GANs: Generative Adversarial Network was created as a new method of training a
generative network (Goodfellow et al. (2014)). A GAN consists of two neural net-
works, called the generator and the discriminator. The generator trains to generate
new data that are similar to the training dataset. The discriminator trains to distin-
guish the ‘fake’ data produced by the generator. As both generator and discriminator
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Figure 2.5: Deep learning methods for multimodal data.

are trained, the output from the generator begins to more accurately resemble the
original dataset, thereby generating believable data. Variants of GANs have been
used in modality translation tasks and for data synthesis (Cao et al. (2020)).

• Contrastive Learning: Contrastive learning is a self-supervised learning technique
that learns representations by contrasting positive pairs against negative pairs. In
multimodal contexts, it aligns representations from different modalities, such as im-
ages and text, by maximizing the agreement between corresponding pairs, helping to
learn a joint embedding space. Chen et al. (2020a) presented the SIMCLR frame-
work for contrastive learning, later extended to multimodal scenarios by Yuan et al.
(2021), Zolfaghari et al. (2021) and Hager et al. (2023). Taleb et al. (2022) have
applied this method for medical imaging with genetic data.

• Autoencoders: Autoencoders learn efficient codings of input data by reconstructing
the input from a compressed representation. For multimodal data, they are extended
to learn a shared latent space that captures correlations between modalities like
images and text, enabling cross-modal tasks such as generating text from images.
Cohen Kalafut et al. (2023) developed an autoencoder method for joint multimodal
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imputation and embedding applied to single-cell genetic data in human and mouse
brains.

• Cross-Modal Retrieval Networks: These networks facilitate retrieval tasks across dif-
ferent modalities by projecting data into a common embedding space. They enable
tasks like text-to-image and image-to-text search by ensuring semantically similar
items from different modalities are close in the shared space, allowing for efficient
retrieval based on relevance. The state-of-the-art of these models are transformer-
based, but can be considered as a specialized application of representation learning.
Deep visual-semantic embedding model (DeViSE) by Frome et al. (2013), universal
image-text representation (UNITER) by Chen et al. (2020b) and improved visual-
semantic embeddings (VSE++) by Faghri et al. (2017) are examples of cross-modal
retrieval networks.

Among the listed methods, transformer-based models have demonstrated remarkable
scalability in terms of parameter counts and the ability to leverage vast training corpora,
leading to impressive feature extraction capabilities. Consequently, training large models
has become a pivotal direction in both research and industry. In the following section, we
delve into the potential of this emerging technique for multimodal learning by exploring
the concept of foundation models.

2.3.6 Foundation models for multimodal learning

Pre-training large neural networks on large datasets for domain adaptation in a downstream
task is developing into a new paradigm for deep learning. As these large models form the
foundation for a neural network structure, they are called foundation models. They serve
as preliminary feature extractors in a deep learning pipeline. In recent years, a large
number of foundation models have been developed and published, making high-scale deep
learning on multimodal data possible. While foundation models on multimodal datasets
are available (CLIP and Flamingo), another method is to use unimodal foundation models
to train a multimodal application model. An introductory overview of pre-trained models
trained on image, language, and multimodal data is given in Figure 2.6.

Foundation models for image data have been pivotal in advancing the field of computer
vision. These models are pre-trained on large-scale datasets like ImageNet, which contains
over 14 million annotated images across 1,000 categories. Training on ImageNet (or other
large image datasets) allows these models to learn rich and diverse feature representations,
making them well-suited for adaptation to various downstream tasks.
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Figure 2.6: Foundation models for multimodal learning
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Foundation models for language data have revolutionized natural language processing
(NLP) by providing powerful pre-trained models that can be fine-tuned for a variety of
downstream tasks. These models are typically trained on large-scale text corpora, such
as Wikipedia, Common Crawl, and BooksCorpus, which provide diverse linguistic features
and contexts. Training on these datasets allows the models to learn rich language repre-
sentations that can be adapted to tasks like text classification, translation, and question
answering.

Multimodal foundation models are designed to integrate and process information from
multiple data modalities, such as text, images, and audio. These models leverage the
strengths of individual modalities to provide more comprehensive and context-aware rep-
resentations. By training on large multimodal datasets, these models can handle complex
tasks that require understanding and reasoning across different types of data.

The assortment of models shown in Figure 2.6 highlights that the field of training
large deep learning models is rapidly advancing. While not comprehensive, it offers a
snapshot of the advancements and possibilities in multimodal learning. It can be seen
that there are many pre-trained models available for adaptation to PHM tasks. With pre-
trained foundation models established, we will next explore techniques for adapting them
to downstream tasks.

2.3.6.1 Techniques for pre-trained model adaptation

Adapting pre-trained foundation models to downstream tasks involves fine-tuning and
modifying the models to meet the specific requirements of the target application. This
process leverages the rich feature representations learned during pre-training and adapts
them for more specialized tasks. Below are some common techniques for adapting pre-
trained models:

• Fine-tuning: Fine-tuning involves training the pre-trained model on a smaller task-
specific dataset. This process adjusts the weights of the model to better fit the new
data while retaining the general knowledge acquired during pre-training (Howard and
Ruder (2018)). Fine-tuning is particularly effective when the pre-trained model is
well-aligned with the downstream task.

• Feature extraction: In this approach, the pre-trained model is used as a fixed
feature extractor. The pre-trained model processes the input data to generate feature
representations, which are then fed into a separate classifier or regressor tailored to
the specific task (Zheng et al. (2020)). This technique is useful when computational
resources are limited or when the task-specific dataset is small.



2.4. Data-driven PHM with Multimodal Data 33

• Knowledge distillation: Knowledge distillation transfers the knowledge from a
large pre-trained model (teacher) to a smaller and more efficient model (student).
The student model is trained to replicate the behavior of the teacher model, making
it suitable for deployment in resource-constrained environments while retaining much
of the teacher model’s performance (Zhou et al. (2024)).

Takeaway

Learning from multimodal data using deep learning has significantly advanced in
recent years, with widespread adoption in fields such as medicine. Techniques
to extract useful information from images and text have reached a high level of
maturity. The availability of pre-trained foundation models for these modalities
presents an opportunity to utilize these data in many fields, even in domains such
as PHM where these data are scarce.

While there are more techniques for exploiting a pre-trained model for a domain-specific
task, fine-tuning and feature extraction are of particular interest to this thesis. As industrial
data typically suffers from high sparsity, the method of using a foundation model for initial
feature extraction followed by domain and task-specific adapter module training will be
used in the rest of this thesis. A large language model will be fine-tuned on industrial
text data in Chapter 4. Now that an overview of the current advancement in multimodal
learning is established, the next section looks at the existing studies in data-driven PHM
using multimodal data.

2.4 Data-driven PHM with Multimodal Data

In this section, we look at the existing studies in PHM that use multimodal data. This
section is divided into subsections based on PHM purposes such as fault detection and
diagnostics, prognostics, and maintenance optimization. To the best of our knowledge, the
studies referenced in this section are all the existing works that use multimodal data to
solve any PHM task.

2.4.1 Multimodal machine learning in fault detection and diag-
nostics

Fault detection and diagnostics (FDD) is typically performed after a fault has occurred in
the system. Fault detection involves finding if an anomaly occurred, fault isolation aims
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to identify where exactly the fault occurred, and diagnostics involves analyzing why it
happened.

Table 2.3 presents the existing works that use multimodal data to solve fault detection
and diagnostics. One can see that almost all studies investigate a combination of numerical
and image data for multi-modal learning, and propose a deep learning model to fuse data
for fault detection, isolation, and diagnostics.

Problem Method/tool Data Application
Data fusion
for fault di-
agnosis Yuan
et al. (2018)

M-CNN Vibration, IR im-
ages

Rotor system

Data fusion
for fault di-
agnosis Yuan
et al. (2018)

M-ResNet-
DCA

Vibration, IR im-
ages

Rotor system

Network fault
isolation Kao
et al. (2019)

LSTM Network metrics,
customer com-
plaints

IPTV net-
work

Data fusion
for fault di-
agnosis Ma
et al. (2014)

RBM-AE Electric signals, im-
ages

Power trans-
formers and
circuit break-
ers

Data fusion
for diagnosis
Zhou et al.
(2021)

DNN, AE,
CNN

Vibration, image of
vibration signal

Bearing plat-
form

Data fusion
for fault de-
tection Marei
and Li (2021)

MLP, CNN,
GRU

Temperature, Op-
eration details

Plastic mold-
ing

Data fusion
for fault de-
tection Mian
et al. (2022)

NCA, RA,
SVM

Vibration, Thermal
images

Bearings

Table 2.3: Research on multimodal learning for fault detection and diagnostics.

Reviewing the studies in Table 2.3, it is observed that the integration of numerical and
image data has shown promise in enhancing fault detection and diagnostics. However,
these works primarily focus on combining two types of data, leaving a gap in exploring
more diverse multimodal data sources. This indicates the necessity for developing method-
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ologies that can effectively fuse various data types to improve fault detection accuracy and
robustness.

2.4.2 Multimodal machine learning in prognostics

Prognostics is the activity of projecting the health state of a machine or system into the
future. This projection is used to anticipate failures and take proactive actions as needed.
Prediction of the RUL of a machine is one of the key activities in prognostics. Table 2.4
presents the existing works that use multimodal data for prognostics. We observe that all
deep learning-based works use CNN in combination with other architectures. It should also
be mentioned that the study by Zhang et al. (2021) does not use deep learning methods,
but instead explores visualization and clustering of maintenance data to support preventive
maintenance.

Problem Method/tool Data Application
Data fusion
for RUL pre-
diction Yang
et al. (2021)

CNN, MLP Simulated data:
Inspection records,
signal images,
maintenance his-
tory

Steam gener-
ator

Data fusion
for RUL pre-
diction Marei
and Li (2021)

CNN-LSTM,
ResNet-28

Process parame-
ters, tool images

Machining

Data visual-
ization Zhang
et al. (2021)

ccPCA,
ccMCA,
UMAP +
DBSCAN

Network metrics,
operation param-
eters, machine
status description

Maintenance
log analysis

Wear condi-
tion prognosis
Wang et al.
(2019b)

CNN, RNN Process parame-
ters, tool images

Cutting tool

Table 2.4: Research on multimodal learning for prognostics.

Table 2.4 highlights the use of multimodal data in prognostics, particularly in predicting
the RUL of machinery. While CNN-based models show promise in RUL prediction, the
reliance on simulated data highlights the challenge of applying these methods to real-
world scenarios. There is a clear need to develop and validate models that can handle the
complexity and variability of industrial multimodal data for more reliable prognostics.
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2.4.3 Multimodal machine learning for maintenance optimiza-
tion

Maintenance optimization includes activities related to decision support based on prog-
nostic information resulting from previous steps in the PHM pipeline. This goes beyond
studying the health state of the system and extends to specifying what actions can be
taken for optimal maintenance. Table 2.5 presents the existing works that use multimodal
data for prescriptive maintenance. Digital twins and associated methods appear to be the
dominant methods when observing the table. The papers presented in Table 2.5 define
frameworks for the maintenance process and specify suitable techniques for each part of
the respective framework. However, it should be noted in advance that the papers do not
present case studies with failure prediction mechanisms. On the contrary, the methods
are only recommended as a potentially suitable solution for the prediction task in the
framework presented in the papers.

Problem Method/tool Data Application
Decision
support
framework
design Ansari
et al. (2019)

Digital
shadow

Maintenance
records, machine
parameters

Cyber-
physical
production
systems

Failure pre-
diction for
decision sup-
port Ansari
et al. (2020)

Dynamic
Bayesian
Networks

Maintenance
records, machine
parameters

Cyber-
physical
production
systems

Maintenance
framework
design
Zacharaki
et al. (2021)

Digital twin,
rule-based
model

(Only concept pre-
sented in the pa-
per)

Refurbishment
of industrial
equipment

Table 2.5: Research on multimodal learning for maintenance optimization.

Examining the studies in Table 2.5, it is clear that frameworks like digital twin and dy-
namic Bayesian networks are pivotal in maintenance optimization. However, these frame-
works often lack practical validation with real-world data. This gap suggests a significant
opportunity to develop and validate comprehensive maintenance optimization strategies
that incorporate multimodal data for better decision support.

To the best of our knowledge, no other works have addressed the challenges and ex-
plored the opportunities of using multimodal data for industrial diagnostics and prognos-
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tics. In summary, the reviewed studies reveal a promising yet underexplored potential of
multimodal data in PHM. The identified gaps underscore the need for developing robust
methodologies that can effectively leverage diverse data sources. The next section consol-
idates the observations made in this chapter to position the objectives of this thesis in the
literature.

Takeaway

Multimodal data adoption in industrial PHM is a very nascent field with little focus
in the literature given to this so far. The few works present deal with a maximum of
two modalities at once, and do not go into detail about overcoming the challenges
of multimodal learning. Therefore, there is a significant lack of studies addressing
the challenges of real industrial multimodal condition monitoring data.

2.5 Research Positioning

According to the literature review, it was observed that most of the datasets used in the
data-driven PHM domain are unimodal sensor signals such as vibration, temperature, or
other one-dimensional numerical data. In contrast, other domains such as medical science,
robotics, and affective computing have shown significant adoption of multiple data modal-
ities and applied deep learning methods, leveraging their interconnections to solve some
domain challenges. Real-world applications indicate that neural network-based multimodal
learning is now mature enough for the PHM community to explore as a solution to data
scarcity in industrial condition monitoring. Recent advancements in large neural network
models for feature extraction offer potential solutions to the fundamental challenges that
have previously limited the field.

Multimodal data offers a promising solution to the limitations of unimodal data by
providing complementary and reinforcing information. For instance, visual inspection pho-
tographs, operator reports, and other textual data can supplement traditional sensor data,
offering a more comprehensive view of machine health. This is particularly important in
industrial settings where sensor data may be scarce or incomplete. By leveraging mul-
timodal data, we can enhance the robustness and accuracy of PHM models, ultimately
improving maintenance decisions and reducing operational costs.

In this context, the thesis aims to tackle several critical challenges in the domain of PHM
by exploring the potential of multimodal data integration and advanced ML techniques.
The following research questions underscore the originality and novelty of this study:
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1. How can multimodal data improve the accuracy and robustness of PHM models com-
pared to traditional unimodal approaches?
To explore this, the thesis will investigate the integration of various data modalities,
such as sensor signals, visual inspection photographs, and textual operator reports.
The goal is to develop and evaluate models that leverage these multimodal inputs
to enhance the comprehensiveness and predictive performance of machine health as-
sessments.

2. What techniques can be developed to handle missing and noisy data in multimodal
industrial condition monitoring datasets?
This question will be addressed by studying the impact of data quality issues on
model performance and developing robust techniques to handle these issues. The
focus will be on creating models that maintain high accuracy and reliability even
when some data modalities are missing or corrupted.

3. What methodologies can be developed to ensure the temporal alignment and joint rep-
resentation of multimodal data in PHM tasks?
The research will focus on developing techniques for synchronizing and jointly rep-
resenting data from different modalities, with an emphasis on temporal alignment
methods that ensure coherent integration of time-series data with other types of
information.

4. How can domain knowledge be effectively incorporated into multimodal PHM models
to enhance interpretability and acceptance by industry experts?
The research will develop methodologies that integrate domain expertise into the
model design and training process, as well as leverage textual knowledge from indus-
try experts. Ensuring that model outputs are interpretable and align with existing
domain knowledge will be a key objective.

5. What strategies can be employed to address the class imbalance in multimodal condi-
tion monitoring data, especially in the context of multi-fault diagnostics?
To tackle this, the thesis will investigate techniques such as advanced sampling
methods, distribution aware training, and cost-sensitive learning. The aim is to
develop models capable of accurately diagnosing multiple faults in highly imbalanced
datasets.

6. How can machine health prognostics be performed without extensive run-to-failure
data for expensive and complex machines?
This challenge will be addressed by exploring alternative approaches to prognostics
that do not rely on complete run-to-failure data. Potential solutions include transfer
learning, few-shot learning, and the use of synthetic or simulated data to augment
limited historical data.
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7. How can the results of multimodal PHM models be validated on real industrial datasets
to ensure their generalizability and reproducibility?
This question will be addressed by applying the developed methodologies to real
industrial datasets and validating the results with domain experts. Ensuring that
the models are generalizable to different industrial settings and reproducible across
various datasets will be a crucial part of this research.

In summary, this thesis positions itself at the intersection of multimodal
learning and industrial PHM, aiming to bridge the gap between academic re-
search and practical industrial applications.

The scientific development plan to address each of the aforementioned challenges is
given below, and the structural outline of the thesis is also illustrated in Figure 2.7.

The first contribution (Chapter 3) presents an initial exploration of multimodal data
using a simulation dataset. We develop a methodology to analyze the impact of
missing and noisy data using a simulation dataset. A crossmodal attention-
based co-learning technique is presented to increase resilience to these conditions.

The second contribution (Chapter 4) focuses on development of a new methodol-
ogy for fault detection and health index calculation under sparse multimodal
data. This builds upon the first contribution and applies it to a real industrial dataset of
hydrogenerators. Data modalities including image, text, electrical signals, and other time
series will be processed. Time alignment issue due to different condition monitor-
ing rates of multimodal data will be addressed. A methodology will be developed to
use expert knowledge-assisted feature extraction for mitigating data shortage within each
modality. This methodology will also highlight fidelity to domain knowledge without de-
manding physics-of-failure modeling, as well as account for human expert subjectivity
in health estimation through industrial text mining.

Building upon the techniques and methodologies developed through the course of the
thesis, the final chapter (Chapter 5) presents an end-to-end methodology for prog-
nostics using multimodal condition monitoring data without necessitating run-
to-failure (RTF) trajectories from the history of any machine. This will be ac-
complished in a two-step methodology. Firstly, we will develop a modular deep learning
framework to perform diagnostics under significant class imbalance and spar-
sity, while also managing resource constraints. Secondly, we will use the features from
this diagnostics model to construct graph-format RTF data and train a prognos-
tics model. The end-to-end prognostics methodology presented in this chapter is applied
to an industrial dataset of hydrogenerators and validated by domain experts. This final
contribution represents the culmination of all the techniques and methodologies developed
throughout this thesis, resulting in a prognostic methodology that effectively leverages
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Figure 2.7: Schematic outline of thesis plan in relation to literature gaps identified in this
chapter.
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multimodal learning to address the various challenges arising from industrial data scarcity.

2.6 Conclusion

In this chapter, an overview of data-driven PHM was presented. We delved into the concept
of multimodal data, its history, and the significant challenges associated with it. This was
followed by an exploration of the tools and latest advancements used to process and analyze
multimodal data.

We then reviewed existing works in the PHM domain that utilize multimodal data,
highlighting the progress made and the limitations that still exist. This examination al-
lowed us to identify critical gaps in the literature, which serve as the research motivation
and direction for this thesis.

In the next chapter, we will begin addressing these research gaps. We will develop an
initial methodology for working with multimodal data using a simulated dataset. This
methodology will serve as a foundation throughout the thesis. The challenges of missing
modality and modality-specific noise will be investigated. Also, we will develop and propose
techniques to mitigate these issues.
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3.1 Introduction

In Chapter 2, we presented an overview of multimodal data applications and challenges
in data-driven PHM. By combining information from multiple modalities, a more compre-
hensive overview of the system’s health can be obtained, enabling the detection of subtle
changes in its behavior that might not be observable from a single modality. Nonetheless,
the efficient exploitation of multimodal data is encumbered by significant challenges, par-
ticularly in managing missing data and modality-specific noise, aspects still underexplored
within the PHM domain.

Research across various domains has proposed strategies for tackling these challenges.
For instance, Lee et al. (2019) investigated the impact of missing data in semiconductor
manufacturing, while Liu et al. (2021) and Ma et al. (2021) studied the effects of noise and
missing modalities in emotion recognition and multimodal learning, respectively. Other
studies, such as those by Nagulapati et al. (2021) and Akrim et al. (2023), have focused on
how training data size affects prediction accuracy. One can see that while the literature
extensively investigates missing data effects in various contexts, there is a notable absence
of studies addressing different levels of missing data modalities within the PHM domain.
Similarly, despite the consideration of noise conditions in some studies, no exploration of
diverse noise levels in a multimodal PHM dataset has been identified.

This chapter aims to bridge this gap by examining the integration of diverse multimodal
data sources, including maintenance records, imagery, and technical reports. We utilize a
simulated multimodal dataset on steam generator prognostics, which includes numerical,
textual, and image data. Our exploration focuses on the effectiveness of cross-modal trans-
former attention layers in handling missing modalities and noise, and how these factors
influence feature learning and model performance.

This initial exploration lays the groundwork for developing robust multimodal learning
frameworks tailored for industrial applications, where data quality and completeness are
paramount. The insights gained here will be crucial for future models throughout this
thesis, providing foundational knowledge on the key challenges and potential strategies in
multimodal PHM. A graphical overview of the chapter’s structure and methodologies is
presented in Figure 3.1.

The rest of this chapter is organized as follows. In section 3.2, an attention based mul-
timodal learning method is presented. Section 3.3 presents the dataset and the simulation
of missing and noisy data conditions, setting the parameters for the analyses. Section
3.4 introduces the multimodal neural network structure and the experiments analysing
performance variation under a range of simulated data conditions. Finally, section 3.5
summarizes and concludes the chapter.
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3.2 Cross-modal Context Passing with Attention

In this chapter, we aim to establish a general principle for designing multimodal neural
network architectures that can serve for all the industrial datasets we will work with in
later chapters. From an engineering perspective, the key challenge of multimodal data
are the disparity between dimensions. From a deep-learning point of view, the challenge is
extracting features from diverse kinds of data. Considering that realistic data conditions in
the industry would be far from dense and balanced, a multimodal learning model for PHM
needs to be robust to low data quality and exploit maximum information from sparse data.
To arrive at such a model, we need to first build a feature extraction pipeline for each of
the data, and then implement a multimodal interaction mechanism that can compensate
for the data limitations. The first part is straightforward, simply involving designing a
network with layer mechanisms suited to treat each modality, e.g., convolutional layers for
images.

Building a multimodal network in which interactions between modalities can compen-
sate for limitations within individual modalities is, by far, a more challenging problem.
The transformer attention mechanism (Vaswani et al. (2017)) has demonstrated strong
performance in various tasks involving multimodal data. It enables the model to selec-
tively focus on relevant features across different modalities by computing attention weights
based on the relationships between keys, queries, and values.

Figure 3.2: A simplified illustration of a crossmodal attention layer from image branch to
numerical branch. The query (Q) comes from the numerical features looking to be enhanced
by additional context. Key (K) and value (V) are derived from the image features. The
attention score determines how much each image feature (value) should contribute to the
final output that goes into the numerical processing stream.

Here, we explore how transformer attention can enhance cross-modal information trans-
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fer, specifically by improving feature extraction from each modality using insights gained
from others. For instance, considering an attention layer from image to numerical data, the
mechanism operates by assigning weights to features rather than modifying the features
themselves. By leveraging contextual information from the images, the attention mecha-
nism enhances the representation of the numerical data based on the computed attention
weights.

Definition

Definition 3.1 (Attention):
The attention layer takes in three inputs - the key K, the query Q, and the value
V. Query represents the data or features seeking contextual enhancement. The key
is used to compute compatibility or relevance scores against the query. The value
contains the data that is aggregated based on these scores to enrich or augment the
query.

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

The attention score estimates the pertinence of each key component in relation to the
query.

In the context of image-to-numerical attention, image features would act as both the
key and the value. The query, representing numerical data, seeks contextual enhancement
from the image features. The attention layer calculates a similarity score between the
numerical data’s hidden state (query) and the sequence of image features (key). This score
denotes the significance of each numerical data component in relation to the image. These
attention weights are utilized to compute the final weighted representation of the numerical
features, illustrated in Figure 3.2.

Implementing crossmodal attention in multimodal learning models faces the significant
challenge of dimension mismatches among different modalities. This mismatch complicates
matrix multiplication as the key dimensions must align with those of the value vector. To
overcome this, several strategies have been developed.

• Simplification with 1D convolution filters: This method replaces the traditional key-
query-value mechanism but often fails to capture complex intermodal relationships.

• Reshaping data blocks: Matching the dimensions of one modality’s data block with
another preserves spatial information but may lose some misaligned features.

• Flattening and dense layer integration: Flattening output from a modal block and
using a dense layer to match dimensions across modalities sometimes results in spatial
information loss but effectively aligns the dimensions for necessary computations.
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Each approach has its merits and drawbacks, depending on the specific characteristics of
the dataset. Our research found that integrating flattened outputs with a dense layer effec-
tively manages dimensional discrepancies. With this cross-modal context passing technique
established, we will now test the multimodal model on a specific dataset and evaluate its
performance across different data quality conditions.

3.3 Research Questions

Multimodal condition monitoring inherently involves data sparsity due to varying data
collection frequencies across modalities. In practical multimodal PHM systems, missing
data is a common challenge, further compounded by the diversity of sensors — including
human input for textual data — which introduces varying noise levels. This chapter exam-
ines the effects of different noise intensities and data absence on multimodal learning. A
primary focus is on assessing the efficacy of transformer attention mechanisms in enhancing
feature extraction across modalities and their resilience under suboptimal data conditions.
The study addresses the following research questions to deepen our understanding of how
multimodal learning models perform under the diverse data quality conditions typically
encountered in industrial settings:

1. How do varying levels of missing and noisy data in each modality (text, image,
and numerical) impact the performance of multimodal learning models for industrial
prognostics?

2. Can the incorporation of crossmodal attention mechanisms improve the robustness
and performance of multimodal learning models in case of missing and noisy data?

While we observe the performance of a model under various data conditions, managing
these with imputation or noise correction techniques is not attempted in this chapter.
Rather, the objective is to study the ability of cross-modal attention layers to learn from
the data as it is. Next, the case study dataset will be presented in section 3.3.1. Then,
simulation of poor data conditions will be outlined in section 3.3.2. Design of datasets by
combination of different levels of data missingness and noise will be presented in section
3.3.3 and dataset preparation by splitting into train and test subsets will be shown in
section 3.3.4.
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3.3.1 Steam generator dataset

To address the aforementioned research questions, a suitable multimodal dataset is essen-
tial. Given the exploratory nature of this study on multimodal data for PHM, we have
opted for a simulated dataset specifically designed for steam generator prognostics, as de-
tailed in Yang et al. (2021). This dataset provides a controlled environment to investigate
the dynamics of multimodal learning within an industrial context.

The dataset comprises 50 degradation trajectories from 50 steam generators and in-
cludes both perfect and imperfect maintenance interventions. Each trajectory comprises
approximately 150 observations, consisting of image, text, and numerical data as inputs,
with machine degradation level as the target (see Fig. 3.3b).

• Image data: Snapshots of wide range level (WRL) signals from the steam generators
(not actual camera images). These are indicators of the level of sediment deposited
in the steam generator, which corresponds to the degradation level. Figure 3.3a (left)
shows a smaller difference between pressure levels at the top and bottom through a
time interval, indicating less deposit and thus, less degradation than 3.3a (right).

• Text data: Brief notes by maintenance technicians, such as “Middle level condition.
The mechanical cleaning is done. Now SG has little deposits”.

• Numerical data: Time, time from the last maintenance, number of mechanical clean-
ings, and others.

• Prediction target: An arbitrary degradation unit in the range 0 to 100 (Figure 3.3b).

For more detailed information on the dataset, interested readers can refer to the paper
Yang et al. (2021).

Despite being a simulated dataset, it is appropriate for this initial exploratory study
as it offers a controlled experimental environment that is essential for systematically ex-
amining the effects of noise and missing data. This controlled setting is vital for com-
prehensively understanding how multimodal learning techniques perform under various
conditions. Moreover, the simulated dataset enables the investigation of a broad spectrum
of scenarios and data attributes that are often not accessible in real industrial data.

3.3.2 Simulation of noisy and missing data conditions

Within the existing literature, various types of noise have been examined for each modality.
Given the specific research questions addressed in this chapter, and without generality loss,
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(a) Samples of image data
(adapted from Yang et al.
(2021)). This shows the wide
range level (WRL) signal, in-
dicating sediment deposit.

(b) Machine degradation trajectory (adapted from Yang et al.
(2021)). This figure shows one steam generator’s simulated
health state evolution. The black line tracks the degradation
level (from 0 to 100). The degradation increases with time until
maintenance interventions restore the machine to a completely
or partially healthy state.

Figure 3.3: Illustration of image data and prediction target in the dataset

uniform random noise is investigated for images, character-random swaps for text, and
random changes within the value range for numerical data. The simulation of missingness
involves the complete removal of samples. Particularly, to create the noisy and missing
datasets, the following steps are undertaken:

1. Adding noise: While adding noise at a certain percentage (0%, 10%, 25%, and 50%),
every sample in the dataset was altered to match that noise level.

