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Résumé: Cette thèse utilise les réseaux neu-
ronaux de graphes (GNNs) pour relever les dé-
�s des réseaux sociaux et des graphes de con-
naissances. Elle introduit des solutions nova-
trices pour la maximisation d’in�uence, iden-
ti�ant les utilisateurs les plus in�uents dans
les réseaux sociaux en considérant à la fois
la structure du réseau et les sujets des mes-
sages. Les modèles proposés améliorent con-
sidérablement l’e�cacité et sont particulière-
ment adaptés aux applications en temps réel.
De plus, la thèse explore des méthodes pour

prédire les liens manquants dans les graphes
de connaissances avec des données limitées.
Bien que cet aspect n’ait pas conduit à des
avancées majeures, il a fourni des informa-
tions pertinentes et abouti au développement
d’un prototype utilisé dans un projet réel.
Globalement, cette thèse contribue à faire
progresser notre compréhension des don-
nées complexes de graphes et o�re des solu-
tions pratiques pour des applications concrètes
grâce à l’utilisation des GNNs.

Title: Graph-based learning and optimization
Keywords: Machine learning; Graph Neural Networks; Social Networks; In�uence Maximization;
Knowledge Graphs; Link Prediction;

Abstract: This research leverages Graph Neu-
ral Networks (GNNs) to address challenges in
social networks and knowledge graphs. It intro-
duces innovative solutions for in�uence maxi-
mization, identifying the most in�uential users
in social networks by considering both network
structure and message topics. The proposed
models demonstrate signi�cant improvements
in e�ciency and are particularly well-suited
for real-time applications. Additionally, the re-

search explores methods for predicting missing
links in knowledge graphs under limited data
conditions. While this aspect of the research
didn’t lead to major breakthroughs, it provided
valuable insights and culminated in the devel-
opment of a prototype utilized in a real-world
project. Overall, this research contributes to
advancing our understanding of complex graph
data and o�ers practical solutions for real-
world applications through the use of GNNs.
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Abstract

Graphs are a fundamental data structure used to represent complex patterns in various domains.
Graph Neural Networks (GNNs), a deep learning paradigm speci�cally designed for graph-structured
data, o�er a powerful deep learning solution for extracting meaningful patterns from these intricate
relationships. This thesis explores the application of GNNs to address two key challenges: maximiz-
ing in�uence in social networks and predicting missing links in knowledge graphs with limited data.
With applications ranging from optimizing public health campaigns and combating misinformation
to knowledge base completion, this research addresses the need for computationally e�cient and
robust methods in these domains.

In�uence maximization (IM) focuses on identifying the most in�uential nodes within a social net-
work to maximize the spread of information or ideas. This thesis explores methods for tackling the IM
problem, particularly in real-world scenarios with massive networks and diverse information themes.
We build our models upon the S�V-DQN framework, a powerful approach that combines Deep Q-
Networks for reinforcement learning with Structure�Vec for graph embedding. We �rst develop our
IM-GNN model that incorporates advanced GNN features such as graph attention mechanisms and
positional encoding, demonstrating competitive performance against existing learning-based and
non-learning based methods for in�uence maximization.
We further extend our research to tackle Topic-aware In�uence Maximization (TIM) where the spread
of information is in�uenced by its thematic content, requiring models to consider not only network
structure but also the topics of the messages being shared. This is where the limitations of traditional
IM methods become apparent. Our TIM-GNN model e�ectively handles this complexity by incorpo-
rating topic-aware training and probabilistic methods for constructing topic-aware di�usion graphs.
To address query latency concerns, we introduce TIM-GNNx, which integrates cross-attention mech-
anisms and a pre-computed Q-matrix. Our experiments on real-world datasets demonstrate that our
proposed model achieves competitive performance in terms of in�uence spread compared to state-
of-the-art methods while also o�ering signi�cant improvements in query time latency and robustness
to changes in the di�usion graph. Notably, our TIM-GNNx model strikes a balance between query ef-
�ciency and maximizing in�uence, making it particularly well-suited for real-time applications.

In the realm of knowledge graphs, we explore Few-Shot Link Prediction, where the goal is to pre-
dict missing relationships with limited training examples, which is crucial for addressing the long-tail
phenomenon. This phenomenon refers to the fact that, in knowledge graphs, a large number of
entities (nodes) and relations (edges) have very few connections or occurrences. This results in a dis-
tribution where a small number of popular entities or relations have many connections, while the vast
majority have very few.
Our investigation focuses on the feasibility of integrating a path-based knowledge graph completion
method (PathCon) with a meta-learning framework MetaR, to address the limitations of the latter.
While our initial investigations did not yield signi�cant improvements or notable scienti�c contribu-
tions, they provided valuable insights into the challenges of this task and informed the development
of a prototype, deployed as an API, for the AIDA project. This prototype demonstrates the practical
value of our research and paves the way for future explorations in this area.

Overall, this thesis contributes novel and e�cient GNN-based solutions for in�uence maximiza-
tion and explores promising directions for few-shot link prediction in knowledge graphs, pushing the
boundaries of these research areas.
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Résumé

Les graphes, structures de données fondamentales, sont utilisés pour représenter des schémas
complexes dans divers domaines. Les réseaux de neurones graphiques (GNNs), un paradigme d’apprentissage
profond conçu pour les données structurées en graphes, o�rent une solution d’apprentissage pro-
fond e�cace pour extraire des informations de ces relations complexes. Cette thèse explore l’application
des GNNs pour relever deux dé�s clés : maximiser l’in�uence dans les réseaux sociaux et prédire les
liens manquants dans les graphes de connaissances avec des données limitées. Avec des applications
allant de l’optimisation des campagnes de santé publique et de la lutte contre la désinformation à la
complétion des bases de connaissances, cette recherche répond au besoin de méthodes e�caces et
robustes dans ces domaines.

La maximisation de l’in�uence (IM) se concentre sur l’identi�cation des nœuds les plus in�uents
au sein d’un réseau social pour maximiser la di�usion d’informations ou d’idées. Cette thèse explore
des méthodes pour résoudre le problème de l’IM, en particulier dans des scénarios réels avec des
réseaux massifs et divers thèmes d’information.
Nous construisons nos modèles en nous basant sur S�V-DQN, une approche qui combine les réseaux
Deep Q-Networks pour l’apprentissage par renforcement avec Structure�Vec pour l’intégration de
graphes. Nous développons d’abord notre modèle IM-GNN qui intègre des fonctionnalités GNN
avancées telles que les mécanismes d’attention graphique et le codage positionnel, démontrant des
performances concurrentielles par rapport aux méthodes existantes pour la maximisation de l’in�uence.
Nous étendons ensuite nos recherches pour aborder la maximisation de l’in�uence sensible au su-
jet (TIM) où la di�usion de l’information est in�uencée par son contenu thématique, exigeant que
les modèles considèrent non seulement la structure du réseau mais aussi les sujets des messages
partagés. C’est là que les limites des méthodes traditionnelles d’IM deviennent apparentes. Notre
modèle TIM-GNN gère e�cacement cette complexité en incorporant un entraînement sensible au
sujet et des méthodes probabilistes pour construire des graphes de di�usion sensibles au sujet.
Pour résoudre les problèmes de latence des requêtes, nous introduisons TIM-GNNx, qui intègre des
mécanismes d’attention croisée et une matrice Q précalculée. Nos expériences sur des ensembles de
données réels démontrent que notre modèle atteint des performances concurrentielles en termes
de di�usion d’in�uence par rapport aux méthodes de l’état de l’art tout en o�rant des améliorations
signi�catives en termes de latence et de robustesse. Notre modèle TIM-GNNx trouve un équilibre
entre l’e�cacité des requêtes et la maximisation de l’in�uence, ce qui le rend particulièrement adapté
aux applications en temps réel.

Dans le domaine des graphes de connaissances, nous explorons la prédiction de liens à peu
d’exemples, où l’objectif est de prédire les relations manquantes avec des exemples d’entraînement
limités..
Notre étude se concentre sur la possibilité d’intégrer une méthode de complétion de graphe de con-
naissances basée sur les chemins, PathCon, avec un cadre de méta-apprentissage MetaR pour ré-
soudre les limites de ce dernier. Bien que nos recherches initiales n’aient pas apporté d’améliorations
signi�catives ou de contributions scienti�ques notables, elles ont fourni des informations pertinentes
sur les dé�s de cette tâche et ont éclairé le développement d’un prototype pour le projet AIDA. Ce
prototype démontre la valeur pratique de nos recherches et ouvre la voie à de futures explorations
dans ce domaine.

Dans l’ensemble, cette thèse apporte des solutions nouvelles et e�caces basées sur GNN pour
la maximisation de l’in�uence et explore des pistes prometteuses pour la prédiction de liens à peu
d’exemples dans les graphes de connaissances, repoussant les limites de ces domaines de recherche.
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Résumé étendu

Les graphes constituent une structure de données fondamentale pour représenter des schémas
complexes dans une variété de domaines. Les Réseaux de Neurones Graphiques (GNN), paradigme
d’apprentissage profond spéci�quement conçu pour les données structurées en graphes, o�rent une
solution puissante pour extraire des motifs signi�catifs à partir de ces relations complexes. Cette
thèse explore l’application des GNN pour relever deux dé�s majeurs : la maximisation de l’in�uence
dans les réseaux sociaux et la prédiction de liens manquants dans les graphes de connaissances, no-
tamment en contexte de données limitées. Ces recherches ont des implications importantes dans
plusieurs domaines, allant de l’optimisation des campagnes de santé publique et de la lutte contre
la désinformation à la complétion de bases de connaissances, en passant par la recommandation
de produits et services. Ce travail répond ainsi au besoin croissant de méthodes robustes et perfor-
mantes pour l’analyse de données complexes et interconnectées.

La maximisation de l’in�uence (IM) se concentre sur l’identi�cation des nœuds les plus in�uents
d’un réseau social a�n de maximiser la di�usion d’informations ou d’idées. Cette thèse propose des
solutions innovantes pour le problème de l’IM, en se concentrant sur les scénarios réalistes où les
réseaux sont massifs et l’information est thématiquement diverse. Nos modèles reposent sur le cadre
S�V-DQN, une approche combinant les Deep Q-Networks pour l’apprentissage par renforcement et
Structure�Vec pour l’intégration de graphes. Cette approche permet d’apprendre des stratégies de
sélection de nœuds optimisées en fonction de la structure du graphe et des dynamiques de di�u-
sion. Nous introduisons IM-GNN, un modèle intégrant des mécanismes d’attention, un codage posi-
tionnel via le Laplacien magnétique, et l’ajout d’auto-boucles. Ces améliorations permettent de cap-
turer des informations structurelles plus riches et d’améliorer la performance prédictive du modèle.
L’évaluation sur des données réelles démontre la compétitivité de IM-GNN par rapport aux méthodes
de l’état de l’art.

L’in�uence dans les réseaux sociaux est souvent modulée par la thématique de l’information dif-
fusée. Pour re�éter cette réalité, nous abordons la Maximisation de l’In�uence Sensible au Thème
(TIM), où le contenu thématique de l’information joue un rôle crucial dans le processus de di�usion.
Nous proposons TIM-GNN, une extension de notre modèle qui intègre la dimension thématique dans
l’apprentissage et la prédiction. Pour ce faire, nous utilisons des graphes de di�usion sensibles au
thème construits à partir de données réelles de cascades d’information, en utilisant le modèle de fac-
torisation de survie. De plus, nous introduisons TIM-GNNx, une version optimisée pour la latence des
requêtes. TIM-GNNx utilise une matrice Q précalculée et des mécanismes d’attention croisée pour
accélérer signi�cativement le processus de sélection des nœuds in�uents, permettant ainsi des ap-
plications en temps réel. Nos expériences montrent que TIM-GNNx réalise un compromis optimal
entre l’e�cacité des requêtes et la performance en termes de propagation d’in�uence.

Dans le cadre du projet AIDA, nous nous sommes intéressés à la prédiction de liens dans les
graphes de connaissances en contexte de données limitées, un problème crucial pour la complétion
de bases de connaissances et la construction de modèles d’organisation d’entreprise. Le but est de
prédire les relations manquantes entre les entités avec un nombre limité d’exemples d’apprentissage
(apprentissage few-shot). Nous explorons l’intégration de PathCon, une méthode basée sur les chemins
pour la complétion de graphes de connaissances, avec le framework MetaR, e�cace en contexte
de données limitées.. PathCon exploite la structure du graphe en modélisant le contexte relation-
nel et les chemins entre les entités, o�rant ainsi une meilleure capacité de généralisation. Nous
avons développé un prototype d’API pour la complétion de modèles organisationnels, démontrant
la faisabilité de l’approche few-shot. Bien que les résultats de l’hybridation PathCon-MetaR n’aient
pas montré de gains signi�catifs, nos analyses ont permis d’identi�er des pistes d’amélioration pour
les travaux futurs, notamment l’exploration de fonctions de score plus expressives et de nouvelles
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stratégies d’intégration.
En conclusion, cette thèse démontre le potentiel des GNNs pour la maximisation d’in�uence et

la prédiction de liens few-shot. Nos modèles TIM-GNN et TIM-GNNx o�rent des solutions perfor-
mantes, e�cientes et robustes pour l’in�uence maximisée sensible au thème. Nos travaux sur la
prédiction few-shot, bien que n’ayant pas abouti à des gains signi�catifs, ouvrent des pistes promet-
teuses pour l’intégration de méthodes structurelles avec le méta-apprentissage, et soulignent le po-
tentiel des GNNs pour l’analyse de données graphées.
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Leveraging Large Language Models
(LLMs) in Thesis Writing

The �eld of arti�cial intelligence is rapidly evolving, with large language models leading the way
in text generation capabilities. While my PhD thesis remained fundamentally a product of my own
research and writing, as an AI researcher, I was naturally drawn to explore how these LLMs could
augment my capabilities throughout the process, speci�cally utilizing models like GPT-�, Gemini Ad-
vanced, and Gemini �.�. This chapter examines my experience using LLMs for speci�c tasks, as re-
search assistants rather than original content generators, the ethical considerations involved, and
the guidelines I developed to ensure academic integrity within this process.

Ethical considerations and guidelines From the beginning, I was aware of the ethical impli-
cations surrounding AI-assisted writing. These concerns include plagiarism, the potential spread of
misinformation, and biases that LLMs may inherit from their training data. I established clear guide-
lines from the outset, positioning LLMs as tools to support my work, never to replace my own criti-
cal thinking. All LLM-generated content, particularly when used for factual information retrieval, was
meticulously fact-checked using reliable sources. This ensured accuracy and maintained the academic
rigor expected of a PhD thesis.

Practical use of LLMs Within these guidelines, I utilized LLMs for research, writing, and code gen-
eration. In terms of research, LLMs provided fresh perspectives and strengthened my arguments by
brainstorming concepts and considering alternative viewpoints, serving as a good starting point for
further evidence-based exploration rooted in scienti�c literature. For writing, LLMs not only identi�ed
grammatical errors and inconsistencies, but also suggested stylistic improvements. This signi�cantly
enhanced the clarity and conciseness of my writing. Finally, LLMs proved useful in generating code
for automating simple but repetitive tasks, allowing me to focus on more complex aspects of my
research.
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Chapter �

Introduction

The unprecedented surge in data generated across digital platforms calls for sophisticated analyt-
ical techniques to uncover hidden patterns within intricate network structures. Graph theory plays a
fundamental role in deciphering these complex systems. Indeed, graphs o�er a versatile way to rep-
resent diverse relationships and structures, making them essential tools in �elds ranging from social
network analysis to the study of biological networks and information retrieval systems.

�.� Everything is connected

Graphs are fundamental data structures consisting of nodes (or vertices) and edges, which rep-
resent various types of relationships between these nodes. In many ways, graphs serve as the main
modality of data [�], their ability to model a wide range of patterns observed in natural and arti�cial
systems making them highly versatile. The adaptability of graphs in representing entities as diverse
as molecules, social networks, and transportation systems highlights their signi�cance, fostering keen
interest from both scienti�c and industrial communities with diverse applications.

�.� Knowledge Graphs: A distinct graph paradigm

Knowledge Graphs (KGs) are a unique type of graph designed to represent and connect informa-
tion in a structured manner that mirrors human understanding. KGs consist of nodes representing
entities (e.g., people, places, objects) and directed, labeled edges representing relationships between
these entities (e.g., “located in”, “works at”, “is a”). Additionally, both nodes and edges in a KG can
have attributes that provide further information. KGs �nd signi�cant applications in areas such as
semantic search, personalized recommendations, and data integration.

Figure �.�: Link prediction in KGs, from [�].
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�.� Learning on Graphs : Graph Neural Networks
Graph Neural Networks (GNNs) represent a signi�cant advancement in machine learning, speci�-

cally designed to interpret and process graph-structured data. Unlike traditional deep learning archi-
tectures that excel at handling sequential (e.g., text) or grid-like data (e.g., images), GNNs are tailored
to extract insights from the inherent connectivity patterns within graphs. This �exibility enables GNNs
to model complex relationships in a wide array of real-world domains where objects and their inter-
actions can be naturally represented as graphs. GNNs operate by iteratively aggregating information
from a node’s neighborhood, allowing them to capture both local structural features and global de-
pendencies within the graph.

�.� Real World Applications of GNNs
The versatility and expressiveness of GNNs have led to their widespread adoption across a diverse

spectrum of applications. Below, we explore key applications and highlight in�uential papers that
advanced the use of GNNs in each domain:

Bioinformatics

Figure �.�: Correctly predicting a protein structure, PDB �SK�, using AlphaFold (blue is predicted and
green is experimental), from [�].

GNNs are revolutionizing bioinformatics by providing a powerful framework for modeling and
analyzing complex biological systems. At their core, GNNs excel at learning from the intricate re-
lationships within biological entities. A landmark achievement in this �eld is DeepMind’s AlphaFold
[�], which utilizes an attention-based GNN architecture to achieve unprecedented accuracy in protein
structure prediction. The open-sourcing of protein structures predicted by AlphaFold, made avail-
able in the AlphaFold Protein Structure Database [�], further accelerated scienti�c discovery, fueling
countless research e�orts across the biological sciences. Beyond this, GNNs also advance drug dis-
covery, predicting drug-target interactions [�] and even designing new molecules [�]. Furthermore,
GNNs are being integrated with �D geometric deep learning for applications that require a nuanced
understanding of molecular geometries and properties, particularly in quantum chemistry and dy-
namic molecular simulations [�]. This integration enables the networks to e�ectively utilize spatial
information, enhancing both the accuracy and interpretability of predictive models in complex chem-
ical systems. Beyond molecular-level studies, GNNs are making strides in modeling cell-cell inter-
actions within complex biological tissues and understanding gene regulatory networks. Innovative
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approaches like GRGNN [�] exemplify this progress; the method e�ectively reconstructs gene regu-
latory networks by combining gene expression data with the power of graph neural networks. This
provides a robust framework for exploring the intricate interactions that govern cellular behavior.

Social Networks
GNNs o�er powerful tools for analyzing and understanding the dynamics of social networks. Their

ability to model relationships and dependencies between users makes them ideal for tasks like com-
munity detection [�], identifying in�uential users, and viral marketing. For example, frameworks like
the Community Embedding framework (ComE) [�] demonstrate how GNNs improve community de-
tection by integrating it with node and community embeddings, leading to a more re�ned under-
standing of social groups. A key application area is in�uence maximization, where the goal is to select
a small set of “seed” nodes that will maximize the spread of information or opinions through the net-
work [��]. GNNs are proving invaluable in this domain, with works like ToupleGDD [��] demonstrating
their ability to learn e�ective in�uence maximization strategies – a key focus of this thesis. ToupleGDD
tackles the challenges of scalability and generalization in IM by using deep reinforcement learning and
a unique GNN-based approach. Additionally, GNNs are also being used to address challenges in so-
cial recommender systems and to combat the spread of misinformation or harmful content within
social networks.

