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Abstract

The security architecture of Information Technology (IT) systems has tradi-
tionally been based on the perimeter security model, in which resources are
grouped into perimeters isolated through network mechanisms, and devices are
authenticated to access perimeters. Once within a perimeter, devices are im-
plicitly trusted, and enjoy unrestricted access to resources within that perime-
ter. However, history has shown that such trust is misplaced, as numerous
security threats and successful attacks against perimeter-based architectures
have been documented. Furthermore, the emergence of new IT usages, such
as cloud services, work-from-home, and service providers and subsidiaries re-
lationships, has challenged the relevance of considering a monolithic, trusted
network for accessing resources. These considerations have led to the emergence
of a novel security paradigm, called by zero trust. Founded on the principle
‘never trust, always verify’, this approach transforms the notion of perimeter
and establishes a set of security principles that prioritize context-aware and dy-
namic authorization. Nevertheless, implementing zero trust poses significant
challenges, due to a lack of clear guidelines for defining zero trust.

In this context, this thesis investigates whether, and how, it is possible to
develop a practical and formal framework for reasoning about the security of
IT architectures. First, a thorough survey of zero trust is conducted, and a
taxonomy of existing zero trust technologies and architectures is developed,
enabling a comprehensive understanding of zero trust. This leads to the devel-
opment of an evaluation framework, that is used to identify gaps within zero
trust research. This thesis provides contributions aiming to address some of
these gaps, for enhancing the state of zero trust technology development. These
improvements are integrated into a proof-of-concept zero trust architecture im-
plemented for this thesis, illustrating a method for extending an existing zero
trust architecture. Finally, the thesis takes a step back, and evaluates the extent
to which the zero trust framework addresses real-world problems, demonstrat-
ing that the zero trust framework alone is not sufficient for protecting sensitive
data and services.

Keywords Architecture, Cryptography, Cybersecurity, Network Security, Zero
Trust
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Résumé

Depuis les années 1980, les technologies d’information se démocratisent,
en se propageant au sein des entreprises et des foyers. Cette populari-

sation des technologies d’information entrâıne une transition numérique, par
laquelle de nombreux secteurs d’activité utilisent des outils numériques – afin
d’accrôıtre leurs capacités de production et de communication, leur agilité, et
leur productivité.

Toutefois, cette généralisation des systèmes d’information à tout secteur
d’activité engendre une dépendance à ces systèmes, comme l’illustrent les nom-
breuses ‘cyber-attaques’ des années 2010 et 2020 – ces attaques pouvant grave-
ment nuire aux entreprises et organismes victimes, autant sur le plan financier
que sur sa réputation. Et ce, même si l’activité principale de la victime n’est pas
en lien avec les technologies d’information, comme par exemple un hôpital ou
une banque. De plus, l’essor de l’usage des technologies informatiques implique
une forte croissance des données informatisées, y compris des données person-
nelles et privées (tels que des dossiers médicaux ou des coordonnées bancaires)
ou des données sensibles (secrets industriels ou contrats). L’interconnection
des systèmes d’information via Internet rendent ces données potentiellement
accessibles à des acteurs malveillants partout dans le monde.

Ainsi, entreprises et organismes sont de plus en plus vulnérables aux défaillances
et attaques informatiques. Il est donc nécessaire de protéger l’intégrité et la
confidentialité des données, ainsi que la disponibilité des services fournis par
les systèmes d’information.

La sécurité des systèmes d’information repose traditionnellement sur le modèle
de sécurité du périmètre, qui compartimentalise le réseau en différents périmètres
isolés qui regroupent les ressources. Un système accède à un périmètre en
s’authentifiant, et une fois au sein d’un périmètre, il est implicitement con-
sidéré comme étant de confiance, jouissant d’un accès non restreint à toutes
les ressources de ce périmètre. Cependant, de nombreuses attaques envers les
architectures périmétriques ont montré les limites de cette confiance. En ef-
fet, bien que le périmètre soit protégé par des systèmes de protection ayant
pour but d’empêcher un acteur extérieur de pénétrer au sein du périmètre,
certains de ces systèmes peuvent avoir des failles. Par ailleurs, la menace peut
provenir de l’intérieur du périmètre – par exemple, un employé malveillant. Or,
de par la définition du paradigme de protection périmétrique, une fois qu’un
agent malveillant pénètre au sein du réseau, il peut se ‘déplacer latéralement’
et accéder sans contrainte aux autres ressources dans ce réseau, y compris des
ressources dont il n’a pas forcément besoin de connâıtre ou d’utiliser.
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De plus, la transformation des systèmes d’information, par exemple l’émergence
des services en nuage (cloud services), le télétravail ou l’usage de prestataires,
a remis en cause la vision d’un réseau monolithique de confiance.

Ainsi, un nouveau paradigme de sécurité a émergé, appelé zéro confiance.
Fondé sur le principe “ne jamais faire confiance, toujours vérifier”, ce paradigme
transforme la notion de périmètre, en établissant un ensemble de principes de
sécurité reposant sur une autorisation contextuelle et dynamique. Cependant,
mettre en œuvre une architecture zéro confiance pose de nombreux défis, en
particulier car il n’existe pas de définition claire du paradigme zéro confiance.

Dans ce contexte, cette thèse explore comment développer un cadre pra-
tique et formel pour raisonner sur la sécurité des systèmes d’information.
Tout d’abord, une étude approfondie du modèle zéro confiance est conduite
en étudiant l’Histoire de la sécurité informatique, puis une taxonomie des tech-
nologies et architectures zéro confiance existantes est établie, ce qui permet
une compréhension exhaustive du paradigme zéro confiance. Cela mène à la
création d’une méthode d’évaluation des architectures, qui permet également
d’identifier des lacunes dans la recherche sur le zéro confiance.

Cette thèse propose plusieurs contributions pour combler ces lacunes, afin
d’améliorer l’état de l’art pour le zéro confiance. En premier lieu, une étude sur
la sécurité centrée sur la donnée est effectuée, qui permet de protéger la donnée
directement, indépendamment de son système de stockage. Ensuite, une étude
de mécanismes d’authentification continue est proposée dans le contexte de
messagerie instantanée sécurisée. Ces améliorations sont intégrées au sein d’un
démonstrateur d’architecture zéro confiance, illustrant comment une architec-
ture zéro confiance peut être complémentée par de nouvelles technologies pour
améliorer sa maturité.

Enfin, cette thèse prend du recul et évalue comment le paradigme zéro
confiance répond aux problèmes de sécurité auxquels font face les entreprises,
démontrant qu’il n’est pas suffisant seul pour protéger les données et services
sensibles. En particulier, le problème de comment partager des données et ser-
vices au sein d’une fédération de domaines, sans faire confiance implicitement
aux autres domaines, est étudié. Enfin, le problème de comment préserver la vie
privée des utilisateurs au sein d’une architecture zéro confiance (qui surveille
continuellement les utilisateurs) est abordé dans le cadre du transfert IP.

Mots-clé Architecture, Cryptographie, Cybersécurité, Sécurité des Réseaux,
Zéro Confiance
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le sujet.

Je remercie également Pierre Dauchy, François Durand et Chantal Kery-
jaouen qui ont permis la mise en oeuvre et le financement de cette thèse.
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Paris ; et Froux avec qui les discussions sont toujours enrichissantes.

Enfin, je remercie tout particulièrement ma maman, pour ta présence tout
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Chapter 1

Introduction

An early survey on Internet security [1] systematically analyses security in-
cidents between 1989 and 1995. In that survey, computer security is defined
as a state of trust, in which protected processes, files, and data in transit are
safeguarded against unauthorized access or unauthorized use, thus preventing
attackers from achieving their objectives.

Similarly, [2] defines computer security as the techniques controlling who
may modify the computer or information contained in it. More specifically,
security is the set of techniques which prevent unauthorized information release,
unauthorized information modification, and unauthorized denial of use.

Therefore, the protection of processes, files, and data has been – and largely
is – based on the perimeter security model, with network compartmentalization
and defense-in-depth serving as fundamental principles. This approach used
to be endorsed by various national security agencies, e.g., the National Insti-
tute of Standards and Technologies (NIST) [3], the Department of Homeland
Security [4], and the French Agence Nationale de la Sécurité des Systèmes
d’Information (ANSSI)1. To implement compartmentalization, system ac-
cess privileges are granted depending on the topological location of systems,
grouped into perimeters, which are then isolated through network mechanisms,
e.g., firewalls and VLANs [5], [6]. Therefore, once a device is authenticated
within the network and assigned to a specific perimeter, it is deemed trusted,
enjoying unrestricted access to resources within that perimeter, and thus has
the ability to transmit and exfiltrate data.

However, history has demonstrated that such trust is misplaced, as more
sophisticated attacks can target vulnerabilities in perimeters [7]. Furthermore,
insider threats, e.g., a malicious user, a compromised user, or an unautho-
rized individual using the device of an authorized user, pose a significant risk
to perimeter security [70]. Additionally, the emergence of cloud services and
‘work from home’ have challenged the relevance of perimeter security [8], [9].
Indeed, the shift to cloud services [10] has transformed the way ‘systems’ are
designed: a ‘system’ may no longer be a monolithic entity hosted on a server in

1Agence Nationale de la Sécurité des Systèmes d’Information, “Recommandations pour la
protection des systèmes d’information essentiels,” ANSSI, Tech. Rep., 2020. [Online]. Avail-
able: https://cyber.gouv.fr/publications/recommandations-pour-la-protection-des-

systemes-dinformation-essentiels.

3

https://cyber.gouv.fr/publications/recommandations-pour-la-protection-des-systemes-dinformation-essentiels
https://cyber.gouv.fr/publications/recommandations-pour-la-protection-des-systemes-dinformation-essentiels
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a data-centre, but can instead combine multiple microservices — each hosted
in disparate locations across the cloud. Moreover, the rise of remote work
and Bring-Your-Own-Device policies have employees connect to organization
resources from unmanaged systems and untrusted networks. Likewise, users
are no longer confined to a specific corporate network, as they may have mul-
tiple, distinct means of accessing resources, e.g., employees from subsidiaries
or service providers needing access to corporate resources. Thus, establishing
a single and static network perimeter is no longer sufficient.

The shortcomings of perimeter security have led to the emergence of a novel
security paradigm: zero trust. This approach abandons the notion of a perime-
ter, by establishing a set of security principles that prioritize context-aware and
dynamic authorization schemes. Unlike entry-point authentication, zero trust
does not rely solely on verifying identities at network boundaries; instead, it
grants access to resources based on continuous evaluation of user behavior and
contextual information.

Nevertheless, implementing a zero trust architecture poses significant chal-
lenges. First, the lack of clear guidelines and metrics for defining what con-
stitutes a zero trust architecture makes it difficult to design migration plans
and clear objectives [71]. A second challenge is the integration of zero trust
technologies with existing legacy systems, and making them interoperable [72].
Additionally, introducing zero trust components into an existing architecture
augments its attack surface, potentially creating new vulnerabilities [157].

The rise of insider threats and of cloud services prompted for a change of
security paradigm. Similarly, privacy, defined as ‘the ability for individuals,
groups, or institutions to determine for themselves when, how, and to what
extent information about them is communicated to others’ [11], is a growing
concern. This concern was born from privacy breaches, e.g., the possibility
of retrieving trips made by celebrities from an anonymized data set composed
of taxi locations [12], leading to technical solutions for ensuring privacy, e.g.,
differential privacy for ensuring anonymity in data sets [13], as well as regula-
tions, e.g., the European Union General Data Protection Regulation (GDPR)2

that requires organizations to get consent from subjects for processing their
data. Moreover, organizations resources may not be completely isolated, with
organizations sharing their data and services with external entities, e.g., with
partners, cloud service providers, or subsidiaries. Therefore, considering a se-
curity framework for IT security protecting solely the confidentiality, integrity,
availability, and authenticity of resources may not be enough.

In this context, the question explored in this thesis is whether,
and how, it is possible to develop a practical and formal frame-
work for reasoning about the security of IT architectures, thereby
enabling architects to evaluate the security guarantees provided by
their designs. This is accomplished by studying the fundamental
components of zero trust, and by exploring how architectures can be
enhanced with technologies to better align with zero trust principles,
and even to offer a security level beyond zero trust principles.

2E. Commission, General data protection regulation, 2016. [Online]. Available: https:

//eur-lex.europa.eu/eli/reg/2016/679/oj.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj


1.1. BACKGROUND 5

Computers
are standalone

machines

1945 1969

Birth of
ARPANET

1971

Creeper

1971

Reaper

1980

AT&T
National CSS

1983

414s

1983

Orange
book

1986

Markus
Hess

1987

Antivirus
IDS

1988

Morris
worm

1988

CERT

1989

ARPANET
becomes public

1989

AIDS
Trojan

1991

Firewall

1995

VPN

1997

Sprint
outage

1997

DNS
SEC

1999

Melissa
worm

1999

WAF

2000

ILOVE
YOU

2003

Perimeter
defenses

2004

deperime-
terisation

2007

Black
core

2010

Stuxnet

2010

Forrester
Zero trust

2009

Operation
Aurora

2009

Google
BeyondCorp

2013

Yahoo!

2014

SDP

2017

Wannacry

2018

Forrester
ZTX

2020

Solar-
wind

2020

NIST
ZTA

2022

M-22-09

Figure 1.1: History of Internet security.

The remainder of this introductory chapter is structured as follows. Sec-
tion 1.1 provides historical context on the evolution of IT security technologies,
from early cybersecurity concerns to the widespread adoption of perimeter se-
curity, and ultimately to the emergence of zero trust as a response to evolv-
ing networks and threats. Then, section 1.2 presents multiple approaches for
defining zero trust, which highlights the challenges involved in establishing a
uniform definition of zero trust. Section 1.3 argues for the necessity of adopt-
ing zero trust technologies to secure organizations, discusses the need for a
further security model for IT infrastructures, and highlights the need for a for-
mal framework to systematically evaluate the security guarantees offered by IT
architectures. Finally, section 1.4 summarizes the contributions of this thesis.

1.1 Background

At the dawn of digital computing, between the Second World War and the
1960s, computer systems were standalone entities. Security was enforced by
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restricting physical access to the ‘machine room’3.
This section presents a brief history of cybersecurity from there, to highlight

the context that has led to the development of the zero trust paradigm: how it
is inspired, and how it differs, from previous cybersecurity paradigms. Major
events and security innovations in that department are depicted in figure 1.1.

1.1.1 Birth of Cybersecurity

The first idea of defensive security emerged in 1967, when IBM invited students
to try one of their computers. These students explored accessible parts of
the system, then learnt the language used to program the system, enabling
them to gain access to restricted parts within the system. This first instance
of ‘ethical hacking’ resulted in the development of defensive measures4, e.g.,
memory protection, privileged instructions, or logging significant events [14].

Next, with the birth of the Advanced Research Projects Agency NET-
work (ARPANET) in 1969, computers became communicating entities, acces-
sible at distance. In 1971, the first computer worm, a standalone computer
program that replicates itself to spread to other computers [15], was born.
Named ‘The Creeper’, it would move from computer to computer, displaying
a message on each computer that it infected [16]. Shortly after, ‘Reaper’ was
created – the first antivirus, which propagated in the network with the task of
removing Creeper occurrences.

Thus, the topic of cybersecurity gained significance during the 1970s. The
US Department of Defense (DoD), with companies such as MITRE, provided
initial definitions for secure computer systems [17], and academic teams focused
their effort on cybersecurity research [18].

1.1.2 Cybersecurity as a Growing Concern

Numerous impactful attacks marked the beginning of the 1980s, such as the
breach of security at National CSS in 19805, Ian Murphy (also known as ‘Cap-
tain Zap’) breaking into AT&T’s computers, for which he became the first
to receive a felony conviction for a cybercrime, or the 414s attack of the Los
Alamos National Laboratory in 1983 [19]. Those attacks triggered in the U.S.
a national level response, to protect sensitive information, and in 1983, the
DoD published the Trusted Computer System Evaluation Criteria, referred to
as the ‘Orange Book ’, providing guidance on how to assess the trustworthi-
ness of software for processing classified information, and laying out a set of
guidelines for security solutions manufacturers.

Moreover, the National Policy on Telecommunications and Automated In-
formation Systems Security, issued as National Security Decision Directive
145 (NSDD-145) [20], was released in 1984. Its novelty was the creation of
the notion of ‘sensitive’ data, as an intermediate level between the traditional
‘classified’ and ‘routine’ levels for classifying and securing information [21].

3B. J. Copeland, Colossus: The secrets of Bletchley Park’s code-breaking computers.
Oxford University Press, 2010, isbn: 9780199578146.

4K. Chadd, The history of cybersecurity, blog post, 2020. [Online]. Available: https:

//blog.avast.com/history-of-cybersecurity-avast.
5V. McLellan, “Case of the purloined password,” The New York Times, 1981. [Online].

Available: https://www.nytimes.com/1981/07/26/business/case-of-the-purloined-

password.html.

https://blog.avast.com/history-of-cybersecurity-avast
https://blog.avast.com/history-of-cybersecurity-avast
https://www.nytimes.com/1981/07/26/business/case-of-the-purloined-password.html
https://www.nytimes.com/1981/07/26/business/case-of-the-purloined-password.html
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To support NSDD-145, the Orange Book was updated in 1985. However,
evaluation criteria for software in the Orange Book were unclear, leading to ven-
dors and evaluators disagreeing on products classifications. Thus, few venders
developed security solutions following Orange Book recommendations [22].

Following the Pentagon attack by Markus Hess in 19866, the Computer
Security Act of 1987 updated NSDD-145, by putting the National Bureau of
Standards (NBS) in charge of civilian computer security, and by tasking the
National Security Agency (NSA) with advising the federal government on the
protection of sensitive information.

In parallel, numerous computer viruses spread worldwide, using floppy disks
as the main infection vector. The Brain virus was the first virus to infect
computers outside a test laboratory, but often did little damage [23]. The
Lehigh virus, discovered in 1987, would infect floppy disks by hiding itself into
an operating system executable. When the executable was executed, the virus
would load itself into memory, and intercept systems interrupts. If during such
an interrupt, another disk was accessed, and was not already infected, the virus
would copy itself to this disk. After having been copied four times, the virus
would completely erase the original disk [24], [25].

To counter the threat of viruses, the first commercial antivirus programs
were published in 1987, e.g., Anti4us by Erwin Lantig and FlushShot by Ross
Greenberg7. Similarly, the first model for Intrusion Detection System (IDS) was
developed in 1987 by [26], and the first IDS, called Network Security Monitor,
was designed and prototyped in 1989 by [27].

In 1988, Robert T. Morris launched a worm on ARPANET. That worm
would exploit a vulnerability in the email application – to send and execute
files on remote machines – and a buffer overflow vulnerability in the finger ap-
plication, to replicate itself on remote machines8. While the worm’s only action
was to replicate itself, without code for causing damage, it could infect a same
machine many times, until the machine became inoperable, and this incident
led to the creation of the first Computer Emergency Response Team (CERT)
by the Defense Advanced Research Project Agency (DARPA) [28].

1.1.3 Rise of the Internet

In 1989, ARPANET became public, and more commonly known as ‘the In-
ternet’. Internet security and legislation became a worldwide concern, leading
to the creation of agencies and laws, such as the United Kingdom Computer
Misuse Act in 1990. In 1996, the Clington-Cohen Act in the U.S. promoted
high security for any federal agency, and not just specifically for classified net-
works, thus acknowledging that classified information can reach non-classified
networks.

The number of viruses, and the diversity of threats grows. The first ran-
somware, the AIDS Trojan developed by Joseph Popp, was released in 19899.

6J. Goodchild, “10 infamous hacks and hackers,” CIO, 2012. [Online]. Available: https:
//www.cio.com/article/220322/10-infamous-hacks-and-hackers.html.

7A. Terekhov, History of the antivirus. [Online]. Available: https://www.hotspotshield.
com/blog/history-of-the-antivirus/.

8B. Page, A report on the internet worm, Nov. 1988. [Online]. Available: https://www.
ee.torontomu.ca/~elf/hack/iworm.html.

9S. M. Kelly, “The bizarre story of the inventor of a ransomware,” CNN Business, 2021.

https://www.cio.com/article/220322/10-infamous-hacks-and-hackers.html
https://www.cio.com/article/220322/10-infamous-hacks-and-hackers.html
https://www.hotspotshield.com/blog/history-of-the-antivirus/
https://www.hotspotshield.com/blog/history-of-the-antivirus/
https://www.ee.torontomu.ca/~elf/hack/iworm.html
https://www.ee.torontomu.ca/~elf/hack/iworm.html
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In the mid 1990s, the number of viruses and malwares exploded, with viruses
using stealth capabilities, polymorphism, and micro viruses to evade detection
by antivirus10.

Antivirus technology also improved, and became more and more popular,
with free antivirus software made available in 2001, e.g., by Avast, or the open
source antivirus ClamAV11. Because antivirus software takes space on com-
puters, and can reduce performance, the first cloud-based antivirus solutions
were proposed in 2007 by Panda Security and McAfee [29].

1.1.4 Towards Perimetric Security

ARPANET was designed as a research project, and initially used by researchers
and military personnel. Thus, people using ARPANET were trusted not to –
at least, intentionally – break network functionalities.

This paradigm was inherited by the Internet, as it was publicly used, and
thus configuration and other messages would be transmitted unencrypted, with
their content trusted. This was – and still in 2024 largely is – the case for, e.g.,
the Domain Name System (DNS) messages, used when translating a domain
name into an IP address.

However, several events have shown that trust is misplaced.
In 1997 an Internet service provider, MAI Network Services, inadvertently

caused a major Internet outage due to a router misconfiguration12. Misconfig-
ured routers at MAI Network Services announced bad routing information to
an Internet backbone operator, which then ended up redirecting all Internet
traffic to MAI Network Services. This caused the network of MAI Network
Services to be overwhelmed, and to consequently shut down, which created a
major outage in the U.S., showing that trust in router information is misplaced.

In 1999, David Lee Smith released the Melissa worm, which propagated
through email, attached to Word documents. It spread widely, with more than
300 corporations and government agencies having to completely shut down, and
with an estimated 80 million dollars of loss, due to profits lost and the recovery
of affected systems13. Similarly, the ILOVEYOU virus caused, in 2000, around
10 billion dollars worth of damage, with a very fast worldwide propagation14.
Those examples showed that, as for the floppy disks of the decade prior, trust
in shared files is misplaced.

This led to new directives, with the creation of frameworks and security
programs, prompting for stronger cybersecurity [30], and the creation, in 2000,
of the document Defending America’s Cyberspace: National Plan for Infor-
mation Systems Protection, signed by the United States President [31]. This

[Online]. Available: https://edition.cnn.com/2021/05/16/tech/ransomware-joseph-

popp/index.html.
10K. Chadd, The history of cybersecurity, blog post, 2020. [Online]. Available: https:

//blog.avast.com/history-of-cybersecurity-avast.
11A. Terekhov, History of the antivirus. [Online]. Available: https://www.hotspotshield.

com/blog/history-of-the-antivirus/.
12C. N. staff, “Router glitch cuts net access,” CNET, 1997. [Online]. Available: https:

//www.cnet.com/tech/mobile/router-glitch-cuts-net-access/.
13F. News, The Melissa virus, 2019. [Online]. Available: https://www.fbi.gov/news/

stories/melissa-virus-20th-anniversary-032519.
14R. S. Mueller III, “Protecting the U.S. economy in a global age,” FBI Speeches, 2003.

[Online]. Available: https://archives.fbi.gov/archives/news/speeches/protecting-

the-u.s.-economy-in-a-global-age.

https://edition.cnn.com/2021/05/16/tech/ransomware-joseph-popp/index.html
https://edition.cnn.com/2021/05/16/tech/ransomware-joseph-popp/index.html
https://blog.avast.com/history-of-cybersecurity-avast
https://blog.avast.com/history-of-cybersecurity-avast
https://www.hotspotshield.com/blog/history-of-the-antivirus/
https://www.hotspotshield.com/blog/history-of-the-antivirus/
https://www.cnet.com/tech/mobile/router-glitch-cuts-net-access/
https://www.cnet.com/tech/mobile/router-glitch-cuts-net-access/
https://www.fbi.gov/news/stories/melissa-virus-20th-anniversary-032519
https://www.fbi.gov/news/stories/melissa-virus-20th-anniversary-032519
https://archives.fbi.gov/archives/news/speeches/protecting-the-u.s.-economy-in-a-global-age
https://archives.fbi.gov/archives/news/speeches/protecting-the-u.s.-economy-in-a-global-age
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Figure 1.2: DEC SEAL, first commercial firewall (from [33]).

document presents the Federal Intrusion Detection Network (FIDNet), an in-
trusion detection system linked to the US Administration, to detect threats.
Privacy concerns, however, prevented deployment of the solutions proposed in
this document.

In parallel, because protecting machines with antiviruses was a constant war
between security developers and attackers, perimetric security was developed.
Their goal: to stop attacks before they reach target computers. Network-based
defense solutions were outlined in the DoD Information Operations Roadmap
from 2003 [32].

An IT system using a perimetric approach has up to hundreds of firewalls in
their infrastructure [34]. The first firewall was designed by a NASA researcher
in 1988, and the first commercial firewall, called ‘Screening External Access
Link’ (DEC SEAL)15, depicted in figure 1.2, was produced in 1991 by Digital
Equipment Corporation [33].

In perimeter-based defense, firewalls implement two strategies: segmenta-
tion, and defense-in-depth [5]. Segmentation consists of dividing the network
into several subnetworks, each with their own set of policies and security pro-
tocols, to prevent lateral movement of intruders and of other entities between
subnetworks [5]. Defense-in-depth consists of using several layers of security
control to prevent unauthorized access [6]. By combining segmentation and
of defense-in-depth, multiple zones of trust, with different security levels, are
created [73].

The usage of segmentation and defense-in-depth was recommended in 2006
by the DoD [35], was standardized in 2009 by the National Institute of Stan-
dards and Technologies (NIST) [3], and was still recommended by the Depart-
ment of Homeland Security (DHS) in 2016 [4].

Moreover, end-to-end protections were also developed, e.g., DNSSEC in
1997, designed to protect DNS messages [36].

By the year 2009, at least 14 mitigation techniques, e.g., firewalls, intrusion
prevention systems, network access control, encrypted virtual private networks,

15Some documentation also referred to it as Securing External Access Link
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and web application firewalls, were used to protect networks and infrastruc-
tures16.

Perimeter-based security was at the time found to be overall efficient against
attacks such as malware, pishing, denial of service, and zero-day attacks [37].

1.1.5 The Era of Major Breaches

The years 2010s brought more and more sophisticated attacks: multi-vectors
attacks, social engineering, advanced persistent threats, etc [7], [70]. Attacks
targeted military and governmental agencies, as well as civilian companies –
and as a consequence, regulations were designed to limit the impact of cyber
threats, e.g., the European General Data Protection Regulation (GDPR) of
2016. In 2010, the U.S. Cyber Command was created to answer to military
cyber threats.

In 2010, the Stuxnet attack targeted Iranian nuclear plants, resulting in
the destruction of several centrifuges. This, despite the nuclear plant being
an air gapped environment, i.e., that the network had no network interface
connected to outside networks. In 2013, improper input validation enabled
attackers to compromise 3 billion Yahoo! accounts, and in 2017, the Wannacry
ransomware infected hundreds of thousands of personal computers [19]. All this
occurred, despite perimetric security and firewalls being the largest market
in the IT security sector, with the firewall market being estimated at 9.27
billions dollars17. Thus, those examples show that trust in perimetric security
is misplaced.

Moreover, the evolution of practices, such as cloud computing, and work-
from-home, has increasingly made it harder to precisely define perimeters, and
to enforce them [8], [9], [38], [39], [74], [75], [40].

1.1.6 Towards Zero Trust

Trust in perimeter security is misplaced, largely because of insider threats and
lateral movements attacks. Moreover, the dynamic and hybrid nature of net-
works of any given organization makes it hard to precisely define perimeters,
and thus to rely on perimeter security. These considerations have prompted the
need for a paradigm change for cybersecurity, which involves both architectural
and philosophical transformations.

This paradigm change was postulated in 2004 by the Jericho Forum [76]
with the concept of ‘deperimeterization’. An early example of actual archi-
tecture is the Defense Information Systems Agency (DISA) ‘Black Core’ [41],
published in 2007 and used by the DoD.

This concept of deperimeterization was extended in 2010 by Forrester, intro-
ducing the term ‘zero trust’: a network architecture which makes the notion of
perimeter evolve, and in which no part of the network is inherently trusted [77].
Or, to put it differently: having gotten access to a given part of a network, i.e.,
being ‘inside a specific perimeter’, does not imply any automatic trust from
any other system.

16“Techradartm for security & risk professionals: Network threat mitigation, q3 2009,”
Forrester, Tech. Rep., 2009.

17Gartner, Magic quadrant for enterprise network firewalls, Jul. 2017. [Online]. Available:
https://www.gartner.com/en/documents/3757665.

https://www.gartner.com/en/documents/3757665
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After a series of governmental cyber-attacks ‘Operation Aurora’ in 200918,
Google created a zero trust transition project named BeyondCorp [78]–[80].

In the 2010s, US federal agencies followed the defense-in-depth recommen-
dations from NIST and DHS. In December 2020, attackers targeted a software
vendor, SolarWinds, and managed to insert a backdoor, named ‘Sunburst’,
into Orion, its network monitoring tool. This backdoor was delivered to ten of
thousands of Orion customers, including several US federal agencies and For-
tune 500 companies19. This attack demonstrated that trust in the supply chain
is misplaced, and it changed the perspective of the US government in favor of
a zero trust approach to security [71], [81], [82]. The transition to zero trust
was made compulsory by the White House in 2022, by way of the American
President’s Executive Order 1402820 and the M-22-09 memorandum21, both
requiring US federal agencies to meet zero trust standards by the end of year
2024.

Outside of government, zero trust is also recommended as a target architec-
ture [42], [138], for example in the medical field [43], or to help with regulations
compliance such as GDPR [44].

Following the need for governmental agencies to adopt a zero trust ap-
proach to security, several standards have been proposed by NIST [83], by
governmental agencies such as the Cybersecurity and Infrastructure Security
Agency (CISA) [81], or the DoD [71], [82], by manufacturers such as For-
rester [84], Microsoft [85], VMWare [86], Google [87], or Cloudflare [88], and
by academic literature [73], [89]–[91], [128].

1.2 Methods for Defining Zero Trust

Zero trust is widely studied – and debated – in both academic literature and in-
dustry publications. As described in section 1.1, numerous security techniques
have been developed to ensure computer security, leading to the emergence of
the zero trust paradigm.

According to [130], the academic community has focused on formally defin-
ing zero trust architectures, while industry-oriented publications have empha-
sized presenting the benefits of zero trust and implementing migration strate-
gies. Moreover, there are few studies on the economic benefits of zero trust, or
on user experience.

The zero trust paradigm is characterized by several tenets, which are for-
mally presented in [128], [132]. These tenets include identifying resources,
granting access to resources per connection, based on dynamic policies, and al-
ways authenticating subjects, without relying solely on network location. Ad-
ditionally, telemetry must be continuously collected to improve the security

18Google, A new approach to china, blog post, 2010. [Online]. Available: https : / /

googleblog.blogspot.com/2010/01/new-approach-to-china.html.
19J. Rundle, “Solarwinds, microsoft hacks prompt focus on zero-trust security,” The Wall

Street Journal, 2021. [Online]. Available: https://www.wsj.com/articles/solarwinds-

microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402.
20J. Biden, Improving the nation’s cybersecurity, Executive order 14028, 2021. [Online].

Available: https://www.federalregister.gov/documents/2021/05/17/2021- 10460/

improving-the-nations-cybersecurity.
21S. D. Young, Moving the U.S. government toward zero trust cybersecurity principles,

Memorandum M-22-09, 2022. [Online]. Available: https : / / www . whitehouse . gov / wp -

content/uploads/2022/01/M-22-09.pdf.

https://googleblog.blogspot.com/2010/01/new-approach-to-china.html
https://googleblog.blogspot.com/2010/01/new-approach-to-china.html
https://www.wsj.com/articles/solarwinds-microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402
https://www.wsj.com/articles/solarwinds-microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
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Table 1.1: Comparison of Zero Trust Surveys

Reference [129] [139] [130] [128] [131] [132]

Definition of zero trust
including all tenets.

✘ ✘ ✘ ✔ ✘ ✔

Categorization and review of
main zero trust technologies.

✔ ✘ ✘ ✔ ✔ ✔

Taxonomy of industrial and
academic zero trust

architectures.
✘ ✘ ✔ ✘ ✔ ✘

Analysis of zero trust as a
migration process.

✘ ✔ ✘ ✘ ✘ ✔

Analysis of zero trust
challenges.

✘ ✔ ✔ ✘ ✔ ✔

Evaluation of zero trust
benefits, drawbacks, and

limits.
✘ ✔ ✔ ✘ ✘ ✘

✔: discussed; ✘: not or partially mentioned.

posture of the organization. Those tenets are directly applied to data objects
in [92].

To implement these zero trust tenets, various techniques and approaches are
employed in architectures, through technologies. Thus, according to [131], a
zero trust architecture is composed of three core technologies: identity authen-
tication, access control, and trust assessment. Four fundamental technologies
are required for successful implementation, according to [128]: authentication
and access control, segmentation, encryption, and security automation and or-
chestration. The relationship between context-aware access control and zero
trust is studied in [158]. For [132], automation plays is crucial role in zero trust
architectures, with artificial intelligence helping to automate tasks. Blockchain-
based IDS have also been explored as a means to potentially increase zero trust
capabilities [133].

Migration to zero trust requires the integration of these technologies into
existing architectures. This migration provides several benefits, including those
presented in [129], but also presents challenges, which are discussed in [139].

The works mentioned above provide slightly different notions for zero trust,
emphasizing distinct principles and technologies, as summarized in table 1.1.

1.3 Thesis Statement

This chapter so far has introduced the historical context that led to the emer-
gence of the zero trust paradigm. Section 1.1 has shown how the transformation
of organizations and networks, as well as the evolution of threats and cyber-
attacks, have collectively contributed to the development and spread of zero
trust. Nevertheless, section 1.2 revealed the diversity of zero trust definitions,
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emphasizing the challenge of establishing a unique definition for zero trust,
both as an abstract notion and as an architecture. Furthermore, the need for
additional security models, e.g., encompassing privacy, has arisen.

Therefore, this thesis seeks to address the need for a framework that pro-
vides comprehensive definitions and evaluations of IT security, in particular to
zero trust architectures. More specifically, this manuscript contributes to the
understanding of zero trust and IT security by:

• presenting a comprehensive survey of zero trust definitions and a tax-
onomy of existing zero trust architectures, leading to the creation of an
evaluation framework for assessing the maturity levels of architectures
with respect to zero trust;

• building a proof-of-concept zero trust architecture based on off-the-shelf
products, serving as a foundation for further development;

• proposing a methodology for enhancing data-centric security within ex-
isting systems;

• investigating continuous authentication, a crucial capability for zero trust
architectures, within the context of secure messaging protocols;

• exploring the notion that underlying infrastructure, e.g., networks, can
also be considered untrusted, thus providing organizations with enhanced
privacy and security;

• developing a method for enabling multiple zero trust architectures to
share resources while maintaining equivalent levels of security.

In sum: establishing a comprehensive definition of zero trust enables to
reason about the security guarantees provided by zero trust architectures. It
makes it possible for architects to position their architectures relative to their
compliance with zero trust principles, thereby identifying specific goals that
these architectures must meet. Moreover, the framework built for evaluating
the maturity of zero trust architectures highlights gaps within the zero trust
frameworks, enabling a continuous improvement of IT security, as is studied
throughout this manuscript. This approach enables organizations to gain a
deeper understanding of zero trust, while also offering additional flexibility
and capabilities to enhance the overall security of organizations.

1.4 Thesis Contributions

This section concludes the introductory part of the manuscript by summarizing
the thesis contribution in section 1.4.1, and by presenting a list of publications
in section 1.4.2.

1.4.1 Thesis Summary and Outline

This thesis explores architectures for protecting organizations from cyber
threats. It investigates in particular the concept of zero trust, of how this
paradigm can be integrated into existing architectures to enhance overall secu-
rity, and of how it can be extended to provide additional security capabilities
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for answering real-world scenarios. The thesis comprises five parts and nine
chapters, structured as follows.

Part I provides an introductory discussion. In chapter 1 (submitted as part
of [430]), the historical context that led to the emergence of the zero trust
paradigm is presented. The chapter delves discusses the challenges of defining
zero trust and its potential benefits in augmenting the security of organizations.

Part II provides an in-depth analysis of the concept of zero trust. Chapter 2
(also submitted as part of [430]) presents a comprehensive survey of existing
zero trust definitions and architectures from academia, governments, and in-
dustry publications. It proposes a comprehensive definition of zero trust, by
analyzing its underlying principles, the migrations strategies for incorporating
zero trust capabilities into existing architectures, and the multiple technolo-
gies that can be used to provide these capabilities. Moreover, this chapter
provides an in-depth analysis of existing zero trust architectures, positioning
them relatively to their adherence to zero trust principles.

With the requirements for building a zero trust architecture in mind, chap-
ter 3 (submitted as part of [431]) demonstrates how a zero trust architecture
can be build, by combining and modifying open-source products. The frame-
work built in chapter 2 is used to position the proof-of-concept relative to zero
trust principles.

The analysis of existing zero trust architectures and of research on zero trust
architectures presented in part II highlights gaps in zero trust research. Part III
aims to fill some of these gaps, by leveraging technologies and by providing
methods for improving the zero trust maturity level of architectures. Some
of these improvements are implemented within the proof-of-concept presented
in chapter 3, illustrating how technologies can be integrated and interoperate
with existing architectures.

More precisely, chapter 4 (submitted as [432]) presents a method for adding
data-centric security to an existing architecture, by leveraging Attribute-Based
Encryption (ABE). ABE combines data confidentiality with attribute-based
access control, offering additional flexibility to organizations. The proposed
approach enables the storage of data protected by distinct access control poli-
cies on a single server. Moreover, confidential data can be stored on untrusted
servers, e.g., offered by a cloud provider, and documents can be encrypted with
parts having different access control policies.

Chapter 5 (presented in the Real World Crypto symposium22 and pub-
lished in [159]) studies in more details a core property of zero trust, continuous
authentication, in the context of secure messaging protocols. The existing
continuous authentication procedure is extended to enhance post-compromise
security, allowing for the recovery of confidentiality and authenticity even if a
peer in the communication has been compromised.

Part IV studies real-world scenarios that require zero trust architectures to
be extended for providing sufficient security.

22https://rwc.iacr.org/2022/program.php

https://rwc.iacr.org/2022/program.php
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In chapter 6 (presented at the C&ESAR conference23, published in [93],
and with an extended version being submitted as [431]), a method for feder-
ating multiple zero trust architectures, while maintaining equivalent levels of
security, is proposed. The main challenge is that in a federation, the verifi-
cation of identity and monitoring of requesters are performed by their origin
domain. Therefore, if a requester requires access to a federated resource, the
domain protecting the resource must explicitly verify the identity and context
of the requester, which is normally performed by the domain of the requester.
However, in a zero trust environment, the domain of the resource cannot im-
plicitly trust information provided by the domain of the requester. To address
this challenge, this chapter proposes a method that enables the domain of the
resource to verify this information, by leveraging remote attestation, without
implicitly trusting the domain of the requester nor requiring intrusive methods
that may not be applicable to real world scenarios.

Chapter 7 (under submission) investigates how the underlying infrastruc-
ture, e.g., networks, can be considered untrusted. It proposes several methods
for enabling datagrams forwarding by routers without allowing routers to learn
their destination. The proposed solution provides privacy to the organization,
with anonymity of communications.

Finally, part V concludes this manuscript. Appendix A presents an addi-
tional contribution performed during this PhD, presenting how to optimally
distribute resources and requests within a data centre with network load-
balancing. A summary in French of this manuscript is provided in appendix B.

1.4.2 List of Publications

The following publications were published or submitted during the course of
this PhD.

Conference Publications

• B. Dowling, F. Günther, and A. Poirrier, “Continuous authentication
in secure messaging,” in Computer Security – ESORICS 2022, Springer
Nature Switzerland, 2022, pp. 361–381. doi: 10.1007/978- 3- 031-

17146-8_18 (chapter 5).

• A. Poirrier, L. Cailleux, and T. H. Clausen, “An interoperable zero trust
federated architecture for tactical systems,” in MILCOM 2023 - 2023
IEEE Military Communications Conference (MILCOM), IEEE, Oct. 2023.
doi: 10.1109/milcom58377.2023.10356247 (chapter 6).

Submitted articles

• A. Poirrier, L. Cailleux, and T. H. Clausen, “Is trust misplaced?” Sub-
mitted to Proceedings of the IEEE, 2024 (chapter 2).

• A. Poirrier and T. H. Clausen, “Privacy-preserving forwarding,” Under
submission, 2024 (chapter 7).

23https://2023.cesar-conference.org/

https://doi.org/10.1007/978-3-031-17146-8_18
https://doi.org/10.1007/978-3-031-17146-8_18
https://doi.org/10.1109/milcom58377.2023.10356247
https://2023.cesar-conference.org/
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• A. Poirrier, L. Cailleux, and T. H. Clausen, “Building a zero trust federa-
tion,” Submitted to IEEE Journal on Selected Areas in Communications,
2024 (chapter 6).

• A. Poirrier, Laurent, and T. H. Clausen, “Data-centric security protec-
tions in zero trust architectures,” Submitted to MILCOM 2024 - 2024
IEEE Military Communications Conference (MILCOM), 2024 (chapter 4).

• A. Poirrier and T. H. Clausen, “Top-of-rack-assisted load-aware and server-
agnostic load-balancing,” Submitted to 2024 IEEE 32nd International
Conference on Network Protocols (ICNP), 2024 (appendix A).
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Chapter 2

What Is Zero Trust?

Information Technologies (IT) security has been, and largely is, based on com-
partmentalization. To implement compartmentalization, system access privi-
leges are granted depending on the topological location of systems, grouped
into perimeters, with network mechanisms (firewalls, VLANs, ...) enforcing
isolation between perimeters, thus implicitly trusting systems based on their
location. However, as presented in section 1.1, history has shown that such
trust is misplaced. This has led to the emergence of an alternative paradigm,
called zero trust.

Statement of Purpose

This chapter proposes a taxonomy of zero trust, by analyzing zero trust defini-
tions, existing zero trust architectures, and zero trust evaluations. Definitions,
migration strategies, core principles and capabilities of zero trust architectures
are compared, and core technologies for building zero trust are reviewed. This
taxonomy establishes a postulated ‘ideal’ zero trust architecture, that existing
architectures aim at approaching through zero trust migration. This chapter
also provides a method for positioning zero trust architectures relatively to
this ‘ideal’ concept of zero trust, by estimating their zero trust maturity. Fi-
nally, this chapter analyzes the benefits, and drawbacks, of zero trust, focusing
on the security properties granted by zero trust, as well as the vulnerabilities
introduced.

