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Abstract
This thesis presents a study on modeling, formulating, and discretizing solidification pro-
cesses using the Port Hamiltonian framework combined with the phase field approach. The
goal is to provide numerical models suitable for simulating, designing, and controlling such
processes. It addresses the challenges of representing and controlling phase change phenom-
ena in distributed parameter models with moving interfaces, with a particular focus on the
solidification of pure water. The work has been motivated by the development of green pro-
cesses for water purification technologies such as cyclic melt and crystallization of water,
which offer a low-energy solution while minimizing the use of hazardous materials.

The first chapter recalls briefly the physical models of multiphase systems and the description
of the interface between the phases, in terms of thin or diffuse interfaces. It presents the phase
field theory and the associated thermodynamical models of the multiphase systems. Finally,
it expresses the dynamics of solidification processes as a coupled system of evolution equations
consisting of the Allen-Cahn equation and energy balance equations. A main contribution
of this chapter consists in a comprehensive presentation of solidification using the entropy
functional approach within the phase field framework.

In the second chapter, the Port Hamiltonian formulation of the dynamics of solidification
processes using the phase field approach is developed. This chapter introduces Boundary
Port Hamiltonian Systems and shows how an extension of the state space to the gradient of
the phase field variable leads to a Port Hamiltonian formulation of the solidification model.
The model is written in such a way that it utilizes the available thermodynamic data for
liquid water and ice, allowing for a detailed and physically-based modeling, leading to an
implicit Boundary Port Hamiltonian model.

The final chapter focuses on the structure-preserving discretization of the solidification pro-
cess using the Partitioned Finite Element Method. This ensures that the discretized model
retains the Port Hamiltonian structure and, in turn, the key properties such as energy con-
servation and passivity. The chapter covers weak formulations, projections, and discrete
Hamiltonians for the heat equation and the Allen-Cahn equation, leading to the spatial dis-
cretization of the solidification model. The principal contribution of this chapter lies in the
discretization methodology applied to the implicit Port Hamiltonian model of the solidifica-
tion process using entropy as the generating function.

Overall, this thesis provides structured models of solidification processes using the Port
Hamiltonian framework, providing a foundation for their physics-based simulation and con-
trol and for future research and development in distributed parameter systems with moving
interfaces, particularly for environmental and chemical engineering applications.

Keywords: Distributed Parameter Systems, Port Hamiltonian systems, Boundary Port
Hamiltonian Systems, Moving Interfaces, Solidification Processes, Diffuse Interfaces, Phase
Field Approach, Allen-Cahn Equation, Heat Diffusion Equation, Structure-Preserving Dis-
cretization, Partitioned Finite Element Method
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Résumé
Cette thèse présente une étude sur la modélisation, la formulation par le formalisme des Sys-
tèmes Hamiltoniens à ports et la discrétisation des processus de solidification dont l’interface
est supposée diffuse et est modélisée par l’approche des champs de phase. Ses travaux trait-
ent en détail de la solidification de l’eau dans le contexte de fournir des modèles numériques
adaptés à la simulation, à la conception et au contrôle de procédés de purification de l’eau.

Le premier chapitre rappelle d’abord de manière synthétique les modèles physiques de sys-
tèmes biphasique et de leur interface. Il présente ensuite en détail l’approche des champs
de phase pour la modélisation des interfaces diffuses ainsi que le modèle thermodynamique
du système biphasique. Puis il rappelle le modèle dynamique de la solidification d’une es-
pèce, en particulier de l’eau, comme un système de deux équations d’évolution, l’équation
d’Allen-Cahn et l’équation de bilan d’énergie. Ces modèles sont basés sur les propriétés
thermodynamiques employant l’entropie totale comme potentiel thermodynamique.

Dans le deuxième chapitre, après le rappel de la définition de systèmes hamiltoniens dissi-
patifs à port frontière, on rappelle que l’on peut formuler l’équation d’Allen-Cahn ainsi que
le modèle de solidification complet sous cette forme, en augmentant les variables d’état avec
le gradient de la variable de champ de phase. Puis l’on montre que les relations thermody-
namiques issues des données sont exprimées en termes de variables intensives et mènent à
une formulation hamiltonienne à port implicite.

Le dernier chapitre se concentre sur la discrétisation préservant la structure du processus
de solidification en utilisant la Méthode des Éléments Finis Partitionnés. Cela garantit que
le modèle discrétisé conserve des propriétés clés telles que la conservation de l’énergie et la
passivité. Le chapitre développe les formulations faibles, les projections et les hamiltoniens
discrets pour l’équation de la chaleur et l’équation d’Allen-Cahn, puis développe la discréti-
sation du modèle de solidification complet. La principale contribution de ce chapitre réside
dans la méthodologie de discrétisation appliquée au modèle Port Hamiltonien implicite du
processus de solidification en utilisant l’entropie comme fonction génératrice.

Globalement, cette thèse propose une approche pour la modélisation, la simulation et le
contrôle des processus de solidification en utilisant le cadre Hamiltoniens à ports. Les résultats
posent une base complète pour de futures recherches et développements dans les systèmes à
paramètres distribués avec interfaces mobiles, en particulier pour les applications en ingénierie
environnementale et chimique.

Mots-clés: Systèmes à Paramètres Distribués, Systèmes Hamiltoniens à Port frontière, In-
terfaces Mobiles, Processus de Solidification, Interfaces Diffuses, Approche par Champ de
Phase, Équation d’Allen-Cahn, Équation de Diffusion Thermique, Méthode des Éléments
Finis Partitionnés
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Résumé étendu

Cette thèse traite des modèles de paramètres distribués de systèmes biphasiques interagis-
sant à travers des interfaces mobiles. De tels systèmes apparaissent dans les procédés de
cristallisation, les évaporateurs, les condensateurs, la séparation de phase par décomposi-
tion spinodale ou les procédés d’extrusion [23]. Leurs modèles dynamiques consistent en
des systèmes d’équations aux dérivées partielles (EDP) résultant des équations de bilan de
chaque phase, couplés à un système dynamique décrivant l’interface mobile. L’interface est
une région étroite séparant deux régions spatiales d’états matériels différents. Il existe de
nombreuses façons de modéliser l’interface comme le problème de Stefan à deux phases qui
décrit les processus de changement de phase tels que la solidification et la fusion [79] ou les
modèles d’interface mince [109]. Des études antérieures comme celles de [40], [21] et [52], ont
discuté en détail de la modélisation et du contrôle de tels processus.

La représentation d’une interface mobile varie des interfaces nettes aux interfaces diffuses.
Dans l’approche d’interface nette, certaines variables d’intérêt sont discontinues à l’interface
en raison des conditions aux limites imposées, et l’interface doit être suivie [99]. En revanche,
dans l’approche d’interface diffuse, suivant les idées de Gibbs, les variables varient rapide-
ment mais de façon continue le long de l’épaisseur de l’interface. Les différentes phases sont
différenciées par un paramètre d’ordre qui varie continument d’une valeur à une autre1 le
long de l’épaisseur de l’interface. La dynamique de cette variable de phase est régie par une
équation aux dérivées partielles : l’équation d’Allen-Cahn dans le cas de la solidification.

L’approche de champ de phase est largement utilisée en physique et en science des matériaux
[98]. À notre connaissance, elle est très peu utilisée en génie des procédés. Récemment,
certaines applications ont émergé dans ce domaine, telles que le projet WATERSAFE [31],
qui est une application motivant ce travail. Il traite d’un nouveau processus de purification
de l’eau par congélation, visant spécifiquement à éliminer les polluants solubles à faible
concentration des effluents liquides aqueux.

Le travail proposé concerne la modélisation de la solidification de l’eau en suivant l’approche
d’interface diffuse par la méthode des champs de phase basée sur les travaux de [110].

En raison de la nature thermodynamique du processus de congélation et de la méthode
de champ de phase, le cadre port-Hamiltonien semble utile dans ce contexte à des fins de
modélisation, pour faciliter l’interconnexion avec un environnement macroscopique, pour la
simulation ou même pour la synthèse de contrôle. En effet, cette approche encode directe-
ment les principes physiques sous-jacents, tels que les lois de conservation, dans la structure
géométrique du modèle du système, ainsi que dans les conditions aux limites. De plus,
la structure géométrique peut être facilement réduite spatialement pour obtenir des modèles
hamiltoniens de dimension finie, qui sont ensuite facilement adaptables à la simulation. Enfin,
la synthèse de commande basés sur la passivité peut être facilement appliquée aux systèmes
port-Hamiltoniens, qui sont naturellement passifs [70]. Dans ce travail, nous développons une
formulation port-Hamiltonienne, qui fournit un cadre théorique systémique pour la réduction
d’ordre de modèle et le contrôle basé sur la passivité, en s’appuyant sur les méthodologies
décrites par [70], [75], [7], et [93].

1par exemple de 0 à 1 où 0 et 1 représentent les deux phases
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Les systèmes port-Hamiltoniens (PHS) sont utilisés pour modéliser et contrôler les systèmes
physiques impliquant des échanges d’énergie [61], [63]. Ils combinent des éléments qui stock-
ent l’énergie, dissipent l’énergie et acheminent l’énergie dans un cadre cohérent [84]. Les
PHS sont définis par l’interaction entre une structure de Dirac et une fonction hamiltoni-
enne [18]. La structure de Dirac définit comment l’énergie circule dans le système, tandis
que la fonction hamiltonienne représente l’énergie totale du système [16, 86]. Au cours de
la dernière décennie, ce cadre de modélisation puissant a été utilisé pour une large gamme
de systèmes physiques de dimension infinie tels que les systèmes électriques, mécaniques,
électromécaniques, hydrauliques et de génie chimique multiphasique où des phénomènes de
transfert de chaleur et de masse se produisent. Il a également été appliqué pour représenter
des systèmes à interface mobile [23, 24] ainsi que des systèmes port-Hamiltoniens implicites
définis sur des sous-espaces de Lagrange dans des espaces de Hilbert [88, 105]. Les détails
du cadre PHS et son application au processus de solidification sont largement discutés au
chapitre 3 de cette thèse.

Le premier objectif de cette thèse est d’utiliser l’approcha hamiltonienne à port pour mod-
éliser les processus de solidification en combinant l’équation d’Allen-Cahn (pour les change-
ments de phase) avec l’équation de la chaleur (pour la conduction thermique). Deux ap-
proches principales ont été explorées dans le cadre PH : le modèle d’interface mince et le
modèle d’interface diffuse. Le modèle d’interface mince, étudié par [24], et [28], fournit une
représentation simplifiée de la dynamique de l’interface. En revanche, le modèle d’interface
diffuse, basé sur les travaux de [110], offre une description plus détaillée du comportement
de l’interface. Cette thèse suit l’approche d’interface diffuse. Le modèle utilise la fonction
de densité d’entropie comme fonction génératrice, qui dépend de la variable de phase ϕ et
de l’énergie interne u, pour décrire la dynamique couplée des changements de phase et du
transfert de chaleur [110]. Nous utilisons des systèmes port-Hamiltoniens implicites définis
sur des sous-espaces de Lagrange pour exprimer la fonctionnelle de densité d’entropie en ter-
mes de température réciproque τ et de la variable de champ de phase ϕ comme donné dans
les tables de [42, 43].

Le deuxième objectif est de formuler les systèmes PH des processus de solidification basés sur
ces modèles thermodynamiques. Ces modèles affinés sont discrétisés en utilisant une formu-
lation implicite. Cette approche, dérivée des modèles thermodynamiques non linéaires, vise
à préserver la structure et les propriétés du système continu d’origine pendant les simulations
numériques.

Ce travail met également en évidence l’importance de maintenir l’intégrité structurelle des
systèmes PH pendant la discrétisation. Plusieurs techniques de discrétisation préservant
la structure sont utilisées pour approcher les solutions tout en garantissant que les pro-
priétés essentielles du système, telles que la conservation de l’énergie et la passivité, sont
maintenues. Ces techniques incluent la méthode des éléments finis mixtes par [35, 36], les
méthodes pseudo-spectrales explorées par [39, 66, 111], et l’approche du calcul extérieur
discret étendue aux systèmes PH par [53, 97]. La méthode des éléments finis partitionnés
(PFEM), développée par [9, 10], [15], et [96], est particulièrement mise en avant pour son
efficacité à préserver la structure des systèmes PH pendant les simulations numériques, que
nous utiliserons dans notre discrétisation du modèle de solidification.
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L’objectif principal de ce manuscrit est de donner la représentation port-Hamiltonienne du
processus de solidification de l’eau pure en utilisant le formalisme de champ de phase et
l’entropie totale du système biphasique comme potentiel thermodynamique, ainsi que son
équivalent discrétisé.

Modélisation du processus de solidification

Dans le premier chapitre, Modélisation du processus de solidification, nous présentons une
synthèse raisonnée des modèles principaux du processus de solidification dans les substances
pures et aboutissons au modèle dynamique qui sera utilisé dans la suite de la thèse.

Nous commençons donc par un aperçu des modèles de systèmes multiphasiques et de leurs
propriétés thermodynamiques, en nous concentrant sur la compréhension du comportement
des interfaces pendant les transitions de phase. Cela prépare le terrain pour discuter du prob-
lème de Stefan, un modèle classique à interface nette de la solidification. Nous introduisons
ensuite la théorie du champ de phase, qui modélise les interfaces diffuses [28].

Cela est particulièrement pertinent pour le génie environnemental et les études de solidifica-
tion. Nous présentons les modèles thermodynamiques et dynamiques de la solidification de
l’eau, en nous concentrant spécifiquement sur la thermodynamique des systèmes biphasiques
et en utilisant la notion de modèles de champ de phase. À cette fin, nous suivons de près
l’approche thermodynamique de Wang et Boettinger [112, 8]. À travers l’exemple de la for-
mulation de Stefan de la solidification [28, 81, 45], nous fournissons un examen détaillé du
modèle dynamique de la solidification en utilisant à la fois l’approche classique, où l’énergie
libre ou l’énergie libre de Gibbs est utilisée [32], et un modèle alternatif où l’entropie est
utilisée comme potentiel thermodynamique pour le modèle de champ de phase [116].

Les principales contributions de ce chapitre incluent l’introduction d’un modèle détaillé de
la solidification en utilisant l’approche de la fonctionnelle d’entropie dans le cadre du champ
de phase, y compris une exploration de la dynamique entre les différentes phases et le rôle
de l’entropie dans la modélisation des interfaces diffuses. En particulier, nous avons proposé
d’écrire le modèle thermodynamique en termes d’une fonction d’entropie non linéaire dépen-
dant de la variable de champ de phase ϕ et de la température T . Cette approche diffère de
la plupart des méthodes classiques, qui utilisent l’énergie libre de Gibbs ou l’énergie libre de
Helmholtz comme dans [112], [8] et [50].

Le chapitre est organisé comme suit:

1. Présentation générale des systèmes multiphasiques: Examine les connaissances
fondamentales nécessaires pour comprendre les interactions au sein des systèmes mul-
tiphasiques, en se concentrant sur les approches de modélisation des interfaces mobiles
à différentes échelles.

2. Propriétés thermodynamiques des systèmes multiphasiques: Souligne l’importance
des interfaces dans l’analyse thermodynamique des systèmes multiphasiques, avec un
accent particulier sur la solidification des liquides.

3. Modélisation de la solidification d’un composant pur: Présente le modèle de
Stefan et l’approche de modélisation par champ de phase pour la solidification d’un
composant pur, en mettant l’accent sur les aspects thermodynamiques.
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4. Modélisation par champ de phase de la solidification de l’eau pure en util-
isant la fonctionnelle d’entropie: Décrit l’application des fonctionnelles d’entropie
dans la modélisation par champ de phase pour expliquer le processus de solidification
de l’eau pure, en démontrant la signification théorique et pratique de la méthode.

Pour récapituler les équations d’évolution du modèle de solidification dans ce chapitre:

• Variables d’état:

– ϕ: Variable de champ de phase

– u: Énergie interne

• Modèle thermodynamique: Dans la modélisation par champ de phase, l’entropie est
caractérisée par une fonction d’entropie spécifique, s∗(ϕ, T ), qui décrit les interactions
thermodynamiques entre les phases liquide et solide. Cette fonction inclut s∗sol(T )
pour l’entropie spécifique du solide (glace) et s∗liq(T ) pour le liquide (eau), utilisant des
polynômes double puits et d’interpolation, pw(ϕ) et pi(ϕ), pour modéliser la transition
de phase:

s∗(ϕ, T ) = s∗sol(T ) + pi(ϕ)[s
∗
liq(T )− s∗sol(T )] + wpw(ϕ). (1)

• Équations d’évolution: L’évolution du champ de phase est régie par l’équation suiv-
ante, mettant en évidence le rôle intégral de l’entropie spécifique dans le modèle:

∂ϕ

∂t
= −1

η

∂s∗

∂ϕ
(ϕ, T ) +

ϵ2

η
div(gradϕ) (2)

De plus, l’équation de bilan énergétique est:

∂u

∂t
= −div (q) (3)

où u est l’énergie interne et q est le flux de chaleur.

• Conditions aux limites: Les conditions aux limites sont exprimées en termes de:

ϕboundary = tr(ϕ) on ∂Ω (4)

gradϕ · n = 0 on ∂Ω (5)

où tr(ϕ) est la trace de la variable de champ de phase et n est le vecteur normal à la
surface limite ∂Ω.

En conclusion, nous avons rappelé les modèles de systèmes bi-phasiques avec transitions de
phase, en utilisant la variable de champ de phase pour représenter l’interface mobile entre
les phases. Les propriétés thermodynamiques des systèmes biphasiques avec des modèles de
champ de phase ont été présentées, l’entropie servant de potentiel thermodynamique [116,
31]. Nous avons ensuite présenté le modèle dynamique, qui comprend une dynamique de
conduction thermique couplée et un système de gradient pour la dynamique de la variable
de champ de phase.

En particulier, nous avons proposé d’écrire le modèle thermodynamique en termes d’une
fonction d’entropie non linéaire dépendant de la variable de champ de phase ϕ et de la
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température T . Cette approche diffère de la plupart des méthodes classiques, qui utilisent
l’énergie libre de Gibbs ou l’énergie libre de Helmholtz. En utilisant la fonction d’entropie,
nous préparons le modèle port-Hamiltonien qui utilise la fonctionnelle d’entropie comme
fonction génératrice.

Formulation comme système Hamiltonien à ports

Dans le deuxième chapitre, Formulation port-Hamiltonienne du processus de solidification,
nous discutons de l’approche des systèmes port-Hamiltoniens (PHS) pour modéliser les pro-
cessus de solidification [61]. Cela commence par une introduction aux aspects fondamentaux
des systèmes port-Hamiltoniens, en se concentrant sur les fondements conceptuels et mathé-
matiques des structures de Dirac et leur rôle dans la modélisation des systèmes physiques. Les
systèmes port-Hamiltoniens de frontière fournissent un cadre efficace pour lier les principes
physiques à la théorie des systèmes et au contrôle. Ce chapitre s’appuie sur les travaux
fondamentaux de [77] et [84], qui soulignent le rôle des systèmes de frontière dans la préser-
vation des propriétés structurelles des systèmes physiques. La discussion couvre à la fois les
systèmes de dimension finie et infinie, mettant en évidence le comportement dissipatif dans
le contrôle de l’énergie. Le chapitre analyse l’application des PHS aux équations régissant
les processus de solidification. Celles-ci incluent l’équation de diffusion et l’équation d’Allen-
Cahn. Il démontre les avantages des PHS pour comprendre et gérer la dynamique énergétique
des processus de solidification.

Nous rappelons d’abord les opérateurs hamiltoniens canoniques et la définition des structures
de Stokes-Dirac [54, 94], car ils sont essentiels pour comprendre les principes sous-jacents des
systèmes port-Hamiltoniens. De plus, le concept de systèmes port-Hamiltoniens de frontière
sera introduit.

Ensuite, nous élaborons sur la formulation port-Hamiltonienne de frontière de l’équation de
diffusion thermique et de l’équation d’Allen-Cahn. En appliquant les principes des PHS, nous
démontrerons comment ces formulations peuvent être utilisées pour modéliser la dynamique
des processus de solidification. Cela implique le couplage des équations de diffusion thermique
et d’Allen-Cahn pour obtenir une formulation port-Hamiltonienne de frontière complète du
processus de solidification.

Initialement, nous avons dérivé le modèle explicite du processus de solidification en utilisant
l’entropie comme fonction génératrice, les variables d’état étant la variable de champ de phase
ϕ et l’énergie interne u.

Système port-Hamiltonien dissipatif:




∂ϕ
∂t
∂ψ
∂t

Fϕψ
∂u
∂t

F̄




= JS




− ∂s
∂ϕ

(ϕ, u)

ϵ2ψ
Eϕψ
−τ
q




(6)
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L’opérateur hamiltonien JS est défini comme suit:

JS =




0 0 −1 0 0
0 0 −grad 0 0
1 −div 0 0 0
0 0 0 0 −div
0 0 0 −grad 0




(7)

Variables de port aux frontières : L’opérateur de frontière W̃ synthétise les interactions de
frontière provenant à la fois de la diffusion thermique et de la dynamique d’Allen-Cahn:

W̃ =




0 −γ⊥ 0 0 0 0
0 0 γ0 0 0 0
0 0 0 0 γ0 0
0 0 0 0 0 −γ⊥


 (8)

Les variables de port aux frontières pour la dynamique de la chaleur et du champ de phase
sont exprimées comme suit:




fϕψ∂
eϕψ∂
f∂
e∂


 = W̃




− ∂s
∂ϕ

(ϕ, u)

ϵ2ψ
Fϕψ
−τ
q




=




−γ⊥(ϵ2ψ)
γ0 (1/ηEϕψ)

γ0τ
−γ⊥Mτ (−grad(τ))


 (9)

Afin de se rapprocher le plus possible des formulations existantes en génie des Procédés, nous
avons décidé d’utiliser la température réciproque τ = 1/T . Ce changement nous permet
d’utiliser les données disponibles et les propriétés thermodynamiques de l’eau liquide et de
la glace, telles que trouvées dans la littérature [42] et [43]. Le potentiel thermodynamique
fourni est l’énergie de Gibbs, exprimée en fonction de la température et de la pression.

Nous avons ensuite défini les propriétés thermodynamiques du système biphasique eau-glace,
conduisant aux expressions de la densité d’entropie dépendant de la température plutôt que
de l’énergie interne. Cela nécessitait de changer l’espace de coordonnées de l’énergie interne
u (une variable extensive) à la température T (une variable intensive).

Pour reformuler le modèle port-Hamiltonien explicite, nous avons introduit la formulation
port-Hamiltonienne implicite utilisant des sous-variétés lagrangiennes, qui permettent la défi-
nition des équations constitutives réciproques de manière sans coordonnées [105], [88]. Cette
approche peut être adaptée aux systèmes à paramètres distribués [60], [106]. Enfin, nous
avons dérivé une formulation implicite du modèle de solidification en intégrant des équations
différentielles-algébriques (DAE) et des équations aux dérivées partielles (PDE).

Modèle implicite:



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∂2s∗
∂ϕ∂τ

0 0 ∂2s∗
∂τ2

0

0 0 0 0 1







∂ϕ
∂t
∂ψ
∂t

Fϕψ
∂τ
∂t

F̄




= JS




−∂s∗
∂ϕ

(ϕ, τ)

ϵ2ψ
Eϕψ
−τ
q



. (10)
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Ce cadre modélise la dynamique en termes de température réciproque, s’alignant avec les
propriétés thermodynamiques empiriques de systèmes tels que l’eau et la glace.

Notre discussion fera référence au cadre thermodynamique de modélisation et de simulation
[5] et [116] pour illustrer les applications pratiques de ces constructions théoriques.

Les principales contributions sont structurées autour du développement d’un cadre théorique
et de son application aux phénomènes physiques, en s’appuyant sur la littérature existante:

1. Dérivation de la dynamique d’Allen-Cahn: En s’appuyant sur les travaux de
Vincent et al. [110], ce chapitre présente la dérivation de la représentation port-
Hamiltonienne de l’équation d’Allen-Cahn dans la représentation de l’entropie.

2. Formulation implicite du modèle de solidification: Afin d’utiliser les données em-
piriques des propriétés thermodynamiques des systèmes, données en termes de tempéra-
ture réciproque, une formulation port-Hamiltonienne implicite est développée. Cette
formulation est exprimée en termes d’un système d’équations différentielles-algébriques
partielles (DA-PDE). Ces systèmes appartiennent à la classe récemment définie des sys-
tèmes port-Hamiltoniens sur des sous-variétés de Lagrange, tels que définis dans [105,
60, 106, 6].

En conclusion, ce chapitre présente une représentation dissipative port-Hamiltonienne de
frontière pour les processus de solidification de l’eau et d’autres substances pures, en utilisant
l’entropie comme fonction génératrice pour la dynamique. En s’appuyant sur les travaux
fondamentaux, tels que ceux de [110], le chapitre étend le cadre port-Hamiltonien pour inclure
l’équation d’Allen-Cahn, modélisant efficacement la dynamique des variables de champ de
phase non conservées et l’équation de la chaleur.

Nous avons initialement développé le modèle explicite du processus de solidification en util-
isant l’entropie comme fonction génératrice, les variables d’état étant la variable de champ
de phase ϕ et l’énergie interne u. Nous avons ensuite reformulé le modèle port-Hamiltonien
explicite en une formulation port-Hamiltonienne implicite utilisant des sous-variétés lagrang-
iennes. Cette approche, détaillée dans des travaux tels que [105] et [88], permet la définition
des équations constitutives réciproques de manière sans coordonnées et peut être adaptée
aux systèmes à paramètres distribués [60], [106]. Finalement, cela a conduit à une formula-
tion implicite du modèle de solidification en intégrant des équations différentielles-algébriques
(DAE) et des équations aux dérivées partielles (PDE). Ce cadre, modélisant la dynamique
en termes de température réciproque, s’aligne bien avec les propriétés thermodynamiques
empiriques des systèmes comme l’eau et la glace.

Discrétisation spatiale

Dans le troisième chapitre, Discrétisation du processus de solidification, nous nous concen-
trons sur la discrétisation préservant la structure du modèle port-Hamiltonien (PH) de fron-
tière du processus de solidification. Une discrétisation préservant la structure garantit que
le modèle discrétisé conserve la structure PH, en préservant les propriétés clés telles que la
conservation de l’énergie et la passivité [17, 11]. Plusieurs techniques de discrétisation préser-
vant la structure sont utilisées pour approcher les solutions tout en maintenant ces propriétés
structurelles. Selon [77], les techniques suivantes sont notables:
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• Méthode des éléments finis mixtes par Golo et al. [35, 36]: Cette méthode utilise
des bases différentes pour les variables d’énergie et de co-énergie, les intégrant en fonc-
tion du degré de la forme différentielle les définissant.

• Méthodes pseudo-spectrales pour les systèmes PH explorées par Moulla et al. [66,
111, 39].

• Approche du calcul extérieur discret étendue aux systèmes PH par Seslija et al.
[97, 53]: Cette méthode représente les systèmes discrets de lois de conservation sous
forme matricielle, reflétant les formulations continues.

• Méthode des éléments finis partitionnés (PFEM) développée par Cardoso et al.
[15], Serhani [96], et Brugnoli et al. [9, 10]: PFEM sera discuté en détail ci-après.

Dans ce chapitre, nous utilisons la méthode des éléments finis partitionnés (PFEM), basée
sur les travaux de [38], pour assurer la discrétisation préservant la structure de l’équation
de la chaleur et de l’équation d’Allen-Cahn. PFEM maintient les propriétés physiques et
géométriques des systèmes port-Hamiltoniens (PH) pendant les simulations numériques, ce
qui est crucial pour représenter et analyser avec précision les phénomènes de solidification.

La contribution principale de ce chapitre réside dans la méthodologie de discrétisation ap-
pliquée au modèle port-Hamiltonien (PH) de l’équation de la chaleur, en se concentrant sur
deux innovations principales:

1. Intégration de l’entropie comme fonction génératrice: Nous avons appliqué
la méthode des éléments finis partitionnés (PFEM) au modèle PH où nous utilisons
des relations constitutives non linéaires, correspondant à des fonctions hamiltoniennes
non quadratiques issues des modèles thermodynamiques présentés au chapitre 2, avec
l’entropie s comme fonction génératrice.