Physics

Figure �.�: Rollouts of the GNS model from [��] where it learns to simulate rich materials at resolutions
su�cient for high-quality rendering.

GNNs are transforming how we approach problems in physics. Their ability to learn and rea-
son about complex interactions within physical systems makes them well-suited for tasks ranging
from particle interaction simulations to modeling the dynamics of complex �uids. Building upon
their foundational Graph Network framework [��], a team of researchers demonstrated the power
of graph-based neural networks for learning complex physical interactions. This approach leads to
highly accurate simulations [��]. More recently, GNNs have found success in high-energy physics for
jet tagging and event reconstruction. Their ability to model the interconnected relationships between
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particles makes them a powerful tool for analyzing the complex data generated in particle collider
experiments [��]. Speci�cally, GNNs can improve the precision of reconstructing particle interactions
within jets, including the identi�cation of secondary vertices, which helps to distinguish the decays of
di�erent particle types [��]. Beyond particle physics, GNNs excel in quantum chemistry. They demon-
strate their power by calculating atomic forces in large-scale simulations (e.g., ForceNet [��]) and their
ability to model complex representations for predicting molecular properties (e.g., Symmetrical Graph
Neural Network [��]). Furthermore, GNNs are enabling innovations in materials design and even the
study of astrophysical phenomena.

Transportation Systems

Figure �.�: A road network (left) is transformed into a graph representation suitable for GNNs, from
[��].

GNNs are revolutionizing the �eld of transportation systems by o�ering a data-driven approach
to modeling complex transportation networks and solving related combinatorial optimization prob-
lems. Their capability to capture the inherent relationships between roads, intersections, and other
entities within the network makes them ideal for tasks like tra�c forecasting [��, ��]. For example,
models like DCRNN [��] and T-GCN [��] leverage GNNs to analyze both spatial and temporal tra�c
patterns, leading to more accurate forecasts and better-informed decision-making in transportation
management. Additionally, GNNs are used in route planning [��], optimizing routes for individuals
or �eets based on complex, combinatorial travel choices. GNNs even �nd use in tra�c light control,
optimizing signal timings to maximize tra�c �ow [��]. A landmark achievement in this �eld is Google’s
deployment of a sophisticated GNN model to enhance ETA predictions within Google Maps. This work
[��] has positively impacted millions of users and enterprises worldwide. The model’s ability to learn
complex patterns within tra�c data has signi�cantly reduced errors in ETA predictions (��+% in cities
like Sydney), showcasing the power of GNNs in large-scale, real-world applications. Moreover, the
�eld is expanding beyond traditional road networks; GNNs are being applied to multi-modal trans-
portation systems, considering interactions between buses, trains, and even bike-sharing networks
[��]. Furthermore, GNNs are being explored for real-time incident detection and routing adjustments
during emergencies, potentially improving overall network resilience while addressing dynamic com-
binatorial problems.

Communication Networks
GNNs are �nding widespread use in communication networks, where their ability to model re-

lationships within the network topology o�ers advantages for various tasks. One key application is
in resource allocation within wireless networks [��]. GNNs can learn the complex interactions be-
tween network elements, allowing them to optimize how resources like bandwidth and power are
distributed among users. Speci�cally, methods like Aggregation Graph Neural Networks (Agg-GNNs)
[��] facilitate decentralized decision-making, empowering individual devices to intelligently allocate
resources based on local network conditions. This leads to improved network e�ciency, adaptability
to dynamic environments, and enhanced user experiences. Additionally, GNNs are proving invaluable
for tra�c routing [��]. By treating networks as graphs, GNNs can dynamically adapt routing strategies
to real-time tra�c conditions and changing topologies. This leads to more e�cient network manage-
ment and outperforms traditional routing methods. Furthermore, GNNs facilitate anomaly detection
in communication networks by learning "normal" network behavior and identifying deviations that
might signal security issues or technical failures.
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Chip Design
GNNs are emerging as powerful tools within the integrated circuit design process. Their ability to

model the complex interdependencies between components on a chip makes them suitable for var-
ious tasks. These chips, designed with the help of GNNs, are themselves central to AI development.
One critical application is in physical design, speci�cally placement optimization [��]. Here, GNNs can
be combined with reinforcement learning to automate and improve the placement of components on
a chip. By representing the chip as a graph, GNN-powered models can learn to optimize placement
decisions to minimize wirelength, congestion, and other critical design metrics [��]. This approach
leads to faster chip design cycles, improved performance, and a reduction in the need for manual de-
sign steps. Additionally, GNNs are being explored for routing optimization, where they aid in �nding
e�cient paths for the complex network of wires on a chip. Moreover, GNNs show promise in pre-
dicting high-level synthesis (HLS) performance metrics [��]. This allows designers to evaluate design
choices early in the process, promoting rapid prototyping and reducing the need for time-consuming
implementation cycles.

Computer Vision
GNNs are expanding the frontiers of computer vision by e�ectively representing and reasoning

about the relationships inherent within images and videos. A key application area is object detection
and scene understanding, where complex relationships between objects are essential. Speci�cally,
methods like the Vision GNN (ViG) [��] o�er a powerful solution, treating images as graphs rather
than grids. This graph-based approach, using graph convolutions and feed-forward modules, outper-
forms CNNs and Transformers on image recognition and object detection – especially when handling
irregular objects. Its �exibility makes it promising for real-world scenarios with complex scenes and
non-uniform objects. Moreover, GNNs are demonstrating value in �D computer vision by directly
processing point clouds [��]. Techniques like Dynamic Graph CNN’s EdgeConv operation capture lo-
cal geometric features within point clouds, enabling superior object classi�cation and segmentation
compared to prior methods. Additionally, recent works explore the use of GNNs in video analysis,
where they capture the temporal relationships between video frames for improved understanding of
actions and events.

Knowledge Graph Completion
GNNs have become invaluable tools for knowledge graph completion (KGC), the task of predict-

ing missing links or inferring new facts within a knowledge graph. GNNs learn rich representations
of entities and their relationships within the graph’s structure. Early works [��] demonstrated the
potential of GNNs to handle complex relational knowledge. Recent advancements have signi�cantly
pushed the boundaries of GNNs in this area. One such innovation is the INDIGO approach [��], which
directly encodes the knowledge graph into a GNN. This encoding eliminates the need for external
scoring functions, leading to more e�cient and generalizable link prediction in inductive settings.
Similarly, the MA-GNN model [��] advances the �eld by employing multiple attention mechanisms
to capture both global and local structural information, improving the model’s ability to handle long-
range dependencies for more complex reasoning. Another novel approach is the PathCon method
[�], which adopts a new GNN approach for KGC. It leverages “relational context” via message passing
to aggregate neighborhood information based on relation types, and further incorporates “relational
paths” by modeling and assessing the importance of various paths connecting entity pairs for relation
prediction. Finally, other works have focused on integrating logical rules with GNNs [��], enhancing
interpretability and robustness of predictions.

�.� Contributions

This thesis investigates the application of GNNs to enhance predictive capabilities in two distinct
domains. First, we demonstrate how GNNs can predict the dynamics of in�uence spread in social
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Figure �.�: Thesis contributions: a visual breakdown by chapter.

networks, developing robust models that e�ectively leverage complex relationships within graph-
structured social network data. Second, motivated by the AIDA project, we explore the use of GNNs in
KG-based business organizational model recommendations. Our initial prototype utilized a non-GNN
based few-shot link prediction model, demonstrating the feasibility of this approach, subsequently
leading us to investigate how GNNs could further enhance the model’s performance. This thesis
makes several key contributions, outlined below and further illustrated in Figure �.�.

�.�.� In�uence Maximization
This thesis advances the �eld of In�uence Maximization (IM) in social networks. IM focuses on

identifying the most in�uential nodes within a network to maximize the spread of information or
ideas. Our work contributes to this �eld in several key ways. Firstly, we begin with an IM adaptation
of S�V-DQN (S�V-DQN-IM) as a proof-of-concept. Secondly, we introduce IM-GNN, which combines
attentive Graph Neural Networks (GATs), the graph magnetic Laplacian as a positional encoding and
self-edges. Importantly, for our comparison of IM-GNN with SOTA baseline methods, we use public,
real-world datasets and di�usion graphs built from cascades, i.e., with data-based di�usion probabil-
ities. Thirdly, we expand our framework with TIM-GNN to consider the topical aspects of real-world
in�uence spread. For a realistic evaluation, from public data, we extract topic-aware di�usion graphs
from information cascades, using the survival factorization framework [��]. Additionally, we present
TIM-GNNx, which incorporates cross-attention mechanisms to address real-world IM query require-
ments. These contributions o�er novel, scalable, and e�cient solutions based on Deep Reinforce-
ment Learning and Graph Neural Networks to tackle the complex challenge of In�uence Maximiza-
tion, pushing the boundaries of this research area.

�.�.� Few-shot Link Prediction in Knowledge Graph
AIDA is a collaborative public-private project in the �eld of arti�cial intelligence (AI). It is a joint

e�ort by IBM, Université Paris-Saclay, Softeam, DecisionBrain and STET, with the ambition to develop
a learning platform that will allow companies to improve their performance by integrating arti�cial
intelligence into their operational systems. The project is expected to bene�t from the latest research
advancements from Université Paris-Saclay.

Within the AIDA project, we develop a prototype, deployed as an API, to deliver KG-based rec-
ommendations for business organizational models. For that purpose, we adapt the MetaR model
[��], a non-GNN based model, for our use case. We then delve into the challenges associated with
few-shot link prediction in knowledge graphs and propose several innovative solutions to enhance
this model with GNNs. We �rst adapt the PathCon model to the MetaR framework for few-shot link
prediction. PathCon, known for its ability to capture graph structure, leverages relational context
and paths for enhanced reasoning. Our adaptation integrates PathCon’s GNN message passing and
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path modeling into MetaR’s Meta-Learning framework for few-shot link prediction, resulting in com-
parable performance to the original MetaR model. Building upon this, we introduce experimental
hybrid models that explore di�erent ways to combine PathCon with the MetaR model, seeking po-
tential performance gains. We investigate various strategies for this integration. These strategies
include an adaptive attention mechanism to dynamically balance the contributions of each model
based on the context, closer alignment of MetaR with PathCon’s relational reasoning, and a Mixture
of Experts model [��] where each method is specialized and deployed selectively based on the pre-
diction context. While the hybrid models did not consistently outperform the individual models, our
investigation revealed potential reasons for this outcome. The inductive, structure-focused nature
of PathCon might not be fully compatible with MetaR’s task-adaptive, gradient-based meta-learning
approach. Additionally, the limitations of the TransE scoring function, particularly in representing
complex relational patterns, could have hampered the models’ synergy. Finally, PathCon’s reliance
on diverse relational paths might have been hindered by the limited support set examples in the
few-shot setting. These �ndings suggest that future research should explore either more compatible
learning paradigms, more expressive scoring functions, or more data-e�cient ways to utilize path
information.

�.� Thesis Structure
This thesis explores the intersection of graph neural networks, reinforcement learning, and meta-

learning to solve key problems within graphs, speci�cally in�uence maximization in social graphs and
few-shot link prediction in knowledge graphs. The structure is as follows:

• Chapter � provides a comprehensive survey of existing research in combinatorial optimiza-
tion, in�uence maximization, GNNs, reinforcement learning, few-shot link prediction, and meta-
learning in knowledge graphs.

• Chapter � introduces core notations, formal de�nitions, and in-depth explanations of the foun-
dational techniques employed in this work, including GNNs, reinforcement learning, meta-
learning.

• Chapter � advances the �eld of In�uence Maximization in social networks. This chapter intro-
duces novel deep reinforcement learning and graph neural network-based approaches that
outperform existing methods in performance, latency, and robustness. Key contributions in-
clude the integration of graph attention mechanisms, positional encodings and self-edges to
an existing deep learning framework, the modeling of topic-aware in�uence spread, and the
optimization of query latency for practical IM applications.

• Chapter � discusses the development of a prototype for deploying KG-based business organiza-
tional model recommendations as an API. It also explores challenges in few-shot link prediction
for knowledge graphs and proposes several ideas. The PathCon method is adapted to a Meta-
Learning framework to enhance its few-shot capabilities while e�ectively leveraging KG struc-
ture. Additionally, a hybrid model combining the adapted PathCon with the MetaR algorithm is
developed. While experiments did not reveal a conclusive synergy between these models, the
chapter analyzes potential reasons for this outcome.

• Chapter � summarizes the thesis’s key discoveries and the signi�cance of its contributions and
suggests promising avenues for extending this research or addressing its limitations.
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Chapter �

Literature Review

�.� Combinatorial Optimization
Combinatorial optimization is a cornerstone of applied mathematics and computer science, con-

cerned with �nding optimal solutions from a �nite set of possibilities subject to constraints. The
�eld’s rich history includes seminal works establishing the theoretical underpinnings. The Traveling
Salesman Problem, formulated by Dantzig, Fulkerson, and Johnson [��], exempli�es the challenges of
combinatorial optimization with its exponentially growing solution space. In parallel, George Dantzig’s
development of the Simplex algorithm [��] revolutionized the �eld of linear programming, providing
a foundation upon which later techniques could build. For complex combinatorial problems, branch-
and-bound algorithms [��] o�er systematic search procedures. However, the inherent computational
di�culty often necessitates heuristics and metaheuristics such as simulated annealing [��], evolution-
ary algorithms [��], and tabu search [��] to �nd good solutions in reasonable time.

The rise of machine learning, particularly Graph Neural Networks, has transformed combinatorial
optimization. GNNs excel at learning complex patterns from graph-structured data, making them nat-
urally suited to represent problems with entities and relationships [��]. Recent work has highlighted
the power of attention-based GNNs for �nding good solutions to the Traveling Salesperson Problem,
getting close to optimal results for problems up to ��� nodes [��]. Moreover, using reinforcement
learning to train GNNs for combinatorial optimization has shown signi�cant promise [��].

A recent survey [��] o�ers a panoramic view of the �eld, outlining how GNNs present a compelling
approach for addressing challenging optimization problems. The survey highlights the capabilities of
GNNs that make them particularly well-suited for CO tasks. Speci�cally, the permutation invariance of
GNNs aligns with the need to �nd solutions independent of input order. Moreover, GNNs’ strength in
relational reasoning allows them to uncover complex patterns within the problem structure. This sur-
vey details how GNNs can be applied directly as learned solvers to �nd solutions or can be integrated
with traditional solvers to enhance e�ciency and guide the search process. Crucially, this compre-
hensive survey o�ers a uni�ed perspective of the emerging �eld, creating a taxonomy of GNN-CO
methods while highlighting promising research directions and remaining challenges.

�.� In�uence Maximization in Social Graphs
In�uence maximization. The problem was �rst formalized in [��], and shown to be NP-hard, for

di�usion models such as Linear Threshold (LT) and Independant Cascades (IC). Exploiting the mono-
tonicity and submodularity of the in�uence spread function, they show that a simple greedy strategy
is within (1 � 1/e) of the optimal. Since the di�usion models are stochastic, expensive Monte Carlo
simulations are needed to estimate the spread (marginal gain) of a candidate seed. Regarding the
traditional (vanilla) IM formulation, the majority of the studies that followed focused on improving
upon e�ciency. For instance, the CELF method of [��] further exploits submodularity, leading to far
fewer Monte Carlo di�usion simulations in practice. The IMM algorithm of [��] introduces a set of
estimation techniques based on martingales, which enable to maintain the worst-case guarantees of
the greedy approach, while increasing the e�ciency (near-linear time). IMM builds upon the reverse
in�uence sampling (RIS) approach from [��]. Instead of simulating in�uence spread forward from
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potential seed nodes, RIS traces in�uence paths backward from randomly selected nodes to identify
in�uential sources. IMM uses this concept to generate reverse reachable (RR) sets and then selects
the seed set that overlaps the most with these sets. While these and numerous other good heuristics
have been proposed in recent years, their applicability in real-world IM settings at scale remains prob-
lematic, due to the intrinsic hardness of the combinatorial problem combined with the stochasticity
of di�usion models. For a more in-depth comparison of traditional IM methods, we refer the reader
to the recent studies of [��] and [��].

Topic-aware IM (TIM). Vanilla IM models do not capture variations in di�usion patterns, essen-

Figure �.�: Posts of di�erent topical features have a di�erent spreading rate, re�ected in the di�erent
shapes of the �tted Rayleigh distribution of transmission time, from [��]

tially treating di�usion items as a black box (ignoring content), yet topical features have been shown
to play a major role in how information may spread virally [��]. Extending the vanilla IC model, Topic-
aware Independent Cascades (TIC) di�usion models have been proposed initially in [��] and further
re�ned in [��]. In short, TIC assumes that each edge is labelled by a probability di�usion vector of
dimension d (number of topics), with each component denoting the activation probability from the
source node to the target one under a speci�c topic. While capturing more closely real-world di�u-
sions than vanilla IM models, TIC has the downside of bringing an additional level of complexity to
an already challenging problem. Algorithms for online topic-aware IM have been proposed, based on
TIC, following generally a strategy of pre-processing and indexing topic-agnostic IM results, such as
the INFLEX approach of [��], as well as [��] or [��]. We refer the reader to [��] for a survey on IM in
contexts involving other relevant dimensions of social networks, such as topics, location, or time. We
contribute to this line of research by proposing a DRL-based approach, predicting marginal spread
gain under TIC, based jointly on the di�usion medium and the topical pro�le of the item to spread.

S�V-DQN. Designing good heuristics for combinatorial optimization problems on graphs often
requires tremendous specialized knowledge and trial-and-error. [��] presents a new perspective
on combinatorial optimization problems in general. They use a powerful end-to-end trainable ap-
proach called S�V-DQN, merging the strengths of Deep Q-Network (DQN) in reinforcement learning
with Structure�Vec’s (S�V) capability in graph embedding. It acts as a meta-algorithm, capable of au-
tomating the design of heuristics and incrementally constructing a solution for hard combinatorial
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optimization problems on graphs. In our work, we adopt and adapt this framework to the problem of
topic-aware IM.

Learning-based methods for IM. We have seen in recent years an in�ation of learning-based
methods for IM, alas, with many of them su�ering in our view from similar conceptual, methodolog-
ical, or scienti�c rigour shortcomings. A recent survey of such approaches can be found in [��]. We
focus our discussion on the deep reinforcement learning line of research that builds upon the meta-
algorithm S�V-DQN, adapting it to the IM problem. PIANO is a DQN-based IM algorithm that was
proposed by [��], and the �rst study to use the S�V-DQN framework for IM. PIANO trains the DQN
model on small, topologically coherent samples of the di�usion graph before evaluating it on the full
graph. With a focus on generalizability, PIANO also proposes to maintain a collection of pre-computed
models to avoid retraining. The authors claim superior e�ciency and comparable result quality with
state-of-the-art classical IM methods. However, we found serious issues while trying to reproduce the
paper’s results on benchmark IM datasets. Our basic algorithmic design (S�V-DQN-IM) for vanilla IM is
quite similar to PIANO conceptually, which allows us to follow the performance gains brought to it by
our progressively re�ned methods IM-GNN and TIM-GNN. DIEM [��] is the only study to apply the S�V-
DQN framework to topic-aware IM. However, it advances only marginally the general understanding
of the problem space and potential solutions. This is due to experimental limitations and unspeci�ed
details. For example, DIEM is evaluated on undisclosed Twitter data, under an ad-hoc topic-aware
model, with arti�cial topology-based di�usion probabilities. We could not obtain the DIEM code or
data from the authors, hence the results are not reproducible. Overall, PIANO and DIEM have similar
limitations. They both evaluate on arti�cial di�usion graphs, which limits their relevance for practi-
cal IM scenarios. Instead, we focus on cascade-based di�usion graphs, built from public datasets of
cascades. Regarding how these studies extend and improve upon the S�V-DQN framework, many
unclear aspects remain. In fact, PIANO does not discuss this aspect at all (incidentally, does not cite
[��]), although it adopts its conceptual framework.