Chapter Outline

The remainder of this chapter is organized as follows. Section 2.1 explains zero
trust, by presenting a taxonomy of zero trust definitions and models. Several
core principles derive from the main zero trust goal, which are presented in sec-
tion 2.2. To follow zero trust principles, existing architectures migrate to zero
trust by implementing zero trust capabilities. The migration process, and zero
trust maturity models, which describe to what extent an architecture follows
zero trust principles, are presented in section 2.3. Zero trust capabilities and
technologies, which enable architectures to reach higher levels of zero trust ma-
turity, are presented in section 2.4. Then, section 2.5 establishes a taxonomy of
existing zero trust architectures, by describing how technologies are assembled
to form complete architectures. That section positions each surveyed archi-

19
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Figure 2.1: Zero trust access (from [83]).

tecture relatively to the ideal concept of zero trust. Section 2.6 assesses the
benefits of zero trust, while presenting the challenges posed by zero trust mi-
gration and the limits of zero trust architectures. Finally, section 2.7 concludes
this chapter.

2.1 Zero Trust Definition

Introduced in 2010 by Forrester [77], zero trust aims to provide solutions to
the pitfalls of the perimetric security approach: that it is impossible to trust
network portions or packets, that verifications are seldom performed within a
perimeter, and that malicious insiders thus often are in position of trust that
can be abused.

This zero trust model for computer security aims at producing architectures
following the motto ‘never trust, always verify’. It means that, to reach the
goal of having no unauthorized access nor unauthorized use of a resource, every
access is to be explicitly verified, without implicit trust.

One of the first architecture considered to be following the zero trust prin-
ciple is the 2007 Black Core architecture [41]. It protects every resource with
a physical gateway, which intercepts traffic for access control verification, and
continuously ensures the correctness, availability, and secrecy of the informa-
tion provided.

In 2014, the Cloud Security Alliance (CSA) published an architecture in-
spired from Black Core, with software-defined gateways replacing physical gate-
ways for protecting resources [94]. Dynamic, systematic, and continuous ver-
ification before granting access ensures the architecture follows the zero trust
goal.

After the 2009 cyber-attacks ‘Operation Aurora’1, Google launched a mi-
gration to a zero trust architecture called BeyondCorp [78]. In this architecture,
every connection goes through an access proxy [79], which explicitly verifies the
connection request, and grants or denies access to resources, thus following the
aforementioned zero trust motto. Nevertheless, transition to a full zero trust
architecture is complex, as, according to [140], by 2023 that migration had yet
to complete.

In 2020, NIST [83] published a standard for zero trust architectures, wherein
zero trust provides an answer to an access problem: a subject needs access to
an enterprise resource. To follow the zero trust motto, every access request is
explicitly verified by a Policy Decision Point (PDP), and the access decision

1Google, A new approach to china, blog post, 2010. [Online]. Available: https : / /

googleblog.blogspot.com/2010/01/new-approach-to-china.html.

https://googleblog.blogspot.com/2010/01/new-approach-to-china.html
https://googleblog.blogspot.com/2010/01/new-approach-to-china.html
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Figure 2.2: Core zero trust logical components (from [83]).

is enforced by the corresponding Policy Enforcement Point (PEP), as depicted
on figure 2.1.

More precisely, NIST [83] defines an abstract architecture for zero trust,
depicted in figure 2.2. The PDP is separated into a Policy Engine (PE), which
takes access decisions, and a Policy Administrator (PA), which applies the
decision of the PE on the infrastructure. The PE implements a trust algorithm,
which takes into account information on the access request, on the subject
performing the request, and on the resource, the access policy, and contextual
information, to take the access decision. Those inputs come from the logical
components presented on either side in the figure.

Following the NIST zero trust framework, other American agencies, such as
CISA [81], or the DoD [82], published their guidelines for migrating to zero trust
architectures. Those documents present techniques for increasing the awareness
and visibility of assets and resources, for explicitly verifying connections.

Synthesis

From those architectures and standards, a zero trust architecture is defined as
an architecture that follows the zero trust motto ‘never trust, always verify’.
The goal is to build architectures ensuring that every access to a resource is
explicitly verified, without implicitly trusting the entity making the request
or its device – and this, even if it is connected to a known network, or if it
was granted access in the past. To do so, an architecture implements isolation
mechanisms that prevent unauthorized access to resources. Authorizations are
granted following a dynamic trust algorithm, that evaluates if the entity re-
questing access and its device are trustworthy, based on awareness and visibility
of assets and entities within the infrastructure.

2.1.1 Threat Model

Zero trust architectures aim at preventing unauthorized access to and unautho-
rized use of resources. The MITRE ATT&CK Enterprise Framework [45] mod-
els threats and identifies vulnerabilities in architectures, by creating heatmaps
and risk registers, categorizing cyberattacks and evaluating the security of end-
points [95]. That framework defines several phases for attacks: reconnaissance,
resource development, initial access, execution, persistence, privilege escala-
tion, defense evasion, credential access, discovery, lateral movement, collection,
command and control, exfiltration, and impact. Attacks are composed of sev-
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eral phases. Therefore, the goal of zero trust is to prevent attacks from being
successful, i.e., preventing at least one phase in attacks [96]. Thus, an example
zero trust architecture, which prevents reconnaissance, initial access and lateral
movement, is presented in [96].

The zero trust motto, ‘never trust, always verify’, means that zero trust
aims at protecting resources against both external and internal threats. The
internal network is not trusted any more than external networks, and connected
devices may not be owned or managed by the enterprise. Resources are not
inherently trusted, and may not be limited to enterprise-owned infrastructure.

2.2 Zero Trust Core Principles

As discussed in section 2.1, zero trust models and architectures explicitly verify
every access to a resource, without relying on implicit trust. This explicit
verification is made possible by following a set of core principles, for which a
taxonomy is presented in this section. Every zero trust model and architecture
in the literature do not follow the exact same core principles, thus a comparison
is provided in this section, summarized in table 2.1.

In its original zero trust model, Forrester proposes three core principles
for zero trust architectures: all resources are accessed securely regardless of
location, access is strictly enforced following least privilege strategy, and all
traffic is inspected and logged [77].

In the Google BeyondCorp architecture [78], every access to an enterprise
resource needs to be fully authenticated, authorized and encrypted, with a
fine-grained access, by taking into account the requestor device state and user
credentials.

Microsoft [85] presents three core principles for zero trust: ‘verify explic-
itly’, meaning that security decisions need to be performed using every avail-
able data, ‘use least privilege access’, meaning that access is limited in time
and width, and ‘assume breach’, meaning that lateral movement needs to be
hindered. The NSA [70] also considers those as the three core principles of zero
trust.

NIST [83] defines the ideal zero trust architecture as an architecture fol-
lowing seven basic principles: (i) all data sources and computing services are
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Table 2.1: Comparison of Zero Trust Core Principles.

Reference (1) (2) (3) (4) (5) (6)

Forrester [77] + ++ ++ ++
BeyondCorp [78] ++ ++ ++ ++
Microsoft [85] ++ ++ ++ ++ ++ +
NIST [83] ++ ++ ++ ++ ++ ++
DoD [82] ++ ++ ++ ++ ++

MIT report [71] ++ ++ ++ ++ ++ ++
Gilman and Barth [73] + ++ ++ ++ + ++

He et al. [131] ++ ++ ++ ++ + +
Yan et al. [129] + ++ + + ++

Alevizos et al. [133] ++ ++ + ++ ++ ++
Cao et al. [132] ++ ++ ++ + + ++

Zero trust principles:

(1) Subject and device authentication.

(2) Least-privilege, per-session authorization.

(3) Dynamic access policy.

(4) Fine-grain authorization and segmentation of access.

(5) Encryption.

(6) Monitoring.

++: core principle; +: present but not a core principle.

considered resources; (ii) all communication is secured regardless of network lo-
cation; (iii) access to individual enterprise resources is granted on a per-session
basis; (iv) access to resources is determined by dynamic policy; (v) the enter-
prise monitors and measures the integrity and security posture of all assets; (vi)
all resource authentication and authorization are dynamic and strictly enforced
before access is allowed; and (vii) the enterprise collects as much information
as possible about the current state of assets, network infrastructure and com-
munications, to improve its security posture. This definition from NIST is the
base for numerous zero trust definition, such as definitions from surveys [128],
[130], or from CISA [97].

The DoD [82] defines five tenets for zero trust: assume a hostile environ-
ment; presume breach; never trust, always verify; scrutinize explicitly; and
apply unified analytics. Those tenets are translated into seven principles: (i)
assume no implicit or explicit trusted zones in networks; (ii) identity-based
authentication and authorization are strictly enforced for all connections and
access to infrastructure, data, and services; (iii) machine-to-machine authen-
tication and authorization are strictly enforced for communication between
servers and the applications; (iv) risk profiles, generated in near-real-time from
monitoring, and assessment of both user and devices behaviors, are used for
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authorizing users and devices access to resources; (v) all sensitive data is en-
crypted, both in transit and at rest; (vi) all events are to be continuously
monitored, collected, stored, and analyzed, to assess compliance with security
policies; and (vii) policy management and distribution is centralized.

A report from the MIT for the US government [71] presents five core prin-
ciples for defining zero trust: universal authentication, access segmentation,
minimal trust authorization, encryption everywhere, and continuous monitor-
ing and adjustment.

According to [73], zero trust is defined by five principles: using identity as
the basis of access control, using the least privilege principle for resource allo-
cation, real-time calculation of access control strategy, only allowing controlled
and secure access to resources, and continuous evaluation of trust level from
multiple data sources.

Zero trust adheres to four basic principles according to [131]: authenticate
users, authenticate devices, restrict access and permissions, and adaptivity.

According to [129], zero trust architectures are based on three principles:
no trusted domains, strictly enforced access control using minimal privilege,
and checking and recording of all network traffic.

As presented by [133], zero trust has five principles: access segmentation,
universal authentication, encrypt as much as possible, least-privilege principle,
and continuous monitoring and adjusting.

Finally, according to [132], zero trust is defined following three principles:
resource-centric and context-aware access control, authentication and autho-
rization of users and devices based on least-privilege dynamic policies, and
security improvement by continuous monitoring of the integrity and security
of owned and associated assets.

2.2.1 Synthesis

Despite the different terms and weights attributed to zero trust principles by
the existing zero trust models and architectures discussed, a common core can
be identified, depicted in figure 2.3:

1. Subject and device authentication: Human and non-human entities,
as well as their device, interacting with the organization infrastructure
needs to be continuously authenticated;

2. Least-privilege, per-session authorization: authorization is granted
with the least amount of privilege for a limited time;

3. Dynamic access policy: authorization takes into account the environ-
ment and current context;

4. Fine-grain authorization and segmentation of access: access to
resources is evaluated, and authorized, for smallest possible pieces;

5. Encryption: data is encrypted in transit, and at rest;

6. Monitoring: the infrastructure, entities, and resources are constantly
monitored for improving security.
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Figure 2.4: Zero trust transition cycles (from [83]).

2.3 Migrating to a Zero Trust Architecture

Zero trust is an architecture – but it is also a process: one of transforming
existing IT architectures into zero trust architectures, that is, into architectures
that follow the core principles of zero trust.

The extent to which those core principles are followed in a given architecture
can be measured, to determine the zero trust maturity of an architecture. The
goal of measuring the zero trust maturity of an architecture is twofold: first, it
measures progress, and highlights remaining efforts that need to be performed,
until the objective of an ‘ideal’ zero trust architecture is reached. Second, it
supports the migration, by providing milestones and goals for following zero
trust core principles.

This section presents a taxonomy of zero trust migration models.

2.3.1 Migration Process

Migration to a zero trust architecture is performed in four steps2: (i) a prepara-
tion phase, evaluating the existing architecture; (ii) a planning phase, for decid-
ing which changes need to be incorporated into the existing architecture; (iii)
an implementation phase, for incorporating those changes; and (iv) a testing
phase, to validate these changes. According to a dozen of zero trust solutions
vendors3, those steps require: developing inventories (of data, of applications,
and of assets), auditing and logging existing traffic and architecture, as well as

2T. Morrow and M. Nicolai, The zero trust journey: 4 phases of implementation, blog
post, Jun. 2022. [Online]. Available: http://insights.sei.cmu.edu/blog/the-zero-trust-
journey-4-phases-of-implementation.

3M. Nicolai, N. Richmond, and T. Morrow, “Industry best practices for zero trust archi-
tecture,” 2022. [Online]. Available: https://apps.dtic.mil/sti/pdfs/AD1187390.pdf.

http://insights.sei.cmu.edu/blog/the-zero-trust-journey-4-phases-of-implementation
http://insights.sei.cmu.edu/blog/the-zero-trust-journey-4-phases-of-implementation
https://apps.dtic.mil/sti/pdfs/AD1187390.pdf
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every change made towards zero trust, evaluating risk, leveraging governance,
and using automation and orchestration.

An alternative view of this migration process decomposes it into six phases:
strategizing zero trust, assessing the context, architecting zero trust, trans-
forming to zero trust, monitoring and maintaining, and optimizing zero trust
security [72]. Changes are thoroughly documented, taking into account risks,
laws, and regulations [139].

As an illustration, [78] presents how the transition by Google to Beyond-
Corp has been performed. Several cycles, each involving a different part of the
organization, were needed, with each cycle being composed of several phases:
an observation phase to assess the resources and workflows in use; a hybrid
phase, with the zero trust technology deployed, but with legacy traffic still
allowed yet discouraged; and finally an enforcement phase, in which access is
always performed using the added zero trust technology. According to [140],
this migration process, which started in 2014, was still ongoing in 2023, because
of processes difficult to integrate in the zero trust architecture, thus needing a
flexibility for those legacy services.

A migration process, working in cycles, has been standardized by NIST [83].
Developments are performed in cycles, leading to hybrid zero trust and perimeter-
based architectures. Each cycle is composed of four steps, depicted in figure 2.4:

1. Assessment: inventory of assets, subjects, data flows, and workflows;

2. Risk assessment and policy development: identification of key pro-
cesses, evaluation of risks associated with business processes, formulation
of policies for zero trust candidate technologies, and identification of a
candidate zero trust solution;

3. Deployment: implementation and deployment of the selected zero trust
solution, while still authorizing legacy traffic, and monitoring to assess
the success of the transition;

4. Operation: the solution deployment is complete, and is continuously
monitored.

2.3.2 Maturity Models

Assessing the zero trust progress of an architecture is performed with maturity
models. A maturity model presents the milestones that need to be integrated
into the architecture in order to approach an ‘ideal’ zero trust.

Each migration cycle moves the architecture towards ‘ideal’ zero trust.
These advancements can be performed on several axes, called pillars [134].
Each pillar can progress at its own pace, until cross-pillar coordination is re-
quired [97]. Advancing a pillar improves the zero trust maturity level of the
architecture for that pillar. A comparison of pillars, considered by the zero
trust models in the literature, is provided in this section, summarized in ta-
ble 2.2.

NIST [83] provides three axis on which improvements towards zero trust
can be made: enhanced identity governance, micro-segmentation, and network
infrastructure and software defined perimeters.



2.3. MIGRATING TO A ZERO TRUST ARCHITECTURE 27

Table 2.2: Comparison of Zero Trust Pillars.

Zero Trust Pillar [83] [97] [85] [82] [84]

Identity ✔ ✔ ✔ ✔ ✔
Device ✔ ✔ ✔ ✔ ✔

Infrastructure, Network, Environment ✔ ✔ ✔ ✔ ✔
Workloads, Applications ✔ ✔ ✔ ✔

Data ✔ ✔ ✔
Visibility and Analytics ✔ ✔ ✔ ✔ ✔

Automation and Orchestration ✔ ✔ ✔
Policy ✔ ✔

Governance ✔ ✔

Figure 2.5: CISA zero trust maturity model (from [97]).

CISA presents a zero trust maturity model [97], depicted in figure 2.5. When
first released in 2021, it was composed of three maturity stages: ‘traditional’,
‘advanced’, and ‘optimal’ [81]. An updated model from 2022 [97] presents
four maturity stages, with the ‘initial’ stage added between ‘traditional’ and
‘advanced’. Those maturity stages evaluate the maturity of five pillars: iden-
tity, device, networks, applications and workloads, and data. These pillars
are supported by visibility and analytics, automation and orchestration, and
governance.

In the same spirit, Microsoft [85] considers three stages of development:
‘getting started’, which is a first stage towards zero trust; ‘advanced’, where
significant progress has been made; and ‘optimal’, which is the most mature
stage. Pillars considered by Microsoft are identities, endpoints, networks, ap-
plications, data, infrastructure, policy optimization, policy enforcement, and
threat protection. The NSA [70] also presents a maturity model with four
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stages, one without zero trust: ‘preparation’, and three stages with zero trust:
‘basic’, ‘intermediate’, and ‘advanced’.

Both the DoD [82] and Forrester [84] consider the same zero trust pillars:
users, devices, networks and environment, applications and workloads, data,
visibility and analytics, and automation and orchestration. They both con-
sider data as the center pillar, but while for the DoD other pillars are at the
same level, Forrester considers visibility and analytics, and automation and or-
chestration, to be transverse capabilities supporting the pillars: users, devices,
networks, and workloads.

2.3.3 Synthesis

To summarize, zero trust is a migration process supporting the metamorphosis
of existing architectures towards a zero trust architecture. This process is in-
cremental, decomposed into several stages, each stage involving the assessment
of the existing architecture, the design of a plan of action tailored to the orga-
nization needs, and the implementation and deployment of zero trust changes,
while continuously monitoring the impact of the migration.

Attaining the zero trust core principles presented in section 2.2 is achieved
through the development of zero trust pillars: identity; device; infrastruc-
ture, network, and environment; workloads and applications; and
data, each pillar having a traditional, basic, advanced, or optimal zero trust
maturity. Visibility and analytics, automation and orchestration, pol-
icy, and governance support those pillars, as transverse pillars. An architec-
ture with basic zero trust maturity has limited visibility, limited segmentation,
manual and static configurations, and manual incident response; advanced zero
trust maturity means cross-pillar coordination, real-time analytics for dynamic
policies, automatic incident response, unified identity, segmentation of access,
and least-privilege policies; optimal zero trust maturity means fully automated
and dynamic policies, fully automated incident response and mitigation, and
centralized visibility.

2.4 Zero Trust Capabilities and Technologies

Zero trust maturity models provide guidelines for making architectures meet
zero trust principles. Improving the zero trust maturity of an architecture is
performed through the integration of one or several technologies [83].

Technologies enable zero trust capabilities. A capability is the ability to
achieve a desired effect under specified (performance) standards and conditions,
to perform a set of activities [82].

For example, as NIST describes [83], PKI and ID management technologies
enable the continuous authentication capability, required for the identity and
device pillars. They enable the architecture to follow the ‘authentication’ core
principle of zero trust architectures.

CISA [97] provides a list of capabilities for every zero trust pillar, depicted
in figure 2.6. For example, the identity pillar requires multifactor authentica-
tion (MFA), identity federation, continuous validation and real-time machine
learning analysis for having optimal maturity. The capabilities proposed by
Microsoft [85] are similar.
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Figure 2.6: CISA Technologies for each pillar and maturity level (from [97]).

The DoD [82] also associates capabilities to zero trust pillars, illustrated in
figure 2.7, and distinguishes categories for capabilities: continuous authentica-
tion, conditional access authorization, enabling infrastructure, securing appli-
cation and workload, securing data, automation, analytics and orchestration.

Capabilities are categorized in [71] into the following categories: network
traffic filtering, network access control, local system access control, application
segmentation and execution control, operational and forensic analysis, network
encryption, and trust and policy engine. Forrester presents several capabilities
that zero trust architectures need to have: network segmentation, paralleliza-
tion of switching cores, and central management [98]. Moreover, capabilities
in network analysis and visibility are required, in conjunction with security
information management [77].
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Figure 2.7: DoD Pillars and Capabilities (from [82]).

Table 2.3: Zero Trust Capabilities.

Pillar Capabilities

Identity User authentication
Application and workload authentication
Device authentication
Identity management

Device Device validation

Network Micro-segmentation
End-to-end encryption

Workloads, Applications Isolation

Data Data access segmentation
Data encryption at rest

Policy Access control and authorization

Visibility and Analytics Monitoring and mitigation
Threat intelligence

Automation and Orchestration Security orchestration

Synthesis

Every zero trust capability is enabled by one or several technologies. Those
links are summarized in table 2.3.

The remainder of this section presents, for every zero trust capability, a
taxonomy of technologies enabling zero trust capabilities.
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2.4.1 Zero Trust Capabilities: Authentication and Identity
Management

One of the core pillars of zero trust architectures is authentication: every entity,
device, and resource requires authentication. Entities may either be human,
and are then called users, or non-human entities, e.g., an application. They
interact with other components in the architecture using devices.

Identity refers to an attribute, or a set of attributes, that uniquely describe
a subject – user, entity, or device – within a given context [97]. Authentication
is the process of verifying, and establishing confidence in, identities [160]. It is
distinct from authorization, which grants or denies access to resources, relying
on authentication for making access decisions.

User Authentication

User authentication needs to answer several challenges. First, users need to be
uniquely and unambiguously authenticated [82], [83], [97]. According to [97],
their identity needs to be unified and centrally managed across all services in the
organization, for designing coherent access policies. Moreover, authentication
needs to be continuously assessed and validated [82], [85], [97].

Authentication methods can be grouped into several categories [128]:

• Traditional methods, such as passwords, or physical biometrics (finger-
prints, face recognition, iris scans, ...).

• Multifactor authentication (MFA), combining several authentication fac-
tors (knowledge, ownership, or inherence).

• Context-aware user authentication, using contextual information (e.g.,
location, time, or behavior) to assign a confidence score on the user iden-
tity.

• Continuous authentication, continuously re-authenticating users through-
out a session.

Passwords alone do not offer enough guarantees for authentication, because
to guarantee security, users would need to choose passwords with enough en-
tropy, different for every accessed service, and regularly changed. However,
such passwords are hard to remember, resulting in some users choosing easy
passwords, which can be stolen or guessed [161]. Moreover, sophisticated side-
channel attacks break even strong passwords [162]. Similarly, physical biomet-
rics alone can be bypassed [163].

With Multi-Factor Authentication (MFA), users are identified using sev-
eral factors, amongst knowledge (such as a password), ownership (of a special
hardware device, of a cryptographic key, or of a smartphone for example), and
inherence (biometric information) [164].
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Projects such as OATH4, FIDO5, and U2F6 provide standardized and in-
teroperable MFA solutions.

MFA schemes that do not require passwords are called ‘passwordless au-
thentication schemes’. They are either based on biometric information [165],
or on ownership of cryptographic material, such as a private cryptographic
key, used for example in WebAuthn7 for web-based technologies, or in Secure
SHell (SSH) public key authentication [166]. The FIDO2 specification8 pro-
vides one standard for passwordless authentication.

Continuous authentication enables users to be regularly authenticated through-
out a session. However, it is not a universal authentication method as it authen-
ticates a user only for a specific device or scenario. Therefore, several methods
need to be combined for creating viable zero trust authentication [167]. A
first method for implementing continuous authentication is based on biometric
information, in which users re-authenticate more easily using biometric infor-
mation – e.g., using a fingerprint instead of typing again a password – once
the previous authentication has expired [168]–[170]. Alternatively, continuous
authentication can be performed without action from the user, using as ba-
sis the context, or user unique behavior [171], such as the tilt produced by
a phone when a user walks [172], [173], or their typing, or screen touching,
patterns [174].

Adaptive authentication takes monitoring results into account to make au-
thentication risk-based [175].

Applications and Workloads Authentication

A first authentication method for workloads is workload tagging : an already au-
thenticated application, or a device, adds an identification tag to the workload,
acting as an identity token [176]. This creates a hierarchical authentication: if
the application or device tagging the workload is already authenticated, and
is trustworthy, then the authentication of the workload is trustworthy. Hierar-
chical authentication enables the architecture to rely on an existing authenti-
cation system (for applications or devices), without needing to create another
authentication system dedicated to workloads. Zero trust architectures such
as Cilium9 or Trireme10 use this technique.

There are multiple approaches for authenticating applications. Similar to
users, ownership is a factor of authentication for applications. For example,
HTTPS web servers rely on ownership of a private cryptographic key, related
to a public certificate, for proving their identity [177]. An equivalent to inher-

4OpenAuthentication, OATH reference architecture, release 2.0, 2007. [Online]. Avail-
able: https://openauthentication.org/specifications-technical-resources/.

5S. Srinivas and J. Kemp, “FIDO UAF architectural overview,” FIDO Alliance, Tech.
Rep., 2013. [Online]. Available: https://fidoalliance.org/specs/fido-uaf-v1.2-id-

20180220/FIDO-UAF-COMPLETE-v1.2-id-20180220.pdf.
6S. Srinivas, D. Balfanz, E. Tiffany, et al., “Universal 2nd factor (U2F) overview,” FIDO

Alliance, Tech. Rep., 2015.
7J. Bradley, C. Brand, T. Cappalli, et al., “Web authentication: An API for access-

ing public key credentials level 3,” Web Authentication Working Group, Tech. Rep., 2023.
[Online]. Available: https://w3c.github.io/webauthn/.

8F. Alliance, FIDO2. [Online]. Available: https://fidoalliance.org/fido2/.
9Isovalent, Cilium, 2018. [Online]. Available: https://cilium.io/.

10Aporeto, Trireme, Github, 2018. [Online]. Available: https://github.com/aporeto-

inc/trireme-lib.

https://openauthentication.org/specifications-technical-resources/
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/FIDO-UAF-COMPLETE-v1.2-id-20180220.pdf
https://fidoalliance.org/specs/fido-uaf-v1.2-id-20180220/FIDO-UAF-COMPLETE-v1.2-id-20180220.pdf
https://w3c.github.io/webauthn/
https://fidoalliance.org/fido2/
https://cilium.io/
https://github.com/aporeto-inc/trireme-lib
https://github.com/aporeto-inc/trireme-lib
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ence for applications is implicit authentication, which is based on application
fingerprinting, for example by monitoring their system calls [178], or by sending
a challenge to verify the application behavior [179]. Continuous authentication
builds upon implicit authentication to continuously authenticate applications,
which enables to re-authenticate applications regularly, potentially limiting the
time of undetected compromission of an application.

Device Authentication

Similarly to entity authentication, devices on which entities interact need to
be continuously and universally authenticated, in order to follow zero trust
principles [83], [97].

Device authentication methods are split into three categories [128]:

• certificate-based: the identity of a device is a cryptographic certificate,
the device proving its identify by proving ownership of the associated
secret key;

• supplier-based: the device supplier installs a specific module which em-
beds the identity of the device;

• fingerprint-based: equivalent to human biometry, based on unique phys-
ical characteristics of devices.

Multifactor authentication for devices combine several of those factors for
authentication [180].

Certificates are installed by human operators, who are the root of trust for
authentication [181].

Device manufacturers propose to include specific hardware for uniquely
identifying devices11 [182], [183]. Onboarding those devices into the architec-
ture, i.e., using the identity provided by the manufacturer to authenticate the
device into the architecture, is ideally an automated and scalable process [184].
Therefore, in 2024, a standard for device onboarding was being drafted by
NIST, to provide standard interfaces between manufacturers and client archi-
tectures [185]. Similarly, the FIDO Alliance has proposed a standardization
for onboarding12, enabling architectures to link secrets installed in devices by
manufacturers to identity providers present in the architecture.

There are several ways to derive fingerprints to identify devices. The first
one is to use Physical Unclonable Functions (PUF) [186]–[191]. They are func-
tions based on unique physical characteristics of the channel between the au-
thenticating device and the authenticator, which cannot be reproduced by en-
tities other than the device [192], [193]. Implicit authentication, based on
context [194]–[197], networks [198], or other sources [199]–[201], is another way
to authenticate devices uniquely.

11INTEL®, Intel® secure device onboard, 2019. [Online]. Available: www.intel.com/

securedeviceonboard.
12G. Cooper, B. Behm, A. Chakraborty, et al., “FIDO device onboard specification 1.1,”

FIDO Alliance, Tech. Rep., 2021. [Online]. Available: https://fidoalliance.org/specs/

FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.

pdf.

www.intel.com/securedeviceonboard
www.intel.com/securedeviceonboard
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.pdf
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.pdf
https://fidoalliance.org/specs/FDO/FIDO-Device-Onboard-PS-v1.1-20220419/FIDO-Device-Onboard-PS-v1.1-20220419.pdf
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Internet of Things (IoT) networks are composed of devices with limited
computing resources, called ‘things’, and typically have numerous devices. Be-
cause things have limited computing capabilities, computing may need to be
performed by the authentication system [99]. To prevent the authentication
(and authorization) system to be a single point of failure, due to the high
number of devices that require authentication, it is possible to distribute it
to several sub-systems. However, according to [97], authentication requires
to be centrally managed, for enforcing coherent access policies. One possibil-
ity to enable this is the use of blockchain, using a distributed authentication
and authorization system [202], [100]. However, blockchain requires the use of
asymmetric cryptography, which may consume too many computing resources
in IoT devices.

To reduce the cost of cryptographic operations in IoT devices, lightweight
cryptography [203], [204] has been developed, as a special kind of cryptographic
procedures dedicated to computationally limited devices.

Identity Management

Entities and devices may have different digital identities, depending on the
context in which they are authenticated. For those identities to be stored,
monitored, and managed, an Identity Management system is used [205]. An
Identity Management (IdM) system is a framework that manages a collection
of identities, their authentication, their use, and the information related to the
identity [206]. A general IdM system involves three parties: a service provider,
an entity accessing a service, and an identity provider [207].

There are three types of IdM models: isolated, centralized, and feder-
ated [208]. In an isolated IdM, the service provider is also an identity provider:
identity storage and user operations are performed by the same entity, e.g.,
an active directory [209]. In a centralized IdM, the identity provider manages
identity storage and authentication, and all service providers use the same
identity provider. Entities authenticate to several services via the same iden-
tity provider, by using the Single Sign-On (SSO) technology [210]. A federated
IdM is built upon is a set of standards that enables service providers to recog-
nize identities from different identity providers.

Synthesis

Authentication is a main pillar of zero trust, whose main technologies are sum-
marized in table 2.4. ‘Strong’ authentication is enabled by combining several
technologies to establish confidence in identities. Higher levels of confidence are
reached by combining several factors of authentication, by taking into account
the context, and by authenticating entities, devices, and resources continu-
ously. Authentication interoperates with other zero trust technologies through
identity managers.

2.4.2 Zero Trust Capability: Device Validation

Entities use devices to access resources. To follow the zero trust principles, to
grant or deny access to resources, the access policy needs to take into account
the security posture of the device, and its compliance with organization policies.
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Table 2.4: Zero Trust Identity Technologies.

Capability Technologies

User Authentication Multi-factor authentication
Context-aware user authentication
Continuous authentication

Applications and Workload tagging
Workloads Authentication Certificate-based authentication

Application fingerprinting
Continuous authentication

Device Authentication Certificate-based authentication
Supplier-based authentication
Fingerprint-based authentication

Identity Management Identity Managers

Verifying the security posture, and the compliance with organization policies,
of devices is called device validation, and is performed using Mobile Device
Management (MDM) [211].

MDM ensures that managed equipment are configured following the com-
pany standards (e.g., application whitelisting, or antivirus configurations), ver-
ifies their correct usage, and performs automatic updates. It also enables or-
ganizations to perform an inventory of their managed devices. The Open Mo-
bile Alliance has specified a platform independent device management protocol
called OMA Device Management13.

The Bring Your Own Device (BYOD) paradigm requires the architecture
to be able to secure resources even in the presence of unmanaged devices [212].
This is addressed by technologies such as Mobile Application Management (MAM),
which supervises organization applications instead of devices, Unified End-
point Management (UEM), which also monitors unmanaged devices, or a mix
of MDM, MAM, and UEM, called Enterprise Mobility Management14. Ded-
icated monitoring solutions for IoT devices are also available [213], [214], for
monitoring and ensuring the compliance of IoT devices while preserving their
computing capabilities.

2.4.3 Zero Trust Capability: Micro-Segmentation

In perimeter security, firewalls and virtual LANs are the basis for segmenta-
tion. Micro-segmentation goes a step further, by placing each device, or even
each application, within its own segment [71], [95]. A resource, or group of
resource, in a segment is protected from other components in the architecture
by a gateway security component, e.g., a next-generation firewall, a network
gateway, or a software agent [83]. Those gateways dynamically grant access to
individual entities [128].

13O. M. Alliance, OMA specifications. [Online]. Available: https : / / technical .

openmobilealliance.org/index.html.
14L. Mearian, “What’s the difference between MDM, MAM, EMM and UEM?,” Computer

World, 2017. [Online]. Available: https://www.computerworld.com/article/3206325/

whats-the-difference-between-mdm-mam-emm-and-uem.html.

https://technical.openmobilealliance.org/index.html
https://technical.openmobilealliance.org/index.html
https://www.computerworld.com/article/3206325/whats-the-difference-between-mdm-mam-emm-and-uem.html
https://www.computerworld.com/article/3206325/whats-the-difference-between-mdm-mam-emm-and-uem.html
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Micro-segmentation has four architectural models15: native, third party,
overlay, and hybrid. Native micro-segmentation uses the inherent capabili-
ties of the platform, infrastructure, or operating system, e.g., network security
groups or virtual private clouds. It leverages those native security features
for enforcing granular segmentation across the architecture, without requiring
additional technologies to be integrated into the architecture. Native micro-
segmentation is suited for cloud-based architectures16, and for Infrastructure-
as-a-Service [86]. If the platform has no inherent segmentation capabilities,
third party firewalls are available for creating third party micro-segmentation.
Overlay micro-segmentation creates an overlay network on top of an exist-
ing network, using Software-Defined Networks (SDN). SDN separates network
control from the forwarding process, enabling controllability of the network,
which can be used for micro-segmentation. This is the basis for the zero trust
architecture ‘Software-Defined Perimeters’ (SDP) [89], with commercial imple-
mentations such as Istio17, vArmour18, and Cilium19. Finally, hybrid micro-
segmentation combines native, third-party, and overlay techniques.

2.4.4 Zero Trust Capability: Encryption

Preservation of confidentiality (that data remains secret), of integrity (that
data remains unchanged), and of authentication (knowing who has created the
data), is a core principle of zero trust. Focusing on the protection of data
directly, rather than securing servers hosting data and networks on which data
transit, is a security approach called ‘data-centric’ security [215]. According
to [97], a ‘data-centric’ approach for cybersecurity is necessary for zero trust.
Thus, in [82], data is the central pillar, as depicted in figure 2.7. Encryption
is a technology protecting the confidentiality and integrity both of data at rest
and of data in transit, as well as being a building block for authentication and
isolation techniques.

Symmetric key encryption is an encryption mechanism that uses a secret
key, used both for encrypting and for decrypting data. It preserves the con-
fidentiality, and optionally integrity, of data. However, the authentication of
data is not possible, as any entity having the secret key can encrypt data.

The Advanced Standard Encryption (AES) [216] is an example of symmetric
key encryption scheme, used both for encrypting data at rest, e.g., on cloud
servers [217], and for encrypting data in transit, e.g., in the Transport Layer
Protocol (TLS) 1.3 [177]. In 2024, 23 years after its standardization, AES was
still assumed to preserve the confidentiality of encrypted data, with the best
known attack [46] being only four times faster than exhaustive search [47].

15G. Young, “Technology insight for microsegmentation,” Gartner, Tech. Rep., Mar. 2017.
[Online]. Available: https://www.gartner.com/en/documents/3640817.

16R. Mansdoerfer, G. Moore, S. Wray, et al., “Implement network segmentation pat-
terns on azure,” Microsoft Azure, Tech. Rep., 2022. [Online]. Available: https://learn.

microsoft . com / en - us / azure / architecture / framework / security / design - network -

segmentation.
17Google, IBM, and Lyft, The Istio service mesh, 2018. [Online]. Available: https://

istio.io/.
18vArmour, “Pathway to multi-cloud security architecture,” vArmour, Tech. Rep., Nov.

2015. [Online]. Available: https://info.varmour.com/rs/650-OZW-112/images/vArmour_

Customers_PathwayToMultiCloudSecurity_Whitepaper_Nov2015.pdf.
19Isovalent, Cilium, 2018. [Online]. Available: https://cilium.io/.

https://www.gartner.com/en/documents/3640817
https://learn.microsoft.com/en-us/azure/architecture/framework/security/design-network-segmentation
https://learn.microsoft.com/en-us/azure/architecture/framework/security/design-network-segmentation
https://learn.microsoft.com/en-us/azure/architecture/framework/security/design-network-segmentation
https://istio.io/
https://istio.io/
https://info.varmour.com/rs/650-OZW-112/images/vArmour_Customers_PathwayToMultiCloudSecurity_Whitepaper_Nov2015.pdf
https://info.varmour.com/rs/650-OZW-112/images/vArmour_Customers_PathwayToMultiCloudSecurity_Whitepaper_Nov2015.pdf
https://cilium.io/
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However, in a cloud deployment, it may be relevant for the cloud provider
to be able to perform some operations on tenant data, e.g., categorization of
data, enabling data owners to decrypt only the data they need [9]. Therefore,
Searchable Symmetric Encryption (SSE) schemes have been developed. With
SSE, data owner upload encrypted data to a storage provider, along with en-
crypted tags describing the data. When the data owner wants to recover data
with some tag, it queries the storage provider with a search token, enabling the
storage provider to retrieve the encrypted data, without learning information
on the data or the query [218]–[220].

To provide authentication, asymmetric key cryptography is used. In asym-
metric key cryptography, keys come in pairs of: a public key, and a private
key. The public key is tied to the identity of an entity in a document called a
certificate. An entity proves their identity by proving ownership of the private
key, using a digital signature [221].

A certificate is a document, which binds a public key to the identity of an
entity. However, it alone does not prove the trustworthiness of the certificate.
Thus, Public Key Infrastructures (PKI) [222] are used to manage and ensure
the trustworthiness of certificates. To that end, a PKI contains a Certificate
Authority (CA). When an entity wants a certificate issued, it contacts the CA,
which verifies the identity of the entity, and ensures that the entity holds the
private key associated to the public key on the certificate. If the identity and
ownership of the private key are verified, the CA creates a certificate, binding
the public key to the identity of the entity, and apposes its signature on the
certificate, to guarantee its authenticity. Therefore, the PKI is the root-of-trust
for authentication: it is necessary to trust the PKI, and its verification process,
to trust the authenticity of certificates.

Asymmetric cryptography is also used for confidentiality and integrity of
data, by encrypting data with the public key, and decrypting it with the private
key. However, asymmetric encryption is slower than is symmetric encryption,
and it is therefore often used for exchanging a symmetric key, before using a
symmetric encryption scheme for exchanging data securely [223].

As with symmetric key encryption, there are extensions of asymmetric key
encryption that offer extended operations.

Identity-based encryption [224], or attribute-based encryption [225], facil-
itate the integration of cryptography into authorization mechanisms, as dis-
cussed in section 2.4.6.

Functional encryption [226] enables the creation of ‘function keys’, using
the private key, to enable the holder of a function key to learn only part of the
data from its encryption.

With homomorphic encryption [227]–[229], it is possible to perform mathe-
matical operations on encrypted data. The result of those mathematical oper-
ations on encrypted data is a ciphertext, which, decrypted, corresponds to the
same mathematical operations performed on the original data.

Post-quantum cryptography [230], [231] aims at guaranteeing security against
attackers disposing of quantum computing capabilities, without needing a quan-
tum computer. In 2023, post-quantum cryptography was in a standardization
process [232].

Lightweight cryptography [233]–[236] and PUF-based cryptography [237]
are used in IoT devices to reduce the computing power necessary to communi-
cate.
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Table 2.5: Zero Trust Encryption Technologies.

Technology Description

Symmetric Key Encryption Preservation of confidentiality
Message Authentication Codes Preservation of integrity

Searchable Symmetric Encryption Preservation of confidentiality with re-
search capability in encrypted data

Asymmetric Cryptography Confidentiality and integrity of data
Digital signature Authentication

Attribute-based encryption Keys represent attributes
Functional encryption Only a part of the data can be learnt

Homomorphic encryption Computations on ciphertexts possible
Lightweight encryption Low computational power needed

Synthesis

The confidentiality, integrity, and authentication of data and messages is pre-
served through encryption. Encryption technologies provide specificities for
protecting data and messages in different contexts, and with different levels of
guarantees, as summarized in table 2.5.

2.4.5 Zero Trust Capability: Isolation

A first step for preventing unauthorized access to, and unauthorized use of, re-
sources, is to isolate resources, and to isolate communications in the network.
Security isolation has two main usages: safely executing untrusted programs,
referred as sandboxing [238], and running trusted programs which may have
vulnerabilities, to protect the rest of the system [239]. In cloud computing, iso-
lation is crucial as multi-tenancy implies many users may share the same com-
puting platform, leading to security threats based on service co-location [240].

Isolation mechanisms differ depending on enforcement location and on iso-
lation granularity [239]. The isolation granularity describes the scope of the
subject being isolated, e.g., a whole operating system (OS), an application, a
group of applications, or even part of an application. The enforcement location
defines where the access decision is performed. There are four main enforce-
ment locations, depicted in figure 2.8: a physical host, a hardware component,
a supervisor, or the application itself, detailed in the following.

Physical Host Isolation

Physical isolation protects whole operating systems from the threat of side-
channel leaks and of covert channels. This is the strongest isolation mechanism.
However, it prevents the sharing of resources [239].

Hardware Component Isolation

Specialized hardware components have been developed for providing isolation
of resources on a physical host shared between different users and applications.
One example are Trusted Platform Modules (TPM), which are cryptographic
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Figure 2.8: Security isolation mechanisms enforcement locations [239].

processors that store cryptographic material, e.g., for creating trusted comput-
ing environments [241]. Similarly, enclaves, such as Intel SGX [242], isolate re-
gions in memory and in a processor, to perform secure computations. However,
numerous side-channel attack challenge the security provided by enclaves [243].

Supervisors

A supervisor is a centralized entity that isolates a subject from its environment.
There are three groups of techniques to enable supervisor enforcement: OS
Access Control, containerization, and hypervisors [239].

Traditional OSs separate two levels of privilege: the kernel space, offering
processor operations for communicating with the hardware, e.g., for reading
and writing files, or for accessing network interfaces, and the user space, with
least privileged processor operations. User space processes are allocated a vir-
tual address space, to which they can write, and from which they can read.
They access it using a page table, which converts this virtual address space to
physical memory addresses, preventing them from accessing other processes or
kernel memory regions [244]. The kernel space contains drivers and fundamen-
tal components, whereas the user space contains user applications.

OS Access Control When a user space application needs access to the hard-
ware, it performs a system call, which the kernel authorizes or denies depending
on the privileges of the user application [245]. This authorization procedure is
called Mandatory Access Control (MAC) [246], a procedure inherited from the
Orange Book and NSDD-145.

Several methods are used to perform MAC. A library OS is a library avail-
able to user space applications to perform system calls [247]. It restricts the
set of system calls that user space applications can perform. It is also referred
to as a unikernel [248].

For more flexibility, Linux Security Modules (LSMs) implement access con-
trol mechanisms, enabling dynamic and fine-grain access control for authorizing
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processes to use system calls [249]. For example, AppArmor20 enables system
administrators to define application profiles, for defining which kernel resources
applications can access.