• Images: Noise is added to the images by randomly changing pixel values (Fig-
ure 3.4). For example, to simulate a 50% noise level, 50% of the pixels in every
image in the dataset would be randomly altered.

• Text: For text data, noise is introduced by randomizing a percentage of text
characters in every row. For instance, if the noise level is set at 10%, 10% of
the characters in each text sample would be randomized. At a 25% noise level,
the text becomes nearly unreadable for humans.

• Numerical: For numerical data, a percentage of the numerical channels (of the
five in the dataset) will be randomized. For example, at a 10% noise level, 10%
of the numerical channels would have randomized values within the range of its
possible values.

2. Simulating missingness: While simulating missingness, the corresponding percentage
(0%, 10%, 25%, and 50%) of samples are entirely removed from the dataset.
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• Images: If the image missingness level is set at 25%, then randomly selected
25% of the images in the dataset would be removed.

• Text: If the text missingness level is set at 25%, then all characters in a random
selection of 25% of samples would be replaced by white spaces.

• Numerical: If the numerical data missingness level is set at 25%, then 25% of
the rows would have their numerical values set to -1 (-1 is not a valid value in
this dataset).

All randomization is done by the Python pseudorandom generator based on the Mersenne
Twister (Matsumoto and Nishimura (1998)).

(a) Image data
sample with 10%
noisy pixels.

(b) Image data
sample with 25%
noisy pixels.

(c) Image data
sample with 50%
noisy pixels.

Figure 3.4: Illustration of simulating noise in image data.

3.3.3 Noise and missingness combinations

To systematically evaluate the performance of the proposed multimodal learning models
under various data quality conditions, a range of datasets with different combinations of
noise and missingness levels for each modality were generated. Let D represent a dataset,
where D can be defined as:

D = {Mi ×Nj | i, j ∈ {1, 2, . . . , n}, n is the number of modalities}

In this study, n = 3, represents the three modalities: image, text, and numerical data.
For each modality, the noise and missingness levels are independently considered. Let
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P = {p1, p2, . . . , pk} be the set of level configurations for both noise and missingness. In
this case, P = {0, 10, 25, 50} with a cardinality |P| = 4. Then, Mi and Nj are defined as
follows:

Mi = {m | m ∈ P} represents the missingness levels for modality i.

Nj = {n | n ∈ P} represents the noise levels for modality j.

By considering noise and missingness levels of each modality independently, the study
explores the impact of |P |2 unique combinations for each modality. In the current study,
|P |2 = 16, which represents the combinations spanning from no noise or missingness (0%
for both) to the highest level of noise and missingness (50% for both). This results in a
total of (|P |2)n = 4096 distinct datasets, comprehensively covering the possible scenarios
of data quality issues across the modalities.

3.3.4 Training, validation and test data

To address the challenge of limited run-to-failure trajectories in industrial settings, we only
use 25 trajectories for model training and the remaining 25 are set aside for testing. The
initial 25 trajectories are divided into 5 folds for 5-fold cross-validation training.

In the coming sections, models will be trained under a range of missing and noisy data
conditions. Each of these will be tested on two variations of the test set. The first is a
“good quality” test set, where no missing or noisy conditions are simulated. The second is a
“poor quality” test set, where missingness and noise are simulated at the same levels as the
corresponding training set. This enables two distinct observations of a model. First, the
results on the good-quality test set demonstrate how the model performs when presented
with high-quality samples after being trained on poor-quality data. The predictions on the
poor quality set, on the other hand, indicate the model performance under the same data
quality conditions it was trained on.

All the steps until this point are illustrated in the first part of the overall schema shown
in Figure 3.1. The next subsection will present the model development and training steps.

3.4 Multimodal Learning with Cross-modal Attention

The datasets created so far represent a wide range of poor data conditions across different
modalities in a multimodal prognostics dataset. In this subsection, we will first establish
the neural network structures to be trained on these datasets, and then compare their
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performances. Subsections 3.4.1 and 3.4.2 will outline the neural network structures and
establish the performance baselines. Then, subsections 3.4.3 and 3.4.4 will discuss the
comparative analyses of the models under missing and noisy dataset conditions.

3.4.1 Unimodal model design

Initially, we preprocess each data modality in the dataset by developing unimodal neural
networks. This involves constructing three distinct neural network modules, specifically
tailored for processing image, text, and numerical data respectively.

For images, the unnecessary x and y-axis markers are cropped to keep only the useful
information including WRL curves. These images are then processed with a simple con-
volutional neural network (Albawi et al. (2017)) consisting of convolutional and pooling
layers. Convolutional networks are well suited to image tasks because of their capacity
to capture local features and spatial relationships in the data. The output is a 1x1 dense
node that predicts the degradation level based only on the image data. The architecture
is shown in Figure 3.5a.

The text data first undergoes some preprocessing such as lowercasing, tokenizing, and
padding. Then, an embedding layer is used to create a vector representation of the pre-
processing text. This is followed by a convolutional network similar to the image path (see
Figure 3.5b). In fact, convolutional networks have proven effective in capturing local and
global semantic information in the text. Specifically, three 1D convolution layers were used
for the text path.

The numerical data is processed by a fully connected network with a series of dense
layers (Figure 3.5c), suitable for processing structured numerical data due to its capacity
to learn nonlinear patterns.

The results of the unimodal models trained on 25 trajectories are given in Table 3.1.
One can see that among the three modalities, unimodal learning based on numerical data
provides the best results.

Table 3.1: Performances of unimodal learning.

Data/Model MAE MSE
Image 14.59 355.02
Text 18.56 635.10
Numerical 12.83 176.66

Now that the unimodal baselines are established, we can use these as building blocks
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(a) CNN architecture to pro-
cess image data.

(b) CNN architec-
ture to process text
data.

(c) Fully connected network to
process numerical data.

Figure 3.5: Unimodal network structures that form the branches of the multimodal archi-
tecture.

to build bimodal architectures, and finally construct the optimal multimodal learning ar-
chitecture for three data modalities.

3.4.2 Multimodal architecture design

The previously mentioned unimodal structures — for image, text, and numerical data
— serve as foundational components for constructing the multimodal baseline model. A
straightforward approach involves merging the outputs of these three unimodal modules
at their final layer, a method exemplified in Yang et al. (2021).

Initially, we integrate pairs of modalities to develop three bimodal models, as depicted
in Figure 3.6. Subsequently, all three modalities are combined to form a straightforward
trimodal model, illustrated in Figure 3.7. This architecture, which primarily utilizes late
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fusion of the unimodal networks, is called the “simple model”. The performance evaluation
for these models is presented in Table 3.2.

One can see that multimodal learning utilizing three modalities yields the most favor-
able outcomes. However, the models in this study were trained solely on 25 trajectories,
whereas Yang et al. (2021) trained their models using 40 trajectories. Consequently, a
direct comparison between the results of this study and those of Yang et al. (2021) is
not feasible due to the disparity in the training dataset size. However, the simple tri-
modal model presented in Table 3.2 shares the same architecture as described in Yang
et al. (2021). Consequently, while a direct comparison with the findings from Yang et al.
(2021) is not feasible, all subsequent model comparisons in this study will juxtapose the
architecture suggested in the referenced paper with a crossmodal attention network.

Table 3.2: Performance of simple models (without attention mechanism).

Data/Model MAE MSE
Image + Text 14.04 197.47
Image + Numerical 12.69 169.28
Text + Numerical 17.91 494.21
Image + Text + Numerical 11.36 179.87

(a) Text and image (b) Image and numerical (c) Text and numerical

Figure 3.6: Simple 2-modal network structures without attention mechanism.
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Figure 3.7: Simple 3-modal network without attention mechanism. The general model
design until this step follows the original dataset paper by Yang et al. (2021).

Building on the previous discussion of bimodal networks, implementing crossmodal
attention-based information transfer is critical. A pivotal aspect of this implementation
involves configuring the attention layers appropriately. In this context, we investigate vari-
ous configurations, specifically testing alternating attention directions between modalities.
The results of these experiments are presented in Table 3.3.

Table 3.3: Performances of different attention-based models with 2 modalities.

Data Attention MAE MSE
Image + Text Text to image 12.77 194.95
Image + Text Image to text 13.67 198.17

Image + Numerical Image to numerical 10.89 128.71
Image + Numerical Numerical to image 11.64 134.85
Text + Numerical Numerical to text 15.40 299.74
Text + Numerical Text to numerical 17.31 381.41

The results in Table 3.3 provide a starting point for the attention configuration for
the 3-modal setup. The critical challenge in designing a neural network with cross-modal
attention layers is the placement of the attention layer. The naive but expensive design
choice is to attend in both directions. While this can seem to be exhaustive, bidirectional
attention is not always the best case, because some data may be unsuited to provide
context for other data. Indeed, determining which data modality contains suitable features
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to inform the learning from another is a crucial step. Ideally, this can be deduced from
domain knowledge of the degradation modes and the condition monitoring data.

Given the lack of established domain knowledge to prioritize information quality across
modalities, the performance of 2-modal attention configurations can reveal which data
modality enhances feature extraction from others. For instance, the results shown in Ta-
ble 3.3 indicate that in this dataset, text data more effectively guides the feature extraction
process for images than vice versa.

Figure 3.8: Attention model on text, image, and numerical data. This is the new model
proposed in this work. The crossmodal attention layers are implemented with transformer
attention (Vaswani et al. (2017)).

Expanding upon these insights, we proceed to evaluate configurations of attention lay-
ers within a 3-modal framework. Here, we explore four distinct cross-modal attention
combinations to assess their efficacy:

1. Attention from text to image, from image to numerical, from numerical to text;

2. Attention from image to text, text to numerical, numerical to image;

3. Attention from image to text, and from image to numerical;

4. Attention in both directions between all three modalities.
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Table 3.4: Performance of different attention-based models with 3 modalities.

Attention order MAE MSE
Text to image, image to num, num to text 6.91 82.76
Text to num, num to image, image to text 18.64 701.62

Image to text, image to num 15.08 473.19
Bidirectional attention between all modalities 20.12 764.67

The results of the multimodal learning models using the four different combinations
are reported in Table 3.4. It is observed that the configuration employing the attention
mechanism from text to image, image to numerical, and numerical to text yields the best
performance. This is consistent with the configurations found in the 2-modal tests done in
Table 3.3. The resulting 3-modal attention configuration, depicted in Figure 3.8, will be
further examined throughout the remainder of this study as the representative architecture
for multimodal learning incorporating attention, in comparison to the baseline multimodal
model without attention.

Key findings

Cross-modal attention layer placement should flow from the more informative
modality to a less informative one. No universally optimal order applies to all
datasets. In an industrial setting, this order may be known to the domain experts.
If not, unimodal models and performance comparisons of bimodal models with
different attention configurations can establish this order. If the experiments do
not conclusively determine a natural hierarchy among the modalities, implement-
ing a bidirectional attention mechanism, though potentially costly, represents a
prudent fallback strategy. This approach ensures comprehensive data integration,
maximizing the learning potential across all modalities.

3.4.3 Investigation of multimodal learning performance in miss-
ing data context

This section begins the comparative evaluation of the simple model (Figure 3.7) and the
attention model (Figure 3.8) on two test sets. The “good test data” is the test set without
any simulated poor data quality conditions, whereas the other test set simulates the same
conditions as the training set of the corresponding model.

Table 3.5 presents a comparison between the attention-based and simple models, trained
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Table 3.5: Comparison of attention model and simple model when missing data.

Missing level in
training data

MAE on good
test data

MAE on test data
with missing

Attention Simple Attention Simple
Image 10% 8.69 12.02 10.8 27.05
Image 25% 10.81 13.2 11.57 28.28
Image 50% 11.53 14.54 13.24 29.65
Text 10% 10.59 12.74 11.38 22.56
Text 25% 10.37 12.88 10.84 23.6
Text 50% 10.01 13.53 10.95 24.93

Numerical 10% 9.36 11.25 11.02 21.8
Numerical 25% 9.5 12.81 11.88 23
Numerical 50% 10.33 15.72 12.79 28.1

Image 10%, Text 10%, Numerical 10% 9.96 14.24 13.44 32.98
Image 25%, Text 25%, Numerical 25% 10.12 19.1 14.62 33.06
Image 50%, Text 50%, Numerical 50% 10.42 32.68 17.41 37.07

under varying conditions of data missingness (10%, 25%, and 50% of the training data).
Particularly, it displays the mean absolute error (MAE) values of both models on a good-
quality test set without any missing data, as well as on a low-quality test set where data
missingness is simulated at the same levels as the training set.

Furthermore, Figures 3.9, 3.10, 3.11, and 3.12 illustrate the missingness levels ranging
from 0% to 100% for each modality (image, text, and numerical data) within the training
set. Each figure consists of four line charts representing the performance (MAE value) of
the attention-based model on the good-quality test set, the attention-based model on the
low-quality test set, the simple model on the good-quality test set, and the simple model
on the low-quality test set.

A cursory examination reveals that the attention-based model consistently outperforms
the simple model across all figures. Additionally, within each figure, the performance of the
attention-based model at 0% missing data aligns with an MAE value of 6.91 (as indicated
in Table 3.4), while the performance of the simple model at 0% missing data corresponds
to an MAE value of 11.36 (as indicated in Table 3.2).



3.4. Multimodal Learning with Cross-modal Attention 59

Figure 3.9: Comparison of attention and simple models trained on dataset with missing
image. Each point in the figure represents a model trained on a dataset with a different
percentage of missing images.

Figure 3.10: Comparison of attention and simple models trained on the dataset with
missing text.
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Figure 3.11: Comparison of attention and simple models trained on the dataset with
missing numerical data.

Figure 3.12: Comparison of attention and simple models trained on the dataset with
all data missing at different percentages. The attention model mitigates performance
degradation when at least 50% training data is available, above which the performance
degrades at a rate comparable to the non-attention model.
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Table 3.6: Comparison of attention model and simple model when data are noisy.

Noise level in
training data

MAE on good
test data

MAE on test data
with noise

Attention Simple Attention Simple
Image 10% 7.52 13.18 9.91 24.13
Image 25% 8.26 13.6 10.16 28.52
Image 50% 11.08 14.73 10.96 30.51
Text 10% 9.47 11.83 11.54 24.04
Text 25% 11.05 12.69 12.31 25.59
Text 50% 11.6 14.44 12.61 27.17

Numerical 10% 8.36 12.32 10.6 23.66
Numerical 25% 9.93 12.53 13.12 30.21
Numerical 50% 11.29 13.16 12.83 30.88

Image 10%, Text 10%, Numerical 10% 9.21 12.94 9.71 27.08
Image 25%, Text 25%, Numerical 25% 10.27 13.39 11.03 31.89
Image 50%, Text 50%, Numerical 50% 13.05 17.33 11.91 47.12

3.4.4 Investigation of multimodal learning performance in noisy
data context

Table 3.6 shows the performance comparison of the attention and simple models trained
under different conditions of data noise, where image, text, and numerical data contain
noise at 10%, 25%, and 50% in the training data.

Figure 3.13 illustrates the performance comparison between the attention model and
the simple model trained under the noise conditions detailed in Table 3.6, when evaluated
on a clean test set (free of noise). The y-axis represents the mean absolute error (MAE),
while the x-axis delineates the various noise conditions. Given the independence of noise
levels across different modalities, the graph displays distinct lines for each experiment. The
orange line illustrates the performance degradation of the attention model with escalating
noise in text data, whereas the brown line tracks the performance of the simple model.
Notably, the attention model exhibits a sharper increase in error, moving from 10% to 25%
text noise, compared to the more gradual escalation seen in the simple model. Conversely,
as text noise intensifies from 25% to 50%, the attention model demonstrates a relatively
stable performance, outperforming the simple model.

Figure 3.14 compares the performances of the attention model and the simple model
on the test set having noise data at the same levels as the training set. It can be seen that,
in all cases, the attention model has a more stable performance compared to the simple
model. This is most apparent in the case where there is noise in all three modalities, as
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Figure 3.13: Comparison of attention and simple models trained on the dataset with noise
and tested on the dataset without noise.

Figure 3.14: Comparison of attention and simple models trained and tested on the test set
with the same noise level as the corresponding training set.
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shown by the red and gray lines in Figure 3.14. This shows that in the cases where the
training set contains noise, the attention model has learned to manage noisy samples better
than the simple model.

Key findings

1. How do varying levels of missing and noisy data in each modality (text, im-
age, and numerical) impact the performance of multimodal learning models
for industrial prognostics?

• The attention model sustains prediction performance on high-quality
test sets even when trained on data with missingness levels up to 50%
on all modalities.

• The performance of the attention model does not decline too much
while increasing noise in all three modalities to 50%, but the error of
the simple model nearly doubles.

2. Can the incorporation of crossmodal attention mechanisms improve the ro-
bustness and performance of multimodal learning models in the presence of
missing and noisy data?

• Across the full range of noise and missingness levels considered in this
study, the attention model has consistently outperformed the simple
model.

• The attention model manages to maintain the rate of performance de-
cline at low levels until around 50% data is missing.

3.5 Conclusion

In this chapter, we have laid the groundwork for understanding and managing multimodal
PHM data, focusing on the challenges posed by noise and missing data. Through simulated
scenarios, we explored the impacts of these factors on the performance of multimodal
learning models, specifically comparing a simple model based on dense layer connection
and an advanced attention-based model.

Key findings from this research demonstrate that the attention model is capable of
maintaining high prediction performance, even when confronted with significant levels of
missing or noisy data across all modalities. Remarkably, this model demonstrates robust-
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ness against increasing noise, maintaining its performance much better than the simple
model, which relies on dense layer connections and shows a near doubling of error under
similar conditions. Moreover, the consistent superiority of the attention model across all
levels of data imperfection tested highlights the efficacy of crossmodal attention mecha-
nisms in enhancing model robustness and performance in the face of missing and noisy
data.

Building upon these insights, the next chapter will extend these principles to develop a
refined methodology for diagnostics utilizing sparsely available multimodal data. We will
apply the proposed methodology to a real-world dataset, aiming to validate and potentially
enhance the robustness and applicability of our models. This progression ensures a seamless
transition from the theoretical explorations of this chapter to practical, industry-focused
applications, setting the stage for advanced implementations later in this thesis.
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— Ralph Ewerth et al. "Computational approaches for
the interpretation of image-text relations" in the book Empirical Multimodality
Research: Methods, Evaluations, Implications. (Ewerth et al. (2021)).

4.1 Introduction and Context

In Chapter 3, we conducted an initial exploration into multimodal learning for PHM using a
simulated dataset, which demonstrated that integrating attention layers to facilitate cross-
modal interactions enhances the robustness of multimodal learning under suboptimal data
quality conditions. This chapter progresses from simulated environments to practical ap-
plications, employing fault detection and diagnostics (FDD) on real industrial multimodal
data.

In most industrial settings, comprehensive and clean data are unobtainable, often lead-
ing to a gap between the anticipated and actual performance of data-driven models (Omri
et al. (2019)). Data collection frequencies usually differ among condition monitoring tools,
which complicates continuous monitoring due to issues such as sparse data, time align-
ment conflicts, and inadequate training datasets. When data availability and modeling
techniques are insufficient, leveraging domain knowledge may provide a viable solution.
While various studies such as Kokel et al. (2020), Altendorf et al. (2012), Atoui and Cohen
(2021), Yucesan and Viana (2021) and Liu et al. (2015) study different concepts of inte-
grating domain knowledge into a fault detection model, no study considers the abstract
knowledge of domain experts or their logical thought process for FDD.

To address all the aforementioned challenges, an expert knowledge-assisted multimodal
learning methodology is proposed in this chapter to build a data-driven solution for indus-
trial FDD. The proposal builds on the findings from Chapter 3 to achieve robustness to
missing modalities, and will also address multimodal time alignment. We will test this on
a dataset from a hydroelectric power generator fleet.

This chapter is organized as follows: Section 4.2 presents the proposed methodology
for fault detection and diagnostics. Then section 4.3, introduces the industrial context and
applies the methodology to the case study data. Then, section 4.4 presents the results of the
application and discusses the ablation study. This completes the first part of the chapter.
Section 4.5 extends the methodology by incorporating human knowledge from industrial
text documents and inspection notes to enhance degradation level quantification and the
outcomes of this process. Finally, section 4.6 summarizes and concludes this chapter.
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4.2 Methodology for Fault Detection and Diagnostics

This section develops a methodology that uses expert knowledge and multimodal learning
to handle data sparsity and other challenges of industrial automatic system FDD. Par-
ticularly, it addresses three following specific challenges: (1) Time alignment issues arise
because condition monitoring (CM) data are collected at different times; (2) Some CM
tools, such as visual inspection, provide only limited samples due to infrequent data col-
lection; (3) Incomplete expert knowledge about health-indicating features in certain CM
data results in variable reliability across different CM tools.

The overall diagram of the proposed methodology is given in Figure 4.1. Its first
principle is to translate the human expert’s knowledge into an automated digital process.
The expert establishes rules linking features extracted from the data to machine health
states. Since the expert has already identified useful features, the deep learning model
requires less data for training. The second principle is that multiple data modalities can
work together for effective diagnostics, but this is more efficient if good features are pre-
extracted from each modality. Based on these principles, the methodology is divided into
three phases:

1. Knowledge formalization phase. This phase formalizes expert knowledge in
condition monitoring. Initially, it involves analyzing the relationship between system
behavior and the features of each CM data type, aiming to define and interpret the
necessary features for extraction. This understanding is encapsulated in knowledge
graphs. Subsequently, the task division step determines the appropriate CM tools
for specific problems and identifies relevant characteristics for each tool. The insights
gained guide the feature engineering process, detailed in the subsequent phase, for
various CM measurements.

2. Knowledge-assisted feature extraction phase. The feature extraction phase
leverages expert knowledge to identify critical features for effective CM. Expert
knowledge credibility varies - it may be complete and reliable or incomplete and
ambiguous. In scenarios with complete knowledge, the methodology automates the
expert’s logical process using deep learning models, enabling neural networks to ex-
tract specified features from the measurements taken by a tool. Conversely, with
ambiguous knowledge, the approach involves creating a pretext task to derive inter-
mediate rather than final features, as illustrated in the upcoming case study (section
4.3.3).
Models are tailored and trained based on the context to extract pertinent features
from each CM data type. Post-training, models undergo validation by human ex-
perts. Unsuccessful validations lead to model redesign or refinement. Successfully
extracted features then serve as inputs for the multimodal learning phase.
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3. Multimodal learning phase. This phase integrates features extracted from various
data modalities to produce FDD outputs. The design of a multimodal learning
model incorporates domain expertise on the dynamics between data from multiple
sources. For instance, experts may recognize how anomalies manifest differently in
temperature versus vibration sensors and understand the typical time misalignment
patterns where one signal precedes another in indicating faults.
Drawing on insights from Chapter 3, an attention mechanism is utilized to capture
these intermodal relationships, with the placement of crossmodal attention layers
being crucial. This placement, while initially based on unimodal and bimodal model
performances, benefits significantly from domain expertise in an industrial setting.
Experts can prioritize data modalities based on information quality, guiding the
attention from higher to lower priority data.
Following the design, the model undergoes training using the previously extracted
features. The final output of the model indicates the physical degradation state of
the machine.

4.3 Application to a Hydrogenerator Fleet

This section presents an industrial dataset from a hydrogenerator fleet and applies the
proposed methodology to this data. Subsection 4.3.1 describes the context and dataset of
the case study. Subsections 4.3.2 and 4.3.3 present in detail the knowledge formalization
and feature extraction steps while subsection 4.3.4 discuss the multimodal model design.

4.3.1 Description of the hydrogenerator case study

In this application, two types of physical degradation states related to partial discharge
(PD) occurring within the stator of hydrogenerators were the target diagnostic outputs.
Figure 4.2 shows an example of a failure propagation graph of the stator, where each
node represents a discrete physical degradation state. An edge represents the transition
of the system from one physical degradation state to another following the evolution of
the degradation process. The end nodes represent failures in a particular failure mode.
In this study, two physical degradation states in this graph are studied. The two states
differ by their location (context) in relation to the components of the stator and are related
to two types of PD sources. The state code-named E7 denotes partial discharge activity
happening between the bars in the overhang portion of the stator winding and is also
referred to as Gap PD. The physical degradation state E2A is related to partial discharge
activity occurring on the stator bar at the exit of the magnetic core. The data are collected
from 26 hydrogenerators.
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Figure 4.2: Illustration of knowledge graph showing failure propagation. Adapted from
Blancke et al. (2018).

The stator degradation is monitored through visual inspection (V.I), phase-resolved par-
tial discharge (PRPD), partial discharge analyzer (PDA), ozone, and temperature. Some
examples of visual inspection images, PRPD, and PDA measurements corresponding to
the states E7 and E2A are given in Figures 4.3, 4.4, and 4.5 respectively. PD activity
induces insulation degradation which can be observed upon visual inspection by the pres-
ence of a white powder. In Figure 4.3, the corresponding degradation products for both
physical degradation states are marked by white circles. In addition, for a more detailed
understanding of PRPD and PDA, one can consult the paper by Hudon and Belec (2005).
It should be noted that features related to the physical degradation state E7 can be easily
extracted from both PRPD and PDA measurements. In the case of E2A, features related
to this physical degradation state are the same as those of another physical degradation
state related to PD activity on bars inside the magnetic iron core (also called slot dis-
charge). The only way to be certain that E2A is active is to validate PRPD and PDA
measurements by visual inspection of bars at the exit of the magnetic iron core. Ozone
and temperature measurements are simple numerical data.

Here, the first challenge of the time alignment issue manifests as follows. Visual
inspections of a hydrogenerator in a power plant may occur every six years or less, while
PRPD and PDA measurements are taken more frequently. This is illustrated in Figure 4.6.
The data collection frequency follows the order of PDA, PRPD, ozone, temperature, and
then visual inspection images. Moreover, measurements of different types are not taken
simultaneously but rather separated by months or even years. Note that in the figure, only
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Figure 4.3: Visual Inspection images showing both physical states.

Figure 4.4: Visualization of PRPD samples. Adapted from Hudon and Belec (2005).

Figure 4.5: Visualization of PDA samples. Adapted from Hudon and Belec (2005).

samples related to the two physical degradation states in the scope of this study are shown.

The second challenge of insufficient data volume is especially true for visual
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Figure 4.6: Data availability view showing V.I, PRPD, PDA, ozone and temperature data
for one generator.

inspection data, where images are collected only once every few years. In fact, there are
only 86 images in total (concerning the two physical degradation states in the scope of
this study), and these come from 26 hydrogenerators. These hydrogenerators have varying
visual characteristics such as color, as seen in Figure 4.3. Thus, it is infeasible to directly
train the diagnostic function based on images without the assistance of expert knowledge
about how to recognize the symptoms associated with a given physical degradation state.

The third challenge is related to the limitations of knowledge about the
features to be extracted from the data. This is especially true for PRPD and PDA,
where features related to the physical degradation state E2A are the same as those of
another physical degradation state in the failure propagation graph. This limitation will
be further discussed in Section 4.3.3. In contrast, with a visual inspection image, the
diagnostics can be certain. Furthermore, there is no concrete knowledge of how to monitor
the condition with ozone and temperature data.

A full view of the customization of the proposed methodology to the case study is shown
in Figure 4.7. As the hydrogenerator degradation is a slow process (in the order of years),
the measurements taken months apart could indicate the same degradation state. This
information as well as the informativeness order of the data sources guide the adaptation
of the knowledge formalization, feature extraction, and multimodal learning phases to the
case study. Implementation of these phases will be detailed in the remainder of this section.
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4.3.2 Knowledge formalization of hydrogenerator fault detection

In this phase, the first step is to represent the knowledge of the human expert about
the stator states derived from each of the CM measurements. This involves knowledge
regarding the relevant features associated with each kind of CM data, as well as the FDD
rules based on the presence or absence of these features. A representation of this knowledge
is illustrated in Figure 4.8. Considering this figure, one can see that a visual inspection
image sample may contain degradation products induced by partial discharge, which can
be seen as a white powder or rust. One type of partial discharge can appear between bars
of the stator, indicating the state E7 and the other type of partial discharge studied herein
can appear on the bar at the exit of the magnetic core, indicating the state E2A.

Figure 4.8: Knowledge graph of condition monitoring based on all available tools.