ToupleGDD [��] is an S�V-DQN-like framework for vanilla IM that couples three GNNs enhanced
with an attention mechanism for network embedding. It has a particular focus on generalizability,
and therefore trains on small, randomly generated graphs and with a small seed set budget. This
allows it to be evaluated on a multitude of di�usion graphs and for various budgets. GCOMB is an
approach proposed in [��], which, unlike S�V-DQN, does not use an end-to-end architecture. It start
from the observation that pruning the search space is as important as the prediction of the solution.
GCOMB works by �rst using a graph convolutional network (GCN) to identify promising nodes (as seed
set candidates); the GCN learns embeddings of the promising nodes in a supervised manner. Then,
it uses a Q-learning component to predict the solution set from the promising nodes. The mixture
of supervised and RL makes GCOMB on one hand lightweight (fewer parameters), but on the other
hand highly dependent on the quality of the supervised stage. The DeepIM approach of [��] tackles
vanilla IM on a �xed graph using an autoencoder to compress seed sets, training the network to
optimize the spread prediction from the reconstructed seed set. The optimal seed set is then inferred
through gradient descent in the low-dimension space. By design, one particular focus of DeepIM
is generalizability under various di�usion models, which may impact its predictive performance in
certain settings. While alternative di�usion models are beyond our scope, we see this additional level
of robustness – across di�usion models – as an interesting direction for future research. ToupleGDD,
GComb, and DeepIM are the most recent and, in our view, the best representatives of the state-of-the-art
on learning-based IM; we will employ them as baseline methods.

Other related work. [��] proposes RL�IM, an RL approach for contingency-aware IM, where the
seeded nodes accept their role with a certain probability. In particular, they focus on reward shaping
since, due to uncertainty on the seeds’ willingness to spread information, it is no longer possible to
use the marginal spread of a newly selected node as the immediate reward at each step. When con-
tingency is relaxed, RL�IM becomes the basic S�V-DQN we compare with. The IMINFECTOR approach
of [��] solves vanilla IM by extracting in�uencer and susceptible node embeddings from cascades.
The rationale is that such deep-learning based representations can capture high-order correlations
between users. They rely on such embeddings to make predictions on in�uencer-in�uencee spread
probability and in�uencers’ spread magnitude, used as the main ingredients in an adapted greedy
algorithm for seed selection. The DeepIS approach of [��] predicts the susceptibility of target nodes
to be in�uenced by a seed set. They approach the problem as a node regression task in the GNN
framework.
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Positioning w.r.t state-of-the-art. While there is an extensive and diverse work on new DRL
methods for graph CO problems (e.g., for vanilla IM), in particular building upon the simple, generic
S�V-DQN framework, our work represents the �rst attempt to leverage DRL for topic-aware IM. We
argue that a DRL-based approach within this framework is only justi�able if there is a large space of
potential IM queries (hence topic-aware), which can be answered in real-time. The aforementioned
DRL-based solutions for vanilla IM cannot be directly applied nor easily adapted to address the chal-
lenges of topic-aware IM. In essence, TIM-GNNx is the �rst approach addressing the three critical
challenges for practical applicability of learning-based IM solutions: predictive accuracy over a broad
(topic-aware) query space, low latency over large di�usion graphs, and robustness to graph changes.
As illustrated in our experiments, existing methods fall short in at least one of these aspects. Impor-
tantly, in these experiments we incorporate realistic di�usion graphs, either topic-agnostic or topic-
aware, in contrast with the commonly used uniform or trivalency probability models of most prior
works (including all DRL-based methods for vanilla IM).

�.� Graph Neural Networks and Message Passing
GNNs have emerged as a powerful deep learning paradigm for extracting insights from graph-

structured data. Unlike traditional machine learning techniques originally designed for tabular, se-
quential, or image data, GNNs are speci�cally tailored to handle the complexities of interconnected,
non-Euclidean data, making them uniquely powerful in domains where relationships between entities
are important. The core mechanism behind GNNs is the concept of message passing, which enables
e�cient information sharing and aggregation within a graph’s intricate topology.

�.�.� Foundational Works and Key Developments
The development of GNNs demonstrates a clear drive toward scalable, expressive deep learning

architectures for graph-structured data. Early work, pioneered by [��], modeled graph dependen-
cies using a recurrent neural network-based approach. This design allowed node representations
to evolve iteratively based on the states of their neighbors, capturing the inherent dependencies
within graphs. Building on this capability, [��] sought to adapt the power of convolutional neural
networks (CNNs) to the graph domain. Their spectral approach, leveraging the graph Laplacian and
Fourier transform, provided a mathematical basis for graph convolutions. However, the global na-
ture of the spectral �lters created scalability challenges. Recognizing these limitations, subsequent
research shifted towards spatial methods that directly operate on graph neighborhoods. [��] for-
malized this trend. By de�ning graph operations in terms of message passing between nodes, this
approach o�ered a �exible and scalable foundation for graph representation learning. [��] improved
the spatial approach with Graph Convolutional Networks (GCNs). By approximating spectral convo-
lutions with a localized �rst-order approach, GCNs improved scalability without sacri�cing the ability
to capture neighborhood information. Further re�nement came with GATs [��]. Integrating atten-
tion mechanisms to dynamically weigh the importance of a node’s neighbors signi�cantly increased
GNNs’ expressive power for complex relational patterns. Addressing large and dynamic graphs, [��]
introduced GraphSAGE, an inductive learning paradigm. GraphSAGE generates node embeddings by
sampling and aggregating features from local neighborhoods, making it suitable for graphs where
the full structure might be unknown or constantly evolving.

A crucial aspect of GNN research lies in understanding their theoretical limitations and expres-
sivity. The Weisfeiler-Lehman (WL) graph isomorphism test provides a fundamental benchmark for
measuring the ability of a GNN to distinguish between non-isomorphic graphs. Research has shown
that standard message passing GNNs are at most as powerful as the WL test [��]. More recent work
seeks to enhance the expressive power of GNNs, potentially enabling them to surpass the limitations
imposed by the WL test [��].

Pushing the boundaries of GNNs, recent works explore mechanisms for enhanced collaboration
between nodes. One approach to improving GNNs e�ciency involves reducing the number of lay-
ers required to learn features from distant neighborhoods. [��] introduces learnable structural and
positional representations, allowing nodes to aggregate information from throughout the graph with
fewer message-passing steps. Another fascinating development is Cooperative Graph Neural Net-
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works [��], where nodes collaborate strategically in their communication patterns, demonstrating
improved performance. Unlike traditional GNNs where communication follows the �xed graph struc-
ture, nodes in this framework learn to actively choose whether to send messages, receive messages,
both or none. This strategic communication allows for targeted information �ow, potentially reducing
computational bottlenecks while increasing the expressive power of the model.

�.� Reinforcement Learning in Graph Analysis
The synergy of RL and graph analysis gives rise to a fertile research �eld with the potential to tackle

intricate graph-based tasks with increased automation and adaptability.

�.�.� Reinforcement Learning
Reinforcement learning (RL) is a powerful machine learning paradigm where an agent learns

through interaction with its environment. Unlike supervised learning, the agent isn’t given explicit
correct answers, but instead, receives rewards (or punishments) for its actions. The goal is to learn a
strategy, called a policy, that maximizes the cumulative reward over time. RL draws inspiration from
how humans and animals learn – through trial and error, discovering which actions yield the best
outcomes in di�erent scenarios.

Early RL research focused on tabular methods such as Q-learning [��], where agents learn values
for each state-action pair. These methods, while e�ective in simple environments, struggle with the
curse of dimensionality as the state and action spaces grow. To address this, function approximation
methods, utilizing neural networks, have become increasingly popular. Deep Q-Networks [��] were
a breakthrough in this area, demonstrating the ability to learn complex policies directly from sensory
inputs i.e raw pixel data.

However, DQN initially faced challenges with stability and convergence. Subsequent research ad-
dressed these issues through various enhancements. Double DQN [��] mitigated the overestimation
bias of Q-value present in DQN by separating the process of choosing an action from the process
of evaluating its value. Dueling DQN [��] further improved performance by separating the Q-value
output into state value (how valuable is being in a particular state) and action advantage (how much
better a speci�c action is compared to the others in that state). Prioritized Experience Replay [��] tack-
led the issue of correlated data and unstable learning by storing past experiences and using them for
training updates while introducing a mechanism to prioritize the replay of experiences that contribute
most to learning, leading to faster convergence. These advancements, along with others, have solidi-
�ed DQN’s position as a foundational algorithm in deep RL and paved the way for further exploration
in the �eld. In this thesis, we mostly use Prioritized Double DQN.

Despite their success, DQN and similar value-based methods can su�er from instability and slow
convergence. Policy gradient methods [��] o�er an alternative, directly optimizing the policy param-
eters to maximize expected return. Recent advancements such as the Proximal Policy Optimization
(PPO) algorithm [��] have improved the stability and e�ciency of policy gradient methods, making
them a popular choice for continuous control tasks.

�.�.� RL and GNNs
GNNs excel in learning expressive representations of nodes, edges, and whole graphs. The in-

tegration of GNNs and RL creates a powerful framework where the GNN can inform the RL agent’s
state representation, and the RL agent optimizes decision-making on the graph structure. This combi-
nation proves e�ective in applications like combinatorial optimization on graphs [��], recommender
systems, and molecule generation.

�.� Few-Shot Link Prediction in Knowledge Graphs
Knowledge Graphs have become essential tools for representing and reasoning about real-world

information, but a core challenge lies in completing these graphs by predicting missing links between
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entities. This task, known as link prediction, has traditionally relied on methods, like TransE [��] and
ComplEx [��], requiring extensive training data, leading to limitations when encountering the “long
tail” phenomenon – the abundance of entities and relations with sparse observations. As a response,
the �eld of few-shot link prediction has gained prominence, aiming to make accurate predictions
using only a handful of training examples.

Few-shot link prediction approaches draw inspiration from meta-learning, leveraging its principles
of learning to learn and rapid adaptation to new tasks. Meta-learning based models like MetaR [��]
and GMatching [��] respectively utilize gradient-based and metric-based meta-learning to acquire
generalizable strategies for adapting to new tasks with limited data. MetaR proposes a meta relational
learning framework that aims to transfer relation-speci�c meta information from a support set to a
query set. It leverages relation meta to transfer common and important information, and gradient
meta to accelerate learning. GMatching, on the other hand, learns a matching metric by considering
both the learned embeddings and one-hop graph structures.

Beyond these established techniques, recent research has introduced novel approaches that fur-
ther advance the �eld. PathCon [�] employs relational message passing, focusing on edge features
(relation types) and iteratively passing messages among edges to aggregate neighborhood informa-
tion. This allows the model to capture both the relational context and paths within the knowledge
graph, leading to strong performance and interpretable results, particularly in sparse KGs. Connec-
tion Subgraph Reasoner (CSR) [��] addresses the limitations of meta-learning by directly predicting
the target few-shot task without relying on manually curated sets of training tasks. By modeling a
shared connection subgraph between support and query triplets, CSR implements a principle called
eliminative induction. This principle, rooted in scienti�c reasoning, involves proposing multiple hy-
potheses and then systematically eliminating those that contradict observed data. In the context
of CSR, the algorithm explores various connection subgraphs within the knowledge graph, treating
them as potential hypotheses for explaining the relations in the support set. Subgraphs inconsistent
with any of the support triplets are discarded, leading to a re�ned hypothesis represented by the
shared connection subgraph. This e�ectively identi�es the underlying logical pattern that implies the
existence of the target triplet. This approach o�ers a more generalizable and adaptable solution to
few-shot learning.

Few-shot link prediction methods, and knowledge graph completion techniques in general, are
rapidly improving. Researchers are exploring new architectures, pre-training strategies, and induc-
tive reasoning mechanisms to build stronger models. Future directions may include incorporating
external knowledge sources to enrich the models, developing hybrid approaches that combine dif-
ferent learning paradigms, and designing data-e�cient models for knowledge graph reasoning.
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Chapter �

Preliminaries

�.� Notations

Symbol De�nition

G A graph
V The set of nodes (vertices) in a graph
E The set of edges in a graph
P Probability function on the set of edges
(u, v) An edge between nodes u and v
pu,v Topic-agnostic di�usion probability along edge (u, v)
pu,v Topic-aware di�usion probability vector for edge (u, v) in TIC

(dimension d, one element per topic)
pzu,v Di�usion probability along edge (u, v) for topic z in TIC
S A seed set of nodes
k Seed set budget
�(S) Spread of in�uence from seed set S
d Number of topics
�!� Item: a topic distribution vector
Q = (�!� , k) IM query: topic distribution and budget
�(S|�!� ) Spread of in�uence from seed set S for item �!� in TIC
M Predictive model for marginal spread gain
M(�!� , S0, s) Predicted marginal spread gain by model M for item �!� ,

partial solution S0, and candidate node s

�.� Graph Neural Networks
Graph Neural Networks have emerged as a powerful tool for analyzing and extracting insights

from graph-structured data. To e�ectively utilize GNNs, it is crucial to grasp the fundamental concepts
that underpin their design and functionality.

�.�.� Key aspects of GNNs
Some core principles in understanding GNNs are permutation invariance and message passing.

Permutation invariance This principle dictates that the output of a GNN should remain unaf-
fected by the order in which nodes are presented. This property is essential for GNNs because graphs,
unlike sequences or grids, do not have a �xed or inherent ordering of nodes. The lack of a canonical
node order necessitates that GNNs operate in a way that is insensitive to the speci�c arrangement of
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Symbol De�nition

xv Binary indicator for node v being in partial solution S0

N (v) Set of neighboring nodes of node v in the directed graph
Q̂ Action-value function parameterized by GNN
relu(z) Recti�ed Linear Unit activation function: relu(z) = max(0, z)
t Time step or iteration
etu,v Attention score between nodes u and v at iteration t
↵t
u,v Normalized attention weight between nodes u and v at iteration t

LN Normalized combinatorial Laplacian matrix
L(q)N Normalized magnetic Laplacian matrix with potential q
Ã Symmetrized adjacency matrix
D̃ Degree matrix of the symmetrized adjacency matrix
b Number of base items
T Number of message passing iterations
↵ Learning rate
� Discount factor in reinforcement learning
Ti Task i in meta-learning
Di Dataset for task i in meta-learning
LTi Loss function for task Ti

f✓i Model after being updated for task Ti with parameters ✓i
✓ Initial model parameters to be optimized

nodes. This leads to the use of aggregation functions, such as summation or averaging, that combine
information from neighboring nodes without being in�uenced by the order in which those neighbors
are considered.

Message passing GNNs operate through an iterative process where nodes exchange information,
or “messages” with their neighbors to update their representations. This message passing framework
is the core mechanism by which GNNs learn and represent information within a graph. The process in-
volves several key phases: First, each node gathers information from its neighbors in a process known
as neighborhood aggregation. These collected messages are then transformed, often using neural
networks, to extract meaningful features and patterns. Finally, the aggregated and transformed infor-
mation is used to update the representation of the node itself. By iteratively exchanging and re�ning
information, nodes in a GNN gradually develop a comprehensive understanding of their local envi-
ronment and their position within the broader graph structure.

�.�.� Three �avours of GNN layers
GNNs can be categorized into di�erent “�avours” [��] based on the speci�c mechanisms they

employ for aggregating and transforming information.

Convolutional GNNs This �avour employs a �xed weighting scheme to aggregate features from
neighboring nodes.

hu = �

 
xu,

M

v2Nu

cuv (xv)

!

where hu is the updated feature vector for node u, xu is the original feature vector for node u, Nu

represents the neighborhood of node u, cuv is a �xed weight signifying the importance of node v to
node u. Most commonly,  and � are learnable a�ne transformations with activation functions; e.g.
 (x) = Wx+ b; �(x, z) = �(Wx+Uz+ b) where W, U, b are learnable parameters and � is an acti-
vation function such as the recti�ed linear unit. The additional input of xu to � represents an optional
skip-connection, which is often very useful. Finally,

L
is a permutation-invariant aggregation function
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(e.g., sum, mean, or maximum).

This �avour is similar to convolutional operations in CNNs, where �xed �lters aggregate information
from local regions.

Attentional GNNs This �avour utilizes a learnable self-attention mechanism to determine the
importance of neighboring nodes dynamically.

hu = �

 
xu,

M

v2Nu

a(xu, xv) (xv)

!

where a(xu, xv) represents the attention coe�cient between nodes u and v, computed by a learnable
function a
This �avour o�ers more �exibility than the convolutional approach, allowing the network to focus on
relevant neighbors based on their features.

Message-passing GNNs This �avour computes and exchanges arbitrary vector-valued messages
between nodes.

hu = �

 
xu,

M

v2Nu

 (xu, xv)

!

where  (xu, xv) represents the message sent from node v to node u, computed by a learnable func-
tion  
This �avour is the most expressive but also computationally demanding, as it requires computing and
storing vector messages for each edge in the graph.

There is a representational containment between these �avours, with convolutional being the
least expressive and message-passing being the most expressive. The choice of GNN �avour depends
on the speci�c task and the desired trade-o� between expressivity and computational e�ciency.

�.�.� Node representation learning in graphs
Several other important ideas contribute to the e�ectiveness and versatility of GNNs.

Graph sampling When dealing with large-scale graphs, GNNs face computational challenges due
to the vast number of nodes and edges involved in message passing. Graph sampling techniques
o�er a solution by strategically selecting a smaller, representative subset of nodes and edges for pro-
cessing. This approach reduces computational costs, improves e�ciency, and minimizes memory
usage while aiming to preserve the essential structural information of the full graph. Various sam-
pling methods exist, each with its own strengths and weaknesses. Node sampling techniques focus
on selecting a subset of nodes and their corresponding edges, with options ranging from simple ran-
dom selection to more sophisticated approaches based on node features or centrality measures. For
instance, Breadth-First Search (BFS) sampling [��] starts from a randomly chosen node and system-
atically explores its neighboring nodes, then their neighbors, and so on, creating a subgraph that
captures the local structure around the starting point. Alternatively, edge sampling techniques con-
centrate on selecting a subset of edges and their incident nodes, often using random selection or
walk-based methods that traverse the graph along speci�c paths.

Node embedding techniques play a critical role in GNNs by learning to represent each node as
a low-dimensional vector that captures its structural role and relationships within the graph. These
dense vector representations encode valuable information about the graph’s structure, enabling down-
stream tasks like node classi�cation, link prediction, and graph classi�cation. Several methods exist
for generating node embeddings, each with its own approach to capturing structural information.
Random walk [��] based embeddings, such as DeepWalk [��] and Node�Vec [��], simulate random
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walks on the graph and learn representations based on the co-occurrence patterns of nodes within
these walks. Matrix factorization based embeddings, like Laplacian Eigenmaps [��] and GraRep [��],
leverage matrix factorization of graph-related matrices to obtain node embeddings that re�ect the
graph’s underlying structure. Deep learning based embeddings, often generated by GNNs them-
selves, propagate information through the graph to learn representations that consider both local
neighborhoods and broader connectivity patterns. Importantly, GNNs can be initialized using embed-
dings from other embedding techniques. This leverages pre-existing structural knowledge, potentially
leading to faster convergence, more robust representations, and a reduced likelihood of over�tting.

