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Titre : Neutrinos, transitions de phase cosmologiques et asymétrie matière-antimatière de l'Univers 

Mots clés : Neutrinos stériles, transitions de phase cosmologiques, leptogénèse résonante, leptogénèse ARS 

Résumé : L'asymétrie entre matière et antimatière 

est un problème non résolu de la cosmologie. Une 

approche populaire pour l'expliquer est la 

leptogénèse avec des neutrinos stériles, qui sont des 

particules motivées expérimentalement pour 

expliquer les masses des neutrinos actifs du Modèle 

Standard. Il est possible d'inclure dans les scénarios 

de leptogénèse une transition de phase 

cosmologique qui donne leur masse aux neutrinos 

stériles. Cette idée est intéressante 

phénoménologiquement, car une transition de phase 

produit des ondes gravitationnelles pouvant être 

détectées. 

À la température de la transition de phase T, les 

neutrinos stériles obtiennent une masse M. Deux 

mécanismes sont considérés.  

Pour des neutrinos stériles non-relativistes M>T  

déviant de l'équilibre lors de la transition de phase, 

l'asymétrie leptonique est créée lors de leurs 

désintégrations. La rapidité de la transition permet 

d'avoir une population de neutrinos stériles initiale 

plus importante que dans le cas standard et 

améliore la création d'asymétrie. L'analyse 

numérique permet de décrire l'espace des 

paramètres où la leptogénèse est réussie. Pour des 

neutrinos stériles relativistes M<T, l'asymétrie est 

créée, lors de leur production, par des oscillations 

entre les différentes saveurs stériles. Selon les 

paramètres, ces oscillations, avec une transition de 

phase, peuvent être qualitativement différentes du 

cas standard. Les conditions pour que la transition 

de phase présente un avantage sont discutées et 

présentées numériquement et analytiquement. 

 

 

Title : Neutrinos, cosmological phase transitions and the matter-antimatter asymmetry of the Universe 
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Abstract : The baryon asymmetry in our Universe is 

an unsolved problem in cosmology. A popular 

approach for explaining it is leptogenesis with sterile 

neutrinos, which are particles motivated in order to 

explain the masses of active neutrinos in the 

Standard Model. It is possible to include in these 

scenarios a cosmological phase transition which 

gives rise to the sterile neutrino masses. This idea is 

phenomenologically interesting, as such a phase 

transition could produce detectable gravitational 

waves. 

At the temperature T of the phase transition, sterile 

neutrinos acquire a mass M. Two mechanisms are 

considered. 

For non-relativistic sterile neutrinos M>T, deviating 

from equilibrium due to the phase transition, they 

will quickly decay and produce a lepton asymmetry. 

The rapidity of the phase transition allows a larger 

sterile neutrino population than in usual scenarios 

and enhances the created asymmetry. Numerical 

analyses describe the successful regions in 

parameter space for leptogenesis. For relativistic 

sterile neutrinos M<T, the asymmetry is created by 

flavor oscillations in the sterile sector, as sterile 

neutrinos are being produced. Depending on the 

parameters, these oscillations, in the context of a 

phase transition, can be qualitatively different from 

the standard case. We discuss the parameter space 

where the phase transition presents an advantage, 

both analytically and numerically. 
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Résumé étendu en français

L’asymétrie entre matière et antimatière dans notre Univers est un problème non résolu de la
cosmologie moderne. Cette constatation d’une asymétrie découle de l’absence d’observation
d’antimatière aux grandes échelles, et l’asymétrie se quantifie alors par l’abondance de matière
(baryonique). Les différentes observations donnent une contrainte sur le paramètre sans dimen-
sion

η ≡ nb

nγ

≃ nb − nb

nγ

, (1)

qui est le ratio de la densité de matière baryonique nb sur la densité de photons nγ et qu’on
utilise comme estimation de l’asymétrie baryonique, donnée par la différence entre la densité
de baryons nb et d’anti-baryons nb. Cette quantité η est mesurée de deux façons, dans le fond
diffus cosmologique et dans l’abondance des éléments légers, qui dépendent de ce paramètre.
La valeur trouvée est compatible dans les deux cas et vaut, d’après les données du fond diffus
cosmologique,

η = (6.13± 0.04)× 10−10 . (2)

Une approche populaire pour expliquer ce nombre est appelée la leptogénèse. La leptogénèse est
un ensemble de modèles où l’asymétrie n’est pas directement créée entre baryons et anti-baryons,
mais d’abord entre leptons et anti-leptons. Cette asymétrie leptonique est ensuite convertie en
asymétrie baryonique par les processus de sphalérons du Modèle Standard, qui sont des proces-
sus conservant B−L mais violant B+L (avec B le nombre baryonique, L le nombre leptonique).
La popularité de la leptogénèse peut se comprendre par le besoin d’expliquer un autre problème
de la physique moderne, en physique des particules cette fois, à savoir les oscillations des neu-
trinos actifs, dans le secteur leptonique. Les neutrinos actifs peuvent notamment acquérir une
masse (qu’ils n’ont pas dans le Modèle Standard) grâce au mécanisme dit du "Seesaw" incluant
des particules supplémentaires, les neutrinos dits stériles car n’étant soumis à aucune des forces
du Modèle Standard. Dans ce cas, ces neutrinos stériles possèdent une masse de Majorana et
ont des interactions de Yukawa (qui violent la symétrie Charge-Parité) avec le Modèle Standard.
Les neutrinos stériles peuvent alors reproduire l’asymétrie baryonique observée dans l’Univers
lors de leur évolution cosmologique. L’espace des paramètres est cependant assez important
puisque la leptogénèse peut tout autant fonctionner avec des masses de neutrinos stériles de
l’ordre du GeV qu’avec des masses de l’ordre de 1012 GeV.

Deux exemples de leptogénèse sont pertinents pour cette thèse. D’un côté, la leptogénèse dite
"thermale" dans laquelle les neutrinos stériles (typiquement lourds avec des masses M ∼ 1010

Gev) initialement à l’équilibre dévient de cet équilibre à cause de l’expansion de l’Univers et de
la réduction de température, deviennent instables et tendent à se désintégrer en leptons et par-
ticules de Higgs. Les processus de désintégration ont des probabilités différentes pour les leptons
et les anti-leptons, ce qui génère l’asymétrie. D’un autre côté, la leptogénèse dite "ARS" (pour
Akhmedov, Rubakov et Smirnov) s’intéresse à la production des neutrinos stériles (typiquement
légers avec des masses M ∼ 1 GeV) et à leurs oscillations entre différents états propres de masse
alors qu’ils se rapprochent de l’équilibre. Ces oscillations induisent une asymétrie en hélicité
chez les neutrinos stériles, qui se convertit en asymétrie leptonique par leurs interactions.
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Récemment, des études de leptogénèse avec des neutrinos stériles ont inclus dans leur scénario
une transition de phase cosmologique, induite par un champ scalaire, qui donne leur masse
aux neutrinos stériles. L’idée peut être motivée théoriquement, dans des théories de grande
unification où un champ scalaire non standard interagit avec les neutrinos stériles, comme c’est
le cas dans des théories basées sur le groupe SU(5) ou SO(10). Le lagrangien de notre théorie
est alors

L = LSM +

[
i

2
NRI /∂NRI −

1

2
λISNRIN

c
LI − YIaNRI ϕ̃

†la + h.c.
]

(3)

où NI sont les neutrinos stériles, l le champ leptonique, ϕ le champ de Higgs et S est le champ
scalaire qui subit la transition de phase. Cette idée est intéressante phénoménologiquement, car
une transition de phase aurait pu produire des ondes gravitationnelles. Grâce aux détections
par les expériences LISA Virgo, l’époque et l’intensité d’une telle transition de phase pour-
raient être contraintes. Il devient alors intéressant d’étudier une connexion entre leptogénèse et
transition de phase, en cherchant des corrélations entre la masse ou les couplages des neutrinos
stériles et les propriétés de la transition de phase qui peuvent chacun être contraints indépen-
damment.

Cette thèse se propose de décrire la leptogénèse lorsqu’une transition de phase est incluse
dans le modèle. Nous incluons dans notre étude la dynamique des neutrinos stériles durant la
période de la transition de phase. Pour des transitions de phase du premier ordre, que nous con-
sidèrerons ici, le changement de vide se fait par l’expansion de bulles de vraie vide, à l’intérieur
desquelles la valeur moyenne du champ scalaire, et donc la masse des neutrinos stériles, est
non-nulle. Une bonne approximation du profil du mur de ces bulles peut être donnée par

vS(t) =
v0S
2

(
1 + tanh

(
vw
Lw

(t− tnucl)

))
, MI(t) = λIvS(t) , (4)

où vw est la vitesse du mur, Lw son épaisseur et vS est la valeur moyenne du champ, nulle en
dehors de la bulle, non-nulle égale à v0S à l’intérieur. La nucléation de ces bulles survient à un
certain temps donné par tnucl, l’âge de l’Univers lorsque la température Tn de nucléation est
atteinte. Les bulles grandissent à des vitesses pouvant avoisiner celle de la lumière, pour de
fortes transitions de phase, donc nous prendrons vw ≃ 1 (en unités naturelles). Lw dépend des
propriétés de la transition de phase ; son estimation peut être compliquée mais est reliée à la
température Tn. Cela implique donc que la bulle se propage sur un temps caractéristique ≈ T−1n .
Cela peut être comparé au temps de Hubble, à température Tn qui caractérise l’expansion de
l’Univers tn ≡ tH(Tn) ∝ MPl

Tn
T−1n ≫ T−1n pour des températures typiques en leptogénèse qui

sont bien plus basses que l’échelle de Planck MPl ≃ 1.22× 1019 GeV.

L’étude de ce profil de masse dépendante du temps conduit à des effets supplémentaires dans la
dynamique des neutrinos stériles. Notamment, en négligeant pour l’instant ses interactions avec
le reste du plasma, les oscillations particule-antiparticule dans le vide du champ de neutrinos
stériles conduisent à une production de particules. Cet effet peut être calculé analytiquement,
et permet d’obtenir quelle densité d’espace des phases pour les neutrinos stériles est produite
après la transition de phase. Sur la Figure 1, on peut estimer cette production dans deux cas
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(a) Conditions initiales nulles (b) Condition initiale thermique

Figure 1: La distribution fPT,k créée lors de la transition de phase est tracée en bleu. On a
choisi M0 ≡ λv0S = vw

Lw
, pour simplifier. La distribution initiale est tracée en pointillés rouges,

la distribution thermale après la transition de phase en tirets verts.

intéressants physiquement: soit une distribution initiale nulle (Fig. 1a), soit une distribution
initiale à l’équilibre thermique (de masse nulle, avant la transition de phase, Fig. 1b). Dans
les deux graphiques, on constate que la distribution finale après la transition de phase est plus
importante que celle de départ, on a donc bien produit des neutrinos stériles. De plus, cette
distribution créée dévie fortement de l’équilibre thermique (de masse non nulle), ce qui est un
ingrédient désirable pour la production d’asymétrie leptonique. On note également que cette
production lors de la transition de phase existe en l’absence d’interactions.