Containers Containers isolate applications, or groups of applications, by
providing a restricted execution environment on a physical host [250]. Con-
tainer isolation is performed through Linux namespaces [251], with each con-
tainer having its own namespaces. A Linux namespace partitions kernel re-
sources, such that each container sees their own set of resources. Example
Linux namespaces are the Unix Time-Sharing System (UTS) namespace, pro-
viding a hostname to the container, or the Process Identification (PID) names-
pace, separating the processes of the container from other processes running
on the host or in other containers. Access to kernel functionalities for contain-
ers is restricted [249], e.g., by Seccomp21, which limits the list of system calls
processes in a container can perform. Containers can be configured, on the
host, to access more kernel resources (which are grouped into Linux capabili-
ties, that can be added or removed from containers). However, containerization
is vulnerable to co-located containers attacks [253], [254], and to attacks on the
host [255].

A particular use for containerization is microservices, which enable intra-
application isolation. Microservices are software units responsible for specific
functions in distributed applications [256]. They are either deployed on a sin-
gle machine, communicating via Inter-Process Communication [257], or run
on different machines. One way to deploy microservices is to deploy them in
containers, managed by orchestration tools and cluster managers, e.g., Google
Borg [258], Docker Swarm Manager [259], and Kubernetes [260]. Such a mi-
croservices oriented architecture is called a Service Oriented Architecture [261].
Several zero trust solutions are based on microservices and containerization,
such as Cilium22, Istio23, or CyberGuarder [262].

Hypervisors Virtualization offers a stronger isolation mechanism compared
to containerization [250]. A virtual machine (VM) is an isolated machine,
composed of an OS and of applications, that run on another (physical) machine,
called the host. OSs of VMs are called guest OSs. VMs are managed by
a hypervisor, which monitors VMs, and acts as a link between VMs and the
host. There are two types of hypervisor: bare-metal hypervisors, which interact
directly with the hardware, and hosted hypervisors, which run on the host
OS [245].

Synthesis

Isolation mechanisms prevent unauthorized access to resources. Isolation is
either enforced physically, or through dedicated components, e.g., a TPM, or a

20Apparmor: Linux kernel security module, 2009. [Online]. Available: https://apparmor.
net/.

21J. Edge, A seccomp overview, Linux Plumbers Conference, 2015. [Online]. Available:
https://lwn.net/Articles/656307/.

22Isovalent, Cilium, 2018. [Online]. Available: https://cilium.io/.
23Google, IBM, and Lyft, The Istio service mesh, 2018. [Online]. Available: https://

istio.io/.

https://apparmor.net/
https://apparmor.net/
https://lwn.net/Articles/656307/
https://cilium.io/
https://istio.io/
https://istio.io/
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supervisor, preventing transfer of information or actions to and from isolated
spaces.

2.4.6 Zero Trust Capabilities: Access Control and
Authorization

Authorization is the process of deciding if a connection is compliant with an
access control policy or not. NIST [83] defines the authorization function as a
trust algorithm, taking as input the access request, the subject database and
history, the asset database, the resource policy, threat intelligence, and logs, to
decide if the connection is authorized or not.

There are several types of authorization systems, depending on the input
used:

• User-based authorization is a static authorization system, which autho-
rizes access to a resource depending on the identity of the entity (human
or non-human) requesting access and its device. This authentication
category is divided in several subcategories: identity-based authoriza-
tion [182], [263] takes into account the identity of the entity, role-based
authorization assigns roles to entities.

• Context-aware authorization takes into account environmental attributes [264],
or the behavior of the subject requesting authorization [265]–[267].

• Attribute-based authorization assigns attributes to entities, to objects, to
operations, and optionally to the environment, and defines a policy for
evaluating those attributes, to authorize an entity to perform an opera-
tion on an object [268]–[271].

• Trust/Risk-based policies compute a trust score for each authorization
request [272]–[277].

• Usage control has the action at the heart of the authorization, instead
of the entity [278]. Formally specified by [279], usage control follows a
need-to-know approach, and authorize access depending on the business
needs. Access policies are pre-defined and static [280], consider the user
intent [281], or are application-aware [282].

Synthesis

Several authorization systems leverage authentication and access control poli-
cies to authorize connections. As zero trust authorization requires to be dy-
namic, per-session, and least-privileged, authorization technologies need to take
into account the context, and to have sufficiently fine-grain expressions of au-
thorization.

2.4.7 Zero Trust Capabilities: Monitoring and Mitigation

Visibility is one of the pillars of zero trust, and is needed for assessing the
security posture of assets, of devices, and of users. Security Incident and Event
Management (SIEM) systems help organizations to detect, analyse, and react
to threats, by providing organizations with a global visibility on activity in
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Figure 2.9: SIEM basic components (from [283]).

the organization. SIEM systems operate in three steps. First, sensors collect
security events and normalize those events [284]. Security events are occur-
rences or activities in the organization that may indicate the presence of a
threat, e.g., system and network logs, or antivirus or IDS alerts [285]. To get
a better understanding of the meaning of those events, situational awareness
is necessary. This is provided by external threat knowledge [286]. Thus, the
second step of SIEM systems is the integration of threat intelligence feeds.
Finally, SIEM systems analyse and correlate events in the light of threat in-
telligence and organization knowledge, and raise alerts if abnormal activity is
found. SIEM systems also offer visualization techniques for simplifying the
processing of alerts and events by human operators [287]. An example of basic
components within a basic SIEM solution is depicted in figure 2.9.

Event Collection

Continuous Diagnostics and Mitigation (CDM) systems gather information on
managed devices24. A preliminary analysis may be performed on the device by
the CDM system, before sending results for further processing to the SIEM.
Enclaves, or TPM, deployed on devices enable SIEM systems to trust the local
processing operation [288].

Anti-viruses scan files and applications to detect malicious software [289],
by matching files against known signatures, or by running applications in sand-
boxes to detect suspicious behavior [183], [290].

The network is monitored with an IDS. IDSs detect intrusions, defined as
an attempt to compromise the confidentiality, integrity, or availability of files
and services [291]. There are three main categories of IDSs: signature-based,
which detect known malware signatures in packets, anomaly-based, which de-
tect abnormal network behavior, and stateful protocol analysis, which stores
the state of flows for analysis [292]. Content Disarm and Reconstruction is a
detection technique that analyses payload for finding vulnerabilities [293].

To prevent having a single point of failure, and to prevent the modifica-
tion or erasure of logs, blockchain-based IDSs have been proposed [133], [294],
for a decentralization of monitoring, while maintaining a coherent view of the
network. Moreover, the immutability property of a blockchain, stating that
transactions recorded on the blockchain cannot be modified, ensures logs are
not modified or erased. However, blockchain-based solutions suffer from lim-
ited handling capacity in case of heavy traffic, from high energy and cost re-

24Cybersecurity & Infrastructure Security Agency (CISA), Continuous diagnostics and
mitigation (CDM) program, 2012. [Online]. Available: https://cisa.gov/cdm.

https://cisa.gov/cdm
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quirements, from higher latency, and from higher vulnerability to denial of
service [295].

In software-defined networks, network control is separated from the for-
warding process. Thus, network analysis and monitoring is performed by the
SDN controller, which has a global view of the network [296]–[299].

Threat Intelligence

Threat intelligence provides knowledge to organizations of current threats, for
contextualizing events to detect attack patterns [283], [300]. Threat intelligence
improves anti-viruses, IDSs, and vulnerability scanners [301].

There are two types of threat intelligence [302]: first, operational intelli-
gence provides knowledge on ongoing attacks and campaigns, and helps inci-
dent response teams to detect and deter attacks25. Second, strategic threat
intelligence provides an overview of the organization threat landscape.

Threat intelligence results are integrated to SIEM systems through the use
of normalized languages, such as STIX [303], or through integrated threat
intelligence sharing platforms [304], [305].

Analysis

SIEM systems analyse and correlate the collected data, regarding threat intel-
ligence, to produce relevant alerts and visualizations.

The amount of collected data is a challenge for SIEM systems [286]. Ma-
chine learning is one technique for analyzing large amount of collected alerts, as
proposed by [306], [307] for IoT networks, by [48] for cloud networks, by [308]–
[310] for SDN, and by [311], [102] for general networks. For example, [312]
builds a fingerprint of IoT devices, and uses graph neural networks to catego-
rize the traffic behavior given the fingerprints. Big data analytics and statistics
are also used for attack detection [313], [314], as is deep learning [315]–[317],
which increases the accuracy and precision of threat detection.

Analysis results create alerts, and several SIEM systems automatically re-
pair vulnerabilities or attacked systems [318].

Synthesis

Monitoring and mitigation require technologies for capturing relevant events in
the architecture, and technologies for interpreting those events and for taking
action accordingly. Such technologies enable capabilities for the monitoring
zero trust pillar, thus increasing the level of awareness of the organization.

2.4.8 Zero Trust Capabilities: Automation and
Orchestration

Automation and Orchestration is a core pillar of zero trust, and is responsi-
ble for automating consistent security responses across the zero trust archi-
tecture. This, through the use of Security Orchestration, Automation and
Response (SOAR) [82].

25Osterman Research, Inc., “The value of threat intelligence,” Spamhaus Technology,
whitepaper, 2019. [Online]. Available: https : / / www . spamhaus . com / custom - content /

uploads/2020/04/2019-The-Value-of-Threat-Intelligence-White-Paper-LR.pdf.

https://www.spamhaus.com/custom-content/uploads/2020/04/2019-The-Value-of-Threat-Intelligence-White-Paper-LR.pdf
https://www.spamhaus.com/custom-content/uploads/2020/04/2019-The-Value-of-Threat-Intelligence-White-Paper-LR.pdf
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Security automation is the use of software or tools for completing security
tasks, by reducing the involvement of human operators26. Security orchestra-
tion is the integration and coordination of heterogenous security tools from
different vendors and experts, as a unified security solution, producing actions
in response to security incidents. It has three key functionalities: acting as
a middleware for security tools, orchestrating security activities, and enabling
automated response [319].

An approach for automatic security is autonomic security: self-managing
characteristics of distributed autonomous resources, adapting to changes in
real-time, while hiding intrinsic complexity [320]. Google has proposed a set
of philosophies and tools called Autonomic Security Operations27, which apply
to zero trust networks for supporting automatic authentication and dynamic
access control [157]. These tools also apply to distributed cloud zero trust
environments [322].

Artificial intelligence (AI) is one technology for automating tasks. AI and
SDN help by creating access rules dynamically [323], and machine learning
enables dynamic authorization [201], [324], [325]. Machine learning is a basis
for implementing SOAR capabilities [326]. More generally, [132] presents how
AI and automation techniques improve zero trust architectures.

Containerization and containers orchestration are another tool towards au-
tomation. For example, Kubernetes clusters provide control groups to iso-
late resources, and provide authentication and dynamic authorization capabili-
ties [103]. The Istio service mesh28 is another example of a deployed zero trust
architecture using containerization for traffic management, telemetry, and for
network security.

Synthesis

Technologies for automation and orchestration coordinate information from
other technologies in the architecture, and apply rules for performing security
operations, reducing the need for human operators, e.g., by automating alert
collection, alert prioritization, and repetitive processes.

2.4.9 Section Overview

In order to attain higher levels of zero trust maturity, an architecture must
provide several capabilities, which are obtained through the integration of tech-
nologies – such as an IdM, a CDM system, a PKI, a SIEM system, etc. – into
the architecture.

This section has presented an overview of technologies for implementing
zero trust capabilities. There is no single way to implement capabilities: the
choice of technologies depend on the level of security, and of zero trust maturity,

26J. Trull and V. Agarwal, Top 5 best practices to automate security operations, blogpost,
2017. [Online]. Available: https://www.microsoft.com/en-us/security/blog/2017/08/03/
top-5-best-practices-to-automate-security-operations/.

27I. Ghanizada and A. Chuvakin, “Modernizing SOC... introducing autonomic security
operations,” Google, Tech. Rep., 2021. [Online]. Available: https://cloud.google.com/

blog/products/identity-security/modernizing-soc-introducing-autonomic-security-

operations?hl=en.
28Google, IBM, and Lyft, The Istio service mesh, 2018. [Online]. Available: https://

istio.io/.

https://www.microsoft.com/en-us/security/blog/2017/08/03/top-5-best-practices-to-automate-security-operations/
https://www.microsoft.com/en-us/security/blog/2017/08/03/top-5-best-practices-to-automate-security-operations/
https://cloud.google.com/blog/products/identity-security/modernizing-soc-introducing-autonomic-security-operations?hl=en
https://cloud.google.com/blog/products/identity-security/modernizing-soc-introducing-autonomic-security-operations?hl=en
https://cloud.google.com/blog/products/identity-security/modernizing-soc-introducing-autonomic-security-operations?hl=en
https://istio.io/
https://istio.io/
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(a) Device Agent/Gateway Model. (b) Resource Portal Model.

(c) Enclave Gateway Model. (d) Application Sandboxes.

Figure 2.10: NIST Deployment Models (from [83]).

that the organization desires to achieve, as well as existing constraints in the
architecture.

2.5 Maturity Positioning of Zero Trust Architectures

The previous sections have shown that zero trust is a process of integrating
several technologies into an architecture, in order to attain higher levels of zero
trust maturity. This section evaluates and positions the zero trust maturity of
a representative selection of architectures that label themselves as zero trust,
with respect to the zero trust core principles, presented in section 2.2.

2.5.1 Categorization of Zero Trust Architectures

The abstract NIST architecture [83] defines the basis of zero trust, with seg-
mented resources protected by a PEP, with dynamic authorization, with moni-
toring, and with the identity of entities as a key component for policy creation.
It categorizes zero trust architectures in four deployment variations, presented
in figure 2.10.

In the device agent/gateway model, depicted in figure 2.10a, the PEP is
split into two components: a device agent installed on devices, and a gateway
protecting resources. The device agent communicates with the Policy Admin-
istrator (PA), requesting access to a resource. If access is authorized, the PA
configures the gateway, so the agent can connect to the resource.
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In the resource portal model, depicted in figure 2.10b, the PEP is a single
component acting as a gateway for subject requests. This model does not
require the installation of an agent on every device accessing resources.

The enclave-based model, depicted in figure 2.10c, is similar to the device
agent/gateway model, except that the gateway resides at the boundary of an
enclave protecting the resource. This model is useful for organizations that
cannot install individual gateways in front of each of its resources.

Application sandboxing, depicted in figure 2.10d, is another variation of the
device agent/gateway model, except that only trusted applications, running in
sandboxes, are allowed to query resources.

2.5.2 From Black Core to Software-Defined Perimeters

Following the concept of deperimeterization introduced by the Jericho Forum
in 200429, the DoD published in 2007 an architecture dubbed Black Core [41].
This architecture aims at providing dynamic, responsive, and flexible com-
munications and access to resources, while providing assurances that the in-
formation is correct, available, and protected. Technical solutions to create
such infrastructures include intelligent gateways, which protect resources with
a fine granularity, have a service-oriented approach, and offer AI capabilities
for dynamically protecting information.

One property of Black Core is that the infrastructure is ‘black’, i.e., the in-
frastructure is resilient against reconnaissance and cannot be mapped through
scanning. This property was extended by the CSA in 2014, with an architec-
ture called Software-Defined Perimeters (SDP) [94], which replaces the physical
gateways of Black Core with software defined gateways. SDP is an architec-
ture based on the need-to-know model, with components in the infrastructure
cloaked against unauthorized entities.

Software-Defined Perimeter

SDP is based on Software-Defined Networking, decoupling the control plane
from the data plane: in SDN, operations of deciding how data is to be forwarded
towards their destination, e.g., routing, network discovery, or traffic manage-
ment, are decoupled from actual forwarding operations. The control plane is
responsible for the former operations, whereas the data plane is responsible for
the forwarding. This separation provides flexibility, with programmability for
network application development, modularity, and scalability [104]. A central
controller is in charge of managing control plane operations, having a global
overview of the network.

SDP has a central SDP controller, which dynamically configures gateways
to allow or deny traffic, following the zero trust access policy. Gateways are
the components providing the hiding property of the infrastructure: by default,
all traffic reaching gateways is dropped. In order to forward traffic through a
gateway, a client first needs to authenticate to the gateway, with a process
described further.

With the formalization of zero trust by NIST in 2020 [83], the SDP specifi-
cation was refined by the CSA in 2022 [89]. The core of SDP was unchanged,

29P. Simmonds, De-perimeterisation, 2004. [Online]. Available: https://www.blackhat.

com/presentations/bh-usa-04/bh-us-04-simmonds.pdf.

https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-simmonds.pdf
https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-simmonds.pdf
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Figure 2.11: Architecture and access workflow of SDP [89]. Dashed arrows are
control channels, and solid arrows are data channels.

but more specific details on the SDP protocol and its usage were provided, as
well as abstract definitions for zero trust architectures.

The components of an SDP architecture are depicted in figure 2.11. Every
device contains a device agent, monitoring the device and establishing connec-
tions with the SDP controller and with SDP resources. Devices and entities
trying to access an SDP resource form Initiating Hosts (IH).

Resources, e.g., a web or SSH server, as well as the SDP controller, are pro-
tected by SDP gateways, which filter every communication, and which commu-
nicate with the SDP Controller. By default, gateways drop every connection
(except those with the controller). A resource and the gateway protecting it
form an Accepting Host (AH).

When a resource or a device is on-boarded, its gateway or device agent cre-
ates a secure control channel to the SDP Controller. Only authorized entities
can communicate with the SDP Controller and with resources. This filtering
is performed by gateways, using Single Packet Authorization (SPA)30: before
communicating with a resource, or with the SDP controller, behind a gateway,
the host sends an authorization packet, called an SPA packet, containing cryp-
tographic authentication information. Validating an incoming SPA packet is
computationally lightweight, and does not require state to be stored on the
gateway, thus improving the resiliency of the infrastructure against denial-of-
service attacks. Then, once the SPA packet has been accepted, the host estab-
lishes a secure channel with the controller using mutual TLS (mTLS) [328].

When an IH is on-boarded, it first authenticates with the SDP controller,
and the SDP controller determines which resources the IH can access. Those
are steps 1 and 2 in figure 2.11. Then, the controller configures the gateway of
AHs that the IH is allowed to access, and also communicates to the IH the list
of resources it can access (steps 3 and 4). Finally, the IH can create a secure
communication channel with the AH, based on SPA and mTLS (step 5).

The SDP specification [89] does not specify a zero trust access policy used
by SDP controllers, and leaves the choice to each organization implementing
SDP. The SDP controller may use internal tables for authentication, or connect
to an external IdM, for example to enforce MFA. Similarly, authorization may
be based on internal tables, or on dynamic access control systems, and may
take into account contextual information.

30M. Rash, “Single packet authorization,” Linux Journal, 2007. [Online]. Available:
https://www.linuxjournal.com/article/9565.

https://www.linuxjournal.com/article/9565
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Thus, SDP in itself is an abstract zero trust architecture, not an implemen-
tation: authentication, device validation, monitoring, and automation are not
detailed in the specification, their implementation being left to each organiza-
tion. To implement SDP, the SDP controller would require an authentication
system, a device validation system, and an access control system, all following
zero trust principles. Moreover, the infrastructure would require monitoring
and analytics, data at rest encryption, and automation and orchestration.

SDP is nonetheless a starting point for implementing zero trust architec-
tures, as it provides technologies for enabling dynamic and per-session autho-
rization, with segmentation of access, and end-to-end encryption.

SDP-Based Implementations

As SDP is an architecture, not an implementation, design and technology
choices left to organizations consequently, there are numerous zero trust im-
plementations based on SDP. SDP is a basis for zero trust Infrastructure as
a Service [105] and smart home networks [106]. SDP is used in the 5G smart
healthcare [107], and for IoT systems [108]. SDP is the preferred [71] zero
trust architecture for networks composed of numerous IoT devices with unsta-
ble communication channels.

Waverley Labs [109], whose authors are amongst the SDP specification
authors, offers an open source implementation of an SDP architecture. It
follows the SDP specification, and implements identity management using a
trusted PKI, and uses a static role-based access control, defined in an SQL
database. This implementation is not a complete zero trust solution: there is
no device validation, policies are static, and there is no mention of monitoring.

In [110], an SDP solution is presented, in which policies are defined using
the theoretical models of Bell-LaPadula and BIBA. A dynamic threshold-based
access control policy based on the location of the request is proposed in [111].
SDP is extended with a Trusted Execution Environment (TEE) in [112] for
IoT architectures.

As described in the previous section, SDP security is based on SPA followed
by a secure mTLS connection. However, this leads to security issues [113], [141]:
the correlation between the authentication packet and the subsequent secure
connection is based on the IP address of the initiating host, which may lead to
the hijacking of the secure session [142].

Thus, [113] proposes an extension of SDP, using extended Berkeley packet
filters to include authorization tokens within mTLS packets, thus linking the
authentication packet to the subsequent flow.

To increase the difficulty of a successful attack, [96] extends SDP by cloaking
network properties (such as domain names or IP addresses), in order to also
make reconnaissance more difficult, even for insiders.

Another challenge of SDP is that the control plane is assumed trusted, es-
pecially the controller. This may be an unrealistic assumption, as attackers
– either an external threat or an insider threat, e.g., a malicious employee –
might be able to compromise control plane components [114]. Therefore, [115]
proposes to use a verified and secure control plane based on DNS, instead of
trusting an SDN control plane. Similarly, [114] proposes an architecture in
which the controller is not trusted, and instead uses trust distribution tech-
niques, such as survivable databases and survivable SSO.
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As the controller is a central entity, it becomes a single point of failure: if
it is compromised, security in the whole network is compromised. The SDP
specification [89] proposes a protocol for duplicating the controller: a primary
controller is onboarded into the architecture, and it then onboards subsequent
controllers, for load balancing and for redundancy. The specification does
not describe how the state between controllers is shared, accessed, and syn-
chronized, as it is implementation specific. Duplicating controllers may limit
incremental deployment of controllers, e.g., for updates or change of hardware.

Several solutions exist for ensuring the consistency of multiple controllers
in SDN, as summarized by [329]: one of them is the use of a publish-subscribe
system between controllers, to exchange their states. A second solution is
the use of application-specific consistency algorithms, such as clustering tech-
niques. Similarly, a heterogeneous redundancy mechanism, based on endoge-
nous security, is used to replicate an SDP controller [116]. Alternatively, the
use of blockchain for ensuring consistency has been proposed, as one purpose
of blockchain is to make every node reach a consensus [133], [330]. However,
the performance of blockchain-based solutions is prohibitive for deployments,
compared to centralized solutions, because of computation overhead due to the
replication mechanism across all nodes, and of the low throughput of blockchain
technologies [331].

2.5.3 Resource Portal Deployment Model

This section presents zero trust architectures following the resource portal de-
ployment model depicted in figure 2.10b.

2010: Forrester Zero Trust Network [98]

In 2010, Forrester proposed the first definition for zero trust [77], as well as an
implementation following this definition of zero trust, called the Forrester Zero
Trust Network [98], depicted in figure 2.12. It is based on a special device,
called a ‘network segmentation gateway’. This device is at the nucleus of the
network, and segments it securely, by creating parallel network segments, called
MicroCore And Perimeters (MCAP), following a global access policy. All traffic
is inspected and logged using a Data Acquisition Network (DAN). Policies are
configured using a management (MGMT) server.

While the implementation follows the 2010 zero trust definition, zero trust
has evolved, including more principles and pillars. Thus, the Forrester Zero
Trust Network would not be considered a fully mature zero trust architecture,
as policies are not necessarily dynamic, and authentication of devices and users
is not mandatory. Moreover, the automation and orchestration of segments and
of access policies is not considered.

BeyondCorp

Google BeyondCorp [78]–[80] is an architecture, depicted in figure 2.13, based
on a special device called the ‘access proxy ’, which intercepts every connec-
tion before forwarding them (if authorized) to their destination backend. This
centralized decision point enables easy logging of connection attempts, and
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Figure 2.12: Forrester Zero Trust Network (from [98]).

Figure 2.13: BeyondCorp components and access flow (from [78]).
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enables a dynamic policy. The policy is based on an inventory of users and de-
vices, on single sign-on, on an access control language based on Access Control
Lists (ACLs), and on a trust inferrer evaluating if a connection can be trusted.
Google uses a derivative thereof, called BeyondProd [87], for securing cloud
services.

An implementation of BeyondCorp using Kubernetes has been proposed [103].
However, this implementation only uses a static access control policy, and no
dynamic changes in the policy or monitoring are specified.

An extension of BeyondCorp focusing on data sensitivity is proposed in
[332]. The proposed solution is not a fully mature zero trust architecture, as it
lacks automation and monitoring.

The BeyondCorp access proxy is also used to secure industrial IoT de-
vices [117], [49], [118].

BeyondCorp is limited to HTTP traffic, which prevents legacy services from
being incorporated in the zero trust architecture [140], thus [119] proposes a
solution that encapsulates general IP traffic and forwards it to the access proxy,
using a Virtual Private Network (VPN).

2.5.4 Zero Trust as a Combination of Zero Trust Solutions

The numerous capabilities that are needed for an architecture to reach an
‘optimal’ zero trust maturity, are summarized in table 2.3 at the beginning
of section 2.4. Each of the different architectures presented in the previous
sections only include a subset of those capabilities.

Thus, in 2018, Forrester presented the concept of the Zero Trust eXtended (ZTX)
ecosystem [84], as a framework for zero trust vendor solutions. According to
this framework, a zero trust solution is considered part of the ecosystem if it
offers an advanced or optimal maturity in at least three zero trust pillars, and
if it provides an Application Programming Interface (API) to be interoperable
with other vendors solutions. This ensures compatibility between vendors, and
enables building a complete architecture, associating several vendors, to reach
a full zero trust maturity.

More than 30 zero trust vendors and platforms were part of the ZTX ecosys-
tem in 2018. The following provides a description for a selection of those zero
trust products.

Gartner ZTNA [120]

The Gartner Zero Trust Network Architecture (ZTNA) [120] is based on the
Continuous Adaptive Risk and Trust Assessment (CARTA) framework31, an
adaptive and risk-based architecture. Users and resources are first authenti-
cated, and authorization is then performed using the context of the connection,
with a continuous evaluation of the security postures of the user, the device, the
application, and the network. It follows the NIST resource portal deployment
model from figure 2.10b.

31K. Panetta, The gartner it security approach for the digital age, Gartner, Jun. 2017.
[Online]. Available: https://www.gartner.com/smarterwithgartner/the- gartner- it-

security-approach-for-the-digital-age.

https://www.gartner.com/smarterwithgartner/the-gartner-it-security-approach-for-the-digital-age
https://www.gartner.com/smarterwithgartner/the-gartner-it-security-approach-for-the-digital-age
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Adding IoT-specific capabilities to ZTNA, e.g., device discovery and com-
pliance management, provides zero trust security to the smart manufacturing
industry [135].

ZTNA is sold by vendors, e.g., NetMotion, Cyolo, Cloudflare [88], or Zscaler,
as a zero trust component performing authentication, monitoring, and access
control. Device validation, monitoring, and data encryption need to be added
to those vendor architectures.

Gartner ZTNA is also the base architecture for the zero trust solution of
Perimeter 8132. This architecture combines cloud-based firewalls and network
traffic control for defining policies, third party SIEM services, such as Amazon
S3 or Splunk, third party identity providers (e.g., Google, Azure), and VPN
technologies for encryption.

Similarly, Akamai33 uses a ZTNA-based solution, adding to the microseg-
mentation capabilities of ZTNA multifactor authentication and web-based pro-
tection.

In sum, ZTNA offers capabilities for reaching ‘advanced’ or ‘optimal’ zero
trust maturity for the identity, network, applications, and visibility pillars
(in figure 2.5). However, it does not offer capabilities for device monitoring,
application-level protection, data-centric security, and advanced automation.

VMWare NSX [86]

The core of the VMWare NSX [86] zero trust architecture is workloads. Each
workload is centrally evaluated by a controller, which creates, if the workload is
authorized, a segment between the source and destination. Authorization de-
pends on the workload itself, and its context. The target audience for VMWare
NSX are data centres, on which a controller can have a global vision.

VMWare NSX provides micro-segmentation, transport encryption, and data-
centric security, therefore providing advanced to optimal zero trust maturity
for the network, application and workloads, and data zero trust pillars.

It is possible to combine it with other products to reach higher maturity for
the user, device, analytics, and orchestration pillars, for creating mature zero
trust architectures34.

Cisco Secure Platform

Cisco offers a zero trust platform, and a processus for migration to zero trust
following the CISA maturity model35.

In their zero trust architecture reference [121], Cisco combines several prod-
ucts to build a zero trust architecture, e.g., Umbrella for providing network
monitoring and analytics, Duo for providing multifactor authentication, or

32P. 81, “Perimeter 81 zero trustnetwork access (ZTNA),” Tech. Rep., 2021. [Online].
Available: https://www.perimeter81.com/lp/zero-trust-network-access-datasheet-

pdf.
33Akamai, Zero trust security model. [Online]. Available: https://www.akamai.com/our-

thinking/zero-trust/zero-trust-security-model.
34VMware, Introduction to vmware zero trust, Apr. 2020. [Online]. Available: https:

//techzone.vmware.com/resource/introduction-vmware-zero-trust.
35Cisco, “Cisco’s guide tozero trust maturity,” Tech. Rep., 2022. [Online]. Available:

https://www.cisco.com/c/dam/en/us/products/collateral/security/zero- trust-

field-guide.pdf.

https://www.perimeter81.com/lp/zero-trust-network-access-datasheet-pdf
https://www.perimeter81.com/lp/zero-trust-network-access-datasheet-pdf
https://www.akamai.com/our-thinking/zero-trust/zero-trust-security-model
https://www.akamai.com/our-thinking/zero-trust/zero-trust-security-model
https://techzone.vmware.com/resource/introduction-vmware-zero-trust
https://techzone.vmware.com/resource/introduction-vmware-zero-trust
https://www.cisco.com/c/dam/en/us/products/collateral/security/zero-trust-field-guide.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/zero-trust-field-guide.pdf
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Thalos for providing threat intelligence. With this combination of products, an
advanced to optimal zero trust maturity is reached in the identity, device, net-
work, application, visibility and analytics, and automation pillars. However,
configuration of dynamic policies is not clearly defined, as well as data at rest
protection.

Illumio

Illumio36 proposes a zero trust architecture whose core is dynamic network
segmentation. Access is controlled by a Policy Compute Engine, which collects
information from Virtual Enforcement Nodes, providing real-time information
on the network.

Illumio mainly provides segmentation capabilities, reaching an advanced to
optimal zero trust maturity for the network pillar, for automation, and for
data-centric security. However, it needs to be combined to other solutions for
reaching high maturity in the identity, devices, and visibility and analytics
pillars.

2.6 Discussion

The zero trust paradigm provides benefits over the perimetric paradigm. How-
ever, it does not answer every security challenge. Migrating from an existing
architecture to a zero trust architecture is difficult, and zero trust technologies
themselves introduce new vulnerabilities.

2.6.1 Benefits of Zero Trust

With the application of the GDPR in 2016, demand for data sovereignty has
globally spread, with more than 65% of state agencies searching for solutions for
data-centric security (DCS), and with almost half of those agencies considering
zero trust37. Thus, data sovereignty is a critical business case for zero trust38.

Similarly, the increase of work-from-home following the COVID-19 pan-
demic fueled the adoption of zero trust: a survey [143] shows that in 2023, 30%
of interviewed corporates were in the process of incorporating zero trust, and
60% were planning to.

Forrester presents eight business and security benefits for zero trust39, which
can be summarized as a higher visibility on the network for securing assets,
resulting in higher security at a lower cost, and an easier implementation of
security measures, of compliance initiatives, and of business transformation.

36Illumio, “Illumio architecture,” Tech. Rep., 2020. [Online]. Available: https : / /

resources.illumio.com/resources/illumio-architecture.
37P. Patterson, “Demand for data sovereignty is moving to local government,” Cisco

Services, Tech. Rep., 2022. [Online]. Available: https : / / blogs . cisco . com / services /

demand-for-data-sovereignty-is-moving-to-local-government.
38D. Schaupner, “Enabling data sovereignty with zero trust,” Digital Security Magazine,

2022. [Online]. Available: https://atos.net/en/lp/digital-sovereignty-cybersecurity-
magazine/enabling-data-sovereignty-with-zero-trust.

39C. Cunningham, D. Holmes, and J. Pollard, “The eight business and security bene-
fits of zero trust,” Forrester Reseach November, 2019. [Online]. Available: https://www.

kennisportal.com/wp- content/uploads/2022/06/Akamai- the- eight- business- and-

security-benefits-of-zero-trust-report.pdf.

https://resources.illumio.com/resources/illumio-architecture
https://resources.illumio.com/resources/illumio-architecture
https://blogs.cisco.com/services/demand-for-data-sovereignty-is-moving-to-local-government
https://blogs.cisco.com/services/demand-for-data-sovereignty-is-moving-to-local-government
https://atos.net/en/lp/digital-sovereignty-cybersecurity-magazine/enabling-data-sovereignty-with-zero-trust
https://atos.net/en/lp/digital-sovereignty-cybersecurity-magazine/enabling-data-sovereignty-with-zero-trust
https://www.kennisportal.com/wp-content/uploads/2022/06/Akamai-the-eight-business-and-security-benefits-of-zero-trust-report.pdf
https://www.kennisportal.com/wp-content/uploads/2022/06/Akamai-the-eight-business-and-security-benefits-of-zero-trust-report.pdf
https://www.kennisportal.com/wp-content/uploads/2022/06/Akamai-the-eight-business-and-security-benefits-of-zero-trust-report.pdf
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Each principle of zero trust increases the security of the architecture. Strong
authentication protects resources against attacks and prevents breaches [129].
Least-privilege and dynamic authorization enable an easier and more precise
definition of access policies, resulting in fewer misconfigurations [144]. Fine
segmentation of access prevents lateral movement [145]. Mandatory encryption
of data in transit and at rest follows the principles of data-centric security,
preventing data exfiltration and tampering [70]. Monitoring provides higher
visibility on the network, enabling the detection and prevention of attacks [83].

According to [146], zero trust reduces the cost of data breaches, thus di-
rectly balancing the cost of implementing zero trust, e.g., by lowering insurance
premiums.

In academic literature, several studies have formally evaluated the benefits
of zero trust. Formal methods have been designed to formalize the security
offered by zero trust architectures, such as meta attack languages [147], or
trust loss effects analysis [148]. However, they have not been used to evaluate
real-world zero trust implementations.

SDP was found to be resilient against denial-of-service attacks and port
scanning attacks [75], to mitigate risks efficiently [141], to enhance access con-
trol with fine granularity, and to minimize the attack surface comparatively to
perimetric access control [149].

However, if zero trust provides benefits for securing organizations, it pro-
tects them only against specific attacker models [150].

2.6.2 Challenges of Zero Trust Migration

Zero trust migration raises several challenges for organizations. A first chal-
lenge is the lack of clear capabilities that an architecture requires to attain a
high zero trust maturity level [71], e.g., for defining the granularity of segmen-
tation, or for defining what needs to be validated in devices. This is mitigated
by evaluation frameworks, which help define capabilities more precisely, e.g.,
the framework from [151] evaluating the degree of micro-segmentation. How-
ever, such precise frameworks do not evaluate the maturity of all zero trust
pillars, and several require to be used for evaluating the zero trust maturity of
an architecture, and defining subsequent goals.

Alternatively, [152] proposes a machine learning model to evaluate the ma-
turity of an architecture with regard to zero trust pillars. However, it only has
a 95% accuracy, which prevents it from being used alone for evaluation, and it
does not provide insight for defining precise goals for increasing the zero trust
maturity.

A second challenge for zero trust migration is the lack of standards, coupled
with vendor lock-in which may prevent an easy integration of different com-
mercial solutions. Moreover, selecting the most suitable zero trust products,
for an organization which may evolve, remains a challenge [71].

A third challenge with migration is the integration of legacy systems into the
zero trust architecture [72]. Moreover, migration to zero trust often disrupts
users and slows down the production flow, which is contrary to the business
goals [153]. Thus, migration to zero trust necessitates a strong willingness to
migrate – from all users, as well as from management [78]. Finally, technical
issues may arise while implementing and deploying zero trust solutions, as
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well as a lack of coordination between management teams, for defining access
policies, and for the implementation [122].

2.6.3 Vulnerabilities Introduced by Zero Trust

While zero trust offers protection against attacks, it creates new vulnerabili-
ties [157]. Those impact productivity and resilience.

NIST [83] enumerates several of those as follows: as access is granted fol-
lowing a global policy, subversion of the decision process may occur through
a successful attack on the PDP, or through an insider threat. Moreover, a
denial of service on critical zero trust elements, such as the PDP, creates a
denial of service on every resource in the organization. As the decision pro-
cess is centralized, logs also need to be centralized for taking access decisions.
As logs contain critical information on the whole architecture, this centralized
log storage creates a single point of vulnerability. Finally, reliance on external
data or solutions harms zero trust, and weakens security. This makes the de-
sign of federated zero trust architectures difficult, as trust between federation
members is difficult to acquire [154].

Moreover, chosen zero trust solution have an attack surface that can be a
source of vulnerabilities, e.g., several vulnerabilities have been found in SDP
solutions [113], [141], or in blockchain-based zero trust solutions [333].

2.6.4 Real Zero Trust Architectures

The benefits and challenges of zero trust raised in this section consider fully
matured zero trust architectures. However, as discussed, zero trust is also a
migration process. Thus, architectures undertake a migration process, from
traditional to zero trust maturity, over time.

Therefore, being able to position architectures relatively to their zero trust
maturity level, and their following of zero trust core principles, is necessary
to gain an understanding of the benefits, and risks, that non fully matured
architectures bring to organizations. Transition periods bring fewer benefits
and higher risks than fully matured architectures, which need to be taken into
account while performing a zero trust migration.

2.7 Summary

So, is trust misplaced? As shown in section 1.1, trust in perimeter security
is misplaced: because of insider threats and vulnerabilities, breaches occur;
as perimeter security is mostly static, and enables lateral movements, those
breaches have organization wide consequences.

Thus, the concept of zero trust has emerged, whose fundamental paradigm
is that every access request needs to be explicitly verified, without relying on
implicit trust. This chapter has shown how this fundamental paradigm is de-
composed into several core principles: every entity needs to be authenticated,
and authorization is granted dynamically, by taking into account the environ-
ment, for a limited time, with an as fine as possible granularity, and following
a least-privilege policy. This implies that the infrastructure, entities, and re-
sources are constantly monitored, and data and communications are always
encrypted.
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As discussed in section 2.3, migration from a perimeter security architecture
to zero trust is performed incrementally, by adding capabilities to the architec-
ture to improve the zero trust maturity, following zero trust pillars: identity,
device, network, applications, data, visibility, automation, policy, and gover-
nance. Such a transition is challenging, both from the technological perspective
and from governance, with business goals potentially hindered by zero trust de-
ployment. Moreover, the need for multiple interoperable security technologies
creates a high dependency in vendors of security solutions.

The formalization presented in this chapter enables positioning architec-
tures relatively to zero trust principles and maturity, for a better understanding
of the benefits and additional risks they incur on the organization. Reaching
high levels of zero trust maturity requires the architecture to dispose of sev-
eral zero trust capabilities, which are acquired through zero trust technologies.
However, those additional technologies make architectures more complex, and
expand their attack surface. As architectures become more complex, organi-
zations may rely on third-party solutions, which may weaken security, as trust
is granted to third-party products. Furthermore, zero trust new technologies
introduce their own set of vulnerabilities and dependencies. Which leads to the
question, is trust in zero trust also misplaced? To start answering this question,
chapter 3 will be discussing the construction of a zero trust architecture.



Chapter 3

Building A Zero Trust
Architecture

As described by section 2.2, a zero trust architecture must follow several prin-
ciples: mandatory authentication, dynamic authorization, segmentation of ac-
cess, encryption of data, and continuous monitoring.

This chapter describes a proof-of-concept zero trust architecture, which
modifies and combines several open-source products. After describing how the
architecture is built, its zero trust maturity is evaluated, and an insight on how
it can be augmented to reach full zero trust maturity is provided.

3.1 Overview of the Proof-of-concept

The proof-of-concept zero trust architecture described in this section is based
on Software-Defined Perimeters (SDP) [89], a zero trust architecture well-suited
for networks comprising numerous IoT devices with unstable communication
channels [71].

In an SDP architecture, the policy administrator and policy engine func-
tions of a zero trust architecture are performed by a central component, called
the SDP Controller. PEPs are split into two components: a gateway protect-
ing the resource, preventing unauthorized access, and a device agent installed
on the devices of requesters. An entity trying to access an SDP resource, and
its device, which includes the device agent, form an ‘Initiating Host ’ (IH).
A gateway and the resource it protects form an ‘Accepting Host ’ (AH). Se-
cure communication channels in SDP are composed of two mechanisms: Single
Packet Authorization (SPA) [327], which ensures that only pre-authorized enti-
ties can create a channel, and mutual Transport Layer Security (mTLS) [328],
which creates end-to-end encrypted and authenticated channels.

In the proof-of-concept architecture, devices are simulated using Docker1

containers, with Docker networks connecting containers to simulate network
communications.

The base open-source implementation of SDP used in this proof-of-concept
is from WaverleyLabs2. This implementation provides segmentation capabili-
ties, as well as implementations of the SDP controller, of device agents, and of

1https://www.docker.com/
2https://github.com/WaverleyLabs/SDPcontroller
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Figure 3.1: Generic implementation of SDP components using Docker contain-
ers.

SDP gateways. It also includes communication protocols between components,
including SPA. The implementation only defines access control for devices,
through Access Control Lists (ACLs) stored in an SQL database. Specifically,
for each authorized device accessing a service, there is a corresponding row in
the SQL database representing this authorization.

3.2 Components of the Proof-of-concept

The proof-of-concept architecture implements three types of SDP components,
depicted in figure 3.1.

An Initiating Host (IH), depicted in figure 3.1a, consists of a user (a hu-
man) and of a device (a Docker container). The device runs two processes: a
browser, which the user interacts with to access services, and a device agent,
that operates as superuser. The user does not have superuser access to the de-
vice. The device agent communicates with the SDP controller and with SDP
gateways, to establish segments.

An Accepting Hosts (AH), depicted in figure 3.1c, is composed of two sys-
tems: one hosts the service, the other is the SDP gateway protecting the ser-
vice. Traffic from other components must pass through the gateway to reach
the service.

Finally, the SDP controller, depicted in figure 3.1b, consists of a system
running the controller process, of an SDP gateway protecting the SDP con-
troller, of a device database, used to store information about device agents and
gateways, and of a Policy Engine (PE), described in section 3.2.4.

3.2.1 Onboarding and Secrets

Onboarding refers to the process of integrating an SDP component into the
architecture. In the base SDP implementation, onboarding involves a man-
ual process of adding each IH and AH to the database, followed by manual
generation of key material and certificates.
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In contrast, the proof-of-concept implementation automates this process.
Entities are automatically added to the database from a JSON file describing
them. The onboarding process also automatically generates key material, and
stores it in a Docker volume, simulating the transmission of cryptographic ma-
terial and of configurations into devices during onboarding. In a real-world
implementation, cryptographic material and configurations would be gener-
ated by the SDP controller, uploaded on devices, either manually by a human
operator, or automatically using an MDM system.