�.�.� Learning tasks over graphs
Learning tasks over graphs span multiple levels of complexity, encompassing node-level predic-

tions, the analysis of relationships between nodes, and inferences about the entire graph structure.

Node-Level Tasks Node-level tasks focus on predicting properties or labels associated with indi-
vidual nodes in the graph. Examples include predicting the class label of a node, such as identifying
spam accounts in a social network or classifying the topic of a research paper in a citation network.
Additionally, node-level tasks can involve predicting a continuous value associated with a node, like
estimating the creditworthiness of a borrower in a �nancial transaction network.

Edge-Level Tasks Edge-level tasks deal with predicting properties or labels associated with the
connections between nodes. This can involve predicting the existence or likelihood of a connection
between two nodes, which can be applied to recommend connections in social networks or predict
protein-protein interactions. Assigning a label or category to an edge, such as determining the type
of relationship between two entities in a knowledge graph, falls under edge classi�cation. Additionally,
edge regression tasks involve predicting a continuous value associated with an edge, such as estimating
the strength of a social tie or the weight of a transportation link.

Graph-level tasks When we move beyond analyzing individual nodes and edges to understand-
ing entire graphs, GNNs face a new set of challenges. Graph-level tasks require the model to reason
about the holistic properties of the graph structure. For instance, classifying a molecule as possess-
ing a speci�c pharmaceutical property, like inhibiting a particular enzyme, based solely on its atomic
structure represented as a graph, exempli�es a graph classi�cation task. In contrast, graph regression
involves predicting a continuous value associated with the entire graph, such as estimating the pre-
cise binding a�nity of a molecule to a target protein, a crucial factor in drug discovery. Beyond clas-
si�cation and regression, grouping similar graphs together based on their structural properties and
features, known as graph clustering, can be helpful for identifying patterns in collections of molecules,
ultimately enabling the discovery of molecules with similar pharmaceutical properties.

To capture this crucial structural information, GNNs can be designed to incorporate higher-order
variants capable of recognizing complex substructures within the graph. One powerful tool for achiev-
ing this is the Laplacian matrix [��], a mathematical representation of the graph’s connectivity. The
Laplacian encodes essential information about the graph’s structure, enabling GNNs to learn repre-
sentations that re�ect the overall graph properties. By leveraging the Laplacian, GNNs can enforce
smoothness in node representations, ensuring that connected nodes have similar representations.
This is particularly helpful for tasks like graph classi�cation, where similar graphs should be grouped
together. Additionally, the eigenvalues and eigenvectors of the Laplacian matrix reveal important
structural properties like connectivity and diameter, further enhancing the GNN’s understanding of
the graph.

�.� Reinforcement Learning

�.�.� Learning through Trial-and-Error
Reinforcement Learning (RL) [��] is a dynamic subset of machine learning where an agent learns

by actively interacting with its environment. Unlike supervised learning, which relies on labeled data,
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or unsupervised learning, which seeks patterns in unlabeled data, RL focuses on learning through
trial and error. The agent learns through a system of rewards and penalties, gradually improving its
decision-making strategy to maximize its long-term gains.

�.�.� The RL Framework
In reinforcement learning, an agent, the decision-making entity, interacts with an environment

by making choices called actions. The state represents the agent’s current situation within the envi-
ronment, and each action can potentially change that state. The environment provides rewards as
feedback, indicating the success or value of an action taken in a particular state. The agent’s overarch-
ing goal is to learn an optimal policy, essentially a function that maps states to actions, that dictates
which action to take in each possible state to maximize cumulative rewards over time.

Figure �.�: The reinforcement learning framework : At time-step t, the agent observes a representation
of the environment’s state St, selects an action At and receives a reward Rt.

The interaction between the agent and environment is typically modeled as a Markov Decision
Process (MDP):

A Markov Decision Process is de�ned by a tuple:

M = (S,A, p, r)

where S is the set of all possible states, referred to as the state space; A is the set of all possible ac-
tions, referred to as the action space; p is the transition function where p(s0|s, a) gives the probability
of transitioning to state s0 when taking action a in state s; and r is the reward function where r(s, a)
gives the immediate reward received for taking action a in state s.

�.�.� Returns and Episodes
The agent’s interaction with the environment is structured into episodes.

An episode is a sequence of states, actions, and rewards, starting from an initial state and ending
in a terminal state or after a predetermined number of steps.

An episode can be represented as:

St
At�! St+1

At+1���! St+2
At+2���! · · ·

where t is a time step.
The agent’s goal is to maximize the cumulative reward, known as the return.

��



The return (Gt) at time step t is the sum of rewards obtained from that time step onwards.
Often, a discounted return is used to prioritize immediate rewards:

Gt = Rt + �Rt+1 + �2Rt+2 + · · · ,

where � 2 (0, 1) is the discount factor.

�.�.� Q-Learning: A Foundational Algorithm

The Value Function:

In Q-learning, we estimate the expected future reward using the Q-value, represented by Q(s, a).
This value estimates how good it is to take action a in state s, and then follow the agent’s current
policy.

Learning by Updating:

Q-learning updates Q-values iteratively using:

Q(s, a) Q(s, a) + ↵[r + �max
a0

Q(s0, a0)�Q(s, a)]

where ↵ is the learning rate, r the immediate reward after taking action a in state s, � the discount
factor and maxa0 Q(s0, a0) the maximum estimated future reward from the next state s0.

Goal:

By repeatedly updating Q-values, they become accurate estimates of the true rewards. The agent
improves its policy by choosing actions with the highest Q-values in each state.

�.�.� Deep Q-Networks
The DQN algorithm addresses the challenges of high-dimensional state spaces by using deep neu-

ral networks to approximate the Q-function. In complex environments with many states and actions,
tabular Q-learning becomes impractical. Deep neural networks provide a powerful function approxi-
mation tool, where the network takes the current state as input and outputs the estimated Q-values
for each possible action. DQN’s also incorporate experience replay, where past experiences (state,
action, reward, next state) are stored in a bu�er. During training, random samples from this bu�er
are used, improving learning stability and breaking the correlations that can arise in sequential data.

The DQN algorithm seeks to learn the optimal Q-function, which estimates the expected cumula-
tive reward of taking an action in a given state and following an optimal policy thereafter. Formally,
the optimal Q-function is de�ned as:

Q⇤(s, a) = E

r(s, a) + �max

a0
Q⇤(s0, a0)

�
(�.�)

where s0 represents the state resulting from taking action a in state s.

During training, the network’s parameters are adjusted to minimize the di�erence between the
predicted Q-value and a target Q-value derived from the Bellman equation [��]. This is achieved by
minimizing the following loss function:

L(✓) = E
h�
yDQN �Q(s, a; ✓)

�2i (�.�)

where yDQN = r + �maxa0 Q(s0, a0; ✓) is the target, calculated using the current network itself.
The expectation E[. . .] is typically approximated using a mini-batch of experiences sampled from the
replay bu�er.
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�.�.� Balancing Exploration and Exploitation
A crucial challenge in reinforcement learning is striking the right balance between exploration and

exploitation. Exploration involves trying new actions to potentially discover better long-term strate-
gies, while exploitation leverages known information to maximize immediate rewards.

In this work, we employ the epsilon-greedy ("-greedy) strategy for balancing exploration and
exploitation. With probability ", a random action is selected (exploration). Otherwise, with probability
1 � ", the action with the highest estimated Q-value is chosen (exploitation). The value of " often
decays over time, encouraging initial exploration and favoring exploitation as learning progresses.

While e�ective, it’s important to acknowledge that other exploration strategies exist, each with its
own advantages and trade-o�s:

• Boltzmann Exploration: Actions are chosen probabilistically based on their Q-values, ensuring
all actions have some chance of being selected.

• Upper Con�dence Bound (UCB): Balances Q-value estimates with uncertainty, favoring explo-
ration of less-tried actions.

• Curiosity: Intrinsically rewards the agent for discovering surprising outcomes.

�.�.� Some extensions to DQN
Several extensions have been proposed to enhance the performance and stability of the basic

DQN algorithm:

Double DQN (DDQN):

DDQN tackles the issue of overestimation bias potentially present in Q-learning methods. It achieves
this by decoupling the action selection and action evaluation processes. DDQN uses the current Q-
network to choose the best action, but relies on a separate target network for evaluating the Q-value
of that action. This helps reduce overoptimism and improves stability:

yDDQN = r + �Q(s0, argmax
a0

Q(s0, a0; ✓); ✓0) (�.�)

Where ✓ represents the current Q-network’s parameters and ✓0 represents the parameters of a
target network which is periodically updated with the current network’s weights.

Prioritized Experience Replay:

Instead of uniformly sampling from past experiences, prioritized experience replay prioritizes
transitions that have a high Temporal Di�erence (TD) error. The TD error signi�es a large discrepancy
between the estimated Q-value and the target Q-value, making these experiences more informative
for learning. Prioritizing these transitions leads to more e�cient use of data.

TDError = |Q(s, a; ✓)� yDQN | (�.�)

Dueling Networks:

This architecture enhances Q-networks by explicitly separating the estimation of state values and
action advantages:

• State-value function (V(s)): Represents the overall value of being in a particular state.

• Advantage function (A(s, a)): Represents the relative advantage of choosing a speci�c action
within that state. The advantage function is directly related to the Q-value function through the
following equation:

Q(s, a) = V (s) +A(s, a)
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This relationship highlights that the Q-value of an action can be decomposed into the value of
being in the state and the advantage of taking that speci�c action in that state.

This separation can improve generalization and help the agent focus on the value of states, espe-
cially when multiple actions might yield similar outcomes. However, directly using the equation above
can lead to identi�ability issues (i.e., an in�nite number of values for V (s) and A(s, a) can result in the
same Q(s, a)). To address this, the Q-value in a dueling network can be calculated as follows:

Q(s, a; ✓,↵,�) = V (s; ✓,�) +

 
A(s, a; ✓,↵)� 1

|A|
X

a02A
A(s, a0; ✓,↵)

!
(�.�)

Where ✓ represents the shared parameters between the value and advantage streams, and ↵
and � are parameters speci�c to each stream. A denotes the set of all possible actions in the given
environment.

By subtracting the average advantage from the advantage term, we force the advantage function
to be zero-centered, improving the stability and learning dynamics of the network.

�.� Building real world di�usion graphs for IM
To understand how information propagates through online social networks, we analyze di�usion

cascades. These cascades represent sequences of information transmissions between users, where
one user’s action (e.g., sharing a post) in�uences others to take similar actions. From these cascades,
we can infer the likelihood of information di�usion on a network. In the following, we explore two
approaches for modeling information di�usion on social graphs, considering both vanilla (i.e., topic-
agnostic) and topic-aware IM settings.

Topic-Agnostic Setting:

In this setting, we focus on the structural properties of the network, neglecting the thematic con-
tent of the information being di�used. One popular technique for constructing edge weights in topic-
agnostic models is based on [��] (also employed by [��]). This method considers the frequency of
reposts between users and the average delay between reposts to weight the edges in the cascade
graph:

p(u, v) =

✓
Av2u

Av

◆
exp

✓
�D̄

�

◆

where p(u, v) represents the weight of the edge between users u and v. This weight is calculated
based on multiple factors, including Av2u, the number of times user u reposted content from user v,
and Av , the total number of posts created by user v. Additionally, D̄ signi�es the average time delay
between a repost from user v and a repost by user u. The parameter � controls the decay rate of the
edge weights with respect to this time delay, a�ecting how the interaction strength diminishes over
time.

Topic-Aware Setting:

This setting incorporates the thematic content of the information being di�used. Survival Fac-
torization [��], a powerful framework for modeling topic-aware information di�usion, addresses the
complexities of understanding how information spreads through networks by incorporating social in-
�uence patterns, topical structures, and temporal dynamics. This is achieved through a low-dimensional
latent space that captures key aspects of the di�usion process.

The model acknowledges that information cascades are driven by the content and themes they
represent. Each cascade is associated with a speci�c topic, drawn from a multinomial distribution
over a set of K topics.

Survival Factorization recognizes the heterogeneity of users within a network. Each user is as-
signed two vectors within the latent space, representing their authoritativeness and susceptibility
across the K topics.
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• Authoritativeness (Av,k): This re�ects the user’s ability to in�uence others on a given topic.
Users with high authoritativeness are more likely to trigger the adoption of information within
their network.

• Susceptibility (Su,k): This signi�es the user’s openness to being in�uenced by others on a
speci�c topic. Users with high susceptibility are more likely to adopt information when exposed
to it.

The interplay between authoritativeness and susceptibility determines the pairwise transmission
rates, which are modeled using the following equation:

�v,u,k = Av,k · Su,k

This equation implies that the probability of user v in�uencing user u regarding topic k depends on
both v’s expertise on the topic and u’s receptiveness to it.

Information cascades unfold over time, and the model incorporates this temporal aspect by em-
ploying a survival analysis framework. Speci�cally, the Weibull distribution is used to model the delay
between the activation times of users within a cascade:

f(tu(c)|tv(c),�v,u,k) = Weib(�u,v
c ;�v,u,k, ⇢)

where f(tu(c)|tv(c),�v,u,k) represents the probability density function of user u’s activation time and
Weib(�u,v

c ;�v,u,k, ⇢) denotes the Weibull distribution. The Weibull distribution is characterized by
�u,v

c = tu(c)� tv(c) representing the time delay between user activations, �v,u,k serving as the scale
parameter re�ecting the transmission rate within topic k, and ⇢ acting as the shape parameter in�u-
encing the shape of the probability density function and capturing the temporal dynamics of activa-
tion.

This allows the model to capture the dynamics of information propagation and predict future
adoption behaviors based on the observed temporal patterns.

The Survival Factorization model combines these elements through a generative process. First, a
topic is selected for the cascade. Then, side information (such as hashtags) is generated based on the
chosen topic using a Poisson language model. Finally, user activation times are generated according
to the Weibull distribution, with the transmission rates determined by the user’s authoritativeness
and susceptibility on the given topic.

�.� Graph Laplacian methods
In GNNs, e�ectively representing the relative positions of nodes within a graph is crucial for cap-

turing structural information and enabling the model to reason about relationships between nodes.
Graph positional encoding (GPE) techniques address this need by embedding positional information
into node features, similar to positional encodings in transformer models for natural language pro-
cessing. In this thesis, we explore the contrasting roles of two mathematical tools —the widely used
combinatorial Laplacian and the more recently developed magnetic Laplacian— within the context of
speci�c GPE methods.

Combinatorial Laplacian

The combinatorial Laplacian provides insights into the connectivity and structure of a graph. Its
eigenvectors and eigenvalues reveal important graph characteristics, such as connected components,
community structure, and di�usion behavior.

To utilize the combinatorial Laplacian for GPE, a common approach involves:

• Symmetrization of the Adjacency Matrix:. This step ensures the Laplacian matrix is symmet-
ric and positive semi-de�nite, guaranteeing real-valued eigenvectors that form an orthogonal
basis. This property is crucial for positional encoding as it allows for meaningful comparisons
between node positions.

Ãi,j =
1

2
(Ai,j +Ai,j), 1  i, j  n (�.�)
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Since the weights are positive di�usion probabilities, the degree matrix can be expressed as:

D̃i,i =
nX

j=1

Ãi,j =
1

2

nX

j=1

(Ai,j +Ai,j), 1  i  n (�.�)

• Degree Normalization: Normalizing the Laplacian by the degree matrix accounts for the vary-
ing degrees of nodes, preventing bias towards highly connected nodes.

LN = I � (D̃� 1
2 ÃD̃� 1

2 ) (�.�)

• Eigenvector Selection: The eigenvectors, except for the �rst (constant) one, are used as posi-
tional encodings, capturing structural information based on the graph’s connectivity.

Magnetic Laplacian

The magnetic Laplacian [��] extends the concept of the combinatorial Laplacian to directed graphs
by incorporating edge direction information using complex numbers. This makes it conceptually sim-
ilar to sinusoidal positional encodings used in transformers, which encode sequence order informa-
tion.

Key points regarding the magnetic Laplacian for GPE are:

• Complex Eigenvectors: Due to its construction, the magnetic Laplacian has complex eigenvec-
tors. However, the element-wise modulus of these eigenvectors provides real-valued positional
encodings.

• Encoding Directionality: The magnetic Laplacian encodes the directionality of edges, allow-
ing the GNN to distinguish between incoming and outgoing connections, which is crucial for
capturing information �ow within the graph.

L(q)
N = I � (D̃� 1

2 ÃD̃� 1
2 )� exp

⇣
i⇥(q))

⌘
(�.�)

with the Hadamard product �, element-wise exp, i =
p
�1, ⇥(q)

u,v = 2⇡q(Au,v � Av,u), and
potential q � 0.

• Relationship to Combinatorial Laplacian: In the special case of an undirected graph, the
magnetic Laplacian reduces to the combinatorial Laplacian, highlighting its generalizing prop-
erty.

Advantages and Considerations:

Both Laplacian-based GPE methods o�er valuable tools for incorporating structural information
into GNNs. The choice between them depends on the nature of the graph and the speci�c task. For
undirected graphs, the combinatorial Laplacian provides a simple and e�cient approach. For directed
graphs, the magnetic Laplacian o�ers a more nuanced representation by capturing directionality,
potentially leading to improved performance in tasks where edge direction is important.

�.� Meta-Learning
Meta-learning, also known as “learning to learn”, is a �eld of machine learning that focuses on

developing models capable of rapidly acquiring new skills or adapting to changing environments with
minimal additional training. Its central goal is to extract knowledge from previous experiences and
apply it to accelerate and enhance learning on future, unseen tasks [��].

Meta-learning di�ers from traditional approaches that concentrate on optimizing performance
for a single task. Instead, it emphasizes the learning process itself. A meta-learning model is exposed
to a diverse set of learning tasks, enabling it to excel on new tasks, even with limited training examples.
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In meta-learning, tasks are sampled from a task distribution. A task, denoted asTi, is characterized
by two fundamental components: a dataset and a loss function. The dataset, represented as Di =
{(x1, y1), . . . , (xn, yn)}, comprises a collection of input-output pairs speci�c to the task and is divided
into two subsets: a support set and a query set. The support set provides a limited number of labeled
examples, acting as a training set for the model to learn the task. The query set, on the other hand,
contains examples used to evaluate the model’s performance after it has learned from the support
set. Finally, the loss function Li measures the model’s overall performance on the given task, typically
by assessing its predictions on the query set against the true labels.

Meta-learning encompasses a diverse range of approaches for learning and adaptation across
tasks, with gradient-based and metric-based methods being two prominent examples

�.�.� Gradient-Based Meta-Learning
Gradient-based meta-learning aims to accelerate adaptation across various tasks. The Model-

Agnostic Meta-Learning (MAML) algorithm is a prominent example [��].
MAML aims to �nd a set of initial model parameters that serve as a good starting point for learning

new tasks with minimal gradient updates. Instead of training a separate model for each task, MAML
seeks a single model that can be easily �ne-tuned to perform well on any task from the distribution.

MAML aims to minimize the following loss function:

min
✓

X

Ti⇠p(T )

LTi(f✓0i) = min
✓

X

Ti⇠p(T )

LTi(f✓�↵r✓LTi
(f✓)) (�.��)

where ✓ represents the initial model parameters to be optimized, Ti is a task sampled from a
distribution of tasks p(T ), LTi is the task-speci�c loss function measuring the model’s performance
on task Ti, and f✓0i is the model after being updated for task Ti with parameters ✓0i obtained through
gradient steps on the task. This equation encapsulates the goal of �nding initial parameters ✓ that,
after minor adjustments for a new task, lead to the lowest possible loss on that task, thereby ensuring
rapid learning and adaptation capabilities.