2. Formulation implicite avec température réciproque: Nous avons introduit et
discrétisé une formulation implicite de l’équation de la chaleur utilisant la température
réciproque τ = 1

T
comme variable d’état. De plus, nous avons discrétisé l’équation

d’Allen-Cahn, conduisant à la discrétisation de l’ensemble du modèle implicite du pro-
cessus de solidification. Cette formulation s’aligne avec le cadre des systèmes hamil-
toniens dissipatifs, incorporant des ports de frontière.

En utilisant les approximations par éléments finis et les matrices de masse et de rigidité
définies dans ce chapitre, le système discret peut être représenté comme suit:




Mϕ 0 0 0 0
0 Mψ 0 0 0
0 0 MFϕψ 0 0

Mϕτ 0 0 Mτ 0
0 0 0 0 MF̄




︸ ︷︷ ︸
M̃




dϕ̄
dt
(t)

dψ̄
dt
(t)

F̄ϕψ(t)
dτ̄
dt
(t)

F̄ (t)




=




0 0 −Mϕ 0 0
0 0 Gψ 0 −Bψ

Mϕ −D⊤
ϕ 0 0 0

0 0 0 0 −Dτ

0 B⊤
ψ 0 D⊤

τ 0




︸ ︷︷ ︸
JS




ēϕ(t)
ϵ2ψ̄(t)
Ēϕψ(t)
−τ̄(t)
q̄(t)



,

(11)

où M̃ est la matrice de masse combinée, et JS inclut la dynamique du système et les inter-
actions de frontière.
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Notre approche a consisté à dériver des formulations faibles, à projeter les variables sur des
espaces d’éléments finis et à définir et calculer des matrices de masse. Ces étapes ont permis
une discrétisation préservant la structure, préservant les propriétés physiques et géométriques
du système continu d’origine. Les modèles discrétisés résultants ont des matrices de masse
dépendant de l’état.

En conclusion, dans ce chapitre, nous avons présenté la discrétisation du phénomène de
solidification en utilisant la méthode des éléments finis partitionnés (PFEM) dans le cadre
port-Hamiltonien. Tout d’abord, nous avons discrétisé une formulation implicite de l’équation
de la chaleur en utilisant la température réciproque τ = 1

T
comme variable d’état. De plus,

nous avons discrétisé l’équation d’Allen-Cahn, conduisant à la discrétisation complète du
modèle implicite du processus de solidification.

Conclusion

En conclusion, cette thèse a discuté et présenté la modélisation, la formulation et la discréti-
sation des processus de solidification en utilisant le cadre port-Hamiltonien (PH) combiné à
l’approche de champ de phase.

Dans le chapitre 2, nous avons présenté une approche de modélisation détaillée des processus
de solidification en utilisant la fonctionnelle d’entropie dans le cadre du champ de phase
[112, 116]. Les contributions clés incluent une présentation complète de la solidification
en utilisant l’approche de la fonctionnelle d’entropie et une analyse de la dynamique entre
les différentes phases, en mettant l’accent sur le rôle de l’entropie dans la modélisation des
interfaces diffuses.

Dans le chapitre 3, nous avons étendu le cadre PH au processus de solidification, en inté-
grant la méthode d’interface diffuse avec les variables de champ de phase. Cela impliquait de
développer une formulation port-Hamiltonienne de frontière combinant l’équation de diffu-
sion thermique et l’équation d’Allen-Cahn. La principale contribution de ce chapitre a été la
reformulation du modèle port-Hamiltonien explicite en une formulation port-Hamiltonienne
implicite utilisant des sous-variétés lagrangiennes. Cette approche, détaillée dans des travaux
tels que [105] et [88], permet la définition des équations constitutives réciproques de manière
sans coordonnées et peut être adaptée aux systèmes à paramètres distribués [60, 106].
Ce changement nous permet d’utiliser les données disponibles et les propriétés thermody-
namiques de l’eau liquide et de la glace, telles que trouvées dans la littérature [42, 43]. Le
potentiel thermodynamique fourni est l’énergie de Gibbs, exprimée en fonction de la tempéra-
ture et de la pression. En définissant les propriétés thermodynamiques du système biphasique
eau-glace, nous avons dérivé les expressions de la densité d’entropie basées sur la tempéra-
ture plutôt que sur l’énergie interne. Cela nécessitait de changer l’espace de coordonnées de
l’énergie interne u (une variable extensive) à la température T (une variable intensive).

Le chapitre 4 a mis l’accent sur la discrétisation préservant la structure du modèle PH de la
solidification. En utilisant la méthode des éléments finis partitionnés (PFEM), nous avons
veillé à ce que le modèle discrétisé conserve la structure PH, en préservant des propriétés clés
telles que la conservation de l’énergie et la passivité. Ce chapitre a détaillé plusieurs tech-
niques de discrétisation préservant la structure, en soulignant l’importance de maintenir les
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propriétés physiques et géométriques du système continu d’origine. Les principales contribu-
tions incluent l’application de la PFEM au modèle PH utilisant des relations constitutives non
linéaires avec l’entropie comme fonction génératrice [38], et l’introduction et la discrétisation
d’une formulation implicite de l’équation de la chaleur en utilisant la température réciproque
τ = 1

T
comme variable d’état. De plus, nous avons discrétisé l’équation d’Allen-Cahn, con-

duisant à la discrétisation complète du modèle implicite du processus de solidification, où les
modèles discrétisés résultants ont des matrices de masse dépendant de l’état.

Cette thèse a jeté une base pour de futures recherches et développements dans le domaine
des systèmes à paramètres distribués avec interfaces mobiles. Plusieurs directions pour les
travaux futurs sont prometteuses:

• Effectuer des simulations numériques du processus de solidification. Un travail prélim-
inaire sur les simulations, utilisant les relations constitutives non linéaires, a conduit à
des résultats partiels qui ont montré un problème non linéaire assez difficile.

• Explorer son contrôle en utilisant des méthodes de contrôle optimal suivant, par ex-
emple, [40]. Ces études initiales ont montré que les propriétés thermodynamiques non
linéaires conduisent à un problème de contrôle optimal très difficile qui reste un prob-
lème ouvert intéressant.

• Ce modèle pourrait fournir un sous-modèle pour le processus de purification de l’eau
tel que présenté dans le projet WATERSAFE et éventuellement aider à son contrôle.

Les résultats de cette thèse ont plusieurs implications pour la recherche théorique et les
applications pratiques. En utilisant le cadre PH, nous avons fourni un moyen systéma-
tique d’incorporer les principes physiques dans la modélisation, la simulation et le contrôle
des processus de solidification. Les recherches futures pourraient prolonger ce travail dans
plusieurs directions, notamment l’amélioration des modèles thermodynamiques pour inclure
des interactions plus complexes et des phases supplémentaires, le développement de stratégies
de contrôle avancées utilisant le cadre PH, et l’application de ces méthodologies à d’autres
processus de transition de phase et systèmes multiphasiques.

Les recherches futures peuvent s’appuyer sur ces résultats pour améliorer encore les pro-
cessus de solidification. Les directions potentielles incluent l’extension des modèles à des
dimensions supérieures et à des formes plus complexes pour mieux représenter la solidifica-
tion réelle, l’application des modèles à d’autres types de transitions de phase et de systèmes
multiphasiques, l’utilisation de méthodes numériques pour rendre les simulations plus effi-
caces et précises, la réalisation de davantage d’expériences pour valider et affiner les modèles,
et le développement de stratégies de contrôle basées sur le cadre port-Hamiltonien pour gérer
les processus de solidification dans les applications industrielles.
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Nomenclature

z Space variable

Ω Spatial domain

t Time variable

G Functional representing thermodynamical potential

ϕ Non–conserved phase field variable

κϕ Non–negative gradient coefficient related to the interface

g(ϕ) Analytic density potential function that generates the interface dynamics

Γϕ Isotropic interface mobility

δG/δϕ Functional derivative

trace Trace operator in boundary conditions

U Internal energy

T Temperature

p Pressure

V Volume

µ Chemical potential

N Number of moles

gsol(T, p) Specific Gibbs energy of the solid phase

gliq(T, p) Specific Gibbs energy of the liquid phase

f ∗ Specific Helmholtz energy

H Hamiltonian function

s∗ Specific entropy

Hd Discrete total energy

JQ Heat flux

u∂ Boundary input variable

y∂ Boundary output variable

Mφ Mobility constant

21



22 NOMENCLATURE

δF/δφ Functional derivative of free energy

F Total free energy

jϕ Non–conserved flux

π(φ) Interpolation polynomial for phase transition

w(φ) Weight function for phase transition

φboundary Phase field variable at boundary

div Divergence operator

∂Ω Boundary of the domain

n Normal vector to boundary surface

tr(φ) Trace of the phase field variable

ρ Density

cp Specific heat capacity at constant pressure

div Divergence

λ Thermal conductivity

grad Gradient

F Thermodynamic force

ψ State variable := gradϕ

Eϕ Flux

Fϕ Driving force

J Linear differential operator

F Space of flow variables

E Space of effort variables

B Bond space (B = F × E)

f∂, e∂ Boundary port variables

W Boundary operator

γ0 Continuous unique extension of a boundary trace mapping

γ⊥ Continuous unique extension of a normal trace mapping

fbulk Flow variable

ebulk Effort variable

s Entropy density

τ Reciprocal temperature

S Entropy functional

q Heat flux
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Fϕψ Driving force after the extension of the state space by ψ

Eϕψ Flux after the extension of the state space by ψ

S̄ Entropy functional after the extension of the state space by ψ

fϕψ Flow variable of the extended state space

eϕψ Effort variable of the extended state space

F̄ Driving force

Je Extended linear differential operator

tr(·) Boundary trace operator

f∂̃, e∂̃ Boundary port variables

GR Differential operator

G∗
R Formal adjoint operator of GR

S Bounded coercive operator

Jext Extended linear differential operator for boundary interactions

R Positive, coercive matrix operator for dissipation

T (ζ) Tensor describing material properties in the wave equation

ρ(ζ) Density of the medium at point ζ

w(t, ζ) Wave displacement variable

D Dirac structure

Γ0,Γ1 Disjoint parts of the boundary with different boundary conditions
∂H
∂x

Gradient of the Hamiltonian function
d
dt
H Time derivative of the Hamiltonian

ẋ Rate of change of the state variable

Q Dissipative force

F Flux variable associated with dissipation

∂tz(t, x) Partial derivative with respect to time of state variable z

δxH Functional derivative of Hamiltonian with respect to state variable x

fS, eS Flow and effort variables associated with energy-storing elements

fR, eR Flow and effort variables associated with resistive elements

fP , eP Flow and effort variables associated with external ports

J (x) Skew-symmetric differential operator for infinite-dimensional systems

GR Differential operator for dissipative interactions

G∗
R Adjoint operator of GR for dissipation

R Operator describing resistive interactions
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S Bounded coercive operator in dissipative systems

X State space for energy-storing elements

FR Space of flow variables for resistive elements

x, ζ State variables in the spatial domain

H Hamiltonian or total energy of the system

R Resistive structure in Port-Hamiltonian systems

u(t) Control input in boundary conditions

I Identity matrix

T (ζ) Elasticity tensor in wave equation

x(t, ζ) State variable vector in wave equation

Jext Extended skew-symmetric operator for dissipative systems

Q,F Dissipative force and flux variables

δx1H, δx2H Functional derivatives of Hamiltonian in extended systems

W ,W Boundary operators for port variables



Chapter 1

Introduction

This thesis deals with distributed parameter models of bi-phasic systems consisting of two
phases interacting through moving interfaces. Such systems arise as models of multiphase sys-
tems like crystallization processes, evaporators, or condensers [23]. Their dynamical models
comprise systems of Partial Differential Equations (PDEs) arising from balance equations of
each phase, coupled with a dynamical system describing the moving interface. The interface
is a narrow region separating two spatial regions of different material states. There are many
ways to model the interface, including the Two-phase Stefan problem [79] and Thin interface
models [109]. These interfaces separate domains filled with different phases (solid, liquid, or
vapor), such as in solidification or crystallization processes [112]. A classical problem is the
Stefan problem, which describes phase change processes like also solidification and melting.
It is a fundamental issue in various scientific and engineering fields. Previous studies, in-
cluding those by [40], [21], and [52], have extensively discussed the control and modeling of
such processes. Many inhomogeneous systems involve well-defined phase domains separated
by an interface. If the systems are not in equilibrium, the interface will move in a certain
direction. Examples of moving interfaces include phase separation by spinodal decomposi-
tion, modeling microstructure evolution in materials science, or solidification with dendritic
growth [102, 28].

The representation of a moving interface varies from sharp interfaces to diffuse ones. In the
sharp interface approach, certain variables of interest are discontinuous at the interface due
to imposed boundary conditions, and the interface must be tracked [99]. In contrast, in the
diffuse interface approach, following Gibbs’ ideas, the variables vary rapidly but smoothly
along the interface thickness. The different phases are differentiated by an order parameter
that changes continuously from one value to another along the interface thickness, with each
phase corresponding to these values. The dynamics of this phase variable are driven by a
partial differential equation. The sharp interface approach is not well adapted to describe
complex patterns of the interface. In this case, the diffuse interface approach is preferred
through the phase field approach. Therefore, in our work, we follow the diffuse interface
approach based on the work by [110]. This approach uses a phase field variable ϕ describing
the interface, which varies continuously between the values representing the solid and liquid
phases and obeys various dynamical models such as the Allen-Cahn equation.
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The phase field approach is extensively used in physics and material science [98]. Although it
is not frequently used in chemical engineering, we discuss its thermodynamic properties and
the phase field approach in detail in Chapter 2. Recently, some applications have emerged in
this field, such as the WATERSAFE project, which is one application motivating this work.
It deals with a new process of water purification by freezing, aiming specifically to remove
soluble pollutants at low concentrations from aqueous liquid effluents. The WATERSAFE
ANR project (WATERSAFE: Advancing Water Purification through Solidification-Melt Cy-
cles) conducted by Aurélie Galfré from LAGEPP has two primary objectives: conducting an
in-depth analysis of ice crystallization phenomena to prevent the incorporation of impurities,
especially salts, into the ice, thus ensuring its purity; and developing an innovative ice layer
crystallization (ILC) process for pollutant treatment that is optimized for continuous opera-
tion and liquid phase recycle modes. This project aims to bridge the gap between theoretical
models and practical applications, focusing on the thermodynamics of phase transitions and
the dynamics of multiphase systems. The use of the phase field model will permit better
control of operating conditions by analyzing the dendritic growth during solidification.

Due to the thermodynamic nature of the freezing process and the phase field method, the
Port-Hamiltonian framework seems useful in this context for modeling purposes, to facilitate
interconnection with a macroscopic environment, for simulation, or even for control synthe-
sis. Indeed, this approach encodes the underlying physical principles, such as conservation
laws, directly into the geometric structure of the system model, as well as into the boundary
conditions. Moreover, the geometric structure can be used in spatial reduction to derive
finite-dimensional Hamiltonian models. These models share the same physical properties as
their infinite-dimensional counterparts, including the representation of systems of balance
equations and inherent passivity, making them particularly suitable for simulation. Finally,
passivity-based control can easily be applied to Port-Hamiltonian systems, which are natu-
rally passive systems [70]. In this work, we develop a port-Hamiltonian formulation, which
provides a system-theoretic framework for model order reduction and passivity-based control,
building on methodologies outlined by [70], [75], [7], and [93].

Port Hamiltonian Systems (PHS) are used to model and control physical systems involving
energy exchange [63], [61]. They combine elements that store energy, dissipate energy, and
route energy within a consistent framework [84]. PHS are defined by the interaction between
a Dirac structure and a Hamiltonian function [18]. The Dirac structure defines how energy
flows within the system, while the Hamiltonian function represents the total energy of the
system [86, 16]. In the last decade, this powerful modeling framework has been used for a
wide range of infinite-dimensional physical systems such as electrical, mechanical, electro-
mechanical, hydraulic, and multiphase chemical engineering systems where heat and mass
transfer phenomena occur. It has also been applied to represent moving interface systems [23,
24] as well as Implicit Port Hamiltonian Systems defined on Lagrange subspaces in Hilbert
spaces [105, 88]. The details of the PHS framework and its application to the solidification
process are thoroughly discussed in Chapter 3 of this thesis.

The first objective of this thesis is to use PHS to model solidification processes by combining
the Allen-Cahn equation (for phase changes) with the heat equation (for heat conduction).
Two primary approaches have been explored within the PH framework: the thin interface
model and the diffuse interface model. The thin interface model, as studied by [28] and
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[24], provides a simplified representation of the interface dynamics. In contrast, the diffuse
interface model, based on the work by [110], offers a more detailed description of the interface
behavior. This thesis follows the diffuse interface approach. The model uses the entropy
density function as the generating function, which depends on the phase variable ϕ and
internal energy u, to describe the coupled dynamics of phase changes and heat transfer
[110]. We use Implicit Port Hamiltonian Systems defined on Lagrange subspaces to express
the entropy density functional in terms of the reciprocal temperature τ and the phase field
variable ϕ as given in the tables of [42, 43].

The second objective is to formulate the PH systems of solidification processes based on these
thermodynamic models. These refined models are discretized using an implicit formulation.
This approach, derived from nonlinear thermodynamic models, aims to preserve the structure
and properties of the original continuous system during numerical simulations.

This work also emphasizes the importance of maintaining the structural integrity of the
PH systems during discretization. Several structure-preserving discretization techniques are
employed to approximate solutions while ensuring that essential system properties, such
as energy conservation and passivity, are maintained. These techniques include the Mixed
Finite-Elements Method by [35, 36], Pseudo-Spectral Methods explored by [66, 111, 39], and
the Discrete Exterior Calculus approach extended to PH systems by [97, 53]. The Partitioned
Finite Element Method (PFEM), developed by [15], [96], and [9, 10], is particularly high-
lighted for its effectiveness in preserving the structure of the PH systems during numerical
simulations, which we will be using in our discretization of the solidification model.

We suggest a discretization of the implicit model using the Partitioned Finite Element Method
(PFEM). The explicit model of the solidification process was developed using entropy as the
generating function, with state variables being the phase field variable ϕ and the internal
energy u based on the work by [112]. Due to the limited availability of data for the entropy
density function s = s(ϕ, u), we transitioned to using the reciprocal temperature τ = 1/T .
This adjustment allowed us to utilize existing thermodynamic properties of liquid water and
ice as mentioned earlier, as documented by sources such as the International Association for
the Properties of Water and Steam [42, 43]. The Gibbs energy, expressed as a function of
temperature and pressure, facilitated a practical definition of the thermodynamic properties
of the bi-phasic water-ice system. Consequently, we derived expressions for the entropy
density based on temperature rather than internal energy, necessitating a shift in the state
space coordinate from internal energy u to temperature T .

We then reformulated the explicit Port Hamiltonian model into an implicit Port Hamiltonian
formulation using Lagrangian submanifolds. This approach, detailed in works such as [89]
and [105, 88], allows for the definition of reciprocal constitutive equations in a coordinate-
free manner and can be adapted to distributed parameter systems. Ultimately, this led
to an implicit formulation of the solidification model by integrating Differential-Algebraic
Equations (DAE) and Partial Differential Equations (PDE). This framework, modeling the
dynamics in terms of reciprocal temperature, aligns well with the empirical thermodynamic
properties of systems like water and ice.

The main goal of this manuscript is to give the Port Hamiltonian representation of the
solidification process of pure water using the phase field formalism and the total entropy of
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the bi-phasic system as the thermodynamic potential, and its discretized counterpart.

1.1 Structuration of the Manuscript
The thesis is divided into three chapters, each addressing different aspects of the solidification
process. Below is an overview of the manuscript’s organization.

1.1.1 Chapter 2: Modeling of the Solidification Process

Chapter 2 delves into the modeling of solidification processes. It begins with an introduction
to multiphase systems and their thermodynamic framework, highlighting the importance of
interfaces and the role of entropy in phase transitions. The chapter presents both sharp
interface and phase field models, providing a detailed examination of the dynamics and
thermodynamics of solidification.

Key contributions of this chapter include:

• A comprehensive presentation of solidification using the entropy functional approach
within the phase field framework.

• An analysis of the dynamics between different phases and the role of entropy in modeling
diffuse interfaces.

1.1.2 Chapter 3: Port Hamiltonian Formulation of the Solidification
Processes

Chapter 3 introduces the Port Hamiltonian Systems (PHS) approach to the mathematical
modeling and control of solidification processes. The chapter covers the foundational concepts
of PHS, including Dirac structures and their role in the geometric structuring of power
dynamics within physical systems [91]. The application of PHS to fundamental equations
governing solidification processes, such as the diffusion equation and the Allen-Cahn equation,
is explored in detail.

Key contributions of this chapter include:

• Development of a Boundary Port Hamiltonian Framework integrating the diffuse inter-
face method with phase field variables.

• Extension of Allen-Cahn dynamics within the PHS framework [110].

• Formulation of an integrated approach that combines Differential-Algebraic Equations
(DAE) and Partial Differential Equations (PDE) for modeling dynamics in terms of
reciprocal temperature [116].

1.1.3 Chapter 4: Discretization of the Solidification Process

Chapter 4 focuses on the discretization methods for the solidification process. It discusses
advances in structure-preserving numerical analysis and control theory, particularly in the
context of multi-physical systems. The chapter introduces the Partitioned Finite Element
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Method (PFEM) and discusses the discretization of the heat equation and the Allen-Cahn
equation, emphasizing the importance of structure-preservation in numerical methods [38,
94].

Key contributions of this chapter include:

• Application of the Partitioned Finite Element Method (PFEM) to the PH model using
nonlinear constitutive relations, corresponding to non-quadratic Hamiltonian functions
arising from the thermodynamic models presented in Chapter 2, with entropy s as the
generating function.

• Introduction and discretization of an implicit formulation of the heat equation using the
reciprocal temperature τ = 1

T
as the state variable. Additionally, the chapter discusses

the discretization of the Allen-Cahn equation, leading to the complete discretization
of the implicit model of the solidification process. This formulation aligns with the
dissipative Hamiltonian systems framework, incorporating boundary ports.
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Modeling of the Solidification Process
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Abstract
This chapter examines the dynamics of solidification processes, utilizing the Allen-Cahn
equation and energy balance equations to model phase transitions essential for water pu-
rification technologies. The analysis begins with an examination of the behavior of thin
and diffuse interfaces, which are important for understanding solidification phenomena.
It then explores phase field theory, illustrating how this framework captures the complex-
ities of multiphase systems and interfacial dynamics. This discussion covers the thermo-
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dynamic foundations of the employed models and spans various scales, from macroscopic
system behavior to microscopic interactions.

2.1 Introduction to the chapter

This chapter presents the thermodynamic and dynamical models of the solidification of water,
focusing specifically on the thermodynamics of bi-phasic systems and introducing the notion
of phase field models. For this purpose, we closely follow the thermodynamic approach of
Wang and Boettinger [112, 8]. Through the example of the Stefan formulation of solidification
[28, 81, 45], we provide a detailed examination of the dynamical model of solidification using
both the classical approach, where the free energy or Gibbs free energy is used [32], and an
alternative model where the entropy is used as the thermodynamic potential for the phase
field model [116].

We begin with an overview of multiphase systems and their thermodynamic properties, fo-
cusing on understanding the behavior of interfaces during phase transitions. This sets the
stage for discussing the Stefan problem, a classical sharp interface model of solidification.
We then introduce phase field theory, which models diffuse interfaces [28].

In this chapter, we conclude with a thermodynamically consistent dynamical model of the
solidification process using an entropy functional approach within the phase field framework.
This approach enhances our understanding of the solidification process by emphasizing en-
tropy as a key factor in phase transitions.

2.2 Overview and Contributions of the chapter

This chapter aims to provide a comprehensive understanding of the solidification process in
pure substances, with a particular focus on the role of entropy in phase transitions. It is espe-
cially relevant to environmental engineering and solidification studies. The key contributions
of this chapter include introducing a detailed model of solidification using the entropy func-
tional approach within the phase field framework, including an exploration of the dynamics
between different phases and the role of entropy in modeling diffuse interfaces. Specifically,
we have proposed writing the thermodynamic model in terms of a non-linear entropy function
depending on the phase field variable ϕ and the temperature T . This approach differs from
most classical methods, which use the Gibbs free energy or Helmholtz free energy as in [112],
[8] and [50].

The choice of the diffuse interface model in this study, rather than the classical sharp inter-
face model (such as the Stefan model), is motivated by several key advantages. The diffuse
interface approach offers a thermodynamically consistent way to describe phase transitions
without explicitly tracking the interface position, making it better suited for capturing com-
plex interfacial dynamics and multiphysics coupling. Additionally, this choice aligns with the
goals of the Watersafe project, which also employs the diffuse interface framework due to its
robustness in modeling complex solidification processes involving environmental conditions.

The chapter is organized as follows:
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1. General presentation of Multiphase Systems: Examines the foundational knowl-
edge required to understand interactions within multiphase systems, focusing on mod-
eling approaches for moving interfaces at various scales.

2. Thermodynamic Properties of Multiphase Systems: Highlights the importance
of interfaces in the thermodynamic analysis of multiphase systems, with a focus on
liquid solidification.

3. Solidification Modeling of a Pure Component: Presents the Stefan model and
phase field modeling approach for the solidification of a pure component, emphasizing
the thermodynamic aspects.

4. Phase Field Modeling of Solidification of Pure Water Using Entropy Func-
tional: Describes the application of entropy functionals within phase field modeling to
explain the solidification process of pure water, demonstrating the method’s theoretical
and practical significance.

2.3 Multiphase Systems

A multiphase system is a physical system that contains more than one distinct phase of
matter, such as gas, liquid, or solid. The thermodynamic state variables of each phase
change smoothly and continuously within the system. At the boundary between different
phases, discontinuities arise in the state variables, enabling a clear delineation between the
different phases present. These boundaries between the phases are referred to as interfaces.

Interfaces can be of various types, such as:

• Liquid/Gas (e.g., cavitation) [1]

• Gas/Solid (e.g., deflagration, sublimation, deposition) [12]

• Solid/Liquid (e.g., melting, solidification) [101]

• Liquid/Liquid (e.g., emulsion, phase separation) [37]

In this thesis, we are concerned with the melting and solidification process.

Models of interfaces are important for the description of the dynamics of multiphase systems
and are the object of numerous studies. Melting and solidification have been extensively
studied in the context of metallurgy [46, 68], and in this thesis, we consider the context of
chemical engineering, focusing on processes involving the melting and solidification of water
[20, 29].

In the sequel, we shall briefly recall the two main approaches for macroscopic models: the
sharp interface and diffuse interface models. Both models may be derived from microscopic
models, which describe interactions at the molecular and atomic scales [107].

1. Sharp Interface Models: In sharp interface models, the interface is a spatial domain
of zero measure, known as phase boundaries. These models use the principles of con-
tinuum mechanics and the conservation of mass, momentum, and energy in the bulk
phases. An example of a sharp interface model is the Stefan problem, which can be
used to model the melting of ice or the solidification of liquid [74].
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2. Diffuse Interface Models: In diffuse interface models, the interface has a spatial
domain of small but non-zero measure. The composition of the interfacial region varies
continuously but rapidly from one phase to another. The phase field approach is an
example where a sharp interface is replaced by a diffuse interface. The phase is rep-
resented by a phase field variable ϕ, which can represent a conserved quantity (e.g.,
a molar fraction) as in the Cahn-Hilliard model used for phase separation or a non-
conserved quantity (a smoothened characteristic function of the spatial domains of the
phases) as in the Allen-Cahn model used for solidification [13, 2]. An overview of phase
field models is given in the articles [51] and the monography [28].

Figure 1: Diffuse and sharp interface

Figure 1 shows the two possible representations of interfaces [76].

The position of the interface is governed by thermodynamic and mechanical phenomena in
the bulk phases as well as at the interface. Properties of the fluid differ from those of the bulk
as we approach the solid phase. Complex geometric structures may arise at the interface,
such as the formation of microstructures like dendrites, which may strongly influence the
dynamics at the interface, such as the velocity of formation of the solid.

2.4 Thermodynamic Properties of Multiphase Systems
We present here briefly the thermodynamic model of a multiphase system with respect to
the thermodynamic properties of each phase following [28].

Thermodynamics of Single Phases

The thermodynamic equilibrium properties of a single phase are described by the Gibbs equa-
tion [32], which relates the thermodynamic state variables: entropy, temperature, volume,
pressure, number of moles, and chemical potential. For a simple thermodynamic system, the
Gibbs equation can be expressed as:

dU = TdS − pdV + µdN (2.1)

where U is the internal energy, T is the temperature, S is the entropy, p is the pressure, V
is the volume, µ is the chemical potential, and N is the number of moles.