The architecture has its own PKI, with the Certificate Authority (CA) being
the SDP Controller. The SDP controller uses the root CA key to sign certifi-
cates for all entities in the architecture. Devices are registered into the device
database by the SDP controller, which records their SPA keys and certificates.

3.2.2 User Authentication

One of the AH in the architecture serves as the Identity Manager (IdM) of
the domain. For this proof-of-concept implementation, the chosen open-source
IdM is Keycloak3.

Users are registered into the IdM, each uniquely identified by a username,
and provided with their credentials to authenticate themselves. Although Key-
cloak enables multi-factor authentication, only one device is associated with
each user in this proof-of-concept implementation, so multi-factor authentica-
tion has not been implemented.

Each user in Keycloak is described by attributes, e.g., their name, email, or
clearance level for accessing sensitive information. These attributes are used
by the access policy, as described in section 3.2.4.

As detailed in section 3.3, when a user wants to access a resource, the device
agent of their device contacts the SDP controller. The SDP controller generates
a Security Assertion Markup Language (SAML)4 request, containing a request
for authenticating the user. This SAML request is forwarded to the user, who
is redirected to the IdM. The user then logs in to the IdM, which generates
a SAML assertion containing the attributes of the user, and is signed by the
IdM.

An alternative to SAML requests is the use of OpenID Connect5, which
relies on JSON Web Tokens. According to [334], OpenID Connect provides
more capabilities, e.g., easy support of mobile devices. However, as it is a
newer technology, transition from SAML to OpenID Connect has a high cost,
and acceptance by the industry is slower.

In the proof-of-concept, the base SDP controller has been extended to gen-
erate SAML requests, to decode and verify SAML assertions, and to provide
those attributes to the PE. To verify the authenticity of SAML assertions, the
SDP controller retrieves, during onboarding, the certificate of the IdM.

3https://www.keycloak.org/
4OASIS, “Security assertion markup language (SAML) v2. 0 technical overview,” Tech.

Rep., Mar. 2008. [Online]. Available: https://docs.oasis- open.org/security/saml/

Post2.0/sstc-saml-tech-overview-2.0.html.
5https://openid.net/developers/discover-openid-and-openid-connect/

https://www.keycloak.org/
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://openid.net/developers/discover-openid-and-openid-connect/
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3.2.3 Device Validation

Device monitoring and validation requires several components in the architec-
ture: one device agent must be installed on every monitored device, and a server
needs to be deployed to centralize monitoring results. For this proof-of-concept
implementation, the open-source MDM system Fleet6 has been chosen.

MDM device agents are services running on devices, that the MDM server
queries to retrieve information about the monitored device. The device agent
runs as superuser, preventing users from tampering with information produced
by the device agent. Additional security can be provided by running the device
agent inside a trusted execution environment.

As described in section 3.3, the SDP controller queries the MDM server to
retrieve attributes describing the device of the user for access control. This has
required modifications to the controller, but not to the MDM, as Fleet provides
an API for querying device attributes.

3.2.4 Attribute-based Access Control

The base SDP implementation uses a static authorization system, stored in a
database as an ACL: for every IH, the list of services it can access is stored.

In contrast, this proof-of-concept implementation uses an ABAC system,
enabling the creation of flexible and dynamic access policies. The chosen open
source PE is Open Policy Agent (OPA)7.

While Keycloak also supports ABAC, the ABAC system in the proof-of-
concept has been decoupled from the Identity Manager, as in chapter 6, access
control is not necessarily performed by the domain providing identities. More-
over, decoupling the ABAC system from the Identity Manager enables the
integration of monitoring attributes from the MDM system.

An ABAC system involves ‘subjects’, which are entities trying to perform
an ‘action’, e.g., read, write, or delete, on a ‘resource’, in an ‘environment’ [335].
Policies are expressed as a set of rules that take into account attributes from
the subject, the resource, the action, and the environment, to authorize or deny
the action. In this proof-of-concept architecture, ‘resources’ refer to services,
e.g., web servers, and the ‘action’ is a generic action ‘access’: the subject is
either granted or denied access to the service. ‘Subjects’ are IHs, i.e., both an
entity and its device.

Therefore, the SDP controller retrieves attributes describing the user from
the SAML assertion, attributes describing the device of the user from the MDM,
and inputs them to the PE. Attributes describing AHs are configured into the
PE during onboarding.

An example policy has been implemented. This policy describes services by
two attributes: a classification level (‘None’, ‘Confidential’, ‘Secret’, or
‘Top Secret’), and a whitelist of authorized organizations that can access
the service. Users are described by three attributes: a clearance level with
the same possible values as classification levels, an affiliation, and the list
of devices they own. Devices are described by two attributes: a list of

6https://fleetdm.com/docs/get-started/why-fleet
7https://www.openpolicyagent.org/docs/latest/

https://fleetdm.com/docs/get-started/why-fleet
https://www.openpolicyagent.org/docs/latest/
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running processes, and an identifier. The example access policy specifies
the following conditions for an IH to access an AH:

1. the clearance level of the user must be greater or equal than the
classification level of the service;

2. the affiliation of the user must be part of the authorized organizations

listed for the service;

3. the identifier of the device must be included in the list of devices

owned by the user;

4. the running processes of the device must include an antivirus software
(‘ClamAV’8 was chosen);

5. access must be requested on working hours and days.

This policy enables the SDP controller to ensure that the device is owned
by the user, that it complies with the policy ‘all devices require a running
antivirus’, and that the user is authorized to access the service. The fifth
condition is an example environmental attribute.

3.3 Access Workflow

Figure 3.2 depicts the access workflow that IHs initiate to connect to services
protected by SDP.

Arrows 1 to 11 depict the authentication procedure. The device agent
deploys a web application accessible through a browser, depicted in figure 3.3a.
First, the user requests a list of available services from the device agent (arrow
1 in figure 3.2). The device agent then authenticates itself with the controller,
using its SPA keys and TLS private key, creating a secure SDP channel (arrows
2 and 3). It then requests the list of services available to the user from the
SDP controller (arrow 4).

As the user is not yet authenticated, the controller responds with an au-
thentication request, containing information on how to reach the IdM (e.g., its
IP address, or domain name), and a login URL containing a SAML authentica-
tion request (arrow 5). Additionally, the controller configures the SDP gateway
protecting the IdM to accept connections from the device of the user (arrow
6).

After receiving the authentication request, the device agent sends an SPA
packet to the IdM to authorize connections (arrow 7), and redirects the user to
the login URL (arrow 8). The user then opens an mTLS connection with the
IdM (arrow 9), and authenticates themselves using their credentials (arrow 10),
as depicted in figure 3.3b. The IdM returns an authenticated SAML assertion
describing the attributes of the user (arrow 11).

This SAML assertion is then forwarded to and verified by the controller
(arrows 12 and 13). Then, the controller queries the MDM server for device
attributes (arrows 14 and 15). After receiving device attributes, the controller
sends both the user and device attributes to the PE (arrow 16), which answers

8https://www.clamav.net/

https://www.clamav.net/
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Figure 3.2: Access workflow of an IH in the proof-of-concept.

with the list of services available to the user (arrow 17). This list is forwarded
back to the user (arrow 18), and displayed to them, as shown in figure 3.3c.

To access a service, the user selects the desired service in the browser (arrow
19). This prompts the device agent to send an SPA packet to the SDP gateway
protecting the service (arrow 20). Finally, the user opens an mTLS connection
with the service (arrow 21).

3.4 Zero Trust Maturity of the Proof-of-Concept

The WaverleyLabs SDP implementation provides segmentation capabilities
based on IP addresses for IHs, resulting in a ‘device’ granularity. This granu-
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(a) Device agent applica-
tion. (b) Identity manager. (c) List of services.

Figure 3.3: Screenshots from the proof-of-concept.

larity is inherited in the proof-of-concept presented in this chapter. To achieve
a finer granularity, an alternative zero trust technology would be required.

Moreover, the base SDP implementation does not provide user authentica-
tion capabilities, which is a core principle of zero trust. The introduction of the
IdM into the proof-of-concept enables an initial maturity level for the identity
zero trust pillar. As described in section 3.2.2, the IdM used in this proof-of-
concept supports multi-factor authentication, enabling an advanced zero trust
maturity level. To reach optimal maturity levels for identity, continuous au-
thentication would be required. This would necessitate additional technologies
to be added to the architecture.

The base SDP implementation provides device authentication. The intro-
duction of MDM into the architecture enables device monitoring and validation,
achieving an advanced zero trust maturity for the device pillar. Optimal zero
trust maturity is outside the scope of this chapter, as it depends on organiza-
tional choices, e.g., evaluating the supply chain trustworthiness.

In the base SDP implementation, authorization is static, based on ACLs.
The introduced ABAC system enables the creation of flexible and dynamic
policies, thus reaching an advanced maturity level.

The encryption provided by the base SDP implementation, based on mTLS,
includes key management and rotation protocols, providing an advanced ma-
turity level for network encryption. However, data at rest is not encrypted,
making it necessary to improve Data-Centric Security (DCS), i.e., primarily
focusing on the security of data, instead of protecting servers and networks
only.

No monitoring capabilities are provided by the base SDP implementation.
Adding device monitoring is a starting point, but reaching an advanced matu-
rity level for the monitoring pillar also requires network monitoring, e.g., with
an intrusion detection system, with resource monitoring, and with a SIEM sys-
tem for centralized event analysis and for automated response after security
incidents.

3.5 Summary

This chapter has presented a proof-of-concept implementation for a zero trust
architecture. This proves the possibility of building a zero trust architecture
from existing products and technologies. The benefits of this proof-of-concept
have been assessed by evaluating its zero trust maturity, following the method
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from section 2.3, by estimating its zero trust capabilities as listed in table 2.3
on page 30.

Results show that the proof-of-concept provides capabilities for user, ap-
plication, and device authentication, identity management, device validation,
micro-segmentation, end-to-end encryption, isolation, and dynamic authoriza-
tion, achieving an advanced to optimal zero trust maturity for the identity,
device, network, workload and applications, and policy zero trust pillars. This
shows that zero trust is a framework improving the security posture of organi-
zations.

However, the data, visibility and analytics, and automation and orchestra-
tion zero trust pillars only have an initial zero trust maturity level, requiring
additional technologies to reach higher levels. Part of these challenges, e.g.,
about the data pillar, are identified more precisely and addressed in part III
of this manuscript. Moreover, part IV of this manuscript explores uses of zero
trust architectures that are not explicitly covered by the zero trust framework,
e.g., the privacy of users and the interaction of zero trust architectures with
other domains.
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Chapter 4

Data-Centric Security
Protections in Zero Trust
Architectures

Many approaches for securing data rely on network-centric policies and meth-
ods [92]: systems on which data is stored are isolated, with limited entrypoints
called endpoints [50]. An alternative approach, data-centric security, priori-
tizes safeguarding data itself, rather than prioritizing the protection of devices
and networks that store and transmit data [215].

As presented in chapter 2, zero trust architectures are build upon several
technology pillars [82], [97]. In the representation from the DoD, depicted in
figure 2.7 (page 30), data serves as the central pillar, as protecting data is a
primary goal of zero trust architectures [82]. According to [97], a data-centric
security approach is necessary to follow zero trust principles.

Nevertheless, despite data protection being a core principle of zero trust,
methods for protecting data at rest, and for performing dynamic, least-privilege
access control for data, have seldom been studied in the zero trust litera-
ture [92].

This chapter introduces a data-centric approach to zero trust security, i.e.,
which prioritizes the protection of data. The proposed method builds upon a
base zero trust architecture, and adds data-at-rest encryption using Attribute-
Based Encryption, combining access control and data protection. This allows
for fine-grained access control at the data object level, thereby preventing data
exfiltration and offering increased flexibility in restricting data access. A proof-
of-concept implementation demonstrates the security benefits of this approach
and highlights the trade-offs involved in employing data encryption.

4.1 Statement of Purpose

In a zero trust architecture, every resource is protected by a Policy Enforce-
ment Point (PEP) [83], depicted in figure 2.1 on page 20. When a connection
request is made, the PEP intercepts it, and the Policy Decision Point (PDP)
evaluates it, granting or denying access to the resource based on information
describing the requester, its device, the resource, and the environment. This
information can be represented as attributes, enabling authorization through

67
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Attribute-Based Access Control (ABAC) [336]. Everything ‘behind’ the PEP
is considered trusted, as described in chapter 2. Therefore, one PEP can only
protect data and services with the same level of sensitivity, as otherwise, a user
with lower clearance level could potentially move laterally, and gain unautho-
rized access to more sensitive data.

This chapter explores how to isolate co-located data objects with varying
levels of sensitivity, as well as the integration of data-centric security measures
within a zero trust architecture.

4.1.1 Related Work

Data-Centric Security

Data-centric security implies several key properties [82]:

• Data Inventorying and Categorization, which automatically labels data
with attributes describing it;

• Data Rights Management (DRM), i.e., authorizing and blocking access
to data dynamically;

• Data Loss Prevention (DLP), i.e., blocking suspected data exfiltration;

• Dynamic Data Masking (DDM), i.e., dynamically masking and altering
data to prevent unauthorized data access.

For example, a military agency may store confidential documents on a
server, accessible only to personnel with a ‘secret’ clearance level. Despite
enforcing access control to access the server, data-centric security remains cru-
cial for enforcing need-to-know policies. With DRM, access can be restricted
only to documents needed for missions, regardless of the clearance level of the
user. Furthermore, DDM can be used to dynamically redact classified informa-
tion within documents. This may particularly be useful in a coalition network
environment to mask sovereign information.

While those properties are needed to attain an optimal maturity level for
the data pillar, most architectures presented in chapter 2 offer none of the
aforementioned properties.

Data-Centric Security in Zero Trust Architectures

A potential solution for achieving data isolation and finer-than-system gran-
ularity is the ‘device application sandboxing’ deployment model proposed by
NIST [83], depicted in figure 2.10c on page 45. In this model, an application
executes within a compartment, e.g., a container or a virtual machine, and
communication with the compartment is protected by a PEP. Organizations
must guarantee the integrity and isolation of compartments. However, this
solution demands greater effort compared to other deployment models, as it
necessitates securing, and dynamically creating, compartments for data and
services [83].

An alternative approach to achieving data isolation is the encryption of
stored data. Various methods have been proposed for encrypting data and
managing keys in zero trust architectures [128]. In Horus [337], data is en-
crypted using keyed hash trees, which offers fine-grained security: regions of
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data are encrypted with different keys, so if one key is compromised, only part
of the data can be decrypted. In Tahoe [338], each file is split into different
parts, distributed across multiple servers. The file can only be decrypted by
entities that have access to at least K parts of the file. Moreover, blockchain
technology has been proposed for developing a data storage scheme for In-
ternet of Things (IoT) devices [339], however with efficiency issues. Those
methods protect data from a malicious or compromised storage server, as an
unauthorized entity gaining access to a storage server cannot decrypt stored
data. However, those solutions do not prevent in themselves data exfiltration
from a malicious or compromised authorized user, and they also do not enable
data rights management for expressing fine-grained authorization.

Combining Attribute-Based Encryption with Attribute-Based
Access Control

As Attribute-Based Access Control (ABAC) is a basis for zero trust autho-
rization, [123] proposes a zero trust architecture for Industrial IoT, which uses
Attribute-Based Encryption (ABE) to create a customized ABAC scheme.

Attribute-Based Encryption [340], [341] applies attribute-based policies to
encrypt data, i.e., only entities with matching attributes can decrypt cipher-
texts. ABE schemes are defined by four cryptographic algorithms: Setup cre-
ates public parameters, a public key, and a master private key; Encrypt gener-
ates ciphertexts; KeyGen produces decryption keys, based on a set of attributes;
and Decrypt decrypts ciphertexts.

ABE categorized into two types: Ciphertext-Policy Attribute-Based En-
cryption (CP-ABE), and Key-Policy Attribute-Based Encryption (KP-ABE).
In CP-ABE, decryption keys are linked to user attributes, and ciphertexts
contain an access policy. In KP-ABE, ciphertexts are labeled with a set of
attributes, and decryption keys are associated with access policies. For the
purpose of using ABE to create ABAC policies, CP-ABE is preferred, because
users are granted decryption keys that correspond to their attributes, and data
is encrypted to include the access policy.

Statement of Purpose

This chapter proposes a method for extending existing zero trust architec-
tures to provide data-centric security, by leveraging Attribute-Based Encryp-
tion (ABE), enabling data rights management and data loss prevention. Con-
tinuous and automatic data inventorying is outside the scope of this chapter.

A proof-of-concept implementation that extends the base zero trust archi-
tecture presented in chapter 3 is described in this chapter. The addition of
data encryption provides an advanced to optimal maturity level for the zero
trust data pillar. Moreover, the proposed method further advances the ‘de-
perimeterization’ process of zero trust: instead of ‘trusting everything’ beyond
the PEP, the proposed architecture offers a finer granularity, at the level of
individual data objects.
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Figure 4.1: Data-centric zero trust architecture.

4.1.2 Paper Outline

The remainder of this chapter is organized as follows. Section 4.2 provides a
detailed description of the method for integrating ABE into a base zero trust
architecture. Section 4.3 presents an analysis of the security guarantees offered
by this architecture, and discusses the benefits and limitations of ABE in the
context of a zero trust architecture. In section 4.4, the proposed method is
applied to the zero trust architecture – based on Software-Defined Perimeters
– described in chapter 3, illustrating the necessary changes that need to be per-
formed to zero trust components. Finally, section 4.5 concludes this chapter.

4.2 Augmenting Zero Trust Architectures with
Attribute-Based Encryption

This section describes a method for integrating data-at-rest encryption into an
existing zero trust architectures, using an Attribute-Based Encryption (ABE)
scheme.

4.2.1 Overview

In addition to the zero trust components defined by NIST [83], which are de-
picted in figure 2.2 on page 21, the resulting architecture proposed in this
chapter, depicted in figure 4.1, incorporates a Data Owner (DO) and a cryp-
tographic engine.

Data is stored in an encrypted form on servers, thus preventing unautho-
rized access to data, even if the server is untrusted or compromised. This
necessitates the DO to be able to encrypt data, and authorized entities to be
able to decrypt data.
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4.2.2 Data Owner and Data Upload

The DO is responsible for uploading data on organization systems and for
defining data access policies. The trustworthiness of the DO is ensured through
zero trust authentication and access control.

Data encryption prevents entities that have gained unauthorized access to
a data server from accessing the data. Two cryptographic schemes are used:
a Symmetric Encryption (SE) scheme, e.g., the Advanced Encryption Stan-
dard (AES) [216], and an ABE scheme [340], [341].

An SE scheme is defined by three algorithms: SE-KeyGen generates a sym-
metric key; SE-Enc encrypts data using the key; and SE-Dec decrypts encrypted
data using the key.

An ABE scheme applies attribute-based policies to encrypt data, i.e., only
entities with matching attributes can decrypt data. An ABE scheme is defined
by four cryptographic algorithms: ABE-Setup generates master public and pri-
vate keys; ABE-Encrypt encrypts data; ABE-KeyGen generates decryption keys
based on a set of attributes; and ABE-Decrypt decrypts encrypted data. In the
method described in this chapter, a Ciphertext-Policy ABE scheme (CP-ABE)
is required, i.e., decryption keys are linked to entity attributes, and ciphertexts
contain an access policy.

When the architecture is deployed, the Policy Administrator (PA) uses the
ABE-Setup algorithm to generate a master public key, pk, and a master secret
key, mk. The public key is shared with every entity within the architecture.

The algorithm used by the DO to encrypt and upload data to organization
systems is described in algorithm 4.1.

Algorithm 4.1: Algorithm for uploading encrypted data.

Input: data d, policy ap, public key pk, encryption time tenc.
Output: encrypted data c.

1 k $←− SE-KeyGen()

2 c0
$←− SE-Enc(k, d)

3 ap← ap ∧ (key time > tenc)
4 c1

$←− ABE-Encrypt(pk, k, ap)
5 return c← (c0, c1)

First, the DO generates a random symmetric key, k (step 1 of algorithm 4.1).
Then, the DO uses key k to encrypt the data with the SE scheme (step 2).
A special condition, ‘key time > tenc’, is added to the access policy in step 3.
This step is performed to prevent key reuse, enabling a dynamic access control
policy, as detailed in section 4.3.3. The key k is then encrypted using the ABE
scheme (step 4). This ensures that only entities with attributes matching the
access policy defined by the DO can decrypt the key k. Finally, the DO uploads
both the encrypted data and the encrypted key to the data storage (step 5).
The use of the SE scheme, instead of directly encrypting data with the ABE
scheme, is for performance reasons.

4.2.3 Zero Trust Access To Data

Accessing data in the architecture presented in figure 4.1 is performed in two
steps: first the subject gains access to the system where the data is stored;
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then the PDP provides the subject with an ABE decryption key, enabling the
subject to decrypt the data.

Access to the Data System

Access to the data system is verified following the authorization procedure of
the base zero trust architecture: the access request is intercepted by the PEP,
and is evaluated by the PDP, using ABAC. Attributes are obtained from the
Identity Manager (IdM), which produces identity attributes for the subject and
its system, and from monitoring components.

This access control mechanism only protects access to the data system.
More granular access control, e.g., for individual data objects, is implemented
through data encryption and decryption.

Data Decryption

In addition to transmitting the list of attributes describing the subject and
its device to the ABAC system, the PA generates an ABE decryption key
corresponding to this list of attributes, L, using the master secret key, msk, of
the ABE scheme:

kL ← ABE-KeyGen(pk,msk,L ∧ (key time = tk)).

The generation time of the key, represented by the attribute ‘key time = tk’,
is included in the attribute list, for matching conditions added in step 3 of
algorithm 4.1. The decryption key is then transmitted to the subject on a
secure control channel.

Having retrieved both the encrypted data and the decryption key, the sub-
ject decrypts the data, by first using the ABE decryption key kL to decrypt
– if authorized by the access policy contained in the encrypted data – the SE
key that was used to encrypt each data object. Once SE keys are decrypted,
data objects are decrypted using the SE-Dec algorithm.

4.3 Security Analysis

As access control to resource systems is unchanged by the architecture proposed
in section 4.2, the security provided by the base zero trust architecture remains
intact. This section analyses additional security benefits of the architecture,
and discusses the trade-offs involved in achieving this enhanced security.

4.3.1 Data-centric Security

Data is stored in an encrypted form on organization systems. Because de-
cryption keys are never present on these systems, entities having access to
data systems cannot decrypt stored data beyond what they are authorized to
access. Indeed, each encrypted data object encapsulates its own access pol-
icy, and only entities whose attributes match the access policy can decrypt it.
Therefore, data can safely be stored on untrusted storage systems, e.g., servers
rented from cloud providers.

Two possibilities are considered for enabling access to data.
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If the access policy for each data object is readable by the PEP, then the
PEP evaluates the access policy of each data object with the attributes con-
tained in the access request, and prevents the transmission of data when the
attributes do not match the access policy. By filtering data at the PEP level,
the subject only receives data objects they can decrypt, without revealing the
existence of unauthorized data objects. However, the PEP needs to know the
access policies of every data objects, which may reveal private information.

An alternative method is to allow subjects to access all encrypted data.
Because of ABE, even if a subject has access to all encrypted data objects,
they can only decrypt the ones for which their attributes match the access
policy of data objects. This method is particularly useful for protecting files
containing information with different sensitivities. To achieve this, each part
of the file is encrypted with a different access policy. When a subject requests
the file, the entire encrypted file is sent. The subject can only decrypt the
authorized parts because of the ABE encryption. While access policies may
remain private, the subject learns the existence, and the size, of data they are
not authorized to decrypt.

4.3.2 Relationship between ABAC and ABE

ABAC policies are typically expressed using standard policy languages, e.g.,
the eXtensible Access Control Markup Language (XACML) or Next Genera-
tion Access Control (NGAC) [269]. XACML is based on XML, and defines
attributes as name-value pairs, which are combined in boolean conditions to
create rules. In NGAC, attributes are defined as nodes in a graph, and rules
are expressed as links in the graph. Authorization is performed by finding a
path linking user attributes to object attributes in the policy graph.

ABE schemes rely on tree structures to define access control policies [342].
In an ABE policy tree, leaves represent attributes, and non-leaf nodes repre-
sent threshold gates. Given subject attributes, a leaf of the tree is valid if it
corresponds to one of the subject attributes. A threshold gate with parameter
k is valid if the gate has at least k valid children. Authorization is granted if
the root of the tree is valid.

Configuration of ABE policies

Unlike ABAC, there is no standardized language for configuring ABE poli-
cies [341]. Thus, more significant setup work is required to implement ABE
policies compared to ABAC policies. Furthermore, ABE policies need to be
incorporated into each data object individually, which makes policy updates
more challenging to apply. In contrast, in ABAC, policies are centralized in the
PDP, thus updating policies is performed at a single location. To enable more
flexibility and to simplify policy management, revocable ABE [343] enables the
revocation of attributes in access policies, and ABE with policy updating [344],
[345] updates the policies of ciphertexts.

Policy expressiveness

Base ABE lacks the expressiveness of ABAC policies [341]. To address this
limitation, [346] extended tree structures of ABE, by adding information on
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the leaves of policy trees, enabling the use of more operators, e.g., negation and
number comparisons. The generator of decryption keys evaluates the validity
of extended leaves to generate keys. This negatively impacts the performance
of ABE, as one decryption key has to be generated for each data object (or
for groups of data objects if policies can be combined), instead of only one
decryption key per subject.

To prevent the generation of a separate key for each data object in the ar-
chitecture proposed in section 4.2, when a subject requests access to multiple
data objects with different conditions ‘key time > ti’, it sends the list of en-
cryption times t1, t2, ..., ts to the PA, which generates a single decryption key
containing all attributes ‘key time > ti’.

4.3.3 Dynamic Access Control

A core principle of zero trust architectures is dynamic access control. For in-
stance, an access policy may require subjects to use up-to-date devices to access
data, and the up-to-date status needs to be regularly assessed. In the architec-
ture presented in section 4.2, when a subject is authorized to access data, the
PA provides an ABE decryption key matching its attributes. Thus, if the de-
vice of the subject is up-to-date, the PA generates and provides to the subject
a decryption key corresponding to the ‘device up-to-date’ attribute. However,
subsequent data objects can still be decrypted, by using this same decryp-
tion key, regardless of device updates. Therefore, two solutions for achieving
dynamic access control are proposed.

The first solution relies on the dynamic access control provided by the base
zero trust architecture. In the above example, if the subject no longer has
an up-to-date device, then it is denied access to the server. However, if the
attributes of an entity change, but the entity is still allowed to access the server
(e.g., if a user changes job within the same organization), then dynamic access
control to data is not ensured.

An alternative solution is the prevention of key reuse, by introducing time
constraints on decryption keys. When encrypting a data object, the DO adds
a time constraint on the time of generation of the key, ensuring that only keys
generated after the encryption of the data object can decrypt it (line 3 in
algorithm 4.1). While this method ensures dynamic access control, it requires
rough time synchronisation between the DO and the PA, and the use of an
expressive ABE scheme, which negatively impacts the performance of ABE
operations as detailed in section 4.3.2.

4.4 Example Extension of a Zero Trust Architecture for
Data-Centric Security

This section describes the implementation of the method from section 4.2 as a
proof-of-concept architecture. The base zero trust architecture is the Software-
Defined Perimeters (SDP) proof-of-concept presented in Chapter 3.

In an SDP architecture, the PA and PE functions are performed by the SDP
controller. Therefore, a CP-ABE engine is integrated into the SDP controller.
Moreover, every IH that needs to decrypt data can perform ABE decryption
operations.
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Figure 4.2: Access workflow of an IH for downloading and decrypting data.

4.4.1 Access Workflow

As presented in section 4.2, access control to the storage system remains un-
changed. The difference with the base architecture is that data is stored en-
crypted on the storage system, and subjects must possess decryption keys to
decrypt the data. To achieve this, the SDP controller includes an additional
component: the CP-ABE engine. When the controller is deployed, the CP-
ABE engine generates CP-ABE parameters: a master private key and associ-
ated public key, as well as cryptographic parameters. When a data owner is
onboarded, the cryptographic parameters and the public key are sent to the
data owner. To upload a data object on the storage server, the data owner
first encrypts it, using the procedure defined in algorithm 4.1 described in
section 4.2.

Figure 4.2 depicts the workflow for a subject to decrypt downloaded data.
It is a direct extension of the access workflow for the base architecture, depicted
in figure 3.2 on page 62. It illustrates the operations described in section 4.2.3
for the proof-of-concept architecture.

The original access workflow to gain access to the storage server remains
unchanged: the user authenticates to the Identity Manager, the SDP controller
retrieves device attributes from the MDM, and uses the ABAC engine for
authorizing access (arrows 1 to 18 in figure 3.2).

Once the IH is authorized to access the storage server, it connects to it
through SPA and mTLS (arrows 19 and 20), and downloads encrypted data
objects (arrow 21).

Once encrypted data objects downloaded, the IH extracts timestamps from
their embedded access policy, and requests a decryption key corresponding
to these timestamps to the SDP controller (arrow 22). The SDP controller
requests an ABE decryption key corresponding to the IH attributes, by sending
them, as well as the requested timestamps, to the ABE system (arrow 23).
The resulting decryption key is then transmitted to the IH (arrow 24), which
decrypts data objects as the object access policies authorize.
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Figure 4.3: Architecture of the SDP-based proof-of-concept.

4.4.2 Proof-of-concept Implementation

An overview of the proof-of-concept architecture is depicted in figure 4.3. The
architecture consists of several components: the SDP controller, which uses
both an ABAC engine and an ABE engine, the Identity Manager, the MDM
system, a storage system on which data is stored in an encrypted form, and
three users: Alice, Bob, and Charlie.

The users have different clearance levels and departments: Alice and Charlie
are both part of the X department, and Bob of the Y department. Alice has a
top secret clearance level, Bob a secret clearance level, and Charlie no clearance
level.

Access to the storage server is restricted to users with a clearance level
‘secret’ or higher, regardless of department. As a result, Charlie is denied
access to the server, but both Alice and Bob can access it. The storage server
contains an encrypted document, depicted in figure 4.4a. The document is
composed of five parts: a public part, a secret part, a secret part reserved to
Y personnel, a top secret part, and a top secret part reserved to Y personnel.

Adding Data Centric Security

Enhancing the base SDP architecture with data centric security requires the
installation of ABE engines in several components: in the SDP controller, to
generate ABE keys for IHs, on the device of the data owner, for encrypting
data, and within IHs, to decrypt downloaded data. The ABE engine chosen
for this proof-of-concept is OpenABE1. Only the SDP controller requires the
master secret key of the ABE scheme, which is used for generating decryption
keys. Other components only require the master public key to encrypt data,
or to decrypt data using decryption keys generated by the SDP controller. To
accommodate multiple access control policies in a single document, each part
of the document is encrypted independently.

Figure 4.4 illustrates the fine-granularity of access control achieved by the
proof-of-concept: from the same encrypted document, whose cleartext form is
depicted in figure 4.4a, Alice and Bob each view a differently redacted docu-
ment, respectively depicted in figures 4.4b and 4.4c. As Alice has a top secret

1https://github.com/zeutro/openabe

https://github.com/zeutro/openabe
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(a) Original document.
(b) View of Alice (Top Se-
cret, X).

(c) View of Bob (Secret,
Y).

Figure 4.4: Document uploaded on the data server in the proof-of-concept.

clearance level, she can access both secret and top-secret parts of the docu-
ment, but not parts reserved to Y personnel. In contrast, Bob, with his secret
clearance level, can only view secret parts of the document, but has access to
parts reserved specifically for Y personnel.

4.5 Summary

A fundamental aspect of zero trust is data protection. However, state-of-the-
art zero trust architectures primarily focus on securing networks and systems,
neglecting comprehensive approaches to data-centric security and data-at-rest
encryption.

This chapter has filled the gap between endpoint-oriented zero trust ar-
chitectures and data-centric security, by presenting a method for enhancing
an existing zero trust architecture with Attribute-Based Encryption. The re-
sulting architecture inherits the security properties of the base zero trust ar-
chitecture, while introducing novel capabilities, e.g., data rights management
and access control with finer granularity, ensuring data-centric security. A
proof-of-concept implementation demonstrates how this method can be ap-
plied to extend the proof-of-concept architecture from chapter 3 to enhance it
with data-centric security, addressing the data pillar in the zero trust maturity
model.





Chapter 5

Continuous Authentication in
Secure Messaging

As presented in chapter 2, identity is one of the core pillars of zero trust archi-
tectures [97]. To attain an optimal maturity level, a continuous authentication
of entities is required. Moreover, the automation of procedures such as contin-
uous authentication is also a zero trust goal, as it facilitates the deployment
and use of zero trust architectures.

In multiple secure messaging schemes, continuous authentication relies on
out-of-band channels to verify the authenticity of long-running communica-
tions, i.e., requires manual actions to be performed by users. Such out-of-band
checks are seldom performed by users in practice.

In this chapter, a novel method for performing continuous authentication
automatically is proposed, without the need for an out-of-band channel. The
proposed method leverages the long-term secrets of users, extending the au-
thenticity of sessions as long as long-term secrets of users are not compromised,
strengthening the post-compromise security of the Signal messaging proto-
col [347]. Moreover, the proposed mechanism further enables the detection
of long-term secrets compromise using an out-of-band channel.

The proposed protocol comes with a novel, formal security definition cap-
turing continuous authentication, a general construction for messaging proto-
cols, and a security proof for the proposed protocol. An implementation of the
protocol is described, which seamlessly integrates on top of the existing Signal
library, together with bandwidth and storage overhead benchmarks.

5.1 Statement of Purpose

The Signal end-to-end encrypted messaging protocol1 is used by billions of peo-
ple2, in the Signal app itself and other messengers such as Facebook Messenger3

1Signal: Technical information. [Online]. Available: https://signal.org/docs/.
2WhatsApp, Whatsapp security advisories, 2023. [Online]. Available: https://www.

whatsapp.com/security/advisories.
3Facebook, Messenger secret conversation, technical whitepaper, 2016. [Online]. Avail-

able: https : / / about . fb . com / wp - content / uploads / 2016 / 07 / messenger - secret -

conversations-technical-whitepaper.pdf.
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and WhatsApp4. The security of encryption keys used in the Signal protocol
relies on two composed cryptographic protocols. First, a Diffie–Hellman-style
key exchange protocol involving long-term asymmetric keys (whose public part
is distributed via a central Signal server) is used to derive a shared secret.
This initial shared secret is then used by parties in Signal’s Double Ratchet
protocol5 to derive symmetric keys, used to encrypt messages between the two
communicating parties.

5.1.1 Related Work: Security of Signal

There have been numerous analyses of the security of the Signal protocol, as has
been recapitulated in [136], which show that security properties for messaging
protocols come in a variety of flavours with different adversary powers and
strengths.

For these analyses, models separate different types of secrets: session secrets
(like ephemeral randomness or state), which are used throughout the Double
Ratchet protocol, and long-term secrets, used only in the initial key agreement.
Some [347], [348] study the security of the Signal protocol in its entirety, in-
cluding the X3DH key exchange. Others [349]–[354] focus exclusively on the
ratcheting part of the protocol, thus considering only session secrets. Among
other security properties, [348] and [349] confirm that against strong adversaries
who control the network and can adaptively compromise session and long-term
secrets, Signal offers forward secrecy (meaning that the secrecy of messages
sent before a secret leakage are still secure) as well as post-compromise secu-
rity [347] (meaning that after users exchange unmodified messages, security is
restored or “healed”).

The security of real secure messaging implementations is also evaluated
in [355], with a focus on (de)synchronization. Somewhat similar to the set-
ting of this chapter, their analysis involves an adversary trying to break post-
compromise security by impersonating a compromised user and finding dis-
crepancies between the implementations and the formal specifications.

Additionally, [352] proposes a construction for secure messaging by signing
message transcripts, focusing though on healing communication under passive
attacks while this chapter aims at detecting and preventing active attacks.

As pointed out by [356], the definition of post-compromise security is quite
restrictive in the sense that the adversary needs to remain completely passive
for security to be restored. Indeed, if the adversary remains active after a
state leakage and continuously injects forged messages, authenticity is never
restored. [356] instead proposes a protocol relying on an out-of-band channel
(like email, SMS, or an in-person meeting) to detect such active adversaries,
leveraging additional fingerprints computed by the protocol and compared over
the out-of-band channel. However, while detection clearly is a good step to-
wards mitigating attacks, it does not prevent the actual attack from continuing.

4WhatsApp, Whatsapp security, 2021. [Online]. Available: https://www.whatsapp.com/
security/.

5T. Perrin and M. Marlinspike, The Double Ratchet algorithm, 2016. [Online]. Available:
https://whispersystems.org/docs/specifications/doubleratchet/.

https://www.whatsapp.com/security/
https://www.whatsapp.com/security/
https://whispersystems.org/docs/specifications/doubleratchet/
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5.1.2 Locking Out Active Adversaries.

The question for this chapter goes one step further than [356]:

Is it possible, post-compromise, to lock out even
an active adversary from a messaging communication?

Clearly, the answer in general is: No. An active network adversary that
fully compromises a user’s device, including all session and long-term secrets
can, by design, fully impersonate that user subsequently. Instead, this chapter
examines a weaker property, by distinguishing – and thus better leveraging –
the difference between the use of session and long-term secrets in a messaging
protocol. Indeed, long-term secrets may be harder to compromise, e.g., due to
stronger randomness sources or better protection in hardware. This is the case
for WhatsApp or Signal, which can be deployed on devices which have access
to secure hardware such as Trusted Platform Modules (TPM) [241], in which
long-term secrets can be stored more safely6. Phones on the other hand can
use smart-cards to store their long-term keys. A typical attack scenario are
border searches, where a travelling user would need to give away their phone
or laptop for analysis, risking the leak of their session secrets. An adversary
could then remain an active Man-in-the-Middle (MitM), possibly on nation-
controlled networks, yet long-term keys in smart cards or a TPM might not
have been leaked. Such a breach of authenticity can have a high impact in the
case of Signal as sessions are typically months or years long.

Thus, the problem statement for this chapter is as follows:

Is it possible, post-compromise, to lock out even
an active adversary from a messaging communication
that compromised session, but not long-term secrets?

Notably, the answer for Signal is still: No. This chapter demonstrates how to,
generically, turn this into a Yes.

5.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 5.2 presents a
formal, game-based definition of continuous authentication, a post-compromise
security property locking out active adversaries who have not compromised
long-term secrets. Section 5.3 presents the Signal protocol, and proves that it
does not meet the security requirement of section 5.2. Therefore, section 5.4
proposes a generic extension for messaging protocols, to provide them with
provably-secure continuous authentication. The proof of security is established
in section 5.5. A prototype implementation of this extension for Signal and an
analysis and benchmark of the overhead it introduces is presented in section 5.6.
While implementing the extension, a discrepancy between the post-compromise
security offered by Signal’s official library and what is claimed in the literature
has been exposed, and is presented in section 5.7. Finally, section 5.8 concludes
this chapter.

6WhatsApp, How whatsapp enables multi-device capability, 2021. [Online]. Available:
https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/.

https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/
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5.2 Continuous Authentication

This section presents what locking out an active adversary from a messag-
ing communication formally means. The basis for this is a formal syntax,
following [349], that captures generic messaging schemes that operate on an
unreliable channel, derive an initial shared session secret using long-term keys,
and then derive further session secrets from previous state, new randomness
and possibly long-term keys. This in particular encompasses the Signal Double
Ratchet protocol.

A game-based security definition for continuous authentication is then pre-
sented, which guarantees two core properties:

1. An active MitM adversary that compromised a user’s communication
state gets locked out of the communication, unless it has also compro-
mised the user’s long-term secrets.

2. Users can correctly decide whether long-term secrets have been compro-
mised in an active attack, via an out-of-band channel.

The first property captures the desired strengthening of messaging pro-
tocols. In the Double Ratchet protocol7, all secrets are derived from prior
established secret state (the so-called root and chain keys) and new random-
ness generated by the users (the Diffie–Hellman ratchet keys). The former is
revealed in a full state compromise, and the latter are unauthenticated, and can
hence be impersonated by the adversary. Therefore, an adversary can conserve
its Man-in-the-Middle position indefinitely, without being detected in-band.

The second property improves on a related issue: If long-term secrets are
compromised, then security is not restored if users only close their current
session and reopen a new one, but users will instead need to generate and
distribute new long-term keys. This procedure however is cumbersome and
typically involves manual effort, so ideally users would like to better know
when it is indeed necessary. Continuous authentication offers such a checking
mechanism, enabling users to only change their long-term secrets if they have
indeed been leaked.

5.2.1 Messaging Schemes

A messaging scheme consists of several algorithms: The core algorithms, follow-
ing [349], are used to create users (Register), initiate sessions between them
(InitState) and let them send and receive messages (Send and Recv). This
definition supports an arbitrary number of users, but only two-party sessions
(i.e., no group chats).

In addition to the four core messaging algorithms, the formalization in-
troduces StartAuth, a procedure which can be used to initiate an in-band
authentication step8, and DetectOOB, a procedure that compares the states
of two session participants out-of-band, and decides whether an adversary has
used a long-term secret to avoid in-band detection.

7T. Perrin and M. Marlinspike, The Double Ratchet algorithm, 2016. [Online]. Available:
https://whispersystems.org/docs/specifications/doubleratchet/.

8This procedure can leave the state unchanged if the messaging scheme, like the original
Signal protocol, does not support in-band authentication.

https://whispersystems.org/docs/specifications/doubleratchet/
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Definition 5.1 (Messaging scheme). A messaging scheme MS = (Register,
InitState,Send,Recv,
StartAuth,DetectOOB) consists of six probabilistic algorithms:

• Register creates a user U outputting long- and medium-term informa-
tion and secrets: (LTIU ,LTSU ,MTIU ,MTSU )

$←− Register().

• InitState takes as input the long- and medium-term secret of a user
U , the long-term information of a user V , and optionally some public
information, and creates an initial session state for U to communicate
with V : πU

$←− InitState(LTSU ,MTSU ,LTI V ,PI ).

• Send takes as input the state πU and long-term secrets LTSU of the
sender as well as a message m and outputs a new state, a ciphertext and
a message index (π′

U , c, idx )
$←− Send(πU ,LTSU ,m).

• Recv takes as input the state πU and long-term secrets LTSU of the
receiver as well as a ciphertext c and outputs a new state, a plaintext and
an index (π′

U ,m, idx ) $←− Recv(πU ,LTSU , c).

Recv may return an error (⊥) instead of the plaintext which signals
the ciphertext has not been accepted. Moreover, it may raise a Close
exception which signifies the user closes the connection.

• StartAuth takes as input a state πU and outputs a new state π′
U

$←−
StartAuth(πU).

• DetectOOB takes as input two states πU and πV and outputs a bit d $←−
DetectOOB(πU , πV ).