En ajoutant les interactions, l’étude physique est plus complexe mais peut être approchée en
utilisant la théorie des champs hors équilibre. Le formalisme utilisé dans cette thèse est celui dit
du "Closed-Time Path", qui considère un contour fermé dans le plan complexe pour la variable
temporelle dont dépendent les propagateurs. L’avantage de ce formalisme est de considérer des
champs quantiques dont seule la condition initiale est connue, ce qui est nécessaire pour des
situations hors d’équilibre. Cela se fait au prix de l’introduction de deux propagateurs, appelés
fonctions de Wightmann et notés S< et S>, au lieu d’un seul. Il est alors possible de dériver des
équations, appelées équations de Kadanoff-Baym, pour ces deux propagateurs, avec l’inclusion
d’interactions sous la forme d’énergies propres Σ< et Σ>. Ces équations sont non-locales en
temps et par conséquent seraient très difficiles à résoudre numériquement. Certaines approxi-
mations sont donc nécessaires, pour réduire cette complexité numérique.

La principale approximation utilisée dans les travaux de cette thèse est celle dite de la "local
approximation" dans laquelle les effets non locaux de la théorie des champs sont contrôlés et
la propagation des neutrinos stériles peut être décrite par des équations locales avec une masse
explicitement dépendante du temps. Ces équations peuvent alors être résolues numériquement
en un temps raisonnable. Cette approximation existait déjà dans la littérature, mais elle est
adaptée dans cette thèse au problème de neutrinos stériles lors d’une transition de phase. Nous
obtenons alors des équations cinétiques, dépendantes de l’impulsion, pour le secteur des neu-
trinos stériles, couplés à une asymétrie leptonique. Par la suite, nous nous intéresserons à
différents régimes de masse pour les neutrinos stériles, relativistes ou non relativistes, avec un
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possible changement de régime durant la dynamique, étant donné que la masse dépend du
temps. Il s’avère que l’énergie propre, nécessaire pour calculer les termes d’interactions, ne
peut se calculer explicitement pour une masse arbitraire. Ce problème est résolu par un ansatz,
introduit récemment dans la littérature pour la leptogénèse standard, pour l’énergie propre qui
approxime raisonnablement sa valeur pour tous les régimes de masse. Ce point distingue notre
approche de précédents travaux avec une transition de phase qui n’étudient qu’un seul régime.
L’étude numérique de nos équations a porté sur deux scénarios distincts, correspondant à deux
façons différentes de produire l’asymétrie baryonique.

Le premier scénario, nommé "Mass Gain" dans la littérature, s’intéresse à des neutrinos stériles

Figure 2: Schéma du scénario "Mass Gain". Le temps de nucléation tnucl correspond à l’âge de
l’Univers au moment de la nucléation et l’expansion des bulles. Le temps de Hubble tn est le
temps typique d’expansion de l’Univers, et donc d’évolution de la température.

dont la masse devient très large comparée à la température à la transition de phase (M > Tn)
et qui ont tendance à se désintégrer rapidement. Une explication schématique de ce scénario
est donnée dans la Figure 2. Les désintégrations, comme dans la leptogénèse thermale, pro-
duisent une différente quantité de particules que d’antiparticules, conduisant à une asymétrie.
L’étude numérique montre que l’asymétrie est efficacement créée pour une masse de neutrino
stérile un ordre de grandeur supérieur à la température de la transition de phase, M > 10 Tn.
Cela s’explique par le fait que les processus de dilution, tendant à réduire l’asymétrie, sont
supprimés par un facteur de Boltzmann exp (−M/Tn). De plus, la dégénérescence en masse
des neutrinos stériles joue un rôle sur la quantité d’asymétrie produite: pour des neutrinos
stériles hiérarchiques, leurs masses doivent être suffisamment importantes M > 109 GeV pour
que la leptogénèse fonctionne, tandis que des neutrinos stériles dégénérés autorisent des valeurs
plus faibles en masse. Cela s’interprète par une résonance dans l’asymétrie CP ϵCP pour les
désintégrations. Nous trouvons une excellente corrélation entre l’asymétrie produite et cette
asymétrie CP.

iv



Le second scénario considère la création d’une asymétrie lors de la production des neutrinos

Figure 3: Schéma du scénario "type ARS". Le temps de nucléation tnucl correspond à l’âge de
l’Univers au moment de la nucléation et l’expansion des bulles. Le temps de Hubble tn est le
temps typique d’expansion de l’Univers, et donc d’évolution de la température.

stériles qui restent relativistes même après la transition de phase (M < Tn). Dans la leptogénèse
ARS habituelle, les oscillations entre les différents états propres de masse des neutrinos stériles
sont cruciales pour créer une asymétrie. Ces oscillations ne sont possibles qu’en présence d’une
masse dans le vide pour les neutrinos stériles; elles sont donc frustrées avant la transition de
phase et peuvent se produire très rapidement juste après la transition de phase, quand la masse
dans le vide est restaurée. Cela conduit à une asymétrie produite quantitativement différente.
Des estimations analytiques peuvent être faites, et reproduisent la dépendance de l’asymétrie
produite en les paramètres. La leptogénèse est réussie pour des valeurs de masse autour de
1 GeV, une dégénérescence de masse de l’ordre de ∆M ∼ 10−5M et une transition de phase
survenant à une température Tn ∼ 10 TeV. Pour des valeurs de températures de nucléation plus
basses, le risque est de ne pas produire assez d’asymétrie leptonique avant le découplage des
sphalérons à Tsph = 150 GeV, tandis que une température de nucléation plus grande implique
une transition de phase trop précoce, qui ne "frustre" pas assez les oscillations.

En conclusion, notre étude a porté sur la formalisation du problème de la leptogénèse inclu-
ant une transition de phase durant laquelle la masse des neutrinos stériles devient dépendante
du temps. Cette thèse décrit comment inclure cette variation rapide de la masse dans des
équations cinétique pour les neutrinos stériles et comment cela impacte l’asymétrie leptonique.
En particulier, ces équations incluent à la fois la dynamique des neutrinos stériles durant la
transition de phase (qui produisent des neutrinos stériles, même en l’absence d’autres interac-
tions) et à la fois l’impact sur les scénarios de leptogénèse standard (où les interactions avec
le Modèle Standard jouent un rôle important). L’espace des paramètres où la leptogénèse est
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réussie est modifié dans certains cas à cause de la transition de phase, et une comparaison des
différents scénarios, basée sur des estimations analytiques, permet de comprendre dans quels
circonstances une transition de phase favorise la création d’une asymétrie.

En définitive, la leptogénèse durant une transition de phase peut être décrite à l’aide d’équations
cinétiques qui modélisent le comportement des neutrinos stériles durant la transition de phase,
notamment avec la création de particules due au changement de vide du champ scalaire, et après
la transition, avec la création d’une asymétrie leptonique. Cela peut être fait de différentes
façons et cette thèse décrit le cas du "Mass Gain" (neutrinos stériles qui se désintègrent) et
d’un cas "type ARS" (neutrinos stériles qui oscillent). L’étude numérique faite ici permet de
trouver les régimes où la leptogénèse est réussie. Cette étude pourrait être améliorée en incluant
le champ scalaire comme dynamique et considérer son impact sur la production d’asymétrie.
Enfin, ces travaux pourraient être complétés en établissant le lien avec la phénoménologie des
ondes gravitationnelles, pour connecter les propriétés de la transition de phase (par exemple
la température à laquelle elle intervient, et sa magnitude) utilisées pour la leptogénèse avec le
spectre en fréquence attendu pour les ondes gravitationnelles pouvant être détectées dans les
expériences présentes ou futures.
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This thesis is partially based on an article to be published shortly.

Notations and conventions

Throughout the manuscript, we use Einstein convention for summation of repeated indices,
unless stated otherwise.

We are working in units where ℏ = c = kB = 1 . Our signature for Minkowski space-time
is (+−− −).
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Chapter 1

Introduction

When Paul Dirac predicted in 1928 the existence of an anti-particle for the electron, the
positron, he opened the doors to a whole new world, a world that was a "mirror" version
of ours as we knew it. Since his prediction, the positron was discovered in 1932 by Anderson,
and later on, so were all the other particles’ anti-partners. These "mirror" particles are now
deeply connected to our understanding of spinors and quantum fields. It is still pretty astonish-
ing that it took us so long to find antimatter, and that the Universe, or at least the majority of
our environment, seems to be only made out of matter, despite the relatively similar properties
of antimatter. This everyday experience that we are made of carbon atoms and not anti-carbon
atoms, breath dioxygen and not anti-dioxygen, is actually not totally well understood and is
part of a puzzle in modern physics.

These interrogations have been particularly important thanks to the recent improvement of
observations by telescopes and satellites in the past decades, and the question "why is there
more matter than anti-matter?" can now be made more precise. We want to compare the den-
sity of baryons nb (making out most of the observable matter) to the density of anti-baryons
nb. It is convenient to define a dimensionless asymmetry η, given by the difference nb − nb

normalized by the density of photons nγ in the Universe,

η ≡ nb − nb

nγ

≃ nb

nγ

. (1.1)

η is the Baryon Asymmetry of the Universe (BAU). Assuming the anti-baryons represent a
negligible quantity of baryonic matter in the observed Universe nb ≪ nb, we can estimate
the asymmetry η by the measurement of the baryon-to-photon ratio nb/nγ only. Fortu-
nately, in the celebrated Λ-Cold Dark Matter (Λ-CDM) model [1, 2], the cosmological evo-
lution of the Universe is described by a set of six parameters, among which we find the ratio
Ωbh

2 ≡ ρb
ρc
h2 = mbnb

ρc
h2 = mbnγh2

ρc
η. The mass mb of the baryons is the mass of the nucleons (pro-

tons and neutrons) which constitute most of the baryonic matter. h ≡ H/100 km.Mpc−1.sec−1
is given by the present value of the Hubble parameter, while ρb is the energy density of baryons
and is compared to the critical density ρc ≡ 1.88× 10−29 h2 g.cm−3.
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The BAU η can then be deduced from Ωbh
2, which itself is measured from the Cosmic Mi-

crowave Background (CMB) and its value [3] leads to

η = (6.13± 0.04)× 10−10 . (1.2)

The study of Big Bang Nucleosynthesis (BBN) [4] confirms this value is consistent with the
abundance of most light elements (except for a tension for the 7Li abundance [5,6]). The value
of η may seem small, but we should compare it to a naive estimate: in a perfectly symmetric
Universe, with no initial asymmetry between matter and anti-matter, not all baryon and anti-
baryons annihilate (see for example [7, 8]), and leave a residual abundance

nb

nγ

=
nb

nγ

= 10−20 . (1.3)

The observed value (1.2) is therefore different by 10 orders of magnitude! Trying to start with
an initially asymmetric Universe runs into another issue: inflation [9] (our current best explana-
tion of the so-called horizon problem) assumes an exponential expansion of the Universe during
its early stages, which would dilute any pre-existing baryon asymmetry. Manifestly, there is a
need for a more detailed explanation. Such an explanation by the dynamical production of the
asymmetry η is called baryogenesis. Our understanding of its origin is primordial in order to
make sense of our observations and collect information about the first instants of our Universe.