The second step of this phase seeks to differentiate the global knowledge graph into dis-
tinct branches in accordance with certain CM tasks. Each branch begins at the condition
monitoring node, followed by the CM tool, symbolized by a unique color, and ends at the
nodes that characterize the hydrogenerator physical degradation states. For instance, con-
dition monitoring utilizing visual inspection image data is represented by purple nodes and
edges. CM utilizing PRPD is indicated by orange, and PDA by blue. FDD is not feasible
utilizing ozone or temperature singly, but this is also symbolized by distinct branches in
the knowledge graph. In the following subsection, this knowledge will be used to facilitate
the knowledge-assisted feature extraction phase.
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4.3.3 Knowledge-assisted feature extraction models

In the feature extraction phase, a preprocessing pipeline was made for each of the CM
data. Most relevant features were extracted from images despite the small data volume
by following the logical process of the human expert. For PRPD and PDA, the known
features are not perfect indicators, so these are only used as targets to create a pretext
task to transform the data into features.

Figure 4.9: Visual inspection image showing a partial discharge degradation products and
reflection of light.

4.3.3.1 Feature extraction from images

Of all the CM data available in the study, visual inspection is the most reliable as the
features indicating the physical states are already known based on expert knowledge. Con-
sidering the branch of condition monitoring based on images in the knowledge graph (Figure
4.8), the identification of the physical degradation states E2A and E7 can be done in two
steps. The first step is to detect the presence of partial discharge degradation products
from an image, as shown in Figure 4.9. The second step is to infer the context of the
partial discharge, such as whether it originates in between bars or on bars at the exit of
the magnetic core.

Step 1: Detection of anomaly zone from image
One of the main challenges to accurately detecting partial discharge degradation residue
in an image is that it could look very similar to a reflected flashlight. Indeed, most of
the time, partial discharge degradation residue appear as white powder, and the visual
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properties look similar to a light reflection.

Figure 4.10: Visualization of the dataset created to train the PD detection model.

To solve this task, the problem was reframed as an object detection task. An object
detection model will be trained to detect two objects, named PD and Flash, as shown
in Figure 4.10. For each image, all instances of partial discharge degradation products
are identified by the expert. Then, an entry is made in the dataset (for training the
object detection model) including the coordinates of the bounding box around the partial
discharge degradation product and a label ‘PD’ indicating that the bounding box represents
an instance of white powder due to partial discharge. The same process was done for all
instances of a reflected flashlight in the image, with the assigned label ‘Flash’. For example,
the training image in Figure 4.10 (left) will have three entries in the dataset, one for the
partial discharge and two for the light reflection.

Object detection models always have a tension between speed and accuracy. Here,
the slow nature of degradation allows choosing a more accurate model over a fast one.
Therefore, a Faster-RCNN (by Ren et al. (2015)) based on VGG16 is chosen to train the
object detector ‘PD’ vs ‘Flash’. (Discussion of the Faster-RCNN architecture is beyond
the scope of this work. Interested readers can refer Ren et al. (2015)). The performance
of the trained detector is then validated by the human expert. The bounding box drawn
by the expert is considered as the true one and is compared to the predicted box given by
the trained detector.

Results of detection of anomaly zones from images
Figure 4.11 illustrates the performance of the Faster-RCNN trained to detect partial dis-
charge degradation. In each of the subfigures, it can be observed that the model has
effectively learned to locate the degradation zone. However, it should be noted that the
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bounding boxes generated by the model are not fully enclosing the degradation region.

Figure 4.11: Some results of PD and reflected flashlight detected by the Faster-RCNN
model.

The validity of the predicted bounding boxes is verified against the bounding boxes
annotated by the human expert. The mean average precision (AP), defined as the area
under the precision-recall curve, for partial discharge degradation, is shown in Figure 4.12.
In this case study, AP attains 72% for the partial discharge (PD) class with an Intersection
over Union (IoU) threshold of 0.5.

Figure 4.12: Plotting the precision against recall for each of the test images.

Each data point in Figure 4.12 presents the precision and recall values of a single test
image. In this scenario, precision refers to the number of correctly classified fault types
(physical degradation states) out of all the identified types. Recall gives the number of
identified faults out of all existing faults. The precision-recall curve illustrates the tradeoff
between minimizing wrong predictions and maximizing the number of correct predictions.
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In a given visual inspection image, multiple instances of the target class (PD) may exist.
The precision and recall for that image are calculated by considering all instances of the
target class and comparing them to the predictions made by the model. For example, the
first point in Figure 4.12 has a precision of 1 and a low recall of approximately 0.05. This
implies that the test image contains multiple true instances of PD, however, only a small
number of these instances were detected by the model, resulting in the low recall. Also, all
of the predicted bounding boxes have an IoU greater than 0.5 with a true bounding box,
meaning that none of the predictions made by the model were incorrect.

Step 2: Inference of the context of PD degradation

Once the degradation is detected, the next step is to determine its context: whether
the PD exists between two bars (state E7) or inside the stator core (state E2A). As these
two regions have distinct template characteristics, the identification of state E7 and state
E2A can be equated to a template-matching task.

To do this, two sets of context templates are made by simply cropping the regions of
bars and the ones of cores from the training set, as shown in Figure 4.13.

Figure 4.13: Templates of bars (left) and templates of cores (right).

The template matching pipeline is shown in Figure 4.14. This is a no-training, zero-
shot method built upon two VGG16 models. For each test image, the PD bounding
box is predicted from the previous step. This box is expanded as shown in Figure 4.14.
The expanded box is cropped and given as input to the first VGG16 model. One of the
templates is the input for the other VGG16. These two inputs are passed through the first
three blocks of the VGG16 models, and a cosine similarity between the output matrices is
calculated.

A test image is matched in this manner with all the templates in the repository. The
matrix giving the highest similarity score is kept. This step is validated by visually (man-
ually) verifying that only the correct context is matched and that a match is never missed.
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At the output, in each image, the regions having similarities with the templates will be
kept as they are, whereas the rest will be faded to black. This enables the identification
of regions that should be given particular attention by the multimodal learning model in
the next step. Consequently, the multimodal learning model would not necessitate a large
image dataset for training its feature extraction step.

Figure 4.14: Template matching using partial VGG16 and similarity score.

Result of inference of PD context from images

In this study, the targeted context of the degradation can either be the appearance of
partial discharge between bars, or on bar at the exit of the magnetic core. This context is
identified by the template matching model shown in Figure 4.14, and some results of the
template matching are shown in Figures 4.15 and 4.16.

In the first experiment (Figure 4.15), a template of a core is matched against a test
image of a core, from a very different perspective. The bottom left subfigure shows the heat
map visualization of the similarity score between the template and the region surrounding
the PD degradation. To the right of the heat map, the similarity is overlaid on the test
image, showing that a similarity is detected between the template and the region of the
image surrounding the PD. As the template of a core was matched with the test image,
it can be inferred that the context of this observation pertains to the stator core. In
the second experiment, Figure 4.16, a template of a bar is matched against a test image
showing a degradation between bars. As expected, a similarity is detected.
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Figure 4.15: Template matching results:
Core exit PD.

Figure 4.16: Template matching results:
Inter-bar PD

4.3.3.2 Feature extraction from PRPD

PRPD measurements are collected more frequently than visual inspection images in the
dataset. As shown in Figure 4.8, PRPD signals may possess multiple characteristics, only a
few of which are indicative of the physical states under investigation. Additionally, there is
some ambiguity when inferring physical degradation states based on PRPD characteristics.
For instance, when a PRPD measurement shows both gap and slot discharges, it could
indicate either a physical state E7, a physical state E2A, or both.

To preprocess the PRPD, a dataset of PRPD, including those in other physical states,
has been collected. This dataset is used to train a model for extracting the relevant features
presented in the knowledge graph. Firstly, a U-Net (see Ronneberger et al. (2015b)) is
employed to remove interference from the signal and another U-Net to extract the gap
related to E7, if present. Secondly, a convolutional neural network (CNN) indicates to
which class the PRPD measurement belongs as multiple PD sources can be simultaneously
active, i.e., slot discharge, gap PD, internal PD, delamination PD with copper conductors,
or corona discharge at the junction between the semiconducting and grading coating. The
structure of the 2U-Net-CNN model is shown in Figure 4.17.

Although the 2U-Net-CNN model is optimized to achieve the best classification, its
outputs are not perfect indicators of the physical degradation states. Consequently, the
output of the intermediate layer (before the last three layers of the network) is extracted
and utilized to train the multimodal learning model in the next step. These feature vectors,
which contain useful characteristics of PRPD measurements, could enable the multimodal
model to learn more effective information from PRPD measurements when given additional
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Figure 4.17: Feature extraction from PRPD.

information from other data modalities.

Results of feature extraction from PRPD
The results of the first two U-Net modules, which aim to remove interference and extract
gaps from PRPD measurements, are manually validated by the industrial expert. Besides,
the performance of the CNN module, which is used to classify the features of PRPD
measurements into various classes, is evaluated through the metrics presented in Table
4.1. As observed from the table, the model demonstrates a satisfactory capability in
correctly categorizing the PRPD features into the classes of “slot discharge” and “internal”.
However, its performance in the remaining classes is not good. Considering this, the
intermediate features extracted before the classifier output will be used as inputs for the
multimodal learning model. This approach will enable the multimodal learning model to
extract additional useful information from the PRPD measurements while being guided by
more reliable CM measurements, such as visual inspections.

Table 4.1: Classification report for PRPD classifier.

Class↓/Metric→ Precision Recall F1-Score Accuracy
Slot discharge 87.2% 83.85% 85.89% 92.6%
Delamination 52.63% 40.0% 45.45% 90.4%

Internal 79.42% 82.4% 80.88% 79.2%
Corona discharge 56.67% 64.15% 60.18% 91.0%
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4.3.3.3 Feature extraction from PDA

PDA measurements are available at a larger volume than PRPD and visual inspections
(see Figure 4.6). However, there is ambiguity when inferring the physical degradation state
E2A based on PDA, as shown in Figure 4.8. Consequently, similar to the case of PRPD,
the known PDA features alone cannot be fully relied on.

To preprocess the PDA, a dataset of PDA including those in other physical states is
collected. A convolutional variational autoencoder (see Figure 4.18) is trained to indicate
to which feature class a PDA sample belongs, i.e., negative asymmetry, positive asymmetry,
symmetry, negative asymmetry with gap, positive asymmetry with gap, symmetry with
gap, or gap. However, similar to the case of PRPD, these classes are not reliable indicators
of the physical degradation states by themselves. Consequently, the intermediate features,
which are extracted at the output of the expanded intermediate layer from the classifier,
will be used to train the multimodal learning model in the next step.

Figure 4.18: Feature extraction from PDA. Adapted from Zemouri et al. (2019).

Results of feature extraction from PDA
A deep convolutional variational autoencoder classifier was trained to classify the PDA
signals into seven feature classes. Among them, only the feature classes “gap” and “positive
asymmetry with gap” are relevant to the investigated degradation states (E2A and E7).
This model attains an accuracy of 90% for all classes. A detailed explanation of the results
can be seen in Zemouri et al. (2019).
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4.3.3.4 Preprocessing ozone and temperature data

Ozone and temperature, both of which are simple numerical data, cannot directly indicate
the physical degradation state of the machine, as far as expert knowledge extends. Con-
sequently, these data do not require any feature extraction step, but rather can simply be
normalized and used in conjunction with other data.

So far, all the steps worked with one data modality at a time. Further steps require
the formalization of a multimodal dataset, and then design of a model to learn from this
dataset.

4.3.4 Multimodal diagnostics model for two degradation states

In this phase, the outputs of the feature extraction phase will be injected into a multimodal
learning model. This model exploits useful information from all data modalities to learn the
mapping function between the observations and the physical degradation states (E2A and
E7) of the hydrogenerators. This involves defining a multimodal dataset and assignment
of appropriate target labels, and then designing a neural network architecture for training
on this dataset.

4.3.4.1 Multimodal Dataset Formalization

There are three tasks in the formalization of the multimodal dataset: (1) formalizing the
data samples by grouping the measurements taken within a time window as one sample;
(2) accounting for time alignment issues; and (3) assigning true labels to these samples.

As shown in Figure 4.6, different CM data are collected at different times and at different
sampling frequencies. To create multimodal data samples, given that the degradation rate
of the hydrogenerators is too slow compared to the sampling rates of all CM modalities, we
propose to group the observations from different CM measurements within a time window
corresponding to three years. This time window is based on the domain knowledge that a
machine is likely to remain in one degradation state for this long.

Figure 4.19 illustrates the preparation of samples within the multimodal dataset, high-
lighting those with complete and partially missing data. It illustrates the construction
of samples based on measurements taken within a specified time window: a solid black
rectangle signifies a sample with complete data taken simultaneously, while a dashed black
polygon indicates a sample with temporally distinct measurements. Samples with missing
data, such as the one represented by a dashed red polygon containing only PDA, ozone,
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Figure 4.19: Illustration of the different samples in the multimodal dataset.

and temperature data, employ a zero matrix for imputation — substituting missing images
with a pure black image of equivalent size.

Definition of a multimodal dataset sample

Definition 4.1 (Dataset Sample):
A sample in the multimodal dataset comprises data points from various modalities,
m

(i)
k (ti

k), collected at specific times and organized within a predetermined temporal
structure. Here, m(i) indicates a modality from the set M,

M = {m(1), m(2), ..., m(n)} ≡ {m(i)}n
i=1

where i denotes the priority of a modality as determined by expert judgment. Each
kth sample from the ith modality, recorded at time ti

k, is captured within a sliding
time window Wt = [t − ∆t, t + ∆t]. This window facilitates the synchronization of
data across modalities, ensuring that each sample provides a coherent snapshot of the
system’s state at a similar time point, despite variations in data collection frequencies
or delays among modalities.
The temporal difference Th between samples of different modalities is calculated using
Algorithm 1, promoting comprehensive temporal alignment within the dataset. Each
sample includes condition monitoring measurements from the setM and a vector Th.
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Algorithm 1 Algorithm to calculate time difference vector.
1: h← 1
2: for i = 1 to n− 1 do
3: for j = i to n do
4: if ((m(i)

k (ti
k) not missing) and (m(j)

k (tj
k) not missing)) then

5: Th = |ti
k − tj

k|
6: else
7: Th = 0

h← h + 1

Label assignment based on informativeness rank of data modalities

Definition 4.2 (Target Label):
The ground truth label for each sample in a multimodal dataset is determined
based on the informativeness rank of the available data modalities. Given a set of
modalities Dk = {d1, d2, ..., dn} for each sample k, and an informativeness ranking
I = {i1, i2, ..., in} where i1 > i2 > ... > in, the label is assigned as follows:
Define C = {c1, c2, ..., cm} as the set of all classes for which the degradation state is
to be determined. Each modality di within the sample Dk is checked sequentially from
the highest to the lowest rank based on I. The label for each class cj in the sample is
assigned based on the first modality that is present, according to the rule:

Label(cj) =

1 if di indicates a positive degradation state for cj

0 otherwise

for all cj where cj ∈ C

This method ensures that the label of each sample accurately reflects the most reliable
data, adhering to the expert-defined informativeness of the modalities. It assigns a
label of ‘1’ to any class cj where the first available modality di indicates an active
degradation state, and a label of ‘0’ for all other classes, maintaining consistency
with the highest fidelity data representation of the monitored physical state.

Each dataset sample as defined by Definition 4.1 contains time differences given in
terms of months. For example, if a visual inspection is taken in June 2020 and a PRPD in
January 2020, t(V.I)− t(PRPD) equals 5.

In this case study, based on Definition 4.2, there are three possibilities for the assignment
of the true labels for an active physical degradation state for each sample:

1. If all data are present (image + PRPD + PDA + ozone + temperature), it assigns
a true label based on visual inspection information.
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2. If only the image is missing (PRPD + PDA + ozone + temperature), it assigns a
true label based on PRPD measurements.

3. If both the image and PRPD are missing (PDA + ozone + temperature), it assigns
a true label based on PDA measurements.

Thus, for each sample, a true label (0 or 1) is based to indicate if either or both of the
physical degradation states are active. If both are active, the true label will be 1 for both
classes. Since both labels can be true at the same time, this is a multilabel dataset. Once
the labels are assigned to all samples, the multimodal dataset is ready to use.

4.3.4.2 Multimodal model design

The multimodal learning model, shown in Figure 4.20, uses the following input to predict
the physical degradation states E2A and E7 of the hydrogenerators:

1. Relevant region of visual inspection image extracted from feature extraction phase;

2. Intermediate features from PRPD classifier after passing through interference removal
and gap extraction;

3. Intermediate features from PDA classifier after passing through a latent space trans-
formation;

4. Normalized ozone;

5. Normalized temperature;

6. Vector of time differences between CM measurements.

The proposed multimodal learning model integrates convolution blocks, dense layers,
and attention mechanisms. Convolution blocks process image and image-like data, whereas
dense layers manage numerical data. Features are flattened at the model’s conclusion
and linked to a dense layer. Connections between layers are depicted with solid arrows
and dashed arrows between blocks of the same type indicate repetitions, such as multiple
convolution blocks in the path handling preprocessed visual inspection data.

Three of the attention layers are crossmodal information passing layers, which take
into account the influences between different data modalities, while the fourth is used
to address the time alignment issue. The crossmodal attention connections are designed
based on the industrial expert’s knowledge of the data reliability order. For example, the
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Figure 4.20: Multimodal model structure.

features extracted from the visual inspections are the most reliable ones for indicating the
symptoms related to the physical degradation states of the hydrogenerator. Therefore, an
attention layer is connected from the first block of the image-learning-path to the PRPD-
learning-path.

This attention layer will guide the multimodal learning model to seek the most relevant
features from PRPD data by assigning the appropriate weights. If visual inspections are
missing, the attention layer will assign equal weights to all features of the PRPD, meaning
that there will be no effect from the image-learning-path to the PRPD-learning-path.

Similarly, given the superior reliability of PRPD indicators in comparison to those
of PDA, the second attention layer leverages information derived from PRPD features
to guide the PDA learning process. It starts from the PRPD-learning-path layer after
the one that receives information from the image-learning-path, to take into account also
the information from visual inspection. Next, the third attention layer, designed with a
similar principle, guides the ozone- and temperature-learning-path based on the valuable
information obtained from the PDA learning path, as well as incorporating information
inherited from other more reliable CM measurements.

Next, unlike the first three attention layers, the fourth one, starting from the time
difference vector, aims to solve the time alignment problem. This attention will learn the
assignment of weights to each modality of data based on the time differences between
them. For example, if the time difference between the PDA and the other data is high,
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this attention may give low weight to the PDA data.

Finally, the output layer uses the sigmoid activation function to perform the multilabel
classification task. It provides two outputs, one for each physical state. The output
values range from 0 to 1. An output of 0 indicates that the hydrogenerator is not in the
corresponding physical state, and vice versa. In contrast to softmax, a sigmoid is more
suitable because it can predict a value of 1 for multiple classes.

Takeaways

Key design principles for multimodal data-driven FDD models

Integration of expert knowledge: The methodology harnesses expert insights
to formalize and prioritize fault detection features, optimizing the feature extrac-
tion process and enhancing model reliability in sparse data scenarios.
Synergy of multimodal data: By strategically combining different modalities
of data, the methodology is designed to address challenges such as time misalign-
ment and data sparsity, leading to more robust fault detection and diagnostics.
Iterative validation and refinement: Continuous expert validation and itera-
tive refinements are critical, ensuring that the models remain aligned with practi-
cal, real-world applications and effectively capture the nuances of physical system
degradation.

4.4 Diagnostics Results

The features extracted from the previous phase are used to train the multimodal learning
model for the detection and diagnostics of two physical degradation states included in
the failure propagation graph of hydrogenerators (E7 and E2A). Each degradation state
has two possible values, with a value of 0 indicating that the physical degradation state
is inactive and 1 indicating that the physical degradation state is active. The confusion
matrix for the output classes on the test samples is presented in Figure 4.21. One can
see that all degradation states (E7, E2A, and E7 & E2A) are successfully detected. In
addition, the model exhibits near-perfect performance for the state E7. This outcome is
expected since the gap, which serves as the indicator for state E7 in PRPD and PDA, is
relatively easy to detect.

The results on the full test set of 962 samples can be seen in Figure 4.22. In this figure,
the predictions form roughly three clusters as expected. Perfect predictions would cluster
all the points near (0,1), (1,0), and (1,1) according to the corresponding true class. It can
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Figure 4.21: Confusion matrix for the test set on proposed model (trained on preprocessed
data).

be observed that the predictions for the class where both states are active seem tightly
grouped. This is not the case for the other two classes.

Figure 4.22: Full results of the main model showing prediction clusters.

A subset of 100 results from the test set is shown in Figure 4.23. Here, the individual
prediction errors can be seen clearly. One can see that each prediction yields a value ranging
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from 0 to 1. It is worth mentioning that if the difference between the true and predicted
value is less than 0.5, the prediction can be rounded to the correct result. Contrarily, if
the difference is greater than 0.5, the prediction is considered incorrect. As presented in
Figure 4.23, the majority of the instances of degradation state E7 are accurately identified.

Figure 4.23: Results of prediction on 100 test samples.

The rest of this section will will cover the ablation study of the proposed methodology,
focusing on (1) the design of the feature extraction phase informed by expert knowledge,
and (2) the use of attention mechanisms in the multimodal learning approach to direct the
training of certain CM modalities using reliable information from others. The importance
of knowledge-assisted feature extraction and attention mechanisms will be explored in
subsection 4.4.1. Additionally, the methodology’s efficacy in making accurate predictions
with sparse or missing CM data types will be demonstrated in subsection 4.4.2.

4.4.1 Role of knowledge-assisted feature extraction and attention
layers

To investigate the role of the knowledge-assisted feature extraction phase and the attention
mechanisms, a comparison was made of the performance of the proposed methodology with
its simple versions: (1) with the knowledge-assisted feature extraction phase but without
the attention mechanisms, called Model A, and (2) without the knowledge-assisted feature
extraction phase or the attention mechanisms, called Model B.
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Comparison with model A: In this experiment, a simple version of the proposed multi-
modal learning model is created by removing all the attention connections. The obtained
results are shown in Figure 4.24a. Compared to Figure 4.21, one can see that due to the lack
of attention mechanisms, model A cannot detect all degradation states. For illustration,
31 observations of the degradation state E2A are wrongly recognized as a healthy state,
and 105 instances of the state E2A are misclassified as a combined defect (E7 and E2A).
These findings emphasize the significance of the attention connections between different
modalities in the proposed methodology.

(a) Confusion matrix of the model
A (simple version without attention
mechanisms).

(b) Confusion matrix of the model
B (simple version without attention
mechanisms and knowledge-assisted
feature extraction phase)

Figure 4.24: Results of model without attention and model without attention or feature
extraction.

Comparison with model B: In this experiment, the simple version (Model B) without
the attention connections and without the knowledge-assisted feature extraction phase was
trained on the raw data. The results are presented in Figure 4.24b. It is evident that the
predictions made by Model B are not much better than a statistical average. However,
it is noteworthy that model B performs better in detecting the physical degradation state
E2A than the physical degradation state E7. This observation is in contrast to the per-
formance of the proposed methodology, as well as the expert-based expectation that the
main indicator of the physical degradation state E7 (gap in PRPD or PDA) would be eas-
ier to detect. This indicates that Model B, without the guidance of expert knowledge or
domain-specific preprocessing, is unable to extract useful features indicating the physical
degradation state E7 from the CM measurements. These results emphasize the significance
of the knowledge-assisted feature extraction phase in the proposed methodology.
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A comprehensive comparison of the performance of the proposed methodology with
models A and B is presented in Table 4.2. Evaluation metrics such as precision, recall,
f1-score, and accuracy highlight the superiority of the proposed methodology over models
A and B. The results indicate that the performance order is as follows: (1) the proposed
methodology, (2) model A (simple version without attention mechanism but with the
knowledge-assisted feature extraction phase), and (3) model B (simple version without
attention mechanism and without the knowledge-assisted feature extraction phase).

Table 4.2: Classification reports for the different models compared to the proposed model.

Model Class Precision Recall F1-Score Accuracy
E7=0, E2A=1 0.59 0.63 0.61

Model B E7=1, E2A=0 0.96 0.39 0.55 0.56
E7=1, E2A=1 0.36 0.79 0.50
E7=0, E2A=1 0.79 0.65 0.71

Model A E7=1, E2A=0 0.98 0.79 0.87 0.73
E7=1, E2A=1 0.45 0.79 0.57
E7=0, E2A=1 0.97 0.87 0.92

Proposed E7=1, E2A=0 0.95 0.97 0.96 0.92
E7=1, E2A=1 0.78 0.94 0.85

4.4.2 Performance of the proposed framework under sparse data
context

In this section, a series of experiments are conducted to observe the performance of the
proposed model under sparse data context, when missing one or more data modalities.
Precisely, the three following experiments are conducted:

1. Visual inspection images are missing from test samples;

2. Images and PRPD data are missing from test samples;

3. Images, PRPD, and PDA are missing from test samples.

These experiments can represent possible real conditions in the industry, where some
CM tools may not be available once the model is deployed for FDD in real time.

In the first experiment, all images from the test set are removed. Precisely, the image
in each sample is replaced with a pure black image. The confusion matrix of the model A
is shown in Figure 4.25a, and that of the proposed model in Figure 4.25b. It can be seen
that even when visual inspections are missing, the proposed methodology demonstrates
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remarkable resilience and retains its accuracy in detecting all degradation states. The
misclassification results are within acceptable limits, highlighting the robustness of the
proposed methodology.

(a) Confusion matrix of the model A
on test set without image data.

(b) Confusion matrix of the proposed
model on test set without image data.

Figure 4.25: Results of model A and proposed model on test set without image data

(a) Confusion matrix of the model A
on test set without image and PRPD
data.

(b) Confusion matrix of the proposed
model on test set without image and
PRPD data.

Figure 4.26: Results of model A and proposed model on test set without image and PRPD
data

In the second experiment, the images are replaced by black images, and all PRPD data
are replaced by a zero matrix of the same dimension. In this case, the model is forced to
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make predictions based only on PDA, ozone, and temperature data. The confusion matrix
of the predictions made by model A is shown in Figure 4.26a and that of the proposed
model in Figure 4.26b. One can observe that the proposed methodology works much
better than model A. In particular, considering Figure 4.26b, when images are missing,
102 instances of degradation state E7 are misclassified as degradation state E2A. Despite
this, the proposed methodology still successfully detects all anomalies (such as degradation
states E7, E2A, and E7 & E2A).

(a) Confusion matrix of the model A
on the test set without image, PRPD,
and PDA data.

(b) Confusion matrix of the proposed
model on the test set without image,
PRPD, and PDA data.

Figure 4.27: Results of model A and proposed model on test set without image, PRPD,
and PDA data

In the third experiment, images, PRPD, and PDA are all removed from each sample in
the test set. In this experiment, the model predicts based on only ozone and temperature
data. The confusion matrix of the predictions made by model A is shown in Figure 4.27a
and that of the proposed model in Figure 4.27b. Given that human experts and model A
are unable to make reliable FDD conclusions based only on ozone and temperature data,
the proposed methodology still successfully detects all anomalies. Moreover, it indicates
the combined degradation states (E7 & E2A) nearly perfectly. Through this series of
experiments, the superiority of the proposed model, and especially the attention mechanism
in the context of sparse data were demonstrated.

A comprehensive view of the performances of model A and the proposed methodology
under the effect of sparse data issue is presented in Table 4.3. One can observe that in all
cases the proposed methodology works better than model A (multimodal learning without
attention mechanism) and performs quite well when only images are missing. Although
the performance of the proposed methodology decreases as more modalities of input are
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missing, in the absence of most CM data types (images, PRPD, and PDA) it is still better
than what can be achieved by human experts and by model A.

Indeed, the attention mechanism in the proposed multimodal learning model allows ex-
ploiting useful information from ozone and temperature measurements for FDD of hydro-
generators according to the guidance of other CM data modality learning paths. Therefore,
even when certain CM data modalities are missing, the proposed methodology can still use
the learned features from the remaining CM data to predict the active physical degra-
dation states of hydrogenerators. These results highlight the robustness of the proposed
methodology when missing one or a few CM data types.

Table 4.3: Classification reports for predictions made on the test set with partially missing
data.

