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Introduction en français

La physique statistique a été introduite au milieu du 19ème siècle par Boltzmann et Maxwell pour décrire
la dynamique d’un gaz composé d’un grand nombre de particules. L’approche microscopique consistant
à suivre individuellement chaque particule a été délaissée au profit d’une approche macroscopique.

En terme de planification sociale ou urbaine, il est tentant à l’échelle d’une ville avec un grand nombre
d’habitants d’adopter un point de vue macroscopique à l’aide de la physique statistique pour modéliser
les dynamiques de populations. Cependant, à la différence des particules, chaque individu est différent et
évolue en fonction de son expérience et des rencontres qu’il fait , ce qui rend complexe toute tentative de
modélisation de la société. Une revue de la littérature en physique statistique appliquée aux dynamiques
sociales [CFL09] montre que l’idée d’approcher la société à l’aide de la physique statistique a connu un
intérêt croissant depuis les années 2000, mais le bilan montre un déséquilibre entre les preuves empiriques
et les modélisations théoriques dont la dernière est favorisée. De plus, très peu de liens entre données et
théories ont été faits.

Malgré cela, la théorie des jeux à champ moyen a émergé en 2006, grâce à Lasry et Lions et au même
moment grâce à Caines, Huang et Malhamé. Leurs travaux consistent à étendre la notion d’équilibre de
Nash pour N joueurs à un nombre infini de joueurs où chaque joueur a une influence négligeable sur le
jeu, mais l’ensemble des stratégies forme une densité globale à la manière de la physique statistique, d’où
le choix du terme champ moyen. De nombreuses applications existent dans les modèles économiques dont
quelques unes par exemple sont présentées dans la thèse de Guéant [Gué09].

Les travaux de cette thèse sont motivés par la modélisation de la dynamique de la population au sein
d’une ville où chaque habitant déménage d’un endroit à un autre. De ce fait, la stratégie d’un joueur
ici est une courbe dépendant du temps qui est constante par morceaux à valeurs dans l’espace qui est la
ville. Cette stratégie est optimisée en fonction du nombre de déménagements effectués et d’une densité
globale donnée de la population. Si chaque joueur résout ce problème d’optimisation, cela génère un
nouvel ensemble de stratégies qui forme une autre densité de la population. Si la densité initiale et la
densité finale sont égales, alors cette densité est un point fixe d’un certain opérateur. De cette façon, nous
avons une idée d’approche pour montrer l’existence d’un équilibre de Nash pour un jeu avec un continuum
de joueurs dont les trajectoires sont discontinues et minimisant le nombre de ces discontinuités. Nous
aurions voulu faire plus de modélisations, mais les jeux à champs moyen de ce type sont nouveaux et cela
nous a fait rencontrer de nombreuses propriétés non-triviales et intéressantes. En plus d’une formulation
rigoureuse de l’aspect point fixe en lien avec une formulation variationnelle où il faut choisir un espace
fonctionnel adapté des trajectoires BV, nous obtenons une formulation variationnelle faisant apparaître
un terme de longueur d’une courbe à valeurs dans l’espace de mesures muni ici de la norme TV . D’un
point de vue numérique, le terme de longueur implique l’utilisation d’un terme non-lisse mais proximable
qui est la norme L1 de la vitesse et qui est appliqué à l’image de l’inconnue par un opérateur linéaire (ici,
la dérivée).

Dans un premier temps, le Chapitre 1 introduit la théorie des jeux à champ moyen qui consiste à
prendre un jeu à N joueurs et faire tendre N vers l’infini. À l’aide de la théorie du contrôle optimal, nous
obtenons une solution (u, ρ) d’un système de deux équations: la première est une équation d’Hamilton-
Jacobi dont u est la fonction valeur qui dépend de la densité et la deuxième est une équation de continuité
décrivant le flot de la densité dont la vélocité dépend de l’Hamiltonien appliqué au gradient de u. Dans
cette thèse, nous adoptons le point de variationnel des jeux à champ moyen dont l’idée provient initiale-
ment de la reformulation de Benamou et Brenier du problème de transport optimal comme un problème
de minimisation d’une énergie cinétique. Dans notre cas, le coût de transport est trivial, c’est-à-dire que
cela coûte 1 de changer d’endroit quelque soit la distance. Les jeux à champ moyen avec sauts ont été
introduits par Bertucci en étendant le contrôle impulsionnel au cas champ moyen avec une infinité de
joueurs. Néanmoins, l’aspect stochastique semble cruciale dans les travaux de Bertucci pour montrer
l’existence d’une solution au système, tandis que la formulation variationnelle de notre problème nous
permet de considérer les trajectoires déterministes. Dans la Section 1.4, nous montrons l’existence d’un
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équilibre de Nash Q̄ comme optimiseur d’un problème où chaque agent résout

inf
γ : [0,T ]→Ω
γ(0)=x0

JQ̄(γ) := A(γ) +

ˆ T

0

dI

dm
(et#Q̄)(γ(t))dt+

ˆ T

0

F (t, γ(t), et#Q̄)dt+ ψT (γ(T )),

où Ω ⊂ Rn représente la ville. La fonction A décrit soit le nombre de sauts, soit l’énergie cinétique. Le
problème contient deux termes dépendant de la densité et#Q̄: le premier (dI/dm) est variationnel, c’est-
à-dire que nous pouvons calculer son intégrale première; le second (F ) est non-variationnel, autrement
dit, nous ne pouvons calculer son intégrale première, mais sa continuité suffit pour obtenir des résultats
d’existence et de régularité de la solution. De ce fait, nous appelons ce type de problème jeux à champ
moyen mixtes. Le dernier terme est une pénalisation en temps final. En notant C l’espace des trajectoires,
nous utilisons le théorème de point fixe de Kakutani pour montrer que la multifonction

Q̃ 7→ argmin
Q,e0#Q=m0

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ)

}

admet un point fixe dans P(C). Il reste à démontrer que ce point fixe est bien une mesure supportée sur les
trajectoires optimales, mais ce sera l’objet du Chapitre 3. Ce Chapitre 1 est aussi bien une introduction
au sujet qu’une présentation de résultats nouveaux (ceux du cas mixte) qui constituent la Section 2 de
[DS24].

Dans le Chapitre 2, nous réécrivons le problème

min
Q∈P(C)

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ)

}

sous la forme Eulérienne

min
ρ : [0,T ]→P(Ω)

A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, ·)dρ(t)dt+

ˆ
Ω

ψT dρ(T ).

Nous considérons les cas suivants:

• A(ρ) = 1
2

´ T
0

´
Ω
|ρ̇|dxdt lorsque A décrit le nombre de sauts S.

• A(ρ) =
´ T

0
1
p |ρ
′|Wp

(t)pdt où A est l’énergie cinétique
´ T

0
|γ′|p
p dt et | · |Wp

est la dérivée métrique
selon la distance de Wasserstein d’ordre p > 1.

Précédemment, nous avons montré l’existence d’un point fixe qui est une mesure de probabilité Q̄ sur
l’ensemble des trajectoires utilisées par les agents. Ce point de vue correspond au point de vue Lagrangien,
car nous suivons individuellement chaque particule. Dans la reformulation Eulérienne, pour chaque temps
t nous observons l’allure de la densité qui cette fois est une mesure de probabilité sur l’espace Ω, en prenant
la mesure image de Q par l’application d’évaluation au temps t, i.e. ρt = et#Q. Dans le cas où l’énergie
correspond au nombre de sauts, le nouveau problème consiste à minimiser la longueur de la courbe
ρ : [0, T ] → P(Ω). Cette réécriture, démontrée dans la Section 4 de [DS24], provient d’une propriété
importante en transport optimal, où lorsque le coût de transport est trivial, c’est-à-dire c(x, y) = 1x 6=y,
alors nous avons ceci:

inf
π∈Π(µ,ν)

ˆ
Ω×Ω

1x 6=ydπ(x, y) =
1

2
‖µ− ν‖TV .

L’intérêt de cette reformulation est multiple. En effet, nous pourrons étudier la régularité de la solution
ρ dans le Chapitre 4 et utiliser des algorithmes d’optimisation non-lisses pour effectuer des simulations
numériques dans le Chapitre 5. Dans le cas de l’énergie cinétique, l’équivalence Eulérienne-Lagrangienne
est déjà connue et présentée par exemple dans [BCS17]. Après avoir montré l’existence d’une mesure
d’équilibre dans la Section 1.4 pour le problème Lagrangien, nous montrons également dans la Section
2.2 (qui se trouve aussi dans [DS24, Section 5]) l’existence d’une mesure d’équilibre pour le problème
Eulérien en définissant

F : L2
t,x → L2

t,x

ρ̄ 7→ argminρ A(ρ) +
´ T

0
I(ρ(t))dt+

´ T
0

´
Ω
V (t, ρ̄(t), ·)dρ(t)dt+

´
Ω
ψT dρ(T ).

La fonction I est définie par

I(ρ) =

{´
Ω
f(ρ(x))dx si ρ� Ld,

+∞ sinon,
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avec f une fonction c0-convexe. Si V est un opérateur Lipschitzien en fonction de ρ̄ tel que Lip(V )
c0

< 1,
alors F est une contraction, ce qui permet d’utiliser le théorème de point de fixe de Banach. Ce dernier
offre un moyen d’approcher numériquement la solution lorsque le problème est mixte (cf. Section 5.3).

Dans le Chapitre 3 (et aussi dans [DS24, Section 3], nous montrons rigoureusement que la mesure
Q̄ obtenue comme point fixe dans la Section 1.4 est bien un équilibre de Nash, c’est-à-dire que Q̄ est
concentré sur les courbes minimisant JQ̄. Ceci équivaut à

∀Q,
ˆ
C
JQ̄(γ)dQ̄(γ) ≤

ˆ
C
JQ̄(γ)dQ(γ). (1)

Ainsi, cette mesure est supportée sur les trajectoires optimales des joueurs en sachant que les autres
joueurs sont distribués aussi selon cette mesure. La preuve consistant à dériver

UQ̄(Q) =

ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̄)dt dQ(γ)

dans une certaine direction au sens de Gâteaux permet d’obtenir (1) lorsque Q vérifie
´
I(et#Q) < ∞.

Pour montrer que (1) est vraie pour toute mesure Q, il faut approcher Q par une mesure Qr obtenue
en remplaçant chaque courbe par une translation (à modification près en t = 0) et en moyennisant
selon le paramètre de translation. De ce fait, Qr vérifie bien (1) et en passant à la limite r → 0, nous
obtenons que Q̄ est un équilibre de Nash. Notre preuve a été construite en particulier pour le cas où les
trajectoires sont constantes par morceaux, car la preuve contenue dans [CMS16] et inspirée des travaux
d’Ambrosio et Figalli [AF09] pour les équations d’Euler incompressible ne marche pas ici. En effet, la
difficulté réside dans la non-séparabilité de l’espace BV et la non-continuité de cette fonctionnelle avec
la convergence forte. Une fois la nouvelle approche établie pour le cas avec discontinuité, nous pouvons
aussi retrouver un résultat connu pour les jeux à champ moyen classiques avec une nouvelle preuve. Cela
demande une hypothèse sur les exposants (i.e. q < 1 + p′

d où f a une croissance polynomiale d’exposant
au plus q et p′ est l’exposant conjugué de p), mais cette hypothèse n’est pas nouvelle. Elle apparaît
en particulier dans de nombreux articles au début de l’analyse des MFG variationnels d’ordre 1 (par
exemple [CG15]). L’approche pour montrer que Q̄ est bien un équilibre de Nash demande des propriétés
de régularité (continuité et bornitude de la densité), mais ces propriétés ont été obtenues grâce à la
formulation Eulérienne du problème.

Ces régularités sont rassemblées dans le Chapitre 4 et apparaissent également dans l’article [DS23].
Nous commençons par étudier la régularité de la solution γ : [0, 1] → Rd à valeurs dans un espace de
dimension finie de

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ BV ([0, 1]; Rd)

}
. (2)

En approchant ce problème par

min

{ˆ 1

0

(Lε(γ
′(t)) + F (t, γ(t)))dt+ αε(ψ0(γ(0)) + ψ1(γ(1))) : γ ∈ H1([0, 1])

}
,

en utilisant le système d’Euler-Lagrange et en maximisant une fonction appropriée, nous obtenons une
borne uniforme sur la dérivée de la solution

|γ′ε| ≤ max

{
C0

c0
,

αεε√
1− α2

ε

}
. (3)

En appliquant le théorème d’Arzelà-Ascoli et la semi-continuité de la variation totale TV , la suite γε
converge à une sous-suite près vers la solution de (2). De plus, en passant à la limite dans l’inégalité (3),
la solution vérifie

|γ′| ≤ C,

ce qui est une autre façon de dire que la solution est Lipschitz en temps. De plus, lorsque d = 1, la
solution est soit constante, soit elle est un point critique de F . Ceci nous permet d’avoir une idée de
l’allure de la courbe. Ensuite, nous montrons une régularité similaire pour la solution du problème

min
ρ : [0,T ]→L1(Ω)

ρ≥0
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )), (4)
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où cette fois ρ est une courbe à valeurs dans un espace de dimension infinie. Nous approchons ρ par une
courbe dans un espace de dimension finie ρn : [0, T ] → Rn, puis nous utilisons des techniques analogues
qui permettent d’obtenir

sup
t∈[0,T ]

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C,

autrement dit, ρ : ]0, T [→ L2(Ω) est Lipschitz. Avec des ajustements supplémentaires, nous avons aussi
que la solution de

min
ρ : [0,+∞[→L1(Ω)

ρ≥0
∀t∈R+,

´
Ω
ρ(t,x)dx=1

ˆ ∞
0

e−rt
ˆ

Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0))

est Lispchitz en temps à valeurs dans L2(Ω). Lorsque le problème a des conditions de Dirichlet en
temps, il est possible de montrer que la solution ρ admet la même régularité que les données du problème
(c’est-à-dire les conditions aux bords et la fonction V ) en espace presque partout.

Les simulations numériques de la solution de (4) sont rassemblées dans le Chapitre 5. Tout d’abord,
nous introduisons les différents algorithmes d’optimisation existants en terminant par l’algorithme que
nous utilisons, à savoir la méthode de gradient proximal duale rapide. Il est connu que la suite obtenue
par cet algorithme converge à une vitesse d’ordre O(1/k) vers la solution du problème (cf. [BT14]).
Pour différents exemples de V et différentes conditions aux bords de [0, T ], nous effectuons quelques
simulations de la solution de (4). Ces résultats numériques apparaissent dans [DS23, Section 6]. Dans le
cas du problème mixte, c’est-à-dire lorsque la solution ρ̄ qui minimise

min
ρ∈L2([0,T ]×Ω)

ρ≥0
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

Vρ̄(ρ) =

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t, x)|+ V (ρ̄)(t, x)ρ(t, x) + c0

ρ(t, x)2

2

)
dxdt+ψ0(ρ(0))+ψT (ρ(T ))

est un point fixe d’un opérateur, alors il est possible de réaliser des simulations numériques de ce dernier
grâce au théorème de point fixe de Banach qui fournit un moyen de le calculer. Notons que nous choisissons
des exemples V (ρ̄) non-variationnels et qui dépendent de ρ̄ de façon non-autonome (pour que la solution
ne soit pas constante en temps). Nous considérons aussi un exemple dépendant de toute l’histoire, c’est-à-
dire V (ρ)(t, x) ≡

ffl t
0
ρ(s, x)dx, qui peut avoir un intérêt pour la modélisation. Ces exemples sont présentés

dans [DS24, Section 6].
Le dernier Chapitre 6 de cette thèse est une présentation de deux applications du modèle de jeux à

champ moyen déterministes avec sauts dans les cas à plusieurs populations. Le premier exemple est un
modèle de deux populations où les individus d’un groupe sont moins enclins à vivre proches des individus
de l’autre groupe. Grâce à la formulation mixte du problème,

G : L2([0, T ]× Ω)× L2([0, T ]× Ω)→ L2([0, T ]× Ω)× L2([0, T ]× Ω)

(ρ̄1, ρ̄2) 7→

 argmin
ρ1≥0

∀t,
´
ρ1(t)= 1

2

V1
ρ̄1,ρ̄2

(ρ1); argmin
ρ2≥0

∀t,
´
ρ2(t)= 1

2

V2
ρ̄1,ρ̄2

(ρ2)


avec

V1
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V1(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T ))

et V2
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V2(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )),

nous obtenons des simulations numériques de la solution grâce au théorème de point fixe de Banach. Le
deuxième exemple est un modèle inspiré de Carlier et Ekeland [CE07] sur l’aménagement du territoire
selon les travailleurs et les entreprises. Dans leur article, ils interprètent le salaire perçu par les travailleurs
ϕ et le salaire payé par les entreprises ψ comme des potentiels de Kantorovitch dont le coût de transport
correspond aux frais de trajets pour se rendre sur le lieu de travail. Autrement dit, le problème de
transport est

inf
γ∈Π(µ,ν)

ˆ
Ω̄×Ω̄

c(x, y)dγ(x, y)

avec µ décrivant la densité des travailleurs et ν la densité des entreprises, et ce problème est équivalent à

sup
ϕ,ψ

{ˆ
Ω̄

ψdν −
ˆ

Ω̄

ϕdµ ; ψ(y)− ϕ(x) ≤ c(x, y),∀(x, y) ∈ Ω̄× Ω̄

}
.
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Nous considérons que chaque travailleur souhaite minimiser

min
γ

γ(0)=x0

2λ1S(γ) +

ˆ T

0

[−ϕµ,ν(γ(t)) + V0,1(t, γ(t)) + f ′(µ)(t, γ(t))]dt+ φT (γ(T ))

et chaque entreprise souhaite minimiser

min
γ

γ(0)=x0

2λ2S(γ) +

ˆ T

0

[ψµ,ν(γ(t)) + V0,2(t, γ(t)) + f ′(ν)(t, γ(t))]dt+ φT (γ(T )).

Un équilibre de Nash (µ, ν) vérifierait le problème Eulérien suivant

min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν + f(ν) + f(µ)dxdt+

ˆ T

0

Wc(µt, νt)dt

+Φ0(µ(0)) + Φ0(ν(0)) + ΦT (µ(T )) + ΦT (ν(T )),

où Wc(µ, ν) = infγ∈Π(µ,ν)

´
Ω̄×Ω̄

c(x, y)dγ(x, y). Il est plus facile de calculer les potentiels de Kantorovitch
grâce à l’algorithme de Sinkhorn. C’est pourquoi nous utilisons la régularisation de la distance de Wasser-
stein

Wc,ε(µ, ν) = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

c(x, y)dγ(x, y)− ε
ˆ
γ(log γ − 1)

= sup
ϕ,ψ

ˆ
Ω

ψ(y)dν(y)−
ˆ

Ω

ϕ(x)dµ(x)− ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y),

qui permet aussi d’éliminer la contrainte ψ(y) − ϕ(x) ≤ c(x, y). Nous proposons trois façons différentes
d’approcher le problème numériquement. Ce problème, dans sa version la plus simple, est variationnel.
Pourtant, la première approche consiste à ignorer cela et appliquer un théorème de point fixe comme
précédemment pour le problème mixte avec la fonction G en définissant

V1
µ̄,ν̄(µ) :=

ˆ T

0

ˆ
Ω

λ1|µ̇| − ϕµ̄,ν̄µ+ f(µ) dxdt+ Φ0(µ(0)) + ΦT (µ(T ))

et V2
µ̄,ν̄(ν) :=

ˆ T

0

ˆ
Ω

λ2|ν̇|+ ψµ̄,ν̄ν + f(ν) dxdt+ Φ0(ν(0)) + ΦT (ν(T )).

Des tentatives de simulations numériques ont été effectuées, mais les résultats ne sont pas encore conva-
incants et ne sont pas inclus dans cette thèse. La seconde approche exploite la structure variationnelle
pour appliquer la méthode de gradient proximale duale dans deux cas différents: soit Wc,ε est perçue
comme une perturbation de la fonction uniformément convexe, soit comme une perturbation de la fonc-
tion convexe non-lisse. La troisième approche utilise également la formulation variationnelle en l’écrivant
sous la forme

inf
µ,ν

sup
ϕ,ψ
L(µ, ν, ϕ, ψ),

ce qui laisse la possibilité d’appliquer l’algorithme d’Uzawa, esquivant ainsi le calcul des potentiels de
Kantorovitch avec l’algorithme de Sinkhorn. Par manque de temps, nous n’avons pas encore exploré ces
pistes. Néanmoins, elle méritent des études plus approfondies.
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Introduction en anglais

Statistical physics was introduced in the mid-19th century by Boltzmann and Maxwell to describe the
dynamics of a gas composed of a large number of particles. The microscopic approach, which involves
tracking each particle individually, was abandoned in favor of a macroscopic approach. In terms of social
or urban planning, it is tempting to adopt a macroscopic viewpoint to model population dynamics using
statistical physics in a city with a large number of inhabitants. However, unlike particles, each individual
is different and evolves based on their experiences and interactions, making any attempt to model society
complex. A review of the literature on statistical physics applied to social dynamics [CFL09] shows that
the idea of approaching society using statistical physics has gained increasing interest since the 2000s,
but there is an imbalance between empirical evidence and theoretical modeling, with the latter being
favored. Moreover, very few links between data and theories have been made.

Despite this, the theory of Mean Field Games emerged in 2006, thanks to Lasry and Lions and
simultaneously to Caines, Huang, and Malhamé. Their work extends the notion of Nash equilibrium
for N players to an infinite number of players where each player has a negligible influence on the game,
but the set of strategies forms a global density similar to statistical physics, hence the term Mean Field.
There are numerous applications in economic models, some of which are presented in Guéant’s thesis
[Gué09].

The work of this thesis is motivated by modeling the population dynamics within a city where each
inhabitant moves from one place to another. Thus, the strategy of a player here is a piecewise constant
curve in time with values in the city. This strategy is optimized based on the number of moves made and a
given global population density. If each player solves this optimization problem, it generates a new set of
strategies that forms another population density. If the initial density and the final density are equal, then
this density is a fixed point of a certain operator. This gives us an idea of an approach to show the existence
of a Nash equilibrium for a game with a continuum of players whose trajectories are discontinuous and
minimize the number of these discontinuities. We wanted to do more modeling, but Mean Field Games
of this type are new and led us to encounter many non-trivial and interesting properties. In addition to
a rigorous formulation of the fixed-point aspect linked to a variational formulation where an appropriate
functional space for BV trajectories must be chosen, we obtain a variational formulation featuring a curve
length term valued in the space of measures endowed with the TV norm. From a numerical point of
view, the length term implies the use of a non-smooth but proximable term, which is the L1 norm of the
velocity applied to the unknown image by a linear operator (here, the derivative).

Firstly, Chapter 1 introduces the theory of Mean Field Games, which consists of taking a game with
N players and letting N tend to infinity. Using optimal control theory, we obtain a solution (u, ρ) of a
system of two equations: the first is a Hamilton-Jacobi equation where u is the value function depending
on the density, and the second is a continuity equation describing the flow of the density whose velocity
depends on the Hamiltonian applied to the gradient of u. In this thesis, we adopt the variational point
of view of Mean Field Games, initially inspired by Benamou and Brenier’s reformulation of the optimal
transport problem as a kinetic energy minimization problem. In our case, the transport cost is trivial,
meaning it costs 1 to change places regardless of the distance. Mean Field Games with jumps were
introduced by Bertucci by extending impulsive control to the Mean Field case with an infinite number
of players. However, the stochastic aspect seems crucial in Bertucci’s work to show the existence of a
solution to the system, while our variational formulation allows us to consider deterministic trajectories.
In Section 1.4, we show the existence of a Nash equilibrium Q̄ as the optimizer of a problem where each
agent solves

inf
γ : [0,T ]→Ω
γ(0)=x0

JQ̄(γ) := A(γ) +

ˆ T

0

dI

dm
(et#Q̄)(γ(t))dt+

ˆ T

0

F (t, γ(t), et#Q̄)dt+ ψT (γ(T )),

where Ω ⊂ Rn represents the city. The function A describes either the number of jumps or the kinetic
energy. The problem contains two terms dependent on the density et#Q̄: the first (dI/dm) is variational,
meaning we can calculate its first integral; the second (F ) is non-variational, meaning we cannot calculate

13
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its first integral, but its continuity is sufficient to obtain existence and regularity results for the solution.
Therefore, we call this type of problem mixed Mean Field Games. The last term is a final time penalty. By
noting C the space of trajectories, we use Kakutani’s fixed-point theorem to show that the multifunction

Q̃ 7→ argmin
Q,e0#Q=m0

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ)

}

admits a fixed point in P(C). It remains to demonstrate that this fixed point is indeed a measure
supported by the optimal trajectories, which will be the subject of Chapter 3. Chapter 1 is both an
introduction to the subject and a presentation of new results (those of the mixed case) that constitute
Section 2 of [DS24].

In Chapter 2, we rewrite the problem

min
Q∈P(C)

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ)

}

in Eulerian form

min
ρ : [0,T ]→P(Ω)

A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, ·)dρ(t)dt+

ˆ
Ω

ψT dρ(T ).

We consider the following cases:

• A(ρ) = 1
2

´ T
0

´
Ω
|ρ̇|dxdt when A describes the number of jumps S.

• A(ρ) =
´ T

0
1
p |ρ
′|Wp

(t)pdt where A is the kinetic energy
´ T

0
|γ′|p
p dt and | · |Wp

is the metric derivative
of the p > 1 Wasserstein distance.

Previously, we showed the existence of a fixed point which is a probability measure Q̄ on the set of
trajectories used by the agents. This viewpoint corresponds to the Lagrangian point of view, as we follow
each particle individually. In the Eulerian reformulation, for each time t we observe the density, which this
time is a probability measure on the space Ω, by taking the push-forward measure of Q by the evaluation
map at time t, i.e., ρt = et#Q. In the case where the energy corresponds to the number of jumps, the
new problem is to minimize the length of the curve ρ : [0, T ] → P(Ω). This rewriting, demonstrated in
Section 4 of [DS24], comes from an important property in optimal transport, which claims that when the
transport cost is trivial, i.e., c(x, y) = 1x6=y, then we have this result:

inf
π∈Π(µ,ν)

ˆ
Ω×Ω

1x 6=ydπ(x, y) =
1

2
‖µ− ν‖TV .

The interest in this reformulation is multiple. Indeed, we will be able to study the regularity of the
solution ρ in Chapter 4 and use non-smooth optimization algorithms to perform numerical simulations
in Chapter 5. In the kinetic case, the Eulerian-Lagrangian equivalence is already known and presented,
for example, in [BCS17]. After showing the existence of an equilibrium measure in Section 1.4 for the
Lagrangian problem, we also show in Section 2.2 (also found in [DS24, Section 5]) the existence of an
equilibrium measure for the Eulerian problem by defining

F : L2
t,x → L2

t,x

ρ̄ 7→ argminρ A(ρ) +
´ T

0
I(ρ(t))dt+

´ T
0

´
Ω
V (t, ρ̄(t), ·)dρ(t)dt+

´
Ω
ψT dρ(T ).

The function I is defined by

I(ρ) =

{´
Ω
f(ρ(x))dx if ρ� Ld,

+∞ otherwise,

with f a c0-convex function. If V is a Lipschitz operator with respect to ρ̄ such that Lip(V )
c0

< 1, then
F is a contraction, allowing the use of Banach’s fixed-point theorem. This theorem provides a means to
numerically approximate the solution when the problem is mixed (see Section 5.3).

In Chapter 3 (and also in [DS24, Section 3], we rigorously show that the measure Q̄ obtained as a
fixed point in Section 1.4 is indeed a Nash equilibrium, meaning that Q̄ is concentrated on the curves
minimizing JQ̄. This is equivalent to

∀Q,
ˆ
C
JQ̄(γ), dQ̄(γ) ≤

ˆ
C
JQ̄(γ), dQ(γ). (5)
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Thus, this measure is supported on the optimal trajectories of the players, knowing that the other players
are also distributed according to this measure. The proof consists of deriving

UQ̄(Q) =

ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̄)dt dQ(γ)

in a certain direction in the sense of Gt̂eaux to obtain (5) when Q satisfies
´
I(et#Q) < ∞. To show

that (5) is true for any measure Q, it is necessary to approximate Q by a measure Qr obtained by
replacing each curve by a translation (with a modification at t = 0) and averaging according to the
translation parameter. Thus, Qr indeed satisfies (5), and by taking the limit as r → 0, we obtain that
Q̄ is a Nash equilibrium. Our proof was constructed particularly for the case where the trajectories
are piecewise constant, as the proof contained in [CMS16] and inspired by the works of Ambrosio and
Figalli [AF09] for the incompressible Euler equations does not work here. Indeed, the difficulty lies in
the non-separability of the BV space and the non-continuity of this functional with strong convergence.
Once the new approach is established for the case with discontinuities, we can also retrieve a known
result for classical mean field games with a new proof. This requires an assumption on the exponents
(i.e., q < 1 + p′

d where f has polynomial growth of exponent at most q and p′ is the conjugate exponent
of p), but this assumption is not new. It appears particularly in many articles at the beginning of the
analysis of first-order variational MFGs (for example [CG15]). The approach to show that Q̄ is indeed
a Nash equilibrium requires regularity properties (continuity and boundedness of the density), but these
properties were obtained thanks to the Eulerian formulation of the problem.

These regularities are gathered in Chapter 4 and also appear in the article [DS23]. We begin by
studying the regularity of the solution γ : [0, 1]→ Rd in a finite-dimensional space of

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ BV ([0, 1]; Rd)

}
. (6)

By approaching this problem with

min

{ˆ 1

0

(Lε(γ
′(t)) + F (t, γ(t)))dt+ αε(ψ0(γ(0)) + ψ1(γ(1))) : γ ∈ H1([0, 1])

}
,

using the Euler-Lagrange system and maximizing an appropriate function, we obtain a uniform bound
on the derivative of the solution

|γ′ε| ≤ max

{
C0

c0
,

αεε√
1− α2

ε

}
. (7)

By applying the Arzelà-Ascoli theorem and the semi-continuity of the total variation TV , the sequence γε
converges up to a subsequence towards the solution of (6). Moreover, by passing to the limit in inequality
(7), the solution satisfies

|γ′| ≤ C,
which is another way of saying that the solution is Lipschitz in time. Furthermore, when d = 1, the
solution is either constant or a critical point of F . This gives us an idea of the shape of the curve. Next,
we show a similar regularity for the solution of the problem

min
ρ : [0,T ]→L1(Ω)

ρ≥0
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )), (8)

where this time ρ is a curve valued in an infinite-dimensional space. We approach ρ by a curve in a
finite-dimensional space ρn : [0, T ]→ Rn, and then use similar techniques to obtain

sup
t∈[0,T ]

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C,

in other words, ρ : ]0, T [→ L2(Ω) is Lipschitz. With additional adjustments, we also have that the solution
of

min
ρ : [0,+∞[→L1(Ω)

ρ≥0
∀t∈R+,

´
Ω
ρ(t,x)dx=1

ˆ ∞
0

e−rt
ˆ

Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0))

is Lipschitz in time with values in L2(Ω). When the problem has Dirichlet boundary conditions in time,
it is possible to show that the solution ρ has the same regularity as the data (i.e., the boundary conditions
and the function V ) in space almost everywhere.
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Numerical simulations of the solution to (8) are compiled in Chapter 5. Firstly, we introduce various
existing optimization algorithms, concluding with the algorithm we employ, namely the fast dual proximal
gradient method. It is well-known that the sequence generated by this algorithm converges at a rate of
O(1/k) to the solution of the problem (cf. [BT14]). For different examples of V and various boundary
conditions on [0, T ], we perform simulations of the solution to (8). These numerical results are detailed
in [DS23, Section 6]. In the case of the mixed problem, where the solution ρ̄ minimizes

min
ρ∈L2([0,T ]×Ω)

ρ≥0
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

Vρ̄(ρ) =

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t, x)|+ V (ρ̄)(t, x)ρ(t, x) + c0

ρ(t, x)2

2

)
dxdt+ψ0(ρ(0))+ψT (ρ(T ))

being a fixed point of an operator, it is possible to conduct numerical simulations of the latter using the
Banach’s fixed point theorem, which provides a means to compute it. Note that we select examples of
V (ρ̄) that are non-variational and depend on ρ̄ in a non-autonomous manner (to ensure the solution is
not constant over time). We also consider an example dependent on the entire history, i.e., V (ρ)(t, x) ≡ffl t

0
ρ(s, x)dx, which may be of interest for modeling purposes. These examples are presented in [DS24,

Section 6].
The final Chapter 6 of this thesis presents two applications of the deterministic Mean Field Games

model with jumps in the case of multiple populations. The first example considers a model with two
populations where individuals from one group are less inclined to live near individuals from the other
group. Using the mixed formulation of the problem,

G : L2([0, T ]× Ω)× L2([0, T ]× Ω)→ L2([0, T ]× Ω)× L2([0, T ]× Ω)

(ρ̄1, ρ̄2) 7→

 argmin
ρ1≥0

∀t,
´
ρ1(t)= 1

2

V1
ρ̄1,ρ̄2

(ρ1); argmin
ρ2≥0

∀t,
´
ρ2(t)= 1

2

V2
ρ̄1,ρ̄2

(ρ2)


with

V1
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V1(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T ))

and V2
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V2(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )),

we obtain numerical simulations of the solution using the Banach’s fixed point theorem. The second
example is a model inspired by Carlier and Ekeland [CE07] on urban planning involving workers and
firms. In their work, they interpret worker wages ϕ and firm payments ψ as Kantorovich potentials, where
transportation costs correspond to commuting expenses. In other words, the transportation problem is
formulated as

inf
γ∈Π(µ,ν)

ˆ
Ω̄×Ω̄

c(x, y)dγ(x, y),

with µ representing worker density and ν representing firm density, which is equivalent to

sup
ϕ,ψ

{ˆ
Ω̄

ψdν −
ˆ

Ω̄

ϕdµ ; ψ(y)− ϕ(x) ≤ c(x, y),∀(x, y) ∈ Ω̄× Ω̄

}
.

Each worker aims to minimize

min
γ

γ(0)=x0

2λ1S(γ) +

ˆ T

0

[−ϕµ,ν(γ(t)) + V0,1(t, γ(t)) + f ′(µ)(t, γ(t))]dt+ φT (γ(T ))

and each firm aims to minimize

min
γ

γ(0)=x0

2λ2S(γ) +

ˆ T

0

[ψµ,ν(γ(t)) + V0,2(t, γ(t)) + f ′(ν)(t, γ(t))]dt+ φT (γ(T )).

A Nash equilibrium (µ, ν) satisfies the following Eulerian problem

min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν + f(ν) + f(µ)dxdt+

ˆ T

0

Wc(µt, νt)dt

+Φ0(µ(0)) + Φ0(ν(0)) + ΦT (µ(T )) + ΦT (ν(T )),
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where Wc(µ, ν) = infγ∈Π(µ,ν)

´
Ω̄×Ω̄

c(x, y)dγ(x, y). To compute Kantorovich potentials effectively, the
Sinkhorn algorithm is used to regularize the Wasserstein distance

Wc,ε(µ, ν) = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

c(x, y)dγ(x, y)− ε
ˆ
γ(log γ − 1)

= sup
ϕ,ψ

ˆ
Ω

ψ(y)dν(y)−
ˆ

Ω

ϕ(x)dµ(x)− ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y),

which also relaxes the constraint ψ(y)−ϕ(x) ≤ c(x, y). We propose three different numerical approaches
to solving this problem. The simplest approach ignores its variational structure and applies a fixed-point
theorem similar to the mixed problem with the function G, defining

V1
µ̄,ν̄(µ) :=

ˆ T

0

ˆ
Ω

λ1|µ̇| − ϕµ̄,ν̄µ+ f(µ) dxdt+ Φ0(µ(0)) + ΦT (µ(T ))

and V2
µ̄,ν̄(ν) :=

ˆ T

0

ˆ
Ω

λ2|ν̇|+ ψµ̄,ν̄ν + f(ν) dxdt+ Φ0(ν(0)) + ΦT (ν(T )).

Attempts at numerical simulations have been made, but the results are not yet conclusive and are not
included in this thesis. The second approach uses the variational structure to apply the dual proximal
gradient method in two different scenarios: either Wc,ε is seen as a perturbation of the uniformly convex
function or as a perturbation of the non-smooth convex function. The third approach also utilizes the
variational formulation by writing it as

inf
µ,ν

sup
ϕ,ψ
L(µ, ν, ϕ, ψ),

which allows the application of the Uzawa algorithm, thereby avoiding the computation of Kantorovich
potentials with the Sinkhorn algorithm. Due to time constraints, these paths have not yet been fully
explored, but they deserve further investigation.
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Chapter 1

Mean Field Games

1.1 Classical Mean Field Games
The theory of Mean Field Games (MFG for short) has been simultanuously introduced by Lasry and
Lions in [LL06a], [LL06b] and [LL07] and by Huang, Malhamé and Caines [HMC06] in 2006.

In a game with N players, we consider that each player is rational, which means that they choose the
best strategy to maximize or minimize a certain cost that depends on the strategy chosen by the other
players. Hence, they try to anticipate the choices of the other players. The strategy of each player i can
be described by a trajectory γi : [0, T ]→ Rn such that γ′i(t) = αi(t) and γi(0) = x0, where αi is a control
chosen by the player in order to minimize a cost

J i(α1, . . . , αN ) =

ˆ T

0

L(t, γi(t), αi(t)) + f(ρN (t))dt

which depends on ρN (t) = 1
N−1

∑
j 6=i δγj(t), the distribution of the other agents produced by the controls

αj with j 6= i.
A Nash equilibrium is a N -tuple (ᾱ1, . . . , ᾱN ) such that for all i,

∀αi, J i(ᾱ1, . . . , ᾱN ) ≤ J i(ᾱ1, . . . , ᾱi−1, αi, ᾱi+1, . . . , ᾱN ).

This notion was introduced by John Nash [Nas51] in 1951, and now we know that such an equilibrium
always exists in a N -player game with mixed strategies, by using the Brouwer fixed point theorem.

The idea of Lasry and Lions was to extend the Nash equilibrium in a game with an infinite number of
players by taking N →∞. This means that ρN should converge to a probability measure ρ representing
an infinite number of players. This density ρ coupled with a function u should verify a system containing
the Hamilton-Jacobi-Bellman equation coupled with the continuity equation. The function u is the value
function of a control problem corresponding to the minimum of J . The MFG system is as follows:

−∂tu(t, x) +H(t, x,−∇xu) = f [ρ(t)](x)
∂tρ(t, x) + div(ρ∇pH(t, x,−∇xu)) = 0

ρ(0) = ρ0

u(T ) = uT

(1.1)

where H(t, x, p) = supq −L(t, x, q) + q · p in some cases. Thanks to the Schauder fixed point theorem, the
solution (u, ρ) to (1.1) exists (see Section 4 in the notes by Cardaliaguet [Car12]).

Some noise can be added in the trajectories γi by using a Brownian motion. The agents would then
minimize

J i(α1, . . . , αN ) = E
ˆ T

0

L(t, γi(t), αi(t)) + f(ρN (t))dt

and the MFG system (1.1) would be of second order by Ito’s formula. This will be referred to as the
stochastic case while here I introduced the deterministic case which is of interest in this thesis. Originally,
Mean Field Games were first introduced in the stochastic case by Lions and then were studied in the
deterministic case using vanishing viscosity.