The baryon asymmetry is not only an important quantity in our cosmological models, it may
also determine the viability (or not) of local theories that we use. If we have a new particle
physics model in mind, we can ask ourselves if it allows successful baryogenesis. This would
not be a direct test (through measurements at colliders for example) of new interactions or
new particles, but rather an indirect challenge for our theory. At the same time, the baryon
asymmetry motivates new models that can be ruled out or tested at colliders. The interplay
between cosmological observations, model-building and particle experiments is at the heart of
current attempts to explain the baryon asymmetry, but also dark matter, dark energy, etc.
Concerning baryogenesis, Andreï Sakharov described in 1967 a set of conditions, known as
Sakharov conditions [10], that a theory needs in order to create the Baryon Asymmetry of the
Universe (BAU):

• (1) Violation of the baryon (or lepton) number,

• (2) C and CP violation,

• (3) Out of equilibrium evolution at some point in the Universe.

The first condition is needed to have a process able to create a baryon asymmetry. Note that it
could also be a process violating lepton number which would be converted in a baryon asymme-
try by the so-called sphalerons processes; in that case, we speak of leptogenesis [11], creating
a lepton asymmetry. In any case, once such processes are available, C-violation is necessary
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for distinguishing particles and anti-particles, and CP-violation is also needed, otherwise CP-
conjugated processes would cancel each other’s contribution to the baryon asymmetry, once
integrated over phase space. Finally, the last condition is needed because at thermal equilib-
rium, any process creating an asymmetry would be counter-balanced by its inverse process,
canceling the asymmetry. It can be understood if we think of thermal equilibrium as a state
where time translation symmetry is respected, which in virtue of the CPT theorem [12] allows
no CP violation, even if they are terms in the theory that could potentially have violated it.

A popular way of satisfying these Sakharov conditions is by using Majorana sterile neutri-
nos. They are hypothetical particles that are good candidates for explaining another puzzle in
the Standard Model, the active neutrino masses. These masses for the active neutrinos are not
predicted by the Standard Model, but are now well-established from oscillations experiments,
first evidenced in 1998 for atmospheric neutrinos by the Super-Kamiokande experiment [13]
and in 2001 for solar neutrinos by the Sudbury Neutrino Observatory [14]. By interacting with
active neutrinos, sterile neutrinos can solve this issue, adding lepton number violation and CP-
violation to the Standard Model, hence satisfying the first two Sakharov conditions. While it is
an elegant solution to the neutrino oscillation problem, it barely constrains the sterile neutrino
properties [15]. The sterile neutrino mass scale M , for example, can range from the M ∼ 1 eV
scale to up to much larger scales M ∼ 1015 GeV, representing a range of more than 20 orders
of magnitude! Requiring that they help reproduce the baryon asymmetry can constrain the
parameter space more, and could be (mainly for low-scale sterile neutrinos) a guide for direct
searches.

While the sterile neutrinos help us satisfy the first two Sakharov conditions from particle physics
considerations alone, the way they deviate from equilibrium (to satisfy the third Sakharov con-
dition) depends on the specific leptogenesis scenario we consider. The original leptogenesis
scenario [11], sometimes referred to as thermal leptogenesis, relies on the expansion of the
Universe bringing the sterile neutrino distribution out of equilibrium, once the temperature
drops below the mass scale (with masses typically M ≳ 105 GeV), making the sterile neutrinos
decay. Another scenario, proposed by Akhmedov, Rubakov and Smirnov (ARS) and dubbed
ARS leptogenesis, considers instead the production and oscillations of lighter sterile neutri-
nos (of masses M ∼ 1− 100 GeV).

A quite recent and popular approach involves yet another out-of-equilibrium phenomenon:
cosmological phase transitions. These transitions are interesting cosmological phenomena
that typically correspond to a rather rapid change in a physical quantity, like for example the
vacuum expectation value (vev) of a scalar field. They are of phenomenological interest for
many reasons. First of all, standard cosmology and the Standard Model of particle physics
already predict two phase transitions: the electroweak phase transition in which the Higgs field
obtains a non-zero vev and the QCD phase transition for the confinement of quarks. Secondly,
several scenarios of new physics beyond the Standard Model involve the phase transition of
a scalar field. We can mention Grand Unification Theories like SU(5) or SO(10) [16, 17], in
which the extra gauge symmetries are spontaneously broken, or also conformal models [18–21].
Finally, the recent detection, in 2015, of Gravitational Waves (GW) by the LIGO-Virgo collab-

3



oration [22] opened up the possibility of constraining violent phenomena such as cosmological
phase transitions by searching for their GW signature. New generation of detectors like the
Einstein telescope, Cosmic Explorer (for ground-based detectors, already in early design phase)
or LISA, TianQin (for detectors in space, programmed to be launched around 2035) will be
looking for such signatures. Any detection (or non-detection) will tell us more about the early
Universe and what could have happened in it.

A cosmological phase transitions is then an original context to work with, worth consider-
ing also phenomenologically speaking. We wish to study its role and possible impact in the
context of leptogenesis with sterile neutrinos, and ask the following questions: does it make
the creation of an asymmetry easier or more complicated? Are there any advantages compared
to standard leptogenesis scenarios? If so, what are the properties and characteristics of such a
phase transition? This thesis tries to address these points.

There have already been studies on leptogenesis with a phase transition. In the majority
of them (see [23–25] for different approaches), sterile neutrinos are coupled to a new scalar field
in such a way that it gives them a mass. As the phase transition happens, their mass is then
changing: this is the out-of-equilibrium ingredient we were looking for. A common setup for
this phase transition is to have the scalar field experience a first-order phase transition (which
induces stronger deviation from equilibrium than a second-order one) at some high, new physics
scale. While it is not the only way to proceed (for instance, [26] relied on a second-order phase
transition, and [27] studied an extension of the electroweak phase transition), we will focus
now on previous works of leptogenesis which considered such a first-order phase transition in
a new scalar sector. We can separate them into two categories, depending on how the sterile
neutrinos react to the phase transition and produce the asymmetry.

Out-of-equilibrium decays In the studies [28–31], the phase transition was used to provoke
a large deviation from equilibrium by making the sterile neutrinos suddenly very massive and
likely to decay. This situation resembles thermal leptogenesis, in that decays are producing
the lepton asymmetry. We will call this scenario "Mass Gain" in reference to a study [32]
(conducted in baryogenesis instead of leptogenesis) which used this idea under that name.

Out-of-equilibrium production The production of sterile neutrinos can be affected by an
extra scalar and a phase transition, especially for low-scale sterile neutrinos. The situation is
then more similar to ARS leptogenesis; we will often refer to it as "ARS-like" leptogenesis.
Some studies [33–36] have considered the effect of an extra scalar field on standard ARS lep-
togenesis, including new decays and interactions, while other works [37–39] included the phase
transition of this new scalar into the dynamics.

In both cases (decays and production), the phase transition was assumed to be mostly in-
stantaneous, which is an assumption that can be refined. Moreover, in the Mass Gain scenario
(with non-relativistic sterile neutrinos), a larger parameter scan is lacking, for instance the
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dependence on the mass degeneracy is not fully described ( [29, 30] consider degenerate sterile
neutrinos, [28, 31] consider hierarchical ones). In the ARS-like regime, while numerical stud-
ies were performed, more detailed analytical results and descriptions of the physical processes
leading to an asymmetry in the case of a phase transition could be helpful.

We therefore have two objectives in this thesis. Firstly, we would like to include the dy-
namics of the sterile neutrinos during the (relatively short) period of the phase transition, and
estimate the physical effect of their mass change. Secondly, we would like to describe both
relativistic and non-relativistic sterile neutrinos within the same framework, in order to ana-
lyze the Mass Gain and ARS-like cases, and perform a larger scan of the parameters for each
scenario. This includes resonant and non-resonant regimes in the case of the Mass Gain, and a
physical description of oscillations in the case of ARS leptogenesis.

Structure of this thesis This work can be decomposed into three main parts: first an
introduction to leptogenesis and cosmology in general, then the description of the formalism
needed for adding a phase transition in the context of leptogenesis, and finally our numerical
and analytical results as well as our discussions. We detail how each of these parts is itself
decomposed in chapters.

The first two chapters are introductory and remind the reader of the dynamics of the par-
ticle plasma in the early Universe, few seconds after the Big Bang and inflation. Chapter 2 is a
general description of the Universe’s expansion and the phenomena that can occur in a cosmo-
logical history, most importantly phase transitions which are the focus of this work. Chapter
3 focuses on the specific case of leptogenesis, using sterile neutrinos and introduces the main
scenarios of interest for this work.

Once these concepts are set, we delve into the dynamics of a particle during a first-order phase
transition. This particle obtains a time-dependent mass due to the nucleation and expansion of
bubbles. We show in chapter 4 that a distribution of particles is created during the phase tran-
sition, in a simplified single-flavor approach. A more complete treatment of interacting fields
requires the machinery of out-of-equilibrium Quantum Field Theory, presented in chapter 5.
We arrive at a set of equations for the sterile neutrinos and the lepton asymmetry.

Using these equations, we are able to explore the possibilities opened up by the phase transition.
We consider two different mechanisms of lepton asymmetry production. For relatively heavy
sterile neutrinos, deviating from equilibrium due to the phase transition, they will decay and
we recover the Mass Gain (MG) regime in chapter 6. We describe it with kinetic equations,
allowing us to scan over a large portion of parameter space, considering hierarchical or degener-
ate masses for the sterile neutrinos; we discuss and compare our results to previous studies. In
chapter 7, we investigate, both numerically and analytically, the production of sterile neutrinos
in the context of a phase transition. A baryon asymmetry gets produced through oscillations,
which resembles ARS leptogenesis, but with a parameter dependence that can be qualitatively
different. We then make a general conclusion of our observations, in both regimes.