Stability of Equilibrium
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Stability of a phase is characterized by properties of its internal energy or its entropy [14].
Considering a simple system with internal energy U(S, V,N) as a function of entropy S,
volume V , and mole number N , the system is in stable equilibrium if:

• dU = 0

• d2U > 0

Similarly, if entropy S(U, V,N) is considered as a function of U , V , and N , the system is in
stable equilibrium if:

• dS = 0

• d2S < 0

This implies that U must be convex with respect to its extensive variables S, V , and N , and
S must be concave with respect to U , V , and N . These stability conditions, derived from the
Maxwell relations, impose sign properties on thermodynamic parameters like heat capacity
and compressibility.

These stability conditions can also be extended to other potentials such as free energy
F (T, V,N) = U − TS or the Gibbs free energy G(T, P,N) = U − TS + PV . These po-
tentials must be convex with respect to their extensive variables V and N , respectively, at
constant intensive variables. These stability conditions will be used in the phase field model
to construct extended ( since valid for a two phase system) adequate thermodynamic poten-
tial functional as we will see later on. In the case of solidification, phase diagrams are critical
tools in thermodynamics for visualizing the stability regions of different bulk phases under
varying conditions of temperature and pressure. These diagrams are crucial for predicting
the conditions under which a substance may exist in either solid or liquid forms, or in a
mixture of phases, providing a graphical representation of phase equilibria [28].

2.5 Thermodynamics of Interfaces

At the interface between two phases, such as liquid and solid, the interactions between
the molecules of the different phases give rise to an additional thermodynamic model at the
interface, considered as an interfacial phase. This model is defined by specific thermodynamic
potentials, also called the surface energy.

Gibbs introduced a dividing surface between the two phases, considered as homogeneous up
to this dividing surface. The thermodynamics of each phase is given by the fundamental
equation of Gibbs without taking into account the interfaces:

dUL = TdSL − pLdV L + µdNL,

dUS = TdSS − pSdV S + µdNS.
(2.2)

Considering a system containing two phases L and S separated by an interface, the total
amounts are:
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n = nL + nS + nint,

V = V L + V S,

U = UL + US + U int,

S = SL + SS + Sint.

(2.3)

The thermodynamic model of the interface is given by the following Gibbs equation, where
the extensive variables associated with space have the dimension of an area A instead of a
volume:

dU int = TdSint − σdA+ µdN int (2.4)

where σ is the interfacial energy (surface tension) between the two phases and A is the
interfacial area. This accounts for the work done to modify the interface’s surface.

The variation of the internal energy of the total system, consisting of the two phases including
the interface, is then expressed as:

dU = TdS − pLdV L − pSdV S + µdN + σdA (2.5)

In nonequilibrium situations, these quantities are not constant, and thermodynamic rela-
tionships must be established in a local form using densities of the extensive properties and
adopting the local equilibrium assumption. In this case, the interface possesses its own tem-
perature T int and chemical potential µint. In nonequilibrium situations, the interfacial excess
densities of energy (uint), entropy (sint), and mole number (nint), as well as excess pressure
(pint), can be defined [82].

Additionally, the role of interfacial energy becomes significant in determining the dynamics of
phase boundaries and solidification kinetics. It impacts the development of microstructural
features during solidification, such as dendrites, described by models and theories from [13],
and further explored through stability analyses by [67].

Finally, the Gibbs-Thomson effect describes how surface energy affects the melting point of
materials [28]. The Gibbs-Thomson equation describes the excess energy at the interface
during solidification:

∆G = σ∆A (2.6)

where: ∆G is the excess energy at the interface, σ is the interfacial energy, ∆A is the change
in surface area of the solid-liquid interface.

2.6 Solidification Model of a Pure Substance
In this section, we present the modeling of the solidification process of a pure substance
using both thin (sharp) and diffuse interface approaches. We begin by discussing the one-
dimensional Stefan problem to illustrate the sharp interface model and then compare this
with the diffuse interface model offered by the phase-field approach. These models provide
fundamental insights into the dynamics and thermodynamics of the solidification process.
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2.6.1 The One-Dimensional Two-phase Stefan Problem for Solidifi-
cation

The Stefan problem is a classical mathematical formulation used to describe liquid-solid
phase transitions such as solidification and melting [81, 45, 27]. It is particularly important
in the study of heat transfer in systems undergoing a change from one phase to another.
This section focuses on the one-dimensional, two-phase Stefan problem, which models the
solidification of a pure substance.

• We consider constant density ρs = ρl = ρ, melt temperature Tm, phase-wise constant
specific heats cl, cs, and thermal conductivities λl, λs. Heat is transferred only by con-
duction, through both the solid and the liquid phases.

• The moving interface between the solid and liquid phases is important for understanding
the dynamics of the system [28]. The position of this interface, denoted as l(t), changes
over time due to the phase change process. The basic setup involves two regions: the
solid phase s(x < l(t)) and the liquid phase l(x > l(t)).

• In each phase i, the energy balance is given by:

ρi
∂ui
∂t

= λi
∂2Ti
∂x2

, for i = l, s (2.7)

where ui(x, t) and Ti(x, t) represent the energy field and temperature field respectively.

The Stefan Condition

The interface dynamics l(t) is derived from the total energy balance and the first law of
thermodynamics stating that the total energy is conserved.

At the interface, the power continuity equation is written:

dl

dt

(
ul|x=l(t)+ − us|x=l(t)−

)
= λs

∂Ts
∂x

∣∣∣∣∣
x=l(t)−

− λl
∂Tl
∂x

∣∣∣∣∣
x=l(t)+

(2.8)

where the term (ul|x=l(t)+ − us|x=l(t)−) represents the latent heat.

Constitutive Relation: Thermodynamic Equilibrium at the Interface

To complete the system, the temperature at the interface must be specified. The simplest
assumption is that the temperatures are at thermodynamic equilibrium. Therefore, at the
interface position l(t) ∈ (0, L), the temperature is equal to the melting temperature Tm:

Tl(t, l(t)) = Ts(t, l(t)) = Tm, ∀t > 0. (2.9)

This means that the temperature at the interface, for both the liquid state Tl and the solid
state Ts, is equal to the melting temperature Tm [109].
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However, this constitutive relation does not account for surface tension at the interface. In a
more detailed model, the Gibbs-Thomson effect could be included to consider the influence
of surface tension on the equilibrium temperature. The Gibbs-Thomson law, which takes
into account surface effects, provides a more accurate description:

Tm = T 0
m − σκ

Lf
, (2.10)

where T 0
m is the equilibrium melting temperature for a flat interface, σ is the surface tension,

κ is the curvature of the interface, and Lf is the latent heat of fusion [78].

Finally, to solve the Stefan problem numerically, appropriate boundary conditions on the fixed
boundaries and initial conditions for the temperature distribution and interface position must
be specified. Typically, these boundary conditions include fixed temperatures or heat fluxes
at the domain boundaries, and the initial temperature profile and interface position should
reflect the initial state of the system.

In conclusion, the one-dimensional Stefan problem for solidification is a coupled system of
partial differential equations (PDEs) for heat conduction in the solid and liquid phases,
along with an ordinary differential equation (ODE) for the interface position. This model
provides a fundamental framework for studying phase change processes in materials science
and engineering [81, 45].

Numerical Methods and Front Tracking

A primary challenge of the Stefan problem is that the spatial domains of the fluid and the
solid are time-varying, and the dynamics of the position of the interface is finite-dimensional.
This gives rise to a coupled system of PDEs and ODEs, which must be solved together.
The interface l(t) is not given explicitly; it must be determined as part of the solution.
This inherent characteristic poses significant challenges for both analytical and numerical
treatments, as it requires solving for a moving boundary whose position is a priori unknown
[47, 49].

To address these challenges, various numerical methods have been developed:

• Finite Difference Method: This method discretizes the domain into a grid and
approximates derivatives at each grid point. The challenge with a moving interface is
to ensure that the grid can accurately track the position of the interface over time,
which may require adaptive meshing or re-meshing techniques [83].

• Front Tracking Method: This method explicitly tracks the solid-liquid interface as
it advances in time, using the energy balance at the interface to determine the evolution
of the front position and temperature [22], [115], [58].

• Level Set Method: This method represents the moving interface as the zero level set
of a signed distance function, with the interface’s evolution governed by the level set
equation coupled with the heat equation [100].

• Immersed Boundary Method: This method models the solid-liquid phase change
with the interface represented as an immersed boundary within the domain, enforcing
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boundary conditions at the interface using methods like penalty or projection techniques
[41].

• Lattice Boltzmann Method: This method handles the heat conduction problem
with phase change by modeling the distribution functions of particle velocities, partic-
ularly useful in scenarios with complex boundary conditions and can naturally accom-
modate the moving interface problem [48].

The choice of method depends on the specific requirements of the problem, such as accuracy,
computational efficiency, and ease of implementation.

2.6.2 Solidification of a Pure Substance Using Phase Field Approach

In this section, we present an alternative model for the solidification process using the diffuse
interface approach. First, we recall the classical phase-field models using phase field variables
[73, 112]. Then, we define an equivalent model using the entropy as the generating function
instead of the energy.

As previously observed, methods with a sharp interface can necessitate significant computa-
tional resources, and reconstruction techniques can introduce numerical inaccuracies. It is
well-documented that the phase field approach offers a more accurate and flexible means of
modeling solidification processes compared to the traditional sharp interface method [8, 28].

In this thesis, we follow a thermodynamic approach to phase field models. The cornerstone of
phase field modeling relies on the definition of a functional representing its entropy density,
energy density, or other thermodynamic potentials. The thermodynamic basis of the phase-
field approach was first discussed in the nineties by [73] and [112] for the solidification of a
pure liquid. These foundations were essential for representing anisotropy-induced preferential
growth and nonlinear transition kinetics [30].

In this section, we present the classical phase-field approach to solidification using an energy
functional. The next section will tackle the same problem with the entropy functional.

A Brief Introduction to the Phase Field Model for Solidification-Melting Pro-
cesses

The Phase Field Variable and the Domain

The phase field approach is based on the phase field variable ϕ. This variable is a continuous
function defined over the entire domain of the system, representing the local phase compo-
sition at each point in space and time. Values range from ϕmin (e.g., solid phase) to ϕmax
(e.g., liquid phase), with intermediate values depicting the diffuse interface. The evolution of
ϕ is governed by partial differential equations describing the kinetics and energetics of phase
transitions within the material.
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Kinetic Transitions: The Allen-Cahn Equation and the Ginzburg-Landau Func-
tional

The Allen-Cahn equation is a partial differential equation on the phase field variable ϕ derived
from the Ginzburg-Landau theory of phase transitions, primarily based on thermodynam-
ics. During the process of solidification, this equation models the evolution of the interface
between the two phases that minimizes the Ginzburg-Landau functional. This functional
represents most of the time the total free energy of the system, which comprises the bulk free
energy and the interfacial free energy. The bulk free energy addresses the energy associated
with the crystal structure of the solid phase and with the liquid phase. Meanwhile, the in-
terfacial free energy considers the energy at the interface between these phases. The generic
form of the Allen-Cahn equation is given by (2.11):

∂ϕ

∂t
= −Mϕ

δF

δϕ
(2.11)

where F represents the total free energy of the system, δF
δϕ

the functional derivative with
respect to ϕ and Mϕ the mobility constant.

The free energy functional

This paragraph examines the thermodynamic treatment that is essential to phase-field mod-
eling [28, 8] and gives the thermodynamic concepts that link the phase field variable and
energy.

For this purpose, we consider the case of the solidification of a pure substance in non-
isothermal conditions. We also assume that density is unchanged in the phase transition.

The free energy functional, F , is defined as:

F =

∫

V

[
f(ϕ, T ) +

ϵ2ϕ
2
|∇ϕ|2

]
dV, (2.12)

where ϵ2ϕ is the gradient energy coefficient and T is the temperature field. f(ϕ, T ) represents

the free energy density on the domain, and
ϵ2ϕ
2
|∇ϕ|2 is the gradient energy density.

In a two-phase system, f(ϕ, T ) is commonly expressed as the free energy expressions of
the coexisting phases (fl( T ), fs(ϕ, T ) for liquid and solid respectively) combined by an
interpolation function h(ϕ) and a double-well function g(ϕ). we have :

f(ϕ, T ) = h(ϕ)fl(T ) +
(
1− h(ϕ)

)
fs(T ) + g(ϕ) (2.13)

h(ϕ) expresses the continuous passage to the liquid phase to the solid one (so from ϕmin to
ϕmax. In order to satisfy the intrinsic stability of the solid and liquid pure phase since f has
to verify [14]:

∂f

∂ϕ
|ϕ=ϕmin =

∂f

∂ϕ
|ϕ=ϕmax (2.14)

∂f

∂ϕ2

2

|ϕ=ϕmin,ϕmax > 0 (2.15)



2.6. SOLIDIFICATION MODEL OF A PURE SUBSTANCE 41

So g(ϕ) must be a double-well function. Details of thermodynamics and function calculation
will be given in the next section in the case where the Ginzburg-Landau function is entropy.

We finally obtain the following form for the Allen-Cahn equation:

∂ϕ

∂t
= −Mϕ

[
∂f

∂ϕ
+ ϵ2ϕ∇2ϕ

]
, (2.16)

The energy balance

Let us consider that molar volume of liquid and solid phase are the same and pressure remains
constant. The energy balance over the domain is given by:

∂u(ϕ, T )

∂t
= ∇ · (λ(ϕ)∇T ) (2.17)

where u(ϕ, T ) is the internal energy field, λ(ϕ) is the thermal conductivity, and Q is a source
term. The thermal conductivity is a function of the phase field, and it is chosen to ensure
the correct behavior of the temperature field [114].

To proceed further, let us give the expression of the internal energy. From the free energy
(2.13), the internal energy can be written as (see [42]):

u(ϕ, T ) = us(T ) + h(ϕ)L(T )

= ul(T ) +
(
h(ϕ)− 1

)
L(T )

(2.18)

where L(T ) = ul(T )− us(T ) is the heat of fusion.

So the energy balance can be finally written as [112]:

(
cl(T ) +

(
h(ϕ)− 1

)∂L
∂T

)∂T (ϕ, T )
∂t

+
∂h

∂ϕ
L(T ) = ∇ · (λ(ϕ)∇T ) (2.19)

where cl(T ) is the specific heat constant of liquid phase.

The Model for Solidification of a Pure Substance in the Case of Constant Heat
of Fusion

The mathematical model for the solidification process combines the Allen-Cahn equation
with the energy balance over the domain. In the case of water, the heat of fusion is assumed
to be constant in the temperature range [−20◦C, 0◦C], conforming to the revised standards
by IAPWS [42]. The difference in free energy between the liquid and solid at the melting
point Tm is given by:

fl(Tm)− fs(Tm) =
L
(
T − Tm

)

Tm
, (2.20)
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where L represents the heat of fusion at Tm. The dynamics of the phase field variable ϕ and
temperature field T are described by the following coupled differential equations:

∂ϕ

∂t
= −Mϕ

[
L
(
T − Tm

)

Tm

∂h

∂ϕ
+ ϵ2ϕ∇2ϕ

]
, (2.21)

∂T

∂t
=

1

cl(T )
∇ · (λ(ϕ)∇T )− 1

cl(T )

∂h

∂ϕ
L. (2.22)

Boundary and Initial Conditions To solve this model, specific boundary conditions
(BCs) and initial conditions (ICs) must be defined. Here, z represents the spatial coordinate
along the length of the domain.

Boundary Conditions: The boundaries of the domain are maintained to represent the
solid and liquid phases. At the left boundary (z = 0), the system is in the liquid phase with
ϕ = 1 and T = 274.15K. At the right boundary (z = L), the system is in the solid phase
with ϕ = 0 and T = 272.15K.

Boundary 0

ϕ = 1
liquid
0◦C

T = 274.15K
+ϵ

Boundary L

ϕ = 0

solid
0◦C

T = 272.15K
−ϵ

Space z

Figure 2: Boundary conditions for the phase field variable ϕ and temperature
T .

Initial Conditions: At t = 0, the temperature throughout the domain is assumed uniform,
T (t = 0, z) = 273.15K, and ϕ(t = 0, z) is initialized based on the distribution of phases,
typically ϕ = 1 in liquid regions and ϕ = 0 in solid regions.

This setup, with clearly defined boundary and initial conditions, allows for the modeling of
the solidification process, capturing the transition between liquid and solid phases.

2.7 Phase Field Model for Solidification of Water Using
the Entropy Functional

This section presents the phase field model for the solidification of pure water, using the
entropy functional as the thermodynamical potential. This representation will be used in
later chapters to formulate the solidification process model in detail.
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2.7.1 The Entropy Functional

Following the approach of [112], we shall present a model that uses the entropy as the
thermodynamic potential. Its expression is analogous to the expression of the energy in
equation (2.12):

S =

∫

V

[
s(ϕ)−

ϵ2ϕ
2
|gradϕ|2

]
dV, (2.23)

where s represents the entropy density, ϕ the phase-field variable, and ϵϕ the entropy coeffi-
cient associated with the phase-field gradient in this entropy representation.

Thermodynamic Model

To derive the thermodynamic properties of the phase-field variable ϕ, the entropy balance
and Gibbs’ equations are employed in entropy form:

ds =

(
∂s

∂ϕ

)
dϕ+ τdu, (2.24)

where s represents the entropy density, u the internal energy density, and τ is defined as
the reciprocal temperature (τ = ( ∂s

∂u
)
ϕ
= 1

T
). This reciprocal form is used to simplify the

differential treatment of temperature effects in the system, assumed to have uniform mass
density as per [112].

The thermodynamic potential of the phase field system, the total entropy of the biphasic
system, is formulated using the Landau-Ginzburg entropy functional:

S(ϕ, u) =

∫

V

(
s(ϕ, u)− 1

2
ϵ2(gradϕ)2

)
dv, (2.25)

where ϵ is a parameter indicative of the interface thickness. The quadratic term models the
energy cost of variations in ϕ, helping to simulate the interface behaviors.

2.7.2 Dynamic Model Equation

The dynamic model consists of the phase-field dynamics governed by the Allen-Cahn equa-
tion, which describes the evolution of the phase-field variable ϕ based on entropy considera-
tions and interface mobility:

∂ϕ

∂t
= −1

η

(
∂s

∂ϕ
(ϕ)− ϵ2div(gradϕ)

)
= −1

η

δS

δϕ
, (2.26)

where η is the positive interface mobility, enhancing the model’s ability to simulate the rapid
changes at the interface. The variational derivative δS

δϕ
ensures that the phase-field evolution

adheres to the thermodynamic driving forces, effectively coupling material properties with
phase dynamics.

The theoretical framework and equations presented here are based on solid thermodynamic
principles, as outlined in foundational works [112, 8].
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This phase-field model provides a thermodynamically consistent description of the solidifica-
tion process, using entropy as the generating function.

2.8 Thermodynamic Properties of Water and Ice
Thermodynamic properties of liquid water and ice can be found in the literature, such as in
[42] and [43]. These sources provide thermodynamic potentials, specifically the Gibbs energy,
expressed as functions of temperature and pressure. The specific Gibbs energy of the liquid
phase is given by:

gliq(T, p)/g
∗ =

7∑

j=0

6∑

k=0

gjkτ
jπk, (2.27)

Here, the reduced temperature τ = (T − T0)/T
∗ and the reduced pressure π = (p − p0)/p

∗.
Constants T0, p0, T ∗, p∗, g∗, and gjk can be found in [43]. Similarly, the specific Gibbs energy
of the solid phase is expressed as:

gsol(T, p) = g0(p)− s0Ttτ + TtRe

(
2∑

k=1

rk

[
(tk − τ)

ln(tk − τ) + (tk + τ) ln(tk + τ)− 2tk ln(tk)

− τ 2

tk

])
(2.28)

In this case, g0(p) =
∑4

k=0 g0k(π − π0)
k and r2(p) =

∑2
k=0 r2k(π − π0)

k, τ = T/Tt, π = p/pt,
and π0 = p0/pt. Constants Tt, pt, p0, s0, g0, r1, as well as gok, r2k, and tk are given in [42].

Other specific thermodynamic quantities, such as entropy, Helmholtz energy, and density
for each phase, can be derived from standard thermodynamic computations (see [42, 43],
and [callen1998thermodynamics]. For instance, the specific Helmholtz energy f⋆, specific
entropy s⋆ as a function of temperature and pressure, density ρ⋆, and heat capacity cp⋆ can
be deduced from g⋆ for ⋆ = sol, liq using the formulas:

f⋆(T, p) = g⋆ − p
∂g⋆
∂p

, (2.29)

s⋆(T, p) = −∂g⋆
∂T

, (2.30)

ρ⋆(T, p) =
(∂g⋆
∂p

)−1

, (2.31)

cp⋆(T, p) = −T ∂
2g⋆
∂T 2

. (2.32)

Table 2.1 shows some thermodynamic property values at the melting temperature (273.15
K) and atmospheric pressure.
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Table 2.1: Values of some thermodynamic properties at the melting temperature

⋆ g⋆ f⋆ s⋆ ρ⋆ cp⋆
liq 101.343 0.0018 –0.1476 999.843 4219.41
sol 101.343 – 9.1870 – 1220.769 916.721 2096.71

The Extended Equation of State

For brevity, we focus on the extended specific entropy s while assuming constant density.
This assumption simplifies the mathematical treatment and is reasonable for many practical
applications where density variations are negligible compared to other effects. The ther-
modynamic stability principle, when two phases are present, requires (see Section 2.4 on
thermodynamics and [14]):

∂s

∂ϕ

∣∣∣∣
ϕ=0

=
∂s

∂ϕ

∣∣∣∣
ϕ=1

= 0,
∂2s

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0, (2.33)

These conditions, essential for phase stability at the boundaries, ensure that the entropy
function does not promote non-physical behaviors at the extremes of the phase field variable
ϕ. At equilibrium, the variational derivative of the Landau-Ginzburg entropy functional must
vanish, ensuring consistency with physical laws of thermodynamics [112, 50, 8]:

∂s

∂ϕ

∣∣∣∣
ϕ=0,1

= 0 and
∂2s

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0. (2.34)

Following the general approach discussed in [112], we derive the extended specific entropy
function:

s(ϕ, T ) = ssol(T ) + pi(ϕ)[sliq(T )− ssol(T )] + wpw(ϕ), (2.35)
pi(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10), pw(ϕ) = −ϕ2(1− ϕ)2, (2.36)

where sliq and ssol represent the specific entropies of pure water and ice, respectively, and
w is a parameter that adjusts the energy barrier between these phases. Figure 3 provides a
visual representation of the entropy landscape shaped by these polynomials, illustrating how
the choice of pi and pw affects the model’s ability to simulate the phase transition.

This extended entropy function ensures that our model adheres to the fundamental princi-
ples of thermodynamics, as delineated by [14], providing a robust and physically accurate
description of phase transitions in water and ice systems.

2.9 Recap: Evolution Equations for the Solidification Model
We recall the model presented before in the form of a system of evolution equations:

• State Variables:
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Figure 3: Extended specific entropy with w = 18 × 103; this graph shows how
entropy varies as a function of ϕ, highlighting the stability at phase boundaries.

– ϕ: Phase field variable

– u: Internal energy

• Thermodynamic Model: In phase field modeling, entropy is characterized by a
specific entropy function, s∗(ϕ, T ), which describes the thermodynamic interactions
between liquid and solid phases. This function includes s∗sol(T ) for the specific entropy
of the solid (ice) and s∗liq(T ) for the liquid (water), using double-well and interpolating
polynomials, pw(ϕ) and pi(ϕ), to model the phase transition:

s∗(ϕ, T ) = s∗sol(T ) + pi(ϕ)[s
∗
liq(T )− s∗sol(T )] + wpw(ϕ) (2.37)

where:

– pi(ϕ) = ϕ3(6ϕ2 − 15ϕ+ 10)

– pw(ϕ) = −ϕ2(1− ϕ)2

• Evolution Equations: The phase field’s evolution is governed by the following equa-
tion, highlighting the integral role of specific entropy in the model:

∂ϕ

∂t
= −1

η

∂s∗

∂ϕ
(ϕ, T ) +

ϵ2

η
div(gradϕ) (2.38)

where:

– ∂s∗
∂ϕ

(ϕ, T ) = (30ϕ4 − 60ϕ3 + 30ϕ2)g + w(−4ϕ3 + 6ϕ2 + 2ϕ)

– p′i(ϕ) = 30ϕ4 − 60ϕ3 + 30ϕ2

– p′w(ϕ) = −4ϕ3 + 6ϕ2 + 2ϕ

Additionally, the energy balance equation is:

∂u

∂t
= −div (q) (2.39)

where u is the internal energy and q is the heat flux.
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• Boundary Conditions: The boundary conditions are expressed in terms of:

ϕboundary = tr(ϕ) on ∂Ω (2.40)

gradϕ · n = 0 on ∂Ω (2.41)

where n is the normal vector to the boundary surface ∂Ω.

2.10 Conclusion
We have recalled the models of bi-phasic systems with phase transitions using the phase
field variable representing the moving interface between the phases. We have presented the
thermodynamic properties of biphasic systems with phase field models using entropy as the
thermodynamic potential [116, 31]. We concluded with the dynamical model consisting of
coupled heat conduction dynamics and a gradient system for the dynamics of the phase field
variable.

Specifically, we have proposed writing the thermodynamic model in terms of a non-linear
entropy function depending on the phase field variable ϕ and the temperature T . This
approach differs from most classical methods, which use the Gibbs free energy or Helmholtz
free energy.

By using the entropy function, we prepare the Port Hamiltonian model which uses the entropy
functional as the generating function.
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Abstract
This chapter discusses the application of Port Hamiltonian Systems (PHS) to the mathe-
matical modeling and control of solidification processes. It introduces the foundational
concepts of PHS, including Dirac structures and their role in the geometric structuring of
power dynamics within physical systems. By examining both finite and infinite-dimensional
systems, the chapter applies these concepts to the diffusion equation, Allen-Cahn Equa-
tion, and solidification processes, emphasizing energy dissipating behaviors and their
mathematical representations.

3.1 Introduction to the chapter

Boundary Port Hamiltonian systems (PHS) provide an efficient framework to link physical
principles with systems theory and control. This chapter builds on the review paper and
lecture notes of [77] and [84], for the presentation of the definition, the properties of Boundary
Port Hamiltonian Systems.
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We first recall the canonical Hamiltonian operators and the definition of Stokes-Dirac struc-
tures [54, 94], as these are essential in understanding the underlying principles of Port Hamil-
tonian systems. Besides, the concept of Boundary Port Hamiltonian systems will be intro-
duced.

Next, we elaborate on the Boundary Port Hamiltonian formulation of the heat diffusion equa-
tion and the Allen-Cahn equation. By applying the principles of PHS, we will demonstrate
how these formulations can be used to model the dynamics of solidification processes. This
involves coupling the heat diffusion and Allen-Cahn equations to obtain a comprehensive
Boundary Port Hamiltonian formulation of the solidification process.

Initially, we derived the explicit model of the solidification process using the entropy as the
generating function, with the state variables being the phase field variable ϕ and the internal
energy u. However, due to the lack of data concerning the expression of the entropy density
function (2.25) s = s(ϕ, u), we switched to using the reciprocal temperature τ = 1/T . This
change allows us to utilize available data and thermodynamic properties of liquid water and
ice, as found in the literature [42] and [43]. The provided thermodynamic potential is the
Gibbs energy, expressed as a function of temperature and pressure.

We then defined the thermodynamic properties of the bi-phasic water-ice system, leading to
the expressions of the entropy density (2.35) depending on the temperature rather than the
internal energy. This required changing the state space coordinate from the internal energy
u (an extensive variable) to the temperature T (an intensive variable).

To reformulate the explicit Port Hamiltonian model, we introduced the Implicit Port Hamil-
tonian formulation using Lagrangian submanifolds, which allow the definition of reciprocal
constitutive equations in a coordinate-free way [105], [88]. This approach can be adapted
to distributed parameter systems [60], [106]. Finally, we derived an implicit formulation of
the solidification model by integrating Differential-Algebraic Equations (DAE) and Partial
Differential Equations (PDE). This framework models the dynamics in terms of reciprocal
temperature, aligning with empirical thermodynamic properties of systems like water and
ice.

Our discussion will refer to the Thermodynamic Framework for Modeling and Simulation [5]
and [116] to illustrate the practical applications of these theoretical constructs.