A difficult question is whether the limit of such a N -player game is always of the form of a MFG
system (1.1), and conversely whether the solution to the system (1.1) can provide an approximation of a
N -player game. A breakthrough has been done to prove the mean field limit by Cardaliaguet, Delarue,
Lasry and Lions [CDLL19] by using the Master Equation in the case where the players undergo a common
noise. Carmona and Delarue [CD18, Chapter 6] explore also both of these questions in their book.
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To explain the system (1.1), we need a presentation of the main ideas in optimal control.
Let us denote yx,α the solution to the ODE{

y′(t) = g(y(t), α(t))
y(0) = x.

Usually, the function α is called the control. We denote φ(x) the value of the infimum

φ(x) := inf
α

ˆ T

0

L(s, yx,α(s), α(s))ds

and the value function

φ(t, x) := inf
α

{ˆ T

t

L(s, yx,α(s), α(s))ds

∣∣∣∣∣ yx,α(t) = x

}
.

Then, the Dynamic Programming Principle claims that if α∗ is optimal for φ(x) on [0, T ], then it is also
optimal on [t, T ], i.e. α∗ is optimal for the problem

φ(t, yx,α∗(t)) = inf
α

{ˆ T

t

L(s, yx,α(s), α(s))ds

∣∣∣∣∣ yx,α(t) = yx,α∗(t)

}
.

As a consequence, φ(x) can be rewritten as a solution to a Bellman equation

φ(x) = inf
α

{ˆ t

0

L(s, yx,α(s), α(s))ds+ φ(t, yx,α(t))

}
.

Further computations can prove that φ(t, x) is a viscosity solution of the Hamilton-Jacobi-Bellman equa-
tion

− ∂tφ(t, x) +H(t, x,−∇xφ(t, x)) = 0, (1.2)

where H is the Hamiltonian defined by

H(t, x, p) = sup
q∈Rn

−L(t, x, q) + p · g(x, q).

I refer to [FR75] for rigorous proofs about optimal control. The lecture notes by Guillaume Carlier [Car07]
with heuristic computations were a good help to understand dynamic programming principle. A very
short introducion to optimal control has also been written in the second book by Filippo Santambrogio
[San23, Section 1.7].

The heuristic proof of (1.2) consists in showing it by double inequality. The direction ≤ is established
for all q ∈ Rn in −L(t, x, q) + p · g(x, q) with p = −∇xφ and then one takes the supremum over q.
For the other direction ≥, one has to take the optimal control α for the problem φ. The inequality
is proved and it happens that at the same time this optimal control α is a maximiser of H, i.e α ∈
argmaxq −L(t, x, q) + p · g(x, q) with p = −∇xφ. A posteriori, this furnishes a way to compute the
optimal control. The connection between the optimiser of H and the optimal control is established in
[BC97, Corollary 2.18].

Now, we can link optimal control to MFG. The only difference is that the MFG system (1.1) is
coupled with the continuity equation in a way that the right-hand side of the Hamilton-Jacobi equation
f(x, ρ(t, x)) depends on the density. If ρ is given, then u is the value function

u(t, x) = inf
α

ˆ T

t

L(s, yx,α(s), α(s)) + f(yx,α(s), ρ(s, yx,α(s)))ds (1.3)

and by the previous discussion, u verifies the first equation in the MFG system. To recover g(x, α), we
use the fact that the optimal control α is optimal for H. Then we use the envelope theorem (reminded in
Box 1.11 [San23]) which claims that if (ha)a is a family of functions such that for all p, h(p) = supa ha(p)
and if h is differentiable at p0 such that h(p0) = ha0

(p0) for some a0, then ∇ph(p0) = ∇pha0
(p0). Thanks

to this and to the fact that α is optimal for H, we obtain that

∇pH(t, x, p) = ∇p [−L(t, x, α) + p · g(x, α)] = g(x, α),

with p = −∇xu. Hence, the optimal trajectory yx,α verifies the ODE{
y′(t) = ∇pH(t, y(t),−∇xu(t, y(t)))
y(0) = x.
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If we denote v(t, x) = ∇pH(t, x,−∇xu(t, x)), then v can be seen as the velocity field of the particles y(t).
Therefore, by the mass conservation equation which arises in fluid mechanics, we obtain that the density
ρ solves the continuity equation in the sense of distributions

∂tρ+ div(ρv) = 0 with v = ∇pH(t, x,−∇xu),

which is exactly the second equation in the MFG system (1.1).
The existence of the solution to (1.1) has been established when the coupling f [ρ(t)](x) is nonlocal

(see [LL06b] and [Car12]), which means that f [ρ(t)](x) = f [ρ(t, ·)](x) can be for example a convolution
of a function with ρ(t, ·) which has a regularization effect. If one considers the application that with
ρ associates the solution u to the Hamilton-Jacobi equation and the application that with u associates
the solution ρ̄ to the continuity, then by Schauder fixed point theorem there exists a fixed point to the
composition of these two applications. This is possible thanks to the nonlocal property of f which allows
the composition to be a continuous application.

If the coupling is local, namely f directly depends on ρ(t, x) such that f [ρ(t)](x) = f(x, ρ(t, x)), then it
was not clear whether the solution exists. This problem has been overcome later by Cardaliaguet [CG15]
in 2015 using a variational formulation that will be introduced in the next section.

1.2 Variational Mean Field Games
In this section, we pass to the case where the coupling f is local, i.e. f [ρ(t)](x) := f(x, ρ(t, x)).

In [Car15] Cardaliaguet proves the existence of a weak solution to (1.1) by describing it as the
minimizer of two variational problems that are in duality.

The first one essentially comes from the weak formulation of the continuity equation and is

inf
φ
A(φ) =

ˆ T

0

ˆ
Td
F ∗(x,−∂tφ(t, x) +H(x,−∇xφ(t, x)))dxdt−

ˆ
Td
φ(0, x)dm0(x)

where F is the antiderivation of f in the sense that dF/dm = f and φ should play the role of the value
funtion. The function F ∗ is the Fenchel conjugate of F .

The second one stems from the minimization problem u(0, x) in (1.3) and is

inf
(ρ,v)

∂tρ+div(ρv)=0

B(ρ, v) =

ˆ T

0

ˆ
Td
ρ(t, x)H∗(x,−v(t, x)) + F (x, ρ(t, x))dxdt+

ˆ
Td
φT (x)ρ(T, x)dx (1.4)

where ρ is the density and v the velocity. The function H∗ is also the Fenchel conjugate of H.
By the Fenchel-Rockafellar duality theorem (see [ET99]), we have that

inf
φ
A(φ) = − min

(ρ,w)
∂tρ+div(w)=0

B(ρ, w), (1.5)

where we use the change of variable w := ρv to make B convex in its second variable.
Let us note that this formulation of variational MFG was the first to occur in the litterature. From

a modeling point of view the problem minB is the most meaningful, but since it is set in the setting of
measures it is itself the dual of minA, and not vice versa. A similar game with potential has also been
studied in the case of Wardrop equilibria [CJS08] which was introduced in the 1950s by Wardrop [War52]
to study a large number of vehicles.

In [BCS17], the authors explain formally how we pass from the MFG system to these dual problems in
the simple case where L(t, γ(t), γ̇(t)) = |γ̇(t)|2/2 and the control is g(x, α) = α. By using the formulation
(1.5) of the problem, existence and uniqueness of weak solutions of the MFG system has been rigorously
proved in [Car15] when H and f has a superlinear growth, in the case of a first order MFG with a local
coupling. Under slightly less restrictions on H and f , existence and uniqueness are proved in [CG15].
Thanks to this variational approach, there is also existence and uniqueness of weak solutions to the second
order MFG system with degenerate diffusion and local coupling in [CGPT15].

A particular case of the problem (1.4) has been reformulated by Benamou and Brenier in [BB00]
into an optimal transport problem at the beginning of the 2000s before the introduction of Mean Field
Games. The authors showed that the dynamical formulation of the optimal transport problem is actually
the minimizer of some kinetic energy subjected to the continuity equation:

W2(ρ0, ρT )2 = inf
(ρ,v)

∂tρ+∇·(ρv)=0
ρ(0)=ρ0,ρ(T )=ρT

T

ˆ
Rd

ˆ T

0

ρ(t, x)|v(t, x)|2dxdt. (1.6)
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Here the density is not coupled with the Hamilton-Jacobi equation since f = 0, so the function f does
not really depend on the density in (1.1), so this is not a true MFG problem. Nervertheless, this result
allows to use dynamical formulation of optimal transport in MFG. This link is described in [BCS17].
The result (1.6) has been extended to p > 1 instead of p = 2 in [Bre03]. In [BJO09], Buttazzo, Jimenez
and Oudet generalize the problem in the right-hand side of (1.6) to a more general cost function which
enables to add a congestion term to the kinetic energy

˜
ρ|v|2. Without knowing it, the authors studied

a variational Mean Field Game whose formulation is described later in (1.8).
Without being exhaustive, several studies have been done thanks to this approach in Mean Field

Games. For example, the regularity of the solution is studied via the variational structure of the problem.
In the paper by Lavenant and Santambrogio [LS18], the authors prove the L∞ regularity of the solution
thanks to the JKO scheme. For a particular case of the Hamiltonian, i.e. H(x, ξ) = 1

2 |ξ|
2, Prosinski and

Santambrogio [PS17] show Sobolev regularity of the solution by using the duality of the problem. This
result has been improved by Graber and Mészáros [GM18] for more general H.

If H is non-standard and if f , whose increasing property usually describes the congestion in the
models, is decreasing, then Cirant and Nurbekyan [CN18] showed the existence of the solution to viscous
MFG by using a suitable variational formulation of the problem.

In order to perform numerical simulations of variational MFG problems, the Alternating Direction
Method of Multipliers (ADMM) can be used. It was introduced in 1983 by Fortin and Glowinski [FG83].
They give two different versions which they call ALG1 and ALG2. Since ALG2 is cheaper than the
second, it is applied in [BC15], [AL16], [BCS17] and [And17] to model Variational Mean Field Games.
The authors Briceños-Arias, Kalise and Silva compare different proximal methods in [BKS18] such as
ADMM, Chambolle-Pock, Predictor-Corrector Proximal Multiplier and Monotone+Skew to model sta-
tionary MFG.

Up to now, the variational formulation has been presented in an Eulerian point of view where we
consider the density ρ(t) as a curve of measures. Now we introduce the Lagrangian formulation where
the density is represented by a probability measure Q ∈ P(C) supported on the set of curves taken by
each agent.

Formally, if we think about dividing Eq. (1.6) by T 2 and letting T tend to 0 and if we define the
metric derivative by

|ρ′|(t) = lim
s→t

Wp(ρ(s), ρ(t))

|s− t|
, (1.7)

then we have the following characterization of absolutely continuous curves in the set of probability
measures equipped with the Wasserstein distanceWp whose statement and proof can be found in [AGS05,
Theorem 8.3.1] or in [San15, Theorem 5.14]:

Theorem 1.2.1. Let p > 1, Pp(Ω) be a probability space equipped with the Wasserstein distance Wp and
I be an open interval of R.

If ρ : I → Pp(Ω) is an absolutely continuous curve, then there exists a vector field v such that ∂tρ +
∇ · (ρv) = 0 in the sense of distributions and

‖v(t)‖Lp(ρt) ≤ |ρ
′|(t), a.e. t.

Conversely, if ρ satisfies ∂tρ + ∇ · (ρv) = 0 in the sense of distributions for some v, then ρ is an
absolutely continuous curve and

|ρ′|(t) ≤ ‖v(t)‖Lp(ρt), a.e. t.

Theorem 1.2.1 stems from a generalisation of (1.6) for p > 1. Thanks to the next Proposition, we will
be able to write a Lagrangian version of Theorem 1.2.1.

Proposition 1.2.2 ([San15], Proposition 5.31). For every Lipschitz curve (ρt)t in Pp(Ω) endowed with
the Wasserstein distance Wp, there exists a measure Q ∈ P(C) such that ρt = et#Q and

ˆ
C

ˆ 1

0

|γ′(t)|pdtdQ(γ) ≤
ˆ 1

0

|ρ′|(t)pdt.

Conversely, if Q ∈ P(C) is such that ρ(t) = et#Q, then

ˆ 1

0

|ρ′|(t)pdt ≤
ˆ
C

ˆ 1

0

|γ′(t)|pdtdQ(γ).

Proposition 1.2.2 allows us to rewrite Theorem 1.2.1 in a Lagrangian way:
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Proposition 1.2.3 ([BCS17], Proposition 3.1). If Q ∈ P(C) is a probability measure such that ρt = et#Q

and
´
C
´ T

0
|γ′(t)|p

p dtdQ(γ) <∞, then ρ : [0, T ]→ Pp(Ω) is absolutely continuous and there exists a vector
field v such that the continuity equation is satisfied and

1

p

ˆ T

0

ˆ
Ω

ρ|v|p ≤
ˆ
C

ˆ T

0

|γ′(t)|p

p
dtdQ(γ).

Conversely, if ρ is absolutely continuous, (ρ, v) satisfies the continuity equation and
´ T

0

´
Ω
ρ|v|p <∞,

then |ρ′|(t) ≤ ‖v(t)‖Lp(ρt) for almost every t and there exists Q ∈ P(C) such that ρt = et#Q and

ˆ
C

ˆ T

0

|γ′(t)|p

p
dtdQ(γ) ≤ 1

p

ˆ T

0

ˆ
Ω

ρ|v|p.

Therefore, the minimization problem

min
(ρ,v)

∂tρ+∇·(ρv)=0

{ˆ T

0

ˆ
Ω

(
1

p
ρ|v|p +G(x, ρt)

)
dxdt+

ˆ
ΨdρT

}
(1.8)

can be written as:

min
Q∈P(C),e0#Q=ρ0

{ˆ
C

ˆ T

0

|γ′(t)|p

p
dtdQ(γ) +

ˆ T

0

G(et#Q)dt+

ˆ
Ω

Ψd(eT#Q)

}
, (1.9)

where G : P(Ω)→ R̄ is such that

G(ρ) =

{ ´
G(x, ρ(x))dx, if ρ� Ld,

+∞ otherwise.

The link between the problem (1.9) and MFG is that if Q̄ minimizes (1.9), then we have for all Q such
that

´
G(et#Q)dt < +∞,

ˆ
C

(ˆ T

0

|γ′(t)|p

p
dt+

ˆ T

0

G(γ(t), et#Q̄)dt+ Ψ(γ(T ))

)
dQ̄(γ)

≤
ˆ
C

(ˆ T

0

|γ′(t)|p

p
dt+

ˆ T

0

G(γ(t), et#Q̄)dt+ Ψ(γ(T ))

)
dQ(γ).

Further work shows that this inequality is true for all Q, thus proving that Q̄ is supported on the optimal
trajectories γ. I refer to [BCS17] and [San20] for a more rigorous presentation.

The Lagrangian point of view was used in a MFGmodel with density constraints studied by Cardaliaguet,
Mészáros and Santambrogio [CMS16], where the agents going through a congested area have to pay an
extra price. They showed that the solution the MFG system generates a probability measure that is sup-
ported on the optimal trajectories. By using the Eulerian formulation, they proved L2

t,loc BVx regularity
of the pressure. Under more restrictive hypotheses on H, Lavenant and Santambrogio [LS19] proved
better regularity that is L∞t H1

x.
The problem where the conditions at time 0 and at time T are prescribed (i.e we impose the density

to verify ρ(0) = ρ0 and ρ(T ) = ρT ) is called the planning problem. In [OPS19], the Eulerian variational
structure is used to prove existence and uniqueness of a weak solution for the first order MFG where H is
convex with a quadratic growth. In addition, they show that there exists a probability measure supported
on the optimal paths. Still in the Eulerian framework, Graber, Mészáros, Silva and Tonon [GMST19]
improve this existence and uniqueness for more general H. Moreover, they obtain Sobolev regularity of
the solution under some restrictions. In [BFG22], the authors propose a different variational approach of
the planning problem in MFG which eliminates the continuity equation in the variational problem. They
also prove existence and uniqueness of the solution.

To modelize crowd motion, Mazanti and Santambrogio [MS19] use a minimal-time control problem
where agents seek to exit a bounded domain as fast as possible, but are subjected to bounded maximal
speed in crowded areas. By using the Lagrangian formulation of the problem, they prove existence of an
equilibria thanks to Kakutani’s fixed point theorem.

The Lagrangian setting can also be used to modelize crowd motion where the velocity of an agent
depends on the velocity of the other’s. One can think of a group of birds which moves by following each
other. The existence and the regularity properties of such a model has been investigated by Santambrogio
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and Shim [SS21]. The problem is said to be Cucker-Smale inspired. The variational problem is the
minimization of a cost that depends on the kinetic energy and a convolution term that depends on an
interaction kernel. Sadeghi Arjmand in his thesis [Sad22] improves this result in the free final time case
with a general running cost L and a more general interaction cost.

As far as numerics are concerned, we note that in [Sar22], Sarrazin uses the Lagrangian formulation
to approximate the solution of a variational MFG with a variational MFG of finite number of players.

1.3 Mean Field Games with jumps
In this thesis, we concentrate on deterministic Mean Field Games with jumps, which means that we allow
the trajectory of an agent γ to be discontinuous. More precisely, we are motivated by the modeling of
the residents in a city. Each inhabitant will choose a place to live according to their preferences (e.g. city
center, suburbs, . . . ) and to the density of the population. The move of a person will count as a jump.
Between one jump and the next one, the trajectory is constant. The model we introduce is only a toy
model and our aim is not to fit any real experimental data, but to study the basic properties of the model
such as existence and uniqueness of solutions, regularity properties, numerical simulations, etc.

Mean Field Games with jumps have already been studied by Bertucci in his thesis in 2018 [Ber18] in
the stochastic case where the agent’s trajectories are controlled by a Brownian motion and are allowed
to make jumps. In particular, he extends impulse control problems to Mean Field Games by making
the value function depend on the density. Impulse control theory has been brought to the community’s
attention in the 1970s by Bensoussan and J.-L. Lions in [BL75] who introduced new methods such as
Quasi-Variational Inequalities (QVI) to solve these kind of problems.

The motivations for the study of impulse control problems is for example stock management. To
present an impulse control problem, I borrow the notations from [BL75]:

• y(t) ∈ Rn is the state of the stock at time t ∈ [0, T ] of n different types of goods,

• D(s, t) = (t − s)µ + σ(W (t) − W (s)) is the demand between times s and t where µ ∈ Rn and
W (t) ∈ Rm is a standard Wiener process and σ is a linear application from Rm to Rn,

• A is a matrix such that Ai,j = (σσ∗)i,j ,

• The set of random variables v = {θ1, w1, θ2, w2, . . . } is the policy of commands to replenish the
stock when knowing the state yt,x, where 0 ≤ θ1 ≤ · · · ≤ θi ≤ θi+1 ≤ T are the times at which
the command is performed and w1, w2, . . . in Rn are the quantity of goods that are ordered at
respectively times θ1, θ2, . . .

When there is no jump, the stock y evolves simply according to the demand, i.e. for all s ∈ [t, θ1[,

y(0) = x ∈ Rn and y(s) = x−D(0, s).

Then, when a jump occurs, we add new stock to y:

y(θ1) = x−D(t, θ1) + w1.

Knowing y(θi), the next part of the trajectory is defined as follows

y(s) = y(θi)−D(θi, s),∀s ∈ [θi, θi+1[,

y(θi+1) = y(θi)−D(θi, θi+1) + wi.

To choose the best control v = {θ1, w1, θ2, w2, . . . }, one would like to minimize a cost that depends on
the number of jumps and on the state of stock. We define a function f(t, x) that describes the cost paid
for storing the goods or for stock shortage. The integer Nt describes the number of instants θi starting
from t, i.e. the number of jumps. The problem is then

u(t, x) = inf
v={θ1,w1,... }

y(t)=x

J(v) := E

(
Nt +

ˆ T

t

f(s, y(s))ds

)
. (1.10)

The dynamic programming principle (already introduced in the first section of this chapter) provides
another formulation of u. At time t, if it is optimal to place an order ξ ∈ Rn, then

u(t, x) = 1 + u(x+ ξ, t)
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and if it exists, one can chose ξ such that it optimizes

1 + u(x+ ξ, t) = 1 + inf
w
u(x+ w, t).

When it is optimal not to jump and to let the demand reduce the stock during a period of time δ, then

u(t, x) = E

(ˆ t+δ

t

f(x−D(t, s), s)ds+ u(t+ δ, x−D(t, t+ δ))

)
. (1.11)

Therefore, the new formulation of u is

u(t, x) = min

{
1 + infw u(x+ w, t),

E
(´ t+δ

t
f(x−D(t, s), s)ds+ u(t+ δ, x−D(t, t+ δ))

)
.

(1.12)

By writing the Taylor expansion of first order of the right-hand side of (1.11), we obtain

δf(t, x) + u(t, x) + δ

−∑
i

µi
∂u

∂xi
+

1

2

∑
i,j

Ai,j
∂2u

∂xi∂xj
+ ∂tu(t, x)

+ o(δ).

By denoting Ã the operator such that

Ãu =
∑
i

µi
∂u

∂xi
− 1

2

∑
i,j

Ai,j
∂2u

∂xi∂xj
,

the problem (1.12) is equivalent to the system of inequalities
u(t, x) ≤ 1 + infw u(t, x+ w),

−∂tu+ Ãu− f ≤ 0,[
∂tu(t, x)− Ãu(t, x) + f(t, x)

]
[u(t, x)− 1− infw u(t, x+ w)] = 0.

(1.13)

The system (1.13) can be written in a weaker way in a system of quasi-variational inequalities (QVI):
under some assumptions on f and u, we get{

u(t, x) ≤ 1 + infw u(t, x+ w) a.e,
−〈∂tu|v − u〉+ a(u, v − u)− 〈f |v − u〉 ≥ 0, for all v such that v(t, x) ≤ 1 + infw u(t, x+ w),

(1.14)
where a is a bilinear application linked to Ã.

It is possible to generalize the cost of jumps. Instead of 1 in the formula 1 + infw u(t, x+ w) we can
put a cost k(w) that depends on the place where it will jump so that we obtain

Mu(t, x) := inf
w
k(w) + u(t, x+ w).

M is a frequent notation for this operator.
The QVI (1.14) can be extended to more general cost functions f that depend on the control α on

the trajectories y such that

J(v, α) = E

(
N0 +

ˆ T

0

L(t, y(t), α(t))dt

)
.

If we define H(t, x, p) = minq L(t, x, q)− p · q, the QVI would be roughly of the form{
u ≤Mu a.e,
−〈∂tu|v − u〉+ a(u, v − u)− 〈H(t, x,∇u)|v − u〉 ≥ 0, for all v ≤Mu.

(1.15)

This extension has been made for the first time in [BL77] by Bensoussan and J.-L. Lions and the case
when H has a quadratic growth has been studied in [BFM82].

Several studies have been carried out since the 1980s on impulse control problems. To cite a few,
Frehse and Mosco in [FM82] study the problem when there are irregular obstacles. The idea of obstacle
is contained in the operator Mu since the jumps occurs when the trajectory y(t) reaches the set of points
defined by {x ; u(t, x) = Mu(t, x)}. Further investigation on the obstacle and the regularity of the
solution u has been done by Perthame in [Per85].
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All the cited works so far have been performed in the stochastic case, which means that the trajectories
are subjected to a Brownian motion and the jumps occurs in a random way. It is possible to pass from
the stochastic case to the deterministic case by defining an operator

Ãε = c+
∑
i

µi
∂u

∂xi
− ε1

2

∑
i,j

ai,j
∂2u

∂xi∂xj
,

and letting ε→ 0. In [Men81], Menaldi showed that the solution uε of the following QVI

uε ≤Muε and ∀v ≤Muε a.e, aε(uε, v − uε) ≥ 〈f |v − uε〉

converges towards the solution u of
u ≤Mu and Ã0u ≤ f. (1.16)

In [Men82], the author describes the solution of (1.16) as the value function of an impulse control problem

u(x) = inf
v=(θ1,ξ1,... )
y(0)=x

J(v) :=

∞∑
i=0

k(ξi) e−βθi +

ˆ τ

0

f(y(s)) e−βs ds

where τ is some optimal stopping time and β > 0 a sufficiently large coefficient.
Barles in [Bar85] extends this result to a more general cost function

u(x) = inf
v=(θ1,ξ1,... ),α

y(0)=x

J(v, α) :=

∞∑
i=0

k(ξi) e−βθi +

ˆ +∞

0

f(y(s), α(t)) e−βs ds

which depends on the control α where the continuous part of the trajectory verifies y′(t) = b(y(t), α(t)).
Another approach is to formulate the optimality condition as a maximum principle. Blaquière intro-

duces this method in [Bla77] for finite time horizon and in [Bla85] for infinite time horizon. Rempala and
Zabczyk [RZ88] suggest a simpler proof for the maximum principle.

Deterministic impulse control problems are also the subject of more recent research for example in
[EBB10], where El Farouq, Barles and Bernhard study the uniqueness of the viscosity solution of an
Isaacs QVI which comes from an impulse control minimax problem.

The impulse control problems introduced in this subsection only deal with individual trajectories
while in Mean Field Games one would like to study the behavior of an infinite number of players. This
is the problem Bertucci investigated in his thesis [Ber18].

First, Bertucci presents what would be the density if the trajectories were subject to a Brownian
motion and the value function of the problem were

u(t, x) = inf
v=(θ1,ξ1,... )

E

ˆ T

t

f(s, y(s))ds+

#(θi)i∑
i=1

k(ξi)

 .

For any ε > 0, he defines the PDE

∂tmε(t, x)− ν∆mε(t, x) +
1

ε
(1Amε)(t, x)− 1

ε
(1Amε)(t, x− ξ) = 0 (1.17)

where A ⊂ Rn is the set at which the particle jump, the term 1
ε1Amε(t, x) represents the rate at which

the particles jumps and 1
ε1Amε(t, x−ξ) stands for the rate of particles that arrive. For simplicity, ξ ∈ Rn

is the unique possible jump, i.e. we jump from x to x + ξ. By using appropriate estimates on mε, he
extracts a sequence which converges towards a solution m such that for all v ≤Mv on A,

ˆ T

0

〈∂tu− ν∆u|m〉 −
ˆ

Tn
u(0)m0 ≤

ˆ T

0

〈∂tv − ν∆v|m〉 −
ˆ

Tn
v(0)m0

for any u such that u = Mu on A. This inequality is called by the author the Fokker-Planck equation
of particles which can be seen as the dual of a QVI. Then, he extends this result to a finite number of
possible jumps. Nevertheless, it is possible to apply this to any possible jump.

Second, Bertucci proves the existence of a solution to the MFG of an impulse control problem. Now
the running cost f(m) depends on the density and the MFG system is of the form

max(−∂tu− ν∆u− f(m), u−Mu) = 0,

∀v ≤Mv,
´ T

0
〈−∂t(v − u)− ν∆(v − u)|m〉 −

´
Tn(v − u)(0)m0 ≥ 0,´ T

0

´
Tn(−∂tu− ν∆u− f(m))m = 0.
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The last equation can be viewed as a relaxation of the fact that m = 0 on the set {u = Mu}, which is
the set at which it is optimal to jump. Yet, one may have at the same time −∂tu− ν∆u = f(m) where it
is optimal not to jump. Therefore, the last equation allows the density m not to vanish in that situation
which makes the problem more convex.

To prove existence of an equilibrium (u,m), Bertucci approximates the second inequality of the system
as in (1.17). Then, he uses Kakutani’s fixed point theorem to show the existence of a solution (uε,mε)
of the approximated system. Finally, he passes to the limit ε→ 0 up to a subsequence by using suitable
estimates on mε and uε. Next, the author discusses the uniqueness of the solution which occurs under
some monotonicity conditions on f .

As pointed out in his work, the existence of such an equilibrium strongly depends on an estimate on
mε which comes from the second order property of the problem that is ν > 0. Thus, the MFG with
jumps can only be treated in the stochastic case with his approach.

To our knowledge, the study of MFG with jumps in the deterministic case has not yet been tackled in
the literature. This will be the object of this thesis, and our strategy will be different from the one used in
impulse control problems which are dealt with QVIs. In fact, we will use the variational formulations of
the MFG (both Eulerian and Lagrangian) for which we will prove existence and some regularity properties
in the Eulerian case.

The cost function considered by each agent is similar to the one used in impulse control theory:

inf
γ : [0,T ]→Rn

γ(0)=x0

A(γ) +

ˆ T

0

dI

dm
(et#Q̄)(γ(t))dt+

ˆ T

0

F (t, γ(t), et#Q̄)dt+ ψT (γ(T )).

We consider a general framework where A can either represent the number of jumps of γ or the kinetic
energy

´ T
0
|γ̇(t)|p
p dt. Besides the fact that this problem is deterministic in order to be more general, the

novelty of the model is that the running function is the sum of a variational term dI/dm and a continuous
(not necessarily variational) term F .

1.4 Mixed Mean Field Games
In this section, I present a class of variational Mean Field Games that we call mixed, because the term G
in the potential (1.9) is the sum of two terms: one that is variational and one that is not. The problem
when G is variational, i.e G is the anti-derivative of a certain function, has been broached in a lot of
studies that I mentioned in Section 1.2. A presentation of this class of problems can be found in [BCS17].
The case where G is not the anti-derivative of a function and is only continuous has been studied in the
paper by Cannarsa and Capuani [CC18], where the existence of a solution is established using Kakutani’s
fixed point theorem. Our strategy to prove existence of a solution Q to the mixed MFG is highly inspired
by the latter.

The problem is as follows: given Q̃, we solve

min
Q∈P(C)
e0#Q=ρ0

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ(γ) +

ˆ
Ω

ψT (x)d(eT#Q)(x)

}
.

We will prove the existence of an equilibrium measure Q̄ such that Q̄ solve the problem for Q̃ = Q̄,
characterized as a fixed point of a multi-valued function.

First, let us introduce the notations and the problem solved by each agent. The metric space (C, d) will
designate the set of curves γ : [0, T ]→ Ω followed by an agent in the space Ω ⊂ Rd with d ≥ 1 (it would
also be possible to consider other domains such as the torus). Since the dimension d ≥ 1 is a number and
the distance d(x, y) takes two variables, the context will separate the meaning of the notations. The set
Ω is supposed to be compact. On the space C we will define an action A : C → [0,+∞] which represents
the cost for moving. The choice of C is not very important since it is more important to know the set of
curves with finite action. In particular, we require {γ ∈ C : A(γ) < +∞} ⊂ BV ([0, T ]). We recall that
we have

BV([0, T ],Ω) =

{
γ : [0, T ]→ Ω̄ : TV (γ, [0, T ]) := sup

0=t0<...<tn=T

n∑
i=1

|γ(ti)− γ(ti−1)| <∞

}
.

I refer to [Loj88] for an introduction to bounded variation functions with this definition.
To be explicit, the main setting that we consider is the one where we take for C the set of measurable

curves defined on [−1, T ], valued into Ω, and constant on [−1, 0]. These curves are identified by a.e.
equivalence, and we endow it with the L1 distance. This space is a complete metric Polish space. We
spend few words on this choice of modeling:



28 CHAPTER 1. MEAN FIELD GAMES

• Even if curves with finite action are all BV we do not want to choose C = BV since this would
suggest to endow it with the BV norm, which would make our compactness results fail.

• Neither do we want to choose C = BV and endow it with the L1 norm since this would not make
it a complete metric space and some measure-theoretic tools that we use require to be in a Polish
space.

• The choice of the left-continuous representative together with the choice of extending the curves
to [−1, T ] instead of only [0, T ] allows to give a precise meaning of the initial point γ(0), but also
allows for immediate jumps at t = 0+. Another possibility would have been to require curves to be
right-continuous at t = 0 and, instead of imposing initial data of the form γ(0) = x0 penalizing the
difference |γ(0)− x0| as done in [DS23], but this would have made the presentation much heavier.
On the other hand, we never impose Dirichlet boundary conditions at t = T , so there is no need to
do the same for the final point γ(T ) and we can just think that the final penalization ψ includes
the possibility to jump at t = T .

• Topologically, the only effect of extending curves in a constant way to [−1, 0] is that the convergence
in C means convergence for a.e. t ∈ (0, T ] and at t = 0.

• When only continuous curves have finite action (we will see later that we consider two cases: the
jump case where the BV setting is the adapted one, and the kinetic case where curves with finite
action are continuous) it would also be possible to choose C to be the set of continuous curves valued
into Ω, endowed with the uniform convergence instead of the L1 convergence, and many difficulties
would disappear.

For all t ∈ [0, T ], the evaluation map et is defined as follows:

et : C → Ω
γ 7→ γ(t).

Letm0 ∈ P(Ω) be a probability measure over the space Ω. The set Pm0
(C) will be the set of probability

measures Q over the set of curves C such that
´
AdQ < +∞ and such that the push-forward measure

by the evaluation map satisfies e0#Q = m0. We recall that for all t ∈ [0, T ], the push-forward measure
et#Q is characterized by

∀ϕ ∈ Cb(Ω),

ˆ
Ω

ϕ(x)d(et#Q)(x) =

ˆ
C
ϕ(γ(t))dQ(γ),

where Cb(Ω) is the set of continuous and bounded functions on Ω. The measures et#Q are well-defined
whenever

´
AdQ < +∞ since in this case Q is concentrated on left-continuous curves.

Let Q̄ ∈ Pm0(C). Each agent whose starting point is x0 seeks to solve the following optimization
problem:

min
γ∈C

γ(0)=x0

JQ̄(γ) := A(γ) +

ˆ T

0

dI

dm
(et#Q̄)(γ(t))dt+

ˆ T

0

F (t, γ(t), et#Q̄)dt+ ψT (γ(T )). (1.18)

In this section, we make the following hypotheses:

(H1) A : C → R is lower semi-continuous and coercive (its sublevel sets are compact in C), and A(γ) = 0
for any constant curve γ (this simplifying assumption is the reason not to include ψT (γ(T )) in the
action A); the function ψT : Ω→ R is also lower semi-continuous and we suppose ψT ≥ 0;

(H2) I : P(Ω) → [0,+∞] is convex, l.s.c. for the weak convergence, and admits a first variation dI/dm;
we also assume I(m0) < +∞;

(H3) F : [0, T ]× Ω×P(Ω)→ R is continuous with respect to its three variables, and we suppose F ≥ 0;

(H4) the space C is such that if Qn
∗
⇀ Q in Pm0(C) with

´
AdQn ≤ C, then up to a subsequence, we

have et#Qn
∗
⇀
n
et#Q, for a.e t. The notation ∗

⇀ represents the narrow convergence of a sequence
of measures, i.e.

∀ϕ ∈ Cb(C),
ˆ
C
ϕ(γ)dQn(γ) −→

n

ˆ
C
ϕ(γ)dQ(γ).
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Note that the assumption on the coercivity of A could equivalently be replaced with the coercivity of
γ 7→ A(γ) + φ(γ(0)) for a suitable coercive function φ : Ω → R+ (and that ψ could be included in A).
Indeed, due to the fact that we prescribe the initial point in the variational problem of each agent and we
prescribe the initial distribution of the agents, adding a penalization on their initial point has no effect,
and we can use an arbitrary coercive function φ such that

´
φdm0 < +∞. In particular, very often the

action A penalizes the derivative of the curve γ and for compactness we also need to bound the curve
inside a compact domain, which can be obtained enforcing a bound on γ(0).

For the sake of clarity, I recall the definitions of lower semi-continuity and first variation below. Some
examples of standard first variation functions are presented in [San15, Section 7.2].

Definition 1.4.1. Let X be a topological space which verifies the first axiom of countability. A function
f : X → R is lower semi-continuous (l.s.c.) in x0 ∈ X, if f verifies one of these equivalent conditions:

(i) for all t < f(x0), there exists a neighborhood U of x0 such that for all x ∈ U ∩X, t < f(x);

(ii) for all α ∈ R, the set {x ; f(x) ≤ α} is closed;

(iii) f(x0) ≤ lim infx→x0 f(x).

Definition 1.4.2. Let f : P(Ω̄) → [0,+∞] be a functional. Let m ∈ P(Ω̄) be such that for all ε ∈ [0, 1]
and all m̃ ∈ P(Ω̄) ∩ L∞c (Ω̄), f((1− ε)m+ ε m̃) < +∞. If it exists, we call df

dm (m) a first variation of f
such that for every perturbation χ := m̃−m with m̃ ∈ P(Ω̄) ∩ L∞c (Ω̄),

d

dε
f(m+ ε χ)|ε=0 =

ˆ
Ω

df

dm
(m)(x)dχ(x).

We also say that f is a first integral of df
dm (m).

The goal is to find a measure Q̄ ∈ Pm0(C) whose support is included in the set of optimal trajectories
of JQ̄. This is equivalent to satisfying the following inequality:

∀Q ∈ Pm0
(C),

ˆ
C
JQ̄(γ)dQ̄(γ) ≤

ˆ
C
JQ̄(γ)dQ(γ). (1.19)

One can see that (1.19) is the optimality condition of an optimization problem. In particular, if Q̄
minimizes

Q 7→ UQ̄(Q) =

ˆ
C
A(γ)dQ(γ)+

ˆ T

0

ˆ
Ω

I(et#Q)(x)dxdt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̄)dt dQ(γ)+

ˆ
C
ψT (γ(T ))dQ(γ),

then it formally verifies (1.19). A rigorous statement will be proved in Chapter 3, but here it motivates
the study of the problem minQ UQ̄(Q). The goal then becomes to find Q̄ such that Q̄ is a minimizer of
UQ̄.

To find such a measure Q̄, we will define an application H that associates with any Q0 the set of
minimizers of minQ UQ0(Q), and we will prove that it admits a fixed point Q̄ thanks to Kakutani’s fixed
point theorem [Kak41] which is reminded below.

Theorem 1.4.3. (Kakutani’s fixed point theorem) Let X be a nonempty convex and compact set. Let
f : X → P (X) be a multi-valued function, i.e. f(x) is a subset of X, which in this case will be denoted
f : X ⇒ X.

If for all x ∈ X, f(x) is nonempty and convex, and if the graph of f is closed, then f admits a fixed
point, i.e. there exists x̄ ∈ X such that x̄ ∈ f(x̄).

The following Lemma is a useful tool when a sequence (QN )N narrowly converges to Q, and we state
it in its most general form for possible use.

Lemma 1.4.4. Let (C, d) be a metric space and f : C → R a function bounded from below and (QN )N ⊂
P(C) a sequence of probability measures narrowly converging towards Q. Set ldisc(f) := {x ∈ C : ∃xn →
x : lim infn f(xn) < f(x)}, i.e. ldisc(f) is the set of points where f is not l.s.c. Then, if Q(ldisc(f)) = 0,
we have ˆ

C
fdQ ≤ lim inf

N

ˆ
C
fdQN .

Proof. For all k ∈ N, we define fk : C → R such that

∀k ∈ N, fk(x) = min

(
inf
y∈C

f(y) + kd(x, y), k

)
.
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Then, for all k ∈ N, fk is k-Lipschitz and bounded, so
ˆ
C
fkdQN −→

N

ˆ
C
fkdQ.

In particular, using f ≥ fk, we obtain

lim inf
N

ˆ
C
fdQN ≥

ˆ
C
fkdQ.

Moreover, f(x) = supk fk(x) for all x ∈ C \ ldisc(f). Indeed, for a fixed x ∈ C, let k0 ∈ N be such that
f(x) ≤ k0. Then, for all k ≥ k0, we have fk(x) = infy∈C f(y) + kd(x, y). Therefore, for all k ≥ k0, there
exists yk ∈ C such that

fk(x) ≤ f(yk) + k d(x, yk) ≤ fk(x) + 1/k. (1.20)

Dividing Ineq. (1.20) by k > 0, and letting k → +∞, we obtain

lim
k→∞

f(yk)

k
+ d(x, yk) = 0.