Model Missing Data Class Precision Recall F1-Score Accuracy
E7=0, E2A=1 0.57 0.78 0.66

Model A Image E7=1, E2A=0 0.82 0.33 0.47 0.60
E7=1, E2A=1 0.53 0.83 0.65
E7=0, E2A=1 0.83 0.87 0.85

Proposed Image E7=1, E2A=0 0.94 0.76 0.84 0.84
E7=1, E2A=1 0.71 0.97 0.82

Image, E7=0, E2A=1 0.00 0.00 0.00
Model A PRPD E7=1, E2A=0 0.71 0.59 0.65 0.40

E7=1, E2A=1 0.24 0.95 0.38
Image, E7=0, E2A=1 0.72 0.66 0.69

Proposed PRPD E7=1, E2A=0 0.85 0.66 0.74 0.71
E7=1, E2A=1 0.54 0.96 0.69

Image, E7=0, E2A=1 0.00 0.00 0.00
Model A PRPD, E7=1, E2A=0 0.00 0.00 0.00 0.16

PDA E7=1, E2A=1 0.16 1.00 0.28
Image, E7=0, E2A=1 0.72 0.67 0.69

Proposed PRPD, E7=1, E2A=0 0.92 0.49 0.64 0.64
PDA E7=1, E2A=1 0.40 0.98 0.57

Thus far in this chapter, a methodology using knowledge-assisted feature extraction
and multimodal learning was proposed to perform fault detection and diagnostics of indus-
trial systems in the context of sparse data. The performance of the proposed methodology
was investigated in a real industrial case study of hydrogenerators. The obtained results
highlight its effectiveness in overcoming the challenges of (1) time alignment between dif-
ferent types of CM data; (2) limited samples of some CM tools; and (3) different certainty
levels of expert knowledge about the hydrogenerator physical degradation states derived
from CM measurements. Particularly, the knowledge-assisted feature extraction phase in
the proposed methodology plays a crucial role in exploiting more valuable information
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from all CM modalities. In addition, the multimodal learning approach relying on the
attention mechanism allows the feature-learning paths from certain CM modalities to be
guided by other more reliable CM indicators. This mechanism enhances the efficiency of
multimodal learning even when reliable CM indicators are not available. As a result, the
proposed methodology can still predict the degradation states of hydrogenerators with an
acceptable degree of accuracy, even when the reliable CM indicators are missing. These
findings demonstrate the robustness of the proposed methodology in handling the sparse
data issue.

The model presented in this section was designed for classifying CM measurements into
degradation types, focusing solely on data from CM tools. Another key task in FDD is
evaluating the intensity or risk level of degradation while a machine is in a given physical
state. This evaluation is influenced by human judgment, introducing subjectivity into the
calculation and providing an opportunity to include text data. The next section extends
the model to quantify risk levels, enhanced by incorporating textual remarks made by
personnel during inspections.

4.5 Extension of Methodology to Incorporate Text
Data

In the previous section, we addressed the classification of degradation types from condition
monitoring measurements. This section extends the methodology to quantify degradation
levels using the same data, aiming to compute a health index (HI) value that reflects
machine health from 0 to 100. While industry experts have established rule-based methods
for this purpose, the subjective judgments of inspection personnel significantly influence
the variables and parameters of the established algorithms.

To address this subjectivity, we integrate text data from inspection remarks and domain-
specific documents into our multimodal diagnostics framework. This integration is designed
to enhance the accuracy of HI calculations by incorporating the nuanced insights that tex-
tual data provide about machine health.

The health index starts at 100, indicating the onset of a new degradation state, and
decreases as the machine’s condition worsens, reaching 0 as it transitions to a more se-
vere state. By leveraging both quantitative machine data and qualitative expert insights
from text, the enhanced model not only classifies physical degradation states but also dy-
namically estimates the degradation level, bridging the gap between objective data and
subjective expert evaluations in the diagnostic process.

The rest of this section is organized as follows. Subsection 4.5.1 outlines the text data
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and its necessary preprocessing steps. Subsection 4.5.2 describes the methodology for incor-
porating text data into the classification model to enhance HI calculation. Finally, Section
4.5.3 details ablation experiments and presents the results to validate the components of
the proposed method.

4.5.1 Technical text preprocessing

There are two primary sources of text data utilized in quantifying the health index. The
first consists of structured documents such as proprietary guidelines, maintenance instruc-
tions, and industry standards that serve as a knowledge base for technicians. The second
source is comprised of inspection notes and remarks by personnel, which often include brief,
variably formatted descriptions with challenges such as domain-specific jargon, abbrevia-
tions, colloquial expressions, and noise-like typographical errors. These informal texts pose
difficulties for standard NLP algorithms due to their lack of standardization and informal
content.

Comme le groupe , le stator et les pôles du rotor sont très très
sales. La saleté peut constituer un exemple à montrer aux gens lorsque
l’on veut démontrer qu’un alternateur est sale. Il est donc impossible
de visualiser s’il y a des points d’échauffement au stator et au rotor.
L’isolation sur les connexions du rotor commencent à s’effilocher mais
rien d’alarmant. Les collets d’entrefer et de jantes semblent encore
solides. Il y a du gliptall qui se décolle sur les pôles, il y a
énormément de saleté sur les pôles mais tout semble OK...

... À cet endroit j’ai pu voir 2 cales de descendu à midi et une autre
à environ à 10hre. Elles ont été replacées mais je pense qu’elles vont
redescendre rapidement. La descente de cale indique que le calage
commence peut être à être "lousse".

Figure 4.28: Technician’s remarks on a visual inspection including technical jargon and
colloquial French

Figure 4.28 shows an example of an inspection note (in French) while the authors’ En-
glish translation is provided in Figure 4.29. The photographs corresponding to this text
from the visual inspection are given in Figure 4.30. As can be seen from these samples, the
inspection notes provide essential insights into visual assessments, indicating their poten-
tial to bridge the gap from measurement to rating calculation. However, these notes, often
in conversational French riddled with typos, grammatical errors, technical jargon, and col-
loquialisms, present significant challenges for traditional NLP methods. For example, the
samples show that the text is written in colloquial French, as these notes are primarily
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written for technicians to communicate with each other. The text contains common typos
and grammatical errors, along with technical terms and jargon, like “noon, 10, 9, and 7
o’clock", used to describe positions on the circular stator. Additionally, technicians occa-
sionally write words such as “lousse" in quotes to indicate a French-accented pronunciation
of the English word “loose".

Like the group, the stator and rotor poles are very very
dirty. Dirt can be an example to show to people when we want to
demonstrate that a generator is dirty. It is therefore impossible to
visualize if there are heating points on the stator and rotor. The
insulation on the rotor connections is starting to fray but nothing
alarming. Air gap collars and rims still seem solid. There is a
gliptall that is peeling off on the poles. There is a lot
of dirt on the poles but everything seems OK...

... At that place I could see 2 shims went down at noon and another at
around 10 o’clock. They have been replaced, but I think they will slip
back down quickly. The slipping of the shims indicates that the stall
is beginning maybe to be "loose".

Figure 4.29: English translation of technician’s remarks from Figure 4.28.

Figure 4.30: Photographs taken during a visual inspection. The photos show a high
contamination level.

Conventional pre-Large Language Model (LLM) NLP methods struggle to effectively
interpret texts laden with technical jargon and colloquial language. In contrast, LLMs,
trained on a diverse array of textual data, offer a viable solution for such complex text
analysis. In response, we propose fine-tuning an LLM on domain-specific knowledge to
better contextualize this text.
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Prior to deploying Large Language Models (LLMs), text data must undergo specific
preparation steps that accommodate the processing of technical, non-English texts across
various industrial settings, as demonstrated in our case study. The preparation processes
differ for maintenance remarks and knowledge base documents due to their distinct struc-
tures and functions. Maintenance remarks serve as queries or prompts for LLMs, while
knowledge base documents are formatted specifically for fine-tuning LLMs. These steps,
while tailored for this case study, are designed to be broadly applicable to a range of
industrial text processing applications.

1. Text cleaning and formatting. It is crucial to manage accented and non-standard
punctuation in special characters carefully to prevent data loss and misinterpretation,
with decisions on retention or removal based on the embedding model’s capabilities.
Additionally, addressing encoding issues from computerized maintenance manage-
ment systems (CMMS) that cause garbled text and errors is essential for accurate
data processing.

2. Handling language-specific requirements. Most text preprocessing methods
are designed for languages using Latin characters, requiring different approaches for
non-Latin scripts. Preprocessing colloquial French text, as in this study, introduces
challenges such as the essential nature of special characters and accents (e.g., é,
è, ê, ë) that cannot be discarded without losing meaning. General language tools
often struggle with non-standardized industrial terminology, and while pre-trained
language models typically favor English, French-specific models lack sufficient depth
for industrial applications. Translating French to English can lead to significant in-
formation loss and errors, as most models are not trained on domain-specific jargon.

<p>2019-01-24 | | Modifications à linspection
enregistrer par: .Les modifications suivantes ont étés
apportées :-
Développantes :

MODIFIER Barres (bobines) - Présence de débris. Cote précédente
de 1,0.
MODIFIER Barres (bobines) - Fissuration. Cote précédente de 1,0.
MODIFIER Barres (bobines) - Contamination (saleté). Cote précédente
de 3,0.

Raison :Note: Groupe Horizontal ... Haut = Aval & Bas = Amont
Beaucoup d¿huile et saleté sur le côté amont sur le bobinage et
les pôles et barres
</p>

Figure 4.31: Text data from a CMMS, highlights data cleaning challenges such as markup
tags and formatting issues.
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Figure 4.31 demonstrates how non-standard punctuation, such as “¿” instead of an
apostrophe, and typing errors from form field entries introduce noise that disrupts
machine learning model processes like tokenization and parsing. Despite these textual
issues, the note “Beaucoup d’huile et saleté sur le côté amont sur le bobinage et les
pôles et barres‘ (English: A lot of oil and dirt on the upstream side of the winding
and the poles and bars) provides essential degradation indicators. To mitigate these
challenges, a preprocessing pipeline is needed that includes tokenizers for special
characters, charset normalization, named entity recognition for removing irrelevant
names, and bilingual embeddings to address language discrepancies between French
and English-centric models.

3. Document preparation and text extraction for fine-tuning. While the previ-
ous steps are necessary to prepare the remarks for use as queries, the preparation of
domain knowledge texts for fine-tuning requires some different steps. This involves
converting relevant documents, such as norms and guidelines, into text files and re-
moving unnecessary characters like bullet points. Extraction from formats like PDFs
is a well-documented and straightforward process. However, effective cleaning and
formatting are crucial as they organize the data into meaningful segments, facilitating
the efficiency of subsequent processing steps.

4. Chunking and tokenization. The text must first be segmented into appropriately
sized chunks to ensure semantic context is preserved for effective modeling. While
maintenance remarks, typically brief, are easily split into chunks, determining the
optimal chunk size for longer documents during fine-tuning depends on the model’s
sequence limits. Ablation experiments (Section 4.5.3) will later assess the impact
of varying chunk sizes across different models using both rule-based methods and
machine learning. After chunking, the text is then tokenized into discrete units,
or “tokens", using techniques such as rule-based methods, finite-state transducers, or
subword tokenization like byte-pair encoding (BPE). These tokens become the inputs
for the embedding model.

4.5.2 Health index calculation methodology

In this section, we present a methodology to augment the diagnostics model with text data
to enable health index calculation. It consists of three main steps:

1. Use domain knowledge texts to fine-tune LLM.

2. Use fine-tuned LLM to embed short text.

3. Use embedded short text to weight the fused inputs.
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4.5.2.1 Step 1: Choosing and fine-tuning an LLM on domain knowledge

The experts observe the photographs from visual inspection and identify the degradation
level based on their accumulated domain knowledge. In industry, such knowledge is often
formalized in texts such as guidelines, standards, and so on. In our case study, we have
access to documents such as ISO diagnostics standards, inspection guidelines, and de-
tailed degradation severity calculation process explanations available within the industry.
A large language model is trained on diverse text sources encompassing conversational,
pedagogical, and other literary styles, making them approximate generalist humans. Just
as a human would need to study and absorb domain-specific texts to become proficient,
fine-tuning a language model to a particular domain is akin to this process. Therefore, the
initial step involves selecting an LLM and fine-tuning it using the available domain-specific
texts and documents.

Figure 4.32: Overview of the proposed method to improve the performance of a machine
degradation level calculation model with text data. The method involves fine-tuning an
LLM on the industrial text documents, using the fine-tuned LLM to embed the notes
written by technicians on an inspection of the machine and then using the embedded
inspection notes to attention-weight the inspection measurements, and passing this to an
MLP for computing the machine’s degradation level.
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When selecting an LLM, specific criteria must be considered. Firstly, the LLM should
possess language capability in the industry’s operating language. For industries operating
predominantly in English, numerous English LLMs are accessible. However, options are
more limited for languages other than English, although open-source multilingual LLMs
are available for languages like French. It is important to note that if an open-source
LLM is not available for the language relevant to the application case, implementing this
methodology may prove to be excessively challenging. While training an LLM is an option,
it may incur unjustifiable costs. Expanding the language capabilities of a multilingual LLM
is also a possibility, albeit beyond the scope of this study.

Once the language is accounted for, the rest of the choice is to strike a balance between
performance and resource constraints. While models such as Mistral-7B (Jiang et al.
(2023)), Llama-2 (Touvron et al. (2023)), and others demonstrate excellent capabilities,
they are beyond the computational resource limits. Thus, gpt2-large was chosen (Radford
et al. (2019), Ethayarajh (2019)) .

Masked language modeling (Sinha et al. (2021)) is a technique typically used in model
pre-training. It is a self-supervised training method to familiarize a model on a text corpus.
In simple terms, the training is done by masking certain parts of the text and training the
model to predict the masked content. While typically applied during pre-training and
followed by task-specific training, this study employs it to fine-tune an already trained
LLM with domain-specific texts.

The fine-tuned model is expected to demonstrate expertise in the subject matter covered
by the texts. However, it remains uncertain whether this expertise genuinely signifies a
profound comprehension or simply results from the model’s ability to predict the most
likely next word. This distinction lies beyond the scope of our investigation. The primary
goal is to measure any improvements or potential declines in the performance of the LLM
when it is fine-tuned using pertinent text data. This training method operates by covering
up certain portions of the input data randomly and then tasking the model with predicting
the hidden part.

4.5.2.2 Step 2: Embedding inspection notes using fine-tuned LLM

In this step, the goal is to get a vector representation for the inspection notes that is as close
to the real meaning within the context as possible. Thus, a domain-specific knowledge fine-
tuned LLM is more adept at incorporating short text within a suitable context compared
to a language model lacking such expertise or utilizing generic embeddings.

LLMs are typically configured for a task, most commonly language generation. In this
step, the layers optimized for such outputs are ignored. Instead, the inspection note is
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input to the LLM as a query, and the input embedding created by the LLM is extracted
as a matrix.

This step is similar to the retrieval step of retrieval augmented generation (RAG) (Cai
et al. (2022)). However, it differs in that it does not necessitate the retrieval of context from
domain knowledge. In the subsequent section, we will elucidate the rationale behind the
omission of retrieval in this methodology. However, once the query embedding is obtained,
retrieving pertinent context becomes straightforward. During the project’s developmental
phase, text retrieval related to queries was experimentally examined as a rudimentary
validation of the embedding.

There is no exact method to test the quality of the query embedding. For domain-
specific use cases, embedding benchmarks are not available. Therefore, the quality of the
embedding is transitively evaluated by the accuracy of the degradation level calculation in
the next step.

4.5.2.3 Step 3: Use embedded short text to weight monitoring data.

The final step aims to quantify the degradation level of machinery based on inspection
data, emphasizing the strategic use of inspection notes. Typically, these notes are not
direct measurements but expert observations summarizing key insights from various data
sources. Personnel drafting these notes possess a deep understanding of the degradation
evaluation process, making these texts crucial for accurate degradation level assessments.

Our method innovatively integrates these inspection notes into the model, not merely
as another data source but as a means to enhance feature weighting derived from inspec-
tion data. Trained technicians author these notes, and they are subsequently processed
through a LLM that has been fine-tuned with industry-specific knowledge. This process
involves creating vector representations of the inspection notes. These vectors then affect
the weighting of significant features in the diagnostic model we previously developed in sec-
tion 4.3.4. By utilizing the detailed insights from the inspection notes, this model allows
refining the diagnostic outputs.

For multimodal data-driven diagnostics, our proposed architecture incorporates feature
extraction for each data source, leading to a fusion layer. This layer, selected based on
domain knowledge and positioned near the output, optimally integrates features from the
condition monitoring data. The inspection notes, vectorized by a domain-knowledge fine-
tuned LLM, enhance this layer by weighting the most relevant features for degradation
level assessment. This setup allows the fine-tuned LLM to act as a bridge linking raw
data features and expert insights from inspection notes, effectively enhancing diagnostic
accuracy as depicted in Figure 4.32.
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4.5.3 Health index calculation results

The proposed methodology contains three main elements: 1) text embedding with an LLM,
2) fine-tuning the embedding model on domain knowledge, and 3) the text input mode for
the feature fusion (direct or weighted by the attention). To evaluate the efficacy of each
element in our methodology, we conducted a series of ablation experiments. These contain
comparisons between a small Word2Vec-like embedding model (FrWac2Vec (Fauconnier
(2015))) and Gpt2-large, fine-tuned and without fine-tuning, and direct and attention
weight input modes for both. The architectural setups for all the experiments are shown
in Appendix D (Figures D.1 and D.2). The different experiments are listed as follows:

1. No text input: Modified the output layer of the existing diagnostics model to
perform a regression task targeting the degradation level. This modification involves
retraining only the model’s final output layer. This initial experiment sets a baseline
for estimating degradation intensity using only the quantitative data collected during
inspections, without any textual annotations from technicians (Figure D.1).

2. FrWac2Vec(text) + no fine-tuning + direct input: Embedded the text data
(technician’s remarks) using a small off-the-shelf model for French text embedding
model (FrWac2Vec) and added it as an additional input. Only the technicians’ notes
were used, excluding other text data, e.g., guidelines for technicians, forming the
second baseline This experiment explores the minimum performance enhancements
from adding text remarks (Figure D.2a).

3. FrWac2Vec(text) + no fine-tuning + attention weight input: The notes
are embedded using FrWac2Vec without any fine-tuning. Instead of providing the
text as a direct input, it is used to weigh the features derived from other inputs.
This experiment explores the assumption that the text primarily offers observations
related to other measurements (Figure D.2b).

4. FrWac2Vec(text) + fine-tuning + direct input: The small embedding model
FrWac2Vec is first fine-tuned on industrial text documents such as guidelines and
standards. The inspection notes are embedded using this fine-tuned model and pro-
vided as a direct input. This explores the value of providing context for embedding
the inspection notes (Figure D.2c).

5. FrWac2Vec(text) + fine-tuning + attention weight input: This experiment
combines both fine-tuning the small embedding model FrWac2Vec and using the
embedded inspection notes to attention weight other measurements (Figure D.2d).
This concludes the experiments with the small embedding model.
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6. Gpt2-large(text) + no fine-tuning + direct input: Here, the first embedded
inspection notes with an LLM (Gpt2-large) is attempted for the first time. The LLM
is used without any fine-tuning, and the embedded notes are added directly as input.
Given that most open-source LLMs are trained on diverse, general text data from
the internet, this study aims to determine whether an LLM trained on such a broad
corpus can enhance the extraction of valuable information from industrial text data
(Figure D.2c).

7. Gpt2-large(text) + no fine-tuning + attention weight input: Here, the in-
spection notes embedded by Gpt2-large is used to weight the other data features
(Figure D.2b).

8. Gpt2-large(text) + fine-tuning + direct input: In this experiment, Gpt2-
large is fine-tuned on internal company documents including standards, norms, and
guidelines. The aim is to examine the effects of fine-tuning an LLM to specific
contextual needs. The inspection notes embedded by the fine-tuned LLM is then
introduced as an additional data source (Figure D.2c).

9. (Proposed method) Gpt2-large(text) + fine-tuning + attention weight in-
put: This final setup brings together all the elements of the proposed methodology.
The LLM (Gpt2-large) is fine-tuned on the documented domain knowledge, the in-
spection notes are embedded using this fine-tuned LLM, and this is used to weight
other condition monitoring data features (Figure D.2d, 4.32).

Table 4.4: Results comparison.

Experiment Embedding Text input
mode MAE

1 Baseline: No text data – 44.2
2 frWac Direct 31.1
3 frWac Weight 27.4
4 Fine tuned frWac Direct 26.1
5 Fine tuned frWac Weight 24.4
6 Gpt2-large Direct 15.7
7 Gpt2-large Weight 10.1
8 Fine tuned Gpt2-large Direct 14.6
Proposed Fine tuned Gpt2-large Weight 4.2

The results on the test set are synthesized in Table 4.4, which displays the performance
of nine setups in estimating the health index, a numerical value ranging from 0 to 100.
The mean absolute error (MAE), a suitable metric for this range, is reported in the table’s
final column. The initial attempt to estimate the HI without using text resulted in a
mean absolute error of 44.2, indicating limited utility of the baseline model. This could be
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because the subjective element plays a significant role in HI calculation, and monitoring
measurements alone cannot account for this. Table 4.4 shows that the proposed method
achieves an MAE of around 4, which demonstrates a significant improvement over the
baseline. The prediction plots and comparative analysis of results from the ablation study
are given in Appendix D.

Key findings

The experiments with text yield the following observations:

• Text data improves diagnostics tasks with an inherent subjectivity, such as
degradation level estimation.

• It is more effective to use text data as a separate entity than other condi-
tion monitoring measurements. Using text data as an observation on the
measurements rather than an additional measurement yields better results.

• Embedding inspection notes within proper context returns significant im-
provements to performance. Fine-tuning an LLM on domain knowledge doc-
uments is an effective way to develop a suitable embedding model.

4.6 Conclusion

In this chapter, we first developed a methodology to perform fault detection from a multi-
modal dataset with challenges such as sparsity, time alignment conflicts, and varying data
collection rates. The methodology leveraged and improved upon the multimodal learning
techniques introduced in Chapter 3. We applied the methodology to a real-world dataset
and, through several ablation experiments, it demonstrated its effectiveness in handling
realistic data conditions. Then, we extended the model to perform health index calcula-
tion by incorporating inspection notes, assisted by a large language model fine-tuned on
industrial text documents. This model performed remarkably well on a task with a high
level of human judgment inherent to it.

Findings from this chapter show that the cross-modal attention methodology is highly
robust to missing data conditions in industrial data and can help mitigate time align-
ment conflicts. This chapter also demonstrated that aligning the diagnostics pipeline with
domain knowledge can improve the multimodal model’s capacity to handle varying moni-
toring rates and data sparsity. Furthermore, it highlighted the value of treating text and
other monitoring data differently, showing that using textual observations to weight other
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data features can improve diagnostic model performance. All results and findings were
validated in close consultation with a domain expert.

This chapter synthesized techniques and approaches that will recur throughout the
thesis. Firstly, the development of the diagnostics model followed an approach of creat-
ing standalone neural networks optimized for small tasks, introducing modularity to the
multimodal methodology. For instance, the object detection FRCNN model for detecting
partial discharge from images can later be replaced by a better or larger model. Secondly,
as demonstrated by the feature extraction models, extracting near-output layer features
from a model trained on a pretext task is a valuable tactic when handling multimodal
data where individual modality treatment is non-trivial and may require dedicated expert
models. Thirdly, extending the classification model to perform a regression task for health
index calculation by freezing pre-trained layers is a simple yet effective technique that
facilitates fine-grained modifications within a broader framework.

Building on the methodology and techniques developed in this chapter, the next chapter
will expand the diagnostics to a wider scope, aiming to perform prognostics. We will
develop a methodology for forecasting future health states using multimodal data with
severe imbalance and sparsity and apply it to a real-world dataset. The next chapter
will bring together all the principles and techniques developed throughout the thesis in a
capstone project on prognostics.
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“Data-driven predictions can succeed — and they can fail. It is when we deny
our role in the process that the odds of failure rise. Before we demand more of
our data, we need to demand more of ourselves.

— Nate Silver, in The Signal and the Noise. (Silver
(2012)).

5.1 Introduction

In Chapter 4, we developed a methodology for fault detection and diagnostics from multi-
modal condition monitoring data and applied it to an industrial dataset from hydrogener-
ators, addressing data sparsity, time alignment conflicts, and varying data collection rates.
We also extended the methodology to incorporate inspection notes to perform health index
calculations.

The previous chapter presented and discussed the various challenges of industrial data
within the realm of diagnostics. While challenging in terms of training a model to extract
proper features, diagnostics is a task to explain the past, which means it is possible to
validate a model against reality. Prognostics, which deals with the future, is a much more
challenging task in the industrial context. In this chapter, the challenge of forecasting
future health evolution given the current and historical health records of a machine will
be addressed. An end-to-end methodology from multimodal condition monitoring data to
future health forecasts will be developed. This will be applied to the data from hydrogen-
erators, with the scope extended to include more fault types.

The main objective of the methodology is to perform prognostics even without any
run-to-failure (RTF) data, which is a challenge that arises in industrial scenarios due to
many practical reasons. The methodology developed in this chapter will address this
by first doing diagnostics classification on the condition monitoring data, extracting and
projecting the diagnostics features on a 2D space, and tracing the degradation of machines
on this plane to create RTF sequences from many machines. In the course of realizing this,
the methodology will also need to tackle several additional challenges to obtain accurate
diagnostics. Finally, RTF sequences generated in the form of graphs can be used to train
a graph prediction model that gives machine health prognostics.

The rest of this chapter is organized as follows. First, section 5.2 will present some
literature and motivate the need to develop a methodology to address the lack of RTF
data in the industry. Then, in section 5.3, we will present the methodology for machine
health prognostics that overcomes this limitation. Section 5.4 will present the extended
industrial context and apply the methodology. Section 5.5 presents the prognostics results
and section 5.6 concludes the chapter.
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5.2 Motivation and Context

The PHM cycle involves data acquisition, data processing, detection, diagnostics, prognos-
tics, decision, and finally intervention (Medjaher et al. (2013)). In this sequence, although
the activity leading up to diagnostics is far from trivial, the challenges associated with
prognostics are even harder to surmount (Soleimani et al. (2021), Zio (2022)). Indeed,
forecasting a machine’s health relies on the assumption that historical data can inform
future evolution, requiring sufficient data to represent all evolution possibilities. Ideally,
multiple sequences of condition monitoring data from deployment to breakdown (RTF
data) would be available, covering all degradation mechanisms and trends. However, in
practice, such data is rare. Decision makers rarely allow expensive or critical machines to
run to failure without maintenance, and condition monitoring usually does not focus on
acquiring a comprehensive dataset for model training.

The PHM literature is rapidly evolving, yet most new methods are tested on clean,
simulated datasets, leading to a gap between research outcomes and practical applicability
in industrial settings. Industrial data often fail to meet the requirements for advanced
machine learning techniques. While deep learning has proven viable for forecasting ma-
chine health states with sufficient data (Wen et al. (2022)), practical constraints frequently
hinder the collection of such datasets. High-value machinery is rarely run to failure, and
condition monitoring is sporadically conducted due to costs, which delays data collection
post-maintenance and complicates impact assessments.

Recognizing the challenges in obtaining complete RTF data, Kim et al. (2020) intro-
duced the DAPROG model, which uses dynamic time-warping for data augmentation from
similar systems. Wang et al. (2008), Wang (2010) proposed trajectory similarity methods
to align current machine data with historical trajectories. However, these techniques re-
quire some existing RTF data and are limited in settings with no available trajectories,
particularly for high-cost or safety-critical machinery.

Observing that the acquisition of uninterrupted RTF trajectory data is impractical,
this study proposes a methodology to construct a comprehensive prognostics dataset by
integrating RTF trajectory fragments from various machines. This approach aims to make
the application of neural network methods in industrial prognostics more feasible. Using
a feature transfer method to address the issue of imbalanced diagnostic data has been
proposed by Lu and Yin (2021), and Islam et al. (2023) has demonstrated improvements in
regression tasks through the analysis of intermediate features. However, to our knowledge,
this is the first attempt to transfer in-domain RTF trajectory fragments by analyzing
feature space proximity, providing a novel contribution to the field.

To realize this trajectory construction method, it is necessary to perform diagnostics
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classification on condition monitoring samples. Some challenges of diagnostics were ad-
dressed in Chapter 4. However, the classification task in the previous chapter targeted
two health states of similar risk levels without the long-tail data distribution common in
prognostics. Prognostics data are often label-imbalanced since machines are usually main-
tained in healthy states, making faulty state samples rare. Conversely, for long-lifetime
machines, early-state measurement tools might have been developed later, distorting data
distribution. Beyond the classification challenges in Chapter 4, prognostics must address
label imbalance in multimodal multilabel datasets within the PHM domain. This chapter
will also tackle multiple diagnostic and prognostic challenges. We develop a robust prog-
nostics methodology that relies on highly accurate diagnostics models. Once diagnostics
training is optimized, its features can help develop an RTF dataset for efficient prognostics.