3.2 Overview of the chapter

This chapter discusses the Port Hamiltonian Systems (PHS) approach to modeling solidifica-
tion processes [61]. It starts with an introduction to the fundamental aspects of PHS, focusing
on the conceptual and mathematical foundations of Dirac structures and their role in mod-
eling physical systems. The discussion covers both finite and infinite-dimensional systems,
highlighting dissipative behavior in energy control. The chapter analyzes the application of
PHS to the equations governing solidification processes. These include the diffusion equation
and the Allen-Cahn equation. It demonstrates the advantages of PHS in understanding and
managing the energy dynamics of solidification processes.
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3.3 Contributions and Structure of the chapter

The main contributions are structured around the development of a theoretical framework
and its application to physical phenomena, building on existing literature:

1. Derivation of the Allen-Cahn Dynamics: Building on the work of Vincent et al.
([110]), this chapter presents the derivation of the Port Hamiltonian representation of
the Allen-Cahn equation in the entropy representation.

2. Implicit Formulation of the Solidification Model: In order to use the empiri-
cal data of thermodynamic properties systems, given in terms of the reciprocal tem-
perature, an implicit port-Hamiltonian formulation is developed. This formulation is
expressed in terms of a system of Differential-Algebraic Partial Differential Equations
(DA-PDE). These systems belong to the recently defined class of port Hamiltonian
systems on Lagrange submanifolds, as defined in [105, 60, 106, 6].

3.4 Introduction to Port Hamiltonian Systems

Port-Hamiltonian systems (PHS) provide a framework for analyzing and controlling open
physical systems, originally developed for finite-dimensional applications [63, 61]. At the core
of this methodology is the concept of power-conjugated variable pairings and the associated
geometric structure known as the Dirac structure [18]. This structure highlights the geometric
properties of physical systems and their relationships with the external environment [62].
These insights include topological features, port connectivity, and constraints across different
domains [19].

The geometric framework of PHS has been useful in developing implicit Hamiltonian systems
and those incorporating port variables, leading to stable control strategies [19, 59]. Recent
advancements have extended PHS to infinite-dimensional settings, which is beneficial for
systems with boundary-focused energy distributions [65].

A basic property of a Dirac structure is power conservation: the Dirac structure links the
various port (flow and effort) variables f and e so that the total power e⊺f is zero.

In infinite-dimensional settings, the state space is characterized by differential forms, and the
defining characteristic of such systems revolves around the Stokes-Dirac structure dictated
by external derivatives and differential form rankings [64]. This structure has been adapted
to include fluid dynamics and beam models [86]. Moreover, the Hamiltonian formulation of
distributed parameter systems in a bounded spatial domain, especially when energy transfer
takes place across the boundary, has led to the definition of a specific Dirac structure called
Stokes-Dirac structure [86, 9, 56].

Complementing this discussion with linear skew-symmetric differential operators, we clarify
the nature of Dirac structures and the core essence of PHS, emphasizing singular degree dif-
ferential operators. Additionally, alternative Dirac structures in Hilbert spaces, as discussed
in [71], are explored, particularly in scattering contexts.

Port-Hamiltonian systems theory integrates principles from various classical physical systems
modeling and analysis approaches:
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• Port-based modeling: Initiated by Henry Paynter in the late 1950s [72], this method-
ology emphasizes energy as the unifying metric, typically represented using bond graphs
[33].

• Geometric Mechanics: Building on foundational work such as [3], this perspective
enriches the Hamiltonian view of classical mechanics through geometry, offering deeper
insights [69].

• Systems and Control Theory: Based on the theory of electrical network synthe-
sis [85], the introduction of the Dirac structure [113] helped manage interconnected
systems.

PHS are characterized by their flexible geometric framework and their ability to account for
energy dissipation, making them adaptable to various engineering contexts. Serving as a
common language, energy connects different physical domains in these systems, forming the
basis for control strategies that leverage the inherent properties of physical systems.

Infinite Port Hamiltonian systems extend the energy-based modeling approach inherent in
PHS to systems defined over infinite-dimensional spaces, often encountered in distributed
parameter systems such as flexible beams, fluid flow, or heat conduction in continuous media
[92].

Throughout this chapter, we will discuss in more details the Port-Hamiltonian formulation,
highlighting its effectiveness for processes such as solidification.

3.5 Introduction to Dirac Structures
Dirac structures arise in constrained Hamiltonian systems and port Hamiltonian systems.
In systems theory, especially for systems with constraints or connections, the concept of
Dirac structures provides a unifying geometric framework. Rooted in differential geometry,
Dirac structures offer a systematic approach to capturing power-preserving connections in
dynamical systems [56, 108, 84].

3.5.1 Dirac Structures in Finite Dimensional Vector Spaces

For the formal definition of a Dirac structure, we start with an abstract finite-dimensional
linear space of flows F . The elements of F are denoted by f ∈ F and are called flow vectors.
The space of efforts is given by the dual1 linear space E := F∗, and its elements are denoted
by e ∈ E [104]. The total space of flow and effort variables is F × E , and will be called the
space of port variables. The power on the total space of port variables is defined by

P = ⟨e|f⟩, (f, e) ∈ F × E , (3.1)

where ⟨e|f⟩ denotes the duality product, that is, the linear functional e ∈ E = F∗ acting on
f ∈ F . In the usual case of F = Rk this amounts to

1The definition E = F∗ for the effort space is in some sense the minimal required structure. All definitions
and results directly extend to the case that F has an inner-product structure. In this case, we may take
E = F with the duality product ⟨e|f⟩ replaced by the inner product ⟨e, f⟩.
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⟨e|f⟩ = e⊺f, (3.2)

where both f ∈ Rk and e ∈ (Rk)∗ are represented as column vectors.

Definition 3.5.1
[104] Consider a finite-dimensional linear space F with E = F∗. A subspace D ⊂ F × E is a
Dirac structure if:

1. ⟨e|f⟩ = 0, for all (f, e) ∈ D,

2. dimD = dimF .

Property 1. corresponds to power conservation, and expresses the fact that the total power
entering (or leaving) a Dirac structure is zero. It can be shown that the maximal dimension
of any subspace D ⊂ F ×E satisfying Property 1. is equal to dim F ; for the proof see [104].

To further characterize a Dirac structure, we look more closely at the geometric structure of
the total space of flow and effort variables F × E . Related to the definition of power, there
exists a canonically defined bilinear form ⟨·, ·⟩ on the space F × E , defined as:

⟨(fa, ea), (f b, eb)⟩ = ⟨ea|f b⟩+ ⟨eb|fa⟩, (fa, ea), (f b, eb) ∈ F × E . (3.3)

Note that this bilinear form is indefinite, that is, ⟨(f, e), (f, e)⟩ may be positive or negative.
It is non-degenerate in the sense that ⟨(fa, ea), (f b, eb)⟩ = 0 for all (f b, eb) implies that
(fa, ea) = 0 ([104]).

Proposition 3.5.1
[18, 25] A Dirac structure on F × E is a subspace D ⊂ F × E such that

D = D⊥⊥, (3.4)

where ⊥⊥ denotes the orthogonal companion with respect to the bilinear form ⟨·, ·⟩.
Alternatively, D ⊂ F × E , with F and E finite-dimensional, is a Dirac structure if and only
if it satisfies Property 1 in Definition 3.5.1 and has maximal dimension with respect to this
property, that is, if the subspace D′ also satisfies Property 1 then dim D′ ≤ dim D. This
maximal dimension is equal to dim F = dim E .

For the proof we refer to [104].

Kernel Representation [94] Let B := F × E equipped with an inner product (·, ·)B, and
E,F ∈ RN×N . Then,

D := {(f, e) ∈ F × E | Ff + Ee = 0} (3.5)

is a Dirac structure for the pairing ⟨⟨·, ·⟩⟩ defined from the inner product (·, ·)B as in (3.3), if
and only if:

• The matrix EF⊤ is anti-symmetric for the inner product (·, ·)B.
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• The rank of [F : E] equals dimF , where the notation [F : E] represents the horizontal
concatenation of the matrices F and E.

Image Representation

Let B := F × E equipped with an inner product (·, ·)B, and E,F ∈ RN×N . Then,

D := {(f, e) ∈ F × E | ∃λ ∈ RN such that f = F⊤λ, e = E⊤λ} (3.6)

is a Dirac structure for the pairing ⟨⟨·, ·⟩⟩ defined from the inner product (·, ·)B as in (3.3), if
and only if:

• The matrix EF⊤ is anti-symmetric for the inner product (·, ·)B.

• The rank of [F : E] equals dimF .

There are a number of direct examples of Dirac structures D ⊂ F × E :

1. Let J : E → F be a skew-symmetric linear mapping, that is, J = −J∗, where J∗ : E →
E∗ = F is the adjoint mapping. Then graph J := {(f, e) ∈ F × E | f = Je} is a Dirac
structure.

2. Let ω : F → E be a skew-symmetric linear mapping, then graph ω := {(f, e) ∈
F × E | e = ωf} is a Dirac structure.

3. Let K ⊂ F be any subspace. Define K⊥ = {e ∈ E | ⟨e, f⟩ = 0 for all f ∈ K}. Then
K ×K⊥ ⊂ F × E is a Dirac structure.

3.5.2 Dirac Structures in Hilbert Spaces

Two primary methods have been used to extend Dirac structures to infinite-dimensional
spaces.

The first method, elaborated in [86], focuses on the Hamiltonian formulation of systems with
two conservation laws, such as the wave equation or Maxwell’s equations. It uses exterior
differential forms as spaces of flow and effort variables, denoted by F and E , respectively.

The second approach, elaborated in [34], defines Dirac structures on Hilbert spaces. In this
thesis, we use Hilbert spaces as flow and effort spaces and briefly recall the definition given
in [34].

Let F and E be real Hilbert spaces (in the sequel the word real will be omitted for brevity)
with inner products ⟨·, ·⟩F and ⟨·, ·⟩E , respectively. We make the following assumption
throughout.

In practice, we often use L2 spaces for both flow and effort variables, with the map rF ,E being
the identity.

Assumption 1. F and E are isometrically isomorphic.

Assumption 1 entails the existence of a bijective isometry rF ,E : F → E . That is, rF ,E is an
invertible linear transformation satisfying

⟨rF ,Ef1, rF ,Ef2⟩E = ⟨f1, f2⟩F , ∀f1, f2 ∈ F . (3.7)
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Let rE,F : E → F be the inverse of rF ,E . Then for any e1 and e2,

⟨rE,Fe1, rE,Fe2⟩F = ⟨e1, e2⟩E , ∀e1, e2 ∈ E . (3.8)

We can now introduce a pairing ⟨·|·⟩ : F × E → R as follows:

⟨e|f⟩ = ⟨f, rE,Fe⟩F , ∀f ∈ F ,∀e ∈ E . (3.9)

Since rF ,E is an isometry, this pairing may also be represented by:

⟨e|f⟩ = ⟨e, rF ,Ef⟩E , ∀f ∈ F ,∀e ∈ E . (3.10)

Remark 1. If the term ⟨e|f⟩ has the dimension of power, then the pairing described by (3.9)
or (3.10) is a power product. Indeed,

⟨e|αf 1 + βf 2⟩ = ⟨αf 1 + βf 2, rE,Fe⟩F
= α⟨f 1, rE,Fe⟩F + β⟨f 2, rE,Fe⟩F
= α⟨e|f 1⟩+ β⟨e|f 2⟩,

for all f 1, f 2 ∈ F , e ∈ E, and α, β ∈ R.

Thus, the map described by (3.9) and (3.10) is linear in the first argument. Similarly, it is
linear in the second argument. Moreover, ⟨e|f⟩ = 0 for all e ∈ E implies rF ,Ef = 0 and
consequently f = 0. Similarly, ⟨e|f⟩ = 0 for all f ∈ F means e = 0.

Furthermore, the bond space B = F × E is also a Hilbert space. The inner product for this
space is defined as:

⟨b1, b2⟩B = ⟨f 1, f 2⟩F + ⟨e1, e2⟩E , (3.11)

for all b1, b2 ∈ B, where b1 = (f 1, e1) and b2 = (f 2, e2).

The bilinear form associated with this inner product is:

⟨⟨b1, b2⟩⟩ = ⟨b1,Rb2⟩B, (3.12)

for all b1, b2 ∈ B, where the linear operator R : B → B is defined by:

R =

[
0 rE,F
rF ,E 0

]
. (3.13)

Given that rF ,E is an isometry, R is a bounded linear operator that satisfies R2 = IB (where
IB is the identity operator on B). It’s evident that R is invertible, and its inverse is R−1 = R
[34].

For any subspace Z ⊂ B, Zc represents the orthogonal complement of Z with respect to
⟨·, ·⟩B. Formally, we can represent Zc as:

Zc = {b ∈ B : ⟨b, b̃⟩B = 0, ∀b̃ ∈ Z}. (3.14)

Similarly, we use Z⊥ to denote the subspace defined by:

Z⊥ = {b ∈ B : ⟨⟨b, b̃⟩⟩ = 0,∀b̃ ∈ Z}. (3.15)
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Proposition 3.5.2
[34] Let Z be a subspace of B. Then, Z⊥ = RZc.

Remark 2. Given that Zc is a closed subspace and R is a bounded operator, we can infer
that Z⊥ is also a closed subspace.

Let the symbol ⊕⊥ represent the orthogonal direct sum with respect to ⟨·, ·⟩B. Thus,

Z1 ⊕⊥ Z2 = B implies that Z1 ⊕Z2 = B and Z1 is orthogonal to Z2 concerning ⟨·, ·⟩B.

Proposition 3.5.3
[34] Consider D as a subspace of B. The subsequent statements are equivalent:

1. D is a Dirac structure on B.

2. Dc = RD.

3. D ⊕⊥ RD = B.

4. Dc ⊕⊥ RDc = B and D is a closed subspace.

Remark 3. Statement (4) implies that if D is a Dirac structure on B, then Dc is also a
Dirac structure on B.

3.6 A Canonical Stokes-Dirac Structure Arising from the
Adjoint Operators Gradient and Divergence

The Stokes-Dirac structure, which we present here, is constructed from the two fundamental
operators: the gradient (grad) and the divergence (div).

3.6.1 Adjoint Relationships Between Gradient and Divergence Op-
erators on Bounded Domains

It is well-established that the formal adjoint of the gradient operator on an n-dimensional
domain is the negative of the divergence operator. The duality between these operators has
been extensively investigated, as we shall recall, following [54].

This work deals with the computation of the adjoint of the gradient operator defined on a
connected, open, and bounded subset Ω of Rn, with a Lipschitz-continuous boundary ∂Ω.
Assume that the gradient’s domain is an arbitrary vector space G such that H1

0 (Ω) ⊂ G ⊂
H1(Ω). Subsequently, we construct a subspace D with Hdiv

0 (Ω) ⊂ D ⊂ Hdiv(Ω).

The main result establishes the adjoint relationship: grad|∗G = −div|D. For clarity, we provide
a brief overview of the key concepts and terminology related to Dirichlet and normal trace
mappings before proceeding further.

Theorem 3.6.1
[54] Let’s consider a bounded Lipschitz domain, Ω. The following properties are important:
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1. The boundary trace mapping, g → g|∂Ω : C1(Ω̄) → C(∂Ω), has a unique continuous
extension, γ0, that acts on H1(Ω) and maps to H1/2(∂Ω). Hence, the space can be
expressed as:

H1
0 (Ω) = {g ∈ H1(Ω) | γ0g = 0}. (3.16)

2. The normal trace mapping defined as u→ v·γ0u : H1(Ω)
n → L2(∂Ω) has its own unique

continuous extension, γ⊥. This extension acts on Hdiv(Ω) and maps to H−1/2(∂Ω). The
dot, ·, represents the inner product in Rn, as given by p · q = q⊤p. Moreover, the space
is:

Hdiv
0 (Ω) = {f ∈ Hdiv(Ω) | γ⊥f = 0}. (3.17)

We denote the term γ0 as the Dirichlet trace and γ⊥ as the normal trace map. More on these
can be found in [54], specifically in (Definition 3.3 on page 5 and Theorem 5.5 on page 11).

Theorem 3.6.2
[54] Let Ω be a bounded Lipschitz domain in Rn. For all f ∈ Hdiv(Ω) and g ∈ H1(Ω) it holds
that

⟨div f, g⟩L2(Ω) + ⟨f, grad g⟩L2(Ω) = (γ⊥f, γ0g)H−1/2(∂Ω),H1/2(∂Ω). (3.18)

This defines a Stokes-Dirac structure for closed systems.

Theorem 3.6.3
[54] Let Ω be a bounded Lipschitz domain in Rn and let H1

0 (Ω) ⊂ G ⊂ H1(Ω). Setting

D :=
{
f ∈ Hdiv(Ω) | (γ⊥f, γ0g)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∀g ∈ G

}
, (3.19)

we obtain the following [54]:

1. The set D is a closed subspace of Hdiv(Ω) that contains Hdiv
0 (Ω), i.e.,

Hdiv
0 (Ω) ⊂ D ⊂ Hdiv(Ω). (3.20)

2. When we identify L2(Ω) and L2(Ω)
n with their own duals, and we consider grad|G as

an unbounded operator mapping the dense subspace G of L2(Ω) into L2(Ω)
n, we have

grad∗|G = −div|D. (3.21)

3. Let G be closed in H1(Ω). Then D = Hdiv(Ω) if and only if G = H1
0 (Ω), and

D = Hdiv
0 (Ω) if and only if G = H1(Ω).

3.6.2 Definition of Some Spaces

Definition 3.6.1
(Spaces H1/2(∂Ω) and H−1/2(∂Ω)). We define the space H1/2(∂Ω) as the image of the
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Dirichlet trace,
H1/2(∂Ω) := γ0(H

1(Ω)) (3.22)

equipped with the norm

∥v∥H1/2(∂Ω) := inf
{
∥ṽ∥H1(Ω), ṽ ∈ H1(Ω) such that γ0(ṽ) = v

}
. (3.23)

In particular, the operator γ0 is continuous from H1(Ω) to H1/2(∂Ω).

The space H−1/2(∂Ω) is defined as the dual of H1/2(∂Ω) with respect to the pivot space
L2(∂Ω).

These are Hilbert spaces equipped with the norms defined above and the dual norm, respec-
tively.

3.6.3 Canonical Stokes-Dirac Structure Associated with the Dual
Operators Gradient and Divergence

We begin by presenting a canonical operator that appears in physical models like the wave
equation or diffusion equation and demonstrate its skew-adjoint property. Subsequently, we
recall the associated Stokes-Dirac structure.

Proposition 3.6.1
Let Ω ⊂ Rn and ∂Ω be as described previously. Consider the gradient operator grad defined
on G = H1

0 (Ω). By the main result presented in Theorem 3.6.3, the adjoint of the gradient
operator with this specific domain is −div, with domain D = Hdiv(Ω). This leads us to the
implication that the operator

J :=

[
0 div

grad 0

]
(3.24)

with domain

dom(J ) :=

[
H1

0 (Ω)
Hdiv(Ω)n

]
(3.25)

is skew-adjoint on [
L2(Ω)
L2(Ω)n

]
.

3.7 J as a Hamiltonian Operator

Building on the foundational work of Kurula and colleagues [54, 55], this section aims to
enhance the conventional understanding of the Hamiltonian operator, specifically within the
bounded Lipschitz domain Ω.
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3.7.1 Properties of J
The Hamiltonian operator J encapsulates significant physical insights and governs the system
dynamics with its unique properties:

• Skew-Symmetry: Central to energy conservation within the system, the skew-symmetry
of J ensures that energy within the domain is neither created nor destroyed, only trans-
formed or relocated. Mathematically, this property is expressed as:

⟨f,J e⟩ = −⟨J f, e⟩, (3.26)

where f and e represent the energy and co-energy variables respectively.

• Jacobi Identity: The Jacobi identity, as an integrability property of J , indicates the
existence of canonical coordinates and ensures that fundamental properties of Hamil-
tonian systems such as conservation laws and symplectic structures are preserved:

{{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 0, (3.27)

for any functions F , G, and H in the Hamiltonian system.

• Boundary Conditions: The effectiveness of J in managing boundary interactions is
crucial, particularly in bounded Lipschitz domains where boundary dynamics can sig-
nificantly influence the system’s behavior. The implementation of Dirichlet or Neumann
boundary conditions affects how J manages energy distribution and transformation at
the boundaries.

By recalling the definition of a Hamiltonian operator and referencing Olver’s work [69], we
further establish that J , being a constant coefficient matrix differential operator, inherently
satisfies the Jacobi identities.

3.7.2 Hamiltonian Operator: Domain Definition

To check the formal skew-symmetry of J as a Hamiltonian operator, it’s important to define
its domain appropriately. Using the results from Theorems 3.6.2 and Theorem 3.6.3, the
domain of J is given by:

F = dom J = L2(Ω)×D ×G ⊂ E , (3.28)

where F represents the space of flow variables, and E represents the space of effort variables.

We shall denote also elements of the domain as

ebulk = (e0, ed, eg)
⊤ ∈ F and fbulk = (f0, fd, fg)

⊤ ∈ E , (3.29)

to delve deeper into the domain specifics and to proceed further in the coming section (3.10).
Consider the elements ed ∈ Hdiv(Ω) and eg ∈ H1(Ω). Assuming H1

0 (Ω) ⊂ G ⊂ H1(Ω), the
domain can be explicitly formulated as:

D = {ed ∈ Hdiv(Ω) | (γ⊥ed, γ0eg)H−1/2(∂Ω),H1/2(∂Ω) = 0 ∀g ∈ G}. (3.30)



3.7. J AS A HAMILTONIAN OPERATOR 61

Additionally, Hdiv(Ω) is defined as:

Hdiv(Ω) = {v ∈ L2(Ω)n | div v ∈ L2(Ω)}, (3.31)

and H1/2(Ω) is defined as the space consisting of all f ∈ L2(Ω) such that:

∥f∥2H1/2(Ω) = ∥f∥2L2(Ω) +

∫

Ω

∫

Ω

|f(x)− f(y)|2
∥x− y∥n+1

Rn
dx dy <∞. (3.32)

The space H1/2(Ω) is a Hilbert space and the inner product on H1/2(Ω) is found by polar-
ization of (3.32), see [54] and [103].

3.7.3 Boundary Port Variables and Stokes-Dirac Structure of the
Operator J

When the operator J is defined on a domain where it is no longer skew-symmetric, it is
important to understand the integration of boundary port variables within the Stokes-Dirac
structure associated with J . So we now consider the operator J in equation (3.24) on a
larger functional domain where the skew-symmetry property is no longer satisfied.

Theorem 3.7.1
[94](Stokes-Dirac Structure) The geometric structure D defined by,

(fq, fp, f∂, eq, ep, e∂) ∈ F × E (3.33)

D :=





such that, F := L2(Ω)× L2(Ω)×H1/2(∂Ω), E := L2(Ω)× L2(Ω)×H−1/2(∂Ω),[
fq

fp

]
=

[
0 grad

div 0

][
eq

ep

]
, f∂(x) = −γ⊥(ep(x)), e∂(x) = γ0(eq(x)),

div eq ∈ L2(Ω), grad ep ∈ L2(Ω).

(3.34)
is a Stokes-Dirac structure for the pairing,

⟨⟨(f 1
q , f

1
p , f

1
∂ , e

1
q, e

1
p, e

1
∂), (f

2
q , f

2
p , f

2
∂ , e

2
q, e

2
p, e

2
∂)⟩⟩D

:= (e1q, f
2
q )L2(Ω) + (e1p, f

2
p )L2(Ω) + (e2q, f

1
q )L2(Ω) + (e2p, f

1
p )L2(Ω)

+ ⟨e1∂, f 2
∂ ⟩H−1/2(∂Ω),H1/2(∂Ω) + ⟨e2∂, f 1

∂ ⟩H−1/2(∂Ω),H1/2(∂Ω).

(3.35)

For the detailed proof see [94].

Note: To conduct a geometric study of the PHS later on, we will adopt the flows-efforts
representation based on the above Theorem (3.7.1).

Defining the flows as:

f =



fq
fp
f∂


 . (3.36)
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And the efforts as:

e =



eq
ep
e∂


 , (3.37)

where the ports (fq, eq) and (fp, ep) are associated with the energy and co-energy variables
and (f∂, e∂) is the port associated with the boundary.

Following the work of [94], we define the two boundary variables
{
f(x) = −γ⊥(ep(x)),
e(x) = γ0(eq(x)),

(3.38)

referred to as Port boundary variables, and extend the operator to a Stokes-Dirac structure.
We denote the term γ0 as the Dirichlet trace and γ⊥ as the normal trace map.

The boundary port variables (f, e) are defined within the linear spaces of boundary flows
F = H−1/2(∂Ω) and efforts E = H1/2(∂Ω), respectively. Their relationship is explicitly given
by: (

f
e

)
= W

(
ed
eg

)
. (3.39)

Where the boundary operator W is specifically defined by:

W =

(
−γ⊥ 0
0 γ0

)
. (3.40)

This defines a Stokes-Dirac structure for open systems with boundary port variables.

3.8 Port-Hamiltonian Systems on Dirac Structures
In port-based modeling, physical systems are perceived as interconnected assemblies of three
principal kinds of ideal components:

1. Energy-storing components,

2. Energy-dissipating (or resistive) components,

3. Energy-routing components.

The essence of a port Hamiltonian system is captured by the idea of a Dirac structure,
visualized in Figure 1 below as D [84]. This Dirac structure can be compared to the blueprint
of an electrical circuit, analogous to a ’circuit board layout,’ excluding elements that either
store or dissipate energy. It serves as the basic ’connectivity’ for the whole system.

Common examples of energy-storing elements include ideal inductors, capacitors, masses,
and springs [84]. Energy-dissipating components typically include resistors and dampers,
while energy-directing elements can include transformers, gyrators, and ideal constraints. It
is important to note that energy-routing components neither store nor dissipate energy; they
simply redirect the flow of power within the system [104].
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Figure 1: PHS Modeling [104]

In the context of the port Hamiltonian framework [33], energy-storing elements are grouped
under an entity labeled S (indicating ’storage’), while energy-dissipating elements are grouped
under R (’resistance’). The interconnections of all energy conducting elements are abstracted
into a structure called D, which is formalized using the concept of a Dirac structure.

A central idea in the modeling of port-Hamiltonian systems is the representation of these
components by ports defined by pairs (f, e) of flow and effort variables. These ports connect
the elements S, R, and D. The interaction of the system with its external environment,
including control actions, is also through such ports.

3.8.1 Energy-storing elements

The energy-storing multi-port element S corresponds to the union of all the energy-storing
elements of the system. The port variables of the Dirac structure associated with the energy-
storing multi-port element are denoted by (fS, eS), where fS and eS are vectors of equal
dimension with their product e⊤S fS denoting the total power flowing into the Dirac structure
from the energy-storing elements (or, equivalently, minus the total power flowing into the
storage elements). The total energy storage of the system is defined by a state space X ,
together with a Hamiltonian function H : X → R denoting the energy. For now, we will
assume that the state space X is finite-dimensional and is a linear space [84].

The vector of flow variables of the energy-storing multi-port element is given by the rate
ẋ of the state x ∈ X . Thus for any current state x ∈ X , the flow vector ẋ will be an
element of the linear space TxX , the tangent space of X at x. By choosing local coordinates
x = (x1, . . . , xn)

⊤ for X , this means that the vector of flow variables is given by the vector
ẋ = (ẋ1, . . . , ẋn)

⊤. In the case of a linear state space X , the tangent space TxX can be
identified with X , and we can take (global) linear coordinates for X , thus identifying X with
Rn.

Furthermore, the vector of effort variables of the energy-storing multi-port element is given
by the gradient vector ∂H

∂x
(x) ∈ T ∗

xX , the dual space of the tangent space TxX . In coordinates
x = (x1, . . . , xn)

⊤ for X , this means that the vector of effort variables is given by the vector
∂H
∂x

(x) of partial derivatives of H with respect to x1, . . . , xn (which we throughout write as a
column vector).

We obtain the following computation of the time derivative of the Hamiltonian:

d

dt
H = ⟨∂H

∂x
(x) | ẋ⟩ = ∂⊤H

∂x
(x)ẋ. (3.41)
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The interconnection of the energy-storing elements to the storage port (fS, eS) of the Dirac
structure is accomplished by setting:

fS = −ẋ and eS =
∂H

∂x
(x). (3.42)

Hence, the computation of the time derivative of the Hamiltonian (3.41) can also be written
as:

d

dt
H =

∂⊤H

∂x
(x)ẋ = −e⊤S fS. (3.43)

Remark 4. The minus sign in (3.42) is inserted in order to have a consistent power flow
convention: ∂H⊤

∂x
(x)ẋ is the power flowing into the energy-storing elements, whereas e⊤S fS is

the power flowing into the Dirac structure.