Moreover, the session state contains an auth flag which is initially set to
None. StartAuth is a special procedure which may set this flag to a value
other than None to indicate that the party is currently performing an authen-
tication step. An authentication step is passed once the auth flags of both
communication parties are back to None.

In a session between two parties, an epoch is defined as a flow of mes-
sages sent by one party without receiving a reply from their peer. Epochs are
numbered: even epochs correspond to messages sent by the initiator of the
conversation and odd epochs to messages sent by the responder. Within an
epoch, messages are again numbered consecutively.

Before defining correctness for messaging schemes, the following definition
introduces the notion of matching states. On a high-level, states are considered
to be matching if either state would decrypt correctly a ciphertext sent by their
matching partner.

Definition 5.2 (Matching states). Let MS be a messaging scheme and A, B
two users created with (LTIU ,LTSU ,MTIU ,MTSU )

$←− Register() for U ∈
{A,B}. Let πA (resp. πB) be a state of A (resp. B) during a protocol execution.

πA and πB are matching states if, for all message m, ciphertext c and index
idx , (π′

A, c, idx )
$←− Send(πA,LTSA,m) implies that B would output (π′

B ,m
′,

idx ′) $←− Recv(πB ,LTSB , c) with m′ = m and idx ′ = idx .

This enables the definition of correct messaging schemes.
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Definition 5.3 (Correct messaging scheme). Let MS be a messaging scheme.
Let also A and B be two users created with the Register algorithm. MS is
correct if it follows the following properties:

1. The index of a message created by Send corresponds to its epoch and
number within the epoch.

2. The index idx returned by Recv is efficiently computable from the ci-
phertext.

3. Recv returns plaintext ⊥ if the ciphertext corresponds to an index which
has already been decrypted.

4. If Recv returns plaintext ⊥, then the state remains unchanged.

5. If states πA and πB are matching, A uses Send to create (π′
A, c, idx )←

Send(πA,LTSA,m) from a plaintext m, and B inputs this ciphertext
to create (π′

B ,m, idx ) ← Recv(πB ,LTSB , c) (the output message and
index are equal because of the matching property), then π′

A and π′
B are

still matching.

6. Given two matching states, if one of them has π.auth ̸= None, then there
exists a finite number of calls to Send and Recv such that both states
get back to π.auth = None.

Property 1 ensures numbering corresponds to the notion of epochs. Prop-
erty 2 makes immediate decryption [349] possible. Moreover, property 3 makes
sure messages decrypted correspond to different indexes and ciphertexts can-
not be replayed. Property 4 ensures bad ciphertexts do not break the scheme.
Property 5 ensures the soundness property propagates to all messages in the
communication. Note that this does not fully capture immediate decryption.
The reader may refer to [349] to get a more precise definition of the soundness
property for the Signal protocol which is compatible with the remainder of the
paper. Property 6 rules out schemes where an authentication step can never
end.

5.2.2 Security Game

This section presents the formal security game capturing continuous authenti-
cation, represented in Definition 5.4.

The security game creates two users, Alice (A) and Bob (B), and lets the
adversary interact with them using oracles to simulate a communication. As the
final objective is to detect long-term secret compromise, long-term secrets are
distributed honestly to parties. In contrast, medium-term secrets are generated
by parties, but delivered on the communication channel, allowing the adversary
to tamper with them. The adversary is active on the network and can corrupt
devices, leaking their current state. The adversary can also compromise long-
term secrets, which sets a flag compromised in the game, maintaining adversary
knowledge within the game. When the adversary terminates, an out-of-band
detection step (detectTrial, defined in algorithm 5.1) is triggered.

The adversary breaks continuous authentication (also referred to as the
adversary ‘winning’) by (1) fooling the out-of-band detection DetectOOB
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1 procedure createState-A(PI ):
2 assert(¬πA)

3 πA
$←− Init-

State(LTSA,MTSA,LTIB ,PI )

1 procedure transmit-A(m):
2 assert(πA)

3 (πA, c, idx ) $←−
Send(πA,LTSA,m)

4 if c ∈ injB ∪ authinj ∪ passinj
:

5 injB ← injB \ {c}
6 authinj ← authinj \ {c}
7 passinj ← passinj \ {c}
8 transB .append(c)
9 return c

1 procedure corruptState-A():
2 if πA:
3 return πA

4 return MTSA

1 procedure auth-A():
2 assert(lastrecvA >

0 ∧ ¬πA.auth ∧ ¬πB .auth)
3 πA

$←− StartAuth(πA)
4 authinj , authidx ←

injA, lastrecvA

1 procedure corruptLTS-A():
2 compromised ← True
3 return LTSA

1 procedure deliver-B(c):
2 assert(πB)

3 try:
4 (π′

B ,m, idx ) $←−
Recv(πB ,LTSB , c)

5 if
m ̸= ⊥∧ idx > lastrecvB:

6 lastrecvB ← idx
7 if ¬πB .auth ∧ π′

B .auth :
8 authinj ← authinj ∪

{c ∈ injB |c.idx ≤
authidx}

9 CheckAuthStepPassed()

10 πB ← π′
B

11 if c /∈ transB ∧m ̸= ⊥ :
12 injB [idx ]← c
13 return m

14 except Close:
15 closed ← True

1 procedure
CheckAuthStepPassed():

2 if authinj ̸=
∅ ∧ ¬πA.auth ∧ ¬πB .auth:

3 passinj ←
passinj ∪ authinj

4 injA ← injA \ authinj
5 injB ← injB \ authinj
6 authinj ← ∅

Figure 5.1: Oracles available to the adversary in the continuous authentica-
tion security game (cf. definition 5.4). The MS. prefixes for functions of the
messaging scheme are omitted. The CheckAuthStepPassed function checks if
the adversary succeeded in injecting a message which passed an authentication
step. Each oracle has a counterpart whose implementation is similar by swap-
ping A and B in the implementation.

to think it compromised the long-term keys when it actually did not, or (2)
injecting a message and successfully passing an authentication step (passinj ̸=
∅), without being detected.

This model conservatively grants the adversary more power than may seem
reasonable in practice. In particular, the adversary can choose when in-band
and out-of-band detection steps happen (by calling StartAuth and terminat-
ing). In practice, in-band detection steps may follow a predefined schedule,
and out-of-band detection steps are performed at the discretion of users.
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Oracles

The adversary has access to the following oracles, depicted in figure 5.1, with
corresponding counterpart oracles for Bob:

• createState-A creates the initial state of Alice given some public informa-
tion of Bob provided by the adversary.

• transmit-A takes a plaintext as input and simulates Alice sending it.

• deliver-A takes a ciphertext as input and simulates Alice receiving it.

• corruptState-A returns the current state of Alice.

• auth-A makes Alice request authentication.

• corruptLTS-A leaks Alice’s long-term secret to the adversary.

The transmit-A/B oracles are a wrapper around Send, which records ci-
phertexts created legitimately by users. Similarly, the deliver-A/B oracles are a
wrapper aroundRecv, which add injected ciphertexts to the inj sets, described
with the security game.

When Alice starts an authentication step (which happens when she receives
an authentication message or when auth-A is called), authinj is filled with all
messages that were injected to her. Authenticated messages will be those she
has received in the last epoch and before.

Whenever the adversary calls deliver-A/B, the CheckAuthStepPassed func-
tion is called to check if the adversary has successfully injected a message and
passed an authentication step. In that case, deliver-A/B adds the injected mes-
sages that were successfully authenticated in passinj , and removes them from
authinj and inj sets.

The win flag can only be set to True in the detectTrial function. This
happens either if parties output True in the out-of-band detection step, but the
long-term secret was not compromised (i.e., users produced a false positive),
or if they output False, but communication was successfully tampered with
and the authentication step passed (i.e., the attacker was successful at avoiding
detection).

Security Game

The security game itself and resulting security notions are defined as follows.

Definition 5.4 (Continuous authentication). Let A be a probabilistic polynomial-
time adversary against a messaging scheme MS. It has access to oracles depicted
in figure 5.1, abbreviated as oraclesMS. The security game is given in Algo-
rithm 5.1.

The advantage of adversary A against the messaging scheme MS in the
detection game is:

Adv(A) = Pr [Detection-Game(A, MS) = 1)] .

The messaging scheme MS is said to provide continuous authentication if,
for all efficient adversaries A, Adv(A) is small.
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Algorithm 5.1: Security game capturing continuous authentication.

1 game Detection-Game(A, MS):
2 (LTIA,LTSA,MTIA,MTSA)

$←− MS.Register()
3 (LTIB ,LTSB ,MTIB ,MTSB)

$←− MS.Register()
4 πA, πB ← None,None
5 win ← False, closed ← False, compromised ← False
6 transA, transB ← ∅, ∅
7 injA, injB , authinj , passinj ← ∅, ∅, ∅, ∅
8 AoraclesMS(LTIA,LTIB ,MTIA,MTIB)
9 detectTrial()

10 return win ∧ ¬closed

11 procedure detectTrial():
12 assert(πA ∧ πB ∧ ¬πA.auth ∧ ¬πB .auth)
13 d ← DetectOOB(πA, πB)
14 if d ∧ ¬compromised :
15 win ← True
16 elif ¬d ∧ passinj ̸= ∅:
17 win ← True

The game defines internal variables to keep track of the communication and
of the adversary’s actions:

• (LTIU ,LTSU ) is the long-term information and secret of user U and πU

its state.

• win is a flag representing if the adversary has met the winning conditions.

• closed is a flag representing the state of the connection (if it is closed or
not).

• compromised records if the adversary has compromised either of the par-
ties’ long-term secrets.

• transU is a set holding ciphertexts created by a legitimate user U .

• injU is a set containing messages injected to user U (which user U ac-
cepted) that are yet to be authenticated. authinj is a set used during
authentication steps which holds all injected messages currently being
authenticated. passinj is a set containing all injected messages that suc-
cessfully passed authentication.

5.3 The Signal Protocol

Signal9,10 is an asynchronous messaging protocol using an unreliable channel
which aims to provide end-to-end encryption with additional security properties
such as forward secrecy and post-compromise security.

9Signal: Technical information. [Online]. Available: https://signal.org/docs/.
10T. Perrin and M. Marlinspike, The Double Ratchet algorithm, 2016. [Online]. Available:

https://whispersystems.org/docs/specifications/doubleratchet/.

https://signal.org/docs/
https://whispersystems.org/docs/specifications/doubleratchet/
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On a high-level, the protocol consists of three phases:

1. A registration phase happening when users join the platform. Users then
generate key material and upload their public key material.

2. A session establishment happening when one user wants to contact an-
other. This phase uses long-term key material to establish a shared ses-
sion secret.

3. The data exchange phase is the remainder of the communication. We
emphasize that in this phase long-term secrets are not used.

Signal involves several cryptographic components:

• an elliptic curve group to perform Diffie–Hellman key exchange opera-
tions,

• a key derivation function (KDF) do derive new key material from estab-
lished secrets,

• a signature scheme for signing uploaded key material, and

• an authenticated encryption (AEAD) scheme for message encryption.

Registration

Upon registration, a user U creates a long-term key pair (ikU , ipkU ). It then
generates a pre-key pair (prekU , prepkU ) as well as several ephemeral key pairs
((ekU

i , epk
U
i ))i. The public keys are all uploaded to the Signal server. This

matches the Register procedure from Definition 5.1, with the long-term key-
pair corresponding to long-term information and secrets (LTSU ,LTIU ) and
the other keys to the medium-term information and secrets (MTSU ,MTIU ).

Session establishment

In order for a user Alice (A) to initiate a session with another user Bob (B),
Alice retrieves Bob’s public information from the server. She then uses Signal’s
Diffie–Hellman-based initial key agreement protocol X3DH to establish an ini-
tial shared secret, the so-called root key sk0, by combining her private long-term
key and an ephemeral private key with Bob’s public keys. This can be modelled
in terms of Definition 5.1 as πA ← InitState(LTSA,MTSA,LTIB ,MTIB).

Alice will transmit to Bob in the associated data AD of her first message
the ephemeral public keys she has used in X3DH. Thus, upon receiving this
initial message, Bob will also be able to derive the exact same shared secret,
which can be modelled as πB ← InitState(LTSB ,MTSB ,LTIA,AD).

Data exchange

Recall that an epoch i is a sequence of messages sent by a user without
having received any reply from their peer. When a user (for instance Al-
ice) wants to send the first message in an epoch, she first chooses a new
ratchet key pair (rkA

i , rpk
A
i ). Using her new ratchet key-pair and Bob’s last



5.3. THE SIGNAL PROTOCOL 89

ratchet key pair11, she derives a shared secret as the Diffie–Hellman secret
DHi = DH(rkA

i , rpkB
i−1). From this she can derive a new sending chain key :

(sk i+1, ck i,0)← KDF(sk i, DHi).
For all messages in the epoch, Alice creates message keys using the KDF

with the chain key and a constant input: (ck i,j+1,mk i,j) = KDF(ck i,j , 1). Those
message keys are used to encrypt messages using the AEAD scheme. The public
ratchet key for this epoch is included in the associated data of all messages, so
Bob can derive the same message keys to decrypt messages. Because messages
may be lost or reordered, the message epoch and index are included in the
associated data, so Bob can reconstruct the correct key to decrypt the message.

All those operations can be encapsulated in the Send procedure, with root
key, chain keys and message keys being held in the local state. Keys are deleted
from the local state once they are no longer needed.

When Bob receives one message from Alice, knowing the root key sk i shared
with Alice and receiving in the associated data her new ratchet key, he can
derive the same initial chain key ck i,0, and from it the message keys to decrypt
messages. Receiving is modelled through the Recv algorithm.

This shows succinctly that Signal fits the definition of a messaging scheme
given in Section 5.2. We will see next that it does not achieve continuous
authentication.

5.3.1 Signal Does Not Provide Continuous Authentication

For the original Signal protocol, StartAuth is a procedure that does nothing
as no authentication steps are implemented. We will now show that no choice
for implementing the DetectOOB algorithm would yield a protocol which
ensures continuous authentication. Formally, the following adversary against
Signal succeeds in the security game for continuous authentication from Defi-
nition 5.4 with probability 1, no matter how DetectOOB is defined.

Proposition 5.1 (Signal insecurity). Let A be the adversary from Algorithm 5.2.
If the messaging scheme MS of Definition 5.4 is the Signal protocol, then ad-
versary A wins the game with probability 1.

Proof. The proof is quite straightforward. First the adversary opens a legiti-
mate session between both users and uses transmit-A and deliver-B to send a
message from Alice to Bob. Then, using transmit-B, the adversary makes Bob
create message 0 of epoch 1 for plaintext m1.

However, instead of delivering the created ciphertext, the adversary drops
it and forges her own ciphertext instead. To do so, she corrupts the local state
of Alice using corruptState-A and performs the same computations as what
Bob would have done to transmit m′

1 instead of m1. We refer the reader to
the Signal specification12 to see that Line 12 leads to a correct ciphertext for
m′

1. c1 and c′1 correspond to different plaintexts thus c1 ̸= c′1, which means
(c′1,AD1) /∈ transA.

When the adversary calls auth-A, as (c′1,AD1) has been successfully in-
jected, (c′1,AD1) ∈ injA ⊂ authinj . Then the adversary transmits one message

11For the very first epoch of the conversation, Alice uses Bob’s pre-key pair as his last
ratchet key-pair.

12T. Perrin and M. Marlinspike, The Double Ratchet algorithm, 2016. [Online]. Available:
https://whispersystems.org/docs/specifications/doubleratchet/.

https://whispersystems.org/docs/specifications/doubleratchet/
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Algorithm 5.2: A description of a successful continuous authentica-
tion adversary against the Signal protocol.

1 adversary A(LTIA,LTIB ,MTIA,MTIB):
2 m0,m1 ̸= m′

1,m2 ∈R {0, 1}∗
3 createState-A(MTIB)
4 c0

$←− transmit-A(m0)
5 createState-B(c0.AD)
6 deliver-B(c0)
7 c1

$←− transmit-B(m1)
8 (c1,AD1)← c1
9 πA ← corruptState-A()

10 ( , ck )← KDF(πA.sk , DH(AD1.rpk
B , πA.rk

A))
11 ( ,mk )← KDF(ck , 1)
12 c′1

$←− Enc(mk ,m′
1,AD1)

13 deliver-A((c′1,AD1))
14 auth-A()
15 c2

$←− transmit-A(m2)
16 deliver-B(c2)

from Alice to Bob. When Bob receives the message, CheckAuthStepPassed is
called. As StartAuth does not change the state, both conditions authinj ̸= ∅
and ¬πA.auth ∧ ¬πB .auth are satisfied, and therefore (c′1,AD1) ∈ passinj .

When detectTrial is called, the adversary wins whatever the implemen-
tation of DetectOOB is. Indeed, if DetectOOB outputs d = 1, as A never
compromised a long-term secret, compromised is False and therefore the ad-
versary wins. If d = 0, as passinj is not empty the adversary also wins the
game.

Thus, the adversary wins with probability 1.

The above proof solely uses the fact that the adversary can forge valid
messages by only knowing the session secrets of a party. The attack hence
extends to any messaging scheme that, like Signal, only relies on session secrets
and randomness to create new session secrets.

5.4 Introducing Authentication Steps

This section presents the proposed Authentication Steps protocol that generi-
cally extends messaging schemes to achieve continuous authentication.

The extension introduces authentication steps, that may happen regularly
at defined epochs in a session or could be user-triggered. These authentica-
tion steps leverage long-term secrets. In Signal, the long-term secret of a user
consists of their private identity key, a Diffie–Hellman exponent. The Authen-
tication Steps protocol introduces a new type of long-term secret, which is a
signing key sigkU 13.

The objectives of an authentication step are twofold:

13In practice, Signal already re-uses the identity key to sign a user’s medium-term public
key using the XEdDSA [357] signature scheme; therefore, an implementation may similarly
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last message: (3, 0) VfysigpkA(., .)
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(3, 0), {(1, 2)},
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[Computation A]

VfysigpkB (., .)
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SIGsigkB (H

(0)
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(0)
A )

Figure 5.2: An example execution of an authentication step. The actual au-
thentication step is performed during epochs 4 to 6, with authenticated mes-
sages from epoch 0 (epoch numbers in boldface). Additional data sent for
those messages is included below arrows. For epochs 4 to 6, Hi,j hashes are
still computed by both parties, but they are omitted in this figure as they
concern the next authentication step. [Computation U] for U ∈ {A,B} corre-
sponds to the computation H

(0)
U ← 0||H

(
ε||HU

0,0||HU
0,2||HU

1,0||HU
1,1||HU

2,1||HU
3,0

)
.

1. to convince parties that they are communicating with the holder of their
peer’s private key, and

2. to detect tampering with messages since the last authentication step.

To that end, each party sends on the in-band channel their own view of
the communication since the last authentication step. These messages are
included alongside regular messages exchanged between users. This allows the
authentication steps to seamlessly be integrated on top of the existing Signal
protocol.

reuse that identity key as the signing long-term key for the authentication steps extension.
In practice, this means only maintaining a single long-term secret for both Signal and the
Authentication Steps protocol.
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In order to maintain forward secrecy, the additional information is derived
from the (public) ciphertexts sent. To save space, intermediate computations
compress those ciphertexts as they are sent or received. Those intermediate
computations and an authentication step are illustrated in figure 5.2.

5.4.1 Recording Ciphertexts

In order to perform authentication steps, parties need to store the transcript
of ciphertexts sent and received. The order in which messages are received is
not relevant as reordering may be caused by the unreliable channel.

Instead of storing ciphertexts as sent, each party computes digests of those
ciphertexts using a hash function and stores those in a dictionary. Concretely,
for every sent or received message, each user U computes and stores HU

i,j =

H
(
cUi,j

)
, where H is a cryptographic hash function, and cUi,j is the ciphertext

corresponding to message j sent or received in epoch i by user U .

5.4.2 Authentication Steps

The stored (and hashed) ciphertexts are then used in the actual authentica-
tion step. An authentication step is a 3-pass message exchange, and therefore
requires three epochs to complete. In the following, an authentication step
is described with Alice sending the first authentication message. Figure 5.2
illustrates an authentication step, performed in epochs 4 to 6.

The authentication step information is included in every message of the
epoch. That way, the peer receives the authentication information at least
once, as if they do not receive it, the epoch number will not increase. If
authentication information is missing from a message where it should have
been included, then the receiving party should dismiss the message.

In the first epoch, Alice sends the following additional authentication infor-
mation (encrypted along with actual plaintext):

• the indexes of messages that she should have received from Bob, but did
not, denoted SKIPA,

• the index of the most recent message she has received from Bob, denoted
authidx , and

• a signature SIGsigkA((authidx ,SKIPA)) over both values.

This allows Bob to know which messages Alice wants to authenticate. When
Bob receives this message, he first verifies the signature, using Alice’s signing
public key. In case of success, Bob computes the following hash:

H
(nB)
B = nB ||H

(
H

(nB−1)
B || ||

(i,j)∈I
(nB)

B

HB
i,j

)
,

where nB is the number of authentication steps Bob has completed, andH
(nB−1)
B

the hash computed in the previous authentication step (with the convention

H
(−1)
B = ε the empty string). The concatenation happens in lexicographic

order over I
(nB)
B , the set of all messages sent and received by Bob since last

authentication step and until message authidx , and excluding messages with
an index contained in SKIPA.
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In the second epoch (with Bob sending messages), Bob sends the following
information (along with the regular message plaintexts):

• the indexes of messages that he should have received from Alice, denoted
SKIPB , and

• a signature SIGsigkB (H
(nB)
B ,SKIPB) over the hash computed and the

indexes of missed messages.

When Alice receives Bob’s message, she extracts the list SKIPB and com-
putes the following hash:

H
(nA)
A = nA||H

(
H

(nA−1)
A || ||

(i,j)∈I
(nA)

A

HA
i,j

)
,

where, like for Bob, nA is her number of completed authentication steps and

H
(nA−1)
A is the previous hash (or H

(−1)
A = ε). Alice then checks the signature

received from Bob, using Bob’s public signing key, on data (H
(nA)
A ,SKIPB).

In the third epoch, Alice sends a signature SIGsigkA(H
(nA)
A ) over her hashed

collection of seen messages. When Bob receives it, he verifies the signature’s

validity on H
(nB)
B , using Alice’s signing public key.

If at some point a signature verification fails, the verifier closes the connec-
tion. Otherwise, Alice and Bob have passed the authentication step.

Deniable Signing.

Any unforgeable signature scheme can be used in the authentication step. In
particular, to maintain Signal’s deniability of the initial key agreement (cf.
[358]), signatures can be generated using designated-verifier or 2-user ring sig-
natures [359], [360], similarly to their deployment in recent proposals for Signal-
like deniable key exchanges [361]–[364].

5.4.3 Detecting Compromised Long-term Secrets

In this section, it is assumed that Alice and Bob have passed at least one

authentication step. At each authentication step, parties derive a hash H
(nA)
A

or H
(nB)
B . Authentication steps succeed if the signatures over those hashes

match.
On a high-level, users execute the following protocol: Using the out-of-

band channel, parties compare the last hash they have computed (which they
store in their state until the next authentication step) as well as the number
of authentication steps performed. If the hash values and authentication steps
counters match, the users output False, indicating that they do not detect
long-term key compromise, otherwise they output True.

If no adversary tampers with the communication, then exchanged hashes
would match. Conversely, hashes not matching means that an adversary is
present. Moreover, as at least one authentication step has been successful, the
adversary must have been able to forge a signature to avoid in-band detection,
which indicates they know at least one long-term secret. These two properties
of the Authentication Steps protocol are formally proven in section 5.5.
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5.4.4 Protocol Soundness

The described Authentication Steps protocol is correct, i.e., it matches Defini-
tion 5.3, as shown by the following proposition.

Proposition 5.2 (Protocol soundness). If no adversary tampers with the com-
munication, i.e., modifies or injects a ciphertext, then parties pass authentica-
tion steps.

The idea of the proof is to show that in the absence of an adversary, users al-
ways receive authentication information when performing authentication steps.

This leads them to compute the same sets I
(nA)
A = I

(nB)
B and therefore they

agree on the hash computations.
More precisely, properties 1 to 4 of the correctness definition are easy to

prove and come directly from the properties of the underlying protocol.
To prove the remaining properties, first Lemma 5.3 proves that parties

always receive authentication information if they continue to communicate.
Then, Lemma 5.4 shows that parties agree on the same set of messages to au-

thenticate (I
(nA)
A = I

(nB)
B , with the notations of Section 5.4). Finally, the proof

of 5.2 shows that the hashes computed are the same and that each signature
verification succeeds.

Lemma 5.3. If no adversary tampers with the communication, then parties
either stay in the same epoch or receive the authentication information from
their peer.

Proof. The authentication information is sent along all messages in an epoch.
However, to advance to the next epoch, a party needs to receive at least one
message from their peer’s epoch, which includes the authentication information.
As ciphertexts are not modified or injected in this context, the information
received has been honestly generated by their communicating partner.

Lemma 5.4. If no adversary tampers with the communication, then computed

sets I
(nA)
A and I

(nB)
B by each party are equal: i.e., I

(nA)
A = I

(nB)
B .

Proof. We begin the proof by proving by induction that for every authentica-
tion step, Alice and Bob agree on the lower and upper bounds on the chosen
set of messages, which we denote the period of messages.

For the first authentication step, Alice and Bob must agree on the lower
bound as it is message (0, 0). Then the initiator (for instance Alice) chooses
the last message she wants to authenticate (one of Bob’s messages, since the
authentication step starts at the beginning of an epoch) and sends this index
to Bob. Bob receives this index correctly thanks to Lemma 5.3. So for the
first authentication step, Alice and Bob agree on the period of messages to
authenticate.

Let’s assume Alice and Bob agreed on the period of messages to authenticate
for the last authentication step. Let’s call (i, j) the index of the last message
authenticated. As authentication steps last for three epochs, epoch i is finished
for both users. They thus know which message follows (i, j) (either (i, j + 1)
or (i+ 1, 0)), and they agree on this message as the first one to authenticate.

Once again, the initiator chooses the last message to authenticate and trans-
mits this choice to the peer, so both agree on the upper bound.



5.5. SECURITY OF THE AUTHENTICATION STEPS PROTOCOL 95

By induction, for every authentication step, Alice and Bob agree on the
same period of messages to authenticate.

Then for a given authentication step, I
(nU )
U is the set of message indexes

that U has sent or received in this period, except for messages that their peer
did not receive (whose indices are sent in SKIPV ).

In both cases, I
(nA)
A and I

(nB)
B are the union of the set of messages received

by Alice and the set of messages received by Bob. This proves that I
(nA)
A =

I
(nB)
B .

With those lemmas, the soundness of the Authentication Steps protocol can
be proven.

Proof of Proposition 5.2. By definition, authentication steps pass if the con-
nection does not close. Given the implementation, Close exceptions occur
only when a signature verification fails.

As no adversary actively injects or modifies messages, the first signature
verification performed by Bob always succeeds as the signed data is sent along-
side the signature. Similarly, if no active adversary is present, then ciphertexts
received will be the same as ciphertexts sent: ∀(i, j) ∈ R, cAi,j = cBi,j where R
is the set of indices of received messages.

The hash function is deterministic, therefore:

∀(i, j) ∈ R, HA
i,j = H

(
cAi,j

)
= H

(
cBi,j

)
= HB

i,j .

Let’s assume that at the beginning of an authentication step, nA = nB and

H
(nA)
A = H

(nB)
A . Recall the next I

(nU+1)
U for user U is computed as: I

(nU+1)
U ←

(nU + 1)|| H
(
I
(nU )
U || ||

(i,j)∈I
(nU+1)

U

HU
i,j

)
. Following Lemma 5.4, Alice and Bob

agree on sets I
(nA+1)
A = I

(nB+1)
B = I ⊂ R. Moreover, ciphertexts are ordered

correctly as the identification information is included in the ciphertext and
was stored accordingly. We have seen above that for all (i, j) ∈ I, HA

i,j = HB
i,j .

Therefore, after the authentication step, we still have I
(nA+1)
A = I

(nA+1)
A . As

at the beginning of the communication, nA = nB = 0 and I
(−1)
A = I

(−1)
B = ε,

by induction we conclude that for every authentication step, I
(nA)
A = I

(nB)
B .

In the second epoch, Bob signs (I
(nB)
B , SKIPB) and transmits SKIPB .

Because we have shown I
(nA)
A = I

(nB)
B , Alice succeeds in verifying the signature

on the data (I
(nA)
A , SKIPB) she computes. In the third epoch, considering

I
(nA)
A = I

(nB)
B , Bob also succeeds in verifying the signature. As all signature

verifications succeed, Alice and Bob pass the authentication step.

5.5 Security of the Authentication Steps Protocol

This section formally establishes the continuous authentication security (as
per definition 5.4) of the Authentication Steps protocol extension presented in
section 5.4.

Theorem 5.5. Assuming a collision resistant hash function H and an existen-
tially unforgeable signature scheme S, the Authentication Steps protocol pre-
sented in section 5.4 provides continuous authentication as per definition 5.4.
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Formally, the advantage of any adversary A in the detection game against
the Authentication Steps protocol is bounded as follows:

Adv(A) ≤ AdvcollB1
(H) + 2 · AdvEUF-CMA

B2
(S),

for reduction adversaries B1 and B2 given in the proof.

Proof Overview

The adversary wins the detection game in two cases:

1. users decide one of their long-term secrets is compromised when that is
not the case; and

2. the adversary manages to inject a message and remains undetected.

In case 1, the adversary never corrupts the long-term secret, yet the parties
decide that their long-term secret is compromised. Thus, the hashes that Alice
and Bob exchanged at the end of the game must be different, but both Alice and
Bob verified signatures hashes in the last authentication step. It follows then
that either Alice or Bob received a signature that was not produced by their
peer, and that the adversary must have successfully forged a message under
one of their (non-compromised) signing key. This would violate the EUF-CMA
security of the signature scheme, leading to the 2 ·AdvEUF -CMA

B2
(S) term in the

theorem bound.
In case 2, the adversary must have injected a message between Alice and

Bob, but when Alice and Bob exchanged their hashes at the end of the game,
the hash outputs matched. It follows that between Alice’s or Bob’s compu-
tations, there must be a hash collision, leading to the AdvcollB1

(H) term in the
theorem bound.

5.5.1 Formal Proof

This section proves theorem 5.5, which states that the Authentication Steps
protocol is secure under the assumption that the underlying cryptographic
primitives are secure, namely the hash function and the signature scheme.

Let AdvcollA (H) be the advantage of an adversary trying to find a collision
for a hash function H, and AdvEUF -CMA

A (S) be the advantage of an adversary
in the EUF-CMA (Existential UnForgeability in the Chosen Message Attack
setting) game against a signature scheme S.

False Positives and False Negatives.

Before proving theorem 5.5, several useful definitions are introduced.
From the specification, no authentication steps can overlap. Therefore,

users will reject messages that start a new authentication step if they are
currently performing one. Thus, authentication steps can be numbered from
the point of view of a user U , from 1 to nU .

The proof of theorem 5.5 splits the winning condition into two events, re-
ferred to as the false negative case and the false positive case. Propositions 5.7
and 5.8 each provide an upper bound on their respective probabilities.
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Definition 5.5. Given an adversary A playing the security game of definition
5.4, the following events are defined:

• W is the event that the A wins the game,

• FP is the event that at the end of the game, ¬closed ∧ ¬compromise ∧ d
is true,

• FN is the event that at the end of the game, ¬closed ∧ passinj ̸= ∅ ∧ ¬d
is true.

FP and FN respectively stand for false positive and false negative.

Upper Bound for False Negatives

This section gives an upper bound on the probability Pr [FN] that an adversary
produces a false negative in the game. First, lemma 5.6 is introduced, which
is used to prove proposition 5.7.

Lemma 5.6. Let A be an adversary playing the security game of definition 5.4
against the Authentication Steps protocol from section 5.4.

If passinj ̸= ∅ at the end of the game, it means that there exists some user

U ∈ {A,B}, an authentication step j for U , and a message index i ∈ I
(j)
U , such

that cAi ̸= cBi (where one of the ciphertext could be ⊥ if the corresponding user
has sent no ciphertext for index i).

Proof. If passinj ̸= ∅ at the end of the game, then there exists an index i ∈
passinj .

passinj is only filled in the CheckAuthStepPassed function (see figure 5.1),
and only if authinj is not empty. authinj is filled only at two places: at line 4 of
the auth-A/B oracle, or at line 8 of deliver-A/B (see figure 5.1). For both cases,
this happens when a user U enters an authentication step (e.g., authentication
step j), and message i comes from injU .

Message i has already been received, because it is in injU when added to
authinj . Therefore, when the authentication step begins, message i is not a
skipped message. Moreover, i ≤ auth.authidx given the implementation of
StartAuth.

By definition, πU .lastauth contains the index of the last message authen-
ticated before starting the authentication step. As authinj is cleared at the
end of every authentication step, having the ciphertext corresponding to in-
dex i in authinj means that it was not already authenticated in a previous
authentication step. Therefore, i > πU .lastauth.

This proves that for authentication step j, i ∈ [πU .lastauth, authinfo.authidx ].

As message i is not a skipped message, i ∈ I
(j)
U .

Additionally, because i ∈ injU , then user U received – and accepted –
ciphertext cUi as a valid message (when it was added to injU ). If V is the
peer of U , then cVi – if it exists – cannot be equal to cUi , as otherwise it would

have been an honest message. This proves the existence of i ∈ I
(j)
U , such that

cAi ̸= cBi .
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The following proposition gives an upper bound on the probability that the
adversary produces a false negative.

In the construction given in Section 5.4, hashes are used to save space
for ciphertexts. However, if no hashes were used and transcripts of actual
ciphertexts were stored instead, false negatives could never happen.

Proposition 5.7 (False negatives). Let A be an adversary in the detection
game of definition 5.4 playing against the Authentication Steps protocol pre-
sented in section 5.4.

Then, Pr [FN] ≤ AdvcollB1
(H), for a reduction adversary B1 constructed in

the proof.

Proof. Let A be an adversary producing event FN. From definition 5.5, FN =
¬closed ∧ passinj ̸= ∅ ∧ ¬d .

In particular, passinj is not empty at the end of the game. According to
Lemma 5.6, this implies the existence of an authentication step j0 for user

V ∈ {A,B}, and of an index i ∈ I
(j0)
V such that cAi ̸= cBi .

However, d is False. Given the computation of d in the DetectOOB

procedure, this means that πA.H
(nA)
A = πB .H

(nB)
B .

By definition, for any user U , H
(nU )
U = nU ||H (nU−1)

U . Therefore, πA.H
(nA)
A =

πB .H
(nB)
B implies in particular that nA = nB , which means that Alice and Bob

have seen the same number of authentication steps.

Moreover, hashes H
(j)
U are computed as follows:

H
(j)
U ← H

(
H

(j−1)
U || ||

k∈sorted(I (j)
U )

πU .H
U
k

)
,

for any j ≥ 0, and with H
(−1)
U = ε.

For any j ≥ 0, if H
(j)
A = H

(j)
B , then there are only two possibilities:

1. either H
(j−1)
A || ||

k∈sorted(I (j)
A )

πA.H
A
k ̸= H

(j−1)
B || ||

k∈sorted(I (j)
B )

πB .H
B
k ,

2. or they are equal.

If they are different, because H
(j)
A = H

(j)
B , both values are a collision for the

hash function. If they are equal, it means that in particular H
(j−1)
A = H

(j−1)
B .

As the equality H
(j)
A = H

(j)
B is true for the last authentication step, by

induction, either there is a hash collision, or for all authentication step j:

||
k∈sorted(I (j)

A )
πA.H

A
k = ||

k∈sorted(I (j)
B )

πB .H
B
k .

This is true in particular for j = j0. As the elements of πU .H
U are hashes

of ciphertexts computed on sending and receiving, and that the hash function
produces outputs of the same length, there are exactly the same number of
hashes in each concatenation.

Moreover, i ∈ I
(j0)
V so one hash corresponds to the ciphertext with index i.

Thus, H(cVi ) = H(cW ) for a the ciphertext cW in the same position as ciphertext
i in the concatenation.

However, cW ̸= cVi , because by definition of i, cAi ̸= cBi . Therefore, c
V
i and

cW are a hash collision.
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To conclude, any case leading the adversary to a false negative produces an
explicit hash collision, and therefore the reduction B1 from the detection game
to the hash collision game is immediate:

Pr [FN] ≤ AdvcollB1
(H).

Upper Bound for False Positives

This section gives an upper bound on the probability Pr [FP] that the adversary
produces a false positive in the game.

Proposition 5.8 (False positives). Let A be an adversary in the detection
game of definition 5.4 playing against the Authentication Steps protocol of sec-
tion 5.4.

Then, Pr [FP] ≤ 2 · AdvEUF−CMA
B2

(S), for a reduction adversary B2 con-
structed in the proof.

Proof. LetA be an adversary producing event FP. Having ¬compromise means
that A never calls the corruptLTS-A/B oracles. Moreover, ¬closed means the
communication never closes, which means that signature verifications always
succeed.

The proof builds an adversary B2 for the EUF-CMA game against the
signature scheme S, as a wrapper around A, which acts as a challenger in the
detection game for A.
B2 creates two users Alice and Bob, but embeds a public key provided

by the EUF-CMA challenger into one party’s signing key-pair, and uses the
signing oracle to generate signatures.

As user U1 is entirely generated by B2, the adversary can simulate the
oracles concerning U1, and therefore they are similar to the oracles defined in
Figure 5.1.
B2 keeps track of signature forgeries. Every time B2 signs a message using

the oracle provided by his challenger, B2 stores it. Moreover, every time a
signature on the signing public key pk given by the EUF-CMA game is verified,
B2 checks if the signature was produced by the signing oracle. If that is not the
case, but the verification is successful, B2 stops and outputs the corresponding
pair m∗, σ∗.

To simulate user U0, whose private key is unknown, B2 uses the original
oracles, except for transmit−U0, which is the only oracle using the private
signing key of U0 in the Send procedure. corruptLTS-A/B oracles are not called
by adversary A, and therefore B2 does not need to simulate those oracles when
the event FP happens.

In order to create the signature, B2 queries its own challenger with message
πU0

.auth, to get the signature using the private key of U0. Therefore, B2 is
correctly defined and can act as a challenger for A.

Moreover, the following proves that when A triggers the event FP, then B2
wins the EUF-CMA game with probability at least 1

2 .
During his last authentication step n, U1 verified successfully a signature

σ on πU1
.auth by using U0’s public signing key sigpkU0 . πU1

.auth contains in
particular nU = n and H = H1 computed by U1. Because U0 and U1 can
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number their authentication steps, they will produce at most one signature on
an auth set having nU = n.

At the end of the game, parties output d = True. From the implementation

of DetectOOB, this means that πA.H
(nA)
A ̸= πB .H

(nB)
B . Given the definition

of πU .H
(nU )
U , this means that during the last authentication step of each party:

πA.nA||πA.auth.H ̸= πB .nB ||πB .auth.H .

There are two disjoint possibilities:

1. either πA.nA = πB .nB but πA.auth.H ̸= πB .auth.H ;

2. or πA.nA ̸= πB .nB ;

In case 1, πA.nA = πB .nB = n and πA.auth.H ̸= πB .auth.H . Yet U1’s
verification of σ succeeded on the data πU1

.auth which contains nU = n and
H = H1. However, as stated above, U0 can produce and sign at most one set
auth with nU = n, and this set has H = πU0

.auth.H ̸= πU1
.auth.H = H1.

Therefore, πU1 .auth was not submitted to the signing oracle, and yet σ verifies
over πU1 .auth, so B2 can output this forgery.

In case 2, πA.nA ̸= πB .nB . Recall that U0 and U1 are chosen uniformly
at random at the beginning of the game. Because the signing key-pair and
signatures are sampled and created in the same way in the detection game and
in the reduction when using the signing oracle, A cannot distinguish which
key-pair is used in the signing game. Therefore, with probability 1

2 , πU0 .nU0 <
πU1 .nU1 .

In that case, U0 cannot have signed a set πU0
.auth with nU0

= πU1
.nU1

as
it has not yet reached the correct number of authentication steps. This once
again yields a valid signature forgery.

Therefore, with probability at least 1
2 , if A triggers FP then B2 wins the

EUF-CMA game. This leads to the upper bound Pr [FP] ≤ 2 ·AdvEUF -CMA
B2

(S).

Security Proof

Proof of Theorem 5.5. Let A be an adversary in the game of definition 5.4.
Because of the implementation of the detectTrial function, and because the
win flag is only set in this function, it is immediate that W = FP⊔ FN, which
are the events defined in definition 5.5.

Therefore:
Adv(A) = Pr [W] = Pr [FP] + Pr [FN] .

Moreover, proposition 5.8 states that Pr [FP] ≤ 2 · AdvEUF -CMA
B2

(S), and
proposition 5.7 states that Pr [FN] ≤ AdvcollB1

(H), which proves theorem 5.5.

5.6 Implementation and Benchmarks

A prototype Authentication Steps protocol, which integrates seamlessly on top
of the official Signal Java library, was implemented. The full implementation
can be found on GitHub14, along with build instructions and benchmarking
tests.

14https://github.com/apoirrier/libsignal-java-authsteps

https://github.com/apoirrier/libsignal-java-authsteps
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5.6.1 Space and Computation Overhead

Authentication steps require additional data to be computed and stored, such
as the ciphertexts hashes between authentication steps.

The storage and bandwidth overhead is a function of the channel reliability
and the average number of messages per authentication step, the latter being
the more influential parameter. Indeed, the sender cannot know in advance
which messages the peer has received, thus there is no alternative but storing
every ciphertext hash individually.

As for computational overhead, computing the ciphertext hashes involves
one hash invocation; additionally, at most one signature and one verification
operation is performed per epoch. The signature scheme employed by Sig-
nal is XEdDSA [357]. Signing and verifying data typically requires the same
amount of computation as the Diffie-Hellman key computation happening in
asymmetric ratchet steps. Thus, the computational overhead is at most the
same magnitude as the original computations in Signal.

5.6.2 Benchmarking the Space Overhead

In order to give an estimate on the space overhead induced by the Authentica-
tion Steps extension, simulations of communication sessions were performed, to
evaluate ciphertext and state sizes. The message inputs for the simulations are
taken from the National University of Singapore SMS Corpus [365], an SMS
dataset composed of English text messages15.
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Figure 5.3: Space overhead of the Authentication Steps protocol with a 95%
reliable channel.

At the example of a 95%-reliable channel, results, depicted in figure 5.3,
show a mean increase of 43 bytes (+ 39%) in ciphertext size and 2.6KB (+411%)
in session state size compared to the unmodified Signal protocol. Overheads
increase with longer communication epoch lengths and lower channel reliability.

This overhead can be optimized through the usage of trees (for instance
Merkle trees [366]) to store hashes, and compress them if consecutive sequences
of messages are received. This optimization would be interesting to implement
and benchmark, at the same time it would make the underlying analysis and
notions more complex. Furthermore, this optimization can only be performed
on the receiver’s side, as the sender has no way to know which sent messages

15T. Chen and M.-Y. Kan, The national university of singapore sms corpus, 2015. doi:
10.25540/WVM0-4RNX.

https://doi.org/10.25540/WVM0-4RNX
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will eventually be received. Thus, the compression can only happen on at most
half of the conversation, and the space optimization is bound by a factor 2.