5



Part I

Baryogenesis in the early Universe

This first part is introductory and aims at presenting the general context of our study.
We start with a review of the early Universe in Chapter 2, exposing the tools to describe
the expansion of the Universe, the kinematics of interacting particles and cosmological phase
transitions. All these concepts are relevant for baryogenesis, which we present before moving on
to the more specific case of leptogenesis in Chapter 3. In there we present how leptogenesis can
explain the baryon asymmetry of the Universe, in particular involving sterile neutrinos. Two
main popular scenarios involve either non-relativistic sterile neutrinos (in the so-called thermal
and resonant leptogenesis) or relativistic ones (in the so-called ARS leptogenesis).
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Chapter 2

A guide of the early Universe

Cosmology is interested in the Universe as a physical system, and not only the arena in which
phenomena take place. Increasingly precise observations have allowed to establish the basis of
modern cosmology. First, the expansion of the Universe, first evidenced by galaxy surveys in
the late 1920’s, has lead to the deduction that at earlier times, the Universe must have been
denser, and hotter. This revolutionary measurement, together with the contemporary theoret-
ical revolution that was general relativity, paved the way to a description of the Universe as a
dynamical object that expands as time goes. Its exact evolution is determined by its matter
and energy content, which then in return are affected by the expansion of the Universe.

This chapter is meant as a presentation of the most relevant aspects of cosmology for our
study. We start by reviewing how the expansion of the Universe is determined, before focusing
on the radiation domination period which will be of interest to us. Once the arena is under-
stood, we can let the players in, and we detail how the dynamics of fields in the early Universe
is described using kinetic Boltzmann equations. This provides the context and tools for phe-
nomena like baryogenesis and cosmological phase transitions that we present in section 2.5 and
2.4 respectively.

2.1 Expansion of the Universe

At cosmological scales, galaxies in every direction are red-shifting away from the Earth, and the
further they are, the faster they move away from us. This is the Hubble-Lemaître law, predicted
by Georges Lemaître in 1927 and discovered by Edwin Hubble in 1929. The simplest expla-
nation for this observation is that space-time itself is expanding, in an approximate spatially
homogeneous and isotropic way. This leads to the postulate that the metric of the Universe was
given, not by the flat Minkowski space-time, but by the Friedmann-Lemaître-Robertson-Walker
(FLRW) metric

ds2 = dt2 − a(t)2dx2 , (2.1)
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where a(t) is the scale factor. Its evolution rate gives the Hubble parameter

H ≡ da/dt

a
(2.2)

whose value today is precisely the parameter of the Hubble-Lemaître law, that tells us how
further galaxies seem to move faster away from us.

The evolution in time of the scale factor determines how the Universe expanded and will
expand. It is quite remarkable that this simple metric can help us ask and (partially) answer
questions such as "how was the Universe born?" and "what will be his fate?". The energy and
matter content of the Universe influence its evolution through the Einstein equations applied
to the FLRW metric, leading to the well-known Friedmann equations [8]. The first Friedmann
equation gives us (neglecting the spatial curvature of the Universe, suggested to be zero by
observations)

H2 =
8πG

3
ρ . (2.3)

Here, ρ is the energy density of all the content of the Universe, approximated to be a fluid once
we average over large (cosmological) scales. This quantity is also dependent on the scale factor,
as it can undergo dilution from the expansion of the Universe. The evolution of ρ is constrained
by the conservation of energy, that imposes a continuity equation

dρ

dt
= −3H (ρ+ p) , (2.4)

with p the pressure of the fluid. The pressure can be related to the energy density by an
equation of state, which depends on the nature of the fluid’s content. A fluid made of radiation
satisfies

prad =
ρrad

3
, (2.5)

a matter fluid
pmat = 0 , (2.6)

while the cosmological constant, with its negative pressure, satisfies the (more exotic) relation

pΛ = −ρΛ . (2.7)

For each type of fluid, the continuity equation (2.4) tells us how the energy density of the fluid
scales with a(t),

ρrad = ρ0rad

(
a(t)

a0

)−4
, ρmat = ρ0mat

(
a(t)

a0

)−3
, ρΛ = ρ0Λ , (2.8)

where a0 = a(t0) is the scale factor today, with t0 ≃ 13.8 Gyr the age of the Universe. The first
Friedmann equation becomes a closed equation for a, with the densities present in our present
Universe ρ0X as parameters,

H2 =

(
da/dt

a

)2

=
8πG

3

[
ρ0rad

(
a(t)

a0

)−4
+ ρ0mat

(
a(t)

a0

)−3
+ ρ0Λ

]
. (2.9)
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The constants ρ0X are then parameters fixed by the best match to observations. The very good
agreement to CMB and BBN (Big Bang Nucleosynthesis) data and the relative simplicity of
the cosmological fluids make this model a remarkable tool for navigating in various epochs of
the Universe’s history. Going back in time, constraints from observations are robust roughly
from now until the BBN epoch corresponding to around a minute after the Big Bang, for
temperatures around 20-100 keV.

2.2 Radiation domination

From the different a-dependence in the equation (2.9), one can note that for early times, when
the scale factor was small, mostly the contribution from ρrad ∝ a−4 will dominate. The epoch
where ρrad is the largest contribution to the total energy density is called radiation domination.
In our Universe, from our current observations, it is expected to have happened until about 47
000 years after inflation, before the matter contribution started to be predominant.

In the radiation-dominated era, ρ ≃ ρrad, and

H ≃
√

8πG

3
(ρrad)

1/2 ∝ a−2 ⇔ a(t) ∝ t1/2 . (2.10)

More can be said about the content of the Universe; in principle, all particles of the Standard
Model can be present after being produced at reheating. In the early Universe, if the Universe
is hot enough, the Higgs field is experiencing an effective potential (due to thermal corrections)
that only allows a null vacuum expectation value (vev). In particular, all particles in the Stan-
dard Model should be massless, and therefore count as radiation. The ’soup’ of SM radiation
will be called the SM plasma.

2.2.1 Thermal equilibrium

Interactions among particles (in particular between fermions and gauge bosons, or gauge bosons
amongst themselves) bring the particle distributions to a thermal state, of common temperature
T . At this temperature T , the energy density of the SM plasma is computed by integrating over
the energies of the particles in the plasma. For bosons and fermions in thermal equilibrium,
their phase space distribution is given by the Bose-Einstein and the Fermi-Dirac distributions
respectively

feq(E) =

∣∣∣∣∣∣∣
fBE(E) ≡

1

eE/T − 1
bosons,

fFD(E) ≡
1

eE/T + 1
fermions.

(2.11)
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For massless bosons and fermions, the individual energies are simply E = |k|, such that one
can obtain expressions for the number densities

Nboson ≡
∫

d3k
(2π)3

1

e|k|/T − 1
=
ζ(3)

π2
T 3 , (2.12)

Nfermion ≡
∫

d3k
(2π)3

1

e|k|/T − 1
=

3ζ(3)

4π2
T 3 , (2.13)

as well as for the energy densities

ρboson =

∫
d3k
(2π)3

|k|
e|k|/T − 1

=
π2

30
T 4 , (2.14)

ρfermion =

∫
d3k
(2π)3

|k|
e|k|/T + 1

=
7π2

240
=

7

8

π2

30
T 4 . (2.15)

The total energy density of the SM plasma is the sum over all SM species

ρrad = ρSM =
π2

30
g∗T

4 , (2.16)

where g∗ is the number of effectively massless degrees of freedom, given by the formula

g∗ =
∑

boson i

gib +
7

8

∑
fermion i

gif . (2.17)

We sum over all species i that individually correspond to gib/f degrees of freedom. In the SM, at
high enough energy such that all particles are considered massless and at the same temperature,
we have g∗ = 106.75.

Another important thermodynamic quantity to consider is the entropy S of the system. It
obeys the first law of thermodynamics TdS = dE + pdV , within a volume V . For the entropy
density s ≡ S/V , using the fact that S and E are extensive quantities, one obtains a relation
between s and the pressure and energy density

s ≡ ρ+ p

T
. (2.18)

Considering the SM plasma made of radiation (whose equation of state we recall is p = ρ/3),
the entropy density s is

s =
2π2

45
g∗,ST

3 . (2.19)

where

g∗,S =
∑

boson i

gib

(
Ti
T

)3

+
7

8

∑
fermion i

gif

(
Ti
T

)3

. (2.20)

In principle, g∗,S can be different from g∗ if certain species in the SM are not at thermal equi-
librium with the rest of the plasma, i.e. Ti ̸= T . In our study, however, we will always assume
g∗,S = g∗.

The thermal equilibrium condition allows us to express all quantities of interest (number den-
sity, energy density, entropy density) in terms of the temperature T only.
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2.2.2 Time-temperature relation

The properties of the particles are not the only quantities that can be determined from the
temperature. The scale factor a can also be related to T . We expect the temperature to be
greater when the Universe was denser, i.e. a should be a decreasing function of T . A precise
relation can be given in the case where all particles are at thermal equilibrium, such that the
total entropy in a volume a(t)3 is conserved

dS

dt
= 0 =

d (a3(t)s(t))

dt
. (2.21)

We know that for radiation, s ∝ T 3. The conservation of entropy (2.21) during the Universe’s
expansion is thus only possible if

a ∝ T−1 . (2.22)

This reproduces the intuitive reasoning that the plasma is hotter when the Universe is denser.

Using the expression (2.16), the Hubble parameter is given by the Friedmann equation in
terms of the temperature,

H =

√
8πG

3

√
π2

30
g∗T 4 ≡ T 2

aR
, aR ≡

√
45

4π3g∗

1√
G

=

√
45

4π3g∗
MPl , (2.23)

whereMPl = 1/
√
G ≃ 1.2×1019 GeV, in natural units. Recall how we concluded that a(t) ∝ t1/2

in a radiation-dominated Universe. This implies

H =
da/dt

a
=

1

2t
=
T 2

aR
(2.24)

leading to a relation between time and temperature

T (t) =
(aR
2

)1/2
t−1/2 . (2.25)

In the early Universe, the temperature is thus directly related to time, and we will see that it
can be convenient to jump from one to the other in our study, especially considering explicitly
time-dependent processes such as phase transitions.

2.3 Boltzmann equations from every angle

In cosmology, we are typically concerned with (average) densities of different kinds of fields
interacting as the Universe expands. In principle, one should work with Quantum Field Theory
(QFT) in a thermal bath (the SM plasma, with potential additional species) in a curved space-
time (the FLRW metric) to compute the dynamics of each field. It is however not always
useful in practice; numerical resolutions usually become very involved because equations for
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correlation functions are non local, and the nature of the physical processes can get obscured
by the formalism. A more transparent approach is based on kinetic Boltzmann equations. They
describe the evolution of (on-shell) particle densities in phase space fi(x,k, t) in the plasma,
where i labels the species.