Since f is bounded from below, we have limk→∞ d(x, yk) = 0, so

yk −→
k→∞

x.

Then, by taking the lim inf limit in (1.20), we have

lim inf
k→∞

f(yk) + k d(x, yk) ≤ sup
k
fk(x). (1.21)

Next, by definition of fk and using the l.s.c. behavior of f at points in C \ ldisc(f) we obtain

sup
k
fk(x) ≤ f(x) ≤ lim inf

k→∞
f(yk) + k d(x, yk). (1.22)

Ineq (1.21) and (1.22) imply
sup
k
fk(x) ≤ f(x) ≤ sup

k
fk(x),

so f(x) = supk fk(x).
Using the assumption Q(ldisc(f)) = 0, by the monotone convergence theorem we have

ˆ
C
fdQ = lim

k→∞

ˆ
C
fkdQ,

hence the claim.

In order to apply the previous Lemma, we will need A to be bounded from below.

Lemma 1.4.5. If A : C → R is l.s.c. and coercive, then A is bounded from below.

Proof. One could already see it with the existence of a minimizer of a non-empty compact sublevel
set by the lower semi-continuity of A, but here I suggest a proof with the definition (i) of the lower
semi-continuity.

Let α > 0 be such that C := {γ ∈ C; A(γ) ≤ α} is nonempty. Since A is l.s.c., for all γ0 ∈ C, we have
∀t < A(γ0), there exists a neighborhood Uγ0

⊂ C of γ0, such that

∀γ ∈ Uγ0 ∩ C, t < A(γ).

Thus,
⋃
γ0∈C Uγ0

is a subcover of C. By compactness of C, there exists a finite number of neighborhoods
that covers C. Let us denote Ui each neighborhood of a point γi for every i = 1, . . . , n. For each i, we
chose ti such that ti < A(γi) (e.g. ti = A(γi)− 1). The smallest ti0 for some i0 ∈ {1, . . . , n} will verify

∀γ ∈ C, ti0 < A(γ).

A fortiori, for all γ ∈ C, we have ti0 ≤ A(γ). Hence A is bounded from below.

The next Lemma shows that the coercivity of A implies the coercivity of Q 7→
´
A(γ)dQ(γ), so that

we will be able to define compact subsets of P(C).
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Lemma 1.4.6. If A : C → R is coercive, then Q 7→
´
C A(γ)dQ(γ) is coercive.

Proof. We aim to prove that for all α ∈ R, the set Γα = {Q ∈ P(C);
´
C A(γ)dQ(γ) ≤ α} is compact.

If α > 0, then by the Markov inequality, we have for all N ∈ N∗,

∀Q ∈ Γα, Q({γ ∈ C ; A(γ) > N}) ≤
´
C A(γ)dQ(γ)

N
≤ α

N
.

In particular, for all ε > 0, there exists N ∈ N∗ sufficiently large such that

∀Q ∈ Γα, Q({γ ; A(γ) ≤ N}c) ≤ ε.

Since {γ ; A(γ) ≤ N} is a compact set (by the coercivity of A), the family Γα is tight. Consequently, by
Prokhorov’s theorem (see e.g. [Bil99, Chapter 1, Theorems 1.4 and 6.1]), the set Γα is relatively compact.

There remains to show that Γα is closed. Let (Qn)n be a sequence in Γα narrowly converging towards
Q ∈ P(C). Let us show that Q ∈ Γα.

Since A is l.s.c. by Hypothesis (H1) and bounded from below (see Lemma 1.4.5), we have by Lemma
1.4.4 that ˆ

C
A(γ)dQ(γ) ≤ lim inf

n

ˆ
C
A(γ)dQn(γ) ≤ α,

hence Q ∈ Γα.
In conclusion, Γα is relatively compact and closed, so it is compact.
If α ≤ 0, then Γα is a closed subset of Γβ for any β > 0 which is compact, so Γα is compact.

The following Theorem states the existence of an equilibrium measure Q̄, as introduced at the begin-
ning of this section.

Theorem 1.4.7. Let Γ := ΓC = {Q ∈ Pm0
(C) :

´
C A(γ)dQ(γ) ≤ C} with C defined in Remark 1.4.8.

Under the assumptions (H1–4), the multifunction

H : Γ ⇒Γ

Q̃ 7−→ argmin
Q,e0#Q=m0

UQ̃(Q)

= argmin
Q,e0#Q=m0

{ˆ
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ)

}

admits a fixed point.

Remark 1.4.8. The application H is well-defined if we determine a suitable C such that Γ is nonempty
and UQ̃(Q) ⊂ Γ. For example, we take a measure Qstill ∈ Pm0(C) concentrated on constant curves, i.e.
the image of m0 through the map associating with every x ∈ Ω the constant curve equal to x. Then,´
C A(γ)dQstill(γ) = 0 and et#Qstill = m0 for all t. If Q minimizes UQ̄, then

UQ̄(Q) ≤ 0 +

ˆ T

0

I(m0)dt+

ˆ
C

ˆ T

0

F (t, γ(0), et#Q̄)dt dQstill(γ) +

ˆ
C
ψT (γ(0))dQstill(γ)

= TI(m0) +

ˆ
Ω

ˆ T

0

F (t, x, et#Q̄)dt dm0(x) +

ˆ
Ω

ψT dm0

≤ TI(m0) +

ˆ
Ω

ˆ T

0

sup
P(Ω̄)

F (t, x, ·)dt dm0(x) +

ˆ
Ω

ψT dm0 := C.

and in particular we have
´
C A(γ)dQ(γ) ≤ C.

Proof. To prove the theorem, we will apply Kakutani’s fixed point theorem, hence we need to verify the
three following conditions:

(i) For each measure Q̃ ∈ Γ, the set H(Q̃) is convex.

This is a consequence of the fact that the functional which is minimized over Q is convex in Q, and
it is actually the only reason to require the convexity of I.
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Let Q1 and Q2 be in H(Q̃) and λ ∈ [0, 1]. We denote by M the minimum value M := UQ̃(Q1) =
UQ̃(Q2). By the linearity of et and the convexity of I, we have

UQ̃(λQ1 + (1− λ)Q2) =

ˆ
C
A(γ)d(λQ1 + (1− λ)Q2)(γ)

+

ˆ T

0

I(et#(λQ1 + (1− λ)Q2))dt

+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dtd(λQ1 + (1− λ)Q2)(γ)

+

ˆ
C
ψT (γ(T ))d(λQ1 + (1− λ)Q2)(γ)

= λ

ˆ
C
A(γ)dQ1(γ) +

ˆ T

0

I(et#(λQ1 + (1− λ)Q2))dt

+ λ

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ1(γ) + λ

ˆ
C
ψT (γ(T ))dQ1(γ)

+ (1− λ)

ˆ
C
A(γ)dQ2(γ) + (1− λ)

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ2(γ)

+ (1− λ)

ˆ
C
ψT (γ(T ))dQ2(γ)

≤ λ UQ̃(Q1) + (1− λ) UQ̃(Q2) = M,

which proves that λQ1 + (1− λ)Q2 ∈ H(Q̃), and consequently, that H(Q̃) is a convex set.

(ii) For each Q̃ ∈ Γ, the set H(Q̃) is non-empty.

We have to prove the existence of a minimizer in the problem defining H(Q̃). The coercivity of A
implies that the set Γ is compact for the narrow convergence of probability measures on C (see Lemma
1.4.6). Hence, there exists a subsequence (Qnk)k narrowly converging towards Q ∈ Γ. We re-extract a
subsequence in order to apply, later on (H4).

Let us estimate lim infk UQ̃(Qnk) as k →∞.
Since A and ψT are l.s.c. and bounded from below (see Lemma 1.4.5), we have by Lemma 1.4.4,

ˆ
C
A(γ)dQ(γ) ≤ lim inf

k

ˆ
C
A(γ)dQnk(γ) (1.23)

and
ˆ
C
ψT (γ(T ))dQ(γ) ≤ lim inf

k

ˆ
C
ψT (γ(T ))dQnk(γ). (1.24)

Using (H4) and after extracting a subsequence, we have et#Qnk
∗
⇀ et#Q for a.e. t. By the lower

semi-continuity of I and Fatou’s Lemma, we obtain

ˆ T

0

I(et#Q) dt ≤
ˆ T

0

lim inf
k

I(et#Qnk) dt ≤ lim inf
k

ˆ T

0

I(et#Qnk) dt, (1.25)

and since F is continuous in its variables, we have

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQnk(γ) −→
k→∞

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃)dt dQ(γ). (1.26)

Gathering the results (1.23), (1.25), (1.26) and (1.24) gives

UQ̃(Q) ≤ lim inf
k
UQ̃(Qnk) ≤ inf

Q∈Γ
UQ̃(Q),

which proves that Q is a minimizer of UQ̃ and consequently, H(Q̃) is non-empty.

(iii) The graph of H is closed.

Let (Q̃n)n be a sequence narrowly converging towards Q̃∞ and Qn ∈ H(Q̃n) a sequence converging
towards Q∞. We will prove Q∞ ∈ H(Q̃∞).
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Since Qn ∈ H(Q̃n), we have for all Q ∈ Γ,

ˆ
C
A(γ)dQn(γ) +

ˆ T

0

I(et#Qn)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃n)dt dQn(γ) +

ˆ
C
ψT (γ(T ))dQn(γ) (1.27)

≤
ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃n)dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ).

For each term in (1.27), we consider its limit when n→ +∞.
Let us begin with

´
A(γ)dQn(γ) and

´
ψT (γ(T ))dQn(γ). The functions A and ψT are l.s.c. and

bounded from below, so by Lemma 1.4.4, we have
ˆ
C
A(γ)dQ∞(γ) ≤ lim inf

n

ˆ
C
A(γ)dQn(γ)

and
ˆ
C
ψT (γ(T ))dQ∞(γ) ≤ lim inf

n

ˆ
C
ψT (γ(T ))dQn(γ).

For the second term, by Hypothesis (H4) (up to extracting a subsequence), the lower semi-continuity
of I and Fatou’s Lemma, we have the inequality

ˆ T

0

I(et#Q∞)dt ≤
ˆ T

0

lim inf
n

I(et#Qn)dt ≤ lim inf
n

ˆ T

0

I(et#Qn)dt.

When it comes to
´
C
´ T

0
F (t, γ(t), et#Q̃n)dt dQn(γ), the continuity of F gives

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃n)dt dQn(γ) −→
n→+∞

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃∞)dt dQ∞(γ).

In the right-hand side of (1.27), only one term depends on n. The dominated convergence theorem
and Hypothesis (H4) yields up to a subsequence

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃n)dt dQ(γ) −→
n

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃∞)dt dQ(γ).

Finally, passing to the limit lim inf
n

in (1.27) gives

ˆ
C
A(γ)dQ∞(γ) +

ˆ T

0

I(et#Q∞)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃∞)dt dQ∞(γ) +

ˆ
C
ψT (γ(T ))dQ∞(γ)

≤
ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

F (t, γ(t), et#Q̃∞)dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ).

Since this inequality is true for all Q ∈ Γ, Q∞ is a minimizer of UQ̃∞ , namely Q∞ ∈ H(Q̃∞). This
proves that the graph of H is closed.

Since the conditions (i), (ii), (iii) are verified, by Kakutani’s theorem, we can conclude that H admits
a fixed point in Γ.

1.4.1 The jump case
The theorem 1.4.7 can be applied to the case where A = S, where the functional S describes the number of
jumps of a curve γ. As we said at the beginning of the section, we choose C to be the space of measurable
curves (defined on [−1, T ] but constant on [−1, 0]) equipped with the L1-norm and S : C → [0,∞] is
defined via

S(γ) = inf{#{t ; γ̃ is discontinuous in t } ; γ̃ = γ a.e. and γ̃ is piecewise constant}. (1.28)

Of course, S(γ) = +∞ whenever γ does not admit a piecewise constant representative.
We note that we have

TV (γ; [0, T ]) ≤ diam(Ω)S(γ),

where diam(Ω) is the diameter of the compact domain Ω.
The following proposition shows that the function S is lower semi-continuous and coercive:

Proposition 1.4.9. S : C → N ∪ {+∞} is l.s.c. and coercive.
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Proof. We need to prove that for all α ∈ R, the set Eα := {γ ∈ C ; S(γ) ≤ α} is compact. This proves
at the same time lower semi-continuity (for which the closedness of Eα would have been enough) and
coercivity.

We assume α ≥ 0 since otherwise Eα = ∅. Let (γn)n be a sequence in Eα. Take γ̃n a representative
of γn which realizes exactly S(γn) jumps. Up to extracting a subsequence there exists a number N
such that N − 1 ≤ α and each γ̃n is of the form γ̃n =

∑N−1
i=0 zni 1[ani ,a

n
i+1). It is then possible to extract

converging subsequences from (zni )n and (ani )n and prove that γ̃n converges to a curve γ of the form
γ =

∑N−1
i=0 zi1[ai,ai+1). This convergence will be very strong: from the convergence of the values zni taken

by the curves and of the intervals on which these values are taken we can deduce that we have a.e. and L1

convergence (but not uniform convergence). Since γ is piecewise constant and defined using N intervals
we have S(γ) ≤ N −1 ≤ α (the inequality in S(γ) ≤ N could be strict, since we do not know whether the
points zi are distinct). This proves the compactness of Eα since we extracted a converging subsequence,
and the limit still belongs to the same set.

There remains to verify that Assumption (H4) holds true:

Proposition 1.4.10. Let (Qn)n be a sequence narrowly converging towards Q in P(C) with´
C S(γ)dQn(γ) ≤ C < +∞. Then there exists a subsequence Qnk such that

et#Qnk
∗
⇀
k
et#Q, a.e. t.

Proof. For each n, let us define a measure µn on [0, T ] via

µn(I) :=

ˆ
C
TV (γ; I)dQn(γ)

for every open interval I. The total mass of µn is equal to
ˆ
C
TV (γ; [0, T ])dQn(γ) ≤ diam(Ω)

ˆ
C
S(γ)dQn(γ) ≤ C.

Since the distribution function defined by Fµn(t) = infs≥t µn(] − 1, s[) is nondecreasing, bounded and
right-continuous, µn is well-defined as a positive measure on [0, T ]. The sequence µn is then bounded in
the space of positive measures on [0, T ] and we can extract a converging subsequence µnk

∗
⇀
k
µ. We will

then choose the corresponding subsequence Qnk .
We now claim that the convergence et#Qnk

∗
⇀
k
et#Q occurs for each t which is not an atom of µ, i.e.

for all but a countable quantity of t.
We fix a test function φ ∈ Lip(Ω) and we need to consider

´
C φ(γ(t))dQn(γ). The function C 3 γ 7→

Φ(γ) := φ(γ(t)) is not continuous, so this term does not pass easily to the limit. For this reason we fix
ε > 0 and consider instead the function C 3 γ 7→ Φε(γ) :=

ffl t+ε
t−ε φ(γ(s))ds, which is continuous for the L1

convergence of γ. In particular, we have limn

´
C Φε(γ)dQn(γ) =

´
C Φε(γ)dQ(γ).

Our goal is to prove limk

´
C Φ(γ)dQnk(γ) =

´
C Φ(γ)dQ(γ). By the lower semi-continuity of γ 7→

TV (γ, I) on each open interval I with the topology induced by the L1-norm, we have
ˆ
C
TV (γ, ]t− ε, t+ ε[)dQ(γ) ≤ lim inf

n
TV (γ, ]t− ε, t+ ε[)dQn(γ)

and by the Portmanteau Lemma we have

lim sup
n

µn([t− ε, t+ ε]) ≤ µ([t− ε, t+ ε]).

Both of these inequalities and the definition of µn imply
ˆ
C
TV (γ, ]t− ε, t+ ε[)dQ(γ) ≤ µ([t− ε, t+ ε]). (1.29)

We use |Φ(γ)− Φε(γ)| ≤ Lip(φ)TV (γ; ]t− ε, t+ ε[) and the inequality (1.29) which allows to obtain∣∣∣∣ˆ
C

ΦdQnk −
ˆ
C

ΦεdQnk

∣∣∣∣ ≤ Lipφµnk([t− ε, t+ ε]),

∣∣∣∣ˆ
C

ΦdQ−
ˆ
C

ΦεdQ

∣∣∣∣ ≤ Lipφµ([t− ε, t+ ε]).

This implies∣∣∣∣ˆ
C

ΦdQnk −
ˆ
C

ΦdQ

∣∣∣∣ ≤ Lipφ (µ([t− ε, t+ ε]) + µnk([t− ε, t+ ε])) +

∣∣∣∣ˆ
C

ΦεdQnk −
ˆ
C

ΦεdQ

∣∣∣∣ .



1.4. MIXED MEAN FIELD GAMES 35

Using lim supk µnk(E) ≤ µ(E), which holds for every closed set E, we obtain

lim sup
k

∣∣∣∣ˆ
C

ΦdQnk −
ˆ
C

ΦdQ

∣∣∣∣ ≤ 2Lipφµ([t− ε, t+ ε]).

The arbitrariness of ε shows the desired limit as soon as µ({t}) = 0.

All the assumptions for Theorem 1.4.7 are verified, so we can deduce that there exists a measure
Q̄ ∈ Γ which is a fixed point, i.e. it minimizes UQ̄ in the case A = S.

1.4.2 The kinetic case
Another application of Theorem 1.4.7 can be obtained by using A = K with the function K defined as
follows

K(γ) =

{´ T
0
|γ̇(t)|p
p dt if γ ∈W 1,p([0, T ]),

+∞ if not,
(1.30)

for a given exponent p with 1 < p <∞. In this case we can either choose C to be again the same space
as in the jump case, or even choose C = C0([0, T ]; Ω), the set of continuous curves endowed with the sup
distance, i.e. with the topology of uniform convergence. This second choice simplifies some arguments
and make this section independent of the previous one.

Proposition 1.4.11. The application K : C → R is l.s.c. and coercive.

Proof. It suffices to show that for all α ∈ R, the lower level-sets Eα = {γ ∈W 1,p([0, T ]);
´ T

0
|γ̇(t)|p
p dt ≤ α}

are compact for the uniform convergence (which also implies compactness for the L1 convergence, in case
the reader prefers to use C as in the previous section on the jump case).

If α < 0, then Eα = ∅.
Now suppose α ≥ 0. Let (γn)n ⊂ Eα be a sequence. The sequence (γn)n is bounded in W 1,p([0, T ])

(we also use the compactness of Ω to bound the Lp norm of γn and not only of its derivative). By the
Sobolev inequality we obtain for all n ∈ N,

[γn]
C

0,1− 1
p ([0,T ])

= sup
s 6=t

|γn(t)− γn(s)|
|t− s|1−1/p

≤ ‖γ̇n‖Lp([0,T ]).

Hence, the sequence (γn)n is equicontinuous and we can apply Arzelà-Ascoli’s theorem. Thus, there exists
a subsequence (γnk)k that converges uniformly towards a limit curve γ. It is also possible to extract a
further subsequence so that γ̇nk weakly-* converges in Lp to a function, which can only be (identifying
the limit with the distributional limit) γ̇. The lower semi-continuity of the Lp-norm shows that we have

ˆ T

0

|γ̇(t)|p

p
dt ≤ lim inf

n

ˆ T

0

|γ̇n(t)|p

p
dt ≤ α,

which proves that the limit γ belongs to Eα and hence the compactness of Eα.

The last point to check is if assumption (H4) is verified.

Proposition 1.4.12. Let (Qn)n be a sequence narrowly converging towards Q in Pm0
(C). Then

et#Qn
∗
⇀
n
et#Q,∀t.

Proof. We remind that in this case the space C has been endowed with the topology of uniform con-
vergence. Hence, for each t, differently from what we faced in the proof of Proposition 1.4.10, the map
et : C → Ω is continuous. Continuous maps transform narrowly converging sequences on C into narrowly
converging sequences on Ω, hence the result is straightforward.

Since all the hypotheses for Theorem 1.4.7 are verified, we can conclude also in this case the existence
of a fixed point Q̄ ∈ Γ that minimizes UQ̄.
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Chapter 2

Equivalence between Eulerian and
Lagrangian point of views and Eulerian
fixed point

In this chapter, in particular in Section 2.1, we prove that the following problem formulated in a La-
grangian way, where the minimum is taken on the probability measures over the curves Q ∈ P(C),

min
Q

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C
ψ(γ(T ))dQ(γ)

}

is equivalent to the following Eulerian problem

min
ρ

A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, ·)dρ(t)dt+

ˆ
Ω

ψdρ(T ),

where the minimum is on the curves of measures, i.e. ρ : [0, T ]→ L2(Ω) such that et#Q = ρt. The result
is true in the following cases:

• A(ρ) = 1
2

´ T
0

´
Ω
|ρ̇|dxdt when A describes the number of jumps S.

• A(ρ) =
´ T

0
1
p |ρ
′|Wp

(t)pdt when A is the kinetic energy K where |ρ′|Wp
is the metric derivative

defined in (1.7).

This equivalence is already known in the kinetic case, so most of the proof will be performed in the
jump case where we use an important property from optimal transport.

Here
˜
|ρ̇| is an informal notation which stands for the time derivative of ρ. More, precisely, we

should use the length of the curve ρ in the space of measures endowed with the total variation norm.
This identification (which is rigorous for smooth curves) comes from the fact that the total variation
norm coincides with the L1-norm for absolutely continuous measures (and the term

´ T
0
I(ρ(t))dt forces

ρ(t) to be absolutely continuous for a.e. t) and that the length of a curve valued into a normed vector
space is the integral of the norm of its velocity.

In the Mixed Mean Field Game problem presented in Section 1.4, we showed the existence of a fixed
point Q̄ which minimizes

min
Q

{ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t), et#Q̄)dt dQ(γ) +

ˆ
C
ψ(γ(T ))dQ(γ)

}

and which by Chapter 3 is in fact a Nash equilibrium.
By the equivalence result from Theorem 2.1.7, ρ̄(t) = et#Q̄ minimizes

min
ρ

A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, ·, ρ̄(t))dρ(t)dt+

ˆ
Ω

ψdρ(T ).

In Section 2.2, we show that, conversely, such a fixed point ρ̄ exists by the Banach fixed point theorem.

37



38 CHAPTER 2. EQUIVALENCE BETWEEN EULERIAN AND LAGRANGIAN

2.1 Equivalence between Eulerian and Lagrangian problems
The goal of this section is to prove that, instead of considering a minimization problem among measures
on curves (the Lagrangian viewpoint), it is possible to consider a minimization problem among curves
of measures (the Eulerian viewpoint). In the kinetic case this is well-known and stems out of Theorem
1.2.3.

One can informally understand why the Eulerian equivalent of
´
KdQ involves the power p of the

metric derivative inWp. Indeed, we can see K(γ) as a limit (or a sup) of 1
p

∑
k(tk+1− tk)

∣∣∣ |γ(tk+1)−γ(tk)|
tk+1−tk

∣∣∣p
when the partitions (tk)k become finer and finer. The minimal value of optimal transport problems with
cost (x, y) 7→ |x − y|p is the power p of the Wasserstein distance Wp. Hence, we obtain as an Eulerian

equivalent of
´
KdQ a sum of the form 1

p

∑
k(tk+1 − tk)

Wp
p (ρtk+1

,ρtk )

|tk+1−tk|p , which is itself a discretization of
1
p

´ T
0
|ρ′|Wp

(t)pdt.
If we want to do a similar procedure for the jump case, i.e. with S instead of K, we first note that

S(γ) can be discretized as follows

S(γ) = sup
t0<t1<···<tN⊂[0,T ]

∑
k

1γ(tk+1)6=γ(tk), (2.1)

where, of course, one has to choose the left-continuous representative of γ (otherwise we need to take
an infimum among representatives). Then, we notice two points. The first point is the absence of the
dependence in (tk+1 − tk), corresponding to the case p = 1: as a consequence, we will not have a kinetic
energy but a length, for a certain distance. The other is the fact that (x, y) 7→ 1x 6=y is a distance (the
so-called discrete distance) and that the associated Wasserstein distance is the total variation distance
between measures, as explained in the following Lemma, whose proof can be found, for instance, in
[Vil03].

Lemma 2.1.1. For all µ and ν in P(Ω),

inf
π∈Π(µ,ν)

ˆ
Ω×Ω

1x6=ydπ(x, y) = sup
f : sup f−inf f≤1

ˆ
Ω

fd(µ− ν) = sup
f : |f |≤1/2

ˆ
Ω

fd(µ− ν) =
1

2
‖µ− ν‖M

where Π(µ, ν) is the set of probability measures over Ω×Ω whose marginals are µ et ν and || · ||M is the
norm on the space of measures, i.e. the total variation of (signed) measures.

For these reasons, we will consider the length of a curve ρ in the space P(Ω) computed according to
the distance || · ||M. We will denote it by L.

L(ρ) := sup
0=t0<···<ti<···<tN=T

N−1∑
i=0

‖ρ(ti+1)− ρ(ti)‖M.

Very informally we can write

L(ρ) =

ˆ T

0

ˆ
Ω

|ρ̇(t, x)|dxdt

since, when all the measures ρt are absolutely continuous, the total variation distance coincides with the
L1 distance, and computing a length corresponds to computing the integral of the norm of the derivative.

The next proposition gives one inequality which is of interest for the equivalence of a Lagrangian and
an Eulerian problem.

Proposition 2.1.2. For all measure Q ∈ P(C), setting for all t ∈ [0, T ], et#Q = ρt, we have

L(ρ) ≤ 2

ˆ
C
S(γ)dQ(γ).

Proof. Let t0 < · · · < ti < · · · < tN be a subdivision of [0, T ]. For all i ∈ {0, · · · , N − 1}, if ϕi is a
function such that ‖ϕi‖∞ ≤ 1, we have

N−1∑
i=0

ˆ
Ω

ϕid(ρ(ti+1)− ρ(ti)) =

N−1∑
i=0

ˆ
C
ϕi(γ(ti+1))− ϕi(γ(ti))dQ(γ)

≤ 2

ˆ
C

N−1∑
i=0

1γ(ti)6=γ(ti+1)dQ(γ) ≤ 2

ˆ
C
S(γ)dQ(γ).
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The term in the right-hand side of the inequality is independent of ϕi, so we can take the supremum
over the functions bounded by 1. We obtain

N−1∑
i=0

‖ρ(ti+1)− ρ(ti)‖M ≤ 2

ˆ
C
S(γ)dQ(γ).

Next, by taking the supremum over the set of subdivisions of [0, T ], we obtain the desired result, by
definition of length.

In the following proposition, we construct a sequence of measures (QN )N which are transport plans
for the optimal transport problem with c(x, y) = 1x 6=y:

Lemma 2.1.3. Given N + 1 measures ρ0, . . . , ρN ∈ P(Ω) there exists a measure πN ∈ P(ΩN+1) which
has marginals ρ0, . . . , ρN ∈ P(Ω) and such that

ˆ
ΩN+1

N−1∑
k=0

1xk 6=xk+1
dπN (x0, . . . , xN ) =

1

2

N−1∑
k=0

‖ρk − ρk+1‖M . (2.2)

Proof. By Lemma 2.1.1, we know that for each k we have

inf
π∈Π(ρk,ρk+1)

ˆ
Ω×Ω

1x 6=ydπ(x, y) =
1

2
‖ρk − ρk+1‖M .

Since the cost (x, y) 7→ 1x 6=y is lower semi-continuous, we can choose for each k a measure πk ∈ P(Ω×Ω)
attaining such an infimum. The second marginal of πk equals the first marginal of πk+1. Hence it is
possible, applying several times the well-known gluing lemma about the composition of transport plans
(see [San15, Lemma 5.5]), to build a measure πN ∈ P(ΩN+1) such that, for each k ≤ N − 1, the
projection of this measure onto the k-th and (k + 1)-th coordinate (i.e. its image through the map
(x0, . . . , xN ) 7→ (xk, xk+1)) equals πk. Such a measure satisfies

ˆ
ΩN+1

1xk 6=xk+1
dπN (x0, . . . , xN ) =

1

2
‖ρk − ρk+1‖M

and, summing over k, we obtain the claim.

Lemma 2.1.4. Let [−1, T ] 3 t 7→ ρ(t) be a left-continuous curve valued into P(Ω), constant on [−1, 0],
and such that ρ(0) = m0. Let E be a finite subset of (−1, T ) \ {0}. Then, there exists a measure
Q ∈ Pm0

(C) such that ˆ
C
SdQ ≤ 1

2
L(ρ) and et#Q = ρt for all t ∈ E.

Proof. We order the points in E and call them t1, t2, . . . , tN−1. We add, if needed, t0 = −1 and tN = T .
There is an index j such that tj ≤ 0 and tj+1 > 0. We take ρi = ρ(ti) and apply the previous Lemma.
Then, we consider a map Z : ΩN+1 → C where the points of ΩN+1 are denoted (x0, x1, . . . , xN ). We define
Z in this way: Z(x)(t) = xi for every t ∈ (ti−1, ti]∩(0, T ] (which requires i ≥ j+1); Z(x)(t) = xj for every
t ∈ (tj , 0]; Z(x)(t) = xi for every t ∈ (ti−1, ti] for i ≤ j and Z(x)(−1) = x0. Then, we take Q = Z#π and
we see that it satisfies the condition of the claim, since Z(x)(ti) = xi and S(Z(x)) =

∑N−1
k=0 1xk 6=xk+1

.

Proposition 2.1.5. Let [−1, T ] 3 t 7→ ρ(t) be a left-continuous curve valued into P(Ω) with ρ(0) = m0

and constant on [−1, 0], with ρ(0) = m0. Then there exists a measure Q ∈ Pm0
(C) such that

ˆ
C
SdQ ≤ 1

2
L(ρ) and et#Q = ρt for all t.

Proof. First, note that there is nothing to prove if L(ρ) = +∞. We then assume L(ρ) < +∞ and
consider the measure µ̄ on [−1, T ] defined via µ̄(I) = TV (ρ; I) for every open interval I, where the total
variation is to be intended when endowing P(Ω) with the distance induced by the || · ||M norm. We
have µ̄([−1, T ]) = L(ρ) < +∞. Let us consider a dense countable set E∞ = {tk, k ∈ N} of points in
(−1, T ) \ {0} which are not atoms of µ̄. For every N , we take t1, t2, . . . , tN and we reorder them, calling
tNk the ordered sequence that we obtain, characterized by tNi < tNi+1 and {tNi }i=1,...,N = {ti}i=1,...,N . We
then apply Lemma 2.1.4 to E = EN = {tNi }i=1,...,N and we obtain the existence of a curve QN ∈ Pm0

(C)
such that ˆ

C
SdQ ≤ 1

2
L(ρ) and et#Q = ρt for all t = 0, tN1 , . . . , t

N
N , T.
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We can say that QN ∈ ΓC = {Q ∈ Pm0(C) :
´
C SdQ ≤ C} and such a set is compact for the narrow

convergence, so that we can extract a narrowly converging subsequence QNk
∗
⇀ Q. By construction,

for each t ∈ E and each N large enough (depending on t) we have et#QN = ρ(t). We want now to
apply Lemma 1.4.10 in order to obtain et#QN

∗
⇀ et#Q, which would imply et#Q = ρ(t). This is not

straightforward since Lemma 1.4.10 only guarantees this convergence up to subsequences (but this is not
a problem, we could extract once more) and for a.e. t and we do not know if these t are concerned. Here
comes the assumption µ̄({t}) = 0. Recall the measures µN defined in the proof of Lemma 1.4.10: they
were defined via µN (I) =

´
TV (γ; I)dQN (γ) but we can say

µN (I) =
∑

k : tNk ,t
N
k+1∈I

ˆ
1γ(tNk )6=γ(tNk+1)dQN (γ) =

∑
k : tNk ,t

N
k+1∈I

||ρ(tNk )− ρ(tNk+1)||M ≤ µ̄(I).

This implies that any narrow limit µ of a subsequence of the µN should satisfy µ ≤ µ̄. In particular, any
t which is not an atom for µ̄ is not an atom for µ neither, and the convergence et#QN

∗
⇀ et#Q holds

along such a subsequence.
We then obtained the existence of a measure Q which, by semi-continuity of S, satisfies

ˆ
C
S(γ) ≤ 1

2
L(ρ) and et#Q = ρt for all t ∈ E,

where E is a dense set. We now want to extend this to any t ∈ (−1, T ] using left-continuity. We remind
that we made the choice to use left-continuous curves and that we compute the evaluations et using such
representatives. In particular, we have, when s→ t−, the narrow convergence es#Q

∗
⇀ et#Q. This can

be seen by testing against a test function φ ∈ Cb(Ω):
ˆ
C
φ(γ(s))dQ(γ) −→

s→t−

ˆ
C
φ(γ(t))dQ(γ),

this convergence being justified by the dominated convergence φ(γ(s))→ φ(γ(t)), which itself comes from
the left-continuity of γ. We also have, again for s→ t−, the convergence ρ(s)

∗
⇀ ρ(t), which is due to the

assumption that ρ is left-continuous.
As a consequence, approximating an arbitrary t ∈ (−1, T ] with s < t, s ∈ E, we obtain et#Q = ρ(t)

and this concludes the proof.

We then obtain the following equality.

Corollary 2.1.6. For every curve t 7→ ρ(t) valued in P(Ω) and left-continuous we have

1

2
L(ρ) = inf

{ˆ
C
S(γ)dQ(γ) : Q ∈ P(C), et#Q = ρ(t) for all t

}
.

Proof. The left-hand side is bounded by the right-hand side using Proposition 2.1.2 and the converse
inequality is deduced from Proposition 2.1.5.

This allows to state the equivalence, both in the jump case and in the kinetic case, of a Lagrangian
and an Eulerian problem.

Theorem 2.1.7. Given V : [0, T ] × Ω → R, an action A equal either to S or to K, and a function
I : P(Ω)→ [0 +∞], the Lagrangian problem

min
Q

{
U(Q) :=

ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C
ψ(γ(T ))dQ(γ)

}

is equivalent to the following Eulerian problem

min
ρ

{
U(ρ) := A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, x)dρ(t)dt+

ˆ
Ω

ψdρ(T )

}
,

where the minimization is performed among left-continuous curves t 7→ ρ(t) with ρ(0) = m0, and the
action functional A is given by A = 1

2L if A = S or A(ρ) =
´ T

0
1
p |ρ
′|Wp(t)pdt if A = K.

The equivalence means that the minimal values are the same and that from an optimal Q we can find
an optimal ρ by taking ρ(t) = et#Q and from an optimal ρ we can find an optimal Q by taking the one
provided by Proposition 2.1.5.
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Proof. Take an optimal Q̄ and construct ρ̄ as described in the statement. Since all terms but the first
one in the functional only depend on the measures et#Q, then clearly we have, using Proposition 2.1.2,

minU ≤ U(ρ̄) ≤ U(Q̄) = minU . (2.3)

Then, take an optimal ρ̄ and construct Q̄ via Proposition 2.1.5. The same proposition also shows the
inequality needed to obtain

minU ≤ U(Q̄) ≤ U(ρ̄) = minU. (2.4)

Putting together (2.3) and (2.4), we obtain at the same time the equality of the minimal values and the
optimality of ρ̄ in (2.3) and Q̄ in (2.4).

2.2 Banach fixed point
In Section 1.4 we presented the fixed point problem where we look for a measure Q̄ which minimizes the
functional UQ̄ and in Chapter 3 we will explain how to prove that such a minimizer is indeed concentrated
on curves optimizing JQ̄, i.e. it is a Nash equilibrium. In Section 2.1 we explained how to translate the
optimization problem from the Lagrangian language to the Eulerian one.

We want now to consider the fixed-point problem in Eulerian language. First, we define an operator
F on the set of curves valued into P(Ω) via

F(ρ̄) := argminρ A(ρ) +

ˆ T

0

I(ρ(t))dt+

ˆ T

0

ˆ
Ω

V (t, ρ̄(t), ·)dρ(t)dt+

ˆ
Ω

ψdρ(T ),

where the minimization is performed among left-continuous curves t 7→ ρ(t) with ρ(0) = m0. Note that,
the minimizer is unique as soon as I is strictly convex. Then, thanks to the results of the previous section,
we look for a curve ρ̄ such that ρ̄ = F(ρ̄).

We will consider the case where I is given by

I(ρ) =

{´
Ω
f(ρ(x))dx if ρ� Ld,

+∞ if not,

which is lower semi-continuous for the weak-* convergence whenever f is convex and superlinear. In this
case, the function dI/dm equals f ′(ρ) and is thus a priori only defined a.e.

More generally, we study the dependence of the optimizer in terms of the potential appearing in
the linear part of the minimization problem. Let us define a map O associating with every potential
V : [0, T ]× Ω→ R the solution ρ of

min
ρ

A(ρ) +

ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt+

ˆ T

0

ˆ
Ω

V (t, x)ρ(t, x)dxdt+

ˆ
Ω

ψdρ(T ).

We will prove that this map is Lipschitz continuous for the L2 norm in time-space and, for this, we
first need to recall the notion of proximal operator.

Definition 2.2.1. Given a Hilbert space H and a function h : H → (−∞,∞], the proximal operator of
h is defined by

proxh(v) = argminu∈H

{
h(u) +

1

2
‖u− v‖2

}
.

The prox operator has the property to be 1−Lipschitz continuous.

Proposition 2.2.2 (nonexpansivity property). Let h be a proper closed and convex function. Then for
any v1, v2 ∈ H we have

‖ proxh(v1)− proxh(v2)‖ ≤ ‖v1 − v2‖.

Proof. See for example [Bec17, Theorem 6.42] or the seminal paper [Mor65].

We will prove that the operator O defined by

O(V ) := argminρA(ρ) +

ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt+

ˆ T

0

ˆ
Ω

V (t, x)ρ(t, x)dxdt+

ˆ
Ω

ψdρ(T )

is Lipschitz continuous for the L2 norm by showing that it can be seen as a proximal operator of a convex
function. First, we analyze the convexity of A. We recall the definition of A in the two cases

(jump case) A(ρ) = L(ρ) (length for theM norm);

(kinetic case) A(ρ) =

ˆ T

0

1

p
|ρ′|Wp

(t)pdt = inf
v : ∂tρ+∇·(ρv)=0

ˆ T

0

ˆ
Ω

1

p
|v|pdρ(t)dt (action in the Wp space).
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Lemma 2.2.3. Given ρ0, ρ1 : [0, T ]→ P(Ω) two curves of measures, we have

A(ρλ) ≤ (1− λ)A(ρ0) + λA(ρ1),

where ρλ(t) := (1− λ)ρ0(t) + λρ1(t).

Proof. We have in both the jump and the kinetic case A(ρ) = min{
´
C A(γ)dQ(γ) : et#Q = ρ(t)}. Take

Q0, Q1 optimal in this definition for ρ0, ρ1, respectively. Define Qλ := (1 − λ)Q0 + λQ1. We have then
et#Qλ = ρλ(t) and hence

A(ρλ) ≤
ˆ
C
A(γ)dQλ(γ) = (1− λ)A(ρ0) + λA(ρ1).

We can now use these notions to establish the Lipschitz dependence of the optimal ρ in terms of the
data V . Before stating the main estimates, we need to be clear about what is meant by Lipschitz constant.
In the following, we will use maps defined on a subset of L2([0, T ]×Ω) and valued into L2([0, T ]×Ω), and
denote by LipL2([0,T ]×Ω) its Lipschitz constant w.r.t. to the L2 norm in space-time; we will also later use
maps defined on a subset of L2(Ω) and valued into L2(Ω), and denote by LipL2(Ω) its Lipschitz constant
w.r.t. to the L2 norm in space only. It will also happen later that we consider curves t 7→ ρ(t) and we
will consider their Lipschitz constant as a map from time to L2(Ω), which will be denoted by Lipt.