Inner and Outer Loop

MAML operates with two levels of learning:

• Inner loop (Task-speci�c adaptation): The model uses the support set to update its param-
eters through gradient descent, minimizing the task-speci�c loss LTi . This process allows the
model to adapt to the speci�c task at hand.

✓0i = ✓ � ↵r✓LTi(f✓) (�.��)

where ↵ is the inner-loop learning rate. This results in task-speci�c parameters ✓0i.

• Outer loop (Meta-update): The model’s performance on the query set, after adapting to each
task in the inner loop, is used to update the initial model parameters ✓. This step aims to im-
prove the model’s ability to learn quickly and e�ectively across a variety of tasks.

✓  ✓ � �r✓

X

Ti⇠p(T )

LTi(f✓0i) (�.��)

where � is the meta-learning rate.

�.�.� Metric-Based Meta-Learning
Metric-based meta-learning is a powerful paradigm within meta-learning that focuses on learning

e�ective distance metrics or similarity functions. This approach is essential for scenarios where train-
ing data is limited, such as in few-shot learning. By learning to accurately compare instances, these
models gain the ability to generalize well from a small number of examples.

At the heart of metric-based meta-learning lies the concept of embedding data points into a repre-
sentational space. The key characteristic of this space is that the distances between these embedded
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points directly correspond to their semantic similarity. A well-trained model within this paradigm
demonstrates two key capabilities. First, it can e�ectively discriminate between di�erent classes, en-
suring that examples from distinct categories are well-separated within the embedding space. Sec-
ond, it exhibits the ability to cluster similar examples, drawing semantically related data points closer
together within this representational landscape.

Formalization

The fundamental goal of metric-based meta-learning is to learn a function f that maps instances
xi and xj into an embedding space. A distance metric d is then used to quantify their similarity:

d(f(xi), f(xj)) (�.��)

Typically, the embedding function f is parameterized by a neural network, and common choices
for the distance metric d include Euclidean distance or cosine distance.
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Chapter �

In�uence Maximization in Social Graphs

�.� Introduction
Social media has rede�ned the ways in which information spreads. By word-of-mouth mech-

anisms, viral spread can happen rapidly and at unprecedented scale. Whether for advertising or
political / public-awareness campaigns, understanding and taking advantage of this highly e�ective
medium for information di�usion is paramount. Unsurprisingly, the key for a successful di�usion
campaign is to know where to start, i.e., to choose the best sources (spread seeds) from which to ini-
tiate the dissemination of information. Under the generic name of In�uence Maximization (in short,
IM), we have seen in recent years many advances, at the intersection of combinatorial optimization
on graphs and network analysis [��].

Despite diverse formulations, at their core, most IM studies share a common focus: select an
optimal set of spread seed nodes of size k (the budget) in a di�usion graph – a directed graph whose
edges are labelled by a di�usion probability. Optimality may have various de�nitions, but usually
boils down to maximizing the expected spread under a speci�c di�usion model such as Independent
Cascades (IC).

While conceptually simple and extensively studied, IM remains notoriously di�cult, with few so-
lutions being truly applicable in real-life scenarios. IM is in general NP-hard [��], and most studies
exploit the monotonicity and submodularity of the spread objective, which guarantee the greedy se-
lection algorithm to achieve at least ��% of the optimal spread. However, the greedy approach itself
remains computationally prohibitive, as one key step therein – the estimation of the marginal spread
gain for a candidate seed w.r.t. to the current partial solution – is #P-hard and requires in practice
expensive sampling steps (Monte Carlo, RR sets, etc) [��, ��].

As a possible direction for IM solutions that can be applied at scale to answer in real-time IM
queries, we consider in this thesis an approach that aims to replace the expensive estimation of
marginal gain by a prediction thereof. In short, we want to pre-train a model that can predict at
query time a node’s quality in a given context, namely for a given di�usion graph, IM query, and par-
tial seed set. With likely but hopefully acceptable loss in e�ectiveness, the trade-o� would be to gain
signi�cantly in e�ciency.

In essence, we aim to train a predictive model M for marginal gain, by DRL. However, training
the model is computationally expensive, especially on large graphs. We argue that this upfront cost
can be justi�ed only if it is amortized over multiple queries. Our approach is thus akin to some of
the existing IM solutions, which pre-compute and index key information to speed up computation at
query time (but the key information in our framework is a model trained by DRL). More precisely, we
propose a �-staged approach.

�. in a training stage, we build the predictive model M using well-chosen and manageable samples
of the di�usion graph G; this stage may be slow.

�. in a pre-query / embedding stage, we build the representation of the entire input graph G (on
which IM queries are to be computed), to be given as input to M; this stage may be quite fast,
yet not real-time.

�. in a query stage, IM queries Q would be answered, using G ’s embedding and M; this must be
fast for each query.
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In light of this, two important questions need to be clari�ed:

Q� As our primary motivation stems from the scalability and e�ciency limitations of classic IM
solutions, is the idea of training such a modelM justi�ed for real-time IM querying?

Q� As social graphs are highly dynamic, how robust can the model M be, with respect to di�usion
graph changes?

We believe that [Q�] can be answered positively only if we have a large space of potential IM queries.
Vanilla IM queries (i.e., under a traditional IM formulation, without other context dimensions such
as location, topic, or time) simply amount to a budget value k, but most di�usions in social media
are topic-aware, requiring a larger space of potential IM queries. Indeed, in real-world applications,
di�usions convey messages with various topical distributions, making it necessary to handle a much
larger space of potential IM queries. Therefore, our thesis is that answering Q� positively – for e�cient
/ real-time query response – within the DRL framework hinges on topic-aware di�usion models.

Topic-awareness: topic-aware IM is not simply a sub-problem of traditional IM. It is a signi�cantly
more complex formulation thereof, where di�usion probabilities are determined by the content being
shared. Existing solutions for vanilla IM cannot be directly applied nor easily adapted to address
the challenges of topic-aware IM. This is analogous to how non-learning based vanilla IM methods
required innovative extensions and new ideas, as in INFLEX, to handle the topic-aware case.

Regarding [Q�], M must be robust to graph evolution: if trained on a snapshot of the graph at
time t, it must be able to make predictions on future snapshots of the same di�usion medium, which
most likely remain structurally similar. We stress that we focus on robustness instead of generalizability
– i.e., the ability of M to make predictions on other graphs, unseen at training and maybe structurally
di�erent – as we believe the former is more important for practical scenarios. E.g., there is little prac-
tical interest in training on a Twitter di�usion graph and testing on a Meta Threads one.

Our contributions. We revisit in this thesis the generic framework S�V-DQN of [��], which designs
heuristic algorithms for graph-based combinatorial optimization problems using DRL.

IM-GNN. We begin with an IM adaptation of S�V-DQN (S�V-DQN-IM) as a proof-of-concept. Through
progressive re�nements, we evolve this initial adaptation into our �rst approach, IM-GNN, which
shows competitive performance w.r.t. the existing learning-based methods for vanilla IM. In particu-
lar, we integrate in IM-GNN attentive GNNs and positional encoding with the novel graph magnetic
Laplacian [��]. Importantly, for our comparison of IM-GNN with SOTA baseline methods, we use
public, real-world datasets and di�usion graphs built from cascades, i.e., with data-based di�usion
probabilities. In contrast, the graphs used in the evaluation of existing methods are mostly arti�cial
and topology-bound, with uniform, trivalency, or degree-based edge probabilities.

TIM-GNN. Building on the con�rmation of IM-GNN’s e�ectiveness, we extend our framework to
incorporate topic-awareness, leading to our method TIM-GNN. For a realistic evaluation, from public
data, we extract topic-aware di�usion graphs from information cascades, using the survival factor-
ization framework of [��]. We assess the performance of TIM-GNN on (i) e�ectiveness (spread), (ii)
e�ciency (query latency), and (iii) robustness to changes in the di�usion graph. The existing base-
line methods we use for comparison are either topic-agnostic learning-based or non-learning based
topic-aware. Our experimental results show that TIM-GNN can meet the stringent requirements of
real-world applications, being superior to the state-of-the-art, albeit relatively slow at query time.

TIM-GNNx. Finally, to improve latency, we incorporate cross-attention mechanisms. We re�ne
TIM-GNN to accurately predict a high-quality ranking of seed nodes for any query (item and budget
combination), by using a pre-computed Q-matrix derived from well-chosen representative base items.
The resulting approach (TIM-GNNx) allows for real-time yet e�ective assessment of in�uence spread,
signi�cantly reducing the need for extensive graph message passing operations during each assess-
ment. As a result, we mostly preserve the robust performance of our �rst-cut topic-aware algorithm
TIM-GNN, while achieving a 10x� 20x query time speed-up.

�.� Problem De�nition
Di�usion networks and IM. A social (di�usion) network is commonly de�ned as a graphG = (V, E ,P),

where V denotes the nodes (users), E is the set of edges between them, and P is a probability func-
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tion on E , such that information propagates along an edge (u, v) according to the edge probability
(or weight) pu,v. In�uence can spread through this network according to a di�usion model. A di�usion
model is a set of rules and probabilities that govern how information or in�uence propagates through
the network. Common models include Independent Cascade, Linear Threshold, and their variations.
Given a social network and a di�usion model, In�uenceMaximisation aims to select a set of seed nodes
S ✓ V , of size at most k, such that the expected spread of in�uence starting from S (or the expected
number of activated nodes) is maximized.

Independent Cascades (IC). IC is the most well-known di�usion model. In IC, each node can be
in one of two states: active or inactive. At the initial time step, only the nodes in the seed set S are
active. At each subsequent time step, all nodes that transitioned from inactive to active at the previous
time step will independently make a unique attempt to activate each of their inactive neighbors. A
neighbor will be activated with probability equal to the weight of the edge between the two nodes.
The propagation ends when no nodes can activate any of their neighbors. The spread �(S) is the
number of nodes that are activated at the end of the propagation.

Topic-aware IM. As an extension to IC, we consider the TIC di�usion model, initially proposed
in [��], which takes into consideration the topical description of the information being di�used. TIC
assumes that each edge in the graph may spread information pertaining to a certain number d of
topics: namely, (u, v) 2 E is associated with a vector pu,v =

�
p1u,v, p

2
u,v, ..., p

d
u,v

�
, 0  pu,v  1, where

pzu,v is the weight associated to topic z, denoting the probability for topic z that user u activates user
v.

Given an item, i.e., a topic distribution vector�!� as the information that is di�used,�!� =
�
�1, �2, ..., �d

�

s.t.
P

1id �
i = 1, for each edge (u, v), the propagation probability along that edge w.r.t. �!� is:

pu,v(
�!� ) = hpu,v,

�!� i = p>
u,v
�!� (�.�)

It is this propagation probability that will be used for edge (u, v), as described before, in a TIC di�usion
process. When, for a given item �!� the Eq. (�.�) is applied to all the edges of G, we say the item is
projected on G, leading to a topic-agnostic di�usion graph (having a single di�usion probability per
edge). In topic-aware IM, the objective is then to �nd the best seed set given an item-budget query
Q = (�!� , k), and we can de�ne �(S|�!� ) similarly.

Greedy algorithm and di�usion simulations. As the objective function in IM is monotone sub-
modular, the general approach for �nding an approximate solution is based on the greedy algorithm.
It selects at each step a new seed node that yields the largest marginal gain on expected spread w.r.t.
the current partial solution. However, computing the expected spread is #P-hard for IC (and clearly
for TIC as well), so most traditional IM research works focus on approximation methods. One such
method is to simulate r random cascades from a given seed node and average the number of in�u-
enced nodes to approximate the marginal spread.

We can formally de�ne topic-aware IM as follows:

Problem � (Topic-aware IM) Given the topic-aware network G = (V, E ,P) and a queryQ = (�!� , k), �nd
a seed set G⇤ = argmaxS �(S|�!� ), where S ⇢ V , |S| = k.

In the greedy seed selection algorithm, the node with the largest maximal gain can be de�ned as
follows:

Problem � (Seed node selection) In the setting of Problem �, given a partial solution S0, |S0| < k, of
the greedy seed selection, �nd the node s 2 V � S0 with the largest marginal spread gain w.r.t S0, i.e.,
argmaxs[�(S0 [ {s}|�!� )� �(S0|�!� )] .

Finally, our goal is to substitute any expensive simulation-based estimation of marginal spread
with a prediction thereof, given by a model M trained on the di�usion graph.

Problem � (Marginal gain prediction) For a known topic-aware network G = (V, E), build a predictive
model M that – for any query Q = (�!� , k) and partial greedy solution S0 – predicts the marginal spread
gain w.r.t. S0 for any node s 2 V � S0,

M(�!� , S0, s) ⇡ [�(S0 [ {s}|�!� )� �(S0|�!� )] (�.�)

Our focus is on solving in a satisfactory manner Problem (�), s.t. Problem (�) can be answered more
e�ciently, by substituting the spread �-expression in Problem (�) with an M-prediction thereof.
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�.� Proposed Approach
We present our successive adaptations of the DRL framework S�V-DQN [��], starting with two

models for vanilla IM – S�V-DQN-IM (SOTA) and IM-GNN (ours) – and then the two models we propose
for topic-aware IM, TIM-GNN and TIM-GNNx.

�.�.� DRL formulation
We model the decision making procedure as a Markov Decision Process (MDP) and de�ne the

states, actions, and rewards according to the RL framework:

• State: The state S0 corresponds to the current partial solution. A node therein is represented
by its embedding.

• Action: The action consists in adding a node v to to the current partial solution, for which the
agent receives a reward from the environment and moves to a new state.

• Reward: The reward function r(S0, v) for state S0 after selecting the new seed v and transition-
ing to state S0 [ {v} is the marginal spread gain, i.e., �(S0 [ {n})� �(S0)

• Environment: The environment consists of a di�usion graph with a di�usion model (IC or TIC
in this work).

• Policy: Based on Q̂, we select actions by ✏-greedy policy

⇡(v|S) =
⇢

argmaxv2S0 Q̂(S0, v) with probability 1� ✏
sample uniformly a node v 2 S0 otherwise.

This favors exploration and enables the model to test di�erent actions, independently of its
own predictions.

In the following, we concisely describe the Prioritized Double DQN model, we refer the reader
to chapter � for more details. We use the term episode to refer to a complete sequence of actions,
from empty to complete solution (seed set), with each step representing one seed selection. In the
simplest DQN formulation [���], the agent selects an action ✏- greedily, based on the current state
and the action values, and adds a transition (St, At, Rt+1, �t+1, St+1) to a replay memory bu�er. The
bu�er or experience replay increases data e�ciency by allowing to use the same sample in multiple
updates. It also helps reduce the correlation between samples used in the updates, hence it helps
reduce variance. The parameters are updated by minimizing the following loss function:

(Rt+1 + �t+1max
a0

q✓(St+1, a0)� q✓(St, At))
2 (�.�)

where t is a time step randomly sampled from the replay bu�er, and ✓ represents the parameters
of a target network, a periodic copy of the online one ✓, which is not optimized. Prioritized Double
DQN adopts double Q-learning to address an overestimation bias of Q-learning, and prioritized replay
improves data e�ciency by replaying more often a transition from which there is more to learn.

�.�.� S�V-DQN-IM: A Foundational Approach
S�V-DQN-IM serves as our initial model, stemming from the S�V-DQN framework of [��] and be-

ing tailored for vanilla IM. This basic version involves training on sub-graphs extracted from the input
di�usion graph, and is followed in the PIANO approach of [��]. A key component of S�V-DQN-IM’s
architecture is a Graph Neural Network employing the Structure�Vec framework [���]. In this context,
GNNs encompass a range of techniques that leverage topology-based node representation learning
via message passing, converting the structural information of nodes in a graph into vector represen-
tations, with S�V being one such technique. S�V-DQN-IM incrementally constructs the seed set for IM.
Each iteration involves selecting a candidate node guided by an action-value function Q that is derived
from GNN-produced node embeddings. In short, Q quanti�es the nodes’ potential contribution (the
marginal spread gain) in the context of the current partial solution.
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Figure �.�: Overview of S�V-DQN-IM.

GNN and node embedding. The GNN architecture directly contributes to the parametrization
of the Q-function, denoted as Q̂. This involves computing a p-dimensional feature embedding µv for
each node v 2 V , taking into account the partial solution S0. The embedding process is as follows:

µt+1
v  relu(✓1xv + ✓2(

X

u2N (v)

µt
u) + ✓3(

X

u2N (v)

relu(✓4pv,u))) (�.�)

Here, ✓1 2 Rp, ✓2 2 Rp⇥p, ✓3 2 Rp⇥ p
2 , and ✓4 2 R

p
2 are the model parameters, p being the embedding
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size and µ0
v = 0. We denote the set of neighboring nodes of node v in the directed graph as N (v),

where u is considered a neighbor of v if there exists a directed edge from v to u. The recti�ed linear
unit relu (relu(z) = max(0, z)) is applied element-wise. Lastly, xv is a binary scalar that encodes the
current partial solution S0 such that xv = 1 if v 2 S0 and xv = 0 otherwise.

Upon completing a number T of message passing iterations within the GNN, as outlined in Eq.
(�.�), we obtain the �nal node vector embeddings, thereby de�ning the parametrization as follows:

Q̂(S0, v; ✓) = ✓5relu(

"
✓6
X

u2V
µ(T )
u , ✓7µ

(T )
v

#
) (�.�)

where ✓5, ✓6, ✓7 2 Rp⇥ p
2 , and [., .] is the concatenation operator. A �-layer MLP reduces Q̂ to one value

per node. The model M, comprising the set of parameters {✓i}7i=1 and the two-layer MLP, is trained
in an end-to-end fashion using DRL techniques. More precisely, similar to [��], and subsequently to
[��] and [���], we use a Prioritized Double DQN [��] to learn Q̂.

Overview of the S�V-DQN-IM framework. We provide a comprehensive overview of S�V-DQN-
IM in Fig. �.�, which will serve as the basis for illustrating our successive adaptations of this framework,
towards ultimately an e�ective and query-time e�cient topic-aware IM solution. The process begins
with Step (�), where each time a subgraph is sampled� from the di�usion graph for training purposes.
This strategy serves a dual purpose. First, in alignment with [��], it enables training on a variety of
instances from the combinatorial optimization problem, which are representative of a consistent dis-
tribution, thereby enhancing the model’s robustness. Second, considering the often very large size
of social graphs, this approach addresses the scalability challenges faced by Graph Neural Networks
when applied to large networks. In Step (�), the agent gathers learning samples from these sub-
graphs. This is achieved by selecting seed nodes and conducting di�usion simulations to compute
the corresponding spread. The accumulated learning samples are stored in a replay bu�er, which
serves as an essential repository during the learning phase of training, contributing signi�cantly to a
more e�cient use of past experience. The model undergoes continuous validation throughout the
learning process (Step (�)), where it is tested on larger sub-graph samples. This step is crucial for
selecting the most e�ective model for subsequent evaluation. Finally, in Step (�), the trained model
can be used to answer vanilla IM queries. Speci�cally, it determines an optimal seed set for the entire
di�usion graph, for a given query (budget constraint) k. The seed nodes are selected in k successive
steps, at each step taking into account the current partial solution. Further details of the algorithm
are provided below in Algorithm �.

�.�.� IM-GNN: Advanced GNN Features
IM-GNN extends S�V-DQN-IM with some advanced GNN features: GATs [���], positional encodings

[���], and self-edges. GATs enable the model to discern the signi�cance of node relationships, while
positional encodings facilitate the understanding of node positions in the graph, evolving towards a
transformer-like architecture. Self-edges can represent a node’s inherent properties, which may not
be captured otherwise.