2.3.1 Kinetic Boltzmann equations

A kinetic Boltzmann equation has the form

dfi
dt

=
∂fi
∂t

+ v ·∇xfi +
∂k
∂t
·∇kfi = Ccol[fi; fj] , (2.26)

where ∇x =
(

∂
∂x
, ∂
∂y
, ∂
∂z

)T
, ∇k =

(
∂

∂kx
, ∂
∂ky
, ∂
∂kz

)T
. The left-handed side of the equation is the

homogeneous equation, describing the phase space density along the flow of particles which is
moving at velocity v and whose momenta are changing at a rate ∂k/∂t. Ccol[f ] is a collision
term that depends on the interactions of the particle we describe with itself and the rest of
the system. The collision term can describe exchange of momenta (scattering) or a change
in the number of particles (decays, production). It is usually computed from zero- or finite-
temperature QFT amplitudes and plugged into the kinetic Boltzmann equations. This includes
the quantum processes of the theory inside these more classical equations.

The effect of the space-time background will also be taken into account. Indeed, consider-
ing the FLRW metric, we first notice that it is spatially homogeneous and isotropic. We will
therefore only consider phase space densities independent of space and only dependent on the
norm of the momentum k. The homogeneous part of the kinetic Boltzmann equations becomes

d

dt
fi(|k|, t) =

∂fi
∂t

+
∂|k|
∂t

∂fi
∂|k|

. (2.27)

In the FLRW metric, space is expanding with a scale factor a(t), and momentum is red-shifting
k ∝ a−1. Therefore,

∂|k|
∂t

= −da/dt

a
|k| = −H|k| . (2.28)

The Boltzmann equations are then

∂fi
∂t
−H|k| ∂fi

∂|k|
= Ccol[fi; fj] . (2.29)

These equations are partial differential equations for the fi’s, containing the main ingredients
for cosmology, the expansion of the Universe with the H factor, and the quantum processes in
Ccol.

Cosmological observables, for example the ratio η, are sensitive to number densities Ni(t),
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once we integrate over momentum. It is therefore usual to write Boltzmann equations (which
are no longer "kinetic") for the Ni’s, integrating (2.29) over k,

dNi

dt
+ 3HNi =

∫
d3k
(2π)3

Ccol[fi; fj] , (2.30)

Ni =

∫
d3k
(2π)3

fi . (2.31)

We will see examples of such Boltzmann equations applied to leptogenesis in Chapter 3. In
Chapter 5, we will see how a first-principle QFT approach can lead to kinetic Boltzmann
equations (or a quantum analog of it), and how the collision parts are computed from the
particle physics model.

2.3.2 Comoving and rescaled quantities

Contrary to the collision term in the Boltzmann equations which is non generic and depends
on the model, the dilution term −H|k| ∂fi

∂|k| or 3HNi is always the same once a(t) is determined.
It is common to absorb this dilution by a change of variable, including automatically the red-
shifting of momentum for example. We present here two equivalent ways this can be realized;
the first one is more frequently used in the literature while the second is convenient for our
work, so we explain here the connection between both. The first one uses comoving quantities.
It introduces a comoving momentum

kcom ≡ a(t)k . (2.32)

This quantity is fixed for a given particle, as the Universe expands. The phase space density
appearing in the kinetic Boltzmann equations can be changed to be a function of comoving
momentum,

f com
i (|kcom|, t) ≡ fi(|k|, t) = fi(a(t)

−1|kcom|, t) , (2.33)

such that

df com
i

dt
=
∂f com

i

∂t
=

∂

∂t
fi(|k|, t)− |k|H

∂

∂|k|
fi(|k|, t) = Ccol

[
f com
i ; f com

j

]
. (2.34)

There is no dilution term for f com
i , which is no surprise as the comoving momentum doesn’t

get red-shifted any more. We can then integrate over comoving momentum to get a comoving
number density

N com
i ≡

∫
d3kcom

(2π)3
f com
i = a(t)3Ni , (2.35)

satisfying
dN com

i

dt
=

∫
d3kcom

(2π)3
Ccol[f

com
i ; f com

j ] . (2.36)

Again, the dilution term disappeared from the equation.
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A second, equivalent way of dealing with this is to recall the relation between a ∝ T−1 in a
radiation-dominated Universe. Therefore, instead of comoving quantity, we can define rescaled
quantities

κ ≡ k
T
, (2.37)

f resc
i (|κ|, t) ≡ fi(|k|, t) , (2.38)

ni(t) ≡
Ni(t)

T 3
. (2.39)

They are proportional to the comoving quantities, so the physical argument is the same for
getting rid of the dilution. However, we find it more useful in this work as temperature is
relevant for the phase transition, and the ratio |k|/T naturally appears in collision terms, as
we will see.

It is also common to define a yield Yi as the ratio of the number density with the entropy
of the plasma s ≡ 2π2

45
g∗T

3. As s ∝ T 3, the yield is proportional to the rescaled quantity,

Yi ≡
Ni

s
=

45

2π2g∗
ni . (2.40)

2.3.3 Time and inverse temperature

So far, we worked with time as the variable, but it might not always be the most relevant. In
particular, we have a direct relation (2.25) between time t and temperature T , that we recall
here

T (t) =
(aR
2

)1/2
t−1/2 . (2.41)

It is common to change variables from t to a variable

z ≡ Tref

T
= Tref

(
2

aR

)1/2

t1/2 , (2.42)

where Tref is a fixed reference temperature. It is usually taken to be a main scale of interest, for
example the mass of a sterile neutrino in thermal leptogenesis as we will see, or the electroweak
scale. In terms of the variable z,

d

dt
=

dz

dt

d

dz
=
Tref

aR
T

d

dz
= zH

d

dz
. (2.43)

The homogeneous part of the Boltzmann equations can therefore be written in several equivalent
ways,

∂fi
∂t
−H|k| ∂fi

∂|k|
=
∂f com

i

∂t
=
∂f resc

i

∂t
= zH

∂f resc
i

∂z
, (2.44)

dNi

dt
+ 3HNi =

1

a(t)3
dN com

i

dt
= T (t)3

dni

dt
= T 3

ref
H

z2
dni

dz
= sHz

dYi
dz

. (2.45)
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Depending on the context, one or the other formulation can be more enlightening. In our study,
we will alternate at some point between the t and the z variables, because different time scales
will be involved. Indeed, z is related to the temperature and evolves significantly only over
cosmological times, i.e. when the Universe expands, while t and variation ∆t around a given
time are more adequate for processes faster than the Universe expansion. In particular, we will
be interested in phase transitions that have relatively short time scales, as we describe in the
next section.

2.4 Cosmological phase transitions

Phase transitions are an interesting physical phenomenon to be considered in cosmology. In a
very large sense, they correspond to the change of a physical quantity over time. A common
example is a scalar field changing its vacuum expectation value (vev). These phase transitions
imply an explicit time dependence (there is a before and an after the phase transition) in a way
that can differ radically with the expansion of the Universe, in that they can be non adiabatic
and happen over different time scales. Such an explicit time dependence can lead to deviation
from thermal equilibrium, which is desirable for creating the BAU from the Sakharov condi-
tions.

Two such cosmological phase transitions occur in the Standard Model: the QCD phase transi-
tion [40–42] and the electroweak phase transition [43–45]. The QCD cosmological phase tran-
sition happens for temperatures around 100 MeV [46, 47], when the quarks are low-energetic
enough such that they confine into hadrons. It is unclear whether or not it would be a first-order
phase transition, as the phase diagram is difficult to draw for QCD. While it can be relevant for
observations [48, 49] and could influence what happens at BBN, the QCD cosmological phase
transition is not directly related to an observable of the present universe, and has thus received
relatively less attention than its older sister, the electroweak phase transition.

The ElectroWeak Phase Transition (EWPT) is of greater interest to us here, mainly because it
relates directly to baryogenesis and leptogenesis, and shares similarities with the work done in
this thesis. During the EWPT, happening around TEW ≃ 130 GeV, the vev of the Higgs field
becomes non zero. It is then only after the EWPT that all particles in the SM obtain vacuum
masses. This is why it provides a good context for baryogenesis, as it leads the quark sector
out of equilibrium while the non zero vev induces CP-violating Dirac masses for those same
quarks. We will say more about this later, in section 2.5.

Phase transitions also occur in extensions of the Standard Model with new scalar fields, like
for example in Grand Unified Theories such as SU(5) or SO(10) [16, 17]. The spontaneous
breaking of the additional gauge symmetries is typically achieved through such phase transi-
tions. It is therefore a phenomenon present in many particle physics models and that is of great
cosmological interest.
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We start by presenting a toy model of a phase transition in order to introduce notations and
concepts. We explain how a cosmological phase transition can create bubbles (regions of the
Universe with different properties) and how one can compute their properties. These bubbles
will be of interest in the present work for bringing the plasma out-of-equilibrium. Cosmological
phase transitions can also be constrained by cosmological observations and we say a few words
on their phenomenology.

2.4.1 A toy model

For concreteness, let us consider a (real) scalar field S, interacting with the SM plasma at
temperature T . It has a certain potential that can be decomposed into vacuum and thermal
parts,

VS(S, T ) = V0(S) + Vth(S, T ) . (2.46)

The vacuum potential V0 comes from the mass and self-interactions of S in vacuum, while the
thermal potential Vth is derived from its interactions with the plasma of temperature T . In this
section, we consider a toy model where we take

V0(S) = −
µ2

2
S2 +

λ

4
S4 , µ2 > 0 , λ > 0 , (2.47)

Vth(S, T ) =
αT 2

2
S2 − βT

3
S3 , α > 0 . (2.48)

The vacuum parameters µ2 and λ determine the behaviour of S in the vacuum limit. Indeed,
for T → 0, the minimum of the potential would be achieved for ⟨S⟩ = ± (µ2/λ)

1/2. However,
at finite temperature, the thermal potential modifies its extremum condition

∂

∂S
VS =

(
αT 2 − µ2

)
S − βTS2 + λS3 = 0 . (2.49)

This equation has three solutions, provided

β2T 2 + 4λ
(
µ2 − αT 2

)
> 0 . (2.50)

One of these solutions corresponds to a local minimum, different from the one in ⟨S⟩ = 0,
located at

⟨S⟩ = vS(T ) =
βT

2λ

(
1 +

√
1 +

4 (µ2 − αT 2)

β2T 2

)
. (2.51)

This minimum at vS(T ) will be degenerate with the one in ⟨S⟩ = 0 for

T =

√
µ2

α

(
1− 2β2

9αλ

)−1/2
≡ Tc , (2.52)

provided 9αλ > 2β2.
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Figure 2.1: Evolution of the potential as a function of S for different values of T . We fixed
α = 2, µ2 = 1, β = 3 and λ = 4 for concreteness, giving Tc =

√
2/3.