3.8.2 Energy-dissipating (resistive) elements

The second multi-port element R corresponds to internal energy dissipation (due to friction,
resistance, etc.), and its port variables are denoted by (fR, eR). These port variables are
terminated on a static energy-dissipating (resistive) relation R [84]. In general, a resistive
relation will be a subset R ⊂ FR × ER, with the property that:

⟨eR|fR⟩ = e⊤RfR ≤ 0, for all (fR, eR) ∈ R. (3.44)

We call the subset R an energy-dissipating relation, or a resistive structure.

Recall the basic property of Dirac structures, as in Definition (3.5.1), since the Dirac structure
of a port-Hamiltonian system (without external port) satisfies the power-balance:

e⊤S fS + e⊤RfR = 0, (3.45)

this leads by substitution of the equations (3.43) and (3.44) to:

d

dt
H = −e⊤S fS = e⊤RfR ≤ 0. (3.46)

The resistive structure R, combined with the energy-dissipating port (fR, eR), models the
mechanisms by which the system loses energy. This is often an important component in real
systems where energy losses due to factors like friction or resistance are involved.

3.8.3 Dirac Structure and External Ports

The Dirac structure D integrates energy-storing elements, dissipative elements, and open
ports, ensuring conservation of energy throughout the system and its environment. It incor-
porates port variables fP (t) and eP (t), which facilitate interactions with external systems,
enabling the transfer of power [84].

External ports (fP , eP ) represent the system’s interface with its environment, accommodating
various scenarios. These port variables are acausal, allowing them to be completed with
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additional elements like sources or through interconnections with other Port Hamiltonian
systems. This might involve another Dirac structure, known as an interconnection Dirac
structure, which connects our system to another subsystem [16].

Types of external port variables include:

• Controller action ports, which are directly manipulable to influence system behavior.

• Interaction ports, exemplified by a controlled robotic system interacting with its envi-
ronment.

• Source ports in an electrical circuit, where the voltage source specifies the input, and
the current through the source becomes the output.

Incorporating external ports, the power balance equation extends to:

e⊤S fS + e⊤RfR + e⊤PfP = 0, (3.47)

This leads to the extended Hamiltonian dynamics:

d

dt
H = e⊤RfR + e⊤PfP ≤ e⊤PfP , (3.48)

indicating that any increase in internally stored energy (the Hamiltonian) is always less than
or equal to the power supplied externally, since e⊤RfR ≤ 0. This framework effectively captures
both the internal dynamics and the interactions at the boundaries of the system.

3.8.4 Finite Dimensional Port-Hamiltonian Systems

Port-Hamiltonian systems (PHS) in finite dimensions are defined through the interaction
between a Dirac structure, which specifies the interconnection relations, and a Hamiltonian
function that describes the system’s total energy.

System Configuration

Consider a physical system characterized by a power-conserving interconnection described by
a Dirac structure D, and a set of energy-storing elements represented by a vector of energy
variables x within a linear state space X . The system dynamics are derived from the energies
stored in these elements, described collectively by the Hamiltonian H(x).

Integration of System Dynamics

The system dynamics integrate the resistive and energy transfer interactions among all ele-
ments. These interactions, as described previously in sections 3.8.1 and 3.8.2, include flow
(fR, fS) and effort (eR, eS) variables managed by the Dirac structure D. This integration
effectively captures the energy exchange within the system, leading to a well-defined Port-
Hamiltonian system structure [87].

Definition 3.8.1
[16] Consider a state space X and a Hamiltonian H : X → R, defining energy storage. A
Port-Hamiltonian system on X is defined by a Dirac structure as:

D ⊂ TxX × T ∗
xX × FR × ER ×FP × EP , (3.49)
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featuring an energy-storing port (fS, eS) and a resistive structure R, corresponding to an
energy-dissipating port (fR, eR). The dynamics are specified by:

(
− ẋ(t),

∂H

∂x
(x(t)), fR(t), eR(t), fP (t), eP (t)

)
∈ D(x(t)),

(fR(t), eR(t)) ∈ R(x(t)), t ∈ R,
(3.50)

thus defining the Port-Hamiltonian system dynamics.

Furthermore, the operational relationships and the kernel representation (3.5) within the
system adhere to:

F



−ẋ
fR
fP


+ E




∂H
∂x

eR
eP


 = 0, with ports, and R(fR(t), eR(t)) = 0. (3.51)

3.9 Infinite-dimensional Port Hamiltonian Systems
Infinite-dimensional Port-Hamiltonian systems (IPHS) are important for modeling systems
that extend over spatial domains and involve dynamics governed by partial differential equa-
tions (PDEs) [92]. The transition from finite to infinite-dimensional systems represents not
merely an extension in dimensionality but a fundamental change in the nature of the system’s
dynamic operators.

Mathematical Formulation: An IPHS typically involves the state variable z(t, x), defined
over a spatial domain where x represents spatial coordinates and t time. The dynamics are
governed by differential operators reflecting the system’s spatial structure, encapsulated in a
Hamiltonian framework:

∂tz(t, x) = J (x)δxH(z(t, x))−R(x)δxH(z(t, x)), (3.52)

where:

• J (x), a skew-symmetric differential operator, represents the energy-conserving dynam-
ics, extending beyond simple matrix representations to handle spatially dependent in-
teractions.

• R(x), a symmetric positive differential operator, models the system’s damping or re-
sistive effects, reflecting energy dissipation across the spatial domain.

• H is the Hamiltonian functional, representing the system’s total energy.

• δxH denotes the functional derivative of H, indicating how the Hamiltonian changes
with variations in the state variable.

This formulation shows how infinite-dimensional systems, through the use of differential
operators, naturally give rise to the necessity for boundary port variables. These variables
emerge due to the spatial extent of the operators and the boundary conditions that must be
managed to maintain system integrity and functionality [26].
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Dirac Structures and Boundary Control

Infinite-dimensional Dirac structures are essential for accurately modeling the interactions at
the system boundaries and across its distributed parameters. They ensure that the system
adheres to energy conservation laws and effectively manages energy flow, which is crucial for
systems extending over spatial domains.

Boundary Port Variables: Boundary port variables in IPHS help manage interactions
at the boundaries, making it easier to implement control strategies and observe system re-
sponses:

f∂(t, x) = boundary flow variable, (3.53)
e∂(t, x) = boundary effort variable. (3.54)

These variables are formulated according to the canonical Stokes-Dirac structure, enabling
detailed control and analysis of boundary interactions and ensuring that the system’s dy-
namics are consistent with physical laws of energy conservation and dissipation.

IPHS are applicable in various scientific and engineering fields, where their capability to
handle complex boundary conditions and distributed parameters is invaluable [57]. Examples
include modeling wave phenomena, thermal processes, and fluid dynamics within a structured
Hamiltonian framework, which enhances the ability to control and monitor these processes
effectively.

3.9.1 Wave Equation

Introduction to the Wave Equation in Port-Hamiltonian Systems

The wave equation is a fundamental PDE that models the propagation of various types
of waves, such as sound, light, or mechanical vibrations, through different media. It is
traditionally expressed as a second-order PDE in both time and space variables.

We consider the wave equation in a bounded domain Ω ⊆ Rn with a Lipschitz boundary
∂Ω, divided into two disjoint parts: Γ0 and Γ1. Here, Γ0 and Γ1 represent parts of the
boundary where different types of boundary conditions are applied, and they do not overlap
(Γ0 ∩ Γ1 = ∅).
The tensor T (ζ) in the domain Ω describes the material properties affecting wave propagation,
such as tension or density variations, and is assumed to be positive definite and smoothly
varying.

Port-Hamiltonian Formulation of the Wave Equation To cast the wave equation into
a Port-Hamiltonian framework, we consider the state variable w representing the wave’s
displacement and its temporal derivative as the momentum. The spatial derivative gradw
corresponds to the system’s effort variables, encapsulating the wave’s spatial dynamics. The
system is then described by:

∂2w

∂t2
=

1

ρ(ζ)
div(T (ζ)gradw), (3.55)
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where ρ(ζ) represents the density of the medium at point ζ in Ω and T (ζ) the elasticity
tensor.

For a controlled system, consider the following boundary conditions:

Dirichlet: w(t, ξ) = 0 ξ ∈ Γ0

Neumann: Tgradw(t, ξ) = u(t) ξ ∈ Γ1

Robin: w(t, ξ) +K(t, ξ) = u(t) ξ ∈ Γ1

Mathematical Formulation and Analysis The system dynamics, in terms of energy
variables, are well-posed as shown in [44]:

x(t, ζ) =

[
ρ(ζ)∂w

∂t
(t, ζ)

gradw(t, ζ)

]
, (3.56)

leading to:
d

dt
x(t) = J δxH(x(t)), (3.57)

where J is the skew-symmetric operator defined before (3.24), representing the system’s
inherent energy-conserving properties.

To explicitly connect this system to its Stokes-Dirac structure in open systems as defined
before (3.7.1), we incorporate the following relation:

(
∂

∂t
x1,

∂

∂t
x2, f∂, δx1H, δx2H, e∂

)
∈ D, (3.58)

The integration of the dynamics of the wave equation with its boundary port variables for
an open system, but not a controlled one (control system), is a key aspect of this approach.
In the open system, the control has yet to be defined. Nevertheless, two variables have been
specified. As previously stated, we will recall the definition of boundary port variables from
the open system, which are derived from a Hamiltonian operator J (3.24). Furthermore, we
provide an acausal definition of the open system, which does not include the definition of
input or output, and which allows the definition of any physical boundary conditions that
can be realized in practice (controlled or not).

J =

[
0 −div

−grad 0

]
, (3.59)

∂

∂t

[
x1
x2

]
= J

[
δx1H
δx2H

]
, (3.60)

Boundary port variables in terms of:
(
f∂
e∂

)
= W

(
δx1H
δx2H

)
, (3.61)

W =

(
γ0 0
0 −γ⊥

)
. (3.62)
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Instead of traditional boundary conditions, we define acausal boundary port variables:

f∂(t, ξ) = 0, (Dirichlet) (3.63)
e∂(t, ξ) = u(t), (Neumann) (3.64)

Interpreting these conditions through the Stokes-Dirac structure (3.7.1) derived from the
Hamiltonian operator (3.24), provides a robust framework for handling boundary interac-
tions and system dynamics within an IPHS context. References and further details on the
derivation and implications of this formulation can be found in [44, 55].

3.9.2 Dissipative Port Hamiltonian Systems

In this section, we explain how to extend the Port Hamiltonian framework to include dis-
sipative systems [118, 26]. We use the formalism for infinite-dimensional Port Hamiltonian
systems discussed earlier and focus on a specific way to include the dissipative operator,
revealing a hidden Hamiltonian structure that facilitates the inclusion of dissipation.

The system dynamics are given by this differential equation:

∂x

∂t
(t, z) = (J − GRRG∗

R)
δH

δx
, (3.65)

where:

• J is a skew-symmetric operator representing the conservative part of the dynamics.

• GR and its adjoint G∗
R model the interaction with dissipative effects.

• R is a positive semi-definite operator, responsible for dissipation (damping).

• H is the Hamiltonian functional, representing the total energy of the system.

The system dynamics can also be expressed as:
(
∂x
∂t

F

)
=

(
0 GR

−G∗
R 0

)(
δH
δx

Q

)
, (3.66)

Here, the relationship between the dissipative forces (Q) and the flux variables (F ) is:

Q = RF. (3.67)

The boundary port variables, which describe the interface at the system’s boundaries, are
connected to the Stokes-Dirac structure, governed by the Hamiltonian operator:

Jext =

[
0 GR

−G∗
R 0

]
. (3.68)

These boundary port variables are linear functions of the trace of the vector:
(
δH
δx

Q
)⊥
. (3.69)
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Particular Case: When J = 0, the system simplifies to:

∂x

∂t
(t, z) = −GRRG∗

R

δH

δx
. (3.70)

This simplified case still represents the main structure of the dissipative Port Hamiltonian
system, focusing on the roles of GR and R.

3.9.3 Heat Equation With Entropy as Generating Function

The energy balance equation, which is important to the understanding of heat transfer during
solidification, is:

∂u

∂t
= −div q, (3.71)

where u signifies the internal energy and q represents the heat flux.

Based on the above section (3.9.2), the work of [95], and our discussion in Chapter 2, we
approach the heat equation with entropy s as the generating function:

(
∂u
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂s
∂u

q

)
, (3.72)

the heat flux is given by :
q =Mτ F̄ , (3.73)

where F̄ is the driving force for the heat flux, given by:

F̄ = −grad(τ). (3.74)

and the mobility coefficient Mτ =
λ( 1
τ
,ϕ)

τ2
integrates the effects of thermal conductivity (λ) and

the reciprocal temperature (τ) on the heat transfer dynamics. The values for λ are detailed
for both ice (ϕ = 0) and water (ϕ = 1) in references [43, 117].

The operator on the right

Ju =
(

0 −div
−grad 0

)
(3.75)

represents the interaction dynamics within the system via the gradient and divergence oper-
ators, which is indeed the Hamiltonian operator defined before as J (3.24).

The boundary port variables are defined by:
(
f∂
e∂

)
= W e =

(
γ0

δs
δu

−γ⊥q

)
, (3.76)
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where e =
(
∂s
∂u

q

)
and the boundary operator W is defined as:

W =

(
γ0 0
0 −γ⊥

)
. (3.77)

Here, γ0 and γ⊥ are the Dirichlet and normal trace maps, respectively, as mentioned before
based on [54].

Physically, the boundary port variables represent the interaction of the system with its en-
vironment at the boundary ∂Ω:

• f∂ = γ0
δs
δu

represents the reciprocal temperature at the boundary.

• e∂ = −γ⊥q represents the heat flux at the boundary.

3.10 Port Hamiltonian formulation of the Allen-Cahn equa-
tion

In this section, we refer to the model established in the preceding chapter, section (2.6.2),
focusing on its reformulation in a dissipative Port Hamiltonian framework. For convenience,
we briefly recall the relevant equations before proceeding with their transformation [110].

Recall of Phase Field Model

The phase field modeling framework uses a phase field variable ϕ(t, z) to represent different
phases within a material. This variable transitions smoothly across the interface, with values
of 0 and 1 corresponding to distinct phases and intermediate values representing the interface
[28].

The dynamics of the phase field variable ϕ are driven by the Landau–Ginzburg functional:

G(ϕ) =

∫

Ω

(
g(ϕ) +

1

2
κϕ(z)(gradϕ)2

)
dV, (3.78)

where κϕ(z) is the gradient coefficient influencing the interface’s surface tension and width,
and g(ϕ) is a potential function with minima at 0 and 1.

Gradient Equation and Interface Mobility

The temporal evolution of the phase field variable ϕ(t, z) is governed by relaxation dynamics,
described by the gradient equation:

∂ϕ

∂t
(t, z) = −Γϕ(z)

δG

δϕ
(ϕ), (3.79)

where Γϕ(z) denotes the isotropic interface mobility, assumed to be a smoothly varying posi-
tive function across Ω, and δG

δϕ
is the functional derivative of the Landau–Ginzburg functional

G with respect to ϕ.

The variational derivative of G is:
δG

δϕ
(ϕ) =

∂g

∂ϕ
(ϕ)− div (κϕ(z) gradϕ(t, z)) , (3.80)



72CHAPTER 3. PORT HAMILTONIAN FORMULATION OF THE SOLIDIFICATION PROCESS

leading to the state equation:

∂ϕ

∂t
= −Γϕ

(
−div (κϕ gradϕ) +

∂g

∂ϕ
(ϕ)

)
, (3.81)

commonly known as the Allen-Cahn equation.

Hamiltonian Formulation of the Allen-Cahn Equation

In the Hamiltonian formulation of phase field modeling, the Allen-Cahn equation describes
interface dynamics within a framework that emphasizes energy conservation and dissipative
dynamics. This approach helps in understanding the equation’s ability to describe resistive
diffusion-like processes in interfacial phenomena.

State Space Augmentation [110]

To better capture the system’s dynamics, we introduce an auxiliary state variable, ψ, linked
to the gradient of the phase field variable ϕ. This expands the state space for a more detailed
analysis of the interfacial dynamics:

(
ϕ
ψ

)
∆
=

(
ϕ

gradϕ

)
∈ L2(Ω)× L2(Ω). (3.82)

The Landau–Ginzburg functional (3.78) can now be expressed in terms of ϕ and ψ as follows:

G(ϕ, ψ) =
∫

Ω

(
g(ϕ) +

1

2
κϕψ

2

)
dV. (3.83)

Dissipative Constitutive Relations

We express the gradient dynamics’ relaxation term by introducing Eϕ(t, z) as a new variable
within L2(Ω)2, establishing the following relation:

Eϕ(t, z) = Γϕ(z)Fϕ(t, z), (3.84)

where Fϕ(t, z) is the driving force behind the relaxation dissipation, derived from the varia-
tional derivative of the potential function:

Fϕ =
δG
δϕ

− div
(
δG
δψ

)
. (3.85)

Evolution Equations

The evolution of ϕ and ψ is governed by:

∂ϕ

∂t
(t, z) = −Eϕ(t, z), (3.86)

∂ψ

∂t
(t, z) =

∂

∂t
gradϕ(t, z), (3.87)
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where the gradient operator and the time derivative commute, leading to:
∂ψ

∂t
(t, z) = −gradEϕ(t, z). (3.88)

Hamiltonian Representation

The system, governed by Eqs. (3.85), (3.88), and (3.86), can be represented by the Hamilto-
nian operator JA, detailed below:




∂ϕ
∂t
∂ψ
∂t

Fϕ


 =



0 0 −1
0 0 −grad
1 −div 0






δG
δϕ
δG
δψ

Eϕ


 , (3.89)

where the linear differential operator JA is defined as:

JA =



0 0 −1
0 0 −grad
1 −div 0


 (3.90)

This representation of JA captures the essential dynamics of the Allen-Cahn equation aug-
mented with the state variable ψ. Unlike the operator for heat diffusion (3.127), here the grad
operator appears in the dynamical equation defining ∂ψ

∂t
. This highlights that the Allen-Cahn

equation is derived from a gradient dynamics, not from a conservation law, emphasizing the
dissipative nature of the process.

Port Hamiltonian Formulation of Allen-Cahn Equation

Having established the domain’s structure before (3.28), our next objective is to ascertain
the skew-symmetry of JA. This property is proven by evaluating the integral:∫

Ω

(
e⊤bulkJAebulk + e⊤bulkJAebulk

)
dV, (3.91)

where an element of the domain is detailed as follows based on section (3.7.3):

ebulk = (e0, ed, eg)
⊤ ∈ F and fbulk = (f0, fd, fg)

⊤ ∈ E . (3.92)

The detailed computation of (3.91) is delineated below (in what follows ∇ := grad):
∫

Ω

(
e⊤bulkJAebulk + e⊤bulkJAebulk

)
dV =

∫

Ω

[
ed(−∇eg) + eg(−div ed) + ed(−∇eg) + eg(−div ed)

]
dV

(3.93a)

=

∫

Ω

(ed(−∇eg) + eg(−div ed)) dV
︸ ︷︷ ︸∫

∂Ω(−γ0eg)(γ⊥ed) dS

+

∫

Ω

(eg(−div ed) + ed(−∇eg)) dV
︸ ︷︷ ︸∫

∂Ω(−γ0eg)(−γ⊥ed) dS

(3.93b)
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From the above and by referring to Theorem (3.6.1), we infer:
∫

Ω

(
e⊤bulkJAebulk + e⊤bulkJAebulk

)
dV = 0, ∀ed ∈ Hdiv

0 (Ω) and eg ∈ H1
0 (Ω). (3.94)

It’s evident from the equations above, especially (3.94), that the boundary terms are nullified
in the stipulated domain of JA, which is domJA = L2×D×G, confirming its skew-symmetry
and suitability as a Hamiltonian operator within the bounded Lipschitz domain Ω.

Boundary Port Variables

The relationship between boundary port variables and the operator JA (3.90), as defined in
section (3.7.3), is structured as follows:

(
f∂
e∂

)
= W ebulk, (3.95)

where the boundary operator W is specified by:

W =

(
0 −γ⊥ 0
0 0 γ0

)
. (3.96)

Their relationship is explicitly given by:
(
f∂
e∂

)
=

(
−γ⊥ ed
γ0 eg

)
, (3.97)

by referring to the Theorem (3.7.1).

Proof. The defining characteristic of a Dirac structure is that it is self-orthogonal, i.e., D =
D⊥.

Step 1. We aim to demonstrate that D ⊂ D⊥.

For a space to be orthogonal to itself, the pairing of any element from the space with itself
should be zero. In symbols, this condition can be written as:

⟨b, b⟩+ = 0 ∀ b ∈ D. (3.98)

Given that
f = (fbulk, f∂) ∈ F = L2(Ω)

3 ×H−1/2(∂Ω) (3.99)

and
e = (ebulk, e∂) ∈ E = L2(Ω)×Hdiv(Ω)×H1(Ω)×H1/2(∂Ω), (3.100)

where

ebulk =



e0
ed
eg


 =




δG
δϕ
δG
δψ

Eϕ


 and fbulk =



f0
fd
fg


 =




∂ϕ
∂t
∂ψ
∂t

Fϕ


 , (3.101)
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alongside the specific forms of ebulk and fbulk we’ve provided, the duality pairing, based on
Eq. (3.34), is:

⟨b, b⟩+ = ⟨(fbulk, f∂, ebulk, e∂), (fbulk, f∂, ebulk, e∂)⟩+ (3.102)

we have:

⟨b, b⟩+ = 2
(
⟨ebulk, fbulk⟩L2(Ω) + ⟨e∂, f∂⟩∂Ω

)

= 2

(∫

Ω

e⊤bulkfbulk dV +

∫

∂Ω

e∂f∂ dS

)

= 2

(∫

Ω

e⊤bulkJAebulk dV +

∫

∂Ω

(γ0eg)(−γ⊥ed) dS
)

= 2

∫

Ω

(e0(−eg) + ed(−grad eg) + eg(e0 − div ed)) dV

+ 2

∫

∂Ω

(γ0eg)(−γ⊥ed) dS

= 2

∫

Ω

(ed(−grad eg) + eg(−div ed)) dV

+ 2

∫

∂Ω

(γ0eg)(−γ⊥ed) dS.

Using Theorem (3.6.2), given that,
∫

Ω

(ed(−grad eg) + eg(−dived)) dV =

∫

∂Ω

(−γ0eg)(−γ⊥ed) dS, (3.103)

we have:

⟨b, b⟩+ = 2

∫

∂Ω

(γ0eg)(γ⊥ed) dS − 2

∫

∂Ω

(γ0eg)(γ⊥ed) dS = 0. (3.104)

This leads to the result that ⟨b, b⟩+ = 0, which concludes the proof of D ⊂ D⊥.

Step 2. We aim to prove D⊥ ⊂ D. Formally, given b ∈ D⊥ in B, we want to show that
b ∈ D.

Let
b = (f, e) = ((fbulk, f∂) , (ebulk, e∂)) ∈ B (3.105)

such that b ∈ D⊥. This means that for all b ∈ D, the pairing ⟨b, b⟩+ = 0.

Consider an arbitrary b given by:

b =
(
f, e
)
=
((
fbulk, f∂

)
, (ebulk, e∂)

)
, (3.106)

where:

fbulk = JAebulk =




−eg
−grad eg
e0 − div ed


 , (3.107)
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and: (
f∂, e∂

)
= Webulk =

(
−γ⊥ ed
γ0 eg

)
. (3.108)

Given ebulk =



e0
ed
eg


, we are free to choose in E .

Using the definition of the duality pairing, we have:

⟨b, b⟩+ = ⟨(fbulk, f∂, ebulk, e∂), (fbulk, f∂, ebulk, e∂)⟩+
=

∫

Ω

ebulkJAebulk dV +

∫

Ω

ebulkfbulk dV

+

∫

∂Ω

e∂JAe∂ dS +

∫

∂Ω

e∂f∂ dS

=

∫

Ω

(e0(−eg) + ed(−gradeg) + eg(e0 − dived)) dV

+

∫

Ω

(e0f0 + edfd + egfg) dV

+

∫

∂Ω

e∂(−γ⊥ed) dS +

∫

∂Ω

(γ0eg)f∂ dS.

To prove that b ∈ D when b ∈ D⊥, consider the following:

First Case: Choose
e0 ∈ L2(Ω), ed = 0, and eg = 0. (3.109)

We then have:

⟨b, b⟩+ =

∫

Ω

(ege0 + e0f0) dΩ

=

∫

Ω

e0 (eg + f0) dΩ

= 0 ∀e0 ∈ L2(Ω),

which implies:
f0 + eg = 0. (3.110)

Second Case: Choose
e0 = 0, ed ∈ Hdiv

0 (Ω), and eg = 0. (3.111)

This yields:

⟨b, b⟩+ =

∫

Ω

(eg(−dived) + edfd) dΩ

=

∫

Ω

ed (gradeg) dΩ

= 0 ∀ed ∈ Hdiv
0 (Ω),
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leading to:
fd + gradeg = 0. (3.112)

Third Case: Choose
e0 = 0, ed = 0, and eg ∈ H1

0 (Ω). (3.113)

From this, we derive:

⟨b, b⟩+ =

∫

Ω

(e0(−eg) + ed(−gradeg) + egfg) dΩ

= 0 ∀eg ∈ H1
0 (Ω),

which implies:
fg − e0 + dived = 0. (3.114)

Thus, our conclusion is:

fbulk = JAebulk =




−eg
−gradeg
e0 − dived


 .

By substituting the components of fbulk into our equation and simplifying, we obtain our
desired relations:

fbulk = JAebulk =




−eg
−grad eg
e0 − div ed


 (3.115)

and the orthogonality condition, we can expand the inner product as follows:

⟨b, b⟩+ =

∫

Ω

(e0(−eg) + ed(−grad eg) + eg(e0 − div ed)) dV

+

∫

Ω

(e0f0 + edfd + egfg) dV

+

∫

∂Ω

e∂(−γ⊥ed) dS +

∫

∂Ω

(γ0eg)f∂ dS

=

∫

∂Ω

(−γ0eg)(−γ⊥ed − f∂) dS

+

∫

∂Ω

(−γ⊥ed)(−γ0eg + e∂) dS

= 0 ∀ ed ∈ Hdiv
0 (Ω), eg ∈ H1

0 (Ω).

This implies:
−γ⊥ed − f∂ = 0 and − γ0eg + e∂ = 0. (3.116)

Thus, b ∈ D.
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In this subsection, we have examined the boundary port variables, the space of power vari-
ables, and the associated Stokes-Dirac structure. We have highlighted the definitions and
propositions associated with the operator JA and its applications in the context of the non-
conserved phase field model.

3.11 Port Hamiltonian Formulation of the Allen-Cahn
Equation using the Entropy as Potential

The Allen-Cahn equation, as presented in Chapter 2, is used for modeling phase transitions
in certain materials. It can be formulated using the Port-Hamiltonian framework, which
provides insights into the system’s energy dynamics. Building upon the work of [110] and
[112], our contribution delves into a systematic study of this model, particularly emphasizing
entropy as a potential.

3.11.1 State Space Augmentation

To effectively capture the dissipative dynamics within the Allen-Cahn framework, we shall
proceed by augmenting the state space as we did in the above section 3.10. This extension
allows for a more detailed representation of the system’s thermodynamic properties:

ψ = gradϕ (3.117)

Here, ψ represents the gradient of the phase field variable ϕ, enriching the state space to
include (ϕ, ψ, u).

Entropy Functional and Constitutive Relation

The dynamics of the Allen-Cahn equation are intrinsically linked to the thermodynamic
potentials, encapsulated by the Landau-Ginzburg entropy functional S̄ [112]:

S̄(ϕ, ψ, u) =

∫

Ω

s(ϕ, u)− 1

2
ϵ2ψ2 dV (3.118)

The functional S̄ is used to derive the system dynamics through variational principles:

δS

δϕ
=
δS̄

δϕ
− div

(
∂S̄

∂ψ

)
:= Fϕψ (3.119)

where and Fϕψ denotes the driving force.