5.7 Observations on the Official Implementation

While implementing the proposed protocol, we found that the state deletion
strategy in Signal’s official Java implementation16 is different from the strategy
described in the formal analyses in the literature, such as [349] or [348], even
if the latter claims to be based on the implementation. The official Signal
specification17 itself is unclear, and the strategy used in the implementation is
implied but not made explicit.

In [349] or [348], post-compromise security kicks in after two epochs, which
means that after two epochs of untampered communication after a state com-
promise, security is restored. This happens by the deletion of no longer nec-
essary state once an epoch ends. However, the Signal implementation deletes
this state only 5 epochs later, which is a hardcoded value18.

Based on this, the following attack is possible, which demonstrates that the
official Signal implementation achieves only slightly weaker post-compromise
security than claimed in the literature. In the middle of a communication
between Alice and Bob, an adversary leaks the state of Alice. Assume that
during this epoch i, Alice sent ni messages to Bob. The adversary can, by
using the leaked state, create a valid ciphertext for message (i, ni + 1) (and
even more messages).

Given the literature definition of post-compromise security, as the adversary
remained passive, security should be restored at epoch i+3. However, with the
Signal implementation, as Bob’s state for epoch i is not yet deleted at epoch
i+ 3, the adversary can successfully inject messages (for epoch i) to Bob.

Security is however restored 5 epochs after compromise, therefore the im-
plementation still guarantees a weaker post-compromise security property.

An Explanation of this Weaker Property, and Fixing it.

The Signal implementation disregards the total number of messages sent in the
previous epoch, which is included alongside messages, and instead keeps the
chain key without computing in advance message keys for missed messages.
This saves computation time and space as the keys are not computed if those
messages never arrive while the immediate decryption property is still valid as
the chain key is kept and message keys can be derived if needed.

To fix this, when a new receiving epoch begins, the value of the total number
of messages can be used to derive all message keys for this epoch and then
delete the chain key from the state. This recovers the strong post-compromise
security as claimed in the literature.

16Open Whisper Systems, libsignal-protocol-java, GitHub, 2021. [Online]. Available:
https://github.com/signalapp/libsignal-protocol-java.

17T. Perrin and M. Marlinspike, The Double Ratchet algorithm, 2016. [Online]. Available:
https://whispersystems.org/docs/specifications/doubleratchet/.

18Cf. line 210 in https://github.com/signalapp/libsignal-protocol-java/blob/

fde96d22004f32a391554e4991e4e1f0a14c2d50/java/src/main/java/org/whispersystems/

libsignal/state/SessionState.java#L210.

https://github.com/signalapp/libsignal-protocol-java
https://whispersystems.org/docs/specifications/doubleratchet/
https://github.com/signalapp/libsignal-protocol-java/blob/fde96d22004f32a391554e4991e4e1f0a14c2d50/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L210
https://github.com/signalapp/libsignal-protocol-java/blob/fde96d22004f32a391554e4991e4e1f0a14c2d50/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L210
https://github.com/signalapp/libsignal-protocol-java/blob/fde96d22004f32a391554e4991e4e1f0a14c2d50/java/src/main/java/org/whispersystems/libsignal/state/SessionState.java#L210


5.8. SUMMARY 103

Both demonstrations of the attack and the proposed fix are made available
on Github19.

5.8 Summary

Messaging protocols such as Signal, that only use their long-term secrets for
session initiation, allow for state-compromising adversaries to permanently take
over a connection as a Man-in-the-Middle. This chapter offers a strengthened
security notion, continuous authentication, which locks out an active adversary
post-compromise who has not compromised long-term keys, and enables detec-
tion of long-term secret compromises using an out-of-band channel. The pro-
posed Authentication Steps protocol extension generically enables this security
in a provably-secure way, adding regular authentication steps in the protocol
that leverages long-term keys to authenticate users and ensure no tampering
has occurred. Moreover, an out-of-band protocol can be used on top of that to
detect adversaries having used long-term secrets to avoid in-band detection.

The overhead introduced by authentication steps was analyzed, benchmark-
ing the prototype implementation which seamlessly integrates on top of the of-
ficial Signal library. While implementing those benchmarks, we remarked that
the official implementation has a weaker post-compromise security property
than claimed in the literature.

While this chapter focuses mainly on the Signal protocol, the concept of con-
tinuous authentication as well as the Authentication Steps protocol is generic.
It can be adapted to other messaging protocols or protocols with long-lived
connections, like TLS 1.3 resumption sessions, to provide stronger authentic-
ity guarantees. More generally, this chapter has studied how it is possible to
extend an existing cryptographic mechanism to improve the maturity of a zero
trust technology, by providing automatic continuous authentication.

19https://github.com/apoirrier/libsignal-java-authsteps

https://github.com/apoirrier/libsignal-java-authsteps
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Chapter 6

Building a Zero Trust Federation

In a zero trust architecture, every access to a resource is explicitly verified, with-
out assuming trust based on origin or identity. However, real-world contexts
may require organizations to share their resources, e.g., data or services, with
other organizations. To facilitate this sharing, they may agree on standards of
operation, thus creating a federation. In a federated environment composed of
multiple domains, ensuring zero trust guarantees for accessing shared resources
is a challenge, as information on requesters is generated by their originating
domain, yet requires explicit verification from the domain owning the resource.

This chapter proposes a method for federating zero trust architectures,
ensuring the preservation of zero trust guarantees when accessing federated re-
sources. The proposed approach relies on remote attestation, enabling contin-
uous authentication and monitoring of requesters, without requiring intrusive
software installations on every device within the federation. The feasibility of
the proposed federation method is demonstrated by extending the proof-of-
concept zero trust architecture from chapter 3, and federating two domains
implementing this architecture. This provides detailed information on the fed-
eration procedure and its implementation.

6.1 Statement of Purpose

During the Afghanistan intervention, initiated in 2001, the necessity to es-
tablish a coalition mission network arose, to facilitate information sharing
among allied nations. A first level of interoperability was attained in 2010 with
the Afghanistan Mission Network (AMN), enabling informed decision-making
through access to comprehensive information1. Subsequently, the North At-
lantic Treaty Organization (NATO) Military Committee proposed in 2012 an
initiative to improve the level of interoperability provided by the AMN, called
‘Federated Mission Networking’ (FMN)2. Widely accepted by NATO nations,
the NATO FMN Implementation Plan (NFIP) was designed, and the fourth
version endorsed in 2015 [51]. The need for interoperability has been confirmed

1J. Stoltenberg, The secretary general’s annual report 2014, 2014. [Online]. Available:
https://www.nato.int/cps/en/natohq/opinions_116854.htm.

2NATO, Federated mission networking. [Online]. Available: https://dnbl.ncia.nato.

int/FMNPublic/SitePages/Home.aspx.
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to be fundamental for armed forces by NATO leaders in 20163. Moreover,
a need for Multi-Domain Operations (MDO) has been identified by NATO,
which expands the requirements for interoperability across the five operational
domains and between nations4.

A Need for Security

Following the Solarwinds attacks in 20215, the U.S. government mandated a
transition to zero trust6,7, requiring federal agencies to meet zero trust stan-
dards by the end of 2024. This includes the necessity of integrating classified
data from all domains in international federations within a zero trust frame-
work8.

What is a Federation?

A Federation consists of a group of organizations that establish agreements
with each other, to share resources and services with entities from one another.
Within a federation, each organization retains its autonomy, i.e., they manage
their resources, services, and entities. In this context, each organization is
referred to as a domain.

When an entity, known as the requester, requests access to a resource located
in another domain within the federation, the domain responsible for manag-
ing the requester is referred to as the ‘requester domain’, while the domain
managing the requested resource is known as the ‘resource domain’.

Problem Statement

Zero trust requires every access to a resource to be explicitly verified: access
must not be granted based on implicit trust.

In a federation, each domain is responsible for authenticating and moni-
toring its own entities, devices, network, and resources. Therefore, when an
entity requests access to a federated resource, the requester domain provides
information about the entity, device, and context of the request. The resource
domain must evaluate the trustworthiness of that information. If the resource
domain implicitly trusts this information, it would compromise zero trust se-
curity guarantees [154].

3W. B. King, “Army europe highlights interoperability at communications conference,”
U.S. Army, 2016. [Online]. Available: https://www.army.mil/article/161837/.

4NATO, Multi-domain operations: Enabling NATO to out-pace and out-think its adver-
saries, Jul. 2022. [Online]. Available: https://www.act.nato.int/articles/multi-domain-
operations-out-pacing-and-out-thinking-nato-adversaries.

5J. Rundle, “Solarwinds, microsoft hacks prompt focus on zero-trust security,” The Wall
Street Journal, 2021. [Online]. Available: https://www.wsj.com/articles/solarwinds-

microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402.
6J. Biden, Improving the nation’s cybersecurity, Executive order 14028, 2021. [Online].

Available: https://www.federalregister.gov/documents/2021/05/17/2021- 10460/

improving-the-nations-cybersecurity.
7S. D. Young, Moving the U.S. government toward zero trust cybersecurity principles,

Memorandum M-22-09, 2022. [Online]. Available: https : / / www . whitehouse . gov / wp -

content/uploads/2022/01/M-22-09.pdf.
8G. Magram, Zero-trust interoperability for global defense alliances: 5 ways oracle tech-

nology enables classified data integration, Oracle Cloud Infrastructure Blog, Dec. 2023. [On-
line]. Available: https://blogs.oracle.com/cloud- infrastructure/post/zerotrust-

interoperability-defence-alliances.

https://www.army.mil/article/161837/
https://www.act.nato.int/articles/multi-domain-operations-out-pacing-and-out-thinking-nato-adversaries
https://www.act.nato.int/articles/multi-domain-operations-out-pacing-and-out-thinking-nato-adversaries
https://www.wsj.com/articles/solarwinds-microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402
https://www.wsj.com/articles/solarwinds-microsoft-hacks-prompt-focus-on-zero-trust-security-11619429402
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.federalregister.gov/documents/2021/05/17/2021-10460/improving-the-nations-cybersecurity
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://blogs.oracle.com/cloud-infrastructure/post/zerotrust-interoperability-defence-alliances
https://blogs.oracle.com/cloud-infrastructure/post/zerotrust-interoperability-defence-alliances
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6.1.1 Related Work

The creation of a zero trust architecture that can be federated with other ar-
chitectures, regardless of their zero trust maturity, is evaluated in [155] for the
U.S. Air Force. Six solutions are proposed. The first four solutions (ZTE Feder-
ation, ZTE-like Federation, Identity Credential Federation, and Weak Identity)
involve the requester domain providing information about the requester and its
device, which is then trusted by the resource domain. The difference between
these architectures is the zero trust maturity level of the federated architec-
ture: a more advanced maturity level offers higher security guarantees. The
Ad Hoc Federation solution involves a central authority determining which re-
source can be shared with which entity. The Person-to-Person sharing solution
enables users to share data with other users following a chain of command.
However, all these solutions rely on implicit trust between federation mem-
bers, or trust in the central authority for Ad Hoc Federation. This contradicts
the core principles of zero trust, as the trustworthiness of the requester is not
explicitly verified.

More generally, there are three types of solutions for creating a zero trust
federation, without relying on implicit trust between federated members [156]:

1. Installation of a trusted component in every device accessing resources,
including devices from partner domains, to evaluate the security posture
of devices.

2. Standardized hierarchical trust architecture: trust is established through
a supervising organization.

3. Third-party negotiation: a trusted third-party collects and shares infor-
mation on every architecture.

The installation of monitoring agents in devices, e.g., through Mobile Device
Management (MDM)9, enables the incorporation of non-managed devices into
a zero trust architecture, making access to resources compliant with the zero
trust principles [124]. This solution provides a basis for creating a zero trust
federation. However, this solution is also intrusive, as every device requires the
installation of a monitoring software component from all federated domains.

Federated Identity Management associates multiple Service Providers (SP)
and Identity Providers (IdP) for authentication and authorization [367]. It
enables users to connect to different SPs, without directly authenticating to
each one. Instead, users authenticate themselves to an IdP, which provides
them with an authentication token with limited validity, describing their iden-
tity. Federated Identity, along with a federation wide Certification Authority,
provides a basis for building hierarchical-based federations [125]. Single Sign-
On systems enable users to authenticate and to communicate their identities
to distinct domains [210]. However, this solution requires domains to trust
the federated identity manager [368], which may be compromised during the
mission. Therefore, this solution does not follow zero trust principles, as au-
thentication is not explicitly verified by resource owners.

9L. Mearian, “What’s the difference between MDM, MAM, EMM and UEM?,” Computer
World, 2017. [Online]. Available: https://www.computerworld.com/article/3206325/

whats-the-difference-between-mdm-mam-emm-and-uem.html.

https://www.computerworld.com/article/3206325/whats-the-difference-between-mdm-mam-emm-and-uem.html
https://www.computerworld.com/article/3206325/whats-the-difference-between-mdm-mam-emm-and-uem.html
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The architecture proposed in [126] involves a third party component, called
the Context Attribute Provider (CAP), that installs an agent on every device
within the federation, monitoring those devices. The CAP then provides PDPs
with contextual information in access requests. The CAP can be split into two
components: one responsible for collecting contextual information, and another
for exploiting it [127]. Similarly to hierarchical architectures, domains need to
implicitly trust the CAP. Therefore, access to resources does not follow zero
trust principles.

6.1.2 Statement of Purpose

Existing solutions for federating zero trust architectures either rely on trust-
ing a third party or federation partners, or require intrusive techniques such
as installing monitoring software on every device. These solutions inherently
assume trust, which is never challenged during the mission execution, contra-
dicting the zero trust principles that mandate the explicit verification of access
requests. Moreover, in the context Federated Mission Networking, the need for
sovereignty and control over systems precludes the use of intrusive techniques
and the establishment of trust between nations, or in a third party.

This chapter proposes a method for federating zero trust architectures, that
preserves the zero trust security guarantees while limiting the intrusiveness of
the solution. The zero trust guarantees of the resulting federation, and its zero
trust maturity level, are formally evaluated. The feasibility of building the
federation is assessed through a proof-of-concept implementation.

6.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 6.2 presents the
abstract construction for federating zero trust architectures based on remote
attestation, and provides a formal demonstration of how verifying the integrity
of zero trust core components only enables zero trust federated access. Sec-
tion 6.3 applies the method from section 6.2 to the zero trust architecture
presented in chapter 3, demonstrating the feasibility of building of a mature
zero trust federation. Section 6.4 discusses the deployment of this architecture
for military organizations. Finally, section 6.5 concludes this chapter.

6.2 Proposed Zero Trust Federation

This section presents a detailed description of the federation framework pro-
posed in this chapter, highlighting how it enables the federation of multiple zero
trust architectures, while ensuring that each domain maintains its inherent zero
trust guarantees.

6.2.1 Overview

Figure 6.1 depicts a zero trust federation consisting of two domains: domain
A and domain B. Each domain operates autonomously, managing the identity,
authentication, and monitoring of infrastructure, devices, and entities. They
adhere to zero trust principles, with their own resources being protected by
PEPs enforcing access decisions made by PDPs. In the scenario depicted in
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Figure 6.1: Zero trust federated architecture. The architecture is presented
asymmetrically, with domain A being the requester domain, and domain B the
resource domain.

figure 6.1, a single resource is managed by domain B, and an entity managed
by domain A, referred to as the ‘requester’, requests access to this federated re-
source. To grant access, the PDP of domain B requires information describing
the requester, its device, and environmental context. This information is gen-
erated by zero trust components managed by domain A (step 1 in figure 6.1).

Nevertheless, the PDP of domain B must explicitly verify the trustworthi-
ness of the provided information, without relying on implicit trust in either
domain A or a third party intermediary, and without requiring intrusive soft-
ware to be installed on the device of the requester. This is achieved through
remote attestation: domain B installs monitoring components and a Remote
Attestation Verifier (RAV) in domain A. Monitoring components observe the
IdM and the CDM systems of domain A (step 2), and the RAV verifies their
integrity, based on observations received from the monitoring components, pro-
ducing a Remote Attestation of trustworthiness (step 3). This attestation is
then transmitted to the PDP of domain B along with the access request (step
4).

The PDP verifies the attributes and attestation results by relying on the
root-of-trust shared between domains, established at the creation of the fed-
eration (step 0). Once verification is complete, the PDP proceeds with the
authorization procedure.

6.2.2 Authentication and Monitoring

Domain A, as a zero trust architecture, continuously authenticates the re-
quester and its device through the IdM and monitors them using CDM sys-
tems, as depicted by arrow 1 in figure 6.1. This produces information describ-
ing the requester and its device, which can be represented as attributes for an
Attribute-Based Access Control (ABAC) scheme [335].
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Interoperability of attributes between domains in the federation is achieved
through standardization efforts. For the NATO coalition discussed in the
introduction, the FMN defines standards for attribute interoperability, e.g.,
STANAG 1059 which defines country codes, and STANAG 2116 which defines
universal ranks for military personnel. Alternatively, if a specific standard does
not exist, bilateral agreements between federation members can be established,
similar to the identity mappings proposed in [155].

6.2.3 Root-of-trust Establishment

In a zero trust architecture, entities and devices are initially trusted upon
onboarding. This initial trust, referred to as the root-of-trust, is composed of
secrets in various forms, e.g., cryptographic material, or passwords, providing
for instance an identity for onboarded entities and devices, or for configuring
multifactor authentication. After an entity or device is onboarded, it is no
longer automatically trusted, as it may have been compromised. Instead, trust
is explicitly verified through continuous authentication and monitoring.

A zero trust federation requires a similar root-of-trust, which is exchanged
when domains federate (arrow 0 in figure 6.1). For the federation method
described in this chapter, each domain shares its master certificate with other
domains, enabling them to verify authenticated information produced within
that domain. Additionally, information about shared resources and requesters
can be exchanged.

Moreover, as depicted in figure 6.1, for a requester entity to access a fed-
erated resource, remote attestation components must be deployed by the re-
source domain into the requester domain. These components, described in
section 6.2.4, form part of the root-of-trust between federation members, rep-
resenting the initial trust they have when federating. The initial trust for in-
stalling remote attestation components from a foreign domain can be achieved
through certification, similar to the process that verifies the trustworthiness of
supply chain components, e.g., software or devices, used in the domain. For
example, remote attestation components can be designed and implemented by
the organization of the requester, and deployed into their domain. The resource
domain must ensure, before federating, that requirements for remote attesta-
tion components, e.g., ensuring that attestation results cannot be modified or
forged, are met.

Similarly, the root-of-trust shared between domains, like certificates and
keys shared with entities and devices, represents an initial trust that needs to
be reevaluated continuously.

6.2.4 Remote Attestation

This section describes the remote attestation procedure, which consists of two
steps: (i) verifying the integrity of zero trust components, and (ii) producing
remote attestation results (arrows 2 and 3 of figure 6.1).

When a requester requests access to a resource from another domain, it
provides attributes representing its identity, its device, and the context of the
request. These attributes are generated and authenticated by the requester
domain.
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Figure 6.2: RATS general architecture [369]. The right part of the figure shows
which role components from figure 6.1 have in the remote attestation general
architecture.

To provide zero trust guarantees within the federation, there should be
no inherent trust between domains. The root-of-trust does not ensure trust
between domains, as entities or systems from the requester domain may have
been compromised during the mission. Therefore, the PDP protecting the
resource must continuously verify the integrity of attributes provided by the
requester, which is enabled through remote attestation.

Remote ATtestation procedureS (RATS) [370] is a framework that enables a
peer, called the Relying Party, to determine if another peer, called the Attester,
is trustworthy. The general architecture for RATS is depicted in figure 6.2.

In the context of the federation method presented in this chapter, Relying
Parties are the PDPs of resources, and Attesters are the IdM and CDM systems
in requester domains. Attestation Results represent the trustworthiness of the
Attesters for the PDP. The relationships between the general architecture for
RATS and the components of a zero trust federation from figure 6.1 are depicted
to the right in figure 6.2.

To demonstrate its trustworthiness to the Relying Party, the Attester pro-
duces information about itself, called the Evidence, and transmits it to an
additional party, called the Verifier. The Verifier appraises the Evidence, gen-
erating Attestation Results that contribute to the decision-making process of
the Relying Party regarding trustworthiness [369], [371].

The Attester is divided into two components co-located within the same
entity: the Attesting Environment and the Target Environment, as depicted in
figure 6.2. The Attesting Environment collects values and information from the
Target Environment by observing it. Results from those observations are repre-
sented as Claims. These Claims are then typically signed, using cryptographic
material contained in the Attesting Environment, to produce Evidence. There
are several methods for building Attesting Environments, e.g., Trusted Exe-
cution Environments (TEEs) [372], Trusted Platform Modules (TPMs) [373],
BIOS firmware, or even software [374].

Figure 6.2 depicts the communication flow within a RATS architecture.
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There are two main remote attestation models: the Passport Model, and the
Background Check Model [369]. In the Passport Model, the Attester provides
Evidence to the Verifier, which verifies the Evidence and generates Attestation
Results. The Verifier then returns the Attestation Results to the Attester,
allowing it to present them to Relying Parties for trust evaluation. This enables
the Verifier to use the same Attestation Results for multiple Relying Parties.
Alternatively, in the Background Check Model, the Attester directly transmits
Evidence to the Relying Party, which then forwards it to a Verifier to obtain
Attestation Results. This model enables different Relying Parties to use their
own appraisal policies. These two models can be combined or modified to meet
specific implementation requirements.

Attestation Results can take one of two forms: either a boolean value, indi-
cating whether the Attester complies with the appraisal policy of a Verifier, or
a richer set of Claims, providing more detailed information about the Attester.
The Relying Party takes specific actions based on Attestation Results, e.g.,
granting partial or full access to a resource.

In the zero trust federation presented in this chapter, remote attestation
follows the Passport model: Attesting Environments are installed on the IdM
and CDM systems for collecting Claims, and a Verifier is integrated into the
requester architecture, generating Attestation Results. The Verifier is trusted
by the resource domain, possessing secrets from the resource domain to authen-
ticate Attestation Results. This trust originates from the certification process
performed during the creation of the federation, as described in section 6.2.3.

6.2.5 Access Requests

Following the root-of-trust exchange and the installation of remote attestation
components presented in section 6.2.4, the federation process is finalized, en-
abling requesters to initiate queries for federated resources. At this point, every
access request must be explicitly verified.

When a requester requires access to a federated resource, it sends an ac-
cess request to the PEP protecting the resource, as depicted by arrow 4 in
figure 6.1. This access request includes attributes that describe the identity
of the requester, their device, and the environment. Access requests are au-
thenticated, and may be encrypted, using keys derived from the root-of-trust.
Attributes contained in access requests are generated by the IdM and CDM
within the requester domain, which correspond to Attesters in the RATS ar-
chitecture. Therefore, the PDP of the resource domain, which corresponds to
the Relying Party in the RATS architecture, can evaluate the trustworthiness
of the IdM and CDM of the requester domain through remote attestation. If
deemed trustworthy, it implies that the attributes in the access request are also
trustworthy, thus explicitly verifying the access request. If access is granted,
an end-to-end secure channel is established between the requester and the re-
source, using secrets based on the shared root-of-trust.

The solution presented requires each domain in the federation to host a
set of remote attestation components for every other domain in the federa-
tion. This design choice improves scalability and reduces the attack surface,
by eliminating the need to install foreign device agents on every device in the
federation. Alternatively, if relying on a third party federated IdM is possible,
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Figure 6.3: Architecture of the proof-of-concept of a zero trust federation.

further scalability can be achieved by installing (and certifying) only one set
of remote attestation components, to monitor the third party IdM.

6.2.6 Zero Trust Guarantees

The federated architecture presented in this section adheres to the zero trust
principles: every requester is authenticated and monitored by their origin do-
main, and the resource domain explicitly verifies, through remote attestation,
the integrity and authenticity of these attributes.

This construction enables least-privilege, per-session, and dynamic autho-
rization. Every domain retains control over access to their resources, ensuring
that resources are isolated, and that segments are dynamically established be-
tween authorized requesters and resources, using encrypted channels. As a
result, every zero trust principle is strictly followed in the federation, without
relying on implicit trust between domains.

6.3 Proof-of-Concept Zero Trust Federation

This section describes a proof-of-concept for a zero trust federation, demon-
strating the feasibility of federating two separate two zero trust architectures,
each built upon the implementation from chapter 3. This section details the
necessary adjustments needed for federating them.

The proposed zero trust federation is depicted in figure 6.3. It consists of
two domains: domain X and domain Y. Within each domain are deployed an
SDP controller, respectfully referred to as ‘controller X’ and ‘controller Y’, an
IdM, an MDM server, services, and users. Each user is assigned a single device.

Three services are hosted by domain Y, each with unique characteristics:
the ‘Secret Internal Service’ has a classification level of ‘Secret’ and is accessible
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only to Y personnel; the ‘Internal Service’ has a classification level of ‘None’
and is restricted to Y personnel; and the ‘Secret External Service’ has a clas-
sification level of ‘Secret’, and allows users from any organization to access it.
Two users are managed by domain Y: ‘Alice’, with a clearance level of ‘Secret’,
and ‘Charlie’, with a clearance level of ‘None’.

A single service, ‘X Service’, is hosted by domain X, having a classification
level of ‘None’ and restricted to X personnel. Two users are managed by domain
X: ‘Bob’, with a clearance level of ‘Secret’, and ‘David’, with a clearance level
of ‘None’.

As described in section 6.2, federating both architectures requires the estab-
lishment of a root-of-trust, the installation of remote attestation components,
and the implementation of extended access requests for enabling federated ac-
cess. To illustrate which components are required for federating domains, this
proof-of-concept is a unidirectional federation, permitting only users from do-
main X to access services from domain Y, but not the inverse.

6.3.1 Federating SDP Controllers

An intuitive solution for federating architectures is that clients from domain X
directly contact the SDP controller from domain Y to obtain a list of federated
services, and then connect to those services as an IH from domain Y. However,
this would require clients to be onboarded into domain Y as an IH, e.g., by
installing secrets on the device of the user, which may not be feasible.

An alternative solution is proposed, where users, devices, and services are
onboarded within their own domain, receiving secrets and configurations from
the SDP controller of their domain. For federating domains, only SDP con-
trollers share secrets and configurations directly, which can then be forwarded
to entities within the domains.

In this proof-of-concept, since only clients from domain X access federated
services, controller X is onboarded into domain Y as an IH. Therefore, controller
X is granted SPA keys, a private key, and an associated certificate from the PKI
of domain Y. Moreover, SDP controllers exchange their respective PKI root
certificates, which are installed on every system within each domain, enabling
the verification of identities for devices and for services, of SAML assertions,
and of MDM assertions.

6.3.2 Remote Attestation

Federating architectures following the method from section 6.2 requires remote
attestation. In the proof-of-concept, the remote attestation procedure follows
the Challenge/Response interaction model [369], depicted in figure 6.4. An
attester process is installed on the IdM and MDM systems in domain X, con-
tinuously gathering evidence about the integrity of those systems. A verifier
is also installed in domain X, which regularly queries the attester, collecting
the evidence and appraising it to generate attestation results. These results
are then sent to controller Y. The verifier is an IH for domain Y, provided
with SPA keys and private key from the PKI of domain Y during onboard-
ing. The remote attestation procedure serves as a verification mechanism for
the controller of domain Y, ensuring that the attributes produced by the IdM



6.3. PROOF-OF-CONCEPT ZERO TRUST FEDERATION 117

Attester (TPM) Verifier Controller Y

Requests attestationCollects
claims,
produces
evidence

Sends evidence Appraises
evidence

SPA

mTLS handshake

Attestation results

Figure 6.4: Remote attestation protocol in the proof-of-concept, performed
regularly.

and by the MDM server of domain X are correctly generated, and are thereby
trustworthy.

The chosen remote attestation implementation is based on simulated TPMs,
as provided by the IETF Working Group on Remote Attestation: CHARRA10.
The evidence appraised by the verifier includes Platform Configuration Regis-
ters [375], i.e., read-only registers that record software state. In the event of
attestation failure, access rights for federated clients are revoked. No remedia-
tion policy is in place for attestation failures in this proof-of-concept.

6.3.3 Protocol Workflow

Figure 6.5 depicts the process by which an authenticated user obtains a list
of available federated services, and accesses a federated service. It is a direct
extension of the non-federated workflow presented in figure 3.2 on page 62, for
the proof-of-concept architecture of chapter 3.

Following arrows 1 to 17 in figure 3.2, where the user is authenticated and
controller X retrieves internal authorized services, controller X establishes a
secure communication channel with controller Y, using SPA and mTLS (arrows
18 and 19 in figure 6.5). Controller X then sends the user and device attributes
to controller Y (arrow 20), which verifies the SAML assertion and the signature
of device attributes, using certificates from the IdM and MDM server of domain
X. If verification is successful, controller Y queries the PE of domain Y with
the attributes (arrow 21), and receives a list of federated services available to
the user from domain X (arrow 22). This list is then forwarded to controller X
(arrow 23).

Once controller X receives the list of federated services, it forwards the
combined list of both internal and federated services to the user (arrow 24). A
screenshot of the view of each user in the federation is provided in figure 6.6,
illustrating that each user views a different set of available services, depend-
ing on their attributes. Notice that Bob has access to the ‘External Secret’
federated service from domain Y.

To access a federated service, the user selects the corresponding service in
their browser, which makes the device agent sending a request to access this

10https://github.com/Fraunhofer-SIT/charra

https://github.com/Fraunhofer-SIT/charra
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in figure 3.2 on page 62, with the user from domain X accessing a service of
domain Y.

Figure 6.6: Screenshot of the list of available services for each user in the
federation.
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service to controller X (arrow 25). Subsequently, controller X acts as an IH
for the federated service, sending an SPA packet to the SDP gateway which
contains the IP address of the device of the user as authorized device (arrow 26).
This authorizes the user to establish an mTLS connection with the federated
service (arrow 27).

6.4 Applications in Military Networks

In the proof-of-concept presented in this chapter, devices, e.g., laptops, phones,
IoT devices, or servers, are simulated using Docker containers, which are net-
worked together.

In a military context, clients and services are deployed on the battlefield.
Connections between them are part of the data plane, and other communica-
tions are part of the control plane. Two models have been considered for the
control plane.

The first model involves deploying every SDP component on the battlefield,
including the SDP controller, the PE, the IdM, and the MDM server. This
requires servers with sufficient computing power to run these processes, as
well as stable bandwidth between hosts and the controller. This solution is
relevant in the context of MDO, where activities across multiple domains are
orchestrated in joint operations.

The second model involves deploying control plane elements in a combat
cloud [52], i.e., a network dedicated to data distribution and information shar-
ing within a battlefield, at the edge of the tactical network. In this model,
communication between SDP controllers, verifiers, MDM servers, and IdMs is
expected to be more stable, with fewer resource constraints on these compo-
nents. However, connectivity with IHs and services may be less stable, which
could result in clients being denied access to services when a client or a service
fails to connect to the control plane, even if it should be authorized and if con-
nectivity between client and service is available. This problem can be mitigated
by increasing the validity of policy enforcement, e.g., gateway configurations or
authentication tokens, thereby reducing the need for communications between
the tactical network and the combat cloud, at the expense of less dynamic
policies.

6.5 Summary

The desire for inter-domain collaboration – as exemplified in this chapter
through international military cooperation – creates a need for interoperable
federated architectures for data and service sharing. The zero trust paradigm
provides principles for securing data and services by implementing fine-grain
compartmentalization and least privilege access policies.

However, state-of-the-art zero trust federated architectures either require
the installation of intrusive software on all devices, raising concerns about pri-
vacy and sovereignty, or assume an inherent trust between federation partners,
which contradicts the core principle of zero trust.

To address this paradoxical issue of ‘trust in a zero trust world’, this chap-
ter has presented a novel method for federating zero trust architectures. This
method leverages remote attestation in a novel way, to constantly monitor
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only core zero trust components (i.e., Identity Manager, and monitoring sys-
tems). With this approach, every access request is explicitly verified, even
when authorizing access to an entity from another domain in the federation,
without implicitly trusting federation partners. Thus, zero trust principles are
preserved without requiring intrusive software on every requester device.

This chapter has also demonstrated how the zero trust implementation from
chapter 3 can be extended to implement a zero trust federation, with detailed
workflows illustrating the necessary steps for building it.



Chapter 7

Privacy-Preserving Forwarding

In the zero trust paradigm, trust is no longer implicitly granted, but is explicitly
and continuously verified. Such trustworthiness is evaluated to allow access to
resources, e.g., a service or data. In particular, one assumption of zero trust
is that networks are considered an untrusted zone, with subjects and asserts
needing to assume their local network hostile [83].

Nevertheless, the zero trust framework mostly focuses on protecting the
confidentiality, integrity, and authenticity of communications and assets. This
is aligned with the definitions of ‘security’ from [1], [2] as the prevention of
unauthorized use or access of systems. However, this definition of security does
not prevent potentially sensitive information from leaking, as metadata, e.g.,
the fact that two entities are communicating, can be sensitive information. The
protection of metadata is referred to as privacy, i.e., the ability to determine
whether, when, and to whom personal information is released [1]. For example,
the zero trust architectures studied in chapter 2 do not ensure the anonymity
of communications, especially on untrusted networks.

This chapter provides an example study of privacy that can be achieved
for network communications. In an IP-based computer network, routers make
forwarding decisions based on their internal state (e.g., their routing table),
as well as on information (e.g., the source and the destination) conveyed in
the header of each incoming datagram. This header information being unen-
crypted implies that an adversary, observing incoming and outgoing datagrams
over the interfaces of a router, can learn both information about the communi-
cation patterns of the network, and about the network topology. In particular,
if the network topology is considered sensitive information, this also implies
that compromising a single router, and extracting and inspecting its state,
constitutes an efficient attack.

This chapter explores different privacy-preserving datagram-based forward-
ing mechanisms, as an interchangeable mechanism for the IP forwarding mech-
anism, and evaluates to what extent they preserve privacy properties such as
anonymity, unlinkability and topology-hiding, both from external observers
recording traffic passing through a router, and from the router itself. Those
privacy properties are formally defined. This chapter proposes novel forward-
ing mechanisms, formally proves their privacy guarantees, and compares them
to existing privacy-preserving forwarding mechanisms. Additionally, a physical
benchmarking platform consisting of a Raspberry Pi functioning as a router

121
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Figure 7.1: A datagram being forwarded by a router.

(a) External observer. (b) Internal observer.

Figure 7.2: Types of observers.

is used to evaluate the performance of forwarding mechanisms. The trade-offs
between privacy benefits and performance is discussed.

7.1 Statement of Purpose

A unicast forwarding mechanism is a function, f , in routers which, as depicted
in figure 7.1, takes as input a forwarding table, t, a datagram, p, an ingress
interface, i, and which returns either an egress interface, e = f(t, p, i), onto
which the datagram is to be forwarded – or, if the datagram is to be silently
dropped [53].

Traffic passing through routers can be observed by unauthorized individu-
als or organizations, as illustrated in figure 7.2a, which allows them to access
sensitive information transmitted over the network. In IP datagrams headers,
the source and destination addresses are carried in an unencrypted form, mak-
ing it possible for an observer observing the traffic entering and leaving the
router to learn the sources and destinations of datagrams, and thus learn the
communication patterns as well as parts of the network topology. Furthermore,
if the observer has compromised a router, and thus has access to its memory,
as depicted in figure 7.2b, it can acquire the forwarding table of the router and
can extract both information on the network topology and the communication
patterns.

This chapter studies, and proposes, forwarding mechanisms that prevent ob-
servers from learning the network topology and the communication patterns.
Two types of observers are considered: the external observer, which records
datagrams entering and leaving the observed router, and the internal observer,
which has access to the internal state of the router. Note that an internal
observer is a more powerful observer than the external observer: all the infor-
mation that an external observer can infer from its observations can also be
inferred by an internal observer.

When communication occurs, two types of information can be gathered by
an observer: information about the content of messages – the payload – and
meta-information (information that does not include the content of messages).
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The payload can be obfuscated, for example by encrypting it at the network
layer using IPsec [376], or at the transport layer with TLS [177]. However,
meta-data cannot be directly obfuscated, as all routers along the path between
source and destination need access to that information to correctly forward
datagrams. As there are already are solutions to provide payload opacity, this
chapter considers the protection of meta-data only.

Privacy [54], [55] represents the prevention of meta-information being gath-
ered by observers. It is different from confidentiality, which protects the content
of messages [56].

This chapter considers several privacy properties, in the context of message
exchanges:

• Anonymity [57], which is the impossibility for an observer to know the
sender or recipient of a message.

• Unlinkability [57] between messages, which means that an observer can-
not decide if two messages are related (for example, have the same sender
or recipient).

• Topology-hiding [58], which means that the topology of the network is
opaque.

When external or internal observers are present, anonymity is not guar-
anteed with IP forwarding, as datagrams headers contain the source and des-
tination addresses of messages unencrypted. Therefore, unlinkability is also
not guaranteed. Indeed, unlinkability depends on anonymity: if the source or
destination of messages can be inferred by an observer, the observer can link
related messages. Topology-hiding is only partially guaranteed: although the
observer is not able to fully determine the topology of the network from the
internal state of the router and observed datagrams, the observations help to
define what topologies are plausible.

This chapter explores to what extent forwarding mechanisms can obfuscate
the forwarding information to preserve privacy, from both external observers
and internal observers, while maintaining their forwarding functionality.

7.1.1 Related Work

On the topic of evaluating privacy, [59] and [57] both measure privacy as a
probability that an observer acquires private information. Privacy is achieved if
the probability of the observer discovering the private information is no greater
than the probability of discovering the private information without knowledge
of any observation.

There are several solutions for achieving privacy of communication for for-
warding mechanisms.

A first category of solutions protect the privacy of the communication by
making use of an overlay network, changing the route of datagrams. A first
example is IPsec [376], which extends the IP protocol. It operates in two
modes: the transport mode encrypts only the payload, whereas the tunnel
mode completely encrypts and encapsulates the original IP datagram between
two endpoints. Tunnel mode provides anonymity and unlinkability from exter-
nal observers located between the endpoints of the tunnel, as the source and
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destination of the message are encrypted in the tunnel. This is however not
the case before datagrams enter and after they leave the tunnel. Moreover,
the tunnel provider, or an internal observer having access to the encryption
keys, knows the sources and destinations of the encapsulated messages. Sim-
ilarly, a framework that creates encrypted tunnels between peers to protect
communication anonymity is proposed in [377].

An alternative to tunnel-based approaches for providing anonymity is mix
networks [378], which were originally designed for email exchanges, but can also
be used for IP traffic anonymisation [379]. Mix networks use proxy servers,
called mixes, which accumulate datagrams from multiple senders before for-
warding them in a random sequence towards their destinations. Observers are
not able to link an egress datagram to its corresponding ingress datagram.
Mist routing [380] and onion routing [381]–[383] combine the tunnel and mix
networks ideas. These techniques use intermediate servers to route datagrams
along a randomly chosen path, to hide their sources and destinations. However,
privacy is not guaranteed on the first and last segments of datagrams routes.
Mix, mist and onion routing shuffle traffic exchanged in the network to prevent
datagrams to be linked. Therefore, they are dependent on the amount of traffic
being exchanged in the network: if there are few datagrams, there is a higher
probability to link datagrams and to find their sources or destinations. To al-
leviate this dependency, ‘fake’ traffic can be added [384]. Techniques similar to
differential privacy [13], [385], [386] can be used to determine the right amount
of fake traffic to add, and to formally prove privacy properties.

Cryptographic techniques are also employed for preserving the privacy of
communications for forwarding mechanisms. Functional encryption [226] is an
encryption technique which, given a message, x, and a function, f , can encrypt
x, yielding a ciphertext, c, and derive a function key, kf , such that given the
function key and the ciphertext, it is possible to retrieve f(x), but without
learning any more information on x. Example functions for functional encryp-
tion schemes include arithmetic operations on boolean circuits [387] or inner
products [388], an inner product being a way to multiply vectors together, with
the result of the multiplication being a scalar. The use of functional encryption
for forwarding is stated in [60], but no technical details are given. Homomor-
phic encryption [227] is an encryption scheme for performing computations
on ciphertexts, without needing decryption. It is used by [61] to obfuscate
datagrams for privacy-preserving routing. Similarly, [62] uses homomorphic
encryption to protect the anonymity of communications for inter-domain for-
warding. For every flow of datagrams, a first initialisation datagram is sent
towards the destination to create a private route between the source and the
destination, using homomorphic encryption. This route is stored in subsequent
datagrams, which no longer need encryption operations.

Without using cryptography, label switching, such as Multi-Protocol Label
Switching (MPLS) [63], can be used to obfuscate the sources and destinations
of datagrams for an external observer. MPLS relies on a dictionary mapping
IP addresses to a label. IP datagrams are encapsulated into a labelled data-
gram when they enter the MPLS architecture. This label is then used by
label switching routers to forward datagrams, using the forwarding table of the
router which maps labels to their next hops. For an external observer to com-
promise anonymity, both the labelled datagram and the mapping between IP
addresses and labels is needed. However, datagrams with the same destination
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have the same label, so MPLS does not guarantee unlinkability.
The topology-hiding problem is introduced by [58], which provides theoret-

ical results for Multi-Party Computation (MPC) schemes (i.e., schemes which
involves participation for a computation of every node in the network), which
are improved by [389], [390]. In [391], [137], topology-hiding routing protocols
are studied in the context of Mobile Ad-Hoc NETworks (MANET). Datagrams
do not carry routing information, and instead rely on peer-to-peer communica-
tion between every node to create routes, while keeping the network topology
private.

To summarize, there exists several methods for privacy-preserving forward-
ing mechanisms. A first category of solutions relies on overlay networks, such
as tunnel-based solutions and onion routing. However, these techniques detour
traffic on potentially inefficient paths, and are thus not studied in this chapter.
Other techniques rely on obfuscation, either through cryptography, which in-
curs an overhead for forwarding datagrams, or through labelling. The privacy
guarantees and performance of those obfuscation techniques is evaluated, which
composes the baseline for comparison with forwarding mechanisms proposed
in this chapter.

7.1.2 Statement of Purpose

This chapter presents privacy-preserving forwarding mechanisms as an inter-
changeable mechanism for the forwarding mechanisms used in classic IP for-
warding. Several mechanisms are presented, that allow forwarding packets
along a shortest path from source to destination, and which rely on encryption
and datagram header obfuscation to preserve anonymity, unlinkability, and to
provide topology-hiding, against both external observer and internal observers.
Forwarding mechanisms proposed in this chapter enable a configurable trade-
off between privacy guarantees and performance. Formal analyses of privacy
guarantees are provided, with an experimental evaluation of the overhead in-
troduced by each forwarding mechanism, including comparison with existing
techniques.

7.1.3 Chapter Outline

The remainder of this chapter is organized as follows. Section 7.2 details and
formalises the context of networks, and of forwarding therein, as studied in this
chapter. Section 7.3 then formally defines privacy in the context of forwarding
mechanisms, and details the three privacy properties considered: anonymity,
unlinkability and topology-hiding.