Addressing the limitation of RTF data availability through feature space continuity
analysis, this study generates RTF data within a graph structure. Consequently, this en-
ables the application of graph neural network (GNN)-based prognostics modeling methods.
In the literature, Li et al. (2022b) reviewed GNN methods for diagnostics and prognostics,
highlighting graph generation methods based on sample similarity measures. GNN’s po-
tential in modeling non-Euclidean relationships is emphasized. Xu et al. (2024) proposed
a knowledge-integrated GNN for performance prognostics. Ding et al. (2022) introduced
an encoder-decoder meta-learning method for limited and variable-length data prognos-
tics. Ding et al. (2024) developed a few-shot prognostics method using spatio-temporal
sequences. Li et al. (2021) proposed a hierarchical GNN considering spatial sensor rela-
tionships, while Li et al. (2022a) used graph features for sensor interaction explanations.
Zhang et al. (2023) and Wei et al. (2023) employed graph attention networks (GAT) and
graph convolutional networks (GCN) for multi-sensor feature learning, respectively. How-
ever, our review revealed no method that considers GNN-based prognostics with physical
degradation states as graph nodes and state transition times as its edges.

In this light, the proposed methodology aims to achieve the following objectives:

• During the diagnostic phase:

1. Tackle the challenge of imbalanced industrial condition monitoring data, which
often results in model bias.

2. Address the prohibitive computational costs traditionally associated with train-
ing neural network models for reliable diagnostics from multimodal data.

3. Enable the addition of new output classes without retraining the entire model,
overcoming a common scalability issue.

4. Mitigate the limitations of an entirely opaque “black box” model by preserving
interpretability within the large model framework.
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• During the prognostic phase:

1. Develop a diagnostics feature similarity-based method to construct comprehen-
sive RTF trajectories from fragmented monitoring data collected across different
machines. This methodology would leverage similarities in feature spaces to in-
terpolate missing data segments, enabling more complete datasets for training
prognostic models.

2. Propose a graph structure for modeling the evolution of degradation states,
with physical significance embedded into the nodes and edges. This structured
representation would facilitate a more intuitive understanding of machine de-
terioration processes and their interactions at different stages of machine life
cycles.

3. Present a graph-masked autoencoder architecture tailored for machine health
forecasting. This architecture would apply graph neural networks to predict
future health states by learning from the constructed RTF trajectories, ensuring
effective generalization from partial to full system states.

5.3 Methodology for Prognostics Using Incomplete
Run-To-Failure Data

This section presents a methodology to perform machine health prognostics from incom-
plete run-to-failure data. The goal is to compile a prognostics dataset by integrating partial
trajectories derived from condition monitoring across a fleet of machines. Additionally, the
methodology seeks to demonstrate the feasibility of constructing a prognostics dataset
without a complete end-to-end trajectory from any single machine. The methodology
requires some assumptions to be held, listed as follows:

• The symptoms of the machine can be discretized into physical degradation states
that are distinguishable from each other, even though multiple states may be active
at any time.

• The collective condition monitoring data from the machine fleet contains at least one
activation of each fault type.

• There is sufficient domain knowledge available to prepare a diagnostics dataset for
supervised training, with a tolerance for uncertainty.

Provided these criteria are met, the presented methodology can address the lack of
complete RTF sequence from any one machine and facilitate prognostics, as illustrated in



5.3. Methodology for Prognostics Using Incomplete Run-To-Failure Data 113

Figure 5.1. It shows a two-part methodology, where the first part involves understanding
the discrete health states that a machine undergoes through its degradation and developing
a neural network model to classify condition monitoring data to active fault (health) states -
that is, diagnostics. As the first step involves understanding the condition monitoring data
for diagnostic classification, the methodology starts with a domain study. This informs
the inputs, structure, and outputs of a diagnostics model and assists in the preparation
of a dataset for training a diagnostics model. The diagnostics model must also be trained
under severe class imbalance and data sparsity.

The second part involves extracting the intermediate features from the diagnostics
model and projecting on a 2D space, analyzing the feature plot with an expert to validate
its coherence to degradation evolution. Then, it constructs graph format RTF trajectories
by connecting fragments of RTF from different machines based on feature proximity in this
space. This would produce an RTF dataset for the whole fleet, which can be used to train
any forecasting model. The rest of this section explains the steps in detail.

5.3.1 Domain study and preliminary data analysis

This section outlines the first step of the proposed methodology. To support diagnostics,
domain study and data analysis include three crucial exploratory data analyses and strat-
ification of multilabel multimodal data. This should be done in line with expert-informed
identification of the physical degradation states that the machine could evolve through,
the associated condition monitoring data, and the symptoms indicating each state. For
prognostics, this step involves establishing the failure propagation mechanism in the form
of a graph from the initial condition to failure modes.

5.3.1.1 Expert-assisted domain study

The initial step in developing a data-driven diagnostics model involves understanding the
degradation processes of the machinery, necessitating collaboration with domain experts.
This partnership is crucial as industrial condition monitoring data are seldom pre-labeled or
structured optimally for model training, often featuring ambiguous health labels (Pei et al.
(2022)). Consequently, the expertise of industrial professionals becomes indispensable in
assigning accurate class labels and identifying specific degradation types from varied data
sources, thereby significantly informing the model design, as described in Chapter 4.

Additionally, the diagnostic value of data from different sensors often unequally con-
tributes to identifying each type of degradation. Some sensors may exhibit more pro-
nounced symptoms for certain degradation modes than others. Recognizing the most
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Figure 5.1: Prognostics methodology from condition monitoring data to future health
prediction. The first part involves diagnostics and feature extraction, and the second part
involves RTF dataset construction from the diagnostics feature space.
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expressive sensors is vital for subsequent analytical phases, especially in devising a strat-
ification method that ensures an equitable distribution of information quality across data
strata, which is in turn necessary to address imbalances.

5.3.1.2 Exploratory data analysis

Once the input data are understood and target labels are defined, exploratory data anal-
ysis (EDA) is conducted to uncover the dataset’s characteristics, identifying key learning
bottlenecks. This analysis, critical within data science, provides the foundation for the
subsequent phases of the methodology (Camizuli and Carranza (2018)).

The EDA process initiates with an examination of label distribution, crucial for de-
tecting data imbalances that could skew the model’s performance towards more frequent
degradation types, potentially neglecting rarer but critical faults (Zhang et al. (2022)).
This analysis of label distribution and imbalances informs the necessity for resampling or
training adjustments to ensure comprehensive class representation.

Further analysis includes studying label correlations within a multi-label dataset, which
reveals interactions between different fault types and helps understand complex fault inter-
dependencies in industrial systems (Tarekegn et al. (2021)). This step is vital for refining
data stratification strategies for dataset splitting, ensuring the training and validation re-
flect real-world fault co-occurrence scenarios. A label co-occurrence calculation method is
given in Appendix A (algorithm 5).

Lastly, dimension reduction techniques like PCA and t-SNE are employed not to reduce
computational costs but to understand the data distribution space. Visualizing data in
reduced dimensions helps identify clusters and patterns, informing model design in later
stages. These insights from EDA directly guide the data stratification process, crucial for
the effective training of the diagnostics model.

5.3.1.3 Stratification of multilabel multimodal data

This section introduces a new stratification algorithm designed for the complexities of
multimodal multilabel datasets. Stratification involves dividing a dataset into subsets,
called strata, that reflect the original distributions to ensure that training, cross-validation,
and testing sets accurately represent the full dataset. This is a crucial step to handle
imbalances in the dataset.

Addressing the challenge of multimodal datasets, where modalities vary in informa-
tiveness for each class label, this algorithm ensures class informativeness across strata.
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Although multilabel dataset stratification is discussed in existing literature (Sechidis et al.
(2011)), the distribution of modalities within strata remains underexplored. The proposed
algorithm balances label distribution and aligns modality distributions using the Earth
Mover’s Distance (EMD) (Panaretos and Zemel (2019)) for modality alignment, coupled
with a label presence scoring system for equitable dataset partitioning. The comprehensive
stratification strategy is detailed in Algorithms 2 and 3.

Algorithm 2 Multilabel Multimodal Dataset Stratification: Part 1
1: Initialize desired counts for each subset and label-modality pair based on D, I, and

DMD.
2: Initialize weights w1 = 0.5 and w2 = 0.5.
3: for j ← 1 to k do
4: cj ← |D| × rj ▷ Desired number of examples in each subset Sj

5: for each label λi in L do
6: Di ← {(x, Y ) ∈ D : λi ∈ Y } ▷ Instances with label λi

7: for j ← 1 to k do
8: ci

j ← |Di| × rj ▷ Desired number of examples of label λi in subset Sj

9: end Part 1. ▷ Proceed to Part 2 for the detailed stratification process

Algorithm 2 begins by establishing target numbers for each subset based on the total
dataset (D), the modality informativeness table (I), and the desired modality distribu-
tion (DMD). Weights w1 and w2, both initialized to 0.5, equally balance label presence
and modality distribution alignment in the stratification process. These weights can be
adjusted if the dataset shows greater label imbalance or modality sparsity, enhancing w1
or w2 accordingly to accommodate specific disparities. For each subset Sj, the algorithm
calculates cj, the desired number of instances, by multiplying the total instances by the
proportion rj. This is also done for each label λi within the dataset to determine ci

j, the
target number of instances per label in subset Sj, ensuring representation mirrors overall
dataset composition.

In Algorithm 3, the first step involves calculating the current modality distribution
(CMD) in each stratum for every subset and label, setting a baseline for alignment with
the DMD. Subsequently, the EMD between CMD and DMD for each label and subset is
calculated. This measure, quantifying the alignment effort, guides the optimal placement
of instances by minimizing this distance.

The proposed stratification process optimizes two criteria: label representation and
modality distribution alignment. Thus, a combined score for each candidate instance in
every subset is calculated by integrating normalized Label Presence Score (NormLPS)
and normalized EMD score (NormEMDS), weighted by w1 and w2. The ci

j value from
the first part helps derive LPS, with normalization scaled between [0,1] based on data
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Algorithm 3 Multilabel Multimodal Dataset Stratification: Part 2
1: while |D| > 0 do
2: Calculate CMDλi,j for each label λi in each subset Sj.
3: for each label λi in L do
4: Distribution score (CMD, DMD) = EMD(CMDλi,j, DMDλi

)
5: Select label λl with the highest need based on the lowest EMD scores and the fewest

remaining examples.
6: Dl ← {(x, Y ) ∈ D : λl ∈ Y }
7: for each (x, Y ) ∈ Dl do
8: for each subset Sj do
9: Calculate normalized NormLPSx,j and NormEMDSx,j.

10: CombinedScorex,j = w1 ·NormLPSx,j + w2 · (1−NormEMDSx,j)
11: M ← arg maxj(CombinedScorex,j) ▷ Subset with best score for this example
12: if |M | = 1 then
13: m←M
14: else
15: M ′ ← arg maxj∈M(cj) ▷ Further prioritize by largest number of desired

examples
16: if |M ′| = 1 then
17: m←M ′

18: else
19: m← randomElementOf(M ′)
20: Sm ← Sm ∪ {(x, Y )} ▷ Add the example to the selected subset
21: D ← D \ {(x, Y )} ▷ Remove the example from the original dataset
22: Update CMDλi,m for Sm, adjust desired counts for λi and modality distribution.
23: return S1, ..., Sk

available at each iteration step. This combined score, ensuring that both label diversity
and modality alignment are considered during instance placement, is calculated by:

CombinedScorex,j = w1 ·NormLPSx,j + w2 · (1−NormEMDSx,j) (5.1)

Finally, instances are allocated to the subset where they achieve the highest combined
score. Following each allocation, the CMD for each affected subset is updated to ensure
decisions reflect the most current distribution information.

This stratification process repeats until all instances are distributed, forming strata
(S1, S2...Sk) that preserve the original dataset’s label diversity and modality characteristics.
The algorithm strives to optimize label representation and modality distribution within
each stratum. Once the dataset is stratified, some strata are designated as the test set,
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while the remainder form the training and validation sets. With the completion of data
preparation, the methodology progresses to the development of the diagnostics model.

5.3.2 Diagnostics with mixture of experts architecture

This section involves the development of a mixture of experts-based architecture to address
the diagnostics challenges presented in Section 5.1. It includes four steps from training
expert models to feature aggregation and inference.

5.3.2.1 Expert models

The diagnostics strategy involves developing a classification model by identifying the nec-
essary expert models, informed by EDA results from Section 5.3.1.2. The analysis reveals
data imbalances and correlated labels, pinpointing data bottlenecks where specific expert
training is essential. For instance, overrepresented classes may bias the model towards false
positives, while underrepresented ones may lead to false negatives. Addressing these issues
requires training distinct expert models for severely imbalanced classes and for those with
strong label correlations.

Definition

Definition 5.1 (Expert Model):
An Expert Model Ei is a neural network parameterized by weights ϕi, designed
to focus on a specific task τj. Tasks τj may involve distinguishing between highly
correlated classes or specializing in a single data modality. Multiple expert models
{Ei} can be specialized on the same task τj.
Each expert model is trained on a data subset curated for its respective task τj. All
expert models {Ei} follow a multi-branch, late-fusion structure with modality-specific
feature extraction paths and maintain uniform input and output dimensions to stream-
line model training and integration.
Each expert model Ei undergoes individual training until convergence, followed by
model validation using a subset of its training data.

Each dataset for training is formatted uniformly, with input columns for all modalities
and target columns for all classes, regardless of an expert’s specific focus. This standardiza-
tion simplifies subsequent steps and ensures consistency in dataset handling. For instances
lacking specific modalities, null matrices are used as placeholders. Neural network layers
are tailored to the data corresponding to each task, potentially utilizing pre-trained mod-
els for feature extraction. This ensures uniform input and output dimensions across all
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experts, streamlining model training and integration. Training durations vary based on
dataset size, data complexity, and neural network dimensions, ensuring each expert model
is finely tuned for its diagnostic task.

5.3.2.2 Generating and storing predictions

Upon training completion, loading each expert model into memory to generate predictions
across the entire training dataset is a critical step that significantly impacts computational
resource costs. These predictions are saved to create a uniform input-prediction dataset,
which is used to train the gate in the next step. This approach ensures data format
standardization across all models, as each expert is designed with consistent input and
output dimensions.

Additionally, it is advisable to save the feature vectors from the last layers of each
model, typically from the fusion layer which has smaller dimensions, thus ensuring efficient
storage use. While generating and storing predictions, extracting and saving features from
these final layers is a straightforward process that enhances the dataset’s utility for later
stages.

5.3.2.3 Routing gate

A routing gate is a classification model that analyzes a data sample to identify potential
challenges and accordingly chooses the experts most likely to accurately classify the sample.

Definition

Definition 5.2 (Routing Gate):
A Routing Gate g(.) with parameters ρ is a classification model that selects the
most suitable subset of experts {Ei} for a given data instance. The gate assigns a
score αi to each expert Ei from the entire set of experts M = {E1, E2, . . . , E|M |},
where |M | represents the cardinality of M . The output α = g(x, ρ) is a continuous
probability distribution where α ∈ [0, 1]|M | and ∑i αi = 1.

Although straightforward in concept, training the gate to effectively handle data im-
balance and optimize expert selection is complex. It involves training the gate to output
probabilities indicating each expert’s likelihood of correct classification, taking into account
label imbalances that may bias the gate’s decisions towards certain experts.

To train the gate robustly, the stratification strategy described in Section 5.3.1.3 is
utilized. It provides strata reflecting the original dataset’s label and modality distribution.
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Figure 5.2: Training the gate to select from pre-trained experts for each data sample.

The gate undergoes k-fold cross-validation across these strata, allowing it to learn to select
the appropriate experts accurately. Training the gate involves calculating discrepancies
between the experts’ predictions and the true labels for each sample. This training is
efficient as it leverages pre-stored expert predictions, eliminating the need to reload expert
models into memory, thus speeding up the process. An illustration of the gate training
pipeline is given in Figure 5.2.

Various neural network architectures can be used as the gate, from simple feed-forward
networks to more complex transformer-based models. Given their efficacy in handling
multimodal data, transformer architectures with self-attention layers and a softmax output
layer are recommended for the gate. The softmax output layer is necessary for assigning
probabilities αi to each expert’s likelihood of making accurate predictions. As there is a
potential overlap between the tasks of expert models, softmax is preferable over sigmoid
function. The structural design of gate architecture consisting of a transformer stack
followed by a softmax layer is given in Appendix B.

5.3.2.4 Feature aggregation and inference

After training the gate and setting the maximum number of expert models to be selected
for each inference based on resource constraints, the next step is to train the feature
aggregation module. This module aims to combine the features of the selected expert
models effectively.

The feature aggregation module training is illustrated in Figure 5.3. First, each sample
in the training set undergoes inference through the gate, which assigns probabilities to the
experts. Activating all experts for each example significantly increases the computational
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Figure 5.3: Illustration of training the feature aggregation and weight transformation of
features collected from top k experts chosen by the gate. Here, the gate is already trained,
and the learning happens in the aggregation layer. This is the last training step.

cost. To circumvent this, only a top-k of |M | experts are activated, where 1 < k < |M |.
The output representations of the k active experts are averaged according to the respective
routing weights, whose sum is re-normalised to 1. the new probability assigned to each
expert i among the selected top-k is :

α′
i = αi∑k

1 αk

(5.2)

These probabilities are normalized to ensure they sum to 1. The fusion layer features from
each selected model are then retrieved from the saved files (Section 5.3.2.2). Subsequently,
each feature vector fi obtained from the expert Ei is multiplied by the weight α′

i assigned
to the corresponding expert by the gate, reflecting the expert’s confidence or expected
relevance for the sample. Thus, the new output of the top-k experts is:

f ′
i = α′

i.fi (5.3)

This process, known as weight transformation or weighted sum, is common in ensemble
learning and a mixture of expert models (Iqball and Wani (2023), Gong et al. (2023)).

Following the weight transformation, the transformed features f ′
i are aggregated by the

aggregation function φ. This can be achieved by summing the weighted feature vectors to
create a single feature vector f as follows:

f = ⊕f ′
i |i∈top−k (5.4)
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where ⊕ is the element-wise sum operator. Alternatively, the transformed features
can be passed through dense layers or other transformations, such as self-attention layers,
before reaching an output layer with sigmoid activation for multilabel classification. This
approach enables the model to dynamically adjust the influence of each expert based on
the input data, enhancing flexibility and potentially improving model accuracy.

Highlights

Modular deep learning based diagnostics: In the first part of the prognostics
methodology, the objective is to perform diagnostics classification on condition
monitoring data samples. Several challenges of multimodal multilabel data imbal-
ances need to be addressed. A stratification algorithm, specialized expert models,
and an expert selection gate work together to address these.

5.3.3 Diagnostics feature space analysis

The diagnostics model would take the raw condition monitoring data as input and classify
the characteristics extracted from the data among the defined physical degradation states.
The layers close to the output layer of this neural network should contain features that are
most optimized to represent the physical degradation symptoms active in the input data.
These features must be visualized and analyzed with the following steps:

1. Select a layer close to the output layer of the diagnostics model. This can be called
the feature layer.

2. Input the training data samples to the diagnostics model, and save the feature layer
output vector for each sample.

3. Train and save an encoder-decoder model (such as variational autoencoder (VAE)
(Zemouri et al. (2019)) on the feature vector data.

4. Plot the 2D latent space of the encoder-decoder model.

Each point in the obtained plot will represent the physical degradation state of a ma-
chine at a time. The rest of the methodology depends on the quality of these features,
that is, the accuracy of the diagnostics model. Therefore, steps 5.3.2 and 5.3.3 must be
repeated until the visual analysis of the latent space meets the following requirements:
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• R1: The physical degradation states are clustered, and there is a clear separation
between the clusters.

• R2: There is a directional component in the arrangement of the degradation in terms
of their degradation severity, such that the low-risk states are far from high-risk states,
and the intermediate states are in between them.

• R3: Points very close to each other or coinciding on a 2D projection should be similar
in terms of degradation risk level.

In the above list of requirements, R1 is primarily dependent on diagnostics model
accuracy. So if the performance metrics of the model are high, the clusters should form in
any dimension reduction method. It is expected that there is some information loss in the
dimension reduction, but this is a necessary step for the methodology. An encoder-decoder
model that can be saved and restored is preferred over stochastic methods such as t-SNE,
for reusability. If R1 is met, then R2 usually depends only on the 2D projection of the
feature space.

Finally, R3 is the most important requirement which forms the foundational assumption
on which the methodology is based. The similarity of degradation risk level between the
two data samples must be validated by domain experts. To ensure an unbiased assessment,
it is advisable to conduct a blinded randomized experiment. In this experiment, domain
experts are presented with pairs of data samples, which may vary in type and represent
either similar or distinct symptoms of degradation. Selection of these pairs from the feature
space plot should be strategic, encompassing pairs that are distantly separated, closely
adjacent, and overlapping. Experts are then tasked with evaluating the relative risk levels
of these pairs without access to the feature space plot. This method isolates the experts’
evaluations from visual biases potentially introduced by the plot’s arrangement, focusing
solely on the data’s inherent characteristics.

For complex machinery characterized by multimodal data and multiple fault mech-
anisms, the task of analysis presents significant challenges for experts, and a degree of
ambiguity in the outcomes is inevitable. However, the diagnostics model and feature space
must be refined until the consensus can be reached that points close to each other are
closer in terms of relative risk level than points that are farther from each other on the
feature space plot. In essence, an assumption is drawn that there is some relation (not
necessarily a linear relation) between the Euclidean distance between two points on the 2D
plot of diagnostics features and the difference in degradation level. Once a feature space
is obtained that is consistent with this requirement, the next step involves tracing real
degradation paths in the feature space.
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5.3.4 Construction of RTF sequence graphs

Once the feature plot meets the required validation criteria, the observations on this plot
can be used to construct RTF sequences for each machine by connecting partial RTF from
different machines. This is done in two steps. The first step is to trace real degradation
paths from the monitoring history of each machine, and the second step is to construct
RTF sequences. These will be explained in the following subsections.

5.3.4.1 Graph dataset generation step 1: Graph edges from the same machine

This stage aims to identify transitions from a lower-risk state to a higher-risk state. Tran-
sitioning between states requires confirmation that the machine could realistically evolve
from the initial state to the subsequent one within the timeframe separating the two inspec-
tions. This critical step demands meticulous execution and a profound understanding of
fault propagation mechanisms, as well as the symptoms manifested in the condition mon-
itoring data. During consecutive inspections, the observed degradation at a later stage
might arise from a different cause than previously detected. Consequently, observing se-
quential degradations with escalating risk levels does not necessarily imply that the latter
state evolved directly from the former. Thus, it is imperative to establish informed and
knowledge-based rules to define transitions between two condition monitoring data samples
accurately.

Once the transitions are established, these can form the first set of edges in a graph
dataset. These are designated such that each node is represented by the diagnostics feature
vector corresponding to that sample. An edge between two nodes is simply embedded
with the time between the two inspections that produced the start and end node data
samples. This time value can be normalized to a reasonable size, depending on the speed
of degradation. For a machine that degrades from installation to failure in one year, a time
unit of days seems reasonable, whereas for a long-lasting machine with slow degradation
in the order of decades, months or even years could be a reasonable time unit.

At the end of this step, the output is a set of directed graph edges between points on
the feature space, where each edge represents a real degradation from a lower-risk physical
state to a higher-risk physical state, in one machine. For most machines, the irregularity
of condition monitoring, maintenance interventions with indeterminate impact on health
state, and undetected degradation states could result in disconnected edges. This set of
disconnected directed edges can be called ‘real edges’. The next step involves connecting
these disconnecting edges by creating synthetic edges.
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5.3.4.2 Graph dataset generation step 2: Synthetic graph edge generation

The objective here is to take the disconnected edges from the previous step and connect
them to form graph structures representing the uninterrupted health state evolution of
machines from start to failure. This step depends on the feature space continuity analysis
from section 5.3.3. The hypothesis posits that two points nearby within Euclidean space on
the feature space plot can be considered equivalent. To operationalize this, it is necessary
to define a radius threshold that demarcates the extent to which degradation conditions
must be similar to justify a synthetic connection. This radius is determined based on the
dataset characteristics and the analytical methods discussed in Section 5.3.3. A smaller
radius may be suitable for datasets with numerous tightly clustered points, while a larger
radius may be necessary for more sparsely distributed data, acknowledging that the radius
size is directly proportional to the prediction uncertainty in subsequent analysis steps.

Algorithm 4 Synthetic Run-to-Failure Trajectory Generation
1: Input: Historical inspection data D, radius threshold r, generations g
2: Output: Synthetic health evolution graph G
3: Initialize G with real transitions from D
4: for each machine in D do
5: Sort inspection data by date
6: Identify pairs of inspections (u, v) indicating deterioration
7: Add real edges (u, v) to G

8: for i = 1 to g do
9: for each real edge (up, vp) in G do

10: for each real edge (uk, vk) in G do
11: if distance(uk, vp) < r then
12: Create synthetic edge (vp, vk)
13: Add edge feature as distance(uk, vp)
14: Add (vp, vk) to G

15: return G

The procedure for establishing synthetic edges based on the defined radius and the set
of real edges is detailed in Algorithm 4. Each node represents the degradation state of a
machine at a point in time, based on diagnostics done on the condition monitoring data
collected at that time. The node feature is embedded with the feature vector extracted
from the diagnostics model, the same as the feature projected onto the 2D plane. The
edge feature is defined by the temporal interval between two nodes, specifically the time
elapsed between the inspections producing the condition monitoring data for the start and
end nodes. The algorithm systematically processes each real transition edge across all
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Figure 5.4: Diagrammatic illustration of the edge generation process. The probability
assignment algorithm is given in Appendix A, section A.3.

machines. For a given real edge, if another real edge exists within the specified radius of
the first edge’s end node (regardless of the originating machine), a new ‘synthetic edge’ is
formed connecting the end node of the first real edge to the end node of the second, as
illustrated in Figure 5.4. The time difference between the nodes of the second real edge is
then attributed to the synthetic edge. For example, if machine M1 transitions from state
A to B over time tAB and machine M2 transitions from state C to G over time tCG, and
states B and C are proximate, it is hypothesized that M1 could similarly transition from B
to G in time tCG. This approach facilitates the synthesis of potential degradation pathways
across different machines based on their spatial and temporal proximity within the feature
space.

The aforementioned inference presupposes that the degradation trajectories of machines
M1 and M2 are sufficiently analogous. It also relies on the premise that the operational
conditions influencing M2 degradation progression from state C to G are comparable to
those that would affect M1, suggesting that M1 would exhibit similar behavior under
identical conditions. If the knowledge to group machines with similar degradation trends
based on machine design parameters, operating and load conditions, and so on is known,
it is recommended to create synthetic edges from machines grouped by degradation trends
and speeds. If such knowledge is not known, the only choice is to connect the edge from all
machines based only on feature proximity. If the dataset encompasses multiple machines
exhibiting varied degradation trends, it is feasible to discern these patterns solely from
the data, without the necessity for domain expertise. Nevertheless, in cases of sparse data,
applying knowledge-based grouping can partially compensate for the lack of comprehensive
information.
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Additionally, strategic feature engineering can enhance the model’s capability to cat-
egorize machines based on the available data, effectively bridging gaps in the dataset.
This feature engineering is designed to assign a likelihood measure to the synthetic edges,
an adaptation necessary particularly when the dataset lacks comprehensiveness. The al-
gorithm and logic of likelihood measure assignment are described in Appendix A (Algo-
rithm 7).

The output of this step is a set of connected, directed graphs, where each graph corre-
sponds to the possible evolution paths of each machine, starting from the first inspection
of that machine. Therefore, this approach generates comprehensive, continuous RTF tra-
jectory data for an entire fleet of machines, even in the absence of complete RTF data for
any individual machine.

5.3.5 Masked graph dataset preparation

This step involves processing the graph structures obtained in the previous step to prepare
a graph dataset for modeling. The objective of this dataset will be to train a model that
takes a part of the graph as input and predicts the full graph. This means the model needs
to predict the evolution of the health state of a machine given the first part of its RTF
trajectory.

As these are directed graphs, the ordering of the nodes is important. Furthermore,
this ordering directly affects the computational complexity in the modeling step. Both
depth-first search (DFS) and breadth-first search (BFS) ordering are applicable, as both
are valid methods of tracing the fault propagation from start to failure. However, BFS
reduces computational complexity in graph generation tasks. Thus, the first step is to
order each graph by BFS. Then, these can be stored as graph structures for graph-based
deep learning, based on the many libraries available (Wang et al. (2019a)).

Then, for training, a graph dataset needs to be generated based on the requirements of
the model. The following datasets are created:

• A partially masked graph dataset by masking the last nodes of the graph at different
masking rates.

• A randomly masked graph dataset with a random mask variation of the same algo-
rithm.