Dissipative Constitutive Relation

The gradient dynamics elucidate the dissipative nature of the system, essential for under-
standing the phase transitions:

Eϕψ =
1

η
Fϕψ (3.120)

where Eϕψ denotes the phase field flux.
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Dynamics of the Added State Variable ψ

∂ψ

∂t
=

∂

∂t
gradϕ = grad

∂ϕ

∂t
= −gradEϕψ (3.121)

This equation reinforces the connection between the microscopic gradient changes in ϕ and
the macroscopic system evolution.

3.11.2 Dissipative Port Hamiltonian Formulation of the Allen-Cahn
Equation

The Allen-Cahn equation, when augmented by the dynamics of the additional state variable
ψ, can be effectively described within the Port Hamiltonian framework using the entropy
functional as the generating function (3.118). This framework captures both the system’s
Hamiltonian dynamics (inherent dynamics described by the Hamiltonian operator) and its
dissipative characteristics (described by the algebraic constitutive relations), as demonstrated
by the following representation:




∂ϕ
∂t
∂ψ
∂t

Fϕψ


 =



0 0 −1
0 0 −grad
1 −div 0







δ(−S̄)
δϕ

δ(−S̄)
δψ

Eϕψ


 , (3.122)

where the neg-entropy −S̄ is chosen as the generating functional, leading to a dissipative
system. Note that one obtains the same differential operator JA defined before (3.90) as for
the Port Hamiltonian formulation using the energy as generating function.

Boundary Port Variables

Utilizing the same differential operator JA, the system adheres to the Stokes-Dirac structure
established earlier in Theorem (3.7.1). The boundary port variables are defined as follows:

(
fϕψ∂
eϕψ∂

)
= W eϕψ =

(
−γ⊥ δ(−S̄)

δψ

γ0Eϕψ

)
, (3.123)

W =

(
0 −γ⊥ 0
0 0 γ0

)
, (3.124)

Physically, the variable γ⊥ δ(−S̄)
δψ

represents the flux, while γ0Eϕψ represents the conjugated
intensive variable. This setup enables the system to interact with its external environment.

The choice of −S̄ as a generating function is justified by the entropy balance equation:

d(−S̄)
dt

= −
∫

V

ηF 2
ϕψdV +

∫

∂V

e∂f∂ dS, (3.125)

which ensures that the system adheres to the second law of thermodynamics by accounting
for entropy production within the volume V and entropy flux across the boundary ∂V . This
equation highlights the dissipative nature of the system, where the internal dissipation is
balanced by the entropy flux at the boundaries.
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3.12 Port Hamiltonian Formulation of the Solidification
Process

The process of solidification is the result of coupled phenomena: the phase field dynamics
and the heat transfer. This process is modeled using the Port Hamiltonian framework by
coupling the Port Hamiltonian representation of the Allen-Cahn equation for the phase field
and the heat conduction equation.

The coupling occurs in two ways. First, the entropy becomes a function of both the phase field
variable ϕ and the internal energy u according to the expressions derived in Chapter 2, Section
(2.7), Equation (2.25). Second, the Hamiltonian operator of the coupled system consists of
the product of the canonical Hamiltonian operator Ju in (3.75) and the Hamiltonian operator
associated with the Allen-Cahn equation JA in (3.90).

3.12.1 Dissipative Port Hamiltonian Structure

The dissipative Port Hamiltonian model for solidification includes the phase field variables
ϕ, ψ (where ψ = gradϕ), and the internal energy variable u. The entropy relation is given
by:

δS̄

δu
=
∂s

∂u
= τ (3.126)

where τ is the reciprocal of the temperature.

By combining the phase field and heat diffusion dynamics:
(
∂u
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂(−S̄)
∂u

q

)
, (3.127)

and 


∂ϕ
∂t
∂ψ
∂t

Fϕψ


 =



0 0 −1
0 0 −grad
1 −div 0







δ(−S̄)
δϕ

δ(−S̄)
δψ

Eϕψ


 , (3.128)

we form a dissipative Port Hamiltonian system:



∂ϕ
∂t
∂ψ
∂t

Fϕψ
∂u
∂t

F̄




= JS




− ∂s
∂ϕ

(ϕ, u)

ϵ2ψ
Eϕψ
−τ
q




(3.129)

The Hamiltonian operator JS is defined as:

JS =




0 0 −1 0 0
0 0 −grad 0 0
1 −div 0 0 0
0 0 0 0 −div
0 0 0 −grad 0




(3.130)
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Boundary Port Variables

The boundary operator W̃ synthesizes the boundary interactions from both the heat diffusion
and the Allen-Cahn dynamics:

W̃ =




0 −γ⊥ 0 0 0 0
0 0 γ0 0 0 0
0 0 0 0 γ0 0
0 0 0 0 0 −γ⊥


 (3.131)

The boundary port variables for both the heat and phase field dynamics are expressed as:




fϕψ∂
eϕψ∂
f∂
e∂


 = W̃




− ∂s
∂ϕ

(ϕ, u)

ϵ2ψ
Fϕψ
−τ
q




=




−γ⊥(ϵ2ψ)
γ0 (1/ηEϕψ)

γ0τ
−γ⊥Mτ (−grad(τ))


 (3.132)

Interpretation of Boundary Port Variables

In this solidification model:

• fϕψ∂ represents the flux of the phase field across the boundary.

• eϕψ∂ is an effort variable associated with the interface, specifically the trace of (1/ηEϕψ =
Fϕψ) =

δS
δϕ

.

• f∂ represents the reciprocal temperature at the boundary.

• e∂ is the heat flux at the boundary.

These variables are fundamental for implementing control strategies and observing the sys-
tem’s responses at the boundaries.

3.12.2 Entropy Balance

The neg-entropy balance consists of three terms:

d(−S̄)
dt

= −
∫

V

EϕψFϕψdV −
∫

V

qF̄ dV −
∫

∂V

ẽ∂ f̃∂ dS (3.133)

or
d(−S̄)
dt

= −
∫

V

ηF 2
ϕψdV −

∫

V

Mτ F̄
2dV +

∫

∂V

ẽ∂ f̃∂ dS (3.134)

The first two terms correspond to the irreversible entropy production in the bulk, due to the
two dissipative phenomena, the gradient relaxation dynamics of the phase field and the heat
conduction. The third term corresponds to the entropy flux through the boundary of the
system.
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3.13 Implicit Port Hamiltonian Models
The Port Hamiltonian formulation described in section (3.8) uses the Hamiltonian function
as the entropy functional, as shown in equation (2.25). This functional relates the internal
energy u, the phase field variable ϕ and its gradient ψ. In section (2.8) of the preceding
chapter, we introduced a practical definition of the thermodynamic properties for the bi-
phasic water-ice system, which resulted in an expression for the entropy density that depends
on temperature rather than internal energy, as shown in equation (2.35). This dependence
requires a transition from the internal energy u (an extensive variable) to the temperature T
(an intensive variable) in the state space.

This section aims to reformulate the Port Hamiltonian model introduced in (3.129) by adopt-
ing the Implicit Port Hamiltonian formulation.

In this formulation, the energy function is defined indirectly by a set of constitutive relations
between extensive and intensive variables, obeying Maxwell’s reciprocity conditions. Geo-
metrically, these relations can be interpreted as Lagrangian submanifolds, facilitating the
definition of reciprocal constitutive equations in a coordinate-free manner. This approach,
in line with discussions in [105, 88], is extendable to distributed parameter systems as shown
in [60, 106].

To ensure clarity and completeness, we now recall the definition of a Port Hamiltonian system
defined on a Lagrangian submanifold.

3.13.1 Port Hamiltonian Systems on Lagrangian Submanifolds

A Port Hamiltonian system can be defined on a Lagrangian submanifold of the cotangent
manifold of the energy variables instead of using a Hamiltonian function as a generating
function. According to [89], the standard definition of a Port Hamiltonian system involves a
Dirac structure on a finite-dimensional manifold.

A Lagrangian submanifold L of the cotangent bundle T ∗X is an n-dimensional submanifold
where the canonical symplectic form is zero. In the linear case, a submanifold L ⊂ T ∗X is
Lagrangian if the canonical symplectic form vanishes on L, i.e., ω|L = 0. In the nonlinear
case, L is Lagrangian if for every x ∈ L, there exists a local chart in which L is given by
{(q, p) ∈ T ∗X | p = dS(q)} for some function S on X [105, 88].

For a given Lagrangian submanifold L ⊂ T ∗X, the dynamics of the system are described
implicitly by the relations defining L [89].

Definition 3.13.1
A generalized Port Hamiltonian system with space of energy variables X with implicit energy
storage is defined by the triple (D,L,R), where: D is a Dirac structure on the manifold X,
L is a Lagrangian submanifold of T ∗X, and R represents the energy dissipation.

The dynamics are given by:

(−ẋ(t), fR(t), fP (t), eS(t), eR(t), eP (t)) ∈ D(x(t)), (3.135)

(fR(t), eR(t)) ∈ R, (3.136)
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(x(t), eS(t)) ∈ L, (3.137)

where x are the state variables, fR and eR are the flow and effort variables related to energy
dissipation, and fP and eP are the external port variables.

3.13.2 Lagrangian Submanifold and Implicit System for Heat Dy-
namics

In this section, we aim to derive the implicit Port Hamiltonian system for heat dynamics,
starting from the given system (3.127):

(
∂u
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂s
∂u

q

)
, (3.138)

Lagrangian Submanifold for the Thermodynamic Properties of Incompressible Fluid Heat Dy-
namics

Consider the entropy density function s(u). The Gibbs equation (2.24) associated with the
entropy density function s(u) gives rise to the following Lagrangian submanifold defined by
the graph of s(u):

Ls =

{
(u, τ) ∈ R2 × R2 : τ =

∂s

∂u
(u);u ∈ R

}
. (3.139)

To change the coordinates from the internal energy u to the reciprocal temperature τ , consider
the Legendre transform of the entropy density s(u) with respect to u:

s∗(τ) = τu− s(u), (3.140)

where the internal energy u is considered to be a function of the reciprocal temperature τ ,
obtained by inverting τ = ∂s

∂u
(u).

Then, the Legendre submanifold (3.139) can be defined as follows:

Ls =

{
(u, τ) ∈ R2 × R2 : u =

∂s∗

∂τ
(τ); τ ∈ R

}
. (3.141)

Implicit Heat Model

To derive the implicit heat model, we start with the given explicit energy balance equation
and reformulate it using the Legendre transform. The system can be written as:

(
∂u
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂s
∂u
(u)
q

)
. (3.142)

Next, we transform the coordinates from u to τ . Using the chain rule and the definition of
the Legendre submanifold (3.141), we have:

∂

∂t

(
u
F̄

)
=

∂

∂t

(
∂s∗
∂τ

(τ)
F̄

)

=

(
∂2s∗
∂τ2

0
0 1

)(
∂τ
∂t

F̄

)
. (3.143)



84CHAPTER 3. PORT HAMILTONIAN FORMULATION OF THE SOLIDIFICATION PROCESS

Substituting (3.143) into the explicit model (3.142), we get:
(
∂2s∗
∂τ2

0
0 1

)(
∂τ
∂t

F̄

)
=

(
0 −div

−grad 0

)(
τ
q

)
. (3.144)

3.13.3 Implicit Model of Solidification Process

Based on the above section (3.13.1), the implicit model for the solidification process can
be expressed as follows: Given Gibbs’ equation (2.24) associated with the entropy density
function s(ϕ, u), we can delineate the following Lagrangian submanifold represented by the
graph of s(ϕ, u):

Ls =

{
(x, e) ∈ R2 × R2 : e =

(
∂s
∂ϕ
(ϕ, u)

∂s
∂u
(ϕ, u)

)
;x =

(
ϕ
u

)}
. (3.145)

For transitioning the coordinates, consider the Legendre transform of the entropy density
s(ϕ, u) with respect to u:

s∗(ϕ, τ) = τu− s(ϕ, u), (3.146)

Here, u is expressed as a function of ϕ and the reciprocal temperature, derived by inverting
τ = ∂s

∂u
(ϕ, u) in terms of u2.

Subsequently, we define the submanifold in equation (3.145) as:

Ls =

{
(x, e) ∈ R2 × R2 : x =

(
ϕ

∂s∗
∂τ

(ϕ, τ)

)
; e =

(
∂s∗
∂ϕ

(ϕ, τ)

τ

)
; (ϕ, τ) ∈ R2

}
. (3.147)

The dynamics of the solidification process can then be expressed as follows. First, considering
the extended entropy functional (3.118), we have the associated Legendre submanifold:

L(−S̄) =

{((
x
ψ

)
,

(
e
eψ

))
∈ R3 × R3

/

(x,−e) ∈ Ls; eψ = ϵ2ψ; ψ ∈ R
}

(3.148)

First, we compute the time derivative of the vector x, with its expression in the definition
(3.147) of the Lagrange submanifold Ls:

∂

∂t

(
ϕ
u

)
=

∂

∂t

(
ϕ

∂s∗
∂u

(ϕ, τ)

)

=

(
1 0

∂s∗
∂ϕ∂τ

(ϕ, τ) ∂2s∗
∂τ2

(ϕ, τ)

)
∂

∂t

(
ϕ
τ

)
(3.149)

2The invertibility stems from the strict concavity of s(ϕ, u), a direct consequence of the strict concavity
of the entropy functions ssol and sliq for solid and liquid phases, and its formulation in equation (2.35).
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with ∂2s∗
∂τ2

= −cp − τ ∂cp
∂τ

where cp (ϕ, τ) is the extended heat capacity and ∂s∗
∂ϕ∂τ

= −τ ∂cp
∂ϕ

.

The thermal conductivity becomes:

λ = λsol + pi(ϕ)

[
λliq − λsol

]
. (3.150)

Implicit Port Hamiltonian System of Solidification Process

The Port Hamiltonian System, using the expression in the definition (3.149) and the parametriza-
tion of the extensive variables e in (3.147), leads to the following implicit PDE:




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
∂s∗
∂ϕ∂τ

0 0 ∂2s∗
∂τ2

0

0 0 0 0 1







∂ϕ
∂t
∂ψ
∂t

Fϕψ
∂τ
∂t

F̄




= JS




−∂s∗
∂ϕ

(ϕ, τ)

ϵ2ψ
Eϕψ
−τ
q



. (3.151)

Since the matrix on the left is invertible, this system can be considered a regular Algebraic-
Differential system. This PDE, augmented with the dissipative relations and the boundary
port variables, defines a Dissipative Boundary Port Hamiltonian System.

It is remarkable that the dynamics of phase field models of solidification processes often
lead to implicit formulations of the dynamics. For instance, [112] and [8] begin their work
using the entropy as a thermodynamic potential to ensure the irreversible entropy creation
of the phase field dynamics. However, they use the Helmholtz free energy density f(ϕ, T ) as
a generating function for the thermodynamic properties of the bi-phasic system. Yet, even
with f , these authors finally obtain an implicit dynamic system.

3.14 Conclusion
This chapter presents a Dissipative Boundary Port Hamiltonian representation for the so-
lidification processes of water and other pure substances, utilizing entropy as a generating
function for the dynamics. Building on foundational work, such as that by [110], the chap-
ter extends the Port Hamiltonian framework to include the Allen-Cahn equation, effectively
modeling the dynamics of non-conserved phase field variables and the heat equation.

We initially developed the explicit model of the solidification process using entropy as the
generating function, with state variables being the phase field variable ϕ and the internal
energy u. However, due to the limited availability of data for the entropy density function
s = s(ϕ, u), we transitioned to using the reciprocal temperature τ = 1/T . This adjustment
allowed us to utilize existing thermodynamic properties of liquid water and ice, as documented
in the literature [42] and [43]. The Gibbs energy, expressed as a function of temperature
and pressure, facilitated a practical definition of the thermodynamic properties of the bi-
phasic water-ice system. Consequently, we derived expressions for the entropy density based
on temperature rather than internal energy. This necessitated a shift in the state space
coordinate from internal energy u to temperature T .
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We then reformulated the explicit Port Hamiltonian model into an implicit Port Hamiltonian
formulation using Lagrangian submanifolds. This approach, detailed in works such as [105]
and [88], allows for the definition of reciprocal constitutive equations in a coordinate-free
manner and can be adapted to distributed parameter systems [60], [106]. Ultimately, this
led to an implicit formulation of the solidification model by integrating Differential-Algebraic
Equations (DAE) and Partial Differential Equations (PDE). This framework, modeling the
dynamics in terms of reciprocal temperature, aligns well with the empirical thermodynamic
properties of systems like water and ice.
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Abstract
This chapter focuses on numerical analysis within the Port Hamiltonian framework, fo-
cusing on the discretization of solidification processes using the Partitioned Finite Element
Method (PFEM). It demonstrates structure-preserving numerical simulations of the heat
equation and the Allen-Cahn equation. The chapter covers weak formulations, projec-
tions, and discrete Hamiltonians for these equations, finishing with a discretization of the
complete model of the solidification process.

4.1 Introduction and Overview of the chapter

This chapter focuses on the structure-preserving discretization of the Boundary Port Hamil-
tonian (PH) model of the solidification process. A structure-preserving discretization ensures
that the discretized model retains the PH structure, preserving key properties such as energy
conservation and passivity [11, 17]. Several structure-preserving discretization techniques are
employed to approximate solutions while maintaining these structural properties. According
to [77], the following techniques are notable:

• Mixed Finite-Elements Method by Golo et al. [35, 36]: This method uses different
bases for energy and co-energy variables, integrating them based on the degree of the
differential form defining them.

• Pseudo-Spectral Methods for pH Systems explored by Moulla et al. [39, 66, 111].

• Discrete Exterior Calculus approach extended to pH systems by Seslija et al. [53,
97]: This method represents discrete systems of conservation laws in a matrix form
that mirrors continuous formulations.

• Partitioned Finite Element Method (PFEM) developed by Cardoso et al. [15],
Serhani [96], and Brugnoli et al. [9, 10]: PFEM will be discussed in detail hereafter.

In this chapter, we utilize the Partitioned Finite Element Method (PFEM), based on the work
of [38], to ensure structure-preserving discretization of the heat equation and the Allen-Cahn
equation. PFEM maintains the physical and geometrical properties of Port Hamiltonian
(pH) systems during numerical simulations, which is crucial for accurately representing and
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analyzing solidification phenomena.

4.2 Contributions of the chapter

The principal contribution of this chapter lies in the discretization methodology applied to
the Port Hamiltonian (PH) model of the heat equation, focusing on two main innovations:

1. Integration of Entropy as the Generating Function: We applied the Partitioned
Finite Element Method (PFEM) to the PH model where we use nonlinear constitu-
tive relations, corresponding to non-quadratic Hamiltonian functions arising from the
thermodynamic models presented in Chapter (2), with entropy s as the generating
function.

2. Implicit Formulation with Reciprocal Temperature: We introduced and dis-
cretized an implicit formulation of the heat equation using the reciprocal temperature
τ = 1

T
as the state variable. In addition, we discretized the Allen-Cahn equation, lead-

ing to the discretization of the entire implicit model of the solidification process.This
formulation aligns with the dissipative Hamiltonian systems framework, incorporating
boundary ports.

4.3 Introduction to the Partitioned Finite Element Method

The Partitioned Finite Element Method (PFEM), as proposed by Haine et al. [38], is a
systematic approach designed to preserve the port-Hamiltonian structure of physical systems
during numerical simulations. This section discusses the principles of PFEM, in particular its
application to the heat equation and the Allen Cahn equa tion in the context of solidification
processes.

PFEM maintains the structural identity of the Port Hamiltonian systems, ensuring that the
energy conservation and dissipation properties of the continuous systems are preserved in the
discrete model. This preservation is important for achieving accurate and efficient simulation
results.

The method aligns with the principles of Port Hamiltonian systems, which provide a modular
and comprehensive framework for modeling and controlling complex multi-physics systems.
Over the past two decades, Port Hamiltonian frameworks have been instrumental in accu-
rately describing interconnected systems with a strong emphasis on physical phenomena and
geometric structures.

PFEM has been effectively applied to various systems, including wave-like systems where
boundary conditions play a significant role. By employing structure-preserving discretiza-
tion techniques, PFEM accurately approximates boundary terms, ensuring the precision of
simulations even under complex boundary conditions. This is particularly important for so-
lidification processes, where interactions at the boundaries significantly influence the system’s
behavior.

Several studies have demonstrated the effectiveness of PFEM in different applications:
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• Haine et al. [38] illustrated the application of PFEM in simulating the dynamics of the
heat equation within a Port Hamiltonian framework.

• PFEM has been utilized to model wave equations, demonstrating its ability to handle
wave propagation and boundary interactions accurately [77].

• The method has been extended to control theory applications, showcasing its flexibil-
ity and robustness in managing energy-storing and dissipative elements in electrical,
mechanical, and electro-mechanical systems [90].

This section delves into the application of PFEM for discretizing the heat equation and
Allen-Cahn equation within the Port Hamiltonian framework, highlighting its advantages in
maintaining structural integrity and ensuring accurate simulations in solidification processes.

4.4 Discretization of the Heat Equation - The Model

Introduction

This section discusses the use of the heat equation to model thermal energy distribution
during solidification. We first recall the work by Cardoso-Ribeiro, Matignon, Lefèvre, and
Serhani [95] on discretizing the heat equation using the classical Partitioned Finite Element
Method (PFEM) within the Port Hamiltonian framework. In their work, Matignon et al. [5]
used temperature T as a state variable, based on a linear model, and a linearity assumption
leading to a quadratic function of temperature as the Hamiltonian function. Our approach
builds on this by employing a thermodynamic nonlinear model with the total entropy as the
Hamiltonian function, providing a more comprehensive and physically meaningful represen-
tation. We recall their work to illustrate the method of obtaining the weak formulation and
computing the mass matrices.

Consider the temperature T of a 2D domain Ω ⊂ R2. Let Cv denote the heat capacity at
constant volume, ρ the mass density, and λ the heat conductivity (a positive definite tensor).

Assume that:

• The domain Ω does not change over time; i.e., we work at constant volume in a solid.

• No chemical reactions occur in the domain.

• The Dulong-Petit’s model assumptions are valid: the internal energy is proportional to
temperature.

Let us denote:

• u as the internal energy density,

• JQ as the heat flux,

• T as the local temperature,

• CV :=
(
du
dT

)
V

as the isochoric heat capacity.

The first law of thermodynamics, stating that in an isolated system, energy is preserved,
reads:

ρ(x)∂tu(t, x) = −div(JQ(t, x)), ∀t ≥ 0, x ∈ Ω.
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Under Dulong-Petit’s model, one has u = CV T , which leads to:

ρ(x)CV (x)∂tT (t, x) = −div(JQ(t, x)), ∀t ≥ 0, x ∈ Ω.

As a constitutive relation, the classical Fourier’s law is considered:

JQ(t, x) = −λ(x) · grad(T (t, x)), ∀t ≥ 0, x ∈ Ω,

where λ is the tensor-valued heat conductivity of the medium.

The well-known heat equation, subject to Neumann boundary control, governing the tem-
perature distribution is given by:

ρ(x)Cv(x)
∂

∂t
T (t, x)− div(λ(x) · grad(T (t, x))) = 0, t ≥ 0, x ∈ Ω, (4.1)

−(λ(x) · grad(T (t, x))) · n = u∂(t, x), t ≥ 0, x ∈ ∂Ω, (4.2)

where n is the outward normal to Ω.

Port Hamiltonian Framework

The Hamiltonian is the usual L2 functional, which is chosen as the quadratic form for a
parabolic equation, despite its lack of thermodynamic meaning:

H(t) :=
1

2

∫

Ω

ρ(x)Cv(x)(T (t, x))
2 dx, t ≥ 0. (4.3)

Taking the internal energy density αu := u = CvT as the energy variable (using the
Dulong-Petit model), the Hamiltonian can be expressed as:

H(t) = H(αu(t, ·)) =
1

2

∫

Ω

ρ(x)
α2
u(t, x)

Cv(x)
dx. (4.4)

The co-energy variable, denoted by eu, is defined as the variational derivative of the
Hamiltonian with respect to the weighted L2-product with weight ρ:

eu := δραuH =
αu
Cv

= T, (4.5)

representing the temperature. This equality serves as the first constitutive relation.

Denoting JQ as the heat flux, the first principle of thermodynamics is given by:

∂

∂t
ρu+ div(JQ) = 0. (4.6)

Fourier’s law provides the second constitutive relation:

JQ = −λ · grad(T ). (4.7)
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To ensure a formally skew-symmetric operator for port-Hamiltonian systems (3.24), we aug-
ment the system with −grad, obtaining the heat equation as a port-Hamiltonian system:

(
ρ ∂
∂t
αu

fQ

)
=

[
0 −div

−grad 0

](
eu
JQ

)
,

{
eu =

αu
Cv
,

JQ = λ · fQ.
(4.8)

To eliminate the first algebraic constraint resulting from the constitutive relation eu = αu
Cv

,
we rewrite ρCv ∂∂tT . Additionally, Fourier’s law is incorporated as λ−1 · JQ = fQ inside the
Dirac structure. The resulting port-Hamiltonian system is expressed as:

(
ρCv

∂
∂t
T

λ−1 · JQ

)
=

[
0 −div

−grad 0

](
T
JQ

)
,

{
u∂ = T |∂Ω
y∂ = JQ · n (4.9)

Note: In our case, the change was in the choice of the input u∂ and the output y∂. As it
appears above in eq. (4.9), our choices were:

{
u∂ = T |∂Ω
y∂ = JQ · n

We desired to control the temperature as the input, whereas [94] choses u∂ = JQ · n and
y∂ = T .

4.4.1 Weak Formulation

A weak formulation is a way of reformulating differential equations such that the solution
space is broadened to include more generalized functions, allowing the use of test functions
to derive integral equations that are easier to handle numerically [80]. It is especially useful
in finite element methods for solving partial differential equations.

To establish a weak formulation, we use test functions ϕT , ϕQ, and ψ for the temperature,
flux, and boundary conditions, respectively:

• ϕT : A scalar-valued test function, ϕT is used in the context of scalar differential equa-
tions, particularly those involving temperature. It tests the equation related to T
(temperature) in the problem. The basis of ϕT comprises scalar functions within the
solution space for the temperature equation in the weak formulation.

• ϕQ: As a vector-valued test function, ϕQ is employed for vector differential equations,
such as those involving flux, denoted by JQ. The basis for ϕQ includes vector functions
that approximate the solution space for the flux-related part of the equation.

• ψ: This boundary scalar-valued test function is utilized for testing boundary condi-
tions. It is applied to the boundary terms of the weak formulation, usually involving
boundary fluxes or related variables. The basis of ψ consists of scalar functions defined
on the domain’s boundary (∂Ω), aiding in approximating the boundary conditions of
the problem.
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The weak formulation is expressed as follows:




∫
Ω
ϕTρCv

∂
∂t
T = −

∫
Ω
ϕTdiv(JQ),

∫
Ω
ϕQ · λ−1 · JQ = −

∫
Ω
ϕQ · grad(T ),

∫
∂Ω
ψy∂ =

∫
∂Ω
ψ(JQ · n).

(4.10)

This formulation represents the weak version of the original system of equations, incorporat-
ing test functions to establish a variational framework for the problem.

As our aim is to discretize the div operator, performing integration by parts on the second
line reveals the appearance of u∂ = T , which will be chosen in our case to be the input:





∫
Ω
ϕTρCv

∂
∂t
T = −

∫
Ω
ϕTdiv(JQ),

∫
Ω
ϕQ · λ−1 · JQ =

∫
Ω

div(ϕQ)T −
∫
∂Ω
ϕQ T︸︷︷︸

u∂

,

∫
∂Ω
ψy∂ =

∫
∂Ω
ψ(JQ · n).

(4.11)

With this choice, the temperature appears as the induced choice of input, emphasizing the
presence of u∂ = T in the resulting equation.

4.4.2 Projection

Projection involves approximating the variables onto finite element spaces. A finite element
space is a discretized function space used to approximate the solution of differential equations
by dividing the domain into smaller, simpler parts (elements) and constructing polynomial
functions over these elements [4].

Denoting ⋆ as the (time-varying) vector of coordinates of ⋆d in its respective finite element
family, we use this notation in what follows. Let (ϕiT )1≤i≤NT , (ϕjQ)1≤j≤NQ , and (ψk)1≤k≤N∂
represent the finite element families for temperature-type, flux-type, and boundary-type vari-
ables, respectively. The variables are approximated as follows:

T d(t, x) :=

NT∑

i=1

T i(t)ϕiT (x), JdQ(t, x) :=

NQ∑

j=1

J jQ(t)ϕ
j
Q(x),

ud∂(t, x) :=

N∂∑

k=1

uk∂(t)ψ
k(x), yd∂(t, x) :=

N∂∑

k=1

yk∂(t)ψ
k(x).