Attention mechanisms. Central to the transformer architecture [���], attention mechanisms in
GNNs assign varying importance to neighboring nodes’ features.

etuv = ✓T8
⇥
µt
u, µ

t
v

⇤
(�.�)

where ✓8 2 R2p is a trainable parameter and etuv 2 R indicates the importance of node v’s features
for node u. Then,

↵t
uv =

exp(etuv)P
v2N (u) exp(e

t
uv)

(�.�)

where ↵t
uv is the softmax of etuv over u’s neighbors. The normalized attention weights are used to

compute a linear combination of the features, during message passing aggregation. So Eq. (�.�)

�We use Breadth First Search (BFS) sampling, which starts from a random seed node and systematically
explores its neighboring nodes, then their neighbors, and so on.

��



Algorithm � S�V-DQN-IM training
Input: Di�usion graph G, experience replay memory Mem initialized to capacity n, learning
period L, number of episodes E and steps T
Output: model M’s parameters ⇥

�: for i = 1 to I do
�: Sample a di�usion subgraph g from G
�: for e = 1 to E do
�: Initialize the state to empty S1 = ()
�: for t = 1 to T do

�: vt =

⇢
argmaxv2St

Q̂(St, v) with probability 1� ✏
random node v 2 S otherwise

�: Add node vt to partial seed set St+1 = (St, vt)
�: if t � n then
�: Add (St�n, At�n,

Pt
i=t�n Ri, �, St) to Mem

��: end if
��: if i⇥ e⇥ t mod L = 0 then
��: Sample random batch from B ⇠iid. Mem
��: Update parameters ⇥ following Eq.(�.�)
��: end if
��: if (spread moving average < threshold) then
��: continue
��: end if
��: end for
��: end for
��: return ⇥
��: end for

becomes:

µt+1
v  relu(✓1xv + ✓2(

X

u2N (v)

↵t
vuµ

t
u) + ✓3(

X

u2N (v)

↵t
vurelu(✓4pv,u)) (�.�)

Positional encoding. In IM-GNN, we explore two advanced positional encodings for directed di�u-
sion graphs: the combinatorial Laplacian and the magnetic Laplacian [��]. The combinatorial Lapla-
cian, using a symmetrized adjacency matrix, provides insights into the graph’s connectivity and struc-
ture. The magnetic Laplacian, introducing complex numbers to encode edge direction, gives a more
comprehensive representation of directed graphs. This approach aligns conceptually with sinusoidal
positional encodings used in transformers [���], o�ering a structure-aware encoding that acknowl-
edges directedness.

Self-edges. IM-GNN also integrates self-edges in message passing, to capture the nodes’ self-
interactions. This improves the model’s predictive capabilities, despite increasing computational de-
mands. Speci�cally, it entails the adjustment of Eq. (�.�) to ensure that u 2 N (u) with pu,u = 0 for
each node u in the considered graph.

�.�.� TIM-GNN: IM in the TIC model
In the �rst topic-aware adaptation of our model, TIM-GNN, we enhance IM-GNN (the version using

positional encoding with the magnetic Laplacian) to focus on e�ectively handling topic-aware scenar-
ios. Recall from Sec. �.� that, in the topic-aware setting, an IM query Q consists of a seed set budget
k and an item, Q = (�!� , k). Spread is now determined by the TIC di�usion model, and we need to
account for this in our approach for predicting marginal spread gain. To align with the topic-aware
setting, the main modi�cation we perform here is in the subgraph sampling scheme. While the BFS
subgraph sampling is common to the two previous approaches, its integration in TIM-GNN requires
now uniform sampling of items and their projection onto the sampled subgraphs. These projected
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graphs are then stored and sampled during the training and validation phases. This sampling adap-
tation ensures that TIM-GNN remains robust in handling topic-speci�c di�usion patterns.

Referring to Eq. (�), within the trainable parameters of TIM-GNN, ✓3 and ✓4 are speci�cally related
to di�usion probabilities. This new scheme ensures that these parameters are such that the model
can generalize across the topic space. The other parameters are optimized by the same process as
in IM-GNN, bene�ting from the fact that only the di�usion probabilities depend on the item’s topical
distribution, but the topology of the graph remains unchanged.

�.�.� TIM-GNNx: Optimization for query latency
In the development of TIM-GNNx, our objective was to enhance the e�ciency of our topic-aware

IM method, speci�cally focusing on query latency. We achieve this by integrating the topic-aware dif-
fusion aspects directly into the training process such that, at query time, for any query Q = (�!� , k), the
projection of the item �!� onto the di�usion graph is no longer necessary. In other words, the model
will be able to predict marginal spread gain directly based on the query and topic-aware di�usion
graph. To obtain this capability, we rely in particular on cross-attention mechanisms.

To our knowledge, TIM-GNNx is the �rst to address the critical challenges detailed in Sec. �.�: pre-
dictive accuracy over a broad (topic-based) query space, low latency over large topic-aware di�usion
graphs, robustness to graph changes (see the experiments on graph perturbation below). The �ow of
TIM-GNNx is as follows.

Selection of base items. We begin by creating a set of b base items, where b � d (recall d is
the number of topics). Intuitively, these base items should encapsulate the topical diversity of the
existing items. One straightforward and data-agnostic method to design the base items is by one-hot
encoding, where each item is exclusively associated with a single topic. Assuming the set of possible
items known (potentially large, but given), a more precise and data-driven selection of the base items
consists in running a clustering algorithm over the training items (K�Means++ in our experiments),
and using the resulting centroids over the training items. For each of these selection strategies, we
further explored two variations: one where the base items are treated as learnable parameters, and
another where they are static.

Q-matrix computation: For each base item, we apply the previous model TIM-GNN to generate
a corresponding Q-function. This process results in a Q-matrix of dimensions (b, V), encapsulating the
in�uence values across di�erent base items and nodes.

Cross-attention mechanism. One key innovation in TIM-GNNx is the integration of a cross-
attention mechanism. This mechanism takes as input the pre-computed Q-matrix (computed once)
and the speci�c item �!� for which a prediction is required, and its role is to dynamically extract the
relevant information from the Q-matrix, in order to output a Q-vector speci�c to �!� .

Training complexity vs. query latency. The attention mechanism is trained end-to-end, trading
training complexity for query latency. Indeed, on one hand, by leveraging the summarized infor-
mation in the Q-matrix, we can make real-time predictions, bypassing the need for expensive graph
projection computations at query time. On the other hand, the cross-attention mechanisms and the
processing of the base projected graphs bring signi�cant computational overhead and memory re-
quirements. In practice, with limited resources, they may require simpli�cations in other aspects of
the training architecture, potentially leading to a decrease in prediction quality�. Fig. �.� summarizes
the training vs. query time operational di�erences between TIM-GNN and TIM-GNNx.

�In our experimental environment, some of the features introduced in IM-GNN, such as self-edges and po-
sitional encoding, had to be silenced, along with a reduction in batch size, embedding dimensions and graph
sampling size.
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Figure �.�: Comparison TIM-GNN vs TIM-GNNx.

�.� Experiments
Hardware and implementation details. We run our experiments using HPC resources, mainly
on (i) Octo-GPU SXM� �� GB A��� (eight-GPU accelerated compute nodes Nvidia A��� SXM� �� GB
GPUs), with AMD Milan EPYC ���� processors (�� cores at �,�� GHz), so �� cores and ��� GB per
node, running RedHat v.�.� and Slurm v.��.��.�. Our implementation is in JAX [���] and Jraph [���]. �

Datasets for S�V-DQN-IM We used the public datasets detailed in table �.� to replicate the re-
sults from [��]:

Dataset nodes edges type
HepPh ��K ���K Directed
DBLP ���K �.��M Undirected
LiveJournal �.��M ��M Directed
Orkut �.��M ���.�M Undirected

Table �.�: Datasets in [��].

Datasets for IM-GNN : Data-based Sina Weibo We used a publicly available microblogging
dataset from Sina Weibo [���]; Weibo is the main Chinese microblogging website. Starting from the

�The source code, data pre-processing and statistics, as well as the “glue” code and references to the respec-
tive implementations for SurvivalFactorization and baseline methods can be found at https://anonymous.
4open.science/r/Submission-ecmlpkdd/.
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cascades, we employed the edge weighting technique from [��] (also used in [��]).

p(u, v) = (Av2u/Av)⇥ e�
D̄
� (�.�)

where Av2u is the number of times u reposted from v, Av is the total number of posts of v, and D̄ is
the average time it takes for u to repost from v. On the resulting graph, we �ltered out the edges with
probability less than �.�� and we kept its �-core. The �nal graph has ��K nodes and ���K edges.

Datasets for TIM-GNN For the extraction of topic-aware di�usion graphs, we used three publicly
available real-world datasets containing di�usion cascades, used in the study of [��]. They come from
the following applications: Weibo, Flixster (a dataset from a social movie platform that allows users to
�nd movies, connect with friends, discuss and rate movies), and MemeTracker clustered (a dataset
that tracks phrases and quotes over online-news providers and blogs).

We applied the following pre-process /train / validate / test setup. We �lter the cascade collection
by removing small cascades, rare users, cascades with short content, etc, and we �x the number
of topics, following [��]’s experimental �ndings. We apply the survival factorization model [��] to
infer from the cascades matrices of authoritativeness A and susceptibility S for the nodes, as well as a
matrix of word relevance w.r.t. topics. We get the topic-aware probabilities pu,v of our graph by a
simple product of the vectors A[u] and S[v]. We create the items (topic vectors), using the relevance
matrix, by summing the topic distributions for each word in a cascade and normalizing to 1. Once we
have the graph and items, we apply KMeans++ clustering to the items, and select the resulting 100
centroids as representative items. Among these representative items, we select the 5 items maximizing
the Wasserstein distance between the probability distributions of the respective projected graphs, as
our evaluation items. We also sample 10 items randomly for validation, while the remaining items
are used for training. We detail further our pre-processing steps for these datasets below for each of
the datasets.

For Sina Weibo, he dataset [���] is a network consisting of more than 1.7 million nodes and 0.4
billion edges, accompanied by a set of ������ retweet cascades. We removed the cascades that
have less than �� activations and less than � words (in Chinese) and the users who belong to less
than � cascades. We obtained a total of ������ cascades, ����� nodes, and ������ words. After
applying Survival Factorization for � topics, we construct our graph by retaining the corresponding
edges from the original graph, removing all zero probabilities, and taking the largest weakly connected
component. The �nal graph has ����� nodes and ������� edges.

For Flixster, the raw dataset was cleaned by removing the cascades (movies) that have less than ��
occurences and the users that rated less than �� movies. We obtained a total of ����� cascades and
����� users. After applying Survival Factorization for �� topics, we construct our graph by retaining the
corresponding edges from the original graph, removing all zero probabilities, and taking the largest
weakly connected component. The �nal graph has ����� nodes and ����� edges.

For Memetracker, the raw dataset was cleaned by removing the cascades that have less than ��
activations and less than �� words and the users who belong to less than �� cascades. We obtained
a total of ����� cascades, ���� nodes and ����� words. After applying Survival Factorization for �
topics, given the absence of an available MemeTracker graph, we proceed to de�ne our graph by
choosing edges that meet a speci�c probability threshold among all the possible combinations. We
take the largest weakly connected component. The �nal graph has ���� nodes and ������ edges.

The probabilities are rescaled, to enhance di�usion in the graphs while keeping the distribution
of probabilities consistent across di�erent topics. For Sina Weibo, a simple translation to set the
maximal probability to �.� was done. For MemeTracker and Flixster, we use the following formula

1 + (
augmentation_factor

topic_sum
)

(factors 103, and 106 respectively). The �nal graphs are represented in Table �.�.
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Dataset nodes edges Topics
Sina Weibo ��.�K �.��M �
Flixster ��.�K ��.�K ��
MemeTracker �.�K ���K �

Table �.�: Datasets for topic-aware IM

Baseline methods. In our experimental analysis, we compared several IM methods, including both
heuristic and learning-based approaches. The baselines, besides random selection, are as follows.
MaxDegree selects the k nodes with highest outdegree. MaxOutweight selects the k nodes with
the largest total weight of their outgoing edges; when the probabilities are uniform, it is equivalent
to MaxDegree. ToupleGDD is the vanilla IM algorithm from [��]; since its result is non-deterministic,
this operation is performed 20 times, for statistical relevance, and we take the minimum, mean, and
maximum spread values. GComb is the vanilla IM algorithm from [��]. DeepIM is the approach of
[��], solving vanilla IM using an autoencoder to compress seed sets, training the network to optimize
the spread prediction from the reconstructed seed set. S�V-DQN is [��]’s implementation of a simple
S�V-DQN adaptation for IM, trained on random graphs. IMM [��] is used as the state-of-the-art IM
algorithm; its output can be seen as an optimal spread result, to which the heuristics and learning-
based methods should get as close as possible.

Training. From a given di�usion network, we generate a set of 100 randomly sampled training graphs
by BFS. In each training iteration, a new subgraph is sampled, with approx. ��% of the edges from the
original network. This allows the model to continuously gather diverse samples of activation states
and corresponding rewards, which are then stored in a bu�er. Subsequent training phases utilize
these bu�ered samples to update the model’s weights.

Validation & testing. We generate another set of �� graphs with an edge count of ��% of the original
graph. We validate the model every �rd training iteration by evaluating it on these held-out graphs
and taking the mean of the spread as a measure of performance. We save the best weights of the
model and replace them whenever a better version appears. Finally, the best model selected by vali-
dation can be evaluated at query time on the entire graph.

S�V-DQN-IM. Our �rst goal was �rst to reproduce the basic S�V-DQN framework adapted to IM, also
called PIANO in [��]. We used the known IM benchmarking datasets HepPH, DBLP, LiveJournal,
Orkut (all from the SNAP repository). We report here our results on HepPh, DBLP and LiveJournal
(We faced an Out of Memory issue for Orkut dataset in our setup). As it is unclear from [��] what
di�usion probabilities were used for these graphs, we considered either uniform (0.5) or trivalency
(0.1, 0.01, 0.001) values.From Fig. �.�, we can draw the following conclusions: (i) the performance
of S�V-DQN-IM and ToupleGDD are close on uniform (only case where DeepIM also does well) and
trivalency graphs, with a slightly better performance for S�V-DQN-IM, and (ii) simple heuristics like
MaxDegree and MaxOutweight perform quite well.

From Fig. �.� and Fig. �.�, we can draw the following conclusions: (i) except for DBLP trivalency,
the performance of all algorithms and heuristics on both DBLP and LiveJournal datasets seems to sta-
bilize around a certain spread value as the seed set size increases and exhibit similar performance,
which is unusual and may be attributed to the large size of the datasets. (ii) On the DBLP trivalency
model, GCOMB appears to outperform other algorithms, while IMM encounters out-of-memory er-
rors on both DBLP and LiveJournal datasets. (iii) Simple heuristics like MaxDegree and MaxOutweight
consistently perform well, particularly on the DBLP trivalency model.

IM-GNN. In datasets with uniform or trivalency probability, we have by design a high correlation
between the nodes with high degree and those with high total out-weight, hence MaxDegree and
MaxOutweight will show similar performance. In realistic di�usion graphs, built from cascades, i.e.,
with data-based di�usion probabilities, this is not necessarily the case. IM-GNN was evaluated on
realistic di�usion graphs, using previously described data-based Sina Weibo.

Recall that IM-GNN stands for S�V-DQN-IM enhanced with attention mechanisms, positional en-
coding, and self-edges.
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Figure �.�: Results on Heph (uniform – p=�.� left, and trivalency right).

Figure �.�: Results on DBLP (uniform – p=�.� left, and trivalency right).

In an ablation study, we tested all the con�gurations on the Weibo graph (Fig. �.�). The results
show that (i) when IM-GNN has no attention, the magnetic Laplacian shows superior performance,
while when combined with self-edges, it has a synergistic e�ect and proves to be very e�cient, (ii) the
combinatorial Laplacian also improves performance compared to the vanilla model, while random-
walks positional encoding hurts the performance, (iii) when the attention mechanism is used, it in-
creases the performance but reduces the impact of positional encoding (this may depend on the
graph features, so we still consider the magnetic Laplacian and self-edges as useful model additions),
(iv) as we compare the models with magnetic Laplacian and self-edges, with / without attention, with
our baselines (Fig. �.�), our performance with attention is now above the one of the heuristics (and
GComb), comparable to ToupleGDD and, expectedly, below IMM (slightly). ToupleGDD outperforms
S�V-DQN-IM on real graphs, perhaps due to its training on random graphs. DeepIM performs well
(on comparison to the baselines) only on uniform probabilities, but not so well (below baselines) in
general.

Figure �.�: Results on LiveJournal (uniform – p=�.� left, and trivalency right).

��



Figure �.�: Spread obtained on Sina Weibo, with variants of S�V-DQN-IM (left) and with attention
(right).

Figure �.�: Spread obtained on Sina Weibo - comparison IM-GNN and baselines.

TIM-GNN and TIM-GNNx Recall that, in terms of architecture, TIM-GNN enhances IM-GNN by follow-
ing a topic-aware training approach, in order to learn across diverse topic-dependent di�usions.

We evaluate our methods on 15 projected graphs, using the 5 evaluation items on each of topic-
aware graphs: Sina Weibo, Flixster, and MemeTracker. For each projected graph, we compare (i)
the baselines, (ii) IM-GNN trained on the projected graphs, (iii) TIM-GNN trained directly in topic-aware
manner, and (iv) the state-of-the-art INFLEX topic-aware model of [��]. Recall that INFLEX builds an
index based on IMM results for �� random training items, and then aggregates results from this index
to answer any other topic-aware query.
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We present the results for our two topic-aware approaches, TIM-GNN and TIM-GNNx in error bar
plots in Fig. �.� and Fig. �.�. Individual plots for each of the � evaluation items and � topic-aware
datasets are relegated to an appendix. We can make the following key observations: (i) (Fig. �.�
- left) TIM-GNN shows similar performance compared to IM-GNN, competitive performance com-
pared to IMM and INFLEX, and often superior performance compared to ToupleGDD and GComb,
(ii) MaxOutweight performs surprisingly well on these datasets, (iii) (Fig. �.� - right) We observe that
TIM-GNNx generally maintains comparable performance levels to TIM-GNN. Notably, the KMeans++
variant of TIM-GNNx demonstrates improved performance over the one-hot variant, with small ad-
vantage for the learnable version. It is important to note the performance deviation encountered by
TIM-GNNx on the Sina Weibo dataset. Given the size and complexity of this topic-aware graph, this
is due to the additional training complexity and to our current training setting, leading to a loss of
critical information necessary for the algorithm to e�ectively optimize its IM objective�; (iv) (Fig. �.�)
when we compare the query latency, we can see TIM-GNN is slower than INFLEX but much faster than
ToupleGDD (also an S�V-DQN-based model). Finally, TIM-GNNx is much faster at query time than TIM-
GNN, with a ��x-��x speedup. Furthermore, unlike TIM-GNN, which needs a separate prediction for
each seed set size k, TIM-GNNx predicts the Q function just once, allowing for the selection of all seed
nodes in a single step. Overall, this approach can yield query latency improvements of several orders
of magnitude, especially when dealing with diverse queries.