At the end of this step, a dataset is prepared to model a graph neural network for
predicting future health states from historical health state evolution data.
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5.3.6 Graph neural network health forecasting model

In this application, the health evolution of machines is modeled as graph structures where
each node represents a degradation state, and an edge represents the time to evolve from
one state to the next. As such, graph neural networks are a promising tool to examine.

Once the graph dataset is generated, any number of graph modeling techniques can be
applied to predict the future health states based on a partial graph. Two broad categories
of applicable graph techniques are graph reconstruction methods such as masked graph
autoencoders (Hou et al. (2022)), and generative graph approaches such as GraphRNN
(You et al. (2018)) or graph diffusion methods (Chamberlain et al. (2021)).

This step completes the methodology. In the next section, the proposed methodology
will be applied to an extended case study of the hydrogenerator fleet presented in Chapter
4.

Highlights

In the second part of the prognostics methodology, the features from diagnostics
classification were projected on a 2D plane. On this plane, the differences between
individual machines were found to not exist anymore. Thus, two points coinciding
on this feature space plot could be considered to be at an equivalent point in their
paths from a healthy state to failure and could be substituted for one another.
This allows us to construct full RTF sequences by connecting fragments of RTF
trajectories from different machines, solving the data limitation.

5.4 Data and Application

This section presents a real-world industrial case study that applies the proposed method-
ology to a fleet of hydrogenerators, high-value machines with intricate fault propagation
mechanisms. Initially, the problem statement and specifications of the data are introduced.
Subsequently, the methodology is systematically applied to this dataset, demonstrating
each step in practice.
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Figure 5.5: Subset of the expert knowledge-based fault propagation graph in scope. For
full graph details, see Blancke et al. (2018). The medium-risk states (green) and unknown
states (black) are connected to several of the studied states (blue and red), but their
transitions are not studied in detail.

5.4.1 Domain study of hydrogenerator fault propagation mech-
anisms

In Chapter 4, only two fault types (physical degradation states) of the hydrogenerator fault
propagation graph (Blancke et al. (2018)) were considered. In this chapter, this scope will
be extended to a larger subset of this graph, depicted in Figure 5.5.

Figure 5.5 illustrates the initial causes of hydrogenerator faults in gray blocks, which
are not physical states. The figure highlights three low-risk physical degradation states
in blue, labeled A3, A1, and T4, and three very high-risk states in red, labeled E4, E7,
and E2A, which are close to failure. These six states constitute the primary focus of this
study. That means, the data and manifested symptoms of these states are studied in detail,
and the diagnostics model is optimized for these states. The three blocks outlined in red
represent failure modes and are not physical degradation states. On the side, a set of states
are shown in green and black, both of which show the physical states that are part of the
fault propagation mechanisms of the hydrogenerators, but outside the scope of this study.
The scope was narrowed for practical reasons during this phase of the study. However, the
condition monitoring samples from all of those states are used for the training model. The
difference is that all samples of out-of-scope states that are understood to be comparatively
less risky are together labeled “Unknown Medium Risk States”, and all the other states
are labeled “Unknown States”. As the states in scope are only a small subset of the entire
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graph, there are far more samples of unknown than the known categories.

As shown in Figure 5.5, the hydrogenerators should start their degradation in the low-
risk states (A1, A3), and degrade to reach the high-risk states (E4, E7, E2A). However,
tracing the condition monitoring history of the machines shows that the first recorded
inspection of most machines starts in the high-risk states, then the low-risk states are
detected at a later inspection, and then the high-risk states again. This seems counter
to the knowledge-based fault propagation path and suggests that the machines started in
the high-risk states. But in fact, the tools to detect the low-risk states were developed
much later in the operation of the machines, which resulted in this data. Practically, this
means that there are very few machines where the transition time from a low to high-risk
state was recorded, and the majority of the dataset records transitions from the medium
to high-risk states. This is the inverse of the long-tail distribution often found in PHM
datasets (PHM data often contain more samples in healthy states and fewer in degradation
states). Yet, in terms of RTF data requirements for prognostics modeling, this is as much
of an obstacle as the more common long-tail data distribution.

(a) PDC data sample (b) Thermal degradation (c) Contamination

Figure 5.6: Data samples for states A1, A3 and T4.

In addition to the condition monitoring data modalities introduced in Chapter 4, a time
series data modality called polarizing and depolarizing currents (PDC) is included. PDC is
the only known tool that can accurately distinguish conducting (A1) and non-conducting
(A3) contamination (Figure 5.6a). These states also have visual inspection images (5.6c).
State T4 has only 17 visual inspection photographs in total (5.6b). Then, tabular data
from the industrial maintenance management software are also included.

The correlation between the eight target degradation states and monitoring data types
is detailed in Table 5.1. Initial discussions with domain experts were crucial to under-
stand the range of degradation states and their symptom manifestation across different
monitoring tools. Despite the inherent complexity and diversity of these modes, which
introduce some uncertainty, this foundational step also involved associating a risk level
with each state based on its proximity to failure, thereby establishing the groundwork for
the model’s development.

The dataset preparation involves using condition monitoring data as inputs and degra-
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Table 5.1: Degradation states (class labels) and condition monitoring data sources (inputs)
State Description Risk level Image Text PDC PRPD PDA Ozone Temperature Categorical
A1 Conducting contamination (wa-

ter, carbon)
Low ✓ ✓ ✓ x x x x ✓

A3 Non-conducting contamination
(oil, dust)

Low ✓ ✓ ✓ x x x x ✓

T4 Thermal aging High ✓ ✓ x x x x x ✓
E4 Corona partial discharge High ✓ ✓ x ✓ ✓ ✓ ✓ ✓
E7 Partial discharge between bars High ✓ ✓ x ✓ ✓ ✓ ✓ ✓
E2A Partial discharge at core exit High ✓ ✓ x ✓ ✓ ✓ ✓ ✓
Unknown
medium-
risk states

All the degradation states of the
machine where indicative features
are not known (outside the scope
of this study), but the states are
considered medium risk.

Medium ✓ ✓ x

Unknown
states

All the degradation states whose
feature analysis is outside scope
of this study.

✓ ✓ x ✓ ✓ ✓ ✓ ✓

dation states as labels, with each sample representing inspection data collected over a
three-year window, as discussed in Chapter 4. This forms a multimodal dataset designed
for multilabel classification. The next step involves analyzing the characteristics of this
dataset.

5.4.2 Exploratory data analysis for hydrogenerators

Exploratory data analysis involves studies such as label distribution analysis, label corre-
lation study, and sample similarity analysis. Figure 5.7 illustrates the results of the label
distribution analysis in this multi-label dataset, with the x-axis representing label combi-
nations. The graph displays the top ten combinations, highlighting that the “Unknown
state” category comprises the highest number of samples. Notably, high-risk states are also
well-represented. Conversely, low-risk states, including the thermal aging state T4, are sig-
nificantly underrepresented, with only 17 instances of T4 in the dataset, posing additional
challenges for analysis and modeling. Figure 5.8 displays label correlations, indicating pos-
itive relationships among the three partial discharge states, particularly between E4 and
E2A. The “Unknown state” also shows positive correlations with these discharge states,
and similarly, the two contamination states are correlated.

It is crucial to recognize the inherent ambiguity in class labels due to the limitations
of data sources. For instance, visual inspection photographs identifying contamination
cannot differentiate between conducting elements (like water, carbon) and non-conducting
elements (like oil, dust); thus, contamination presence is generally noted without specifica-
tion, leading to a label of ‘True’ for both A1 and A3. Such nuances in label meaning imply
that multiple ‘True’ labels in a data instance suggest the potential activity of these states,
not their definite presence. This also applies to E4 and E2A, as discussed in Chapter 4.
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Figure 5.7: Distribution of the condition monitoring data by fault type. The labels show
combined fault found in a three-year window.

Finally, the sample similarity analysis using t-SNE did not produce useful results. As
anticipated, data from each modality clustered separately without any overlap, indicating
that all samples of each data type were grouped, independent of the target class. Conse-
quently, this analysis did not provide any actionable insights to facilitate classification.

5.4.2.1 Stratification

The EDA results in the previous section (5.4.2) have provided insights into data challenges
and identified key bottlenecks, which will guide the design of expert models. Before pro-
ceeding, it is crucial to split the data into training and testing sets, ensuring each contains
representative samples of all label combinations and modality-class mappings. A random
dataset split may result in skewed representation, such as a training set lacking instances
of underrepresented classes or modalities, thereby failing to address the label and modality
balance essential for multimodal datasets. Stratifying the data into strata that maintain
both label and modality distributions ensures that subsets, including test, training, and
validation sets, are comprehensive and representative of the entire dataset.

To initiate the stratification process, the number of subsets (strata) must first be estab-
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Figure 5.8: Label correlation of the output classes. High correlation between the three
partial discharge types (E4, E2A and E7), as well as the two contamination states (A1 and
A3).

lished, limited by the size of the smallest class to avoid resampling issues. In this dataset,
the smallest class is T4, with seventeen data points, leading to the creation of ten subsets;
two are allocated for testing, and the remaining for training and validation.

Table 5.2 displays the modality informativeness for each class, ranking image data as
most informative for the three partial discharge classes (E4, E2A, and E7) due to clear
visual distinctions of symptoms in photographs. However, for A1 and A3, PDC data proves
more useful, while for T4, images are the sole data source. The informativeness of other
classes and modalities, such as text, categorical data, ozone, and temperature, remains
unquantified and their utility is considered similar, though their exact ranking involves
some uncertainty.

Following these preparations, the data is stratified using Algorithms 2 and 3. These
strata will be utilized for training the gate in Section 5.4.4 after training the expert models,
as detailed in the next section.
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Table 5.2: Modality informativeness table showing the comparative information quality of
each data source for the target classes.

Informativeness
rank A1 A3 T4 E4 E2A E7 Unknown

medium Unknown

1 PDC PDC Image Image Image Image

2 Image Image PRPD PRPD PRPD

3 PDA PDA PDA

4 Text-
categorical

Text-
categorical

Text-
categorical

5
Ozone/
Tempera-
ture

Ozone/
Tempera-
ture

Ozone/
Tempera-
ture

5.4.3 Expert models for hydrogenerator data challenges

Table 5.3 enumerates all expert models examined in this study following the analysis results
presented in the previous sections. Each expert can classify the 8 target classes, albeit with
varying accuracy across data subsets.

Expert model No. 2, for example, is an extension of the classification model trained in
Chapter 4 to include one more type of partial discharge. The detailed architectural design
and description of the most important expert models are given in Appendix B.

After all the experts are trained, their predictions on the entire training set are stored
for training the expert selector routing gate module in the next step.

5.4.4 Gate and aggregation

To initiate gate training, expert predictions on the entire training dataset are generated and
stored alongside fusion layer features. Training occurs within a k-fold (here, k=4) cross-
validation setup using strata from Section 5.4.2.1. This dataset incorporates balanced
strata from the training set along with expert predictions, ensuring the gate’s robustness
to dataset bias and imbalance. Figure 5.2 illustrates gate training, where expert models
remain frozen, with predictions loaded from a file, ensuring the independence of gate
training from the expert modules training.

Following gate training, the module is frozen, and the assigned probabilities for each
expert per data instance are stored for subsequent use. These probabilities are utilized to
weight, transform, and aggregate expert features.
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Table 5.3: Expert models.

Expert
Model Input Modality Task

1 Image + Text. Image expert for all classes.

2 Image + Text + PRPD + PDA
+ Oz/ Temp/ Tabular.

Partial discharge (E4, E2A, E7)
classification.

3 PDC. Classify A1 vs A3.

4 Samples where unknown is
present with another class.

Separate unknown class from
others to avoid universal true

prediction.

5 Samples where unknown is
present with unknown medium.

Separate unknown class from
unknown states with medium

risk.

6 Rows without unknown or
unknown medium.

Train an expert without data
bias from the unknown states.

7

PDC + Image + Text (rows
where unknown medium is

present, no image with known
partial discharge).

Separate A1 and A3 from
unknown medium, which have

positive label correlation.

8 PDC + Contamination images Contamination classes expert.

9 No PDC or contamination
images.

Separate unknown states from
partial discharge states, which
have positive label correlation.

10 Thermal aging +
Contamination images. Low risk classes expert.

11 Text only.

All classes, but from inspection
notes only. There are some

instances where text is present
but no other data.

12 PDA only. Separate partial discharges with
only PDA.

13 PRPD only. Separate partial discharges with
only PRPD.

14 Partial discharge Image +
PRPD.

Separate partial discharges with
Image + PRPD.

15 Partial discharge Image + PDA. Separate partial discharges with
Image + PDA.

16 Partial discharge PRPD + PDA. Separate partial discharges with
PRPD + PDA.
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5.4.4.1 Feature aggregation

In this step, the features extracted by the top k experts are aggregated and transformed.
While it is feasible to conduct this step concurrently with gate training, the methodology
opts to fully train the gate first. The gate’s model selection is then utilized to train the
weight transformation.

Using the same strata employed for gate training, the initial step determines the number
of experts to load into memory simultaneously based on the available memory (16 GB
Nvidia RTX A4000) and the size of the largest expert models. In this study, the gate
selects the top k = 4 experts for each sample in the training dataset. During training,
experts do not need to be loaded into memory; the fusion layer features for all experts are
stored in a file (see Section 5.3.2.2). These features, output by the modality branch fusion
layer present in all experts, ensure consistency across designs.

The feature vectors from the top k experts are transformed using weights provided
by the gate, scaled to sum to one. If the memory resources allow loading all experts at
once, this step may be redundant. However, lacking such resources, this process weights
the features based on each expert’s contribution to the final output. The transformed
features are aggregated and fed into dense connections, leading to a sigmoid layer for the
final multilabel classification output. Only the weight transformation, dense layers, and
output layer require training in this step, making it relatively fast compared to training
the experts.

5.4.4.2 Diagnostics inference

The inference process is performed on the test set, which has not been used for any of the
training steps thus far. This process is illustrated in Figure 5.9. During inference, a test
sample is input to the gate, which assigns probabilities to each expert. The top k experts
are then selected and loaded into memory. Each expert processes the data, and features
from their fusion layer are extracted. Note that each expert model can make its own
classification, but this output is not used. Indeed, the process flow for each expert ends at
the fusion layer. The feature matrices are then transformed using gate weights, aligning
them according to each expert’s expected contribution. These transformed features are
densely connected to subsequent layers, with the final output layer activated by sigmoid.
This inference strategy maximizes available memory without adding time costs due to
sequential expert activation.
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Figure 5.9: Data flow pipeline at inference time, after all training steps are complete. The
sample is forwarded to the gate, which activates k experts. The sample is then forwarded to
the experts. The experts each extract features from the data, and the fusion layer features
of the experts are retrieved. These are transformed by the gate weights and aggregated.
The aggregated features are processed and densely connected to the output layer.

5.4.5 Results for hydrogenerator diagnostics

Thus far, a modular DL-based classification model has been trained for diagnostics. The
test set inference results of this model were compared with several variations by altering the
number of activated experts from 1 to 4 and adjusting the expert fusion feature dimensions
to 8, 16, and 32. The best model with 4 active experts and a feature size of 32 achieved an
exact match ratio of 88%. Precision, recall, and F1 score are all over 90%, and good scores
were achieved on other metrics such as Hamming loss, log loss, and Jaccard score. The full
result analysis and ablation studies conducted on the diagnostics model architecture are
given in Appendix C. As the quantitative metrics of the diagnostics model are satisfactory,
we arrive at the last part of the methodology (Figure 5.1). The next step is to analyze the
intermediate features of this model.

5.4.6 Diagnostics feature analysis and expert validation

The feature space obtained from the diagnostics model is used to train a VAE, and the
latent space is plotted in a 2D scatter plot. This is shown in Figure 5.10. This figure was
obtained after several iterations of optimizing the diagnostics model and feature dimension
reduction. The features shown in the figure met the requirements R1, R2, and R3 described
in Section 5.3.3.
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Figure 5.10: Visualisation of 2-D representation of the training data features of diagnostics
model using variational autoencoder

The states representing the low-risk states are in the bottom left corner of the space,
far from the states in red, which represent the high-risk states. It should be noted that the
condition monitoring samples were labeled such that if in a time window of three years a
set of samples showed the degradation states (E4, E2A, or E7), it was considered high-risk
and colored red.

In this feature space, a single point originates from features extracted from a multimodal
data sample and represents a combination of physical degradation states. The consistency
of the 2D space was validated with an expert. Such validation is a lengthy and challenging
task, as it is quite difficult to take two samples of different modalities (image and PRPD,
for example) which could belong to different machines, and compare them. This step
was conducted until sufficient conclusions were drawn to support the assumptions in the
methodology. However, further refinement and validation of the features could always
improve the model. Once this step is complete, the next step is to prepare the dataset.

5.4.7 RTF sequence generation and masked graph dataset

This step involves creating a synthetic edge and a graph dataset based on the algorithms
in subsections 5.3.4.1, 5.3.4.2 and 5.3.5.

The radius parameter, defining the local maximal threshold for the neighborhood of
nodes, is set to incrementally increase from 1e− 8. This allows an exploration of varying
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Figure 5.11: Creating synthetic edges for a single machine (image cropped for visibility).
The blue edges highlight the evolutions of one machine A. The green edges are all from
different machines. The figure highlights a constructed sequence for A by connecting with
a partial trajectory of machine B.

scales of proximity among the diagnostic features in the 2D space. The decay factor for
moderating the influence of synthetic edges across generations is set at 0.9. This value
ensures that each subsequent generation of synthetic edges contributes slightly less to
the transition density, simulating a natural attenuation of influence over distance and
generational depth. This does not come into play, as the iterative generation was capped
at 1, due to the highly dense feature space. Additionally, transition density values for
outgoing edges from a node are normalized to 1, thus converting raw transition densities
into a probabilistic framework that reflects the likelihood of transitioning from one state
to another within the modeled system. These parameter values are crucial for enabling
the synthetic edge generation algorithm to robustly accommodate the uncertainties in
predicting machine degradation paths and speeds, while also adapting effectively to the
dataset’s limitations.

A dataset of directed graphs is then constructed using the Deep Graph Library (DGL).
To create this dataset, the actual feature vector from the diagnostics model is used to
embed the nodes as a tensor. Similarly, the time differences between states in terms of
several months embed the edge feature. Following the graph construction, the nodes within
each directed graph are then ordered by BFS search to capture the sequential progression of
degradation. Then, the graph needs to be masked to create a training dataset (A masking
algorithm is presented in Appendix A). A masking rate, varied across a predefined range,
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is applied to both node features and edges from the end of the directed graphs to simulate
partial evolution scenarios. Graphs masked from 10% to 90% mask rates are included in
the dataset. This dataset is then used in the next step for model training.

5.4.8 Graph neural network for prognostics modeling

The dataset constructed in the previous step can be used in many ways to implement
machine health forecasting. While recurrent networks or diffusion models are potential al-
ternatives, the main objective of this section is not to present the strongest neural network,
but rather to validate the utility of the proposed RTF data construction method. Thus,
an autoencoder architecture is chosen for its one-step forecast capability as opposed to the
complexity of a recurrent model.

In this step, a Graph Masked Autoencoder (GraphMAE) (Hou et al. (2022)) model is
designed, and tailored to predict the machine degradation processes from initial condition
monitoring data. This involves crafting an enhanced graph MAE model that leverages the
representational capabilities of Graph Attention Networks (GATs) to encode and decode
the states and transitions inherent in the degradation pathways.

The model comprises an encoder-decoder architecture where both components employ
graph attention layers. The encoder uses GATs to aggregate feature information from
neighboring nodes, allowing it to learn a rich representation of the node features and
their local graph topology. Specifically, a series of graph attentional convolution layers
(Veličković et al. (2017)) allows for progressive refinement of these representations. The
decoder mirrors this structure to reconstruct the original node features from the encoded
representations. The structure contains three modules for reconstructing the masked nodes,
predicting if an edge exists from each of the previous nodes to the newly constructed node,
and for constructing the edge feature if an edge exists. The BFS ordering reduces the
computational complexity of the edge existence prediction to the last layer. The illustration
of the model to reconstruct the masked graph is shown in Figure 5.12.

A multi-task loss function is devised to facilitate the learning process, addressing three
tasks: node feature reconstruction, edge existence prediction, and edge feature prediction.
The node feature reconstruction is a regression task to the actual feature vectors, so this
is trained with a mean square error (MSE) as the loss. The edge existence prediction is a
classification between the presence or absence of edges, thus it uses a binary cross-entropy
loss. For the module to predict edge features, another MSE loss is applied as this is also a
regression. These loss components are dynamically weighted, allowing the model to balance
its focus between tasks based on their relative learning progress (Guo et al. (2018)).

Training the model involves iterating over a dataset of masked graphs, where the model
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Figure 5.12: Illustration of a masked auto-encoder with the modules for node reconstruc-
tion, edge existence prediction, and edge feature reconstruction.

is optimized to predict node features and the presence of edges, with the option to also
predict attributes of these edges. The multi-task optimization to balance the training of
these tasks uses dynamic task weighting based on recent loss on each task. Each of the
three tasks begins with an equal weight. After n epochs, the weights of the tasks are
updated as follows:

Task Weight = Recent Task Loss
Total Loss

This allows the model to focus its parameter optimization on the tasks it finds difficult,
leading to balanced learning on all three tasks.

5.5 Prognostics Results

The model is tested with partial graphs for completion, which means that it is given
the first state or first few state transitions in the history of a machine and demanded to
forecast the future evolution, both the future states and transition times. The node feature
reconstruction module has an MSE of 0.007 on the test set. This means that the model is
quite adept at predicting the future states given the evolution history of a machine. This
is not very surprising, as fault propagation mechanisms are quite well-known in terms of
possible future paths. Predicting the time to future states is a much more difficult task.

The result of the edge feature reconstruction module, which is responsible for predicting
the time, is given in Table 5.4. The table compares the MSE and RMSE of the edge feature
reconstruction module on three node embedding size variations of the model trained by
masking graphs from the end and a random masking approach. The model trained on
the largest node size gets the best performance, an RMSE of around 5. As the time is in
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Table 5.4: Results showing the time prediction error of models trained on different condi-
tions

Model Graph node
feature size

MSE: Edge feature
reconstruction error RMSE

Graph MAE -
end mask 8 254.4 ∼ 15.95 months

Graph MAE -
end mask 16 144.8 ∼ 12.03 months

Graph MAE -
end mask 32 23.55 ∼ 4.85 months

Graph MAE -
random mask 32 26.77 ∼ 5.17 months

the unit of months, this amounts to a prediction error of 5 months. Considering that the
lifetime of the machine is over 70 years and the degradation is a very slow process in the
order of years, an error of 5 months is reasonable. Moreover, it was shown that a more
expressive node feature can improve the prediction of time to evolve to a future state.

The masked autoencoder trained on randomly masked graphs performs slightly worse
than masking from the end alone. This was tested on the same test set, which only contains
graphs masked from the end, for consistent comparison between models. However, training
on the random masked graphs does not seem to bring an advantage over masking only from
the end.

An example of the model prediction is shown in Figure 5.13. It presents the inspection
data of a machine Mi on the top and the predicted output on the bottom. This is a typical
example of real data conditions in the industry, where inspection history is highly sparse.
The model was given only the first node as input and predicted the future health state
and time to the predicted states. One single condition monitoring data sample was input
to the diagnostics model, and the intermediate feature from this model was input to the
GNN. The output of the GNN is a vector of node features in the same dimension as its
input, along with a binary edge existence vector and an edge feature vector. The true data
plot (Figure 5.13a) was obtained by feeding the diagnostics features to the VAE to obtain
the 2D coordinates and overlaying the highlighted points on the entire diagnostics feature
space plot. The prediction plot (Figure 5.13b) was obtained by feeding the predicted node
feature vectors to the VAE and overlaying them on the feature space plot.

The path A → B → C predicted by the model is quite close to the actual inspection
data. Given a machine in a health state A1 at time t, it is possible to evolve to the state
E7 at (t+ ∼ 5 years). The prediction is within possible limits, as validated by the domain
expert. However, the other paths to states D, E, and G do not fall within the time shown
by the inspection data.
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(a) Actual inspection dates and identified fault states of machine Mi. Points from the
test machine are highlighted by reducing the feature plot opacity.

(b) Predictions for machine Mi with only one inspection sample as input. (Coordinates
obtained by encoding the GNN output with VAE.)

Figure 5.13: Masked graph autoencoder predictions on one machine.
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However, further analysis shows that it may not be possible for the machine Mi to
evolve to the two other states from the initial state in two years, suggesting that these two
inspection samples may have a different original cause than point A. It should be noted
that while the predictions made by the model can be evaluated quantitatively against a test
set, the analysis of each prediction by case is a difficult process due to the ambiguity about
the degradation speeds of machines. However, the results are quite promising considering
the data limitations of the case study.

Figure 5.14: Predictions on machine Mj with only one input sample.

Figure 5.15: Predictions on machine Mk with only one input sample.
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Figure 5.16: Predictions on machine Mj with two input samples and an edge.

Figure 5.17: Predictions on machine Mk with two input samples and an edge.
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Figures 5.14 to 5.17 illustrate additional results from the model predictions involving
two machines Mj and Mk. Initially, the model predicts using only a single inspection sample
as input (Figures 5.14 and 5.15). These predictions are then compared with outcomes
derived from Mj and Mk when two samples and the corresponding edge are provided as
input (Figures 5.16 and 5.17), for the respective machines.

Figure 5.18: Euclidean distance between predicted and actual future state feature vector
of the first transition for all machine units in the test set is shown in the green line graph.
The probability of the corresponding predictions are given by the red points.

Figure 5.18 shows a comparison between the prediction error of future states and cor-
responding prediction probabilities. For all the machines in the test set, only the first
transition is considered in this plot, as the real degradation is only known for one transi-
tion edge (after which the model is based on transitions from other machines). For each
machine, the model typically predicts more than one possible future state when starting
from a given initial state. In this plot, the predicted future state with the highest probabil-
ity is considered for each machine. The predicted probability is given by the red points, and
the difference between actual future state to the predicted state (calculated as Euclidean
distance between the corresponding feature vectors) are shown in the green points. It can
be observed that when the predicted probability of a future state is high, the corresponding
predicted future state is close to the real observed state, and vice versa.

Figure 5.19 shows the same state prediction error values in the green points as Figure
5.18. However, in this figure, these are compared with the state transition time prediction
errors, shown in blue points. Each blue point represents the difference between actual
transition time to the true future state and the predicted transition time to the predicted
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Figure 5.19: Euclidean distance between predicted and actual future state feature vector of
the first transition for all machine units in the test set is shown in the green line graph (same
as Figure 5.18. The prediction errors of the actual time to transition and the predicted
time to transition (normalized for readability) are given by the blue points.

future state. This difference value is normalized within the range of transition time errors
of the test set predictions by min-max scaling (Equation 5.5). This is done to scale the time
prediction error (which is originally in the number of months) to a comparable scale as the
state prediction errors, for efficient visualization. In most cases, when the predicted state
is closer to the real future state, the predicted transition time is also closer to the actual
transition time. However, it can be observed from the figure that there are several cases
when the results deviate from this. Prediction of transition time to a future degradation
state remains a more challenging task, even when the future state itself can be predicted
reliably.

ϵ = |tp − tt|

ϵnorm = ϵ−min(ϵ)
max(ϵ)−min(ϵ)

(5.5)

where ϵ represents the absolute error between the predicted transition time tp and the true
transition time tt, and ϵnorm denotes the normalized time prediction error, scaling ϵ to a
[0,1] range aligned to the minimum and maximum errors among the test set predictions.

The predictions starting from a single node are expected to align closely with those
that utilize more initial information. However, when the model begins with only one node,
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the resulting predictions are broader, indicating multiple potential futures. Figures 5.16
and 5.17 display the actual observed future up to one edge, which falls within the range of
the model predictions from the initial node. This consistency across predictions reinforces
confidence in the model’s reliability. More perspectives on the results are discussed in
Appendix A.3.0.1.

5.6 Conclusion

In this chapter, we developed a methodology to perform machine health prognostics in the
absence of any RTF trajectories. We accomplished this by first performing diagnostics,
by analyzing the intermediate features from the classification model, and by connecting
partial trajectories from different machines based on feature proximity in this space. The
main contribution of the methodology is in relaxing the data requirement from complete
trajectories to partial trajectories.

To achieve this objective, the methodology imposed strict requirements on diagnostics
accuracy. This involved solving several challenges such as class imbalance and sparsity
in a multimodal, multilabel classification dataset scenario. To solve these, we presented
a modular deep learning architecture with specialized experts, a routing gate, and a new
dataset stratification algorithm, which all work together to solve the many data challenges.