Matrix Definitions: The matrices MT , MQ, and M∂ represent mass matrices corresponding
to temperature, heat flux, and boundary variables, respectively:
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(MT )ij :=

∫

Ω

ϕiTρCvϕ
j
T , (4.12)

(MQ)ij :=

∫

Ω

ϕiQ · λ−1 · ϕjQ, (4.13)

(M∂)ij :=

∫

∂Ω

ψiψj. (4.14)

where ρ is the density, Cv the specific heat at constant volume, and λ the thermal conductivity.

The matrices D and B̄ are:

(D)ij :=

∫

Ω

div(ϕiQ) · ϕjT , (4.15)

(B̄)jk :=

∫

∂Ω

ϕjQψ
k. (4.16)

The matrixD represents the discretization of the divergence operator, mapping fluxes to their
divergences in the finite element space. The matrix B̄ represents the boundary interaction
terms, mapping the boundary temperature (the input) to the flux in the finite element space.

Discrete System Equations: Utilizing these matrices, the discrete system can be clearly
represented. Let T (t), JQ(t), and u∂(t) denote the time-varying vectors of coordinates for
the temperature, heat flux, and boundary input in their respective finite element families.
The discrete system is then expressed as:



MT 0 0
0 MQ 0
0 0 M∂




︸ ︷︷ ︸
M




d
dt
T (t)
JQ(t)

−y∂(t)


 =




0 −D 0
D⊤ 0 −B̄
0 B̄⊤ 0




︸ ︷︷ ︸
J




T (t)
JQ(t)

u∂(t)


 (4.17)

Here, M is the combined mass matrix and J encapsulates the system’s dynamics and bound-
ary interactions.

4.4.3 Discrete Hamiltonian and its balance equation

The discretized system satisfies an energy balance equation, where the energy is an approx-
imation of the distributed energy. The discrete Hamiltonian is derived from the continuous
Hamiltonian but is evaluated using approximated variables. Consider the continuous Hamil-
tonian H, defined as:

H =
1

2

∫

Ω

ρCv(T )
2 dx, (4.18)

where ρ denotes density, Cv is the specific heat at constant volume, and T represents the
temperature.

In a discrete framework, the Hamiltonian, now represented as Hd, employs the discretized
temperature field T d:

Hd :=
1

2

∫

Ω

ρCv(T
d)2 dx. (4.19)
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Here, T d symbolizes the discretized temperature profile, a combination of nodal temperature
values and their corresponding basis functions.

Expanding on this, we can express Hd in terms of the mass matrix MT and the discrete
temperature vector T (t):

Hd(t) =
1

2
T (t)⊤MTT (t). (4.20)

This form effectively encapsulates the total energy within the system at a given time t in its
discretized state.

It has been proven that a discrete energy balance is satisfied [96]. Moreover, the discrete
power balance is crucial for understanding the energy dynamics within the system. The
change rate of Hd is described by the following equation:

d

dt
Hd(t) = −JQ(t)⊤MQJQ(t) + u∂(t)

⊤M∂y∂(t). (4.21)

Here, the first term on the right side signifies energy dissipation due to heat flux (JQ(t)), and
the second term represents the energy exchange at the system boundaries, where u∂(t) and
y∂(t) are the discretized boundary input and output variables, respectively.

4.5 Discretization of the Implicit Heat Equation with En-
tropy as Generating Function

This section details the discretization of the implicit system of the heat equation using entropy
as the generating function and reciprocal temperature τ = 1

T
as the state variable. We follow

a strategy similar to the one outlined in the SCRIMP document by [10], including the weak
formulation, mass matrices, and projection.

4.5.1 Mathematical Formulation

The implicit system is given by:
(
∂2s∗
∂τ2

0
0 1

)(
∂τ
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂s
∂τ

q

)
, (4.22)

where τ is the reciprocal temperature, s is the entropy, q is the heat flux vector, and F̄ is
the driving force for the heat flux.

4.5.2 Weak Formulation

Introduce test functions ϕτ for τ and ϕq for q. The weak formulation involves integrating
against these test functions.

For the first equation: ∫

Ω

ϕτ
∂2s∗

∂τ 2
∂τ

∂t
dx =

∫

Ω

ϕτ (−div(q)) dx. (4.23)
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For the second equation:
∫

Ω

ϕq · F̄ dx =

∫

Ω

ϕq ·
(
−grad

(
∂s

∂τ

))
dx. (4.24)

4.5.3 Integration by Parts

Apply integration by parts to handle the divergence and gradient terms. This introduces
boundary terms.

For the first equation:
∫

Ω

ϕτ
∂2s∗

∂τ 2
∂τ

∂t
dx =

∫

Ω

−div(ϕτq) dx+
∫

Ω

(grad(ϕτ ) · q) dx. (4.25)

By Gauss’s theorem:
∫

Ω

ϕτ
∂2s∗

∂τ 2
∂τ

∂t
dx =

∫

∂Ω

(ϕτq · n) ds−
∫

Ω

(grad(ϕτ ) · q) dx. (4.26)

For the second equation:
∫

Ω

ϕq · F̄ dx =

∫

Ω

ϕq ·
(
−grad

(
∂s

∂τ

))
dx. (4.27)

Integration by Parts:

As we aim to discretize the div operator, we the apply integration by parts to the second
equation (4.27): ∫

Ω

ϕq · F̄ dx = −
∫

Ω

div(ϕq)τ dx+
∫

∂Ω

ϕq τ ds. (4.28)

4.5.4 Finite Element Discretization

We choose finite element spaces for approximating the reciprocal temperature τ , the heat flux
q, and the boundary values. Let (ϕiτ )1≤i≤Nτ , (ϕjq)1≤j≤Nq , and (ψk)1≤k≤N∂ be basis functions
for these spaces.

Approximate τ , q, and u∂ as:

τ d(t, x) =
Nτ∑

i=1

τ i(t)ϕiτ (x), qd(t, x) =

Nq∑

j=1

qj(t)ϕjq(x), ud∂(t, x) =

N∂∑

k=1

uk∂(t)ψ
k(x). (4.29)

4.5.5 Mass and Stiffness Matrices

Define the mass matrices Mτ , Mq, and M∂, as well as the stiffness matrices Kτ and B̄:

(Mτ )ij =

∫

Ω

ϕiτ
∂2s∗

∂τ 2
ϕjτ dx, (Mq)ij =

∫

Ω

ϕiq · ϕjq dx, (M∂)kl =

∫

∂Ω

ψkψl ds, (4.30)

(Kτ )ij =

∫

Ω

div(ϕiq)ϕ
j
τ dx, (B̄)jk =

∫

∂Ω

ϕjqψ
k ds. (4.31)
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4.5.6 Assembly of the Discrete System

Using the defined mass and stiffness matrices, assemble the discrete system of equations:

Mτ
d

dt
τ +Kτq = 0, (4.32)

MqF + B̄u∂ = 0, (4.33)

where τ , q, and u∂ are the coefficient vectors for τ d, qd, and ud∂, respectively.

Discrete Port-Hamiltonian System Representation

We now proceed to represent the discrete port-Hamiltonian formulation for the heat diffusion
problem based on the mass and stiffness matrices introduced earlier. The resulting system
can be expressed using a discrete port-Hamiltonian approach, highlighting the structure-
preserving properties of the model.

The discrete system representation is given by:



Mτ (τ) 0 0

0 Mq 0
0 0 M∂




︸ ︷︷ ︸
M




d
dt
τ
F
y
∂


 =




0 −Kτ 0
KT
τ 0 −B̄
0 B̄T 0




︸ ︷︷ ︸
J



τ
q
u∂


 (4.34)

Where:

• M is the global mass matrix that combines all mass matrices defined for the system:

– Mτ (τ): Mass matrix for reciprocal temperature, depending on the state variable
τ .

– Mq: Mass matrix for the flux variable.

– M∂: Mass matrix for the boundary input/output values.

• J is the structure matrix that encapsulates the energy exchange and coupling between
internal and boundary states:

– Kτ : Stiffness matrix representing the discretization of the divergence operator.

– B̄: Stiffness matrix representing the coupling between boundary and internal
states.

• τ , F , y
∂
, q, and u∂ are coefficient vectors:

– τ : Coefficient vector for reciprocal temperature.

– F : Coefficient vector for the driving force.

– y
∂
: Coefficient vector for boundary output values, such as the flux at the boundary.

– q: Coefficient vector for the heat flux in the domain.

– u∂: Coefficient vector for boundary input values.
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Notes on the Mass and Stiffness Matrices

The mass matricesMτ , Mq, andM∂ are associated with the finite element discretization of the
state variables, flux, and boundary values. Specifically, Mτ depends on the second derivative
of the entropy function s∗ with respect to τ , making it a state-dependent matrix. The
stiffness matrices Kτ and B̄ are related to the gradient and divergence operators, capturing
the coupling between the temperature field and flux.

In particular, the mass matrix (Mτ )ij includes the entropy term ∂2s∗
∂τ2

, which differentiates it
from the classical linear case, thereby accounting for the nonlinear nature of the thermody-
namic relations in this model.

4.6 Discretization of the Allen-Cahn Equation
This section focuses on the discretization of the port Hamiltonian formulation of the Allen-
Cahn equation presented earlier (see section 3.11).

Adapting Discretization from the Heat Equation to the Allen-Cahn Equation

This section focuses on adapting the discretization approach from the heat equation to the
Allen-Cahn equation, which models physical phenomena during the solidification process.

While both equations model diffusion processes, they differ in their treatment of nonlinear
terms, which are important for simulating phase transitions in the Allen-Cahn equation.
The heat equation deals with linear diffusion, whereas the Allen-Cahn equation incorporates
nonlinear dynamics necessary for describing phase boundaries.

We adapted the discretization approach based on the mathematical properties of the Allen-
Cahn equation. This phase-field model includes nonlinear dynamics necessary for describing
phase boundaries.

A key difference between the heat equation and the Allen-Cahn equation lies in the operators
involved in their formulations. The heat equation is governed by the following system (3.127):

(
∂u
∂t

F̄

)
=

(
0 −div

−grad 0

)(
∂s
∂u

q

)
, (4.35)

where u signifies the internal energy, and q represents the heat flux vector.

In contrast, the Allen-Cahn equation involves the following system (3.128):



∂ϕ
∂t
∂ψ
∂t

Fϕψ


 =



0 0 −1
0 0 −grad
1 −div 0







δ(−S̄)
δϕ

δ(−S̄)
δψ

Eϕψ


 , (4.36)

where ψ represents the gradient of the phase field variable ϕ, the state space variables, Fϕψ
represents the driving force, and Eϕψ represents the phase field flux.

In the Allen-Cahn equation, the grad operator appears in the dynamic equation, correspond-
ing to the gradient dynamics that define the Allen-Cahn formulation. This difference in the
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operators highlights the unique characteristics of the Allen-Cahn equation and the necessity
for adapting the discretization strategy accordingly.

4.7 The Phase Field Model

We now describe the dynamic behavior of the system through a comprehensive set of equa-
tions that encapsulate the intricate interactions within a bi-phasic system. This system
involves phase field variables and entropy considerations, leading to a detailed mathematical
representation.

4.7.1 Dynamic System Representation

Recall that the dynamics of our bi-phasic system is described by the following port-Hamiltonian
system: 


∂ϕ
∂t
∂ψ
∂t

Fϕψ


 =



0 0 −1
0 0 −grad
1 −div 0





−∂s∗

∂ϕ
(ϕ, τ)

ϵ2ψ
Eϕψ


 . (4.37)

Here, ϕ and ψ represent the phase field variable and its gradient, while Fϕψ denotes the
driving force and Eϕψ the phase field flux.

4.7.2 Weak Formulation [5]

The weak formulation, a cornerstone in the numerical analysis of partial differential equations,
is obtained by introducing test functions for each variable. Let vψ, vF , vϕ, and vb be the test
functions for ψ, Fϕψ, ϕ, and the boundary, respectively. It’s necessary to note that vF = vϕ
for consistency in the formulation. The weak formulation is then articulated as:





∫
Ω
v⊤F

∂ϕ
∂t
dz = −

∫
Ω
v⊤F (Eϕψ)dz,∫

Ω
v⊤ψ

∂ψ
∂t
dz = −

∫
Ω
v⊤ψ grad(Eϕψ)dz,∫

Ω
v⊤FFϕψdz =

∫
Ω
v⊤F

(
−∂s∗

∂ϕ
(ϕ, τ)

)
dz −

∫
Ω
v⊤F div(ϵ2ψ),

∫
∂Ω
vby∂ =

∫
∂Ω
vb(ϵ

2ψ · n).

(4.38)

An integration by parts on the second line of this weak formulation reveals the boundary
term u∂(t) = Eϕψ, simplifying the expression:





∫
Ω
v⊤F

∂ϕ
∂t
dz = −

∫
Ω
v⊤F (Eϕψ)dz,∫

Ω
v⊤ψ

∂ψ
∂t
dz =

∫
Ω

div v⊤ψEϕψdz −
[
v⊤ψEϕψ

]
∂Ω
,

∫
Ω
v⊤FFϕψdz =

∫
Ω
v⊤F

(
−∂s∗

∂ϕ
(ϕ, τ)

)
dz −

∫
Ω
v⊤F div(ϵ2ψ),

∫
∂Ω
vby∂ =

∫
∂Ω
vb(ϵ

2ψ · n).

(4.39)



100 CHAPTER 4. DISCRETIZATION OF THE SOLIDIFICATION PROCESS

4.7.3 Projection

Projection onto finite element spaces involves approximating the variables in their respective
finite element families. The discrete representations of the variables are thus formulated as:

ϕ(t, z) :=
∑

ϕ̄(t)vF (z),

ψ(t, z) :=
∑

ψ̄(t)vψ(z),

Fϕψ(t, z) :=
∑

F̄ϕψ(t)vF (z),

Eϕψ(t, z) :=
∑

Ēϕψ(t)vF (z),

u∂(t, z) :=
∑

ū∂(t)vb(z),

y∂(t, z) :=
∑

ȳ∂(t)vb(z),

eϕ(t, z) :=
∑

ēϕ(t)vF (z).

The discrete system is then expressed as:



Mϕ 0 0 0
0 Mψ 0 0
0 0 Mϕ 0
0 0 0 M∂




︸ ︷︷ ︸
M




dϕ̄
dt
(t)

dψ̄
dt
(t)

F̄ϕψ(t)
ȳ∂(t)


 =




0 0 −Mϕ 0
0 0 D −B
Mϕ −D⊤ 0 0
0 B⊤ 0 0




︸ ︷︷ ︸
J




ēϕ(t)
¯ϵ2ψ(t)
Ēϕψ(t)
ū∂(t)


 (4.40)

where

Mϕ: This matrix represents the mass matrix for the phase field variable ϕ. It is defined as:

(Mϕ)ij :=

∫

Ω

viFv
j
F dz (4.41)

where viF and vjF are the basis functions for ϕ.

Mψ: This matrix represents the mass matrix for the auxiliary variable ψ. It is defined as:

(Mψ)ij :=

∫

Ω

viψv
j
ψ dz (4.42)

where viψ and vjψ are the basis functions for ψ.

M∂: This matrix represents the mass matrix for the boundary variable u∂. It is defined as:

(M∂)ij :=

∫

∂Ω

vibv
j
b dz (4.43)

where vib and vjb are the basis functions for the boundary variables.
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D: This matrix represents the discretization of the divergence operator applied to ψ. It is
defined as:

(D)ij :=

∫

Ω

div viψv
j
F dz (4.44)

where viψ is the basis function for ψ and vjF is the basis function for ϕ.

−D⊤: This matrix represents the transpose of the discretization of the divergence operator
applied to ϕ. It is defined as:

(−D⊤)ij := −
∫

Ω

viFdiv vjψ dz (4.45)

where viF is the basis function for ϕ and vjψ is the basis function for ψ.

B: This matrix represents the boundary interaction terms. It is defined as:

(B)ij :=

∫

∂Ω

viψv
j
F dz (4.46)

where viψ is the basis function for ψ and vjF is the basis function for ϕ.

The discrete co-energy variable ēϕ is given by:

ēϕ =M−1
ϕ

∫

Ω

v⊤F

(
−∂s

∗

∂ϕ

)
(ϕ, τ)dz. (4.47)

with

∂s∗

∂ϕ
(ϕ, T ) = p′i(ϕ)[s

∗
liq(T )− s∗sol(T )] + wp′w(ϕ) (4.48)

where T = 1
τ

and

• p′i(ϕ) = 30ϕ4 − 60ϕ3 + 30ϕ2

• p′w(ϕ) = −4ϕ3 + 6ϕ2 + 2ϕ

according to the constitutive relations presented in section (2.9).

4.8 Discretization of the Solidification Process

This section details the discretization of the solidification process, combining the Allen-Cahn
equation with the implicit heat equation model. We will utilize the Partitioned Finite Ele-
ment Method (PFEM) within the Port Hamiltonian framework to ensure structure-preserving
properties.

Recall that the combined system can be expressed as follows (3.151):
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


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∂2s∗
∂ϕ∂τ

0 0 ∂2s∗
∂τ2

0

0 0 0 0 1







∂ϕ
∂t
∂ψ
∂t

Fϕψ
∂τ
∂t

F̄




= JS




−∂s∗
∂ϕ

(ϕ, τ)

ϵ2ψ
Eϕψ
−τ
q



, (4.49)

where

JS =




0 0 −1 0 0
0 0 −grad 0 0
1 −div 0 0 0
0 0 0 0 −div
0 0 0 −grad 0




(4.50)

is the combined skew-symmetric operator matrix representing the coupled system dynamics.

4.8.1 Weak Formulation

To obtain the weak formulation of the coupled system, we introduce appropriate test functions
for each variable. Let vϕ, vψ, vFϕψ , vτ , and vF̄ be the test functions for ϕ, ψ, Fϕψ, τ , and F̄ ,
respectively. The weak formulation is then given by:





∫
Ω
v⊤ϕ

∂ϕ
∂t
dz = −

∫
Ω
v⊤ϕEϕψ dz,∫

Ω
v⊤ψ

∂ψ
∂t
dz = −

∫
Ω
v⊤ψ grad(Eϕψ) dz,∫

Ω
v⊤FϕψFϕψ dz =

∫
Ω
v⊤Fϕψ

(
−∂s∗

∂ϕ
(ϕ, τ)

)
dz −

∫
Ω
v⊤Fϕψdiv(ϵ2ψ) dz,

∫
Ω
v⊤τ

(
∂2s∗
∂ϕ∂τ

∂ϕ
∂t

+ ∂2s∗
∂τ2

∂τ
∂t

)
dz = −

∫
Ω
v⊤τ div(q) dz,

∫
Ω
v⊤
F̄
F̄ dz =

∫
Ω
v⊤
F̄
(−grad(τ)) dz.

(4.51)

By integrating by parts and applying the boundary conditions, the weak formulation is
modified to:





∫
Ω
v⊤ϕ

∂ϕ
∂t
dz = −

∫
Ω
v⊤ϕEϕψ dz,∫

Ω
v⊤ψ

∂ψ
∂t
dz =

∫
Ω

div
(
v⊤ψEϕψ

)
dz −

∫
∂Ω
v⊤ψEϕψ dσ,∫

Ω
v⊤FϕψFϕψ dz =

∫
Ω
v⊤Fϕψ

(
−∂s∗

∂ϕ
(ϕ, τ)− div(ϵ2ψ)

)
dz,

∫
Ω
v⊤τ

(
∂2s∗
∂ϕ∂τ

∂ϕ
∂t

+ ∂2s∗
∂τ2

∂τ
∂t

)
dz =

∫
Ω

div
(
v⊤τ q
)
dz −

∫
∂Ω
v⊤τ q dσ,∫

Ω
v⊤
F̄
F̄ dz =

∫
Ω
v⊤
F̄
(−grad(τ)) dz.

(4.52)

4.8.2 Finite Element Discretization

We choose finite element spaces to approximate ϕ, ψ, Fϕψ, τ , and F̄ . Let (ϕiϕ)1≤i≤Nϕ ,
(ϕjψ)1≤j≤Nψ , (ϕkFϕψ)1≤k≤NFϕψ , (ϕlτ )1≤l≤Nτ , and (ϕm

F̄
)1≤m≤NF̄ represent the finite element ba-

sis functions for each variable, respectively. The approximations are given by:
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ϕd(t, x) :=

Nϕ∑

i=1

ϕi(t)ϕiϕ(x), ψd(t, x) :=

Nψ∑

j=1

ψj(t)ϕjψ(x),

F d
ϕψ(t, x) :=

NFϕψ∑

k=1

F k
ϕψ(t)ϕ

k
Fϕψ

(x), τ d(t, x) :=
Nτ∑

l=1

τ l(t)ϕlτ (x),

F̄ d(t, x) :=

NF̄∑

m=1

F̄m(t)ϕmF̄ (x).

4.8.3 Forming Mass Matrices

Define the mass and stiffness matrices for each variable as follows:

(Mϕ)ij :=

∫

Ω

ϕiϕϕ
j
ϕ dz, (4.53)

(Mψ)ij :=

∫

Ω

ϕiψϕ
j
ψ dz, (4.54)

(MFϕψ)ij :=

∫

Ω

ϕiFϕψϕ
j
Fϕψ

dz, (4.55)

(MF̄ )ij :=

∫

Ω

ϕiF̄ϕ
j

F̄
dz. (4.56)

Additionally, define the matrices involving the partial derivatives of s∗ as follows:

(Mτ )ij :=

∫

Ω

∂2s∗

∂τ 2
ϕiτϕ

j
τ dz, (4.57)

(Mϕτ )ij :=

∫

Ω

∂2s∗

∂ϕ∂τ
ϕiϕϕ

j
τ dz. (4.58)

The stiffness matrices for the divergence and gradient operators are defined as:

(Dϕ)ij :=

∫

Ω

div(ϕiϕ) · ϕjFϕψ dz, (4.59)

(Dτ )ij :=

∫

Ω

div(ϕiτ ) · ϕjF̄ dz, (4.60)

(Gψ)ij :=

∫

Ω

grad(ϕiψ) · ϕjFϕψ dz, (4.61)

(GF̄ )ij :=

∫

Ω

grad(ϕiF̄ ) · ϕjτ dz. (4.62)

It is important to note that matrices Dϕ and Gψ are related by an antisymmetric property,
as follows:



104 CHAPTER 4. DISCRETIZATION OF THE SOLIDIFICATION PROCESS

(Dϕ)ij = −(Gψ)ji

This antisymmetry ensures that energy flow between these components is balanced, in line
with the structure-preserving nature of port Hamiltonian systems (inspired by [5]). This prop-
erty is crucial for maintaining the conservation properties intrinsic to Hamiltonian dynamics,
ensuring that there is no net creation or destruction of energy within these components.

Additionally, to ensure a proper discrete negentropy balance for matrix M̃ , the contributions
involving Mτ and Mϕτ are derived in alignment with the proof provided in [5], ensuring
that the discretized dynamics respects the laws of thermodynamics, particularly the entropy
balance equation.

4.8.4 Assembling the Discrete System

Using the finite element approximations and the defined mass and stiffness matrices, the
discrete system can be represented as:




Mϕ 0 0 0 0
0 Mψ 0 0 0
0 0 MFϕψ 0 0

Mϕτ 0 0 Mτ 0
0 0 0 0 MF̄




︸ ︷︷ ︸
M̃




dϕ̄
dt
(t)

dψ̄
dt
(t)

F̄ϕψ(t)
dτ̄
dt
(t)

F̄ (t)




=




0 0 −Mϕ 0 0
0 0 Gψ 0 −Bψ

Mϕ −D⊤
ϕ 0 0 0

0 0 0 0 −Dτ

0 B⊤
ψ 0 D⊤

τ 0




︸ ︷︷ ︸
JS




ēϕ(t)
ϵ2ψ̄(t)
Ēϕψ(t)
−τ̄(t)
q̄(t)



,

(4.63)

where M̃ is the combined mass matrix, and JS includes the system dynamics and boundary
interactions.

It is important to note that among the mass matrices, Mϕ, Mψ, MFϕψ , and MF̄ depend only
on the finite-element bases and are thus constant for a given discretization. On the other
hand, Mτ and Mϕτ are state-dependent, as they involve the partial derivatives of the entropy
function s∗.

Additionally, the entropy function s∗ is often given as a finite series expansion, making the
resulting expressions for the mass matrices Mτ and Mϕτ polynomial in nature.

Negentropy Balance: In line with the proof provided in [5], one may derive the discrete ne-
gentropy balance equation for the discretized system, ensuring that the discretized dynamics
respects the laws of thermodynamics, here the entropy balance equation.

4.8.5 Preliminary 1D Numerical Simulations

To corroborate the claim that the geometric structure of the solidification process can be
reduced spatially, we performed a series of preliminary 1D numerical simulations using the
SCRIMP environment. The SCRIMP environment provides a numerical framework for sim-
ulating port-Hamiltonian systems, allowing for the integration of both thermal and phase
field dynamics. This section discusses the results obtained from these simulations, focusing
on the melting and solidification processes.
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Melting Process

The melting process was simulated using simplified thermodynamic laws, omitting nonlinear
interactions to focus on the basic dynamics of interface movement. The initial condition was
set as a fully solid phase (ϕ = 0) throughout the domain, and heat was applied to initiate
the transition to the liquid phase. The evolution of the phase field variable ϕ is depicted in
Figure 1.

Figure 1: Melting process: The interface evolution is shown from the initial
state (t = 0) to t = 5.5, demonstrating the transition from solid to liquid.

The simulation results show a clear movement of the interface as the solid phase transitions
into the liquid phase. Due to the simplified thermodynamics, the interface evolves smoothly,
demonstrating the efficacy of this approach in capturing basic melting dynamics. The results
illustrate how the 1D domain can effectively represent the progression of the phase field,
thereby supporting the claim of spatial reduction of the geometric structure.

Solidification Process

In contrast to the melting process, the solidification process presented additional challenges.
Specifically, the lack of appropriate dimensionless parameters and thermodynamic properties
led to a broader interface during the solidification process, as depicted in Figure 2.
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Figure 2: Solidification process: Interface evolution from the liquid phase to the
solid phase. The broadening of the interface is evident, highlighting the need for
more precise thermodynamic properties.

The challenge encountered during the solidification process was due to the use of linear
thermodynamic properties, which resulted in a large interface thickness and an incomplete
transition from the liquid to the solid phase. This underscores the need for incorporating
more accurate thermodynamic models that can capture the nuances of phase transitions,
such as anisotropic effects and non-isothermal conditions.

Connection to Geometric Structure Reduction

The presented simulations serve as preliminary evidence of the potential to reduce the ge-
ometric structure spatially while still capturing the essential dynamics of the solidification
process. The 1D representation allows for a simplified yet informative study of phase field
evolution and heat transfer, showcasing the capabilities of the port-Hamiltonian framework
in modeling complex thermodynamic systems.

The simulation results presented here, while simplified, indicate that the overall dynamics
can be effectively represented in a lower-dimensional space, thus validating our theoretical
claims. In future work, a more refined parameter space exploration, including non-linear
thermodynamic properties, is planned to further validate these findings and enhance the
accuracy of the model.

Future Work

To improve the fidelity of the simulation results, the following improvements are suggested:

• Implement the full nonlinear thermodynamic laws to better predict phase behavior.

• Adjust dimensionless variables and physical parameters to align with established stan-
dards in the phase field modeling community.

• Perform detailed parameter space exploration to identify optimal settings for interface
thickness and overall model accuracy.
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4.9 Conclusion
In this chapter, we presented the discretization of the solidification process using the Parti-
tioned Finite Element Method (PFEM) within the Port Hamiltonian framework. Our focus
was on achieving a structure-preserving discretization that retains the physical and geometric
properties of the original continuous system.

We began by discretizing the implicit formulation of the heat equation, where the reciprocal
temperature τ = 1

T
was employed as the state variable. This involved deriving a weak formu-

lation that accounted for entropy as the generating function, followed by the discretization of
both the heat flux and the driving force for the flux. The discretized system naturally intro-
duced state-dependent mass matrices Mτ and Mϕτ due to the presence of partial derivatives
of the entropy function s∗.

Next, we addressed the discretization of the Allen-Cahn equation, which models the evolution
of the phase field during solidification. We adapted the PFEM to account for the nonlin-
earities specific to the Allen-Cahn equation. This required the careful handling of gradient
and divergence operators within the weak formulation, ensuring that the discrete operators
captured the dynamics of phase transitions accurately.