Section 7.4 proposes a set of different forwarding mechanisms and eval-
uates the privacy properties guaranteed by those mechanisms. Performance
comparisons for the forwarding mechanisms are presented in section 7.5. The
practical use of presented forwarding mechanisms is discussed in section 7.6.
Finally, section 7.7 concludes the chapter.

7.2 Networks and Forwarding Mechanisms

This section presents networks and forwarding mechanisms as they are studied
throughout this chapter.
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A network is a connected undirected graph of routers and hosts. Every
host has exactly one link, towards a router. Routers are devices, performing
forwarding as depicted in figure 7.1. This chapter does not focus on routing
protocols: forwarding tables are supposed configured before forwarding occurs
in the network. Hosts are endpoints for communication, and are not performing
forwarding operations. Thus, the remainder of this chapter considers networks
simply as graphs of routers, with some routers also connected to a set of hosts.

Definition 7.1 (Network). A network is a graph G = (R, E) where R is a set
of routers connected by links in E. Every router r ∈ R is linked to a (potentially
empty) set of hosts H[r].

If r ∈ R, let N [r] = {s ∈ R|(r, s) ∈ E} ∪ H[r] be the set of neighbors of
router r (other routers and linked hosts). Given a router, r, and a neighbor
s ∈ N [r], there exists a connection point on the router, called an interface, that
enables r to communicate with s. If traffic can enter the router through that
interface, it is referred as an ingress interface, and if traffic can leave through
that interface, it is referred as an egress interface.

7.2.1 Communication

Communication in the graph is represented as a set of messages.

Definition 7.2 (Message). A message is a tuple m = (src,dst,payload) which
represents the source, destination, and content of a message. The source and
destination are distinct hosts.

A message is physically forwarded on the network using datagrams.

Definition 7.3 (Datagram). A datagram is a pair p = (header, payload): it is
composed of a header, header, defined by the forwarding mechanism used in the
network, and of the payload of the message, payload. Datagrams transmitting
a same message m have the same payload. The header of datagrams contains
information used for forwarding datagrams towards their destination.

7.2.2 Forwarding Mechanisms

Definition 7.4 (Forwarding mechanisms). A forwarding mechanism is an al-
gorithm, Forward, running on every router. When a host sends a message
towards another host, it sends the message to the router to which it is con-
nected. The payload of the message is then encapsulated into a datagram. This
encapsulation operation is denoted Send.

Forwarding is the operation depicted in figure 7.1. When a router receives a
datagram p from an ingress interface i, the router calls Forward(state[r], p, i),
with state[r] being its internal state (i.e., forwarding table). Forward(state[r],
p, i) outputs an egress interface onto which the datagram is to be forwarded, or
silently drops the datagram. Datagram headers may be modified by the router.
This formalism allows capturing header modifications such as IP Time-to-live
update [64], or IPv6 hop-by-hop options processing [65]. The payload remains
unchanged. For a given router r, datagrams[r] denotes the set of datagrams
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Figure 7.3: An example network. Simple black lines represent the links in the
network, dashed lines represent the links between routers and hosts. The red
dashed arrow represents a message between two hosts. Arrows on the links
represent the datagrams used to forward the message towards its destination.

passing through r. An example network with a message is illustrated in fig-
ure 7.3.

As stated in section 7.1.2, this chapter only considers forwarding mecha-
nisms that forward datagrams along one of the shortest path from source to
destination. It is assumed that the forwarding tables of routers are a-priori
configured such that this property is satisfied.

7.3 Privacy

This section formalizes the privacy properties considered in this chapter, de-
rived from the probability-based definitions of [57], [59].

7.3.1 Privacy Games

Privacy means the prevention of meta-information being gathered by observers.
Observers can be external entities, and are in this case referred to as external
observers, or can be a router which passively records datagrams, referred to as
an internal observer.

Any meta-information to keep secret from observers has an associated pri-
vacy property : Given a network, the communication happening in the network,
and an observer, the privacy property is said verified if the observer does not
learn the meta-information associated with the privacy property.

To reason on privacy properties, a game between a network model and
an observer is used, illustrated in figure 7.4. Given a public set of hosts and
routers, the network model is a ‘black box’, simulating a random communi-
cation happening in a random network. The observer can query the network
model once, requiring observations performed on a router, r, of its choice:

• For an external observer, the network model replies with the neighbor-
hood N [r] of the observed router, as well as the set datagrams[r] of
datagrams passing through r.
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Network model

Random graph and communi-
cation, given public H and R
(black box for the observer)

Observer

Query r

N [r],
datagrams[r]

Claim C∗

Figure 7.4: Privacy game for external observers.

• For an internal observer, the network model replies with the same infor-
mation as is given to an external observer, as well as the state state[r]
of the observed router.

The observer then produces a claim, C∗, which represents the meta-information
that it infers from its observations. The claim corresponds to the private infor-
mation that the observer tries to deduce from its observations. The advantage
of an observer is defined as the probability that it produces a correct claim.

Definition 7.5 (Privacy guarantee). Given a forwarding mechanism, its pri-
vacy guarantee for a privacy property is defined as 1−A, where A is the upper
bound on advantages for every possible observer.

The privacy guarantee is a number between 0 and 1 which represents a
level of privacy that is guaranteed by the forwarding mechanism. A value of 0
means that no privacy is guaranteed, and there exists an observer who always
infers the meta-information from its observations, whereas a value of 1 means
that no inference is possible.

7.3.2 Privacy Properties

This chapter considers three kinds of privacy properties: anonymity, unlinka-
bility and topology-hiding. The corresponding claims for their privacy games
are presented in this section, with illustrations provided in figure 7.5.

Anonymity

Anonymity is a privacy property capturing that an observer cannot infer what
the source or destination of a datagram are, except if the source or destination
of the datagram is a host directly connected by way of the observed router.
Anonymity is formally defined using a privacy game, where the claim of the
observer, C∗ = (b∗, d∗, h∗) ∈ {0, 1} × datagrams[r] × H, is a statement that
one of the observed datagrams, d∗, has a host h∗ as source or destination (b∗
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(b) The unlinkability claim (b∗ = 1,
p∗1 = p2, p

∗
2 = q2) is valid as p2 and q2

belong to different messages and their
destination (b∗ = 1) is identical (D).

Figure 7.5: Illustrations of valid claims.

is 0 if the claim concerns a source, 1 if it concerns a destination). The claim is
correct if d∗ is a datagram corresponding to a message m∗, such that both its
source and destination are not connected by way of the observed router r and
its destination (resp. source) is h∗ if b∗ is 1 (resp. 0). An example of a correct
claim is depicted in figure 7.5a.

Unlinkability

Unlinkability captures that an observer cannot perform statistics on the ob-
served datagrams: given a set of observed datagrams, the observer cannot infer
which datagrams have the same source or destination. Similarly to anonymity,
unlinkability is defined as a privacy game, in which the observer outputs a
claim, C∗ = (b∗, p∗1, p

∗
2) ∈ {0, 1} × datagrams[r]2.. The claim represents that

two observed datagrams, p∗1 and p∗2, which do not correspond to the same mes-
sage, have the same source or destination (b∗ = 1 for the same destination,
b∗ = 0 for the same source). The claim is correct if the observed router r
is not directly connected to the source or destination of p∗1 and p∗2, if p

∗
1 and

p∗2 correspond to two distinct messages m∗
1 ̸= m∗

2, and if they have the same
source or destination. This is illustrated in figure 7.5b.

Topology-hiding

The third privacy property captures that an observer cannot infer the net-
work topology from the observed communication. Similarly to anonymity and
unlinkability, topology-hiding is defined using a privacy game. The observer
outputs a claim C∗ = G∗ representing its guess that the network graph on which
the communication occurs is G∗. The observer wins the game if the networks
are equal: G∗ = G.

It may be infeasible for an observer to learn the entire topology of the
graph. However, the observer can learn partial information of the graph from
their observations, which increases its probability to find the exact graph used
by the network model. As privacy is measured as a probability, the advantage
of the observer reflects the amount of information learnt by the observer. This
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is true for every privacy property: privacy games are useful for assessing the
level of privacy guaranteed by forwarding mechanisms. In other words, privacy
games measure the effectiveness of forwarding mechanisms to preserve privacy.

7.3.3 Minimal Advantage

Privacy is defined in [57] by comparing the probabilities of the observer learn-
ing the secret meta-information before and after it has performed observations.
Privacy is achieved if these probabilities are equal. This definition is not di-
rectly applicable in the context of forwarding mechanisms: the claim of the
observer may depend on the observations performed, thus there cannot be a
probability, pre-observations. For example, the anonymity claim involves an
observed datagram, which exists only if the system runs. Nevertheless, it is
possible to define a base probability, as the probability that a claim chosen at
random is correct.

Anonymity and Unlinkability

For anonymity and unlinkability, this minimal probability is pmin = 1
H , where

H = |H\H[r]| is the number of hosts not directly linked to the observed router.

Indeed, if the observer selects at random a datagram whose source and
destination is not a directly connected host, then the destination of the data-
gram is in H \ H[r]. Because the communication is generated randomly, a
random choice of a host in H\H[r] would yield a correct anonymity claim with
probability pmin.

Similarly, for unlinkability, if the observer observes two random datagrams,
corresponding to distinct messages and whose source and destination are not
a directly connected host, then their destinations are in H \H[r]. Thus, there
is a probability pmin that their destinations are equal.

Topology-hiding

There is a finite number of routers and hosts, thus there is a finite number
of possible graphs for the network. An observer producing a random graph
amongst all possible has a non-zero probability, pmin, of guessing the correct
graph for the network.

7.3.4 Minimal Leakage

Definition 7.6 (Minimal leakage). Forwarding leaks information to the ob-
server, independently of the forwarding mechanism in use. This information
is denoted the minimal leakage.

A leakage game is a game, similar to privacy games, except that the network
model only gives partial information to the observer, called the leakage, and not
the complete set of datagrams passing through the observed router. Leakage
does not depend on the underlying forwarding mechanism. Leakage games
are used to represent the probability of observers breaking privacy properties,
independently of the underlying forwarding mechanism.
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Figure 7.6: Illustration of the proof of minimal leakage for external observer.
Between both games, h and h∗

0 have been swapped both in the communication
and the network. An observer located on router r would observe the same
datagram paths, but the destinations are not the same in the games.

External Observers and Datagram Paths

An external observer, O, observing a router, r, sees datagrams being forwarded
by r. This is a leakage, referred to as the datagram paths.

Every datagram p ∈ datagrams[r] being forwarded by r has an ingress
interface, ip, and an egress interface, ep. Given an observed router r, the
observed datagram paths are the set of ingress and egress interfaces for every
observed datagram, {(ip, ep)}p∈datagrams[r].

Anonymity

Proposition 7.1 (Minimal leakage for an external observer for anonymity.).
An external observer having only access to datagram paths cannot win the
anonymity game with a probability higher than the minimal winning probability,
pmin = 1

H , defined in section 7.3.3.

Proof. Let O be an observer playing the anonymity leakage game in which the
network model only gives O the datagram paths. Further, let r be the observed
router.

If an observer O wins the game, then it has produced a correct claim,
C∗ = (b∗0, p

∗
0, h

∗
0), meaning that O claims that the destination of an observed

datagram p∗0 is the host h∗
0 (if b∗0 = 0, the claim concerns the source instead of

the destination). This game win by O is later referred as the original game,
and denoted Gameh∗

0
.

There exists at least H = |H \H[r]| scenarios (distinct graphs and commu-
nications) that lead to the same datagram paths, which is the input of O in
the game. Those games are described below. Thus, O would output the claim
C∗ with the same probability as in the original game, but this claim is correct
only in one game amongst the H different ones.

For every host h ∈ H\H[r], let Gameh be the same game as Gameh∗
0
, except

that hosts h and h∗
0 have been swapped (both in the network, and in the com-

munication). As h and h∗
0 have been swapped both in the network and in the
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communication, datagrams in Gameh follow the exact same path as datagrams
in Gameh∗

0
, as illustrated on figure 7.6. In both those cases, O is given the same

input, but only wins the game in Gameh∗
0
.

Therefore, the probability that O outputs a correct claim is, at most, 1
H ,

which proves that an external observer having only access to datagram paths
cannot win the anonymity game with a probability higher than the minimal
winning probability.

Unlinkability Contrary to anonymity, an external observer having only ac-
cess to datagram paths has a higher probability of linking two datagrams than
the minimal probability. Indeed, as stated in section 7.2.2, datagrams are for-
warded along one of the shortest path between source and destination. There-
fore, if the observer selects two different datagrams being forwarded on the
same egress interface, the probability that those two datagrams have the same
destination is greater than the probability for two random datagrams. More
precisely, if there are k possible destinations behind that interface, then the
probability of the observer to win the game is 1

k , which is strictly better than
the random probability if only a strict subset of destinations is reachable by
that interface (k < |H \ H[r]|).

Topology-hiding Datagram paths add constraints on a plausible graph G: if
there is a packet coming from a router x ∈ N [r] and leaving towards y ∈ N [r],
it means that (x, y) is not an edge in the graph.

Therefore, the probability of winning the game of an observer, taking those
constraints into account, is strictly greater than the random probability.

Internal Observers and Unobfuscated Forwarding Table

Internal observers have access to the state of the observed router. This state
depends on the underlying forwarding mechanism.

However, independently of the forwarding mechanism, routers are able to
perform forwarding of initial datagrams using only their internal state. There-
fore, even if the forwarding table is obfuscated, an internal observer can infer
from the state an unobfuscated forwarding table, which associates to every des-
tination possible next-hops: nexthops[r] = {d : Xd}d∈H, where for a host d,
Xd is a set of possible next-hops for that destination from router r.

Given only a datagram path and an unobfuscated forwarding table, an
observer can find the source or destination of a datagram coming from, or
going to, next-hop x with probability 1

|Dx| where Dx is the set of destinations

such that x is a possible next-hop. Thus, if, in the leakage game, the observer
selects datagrams going towards x withDx having few members, it increases the
probability of breaking anonymity and unlinkability compared to the random
probability. Moreover, O needs only to randomly choose sub-graphs in every
Dx in order to reconstruct a plausible graph G, thus having a higher probability
of success than when the unobfuscated forwarding table is not available.
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Table 7.1: Summary of Forwarding Mechanisms.

Forwarding
mechanism

Datagram
header

Router mem-
ory

Forwarding
algorithm

IP destination IP routing table longest prefix
matching (LPM)

Encrypted IP encrypted des-
tination IP

key, routing table decryption, then
LPM

MPLS and k-
labels

label forwarding table read line in table

Encrypted
k-labels

encrypted label key, forwarding
table

decryption, read
line in table

Functional en-
cryption

encrypted des-
tination

function key apply function de-
cryption

Table 7.2: Privacy guarantees of considered forwarding mechanisms.
Green tick: minimal leakage. Red cross: no privacy. Orange approximately
symbol: partial leakage.
EIP: Encrypted IP. k-l: k-labels. Ek-l: Encrypted k-labels. FE: Functional
Encryption.

IP EIP MPLS k-l E k-l FE

Anonymity (ext. obs) ✘ ✔ ✔ ✔ ✔ ✔

Anonymity (int. obs) ✘ ✘ ✔ ✔ ✔ ✔

Unlinkability (ext. obs) ✘ ✔ ✘ ≈ ✔ ✔

Unlinkability (int. obs) ✘ ✘ ✘ ≈ ≈ ✔

Topology (ext. obs) ≈ ✔ ≈ ≈ ✔ ✔

Topology (int. obs) ✔ ✔ ✔ ✔ ✔ ✘

7.4 Privacy-preserving Forwarding Mechanisms

This section describes several methods for creating privacy-preserving for-
warding mechanisms. Studied forwarding mechanisms are summarized in ta-
ble 7.1, which describes for each forwarding mechanism the forwarding algo-
rithm, whose inputs are the datagram header and the router internal memory.
Privacy guarantees of each forwarding mechanism are evaluated and formally
proven, as summarized in table 7.2.

7.4.1 Header Encryption

In order to enhance the privacy guarantees offered by a forwarding mechanism,
it is possible to encrypt the header of datagrams, making the carried meta-data
no longer readable by external observers.

To achieve unlinkability, two identical datagram headers should never be
encrypted such that the same ciphertext results. To do so, a nonce-based
encryption scheme [392] is used: In the simplest possible configuration, every
router uses a shared symmetric key. When a host sends a message, the router
it is connected to calls Send from the underlying forwarding mechanism, and
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encrypts the datagram header using the symmetric key before forwarding it
onto the network.

When a router receives a datagram, it first decrypts its header using the
symmetric key, then calls Forward to retrieve the egress interface of the data-
gram. If the datagram header changes (e.g., because of IPv6 hop-by-hop op-
tions [65]), the header is encrypted again before being forwarded.

Header Encryption Satisfies Privacy Properties Against External
Observers

Proposition 7.2 (Privacy with Header Encryption). Header encryption pre-
vents external observers from gaining more information than the datagram
paths, as defined in section 7.3.4.

Proof. The proof is based on the indistinguishable from random bits prop-
erty [392] of nonce-based encryption schemes, which states that ciphertexts
cannot be distinguished from random bits. Therefore, external observers only
see datagrams passing through the observed router, with headers appearing to
be random. Thus, headers are not useful to the observer for deducing private
information. Therefore, the observer does not learn any additional information
than they would by observing empty datagrams.

This proves that protocols using encryption do not leak information other
than the datagram paths to external observers, and therefore preserve anonymity,
unlinkability and topology-hiding to those, as described in section 7.3.2. How-
ever, each router holds the encryption key, and thus can decrypt the encrypted
headers. Therefore, header encryption does not provide additional privacy
guarantees against internal observers than without encryption.

7.4.2 MPLS for Anonymity

Label switching, e.g., MPLS, can be used to offer anonymity, using labels to
hide the identity of destinations.

When a host, s, sends a message to a destination d ∈ H, Send converts the
public identity of d to a label d̂. This label is then used as an initial label, for
MPLS to forward the message towards its destination.

For traditional use of MPLS, labels are either assigned manually by a net-
work administrator, or automatically using signalisation protocols such as the
Label Distribution Protocol (LDP) [66].

For the purpose of this chapter, labels are distributed randomly, such that
destinations are replaced with labels. Thus, each destination is identified on
a given router by a random label, preventing observers from deducing from
labels and forwarding tables the real destination of datagrams.

More precisely, labels are distributed as follows. First, letHZ = {h(i)}h∈H,i∈J0,Z−1K
be a set containing Z copies of H. This set will be used to randomly assign
labels.

The state of every router r ∈ R is composed of a destination table and a
forwarding table. These tables are used to forward datagrams towards their
destination, while preserving privacy properties. The forwarding protocol is
illustrated in figure 7.7. The destination table is a table used by Send to
convert destinations to labels. Labels are used for forwarding: when a router
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Destination table of R0

Dest Next Label
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Forwarding table of R1

Input Next Label
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Figure 7.7: Illustration of MPLS and of the k-labels protocol. Host S sends
a message to host D. It forwards it to its linked router R0. R0 reads the
next-hop R1 and label α in its destination table at entry D. Upon reception,
R1 reads the entry with input label α of its forwarding table: it contains the
next hop R2 and new label β. The same happens with R2, which forwards the
datagram to host D.

receives a datagram, the label contained in the datagram header is used to find,
in the forwarding table, the next-hop and next label of the datagram.

On the assumption that there exists routes between a router, r, and every
host, both tables of r are filled as follows:

1. A permutation σr : H2 → J1, 2|H|K is chosen uniformly at random.

2. For each destination d ∈ H, not connected by r, whose next hop is
x ∈ N [r], set:

• destinationr[d] = (x, σx(d
(0)));

• forwardingr[σr(d
(0))] = (x, σx(d

(1)));

• forwardingr[σr(d
(1))] = (x, σx(d

(1))).

3. Entries are added in the destination table and forwarding table for hosts
connected by r, signifying that forwarding is immediate.

With this construction, for every destination d ∈ H, there are exactly two
labels in the forwarding table that correspond to d: σr(d

(0)) and σr(d
(1)).

Moreover, this construction ensures that datagrams entering r, and whose des-
tination is d, have one of those two labels as header.

Routers do not keep the permutation as part of their internal state, only
the tables. This enables a separation of labels between the destination table
and the forwarding table, which guarantees anonymity.

MPLS Ensures Anonymity Against Internal Observers

This section proves that internal observers are not able to learn more informa-
tion than the unobfuscated forwarding table, as defined in section 7.3.2. For
anonymity, it means that given a datagram p whose next-hop is x, the internal
observer knows only that the destination of the datagram is in Dx, the set of
destinations such that x is a possible next-hop.
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Given an internal observer, O, which guesses that some datagram p∗ with
next-hop x has a host d∗ as destination, it is possible to construct |Dx| states
such that only one instance (p∗, d∗) is a correct guess. Indeed, for any des-
tination d ∈ Dx, it is possible to create an alternative forwarding table by
swapping the labels for d and d∗ in the forwarding table. Because labels are
chosen uniformly and randomly, every forwarding table is equally probable.
However, the guess of O is right only in the case where d = d∗, which proves
that its probability of winning is lower than 1

|Dx| .

This proves that internal observers cannot distinguish datagram destina-
tions from anonymity sets Dx for x ∈ N [r]. A similar argument be made,
which shows that MPLS does not reveal information about the network topol-
ogy to the observer. However, two datagrams corresponding to two different
messages, but going to the same destination, share the same label. Therefore,
unlinkability is not guaranteed. As shown in the previous section, header en-
cryption (with MPLS as base forwarding mechanism) can provide unlinkability,
but only against external observers.

7.4.3 k-labels Forwarding Mechanism

With both IP forwarding and MPLS, datagrams passing through a router,
and going to the same destination, carry the same identifier. This prevents
unlinkability.

To counter this, the k-labels mechanism associates more labels (for example,
k) to each destination. With this technique, given k datagrams with distinct
labels, it is not possible to know the number of distinct destinations of those
datagrams. For example, it is not possible to distinguish if those k datagrams
have k distinct destinations, or if they are all going to the same destination.
This results in an increased number of datagrams needed for an observer to link
datagrams. However, if k + 1 datagrams have the same destination, according
to the pigeonhole principle [67], at least two datagrams share the same label,
so unlinkability is limited.

The k-labels mechanism extends MPLS. Its construction is similar to MPLS,
except that at each router, 2k labels are used for a given destination.

As with MPLS, a random permutations are used to generate labels. The
permutations transpose 2k versions of H instead of 2: for every router r ∈
R, a permutation σr : H2k → J1, 2k|H|K is chosen uniformly and randomly.
Every router, r, uses k labels per destination to create initial datagrams. For
forwarding, there are 2k distinct labels used for the same destination. The
forwarding table and destination table of a router r are populated as follows:

• destinationr[d] = (x, {σx(d
(i))}i<k) for every destination d with next-

hop x.

• forwardingr[σr(d
(i))] = (x, σx(d

(k+i%k))) for every destination d and
every i ∈ J0, 2k − 1K.

Send randomly selects a label from destinationr[d]. Forwarding for the
k-labels mechanism works exactly like MPLS forwarding.
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k-labels Unlinkability

If two labels are reused, then an observer can infer that those two datagrams
have the same destination. Nevertheless, an internal observer cannot produce
definitive statistics on the observed communication, in the sense that given l
datagrams with distinct labels going towards the same next-hop, the observer
cannot infer which datagrams have the same destination.

k-labels Topology-hiding

For IP and MPLS, every datagram seen by an external observer adds a con-
straint on the plausible network as the observer learns the existence of a des-
tination behind that interface.

The observer learns this information immediately for IP and for MPLS,
whereas it requires at least k + 1 datagrams for the k-labels mechanism.

Internal observers already know the distribution of destinations behind ev-
ery next-hop: they cannot learn more information from observing the traffic
from the k-labels mechanism.

7.4.4 Functional Encryption

Functional encryption [226] is an encryption technique which enables to se-
curely transmit messages, while allowing holders of a functional key to learn
specific information on the message, but without learning more than is autho-
rized.

Functional encryption is leveraged for privacy-preserving forwarding. To do
so, datagrams carry information on the path they are following. This informa-
tion is encrypted using the functional encryption scheme, and each router can
only reveal the local information on the path of the datagram (i.e., the next
hop).

More precisely, inner-product functional encryption is leveraged for privacy-
preserving forwarding. In an inner product functional encryption scheme [388],
messages are vectors, x, and functions are inner products: fy : x 7→< x,y >,
where y is a vector.

To configure a communication network, every router, r, first assigns a ran-
dom identifier (an integer) to their neighbors. This assignment is a permuta-
tion, σr : N [r] → N, associating to every neighbor of r an integer. Then, for
every possible host d ∈ H, let x(d) be a vector of size |R|. For every router r,
the r-th coordinate of x(d) is the integer representing the egress interface of r

on which a datagram going towards d must be forwarded: x
(d)
r = σr(y), where

y is the next hop for d from r.
Those vectors are stored in each router, and act as the destination table of

the router: for every possible destination, they describe an encoded version,
due to the permutation used in each router, of the complete path to reach
the destination. Additionally, every router, r, is configured with a secret key
corresponding to the function fer , with er the vector all 0, except coordinate
r being 1.

When a datagram is to be sent to d, x(d) is encrypted using functional
encryption. Let y(d) be the ciphertext that results. This ciphertext is included
in the header of the datagram. When a router, r, receives a datagram whose
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Table 7.3: Internal memory required in a router for studied forwarding mech-
anisms.

IP Encrypted
IP

k-labels Encrypted
k-labels

Functional
encryption

O(|N [n]|) O(|N [n]|) 2k|V| 2k|V| O(|H|·|R|)

header contains y(d), it computes, using its secret key:

fer
(x(d)) =< er,x

(d) >= x(d)
r = σr(y).

As the router knows σr, it learns the correct next hop, and forwards the data-
gram.

Privacy Properties Guaranteed by Functional Encryption

Functional encryption is a form of encryption. Therefore, the results from
section 7.4.1 apply, and the forwarding mechanism preserves anonymity and
unlinkability against external observers.

Moreover, the functional encryption security property ensures that given a
functional key, no information, besides the return value from the function, can
be learnt from the ciphertext. When forwarding, functions only provide the
next hop for a given datagram. Therefore, functional encryption also preserves
anonymity and unlinkability against internal observers.

However, every router stores a copy of the route vectors, which contain
information on the route of datagrams. This provides an internal observer
with information on the network topology, for example the degree of routers in
the graph.

7.5 Performance Evaluation

This section presents an evaluation of the performance of the different forward-
ing mechanisms, presented in section 7.4, including the memory necessary to
store the state for every forwarding mechanism in each router and, experimen-
tally, the time necessary to forward datagrams.

7.5.1 Memory Computation

The IP protocol [64] uses a forwarding table to forward incoming datagrams.
Forwarding tables are designed to be compressed using tree algorithms for
better efficiency, leading on average to O(|N [r]|) entries for a router r [68].

MPLS uses memory in each router, proportional to 6|H|: the destination
table has |H| entries consisting of a label and a next-hop, and the forwarding
table has 2|H| entries each composed of a label and a next-hop. More generally,
the k-labels mechanism requires memory proportional to (1+5k)|H|: |H| entries
of size 1+k in the destination table and 2k|H| entries of size 2 in the forwarding
table.

Encryption only adds a symmetric key to the state, but does not change
the orders of magnitude of the required memory.
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Functional encryption requires to store functional encryption keys and des-
tination vectors. Both keys and destination vectors are vectors of size |R|:
their size is proportional to the number of routers in the network. Each router
needs to store |H| destination vectors. Thus the required memory, O(|H|·|R|),
is very high compared to the other considered protocols. Moreover, ciphertexts
in functional encryption are also vectors of size |R|, which need to be trans-
mitted with every datagram. With current functional encryption schemes, this
is unpractical for networks larger than dozens of routers.

These results are summarized in table 7.3.

7.5.2 Experimental Benchmarking Environment

A test-bed for evaluating the performance of forwarding mechanisms is con-
structed, which consists of a Raspberry Pi, acting as a router, and a client.
The Raspberry Pi is a Raspberry Pi 4 Model B with 4GB of RAM. The router
is connected to the client using a single Ethernet cable. This physical inter-
face is associated with several virtual interfaces, each on a different VLAN.
The router listens on every virtual interface and forwards datagrams on those
virtual interfaces.

Performance is measured as the CPU time used by the forwarding process
to forward each datagram. The forwarding process runs on an isolated core to
prevent other processes from interfering with the measures. As the code is not
optimized for the specific CPU architecture and runs in user space, the raw
value of the processing time is not particularly relevant: only the comparison
between protocols is considered in this chapter.

In the experiment, the router acts as a member of a fat tree data centre
architecture [393], which is an architecture used in the financial, medical, gov-
ernment and military sectors [69], where privacy may be desirable. Therefore,

if the router has k interfaces, there are k3

4 hosts in the data centre, exchanging
messages passing through the router.

Traffic

The router is exposed to UDP datagrams containing messages going from a
random host to another random host. 300 datagrams per interface are gener-
ated, to measure forwarding time. All traffic used in this simulation is based on
IPv6. An IPv6 routing header [65] is used to store the labels or encrypted IP
addresses. For protocols requiring nonce-based encryption, AES-CTR with a
key length of 128 bits is used. The full implementation is available on GitHub1.

7.5.3 Results

Figure 7.8 depicts the measured performance of the studied forwarding mecha-
nisms. 95% confidence intervals for the average forwarding time are displayed
as vertical bars on the figures.

Figure 7.8a depicts the performance of the k-labels mechanism for differ-
ent values of k. The only differentiating factor is the presence, or absence,
of encryption. Performance is similar for different values of k. Indeed, label

1https://github.com/apoirrier/encrypted-router

https://github.com/apoirrier/encrypted-router
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(a) Comparing k-labels between them-
selves.
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Figure 7.8: Comparison of average forwarding times.

switching is performed in constant time, which does not depend on the for-
warding table size. The main impact of increasing the number of labels per
destination is on the size of the state in every router. Therefore, in figure 7.8b,
MPLS represents the performance of the k-labels mechanism.

Without encryption, the k-labels mechanism is faster than IP, as next-hops
can be directly accessed by performing a simple pointer operation, as opposed
to tree algorithms used by IP. Note that the k-labels mechanism uses more
space than plain IP forwarding in those instances, as described in table 7.3.
Encrypted IP is around 8 times slower than regular IP forwarding, as for every
packet forwarded, one AES decryption operation is needed. Encrypted k-labels
are around 20 times slower than unencrypted k-label forwarding, as there needs
to be two AES operations: one decryption of the incoming label and one en-
cryption for the outgoing label. Functional encryption has not been shown on
the figure, as the forwarding time for a datagram is more than 100000 times
larger than for ‘classic’ IP forwarding.

7.6 Discussion

As presented in table 7.2, IP forwarding does not guarantee anonymity nor
unlinkability. There are several ways to address this.

7.6.1 Datagram Header Encryption

A first solution is to encrypt datagram headers using a shared key. This guar-
antees privacy properties, albeit only against external observers, as discussed
in section 7.4.1. This comes at the expense of a forwarding operation 8 times
slower, as shown in figure 7.8b.

Having a slower forwarding operation has several impacts on an operational
network. The electricity consumption of routers increases, thus requiring more
batteries if the router is a portable device. Routers can also process fewer
datagrams per time unit, which may increase network congestion in case of
heavy traffic.
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7.6.2 Datagram Header Obfuscation

The second solution presented in this chapter is to replace destination IP ad-
dresses with labels. As discussed in table 7.2, this provides anonymity, but only
partial unlinkability, both against external observers and internal observers.

Contrary to datagram header encryption, the k-labels mechanism forwards
datagrams with a time equivalent as IP forwarding, as presented in figure 7.8b.
The degree of unlinkability corresponds to the amount of traffic that an observer
needs to observe, before being able to know which datagrams have the same
source or destination. This degree is configurable by way of the number of
labels per destination (k). Whereas increasing the number of labels does not
impact forwarding time, as depicted in figure 7.8a, the required memory in
each router increases linearly with k, as shown in table 7.3.

Finally, it is possible to encrypt labels in the k-labels mechanism. This
provides ‘perfect’ unlinkability against external observers at the expense of a
forwarding operation 20 times slower than the unencrypted k-labels mechanism.

7.6.3 Functional Encryption

While using functional encryption enables to preserve anonymity and unlink-
ability, even against internal observers, functional encryption schemes are not
practical, because of the prohibitive additional memory in routers and data-
grams, as well as forwarding times more than 100000 larger than for ‘classic’
IP forwarding.

7.6.4 Related Work Analysis

Overlay solutions such as tunnel-based solutions and onion routing protect
the anonymity of the communication, and, in some extent, the unlinkability.
However, the network topology is supposed known. In terms of performance,
datagrams are encrypted, which adds an encryption overhead. Moreover, data-
grams follow longer paths than the optimal path, which may incur significant
delay for the communication. Nevertheless, this strategy enables stronger pri-
vacy properties to be achieved, as it is no longer assumed that datagrams take
a direct route between source and destination, enabling the anonymity set to
be greater than the one presented in section 7.3.4.

Solutions based on encryption, such as homomorphic routing [62], preserve
the anonymity of the communication by creating temporary routes for each
flow. Per-flow state is not needed in routers, however the size of datagrams
is increased similarly to the functional encryption technique presented in this
chapter. For performance reasons, unlinkability is not guaranteed for data-
grams in a same flow.

7.7 Summary

This chapter has proposed, and evaluated, three privacy properties: anonymity,
unlinkability, and topology-hiding, in the context of forwarding mechanisms.
Those privacy properties represent the fact that some information is kept secret
from observers while forwarding datagrams.
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This chapter has proposed new forwarding mechanisms, which do not im-
pact the datagram paths, and can be used as a direct replacement for for-
warding mechanisms such as IP. They are derived from IP and MPLS, to offer
anonymity, unlinkability and topology-hiding against external and internal ob-
servers.

The first forwarding mechanism is derived from MPLS and uses multiple
labels to represent the same destination. This enables a forwarding perfor-
mance comparable to IP or MPLS, while augmenting privacy, at the expense
of a memory overhead in every router. The second forwarding mechanism uses
encryption. This hinders forwarding performance as cryptographic operations
are needed for every datagram, but provides optimal privacy against external
observers. Finally, the use of functional encryption for providing optimal pri-
vacy against both external and internal attackers has been evaluated. While
it theoretically provides optimal privacy, the memory overhead in datagrams
and routers make it impossible to use.

Experimental benchmarks have been performed to evaluate performance,
and serve as a proof-of-concept for preserving privacy in forwarding opera-
tions.
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Chapter 8

Conclusion

The increasing complexity of IT services has driven organizations to out-
source these functions, allowing them to leverage outsourced expertise without
assuming responsibility for implementation and maintenance. This is char-
acterized by the adoption of cloud hosted Software-as-a-Service, Platform-as-
a-Service, and Infrastructure-as-a-Service offerings. Furthermore, the rise of
remote work and Bring-Your-Own-Device policies has transformed the use
of IT services, as employees increasingly rely on unmanaged devices or un-
trusted networks to access organization resources. These evolutions of IT us-
age have profoundly impacted IT architectures, transitioning from controlled,
perimeter-based systems to dynamic frameworks that incorporate untrusted
systems and networks. Concurrently, the frequency and complexity of cyber-
attacks have escalated, with insider threats and Advanced Persistent Threats
posing a significant risk to cybersecurity. The concomitant evolution of cyber-
attacks, IT infrastructures, and IT usage has led to the emergence of a new
security paradigm: zero trust.

This approach is founded on the principle ‘never trust, always verify’, aban-
doning traditional perimeter-based security models in favor of continuous au-
thentication and dynamic authorization. Zero trust establishes robust security
principles for securing organizations, by creating micro-perimeters to protect
resources with a fine granularity, while also leveraging enhanced identity, dy-
namic access control, and real-time monitoring of users, systems, networks, and
assets.

However, migrating from traditional architectures to zero trust architec-
tures presents significant challenges. Implementing zero trust requires the in-
tegration of multiple technologies and capabilities, which is difficult due to
the lack of clear guidelines for achieving high maturity levels in zero trust
implementations. Furthermore, evaluating the formal security posture of an
architecture is complex, as is its adequation with real-world threats. These
challenges are addressed in this manuscript.

This thesis has, in part II, provided an in-depth analysis of zero trust.

Specifically, chapter 2 has presented a comprehensive survey of zero trust
definitions, technologies, and existing architectures, studying extensively its
core principles and their manifestations in migration strategies, capabilities,
and technologies. This enabled the development of a formalized framework,
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for positioning architectures relatively to their compliance with the zero trust
paradigm. This framework was at the origin of improvements for zero trust pro-
posed in part III and of discussions on IT security presented in part IV. While
zero trust increases the security posture of organizations following its princi-
ples, it also introduces new vulnerabilities and does not guarantee protection
against every threat, therefore requiring formal analyses for understanding the
benefits and trade-offs of zero trust.

Chapter 3 demonstrated how to construct a practical zero trust architecture
by modifying and integrating several open-source components. The resulting
construction yields a proof-of-concept implementation with advanced zero trust
maturity, which was used as a base zero trust architecture throughout this
manuscript.

Then, part III investigated the discrepancies between existing zero trust
literature and the underlying principles.

Specifically, chapter 4 highlighted that current zero trust architectures pri-
marily focus on securing endpoints to resources and data, while neglecting the
protection of data at rest and effective management of encryption keys. To
address this gap, chapter 4 proposed a method for enhancing a base zero trust
architecture with data-centric security, by incorporating Attribute-Based En-
cryption capabilities within the architecture. This approach encrypts data to
maintain confidentiality and integrity, only allows authorized entities to de-
crypt it, and offering greater flexibility in storing sensitive data. Overall, the
proposed method effectively addresses the data pillar of zero trust maturity
models.

Chapter 5 explored part of the identity and automation pillars of zero trust
maturity models. In the context of secure messaging, an extension to the
messaging protocol is proposed, that integrates automation into continuous
authentication. This approach reduces the need for manual interventions in
securing communication channels, while also enhancing the formal security of
continuous authentication.

Finally, part IV examined the practical applications of zero trust architec-
tures in real world scenarios, assessing the effectiveness and relevance of the
security posture achieved through zero trust.

Chapter 6 explored how it is possible to federate zero trust architectures.
Indeed, even if an organization is secure through zero trust, it may still need
to share data or services with another organization. However, the zero trust
paradigm prevents the implicit trust of the foreign organization. To address this
challenge of ‘trust in a zero trust world’, an approach that leverages the remote
attestation technology was proposed, to explicitly verify the trustworthiness of
the foreign organization.

Chapter 7 took a step further by postulating that confidentiality, integrity,
availability, and authenticity of data and services are insufficient for ensuring
security, as metadata can also reveal sensitive information. Therefore, the
chapter investigated how to perform operations, e.g., network layer forwarding,
while preserving the privacy of the communication.

In sum, the work and results presented in this thesis consist of:
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1. A comprehensive survey and taxonomy of zero trust definitions, technolo-
gies, and architectures, resulting in an evaluation framework for assessing
the zero trust maturity of architectures, submitted to a journal;

2. A proof-of-concept zero trust architecture, based on open-source com-
ponents, demonstrating how to build zero trust architectures through
modification and combination of various products – this work has been
presented in a workshop and submitted to a journal;

3. A method for integrating data-centric security within a zero trust archi-
tecture, submitted to a conference;

4. An extension to messaging protocols that automates continuous authen-
tication, further enhancing post-compromise security properties – this
work has been presented in a workshop and published in a conference;

5. A method for enabling multiple organizations using zero trust architec-
tures to share resources and data, while not implicitly trusting other
organizations, published in a conference and submitted to a journal;

6. A study on privacy considerations on untrusted network infrastructures,
submitted to a journal.

The results achieved in this thesis have demonstrated the value of formaliz-
ing IT security in designing precise and relevant goals for improving the security
of organizations. This contribution complements existing studies on IT security
and zero trust, by providing a framework for positioning architectures relative
to their compliance with the zero trust paradigm, as well as deepening the
understanding of zero trust and IT security.

To conclude, the approach proposed in this thesis helps bridge the gap be-
tween existing zero trust architectures and the zero trust model. By extending
the definition of IT security to better suit with real-world threats, this thesis
helps organizations in developing strategies for improving their security pos-
ture, predicting and mitigating threats, and assessing precisely their maturity.

However, studies performed throughout this thesis have shown that, even
though zero trust enhances the security and visibility within organizations,
it also introduces additional threats. The numerous additional products and
technologies needed to reach higher levels of zero trust maturity increase the
attack surface and dependencies in potentially uncontrolled products. Further-
more, performing zero trust without initial trust – or trust in administrators,
or in the system itself – is not feasible, as a root-of-trust is always required.
The paradigm is called ‘zero trust’ because the system does not trust users –
but conversely, users of the system need to implicitly trust the system and its
administrators.

8.1 Perspectives

The evaluation framework developed in this thesis offers a tool for identify-
ing potential research directions for enabling zero trust within architectures,
therefore to enhance the security and privacy of individuals and organizations.
More precisely, the following improvements can be considered:
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• Chapter 2 has provided an overview of the fundamental principles of
zero trust, as well as their potential benefits, limitations, and drawbacks.
Investigating in more details the vulnerabilities brought by zero trust
technologies, as well as the implications of transitioning to zero trust on
users and administrators, would benefit the organizations undertaking a
zero trust migration. Furthermore, whereas this thesis has focused on
technical aspects of zero trust, research related to zero trust governance
is scarce in the academic and industrial literature.

• Part III presents strategies for enhancing the zero trust capabilities of
existing architectures through technology integration. Further research
is necessary to reach higher levels of maturity. For example, Endpoint De-
tection and Response (EDR) and eXtended Detection and Response (XDR)
have been developed to detect and analyze threats on devices. Research
into improving EDR and XDR capabilities by integrating Artificial Intel-
ligence (AI) techniques can enhance the precision of threat detection.

• The proof-of-concept presented in chapter 3 has demonstrated the chal-
lenges involved in building an architecture with high zero trust maturity,
as multiple developments are required to integrate various technologies.
Therefore, the establishment and wide-spread adoption of zero trust stan-
dards are essential for improving the interoperability of zero trust tech-
nologies, e.g., the development – and adoption by the industry – of a
standard zero trust data format.

• Part IV presents examples of limitations inherent to the zero trust frame-
work. Research is needed to address the vulnerabilities introduced in zero
trust architectures, e.g., developing strategies to prevent attacks on sin-
gle points of vulnerability, including the protection of the controller in
the device agent/gateway model, and of the access proxy in the resource
portal model.



Appendix A

Top-of-Rack-Assisted
Load-Aware and Server-Agnostic
Load-Balancing

While this thesis focuses on IT security, additional work was performed on how
to improve network resources, which is presented in this appendix. While it is
not directly relevant to the topic of this thesis, it enables to better understand
constraints and requirements of networks, especially data centre networks.

Network load balancers optimize the use of computing resource in data cen-
tres, reducing response time and improving quality of service, by distributing
requests among application instances running on servers. This chapter proposes
ToRLB, a lightweight load balancing strategy that infers server occupancy to
dispatch requests, without requiring cooperation from servers, computing per-
packet statistics, or storing per-flow state.