We show in Figure 2.1 the potential profile at different temperatures. As temperature de-
creases, another non zero value of the scalar field becomes a local minimum. The critical
temperature Tc corresponds to the temperature for which the value of the potential at the local
minima ⟨S⟩ = vS(Tc) ̸= 0 is exactly 0, therefore degenerate with ⟨S⟩ = 0. The potential at
temperature Tc, in our toy model, takes a nice factorized form

VS(S, Tc) =
λ

4
S2 (S − vS(Tc))2 . (2.53)

As soon as T < Tc the global minimum jumps from 0 to vS(T ) > 0 in a discontinuous way, which
makes this transition a First-Order Phase Transition (FOPT). Characterizing the transition a
bit more, the FOPT can be called a strong FOPT [50,51] iff

vS(Tc) > Tc . (2.54)

The gap between the two minima in 0 and vS is larger in this case, which corresponds to a
stronger discontinuity. This notion is very important for studies of baryogenesis with a phase
transition; most scenarios require a strong FOPT, as we will see. In our toy model, the condition
(2.54) is given in terms of the parameters of the model,

vS(Tc)

Tc
=

2β

3λ
> 1 . (2.55)
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Once the temperature is low enough, the preferred vacuum is changed and the phase transition
starts. The way it then develops is through the nucleation of bubbles 1.

2.4.2 Nucleation of bubbles

The same way bubbles of gas form inside the water as it boils, a FOPT usually proceeds by
nucleation of bubbles. These bubbles correspond to a region of space where the field is in
its global minimum ⟨S⟩ = vS(T ), called true vacuum. Outside the bubble, the field is still in its
local (but non global) minimum ⟨S⟩ = 0, called false vacuum. The phase transition is complete
when the bubbles have expanded enough to cover all the space, i.e. when all the water has
boiled and turned to gas, in the boiling water analogy.

The bubble nucleation is interpreted as the decay from the vacuum in ⟨S⟩ = 0 which becomes
the false vacuum, into the newly formed true vacuum in ⟨S⟩ = vS. Due to the metastability
of the false vacuum, thermal fluctuations are needed in order to exit the minimum in ⟨S⟩ = 0.
Taking those corrections into account, the probability (per unit volume V per unit time δt) of
false vacuum decay at finite temperature 2 can be estimated [54–56]

Γbub ≃ T 4

(
S3(T )

2πT

)3/2

exp (−S3(T )/T ) , (2.56)

where S3 is the so-called "bounce" action in three spatial dimensions. It is defined as

S3(T ) =

∫
d3x

[
1

2
(∇Sb,T )

2 + VS(Sb,T (x), T )
]
, (2.57)

where Sb,T is a static, O(3)-symmetric "bounce" solution. We will also refer to it as "static
bubble", as it corresponds to the field configuration that will be allowed to form during the
nucleation. It obeys the equation of motion

∇2Sb,T =
∂VS
∂S

(Sb,T (x), T ) . (2.58)

∇ ≡ (∂x, ∂y, ∂z) is the nabla-differential operator in 3-dimensional space and ∇2 gives the
Laplacian. Note that Sb,T depends on the temperature via the potential VS. In a spherical
symmetric space, the bounce solution depends only on r ≡ |x| (at fixed temperature). The
equation of motion can be written in terms of derivatives with respect to r,

d2Sb,T

dr2
+

2

r

dSb,T

dr
=
∂VS
∂S

(Sb,T (r), T ) . (2.59)

1There exist some subtleties about this statement, and in some cases a FOPT could complete without
nucleating bubbles (see [52] for example). We consider that nucleation does happen in our case.

2At T = 0, without thermal fluctuations, the decay rate is given y quantum tunneling, which is related to
O(4)-symmetric bounces instead of the O(3)-symmetric ones mentioned in the text in the thermal case, see for
instance [53].
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(a) Upturned potential −VS(S, T ) for a tempera-
ture T ≲ Tc such that VS(0, T ) ≳ VS(vS(T ), T ).
We fixed α = 2, µ2 = 1, β = 3 and λ = 4. The
temperature is T = 0.815 ≲ Tc =

√
2/3.

(b) Sketch of the "bounce" (or static bubble) so-
lution Sc

b , reaching the false vacuum for |x| → ∞
and bouncing off the true vacuum in |x| = 0. We
sketched two physical length, the radius Rbub of
the static bubble and the thickness of the wall
Lw.

The mechanical analog of this equation is a particle at "position" Sb,T evolving through "time"
r, falling in an upturned potential −VS (see Figure 2.2a). The additional term 2

r

dSb,T

dr
plays the

role of friction. The bounce solution is assumed to be at rest in the center of our coordinate
system

d

dr
Sb,T (r = 0) = 0 (2.60)

and it should reach the false vacuum (⟨S⟩ = 0) at infinity and remain at rest there,

Sb,T (r →∞) = 0 ,
d

dr
Sb,T (r →∞) = 0 . (2.61)

In order to understand these equations a bit better, let us consider our toy model for the scalar
potential. We recall that, close to the critical temperature T ≃ Tc, we had

VS(S, Tc) =
λ

4
S2 (S − vS(Tc))2 . (2.62)

The equation for Sb,Tc ≡ Sc
b is then

d2Sc
b

dr2
+

2

r

dSc
b

dr
=
λ

2
Sc
b (S

c
b − vS(Tc)) (2Sc

b − vS(Tc)) , (2.63)

which actually has an approximate analytical solution (see for example [57]),

Sc
b(r) =

vS(Tc)

2

[
1− tanh

(
r −Rbub

Lw

)]
, (2.64)

where
Lw ≡ (αT 2

c − µ2)−1/2 (2.65)
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is fixed by the parameters of the potential, and where Rbub is an arbitrary constant as long as
it satisfies

Rbub ≫ Lw . (2.66)

Both quantities can be interpreted for this profile, Rbub as the radius of the static bubble, and
Lw as the thickness of the wall of this bubble. The condition Rbub ≫ Lw is therefore usually
referred to as the "thin wall approximation" in the literature. We draw the profile Sc

b in Figure
2.2b.

Looking at the profile Sc
b(x), we understand why such solutions are called "bounces". Along

a certain spatial direction, the field configuration starts from the false vacuum, gets up to the
true vacuum, and gets back down to the false vacuum. It "bounces" off the "bump" of true
vacuum in x = 0. The region around |x| = 0 is understood as a static bubble of true vacuum,
of radius Rbub and wall thickness Lw, inside a space filled with false vacuum.

More generally, these bounce solutions depend on the potential VS(Sb,T , T ), and therefore on
temperature. Given a certain potential VS, finding the rate Γbub requires to solve numerically
for Sb,T and plug it back in S3 for computing the bounce action. Publicly available codes [58–60]
can be used for these purposes.

Once the rate Γbub is computed, it is used to define the nucleation temperature Tn, which
is the temperature at which one bubble is created per Hubble volume, satisfying the condi-
tion [61,62]

1 =

∫ tnucl

tc

dt ΓbubH
−3 =

∫ Tc

Tn

dT
Γbub(T )

TH(T )4
. (2.67)

tnucl and tc are the cosmological times corresponding to the temperatures Tn and Tc, respectively
(using the relation t = 1/(2H(T )) = aR/(2T

2)). From the expression of the rate 2.56, we only
need to determine the bounce action in order to get the nucleation temperature of our phase
transition. Depending on the temperature dependence of the potential, Tn can be more or less
separated from Tc. Phase transitions for which the actual nucleation happens long after the
critical temperature are characterized as supercooled. In such supercooled phase transitions,
the metastable false vacuum survives longer than in standard phase transitions, and Tn ≪ Tc.
It can be explicitly realized for example with a large potential barrier between the false and
the true vacua, such that thermal fluctuations are not sufficient (at first) to go over it. We will
come back to this point; we should keep in mind that the nucleation temperature Tn can be
well below the critical temperature Tc.

2.4.3 Dynamics of the bubbles

Let us go now to bubbles. We described how to obtain the decay rate Γbub of the false vacuum.
We computed this decay of false vacuum by finding static solutions Sb,T to the equations of
motions. Once the false vacuum decays, we obtain field configurations, that we call bubbles,
that satisfy similar conditions than Sb,T (the static bubble): spatially, they correspond to false
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vacuum at infinity and true vacuum at some point in space which will be the center of the
bubble, of certain radius Rbub. The main difference, however, is that the bubbles are not static,
but dynamical. It can be easily understood why it has to be so; the true vacuum is energetically
favorable, so the energy density is lower inside the bubble than outside. This leads to a pressure
difference that tends to expand and accelerate the bubble.

The radius Rbub = Rbub(t) of the bubble is then time-dependent. There is a vast literature on
determining what the velocity of the bubble is; here is a (non-exhaustive) list of studies [63–66].
Because of friction between the wall and the plasma, the bubble wall is expected to reach a
terminal velocity that we note vw. Its precise determination depends on the hydrodynamics
of the fluid in front of the wall, as well as on the energy difference between the false and true
vacuum. In particular, for supercooled phase transitions, the energy release is important, the
bubbles are accelerated [52,67–69] and quickly reach velocities close to the speed of light vw ≃ 1.
We can for now simply take vw as a parameter; if it is constant, the radius of a typical bubble
expanding at the time of nucleation then evolves like

Rbub(t) ≃ vw ((t− tnucl) ≡ vw∆t , (2.68)

where tnucl is the cosmological time at which the nucleation happens. In the case where the
potential is given by our toy model, using the expression for the bounce solution leads to a
profile of the field (at the critical temperature)

S(t, r) ≡ Sc
b(r)

∣∣∣
Rbub=Rbub(t)

=
vS(Tc)

2

(
1 + tanh

(
vw∆t− r

Lw

))
, (2.69)

where vw is the velocity of the wall and Lw is its spatial thickness. At a fixed position x, the
vev of the scalar field is evolving at a certain rate in time γ given by

γ =
vw
Lw

. (2.70)

The time rate γ = vw/Lw is calculated from the thickness of the wall and its velocity.