Proposition 2.2.4. Suppose that Ψ0 : L1(Ω) → R and ΨT : L1(Ω) → R are convex and lower semi-
continuous on L1(Ω). Suppose that f : R → R is c0-convex, i.e suppose that s 7→ f(s) − c0

2 s
2 is convex.

Then, the map O : L2([0, T ]× Ω)→ L2([0, T ]× Ω) defined via

O(V ) := argminρA(ρ) +

ˆ T

0

ˆ
Ω

(V ρ+ f(ρ))dxdt+ Ψ0(ρ(0)) + ΨT (ρ(T ))

satisfies

LipL2([0,T ]×Ω)(O) ≤ 1

c0
.

Note that the functional Ψ0 can encode the constraint ρ(0) = m0.

Proof. Let us rewrite the functional F as a proximal operator. Since f is c0-convex, we note by g the
funtion such that f(s) = g(s) + c0

2 s
2. We then denote by G the function defined via

G(ρ) := A(ρ) +

ˆ T

0

ˆ
Ω

g(ρ)dxdt+ Ψ0(ρ(0)) + ΨT (ρ(T ))

and we note that G is convex. We have the following equalities:

O(V ) = argminρG(ρ) +

ˆ T

0

ˆ
Ω

(V ρ+
c0
2
ρ2)dxdt

= argminρG(ρ) +

ˆ T

0

ˆ
Ω

c0
2

∣∣∣∣ρ+
V

c0

∣∣∣∣2 dxdt
= argminρG(ρ) +

c0
2

∥∥∥∥ρ+
V

c0

∥∥∥∥2

L2([0,T ]×Ω)

= proxG/c0

(
−V
c0

)
.

Thus, by the 1-Lipschitz property of the proximal operator displayed in Proposition 2.2.2 we obtained
the desired estimate.

Thanks to these results, we can bound the Lipschitz constant of F .

Proposition 2.2.5. Suppose that for each t ∈ [0, T ] the map ρ 7→ F (t, ρ, ·) is L-Lipschitz continuous on
L2(Ω). Then we have

LipL2([0,T ]×Ω)(F) ≤ L

c0
.
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Proof. Let us take ρ0, ρ1 and define, for i = 0, 1, the functions Vi(t, x) := F (t, ρi(t), x). We have F(ρi) =
O(Vi), hence

‖F(ρ0)−F(ρ1)‖L2([0,T ]×Ω) = ‖O(V0)−O(V1)‖L2([0,T ]×Ω) ≤
1

c0
‖V0 − V1‖L2([0,T ]×Ω) .

We then compute

‖V0 − V1‖2L2([0,T ]×Ω) =

ˆ T

0

‖V0(t, ·)− V1(t, ·)‖2L2(Ω) dt

≤
ˆ T

0

L2 ‖ρ0(t, ·)− ρ1(t, ·)‖2L2(Ω) dt = L2 ‖ρ0 − ρ1‖2L2([0,T ]×Ω)

which allows to conclude.

As a consequence, we obtain the following

Theorem 2.2.6. If the assumptions of Proposition 2.2.4 hold and if L < c0, then F admits a unique
fixed point which is the limit of any sequence (Fn(ρ0))n with ρ0 ∈ L2([0, T ]× Ω).

Proof. By Proposition 2.2.5 and L
c0
< 1, F is a contraction. By Banach’s fixed point theorem, there exists

a unique ρ̄ such that F(ρ̄) = ρ̄ and such a fixed point is the limit of the sequence (Fn(ρ0))n whatever is
ρ0.

Some examples fit into the framework of the above theorem.

• If F (t, ρ, x) = V0(t, x) + g(η ∗ ρ(x)) then we can use L = Lip(g)||η||L1 ;

• If F (t, ρ, x) = V0(t, x) + uρ, where uρ is the viscosity solution of |∇u| = g(η ∗ ρ) with u = 0 on ∂Ω
(for a given non-decreasing function g) then we can use L = Lip(log g)||η||L2g(||η||L∞);

• the last example can be made more explicit when Ω = [a, b] in 1D, and we can take F (t, ρ, x) =

V0(t, x)+uρ, where uρ is given by uρ(x) = min{
´ x
a
g(ρ(y))dy;

´ b
x
g(ρ(y))dy} or we can replace, in the

integrals, ρ with η∗ρ (this is not strictly necessary since in dimension one ρ ∈ L2 already guarantees
uρ ∈ C0, but without the convolution this example does not fit the assumptions of Section 1.4).
Then we can use L = Lip(g) (b−a)

π , where the constant π comes from the sharp Poincaré constant
on [a, b]. This example will be treated in Section 5.3.

Many other examples can be cooked up with convolutions or similar tools. We also want to underline
an example which actually does not fit our general framework but could be treated similarly. Indeed, it
is possible to also consider the case where V (t, x) actually depends on the whole history (ρ(t))t and not
only on ρ(t). An interesting example is the following one:

F[ρ](t, x) =
1

t

ˆ t

0

ρ(s, x)ds.

In this example, the running cost paid by an agent at time t depends on the average of the density she
saw at the same point in the past. Of course it is also possible to add an exogenous cost V0 thus getting

F[ρ](t, x) = V0(t, x) +
1

t

ˆ t

0

ρ(s, x)ds

and making the problem non-autonomous. It is not possible to treat this MFG using Proposition 2.2.5 but
one can directly look at the Lipschitz dependence of F in terms of ρ in the time-space norm L2([0, T ]×Ω).
Thanks to the Hardy inequality (see [Har20; HLP88]) we have

||F0 − F1||L2([0,T ]×Ω) ≤ 2||ρ0 − ρ1||L2([0,T ]×Ω),

so that the map F is a contraction as soon as c0 > 2.
We finish this section with an observation which is specific to the jump case A = S. Indeed, in this

setting we know from [DS23] (or Chapter 4) that the solution to any variational problem of the form

min
ρ

A(ρ) +

ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt+

ˆ T

0

ˆ
Ω

V (t, x)ρ(t, x)dxdt+

ˆ
Ω

ψdρ(T )
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is Lipschitz in time valued in L2(Ω) whenever t 7→ V (t, ·) is Lipschitz in time valued in the same space
and f is uniformly convex. More precisely we have

Lipt(ρ) = sup
t∈[0,T ]

‖ρ̇(t, ·)‖L2(Ω) ≤
Lipt(V )

c0
. (2.5)

We then obtain the following result

Proposition 2.2.7. Suppose F (t, ρ, x) = V0(t, x) + F1(ρ, x) and suppose that the map ρ 7→ F1(ρ, ·) is
L-Lipschitz continuous on L2(Ω) and that V0 is Lipschitz continuous valued into L2(Ω). Suppose that f
is c0−convex and L < c0. Then the unique fixed point satisfies

Lipt(ρ̄) ≤ LiptV0

c0 − L
.

In particular, if F does not depend explicitly on time (i.e. V0 = 0), then ρ̄ is constant in time.

Proof. Using (2.5) we obtain

Lipt(ρ̄) ≤ 1

c0
Lipt(V ), where V (t, x) = V0(t, x) + F1(ρ̄(t), x).

We then have
LiptV ≤ LiptV0 + Lipt

(
t 7→ F1(ρ̄(t), ·)

)
≤ LiptV0 + L · Lipt(ρ̄).

Using L < c0 allows to obtain the claim.



Chapter 3

Equivalence between optimizers and
Nash equilibria

In Section 1.4, we showed that there exists a fixed point, i.e. a measure Q̄ ∈ Γ := {Q ∈ Pm0
(C) :´

C A(γ)dQ(γ) ≤ C} which minimizes UQ̄. However, this does not prove yet that Q̄ is a Nash equilibrium
in the sense that it is supported on the set of optimal trajectories for the individual cost JQ̄. The
difficulty in proving this fact comes from the variational part dI/dm. What we need to prove is that, for
a fixed function V : [0, T ] × Ω → R, whenever V is exogenous or depends on a fixed measure Q̄ such as
(t, x) 7→ F (t, x, et#Q̄), the measure Q which minimizes

U(Q) =

ˆ
C
A(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C
ψT (γ(T ))dQ(γ) (3.1)

is concentrated on curves which minimize

JW (γ) := A(γ) +

ˆ T

0

W (t, γ(t))dt+ ψT (γ(T )) for W (t, x) =
dI

dm
[et#Q](x) + V (t, x).

The result will be proven in the case where we take

I(ρ) =

{´
Ω
f(ρ(x))dx if ρ� Ld,

+∞ if not.
(3.2)

This functional is lower semi-continuous for the weak-* convergence whenever f is convex and super-
linear.

In this case, the function dI/dm equals f ′(ρ) and is thus a priori only defined a.e. In general, this
requires to choose a precise representative of it, but a first result that we will show will concern the case
where by chance f ′(ρ) is a continuous function.

The regularity of the density ρ can be studied as an independent question and is better analyzed if
the variational problem solved by Q is re-written as a problem involving ρ, hence in Eulerian terms. The
equivalence between these two approaches were addressed in the previous chapter in the more delicate
case A = S (the jump case).

In this case we can see that minimizing U is equivalent to solving

min
ρ

ˆ T

0

ˆ
Ω

(|∂tρ|+ V ρ+ f(ρ))dxdt+ Ψ0(ρ(0)) +

ˆ
Ω

ψT dρ(T ) (3.3)

for a suitable Ψ0 : P(Ω) → R. This allows to use the results in [DS23] (or in Chapter 4), which indeed
provide regularity of the optimal ρ (under suitable assumptions, the solution ρ̄ of (3.3) is Lipschitz in
time valued in L2(Ω) and its regularity in space depends on the regularity of V ).

Let us begin with the next proposition which provides the optimality condition for Problem (3.1).

Proposition 3.0.1. Let Q̄ be a solution of Problem (3.1) in the case where I is given by (3.2). Let
Q ∈ Γ be a measure such that, setting ρ(t, ·) = et#Q, we have

ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt <∞. (3.4)

45
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Then we have
ˆ
C
A(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψ(γ(T ))dQ̄(γ) (3.5)

≤
ˆ
C
A(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ).

Proof. Given ε ∈ [0, 1], let us define Qε = Q̄+ ε(Q− Q̄) and

u(ε) =

ˆ
C
A(γ)dQε(γ) +

ˆ T

0

ˆ
Ω

V (t, x)d(et#Qε)(x)dt+

ˆ T

0

ˆ
Ω

f(et#Qε)(x)dxdt+

ˆ
C
ψT (γ(T ))dQε(γ).

By the optimality of Q̄, we have u(ε) ≥ u(0). We want to compute u′(0). All terms in u are affine
in ε except for ε 7→

´ T
0

´
Ω
f(et#Qε)(x)dxdt =

´ T
0

´
Ω
f((1 − ε)ρ̄ + ερ))dxdt (notice ρt := et#Q and

ρ̄t := et#Q̄). Yet, the convexity of f provides

f((1− ε)ρ̄+ ερ)− f(ρ̄)

ε
≤ f(ρ)− f(ρ̄).

The limit as ε → 0+ of the l.h.s. is f ′(ρ̄)(ρ − ρ̄). The above inequality, together with the integrability
condition (3.4), show in particular that we have f ′(ρ̄)(ρ − ρ̄) < +∞ a.e. and that the positive part of
this function is L1. Then, we can obtain by Fatou’s Lemma

ˆ
f ′(ρ̄)(ρ− ρ̄) ≥ lim

ε→0

ˆ
f((1− ε)ρ̄+ ερ))− f(ρ̄)

ε
.

Therefore we have:

0 ≤ u′(0) ≤
ˆ
C
A(γ)d(Q− Q̄)(γ) +

ˆ T

0

ˆ
Ω

V (t, x)d(et#(Q− Q̄))(x)dt

+

ˆ T

0

ˆ
Ω

f ′(et#Q̄)(x)d(et#(Q− Q̄))(x) dt+

ˆ
C
ψT (γ(T ))d(Q− Q̄)(γ).

This inequality is exactly (3.5).

We first re-write the inequality (3.5) in a more suitable way using the notation JW . We observe that
we have, for any Q ∈ Γ with ρt := et#Q,

ˆ
C
A(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

W (t, x)ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ) =

ˆ
C
JW (γ)dQ(γ).

This means that the Proposition 3.0.1 provides the inequality
ˆ
C
JW (γ)dQ̄(γ) ≤

ˆ
C
JW (γ)dQ(γ)

for W = V + f ′(ρ̄) and any Q satisfying the condition
´ T

0

´
Ω
f(ρ(t, x))dxdt < +∞ (where ρt := et#Q).

Note that because both Q̄ and Q are such that the measures ρ̄t and ρt are absolutely continuous for
every t, modifying W into another function which is equal to W a.e. does not change the validity of
this inequality. On the other hand, what we would like is to prove that Q̄ is actually concentrated on
curves which minimize JW starting from their starting point. This condition, instead, could depend on
the choice of the representative of W since curves are negligible.

We prove now an integral characterization of this condition.

Lemma 3.0.2. Given a measurable function W : [0, T ]×Ω→ R, a measure Q̄ ∈ Pm0
(C) is concentrated

on the curves γ such that the following conditions holds

∀ω ∈ C s.t. γ(0) = ω(0), JW (γ) ≤ JW (ω)

if and only if it satisfies
ˆ
C
JW dQ̄ ≤

ˆ
C
JW dQ for every Q ∈ Pm0

(C). (3.6)
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Proof. Let us define a value function ϕ through ϕ(x0) := infω :ω(0)=x0
JW (ω).

First, we suppose that Q̄ satisfies (3.6). Then, for every ε > 0 we can choose for every x0 a curve
ωx0

such that ωx0
(0) = x0 and JW (ωx0

) ≤ ϕ(x0) + ε. Choosing the map x0 7→ ωx0
in a measurable way

(this is possible by measurable selection arguments, for which we refer to the seminal book [CV77]) and
taking the image of m0 through such a map we obtain a measure Q̃ ∈ Pm0(C) such that

ˆ
C
JW dQ̃ ≤

ˆ
ϕ(γ(0))dQ̃(γ) + ε =

ˆ
Ω

ϕdm0 + ε.

We then have ˆ
C
JW dQ̄ ≤

ˆ
C
JW dQ̃ ≤

ˆ
Ω

ϕ+ ε.

The number ε being arbitrarily small, we also obtain
´
C JW dQ̄ ≤

´
Ω
ϕ. Yet, we have JW (γ) ≥ ϕ(γ(0)),

which shows that this inequality is an equality. Then, we can see that Q̄ is concentrated on curves
satisfying JQ̄(γ) = ϕ(γ(0)), i.e. on optimal curves, which proves the claim.

For the converse implication, suppose that Q̄ is concentrated on optimal curves. Then we have, for
Q̄−a.e. γ, JW (γ) = ϕ(γ(0)) and

´
C JW dQ̄ =

´
C ϕ(γ(0))dQ̄ =

´
Ω
ϕdm0. On the other hand, for any other

measure Q we have
´
C JW dQ ≥

´
C ϕ(γ(0))dQ =

´
Ω
ϕdm0, which proves (3.6).

The goal becomes now to choose a functionW which is a precise representative of the function V +f ′(ρ̄)
and for which we have the validity of (3.6). The main difficulty is to prove that this inequality is valid
for every Q and not only for those satisfying the integrability condition

´ T
0

´
Ω
f(ρ(t, x))dxdt < +∞.

We will do this in the two cases that we are considering, i.e. the jump case and the kinetic case. We
start from the jump case where, under suitable conditions, it is possible to prove, thanks to regularity
results contained in [DS23], that ρ̄ is continuous. In this case there is no ambiguity, and we can take
W = V + f ′(ρ̄) just choosing such a continuous representative.

Before analyzing the two cases and proving that optimizers are indeed equilibria in the sense that we
explained, we want to explain why this chapter is called “equivalence between equilibria and optimizers”
while we only prove that optimizers are equilibria. Indeed, the converse implication is straightforward
because of the convexity of the functional U . Proposition 3.0.1 provides necessary optimality conditions
for the minimization of U , consisting in inequality (3.5) which has to be satisfied for those Q for which
(3.4) holds. Actually, because of convexity, this necessary optimality condition is also sufficient, and every
equilibrium satisfies it (and even more, because it satisfies (3.5) even without (3.4)).

3.1 The jump case
Let us consider the case A(γ) = S(γ) defined in Section 1.4.1. It is important to have in mind the results
of [DS23], where we proved that the solution ρ̄ of the problem (3.3) is Lipschitz in time and that according
to the regularity of V and the conditions at time 0 and T , ρ̄ can be either continuous or bounded. Because
of these results, we will provide statements under the additional assumption that ρ̄ is either continuous
or bounded. In order to illustrate the strategy, we start from the case where it is continuous.

Theorem 3.1.1. Suppose that Ω is either the d-dimensional torus or a compact Lipschitz domain in Rd.
Let Q̄ be such that (3.5) holds for all Q satisfying (3.4). Define ρ̄t := et#Q̄, suppose that the measures ρ̄t
are all absolutely continuous, and call ρ̄(t, x) their densities. Suppose that the function ρ̄ : [0, T ]×Ω→ R
is continuous (and hence bounded). Then we have

∀Q ∈ Γ,

ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ) (3.7)

≤
ˆ
C
S(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ).

We observe that, in this statement, the continuity of ρ̄ in both variables is not really needed, and
continuity in x for a.e. t together with a uniform L∞ bound would be enough.

Proof. Let us start from the case where Ω is the torus. Let Q be in Γ. Let r > 0. For all y ∈ Br =
B(0, r) ⊂ Rd, we define the function

Ty : C → C, γ 7→
(
t 7→

{
γ(t), if t ≤ t0(γ),
γ(t) + y, if t > t0(γ),

)
where t0(γ) is the time at which the curve γ has its first jump or discontinuity. This function is a
translation of a vector y of the curves in Ω starting from the time the curve jumps (note that this very
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construction requires to use the torus, otherwise γ(t) + y could be outside the domain; the general case
of other domains will be considered later). This construction leaves the curves unchanged at time 0, i.e

∀γ ∈ C, Ty(γ)(0) = γ(0).

In addition, by the construction of Ty, the function Ty does not add new jumps to the curves, so the
following inequality holds:

S(Ty(γ)) ≤ S(γ). (3.8)

For fixed r > 0, we define the measure Qr such that

Qr =

 
Br

Ty#Qdy,

so the inequality (3.8) implies
ˆ
C
S(γ)dQr(γ) ≤

ˆ
C
S(γ)dQ(γ) ≤ C. (3.9)

Next, we have for all ϕ ∈ Cb(Ω),
ˆ

Ω

ϕ(x)d(e0#Qr)(x) =

ˆ
C

 
Br

ϕ(γ(0))dy dQ(γ) =

ˆ
Ω

ϕ(x)dm0(x),

so e0#Qr = m0, which means that the initial condition is verified.
For each t, let us define the subsets

A(t) = {γ ∈ C; t ≤ t0(γ)} (3.10)
and B(t) = {γ ∈ C; t > t0(γ)}. (3.11)

Let t be in [0, T ]. For all positive functions ϕ ∈ Cb(Ω), we have
ˆ

Ω

ϕ(x)d(et#Qr)(x) =

ˆ
C

 
Br

ϕ(γ(t))1A(t)(γ)dy dQ(γ) +

ˆ
C

 
Br

ϕ(γ(t) + y)1B(t)(γ)dy dQ(γ) (3.12)

=

ˆ
A(t)

ϕ(γ(0))dQ(γ) +

ˆ
C

 
Br

ϕ(γ(t) + y)1B(t)(γ)dy dQ(γ)

≤
ˆ

Ω

ϕ(x)dm0(x) +

ˆ
C

 
Br

ϕ(γ(t) + y)dy dQ(γ)

=

ˆ
Ω

ϕ(x)dm0(x) +

ˆ
Ω

ˆ
Rd

ϕ(x+ y)

|Br|
1Br (−y)dy d(et#Q)(x)

=
u=x+y

ˆ
Ω

ϕ(x)dm0(x) +

ˆ
Ω

ˆ
Rd

ϕ(u)

|Br|
1Br (x− u)du ρ(t, x)dx

=

ˆ
Ω

ϕ(x)dm0(x) +

ˆ
Rd
ϕ(u)

ˆ
Ω

1Br (u− x)

|Br|
ρ(t, x)dxdu

=

ˆ
Ω

ϕ(x)dm0(x) +

ˆ
Rd
ϕ(u)

(
1Br
|Br|

∗ ρt
)

(u)du.

Therefore, for almost every x ∈ Ω, we have

ρr(t, x) := (et#Qr)(x) ≤ m0(x) +
1

|Br|
.

The right-hand side is independent of t and is of the form m0 + C. By assumption, m0 is bounded, and
so is ρr. Hence, we obtain ˆ T

0

ˆ
Ω

f(ρr(t, x))dxdt <∞. (3.13)

Therefore, we can apply Proposition 3.0.1 so as to write

∀r > 0,

ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ) (3.14)

≤
ˆ
C
S(γ)dQr(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ).
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We now verify that we have ρr
∗
⇀ ρ by using again the sets A(t) and B(t), so that we will be able to pass

to the limit in (3.14). We fix a time t ∈ [0, T ]: for all test function φ which are Lipschitz continuous on
Ω, we have

ˆ
Ω

φd(et#Qr) =

 
Br

dy

ˆ
C
φ(γ(t))d(Ty#Q)(γ)

=

ˆ
A(t)

φ(γ(t))dQ(γ) +

ˆ
B(t)

 
Br

φ(γ(t) + y)dydQ(γ).

Since φ is Lipschitz continuous and Q is a probability measure, we have∣∣∣∣∣
ˆ
B(t)

 
Br

φ(γ(t) + y)dydQ(γ)−
ˆ
B(t)

φ(γ(t))dQ(γ)

∣∣∣∣∣ ≤ Lip(φ)r → 0.

This shows that we have
´

Ω
φd(et#Qr) →

´
Ω
φd(et#Q), i.e. ρr(t)

∗
⇀ ρ(t) for every t. Then, using the

continuity of V , ψT and ρ̄, we finally obtain (using dominated convergence in time)

lim
r→0

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ) (3.15)

=

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ).

Combining the inequalities (3.9) and (3.14) and the limit (3.15), we have the desired inequality:
ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ)

≤ lim sup
r→0

ˆ
C
S(γ)dQr(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ)

≤
ˆ
C
S(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ),

which ends the proof in the case of the torus.
Let us consider now a Lipschitz domain Ω. For r0 > 0 small enough, there exists a map Π : Ωr0 → Ω

(where Ωr := {x ∈ Rd : d(x,Ω) ≤ r}) with the following properties:

• Π(x) = x for all x ∈ Ω;

• there exist a constant C1 such that |Π(x)− x| ≤ C1r for all x ∈ Ωr :

• there exist a constant C2 such that for any measure on Ωr0 with density bounded by a constant M ,
its image through Π is a measure on Ω with density bounded by C2M .

Note that we do not need Π to be continuous and that it can be defined using charts where Ω is bounded by
a graph: if locally we have Ω = {x = (x′, xd) ∈ Rd : xd > h(x′)} we can define Π(x′, xd) = (x′, 2h(x′)−xd)
for points x /∈ Ω. The whole domain can be covered by a finite number of these charts, and for points in
the intersection of different charts we can choose arbitrarily which definition of Π to choose. The constant
C2 would depend on the maximal number of intersecting charts, in this case.

We replace now the map Ty used in the case of the torus with a map T̃y defined via T̃y(γ)(t) =

Π(Ty(γ)(t)). We thus obtain a family of measures Q̃r. Note that it is still true that we have S(T̃y(γ)) ≤
S(γ). We then go on with the same procedure as before, defining ρ̃r(t) := et#Q̃r = Π#(ρr(t)). The
densities of the measures ρr were bounded by ||m0||L∞ + 1

|Br| , thus the densities of ρ̃r will be bounded

by another constant, but the argument does not change. Moreover, we will again have ρ̃r(t)
∗
⇀ ρ(t). This

is due to the fact that ρr(t) is supported in Ωr for every t, and hence for every Lipschitz test function φ
we have

∣∣´ φdρ̃r − ´
φdρr

∣∣ ≤ CLipφ r → 0. This allows to conclude the argument in the very same way
as in the case of the torus.

We now consider a variant, where we only suppose ρ̄ to be bounded instead of continuous. First of
all, we consider the map Π defined on the set Ωr0 at the end of the proof of the previous theorem and
we define, for r < r0 the following quantities

∀x ∈ Ω, [f ′(ρ̄)]r (t, x) :=

 
Br

f ′(ρ̄(t,Π(x+ y)))dy, f̂ ′(ρ̄)(t, x) := lim sup
r→0

[f ′(ρ̄)]r (t, x). (3.16)
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Of course the map Π is useless in the case of the torus and could be omitted for any internal point x
in the definition of f̂ ′(ρ̄)(t, x) and in the definition of [f ′(ρ̄)]r (t, x) as soon as r < d(x, ∂Ω). Also note
that we have f̂ ′(ρ̄) = f ′(ρ̄) if ρ̄ is a continuous function and that in any case the equality f̂ ′(ρ̄) = f ′(ρ̄)
holds a.e. (more precisely, at any interior point x which is a Lebesgue point of f ′(ρ̄); this only excludes
a negligible set of points, and the boundary, which is also negligible).

Theorem 3.1.2. Suppose that Ω is either the d-dimensional torus or a compact Lipschitz domain in Rd.
Let Q̄ be such that (3.5) holds for all Q satisfying (3.4). Suppose that the densities of all the measures
et#Q̄, denoted by ρ̄(t, ·), are bounded by a common constant. Then for all Q ∈ Γ, we have

ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ) (3.17)

≤
ˆ
C
S(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ). (3.18)

Proof. The proof is similar to Theorem 3.1.1. The main difference is that the function f̂ ′(ρ̄) is no longer
continuous in space, but only bounded. We directly treat the case where we use the map Π, as it is now
quite standard. We will omit, by the way, the symbol .̃

We start from the same construction: for all r > 0, we define as in Theorem 3.1.1 the measures

Qr =

 
Br

Ty#Qdy.

As a consequence, e0#Qr = m0 and
´
C S(γ)dQr(γ) ≤

´
C S(γ)dQ(γ) ≤ C. We have seen that the densities

ρr are bounded by a constant (by ||m0|| + 1
|Br| in the case of the torus – note that in this case as well

our assumption implies that m0 is bounded – or by a multiple of this number in case we need to use Π).
This yields ˆ T

0

ˆ
Ω

f(ρr(t, x))dxdt <∞.

By applying Proposition 3.0.1, we obtain

∀r > 0,

ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ)

≤
ˆ
C
S(γ)dQr(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ),

and we need to pass to the limit in the right-hand side. We use again the sets A(t) and B(t) defined in
(3.10) and (3.11). The only term which has to be treated differently can be dealt with via the definition
of f̂ ′(ρ̄). Indeed, we have

ˆ T

0

ˆ
Ω

f ′(ρ̄(t, x))ρr(t, x)dxdt =

ˆ T

0

ˆ
A(t)

f ′(ρ̄(t, γ(t)))dQ(γ)dt+

ˆ T

0

ˆ
B(t)

 
Br

f ′(ρ̄(t,Π(γ(t) + y)))dydQ(γ)dt

=

ˆ T

0

ˆ
A(t)

f ′(ρ̄(t, γ(t)))dQ(γ)dt+

ˆ T

0

ˆ
B(t)

[f ′(ρ̄)]r (t, γ(t))dQ(γ)dt.

The first term on the right-hand side does not depend on r. Moreover we note that we have
ˆ T

0

ˆ
A(t)

f ′(ρ̄(t, γ(t)))dQ(γ)dt =

ˆ T

0

ˆ
A(t)

f̂ ′(ρ̄)(t, γ(t))dQ(γ)dt.

This is due to the a.e. equality f̂ ′(ρ̄) = f ′(ρ̄) and to the fact that et#(Q1A(t)) is absolutely continuous
(it is indeed a measure bounded from above by m0). For the second term we can use a reverse Fatou’s
Lemma together with lim supr→0 [f ′(ρ̄)]r = f̂ ′(ρ̄). For this, we need to upper bound all these functions,
but the assumption guarantees that they are all bounded by f ′(M), where M := sup ρ̄. We then obtain

lim sup
r→0

ˆ T

0

ˆ
B(t)

[f ′(ρ̄)]r (t, γ(t))dQ(γ)dt ≤
ˆ T

0

ˆ
B(t)

f̂ ′(ρ̄)(t, γ(t))dQ(γ)dt

and hence

lim sup
r→0

ˆ T

0

ˆ
Ω

f ′(ρ̄(t, x))ρr(t, x)dxdt ≤
ˆ T

0

ˆ
Ω

f̂ ′(ρ̄)(t, x)ρ(t, x)dxdt.
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The other terms (including the integral of the potential V , which is now separated from f ′(ρ̄)) are treated
exactly as in Theorem 3.1.1. By combining the different terms we obtain

ˆ
C
S(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ)

≤ lim sup
r→0

ˆ
C
S(γ)dQr(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ)

≤
ˆ
C
S(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ).

We then conclude by replacing f ′(ρ̄) with f̂ ′(ρ̄) in the left-hand side, since these two functions agree a.e.
and for a.e. t the measure ρ̄t = et#Q̄ is absolutely continuous.

We can then conclude about the equilibrium properties of the measure Q̄ that we obtained as a fixed
point in Section 1.4.

Corollary 3.1.3. Suppose that the measures et#Q̄ = ρ̄(t, ·) are all bounded by a same constant. Then,
the measure Q̄ is concentrated on the curves γ̄ which are minimizers, for fixed starting point, of the action
function JW with W = V + f̂ ′(ρ̄), i.e. on curves γ̄ such that

∀ω ∈ C with ω(0) = γ̄(0) S(γ̄) +

ˆ T

0

[
V (t, γ̄(t)) + f̂ ′(ρ̄)(t, γ̄(t))

]
dt+ ψT (γ̄(T ))

≤ S(ω) +

ˆ T

0

[
V (t, ω(t)) + f̂ ′(ρ̄)(t, ω(t))

]
dt+ ψT (ω(T )).

The proof is a combination of the previous results. The case where ρ̄ is continuous is included in this
same statement, as in this case we simply have f̂ ′(ρ̄) = f ′(ρ̄).

3.2 The kinetic case

In this part, we consider the case A(γ) = K(γ) (see (1.30)). The goal is to perform a similar computation
as in the case A = S, i.e. showing by a convolution argument that the inequality (3.7) actually holds for
all Q ∈ Γ.

The regularity theory for the kinetic case is a classical issue in MFG theory (see for eg. [Muñ22] and
[Por23]), and one of the strongest results is the one contained in [LS18], which proves L∞ bounds on ρ̄.
Continuity for the density of ρ̄ is a much harder task, so we will only rely on its boundedness. We refer
to [LS18] for the proofs of this boundedness, and to [San20] for an overview of the applications of such a
result to the equivalence between optimizers and equilibria. Indeed, a general strategy first introduced by
[AF09] for fluid mechanics applications allowed to prove the optimality of Q̄-almost every curve within
a restricted class of curves on which the maximal function of f ′(ρ̄) is integrable in time. This has later
been used in [CMS16] in the framework of MFG, following essentially the same ideas. As explained in
[San20], the upper bounds on ρ̄ allow to state a much simpler result, showing optimality in the class
of all W 1,p curves. The proof of [AF09] and [CMS16] is based on a multiple approximation procedure
strongly relying on the separability of the space W 1,p and on the continuity of A for the strong W 1,p

convergence. Such a procedure was not possible for the jump case, which is naturally set in the space BV
which is non-separable. This motivated the different approach that we presented in the previous section.
A variant of such approach allows to obtain the following result in the kinetic case. Such a result recovers
already known results, and our approach requires a strong assumption on the growth of the function f
in terms of the exponent p in the kinetic energy and on the space dimension d. Yet, it is interesting to
observe that such a numeric assumption is not new in the setting of deterministic (first-order) MFG (see,
for instance, [CG15]). Moreover, such a proof is considerably simpler than the one in [AF09; CMS16].

Compared to the theorems in the jump case, we need to require extra regularity on the domain Ω.
We need indeed an extra property for the map Π: we need Π to be (1 +Cr)-Lipschitz continuous on Ωr.
The reason for this is that we need now to preserve Sobolev bounds on the composition of a curve with
Π. It is possible to guarantee this by requiring Ω to be C2 and defining Π(x) = 2PΩ(x) − x, where PΩ

is the projection onto Ω, well-defined for smooth domains in a neighborhood of Ω. This map is a sort of
reflection across the boundary. The Jacobian matrix of this map Π is symmetric and its eigenvalues are
very close to −1 in the direction of x− PΩ(x) and to 1 in the orthogonal directions. The precise bounds
depend on r and on the maximal curvature of ∂Ω.
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Lemma 3.2.1. Let Π(x) = x + 2(PΩ(x) − x) = 2PΩ(x) − x be the reflexion such that PΩ(x) =
argminy∈Ω d(y,Ω). Then we have

‖DΠ‖ ≤ 1 +
r

R+ r
and detDΠ ≥ 1

2
,

where DΠ is the Jacobian matrix of Π.

Proof. The function Π associates with a point x ∈ Ωc its reflexion with respect to the boundary ∂Ω. We
can see that

∀x ∈ Ωr, |Π(x)− x| = 2|PΩ(x)− x| ≤ 2r.

Next, we can estimate ‖DΠ‖ by estimating ‖Id − DPΩ‖. Indeed, if we define g(x) = 1
2d

2(x, ∂Ω),
then we have x − PΩ(x) = ∇g(x). By differentiating again, we obtain Id − DPΩ = Hessg the Hessian
matrix of g. Let x0 ∈ Ωc and p0 = PΩ(x0). There exists R > 0 and two points y0 ∈ Ωc and z0 ∈ Ω such
that B(y0, R) ⊂ Ωc and B(z0, R) ⊂ Ω and p0 ∈ B(y0, R) ∩ B(z0, R). Let us note that x0 belongs to the
segment [p0, y0] and the points x0, p0, y0 and z0 are aligned. Consequently, we have for all x ∈ Ωc,

1

2
d2(x, ∂B(y0, R)) ≤ g(x) ≤ 1

2
d2(x, ∂B(z0, R)), (3.19)

and in particular, at x = x0,

1

2
(R− |x0 − y0|)2 =

1

2
d2(x0, ∂B(y0, R)) and

1

2
d2(x0, ∂B(z0, R)) =

1

2
(|x0 − z0| −R)2.

The Hessian of 1
2 (R− |x− y0|)2 is

(H l)i,j(x) =

 1−R
(

1
|x−y0| −

(xi−y0,i)
2

|x−y0|3

)
if i = j,

R
(xi−y0,i)(xj−y0,j)

|x−y0|3 if i 6= j,

and the Hessian of 1
2 (|x− z0| −R)2 is

(Hr)i,j(x) =

 1−R
(

1
|x−z0| −

(xi−z0,i)2

|x−z0|3

)
if i = j,

R
(xi−z0,i)(xj−z0,j)

|x−z0|3 if i 6= j.

If we denote r := |x0 − p0|, then we have

|x0 − y0| = R− r and |x0 − z0| = R+ r.

Therefore, we have

H l(x0) =

(
1− R

R− r

)
Id +

R

R− r
(x0 − y0)⊗ (x0 − y0)

|x0 − y0|2

and Hr(x0) =

(
1− R

R+ r

)
Id +

R

R+ r

(x0 − z0)⊗ (x0 − z0)

|x0 − z0|2
.

Next, we use the property that (v⊗v)v = v · (v ·v) = v with ‖v‖ = 1 which implies that 1 is an eigenvalue
of H l(x0) and Hr(x0) for the eigenvectors x0−y0

|x0−y0| and
x0−z0
|x0−z0| respectively. By using the same property,

we also obtain that 1 − R
R−r and 1 − R

R+r are eigenvalues of H l(x0) and Hr(x0) respectively for any
eigenvector in the spaces Vect(x0 − y0)⊥ and Vect(x0 − z0)⊥ respectively.

Since the equality in (3.19) is reached at x = p0, we obtain(
1 0
0 − r

R−r Id−1

)
≤ Hessg(x0) ≤

(
1 0
0 r

R+r Id−1

)
, (3.20)

where the matrices are written in a basis from
{
x0−y0

|x0−y0|

}
∪Vect(x0− y0)⊥ in the left-hand side and from{

x0−z0
|x0−z0|

}
∪Vect(x0 − z0)⊥ in the right-hand side.

In particular, the inequality (3.20) implies that

‖DΠ‖ = ‖2DPΩ − Id‖ = ‖ − 2 Hessg +Id‖ ≤
r

R+ r
+ 1,
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so that the kinetic energy remains bounded.
The inequality (3.20) also gives

detDΠ = det(−2 Hessg +Id) = −1 ·
(

1 +
2r

R− r

)d−1

,

so detDΠ ≥ 1
2 for sufficiently small r which implies that Π sends bounded densities by M to bounded

densities by CM .

Theorem 3.2.2. Suppose that Ω is either the torus or a C2 compact domain in Rd. Let Q̄ be such that
(3.5) holds for all Q satisfying (3.4). Suppose that the densities of all the measures et#Q̄, denoted by
ρ̄(t, ·), are bounded by a common constant. Let f : R → R be a C1 convex function such that f(u) ≤
C(uq + 1). Let p, q and d verify q < 1 + p′

d where p′ is the conjugate exponent of p. Let f̂ ′(ρ̄) be defined
as in (3.16). Then for all Q ∈ Γ, we have

ˆ
C
K(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ) (3.21)

≤
ˆ
C
K(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ(γ).

Proof. Let Q ∈ Γ and ρ(t, ·) := et#Q. Let r > 0 and η(t) = tα. For all y ∈ B(0, 1) ⊂ Rd, we define the
function

Ty : W 1,p([0, T ]) →W 1,p([0, T ]),
γ 7→ (t 7→ Π(γ(t) + rη(t)y)).

Then, we have ‖Ty(γ)′‖Lp([0,T ]) ≤ (1 + Cr)(‖γ̇‖Lp([0,T ]) + ‖rη̇y‖Lp([0,T ])) (where the multiplying factor
1 + Cr comes from the composition with Π, see Lemma 3.2.1), so a necessary condition for Ty(γ)′ to be
in Lp([0, T ]) is that η̇ is in Lp([0, T ]) and this is true if p(α− 1) > −1, i.e α > 1− 1/p.

Next, we define similarly to Theorem 3.1.1 the sequence of measures (Qr)r:

Qr =

 
B(0,1)

Ty#Qdy,

and we denote by ρr(t, ·) = et#Qr.
We now perform similar computations as those of (3.12). We have

et#Qr = Π#

(
(et#Q) ∗

1Brη(t)

|Brη(t)|

)
.

Computing the volume of the ball in Rd gives |Brη(t)| = c(rη(t))d for some c > 0. Then we have

‖et#Qr‖L∞(Ω) ≤ C2‖et#Q‖L1(Ω)

∥∥∥∥ 1Brη(t)

|Brη(t)|

∥∥∥∥
L∞(Ω)

≤ C(rη(t))−d.

Since η(t)→ 0 as t→ 0, the L∞ norm will not be uniformly bounded, but we are actually interested in
the Lq norm. We recall that for every probability density u we have

||u||Lq(Ω) =

(ˆ
uqdx

)1/q

≤
(
||u||q−1

L∞

ˆ
udx

)1/q

≤ ||u||
q−1
q

L∞(Ω).

Thus,
‖et#Qr‖Lq(Ω) ≤ C(rη(t))

d(1−q)
q .