�The model reduction we employed in this dataset was too drastic (embedding size �� instead ��, batch size
�� instead of ��, graph sampling size ��% instead of ��%).
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Figure �.�: Results on Flixter (top row), MemeTracker (mid row), and Sina Weibo (bottom row) – Com-
parative results across �ve items – TIM-GNN vs. baselines (left) and variants of TIM-GNNx (right).
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Figure �.�: Results on Flixter (top row), MemeTracker (mid row), and Sina Weibo (bottom row) – Com-
parative results across �ve items – query time latency.
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Robustness of TIM-GNNx. The goal of this experiment is to analyze how TIM-GNNx and INFLEX, the
two low-latency topic-aware methods, may be a�ected by changes in di�usion probability values.
Our thesis is that INFLEX is not adapted to dynamic di�usion graphs, since it only uses an index pre-
constructed with results from an IM method such as IMM, instead of the actual graph. Therefore,
whenever the graph changes, even slightly, these changes are taken into account by INFLEX only if
the index is rebuilt, which is of course computationally expensive.

We perform this experiment on Sina Weibo (for item �), Memetracker (for item �) and Flixster (for
item �). We �rst evaluate the robustness of INFLEX and TIM-GNNx when facing a limited, single-node
change, as follows. For each item, we �rst project the item on the topic-aware input graph, then, we
select the best node, n1. For INFLEX, the best node is selected from the seed set for k=��, by choosing
the node with most impact on the performance loss. For TIM-GNNx, since this model provides a
ranking, we just choose the node with highest Q-value. We then perturb outgoing probabilities of n1,
by setting them to a low ✏ value. Recall that, unless the index is reconstructed, INFLEX will return the
same seed set, regardless of the perturbation. For INFLEX’s performance, we will therefore evaluate
the spread on the perturbed graph of a seed set obtained on the unperturbed one.

We also evaluate the robustness of INFLEX and TIM-GNNx, for a larger scale, multi-node change,
which can make the spread of INFLEX arbitrarily low, as follows. Instead of a single node, we select all
the nodes from INFLEX’s seed set for k = 100 and we perturb their outgoing di�usion probabilities to
a very small value. The same is done for TIM-GNNx ��� best nodes. As a golden standard, we evaluate
the spread obtained by IMM on the perturbed graphs. We present the results in Figures �.��-�.��, for
one item per dataset (� plots in total). Overall, we can observe that, for the single-node perturbation
(denoted 1Per), there is a decrease in performance for all algorithms, but the relative performance
remains coherent with our previous results. Finally, when we perturb the seed set of INFLEX for
k = 100 (denoted as 100Per), we can observe that TIM-GNNx maintains a good performance and
stays competitive with IMM while by design INFLEX has no spread at all besides the seed set.

Figure �.��: Perturbation – INFLEX left, TIM-GNNx right.
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Time comparison on topic-aware IM. Recall we can distinguish three key time components: training,
pre-query processing, query latency. Training time is less critical whenever the model is robust, allow-
ing for infrequent retraining. Pre-query time is also likely manageable, if not required for each query
(unlike in all the topic-agnostic DRL methods when used in the topic-aware setting, i.e., by projecting
each time the query topic vector on the topic-aware graph). While non-learning based IM methods
like IMM don’t have the �rst 2 stages, they do incur high query latency, which is the main motivation of
DRL-based methods: predict marginal spread for faster response time, with a potential loss in spread
e�ectiveness. Recall that Fig. �.�, showed query latency; therein IMM was omitted, as it doesn’t even
�t the scale. Next, we describe training time and memory footprint for the various DRL-based mod-
els. GComb, TGDD, and DeepIM all require <��h (with some variations depending on the dataset) for
training, while TIM-GNN (resp. TIM-GNNx) <��h (resp. <��h). We stress that their larger training time
is to be expected, as topic-awareness is integrated in training, but, importantly, this is mitigated by
the robustness performance. All models have a <��GB average memory footprint.

�.� Conclusion
We present in this thesis chapter DRL-based solutions for IM, building upon the S�V-DQN generic

framework, which we progressively re�ne towards our main contributions, TIM-GNN and TIM-GNNx,
for topic-aware IM. The latter model learns by observing diverse topic-aware di�usions during train-
ing. While TIM-GNN performs well in terms of topic-aware spread e�ectiveness, its latency at query
time remains rather high. To address this issue, in TIM-GNNx, by using cross-attention mechanisms,
we integrate the topic-aware dimension directly in the training process. This trades complexity at the
training stage for query latency. We show TIM-GNNx maintains comparable overall spread perfor-
mance as its predecessor, while achieving a ��x-��x speed-up.

To our knowledge, TIM-GNNx is the �rst to address the three critical challenges for the practi-
cal applicability of learning-based IM methods: predictive accuracy over a broad (topic-based) query
space, low latency over large di�usion graphs, and robustness to graph changes, as demonstrated in
our empirical evaluation on real-world data and di�usion graphs built from real cascades. By directly
predicting topic-aware marginal spread gain, TIM-GNNx avoids (i) expensive di�usion simulations (as
IMM or similar methods), (ii) expensive topic / graph projection (as GComb, ToupleGDD, DeepIM, TIM-
GNN), and (iii) expensive topic-aware indexing, which requires a static graph (as INFLEX).

Table �.� summarizes how these methods behave w.r.t. spread, query latency, robustness to
graph changes, and topic-awareness.

IMM GComb ToupleGDD DeepIM INFLEX TIM-GNN TIM-GNNx

Spread X X X X X X X

Latency ⇥ ⇥ ⇥ ⇥ X ⇥ X

Scale ⇥ X X X ⇥ X X

Robust � � � � ⇥ X X

Topic-aware � � � � X X X

Table �.�: Summary of methods behaviour.
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Chapter �

Few-Shot Link Prediction in Knowledge
Graphs

�.� Introduction
KGs have emerged as powerful tools for representing and organizing information in a structured

manner, enabling e�cient knowledge retrieval and reasoning. Link prediction, the task of inferring
missing connections between entities within a KG, plays a crucial role in KG completion and powers
various downstream applications.

Traditional link prediction methods have achieved remarkable success, but they often struggle
when dealing with entities or relations that have limited data representation, a common issue in real-
world knowledge graphs due to the long-tail distribution. This phenomenon, illustrated in Figure �.�,
describes the prevalence of entities (nodes) and relations (edges) with sparse connections or occur-
rences, making it di�cult to discern meaningful patterns.

Few-shot link prediction tackles this challenge by enabling models to make accurate predictions
with very few training examples. Few-shot learning techniques, such as meta-learning and transfer
learning, o�er promising avenues for addressing this problem by leveraging knowledge acquired from
previous experiences to e�ciently adapt to new tasks with minimal data.

This chapter delves into the realm of few-shot link prediction in knowledge graphs, exploring the
limitations of existing approaches and proposing novel methods to enhance predictive capabilities.
We begin by examining the challenges within the AIDA project, where the goal is to develop an AI-
powered platform for improving organizational models for companies. Subsequently, we analyze the
MetaR framework, a prominent non-GNN based meta-learning approach for few-shot link prediction,
highlighting its strengths and weaknesses. Finally, we investigate the potential of integrating the Path-
Con method, which leverages knowledge graph structure for prediction, with the MetaR framework
to further improve performance and address the limitations of existing techniques.

�.� Problem De�nition in AIDA Project
In today’s complex business environments, ensuring accuracy and completeness within organiza-

tional models is critical for e�ciency. Missing data in these models can hinder decision-making and
the optimal deployment of resources. Currently, manual methods for �lling in these gaps are often
time-consuming and prone to error. Our task within the AIDA project was to develop an AI-powered
platform to address the challenge of improving organizational models for companies (Figure �.�).

The core of the problem lies in the e�cient retrieval and integration of missing information. This
requires an AI system capable of swiftly pinpointing gaps within the organization model and then in-
telligently sourcing the correct information. Such sourcing could involve searching internal enterprise
databases or engaging with experts to provide data customized to the speci�c company.

We propose a novel approach to improve organizational models by leveraging the power of few-
shot link prediction in knowledge graphs. This choice is motivated by two key factors: the suitability
of knowledge graphs for representing business models and the limitations of data availability in our
project.
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Figure �.�: Illustration of the long-tail distribution: In this histogram of relation frequencies in Wikidata
[���], there are a large portion of relations that only have a few triples; �gure from [��].

Why Knowledge Graphs?

Knowledge graphs provide a structured and intuitive way to represent the complex relationships
within an organization, like the one depicted in �gure �.�. By depicting entities like “RH Accueil”, “Paie”,
and “Spécialiste IT” as nodes, and their relationships as edges, we can capture the organizational
structure e�ectively. For the hierarchical aspect, we replaced using boxes to depict departments
like “Service Administratif”, “Service Support”, and “Service des Opérations” by employing entities and
relationships. For example, “Paie”, “RH Accueil”, and “RH Contract” would be individual entities, linked
to a “Service Administratif” entity through a “belongs_to” relationship, providing a more nuanced and
accurate picture of the organization, fully represented as a knowledge graph.

The Need for Few-Shot Learning

The nature of our project presented a signi�cant challenge: the absence of readily available data
on organizational structures. Gathering comprehensive datasets for such purposes can be time-
consuming and expensive. To overcome this hurdle, we turned to few-shot learning. This technique
allows our models to learn and predict missing links (relationships) between entities using only a small
number of examples. This is particularly valuable in our scenario where data is scarce, enabling us to
still extract meaningful insights and enhance our understanding of the organization.

Our solution

This thesis examines the feasibility of state-of-the-art few-shot link prediction techniques to accu-
rately and e�ciently infer missing relationships within organizational models. We focus on developing
a user-friendly API that enables loading business organizational model �les for predictions, employing
an adapted version of MetaR. The API also facilitates necessary retraining when new, unseen entities
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Figure �.�: Example of organization diagram, from project AIDA.

are introduced into the models. A detailed discussion of our work will be presented in subsequent
sections.

�.� The MetaR framework : applying MAML to KGs

The Meta Relational Learning (MetaR) framework [��] is designed to address the challenge of few-
shot link prediction taks in KGs by leveraging a Meta-Learning framework. This task involves predicting
new triples about a relation r with only a few observed instances. MetaR achieves this by extracting
and transferring relation-speci�c meta information from a support set to a query set, enabling the
model to learn and generalize e�ectively from limited data.

MetaR utilizes two types of relation-speci�c meta information. Relation Meta represents the
underlying connection between head and tail entities for a speci�c relation. It is extracted from the
support set and transferred to the query set to guide predictions. Gradient Meta, on the other hand,
captures the loss gradient of the relation meta, indicating how it should be adjusted to minimize the
loss function. This enables rapid adaptation of the relation meta within a task based on the observed
instances.
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Figure �.�: Overview of MetaR from [��]. Tr = {Sr, Qr}, RTr and R0
Tr

represent relation meta and
updated relation meta, and GTr represents gradient meta.

Framework Components

MetaR is comprised of two main modules:

• Relation-Meta Learner: This module extracts relation meta from the support set. In a K-shot
link prediction task, Tr = {Sr, Qr}, the relation meta is learned from a support set Sr, which
contains K entity pairs. For each entity pair (hi, ti) in the support set, the relation meta is com-
puted using a neural network R on the concatenated embeddings of these entities. The �nal
relation metaRTr for the task is obtained by averaging the individual entity-pair speci�c relation
meta:

RTr =

PK
i=1R(hi, ti)

K
. (�.�)

• Embedding Learner: This module evaluates the truth value of triples in the support and query
sets using entity embeddings and relation meta. Inspired by TransE [��], the score function for
an entity pair (hi, ti) under relation meta RTr is de�ned as:

s(hi, ti) = khi +RTr � tik, (�.�)

where kxk denotes the L� norm of vector x.

The loss function employs a contrastive approach. In essence, it aims to minimize the distance
between the embeddings of actual entity pairs associated with the relation and maximize the distance
for randomly corrupted triples (negative samples). These negative samples are created by replacing
either the head or tail entity with a randomly chosen entity from the KG. This process allows the model
to di�erentiate genuine relationships from spurious connections.

Speci�cally, the loss function for the support set Sr is calculated as:

L(Sr) =
X

(hi,ti)2Sr

[� + s(hi, ti)� s(hi, t
0
i)]+, (�.�)

where [·]+ represents the positive part, � is the margin, and s(hi, t0i) is the score for a negative
sample (hi, t0i).

The gradient meta GTr is obtained by calculating the gradient of the loss with respect to the rela-
tion meta:
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GTr = rRTr
L(Sr). (�.�)

The relation meta is then updated using the gradient meta:

R0
Tr

= RTr � �GTr , (�.�)

where � is the step size. Finally, the updated relation meta R0
Tr

is used to score triples correspond-
ing to the same relation in the query set Qr and compute the loss for training.

Training Objective

The overall training objective of MetaR is to minimize the sum of query set losses across all tasks
in a minibatch:

L =
X

(Sr,Qr)2Ttrain

L(Qr), (�.�)

where Ttrain represents the set of training tasks, and L(Qr) is the loss function for the query set
Qr of a speci�c task Tr. The loss function L(Qr) is calculated similarly to L(Sr), using the updated
relation meta R0

Tr
to score the triples in the query set.

This objective function ensures that the model learns to predict new triples accurately for unseen
relations based on limited support set examples, while simultaneously optimizing the overall knowl-
edge representation for all relations in the training set.

�.� A functional API for business organizational model com-
pletion

Our approach centers on harnessing few-shot link prediction, speci�cally utilizing the MetaR frame-
work, to complete and enhance organizational models. In collaboration with Softeam, we developed
a small dataset of French organizational models. This dataset was crucial for pre-training our model
and evaluating the quality of its recommendations.

The model �rst calculates embeddings for various entities using a powerful language model like
Camembert. While entity embeddings can be learned directly, utilizing an LLM signi�cantly enhances
the model’s accuracy. We leverage the MetaR framework, which employs an encoder-decoder paradigm
to learn representations of relationships between these entities. MetaR’s gradient-based meta-learning
approach enables it to learn e�ectively from the limited examples provided by our dataset, transfer-
ring knowledge from support samples to queries.

This way, our model is able to score and rank potential relationships represented as triplets
(subject-predicate-object). This allows us to identify the most probable connections based on their
scores. To generate recommendations, we rank triplets absent from the original knowledge graph
and suggest those with higher rankings than the ground truth triplets.

�.� Overcoming MetaR’s Limitations with PathCon

�.�.� Limits of MetaR for Few-Shot Link Prediction
The MetaR model [��] has been a prominent approach for few-shot link prediction in knowledge

graphs. However, recent studies have shed light on its limitations and inherent biases. The following
delves into the constraints of MetaR, drawing insights from the analysis presented in [���].

First, MetaR, along with other few-shot link prediction models, predominantly leverages posi-
tional information about entities rather than capturing the underlying structural information or
logical patterns of relations. This bias arises from the formulation of the few-shot task itself, where
models receive a limited number of randomly sampled support set examples. Consequently, MetaR
primarily exploits coarse-grained signals such as community structures within the knowledge graph.
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It struggles to discern �ne-grained relational semantics, such as symmetry or transitivity, which re-
quire a more comprehensive understanding of the logical patterns governing the relations.

MetaR Equation Analysis: The core of MetaR lies in learning a function, RelLearner, that maps a
support set Si characterizing relation ri to a low-dimensional embedding:

ri = RelLearner({(E(hk), E(tk))}Kk=1) (�.�)

where E is an entity encoder and (hk, ri, tk) represents a support set triple. This relation embed-
ding ri is then updated using the gradient of the support set loss L(Si):

r0i = ri � ⌘rriL(S) (�.�)

While this meta-gradient update mechanism provides some relation-speci�c information, it is in-
su�cient for capturing complex logical patterns, especially when the support set is limited in size and
diversity.

In conclusion, the MetaR model, while pioneering in the domain of few-shot link prediction, ex-
hibits limitations in its ability to learn and exploit �ne-grained relational semantics. Its reliance on
positional information and the constraints imposed by support set sampling hinder its e�ectiveness
in capturing the underlying logical patterns of relations, particularly in scenarios with limited support
set examples.

�.�.� PathCon : Exploiting Knowledge Graph Structure for Prediction
PathCon is a novel knowledge graph completion model that leverages the inherent structure of

knowledge graphs for enhanced prediction accuracy. Unlike traditional embedding-based KGC mod-
els, PathCon operates solely on edge features (relation types), eliminating the need for entity IDs. This
makes PathCon ideal for inductive learning i.e handling unseen entities during inference, enabling
generalization to new data. Moreover, it also allows for explainability, o�ering insights into predic-
tions by capturing correlations among relation types.

PathCon achieves this by modeling two crucial aspects of the knowledge graph structure: Rela-
tional context and relational paths.

Figure �.�: Importance of relational context of an entity, from [�].

Relational context captures the nature of entities by considering their neighboring relations.
PathCon utilizes alternate relational message passing to aggregate information from multi-hop neigh-
boring edges. This framework iteratively updates edge representations by exchanging messages be-
tween nodes and edges:

• Edge to node aggregation:
mi

v =
X

e2N(v)

sie (�.�)
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Figure �.�: Importance of relational paths between entities, from [�].

• Edge update:
si+1
e = �([mi

v,m
i
u, s

i
e] ·Wi + bi), v, u 2 N(e) (�.��)

In these equations, mi
v represents the message stored at node v, and sie represents the hidden

state of edge e, both at iteration i. N(v) denotes the set of neighboring edges of node v, while N(e)
denotes the set of endpoint nodes of edge e. Wi and bi are the learnable transformation matrix and
bias, respectively, used at iteration i. �(·) represents a nonlinear activation function, and [·] denotes
the concatenation function. Finally, s0e = xe is the initial feature of edge e, which can be taken as the
one-hot identity vector of the relation type associated with edge e.

After K iterations, the �nal messages mK�1
h and mK�1

t represent the context of head and tail
entities, respectively, and are combined to obtain the context representation of the entity pair (h, t):

s(h,t) = �([mK�1
h ,mK�1

t ] ·WK�1 + bK�1) (�.��)

Relational paths capture the relative positions of entities by considering the paths connecting
them in the knowledge graph. PathCon identi�es all relational paths between head and tail entities,
ignoring node identities, and assigns each path an embedding vector. An attention mechanism is then
employed to selectively aggregate these path representations based on the context information:

↵P =
exp(s>P s

(h,t))P
P2Ph!t

exp(s>P s
(h,t))

(�.��)

sh!t =
X

P2Ph!t

↵P sP (�.��)

where:
Ph!t is the set of all paths from h to t. ↵P is the attention weight of path P . sP is the embedding

vector of path P . sh!t is the aggregated representation of relational paths.

The context and path representations are combined to predict the relation between head and tail
entities:

p(r|h, t) = SoftMax(s(h,t) + sh!t) (�.��)

This allows PathCon to exploit both local neighborhood information and global connectivity pat-
terns within the knowledge graph for accurate and interpretable predictions.

��



Variants of PathCon

PathCon can be implemented with several design alternatives. When modeling relational paths,
PathCon can represent them using either a dedicated embedding vector for each unique path or by
encoding the sequence of relations in a path using a Recurrent Neural Network (RNN). Additionally,
the aggregation of multiple paths between an entity pair can be done either through a simple mean
operation or through an attention mechanism that leverages the context representation of the entity
pair to weight the importance of each path.

In our setup, we mostly use the RNN variant since we observed similar performance with embed-
ding vectors but much shorter training time.

�.� A Hybrid Approach for Few-Shot Link Prediction
Building upon the strengths of both PathCon and MetaR, we developed a hybrid model that aimed

to address the limitations of each individual model and improve the overall performance of few-shot
link prediction in knowledge graphs. This hybrid approach sought to leverage PathCon’s ability to
capture relational context and structural information, alongside MetaR’s meta-learning capabilities
for rapid adaptation to new relations with limited data.

To formally represent the integration of PathCon and MetaR for link prediction, we de�ne the
following notations:

• RPathCon 2 RB⇥d: The tensor of PathCon relation embeddings, where B is the batch size (B
di�erent relations) and d is the embedding dimension.