2.4.4 Phenomenology

If a phase transitions did indeed happen in the history of our Universe, we would like to
test this hypothesis. The phenomenology of cosmological phase transitions is very interesting,
mainly for two reasons. We know there should be "something", as the SM already predicts the
electroweak and the QCD phase transitions, and at the same time we can constrain models of
new physics involving new fields undergoing a phase transition, for example. Ideally, we would
like to constraint the temperature Tn of bubble nucleation, in order to know when exactly in
the early Universe it occurred. However, another important parameter that determines if a
phase transition will be observable or not is its strength αn defined by

αn ≡
∆VS(Tn)

ρSM(Tn)
. (2.71)
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∆VS(Tn) is the potential energy difference between the false and true vacuum, at the temper-
ature of nucleation. It represents the amount of energy released from the false vacuum decay,
through the nucleation of bubbles. The strength αn compares it to the energy already present
in the plasma, ρSM(Tn). A crucial effect of this energy release is reheating. The vacuum energy
∆VS is converted into thermal energy in the plasma, increasing the temperature to a reheating
temperature Treh, by conservation of energy

ρplasma(Treh) ≃ ρplasma(Tn) + ∆VS(Tn) . (2.72)

If the plasma is dominated by Standard Model radiation, given that ρplasma(T ) = ρSM(T ) ∝ T 4

in that case, we obtain (
Treh

Tn

)4

= 1 + αn . (2.73)

For a given nucleation temperature, the stronger the phase transition (the larger αn, that is),
the more impact it has on observables.

Several cosmological observables can be considered in order to constrain the properties of the
phase transition. In particular, a relatively strong (αn around 1) FOPT modifies the temper-
ature evolution of photons, leptons, neutrinos in the bath, due to reheating. For nucleation
temperatures Tn ∼ MeV, this can affect Big Bang Nucleosynthesis (BBN), in modifying the
freeze-out temperature of various quantities like the neutron fraction. It can also modify the
effective relativistic degrees of freedom Neff obtained from the Cosmic Microwave Background
(CMB), which depends on the freeze-out temperatures of neutrinos and photons. Combined
analysis of these constraints give [70] reheating temperature of a FOPT with αn = 1 to be
Treh > 3 MeV, equivalently Tn > 2−1/43 MeV ≈ 2.5 MeV.

Another popular avenue for constraining cosmological phase transitions, and in particular
(strongly) first-order ones, is the detection of primordial gravitational waves. Indeed, the
vacuum energy stored in the scalar sector gets released during the phase transition and can
produce gravitational waves. Experiments like LIGO, Virgo or in the future LISA can then de-
tect these waves. Such waves are typically described as being part of a Stochastic Gravitational
Wave Background (SWBG). It corresponds to the superposition of GW coming from different
sources across the Universe and from the past, like binary systems, primordial fluctuations,
cosmic strings or cosmological phase transitions (see [71] for a review). This background has
recently been detected, in 2023, by the NANOGrav collaboration [72]. By surveying pulsars,
they were able to find perturbations of their frequencies that were due to nano-Hertz GW
passing by. The preferred explanation of these waves is the superposition of massive binary
systems.

Future experiments with higher sensitivity and wider frequency range might be able to tell
us more about the SGWB. In this thesis, we consider first-order phase transitions; their gravi-
tational wave signature has been well studied in order to predict, for a given phase transition,
the frequency range and amplitude of the emitted GW. We will not attempt a comprehensive
review of how the GW spectrum is established from the parameters of a cosmological phase
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transition; we refer the reader to reviews on this topic such as [71,73,74]. In short, what we can
say is that there are three main sources that are expected to produce GW during a first-order
cosmological phase transition [75–77]: collisions between bubbles, sound waves in the plasma,
and turbulence in the plasma.

For each of these phenomena, a peak frequency fpeak and a shape of the GW spectrum ΩGWh
2

can be estimated from the parameters of the phase transition (see discussion in [76,77] for ex-
ample). Once (and if) the SGWB is detected, more details about phase transitions could then
be constrained from the profile of the frequency spectrum. For instance, with the projected
sensitivity of LISA [78] of GW frequencies around the mHz range, it was estimated [79] that a
rather strong phase transition (αn = 1) happening at temperatures up to T = 106 GeV could
emit a detectable GW spectrum. This would allow GW detection to be a great test of new
physics phenomena happening at high energies. In this thesis, we will focus on such phase
transitions involving new physics, in order to explain the baryon asymmetry of the Universe.

2.5 Baryogenesis and CP violation

One of the goals of this thesis is to explain the Baryon Asymmetry of the Universe (BAU). We
recall the Sakharov conditions, necessary for the creation of a BAU:

• (1) Violation of the baryon or lepton number,

• (2) C and CP violation,

• (3) Out of equilibrium evolution at some point in the Universe.

One may now ask if such conditions are already met in the Standard Model. The answer
is actually yes, these conditions are satisfied with the current theory that we have, without
needing to introduce any new physics:

• (1) B + L (and B) is anomalous in the SM,

• (2) The CKM matrix and the weak interactions violate C and CP,

• (3) The ElectroWeak Phase Transition (EWPT) drives the system out of equilibrium.

However, it was shown (see for example [80] or reviews [81–83]) that the amount of CP violation
in the SM is actually too small to reproduce the BAU, and that the EWPT should be strongly
first-order, which it is not in the SM [84, 85]. It is instructive to say a few words on this last
point. First of all, the B-violating processes in the SM are the so-called sphalerons. We will
say more about them at the beginning of next section; what we will say here is that they
are topological processes, connecting different vacua of the theory, which have different baryon
numbers B. At zero temperature, they are suppressed by potential barriers between the vacua,
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but at finite temperature they can be efficient at violating B. For weak sphalerons (associated
to the gauge group SU(2)L of the SM), their energy Esph(T ) is related to ⟨ϕ⟩ (T ), the vev of
the Higgs field. Without detailing all the calculation (see for example [83]), one can compute
the rate Γsph of these spalerons at finite temperature and obtain

Γsph ∝ e−Esph(T )/T , Esph(T ) ∝ ⟨ϕ⟩ (T ) . (2.74)

Due to the third Sakharov condition, sphalerons should be out-of-equilibrium [86] at the critical
temperature Tc = Tsph ≃ 130 GeV of the EWPT. This means their rate Γsph should be smaller
than the Hubble rate (at T = Tc)

Γsph(Tc) ≲ H(Tc) . (2.75)

This leads to a lower bound on Esph(Tc)/Tc which can be written in terms of the vev [83],

⟨ϕ⟩ (Tc)
Tc

≳ 1 . (2.76)

This is simply the condition (2.54) for having a strong first-order phase transition! This tells
us that, if sphalerons are the only B-violating process and we wish to reproduce the baryon
asymmetry, the EWPT should be a strongly first-order phase transition.

In order to see if this is realized or not in the SM, we need to study the Higgs potential.
In the SM, the scalar potential for the Higgs field has a vacuum part (related to its mass and
self-coupling) and a thermal part coming from the dense early Universe plasma at tempera-
ture T . The computation of the total potential, at high temperatures, can be computed using
thermal field theory [87] and we obtain a well-known form [88–91]

Vϕ(ϕ, T ) =
αT 2 − µ2

2
ϕ2 − βT

3
ϕ3 +

λ

4
ϕ4 , (2.77)

where α and β are related to the particles interacting with the Higgs, namely the W and Z
bosons and the top-quark,

α =
2m2

W +m2
Z + 2m2

t

8v2
, (2.78)

β =
6m3

W + 3m3
Z

4πv3
. (2.79)

This is the potential we studied in our toy-model in section 2.4. Recall we derived that a
strongly first-order phase transition should satisfy

vS(Tc)

Tc
=

2β

3λ
=

4βv2

3m2
h

> 1 . (2.80)

We related λ to the Higgs mass m2
h = 2λv2. Numerically, taking mW = 80 GeV, mZ = 91 GeV

and v = 246 GeV the condition above gives

m2
h < (48 GeV)2 , (2.81)
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which we know is incorrect since the measure in 2012 of a Higgs particle at a mass around
mh ≃ 125 GeV. This failure of the SM makes the BAU a new physics observable, and has
motivated numerous extensions of the particle content.

Arguably, there are two main popular ways of explaining the baryon asymmetry. One of them
is electroweak baryogenesis [43] whose main idea is to modify the EWPT to make baryogenesis
successful, usually by adding new scalars that are SM singlets [92–95]. This qualitative change
allows a stronger departure from equilibrium. The B-violating processes are the sphalerons,
and an extra source of CP-violation is needed compared to the SM. The baryon asymmetry is
then generated by the dynamics of quarks during the phase transition.

Another alternative is leptogenesis [11]. Instead of considering the baryonic sector of the Stan-
dard Model, this approach focuses on the lepton part. The lepton sector is extended with new
sources of CP- and L-violation, such that a lepton asymmetry can be created. Leptogenesis
relies on the B+L-violating sphaleron processes to convert the lepton asymmetry into a baryon
one. We will detail how this works in the next section.
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Chapter 3

Leptogenesis and sterile neutrinos

A popular approach for explaining the BAU is leptogenesis, and in particular leptogenesis in-
volving right-handed (or sterile) neutrinos. These new particles have Yukawa interactions with
the Higgs and lepton fields, adding CP-violating terms that can create an asymmetry between
leptons and anti-leptons. This asymmetry can then be converted into a baryon asymmetry
through the so-called sphaleron processes. Sterile neutrinos are also motivated from particle
physics experiments for explaining the masses of active neutrinos in the SM.

In this chapter, we review some of the basics of leptogenesis and general properties of ster-
ile neutrinos. We start by explaining how a lepton asymmetry gets converted into a baryon
asymmetry in section 3.1. We detail in section 3.2 why sterile neutrinos are good candidates for
an extension of the SM, and introduce the type-I Seesaw mechanism, which connects the masses
of the sterile neutrinos to the masses of the active neutrinos. Finally, we present in section 3.5
a scalar extension in which the sterile neutrino masses are given from the interaction with a
scalar field.

3.1 Sphalerons and spectator effects

The asymmetry observed from the CMB and light-element abundances is really an asymmetry
in the baryonic sector, so we start by explaining how a lepton asymmetry can help create a
baryon asymmetry, through sphalerons.

Sphalerons (from the Greek σϕαλϵρoζ, "ready to fall") are described as potential barriers [96]
that separate different vacua of non-abelian gauge theories [97,98] (in the SM, we are concerned
with SU(2) and SU(3)). Indeed, certain charges (the baryon number B and the lepton number
in each flavor Le/µ/τ ) are preserved classically in the SM, but are anomalous in the sense that
quantum fluctuations can violate this conservation. In particular, while B−L is still preserved,
B +L is anomalous and is violated by sphalerons. This violation is however topological (it de-
pends on the topology of the gauge groups) and corresponds to integer changes in the charges,
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between different vacua (defined by the values of the charges in them). Because they connect
vacua of different lepton and baryon number, we can also picture them as processes that change
the value of B + L.

Sphaleron processes are non-perturbative and are exponentially suppressed at zero temperature,
however, in a cosmological context, thermal fluctuations activate them at higher temperature.
There thus exists a finite temperature Tsph above which the SM allows to change the values of
B and L, and under which these processes are exponentially suppressed.