The proposed methodology was applied to a real-world dataset from a hydrogenerator
fleet. The diagnostics model obtained consistently high scores across several metrics and
held up to expert validation. The features from this model enabled the construction of an
RTF dataset in graph format, and a masked graph reconstruction autoencoder model was
trained to predict future health given the initial health monitoring data of a machine. The
results obtained are in agreement with expert validation.

The complete methodology developed in this chapter built upon the cross-modal at-
tention architecture introduced in Chapter 3, expanded the diagnostics methodology in
Chapter 4, and integrated them all together to form an end-to-end prognostics solution
that addresses a range of industrial and scientific challenges.

This chapter concludes the contributions presented in this thesis. The general conclu-
sions and reflections will be presented in the next chapter.
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This research aimed to explore multimodal data-driven PHM techniques to enhance
the reliability and efficiency of industrial machines. This study has successfully developed
and validated several predictive models that leverage various data modalities to support
maintenance decision tasks.

The full schematic summary of the thesis is illustrated in Figure 6.1. In the rest of this
chapter, we will recall the objectives of this thesis, recap and highlight the key findings,
discuss the limitations of this work, and recommend directions for future research.

6.1 Recall Research Problems and Objectives

At the outset, several key challenges were identified within the field of PHM for industrial
machines:

• Addressing the issue of missing and noisy data in industrial multimodal datasets.

• Developing robust models that can handle sparse and irregular datasets.

149
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• Incorporating domain expertise and subjective elements to enhance model reliability.

• Managing high class imbalance in multimodal data for accurate diagnostics.

• Creating methods for health prognostics without complete run-to-failure data.

The main objective was to develop methodologies and algorithms that could integrate
multiple data modalities and leverage domain knowledge to create robust predictive models
applicable to real industrial settings.

6.2 Summary of Key Contributions

This research has made significant strides in addressing the following challenges.

• In Chapter 2, we reviewed the literature on data-driven PHM and noted that most
datasets consisted of unimodal sensor signals. Additionally, many benchmark datasets
were simulated, revealing a gap between state-of-the-art advancements and practical
applicability. We identified the lack of industrial data as a contributing factor and
proposed multimodal data as a potential solution. Our investigation into multimodal
learning and its applications in fields such as medicine, along with recent develop-
ments in foundation models, indicated that multimodal learning is sufficiently mature
for application in PHM. A review of PHM studies utilizing multimodal data under-
scored the need for further exploration in this area. Consequently, we formulated
several research questions to guide this thesis.

• In Chapter 3, we conducted a first exploration into multimodal learning in PHM using
a simulated dataset. Identifying missing data and noise as key challenges, we devel-
oped a cross-modal attention-based multimodal learning method. After performing
a comparative analysis across a wide range of missing and noisy data conditions, we
concluded that the proposed attention-based learning technique could mitigate data
limitations significantly. This forms the first contribution and is used throughout the
rest of the development of the thesis.

• In Chapter 4, we made two contributions. First, we proposed a multimodal diagnos-
tics methodology that addressed severe data sparsity in certain modalities by incor-
porating domain knowledge into the design process of a specialized unimodal feature
extraction pipeline. Existing foundation models were leveraged to support this. Time
alignment issue between modalities was also addressed with a time-differences vector
to attention weight the data features. The robustness of the proposed methodology
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Figure 6.1: Schematic summary of thesis objectives and contributions. The black arrows
represent the connection between a research objective and a contribution, whereas the
colored arrows traces the scientific development through chapters.
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on sparse and irregular data was validated on an industrial dataset of hydrogenera-
tors. Second, the subjectivity in certain PHM tasks such as health index estimation
was addressed by using a large language model fine-tuned on industrial text doc-
uments and inspection notes, thus ensuring the data-driven model is aligned with
human expert observation of the condition monitoring measurements. The findings
of this chapter laid the groundwork to extend the research to prognostics.

• Finally, in Chapter 5, we explored forecasting of machine health into the future. We
proposed a methodology to address a critical challenge that hinders the application of
state-of-the-art techniques to the industry: lack of run-to-failure data. The proposed
methodology heavily depends on the accuracy of diagnostics, and novel contributions
were made to address label imbalances and multimodal information distribution to
prevent model bias. The methodology takes the features of a multimodal data-
based diagnostics classification model and projects it on a 2D plane. With expert
validation that coinciding points on the 2D space can be exchanged, we constructed
RTF trajectories by connecting partial trajectories from multiple machines. This
let us develop an RTF dataset in graph format, which was used to train a graph
prediction model for prognostics. This final contribution is a promising solution to
the challenge of data scarcity in the industry, and ties together all the techniques and
principles developed throughout the thesis in an end-to-end prognostics methodology
from data to prediction.

The contributions presented in the thesis are methodologies that can be adapted, and
their implementation steps were demonstrated on an industrial dataset from a hydrogenera-
tor fleet. To the best of our knowledge, this thesis presents the first work in PHM literature
to address these challenges and demonstrate the findings on a real-world dataset, where
the results are corroborated by industry experts. Several publications have been generated
throughout this research, highlighting the developments presented in this thesis.
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6.3 Discussion of Findings

Our findings support the hypothesis that multimodal data could be a solution to address
the several challenges faced by PHM research and the industrial community. Multiple
methodologies were developed to address the challenges on the path to operationalizing
this data, incorporating domain expertise, and leveraging historical maintenance records
and foundation models with multimodal learning techniques. This research aligns with
existing literature, demonstrating that the effectiveness of multimodal approaches in other
domains is replicable in the field of PHM, and can be extended by introducing novel fusion
techniques and data shortage mitigation strategies.

The implications of these findings are several, suggesting that industries can signifi-
cantly reduce downtime and maintenance costs by using multimodal condition monitoring
data to improve their predictive maintenance models. This research potentially opens up
several research avenues previously unexplored due to data scarcity, which is perhaps the
most critical roadblock in data-driven PHM research.

Our key findings, derived from extensive experiments and validations, underscore the
potential of multimodal data based approaches in enhancing the reliability and efficiency
of PHM processes. In detail, the findings from Chapter 3 demonstrate that the proposed
multimodal model significantly outperforms simpler models, particularly when data im-
perfections are present. The resilience of the attention mechanism to increasing noise and
missing data highlights its efficacy in real-world industrial settings where data quality is
often compromised. This robustness is crucial for practical applications, ensuring reliable
maintenance decisions even with imperfect data inputs.

In Chapter 4, our results demonstrate that the integration of domain knowledge proved
highly beneficial, pointing to the need for more interdisciplinary approaches that combine
machine learning with expert insights. The use of textual observations to weight other
data features proved particularly effective, demonstrating the value of treating different
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data types according to their unique characteristics. This integration of domain expertise
ensures that the diagnostics model aligns closely with real-world operational conditions,
enhancing its applicability and reliability.

Chapter 5 presents a groundbreaking solution for machine health prognostics in the
absence of complete RTF data. The results demonstrate the efficacy of the proposed
novel prognostics methodology, paving the way for refinement and application in various
industrial contexts. This approach has the potential to lead to more generalized solutions
for predictive maintenance across multiple sectors.

6.3.1 Implications for theoretical research

This thesis significantly contributes to the theoretical understanding of PHM, particularly
in multimodal data integration. The methodologies developed herein not only advance the
state of the art but also provide a robust framework for future research in this domain.

Specifically, it introduces innovative methodologies for integrating diverse condition-
monitoring data sources. By demonstrating how different data modalities — such as sensor
signals, visual inspection images, textual observations, and other monitoring data — can be
effectively combined, this work enhances the theoretical understanding of multimodal
data fusion. The cross-modal attention-based model, in particular, showcases the power
of attention mechanisms in handling missing and noisy data. This contributes to the
broader field of machine learning by providing a blueprint for building robust predictive
models in environments where data quality is a critical limiting factor.

Another key theoretical contribution of this thesis is the integration of domain
expertise into the neural network design pipeline. The diagnostics models rely
on a generic foundation model for the first level of feature extraction, followed by a nu-
anced feature extraction round, in a pipeline that resembles a human expert building
domain knowledge on top of a natural world model. This approach highlights the value
of leveraging accumulated industry knowledge to guide the feature extraction process. By
incorporating expert insights, the proposed methodologies ensure that the models are not
only data-driven but also aligned with practical operational conditions. This fusion of
domain knowledge with advanced machine learning techniques opens new avenues for in-
terdisciplinary research, encouraging collaborations between machine learning researchers
and industry experts.

Furthermore, the developed methodologies allow for addressing one of the most
pressing challenges in prognostics: the lack of complete RTF data. By demon-
strating the feasibility of creating RTF datasets from incomplete data, this work provides
a valuable theoretical framework for addressing data limitations in other research contexts.
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From a broader perspective, this research contributes to the theoretical founda-
tions of machine learning by illustrating how advanced architectures, such as
attention mechanisms, foundation models and modular designs, can be applied
to real-world problems. The novel dataset stratification algorithm and the use of a
routing gate are particularly noteworthy contributions that can inspire further theoretical
explorations in model optimization and data handling.

6.3.2 Implications for industrial application

This thesis offers significant practical contributions that can transform maintenance prac-
tices in industrial settings, potentially enhancing operational efficiency and reducing costs.
Specifically, the methodologies and models developed in this thesis can be easily applied
in industrial environments. By effectively integrating multimodal data sources, these
approaches can improve the detection, diagnostics and prognostics of potential failures,
thereby reducing downtime and associated costs. This practical application can lead to
more efficient maintenance schedules, better resource allocation and, ultimately, a more
streamlined operational process.

Another significant implication of this research is the encouragement it provides
to data scientists and industrial researchers to utilize all available data sources.
Traditionally, data types with too few samples have been discarded. However, the multi-
modal learning techniques and design methodologies proposed in this thesis demonstrate
the value of integrating diverse data modalities, including industrial documents and expert
knowledge. This meticulous approach can uncover insights that might be missed when rely-
ing solely on more abundant data types, leading to more robust and informed maintenance
decisions.

For large-scale prognostics projects, the modular deep learning approach introduced
in Chapter 5 presents a scalable and efficient development strategy. This approach
allows different teams to work on specific modules independently, adhering to general struc-
tural guidelines without needing to conform to rigid model training specifications. This
flexibility can reduce the complexity and stress associated with wide-scope development
projects. Additionally, the modular approach supports iterative scaling, which is crucial
under resource constraints often encountered in practical industrial applications. This
makes it feasible to gradually expand and refine predictive maintenance systems as more
data and resources become available.

Additionally, the integration of domain expertise into the model design process fosters
interdisciplinary collaboration within the enterprise. By combining the insights of
industry experts with advanced machine learning techniques, the proposed methodologies
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ensure that predictive models are both practically relevant and theoretically sound. This
collaboration can lead to more effective solutions that are closely aligned with the specific
needs and challenges of industrial operations.

Ultimately, the practical contributions of this thesis have the potential to signif-
icantly enhance maintenance strategies in industrial settings. By providing a
robust framework for predictive maintenance that leverages all available data sources and
integrates domain expertise, this research can lead to more accurate diagnostics, timely
interventions, and optimized maintenance schedules. This not only improves the reliability
and efficiency of industrial machines but also contributes to overall operational excellence.

6.4 Limitations

While this thesis has made significant contributions to the field of PHM, there remains
considerable room for improvement. Below are some notable limitations, the reasoning
behind them, and perspectives on their implications.

• Dependence on supervised labels for diagnostics: The diagnostics models in
both chapters 4 and 5 are trained on labels assigned to condition monitoring data
samples from domain experts. In Chapter 4, this is a strength of the methodology
when it comes to visual inspection samples where domain experts have absolute cer-
tainty on the labeling. But even in this chapter, the data for which distinctive features
are not well known had to be labeled with multiple “possible” types of degradation.
In the later chapter, this was exacerbated by the expansion of the scope. Many data
samples had to be labeled “Unknown”, primarily due to the impracticality of devel-
oping dedicated feature extraction pipelines based on the existing domain knowledge
about corresponding data. This is a limiting factor of the proposed methodology.
While the proposed expert knowledge-based feature extraction pipeline (Chapter 4)
improves model agreement with experts, this necessitates detailed study of each data
modality while scaling up to more degradation types. This is counter to the “black
box” feature extraction promise of deep learning. Therefore, the insistence of the
methodology on incorporating expert knowledge is at once its strength and a limit-
ing factor.

• Assumption of degradation trend transferability: In this first proof-of-concept,
the partial RTF fragments from all available machines were used for constructing the
RTF dataset. Only the feature proximity in the 2D projection was used as a crite-
rion, and it was assumed that a trend observed on one machine could be transposed
to another as long as their diagnostics features met the criteria listed in Chapter 5.
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Indeed, the feature space supports this assumption to some extent, as not all samples
with the same degradation type are clustered together. This suggests that additional
factors, such as machine characteristics, may also influence the clustering. Further-
more, provisions are made in the synthetic edge generation algorithm to account for
this uncertainty in the form of a likelihood factor. Therefore, it is possible that this
grouping can be learned from data alone - the methodology makes provisions for this
requirement. Yet, it would be the best case if domain knowledge could be used to
form a rule-based framework for grouping certain machines where their observed tra-
jectory can certainly be transferred between them. In this project, no such rules were
obtained in the case of hydrogenerators. For practitioners replicating the methodol-
ogy in other applications, it is recommended to consider this while generating RTF
data.

• Validation challenges at the limit of expert knowledge: Indeed, depending
on expert knowledge is a strength during the initial phases. However, this gets more
challenging as the data-driven model pushes the limits of existing domain knowledge,
especially when it comes to the validation of model predictions. Two instances in par-
ticular are notable. First, the validation of 2D projection of diagnostics features. For
this step, it is challenging for human experts to compare relative degradation sever-
ity of two condition monitoring data samples of different modalities, from different
machines. For example, asking an expert to analyze a visual inspection photograph
from one machine and an electromagnetic reading from another machine, and then
provide a comparative analysis, is a time-consuming process. Furthermore, one has
to account for human elements such as decision fatigue, anchoring bias, confirmation
bias, recency bias, framing effect, and many other factors. To account for many of
these, we set up this validation step as a randomized blinded trial, where the ex-
pert was only given samples and no other information such as the model predictions
on them. The validation was tackled in multiple sessions to avoid decision fatigue.
However, the time-consuming nature of this step is a necessary concession due to its
importance in the methodology.

Secondly, after the model has made future health forecasts for each machine, vali-
dation becomes even more difficult. For machines that have never run to failure in
reality, validating the timeline predicted by the prognostics model is a difficult task
for human experts. We fully acknowledge that there are limitations to the validation
of the prognostic results. Numerical quantification of model metrics on a test set
is only somewhat useful when the test set is not a known absolute ground truth of
machine health evolution. However, the reality is that in the absence of data or con-
crete knowledge, an abstract validation from experts is the best form of validation
that can be obtained. For the industrial case study, it may be necessary to let these
machines run for some time to see if the predictions align with future observations.
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• Distribution shift: The study proposes a prognostics methodology based on ob-
served partial health evolution segments from multiple machines. However, the as-
sumption is made that the machines in the dataset collectively represent the full
range of possible evolution paths. That is, it does not account for natural distribu-
tion shifts. That said, this is suitable for the case study of hydrogenerators, where
the data come from several decades of monitoring, and operating conditions are not
expected to shift significantly. For other applications where distribution shifts can
be expected, the scalability of the modular diagnostics model implies that adapting
the model to new distributions will be significantly less costly than training a new
model. Thus, while distribution shifts are not explicitly considered, the methodology
is designed to support smooth adaption to shifts during lifelong learning.

• Resource constraints: The models developed in this model use several large foun-
dation models in the feature extraction phase. It is acknowledged that larger and
more sophisticated foundation models are rapidly being released for images, text, and
other modalities, and using the later models may lead to better model performances.
Even during development time, the largest available models of the day were not used,
as this project had to balance between resource availability and results.

6.5 Recommendations for Future Research

This thesis presented an initial proof-of-concept of the potential of multimodal data to
address several challenges in the PHM field. The findings reveal both limitations to address
and new avenues to explore, some of which are listed below.

• Short time segment predictions to enable real-world validation: The graph
masked autoencoder prognostics model in Chapter 5 predicts the future health evolu-
tion of a machine in one shot. This indeed renders the prediction difficult to validate.
Instead, a conditional model can be trained to generate future possibilities at a given
time t in the future, or a generative model can be trained to predict edges of a shorter
time segment. For example, a graph RNN can be trained to predict edges of one one-
month time period. Then, for validation, it may not be difficult for the industry to let
the machine run for a few months and evaluate model predictions against observed
reality. This would be an absolute validation and provide solid grounds for model
refinement.

• Uncertainty quantification of each methodology steps: The model accumu-
lates uncertainty at each step of the methodology, where these could be potentially
quantified for better-informed decision making. In particular, the uncertainty of the
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supervised classification model, the 2D feature projection, the radius-based RTF se-
quence generation step, and the prognostics prediction uncertainties must be quan-
tified in a cascading uncertainty model. Researchers interested in replicating and
extending the proposed methodology are invited to incorporate uncertainty quantifi-
cation at relevant steps.

• Multimodal foundation models: The proposed models relied on a unimodal
feature extraction step before multimodal learning. While this was a deliberate
decision, the design choice came at the cost of an opportunity to explore multimodal
foundation models for feature extraction. Therefore, future research might consider
multimodal learning from the very first steps by using a multimodal foundation model
for simultaneous feature extraction from multiple data modalities.

• Cost benefit analysis: The proposed methodology involves collecting multiple
modalities of data - which could be expensive, or not, depending on the application.
It also involves incorporating human experts in the development pipeline, which
implies time cost. Finally, there are resource costs involved in fine-tuning large
image and text models, as well as an array of expert models. While the costs may
be trivial for certain applications - such as hydro power generation centers - it may
be different for medium-scale enterprises. Therefore, a cost-benefit analysis of the
proposed methodology may be of value to industrial practitioners.

6.6 Closing Statement

Reflecting on the research journey, it becomes clear that the integration of multimodal
data and domain knowledge is not just a theoretical pursuit but a practical necessity in
modern industrial maintenance. This research underscores the importance of interdisci-
plinary approaches in solving complex industrial problems, highlighting the convergence of
data science, engineering, and domain expertise. The landscape of data-driven multimodal
learning has changed significantly in recent years. Yet, there is much that remains to be
done, and the future is as exciting as it is promising.

Every scientific endeavor lays another stone on the road between our present and a
future where science has crafted a better day for humanity. In the pursuit to make the
vision of self-monitoring, self-regulating, self-healing machines a reality, we hope that those
who walk this path after us may find this little cobblestone we have laid to be steady and
true, giving them a firm footing from which to leap far beyond our imaginations.
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Algorithms

This appendix presents several algorithms relevant for reproducibility of the methodologies
presented in this thesis.

A.1 Multilabel co-occurrence calculation

The algorithm to calculate the label co-occurrence matrix during exploratory data analysis
of multilabel classification scenarios (Chapter 5, section 5.4.2) is presented in Algorithm 5.

Algorithm 5 Calculate Label Co-occurrence Matrix
Input: DataFrame df , Class Columns C
Output: Co-occurrence Matrix M
procedure CalculateCooccurrence(df , C)

Initialize M with zeros, size |C| × |C|
for each record r in df do

Extract label subset L where rL = 1
for each pair (i, j) in L do

Mij ←Mij + 1
Mji ←Mji + 1 ▷ Matrix is symmetric

return M

A.2 Graph masking

An algorithm to mask directed graphs from the end at a given masking rate is used in
Chapter 5, section 5.3.5. This is given in Algorithm 6.
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Algorithm 6 Graph Masking Algorithm
maskRates← [0.1, 0.2, 0.3, . . . , 0.9]

2: for each graph G in train set do
for each rate in maskRates do

4: totalNodes← NumberOfNodes(G)
totalEdges← NumberOfEdges(G)

6: nm← ⌈rate · totalNodes⌉
em← ⌈rate · totalEdges⌉

8: nodesToMask ← GetLastNodes(G, nm)
edgesToMask ← GetLastEdges(G, em)

10: Gmasked ←MaskNodesAndEdges(G, )
(nodesToMask, edgesToMask)

SaveGraph(Gmasked, rate)

A.3 Synthetic graph edge probability assignment

In Chapter 5, section 5.3.4.2, a methodology was presented to construct synthetic RTF
trajectory fragments by analyzing feature proximity on diagnostics feature space. While
the graph model can learn the likelihood of these synthetic edges representing realistic
transitions with sufficient data, it is also possible to expedite this learning with engineering
this probability as an edge feature. This process is described below.

The synthetic edge generation is run recursively for a fixed number of generations
over a range of radii. This entails that a synthetic edge generated in one iteration of
the algorithm is treated as a ‘real’ edge in a subsequent iteration, with the search radius
expanded accordingly. Throughout this process, a generation count is maintained for
each edge, which is used to apply a decaying factor to the edges, thereby adjusting their
influence in the analysis. Consequently, a synthetic edge derived directly from a real
edge is assigned a higher likelihood than an edge formed from another synthetic edge.
Each generation signifies a degree of derivation from the original dataset, enabling the
exploration of further potential states and transitions.

The likelihood value is a measure of how likely an edge is to exist. This measure
is calculated based on transition density (the number of edges near the end node of a
real edge) and the proximity of these edges’ terminal nodes to each other. This metric
serves to reduce uncertainty regarding degradation trends. Additionally, a decay factor is
incorporated into this value, providing a means to address uncertainties about whether the
proximity of features necessarily implies similar outcomes.

If the dataset includes a broad spectrum of machines, conditions, and transition scenar-
ios and accurately represents the distribution of transition times and their probabilities,



A.3. Synthetic graph edge probability assignment 163

Algorithm 7 Assigning Probabilities to Synthetic Transitions
1: Input: synthetic_edges_df, data_sorted, radii
2: Output: synthetic_edges_df with probabilities

3: procedure CalculateTransitionDensity
4: decay_factor ← 0.9
5: for each synthetic_edge in synthetic_edges_df do
6: r ← radius from synthetic_edge
7: end_node←end node from data_sorted
8: Initialize K ← 0
9: for each edge in synthetic_edges_df with same start and r do

10: Calculate distance start_node of edge to end_node of synthetic_edge
11: if distance ≤ r then
12: K ← K + 1
13: generation← generation of synthetic_edge
14: adjusted_K ← K × (decay_factor)generation

15: Assign adjusted_K to synthetic_edge

16: procedure NormalizeTransitionDensity
17: for each start_node_index group in synthetic_edges_df do
18: Calculate total K for the group
19: if total K > 0 then
20: Normalize K values in the group
21: else
22: Assign 0 to normalized K in the group

then the model can directly learn the underlying patterns from the data. When the data is
not comprehensive enough, incorporating density-based probability adjustments into the
time feature assignment can be viewed as a form of explicit feature engineering to help the
model.

A.3.0.1 Perspectives on RTF data generation algorithm

Based on the results obtained in the application of the methodology (Chapter 5, section
5.5), several observations are made. First, if the model is exposed to a diverse and com-
prehensive dataset of graph edges that includes actual transition times between machine
states, then the model would learn to model the different speeds of the machines from the
data alone. In a prognostics project, the data usually has to contain several instances of
full RTF trajectories. The contribution of the methodology is in relaxing this requirement
to partial trajectories. If the data contains sufficient instances of partial transitions, the
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constructed dataset will be enough to let the model learn the different speed characteristics.

Secondly, in the case that the data does not contain sufficient examples, the model
further proposes another explicitly engineered density measure to encourage this learning.
The algorithm to assign probabilities to synthetic transitions within a network of machine
diagnostics seeks to address the inherent uncertainty in predicting the degradation paths
of different machines based solely on feature proximity in a visualized 2D space. By
leveraging the concept of transition density, particularly through the use of a decaying
factor that adjusts based on the generation of synthetic edges and the aggregation of
similar transitions within a local neighborhood, this approach introduces a nuanced layer
of probabilistic reasoning to the generation of synthetic edges.

This probabilistic weighting accounts for the varying likelihoods that machines with
diagnostics features in close proximity might follow similar degradation trajectories. The
critical insight here is the recognition that while spatial closeness in feature space suggests
potential similarity in machine behavior, differences in design, usage, and operational con-
ditions could lead to divergent outcomes. The potential discrepancies in degradation speeds
are addressed through the probabilistic weighting of these synthetic transitions. The cal-
culation of transition densities serves as a mechanism to modulate the influence of each
synthetic transition based on its proximity to the original data and the density of similar
transitions within its local neighborhood. By modulating the influence of synthetic edges
with the calculated transition densities and normalizing these within groups, the algorithm
effectively simulates a spectrum of possible outcomes. High-density transitions suggest a
greater consensus among the data that certain paths are more plausible, thereby reinforcing
these connections’ validity in the synthetic model. Conversely, lower-density transitions,
which reflect more unique or less commonly observed paths, are weighted accordingly,
capturing the uncertainty and diversity in machine degradation patterns.

Thus, the algorithms (4 and 7) does more than merely extrapolate from existing data;
it constructs a probabilistic model that mirrors the real-world complexity and uncertainty
of machine degradation. The incorporation of time differences as edge features in the real
and synthetic transitions further enriches this model, allowing for an implicit consideration
of degradation speeds. By embedding the temporal progression through edges, the method
introduces a dynamic element that reflects the temporal dimension of machine degrada-
tion. The probability assignments thus not only account for the similarity in degradation
paths but also embed consideration of varying degradation speeds. This approach allows
for a more nuanced and realistic simulation of potential degradation evolution pathways,
providing a valuable tool for predictive maintenance and operational optimization.

In essence, while the method starts with an assumption of similarity based on feature
proximity, its probabilistic treatment of synthetic transitions, coupled with the integration
of temporal dynamics, offers a detailed approach to capturing the complex, uncertain na-
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ture of machine degradation across different operational contexts. This approach provides
a foundation for more informed predictive maintenance strategies by acknowledging and
quantifying the inherent uncertainty in extrapolating from known data points to forecast
future machine states and their timing. The methodology is successful in the application
to an industrial scenario with severe data limitations.
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Model Designs for Modular
Architecture

In Chapter 5, several neural network models were trained to constitute the modular deep
learning ecosystem used for diagnostics. Below, we present the architecture and description
of some of the most activated expert models. In addition, other model designs such as the
routing gate architecture will also be detailed.

B.1 Expert model for all images

Figure B.1 illustrates an expert model specialized in classifying image data. Given that
image data relate to all target classes, having an image expert capable of classifying main
class groups (partial discharge, contamination, thermal, unknown) is crucial. As image data
often come with accompanying notes in this dataset, the model exclusively processes image-
text pairs. Its architecture is designed to extract features from both text and image. For
text, GPT-2 (Radford et al. (2019)) serves as the foundation model, fine-tuned on industry-
specific domain knowledge documents, which then embeds the inspection notes associated
with visual inspection images, forming one branch of the neural network. For images, the
model uses VGG16 as the foundation model, followed by a faster-RCNN optimized for
detecting partial discharge (Jose et al. (2023b)). Next, a CNN classifier learns features to
detect partial discharge residues, contamination, thermal degradation, or none. Textual
observations from inspection personnel accompany the visual inspection, used to weigh
image features with an attention layer, ensuring careful processing of both modalities. For
other data, inputs are replaced with zero matrices, forming a feed-forward connection.
Branches are fused via concatenation and then forwarded to an output layer. Class T4
receives a higher weight due to limited samples, critical for accurate classification since it’s
only detectable from images. Thus, data imbalance handling occurs at the expert level.
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Figure B.1: Expert model trained only on image+text data modalities. For training this
model, the absent modalities are represented with a zero vector.

Figure B.2: Expert model to distinguish between the three types of partial discharge states,
which show a high correlation in the dataset. This is an extension of the model trained in
Chapter 4.
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B.2 Expert model for all partial discharge types

The second expert model, depicted in Figure B.2, focuses on distinguishing between three
partial discharge states: E4, E2A, and E7. These states are identified through visual in-
spection images, PRPD, PDA, ozone, temperature, and other tabular data. Data instances
with only PDC or unknown states are excluded. The dataset for training the expert un-
dergoes a carefully designed feature extraction pipeline for each data type (for details, see
Jose et al. (2023a)). At the output layer, E4, E2A, and E7 states are assigned high weights.

B.3 Expert model for PDC data

Figure B.3: Expert model to distinguish between conducting and non-conducting contam-
ination from PDC only.

Figure B.3 illustrates another expert model trained solely on polarizing and depolarizing
currents (PDC) data. PDC uniquely distinguishes between conducting and non-conducting
contamination. While contamination presence can be detected from photographs, distin-
guishing between different types (e.g., oil and dust vs. water and carbon) is challenging.
PDC data, consisting of two-time series, detect conduction based on end-to-end value dif-
ferences. Stacking transformer layers suffices for feature extraction. With approximately
500 PDC samples compared to around 100 contamination images, this model efficiently
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classifies contamination types from PDC-only instances. The model assigns higher weights
to outputs A1 and A3.