ToRLB splits load balancing decisions between load balancers and be-
tween Top-of-Rack switches, which are on the path between load balancers
and servers. This improves scalability, as load balancers remain server agnos-
tic and perform simple operations. The performance of ToRLB is evaluated
through extensive experiments on a simulation platform, demonstrating that
it approaches the performance of state-of-the-art load balancing strategies, de-
spite having limited information available.

A.1 Statement of Purpose

Cloud services expose data centres to substantial traffic volumes, with some
single IP addresses handling over 100 Gbps [394]. To meet Service Level Agree-
ments (SLA) and Quality-of-service (QoS) guarantees negotiated with cloud
services consumers [395], [396], applications are replicated and distributed on
several servers within data centres, using virtualization and containerization
for providing scalable services [260].

Several data centre switching fabrics architectures have been designed to
achieve high throughput, while reducing costs for large scale deployments.
Among these, Clos networks [397], e.g., fat-tree [393] or VL2 [398], are hi-
erarchical architectures composed of four stages, depicted in figure A.1. Nodes
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Figure A.1: Example Clos-based data centre fabrics architecture.

Client

Load Balancer

Servers

(1) SYN (2)

(3), (6)

(4) !SYN (5)

Figure A.2: Workflow of a network load balancer.

in the lowest tier are servers, which are grouped into racks. Each server in a
rack is connected to a Top-of-Rack (ToR) switch, part of the Edge layer. ToR
switches are in turn connected to one or more switches, part of the Aggregation
layer. Finally, Core switches connect aggregation switches.

When a client initiates a TCP request1 for an application hosted in a data
centre, it sends a SYN packet with a destination IP address that uniquely
identifies the application, referred to as the Virtual IP address (VIP). This
packet is forwarded to a Load Balancer (LB), which selects a server responsible
for processing the request [400]. Servers are identified within the data centre
by their Direct IP addresses (DIP).

LBs are required to ensure Per-Connection Consistency (PCC) [401], i.e.,
ensuring that packets from the same flow are forwarded to the same server,
even if the number of servers or of LBs changes.

The workflow of an LB is depicted in figure A.2. Upon receiving a TCP
SYN packet (arrow 1), the LB selects a server to dispatch the flow to (arrow
2). The chosen server responds using Direct Server Return (DSR) mode [400],
bypassing the LB (arrow 3). Subsequent packets in the flow directed to the VIP

1Load balancing protocols are presented in this chapter for TCP connections, but are
also applicable to connection-oriented transport protocols, e.g., QUIC [399].
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pass through the LB (arrow 4), and are forwarded towards the same application
instance (arrow 5), ensuring PCC. Answers from the server are also returned
using DSR mode (arrow 6).

Additionally, LBs aim to optimize fairness, i.e., balancing flows on servers
to prevent under- or over-loading of provisioned resources, thereby optimizing
QoS [402], [403].

A.1.1 Related Work

One approach for load balancing is Equal-Cost Multi-Path (ECMP) [404],
which distributes flows evenly on servers.

Several load balancing solutions, e.g., Rubik [405], Silkroad [406], and
Duet [407], employ ECMP as their load balancing strategy. To ensure PCC,
these solutions store per-flow state in each LB, mapping each flow identifier
(e.g., the TCP 5-tuple, composed of source and destination IP addresses, of
source and destination ports, and of the protocol number) to the DIP of the
server that handles the flow. However, when multiple LBs are used simultane-
ously, this state needs to be replicated across all LBs to ensure PCC.

To avoid state replication and synchronisation between LBs, Ananta [394]
and Maglev [408] use hashing mechanisms to preserve PCC. Upon receiving
a TCP SYN packet, each LB hashes the TCP 5-tuple of the packet and di-
vides the result by the number of servers hosting an application instance. The
remainder of that division identifies the server that will handle the flow. As
subsequent packets in the flow have the same TCP 5-tuple as the SYN packet,
performing the same operation ensures that any LB sends packets to the same
server, guaranteeing PCC without per-flow state, even if several LBs are in use.
However, this approach tries to approach, but does not guarantee PCC if the
number of servers changes, as the remainder of the division also changes. Alter-
native hashing mechanisms, e.g., consistent hashing [409], reduce the number
of flows that are closed when the number of servers changes.

Alternatively, Faild [410] and Beamer [411] use daisy chaining [412] to
further reduce the number of reset connections when the number of servers
changes. This approach involves replicating application state for every flow
across two servers, with packets in the flow visiting each server in sequence
(the daisy chain). Thus, if a server fails, the other takes over the connection.

While ECMP distributes flows uniformly to servers, it does not account
for heterogeneous servers, e.g., in terms of computing capacity. In such cases,
ECMP creates an imbalanced distribution of flows on servers, thus not opti-
mizing fairness [408]. Therefore, Ananta [394], Maglev [408], Concury [413],
and Prism [414] rely on Weighted-Cost Multi-Path (WCMP) [415] instead. In
WCMP, weights are statically assigned to servers based on their computing
capacities. However, as weights are static, they can diverge from actual com-
puting capacities if these change, resulting in suboptimal fairness [408].

To overcome weights divergence, Spotlight [402], LBAS [416], and Yoda [417]
actively probe servers to estimate their computing capacities in real time. This
load balancing strategy, referred to as Active WCMP (AWCMP), induces addi-
tional traffic in the data centre, and requires server modifications for signalling
their computing capacities.

To remove the need for active signalling, INCAB [418] and HLB [403] pas-
sively observe traffic, and leverage statistical analysis to infer the computing
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capacities of servers – the former using Bloom filters [419], the latter using
Kalman filters [420].

WCMP, AWCMP, and statistics-based strategies are stateful, requiring per-
flow state to be stored into LBs for ensuring PCC. This impacts the throughput
of LBs [421], and reduces their resilience against Denial-of-Service (DoS) at-
tacks, which exhaust LB memory [411].

Instead of storing flow mappings into LBs, CHEETAH [401] stores servers
identifiers into packets, by adding ‘cookies’ to packets. These cookies are stored
in TCP Timestamps [422] or QUIC header connection-id fields [399], which
are mirrored by clients, establishing a covert channel between servers and LBs.
This enables LBs to extract the information stored into the cookie, and to
forward packets to the correct server.

Similarly, SHELL [423] and Charon [424] leverage this covert channel for
stateless load balancing. Instead of relying on LBs to estimate computing
capacities, SHELL [423] and 6LB [425] offload the decision-making process
to servers by leveraging the power of two choices [426]: LBs select a set of
candidate servers for each flow (e.g., with consistent hashing), which are daisy
chained using IPv6 Segment Routing (SR) [427]. When a server receives a SYN
packet, it decides whether to accept the flow or to forward it to the next server
in the chain, based on its computing capacity and current load.

A.1.2 Statement of Purpose

In SHELL and 6LB, all servers must be modified to support load balancing:
they need to be SR-capable, and to monitor their load. Moreover, they cannot
be turned off, as they are required to participate in the load balancing protocol.
Additionally, their acceptance policy, which decides whether an incoming flow
is handled by the server or sent to the next server in the chain, may not always
make optimal decisions: just because a server is able to process a request does
not mean that it is the best one for doing so.

This chapter proposes ToRLB, a stateless and server-agnostic network load
balancer. Unlike SHELL and 6LB, which offload load balancing decisions to
servers, ToRLB delegates part of the decision-making process to ToR switches.
This enables the use of estimated server loads without modifying the servers
themselves, as well as allowing servers to be shut down when needed. By
using estimated server loads, ToRLB ensures fairer load balancing, and saves
resources in the data centre by requiring fewer active servers. Additionally,
ToRLB enables incremental deployability, by being able to operate seamlessly
in a heterogeneous data centre that combines regular ToR switches with ToRLB
ToR switches.

Figure A.3 depicts the key components of the ToRLB architecture. Clients
initiate requests that are sent to a data centre with a Clos network topology.
Requests are forwarded to LBs, at the transport layer. In ToRLB, modified
ToR switches infer server loads, based on passive observations of network flows,
without requiring explicit signalling from servers. When a new flow is received
by an LB, the LB selects a rack to which the flow is forwarded. The ToR switch
of that rack then chooses a server to which the flow is sent. PCC is ensured
through a covert channel in TCP packets, similar to the solution proposed in
Charon [424].
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Figure A.3: Data centre architecture considered in this chapter.

The fairness of ToRLB is evaluated and compared to other load balancing
strategies through simulations. The chapter also discusses the impact of the
additional requirements for ToR switches on the overall system.

A.1.3 Chapter Outline

The remainder of this paper is organized as follows. Section A.2 provides an
overview of the proposed load balancing strategy, ToRLB. Sections A.3 and A.4
delve deeper into the key components of ToRLB, LBs and ToR switches. Sev-
eral policies are considered for both LBs and ToR switches, each with distinct
requirements. Section A.5 describes the simulation environment used to com-
pare ToRLB policies, and to compare ToRLB with other load balancing strate-
gies. It also provides an analysis of the fairness offered by ToRLB. Finally,
section A.6 concludes this chapter.

A.2 Overview of ToRLB

ToRLB is a load balancing system with two main components: load bal-
ancers (LBs), and Top-of-Rack (ToR) switches. When an incoming flow is
forwarded to an LB, the decision on which server to assign the request for
processing is distributed between the LB and ToR switches.

All traffic entering or exiting a rack passes through its corresponding ToR
switch, allowing ToR switches to passively monitor traffic, for estimating the
load of each server within their rack.

A.2.1 ToRLB Workflow

Figure A.4 depicts the workflow of a TCP flow handled by a data centre. The
process begins when a SYN packet is forwarded to an LB (arrow 1). The LB
selects a rack based on its load balancing policy, as described in section A.3.1.
In this example, the LB chooses rack 2, and the SYN packet is forwarded to
the ToR switch of rack 2 (arrow 2).
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Figure A.4: Workflow of ToRLB.

Upon receiving the SYN packet, the ToR switch chooses a server within the
rack for processing the flow, as detailed in section A.4.1. In this example, ToR
2 forwards the flow to server 5, because it is the least loaded (arrow 3).

Following the TCP state machine, the application responds to the SYN
packet with a SYN-ACK packet. ToR 2, being connected to server 5, intercepts
the SYN-ACK packet (arrow 4), and inserts, into a covert channel in the packet,
the index of the rack and a local identifier for the chosen server. The procedure
is similar to methods presented in [401], [423], and is described in section A.4.2.
The SYN-ACK is then sent to the client, using DSR mode (arrow 5).

The value inserted by the ToR switch is mirrored by the client in the ACK
packet (arrow 6). When an LB – which may be distinct from the LB having
received the SYN packet, e.g., if the set of LBs changes and packets are dis-
tributed to LBs using consistent hashing – receives the ACK packet, it extracts
the index of the rack from the covert channel, and forwards the packet to this
rack (arrow 7). Upon receiving the packet, the ToR switch extracts, from the
covert channel, the identifier for the server, and forwards the packet to the
designated server (arrow 8).

Subsequent packets in the flow follow the same path as the SYN-ACK and
ACK packets (arrows 4 to 8).
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Table A.1: LB policies in ToRLB.

Policy Description

ECMP Select a rack randomly following a uniform distribution.
LSQ Record the number of active flows in each rack, and select the

least loaded.
AWCMP Select a rack using weights, given by ToR switches.
WLSQ Combination of LSQ and AWCMP.

A.3 ToRLB Load Balancer

The ToRLB Load Balancer needs to perform two tasks: selecting a suitable
rack for incoming flows, and ensuring PCC for ongoing connections.

A.3.1 Load Balancer Policies

When a SYN packet arrives at the data centre, the LB selects a rack to forward
the packet to. This section explores four policies for making this selection,
summarized in table A.1.

The first policy is a random selection of a rack with uniform probability,
similar to an ECMP strategy, e.g., using consistent hashing on racks. This
policy is the easiest to configure, and does not require additional state to be
saved on LBs.

The second policy is Local Shortest Queue (LSQ), in which LBs keeps track
of the number of active flows they have forwarded to each rack, by maintaining
one counter per rack. This additional state is of the same magnitude as state
already used by LBs for forwarding. When a SYN packet arrives at an LB, the
LB forwards the packet to the rack with lowest counter value, and increments
the corresponding counter. When a TCP connection closes, observed with RST
or FIN packets, the counter is decremented. As LBs need to monitor the start
and end of each connection, LSQ is only relevant if all packets in a flow are
forwarded to the same LB, e.g., if packets are forwarded to LBs using consistent
hashing.

The third policy is based on AWCMP. Weights correspond to the number
of servers in each rack. This information is known by ToR switches, as they
are directly connected to servers in the rack. Thus, if a server is shut down,
or is brought up, the ToR switch is aware of this change. In ToRLB, weights
are updated passively, by including server counts in the covert channel of each
packet leaving a rack, along with PCC information. LBs retrieve this informa-
tion when packets arrive at the data centre. This method produces less precise
weights than traditional AWCMP, but does not require active probing from
LBs.

The fourth policy is Weighted LSQ (WLSQ), which combines LSQ and
AWCMP. LBs use both rack occupancy from LSQ and rack computing capac-
ities from AWCMP, by selecting the rack with the lowest ratio occupancy over
computing capacity.
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Table A.2: ToR switch policies in ToRLB.

Policy Description

ECMP Select a rack randomly following a uniform distribution.
WCMP Select a rack randomly following manually configured weights.
LSQ Record the number of active flows in each server, and select the

least loaded.
WLSQ Combines WCMP and LSQ.

A.3.2 Maintaining Per-Connection Consistency

If the policy is ECMP, consistent hashing enables PCC to be maintained if
the set of racks remains unchanged. To maintain PCC for other policies, each
rack is assigned a unique 1-byte identifier, stored on the ToR switch associated
with that rack. When a packet leaves a rack, the ToR switch inserts into the
corresponding rack identifier into the covert channel of the packet. When a non-
SYN packet from a flow reaches an LB, the LB extracts the rack identifier from
the covert channel, and forwards the packet towards the corresponding rack.
The nature of the covert channel is explained in more details in section A.4.2.

A.3.3 Incremental Deployability

Modifying ToR switches is required for ToRLB to maintain PCC and to select
servers. However, ToRLB can still function if only a subset of racks have
ToRLB-enabled ToR switches. In this case, LBs need to be aware of servers in
racks with standard ToR switches. LBs then act as virtual ToR switches for
those servers, applying both the LB and the ToR switch policies.

To ensure PCC, DSR mode is disabled for these servers. This enables LBs
to include the server identifiers into the covert channel of packets.

A.4 ToRLB Top-of-Rack Switches

In the ToRLB architecture, ToR switches serve as the second layer of decision-
making. When a ToR switch receives a SYN packet forwarded by an LB, its
task is to select a target server for the flow.

A.4.1 ToR switches Policy

Similarly to LBs, ToR switches use policies to select which servers flows are
forwarded to. Four ToR switches policies are considered in this chapter, sum-
marized in table A.2.

The simplest policy for ToR switches is ECMP, where the ToR switch ran-
domly selects a server in the rack. If servers have heterogeneous computing
capacity, WCMP can be used instead with manually configured weights.

As all traffic flowing into and out of servers within a rack passes through the
corresponding ToR switch, ToR switches can monitor this traffic. This enables
for an LSQ policy, tracking active connections into servers in the rack. Ad-
ditionally, computing capacities may be manually configured in ToR switches,
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enabling a WLSQ policy that tracks the number of active connections in every
server while being aware of their computing capacities.

A.4.2 Maintaining Per-Connection Consistency

To maintain PCC, ToR switches assign 1-byte local identifiers to servers in
their rack, and store the mapping between server and identifier. When a packet
leaves a server in a rack, it is forwarded to the ToR switch of that rack. The
ToR switch then inserts the rack identifier and the server identifier into the
covert channel of the packet

The covert channel follows the method described in [401], [423], where iden-
tifiers are inserted into TCP timestamps. Applications in the data centre are
configured to produce timestamp values with the same 16 most significant bits.
When a packet leaves a server, the ToR switch replaces the 16 most significant
bits of the TSval field with the rack and server identifiers. This value is mir-
rored into the TSecr field of packets sent to the data centre by the client.

When a subsequent packet in the flow reaches the data centre, the LB
extracts the rack identifier from the TSecr field and forwards the packet to
the corresponding rack. Then, the ToR switch extracts the server identifier to
forward the packet towards the correct server. The ToR switch also replaces the
16 most significant bits in the TSecr field with the common value configured
for every application.

This covert channel is only viable for up to 28 racks and 28 servers per
rack. As proposed by [401], QUIC connection-id may be used instead, which
enables 160 bits of covert channel. If the LB policy is AWCMP, the size of
identifiers needs to be reduced, to accommodate for weights to be inserted into
the covert channel, e.g., with 4 bits for the rack identifier, and 6 bits each for
the server identifier and the weight. As remarked by [401], storing identifiers
directly into packets makes the data centre more vulnerable to denial-of-service
attacks. Thus, [401] proposes to obfuscate them, using a process similar to
hash-based Message Authentication Codes (HMAC), which requires additional
computation per packet.

A.4.3 Overhead of ToR switches

ToRLB introduces overhead for ToR switches in several ways. First, ToR
switches require additional memory to store rack and server identifiers, as well
as the number of active connections. This additional memory is comparable
to the state already stored in ToR switches, as each ToR switch has one entry
per server in its forwarding table.

Second, ToR switches need to perform additional processing operations on
every packet that passes through them. This includes inspecting packets for
detecting SYN, FIN and RST packets, applying the ToRLB policy to select
servers for SYN packets, and inserting or extracting identifiers from the covert
channel for other packets. These additional operations create computational
overhead.

Additionally, if the policy is based on LSQ, finding the least loaded server
in the rack for each SYN packet requires an integer comparison for every server
in the rack, as well as incrementing a counter. If a FIN or RST packet passes
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through the ToR switch, a counter needs to be decremented. Moreover, rewrit-
ing the TCP timestamps for every TCP packet passing through a ToR switch
requires recomputing the TCP checksum of the packet. These line-rate com-
putations can negatively impact the latency and throughput of ToR switches.

A.5 Evaluating Fairness and Performance of Load
Balancing Strategies

A test environment has been created to simulate data centre communications,
enabling the comparison of different load balancing strategies in terms of fair-
ness and performance. Fairness is measured as the distribution of load in
servers, and performance is measured as the average response time of requests.

A.5.1 Testing Environment

The testing environment uses a discrete event-based network simulator, to sim-
ulate data centres as depicted in figure A.3. The testing environment can be
found on GitHub2. In these simulations, only one application in the data cen-
tre is considered. The application is CPU intensive: requests are composed
of a single data packet that requires the application to perform computations,
using processor resources, before sending the response.

Client

Clients of the application are modeled in the simulator by a single client, that
generates a stream of TCP requests to the application. This stream is repre-
sented by a Poisson Pareto Burst Process [428], which models Internet traffic:
incoming flows follow a Poisson distribution with parameter λ, and each re-
quest requires a processing time following a long-tail Pareto distribution. The
λ parameter is normalized, and represents the rate of requests, with λ > 1 rep-
resenting an overwhelming request rate that exceeds the capacity of the data
centre, even under optimal load balancing.

For each request, the client measures the time necessary to receive a re-
sponse from the application. The client also has a timeout setting: if no
response is received within this timeframe, the client sends an RST packet
and discards the flow. At the end of each simulation, the client processes the
response times for requests, and returns their distribution. Requests without
responses are counted with a time timeout.

In the simulations presented in this chapter, the client continuously sends
requests for 11s. Because the data centre starts without any request being
processed, requests sent during the first second are not taken into account for
measuring performance, and initialize the data centre. The Pareto policy has a
mean of 350·109 cycles (i.e., requests require on average 350·109 CPU cycles to
complete), with a Hurst parameter of 0.7, as proposed in [429]. The timeout

value is set to 40s.

2https://github.com/apoirrier/sr-tor

https://github.com/apoirrier/sr-tor
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Servers

Servers in the simulator accept incoming connections, and process them. Each
server is composed of multiple CPU threads, each with a processing speed
of 1 GHz. Requests are distributed across these threads, and if m requests
are processed simultaneously on a single thread, the processing speed for each
request is divided by m.

Servers have a limited capacity to process requests concurrently, defined by
the configuration variable max_connections. If the limit is reached, incoming
requests are added to a backlog queue of length backlog_length. If the backlog
queue is full, the request is discarded and an RST packet is sent back to the
client. In the simulations presented in this chapter, max_connections is set
to 8 times the number of threads, and backlog_length is set to 32 times the
number of threads.

The results presented in the following sections are averaged across at least
60 simulations. The graphs depict the average values obtained from these
simulations, with the standard error displayed on the graphs.

A.5.2 ToR Switches Policies in ToRLB

As presented in sections A.3 and A.4, ToRLB is defined by two load balancing
policies: one performed by LBs, the other performed by ToR switches. This
section studies the impact of ToR switches policies on performance.

ToR switches only influence the distribution of requests within their respec-
tive rack. Therefore, the impact of ToR switches policies is evaluated in data
centres containing a single rack.

Three data centres are considered, to evaluate whether the distribution of
servers within the rack impacts performance and fairness. Each data centre
contains two types of servers: 4-threads servers and 8-threads servers. The
computing capacity in all three data centres is identical, with 168 threads
available in the rack. However, their distributions differ: data centre A consists
of 42 servers with 4 threads each, data centre B has 20 servers with 4 threads
each, as well as 11 servers with 8 threads each, and data centre C has 21 servers
with 8 threads each.

Performance Evaluation

Performance results are depicted in figure A.5, comparing the ToR switches
policies listed in table A.2. The horizontal axis represents the normalized
request rate, λ, and the vertical axis represents the average response time of
requests on a logarithmic scale.

The solid curves represent the overall performance with ECMP policy,
dashed curves with WCMP, curves with dashes and dots with LSQ, and dot-
ted curves with WLSQ. Green curves (with crosses) are for data centre A, blue
curves (with squares) for data centre B, and yellow curves (with triangles) for
data centre C.

Each curve is increasing: as the request rate increases, the average process-
ing time also increases, starting from 350ms (the mean of the Pareto law).

Unsurprisingly, WLSQ demonstrates the best performance, since it is the
load balancing policy where ToR switches have the most information, including
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Figure A.5: Performance comparison of ToRLB ToR switches policies, in one
rack data centres (DC). DC A has 42 servers with 4 threads, DC B has 20
servers with 4 threads and 11 servers with 8 threads, and DC C has 21 servers
with 8 threads. Data centres are represented by the color and shape of points.
Policies are represented by the style of lines. Y axis is log scale, lower is better.

server occupation and computing capacity. The distribution of servers does not
impact performance for WLSQ.

On homogeneous data centres, ECMP and WCMP have the same per-
formance, as do LSQ and WLSQ. This is expected because identical servers
imply equal weights. However, in the heterogeneous data centre, ECMP per-
forms poorly due to its lack of differentiation between 8-threads and 4-threads
servers, resulting in under-loading the former and overloading the latter. LSQ
does not achieve the same level of performance as WLSQ, which demonstrates
the importance of weights in making good decisions. LSQ performs better than
WCMP, demonstrating that pre-configured weights are insufficient to optimize
the request distribution onto servers, and an adaptative strategy is required.

The performance of WCMP depends on the number of servers: the lower
the number of servers, the better the performance. This can be attributed to
servers optimizing request processing by scheduling them on threads. There-
fore, servers with more threads process more queries simultaneously, balancing
queries more efficiently.

Performance is Explained by Fairness

Figure A.6 depicts, averaged across 60 simulations, thread occupancy over
time, in data centre B, with the ToR switch policy LSQ, for various values of
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Figure A.6: Active requests per thread, with LSQ as ToR switches policy, in
data centre B.

λ. The top graph represents, over time, the average number of active requests
processed by each thread. The graph below represents, over time, the coeffi-
cient of variation of threads occupancy over time, computed as the standard
deviation divided by the mean.

If λ > 1, the number of active requests diverges, as the number of requests
exceeds the capacity of the data centre. Conversely, if λ ≤ 1, it converges. This
validates a posteriori the simulation time of 11s and waiting period of 1s, as
these enable to reach a stationary state and to remove the transition period.

The coefficient of variation represents how spread requests are distributed
among threads: larger variations imply a higher coefficient of variation. This
value also stabilizes over time.

Figure A.7 depicts the stabilized values of average thread occupancy and
coefficient of variation depending on λ, for the three considered data centres,
and for all ToR switches policies. The coefficient of variation, which measures
fairness, is directly correlated with the performance depicted in figure A.5. This
is due to a causal link between fairness and performance: when requests are
dispatched more fairly among servers, the overall processing time decreases.

Analysis

The results from this section demonstrate a direct correlation between perfor-
mance, measured by average response time of requests, and fairness, defined as
the even distribution of requests on threads within the data centre.

In heterogeneous data centres, providing weights to ToR switches yields
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Figure A.7: Fairness comparison of ToRLB ToR switches policies. Lower coef-
ficient of variation means better fairness. Legend is the same as in figure A.5.

the best results in terms of performance. However, this approach requires
manual configurations, which can be error-prone, and limit scalability. Given
that LSQ only offers a moderate improvement over WLSQ, and considering its
ease of deployment, the recommended policy for ToR switches is LSQ. Unless
otherwise stated, the remainder of this chapter assumes that LSQ is the chosen
ToR switch policy in ToRLB.

A.5.3 LB Policies in ToRLB

This section examines how LB policies impact the overall performance of
ToRLB. The impact on performance may depend on the distribution of servers
in racks, so LB policies are compared across three data centres. Each data
centre consists of two racks, with a total of 42 identical servers, each with 4
threads. The only difference between data centres is the server distribution
within the racks: data centre α is a balanced data centre, with each rack con-
taining 21 servers, data centre β has one rack with 14 servers and a second
rack with 28 servers, and data centre γ has one rack with 2 servers and the
other rack with 40 servers.

Performance Evaluation

Figure A.8 compares the performance of ToRLB LB policies, listed in table A.1.
The impact of LB policies becomes more significant as the imbalance between
racks in the data centre increases: in the balanced data centre, each LB policy
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(c) 2 racks with 2 and 40 servers re-
spectively.

Figure A.8: Performance comparison of LB policies in 2 racks data centres.
Lower is better.

produces an evenly balanced distribution of requests across each rack, result-
ing in no difference in performance, as depicted in figure A.8a. For unbalanced
data centres, ECMP distributes requests evenly, leading to the worst perfor-
mance since one rack is overloaded and the other under-loaded. The difference
between LSQ and WLSQ is negligible: distributing requests proportionally to
the computing capacities of racks is the most crucial parameter for optimizing
performance.

Figure A.9 presents the distribution of response times to requests in data
centre γ for λ = 1.2. The red (plain) line is the reference, and represents
the Pareto law, which is the distribution of processing times if each query was
processed alone on threads. Although the curves appear not to reach the value
1 in the graph, they do so at the right edge of the graph, which is the value of
the timeout for the client. This means that the value reached just before the
timeout represents the proportion of requests that have received a response.

The ECMP (green, dashed) and LSQ (blue, dotted) lines show a spike in
requests around 10s processing time. These are the requests processed in the
rack with only 2 servers, while the remainder are processed in the other rack.
Response time distributions follow a scaled version of the Pareto law, due to
each thread processing multiple requests simultaneously, which multiplies the
processing time of each request.

This distribution explains the evolution of the LSQ and WCMP curves on
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Figure A.9: Distribution of response times, for λ = 1.2, in the datacenter
having racks with 2 and 40 servers respectively.

figure A.8. Processing time linearly increases in a first step for λ ≤ 1, as
the average number of requests per threads increases. This is represented in
figure A.9 by curves moving from the Pareto distribution ‘to the right’. Then, a
second, quicker, linear increase happens, with λ > 1: this represents more and
more requests timing out and being discarded. This is represented in figure A.9
by curves moving ‘lower’, with the proportion of answered requests dropping.

Increasing the Number of Racks and Load Balancers

Increasing the number of LBs does not impact performance when requests
are distributed uniformly across LBs. This is because each LB receives the
same distribution of requests, and thus makes similar decisions as a result.
For randomness-based policies (ECMP and WCMP), using multiple LBs re-
quires LBs to have de-correlated randomness. Experimental results presented
in figure A.10 validate this statement: the number of LBs does not impact
performance.

The behaviors described in figure A.9 are similarly observed when there are
more than two racks, with the same explanations applying.

Analysis

This section has demonstrated that optimal performance is achieved when re-
quests are balanced across racks in proportion to their computing capacities.
The best policy for this is AWCMP, which eliminates the need for LBs to
compute statistics on traffic.



A.5. EVALUATING FAIRNESS AND PERFORMANCE OF LOAD
BALANCING STRATEGIES 165

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
: Requests rate / Data centre capacity

103

3 × 102

4 × 102

6 × 102

2 × 103

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

WCMP (1 LB)
LSQ (1 LB)
WLSQ (1 LB)
WCMP (2 LB)
LSQ (2 LB)
WLSQ (2 LB)

Figure A.10: Comparison of ToRLB policies with one LB or 2 LBs, in a 2 racks
data centre.

Therefore, the optimal policies for ToRLB are AWCMP for LBs, and LSQ
for ToR switches. The main role of LBs is to distribute queries into racks pro-
portionally to their computing capacities. Any further imbalance, e.g., caused
by requests variations, is handled by ToR switches, which distribute requests
among servers in each rack by tracking active connections on each server.

A.5.4 Comparing ToRLB to Reference Load Balancing
Strategies

This section compares ToRLB with reference load balancing strategies, that
do not use ToR switches for load balancing. The reference load balancing
strategies used for comparison are as follows:

• ECMP : LBs select a server uniformly at random;

• LSQ : LBs track the number of active requests in each server, and select
the least loaded;

• Shortest Expected Delay (SED): LBs are aware of server loads, computing
capacity, and processing times of flows in servers.

Simulations were performed on a data centre consisting of 2 LBs and 42
homogeneous 4-threads servers, unevenly distributed across 6 racks.



166
APPENDIX A. TOP-OF-RACK-ASSISTED LOAD-AWARE AND

SERVER-AGNOSTIC LOAD-BALANCING

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
: Requests rate / Data centre capacity

103

Av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)
ECMP
LSQ
SED
ToRLB_WCMP_LSQ

Figure A.11: Comparison of ToRLB with reference load balancing strategies.

Performance Evaluation

Figure A.11 presents a performance comparison between ToRLB, with AWCMP
as LB policy and LSQ as ToR switch policy (referred to as ToRLB WCMP LSQ),
and reference load balancing strategies.

It is relevant to compare ToRLB WCMP LSQ and ECMP – instead of
WCMP – because weights in ToRLB WCMP LSQ correspond to the number
of servers in each rack, whereas weights in WCMP as an overall load balancing
strategy would correspond to the computing capacity of servers, which are all
identical in this simulation.

The results depicted in figure A.11 show that ECMP has the worst perfor-
mance. Even though all servers have the same computing capacity, requests are
not identical, leading to an imbalance in request processing, and thus resulting
in some servers being overloaded while others are under-loaded.

LSQ and SED adapt to this imbalance, demonstrating better performance.
As SED has access to more information than LSQ, it performs better.

ToRLB has an intermediate performance, closely matching the performance
of LSQ. It is expected that ToRLB would have worse performance than SED,
as it has access to less information. The use of ToRLB, instead of LSQ, enables
to spread the computations to ToR switches, improving scalability.

A.6 Summary

This chapter has introduced ToRLB, a lightweight, network-layer load balancer
that offloads part of the load balancing process to ToR switches. By doing so,
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ToRLB enables lightweight LBs that only need to perform WCMP for incom-
ing flows, and to inspect subsequent packets for ensuring PCC. Additionally,
servers are not part of the load balancing process, allowing them to be dynam-
ically halted or activated as needed, thereby enabling dynamic adjustment of
the number of active servers to meet demand and reducing costs. ToRLB also
offers increased flexibility, as servers do not require special modifications. Fur-
thermore, ToRLB enables incremental deployability of ToRLB ToR switches.
While ToRLB may not achieve the same level of performance as stateful net-
work load balancers like HLB, it approaches the performance of an LSQ-based
strategy with less information available, and a more lightweight load balancing
system.





Appendix B

Résumé en Français

Cette thèse étudie l’utilisation d’architectures de sécurité pour protéger les
systèmes d’information contre les menaces informatiques. Elle examine en par-
ticulier le concept de zéro confiance, et se pose la question de comment ce
paradigme peut être intégré au sein d’architectures existantes afin de renforcer
leur sécurité. De plus, cette thèse explore comment étendre le cadre zéro confi-
ance afin qu’il réponde au mieux aux menaces réelles. Ce manuscrit comprend
cinq parties et neuf chapitres, structurés comme suit.

La partie I est une mise en contexte introductive. Dans le chapitre 1 (soumis
comme partie de [430]), il est présenté le contexte historique qui a mené à
l’émergence du paradigme de zéro confiance. Le chapitre explore les défis liés
à la définition de zéro confiance et ses potentiels avantages en ce qui concerne
la sécurisation des systèmes d’information.

La partie II offre une analyse approfondie du concept de zéro confiance. Le
chapitre 2 (soumis également comme partie de [430]) présente une étude ex-
haustive des définitions et principes du paradigme zéro confiance, issus de publi-
cations universitaires, gouvernementales et industrielles. A partir ce cette anal-
yse, une définition complète du paradigme zéro confiance est proposée. De plus,
le chapitre présente une taxonomie des stratégies de migration, qui permettent
l’ajout de capacités additionnelles pour sécuriser les systèmes d’information,
et une taxonomie des multiples technologies qui peuvent être mises en oeuvre
pour fournir ces capacités. Enfin, une étude d’un ensemble représentatif des
architectures zéro confiance existantes offre une analyse plus approfondie du
concept, et permet de proposer une méthode pour positionner ces architectures
par rapport à leur adhésion aux principes zéro confiance afin de proposer des
axes précis d’amélioration.

Le chapitre 3 (soumis comme partie de [431]) montre comment une archi-
tecture zéro confiance peut être construite en combinant et modifiant divers
produits open-source, en proposant un démonstrateur. Grâce à la méthode
développée au chapitre 2, la maturité zéro confiance du démonstrateur est
évaluée. Ce démonstrateur est utilisé dans le reste de la thèse comme architec-
ture de base, à laquelle peuvent être incorporées des améliorations.
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L’analyse des architectures zéro confiances et des recherches existantes présentées
dans la partie II révèle des lacunes dans l’état de l’art pour construire des ar-
chitectures à haut niveau de maturité. La Partie III vise à combler certaines
de ces lacunes, en fournissant des méthodes pour intégrer des technologies ad-
ditionnelles au sein d’une architecture existante, afin d’améliorer son niveau de
maturité zéro confiance. Une partie de ces améliorations est mise en œuvre au
sein du démonstrateur présenté au chapitre 3, illustrant comment il est pos-
sible d’intégrer des technologies au sein d’une architecture existante, tout en
assurant son interopérabilité avec les autres composants.

En particular, le chapitre 4 (soumis comme [432]) présente une méthode
pour ajouter de la sécurité centrée sur les données à une architecture zéro con-
fiance existante, en exploitant une méthode de chiffrement, le Chiffrement par
Attributs, qui protège la confidentialité des données avec un contrôle d’accès
basé sur les attributs, offrant une flexibilité supplémentaire aux propriétaires
des données. La méthode proposée permet de stocker des données protégées
par des politiques d’accès distinctes sur un seul serveur. Dans ce cas, même
si le serveur est compromis, ou n’est pas de confiance, comme par exemple un
fournisseur cloud, les données qui y sont stockées sont restent confidentielles.

Le chapitre 5 (présenté au symposium Real World Crypto1 et publié dans [159])
étudie en détail une des propriétés fondamentales du zéro confiance, l’authentification
continue, dans le contexte des protocoles de messagerie sécurisée. Dans ce
chapitre, la procédure d’authentification continue du protocole de messagerie
Signal est analysée en détails, puis étendue pour améliorer et automatiser la
sécurité post-compromission, qui permet la re-sécurisation des sessions de com-
munication après que les secrets d’un des membres ont été révélés.

La partie IV confronte le paradigme zéro confiance avec divers scénarios du
monde réel. Elle montre que le paradigme seul n’est pas suffisant, et qu’il est
nécessaire d’une part d’étendre les architectures afin d’obtenir des garanties
de sécurité suffisantes, et d’autre part d’étendre le modèle de menace pour
englober l’intégralité des menaces qui pèsent sur les systèmes d’information.

Dans le chapitre 6 (présenté à la conférence C&ESAR2, publié dans [93], et
soumis comme [431]), une méthode pour fédérer plusieurs architectures zéro
confiance qui maintienne des niveaux équivalents de sécurité est proposée.
Le principal défi est que, dans une fédération, la vérification de l’identité et
la surveillance des entités voulant accéder à des données et services sont ef-
fectuées par le domaine d’origine de ces entités. Or, pour suivre les principes
zéro confiance, quand une entité demande l’accès à une ressource fédérée, le
domaine protégeant la ressource doit explicitement vérifier l’identité et estimer
la sécurité de l’environment du demandeur. Comme ces informations sont re-
cueillies et mâıtrisées par le domaine du demandeur, la solution usuelle est de
faire implicitement confiance au domaine du demandeur, et de ne pas vérifier
explicitement les informations transmises, ce qui est contraire aux principes
zéro confiance. Ceci peut mener à des attaques, en particulier si le domaine
implicitement considéré comme de confiance a été compromis. Pour pallier
à ce problème, ce chapitre propose une méthode qui permet au domaine de
la ressource d’explicitement vérifier ces informations, grâce à la technologie

1https://rwc.iacr.org/2022/program.php
2https://2023.cesar-conference.org/

https://rwc.iacr.org/2022/program.php
https://2023.cesar-conference.org/
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d’attestation à distance. Ceci permet une vérification explicite sans exiger de
méthode intrusive qui ne serait pas applicable à des déploiements réels.

Le chapitre 7 (soumis comme [433]) étudie comment l’infrastructure sous-
jacente, par exemple les réseaux, peut être considérée comme non digne de
confiance. Plusieurs méthodes sont proposées pour permettre aux routeurs
d’acheminer les packets vers leur destination, sans toutefois leur permettre
d’obtenir des informations sur ces paquets, par exemple quelle sont leurs sources
et destinations. La solution proposée ajoute un niveau supplémentaire de
sécurité, en permettant l’anonymisation des communications en plus de la con-
fidentialité et de l’intégrité.

Enfin, la partie V clôt ce manuscrit. L’annexe A présente une contribution
supplémentaire réalisée au cours de cette thèse, montrant comment distribuer
de manière optimale les ressources et les requêtes dans un centre de données,
en équilibrant la charge du réseau.
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Titre : Sécurité Formelle des Architectures Zéro Confiance

Mots clés : Architecture, Cryptographie, Cybersécurité, Sécurité des Réseaux, Zéro Confiance

Résumé : La sécurité des systèmes d’information
repose traditionnellement sur le modèle de sécurité
du périmètre, qui compartimentalise le réseau en
différents périmètres isolés qui regroupent les res-
sources. Un système accède à un périmètre en s’au-
thentifiant, et une fois au sein d’un périmètre, il est
implicitement considéré comme étant de confiance,
jouissant d’un accès non restreint à toutes les res-
sources de ce périmètre. Cependant, de nombreuses
attaques envers les architectures périmétriques ont
montré les limites de cette confiance. De plus,
la transformation des systèmes d’information, par
exemple l’émergence des services en nuage (cloud
services), le télétravail ou l’usage de prestataires, a
remis en cause la vision d’un réseau monolithique de
confiance. Ainsi, un nouveau paradigme de sécurité
a émergé, appelé zéro confiance. Fondé sur le prin-
cipe ≪ ne jamais faire confiance, toujours vérifier ≫,
ce paradigme transforme la notion de périmètre, en
établissant un ensemble de principes de sécurité
reposant sur une autorisation contextuelle et dyna-
mique. Cependant, mettre en œuvre une architecture
zéro confiance pose de nombreux défis, en particulier
car il n’existe pas de définition claire du paradigme

zéro confiance.
Dans ce contexte, cette thèse explore comment
développer un cadre pratique et formel pour rai-
sonner sur la sécurité des systèmes d’information.
Tout d’abord, une étude approfondie du modèle zéro
confiance est conduite, puis une taxonomie des tech-
nologies et architectures zéro confiance existantes
est établie, ce qui permet une compréhension ex-
haustive du paradigme zéro confiance. Cela mène à
la création d’une méthode d’évaluation des architec-
tures, qui permet également d’identifier des lacunes
dans la recherche sur le zéro confiance. Cette thèse
propose plusieurs contributions pour combler ces la-
cunes, afin d’améliorer l’état de l’art pour le zéro
confiance. Ces améliorations sont intégrées au sein
d’un démonstrateur d’architecture zéro confiance,
illustrant comment une architecture zéro confiance
peut être complémentée par de nouvelles technolo-
gies pour améliorer sa maturité. Enfin, cette thèse
prend du recul et évalue comment le paradigme zéro
confiance répond aux problèmes de sécurité auxquels
font face les entreprises, démontrant qu’il n’est pas
suffisant seul pour protéger les données et services
sensibles.

Title : Formal Security of Zero Trust Architectures

Keywords : Architecture, Cryptography, Cybersecurity, Network Security, Zero Trust

Abstract : The security architecture of Information
Technology (IT) systems has traditionally been ba-
sed on the perimeter security model, in which re-
sources are grouped into perimeters isolated through
network mechanisms, and devices are authenticated
to access perimeters. Once within a perimeter, de-
vices are implicitly trusted, and enjoy unrestricted ac-
cess to resources within that perimeter. However, his-
tory has shown that such trust is misplaced, as nume-
rous security threats and successful attacks against
perimeter-based architectures have been documen-
ted. Furthermore, the emergence of new IT usages,
such as cloud services, work-from-home, and service
providers and subsidiaries relationships, has challen-
ged the relevance of considering a monolithic, trus-
ted network for accessing resources. These conside-
rations have led to the emergence of a novel secu-
rity paradigm, called by zero trust. Founded on the
principle ‘never trust, always verify’, this approach
transforms the notion of perimeter and establishes a
set of security principles that prioritize context-aware
and dynamic authorization. Nevertheless, implemen-

ting zero trust poses significant challenges, due to a
lack of clear guidelines for defining zero trust.
In this context, this thesis investigates whether, and
how, it is possible to develop a practical and for-
mal framework for reasoning about the security of IT
architectures. First, a thorough survey of zero trust
is conducted, and a taxonomy of existing zero trust
technologies and architectures is developed, enabling
a comprehensive understanding of zero trust. This
leads to the development of an evaluation framework,
that is used to identify gaps within zero trust research.
This thesis provides contributions aiming to address
some of these gaps, for enhancing the state of zero
trust technology development. These improvements
are integrated into a proof-of-concept zero trust archi-
tecture implemented for this thesis, illustrating a me-
thod for extending an existing zero trust architecture.
Finally, the thesis takes a step back, and evaluates the
extent to which the zero trust framework addresses
real-world problems, demonstrating that the zero trust
framework alone is not sufficient for protecting sensi-
tive data and services.

Institut Polytechnique de Paris
91120 Palaiseau, France
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