We want to impose the integrability condition
´ T

0

´
Ω
f(ρr)dxdt < +∞, i.e. (thanks to the assumption

on f)
´ T

0
||ρr(t)||qLqdt < +∞. For this we need to require another condition on α, i.e. α < 1

d(q−1) .

Such an α exists, because of the assumption on p and q. Indeed, we assumed q < 1 + p′

d , which is
equivalent to 1

p′
:= 1− 1

p <
1

d(q−1) .
The condition (3.4) is now satisfied and we obtain by Proposition 3.0.1 the inequality

ˆ
C
K(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ) (3.22)

≤
ˆ
C
K(γ)dQr(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + [f ′(ρ̄)]r(t, x)) ρr(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ).
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We want to take the limit as r → 0 in the right-hand side. The last term can be treated just by
noting that we have Qr

∗
⇀ Q. The term in the middle can be treated by taking its lim sup exactly as in

the proof of Theorem 3.1.2. We are only left to consider the first term, which, in the proof of Theorem
3.1.2, was dealt with by noting that we had S(Ty(γ)) ≤ S(γ).

Here this inequality is no longer true, but almost. Indeed, we noted that we have the inequality
‖Ty(γ)′‖Lp([0,T ]) ≤ (1 +Cr)‖γ̇‖Lp([0,T ]) + ‖rη̇y‖Lp([0,T ]). This means K(Ty(γ)) ≤ (1 +Cr)1/p((K(γ)1/p +
Cr)p. We then write

ˆ
C
K(γ)dQr(γ) =

 
B(0,1)

ˆ
C
K(Ty(γ))dQ(γ) ≤ (1 + Cr)1/p

 
B(0,1)

ˆ
C
(K(γ)1/p + Cr)pdQ(γ),

and we can take the limit by dominated convergence once we note that we have (K(γ)1/p + Cr)p ≤
C(K(γ) + 1) and K is supposed to be Q−integrable. We then obtain

ˆ
C
K(γ)dQ̄(γ) +

ˆ T

0

ˆ
Ω

(V (t, x) + f ′(ρ̄(t, x))) ρ̄(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQ̄(γ)

≤
ˆ
C
K(γ)dQ(γ) +

ˆ T

0

ˆ
Ω

(
V (t, x) + f̂ ′(ρ̄)(t, x)

)
ρ(t, x)dxdt+

ˆ
C
ψT (γ(T ))dQr(γ)

and we conclude by replacing once more f ′(ρ̄) with f̂ ′(ρ̄) in the left-hand side, since these functions agree
a.e.

Remark 3.2.3. We note that in the above proof the condition on p, q and d is required to find a function
η ∈ W 1,p([0, T ]) with η(0) = 0 and such that η(1−q)d is integrable. The difficulty is due to the fact that
this integrability condition requires η not to tend to 0 too fast and the Sobolev regularity of η imposes
to tend to 0 fast enough. . . If we could remove the condition η(0) = 0 we could just use η(t) = 1 which
satisfies both conditions at the same time. The reason for imposing η(0) = 0 lies in the need to preserve
the initial condition of the curves, but actually we only need e0#Qr = m0. Hence, an example where the
condition on p, q and d could be dropped is the case where Ω is the torus and m0 is the uniform measure
on it. In this case with η(t) = 1 the measure e0#Qr would be the convolution of m0 with the uniform
measure on the ball, and thus it would also be equal to m0. It would be interesting to investigate whether
smoothness properties on m0, which do not allow to say that the convolution equals m0 but that it is close
enough to it, would be enough to “correct” the error in the initial condition and obtain the same result
under less stringent assumptions on p, q and d.

Again, we can then conclude about the equilibrium properties of the measure Q̄ that we obtained as
a fixed point in Section 1.4.

Corollary 3.2.4. Suppose that the measures et#Q̄ = ρ̄(t, ·) are all bounded by a same constant. Then,
the measure Q̄ is concentrated on the curves γ̄ which are minimizers, for fixed starting point, of the action
function JW with W = V + f̂ ′(ρ̄), i.e. such that such

∀ω ∈ C with ω(0) = γ̄(0) K(γ̄) +

ˆ T

0

[
V (t, γ̄(t)) + f̂ ′(ρ̄)(t, γ̄(t))

]
dt+ ψT (γ̄(T ))

≤ K(ω) +

ˆ T

0

[
V (t, ω(t)) + f̂ ′(ρ̄)(t, ω(t))

]
dt+ ψT (ω(T )).



Chapter 4

Regularity for Variational Mean Field
Games with jumps

In this chapter, essentially taken from [DS23], we are interested in the regularity of the density ρ(t) =
et#Q which is the Eulerian representation of a Nash equilibrium Q ∈ Pm0(C) for which we proved its
existence in Section 1.4. We recall that Q minimizes

min
Q∈Pm0

(C)
U(Q) =

ˆ
C
S(γ)dQ(γ) +

ˆ T

0

I(et#Q)dt+

ˆ
C

ˆ T

0

V (t, γ(t))dt dQ(γ) +

ˆ
C

Ψ(γ(T ))dQ(γ) (4.1)

and in Chapter 3, we showed that Q is concentrated on curves which minimize

JW (γ) = S(γ) +

ˆ T

0

W (t, γ(t))dt+ Ψ(γ(T )) for W (t, x) =
dI

dm
[et#Q](x) + V (t, x)

which includes the number of jumps S defined in (1.28) for piecewise constant trajectories γ. The function
V : [0, T ]× Ω→ R is supposed to be continuous and I is of the form

I(ρ) =

{´
Ω
f(ρ(x))dx if ρ� Ld,

+∞ if not.

In Chapter 2, we showed that the problem (4.1) is equivalent to

min
ρ∈E,ρ≥0

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

V(ρ) :=

ˆ T

0

ˆ
Ω

(
1

2
|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))

)
dxdt+ ψ0(ρ(0)) + ψT (ρ(T )),

where E := BV([0, T ];L1(Ω)) ∩ L2([0, T ]× Ω).
Because of the BV behavior of the curves, the Dirichlet condition ρ(0) = ρ0, as well as the final

penalization on ρT , have to be suitably interpreted. Indeed, it is always possible to jump exactly at time
t = 0 or t = T , so that the Dirichlet condition at t = 0 can be replaced by a penalization 1

2 ||ρ(0+)−ρ0||L1

and for the final penalization, we can replace
´

Ω
ΨdρT with infµ∈P(Ω) ||µ − ρT || +

´
Ψdµ. This last

quantity can be computed and equals
´

Ψ̃dρT , where Ψ̃ = min{Ψ, inf Ψ + 1}. This is perfectly coherent
with the individual optimization problem: if agents are allowed to jump at a cost 1, the final cost Ψ is
automatically replaced by Ψ̃ as there is no point in paying Ψ(x) whenever Ψ(x) > Ψ(x′)+1 for some point
x′. Up to subtracting a constant to the final penalization, we can thus suppose that we have |Ψ| ≤ 1/2.

More generally, we will study in this chapter the variational problem

min
ρ

ˆ T

0

ˆ
Ω

(λ|ρ̇|+ f(ρt) + Vtρt) dt+

ˆ
Ω

ΨdρT

with a final cost Ψ satisfying |Ψ| ≤ λ and an initial condition ρ(0) = ρ0 which can also be replaced by a
penalization λ||ρ(0+) − ρ0||L1 . A variant will be the infinite-horizon case with a discount factor r > 0,
i.e. the variational problem

min
ρ

ˆ ∞
0

ˆ
Ω

e−rt (λ|ρ̇|+ f(ρt) + Vtρt) dt

under the same initial condition.

55
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For simplicity, we will only consider the case where the function f is uniformly convex (think at
f(ρ) := 1

2ρ
2). We still establish regularity results in both time and space for the optimal solution

(which is unique because of strict convexity). This result, besides its mathematical interest, has also at
least two applications in the MFG theory which motivates the problem. First, it proves that, despite
individual trajectories being discontinuous, the global behavior of the density of agents ρ(t, x) is smooth,
coherently with the experience about the evolution of residential areas. Second, it provides the necessary
mathematical properties on the individual running cost g(ρ)+V so as to rigorously prove that minimizers
of the variational problem are indeed equilibria of the game (see Chapter 3). This requires, as we will
briefly explain at the end of Section 4.4, the continuity (in space) of the running cost, or at least its
boundedness; we refer to [San20]) for more details.

Since proving regularity in a problem set on BV curves could be challenging, in order to develop the
relevant techniques (which will be based on a suitable use of the maximum principle) we will first start
from a simpler, yet not-so-standard, case, where curves, instead of being valued in the functional space
L1, will be simply valued in the euclidean space Rd. This will be object of Section 4.1, where we will
prove Lipschitz behavior in the open interval (0, T ). Some explicit examples will also be analyzed, in
particular for d = 1, in order to have some cases which could be used as a test for the numerical methods
of Chapter 5.

The analysis of the infinite-dimensional case, valued in L1, will be the object of Section 4.2, and will
be performed by means of many approximations. Some of them are common with the Euclidean case,
but there is an extra approximation which comes from discretization: the infinite-dimensional problem
is indeed approximated by a sequence of finite-dimensional ones, where the domain Ω is divided into
small cells and only piecewise constant densities are considered. Note that in this Eulerian discretization
(different from a Lagrangian one where one should follow the jumping trajectories of the particles) the
problem becomes very similar to the one studied in Section 4.1 with the only exception that the norm
used on the finite-dimensional space is not the Euclidean one (i.e. `2) but the `1 norm. This makes things
slightly more involved, but, surprisingly, the final Lipschitz regularity result will be expressed anyway in
the L2 norm.

Section 4.3 contains the modifications of the strategy proof which are needed to handle the infinite-
horizon case, both in the finite and infinite dimensional case. Then, Section 4.4 addresses the problem
of space regularity. We will prove that the solution ρ(t, x) shares the same modulus of continuity in
x (uniformly in t) of the Dirichlet data and of the time-dependent potential V (t, x), and in this proof,
differently from what is done in Sections 4.1, 4.2 and 4.3, the Dirichlet data will be attacked by ap-
proximation but without replacing them with penalizations (the L1 cost will be approximated by other
superlinear costs on the velocity, as it was already done in the other sections as well). Indeed, for the
previous results, it was crucial to use the transversality conditions coming from a suitable approximation
of these penalizations, while here, on the contrary, the transversality conditions are harder to consider.
This is why the first regularity result is presented in the case where the problem is endowed with Dirichlet
conditions at both t = 0 and t = T , which is not the natural framework we will be interested in. In order
to consider some instances of the problem which are more interesting for applications, we will consider
the infinite time horizon with Dirichlet data at t = 0 (in this case we do not have penalization at the end),
where the whole analysis can be performed, as well as the finite-horizon case when the final penalization
ψ is piecewise constant: in this last case we can prove continuity of ρ on each piece where ψ is constant,
which is enough, for instance, to obtain ρ ∈ L∞.

4.1 Lipschitz regularity in the Euclidean setting

The result of this section was originally proved in [DS23] and presented in the book [San23].
As a starting point for our analysis, we consider here the following easier problem

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ BV ([0, 1]; Rd)

}
. (4.2)

Here TV (γ; [0, 1]) denotes the total variation of γ on [0, 1], i.e.

TV (γ; [0, 1]) := sup

{
N−1∑
k=0

|γ(tk)− γ(tk+1)| : 0 = t0 < t1 < · · · < tN = 1

}
,

a value which also coincides with the total mass of the vector measure γ′.
The functions ψ0, ψ1 : Rd → [0,+∞] are just supposed to be l.s.c. and bounded from below, and
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among possible choices we mention those which impose Dirichlet boundary conditions, i.e.

t = 0, 1 ψt(x) =

{
0 if x = xt,

+∞ if not.

We stress the fact that functions in BV spaces are not continuous and can have jumps ; even if we
consider that BV functions of one variable are defined pointwisely, it is possible to change very easily
their value at a point. In particular, Dirichlet boundary conditions have a very particular meaning: a
curve which takes the value x0 at t = 0 but immediately jumps at another point at t = 0+ is considered
to satisfy the condition γ(0) = x0. In particular, it is possible to freely choose a curve γ on (0, 1) and
then add a jump to x0 or x1 at the boundary in order to satisfy the corresponding Dirichlet boundary
condition, of course adding a price |γ(0+) − x0| or |γ(1−) − x1| to the total variation. In this way, we
could decide to identify the values of γ at t = 0 or t = 1 with their right or left limits at these points,
respectively, and replace Dirichlet boundary conditions with a boundary penalization. This could also be
done for more general penalizations ψ0, ψ1, for which it is useful to define the relaxed functions

ψ̃t(x) := inf
y
|y − x|+ ψt(y).

It is important to observe that the functions ψ̃i are automatically 1-Lipschitz continuous, as an inf of
Lip1 functions of the variable x, indexed with the parameter y.

In this way the problem (4.2) becomes

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ̃0(γ(0+)) + ψ̃1(γ(1−)) : γ ∈ BV ([0, 1]; Rd)

}
or, equivalently, we can replace ψ̃0(γ(0+)) + ψ̃1(γ(1−)) with ψ̃0(γ(0)) + ψ̃1(γ(1)) and impose continuity
of γ at t = 0, 1.

Lemma 4.1.1. Let L : Rd → R be a smooth and uniformly convex function which is supposed to be radial:
L(v) := `(|v|) for a convex and increasing function ` : R+ → R. Let F : [0, 1] × Rd → R be a C2 time-
dependent potential satisfying D2

xxF (t, x) ≥ c0I for a certain constant c0 > 0 and |∂t∇xF (t, x)| ≤ C0,
and ψ0, ψ1 : Rd → R two Lipschitz continuous functions. Consider a solution γ of

min

{ˆ 1

0

(L(γ′(t)) + F (t, γ(t)))dt+ ψ0(γ(0)) + ψ1(γ(1)) : γ ∈ H1([0, 1])

}
.

Then γ is Lipschitz continuous and satisfies |γ′| ≤ C where C is defined by

C := max{C0

c0
, (`′)−1(Lipψ0), (`′)−1(Lipψ1)}.

Proof. Let us start from the Euler-Lagrange system of the above optimization problem. We have
(∇L(γ′))′(t) = ∇xF (t, γ(t))

∇L(γ′(0)) = ∇ψ0(γ(0))

∇L(γ′(1)) = −∇ψ1(γ(1)).

First we observe that γ ∈ C0 and F ∈ C1 imply that the right-hand side in the first equation is a
continuous function, so that we have ∇L(γ′) ∈ C1. Inverting the injective function ∇L we obtain γ ∈ C2

and, since F ∈ C2, we obtain γ ∈ C3.
Then, the transversality conditions show |∇L(γ′(t))| ≤ Lipψt for t = 0, 1. Using |∇L(v)| = `′(|v|) we

see |γ′(t)| ≤ C for t = 0, 1.
Let us now consider the maximal value of |γ′(t)|. This maximum exists on [0, 1] since γ ∈ C1 and

if it is attained on the boundary t = 0, 1 the desired Lipschitz bound |γ′| ≤ C is satisfied. We can now
suppose that it is attained in (0, 1). Since `′ is increasing and non-negative, the maximal points of |γ′|
and of |∇L(γ′)|2 are the same. We can then write the optimality condition differentiating once and twice
in t: we do have

∇L(γ′(t)) · (∇L(γ′))′(t) = 0; ∇L(γ′(t)) · (∇L(γ′))′′(t) + |(∇L(γ′))′(t)|2 ≤ 0.

In the last condition we can ignore the positive term |(∇L(γ′))′(t)|2 and observe that, since ∇L(γ′(t))

and γ′(t) are vectors with the same orientation (we do have ∇L(γ′(t)) = `′(|γ′(t)|)
|γ′(t)| γ

′(t)), we have γ′(t) ·
(∇L(γ′))′′(t) ≤ 0.
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We now differentiate in time the Euler-Lagrange equation and take the scalar product times γ′, and
obtain

0 ≥ γ′(t) · (∇L(γ′))′′(t) = (∇xF (t, γ(t)))′ · γ′(t) = ∂t∇xF (t, γ(t)) · γ′(t) + γ′(t) ·D2
xxF (t, γ(t))γ′(t).

We deduce
c0|γ′(t)|2 ≤ |γ′(t)||∂t∇xF (t, γ(t))|,

which implies |γ′(t)| ≤ C0

c0
≤ C and concludes the proof.

We now use the above result on an approximation of the original problem in BV.

Proposition 4.1.2. Consider

min

{
TV (γ; [0, 1]) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0+)) + ψ1(γ(1−)) : γ ∈ BV ([0, 1]; Rd)

}
(4.3)

where F : [0, 1] × Rd → R is a C2 time-dependent potential satisfying D2
xxF (t, x) ≥ c0I for a certain

constant c0 > 0 and |∂t∇xF (t, x)| ≤ C0, and ψ0, ψ1 ∈ Lip1(Rd) are two penalization functions.
Then a minimizer γ for the above problem exists, is unique, and is actually Lipschitz continuous with

|γ′| ≤ C0

c0
.

Note that we directly state the problem using Lip1 penalizations instead of first fixing ψ0 and ψ1

and then passing to ψ̃0 and ψ̃1, but we have already explained why we can restrict to this case. Yet, an
important remark is needed:

Remark 4.1.3. The solutions with penalizations ψt and ψ̃t (t = 0, 1) coincide in (0, 1), but the solution
with the original (non-Lip1) penalizations could jump at t = 0 or t = 1, and this jump is intrinsically
considered in the definition of ψ̃t.

Proof. Given ε > 0, we define `ε : R+ → R+ via `ε(s) :=
√
ε2 + s2 + εh(s), where h : R+ → R+ is a

smooth, convex, and increasing function, with lim infs→∞ h′′(s) > 0. We then define Lε : Rd → R via
Lε(v) = `ε(|v|), so that Lε is smooth, uniformly convex, and radial1.

We also choose some numbers αε < 1 in such a way that limε→0 αε = 1 and limε→0
ε2

1−α2
ε

= 0 (for
instance αε =

√
1− ε).

We consider γε the solution of the variational problem

min

{ˆ 1

0

(Lε(γ
′(t)) + F (t, γ(t)))dt+ αε(ψ0(γ(0)) + ψ1(γ(1))) : γ ∈ H1([0, 1])

}
.

Since Lε is convex, a solution exists by the direct method of the calculus of variations, and it is unique
because of the strict convexity of the function F .

We want to apply Lemma 4.1.1 to this approximated optimization problem. We first compute `′ε(s) =
s√

ε2+s2
+εh′(s) ≥ s√

ε2+s2
and observe that we have (`′ε)

−1(r) ≤ rε√
1−r2

. Since Lip(αεψi) = αεLip(ψi) ≤ αε
we obtain from Lemma 4.1.1

|γ′ε| ≤ max

{
C0

c0
,

αεε√
1− α2

ε

}
,

and we observe that our choice of αε implies that the second term in the max above tends to 0 as ε→ 0.
This means that the Lipschitz constant of γε is at most C0

c0
if ε is small enough.

By comparing γε with the constant curve γ = 0 we obtain

ˆ 1

0

F (t, γε(t))dt+ αε(ψ0(γε(0)) + ψ(γε(1))) ≤
ˆ 1

0

F (t, 0)dt+ αε(ψ0(0) + ψ1(0)) ≤ C.

This estimate includes an L2 estimate on γε and, because of the uniform Lipschitz condition on γε, it
also implies that the curves γε are equibounded. We can then apply Arzelà-Ascoli’s theorem to obtain a
limit curve γε → γ0. This curve γ0 is of course C0

c0
-Lipschitz continuous, and we can prove that it solves

Problem (4.3).

1Note that the easiest choice for h is h(s) = 1
2
s2, but other choices are possible and reasonable, and the only role of h

is to guarantee a lower bound on the Hessian of Lε (and in particular, to provide a quadratic behavior to `ε so that the
problem is well-posed in H1). Later, one we will see the interest for other choices of h.
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Indeed, the optimality of γε, together with the inequality Lε(v) ≥ |v| (which allows to bound the total
variation from above with the integral of Lε), shows that we have

TV (γε; [0, 1]) +

ˆ 1

0

F (t, γε(t))dt+ αε(ψ0(γε(0)) + ψ1(γε(1)))

≤
ˆ 1

0

Lε(γ
′(t))dt+

ˆ 1

0

F (t, γ(t))dt+ αε(ψ0(γ(0)) + ψ1(γ(1)))

for every γ ∈ H1. If we let ε tend to 0 and use the lower semi-continuity of TV for the uniform convergence,
we obtain

TV (γ0; [0, 1]) +

ˆ 1

0

F (t, γ0(t))dt+ ψ0(γ0(0)) + ψ1(γ0(1))

≤
ˆ 1

0

|γ′(t)|dt+

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1)),

where we used the dominated convergence Lε(γ′)→ |γ′| as ε→ 0, and αε → 1.
This shows the optimality of γ0 compared to any H1 curve. It is now enough to approximate any BV

curve with H1 curves. We take γ ∈ BV ([0, 1]), we define it as equal to γ(0+) on [−1, 0] and to γ(1−) on
[1, 2] and we convolve it with a smooth compactly supported kernel ηδ tending to the identity so as to
smooth it, thus obtaining a sequence of curves γ ∗ ηδ such that TV (γ ∗ ηδ; [−1, 2]) =

´ 2

−1
|(γ ∗ ηδ)′(t)|dt ≤

TV (γ, (0, 1)); moreover, γ ∗ ηδ is uniformly bounded and converges to γ at all continuity points of γ,
which means that the convergence holds a.e. and at the boundary point. This proves

lim sup
δ→0

ˆ 1

0

|(γ ∗ ηδ)′(t)|dt+

ˆ 1

0

F (t, γ ∗ ηδ(t))dt+ ψ0(γ ∗ ηδ(0)) + ψ1(γ ∗ ηδ(1))

≤ TV (γ, (0, 1)) +

ˆ 1

0

F (t, γ(t))dt+ ψ0(γ(0)) + ψ1(γ(1))

and concludes the proof of the optimality of γ0.
What we proved implies the existence of an optimal curve for (4.3), and its uniqueness comes, again,

from the strict convexity of the term with F .

In the case where the space of curves is BV([0, 1]; Rd) with d = 1, we can obtain a very interesting
behavior.

Proposition 4.1.4. When d = 1, i.e. the target space of the curves in Problem (4.3) is one-dimensional,
the minimizer γ satisfies |γ′(t)||∇xF (t, γ(t))| = 0 a.e., i.e. at each instant of time either γ does not move
or it is already located at the optimal point for F (t, ·).

Proof. We consider the same approximation as in Proposition 4.1.2, using the function h(s) = (s−M)2
+

for a very large M . The uniform Lipschitz bound proven in Lemma 4.1.1 and Proposition 4.1.2 makes it
irrelevant the choice of `ε(s) for large values of s, so that we can write the Euler-Lagrange equation for
the minimizer γε in the form

ε2

(ε2 + |γ′ε|2)3/2
γ′′ε = (L′ε(γ

′
ε))
′

= ∇xF (t, γε),

where we explicitly computed2 the second derivative of Lε ignoring the term in h.
We write this as ε2γ′′ε = (ε2 + |γ′ε|2)3/2∇xF (t, γε). First, note that this implies a uniform bound

ε2|γ′′ε | ≤ C. Then, we differentiate it in time, thus obtaining

ε2γ′′′ε = 3(ε2 + |γ′ε|2)1/2γ′ε · γ′′ε∇xF (t, γε) + (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′
.

Re-using the Euler-Lagrange equation we have

ε2γ′′′ε = 3ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )γ′′ε + (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′
.

2Note that this computation is based on a 1D cancellation effect, since in higher dimension we have

D2Lε(v) =
(ε2 + |v|2)I − v ⊗ v

(ε2 + |v|2)3/2

and the matrices |v|2I and v ⊗ v do not cancel out.
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We observe that the last term (ε2 + |γ′ε|2)3/2 (∇xF (t, γε))
′ is bounded thanks to the Lipschitz bound on

γε and the regularity of F . We multiply by γ′ε and obtain

|ε2γ′′′ε · γ′ε − 3ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )2| ≤ C. (4.4)

We then compute

ε2

ˆ 1

0

|γ′′ε |2dt = −ε2

ˆ 1

0

γ′′′ε · γ′εdt+
[
ε2γ′ε · γ′′ε

]1
0
≤ C.

The last inequality is justified by (4.4), by the sign of the term ε2(ε2 + |γ′ε|2)−1(γ′ε · γ′′ε )2, and by the
bound on the boundary term, which is the product of two bounded quantities: γ′ε and ε2γ′′ε .

Coming back to the equality ε2γ′′ε = (ε2 + |γ′ε|2)3/2∇xF (t, γε) we take the L2 norms of both sides,
thus obtaining

ˆ 1

0

|γ′ε|6|∇xF (t, γε)|2dt ≤
ˆ 1

0

(ε2 + |γ′ε|2)3|∇xF (t, γε)|2dt =

ˆ 1

0

ε4|γ′′ε |2dt ≤ Cε2.

We deduce
´ 1

0
|γ′ε|6|∇xF (t, γε)|2dt→ 0 and, at the limit, by lower semi-continuity, we have the claim.

We will now analyze in details a simple example, both for future use and for better understanding
the properties of the minimizers.

We consider the periodic problem

min

{
J(γ) := λTV (γ; S1) +

ˆ
S1

1

2
|γ(t)− ω(t)|2dt : γ ∈ BV (S1; R)

}
, (4.5)

where λ > 0 and ω : S1 → R is a fixed curve. We suppose that ω is a Lipschitz continuous function such
that there exists a finite decomposition of S1 into essentially disjoint intervals Ik = [ak, bk] (k = 1, . . . , 4N
for N ≥ 1) such that ak+1 = bk and b4N = a1 and satisfying for each n = 0, . . . , N − 1, the following
conditions

• ω is non-decreasing on I4n+1;

• ω(a4n+2) = ω(b4n+2) := c4n+2 and ω ≥ c4n+2 on I4n+2;

• ω is non-increasing on I4n+3;

• ω(a4n+4) = ω(b4n+4) := c4n+4 and ω ≤ c4n+4 on I4n+4;

•
´
I4n+2

ω − c4n+2 =
´

4n+4
c4n+4 − ω = 2λ.

We then define a curve γ and a function z via

on I4n+1 γ = ω and z = λ,

on I4n+2 γ = c4n+2 and z(t) = λ−
´ t
a4n+2

(ω − c4n+2),

on I4n+3 γ = ω and z = −λ,
on I4n+4 γ = c4n+4 and z(t) = −λ−

´ t
a4n+2

(ω − c4n+2).

We can check that γ and z are Lipschitz continuous functions, that we have z′ = ω− γ as well as |z| ≤ λ,
z = ±λ when γ′ 6= 0 and z and γ′ have the same sign. Hence, z(t) ∈ ∂(λ| · |)(γ′(t)). This means that we
have, for any curve γ̃, the inequality

λTV (γ̃; S1) ≥ λTV (γ; S1) +

ˆ
S1

(γ̃′ − γ′) · z. (4.6)

We claim that γ is a solution of Problem (4.5). Indeed, for any other competitor γ̃, we have

J(γ̃) = λTV (γ̃; S1) +

ˆ
S1

1

2
|γ̃ − ω|2 ≥ J(γ) +

ˆ
S1

(γ̃′ − γ′) · z + (γ̃ − γ) · (γ − ω) = J(γ),

where the last equality is obtained by integrating by parts and using z′ = ω− γ. The previous inequality
comes from the use of (4.6) and from expanding the square.

This explicit example confirms the behavior predicted in Proposition 4.1.4: the optimizer in the scalar
case either coincides with the minimal point of F (t, ·) (here such a point is equal to ω(t)) or it does not
move. By using the numerical method described in Chapter 5, the solution to the problem (4.5) is
displayed in Figure 4.1 when ω : S1 → R is a curve such that ω(t) = sin(2πt) + 3 sin(3 ·2πt). The periodic
function ω verifies the hypotheses listed above and we can see that the solution γ either follows ω or it
is constant on each interval Ik. This numerical simulation confirms the solution and at the same time it
validates the numerical method which will be presented more precisely in Chapter 5.
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Figure 4.1: The simulation of the solution γ to the 1D periodic case (4.5) with ω(t) = sin(2πt) + 3 sin(3 ·
2πt). The parameters are displayed in Table 5.1 except from S = 1 and λ = 0.04. The blue solid line
corresponds to the solution γ, while the red dashed line is the profile of ω. Each interval Ik is delimited
by the vertical dotted gray lines.

4.2 Lipschitz regularity in the L1 setting
In this section, we prove the regularity in time of the density ρ which solves the following problem:

min
ρ∈E, ρ≥0

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )) := F (ρ),

(4.7)
where E := BV([0, T ];L1(Ω))∩L2([0, T ]×Ω) (for one-variable BV functions valued in a Banach space such
as L1 we refer, for instance, to [Mor87; Mor89]). The function f will be supposed to be uniformly convex
(i.e. f ′′ ≥ c0 > 0), and the time-dependent potential V will be supposed to belong to Lip([0, T ];L2(Ω)).
The domain Ω is a finite measure set in Rd, and we assume for simplicity that it has unit volume.

A few words on the penalizations ψ0 and ψT :
We aim to apply the results when ψT is of the following form

ψT : L1(Ω)→ R

ρ 7→
ˆ

Ω

ϕT (x)ρ(x)dx,

where ϕT : Ω→ R is L∞ and ‖ϕT ‖∞ ≤ 1. In this case, ψT is 1-Lipschitz for the norm ‖ · ‖L1(Ω), and it
is also weakly continuous in L1(Ω) (and hence in L2(Ω)).

When it comes to ψ0, we aim to consider the following case:

ψ0 : L1(Ω)→ R

ρ 7→ ‖ρ−m0‖L1(Ω),

where m0 ∈ L1(Ω). In this case as well, ψ0 is 1-Lipschitz for the norm ‖ · ‖L1(Ω). It is also weakly lower
semi-continuous in L1(Ω) and L2(Ω).

More generally, our results apply when the penalizations ψ0 and ψ1 are of the following form:

ψt(ρ) :=

ˆ
Ω

at(x, ρ(x))dx,

for two functions at which are 1-Lipschitz continuous and convex in the second variable. In this way
the functionals ψt are both continuous for the strong L1 convergence (actually, Lip1) and lower semi-
continuous for the weak L1 convergence. This general framework includes the two examples above.
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Finally, if ψ0 and ψT are defined as previously, we will define ψ0,α := αψ0 and ψT,α := αψT .
Approximations:
As in the previous section, the absolute value |ρ̇| will be approximated by a smoother function Lε

which will be specified later. The mass constraint
´
ρt = 1 will be imposed via a penalization method,

adding (
´
ρ−1)2

2δ . The penalizations on the boundary on [0, T ], ψ0 and ψT , will also be approximated by
multiplying them by α < 1. Finally, the positivity constraint will be handled by approximating f with a
sequence fn : R → R obtained via fn(ρ) := f(ρ) + n(ρ−)2 so that negative values are penalized but the
uniform convexity of f is preserved since we have f ′′n ≥ c0 for the same c0 > 0.

Taking together these approximations, we obtain the following problem:

min
ρ∈E

ˆ T

0

(ˆ
Ω

Lε(ρ̇(t, x)) + fn(ρ(t, x)) + V (t, x)ρ(t, x)dx+

(´
ρ(t, y)dy − 1

)2
2δ

)
dt

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )) := Fn(ρ).

Note that the approximated functional is written as Fn, meaning that we have fixed a suitable sequence
of values (ε, δ, α) such that εn → 0, δn → 0 and αn → 1.

In order not to have difficulties with the infinite-dimensional space L1(Ω), we will also use a finite-
dimensional discretization. This consists in imposing that the functions ρ(t) belong to a finite-dimensional
subspace. More precisely, we divide the space Ω into n small areas of volume 1

n called Ani (we need their
diameter to tend to 0) and we take ρn(t) : Ω→ R such that it is constant on each area. This means that
ρn(t) takes at most n different values and its mass is constant equal to ρi(t) on each region Ani (and its
density equals nρi(t)). The problem can be considered as a restriction of the previous one to the subset
of E composed of densities which are piecewise constant functions (constant on each Ani ) for every t, or
it can be rewritten as follows:

min
ρ∈BV ([0,T ];Rn)

ˆ T

0

(

(
n∑
i=1

1

n
(Lε(nρ̇i(t)) + fn(nρi(t))) + ρi(t)

 
Ani

V (t, x)dx

)
+

(∑
j ρj(t)− 1

)2

2δ
)dt

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )),

where the functionals ψ0,α and ψT,α can also be written in terms of values ρi(0) and ρi(T ): they are of
the form

ψ0,α(ρ(0)) := α
∑
i

ani,0(ρi(0)) and ψT,α(ρ(0)) := α
∑
i

ani,T (ρi(T ))

for some Lip1 functions ani,t, which are precisely given by

ani,t(u) :=
1

n

 
Ani

at(x, nu)dx.

In the set E , we say that ρn converges to ρ in E in the sense of (4.8), if

∃C s.t. ||ρn(t)||L2(Ω) ≤ C for every n and every t and ρn(t) ⇀ ρ(t) uniformly in t (4.8)

where the uniform L2 bound allows to metrize the weak L2 convergence and the uniform convergence is
defined accordingly.

We observe that the convergence in the sense of (4.8) implies the weak convergence ρn ⇀ ρ weakly
in L2([0, T ]× Ω).

Lemma 4.2.1. Let (ρn)n be a sequence converging to ρ ∈ E in the sense of (4.8) such that Fn(ρn) is
bounded. Then, we have ρ ≥ 0, for a.e. t ∈ [0, T ] we have

´
Ω
ρ(t, x)dx = 1, and moreover

F (ρ) ≤ lim inf
n

Fn(ρn).

Proof. First, we have
ˆ T

0

ˆ
Ω

|ρ̇n(t, x)|dxdt ≤
ˆ T

0

ˆ
Ω

Lε(ρ̇n(t, x))dxdt ≤ Fn(ρn) ≤ C,

so that ‖ρ̇n‖L1([0,T ]×Ω) is bounded. By embedding L1([0, T ]×Ω) intoM([0, T ]×Ω), the space of Radon
measures, there exists a subsequence of (ρ̇n)n which converges weakly inM([0, T ]×Ω) towards a measure
which can only be ρ̇. The semi-continuity of the mass for the weak convergence provides

ˆ T

0

ˆ
Ω

|ρ̇(t, x)|dxdt ≤ lim inf
n→∞

‖ρ̇n‖L1([0,T ]×Ω) ≤
ˆ T

0

ˆ
Ω

Lε(ρ̇n(t, x))dxdt
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(where, actually, the first integral is to be intended as a mass in the sense of measures, or as the total

variation of the curve t 7→ ρ(t) in L1(Ω)). Then, using again ρn
L2

⇀ ρ, we obtain
ˆ T

0

ˆ
Ω

V (t, x)ρ(t, x)dxdt = lim
n→∞

ˆ T

0

ˆ
Ω

V (t, x)ρn(t, x)dxdt.

Using f ≤ fn and the convexity of f , which implies the weak lower semi-continuity of ρ 7→
˜
f(ρ(t, x))dxdt,

we have ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt ≤ lim inf
n→∞

ˆ T

0

ˆ
Ω

fn(ρn(t, x))dxdt.

Moreover, by the definition of fn, we also obtain
ˆ T

0

ˆ
Ω

(ρ−)2(t, x)dxdt ≤ lim inf
n

ˆ T

0

ˆ
Ω

((ρn)−)2(t, x)dxdt = 0

since
˜

((ρn)−)2(t, x)dxdt ≤ C
n . This shows ρ ≥ 0.

Since for all t ∈ [0, T ], ρn(t) ⇀ ρ(t) weakly in L2(Ω), we have in particular ρn(0) ⇀ ρ(0) and
ρn(T ) ⇀ ρ(T ) weakly in L2(Ω) and consequently weakly in L1(Ω), so by the lower semi-continuity of ψ0

and ψT , we have

ψ0(ρ(0)) ≤ lim inf
n

ψ0(ρn(0)) and ψT (ρ(T )) ≤ lim inf
n

ψT (ρn(T )).

Since (‖ρn(0)‖L2(Ω))n and (‖ρn(T )‖L2(Ω))n are bounded we also have L1 bounds and hence

lim
n
αnψ0(ρn(0)) = lim

n
ψ0(ρn(0)) and lim

n
αnψT (ρn(T )) = lim

n
ψT (ρn(T )).

Finally, we use the positivity of the term
ˆ T

0

(´
ρn(t, y)dy − 1

)2
2δ

dt

to obtain
F (ρ) ≤ lim inf

n
Fn(ρn),

and its boundedness to obtain
´
ρ(t) = lim

´
ρn(t) = 1 for a.e. t.

The following lemmas will be useful for the existence and regularity of the solution to (4.7) and will
be referred to when needed.

Lemma 4.2.2. Suppose that m0 is such that
´
f(m0) < +∞ (in particular m0 ∈ L2(Ω)). For all ρ ∈ E

there exists a sequence (ρn)n in D = H1([0, T ];L2(Ω)) which converges to ρ strongly in L2
t,x and which

satisfies

ρn(0) =m0

‖ρ̇n‖L1([0,T ]×Ω) ≤‖ρ̇‖L1([0,T ]×Ω) + ‖ρ(0+)−m0‖L1(Ω) (4.9)

= ‖ρ̇‖L1([0,T ]×Ω) + ψ0(ρ(0+))

lim sup
n

ˆ T

0

ˆ
Ω

f(ρn(t, x))dxdt ≤
ˆ T

0

ˆ
Ω

f(ρ(t, x))dxdt (4.10)

lim
n→∞

ˆ T

0

ˆ
Ω

ρn(t, x)V (t, x)dxdt =

ˆ T

0

ˆ
Ω

ρ(t, x)V (t, x)dxdt (4.11)

lim
n
ψT (ρn(T )) =ψT (ρ(T−)) (4.12)

In addition, if for all t ∈ [0, T ],
´

Ω
ρ(t, x)dx = 1, then for all n ∈ N and all t ∈ [0, T ],

´
Ω
ρn(t, x)dx = 1.

Proof. Let ρ ∈ E . We denote by ηn a sequence of mollifiers in the t variable (i.e. ηn is a sequence of
smooth probability measures on R such that ηn ⇀ δ0), and we suppose sptηn ⊂ [0, 1

n ].
The function ρ is only defined on the time interval [0, T ], but we can extend ρ to a function ρ̃ :

[−1, T ] × Ω → R setting ρ̃(t) = m0 for all t < 0. The total variation in L1 of this extension is equal to
the sum of that of ρ and the L1 distance between m0 and ρ(0+).

We then define ρn as the convolution of ρ̃ with the mollifiers ηn in time:

ρn(t, x) :=

ˆ
ηn(t− s)ρ̃(s, x)ds.
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With the assumption on the support of ηn this convolution is well-defined on [0, T ] even if ρ̃ has not been
extended on ]T,+∞[. Moreover, we have ρn(0) = m0.