B.4 Gate architecture

In Chapter 5, section 5.3.2.3, the idea of a routing gate to select most suitable expert
models for each incoming multimodal data samples was introduced. In the case study, a
gate architecture design based on a transformer stack was used. The architecture is given
below:

Given the multimodal data inputs x1, x2, . . . , xn, where each xi is a data sample from
modality i, the concatenated input vector is prepared for input to transformer layers as:

Xconcat = [x1, x2, . . . , xn]

Xflat = Flatten(Xconcat)

Xembed = WembedXflat + bembed

where Wembed and bembed are the parameters of the dense layer, transforming the flat-
tened input into a fixed-size embedding suitable for processing by the transformer.

The transformer stack processes the embedded input through several layers, each con-
sisting of multi-head self-attention and position-wise feedforward networks. Let Tk repre-
sent the k-th transformer layer in a stack of L layers.

- W Q
i , W K

i , W V
i are the weight matrices for the queries, keys, and values respectively

for each head i. - W O is the output weight matrix that projects the concatenated results
of all attention heads back to the transformer’s model dimension, dmodel.

Multi-Head Self-Attention (MHSA) is computed as:

MHSA(H(k−1)) = Concat(head1, . . . , headh)W O

where each head headi is computed as:
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headi = Attention(H(k−1)W Q
i , H(k−1)W K

i , H(k−1)W V
i )

and Attention is computed as:

Attention(Q, K, V ) = softmax
(

QKT

√
dk

)
V

Concatenated Output = Concat(head1, . . . , headh)

Projected Output = Concatenated Output ·W O

The output of the MHSA, now appropriately dimensioned, is further processed by the
position-wise feedforward network FFN within each transformer layer:

FFN(x) = max(0, xW1 + b1)W2 + b2

Each transformer layer Tk applies these functions to the output of the previous layer
H(k−1) (or Xembed for k = 1):

H(k) = FFN(MHSA(H(k−1)))

The output from the transformer, H(L), is passed through a softmax layer to calculate
the probability distribution over the experts:

P = softmax(WpH(L) + bp)

where Wp and bp are the trainable parameters of the softmax layer, mapping the trans-
former output to a distribution over experts.

While there are many ways to implement a routing gate module, this design is intended
to serve as a useful guideline for practitioners interested in reproducing the methodology.
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Ablation Studies on Diagnostics
Model

In Chapter 5, we designed a modular deep learning architecture consisting of a number of
task-specialized expert neural network models trained to optimize a subtask of the overall
diagnostics problem, with a routing gate trained to select appropriate experts for each
incoming test sample. Below, we present and discuss the results of the proposed methodol-
ogy on the test set, roughly 20% of the full dataset. Considering 8 output classes related to
8 degradation types investigated in this study, each having values of either 0 (degradation
type absent) or 1 (degradation type present), there exist 256 possible label combinations,
e.g., E2A=0, E7=0, E4=0, T4=0, A1=0, A3=0, Unknown medium=0, Unknown=0.

To evaluate the performance comprehensively across all label combinations, various
metrics are employed, including exact match ratio, Hamming loss, Jaccard score (micro
average, weighted average, and sample-wise average), average precision, average recall,
average F1-score, and log loss. The details of these metrics can be consulted in Sorower
(2010), Park and Read (2019).

In the ablation study, we systematically explore the impact of varying model architec-
tures on performance by adjusting the number of active experts and feature dimensions
across twelve distinct configurations. First, a non-modular classification model is simply
trained on the training set. This will be compared with the most basic configuration of
modular approach. The ablation tests then alter the number of experts from 1 to 4 and
adjust the expert fusion feature dimensions to 8, 16, and 32, while maintaining a consistent
branch fusion layer size of 32 across all configurations. Each model employs a structured
layer sequence that transitions from the fusion dimension to intermediate layers of 16 and
8 dimensions, culminating in the output layer.

Performance metrics, including Hamming loss, log loss, and Jaccard score, as well as
precision, recall, F1-score, and exact match ratio, are detailed in Tables C.1 and C.2,
providing a comprehensive evaluation of the effectiveness of each configuration. The ta-
bles show that even with only one active expert and small feature size configuration, the
performance is significantly better than a non-modular approach. A visualization of the
scores are also shown in Figure C.1, where the improvement in each metric by increasing
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the active experts and feature size is clearly shown. The qualitative metrics from different
configurations are discussed henceforth.

Table C.1: Hamming loss, log loss and Jaccard score of model configurations.

Active
experts

Feature
size

Hamming
loss Log loss

Jaccard
score

(micro)

Jaccard
score

(weighted)

Jaccard score
(sample wise)

0 (Non-
modu-

lar)
- 0.46 16.43 0.31 0.41 0.53

1 8 0.26 9.19 0.52 0.62 0.73
1 16 0.25 8.94 0.53 0.63 0.74
1 32 0.22 7.96 0.57 0.66 0.76
2 8 0.79 6.75 0.62 0.7 0.8
2 16 0.18 6.51 0.63 0.71 0.8
2 32 0.17 6.06 0.65 0.73 0.82
3 8 0.13 4.86 0.7 0.78 0.85
3 16 0.13 4.83 0.7 0.78 0.85
3 32 0.12 4.26 0.73 0.8 0.87
4 8 0.1 3.72 0.76 0.82 0.88
4 16 0.09 3.41 0.78 0.83 0.89
4 32 0.06 2.3 0.84 0.88 0.92

Table C.2: Average precision, recall, F1-score and exact match ratio.

Active
experts

Feature
size

Precision
(micro)

Precision
(weighted)

Precision
(sample

wise)

Recall
(micro)

Recall
(weighted)

Recall
(sample

wise)

F1
Score

(micro)

F1 Score
(weighted)

F1
Score

(sample
wise)

Exact
match
ratio

0 (Non-
modu-

lar)
- 0.41 0.67 0.54 0.55 0.55 0.54 0.47 0.57 0.44 0.49

1 8 0.63 0.79 0.74 0.73 0.76 0.74 0.68 0.75 0.74 0.69
1 16 0.64 0.8 0.74 0.74 0.74 0.75 0.69 0.76 0.74 0.7
1 32 0.67 0.81 0.77 0.77 0.77 0.77 0.72 0.78 0.77 0.72
2 8 0.72 0.84 0.8 0.8 0.8 0.8 0.76 0.81 0.8 0.76
2 16 0.73 0.84 0.81 0.81 0.81 0.81 0.77 0.82 0.81 0.76
2 32 0.74 0.85 0.82 0.82 0.82 0.82 0.78 0.83 0.82 0.78
3 8 0.79 0.87 0.86 0.86 0.86 0.86 0.82 0.86 0.86 0.81
3 16 0.79 0.88 0.86 0.85 0.85 0.86 0.82 0.86 0.86 0.81
3 32 0.81 0.89 0.87 0.87 0.87 0.87 0.84 0.87 0.87 0.82
4 8 0.83 0.9 0.89 0.89 0.89 0.89 0.86 0.89 0.89 0.84
4 16 0.85 0.91 0.9 0.89 0.89 0.9 0.87 0.9 0.9 0.85
4 32 0.9 0.93 0.93 0.92 0.92 0.93 0.91 0.93 0.93 0.88

Table C.1 examines the impact of varying the number of active experts and feature
sizes across model configurations based on three key performance metrics: Hamming loss,
Log loss and Jaccard score.
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• Hamming loss: There is a consistent decrease in Hamming loss when both the
number of active experts and feature sizes increase. This trend suggests that models
with higher complexity featuring more experts and larger features are more effective
in minimizing incorrect label predictions per sample.

• Log loss: Reflecting the confidence and accuracy of model predictions, log loss also
shows a substantial decrease with increasing model complexity. The simplest model
(1 expert, feature size 8) recorded a log loss of 9.19, indicating lower prediction con-
fidence. Conversely, the most complex one (4 experts, feature size 32) demonstrated
a significant improvement, with a log loss of 2.3, suggesting enhanced prediction
accuracy and confidence.

• Jaccard score: Improvements in the Jaccard score (measured micro, weighted, and
sample-wise) positively correlate with increases in the number of experts and feature
sizes. Notably, the sample-wise Jaccard score highlights the enhanced capability of
more complex models to accurately predict label sets on an individual sample basis,
thereby improving relevance in predictions across the dataset.

Table C.2 reveals distinct patterns in performance variation across different model
configurations, emphasizing the effects of varying the number of active experts and feature
sizes measured by several metrics.

• Recall metrics: The three average recall metrics (micro, weighted, and sample-wise)
remain consistent across all model sizes. This consistency suggests that the models’
capability to identify relevant labels is stable, irrespective of model complexity.

• Micro-averaged precision: This metric is consistently lower compared to weighted
and sample-wise averages, indicating a higher proportion of false positives across all
labels, treating each class equally regardless of frequency.

• Weighted-average precision: Higher values suggest that the models perform well
on more frequent labels, which dominate the calculation due to their higher weights.

• Sample-Average Precision: Indicates effective prediction of correct positive labels
on a per-sample basis.
The obtained results indicate that increasing the number of activated experts and
feature size contributes to a reduction in false positives, as evidenced by the smaller
disparity among the three precision metrics in more complex models. Additionally,
the models tend to overpredict labels, particularly with fewer active experts, which
affects the micro-averaged precision but not as much as the other precision metrics.

• F1 score: One can see a uniform improvement in micro, weighted, and sample-wise
F1-scores with increased complexity in the models, characterized by more active
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experts and larger feature sizes. The weighted F1-score, which takes into account
the frequency of labels, typically shows a higher score than the micro-average for
models with fewer experts and smaller feature sizes. This suggests that these models
are better at correctly predicting more frequent labels as opposed to rare ones.

• Exact match ratio: Improvements in the exact match ratio are noted as the number
of experts and feature size increase, signifying better overall performance in predicting
precise label combinations.

Figure C.1: Radar chart comparing the metrics (Jaccard score, precision, recall, F1 Score
and exact match ratio) clearly show the performance difference between non-modular and
modular approach, as well as the improvement on increasing the number of active experts
and feature size.

The aforementioned ablation study substantiates that enhancing the number of experts
and the dimensionality of features within an ensemble model markedly improves perfor-
mance. Notably, the most sophisticated configurations — employing four experts with a
feature size of 32 — exhibit pronounced synergistic effects, enabling more detailed data
representations through the aggregation of varied expert insights. Such ensemble methods
excel in discerning diverse data patterns, which is instrumental in the superior generaliza-
tion to novel data. Moreover, increased complexity within this well-regularized framework
paradoxically acts as a safeguard against overfitting by promoting the learning of broad
patterns over narrow data-specific memorization.
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When applied to imbalanced datasets, the advanced model approaches ideal perfor-
mance metrics. The empirical evidence points to a significant descent in log loss from 9.19
to 2.3, a climb in the exact match ratio to 0.88, and a peak in Jaccard scores at 0.92.
These metrics attest to the ability of complex model structures to counterbalance dataset
imbalances effectively, thereby optimizing performance across all pivotal metrics.



Appendix D

Ablation Studies on Health Index
Calculation with Text Data

In Chapter 4 section 4.5, we presented an extension to the diagnostics model to calculate
degradation level (health index) by incorporating text data. This appendix presents the
details of the ablation experiments done to validate the methodology and the results. The
experiments are listed as follows:

1. No text input: Modified the output layer of the existing diagnostics model to
perform a regression task targeting the degradation level. This modification involves
retraining only the model’s final output layer. This initial experiment sets a baseline
for estimating degradation intensity using only the quantitative data collected during
inspections, without any textual annotations from technicians (Figure D.1).

2. FrWac2Vec(text) + no fine-tuning + direct input: Embedded the text data
(technician’s remarks) using a small off-the-shelf model for French text embedding
model (FrWac2Vec) and added it as an additional input. Only the technicians’ notes
were used, excluding other text data, e.g., guidelines for technicians, forming the
second baseline This experiment explores the minimum performance enhancements
from adding text remarks (Figure D.2a).

3. FrWac2Vec(text) + no fine-tuning + attention weight input: The notes
are embedded using FrWac2Vec without any fine-tuning. Instead of providing the
text as a direct input, it is used to weigh the features derived from other inputs.
This experiment explores the assumption that the text primarily offers observations
related to other measurements (Figure D.2b).

4. FrWac2Vec(text) + fine-tuning + direct input: The small embedding model
FrWac2Vec is first fine-tuned on industrial text documents such as guidelines and
standards. The inspection notes are embedded using this fine-tuned model and pro-
vided as a direct input. This explores the value of providing context for embedding
the inspection notes (Figure D.2c).
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5. FrWac2Vec(text) + fine-tuning + attention weight input: This experiment
combines both fine-tuning the small embedding model FrWac2Vec and using the
embedded inspection notes to attention weight other measurements (Figure D.2d).
This concludes the experiments with the small embedding model.

6. Gpt2-large(text) + no fine-tuning + direct input: Here, the first embedded
inspection notes with an LLM (Gpt2-large) is attempted for the first time. The LLM
is used without any fine-tuning, and the embedded notes are added directly as input.
Given that most open-source LLMs are trained on diverse, general text data from
the internet, this study aims to determine whether an LLM trained on such a broad
corpus can enhance the extraction of valuable information from industrial text data
(Figure D.2c).

7. Gpt2-large(text) + no fine-tuning + attention weight input: Here, the in-
spection notes embedded by Gpt2-large is used to weight the other data features
(Figure D.2b).

8. Gpt2-large(text) + fine-tuning + direct input: In this experiment, Gpt2-
large is fine-tuned on internal company documents including standards, norms, and
guidelines. The aim is to examine the effects of fine-tuning an LLM to specific
contextual needs. The inspection notes embedded by the fine-tuned LLM is then
introduced as an additional data source (Figure D.2c).

9. (Proposed method) Gpt2-large(text) + fine-tuning + attention weight in-
put: This final setup brings together all the elements of the proposed methodology.
The LLM (Gpt2-large) is fine-tuned on the documented domain knowledge, the in-
spection notes are embedded using this fine-tuned LLM, and this is used to weight
other condition monitoring data features (Figure D.2d, 4.32).

In Experiment 2, where inspection notes are incorporated as an input modality using
a simple off-the-shelf French language embedding model, there is a significant reduction in
the MAE by ≈ 30% compared to the baseline model’s performance.

Experiment 3 explores an alternative use of text by employing inspection notes to
weigh other input data, rather than serving as a direct input modality as in Experiment
2. This approach, which aligns with the practical application of inspection notes, results
in a performance improvement of ≈ 12% compared to Experiment 2.

Experiment 4 evaluates whether using industrial guideline documents, which techni-
cians rely on as a knowledge base, can enhance diagnostic performance when integrated
into the text embedding model. It fine-tunes the simple embedding model (FrWac2Vec)
using documents such as inspection guidelines and standards. The inspection notes, once
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Figure D.1: Experiment 1 - Modification of output layer to perform regression. All the
layers from the previously trained classification model (see Jose et al. (2023a)) is frozen.
New output layer is added from the fusion layer, to predict degradation level from condition
monitoring data. No text data is used in this setup.

embedded in this fine-tuned model, are input directly into the diagnostics. Compared to
Experiment 3, this method resulted in a modest performance improvement of ≈ 4.75% .

Experiment 5 modifies the approach of Experiment 4 by using the inspection notes
to weigh other inputs, achieving a modest performance improvement of ≈ 6.5%. Both
Experiments 4 and 5 illustrate the limitations of using an embedding model trained on a
small text corpus, even with fine-tuning. This approach proves inadequate for assimilating
the domain knowledge embedded in the texts.

Experiment 6 explores the effectiveness of using LLMs to process industrial text. In
this setup, an LLM, without any fine-tuning, embeds the inspection notes which are then
directly input into the model. This approach significantly enhances performance, reducing
the error by more than 35% compared to Experiment 5. Then, experiment 7 integrates
the concepts of utilizing large language models to embed inspection notes and using these
embeddings to weigh other inputs. This strategy results in a significant error reduction,
with a decrease of ≈ 35% compared to Experiment 6. Experiment 8 studies using LLM
to embed the inspection notes after fine-tuning the LLM with domain-specific texts. In
this configuration, the fine-tuned embeddings are directly input into the diagnostics model.
This method results in an increased MAE of 14.6.
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(a) Inspection notes input directly as a data
source via an off-the-shelf text embedding
model (Experiments 2, 6).

(b) Inspection notes embedded with an off-the-
shelf text embedding model weights other data
features with attention (Experiments 4, 7).

(c) Inspection notes input directly via a text
embedding model fine-tuned on domain knowl-
edge (Experiments 3, 8).

(d) Inspection notes embedded with a fine-
tuned text embedding model weights other data
features with attention (Experiments 5, 9).

Figure D.2: All experiment setups showing different arrangements of using text data to
augment the model. The experiments differ by the way text features are merged with other
modality features (direct or attention weight on other data), the embedding model (small
model FrWac2Vec or LLM Gpt2-large), and whether the embedding model is finetuned on
the domain knowledge or not.

Finally, the proposed method (Experiment 9) synthesizes all the principles discussed in
this study. It employs inspection notes embedded by a domain-knowledge fine-tuned LLM
to weigh the other inputs, resulting in a significant reduction in error to 4.2.

Figure D.3 shows the performance of nine experiment models across 500 test samples.
It comprises ten line plots representing the variance in performance among the ablation
models. The alignment between the green line (representing the proposed model’s predic-
tions) and the black line (representing actual data) underscores the impressive accuracy
of the proposed method. It serves as compelling evidence of the model’s effectiveness,
consistent with the most robust ground truth available, namely, human expert evaluation.
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(a) Results of experiments 1 and 2 (b) Results of experiments 3, 4, and 5

(c) Results of experiments 6 and 7 (d) Results of experiments 8 and 9 (proposed).

Figure D.3: Comparison of test predictions on 500 samples.

Indeed, through the integration of inspection notes enriched by a domain-knowledge fine-
tuned LLM, the proposed method not only emphasizes the significance of incorporating
expert knowledge into predictive models but also demonstrates its capacity to minimize
error margins, as depicted in the graph.
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Multimodal Learning Strategies for Industrial Machine Health
Diagnostics and Prognostics under Data Scarcity

Abstract

Prognostics and Health Management (PHM) with data-driven techniques is heavily
dependent upon the availability of extensive and high-quality datasets, a requirement often
challenging to fulfill in industrial condition monitoring environments. This discrepancy
creates a significant gap between state-of-the-art PHM methodologies and their practical
application in real-world scenarios. The prevailing focus in data-driven PHM research on
unimodal datasets highlights the potential of multimodal data to bridge this gap. This
thesis explores the integration of multimodal data to advance PHM models for industrial
machines. It systematically addresses pivotal challenges such as data missingness and
noise, sparse and irregular datasets, class imbalance, and the scarcity of run-to-failure data.
The research develops innovative methodologies that incorporate multiple data modalities
and harness domain-specific expertise to create robust predictive models. The primary
contributions of this research include:

1. Cross-modal attention-based learning: A new multimodal learning method is
designed to mitigate the limitations posed by missing and noisy data. It allows
integrating information across multiple modalities, thereby enhancing the accuracy
and robustness of predictive models.

2. Expert-knowledge-assisted multimodal diagnostics methodology: This method-
ology combines domain expertise with multimodal learning to enable comprehensive
diagnostics, thereby improving fault detection and classification in industrial machin-
ery.

3. Graph-based prognostics approach: This innovative approach constructs run-
to-failure trajectories from incomplete data using graph-based techniques, offering a
significant advancement in failure prognostics.

These methodologies were rigorously validated using both simulation and industrial
dataset of hydrogenerators, demonstrating significant improvements in PHM and predictive
maintenance capabilities. The results underscore the potential of multimodal data to
significantly enhance the reliability and efficiency of PHM methods and algorithms. This
thesis proposes a comprehensive framework for leveraging diverse data sources and domain
expertise, promising to transform maintenance strategies and reducing operational costs
across various industries. The findings pave the way for future research and practical
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implementations, positioning multimodal data integration as a pivotal advancement in the
field of PHM.

Keywords: Prognostics and health management (PHM); Diagnostics; Run-to-failure
data; Prognostics; Predictive maintenance; Data-driven techniques; Multimodal learning;
Machine learning; Deep learning; Cross-modal attention; Graph neural networks; Industrial
applications.
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Stratégies d’apprentissage multimodal pour le diagnostic et le
pronostic de la santé des machines industrielles dans un contexte

de manque de données

Résumé

Les approches de Pronostic et gestion de la santé des systèmes (Prognostics and Health
Management : PHM) guidées par les données sont fortement dépendantes de la disponibil-
ité et de la qualité d’historiques de défaillances, une exigence souvent difficile à satisfaire
dans les systèmes de surveillance en conditions industrielles. Cette divergence crée un
écart significatif entre les méthodologies de PHM et leur application pratique sur des sys-
tèmes réels. L’accent prédominant mis sur les ensembles de données unimodales dans les
travaux de recherche en PHM basée sur les données met en lumière le potentiel des données
multimodales pour combler cet écart. Cette thèse explore l’intégration des données multi-
modales afin d’améliorer les méthodes et les algorithmes de PHM appliqués aux machines
industrielles. Elle aborde de manière systématique des défis cruciaux tels que l’absence
de données, les données bruitées, les données clairsemées et irrégulières, le déséquilibre
des classes et la rareté des données de fonctionnement jusqu’à la défaillance. Elle propose
des méthodologies innovantes qui intègrent plusieurs modalités de données et exploitent
l’expertise spécifique au domaine pour créer des modèles prédictifs robustes.

Les contributions principales de la thèse se déclinent comme suit :

1. Apprentissage basé sur l’attention intermodale: une nouvelle méthode d’apprentissage
multimodal conçue pour atténuer les limites posées par les données manquantes et
bruitées. Elle permet d’intégrer des informations provenant de multiples modalités,
améliorant ainsi la précision et la robustesse des modèles prédictifs.

2. Méthodologie de diagnostic multimodal assisté par les connaissances d’experts:
cette méthodologie combine l’expertise du domaine avec l’apprentissage multimodal
pour permettre des diagnostics complets, améliorant ainsi la détection et la classifi-
cation des défauts dans les machines industrielles.

3. Approche de pronostic basée sur des graphes: cette approche innovante con-
struit des trajectoires de fonctionnement jusqu’à la défaillance à partir de données
incomplètes en utilisant des techniques basées sur les graphes, offrant une avancée
significative dans le domaine du pronostic de défaillances.

Ces méthodologies ont été rigoureusement validées sur des données de simulation ainsi
que sur des données industrielles provenant d’hydro-générateurs, démontrant des amélio-
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rations significatives des algorithmes de PHM et de maintenance prédictive. Les résultats
soulignent le potentiel des données multimodales pour améliorer considérablement la fia-
bilité et l’efficacité des modèles de PHM.

Cette thèse apporte un cadre complet pour exploiter diverses sources de données et
l’expertise du domaine, promettant de transformer les stratégies de maintenance et de
réduire les coûts opérationnels dans diverses industries. Les résultats ouvrent la voie à des
recherches futures et à des applications pratiques, positionnant l’intégration des données
multimodales comme une avancée essentielle dans le domaine du PHM.

Mots clés: Pronostic et gestion de la santé des systèmes (PHM) ; Diagnostic ; Données
de défaillances ; Pronostic ; Maintenance prédictive; Méthodes guidées par des données ;
Apprentissage multimodal ; Apprentissage automatique ; Apprentissage profond ; Atten-
tion intermodale ; Réseaux de neurones graphiques ; Applications industrielles.



Titre : Stratégies d'apprentissage multimodal pour le diagnostic et le pronostic de la santé des machines industrielles dans un contexte de
manque de données
Mots clés : Pronostic et gestion de la santé des systèmes (PHM), Méthodes guidées par des données, Maintenance prédictive, Apprentissage
profond, Apprentissage multimodal, Diagnostic et pronostic
Résumé : Les approches de Pronostic et gestion de la santé des systèmes (Prognostics and Health Management : PHM) guidées par les données
sont fortement dépendantes de la disponibilité et de la qualité d’historiques de défaillances, une exigence souvent difficile à satisfaire dans les
systèmes de surveillance en conditions industrielles. Cette divergence crée un écart significatif entre les méthodologies de PHM et leur
application pratique sur des systèmes réels. L’accent prédominant mis sur les ensembles de données unimodales dans les travaux de recherche
en PHM basée sur les données met en lumière le potentiel des données multimodales pour combler cet écart.



Cette thèse explore l’intégration des données multimodales afin d’améliorer les méthodes et les algorithmes de PHM appliqués aux machines
industrielles. Elle aborde de manière systématique des défis cruciaux tels que l’absence de données, les données bruitées, les données
clairsemées et irrégulières, le déséquilibre des classes et la rareté des données de fonctionnement jusqu’à la défaillance. Elle propose des
méthodologies innovantes qui intègrent plusieurs modalités de données et exploitent l’expertise spécifique au domaine pour créer des modèles
prédictifs robustes.



Les contributions principales de la thèse se déclinent comme suit :


1.	Apprentissage basé sur l’attention intermodale : une nouvelle méthode d’apprentissage multimodal conçue pour atténuer les limites posées

par les données manquantes et bruitées. Elle permet d’intégrer des informations provenant de multiples modalités, améliorant ainsi la précision
et la robustesse des modèles prédictifs.



2.	Méthodologie de diagnostic multimodal assisté par les connaissances d’experts : cette méthodologie combine l’expertise du domaine avec
l’apprentissage multimodal pour permettre des diagnostics complets, améliorant ainsi la détection et la classification des défauts dans les
machines industrielles.



3.	Approche de pronostic basée sur des graphes : cette approche innovante construit des trajectoires de fonctionnement jusqu’à la défaillance à
partir de données incomplètes en utilisant des techniques basées sur les graphes, offrant une avancée significative dans le domaine du pronostic
de défaillances.



Ces méthodologies ont été rigoureusement validées sur des données de simulation ainsi que sur des données industrielles provenant d’hydro-
générateurs, démontrant des améliorations significatives des algorithmes de PHM et de maintenance prédictive. Les résultats soulignent le
potentiel des données multimodales pour améliorer considérablement la fiabilité et l’efficacité des modèles de PHM.

Cette thèse apporte un cadre complet pour exploiter diverses sources de données et l’expertise du domaine, promettant de transformer les
stratégies de maintenance et de réduire les coûts opérationnels dans diverses industries. Les résultats ouvrent la voie à des recherches futures et
à des applications pratiques, positionnant l’intégration des données multimodales comme une avancée essentielle dans le domaine du PHM.

Title: Multimodal learning strategies for industrial machine health diagnostics and prognostics under data scarcity
Key words: Prognostics and health management (PHM), Data-driven techniques, Predictive maintenance, Deep learning, Multimodal learning,
Diagnostics and prognostics
Abstract: Prognostics and Health Management (PHM) with data-driven techniques is heavily dependent upon the availability of extensive and
high-quality datasets, a requirement often challenging to fulfill in industrial condition monitoring environments. This discrepancy creates a
significant gap between state-of-the-art PHM methodologies and their practical application in real-world scenarios. The prevailing focus in data-
driven PHM research on unimodal datasets highlights the potential of multimodal data to bridge this gap.



This thesis explores the integration of multimodal data to advance PHM models for industrial machines. It systematically addresses pivotal
challenges such as data missingness and noise, sparse and irregular datasets, class imbalance, and the scarcity of run-to-failure data. The
research develops innovative methodologies that incorporate multiple data modalities and harness domain-specific expertise to create robust
predictive models.



The primary contributions of this research include:


1.	Cross-modal attention-based learning: A new multimodal learning method is designed to mitigate the limitations posed by missing and noisy

data. It allows integrating information across multiple modalities, thereby enhancing the accuracy and robustness of predictive models.


2.	Expert-knowledge-assisted multimodal diagnostics methodology: This methodology combines domain expertise with multimodal learning to

enable comprehensive diagnostics, thereby improving fault detection and classification in industrial machinery.


3.	Graph-based prognostics approach: This innovative approach constructs run-to-failure trajectories from incomplete data using graph-based

techniques, offering a significant advancement in failure prognostics.


These methodologies were rigorously validated using both simulation and industrial dataset of hydrogenerators, demonstrating significant

improvements in PHM and predictive maintenance capabilities. The results underscore the potential of multimodal data to significantly enhance
the reliability and efficiency of PHM methods and algorithms.



This thesis proposes a comprehensive framework for leveraging diverse data sources and domain expertise, promising to transform
maintenance strategies and reducing operational costs across various industries. The findings pave the way for future research and practical
implementations, positioning multimodal data integration as a pivotal advancement in the field of PHM.
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