The combined discretized system, representing the solidification process, involved several key
operators and matrices:

• Discretized Operators: The divergence operator div was discretized to handle the
spatial derivatives in the system, leading to the matrices D and G, respectively.

• Boundary Inputs: The discretization included the boundary interaction terms, rep-
resented by the matrices B and B̄, which map the boundary temperatures and fluxes
into the system.

• Mass Matrices: The mass matricesMϕ, Mψ, MFϕψ , andMF̄ were derived based on the
finite element basis functions and were constant for a given discretization. In contrast,
the mass matrices Mτ and Mϕτ were state-dependent, reflecting the thermodynamic
relations through the entropy function.

Our approach involved deriving weak formulations, projecting variables onto finite element
spaces, and defining and computing mass matrices. These steps ensured a structure-preserving
discretization that retains the physical and geometric properties of the original continuous
system. The resulting discretized models have state-dependent mass matrices. Overall, the
chapter demonstrated how the PFEM can be effectively utilized to discretize complex, non-
linear phenomena in a structure-preserving manner.
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Chapter 5

Conclusion

This thesis has discussed and presented the modeling, formulation, and discretization of
solidification processes using the Port Hamiltonian (PH) framework combined with the phase
field approach. By focusing on distributed parameter models with moving interfaces, we have
addressed challenges in representing and controlling phase change phenomena. Throughout
this work, we aimed to develop a comprehensive approach to understanding and managing
the dynamics of solidification processes, particularly for pure water.

In Chapter 2, we presented a detailed modeling approach for solidification processes using
the entropy functional within the phase field framework [112, 116]. This chapter began with
an introduction to multiphase systems and their thermodynamic properties, highlighting the
importance of interfaces and the role of entropy in phase transitions. By employing both
sharp interface and phase field models, we provided a thorough examination of the dynamics
and thermodynamics involved in solidification. Key contributions included a comprehen-
sive presentation of solidification using the entropy functional approach and an analysis of
the dynamics between different phases, focusing on the role of entropy in modeling diffuse
interfaces.

In Chapter 3, we extended the PH framework to the solidification process, integrating the
diffuse interface method with phase field variables. This involved developing a Boundary
Port Hamiltonian formulation that combines the heat diffusion equation and the Allen-Cahn
equation. The main contribution of this chapter we reformulated the explicit Port Hamilto-
nian model into an implicit Port Hamiltonian formulation using Lagrangian submanifolds.
This approach, detailed in works such as [105] and [88], allows for the definition of reciprocal
constitutive equations in a coordinate-free manner and can be adapted to distributed param-
eter systems [60, 106]. This change enables us to utilize available data and thermodynamic
properties of liquid water and ice, as found in the literature [42, 43]. The provided thermo-
dynamic potential is the Gibbs energy, expressed as a function of temperature and pressure.
By defining the thermodynamic properties of the bi-phasic water-ice system, we derived the
expressions of the entropy density based on temperature rather than internal energy. This
required changing the state space coordinate from internal energy u (an extensive) to the
temperature T (an intensive variable).

Chapter 4 focused on the structure-preserving discretization of the PH model of the solid-
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ification process. Using the Partitioned Finite Element Method (PFEM), we ensured that
the discretized model retained the PH structure, preserving key properties such as energy
conservation and passivity. This chapter detailed several structure-preserving discretization
techniques, emphasizing the importance of maintaining the physical and geometric proper-
ties of the original continuous system. The main contributions included the application of
PFEM to the PH model using nonlinear constitutive relations with entropy as the generating
function [38], and the introduction and discretization of an implicit formulation of the heat
equation using the reciprocal temperature τ = 1

T
as the state variable. Additionally, we dis-

cretized the Allen-Cahn equation, leading to the complete discretization of the implicit model
of the solidification process, where the resulting discretized models have state-dependent mass
matrices.

This thesis has laid a strong foundation for future research and development in the area of
distributed parameter systems with moving interfaces. Several directions for future work are
promising:

Performing numerical simulations of the solidification process. Preliminary work on the sim-
ulations, using the nonlinear constitutive relations, led to partial results which have shown a
quite difficult nonlinear problem. Exploring its control using optimal control methods follow-
ing, for example, [40]. These initial studies have shown that the nonlinear thermodynamic
properties lead to a highly challenging optimal control problem which remains an interesting
open problem. This model could provide a submodel for the water purification process as
presented in the WATERSAFE project and eventually help in its control.

The findings of this thesis have several implications for both theoretical research and practical
applications. By utilizing the PH framework, we have provided a systematic way to incorpo-
rate physical principles into the modeling, simulation, and control of solidification processes.
Future research could extend this work in several directions, including the enhancement of
thermodynamic models to include more complex interactions and additional phases, the de-
velopment of advanced control strategies using the PH framework, and the application of
these methodologies to other phase transition processes and multiphase systems.

Future research can build on these findings to further improve solidification processes. Poten-
tial directions include extending the models to higher dimensions and more complex shapes
to better represent real-world solidification, applying the models to other types of phase
transitions and multiphase systems, using numerical methods to make the simulations more
efficient and accurate, conducting more experiments to validate and refine the models, and
developing control strategies based on the Port Hamiltonian framework to manage solidifi-
cation processes in industrial applications.
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Laurent Lefèvre ∗∗ , Bernhard Maschke ∗
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Abstract: In this paper we suggest a Port Hamiltonian model of the solidification process of
water, using the phase field approach. Firstly, the Port Hamiltonian formulation of the dynamics
of the phase field variable, governed by the Allen-Cahn equation, is recalled. It is based on
adding to the phase field variable, its gradient, and extending the system with its dynamics.
Secondly, the model is completed by the energy balance equation for the heat conduction and the
complete Port Hamiltonian model is derived. Thirdly an Algebro-differential Port Hamiltonian
representation is suggested, where the Port Hamiltonian system is defined on a Lagrangian
submanifold, allowing to use directly the variables defining the thermodynamical data.
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1. INTRODUCTION

The deterioration of the environment through the dis-
charge of wastewater, harmful to the flora and the fauna,
leads also to the shortage of clean water ressources. In this
context, the green processes development like melt crystal-
lization of water may provide a low energy solution and si-
multaneously enables the minimization of use of hazardous
material (Yin et al. (2017)). In this paper, we suggest a
structured Port Hamiltonian model of the solidification
process in order to provide numerical models suitable for
the simulation, design and control of such a processes. The
companion paper of (Bendimerad-Hohl et al. (2022)) gives
the procedure to derive a finite-dimensional discretized
model preserving the Port Hamiltonian structure. The
main challenge to establish this solidification model is the
moving interface between the solid and the liquid phases.

Two approaches are possible. The first one, called thin
interface approach, consists in describing the interface as
the boundary of the spatial domains of each phase, using
for instance their characteristic functions. The second one
called diffuse interface approach, consists in introducing a
function called phase field that is a smooth approximation
of the characteristic function of the domain. The boundary
is replaced by a narrow interface layer corresponding to
intermediate values of the phase field variable.
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see https://impacts.ens2m.fr/ and WATERSAFE (ANR-20-CE04-
0002): ”Wastewater purification by solidification: Simulation by the
Phase Field method (WATERSAFE)”.

In this paper we suggest a Dissipative Port-Hamiltonian
formulation of a solidification process. Port-Hamiltonian
systems are a modelling framework, allowing the thermo-
dynamically consistent representation of open physical sys-
tems (Duindam et al. (2009); van der Schaft and Jeltsema
(2014)) and well-suited for representing open thermody-
namical processes (Ramirez et al. (2013b,a); Favache et al.
(2010)).

The Port-Hamiltonian formulation of systems with moving
interface has been proposed following both approaches,
considering sharp interfaces in (Diagne and Maschke
(2013)) and diffuse interfaces (Vincent et al. (2020)). In
this paper we shall elaborate on the phase field approach
and extend the model Port Hamiltonian formulation of
the Allen-Cahn equation formulated by Vincent et al.
(2020) by coupling it to the heat diffusion to an extended
Port Hamiltonian system. In section 2, we shall recall
the definition of Port Hamiltonian systems and recall the
Port Hamiltonian formulation of the phase field variable
dynamics described by the Allen-Cahn equation (Vin-
cent et al. (2020)) and finish with its extension to the
complete process of solidification. In section 3, we shall
recall the thermodynamical properties of the water and
ice and their extension to a bi-phasic model with diffuse
interface, including the phase field variable. In section 4,
we shall reformulate the Port Hamiltonian model of section
2, using the entropy as generating function, but using an
formulation as a Differential-Algebraic Port Hamiltonian
system, or an Implicit Port Hamiltonian System (Maschke
and van der Schaft (2020); van der Schaft and Maschke
(2021)), thereby expressing the dynamics in terms of in-
tensive rather than extensive variables.
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process in order to provide numerical models suitable for
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the procedure to derive a finite-dimensional discretized
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Two approaches are possible. The first one, called thin
interface approach, consists in describing the interface as
the boundary of the spatial domains of each phase, using
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function called phase field that is a smooth approximation
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is replaced by a narrow interface layer corresponding to
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Fig. 1. Liquid/Solid interface : Phase field representation

2. PORT HAMILTONIAN FORMULATION OF
SOLIDIFICATION PROCESS

In this section, we present a Port Hamiltonian formula-
tion of the phase field model of a solidification process,
following the thermodynamic approach of (Wang et al.
(1993)). This model consists in coupling the energy bal-
ance equation with the Allen-Cahn equation, taking the
entropic form of the Gibbs’ equation. This leads to extend
the Port Hamiltonian formulation of the Allen Cahn equa-
tion of (Vincent et al. (2020)) by coupling it to the Port
Hamiltonian model of heat diffusion model.

2.1 Reminder of the solidification model

Following the phase field approach, (Wang et al. (1993))
present a model of a solidification process, consisting in
a closed system of volume V in which a pure material
undergoes a phase transition between solid and liquid.

Thermodynamic model This model corresponds to the
diffuse interface model of bi-phasic systems where the
spatial localization of the two phases is represented by
the continuous phase field variable ϕ. ϕ takes values in
the interval [0, 1], taking value 0 for the solid state, 1
for the liquid state and intermediate value at the diffuse
interface (see figure∼1). The authors write the entropy
balance equation and use Gibbs’ equation in the entropy
form 1 :

ds =


∂s

∂ϕ


dϕ + τdu (1)

where s denotes the entropy density, u the internal energy
density and τ the reciprocal temperature τ = ( ∂s

∂u )
ϕ

=

( 1
T ).

The total entropy functional of the bi-phasic system is
expressed by the Landau-Ginzburg entropy functional:

S(ϕ, u) =



V


s(ϕ, u) − 1

2
ϵ2(grad ϕ)2


dv, (2)

where the quadratic term in the integral accounts for the
entropy of the diffuse interface, ϵ is a constant related to

1 In this paper, we make the usual assumption that the mass density
is uniform Wang et al. (1993).

the thickness of the interface (see Boettinger et al. (2002);
Kobayashi (1993)) and s(ϕ, u) is the entropy density
function associated with Gibbs’ equation (1).

Dynamic equations The dynamical model consists first
in the energy balance equation:

∂u

∂t
= −div q (3)

where q denotes the heat flux

q = Mτ F̄ (4)

and F̄ the driving force

F̄ = −grad(τ) (5)

where Mτ = −λ( 1
τ ,ϕ)

τ2 , λ being the thermal conductivity

of the bi-phasic system 2 . It is coupled to the relaxation
dynamics of the phase field variable ϕ, the gradient system
called Allen Cahn equation:

η
∂ϕ

∂t
=

∂s

∂ϕ
(ϕ) + div(ϵ2grad ϕ) = −δ(−S)

δϕ
, (7)

where η is the positive interface mobility and δS
δϕ denotes

the variational derivative of the functional S with respect
to ϕ.

2.2 Reminder on dissipative Port Hamiltonian Systems

Consider the following dissipative systems :

∂x

∂t
(t, z) = (−GRRG∗

R)
δH
δx

, (8)

where x(t, z) ∈ Rn is the state variable defined on the
spatial domain V and a time interval in R+, H is the
Hamiltonian functional, R is a positive, coercive matrix
operator and GR is a matrix differential operator (G∗

R
denoting its formal adjoint).

Its Port Hamiltonian formulation is defined by considering
the Hamiltonian matrix differential operator

Je =


0 GR

−G∗
R 0


, (9)

and decomposing the system (8) into


∂x

∂t
F


 = Je


δH
δx
Q


(10)

where the driving force F and the flux variable Q are
related by the dissipative closure relation :

Q = R F (11)

The Port Hamiltonian system is then obtained by aug-
menting the system with boundary port variables (the

2 The thermal conductivity is defined by interpolation by a polyno-
mial pi(ϕ) taking values in [0, 1] for ϕ ∈ [0, 1]:

λ = λsol + pi(ϕ)

[
λliq − λsol

]
. (6)

where the thermal conductivity of the ice λsol and the water λliq

can be found in Yen (1981); IAPWS (2009b)

interface variables of the system at its boundary) as-
sociated with the Stokes-Dirac structure defined by the
Hamiltonian operator Je (van der Schaft and Maschke
(2002)). These boundary port variables are defined by

linear combinations of the trace of the vector


δH
δx

Q

⊥
.

Example: the heat conduction The energy balance equa-
tion (3) and the definition of the driving force (5) leads
to the Dissipative Port Hamiltonian formulation (10) (11)
with GR = −div and R = Mτ :


∂u

∂t
F̄


 =


0 −div

−grad 0


δs

δu
q


(12)

The associated pair of boundary port variables is :

f∂
e∂


= W e =


γ0

δs

δu−γ⊥q


(13)

where the boundary operator W is defined as:

W =


γ0 0
0 −γ⊥


(14)

and γ0 is the Dirichlet trace map and γ⊥ is the normal
trace map, (Kurula and Zwart (2012)).

2.3 Port Hamiltonian formulation of the Allen-Cahn
equation

We briefly recall now the dissipative Hamiltonian formula-
tion of the Allen-Cahn equation as suggested by (Vincent
et al. (2020)). The state space representation is augmented
with the new state :

ψ := grad ϕ (15)

leading to define the extended state vector : (ϕ, ψ, u). The
Landau-Ginzburg entropy functional (2) is then written :

S̄(ϕ, ψ, u) =



Ω

s(ϕ, u) − 1

2
ϵ2ψ2 dV (16)

Let us now compute the variational derivative δS
δϕ in (7) in

terms of S̄(ϕ, ψ, u) :

δS

δϕ
=

δS̄

δϕ
− div

∂S̄

∂ψ
:= Fϕψ (17)

Defining

Eϕψ = −∂ϕ

∂t
(18)

the gradient dynamics (7) is expressed by the following
dissipative constitutive relation

Eϕψ = 1/ηFϕψ (19)

The dynamics of the added state variable ψ is then
easily obtained by permutation of the spatial and time
derivatives :

∂ψ

∂t
=

∂

∂t
gradϕ = grad

∂ϕ

∂t
= −gradEϕψ (20)

Hence the Allen-Cahn equation augmented with the dy-
namics of the added variable ψ admits the Dissipative Port
Hamiltonian formulation (10) (11):




∂ϕ

∂t
∂ψ

∂t
Fϕψ


 =


0 0 −1
0 0 −grad
1 −div 0





δ(−S̄)

δϕ
δ(−S̄)

δψ
Eϕψ


 (21)

with GR =


−1

−grad


and R = η.

Once again with the aid of (Kurula and Zwart (2012)),
the boundary port variables of the Port Hamiltonian
formulation of the Allen-Cahn equation are :


fϕψ
∂

eϕψ∂


= W eϕψ =


−γ⊥

δ(−S̄)

δψ
γ0 Eϕψ


 (22)

with the boundary operator W :

W =


0 −γ⊥ 0
0 0 γ0


(23)

2.4 Port Hamiltonian formulation of the solidification
process

Recalling that δS̄
δu = ∂s

∂u = τ , the Dissipative Port Hamil-
tonian formulation of solidification process is obtained by
assembling (12) and (21)




∂ϕ

∂t
∂ψ

∂t
Fϕψ
∂u

∂t
F̄




= J




− ∂s

∂ϕ
(ϕ, u)

ϵ2ψ
Eϕψ

−τ
q




= J E (24)

with Hamiltonian matrix differential operator

J =




0 0 −1 0 0
0 0 −grad 0 0
1 −div 0 0 0
0 0 0 0 −div
0 0 0 −grad 0


 (25)

and Hamiltonian functional −S̄ defined in (16), completed
with the two dissipative closure relations (4) and (19).

The associated boundary operator W are also obtained by
assembling the boundary operators of the heat conduction
and the augmented Allen-Cahn equation :

W =




0 −γ⊥ 0 0 0 0
0 0 γ0 0 0 0
0 0 0 0 γ0 0
0 0 0 0 0 −γ⊥


 (26)

and the extended pair of boundary port variables is :


fϕψ
∂

eϕψ∂
f∂
e∂


 = WE =




−γ⊥(ϵ2ψ)
γ0 (1/ηFϕψ)

γ0τ
−γ⊥Mτ (−grad(τ))


 (27)
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It may be shown, from (Vincent et al. (2020); Kurula
and Zwart (2012)), that the operator J in (25) and

the boundary operator W̃ in (26) define a Stokes-Dirac
structure (van der Schaft and Maschke (2002)).

From the properties of a Stokes-Dirac structure, one may
deduce the neg-entropy balance equation :

d(−S̄)

dt
= −

∫

V

EϕψFϕψdV −
∫

V

qF̄ dV −
∫

∂V

ẽ∂ f̃∂ dS (28)

which becomes, by means of the dissipation relations (4)
and (19)

d(−S̄)

dt
= −

∫

V

ηE2
ϕψdV −

∫

V

Mτ F̄
2dV +

∫

∂V

ẽ∂ f̃∂ dS (29)

where the two first terms correspond to the irreversible
entropy production due to the gradient dynamics of the
phase field and the heat conduction and the third one
corresponds to the external entropy flow flowing into the
system.

3. THERMODYNAMIC PROPERTIES USING PHASE
FIELD

The objective of this section is to recall how to derive the
thermodynamic properties of the bi-phasic systems from
the thermodynamic properties of the liquid water and ice.

3.1 Thermodynamic properties of liquid water and ice

Thermodynamics properties of the liquid water and ice
are practically found in literature (IAPWS (2009a)) and
(IAPWS (2009b)). The provided thermodynamic potential
is Gibbs’ energy expressed as a function of temperature
and pressure. The expression of the specific Gibbs energy
of the liquid phase is given as:

gliq(T, p)/g
∗ =

7∑

j=0

6∑

k=0

gjkT
i
rπ

k (30)

with the reduced temperature Tr = (T − T0)/T
∗ and

the reduced pressure π = (p − p0)/p
∗. The constants

T0, p0, T ∗, p∗, g∗ and the gjk are given in (IAPWS
(2009b)). In a same way the expression of the specific
Gibbs energy of the solid phase is given as:

gsol (T, p) = g0(p) − s0TtTr + TtRe

(
2∑

k=1

rk

[
(tk − Tr)

ln(tk − Tr) + (tk + Tr) ln(tk + Tr) − 2tk ln(tk)

−T 2
r

tk

])
(31)

with g0(p) =
∑4

k=0 g0k(π−π0)
k and r2(p) =

∑2
k=0 r2k(π−

π0)
k, Tr = T/Tt, π = p/pt, and π0 = p0/pt. All The

constants Tt, pt, p0, s0, g0, r1 as well as the gok, r2k, tk are
given in (IAPWS (2009a)). From the expression of these
state equations, other specific thermodynamic quantities
as entropy, Helmholtz energy and volumic density for
each phase may be derived using standard thermodynamic
computations (see IAPWS (2009a), IAPWS (2009b) and

Callen (1991)). As an example, the specific Helmholtz
energy fδ, the specific entropy s∗δ as a function of tem-
perature and pressure and the density ρδ as well as the
heat capacity cpδ can be deduced from gδ for δ = sol, liq
by the formulas:

fδ(T, p) = g − p
∂gδ
∂p

(32)

s∗δ(T, p) = −∂gδ
∂T

(33)

ρδ(T, p) =
(∂gδ
∂p

)−1

(34)

cpδ(T, p) = −T
∂2gδ
∂T 2

(35)

Finally, we give some values of these properties at the
melting temperature (273.15K) at atmospheric pressure.

Table 1. Values of some thermodynamic prop-
erties at the melting temperature

δ gδ fδ s∗δ ρδ cpδ
liq 101.343 0.0018 –0.1476 999.843 4219.41
sol 101.343 – 9.1870 – 1220.769 916.721 2096.71

3.2 The Equation of State of bi-phasic system

For the sake of brevity, we restrict our attention to the
specific entropy function of the bi-phasic system s∗ as-
suming constant density. The stability principle of ther-
modynamics when two phases are present requires ( see
Callen (1991)):

∂s∗

∂ϕ

∣∣∣∣
ϕ=0

=
∂s∗

∂ϕ

∣∣∣∣
ϕ=1

and
∂2s∗

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0. (36)

From the constraint that, at equilibrium, the variational
derivative of the Landau-Ginzburg entropy functional
must be equal to 0 in each phase , we have (see Wang
et al. (1993); Boettinger et al. (2002)):

∂s∗

∂ϕ

∣∣∣∣
ϕ=0,1

= 0 and
∂2s∗

∂ϕ2

∣∣∣∣
ϕ=0,1

< 0. (37)

Following the method proposed in Boettinger et al. (2002),
the specific entropy function of bi-phasic system becomes:

s∗(ϕ, T ) = s∗sol(T ) + pi(ϕ)[s∗liq(T ) − s∗sol(T )] + wpw(ϕ)

(38)

with pi(ϕ) = ϕ3(6ϕ2 − 15ϕ + 10), pw(ϕ) = −ϕ2(1 − ϕ)2

where s∗liq, s∗sol represent the specific entropy of pure

water and of pure ice respectively. pw(ϕ) is the double-well
polynomial and pi(ϕ) is the interpolating polynomial. This

choice of pi ensures that ∂s∗

∂ϕ

∣∣∣∣
ϕ=0,1

= 0 . The parameter w

allows to tune of the hollow between the two local maxima
(see Boettinger et al. (2002))and w must be positive in

order to ensure that ∂2s∗

∂ϕ2
∂2s∗

∂u2 −
(

∂2s∗

∂ϕ∂u

)2

> 0 (see Callen

(1991)). Figure 2 shows the specific entropy of bi-phasic
system for water and ice.

Fig. 2. specific entropy of bi-phasic system with w = 18 103

4. IMPLICIT PORT HAMILTONIAN SYSTEM

In the Port Hamiltonian formulation of section 2, the
Hamiltonian function is the entropy functional (2) which
depends on the internal energy u and the phase field
variable ϕ and its gradient ψ. In the section 3, the
practical definition of the thermodynamic properties of
the bi-phasic water-ice system has been given in terms
of the entropy density function (38), depending on the
temperature rather than the internal energy.

In this section, we reformulate the Port Hamiltonian
model of Section 2, using an Implicit Port Hamiltonian
formulation where the energy function is not defined
explicitly but rather by a set of constitutive relations
between the extensive and intensive variables. As these
relations satisfy Maxwell’s reciprocity conditions (Callen
(1991), chapter 7), the graph of these relations has a
geometrical interpretation as a Lagrangian submanifold
on which these Port Hamiltonian Systems are defined
(van der Schaft and Maschke (2018); van der Schaft and
Maschke (2020)) (Maschke and van der Schaft (2020); van
der Schaft and Maschke (2021)).

Consider Gibbs’ equation (1) associated with the entropy
density function s (ϕ, u); the graph of its differential gives
rise to the following Lagrangian submanifold

Ls =





(x, e) ∈ R2 × R2 : e =




∂s

∂ϕ
(ϕ, u)

∂s

∂u
(ϕ, u)


 ; x =


ϕ
u






(39)

In order to perform the change of coordinates, let us
consider the Legendre transform of the entropy density
s (ϕ, u) with respect to u, that we call co-entropy

s∗ (ϕ, τ) = τ u− s (ϕ, u) (40)

where the internal energy u is considered to be a function
of the phase field variable ϕ and the reciprocal temperature
obtained by partial inversion of τ = ∂s

∂u (ϕ, u)with respect

to u 3 . Then the Legendre submanifold (39) can be defined
as follows

3 The invertibility is actually ensured by the strict concavity of
s (ϕ, u) due to the strict concavity of the entropy functions ssol and
sliq of the solid and liquid phases and its definition (38).

Ls =


(x, e) ∈ R2 × R2


x =


ϕ

∂s∗

∂τ
(ϕ, τ)


;

e =


−∂s∗

∂ϕ
(ϕ, τ)

τ


 ;


ϕ
τ


∈ R2



 (41)

The dynamics of the solidification process can then be
expressed as follows. First, considering the entropy func-
tional of the bi-phasic system (16), one has the associated
Legendre submanifold:

L =

 
x
ψ


,


e
eψ


∈ R3 × R3



(x,−e) ∈ Ls; eψ = ϵ2ψ; ψ ∈ R


(42)

Now let us write the Port Hamiltonian system, in the new
coordinates. First compute the time derivative of the vector
x, with its expression in the definition (41) of the Lagrange
submanifold Ls:

∂

∂t


ϕ
u


=

∂

∂t


ϕ

∂s∗

∂u
(ϕ, τ)



=




1 0
∂s∗

∂ϕ∂τ
(ϕ, τ)

∂2s∗

∂τ2
(ϕ, τ)


 ∂

∂t


ϕ
τ


(43)

The Port Hamiltonian System (24), using (43) in the right-
hand side term and the parametrization of the extensive
variables e in (41), leads to the following implicit PDE:




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

∂s∗

∂ϕ∂τ
0 0

∂2s∗

∂τ2
0

0 0 0 0 1







∂ϕ

∂t
∂ψ

∂t
Fϕψ
∂τ

∂t
F̄




= J




−∂s∗

∂ϕ
(ϕ, τ)

ϵ2ψ
Eϕψ

−τ
q




.

(44)

This PDE, augmented with the dissipative relations (19)
and (4) and with the boundary port variables (27), defines
a Dissipative Boundary Port Hamiltonian System.

Note that this Differential-Algebraic Partial Differential
System is regular as the matrix on the left hand side
is full rank for any state. Indeed for each phase δ =

sol, liq
∂2s∗δ
∂τ2 (τ) = − cδ

τ2 < 0 as its heat capacitance
cδ > 0 according to the thermodynamic stability condition
((Callen, 1991, chap.8)). As the interpolation polynomial
pi maps [0, 1] into itself (Boettinger et al. (2002)), the
co-entropy function s∗ (38) of the bi-phasic system is a
convex combination of the co-entropy functions of each

phase, hence it satisfies also ∂2s∗

∂τ2 < 0.

It is remarkable that the dynamics of phase field models of
solidification processes often lead to implicit formulations
of the dynamics. For instance (Wang et al. (1993)) and
(Boettinger et al. (2002)) begin their paper using the en-
tropy as thermodynamical potential, in order to ensure the
irreversible entropy creation of the phase field dynamics.
However, they use Helmholtz free energy density f(ϕ, T ) as
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a generating function of Thermodynamic properties of the
bi-phasic system and finally obtain an implicit dynamic
system (see for instance equations (54) to (58) in Wang
et al. (1993)).

5. CONCLUSION

In this contribution, we have proposed a Boundary Port
Hamiltonian representation of the solidification of water
or any other pure substance using the diffuse interface
approach and using a phase field variable. Therefore, we
have augmented the Port Hamiltonian representation sug-
gested by (Vincent et al. (2020)) of the Allen-Cahn equa-
tion, representing the dynamics of a non-conserved phase
field variable, to a Port Hamiltonian system including the
heat transport. Finally we have suggested a DAE-PDE
Port Hamiltonian formulation of the system, that allow to
change in a consistent way the coordinates on which the
dynamics is expressed. In the given case, we have expressed
the energy balance equation in terms of the reciprocal
temperature instead of the internal energy, enabling the
use the experimental datas of thermodynamic properties
of water and ice.

Forthcoming work will consist in modifying this model by
adding the pollutant in the thermodynamics functional
and in the conservation equations in order to provide a
model of the melt crystallisation process as well as relaxing
the assumption of uniform mass density. Furthermore the
control of the process will be considered, using passivity-
based control methods, taking account of the energy
balance and entropy balance equations (Ramirez et al.
(2016)).
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