Note that we have

|ρ̇n(t, x)| =
∣∣∣∣ˆ η′n(t− s)ρ̃(s, x)ds

∣∣∣∣ ≤ C(n)

ˆ t

t−1/n

ρ̃(s, x)ds

so that we have

‖ρ̇n(t)‖L2(Ω) ≤ C(n)

ˆ t

t−1/n

||ρ̃(s)||L2(Ω)ds ≤ C(n)

(we use here the assumption m0 ∈ L2(Ω)). This proves ρn ∈ H1([0, T ];L2(Ω)).
The convexity of the total variation easily implies (4.9). Again by convexity, for any convex function

g we have ˆ T

0

ˆ
Ω

g(ρn(t, x))dxdt ≤
ˆ T

−1/n

ˆ
Ω

g(ρ̃(t, x))dxdt→
ˆ T

0

ˆ
Ω

g(ρ(t, x))dxdt,

where the last limit is valid whenever
´

Ω
g(m0) < +∞. Applying this to g(ρ) = ρ2 proves that ρn strongly

convergence in L2
t,x to ρ (it provides an L2 bound, hence a weak limit up to subsequences; this weak limit

can be identified as ρ by testing against continuous functions; the limit is actually strong because the L2

norm converges to that of the limit). This implies, in particular, (4.11). As for (4.10), it is enough to use
g = f .

To prove (4.12), we use the property of bounded variation functions: ρ admits a left limit at T in L1,
i.e for every ε > 0 there exists δ > 0 such that ‖ρ(t)−ρ(T−)‖L1 ≤ ε for every t ∈ [T − δ, T [. By convexity
this implies, as soon as 1

n < δ, ‖ρn(T ) − ρ(T−)‖ ≤ ε and shows ρn(T ) → ρ(T−) strongly in L1. This
implies (4.12).

If we suppose in addition that for all t ∈ [0, T ],
´

Ω
ρ(t, x)dx = 1 the same will be true for ρn by

convexity, which concludes the proof of the statement.

Lemma 4.2.3. Let (ρn)n be a sequence in E. Suppose that there exists C1 > 0 and C2 > 0 such that

∀n ∈ N∗, sup
t∈[0,T ]

‖ρ̇n(t)‖L2(Ω) ≤ C1, (4.13)

and ˆ T

0

‖ρn(t)‖2L2(Ω)dt ≤ C2. (4.14)

Then, there exists C3 > 0 such that

∀n ∈ N∗, sup
t∈[0,T ]

‖ρn(t)‖L2(Ω) ≤ C3.

Proof. Hypothesis (4.13) implies,

∀t, s ∈ [0, T ], ‖ρn(t)− ρn(s)‖L2(Ω) ≤ C1|t− s|. (4.15)

By the continuity of ‖ρn(·)‖L2(Ω), there exists a time t0,n ∈ [0, T ] at which the mean-value is reached:

‖ρn(t0,n)‖2L2(Ω) =

´ T
0
‖ρn(t)‖2L2(Ω)dt

T
,

so by Hypothesis (4.14),

‖ρn(t0,n)‖2L2(Ω) ≤
C2

T
. (4.16)

By (4.15) and (4.16), we have for all t ∈ [0, T ],

‖ρn(t)‖L2(Ω) ≤ ‖ρn(t)− ρn(t0,n)‖L2(Ω) + ‖ρn(t0,n)‖L2(Ω) ≤ C1T +
C2

T
:= C3.

Theorem 4.2.4. Suppose that ψ0 : L1(Ω) → R and ψT : L1(Ω) → R are 1-Lipschitz and weakly lower
semi-continuous on L1(Ω) and that V : [0, T ] × Ω → R belongs to Lip([0, T ];L2(Ω)). Suppose also that
f : R→ R is c0-convex, i.e f ′′ ≥ c0 on R.
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Then, there exists a unique minimizer ρ to the problem

min
ρ∈E, ρ≥0

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

F (ρ). (4.17)

This solution belongs to Lip([0, T ];L2(Ω)) and it satisfies

sup
t∈[0,T ]

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C, (4.18)

where C =
C2

0

c20
with C2

0 = supt∈[0,T ] ‖V ′(t, ·)‖2L2(Ω).

Proof. To obtain the regularity (4.18), we will approximate the problem (4.17) as already described at
the beginning of this section; i.e. solving

min
ρ∈En

Fn(ρ) :=

ˆ T

0

( n∑
i=1

1

n
(Lε(nρ̇i(t)) + fn(nρi(t))) + nρi(t)

ˆ
Ani

V (t, x)dx

)
+

(∑
j ρj(t)− 1

)2

2δ

 dt

(4.19)

+ ψ0,α(ρ(0)) + ψT,α(ρ(T )),

where we denote by En the set of piecewise constant (in space) functions ρ ∈ E such that

∀t ∈ [0, T ],∀x ∈ Ω, ρ(t, x) =

n∑
i=1

nρi(t)1Ani (x),

where ρi : [0, T ]→ R is a real-valued function. With the definition, the mass of ρ on each Ani equals ρi(t).
In particular, if we consider the curves ρi(t), for each i the curve ρi solves

min
ρi∈H1([0,T ];R)

ˆ T

0

Lε(nρ̇i(t)) + fn(nρi(t)) + nρi(t)V
n
i (t) +

(∑
j ρj(t)− 1

)2

2δ

 dt (4.20)

+ αani,0(ρi(0)) + αai,T (ρi(T ))

where V ni (t) := 1
|Ani |

´
Ani

V (t, x)dx = n
´
Ani

V (t, x)dx. The function V n(t) defined to be equal to V ni (t) in
Ani satisfies

‖V n(t)‖L2(Ω) ≤ ‖V (t)‖L2(Ω), ‖V n‖L2([0,T ]×Ω) ≤ ‖V ‖L2([0,T ]×Ω), ‖∂tV n(t)‖L2(Ω) ≤ ‖∂tV (t)‖L2(Ω).

All these inequalities are a consequence of Jensen’s inequality. Indeed, we have for all n ∈ N and t ∈ [0, T ],

ˆ
Ani

V ni (t, x)2dx =

ˆ
Ani

n2

(ˆ
Ani

V (t, y)dy

)2

dx = n

(ˆ
Ani

V (t, y)dy

)2

=
1

n

(
n

ˆ
Ani

V (t, y)dy

)2

≤ 1

n

(
n

ˆ
Ani

V (t, y)2dy

)
=

ˆ
Ani

V (t, y)2dy.

The proof is divided in several steps.
STEP 1 The minimizers of (4.19), which is a finite-dimensional variational problem in H1, exist by

the direct method. A presentation of this method is described for example in [San23, Section 1.2.1] or in
[Dac07, Section 3.4.1].

STEP 2 Let ρn be a minimizer of Fn for all n. In this step, we bound ‖ρ̇n(t)‖L2(Ω) independently of
n so that we will be able to pass to the limit n→∞. We remind that ρn is piecewise constant in space:
ρn(t, x) :=

∑n
i=1 nρn,i(t)1Ani (x). In the following, we fix n and write ρi(t) instead of ρn,i(t) to enlighten

the notation.
The Euler-Lagrange equation of (4.20) is

(L′ε(nρ̇i(t)))
′

= V ni (t) + f ′n(nρi(t)) +

(∑
j ρj(t)− 1

)
nδ

. (4.21)
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Differentiating the equation (4.21) yields

(L′ε(nρ̇i(t)))
′′

= (V ni )′(t) + nρ̇i(t)f
′′
n (nρi(t)) +

∑
j ρ̇j(t)

nδ
.

Multiplying by ρ̇i(t) and summing over i gives

n∑
i=1

ρ̇i(t)(L
′
ε(nρ̇i(t)))

′′ =

n∑
i=1

(V ni )′(t)ρ̇i(t) + n(ρ̇i(t))
2f ′′n (nρi(t)) +

(∑
j ρ̇j(t)

)2

nδ
.

Since the term
(∑

j ρ̇j(t)
)2

is positive, using f ′′n ≥ c0 as well, we obtain the inequality

n∑
i=1

ρ̇i(t) (L′ε(nρ̇i(t)))
′′ ≥

n∑
i=1

(V ni )′(t)ρ̇i(t) + c0n(ρ̇i(t))
2. (4.22)

Now, we need to estimate the left-hand side of (4.22). By expanding the second derivative, we have

n∑
i=1

ρ̇i(t) (L′ε(nρ̇i(t)))
′′

=

n∑
i=1

ρ̇i(t) (nρ̈i(t)L
′′
ε (nρ̇i(t)))

′ (4.23)

=

n∑
i=1

ρ̇i(t)
(
(nρ̈i(t))

2L′′′ε (nρ̇i(t)) + n
...
ρ i(t)L

′′
ε (nρ̇i(t))

)
.

Let us define the function h : R→ R such that h(s) = sL′ε(s)− Lε(s). Then, h verifies

h′(s) = sL′′ε (s) and h′′(s) = L′′ε (s) + sL′′′ε (s).

We now consider

max
t∈[0,T ]

n∑
i=1

h(nρ̇i(t)). (4.24)

Two cases will be distinguished:

• the maximum is reached on (0, T ),

• the maximum is reached on {0, T}.

(i) Suppose there exists t0 ∈]0, T [ such that
∑n
i=1 h(nρ̇i(t0)) = maxt∈[0,T ]

∑n
i=1 h(nρ̇i(t)).

In particular, we have

n∑
i=1

nρ̈i(t0)h′(nρ̇i(t0)) =

n∑
i=1

n2ρ̈i(t0)ρ̇i(t0)L′′ε (nρ̇i(t0)) = 0

and
n∑
i=1

n
...
ρ i(t0)h′(nρ̇i(t0)) + (nρ̈i(t0))2h′′(nρ̇i(t0)) ≤ 0,

i.e
n∑
i=1

n2...ρ i(t0)ρ̇i(t0)L′′ε (nρ̇i(t0)) + (nρ̈i(t0))2 (L′′ε (nρ̇i(t0)) + nρ̇i(t0)L′′′ε (nρ̇i(t0))) ≤ 0.

Inserting (4.22) and (4.23) in t0, the last inequality becomes

n∑
i=1

(
(V ni )′(t0)ρ̇i(t0) + c0nρ̇i(t0)2

)
≤ −

n∑
i=1

(nρ̈i(t0))2L′′ε (nρ̇i(t0)) ≤ 0. (4.25)

Let us precise the expression of h:

h(s) = sL′ε(s)− Lε(s)

=
s2

√
s2 + ε2

+ 2εs2 −
√
s2 + ε2 − εs2 =

s2 − s2 − ε2

√
s2 + ε2

+ εs2

= − ε2

√
s2 + ε2

+ εs2 < εs2.
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Since t0 is a maximizer of
∑n
i=1 h(nρ̇i), for all t ∈ [0, T ], we obtain

n∑
i=1

h(nρ̇i(t)) =

n∑
i=1

− ε2√
(nρ̇i(t))2 + ε2

+ ε(nρ̇i(t))
2 (4.26)

≤
n∑
i=1

h(nρ̇i(t0)) < ε

n∑
i=1

(nρ̇i(t0))2.

In particular, we have
n∑
i=1

− ε√
(nρ̇i(t))2 + ε2

+ (nρ̇i(t))
2 <

n∑
i=1

(nρ̇i(t0))2.

Since ε√
nρ̇i(t)2+ε2

≤ 1, for all t ∈ [0, T ],

n∑
i=1

nρ̇i(t)
2 < 1 +

n∑
i=1

nρ̇i(t0)2. (4.27)

Besides, thanks to Cauchy-Schwarz inequality, the inequality (4.25) becomes

c0

n∑
i=1

nρ̇i(t0)2 ≤ −
n∑
i=1

(V ni )′(t0)ρ̇i(t0) (4.28)

≤

√√√√ n∑
i=1

1

n
(V ni )′(t0)2

√√√√ n∑
i=1

nρ̇i(t0)2

≤

√√√√ sup
t∈[0,T ]

n∑
i=1

ˆ
Ani

(V n)′(t)2dx

√√√√ n∑
i=1

nρ̇i(t0)2

≤ sup
t∈[0,T ]

‖(V n)′(t, ·)‖L2(Ω)

√√√√ n∑
i=1

nρ̇i(t0)2

≤ sup
t∈[0,T ]

‖V ′(t, ·)‖L2(Ω)

√√√√ n∑
i=1

nρ̇i(t0)2.

Finally, (4.28) gives

c20

n∑
i=1

nρ̇i(t0)2 ≤ sup
t∈[0,T ]

‖V ′(t, ·)‖2L2(Ω). (4.29)

By gathering the inequalities (4.27) and (4.29), there exists a constant C2
0 := supt∈[0,T ] ‖V ′(t, ·)‖2L2(Ω) ≥

0 independent from n such that for all t ∈ [0, T ],

n∑
i=1

nρ̇i(t)
2 ≤ 1 +

n∑
i=1

nρ̇i(t0)2 ≤ 1 +
C2

0

c20
. (4.30)

Yet, for all t ∈ [0, T ], the L2-norm of ρ̇n(t) is

‖ρ̇n(t)‖2L2(Ω) =

n∑
i=1

ˆ
Ani

(nρ̇i(t))
2 =

n∑
i=1

nρ̇i(t)
2,

so, for all n ∈ N, a minimizer of (4.20) verifies

sup
t∈[0,T ]

‖ρ̇n(t)‖2L2(Ω) ≤ 1 +
C2

0

c20
. (4.31)

(ii) Suppose that the maximum of (4.24) is reached at 0, i.e
∑n
i=1 h(nρ̇i(0)) = maxt∈[0,T ]

∑n
i=1 h(nρ̇i(t)).

The transversality condition yields

L′ε(nρ̇i(0)) = (αani,0)′(ρi(0)),
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and we know that αani,0 is Lipα. Using L′ε(s) = s√
s2+ε2

+ 2εs, we get∣∣∣∣∣ nρ̇i(0)√
(nρ̇i(0))2 + ε2

+ 2εnρ̇i(0)

∣∣∣∣∣ ≤ α.
This inequality is equivalent to (

1√
(nρ̇i(0))2 + ε2

+ 2ε

)
|nρ̇i(0)| ≤ α

which yields

1√
(nρ̇i(0))2 + ε2

|nρ̇i(0)| ≤ α,

i.e. |nρ̇i(0)| ≤ α
√

(nρ̇i(0))2 + ε2,

i.e. |nρ̇i(0)|2 ≤ α2[(nρ̇i(0))2 + ε2],

i.e. (1− α2)|nρ̇i(0)|2 ≤ α2ε2.

This leads to
|nρ̇i(0)| ≤ αε√

1− α2
.

(Note that we could have directly referred to the computation in Proposition 4.1.2.)
Thanks to this inequality, we can conclude similarly to (4.30) that

n∑
i=1

nρ̇i(t)
2 < 1 +

n∑
i=1

nρ̇i(0)2,

≤ 1 +
nα2ε2

n(1− α2)
= 1 +

α2ε2

1− α2
,

so, if α→ 1 and ε→ 0 in a way that α2ε2

1−α2 remains below 1, we have

sup
t∈[0,T ]

‖ρ̇n(t)‖2L2(Ω) = sup
t∈[0,T ]

n∑
i=1

nρ̇i(t)
2 ≤ 2. (4.32)

Remark 4.2.5. The upper bounds in (4.31) and (4.32) can be improved to quantities which are abritrarily
close to C2

0/c
2
0 and 0, respectively.

For the first one, it suffices to define a slightly different approximation of | · |. If one take Lε,A(s) =√
s2 + ε2 +Aεs2 instead of Lε, the calculus remains the same, except for (4.26), which becomes

n∑
i=1

h(nρ̇i(t)) =

n∑
i=1

− ε2√
(nρ̇i(t))2 + ε2

+Aε(nρ̇i(t))
2

≤
n∑
i=1

h(nρ̇i(t0)) < Aε

n∑
i=1

(nρ̇i(t0))2,

and yields the inequality

A

n∑
i=1

nρ̇i(t)
2 < 1 +A

n∑
i=1

nρ̇i(t0)2,

i.e
n∑
i=1

nρ̇i(t)
2 <

1

A
+

n∑
i=1

nρ̇i(t0)2.

Since the constant A can be chosen as large as we want, the bound can be C2
0/c

2
0.

For the second estimate, it is enough to choose α→ 1 such that α2ε2

1−α2 → 0 which allows to replace the
second term in (4.32) by almost 0 (and the first one can be taken small as well, as we have just explained).

The same computations lead to the same conclusion if the maximum were reached on T .
To conclude, by (4.31), (4.32) and Remark 4.2.5, we have shown that

∀n, sup
t∈[0,T ]

‖ρ̇n(t)‖2L2(Ω) ≤ max

{
C2

0

c20
, 0

}
=
C2

0

c20
:= C.
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STEP 3 In this step, we prove that there exists a subsequence of (ρn)n which converges to a function
ρ ∈ C0([0, T ], L2(Ω)).

The sequence (ρn(t))n is equi-Lipschitz in L2(Ω) but the norm L2
t,x is also bounded, which provides

a uniform bound ||ρn(t)||L2(Ω) ≤ C (see Lemma 4.2.3). Bounded sets in L2(Ω) are not compact for the
strong convergence, but they are compact, by Banach-Alaoglu’s theorem, for the weak convergence. The
equicontinuity that we have is in the strong sense, so it also holds in the weak sense, and we can then
apply the Arzelà-Ascoli’s theorem to extract a subsequence of (ρn)n which converges to ρ in the sense of
(4.8).

Additionally, we obtain by the lower semi-continuity property of the L2-norm that the limit curve ρ
is also Lipschitz in time for the strong L2 norm:

∀(t, s) ∈ [0, T ]2, ‖ρ(t)− ρ(s)‖L2(Ω) ≤ C|t− s|.

STEP 4 The goal of this step is to prove that the limit ρ found previously is actually a minimizer
of (4.17). Comparing to a suitable competitor (for instance a discretization of m0, constant in time), we
can see that there exists C > 0 such that Fn(ρn) ≤ C for all n.

First, let us notice that
´

Ω
ρ(t, x)dx = 1, for all t ∈ [0, T ]. Indeed, we have

ˆ T

0

(ˆ
Ω

ρ(t, x)dx− 1

)2

dt ≤ lim inf
n

ˆ T

0

(ˆ
Ω

ρn(t, x)dx− 1

)2

dt = 0.

Second, by Lemma 4.2.1, we have that F (ρ) ≤ lim infn Fn(ρn).
Third, let m ∈ D = H1([0, T ];L2(Ω)) be such that

´
Ω
m(t, y)dy = 1. In what follows, we prove that

there exists a sequence (mn)n such that lim supn Fn(mn) ≤ F (m).
We define the sequence (mn)n by choosing piecewise constant functions such that

∀t ∈ [0, T ],∀x ∈ Ani , mn(t, x) = n

ˆ
Ani

m(t, y)dy (4.33)

which verifies
´

Ω
mn(t, y)dy =

´
Ω
m(t, y)dy = 1. This lets the term penalizing the mass of mn disappear

in Fn(mn) and, using m ≥ 0 and mn ≥ 0, the penalization of the negative part disappears as well:

Fn(mn) =

ˆ T

0

ˆ
Ω

Lε(ṁn(t, x)) + f(mn(t, x)) +mn(t, x)V n(t, x)dxdt+ ψ0,α(mn(0)) + ψT,α(mn(T )).

We observe that, by Jensen’s inequality, exactly as it happens for V n, the sequence mn is bounded in
L2 (the norm is bounded by that of m) and clearly weakly converges to m (it is enough to test against
continuous test functions). So, it strongly converges to m in L2. This is true both in L2

t,x and in L2
x for

every t. In particular, the boundary terms and the linear term
´
mnV

n converge to the corresponding
terms with m. As for the term

´
f(mn), it can be bounded (again thanks to Jensen’s inequality) by´

f(m). We are left to bound the term involving the time-derivative.
Using again the Jensen inequality we have

´
Lε(ṁn) ≤

´
Lε(ṁ) and using m ∈ D (i.e. ṁ ∈ L2

t,x) the
quantity in the right-hand side tends to ‖ṁ‖L1([0,T ]×Ω).

Summing up, we have proved that for all m ∈ D such that
´

Ω
m(t, x)dx = 1, there exists a sequence

(mn)n which converges to m strongly in L2([0, T ]× Ω) and which verifies

lim sup
n

Fn(mn) ≤ F (m). (4.34)

Now, we can prove that ρ minimizes F . Let m ∈ D be a competitor such that
´

Ω
m(t, x)dx = 1 and

(mn)n the sequence defined in (4.33). Since for all n ∈ N, ρn minimizes Fn, we have

∀n ∈ N, Fn(ρn) ≤ Fn(mn).

By Lemma 4.2.1 and the property (4.34), we obtain

∀m ∈ D,F (ρ) ≤ F (m). (4.35)

The inequality is true for all m ∈ D, there remains to show that it is true for all m ∈ E .
Let m ∈ E be such that

´
Ω
m(t, x)dx = 1. By Lemma 4.2.2, there exists a sequence (mn)n ⊂ D which

converges to m strongly in L2
t,x and such that

´
RN mn(t, x)dx = 1 for all n ∈ N. This sequence may be

different from (4.33). By Inequality (4.35), we have

∀n ∈ N, F (ρ) ≤ F (mn).
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By using the properties (4.9), (4.10) and (4.11) and the fact that m is supported in [0, T ]×Ω, we obtain

∀m ∈ E , F (ρ) ≤ F (m),

which shows that the limit ρ is a minimizer of F .
To conclude, the function ρ is a solution to the problem (4.17) and verifies the property (4.18).
Moreover, the solution ρ is unique by the strict convexity of F , given by f .

4.3 Infinite horizon problems
Similar results can be proven in the infinite horizon case, with an exponential discount factor:

min
ρ∈E∞; ρ≥0

∀t∈R+,
´
Ω
ρ(t,x)dx=1

ˆ ∞
0

e−rt
ˆ

Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0)) := F∞(ρ)

where E∞ := BVloc(R+;L1(Ω)) ∩ L2
loc(R+ × Ω). This kind of infinite horizon problem is very classical in

economical models and we will not discuss any more its economical motivations. From the mathematical
point of view, it is interesting as we get rid of some difficulties (which will appear in the next section)
related to the transversality condition at t = T but the computations which provide the time regularity
can be re-done up to minor modifications.

We have the following result:

Theorem 4.3.1. Suppose that ψ0 : L1(Ω)→ R is 1-Lipschitz and weakly lower semi-continuous on L1(Ω)
and that V : R+×Ω→ R belongs to Lip(R+;L2(Ω)). Suppose also that f : R→ R is c0-convex, i.e f ′′ ≥ c0.

Then, there exists a unique solution ρ to the problem

min
ρ∈E∞; ρ≥0

∀t∈R+,
´
Ω
ρ(t,x)dx=1

F∞(ρ),

and it satisfies

sup
t∈R+

ˆ
Ω

|ρ̇(t, x)|2dx ≤ C∞, (4.36)

where C∞ =
C2

0

c20
> 0 only depends on V with C2

0 = supt∈R+
‖V ′(t, ·)‖2L2(Ω) and on c0.

Proof. The proof will be very similar to the case discussed in Section 4.2, and we will only highlight the
differences. First, there is an extra approximation due to the infinite horizon: we fix T (and, later, we
will consider T →∞) and we define the following approximated functional

FT (ρ) :=

ˆ T

0

e−rt
ˆ

Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+ ψ0(ρ(0))

and its approximation

FnT (ρ) :=

ˆ T

0

e−rt

 n∑
i=1

1

n

Lε(nρ̇i(t)) + fn(nρi(t)) +

(∑
j ρj(t)− 1

)2

2δ

+ nρi(t)

ˆ
Ani

V (t, x)dx

 dt+ψ0,α(ρ(0)),

where Lε and the partition Ω = ∪ni=1A
n
i are the same as in the proof of Theorem 4.2.4.

We solve the problem
min
ρ∈En

FTn (ρ). (4.37)

We adapt the proof of Theorem 4.2.4 and we mention here the main differences.
STEP 1 Using the fact that e−rT ≤ e−rt, we can conclude similarly to Step 1 in Theorem 4.2.4 that

there exists a solution to problem (4.37).
STEP 2 Let ρn (denoted ρ in this step for simplicity) be a minimizer of FTn . We exploit the Euler-

Lagrange equation for each component ρi(t) in order to obtain bounds. The equation is slightly different
now, due to the coefficient e−rt. We have

(
e−rt L′ε(ρ̇i)

)′
= e−rt

(
V ni (t, xi) + f ′n(nρi) +

∑
j ρj − 1

δ

)
(4.38)

i.e − rL′ε(ρ̇i) + (L′ε(ρ̇i))
′ = V ni (t, xi) + f ′n(nρi) +

∑
j ρj − 1

δn
.
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Similarly to the proof of Theorem 4.2.4, we differentiate Eq. (4.38), multiply it by ρ̇i and sum over i:

∑
i

(−rρ̈iρ̇iL′′ε (ρ̇i) + ρ̇i(L
′
ε(ρ̇i))

′′) =
∑
i

(
ρ̇i(V

n
i )′(t, xi) + nρ̇2

i f
′′
n (nρi)

)
+

(
∑
i ρ̇i)

2

δn
.

Compared to Section 4.2, there is an extra term equal to
∑
i(−rρ̈iρ̇iL′′ε (ρ̇i). We now take again h the

function such that
h(s) = sL′ε(s)− Lε(s)

and look at maxt∈[0,T ]

∑n
i=1 h(nρ̇i(t)).

The extra term in the Euler-Lagrange equation appears in considering the maximum in (0, T ), but in
this case we also have

n∑
i=1

h′(nρ̇i(t))ρ̈i(t) = 0.

Using h′(s) = sL′′ε (s) we see that this lets the extra term vanish, and the computations are then un-
changed.

As for the case where the maximum is reached at t = 0, the transversality condition is exactly the
same as in Section 4.2 because of e−rt = 1. When the maximum is reached at t = T , the transversality
condition now gives e−rT L′ε(nρ̇i(T )) = 0 for every i. This allows to obtain ρ̇i(T ) = 0 and the maximum
cannot be reached at t = T .

This allows to bound
∑
i nρ̇i(t)

2 by a constant C∞ := C2
0/c

2
0 which only depends on c0 and the

quantity supt∈[0,T [ ‖V ′(t, ·)‖2L2(Ω) ≤ supt∈R+
‖V ′(t, ·)‖2L2(Ω)

:= C2
0 .

STEP 3 Now, we pass to the limit in n for fixed T . This follows the very same procedure based
on the Arzelà-Ascoli’s theorem, as in Section 4.2. In this way, we obtain a family (ρT )T of equilipschitz
functions in t valued in L2(Ω), satisfying the very same uniform bound on the time derivative, and each
ρT minimizes FT by proceeding the same way as in Step 4 of Theorem 4.2.4.

STEP 4 We pass to the limit T →∞. The previous step provides a family (ρT )T∈N of equilipschitz
minimizers of FT . By choosing a density m such that

´
f(m) < +∞ and comparing ρT to the constant

curve equal to m, using the integrability of the exponential discount coefficient e−rt, we obtain a uniform
bound FT (ρT ) ≤ C (independent of T ). Let us fix T0 < ∞. Since ρT is a minimizer of FT , we have
FT0(ρT ) ≤ FT (ρT ) ≤ C. Thus we have a bound (depending on T0, because of the coefficient e−rt)

sup
t∈[0,T0]

‖ρT (t)‖L2(Ω) ≤ CT0
.

This allows to apply Arzelà-Ascoli’s theorem for the convergence in the sense of (4.8), and extracting a
diagonal subsequence we obtain a subsequence of (ρT )T which converges towards ρ ∈ C0(R+, L

2(Ω)) in
the sense of (4.8), on each interval [0, T0].

STEP 5 In this step, we show that ρ defined previously is a minimizer of F . Let us denote by (ρTk)k,
the subsequence which converges to ρ. Let m ∈ E∞ be a competitor and T a fixed value. For all Tk ≥ T ,
we have

FT (ρTk) ≤ FT (m) ≤ F∞(m).

By the lower semi-continuity of FT we obtain FT (ρ) ≤ F∞(m) and, taking the limit T → ∞, we see
F∞(ρ) ≤ F∞(m).

This shows that ρ is a minimizer of F . Additionally, it verifies

∀t, s ∈ R+, ‖ρ(t)− ρ(s)‖L2(Ω) ≤ C∞|t− s|,

hence (4.36).

4.4 Regularity in space

While the regularity shown in the previous sections is in time, we can show regularity in space under
additional conditions on V and on the boundary conditions. We will start from the problem with Dirichlet
boundary conditions:

min
ρ∈E

ρ(0,·)=m0,ρ(T,·)=mT
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt := F (ρ), (4.39)
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where we remind that E := BV([0, T ];L1(Ω)) ∩ L2([0, T ] × Ω). Similarly to Section 4.2 and 4.3, we
approximate the problem (4.39) by

min
ρ∈En

ρ(0,·)=mn0 ,
ρ(T,·)=mnT

ˆ T

0

( n∑
i=1

1

n
Lε(nρ̇i(t)) + nρi(t)

ˆ
Ani

V (t, x)dx+
1

n
f(nρi(t))

)
+

(∑
j ρj(t)− 1

)2

2δ

 dt := Fn(ρ),

(4.40)
with the usual choices for Lε(s) =

√
s2 + ε2 + εs2 and En, the set of piecewise constant functions ρ ∈ E

such that

∀t ∈ [0, T ],∀x ∈ Ω, ρ(t, x) =

n∑
i=1

nρi(t)1Ani (x),

where ρi : [0, T ]→ R is a real-valued function. Note that here we prefer not replace the Dirichlet boundary
conditions with L1 penalizations, so that we need to discretize the initial and final data as well. We then
define mn

t to be piecewise constant approximations of mt (for t = 0, T ), taking in particular mn
i,t :=

1
|Ani |

´
Ani

mt(x)dx. We also set, as usual, V ni (t) := 1
|Ani |

´
Ani

V (t, x)dx.
We will consider the problem solved by ρi(t) for all i ∈ {1, . . . , n}:

min
nρi(0)=mni,0,

nρi(T )=mni,T

ˆ T

0

Lε(nρ̇i(t)) + f(nρi(t)) + nρi(t)V
n
i +

(∑
j ρj(t)− 1

)2

2δ

 dt. (4.41)

The Euler-Lagrange system of (4.41) is
(L′ε(nρ̇i(t)))

′
= V ni (t, xi) + f ′(nρi(t)) + c(t),

nρi(0) = mn
i,0,

nρi(T ) = mn
i,T ,

(4.42)

where c(t) :=
´
ρ(t,y)dy−1

δn .

Lemma 4.4.1. If ρ is a minimizer of (4.40), then for every i, j we have the following inequality:

n sup
t∈[0,T ]

ρi(t)− ρj(t) ≤ max

(
sup
t∈[0,T ]

V nj (t)− V ni (t),mn
i,0 −mn

j,0,m
n
i,T −mn

j,T ,

)
.

Proof. We consider
max
t∈[0,T ]

ρi(t)− ρj(t).

We distinguish three cases:

• the maximum is reached on (0, T ),

• the maximum is reached at 0

• the maximum is reached at T .

(i) If the maximum is attained at t0 ∈ (0, T ), we have ρ̇i(t0) = ρ̇j(t0) as well as ρ̈i(t0) ≤ ρ̈j(t0). This
implies ρ̈i(t0)L′′ε (nρ̇i(t0)) ≤ ρ̈j(t0)L′′ε (nρ̇j(t0)). By using (4.42) and substracting the equation for i
and that for j, we have

nρi(t0)− nρj(t0) ≤ 1

c0
(f ′n(nρi(t0)− f ′n(nρj(t0))

=ρ̈i(t0)L′′ε (nρ̇i(t0))− ρ̈j(t0)L′′ε (nρ̇j(t0)) + V nj (t0)− V ni (t0)

≤ V nj (t0)− V ni (t0) ≤ sup
t∈[0,T ]

V nj (t)− V ni (t).

Consequently, n(ρi(t0)− ρj(t0)) is bounded by supt∈[0,T ] V
n
j (t)− V ni (t).

(ii) If the maximum is reached at t = 0 we have

nρi(t)− nρj(t) ≤ mn
i,0 −mn

j,0

using the Dirichlet condition.
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(iii) If the maximum is reached at t = T we have

nρi(t)− nρj(t) ≤ mn
i,T −mn

j,T

using the other Dirichlet condition.

The claim follows by putting together the three cases.

Theorem 4.4.2. Let ρ be a minimizer of (4.39) and ω a function such that

1

c0
(V (t, x)− V (t, x′)),ms(x)−ms(x

′) ≤ ω(x− x′)

for all t, x, x′ with s = 0, T . Suppose either that ω is a constant or that limz→0 ω(z) = 0 (i.e., ω is a
modulus of continuity).

Then we have for a.e. t, x, x′

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. We first consider the curves ρn minimizing (4.40). We write the estimate from Lemma 4.4.1 in
terms of the densities ρn(t, x) = nρi(t). We obtain

ρn(t, x)− ρn(t, x′) ≤ ω(x− x′) + εn.

Indeed, if the function ω is a constant M , then the oscillations of V
c0
,m0 and mT are bounded by M and

so nρi − nρj ≤M as well. Otherwise, if ω is a modulus of continuity, then the functions V
c0
,m0 and mT

are continuous and their averages on small pieces Ani can be replaced by the values at the center of these
pieces up to a small error εn (which also takes into account that x and x′ can differ from the centers of
the corresponding pieces).

The family (ρn)n is bounded in L2([0, T ] × Ω). Differently from the case of Section 4.2, we do not
have Lipschitz estimates in time (note that this is not the same approximation as in Section 4.2, since we
impose the Dirichlet boundary conditions instead of penalizing them), but luckily we will not need them.
Indeed, the equicontinuity in time was essential to obtain uniform and pointwise bounds and deal with
the boundary terms. Here we just use weak convergence in L2([−1, T + 1]×Ω) after extending ρn to m0

on [−1, 0] and to mT on [T, T + 1]. It is easy to see that ρn admits a weakly converging subsequence and
that the limit solves (4.39). Note that the extension before t = 0 and after t = T is needed to include
the possible jump at those instants of time in the total variation and hence play the role of the Dirichlet
boundary condition.

The conclusion comes from the following Lemma 4.4.3.

Lemma 4.4.3. Let ρn be a sequence weakly converging to ρ in L2([0, T ] × Ω) and suppose that there
exists a function ω such that

∀n ∈ N∗,∀t ∈ [0, T ],∀x, x′ ∈ Ω, ρn(t, x)− ρn(t, x′) ≤ ω(x− x′) + εn

for a sequence εn → 0.
Then we have

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′)

whenever (t, x) and (t, x′) are Lebesgue points of ρ.

Proof. Let us take (t0, x0) and (t0, y0) in [0, T ] × Ω, two Lebesgue points of ρ. Let r > 0 be such that
]t0 − r, t0 + r[⊂ [0, T ], B(x0, r) ⊂ Ω and B(y0, r) ⊂ Ω, we have in particular

 t0+r

t0−r

 
B(x0,r)

ρn(t, x)dxdt −→
n→∞

 t0+r

t0−r

 
B(x0,r)

ρ(t, x)dxdt, (4.43)

and
 t0+r

t0−r

 
B(y0,r)

ρn(t, x)dxdt −→
n→∞

 t0+r

t0−r

 
B(y0,r)

ρ(t, x)dxdt. (4.44)

By assumption we have the inequality

 t0+r

t0−r

( 
B(x0,r)

ρn(t, x)dx−
 
B(y0,r)

ρn(t, x′)dx′

)
dt =

 t0+r

t0−r

 
B(x0,r)

(ρn(t, x)− ρn(t, x− x0 + y0)) dxdt

≤ ω(x0 − y0) + εn.
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By taking the limit n→∞ and applying (4.43) and (4.44) to the left-hand side of the inequality, we get

 t0+r

t0−r

( 
B(x0,r)

ρ(t, x)dx−
 
B(y0,r)

ρ(t, x′)dx′

)
dt ≤ ω(x0 − y0).

Since (t0, x0) and (t0, y0) are Lebesgue points, we can pass to the limit r → 0 and obtain

ρ(t0, x0)− ρ(t0, y0) ≤ ω(x0 − y0).

The case where the Dirichlet conditions are replaced by penalizations are harder to deal with. The
only case that is easy to consider requires that the transversality condition is the same for ρi and ρj . We
can obtain the following results for which we just sketch the modifications to the previous proofs.

Theorem 4.4.4. Let ρ be a minimizer of

min
ρ∈E

ρ(0,·)=m0,
∀t∈[0,T ],

´
Ω
ρ(t,x)dx=1

ˆ T

0

ˆ
Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt+

ˆ
ΨT ρ(T, x).

Let A ⊂ Ω be a set where ΨT is constant. Suppose that ω is a function (either constant or a modulus of
continuity) such that 1

c0
(V (t, x)− V (t, x′)),m0(x)−m0(x′) ≤ ω(x− x′) for all t, x, x′. Then we have for

a.e. x, x′ ∈ A
ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. The approximation will be the same as before, but the Dirichlet boundary condition at t = T is
replaced by a transversality condition. Choosing a decomposition into pieces Ani such that x, x′ belong
to two pieces contained in A, this transversality condition will be the same for the two curves ρi(t) and
ρj(t) that we need to consider to estimate ρ(t, x) − ρ(t, x′). In particular, we will have ρ̇i(T ) = ρ̇j(T ).
Hence, when considering maxt ρi(t) − ρj(t), the maximum could be attained on t0 = T but in this case
the first-order optimality condition will be satisfied, and this allows to obtain the second-order one, which
is the main tool to estimate ρi(t0)− ρj(t0). The rest of the analysis goes as in the rest of the section.

Theorem 4.4.5. Let ρ be a minimizer of

min
ρ∈E∞

ρ(0,·)=m0,
∀t∈R+,

´
Ω
ρ(t,x)dx=1

ˆ ∞
0

e−rt
ˆ

Ω

(|ρ̇(t, x)|+ V (t, x)ρ(t, x) + f(ρ(t, x))) dxdt := F (ρ).

Suppose that ω is a function (either constant or a modulus of continuity) such that for all t, x, x′

1

c0
(V (t, x)− V (t, x′)),m0(x)−m0(x′) ≤ ω(x− x′).

Then we have for a.e. x, x′

ρ(t, x)− ρ(t, x′) ≤ ω(x− x′).

Proof. We first replace F with FT as in Section 4.3. Then, the claim is the same as in Theorem 4.4.4
with ΨT = 0 (hence we can take A = Ω) with the only difference that have an extra coefficient e−rt.
This lets an extra term −rL′ε(nρ̇i) appear in the Euler-Lagrangian equation, but this term cancels when
taking the difference between i and j because of the first-order optimality condition for t0. The rest of
the analysis goes as in Theorem 4.4.4 and in the rest of the section. This provides a uniform estimate on
ρT , independent of T , and we can then take the limit T →∞.

We conclude summarizing the result that we can obtain in terms of spatial regularity:

• For the problem with two Dirichlet boundary conditions, if V,m0, and mT are continuous, then the
solution ρ shares the same modulus of continuity of V

c0
,m0, and mT . Combining this with the L2

Lipschitz regularity in time obtained in Section 4.2 this gives a uniform continuity result in (t, x).

• In the same problem, if V,m0, and mT are only bounded, then ρ is bounded, since its oscillation is
bounded by that of V

c0
,m0, and mT and its L2 norm is also bounded.
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• For the problem with a Dirichlet boundary condition at t = 0 and a penalization ΨT at t = T , if
ΨT is piecewise constant and V and m0 are continuous, then ρ is piecewise continuous, and hence
bounded. The solution ρ is also bounded if we only assume V and m0 to be bounded, and ΨT to
be piecewise constant.

• In the infinite-horizon problem with Dirichlet boundary condition at t = 0, the solution shares the
same modulus of continuity of V

c0
and m0 and is uniformly continuous in (t, x). It is uniformly

bounded if V and m0 are bounded.

• In the periodic case (which we briefly presented in Section 4.1 but did not develop here) the solution
ρ shares the same continuity or boundedness of V

c0
.