• RMetaR 2 RB⇥d: The tensor of MetaR relation embeddings.

• Rbase 2 RN⇥d: The base relation embeddings matrix, where N is the total number of relations.
These are learnable embeddings.

• Esupport 2 RB⇥|S|⇥Ne⇥d: The tensor of support set entity embeddings, where |S| is the size of
the support set and Ne is the number of entities (Ne=�, for head and tail entities).

Esupport is sampled from a learnable entity embeddings tensor Ebase 2 RM⇥d, where M is the
total number of entities. It is important to note that by incorporating PathCon into the MetaR frame-
work, the model is no longer inductive since we need the entities ids to select their embeddings from
Ebase which is initialized at the beginning of the learning process.

Integration Strategies
We explored two main avenues for integrating PathCon with MetaR: adapting PathCon to the MetaR

framework, making it few-shot link prediction capable, and combining the newly adapted PathCon with
the MetaR model for enhanced performance.

Adapting PathCon to the MetaR framework We employed PathCon to analyze the knowl-
edge graph structure and generate a probability distribution PPathCon(r|h, t) over potential relations
given head entity h and tail entity t, which is then used to weight the base relation embeddings Rbase

to obtain the PathCon embeddings RPathCon:

RPathCon = PPathCon(r|h, t) ·Rbase

The probability distribution P (r|h, t) has dimensions (B, N), allowing it to be directly multiplied with
the base relation embeddings. This weighting scheme, also known as soft selection, is used instead of
selecting the relation with the maximum probability to ensure gradient �ow during training. Ensuring
gradient �ow is essential for e�ectively training the model, as it is the mechanism by which errors are
backpropagated and the model parameters are updated during optimization. Without gradient �ow,
learning is impossible.
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Combining PathCon with the MetaR model Several methods were explored to e�ectively
integrate the relation embeddings generated by PathCon with MetaR relation embeddings:

�. Cross-Attention Mechanism: This method involved introducing an attention mechanism that
dynamically weighs the contributions of PathCon and MetaR during the prediction process. The
attention mechanism takes into account the speci�c query and the knowledge graph context
to determine the relative importance of each model’s output.

Q = RPathCon ·Wq 2 RB⇥d

K = RMetaR ·Wk 2 RB⇥d

V = RMetaR ·Wv 2 RB⇥d

S =
QKT

p
d
2 RB⇥B

A = softmax(S) 2 RB⇥B

Rattn = AV 2 RB⇥d

where Wq,Wk,Wv 2 Rd⇥d are the weight matrices for query, key, and value in the attention
mechanism.

PathCon and MetaR outputs are projected to obtain query, key, and value vectors. Attention
scores are calculated using scaled dot-product attention. These scores are then normalized to
obtain attention weights, which are used to compute a weighted sum of the value vectors.

The �nal relation representation is the attention-weighted MetaR output Rattn which is used
to predict the most likely relation between entities h and t.

�. MetaR Alignment: This strategy involved modifying the MetaR model to better align with
PathCon’s relational reasoning. Speci�cally, we integrated PathCon embeddings directly into
MetaR’s relation learning process. Recall that MetaR typically learns a relation representation
ri (equation �.�) from the embeddings of head and tail entities in the support set, as shown in
the following:

ri = RelLearner((E(hk), E(tk))
K
k=1)

whereRelLearner is the relation learner module within MetaR,E(hk) andE(tk) are the embed-
dings of the head and tail entities for the k-th instance in the support set and K is the number
of instances in the support set.

To incorporate PathCon’s structural information, we augment the input to theRelLearner mod-
ule by taking the PathCon relation embedding (RPathCon) as an additional input with the entity
embeddings (by concatenation). The modi�ed equation becomes:

ri = RelLearner((E(hk),RPathCon, E(tk))
K
k=1) (�.��)

This modi�cation allows MetaR to leverage the relational context captured by PathCon directly
during the relation learning process. By feeding both entity and PathCon relation embeddings
to the relation learner, we encourage MetaR to learn relation representations that are more
informed by the graph structure.

�. Mixture of Experts: The Mixture of Experts (MoE) architecture has emerged as a transforma-
tive approach in the �eld of LLMs. Inspired by the notion that a complex task can be e�ciently
addressed by dividing it among specialized experts, MoE introduces a paradigm shift in model
design. Instead of relying on a single network, MoE models comprise multiple expert networks,
each specializing in a speci�c aspect of the task. A gating network dynamically selects which
experts to consult for a given input, e�ectively routing information to the most relevant sub-
networks. This approach has revolutionized LLMs by allowing for signi�cant increases in model
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capacity without a proportional increase in computational cost. By activating only a subset of
experts for each input, MoE models achieve remarkable computational e�ciency while main-
taining high performance.

The potential of MoE to leverage specialized knowledge from di�erent experts motivated us
to explore this architecture for integrating PathCon and MetaR. We hypothesized that treat-
ing PathCon and MetaR as separate experts would allow us to capitalize on their respective
strengths for improved link prediction. A gating network would be used to dynamically deter-
mine the contribution of each expert (PathCon and MetaR) based on the speci�c query and
knowledge graph context. In our implementation, it is a simple neural network consisting of a
linear layer followed by a softmax activation. The corresponding equations are as follows:

Eflat = �atten(Esupport) 2 RB⇥|S|⇥Ned

G = softmax(Eflat ·Wg + bg) 2 RB⇥|S|⇥E

Gavg =
1

|S|
X

s2S
G(s) 2 RB⇥E

where Wg 2 RNed⇥E is the weight matrix of the linear layer and bg 2 RE is the bias vector of
the linear layer.

The support set embeddings are �attened, and the gating mechanism is applied to produce
gating weights. These weights are then averaged over the support set dimension, where E is
the number of experts (E = �).

E = [RPathCon,RMetaR] 2 RB⇥E⇥d

Rmix = Gavg ·E 2 RB⇥d

The PathCon and MetaR outputs are stacked, and the gating weights are used to compute a
weighted combination of the expert outputs.

The �nal relation representation is the gated combination of PathCon and MetaR outputs Rmix

which is used to predict the most likely relation between entities h and t.

�.� Experiments

�.�.� Evaluation Setup
To assess the performance of our proposed approach, combining MetaR and PathCon, we uti-

lized the MetaR framework for benchmarking.� Evaluation was conducted on two knowledge graph
datasets: NELL-One [��] and Wiki-One [��]. We employed the following standard metrics for knowl-
edge graph completion:

• Mean Reciprocal Rank (MRR): Measures the average reciprocal rank of the correct answer.

• Hits@��: Percentage of cases where the correct answer is within the top �� predictions.

• Hits@�: Percentage of cases where the correct answer is within the top � predictions.

• Hits@�: Percentage of cases where the correct answer is ranked �rst.

�The code combining PathCon to the original MetaR framework can be found here : https://anonymous.
4open.science/r/Submission-/.
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�.�.� Comparison of Datasets : NELL-One and Wiki-One
The two datasets used in this study, NELL-One and Wiki-One, exhibit signi�cant di�erences that

contribute to the varying performance of models.

• Sparsity: Wiki-One has a higher proportion of entities appearing in only one triple during train-
ing (��.�%) compared to NELL-One (��.�%).

• Number of tasks: NELL-One has a smaller number of training tasks (��) compared to Wiki-One
(���).

Table �.� presents a more detailed comparison between the two datasets.

Table �.�: NELL-One and Wiki-One Datasets Comparison.

Feature NELL-One Wiki-One
# Entities ��,��� �,���,���
# Relations ��� ���
# Triples ���,��� �,���,���
One-shot entities (%) ��.� ��.�

�.�.� Results and Discussion - Adapting PathCon to the MetaR frame-
work

Table �.� presents a summary of the experimental results.

Table �.�: Summary of behaviour across two datasets.

Model MRR Hits@�� Hits@� Hits@�
NELL-One - �-shot

MetaR �.���� �.���� �.���� �.���
PathCon - RNN & attention �.���� �.���� �.���� �.���

Wiki-One - �-shot
MetaR �.���� �.���� �.���� �.���

PathCon - RNN & mean �.���� �.���� �.���� �.���

Key observations:

• NELL-One Dataset: Our PathCon implementation (RNN & attention) demonstrates superior
performance over MetaR across all metrics on the NELL-One dataset.

• Wiki-One Dataset: The results on Wiki-One are less clear-cut. MetaR has a higher MRR and
Hits@�, while PathCon (RNN & mean) shows a marginally better Hits@�� score.

�.�.� Triplet-Level Analysis:
To gain a deeper understanding of the models’ behavior, we conducted a triplet-level analysis

examining the di�erences in how MetaR and PathCon rank each individual triplet in the two datasets.
Figure �.� illustrates these di�erences through a scatter plot, where the x-axis represents the original
triplet index and the y-axis depicts the ranking di�erence (calculated as MetaR rank minus PathCon
rank).

The scattered distribution of points across both positive and negative regions of the y-axis reveals
a crucial observation: the relative performance of MetaR and PCatt exhibits signi�cant variability de-
pending on the speci�c triplet under consideration. This suggests that each model possesses distinct
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(a) Rankings of ground-truth triplets for MetaR and
PathCon (RNN & attention) on NELL-One dataset.

(b) Rankings of ground-truth triplets for MetaR and
PathCon (RNN & mean) on Wiki-One dataset.

Figure �.�: Comparative analysis of rankings on NELL-One and Wiki-One datasets.

strengths and weaknesses, excelling in di�erent scenarios within the knowledge graph completion
task.

Despite the observed variations in individual triplet performance, the overall distribution of points
appears roughly balanced between the positive and negative regions, with ��� positive di�erences
and ��� negative di�erences for NELL-One for example. This balance indicates that while MetaR and
PathCon might favor di�erent types of triplets, their overall performance remains comparable across
the entire dataset, which is coherent with our previous results. However, a clear pattern behind these
individual triplet di�erences remains elusive, as variations occur even within triplets sharing the same
relation type.

The contrasting performance pro�les observed at the triplet level o�er a compelling opportunity:
the potential to leverage the complementary strengths of both models through combination. By inte-
grating MetaR and PathCon, we can envision a system that capitalizes on their individual advantages,
mitigating their respective weaknesses and achieving superior accuracy and robustness in few-shot
link prediction tasks.

�.�.� Results and Discussion - Combining PathCon with MetaR
Table �.� presents a summary of the experimental results.

Table �.�: Summary of behaviour across two datasets.

Model MRR Hits@�� Hits@� Hits@�
NELL-One - �-shot

MetaR �.���� �.���� �.���� �.���
PathCon - RNN & attention �.���� �.���� �.���� �.���
Cross-Attention Mechanism �.���� �.���� �.���� �.���

MetaR Alignment �.���� �.���� �.���� �.���
Mixture of Experts �.���� �.���� �.���� �.���

While combining PathCon’s relational path modeling with MetaR’s meta-learning approach yielded
some improvements in the case of the Mixture of Experts architecture, the gains remain modest and
potentially dataset-speci�c (NELL-One). Consequently, these results are not de�nitive and do not
conclusively demonstrate a synergistic e�ect from merging the two models.
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�.�.� A Discussion of Hybrid Model Performance on Real and Synthetic
Datasets:

Despite our e�orts to enhance few-shot link prediction using the MetaR framework and PathCon,
the results remained inconclusive. Various combinations of MetaR and PathCon, including di�erent
relation learners and attention mechanisms, failed to signi�cantly improve prediction scores.

Experiments on synthetic datasets: To delve deeper, we conducted experiments on synthet-
ically generated triplets, encompassing positional, symmetric, and transitive relations, mirroring the
methodology from [���]. Our aim was to assess whether PathCon’s context and relation utilization
could e�ectively capture the underlying structure of these synthetic relations.

The results on synthetic data were equally inconclusive, failing to demonstrate a clear advantage
of PathCon in leveraging structural information. This lack of improvement leads us to question the
e�cacy of the current framework and explore potential explanations for these limitations.

Possible Explanations for Inconclusive Results:

Inadequacy of the Scoring Mechanism: The use of TransE for scoring triplets might be a lim-
iting factor. TransE, due to its simplistic additive scoring function, encounters di�culty in accurately
representing hierarchical relations like “is_a” or “part_of”. The model’s reliance on vector addition fails
to capture the inherent directionality and transitivity crucial for these relations. For example, if “Cat
is_a Mammal” and “Mammal is_a Animal”, TransE struggles to infer the transitive relation “Cat is_a
Animal”. Its vector space representation tends to position the embedding for “Cat” closer to “Animal”
o�set by the relation embedding, rather than directly near “Animal” as implied by transitivity. In a
few-shot scenario, where only a handful of examples are available, this limitation is ampli�ed, as the
model cannot e�ectively discern these intricate patterns from limited data. Exploring more expres-
sive scoring functions, such as those based on graph neural networks or complex embedding models,
could potentially improve the ability to discern and exploit structural information.

Incompatibility of Learning Paradigms: A fundamental incompatibility might exist between
PathCon’s inductive, structure-focused approach and MetaR’s task-adaptive, gradient-based meta-
learning. PathCon excels in leveraging global graph structure, while MetaR prioritizes rapid adaptation
to new relations based on limited local information. This potential mismatch could hinder the e�ective
integration of their learned representations.

Insu�cient Path Diversity: PathCon’s performance counts on the diversity and representative-
ness of relational paths it discovers. In few-shot scenarios, with limited support set examples, the
model might explore only a restricted set of paths, failing to capture the full relational context. This
could lead to inaccurate predictions, especially for relations that rely on longer or less frequent paths.

�.� Future Work: Exploring Direct Decoding Approaches
While this thesis focused on models employing scoring functions for link prediction, the rapidly

evolving �eld of knowledge graph completion o�ers exciting alternative avenues for future research.
One promising direction lies in exploring direct decoding approaches, exempli�ed by the INDIGO
model [��]. Unlike scoring function-based methods, INDIGO directly interprets the learned repre-
sentations within its GNN architecture to predict missing links, eliminating the need for a separate
scoring mechanism. Building upon these advancements, future work could investigate hybrid mod-
els that combine the strengths of scoring function-based approaches like MetaR and PathCon with the
direct decoding mechanisms pioneered by INDIGO. Such a hybrid model could leverage the context
and structural information captured by PathCon alongside the meta-learning capabilities of MetaR,
while bene�ting from INDIGO’s direct decoding strategy. This fusion of di�erent learning paradigms
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has the potential to signi�cantly enhance link prediction performance, pushing the boundaries of
knowledge graph completion and unlocking new possibilities for knowledge-driven applications.
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Chapter �

Conclusions and Future Work

�.� Summary of Findings
This thesis explores the potential of graph neural networks in addressing two crucial challenges:

in�uence maximization in social networks and few-shot link prediction in knowledge graphs. We
demonstrate the e�ectiveness of GNNs in capturing intricate relationships within graph-structured
data, leading to novel solutions that advance the state-of-the-art in both domains.

In the realm of in�uence maximization, we introduce a series of progressively re�ned models,
culminating in TIM-GNNx, a topic-aware in�uence maximization solution that outperforms existing
methods in performance, latency, and robustness. Our approach leverages the strengths of deep
reinforcement learning and graph neural networks to e�ciently predict marginal spread gain. By
integrating graph attention mechanisms, positional encodings, and a novel cross-attention scheme,
TIM-GNNx e�ectively handles the complexities of topic-aware di�usion while achieving signi�cant
speed-ups in query time. This makes TIM-GNNx a compelling solution for real-time in�uence maxi-
mization applications, o�ering a promising avenue for optimizing information dissemination strate-
gies in large-scale social networks. However, the scalability of TIM-GNNx on very large and com-
plex topic-aware graphs remains a challenge, which could be addressed in the future by exploring
graph sampling techniques, distributed training strategies, or alternative DRL algorithms that o�er
improved scalability and convergence properties.

For few-shot link prediction in knowledge graphs, we delve into the limitations of existing meta-
learning approaches and explore the potential of integrating the PathCon method, which excels in
capturing structural information within knowledge graphs, with the MetaR framework. While our
initial investigations yielded promising results on certain datasets, demonstrating the feasibility of
adapting PathCon for few-shot link prediction, our hybrid models integrating PathCon and MetaR did
not consistently achieve the desired performance gains. This highlights the complexities of combining
inductive, structure-focused approaches with task-adaptive, gradient-based meta-learning.

Despite their distinct applications, in�uence maximization and few-shot link prediction share a
compelling synergy. Both rely on extracting meaningful patterns from limited data, leveraging GNNs
and their message-passing framework to e�ectively represent relationships and make predictions.
Furthermore, the successful integration of attention mechanisms in both domains is a key example
of this synergy: The cross-attention technique, initially used for integrating PathCon and MetaR in few-
shot link prediction, was subsequently explored as a method for e�ciently handling diverse queries
in the TIM-GNNx model for in�uence maximization. This example underscores the valuable cross-
pollination of ideas between seemingly distinct research areas.

�.� Limitations and Future Research Directions
Despite the successes achieved, our work also reveals limitations and paves the way for future re-

search directions. In the case of in�uence maximization, the current reliance on S�V-DQN as the foun-
dational framework can be further enhanced by exploring more sophisticated GNN architectures. In
particular, integrating cooperative GNNs [��], which enable strategic communication patterns be-
tween nodes, could signi�cantly improve the model’s ability to capture complex di�usion dynamics.
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These models o�er a more nuanced and �exible approach to information propagation compared to
the standard message passing schemes used in S�V-DQN. By allowing nodes to dynamically choose
their communication strategies based on their state and the states of their neighbors, cooperative
GNNs could potentially unlock new levels of performance and e�ciency in in�uence maximization
tasks.

Regarding few-shot link prediction, future work should explore alternative scoring functions that
are more expressive and capable of capturing complex relational semantics. Moving beyond the
simplistic additive scoring of TransE, recent advancements in GNN-based link prediction, such as the
INDIGO model, which directly encodes the knowledge graph into a GNN, o�er promising avenues.
By combining the structural insights from PathCon with the direct decoding capabilities of INDIGO,
we envision a hybrid model that can overcome the limitations of scoring function-based methods
and achieve superior accuracy and interpretability in few-shot link prediction. This integration could
signi�cantly enhance knowledge graph completion, enabling more robust and versatile knowledge-
driven applications.

�.� Publications
• "Topic-Aware In�uence Maximization with Deep Reinforcement Learning and Graph Attention

Networks" currently under review in the European Conference on Machine Learning and Data
Mining (Journal track - ECML PKDD ����).

• "Structure-Aware Meta-Learning for Few-Shot Knowledge Graph Link Prediction" accepted in
the International Workshop on Resource-E�cient Learning for Knowledge Discovery, colocated
with KDD ����.
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Appendix A

Supplementary Material

In this appendix, we present the plots for each of the �ve evaluation items and three topic-aware
datasets (Flixster, Memetracker and Sina Weibo), as only error bar plots were presented in this thesis.

Figure �: Results on projected graph n°� - Flixster. Comparing TIM-GNN with baselines (left), variants
of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Flixster. Comparing TIM-GNN with baselines (left), variants
of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Flixster. Comparing TIM-GNN with baselines (left), variants
of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Flixster. Comparing TIM-GNN with baselines (left), variants
of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Flixster. Comparing TIM-GNN with baselines (left), variants
of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Memetracker. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - Memetracker. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure �: Results on projected graph n°� - MemeTracker. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).

��



Figure �: Results on projected graph n°� - Memetracker. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Memetracker. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Sina Weibo. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Sina Weibo. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Sina Weibo. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Sina Weibo. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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Figure ��: Results on projected graph n°� - Sina Weibo. Comparing TIM-GNN with baselines (left),
variants of TIM-GNNx (right), and query time (down).
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