All the above continuity results are crucial for applications to the theory of Mean Field Games, since
the variational problem we studied, with a congestion penalization in the form of f(ρ), corresponds to a
MFG where every agent minimizes a cost over trajectories γ involving the integral of a running cost of
the form

´ T
0

(V +f ′(ρ))(t, γ(t))dt. This cost is not even well-defined if ρ(t, x) is not a continuous function
of x! When ρ is not continuous but it is bounded, a clever construction due to Ambrosio and Figalli
([AF09]) and re-used in the frameworks of MFG in [CMS16] allows to choose a particular representative
of this running cost for which it is possible to prove the desired equilibrium results. This explains our
interest for the spatial regularity and/or the boundedness of ρ.
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Chapter 5

Numerical simulations

In this chapter numerical simulations are carried out on the following problem

min
ρ∈E, ρ≥0

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

V(ρ) :=

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t, x)|+ V (t, x)ρ(t, x) +

ρ(t, x)2

2

)
dxdt+ ψ0(ρ(0)) + ψT (ρ(T ))

(5.1)
and on some of its variants (Dirichlet conditions, periodic case. . . ). The set E is BV([0, T ];L1(Ω)) ∩
L2([0, T ] × Ω). We study a particular case of V where f(ρ) = ρ2/2. The parameter λ > 0 allows us to
add more or less importance to the L1-norm.

In 2009, Beck and Teboulle [BT09] introduced an algorithm which approximates the solution to a
minimization problem of the form

min
x
f(x) + g(x),

where f is convex and sufficiently smooth and g is convex and can be less regular. The algorithm is called
the Proximal Gradient Method and is also known as the Iterative Shrinkage-Thresholding Algorithm
(ISTA). At each step, the method consists in composing the proximal operator (introduced by Moreau
in 1965 [Mor65]) of g with the step of the gradient method in f . Beck and Teboulle showed that the
sequence of the values (f(xn) + g(xn))n converges towards the optimal value at a speed of order O(1/n).
By using an acceleration due to Nesterov [Nes83], the speed of the convergence can be improved to the
order O(1/n2). The latter method is called the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA).

To compute numerically the solution of our problem, we will use the Fast Dual Proximal Gradient
Method, also introduced by Beck and Teboulle in 2014 [BT14], which consists in approximating the
solution to a problem of the form

min
x
f(x) + g(Ax),

where f is σ-strongly convex for some σ > 0, g is convex and A is a linear operator. The discretization
of the term ρ̇(t, x) involves a sparse matrix and the constraints ρ ≥ 0 and

´
ρ(t) = 1 have to be taken

into account. This is why the formulation with the linear operator is very useful. In addition, Beck and
Teboulle proved that the sequence (xn)n converges towards the minimizer at a speed of O(1/n), which
is slower than FISTA but occurs directly on the approximating sequence (xn)n and not on the values of
the function.

The first section is an introduction to non-smooth optimization algorithms which will lead to the
algorithm that we use.

For these numerical examples, we take the domain Ω := [0, S] to be one-dimensional with S > 0. In
Section 5.2, we study the following cases:

• periodic solutions 1D in time (only the time variable, Section 5.2.1, Figure 5.1).

• periodic solutions 1D in time and 1D in space (Section 5.2.2, Figures 5.2, 5.3).

• non-periodic solutions 1D in time and 1D in space, with or without Dirichlet conditions or penal-
izations at the time boundary (Section 5.2.3, Figures 5.4, 5.5, and 5.6).

In Section 5.3, we study the case where the solution ρ̄ is the fixed point of ρ̄ 7→ argminρ Vρ̄(ρ) described
in Section 2.2. We consider three different examples:

(i) V (ρ)(t, x) =
(ffl x+δ

x−δ ρ(t, y)dy
)2

+ V0(t, x) (Figure 5.7).

(ii) V (ρ)(t, x) = min
(´ x

0
arctan(ρ(t, y))dy,

´ S
x

arctan(ρ(t, y))dy
)

+ V0(t, x) (Figure 5.8).
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(iii) V (ρ)(t, x) =
ffl t

0
ρ(s, x)ds+ V0(t, x) (Figures 5.9).

Each of these examples is non-variational, i.e. we cannot find a functional for which they are the first
variation. The example (i) corresponds to a problem where each player considers the running cost
depending on the density in his neighborhood. The example (ii) describes an escape problem where
agents would like to exit the domain either from one side or from the other. In the last example (iii),
the players keep in memory the past experience.

5.1 Introduction to non-smooth optimization algorithms
To carry out the numerical simulations, we used the Fast Dual Proximal Gradient method whose presen-
tation can be found in [Bec17, Chapter 12]. This section is a small introduction to this method which is
inspired by [Bec17, Chapter 10]. The following methods are usually called first-order methods, since the
gradient of the function is involved.

5.1.1 The Proximal Gradient method
To explain the idea of the Proximal Gradient method, one can start with the Gradient Descent method.
To construct a sequence that approximates the solution to the problem

min
x∈Rn

f(x)

where f is differentiable and convex, the iteration at each step is

xk+1 = xk − tk∇f(xk).

The real number tk is given according to the type of algorithm we choose. For example, it can either be
constant for every k, or it can be computed in optimal way so that tk minimizes t 7→ f(xk − t∇f(xk)).
The latter is called the Optimal Step Gradient method and it is known that this method converges when
f is C1 and α−convex (see for example [Cia07, Theorem 8.4-3]).

Why is the direction −∇f(xk) the best we can choose?
If v ∈ Rn such that ‖v‖ = 1 is a direction which makes f diminish (i.e f(xk + v) ≤ f(xk)), we have

that 〈
∇f(xk)

∣∣v〉 = lim
t→0+

f(xk + tv)− f(xk)

t
≤ 0. (5.2)

Then, by the Cauchy-Schwarz inequality we have

−‖∇f(xk)‖‖v‖ ≤
〈
∇f(xk)

∣∣v〉
whose equality is reached when v and ∇f(xk) are colinear. It is better to choose the opposite direction of
∇f(xk), i.e v = −∇f(xk)/‖∇f(xk)‖, so that the scalar product (5.2) is as negative as possible. A more
obvious way to see is when the scalar product is written as

〈u|w〉 = ‖u‖ cos(û, w),∀u,w ∈ Rn and ‖w‖ = 1.

Indeed, the angle that minimizes 〈u|w〉 is π and it corresponds to w being in the opposite direction of u.

Remark 5.1.1. A little curiosity is that to reach the minimum in a finite number of steps, the direction
−∇f(xk) may not always be optimal. For example, if f(x, y) = 1

2 (αx2 + βy2) with 0 < α < β, then the
minimum point is (0, 0). We seek for an iteration k + 1 such that (xk+1, yk+1) = (0, 0). In particular,
there would exists t verifying {

xk − αtxk = 0
yk − βtyk = 0.

Since α and β are different, this implies that one of the coordinates (xk, yk) is null. In addition, if we
apply the Optimal Step Gradient Descent method, we would have tk = α2(xk)2+β2(yk)2

α3(xk)2+β3(yk)2 , so the next step
would be

xk+1 = xk − tkαxk =
β2(β − α)xk(yk)2

α3(xk)2 + β3(yk)2
and yk+1 = yk − tkβyk =

α2(α− β)yk(xk)2

α3(xk)2 + β3(yk)2
.

Therefore, if x0 6= 0 and y0 6= 0, then xk 6= 0 and yk 6= 0 for all k. Consequently, the Optimal Step
Gradient Descent method cannot reach the minimum.

This motivates the use of the Conjugate Gradient method which, at step k, consists in going in the
direction that is a linear combination of ∇f(xk), ∇f(xk−1), . . . , ∇f(x0), which should be a family of
two by two orthogonal vectors. Since we are in a space of finite dimension, the algorithm should end at
the minimum point. This example is presented in [Cia07, Section 8.5].
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If we restrict the problem to a nonempty closed and convex set C ⊂ Rn such that

min
x∈C

f(x), (5.3)

then at each step of the algorithm one just needs to project the iteration onto the set C:

xk+1 = PC(xk − tk∇f(xk)),

where PC is the projection on the set C. In this way, the iteration xk+1 can be written as

xk+1 = argminx∈C ‖x− (xk − tk∇f(xk))‖2.

Since tk is positive, xk+1 is also a minimizer of 1
2tk
‖x− (xk− tk∇f(xk))‖2 in C. By developing the latter,

we obtain

1

2tk
‖x− (xk − tk∇f(xk))‖2 =

1

2tk
‖x− xk‖2 +

〈
x− xk

∣∣∇f(xk
〉

+
1

2
tk‖∇f(xk)‖2.

The last term in the sum does not depend on x, so it can be cancelled in the minimization problem and
one can add f(xk) such that the iteration xk+1 becomes

xk+1 = argminx∈C

{
f(xk) +

〈
x− xk

∣∣∇f(xk
〉

+
1

2tk
‖x− xk‖2

}
.

In this form, xk+1 is said to be a minimizer of the linearisation of f in the previous iteration plus a
proximity term that prevents the next iteration to be too far from the previous one.

The problem (5.3) can be rewritten as

min
x∈Rn

f(x) + g(x)

where g(x) = δC(x) is the indicator function such that

δC(x) =

{
0, if x ∈ C,
+∞ otherwise (5.4)

and the iteration term becomes

xk+1 = argminx∈Rn

{
f(xk) +

〈
x− xk

∣∣∇f(xk
〉

+ g(x) +
1

2tk
‖x− xk‖2

}
.

By adding and cancelling terms that does not depend on x and multiplying by tk, we have

xk+1 = argminx∈Rn

{
tkg(x) +

1

2
‖x− (xk − tk∇f(xk))‖2

}
.

By the definition of the proximal operator which is

proxf (x) := argminu∈Rn

{
f(u) +

1

2
‖u− x‖2

}
,

we obtain that
xk+1 = proxtkg(x

k − tk∇f(xk)). (5.5)

The proximal operator was introduced by Jean-Jacques Moreau in 1965 and its full presentation can be
found in [Mor65].

The iteration (5.5) motivates the expression of the algorithm for more general g in the problem

min
x∈Rn

F (x) := f(x) + g(x) (5.6)

where f and g satisfy the following assumptions:

• f : Rn → (−∞,∞] is proper, closed and Lf -smooth and f is defined on dom(f) which is convex,

• g : Rn → (−∞,∞] is proper, closed and convex.

Let us recall the definitions below.
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Definition 5.1.2. A function f : Rn → (−∞,∞] is proper whether it does not attain −∞ and there
exists x such that f(x) <∞.

Definition 5.1.3. A function f : Rn → (−∞,∞] is closed if its sublevel sets {x ; f(x) ≤ α} are closed.

Definition 5.1.4. A function f : Rn → (−∞,∞] is Lf -smooth over a set D ⊂ Rn, if it is differentiable
over D and for all x, y ∈ D

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖.

One may notice that the convexity hypothesis on g allows the proximal operator in (5.5) to be well-
defined. Indeed, the minimum exists and is unique by the strict convexity of the quadratic term.

The step size tk is usually written as tk = 1
Lk

in the Proximal Gradient method described below.

The Proximal Gradient Method

Initialisation: x0 ∈ int(dom(f)).
Step for k ≥ 0:

• take Lk ≥ 0,

• xk+1 = prox 1

Lk
g(x

k − 1
Lk
∇f(xk))

In the particular case where f(x) = ‖Ax−b‖2 and g(x) = λ‖x‖1, this method is known as the Iterative
Shrinkage-Thresholding Algorithm (ISTA) which is often used in image denoising. I refer to [BT09] and
the references therein for an overview of the literature on this algorithm and its applications. By abuse
of language, the appelation ISTA describes the Gradient Proximal method for general f and g.

Concerning the rate of convergence of the sequence (xk)k defined by the Proximal Gradient method,
it is not obvious to prove that xk converges towards an optimal x∗ for the problem (5.6). However, we
know that the sequence of values (F (xk))k converges towards the minimum F (x∗) in a rate of convergence
that is O(1/k).

Theorem 5.1.5. Let (xk)k be a sequence defined by the Proximal Gradient method and x∗ be a minimizer
of F in (5.6). Let us take Lk = Lf for all k. Then for all k ≥ 1,

F (xk)− F (x∗) ≤ Lf‖x0 − x∗‖2

2k
.

Proof. See [BT09, Theorem 3.1].

5.1.2 The proximal operator

In some cases, the proximal operator of certain functions is not difficult to compute. Let us see in this
subsection some easy examples that we will use.

Definition 5.1.6. Let f : Rn → (−∞,∞] be a function. The proximal operator of f is defined such that
for all x ∈ Rn,

proxf (x) = argminu∈Rn

{
f(u) +

1

2
‖u− x‖2

}
.

The mapping proxf (x) is a set that might be empty or with at least one vector. The following theorem
ensures that under some conditions on f , the set proxf (x) is a singleton.

Theorem 5.1.7. Let f : Rn → (−∞,∞] be a proper, closed and convex function. Then proxf (x) is a
singleton for any x ∈ Rn.

Proof. See [Bec17, Theorem 6.3].

Example 5.1.8. (f is constant) Let c ∈ R. If f ≡ c, then proxf is the identity. For all x ∈ Rn,

proxf (x) = argminu∈Rn

{
c+

1

2
‖u− x‖2

}
= x.
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Example 5.1.9. (f is affine) Let a ∈ Rn and b ∈ R. If f(x) = 〈a|x〉+ b, then proxf is the translation
by −a. Indeed, for all x ∈ Rn,

proxf (x) = argminu∈Rn

{
〈a|u〉+ b+

1

2
‖u− x‖2

}
= argminu∈Rn

{
b+

1

2
‖u− (x− a)‖2 + 〈a|x〉 − 1

2
‖a‖2

}
= x− a.

Example 5.1.10. (f is an indicator) Let C be a nonempty set of Rn. To apply Theorem 5.1.7, we
need to suppose that C is closed and convex, so that proxf (x) is a singleton. Then proxf (x) = PC(x).
Indeed, the formulation of the proximal operator is exactly the definition of the projection onto a set:

proxf (x) = argminu∈Rn

{
δC(x) +

1

2
‖u− x‖2

}
= argminu∈C ‖u− x‖2 = PC(x).

Example 5.1.11. (f is the absolute value) Let λ ∈ R. If x ∈ R and f(x) = λ|x|, then

proxf (x) = [|x| − λ]+ sgn(x).

In particular, if λ > 0, then the proximal operator is usually denoted Tλ(x) := proxf (x) and

Tλ(x) =

 x− λ, if x ≥ λ,
0, if |x| < λ,
x+ λ, if x ≤ −λ.

This function is called the soft thresholding function.
The case λ < 0 is less used in the literature. The term |x| − λ is always positive so the proximal

operator is

proxf (x) =

{
x− λ, if x ≥ 0,
x+ λ, if x < 0.

The last example is treated when f is defined on the one-dimensional set R. Thanks to the next
theorem, it is possible to extend it to Rn when f is the `1-norm such that f(x1, . . . , xn) = λ(|x1|+ · · ·+
|xn|). Indeed, the proximal operator of the sum of functions with separate variables is the product of the
proximal operators of each of these functions.

Theorem 5.1.12. Let f : Rn → (−∞,∞] be such that

f(x1, . . . , xn) =

n∑
i=1

fi(xi), for all xi ∈ R and i = 1, . . . , n.

Then
proxf (x1, . . . , xn) = proxf1

(x1)× · · · × proxfn(xn).

Proof. We have

proxf (x1, . . . , xn) = argminy1,...,yn

n∑
i=1

[
fi(yi) +

1

2
‖yi − xi‖2

]

=

n∏
i=1

argminyi

[
fi(yi) +

1

2
‖yi − xi‖2

]

=

n∏
i=1

proxfi(xi).

Remark 5.1.13. The notation of the product of two sets A×B is used in Theorem 5.1.12 in a general
setting because proxfi(xi) might not be a singleton. Nonetheless, in what follows we deal with closed and
convex functions so that Theorem 5.1.7 holds. Therefore, when A = {a} and B = {b}, we shall denote
(a, b).

Example 5.1.14. (f is the `1-norm) Let λ ∈ R. If f(x) = λ‖x‖1 = λ(|x1| + · · · + |xn|), then by
Theorem 5.1.12, we have

proxf (x) = (Tλ(x1), . . . , Tλ(xn)) := Tλ(x),

where we extend the notation of Tλ to a vector.
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5.1.3 FISTA

The convergence rate of the Proximal Gradient method can be improved from O(1/k) to O(1/k2) by
using an acceleration of the gradient due to Nesterov in 1983 [Nes83]. The method by Nesterov consists
in accelerating the Gradient Descent method. The new algorithm introduced for the first time by Beck
and Teboulle in 2009 [BT09] called Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) mixes the
Proximal Gradient method and the accelerated method by Nesterov. The idea consists in applying the
usual Proximal Gradient step xk+1 = prox 1

Lk
g(y

k − 1
Lk
∇f(yk)) to the previous iterative yk and allowing

xk+1 to go a little further in the direction xk+1 − xk. So the new iteration yk+1 is a convex combination
of the steps xk+1 and xk with a coefficient chosen according to the Nesterov’s method [Nes83].

By taking the same assumptions of f and g as in the previous section, the algorithm is as follows:

FISTA

Initialisation: y0 = x0 ∈ Rn, t0 = 1.
Step for k ≥ 0:

• Lk > 0,

• xk+1 = prox 1

Lk
g(y

k − 1
Lk
∇f(yk)),

• tk+1 =
1+
√

1+4t2k
2 ,

• yk+1 = xk+1 +
(
tk−1
tk+1

)
(xk+1 − xk).

The convergence rate of FISTA is stated in the next theorem.

Theorem 5.1.15. Let (xk)k and (yk)k the sequences defined by FISTA and x∗ a minimal point for F .
Let Lk = Lf for all k. Then for all k ≥ 1,

F (xk)− F (x∗) ≤ 2Lf‖x0 − x∗‖2

(k + 1)2
.

Proof. See [BT09, Theorem 4.4].

Remark 5.1.16. In fact, the proof of this theorem only requires the sequence (tk)k to verify the following
two conditions:

(i) tk ≥ k+2
2 ,

(ii) t2k+1 − tk+1 ≤ t2k.

The sequence chosen in FISTA such that tk+1 = (1 +
√

1 + 4t2k)/2 actually achieves the equality in
condition (ii) and it verifies (i) by induction.

The convergence would also occur when tk = (k + 2)/2, since it verifies condition (ii):

t2k+1 − tk+1 − t2k =

(
k + 3

2

)2

−
(
k + 3

2

)
−
(
k + 2

2

)2

=
(k + 3)2 − 2(k + 3)− (k + 2)2

4

=
k2 + 6k + 9− 2k − 6− k2 − 4k − 4

4
= −1

4
≤ 0.

More generally, the previous theorem is also true if

tk =
k + a− 1

a
for any a ≥ 2. (5.7)

In addition, Chambolle and Dossal [CD15] showed that the iterates of FISTA (xk)k weakly converges
toward a minimizer x∗ of F when (tk)k is defined by (5.7) for a ≥ 2, while the convergence rate in FISTA
was only known for the values (F (xk))k.

In practice, we will use the sequence (tk)k defined as in (5.7) with a = 2.
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5.1.4 Dual Proximal Gradient method

The Dual Proximal Gradient method allows to solve another class of problems that are of the form

min
x∈Rn

f(x) + g(Ax) (5.8)

where

• f : Rn → (−∞,∞] is proper, closed and σ-strongly convex,

• g : Rm → (−∞,∞] is proper, closed and convex,

• A : Rn → Rm is a linear application.

Definition 5.1.17. A function f : Rn → (−∞,+∞] is σ-strongly convex for a given σ > 0 if f(·)− σ
2 ‖·‖

2

is convex.

The algorithm to solve this problem has been introduced by Beck and Teboulle [BT14] in 2014.
To write the dual problem of (5.8), we set z = Ax and insert it as a constraint in the problem:

min
x∈Rn,z∈Rm

Ax=z

f(x) + g(z).

For y ∈ Rm, the Lagrangian of this problem is then

L(x, z; y) = f(x) + g(z)− 〈y|Ax− z〉
= f(x) + g(z)−

〈
AT y

∣∣x〉+ 〈y|z〉 .

If we define the conjugate of f and g such as respectively

f∗(y) = max
x
{〈y|x〉 − f(x)} and g∗(y) = max

z
{〈y|z〉 − g(z)}, (5.9)

then L is also the Lagrangian of the problem

max
y
{q(y) := −f∗(AT y)− g∗(−y)}. (5.10)

By the Fenchel-Rockafellar duality theorem [ET99], we obtain that

inf
x∈Rn,z∈Rm

Ax=z

{f(x) + g(z)} = max
y

q(y),

where the maximum is attained.
Now we focus on the dual problem (5.10) on which we shall use FISTA. Let us denote

F(y) := f∗(AT y) and G(y) = g∗(−y), (5.11)

so that we consider the problem
min
y∈Rm

F(y) + G(y). (5.12)

In order to apply FISTA, we should check whether F and G verify the assumptions from Section 5.1.1.

Lemma 5.1.18. Let F and G be functions defined by (5.11) with f and g verifying the hypotheses
described at the beginning of this subsection. Then

• F : Rm → R is convex and LF -smooth with LF = ‖A‖2/σ,

• G : Rm → R is proper, closed and convex.

Proof. See [Bec17, Lemma 12.3].

Consequently, the next algorithm consists in FISTA applied to the dual problem (5.12). It will be
referred to as the dual representation since the iterations (yk)k correspond to the Lagrange multipliers
of our initial problem (5.8).
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The Fast Dual Proximal Gradient (FDPG) Method - dual representation

Initialisation: L ≥ LF = ‖A‖2
σ , w0 = y0 ∈ Rm t0 = 1.

Step for k ≥ 0:

• yk+1 = prox 1
LG

(wk − 1
L∇F(wk)),

• tk+1 =
1+
√

1+4t2k
2 ,

• wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).

Remark 5.1.19. It is always possible to go back to the algorithm without acceleration by taking the
constant sequence tk = 1 for all k ∈ N.

By Theorem 5.1.15, we obtain a convergence rate of order O(1/k2) on the sequence (q(yk))k.

Theorem 5.1.20. Let (yk)k be the sequence defined by the FDPG method (dual representation) and y∗
be a minimiser of q. Then for all k ≥ 1,

q(y∗)− q(yk) ≤ 2L‖y0 − y∗‖2

(k + 1)2
.

For the dual representation, the O(1/k2) convergence is preserved. However, it is not the case for the
primal representation which is described below.

Now that we have the dual sequence (yk)k, we would like to recover a sequence (xk)k that approaches
the minimizer of (5.8). To do that, we will use the following lemma.

Lemma 5.1.21. Let F and G be functions defined by (5.11). Then for all y, v ∈ Rm and L > 0, we have

y = prox 1
LG

(
v − 1

L
∇F(v)

)
(5.13)

if and only if

y = v − 1

L
Ax̄+

1

L
proxLg(Ax̄− Lv), (5.14)

where x̄ = argmaxx{
〈
x
∣∣AT v〉− f(x)}. (5.15)

To prove this lemma, we need some properties of the conjugate.

Lemma 5.1.22. Let f : Rn → (∞,∞] and f∗ : Rm → R be its conjugate, then we have for all x ∈ Rn

and y ∈ Rm:
〈x|y〉 = f(x) + f∗(y)⇔ y ∈ ∂f(x),

where ∂f(x) is the subdifferential of f such that ∂f(x) = {z ∈ Rn; f(y) ≥ f(x)+〈z|y − x〉 for all y ∈ Rn}.
If in addition f is closed, we have

〈x|y〉 = f(x) + f∗(y)⇔ y ∈ ∂f(x)⇔ x ∈ ∂f∗(y).

Proof. See [Bec17, Theorem 4.20].

Remark 5.1.23. If f is differentiable, then the subdifferential of f is a singleton which is its gradient.

The following lemma is a variant of the Moreau decomposition which claims that proxf (x)+proxf∗(x) =
x and also allows to compute the proximal operator of f∗ from proxf .

Lemma 5.1.24. (extended Moreau decomposition) If f : Rn → (−∞,∞] is proper, closed and convex
and λ > 0, then for all x ∈ Rn,

proxλf (x) + λ proxλ−1f∗(x/λ) = x.

Proof. See [Bec17, Theorem 4.5].

The last property we need is the computation of a proximal operator of a function f composed with
−id where id is the identity.
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Lemma 5.1.25. Let f : Rn → (−∞,∞] be a proper, closed and convex. We set g(x) = f(−x) for all
x ∈ Rn. Then

proxg(x) = −proxf (−x).

Proof. To show this equality, we use the change of variable z = −u:

proxg(x) = argminu f(−u) +
1

2
‖u− x‖2

= argmin{z,z=−u} f(z) +
1

2
‖ − z − x‖2

= − argminz f(z) +
1

2
‖z + x‖2

= −proxf (−x).

Now, we gather all these lemmas to show the primal representation of the algorithm.

Proof of Lemma 5.1.21. First, we investigate the form of ∇F(v) = ∇
[
f∗(AT v)

]
. Let us define x̄ such

that
x̄ = ∇f∗(AT v).

Then, the equivalence in Lemma 5.1.22 tells us that x̄ is the point at which the maximum in the definition
of f∗(Av) is reached, which gives (5.15)

x̄ = argmaxx{
〈
x
∣∣AT v〉− f(x)}.

Then by computing the derivative of an application composed with a linear application we obtain

∇
[
f∗(AT v)

]
= A∇f∗(AT v) = Ax̄.

Consequently, the expression of y becomes

y = prox 1
LG

(
v − 1

L
Ax̄
)
.

Since G(y) = g∗(−y), Lemma 5.1.25 gives

y = prox 1
LG

(
v − 1

L
Ax̄
)

= −prox 1
L g
∗

(
1

L
Ax̄− v

)
.

Next we use the extended Moreau decomposition with λ = 1/L applied to g∗ (and g∗∗ = g since g is
proper, closed and convex [Bec17, Theorem 4.8]):

y = −prox 1
L g
∗

(
1

L
Ax̄− v

)
= −

(
1

L
Ax̄− v − 1

L
proxLg(Ax̄− Lv)

)
= v − 1

L
Ax̄+

1

L
proxLg(Ax̄− Lv),

which is exactly (5.14).

Thanks to Lemma 5.1.21, the primal representation of the FDPG method is the following.

The Fast Dual Proximal Gradient (FDPG) Method - primal representa-
tion

Initialisation: L ≥ LF = ‖A‖2
σ , w0 = y0 ∈ Rm t0 = 1.

Step for k ≥ 0:

• uk = argmaxu{
〈
u
∣∣ATwk〉− f(u)},

• yk+1 = wk − 1
LAu

k + 1
L proxLg(Auk − Lwk),

• tk+1 =
1+
√

1+4t2k
2 ,

• wk+1 = yk+1 +
(
tk−1
tk+1

)
(yk+1 − yk).
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This algorithm is a reformulation of the FDPG (dual representation). As mentioned in Theorem
5.1.20, the convergence of the sequence (q(yk))k is of order O(1/k2). By the following theorem, the rate
of convergence is demoted to O(1/k). Nevertheless, the convergence occurs on the primal sequence (xk)k
and not on the values (f(xk) + g(Axk))k. This is very important in those situations where the point
found by the algorithm, which should be the optimal one or an approximation of it, is then inserted
into new operators and this operation is iterated. An example of this can be found in the case of our
mixed variational MFG in Section 5.3, where we insert the FDPG algorithm into the Banach fixed point
sequence. Since the convergence is on (xk)k, this guarantees that we approach the exact solution to our
problem.

Theorem 5.1.26. Let (yk)k be the sequence defined by the algorithm FDPG (primal representation) and
y∗ a minimiser of q. Let (xk)k the sequence defined by

xk = argmaxx{
〈
x
∣∣AT yk〉− f(x)}

and x∗ an optimal solution for (5.8). Then for all k,

‖xk − x∗‖ ≤ 2

√
L

σ

‖y0 − y∗‖
k + 1

.

Proof. See [BT14, Theorem 4.1].

5.2 Numerical simulations
Let {t0, . . . , tK} and {x0, . . . , xN} be the regular subdivisions of respectively [0, T ] and [0, S] and h =
t1 − t0 the time-step. To approximate the integral in V, we use the left-rectangle method, hence we
will consider solutions (ρ(ti, xj))0≤i≤K−1

0≤j≤N−1
in the vector space RK·N . With an abuse of notations, we also

write V ∈ RK·N the vector (V (ti, xj))0≤i≤K−1
0≤j≤N−1

. In the following, the notations 〈·|·〉 and ‖ · ‖ designate

respectively the scalar product and the euclidean norm in a vector space of finite dimension.
The problem that will be numerically solved is of the form

min
ρ∈RK·N

f(ρ) + g(Aρ).

Here ρ ∈ RK·N and f(ρ) = h 〈V |ρ〉 + h‖ρ‖
2

2 is proper, closed and h-strongly convex and g(ρ0, ρ1, ρ2) =
λ‖ρ0‖1 + δC0

(ρ1) + δC1
(ρ2) is proper, closed and convex. The notation ‖ · ‖1 refers to the `1-norm in a

vector space of finite dimension and δCi is the indicator function defined by

δCi(ρ) =

{
0, ρ ∈ Ci,
+∞, ρ /∈ Ci,

where C0 = (R+)K·N and C1 = {ρ ∈ RK·N ; ∀i ∈ {0, . . . ,K − 1},
∑N−1
j=0 ρ(ti, xj) · l = 1} are the sets of

constraints. The linear transformation A is A(ρ) = (Aρ, ρ, ρ), where the matrix A will be detailed for
each case.

Note that A should represents the difference between two successive terms in time such that

∀i ∈ {0, . . . ,K − 2},∀j ∈ {0, . . . , N − 1}, (Aρ)iN+j = ρ(ti+1, xj)− ρ(ti, xj),

so ‖A‖2 is computed as follows

‖Aρ‖2 =

K−2∑
i=0

N−1∑
j=0

[ρ(ti+1, xj)− ρ(ti, xj)]
2 + 2

K−1∑
i=0

N−1∑
j=0

ρ(ti, xj)
2

≤
K−2∑
i=0

N−1∑
j=0

2ρ(ti+1, xj)
2 + 2ρ(ti, xj)

2 + 2

K−1∑
i=0

N−1∑
j=0

ρ(ti, xj)
2

≤ 6

K−1∑
i=0

N−1∑
j=0

ρ(ti, xj)
2 = 6‖ρ‖2.

This explains the choice of L ≥ ‖A‖2/h in Table 5.1 and 5.2.
The algorithm that we use is the primal representation of the FDPG method presented in the previous

section.
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Since g is a sum of separable functions, its proximal operator is

proxg(ρ0, ρ1, ρ2) =
(

proxλ‖·‖1(ρ0),proxδC0
(ρ1),proxδC1

(ρ2)
)
.

The algorithm is described below.

Initialization: L ≥ ‖A‖
2

h , w0 = y0 ∈ (RK·N )3, t0 = 1.
Step for k ≥ 0:

• uk = argmaxu{
〈
u
∣∣ATwk〉− f(u)} = ATwk

h − V
= 1

h (ATwk0 + wk1 + wk2 )− V

• yk+1
0 = wk0 − 1

LAu
k + 1

L proxLλ‖·‖1(Auk − Lwk0 )

• yk+1
1 = wk1 − 1

Lu
k + 1

L proxLδC0
(uk − Lwk1 )

• yk+1
2 = wk2 − 1

Lu
k + 1

L proxLδC1
(uk − Lwk2 )

• tk+1 = k+1+a
a

• wk+1 = yk+1 + tk−1
tk+1 (yk+1 − yk)

As discussed in Remark 5.1.16, the parameter tk is of the form k+1+a
a such that a is a constant greater

or equal than 2 and its value is displayed in Table 5.1 and 5.2.
Note that our problem is essentially, up to minor modifications and the presence of extra constraints

(unit mass, positivity, Dirichlet conditions), a simplified version of some standard problems in image
denoising based on total variation (see, for instance, the classical paper [ROF92]): here, whether the
problem is 1D or 2D or higher-dimensional, the main feature is that the total variation is only computed
in time.

The following subections describe different examples of solutions to (5.1) by using this algorithm. For
each case, the differences with the description above will be specified.

5.2.1 1D in time and periodic
When we consider the periodic problem (in time, so that the interval [0, T ] becomes a circle of length
T ), and we assume S = T and V (t, x) = v(t − x) for an S-periodic function v, it is possible to reduce
the problem to the one dimensional case, namely a problem with one only variable in [0, T ] instead
of [0, T ] × [0, S]. One expects the solution ρ(t, x) = u(t − x) to be transported according to time. The
uniqueness of the solution and the symmetry with respect to translations in both time and space (replacing
(t, x) with (t+δ, x+δ)) show that the solution should indeed be of this form. Then, a change of variables
y = t− x can be carried out in V as following:

V(ρ) =

ˆ T

0

ˆ S

0

(
λ|u̇(t− x)|+ v(t− x)u(t− x) +

u(t− x)2

2

)
dxdt

=

ˆ T

0

ˆ t−S

t

−
(
λ|u̇(y)|+ v(y)u(y) +

u(y)2

2

)
dydt

= T

ˆ S

0

(
λ|u̇(y)|+ v(y)u(y) +

u(y)2

2

)
dy.

The problem reduces hence to the search of an S-periodic solution with one variable. By the way, up
to multiplicative and additive constants this problem is equivalent to minimizing

ˆ S

0

(
λ|u̇(y)|+ |u(y) + v(y)|2

2

)
dy,

which is exactly the problem described as an example at the end of Section 4.1, with ω = −v, except for
the constraints

´ S
0
u(y)dy = 1 and u ≥ 0.

In the following subsections, we will see that the solution obtained through numerical simulations
coincide with u computed as above.

For the numerical simulation shown in Figure 5.1 we take v(y) = −a0 cos( 2π
S y) and the choice of the

parameters are shown in Table 5.1.
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Let {y0, . . . , yK} be a regular subdivision of [0, S] and h := y1 − y0 the step-size of the subdivision.
By the left-rectangle method, the problem is approximated by

K−1∑
i=0

(
λ|u(yi+1)− u(yi)|+ v(yi)u(yi)h+

u(yi)
2

2
h

)
+ δC0(u) + δC1(u).

Figure 5.1: The simulation of the solution u to the 1D periodic case with v(y) = −a0 cos( 2π
S y). The

parameters are displayed in Table 5.1. The blue solid line corresponds to the solution u, while the red
dashed line is the profile of c− v with c = 1/S.

Parameter Value
S 10
K 500
h 0.02
a 200
L 6/h
a0 0.1
λ 0.1

Table 5.1: Parameters for the solution to the problem in Fig. 5.1.

We observe that with this choice of parameters the solution u is strictly positive and “follows” the
profile of c−v for a constant c which appears as a Lagrange multiplier for the mass constraint and allows
to obtain unit mass. The function u is also a solution of the problem at the end of Section 4.1 with
ω = c − v and its profile, shown in Figure 5.1, is consistent with the explicit description of the solution
which we gave.

Remark 5.2.1. If v(y) = −a0 cos( 2π
S y), it is possible to compute the critical λ at which the aspect of the

solution u switches from Figure 5.1 to the constant solution. The Euler-Lagrange equation of

min
u∈BV([0,S];R);´ S

0
u(y)dy=1, u≥0

ˆ S

0

(
λ|u̇(y)|+ v(y)u(y) +

u(y)2

2

)
dy

is z′ = v + u − c on [0, S] where z(y) ∈ ∂(λ| · |)(u′(y)) and c = 1/S is the constant due to the mass
constraint

´ S
0
u(y)dy = 1. Assuming that the solution becomes constant when ε = S

4 and extending the
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solution periodically on [−S, 0], we integrate the equation z′ = v + u− c over [−ε, ε]:

−2λ =

ˆ ε

−ε
z′(y)dy =

ˆ ε

−ε
(v(y) + u(y)− c)dy =

ˆ ε

−ε
(v(y)− v(ε))dy

=

ˆ ε

−ε

(
−a0 cos(

2π

S
y) + a0 cos(

2π

S
ε)

)
dy = −a0

S

π
sin(

2π

S
ε) + 2εa0 cos(

2π

S
ε).

By taking ε = S
4 , we obtain that λ = a0S

2π .
When λ > a0S

2π , the solution u is constant equal to c. While the condition λ < a0S
2π gives the solution

u as in Figure 5.1. This explains the choice of parameter λ.

5.2.2 1D in time and 1D in space, periodic in time
We consider now the case where we keep two variables, but we assume the time domain to be periodic.
This case is slightly simpler to handle from the point of view of the discretization of the time derivative.

By using the subdivisions described at the beginning of Section 5.2, we approximate the integral V
by the left-rectangle method as following:

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|l + V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

)
,

where h := t1 − t0 and l := x1 − x0 are the step-sizes of each subdivision. We will consider that
ρ(t0, xj) = ρ(tK , xj) for all j ∈ {0, N − 1}.

With this discretization, we look for a solution in the space RK·N where ρ is viewed as a vector.
The discretized problem is

min
ρ∈RK·N

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|l + V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

)
+δC0(ρ)+δC1(ρ). (5.16)

To avoid numerical errors due to small values, searching a minimizer of (5.16) is the same as searching
a minimizer to the problem divided by l:

min
ρ∈RK·N

K−1∑
i=0

N−1∑
j=0

(
λ|ρ(ti+1, xj)− ρ(ti, xj)|+ V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
+ δC0

(ρ) + δC1
(ρ).

The function f : RK·N → R defined by

f(ρ) =
K−1∑
i=0

N−1∑
j=0

(
V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
= h 〈V |ρ〉+ h

‖ρ‖2

2
(5.17)

corresponds to the function f described in Section 5.2.
The linear transformation A : RK·N → (RK·N )3 is the same as in Section 5.2. The squared matrix A

is of order K ·N and its coordinates are

Ai,j =

 −1 if j = i,
1 if j ≡ i+N [K ·N ],
0 otherwise,

namely

A =


−IN IN

. . . . . .
−IN IN

IN −IN


where IN is the identity matrix of order N and blank space corresponds to zeros.

The function g : (RK·N )3 → R is defined as in Section 5.2:

g(ρ0, ρ1, ρ2) =

K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0
(ρ1) + δC1

(ρ2) (5.18)

=λ‖ρ0‖1 + δC0
(ρ1) + δC1

(ρ2).
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Figure 5.2: Profile of the solution to (5.1) with V (t, x) = −a0 cos( 2π
S (t− x)) at times t = 0, 2, 4, 6, 8, 9.9.

The blue solid line describes the solution ρ at each specified time and the red dashed line is the profile of
0.1− V at each time. The parameters are displayed in Table 5.2.

Parameter Value
T 10
S 10
K 100
N 500
a 200
h 0.02
L 6/h
a0 0.1
λ 0.1

Table 5.2: Parameters for the numerical simulation of the solution to (5.1).

In Figure 5.2, we consider the same case as in Figure 5.1, but with a dynamic approach. The profile
of the solution ρ at time 0 is the same as in Figure 5.1. In Figure 5.1 the problem is viewed on one
dimensional space and here we can see that the solution is transported according to time from the left to
the right.

The next case (see Figure 5.3) we show is different. Here we impose a Dirichlet boundary condition
at time 0 which corresponds here to m0 being the constant density equal to 1/S. This is the same as
studying the non-periodic problem on [0, T ] and imposing two Dirichlet boundary conditions, which are
(by chance) equal. In this case, keeping the periodic structure allows to use a simpler form of the matrix
A.

Let m0 ∈ RN a vector verifying the constraints, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0,j l = 1.

Let us define the new set C2 = {ρ ∈ RK·N ; ∀j ∈ {0, . . . , N − 1}, ρ(0, xj) = m0,j} which encodes the
constraint ρ(0) = m0.

The function f is the same as in (5.17). The linear transformation is now Aρ = (Aρ, ρ, ρ, ρ) and the
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function g : (RK·N )4 → R is

g(ρ0, ρ1, ρ2, ρ3) =

K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0(ρ1) + δC1(ρ2) + δC2(ρ3)

=λ‖ρ0‖1 + δC0
(ρ1) + δC1

(ρ2) + δC2
(ρ3).

Figure 5.3: Simulation of the solution to (5.1) at times t = 0, 0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9.9 with V (t, x) =
−a0 cos( 2π

S (t − x)) and m0(x) = 1/S with parameters from Table 5.2 except for parameter L where
L = 7/h. The blue solid line is the profile of the solution ρ and the red dashed line corresponds to 0.1−V
taken at each time t.

In Figure 5.3 we see that the Dirichlet condition is indeed verified at t = 0 and then, immediately,
the solution jumps (coherently with Remark 4.1.3) from the constant state to t = 0.1. One can notice
that the profile is different from Figure 5.2 in a way that on the subintervals where the solution does not
follow 0.1−V , it is not constant in space anymore. However, between times t = 4 and t = 6, the solution
comes back to the profile when there is no boundary condition, namely, it is constant when it does not
follow 0.1 − V . When t ≥ 6, the profile of the solution varies again on the subintervals where it should
be constant.

5.2.3 1D in time, 1D in space and non periodic in time

Unlike Sections 5.2.1 and 5.2.2, we do not impose anymore a periodic time behavior, and the value
ρ(tK , xj) of the solution ρ ∈ R(K+1)·N may be different from ρ(t0, xj). The integral in V is now approxi-
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mated by:

N−1∑
j=0

(
K−1∑
i=0

λ|ρ(ti+1, xj)− ρ(ti, xj)|l +

K∑
i=0

(
V (ti, xj)ρ(ti, xj)hl +

ρ(ti, xj)
2

2
hl

))
. (5.19)

Remark 5.2.2. The formula (5.19) is different from (5.16) in the sense that there is the additional
term

∑N−1
j=0 V (tK , xj)ρ(tK , xj)hl +

ρ(tK ,xj)
2

2 hl that depends on tK which should not appear in the left-
rectangle method. However, with this choice of discretization, the function f is strongly convex in ρ ∈
R(K+1)·N which allows us to apply the algorithm and the formula (5.19) still converges towards the integral´ T

0

´ S
0

(
λ|ρ̇|+ V ρ+ ρ2

2

)
as h→ 0 and l→ 0.

The new function f is

f(ρ) : R(K+1)·N −→ R (5.20)

ρ 7→ h < V |ρ > +h
‖ρ‖2

2
=

K∑
i=0

N−1∑
j=0

(
V (ti, xj)ρ(ti, xj)h+

ρ(ti, xj)
2

2
h

)
.

The function g is defined as in (5.18) and A is the same as in Section 5.2 with a different matrix A which
is rectangle of dimension (K ·N)× ((K + 1) ·N) such that

Ai,j =

 −1 if i = j,
1 if j = i+N,
0 otherwise,

namely

A =

−IN IN
. . . . . .

−IN IN

 .

Figure 5.4 shows the simulation of the solution ρ to the problem (5.1) with a given V which is not
periodic anymore (here V (t, x) = (t − x)2). No Dirichlet boundary conditions nor penalizations ψt at
t = 0, T are considered. The different times are chosen to show the most significant changes in the profile
of ρ. Since V (t, x) is minimal at x = t, the general behavior is that the solution is transported from
the left to the right. Between times t = 1.5 and t = 8.3, the solution either follows c − V (where c is a
constant to define) or it is constant. Close to the time boundaries, the behavior is different.

The next case that we present (Figure 5.5) involves Dirichlet conditions in time. Let m0 ∈ RN and
mT ∈ RN be two vectors verifying the boundary conditions, i.e,

m0 ∈ (R+)N and
N−1∑
j=0

m0,j l = 1,

mT ∈ (R+)N and
N−1∑
j=0

mT,j l = 1.

Let us define the new set of constraints by C2 = {ρ ∈ RK·N ; ∀j ∈ {0, . . . , N−1}, ρ(0, xj) = m0,j and ρ(T, xj) =
mT,j}. The function f is defined as in (5.20), Aρ = (Aρ, ρ, ρ, ρ) and the function g : (RK·N )4 → R is

g(ρ0, ρ1, ρ2, ρ3) =

K−1∑
i=0

N−1∑
j=0

λ|ρ0(ti, xj)|+ δC0
(ρ1) + δC1

(ρ2) + δC2
(ρ3)

=λ‖ρ0‖1 + δC0
(ρ1) + δC1

(ρ2) + δC2
(ρ3).

Remark 5.2.3. Instead of adding the constraint ρ(0) = m0 in the problem, one could have discretized
the integral with the right-rectangle method in time and directly used that ρ(0) = m0 in the algorithm.

The profile of Figure 5.5 is quite similar to Figure 5.4 and mainly differs around t = 0, T . Again, a
jump in time is observed.

The very last example we consider is non-periodic in time and involves both a Dirichlet condition at
t = 0 and penalization at t = T . We consider the penalization

ψT (ρ(T )) =

ˆ S

0

ΨT (x)ρ(T, x)dx.
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Figure 5.4: The simulation of the solution to (5.1) at times t = 0, 0.2, 0.4, 0.5, 1, 1.5, 5, 8.3, 8.8, 9, 9.5, 10
with V (t, x) = (t− x)2 and parameters from Table 5.2. The blue solid line corresponds to the solution ρ
at different times.

The left-rectangle method applied to ψT gives

ψT (ρ(T )) =

N−1∑
j=0

ΨT (xj)ρ(T, xj)l.

We use the discretization from (5.19). The difference is in the definition of V . We shall take Ṽ such that

Ṽ = V + (0, . . . , 0,
ΨT

h
).

Again, the profile of Figure 5.6 is similar to Figures 5.4 and 5.5 except for the behavior close to the
time boundaries. In Figure 5.6, we have put penalization at times 0 and T such that it costs less to be
close to 0 in space, hence the concentration of the mass at time 0 in x = 0 and the jump at time T .
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Figure 5.5: The simulation of the solution to (5.1) at times t = 0, 0.1, 1, 1.7, 2.4, 5, 8.3, 8.8, 9.1, 9.5, 9.9, 10
with V (t, x) = (t − x)2, m0(x) = mT (x) = 1/S and parameters from Table 5.2 except from L which is
L = 7/h. The blue solid line corresponds to the solution ρ at different times.

5.3 Numerical simulations for the density dependent case
In Section 2.2, we showed that thanks to Banach fixed point theorem there exists a density ρ̄ which
minimizes

min
ρ∈L2([0,T ]×Ω)

∀t∈[0,T ],
´
Ω
ρ(t,x)dx=1

ρ≥0

Vρ̄(ρ) =

ˆ T

0

ˆ
Ω

(
λ|ρ̇(t, x)|+ V (ρ̄)(t, x)ρ(t, x) + c0

ρ(t, x)2

2

)
dxdt+ψ0(ρ(0))+ψT (ρ(T )).

(5.21)
As in the previous section, we choose the space Ω = [0, S] to be one-dimensional. This problem differs
from the one presented at the beginning of this chapter in (5.1) in a way that V : L2 → L2 is a functional
(where the functional space may either be L2([0, T ] × Ω) or L2(Ω)) and we add a factor c0 to regulate
the c0-strong convexity of our functional. Since the solution is obtained through a Banach fixed point
theorem, one needs the functional F : ρ̄ 7→ argminVρ̄(·) to be a contraction mapping and this is achieved
whenever Lip(V )

c0
< 1. In addition, this suggests a numerical method to approach ρ̄ by computing the

sequence (Fk(ρ0))k. At each iteration k for a given ρk, we use the FDPG method to compute the next
iteration ρk+1 = F(ρk) with the initialization at ρk. More precisely, we use the algorithm presented at
the beginning of Section 5.2 where instead of V , we take V (ρk).
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Figure 5.6: The simulation of the solution to (5.1) at times t = 0, 0.1, 0.3, 0.6, 1, 1.5, 5, 8.3, 9, 9.4, 9.9, 10
with V (t, x) = (t − x)2, m0(x) = 1/S, ϕT (x) = x2 and parameters from Table 5.2 except from L which
is 7/h. The blue solid line corresponds to the solution ρ at different times.

In this section, we present three examples of functions V (ρ) = Vi(ρ)+V0 for i = 1, 2, 3. It is important
to consider a non-autonomous term V0 in order to have a more dynamic solution (see the conclusion of
Proposition 2.2.7). The function V0 is defined as

V0(t, x) :=

(
S

2
+ 3 cos

(
4π

T
t

)
− x
)2

, (5.22)

so that at time t, it is more interesting to be at position S
2 + 3 cos

(
4π
T t
)
.

The discretization is the same as in the previous section.

(i) V1(ρ)(t, x) =
(ffl x+δ

x−δ ρ(t, y)dy
)2

.

In this example V1 is a function of a convolution of ρ (here, the convolution with an indicator function).
From a modeling point of view, this means that the running cost at a point depends on the mass of ρ in
a fixed neighborhood of such a point. Note that, in many cases, using V1[ρ] = η ∗ ρ would be the first
variation of a functional (if η is symmetric it is the first variation of ρ 7→

´ ´
ρ(x)η(x− y)ρ(y)dydx) but

this fails when it is composed with a nonlinear function such as the square here, which makes this term
non-variational (it would become variational again if convolved a second time, in the form η ∗ (f ′(η ∗ ρ)),
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Parameter Value
T 10
S 10
K 1000
N 1000
a 200
h 0.01
L 6/(c0h)
λ 0.2
c0 3

Table 5.3: Parameters for the numerical simulation of the solution in examples (i), (ii) and (iii).

which is the first variation of ρ 7→
´
f(η ∗ρ)). To be more precise, the expression of V1 has to be modified

when x± δ is out of bounds of [0, S] for a given δ > 0, so a more precise definition is the following:

V1(ρ)(t, x) =



(ffl x+δ

0
ρ(t, y)dy

)2

, if x ∈ [0, δ],(ffl x+δ

x−δ ρ(t, y)dy
)2

, if x ∈]δ, S − δ],(ffl S
x−δ ρ(t, y)dy

)2

, if x ∈]S − δ, S].

The aspect of the solution is shown in Figure 5.7.

(ii) V2(ρ)(t, x) = min
(´ x

0
arctan(ρ(t, y))dy,

´ S
x

arctan(ρ(t, y))dy
)
.

This second example models a problem where players want to be ready to escape the domain, exiting
either from one side or from the other, but the cost to escape depends on congestion. More precisely,
a part of the cost is a congested distance to the boundary in the spirit of the Hughes’ model for crowd
motion, see [Hug02]. We compute the congestion in terms of a non-linear and bounded function of the
density (here, the arctangent), so that the resulting function is Lipschitz in x whatever is ρ. In the present
case, V2 : L2([0, T ]×Ω)→ L2([0, T ]×Ω) is a 1-Lipschitz operator (because arctan is 1-Lipschitz), so the
parameter c0 = 3 is more than suitable for F to be a contraction. This example was already mentioned in
Section 2.2 and can be seen as a 1D case of the model where V (ρ) = V0 +uρ with uρ the viscosity solution
to |∇u| = g(η ? ρ) with Dirichlet boundary conditions u = 0 on ∂Ω (here we omit the convolution, or,
equivalently, we choose η = δ0).

Compared to the previous example, we keep the same values of the parameters in Table 5.3, but we
change the value of λ, taking λ = 1 (instead of 0.2) in order to observe any effect of an increased cost of
jumping.

The profile of the solution is shown in Figure 5.8.
The increased cost of jumping has influenced the solution to be less flexible than the one in Figure 5.7.

Starting from t = 0, as the density moves from the right to the left, the population is more concentrated
near the positions where the minimum of V0 should approach during a large amount of time, namely
x = 7 and x = 3, whereas the density is less important in places where the minimum of V0 only passes
through, e.g. x = 5. This behavior may be caused by the cost of jumping which is higher than the one
in Figure 5.7. Indeed, the agents anticipate the position at which it will cost less to live, i.e. near the
minimum of V0, in order to minimize the number of jumps.

(iii) V3(ρ)(t, x) =
ffl t

0
ρ(s, x)ds.

This example corresponds to the last possibility evoked in Section 2.2 and is also non-variational. As
we already pointed out, the function V3 is 2-Lipschitz in L2([0, T ] × Ω) by Hardy’s inequality [Har20]
reminded below. Therefore, the parameter c0 is chosen to be strictly bigger than 2. One shall notice that
in this case, V3 at time t does not only depend on ρt, but on the whole history. From modeling point
of view we consider that agents pay attention to the past experience in estimating the running cost at
(t, x).

Lemma 5.3.1. (Hardy’s inequality) If f : [0,+∞[→ [0,+∞[ is a measurable function, then
ˆ ∞

0

(
1

x

ˆ x

0

f(t)dt

)p
dx ≤

(
p

p− 1

)p ˆ ∞
0

f(x)pdx.
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Figure 5.7: Simulation of the solution ρ̄ minimizing (5.21) at times 0, 0.75, 1.5, 2.5, 3.8, 5, 6.3, 7.5, 9.99 for
V (ρ) ≡ V1(ρ) + V0 with V0 defined in (5.22) and parameters from Table 5.3 and δ = 1

2 .

Figure 5.8: Simulation of the solution ρ̄ minimizing (5.21) at times 0, 0.75, 1.5, 2.5, 3.8, 5, 6.3, 7.5, 9.99 for
V (ρ) ≡ V2(ρ) + V0 with V0 defined in (5.22) and parameters from Table 5.3 except for parameter λ = 1.
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Proposition 5.3.2. The function

V : L2([0, T ]× Ω) → L2([0, T ]× Ω)

ρ 7→
(
t 7→

ffl t
0
ρ(s, ·)ds+ V0(t, ·)

)
is 2-Lipschitz.

Proof. For all ρ1, ρ2 ∈ L2([0, T ]× Ω, we have by Fubini and Hardy’s inequality

‖V (ρ1)− V (ρ2)‖2L2 =

ˆ T

0

ˆ
Ω

(
1

t

ˆ t

0

ρ1(s, x)− ρ2(s, x)ds

)2

dxdt

≤ 22

ˆ T

0

ˆ
Ω

(ρ1(t, x)− ρ2(t, x))2dx = 22‖ρ1 − ρ2‖2L2 ,

hence V is 2-Lipschitz.

The profile of the fixed point ρ of F is displayed in Figure 5.9 at different times t. One can notice
first that at each time the density is concentrated near the minimum of V0(t), i.e. S

2 + 3 cos
(

4π
T t
)
, which

moves from the right to the left and vice versa periodically.
Second, the effect of the term

ffl t
0
ρ(s, x)ds can be observed for example at time t = 0.75 where the

density is reduced at position for example x = 7 and a portion of the density directly go to x = 6. In
fact, the term

ffl t
0
ρ(s, x)ds keeps in memory a mean in time of the population who visited position x and

a player may not visit a place which was too crowded in the past. In addition, the cost λ for jumping
may affect the decision of the players which causes the population to anticipate and go to less crowded
places.



5.3. NUMERICAL SIMULATIONS FOR THE DENSITY DEPENDENT CASE 99

Figure 5.9: Simulation of the solution ρ̄ minimizing (5.21) at times t =
0, 0.75, 1.75, 2.5, 3.25, 3.8, 4.2, 5, 6.3, 7.5, 8.8, 9.99 for V (ρ) ≡ V3(ρ) + V0 with V0 defined in (5.22)
and parameters from Table 5.3.
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Chapter 6

Multi-species Modeling

In this chapter, we present two models inspired by the MFG problem we already studied in the form

min
ρ∈L2,ρ≥0

∀t,
´
Ω
ρ(t)dx=1

Vρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V (ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T )). (6.1)

The first example in Section 6.1 is a model of two populations interacting with each other through a
congestion term. Numerical simulations has been carried out in this context.

The second example in Section 6.2 is a presentation of a model of two populations (firms and workers)
inspired by a model by Carlier and Ekeland [CE07]. Three possibilities of numerical resolutions of the
problem are presented.

6.1 A two-population model
Mean Field Games with two populations have been studied for instance by Achdou, Bardi and Cirant in
[ABC17] in the context of urban settlements motivated by the segregation model by Schelling [Sch71].
Amongst other contributions in this article, they show existence of a solution to a system of four PDEs
associated with the two-population MFG and present numerical simulations in the static and evolutive
cases. The individual cost is the one inspired by Schelling’s model which is a function of the proportion
of the neighborhood’s population whose the player belongs to. In our example, we shall not use the
proportion of the population, but a quadratic term that depends on the other population.

Here, we consider two different populations ρ1 and ρ2 such that the equilibrium is a couple of measures
(ρ̄1, ρ̄2) which is a fixed point of

G : L2([0, T ]× Ω)× L2([0, T ]× Ω)→ L2([0, T ]× Ω)× L2([0, T ]× Ω) (6.2)

(ρ̄1, ρ̄2) 7→

 argmin
ρ1≥0

∀t,
´
ρ1(t)= 1

2

V1
ρ̄2

(ρ1); argmin
ρ2≥0

∀t,
´
ρ2(t)= 1

2

V2
ρ̄1

(ρ2)


where

V1
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V1(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T ))

and V2
ρ̄(ρ) :=

ˆ T

0

ˆ
Ω

λ|ρ̇|+ V2(ρ̄)ρ+ f(ρ) dxdt+ ψ0(ρ(0)) + ψT (ρ(T ))

with
V1(ρ2) = αρ2

2 + V0,1 and V2(ρ1) = βρ2
1 + V0,2.

The penalizations ψ0 and ψT and the coefficient λ can be different between V1
ρ̄ and V2

ρ̄ .
Once V1 and V2 are computed according to some measures ρ̄1 and ρ̄2, the optimization problems

in (6.2) become separate and it is possible compute the optimal ρ1 and ρ2 separately. This problem is
inspired from Section 2.2 so that under suitable conditions on V1 and V2, the fixed point to G exists, since
the product of two complete spaces is complete.

Because of Proposition 2.2.7, V1 and V2 should include a part with explicit dependence on t in order
to obtain a dynamic solution instead of a constant in time solution, hence the presence of the terms V0,1

101
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and V0,2. In this section, we define

V0,1(t, x) =

(
S

2
+ 3 cos

(
2π

T
t

)
− x
)2

and V0,2(t, x) =

(
S

2
− 3 cos

(
2π

T
t

)
− x
)2

, (6.3)

such that at time t, it is more interesting to live near position S
2 + 3 cos

(
2π
T t
)
for the first group ρ1 and

near S
2 − 3 cos

(
2π
T t
)
for the second group ρ2.

One may notice that the preference of ρ1 moves from the right to the left between positions x =
S
2 + 3 = 8 and x = S

2 − 3 = 2 and after it moves from x = 2 to x = 8. The preference of ρ2 is similar, but
it starts from x = 2. At times t = 2.5, 7.5, the preferences are the same for both populations. However,
due to the term V1 and V2, both population are less willing to share the same position, so we expect that
they will repel each other. As a comparison, we simulate the profile of a singe-population called ρ0 which
solves (6.1) with the same preference as ρ1 (i.e. V (ρ) = V0,1) and with mass constraint

´
ρtdx = 1

2 , but
without the term αρ2

2 to suppress the interaction with another population.
The simulations are performed with the method presented in Section 5.3 with parameters from Table

6.1. We also choose f(ρ) = c0
ρ2

2 .
The profile of the equilibrium (ρ1, ρ2) is displayed in Figure 6.1. The blue solid line (or the density

that starts near position x = 8) corresponds to the density ρ1 while the red solid line (or the density that
starts near position x = 2) is the density of ρ2. The green dashed line represents the minimizer ρ0 of V
when V (ρ̄) = V0,1, namely V does not depend on the density.

Similarly to Figures 5.7, 5.8 and 5.9, at each time t the densities ρ1 and ρ2 concentrate near the
minimum of V0,1(t) and V0,2(t) respectively. When the two populations are far from each other, their
behavior does not vary from single population’s ρ0. Indeed, at times t = 0, 5, 9.98, the profile of ρ1 is
combined with the profile of ρ0. At other times in Figure 6.1, the dynamic of ρ1 differs from ρ0 as soon as
the density gets closer to the second population. For example, at time t = 2.4 and at position x = 5, the
population ρ1 is reduced compared to ρ0. Also, the cost of jumping may cause the population to directly
relocate in places less concentrated by the other population for example at time t = 1.5 near position
x = 6 or at time t = 3.3 near position x = 4.

Parameter Value
T 10
S 10
K 500
N 500
a 200
h 0.02
L 6/h
λ 0.5
c0 10
α 10
β 10

Table 6.1: Parameters for the numerical simulation of the fixed point of (6.2).

6.2 Land Use Between Firms and Workers
The last example in this thesis is inspired from the article by Carlier and Ekeland [CE07] in which they
describe the equilibrium of the structure of the city by using optimal transport theory. We only develop
the modeling here. The simulations are left for further studies.

We consider two populations in this model: firms and workers. The revenue of an individual living
at x will be denoted ϕ(x) and the wage paid by the firms located at y will be ψ(y). If c(x, y) is the
commuting cost of the worker living at x who go to work at y, then the worker would like to maximize
his income according to the wage and the transportation cost:

ϕ(x) = sup
y
ψ(y)− c(x, y). (6.4)

Similarly, firms seek to minimize the wage they pay which corresponds to the problem:

ψ(y) = inf
x
ϕ(x) + c(x, y). (6.5)
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Figure 6.1: Simulation of the fixed point to (6.2) at times t = 0, 1.5, 2.4, 2.8, 3.3, 5, 7.7, 8.5, 9.98 for
V1(ρ2) = αρ2

2 + V0,1 and V2(ρ1) = βρ2
1 + V0,2 with V0,i defined in (6.3) and parameters from Table

6.1. The blue solid line is the profile of the population ρ1, the red solid line to the population ρ2 and the
green dashed line to the solution ρ0 when V (ρ) = V0,1.

If ϕ and ψ verify (6.4) and (6.5), then they are said to be conjugate to each other.
Let µ designate the density of the workers and ν the density of the firms. For a given cost c, Carlier

and Ekeland show the existence of an equilibrium (µ, ν, ϕ, ψ, γ) such that ϕ and ψ are conjugate to each
other for the commuting cost c and γ is a probability measure on Ω × Ω with marginals µ and ν which
verifies

ψ(y)− ϕ(x) = c(x, y), γ − a.e.

Thanks to optimal transport theory, we know (see [Vil03]) that in particular this is equivalent to γ solving
the Monge-Kantorovitch problem

inf
γ∈Π(µ,ν)

ˆ
Ω̄×Ω̄

c(x, y)dγ(x, y) (M)

and (ϕ,ψ) solving

sup
ϕ,ψ

{ˆ
Ω̄

ψdν −
ˆ

Ω̄

ϕdµ ; ψ(y)− ϕ(x) ≤ c(x, y),∀(x, y) ∈ Ω̄× Ω̄

}
. (D)

In addition, these two problems are dual to each other in the sense that (M)=(D). Under some conditions,
the solution to (D) is unique up to an additive constant which is added to ψ and ϕ due to the condition
ψ(y)− ϕ(x) ≤ c(x, y). We will call ϕ and ψ the Kantorovitch potentials.

In our model, we consider that each worker tries to minimize

min
γ

γ(0)=x0

2λ1S(γ) +

ˆ T

0

[−ϕµ,ν(γ(t)) + V0,1(t, γ(t)) + f ′(µ)(t, γ(t))]dt+ φT (γ(T ))

and each firm would like to minimize

min
γ

γ(0)=x0

2λ2S(γ) +

ˆ T

0

[ψµ,ν(γ(t)) + V0,2(t, γ(t)) + f ′(ν)(t, γ(t))]dt+ φT (γ(T )).
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The parameters λ1 and λ2 describe the cost of moving which shall not necessarily be the same for workers
and firms.

In this way, the equilibrium (µ, ν) would be the solution to the problem

min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν + f(ν) + f(µ)dxdt+

ˆ T

0

Wc(µt, νt)dt

+Φ0(µ(0)) + Φ0(ν(0)) + ΦT (µ(T )) + ΦT (ν(T )) (6.6)

where Wc(µ, ν) = infγ∈Π(µ,ν)

´
Ω̄×Ω̄

c(x, y)dγ(x, y) by using the fact that (M) and (D) are dual to each
other. Indeed, The Kantorovitch potentials −ϕµ,ν and ψµ,ν are also the first variations of the transport
cost Wc (see [San15, Section 7.2.2]).

We will present three different approaches to solve numerically (6.6). In all these cases, it will be
more convenient to consider the regularized Wasserstein distance such that

Wc,ε(µ, ν) = inf
γ∈Π(µ,ν)

ˆ
Ω×Ω

c(x, y)dγ(x, y)− ε
ˆ
γ(log γ − 1) (6.7)

= sup
ϕ,ψ

ˆ
Ω

ψ(y)dν(y)−
ˆ

Ω

ϕ(x)dµ(x)− ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y),

because it is easier to compute the Kantorovitch potentials thanks to the Sinkhorn algorithm [Cut13]. In
addition, this formulation eliminates the constraint ψ(y)− ϕ(x) ≤ c(x, y) compared to (D).

(i) The mixed approach.

In this first approach, we set aside the variational formulation (6.6) of the problem and see (µ, ν) as the
solution of a mixed variational MFG in the sense that it is the fixed point of the application G defined
by (6.2) in the two-population example with

V1
µ̄,ν̄(µ) :=

ˆ T

0

ˆ
Ω

λ1|µ̇| − ϕµ̄,ν̄µ+ f(µ) dxdt+ Φ0(µ(0)) + ΦT (µ(T ))

and V2
µ̄,ν̄(ν) :=

ˆ T

0

ˆ
Ω

λ2|ν̇|+ ψµ̄,ν̄ν + f(ν) dxdt+ Φ0(ν(0)) + ΦT (ν(T )).

The numerical simulations were carried out in this example such that at iteration k, from (µk, νk)
we compute ϕµk,νk and ψµk,νk thanks to the Sinkhorn algorithm [Cut13] and then we apply the FDPG
algorithm to obtain (µk+1, νk+1) = G(µk, νk). We also defined f(ρ) = c0

ρ2

2 as usual.
However, some tentative numerical computations did not converge even for very large c0 (e.g. c0 =

10000) which was expected to ensure G to be a contraction. This raises the question of the dependency
of the Kantorovitch potentials ϕµ̄,ν̄ and ψµ̄,ν̄ according to the densities µ̄ and ν̄. If the dependency were
Lipschitz continuous, then we would be able to provide a parameter c0 so that the sequence (Gn(µ0, ν0))n
converges towards a solution. On the other hand, the Kantorovitch potentials are known to depend
continuously on the measures, but the fact that this dependence is not Lipschitz continuous is an open
question (which, by the way, could be explored numerically).

To our knowledge, we need to add extra regularization of the transport cost to obtain some regular
dependency. For example, the entropic regularization described in (6.7) adds some robustness of the
solution according to the data (see [Cut13]). I refer to [PC19] for a review of the literature on the
regularization of optimal transport. They themselves propose an equivalent definition of the 2-Wasserstein
distance which is more robust.

(ii) The variational approach through the FDPG method.

Differently from the previous approach, the fixed point strategy may not be necessary if one directly
applies the FDPG method to the variational formulation. We consider (µ, ν) to be a minimizer

min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν + f(ν) + f(µ)dxdt+

ˆ T

0

Wc,ε(µt, νt)dt

+Φ0(µ(0)) + Φ0(ν(0)) + ΦT (µ(T )) + ΦT (ν(T )). (6.8)

To explain the method, we take f(ρ) = ρ2

2 and Φ0 = ΦT = 0. One can view the problem (6.8) as

min
µ,ν∈RK·N

h(µ, ν) + g(A(µ, ν)), (6.9)
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where

h(µ, ν) =

ˆ T

0

ˆ
Ω

V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt+

ˆ T

0

Wc,ε(µt, νt)dt

and g(ρ0, ρ1, ρ2) = λ‖ρ0‖1 + δC0(ρ1) + δC1(ρ2)

where C0 and C1 are defined in Section 5.2.
To use the FDPG method, we need to compute the conjugate h∗ in the sense of the definition (5.9).

Let us write h(µ, ν) = h1(µ, ν) + h2(µ, ν) such that

h1(µ, ν) =

ˆ T

0

ˆ
Ω

V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt and h2(µ, ν) =

ˆ T

0

Wc,ε(µt, νt)dt.

The property described below states that the conjugate of a sum is the infimum convolution of the
conjugate functions.

Proposition 6.2.1 (Conjugate of the sum). Let h1 : Rd → (−∞,∞] be a proper convex function and
h2 : Rd → R be a convex function. Then

(h1 + h2)∗(x) = min
u+v=x

{h∗1(u) + h∗2(v)}.

Proof. See [Bec17, Theorem 4.17].

Consequently, the conjugate of h is the following:

h∗(η1, η2) = (h1 + h2)∗(η1, η2) = min
u1+v1=η1
u2+v2=η2

{h∗1(u1, u2) + h∗2(v1, v2)}.

An explicit formula for h∗1 gives

h∗1(u1, u2) = sup
µ,ν

ˆ T

0

ˆ
Ω

u1µ+ u2ν − V0,1µ− V0,2ν −
µ2

2
− ν2

2
dxdt

=

ˆ T

0

ˆ
Ω

(u1 − V0,1)2

2
+

(u2 − V0,2)2

2
dxdt,

which yields

h∗(η1, η2) = min
u1+v1=η1
u2+v2=η2

ˆ T

0

ˆ
Ω

(u1 − V0,1)2

2
+

(u2 − V0,2)2

2
+ sup

µ,ν

ˆ T

0

ˆ
Ω

v1µ+ v2ν

−
ˆ T

0

[
sup
ϕ,ψ

ˆ
Ω

ψνt − ϕµt − ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µt ⊗ νt)(x, y)

]
dt.

The latter may be challenging to compute.
Another approach to apply the FDPG method would be, instead of seeing Wc,ε as a smooth convex

function, we can view it as a non-smooth convex function so that it can be included in g(A(µ, ν)) in (6.9).
Now the functions h and g are

h(µ, ν) =

ˆ T

0

ˆ
Ω

V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt

and g(ρ0, ρ1, ρ2, ρ3, ρ4) = λ‖ρ0‖1 + δC0
(ρ1) + δC1

(ρ2) +Wc,ε(ρ3, ρ4).

The difficulty here is that g is not the sum of functions with separate variables due to the Wasserstein
term. A way to compute the proximal operator of h(µ, ν) := Wc,ε(µ, ν) is

proxh(u1, u2) = argminµ,νWc,ε(µ, ν) + ‖µ− u1‖2 + ‖ν − u2‖2

= argminµ,ν

[
max
ϕ,ψ

ˆ
Ω

ψdν −
ˆ

Ω

ϕdµ− ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y)

]
+ ‖µ− u1‖2 + ‖ν − u2‖2.

This formulation already shows that µ and ν are linked through the tensor product and the exponential.



106 CHAPTER 6. MULTI-SPECIES MODELING

The problem in proxh(u1, u2) can also be viewed as the conjugate of a certain function:

min
µ,ν

[
max
ϕ,ψ

ˆ
Ω

ψdν −
ˆ

Ω

ϕdµ− ε
ˆ

Ω×Ω

e
ϕ(x)+ψ(y)−c(x,y)

ε d(µ⊗ ν)(x, y)

]
+ ‖µ− u1‖2 + ‖ν − u2‖2

= max
µ,ν

[
min
ϕ,ψ
−
ˆ

Ω

ψdν +

ˆ
Ω

ϕdµ+ ε

ˆ
Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y)

]
− ‖µ− u1‖2 − ‖ν − u2‖2

= max
µ,ν

2 〈µ|u1〉+ 2 〈ν|u2〉 − ‖µ‖2 − ‖ν‖2 +

[
min
ϕ,ψ
−
ˆ

Ω

ψdν +

ˆ
Ω

ϕdµ+ ε

ˆ
Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y)

]
= max

µ,ν
2 〈µ|u1〉+ 2 〈ν|u2〉 − ‖µ‖2 − ‖ν‖2 +

[
max
ϕ,ψ

ˆ
Ω

ψdν −
ˆ

Ω

ϕdµ− ε
ˆ

Ω×Ω

e
ψ(y)−ϕ(x)−c(x,y)

ε d(µ⊗ ν)(x, y)

]
:=H∗(u1, u2),

whereH(µ, ν) =
(
‖µ‖2 + ‖ν‖2 +

[
maxϕ,ψ

´
Ω
ψdν −

´
Ω
ϕdµ− ε

´
Ω×Ω

exp
(
ψ(y)−ϕ(x)−c(x,y)

ε

)
d(µ⊗ ν)(x, y)

])
/2.

(iii) The variational approach through the Uzawa algorithm.

To introduce this method, we reformulate the problem (6.6) in a min-max form. Again, we take
f(ρ) = ρ2

2 and Φ0 = ΦT = 0. We have

min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt+

ˆ T

0

Wc,ε(µt, νt)dt

= min
µ,ν≥0´

µt=
´
νt=

1
2

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt

+

ˆ T

0

[
sup
ϕt,ψt

ˆ
Ω

ψt(y)dνt(y)−
ˆ

Ω

ϕt(x)dµt(x)− ε
ˆ

Ω×Ω

e
ψt(y)−ϕt(x)−c(x,y)

ε d(µt ⊗ νt)(x, y)

]
dt

= min
µ,ν≥0´

µt=
´
νt=

1
2

sup
ϕ,ψ

ˆ T

0

ˆ
Ω

λ1|µ̇|+ λ2|ν̇|+ V0,1µ+ V0,2ν +
µ2

2
+
ν2

2
dxdt

+

ˆ T

0

[ˆ
Ω

ψt(y)dνt(y)−
ˆ

Ω

ϕt(x)dµt(x)− ε
ˆ

Ω×Ω

e
ψt(y)−ϕt(x)−c(x,y)

ε d(µt ⊗ νt)(x, y)

]
dt (6.10)

where ϕ : [0, T ] → Lip(Ω) and ψ : [0, T ] → Lip(Ω) have to be understood as functions which associate t
with the Kantorovitch potentials respectively ϕt and ψt obtained from the densities µt and νt.

If there exists an equilibrium (µ, ν, ϕ, φ) which is a saddle-point of a Lagrangian associated to (6.10),
then a possible idea would be to apply Uzawa’s algorithm [Uza89]. Even if this method has not been
explored yet in this thesis by lack of time, we observe that we have all ingredients to do it. In addition,
this method is advantageous, because it does not require to use the Sinkhorn algorithm to compute ϕt
and ψt. Indeed, let us denote the problem (6.10) by

inf
µ,ν

sup
ϕ,ψ
L(µ, ν, ϕ, ψ).

At iteration k, if (ϕk, ψk) is given and (µk, νk) is such that

L(µk, νk, ϕk, ψk) = inf
µ,ν
L(µ, ν, ϕk, ψk),

(which exactly requires an optimization method as in Chapter 5), then the next iteration is computed
through the gradient method

(ϕk+1, ψk+1) = (ϕk, ψk) + tk∇ϕ,ψL(µk, νk, ϕk, ψk)

for some sequence (tk)k and where

∇ϕ,ψL(µ, ν, ϕ, ψ)(t, x) =

µt(x)
(

1 +
´

Ω
e
ψt(y)−ϕt(x)−c(x,y)

ε dνt(y)
)

νt(x)
(

1−
´

Ω
e
ψt(x)−ϕt(y)−c(y,x)

ε dµt(y)
) .

Next, (µk+1, νk+1) is obtained by

L(µk+1, νk+1, ϕk+1, ψk+1) = inf
µ,ν
L(µ, ν, ϕk+1, ψk+1).
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Deterministic Mean Field Games with Jumps

Abstract: This thesis focuses on the study of deterministic Mean Field Games with
jumps. The motivation for this problem is the modeling of the dynamics of inhabitants
in a city where agents move from one place to another. Thus, the strategies of the players
are piecewise constant curves on which they optimize a cost that depends on the number
of jumps, a term dependent on the density in a variational way, a term dependent on the
density in a non-variational way, and a final time cost.

The manuscript begins with an introduction to Mean Field Game theory and presents
a new existence result of a fixed point for the mixed problem (a problem with both a
variational and a non-variational term), thanks to Kakutani’s theorem.

We then provide an Eulerian formulation of the previous problem, which is in La-
grangian form, thanks to a property of optimal transport when the cost is the trivial
distance. The existence of a fixed point in the Eulerian formulation can even be achieved
using Banach’s fixed-point theorem.

We then show that the fixed point obtained as an optimizer of a variational problem
is actually a Nash equilibrium, which requires using regularity results of the solution.

Regularity is studied through the Eulerian formulation which reveals an L1 norm in
the density velocity. We obtain a Lipschitz regularity in time with values in L2(Ω). Under
Dirichlet conditions in time, the solution has the same spatial regularity as the data.

In a numerical section, the solution is approximated using non-smooth optimization
algorithms (fast dual proximal gradient method). The last chapter presents two appli-
cations of the deterministic mean field games model with jumps in the case of multiple
populations.

Keywords: Mean Field Games; Deterministic; Jumps; Calculus of Variations; Regu-
larities; Numerical Simulations; Non-smooth Optimization; Proximal Gradient.



Jeux à champ moyen déterministes avec sauts

Résumé: Cette thèse porte sur l’étude des jeux à champ moyen déterministes avec sauts. La motivation
de ce problème est la modélisation de la dynamique des habitants dans une ville où les agents déménagent
d’un endroit à un autre. Ainsi, les stratégies des joueurs sont des courbes constantes par morceaux sur
lesquelles ils optimisent un coût dépendant du nombre de sauts, d’un terme dépendant de la densité de
façon variationnelle, d’un terme dépendant de la densité de façon non-variationnelle et d’un coût en temps
final.
Le manuscrit commence par une introduction à la théorie des jeux à champs moyen et présente un résultat
nouveau d’existence d’un point fixe pour le problème mixte (problème avec un terme variationnel et un
autre non-variationnel), grâce au théorème de Kakutani.
Nous donnons ensuite une formulation Eulérienne du problème précédent qui est sous forme Lagrangienne,
grâce à une propriété du transport optimal lorsque le coût est la distance triviale. L’existence d’un point
fixe dans la formulation Eulérienne peut même se faire par le théorème de point fixe de Banach.
Nous montrons ensuite que le point fixe obtenu comme un optimiseur d’un problème variationnel est en
fait un équilibre de Nash, ce qui demande à utiliser des résultats de régularité de la solution.
La régularité est étudiée grâce à la formulation Eulérienne qui fait apparaître une norme L1 dans la vitesse
de la densité. Nous obtenons une régularité Lipschitz en temps à valeurs dans L2(Ω). Sous des conditions
de Dirichlet en temps, la solution a la même régularité en espace que les données.
Dans une partie numérique, la solution est approximée en utilisant des algorithmes d’optimisation non-
lisses (méthode de gradient proximal dual rapide). Le dernier chapitre est une présentation de deux
applications du modèle de jeux à champ moyen déterministes avec sauts dans le cas à plusieurs populations.

Mots clés: Jeux à champ moyen; Déterministe; Sauts; Calcul des variations; Régularités; Simulations
numériques; Optimisation non-lisse; Gradient proximal.

Image en couverture : Vue sur Tokyo depuis la Tokyo Skytree.
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