This phenomenon is crucial for baryogenesis through leptogenesis. For temperatures above
Tsph, if we start with B = 0 and L ̸= 0 (we suppose we created a lepton asymmetry), sphalerons
can modify the value of L and convert it into B ̸= 0, because we need to conserve B − L in
the process. As a conclusion, a model that can create a non-zero lepton number L ̸= 0 at
temperatures above Tsph can also explain a non-zero baryon asymmetry.

It is convenient, for species near thermal equilibrium like the ones in the SM, to consider their
chemical potential. For a species X, the chemical potential µX is defined from the distributions
of the particle fX and of the anti-particle fX ,

fX(E) = feq (E − µX) , fX(E) = feq (E + µX) , (3.1)

where feq is either the Fermi-Dirac fFD(E) = (exp (E/T ) + 1)−1 distribution for fermions
or the Bose-Einstein distribution fBE = (exp (E/T ) − 1)−1 for bosons. We are interested in
asymmetries between particles and anti-particles, which for small chemical potential give

fX − fX ≃ −µX f ′eq(E) =
µX

T

∣∣∣∣∣ fFD (1− fFD) for fermions,
fBE (1 + fBE) for bosons.

(3.2)

Integrating over momentum, we obtain a relation for the asymmetry in the number densities,
expressed either with physical NX or rescaled nX ≡ NX/T

3 number densities,

NX ≡ 2gX

∫
d3k
(2π)3

fX , (3.3)

NX −NX ≃
gXT

3

6

µX

T
×

∣∣∣∣∣ 1 for massless fermions,
2 for massless bosons,

(3.4)

nX − nX ≃
gX
6

µX

T
×

∣∣∣∣∣ 1 for massless fermions,
2 for massless bosons,

(3.5)

where gX is the number of (non-spinorial) degrees of freedom of particle X.

While the particle distributions can be deviating from equilibrium due to these chemical poten-
tials, interactions between different species can be fast enough to connect the chemical potentials
to each other. For each interaction at equilibrium, there exists a relation between the chemical
potentials of the various SM species subject to this interaction. These SM interactions are often
referred to as spectator effects in leptogenesis.
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Gauge interactions When the gauge interactions are at thermal equilibrium, this implies
that all gauge bosons chemical potential are zero and that all fermions in a same SU(3) or
SU(2) multiplet should have the same chemical potential. We then consider µQa , µua , µda ,
indexed on flavor, in the quark sector and µla , µea in the lepton sector. The SM plasma should
also be neutral under hypercharge,∑

a

(µQa + 2µua − µda − µla − µea) + 2µϕ = 0 . (3.6)

Yukawa interactions In the SM, the left-handed SU(2)-doublets la and Qa also interact
with the Higgs and right-handed fields through Yukawa couplings. If these interactions are at
equilibrium,

µQa − µua + µϕ = 0 , (3.7)

µQa − µda − µϕ = 0 , (3.8)

µla − µea − µϕ = 0 . (3.9)

Sphalerons They are two types of sphalerons processes in the SM corresponding to the two
(non-abelian) gauge groups SU(2) for weak interactions and SU(3) for strong interactions.
Accordingly, we have strong QCD sphalerons [99,100], which at equilibrium impose∑

a

(2µQa − µua − µda) = 0 , (3.10)

while weak sphalerons [96,101] at equilibrium give∑
a

(3µQa + µla) = 0 . (3.11)

We insist that all these relations are only true if the corresponding process is at thermal equi-
librium. The equilibrium condition of a certain process is usually estimated by comparing, at
a given temperature T , the rate Γ(T ) of the process to the Hubble rate H(T ). We need the
process to be faster than the expansion of the Universe, i.e. Γ(T ) > H(T ), in order to consider
it at thermal equilibrium. As the Universe expands and the temperature evolves, processes will
arrive or depart from equilibrium, and which relations among chemical potentials we can use
depends on the temperature.

In a study of baryogenesis and leptogenesis, the relevant combination of chemical potentials
describing the baryon B and lepton L numbers are

µB ≡
∑
a

(2µQa + µua + µda) =
∑
a

µBa , (3.12)

µL ≡
∑
a

(2µla + µea) =
∑
a

µLa . (3.13)
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From the previous relations, as long as weak sphalerons and Yukawa interactions are at equi-
librium, one has

µB = 4
∑
a

µQa ≡ 4µQ , (3.14)

µL =
∑
a

(2µla + µea) = 3µϕ + 3
∑
a

µla = 3µϕ − 9µQ . (3.15)

Moreover, the hypercharge neutrality implies

2µϕ = −
∑
a

(µQa + 2µua − µda − µla − µea)

= −
∑
a

(2µQa + 3µϕ − 2µla + µϕ)

= −12µϕ − 8µQ (3.16)

such that 7µϕ = 4µQ and ultimately

µL = −51

7
µQ , (3.17)

µB−L =
79

7
µQ . (3.18)

One can recover the well-known [44,102] relation

µB =
28

79
µB−L . (3.19)

This last equation is fundamental for leptogenesis. It explains how a B − L (or simply L)
asymmetry is converted into the desired baryon asymmetry. Note that this holds only before
the weak sphalerons decouple at Tsph ≃ 130 GeV [86]; any leptogenesis scenario, trying to ex-
plain the baryon asymmetry from the lepton sector, should be realized at higher temperatures
T > Tsph.

It will also be useful later to relate the (flavored) ∆a ≡ nB/3−nLa asymmetry to other chemical
potentials. In particular, leptogenesis will be concerned with sterile neutrinos interacting (via
Yukawa couplings) to the lepton and Higgs fields. We therefore look for relations between µla ,
µϕ and ∆a,

µla

T
=
∑
b

C l
ab∆b ,

µϕ

T
=

1

2

∑
b

Cϕ
b ∆b , (3.20)

µla + µϕ

T
=
∑
b

(
C l

ab + Cϕ
b /2
)
∆b ≡

∑
b

Aab∆b , (3.21)

where ∆a is the (rescaled) number density associated to the B/3− La number, related to the
chemical potentials in the SM by

∆a =
1

6

µ∆a

T
=

1

6

[∑
b

1

3
(2µQb

+ µub
+ µdb)− (2µla + µea)

]
. (3.22)
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The matrices C l and Cϕ are determined (after some algebra) from the equilibrium conditions
described above (see for example [103–105]). They also only make sense for the flavors that are
close to thermal equilibrium and are entitled to have a chemical potential. In the lepton sector,
the τ is the first to equilibrate around T ∼ 1012 GeV, followed by the muon µ at T ∼ 1010 GeV,
and finally the electron e has the smallest Yukawa couplings in the SM and equilibrates around
T ∼ 106 GeV (for a more detailed study of equilibration rates, see [106]). This determines four
ranges of temperature in which 0, 1, 2 or 3 lepton flavors are defined. In this study, we will only
be concerned with temperatures below T < 1012 GeV, so let us only mention the three other
range of temperatures. We give the different set of matrices taken from [103] summarized in
Table 3.1. The boundaries are not exact and could be refined by considering the equilibration
temperature of each Yukawa interaction more carefully; we will however fix them like this in
this study.

1012 GeV > T > 1010 GeV 1010 GeV > T > 106 GeV 106 GeV > T

C l = 1
460

(
−196 24

9 −156

)
C l = 1

2148

−906 120 120

75 −688 28

75 28 −688

 C l = 1
711

−221 16 16

16 −221 16

16 16 −221


CH = − 1

230 (41 56) CH = − 1
358 (37 52 52) CH = − 8

79 (1 1 1)

A = −1
460

(
237 32

32 212

)
A = −1

2148

1017 36 36

36 844 128

36 128 844

 A = −1
711

257 20 20

20 257 20

20 20 257



Table 3.1: Relevant matrices for different range of temperatures.

3.2 Sterile neutrinos and the type-I Seesaw

As we just showed, a theory that can produce a lepton asymmetry could explain the Baryon
Asymmetry of the Universe (BAU). Leptogenesis describes the set of theories that aim at pro-
ducing a lepton asymmetry in the SM, for example by extending it with additional particles,
interacting with the lepton sector. To do so, sterile neutrinos, also referred to as right-handed
neutrinos, are interesting candidates; they are already considered for a physical problem that
is not related to the BAU, namely explaining the masses of active neutrinos.

Indeed, active neutrinos in the SM are the only fermions for which we have only detected
a left-handed particle (and right-handed antiparticle). In particular, in the SM, they have no
Yukawa interactions with the Higgs field and are therefore predicted to be massless. This pre-
diction has been contradicted for over 20 years now by observations of neutrino oscillations,
that is, the fact that a neutrino in a given flavor can be later measured in another flavor. They
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were first evidenced with atmospheric neutrinos by Super-Kamiokande [13] in 1998 and not
long after with solar neutrinos by the Sudbury Neutrino Observatory (SNO) [14] in 2001-2002.
These oscillations were verified in numerous experiments and in various contexts since then,
and these achievements were acknowledged by the 2015 Nobel Prize awarded to Takaaki Kajita
and Arthur B. McDonald. Let us briefly explain why oscillations imply that neutrinos have a
mass. Consider for instance a situation with two flavors of neutrinos, say the electron neutrino
|νe⟩ and the muon neutrino |νµ⟩. They form a two-dimensional Hilbert space. Consider the
emission of an electron neutrino at a time t = 0, in a given experiment. It corresponds to a
flavor eigenstate (an eigenstate of weak interactions) that does not necessarily coincide with the
mass eigenstates (|ν1⟩ , |ν2⟩) that diagonalize the Hamiltonian. The emitted electron neutrino
is then a linear combination of the mass eigenstates,

|ν(t = 0)⟩ = |νe⟩ = cos (θ) |ν1⟩+ sin (θ) |ν2⟩ . (3.23)

Considering a spatial momentum k for the neutrino, each eigenstate νi of the Hamiltonian has
a definite energy Ei =

√
|k|2 +m2

i ≃ |k|+m2
i /(2|k|) in the relativistic case (where the mi’s are

the masses, but could be zero). As they propagate, the energy eigenstates evolve with a phase
e−iEit such that

|ν(t)⟩ = cos (θ)e−iE1t |ν1⟩+ sin (θ)e−iE2t |ν2⟩ . (3.24)

The "survival" probability that our emitted neutrino remained an electron neutrino after trav-
elling a distance L = ct is given by the projection on |νe⟩ of the state at time t,

Pνe→νe(t) ≡ |⟨νe| ν(t)⟩|
2 = 1− sin2 (2θ) sin2

(
E2 − E1

2
t

)
= 1− sin2 (2θ) sin2

(
m2

2 −m2
1

4|k|
t

)
. (3.25)

Here comes the crucial observation: if the masses were degenerate m1 = m2, the probability
Pνe→νe is constant equal to 1 at all times, and no oscillations should occur. The fact that we
observe oscillations contradicts this and means that the two masses m1 and m2 are different.
In particular, one of the two masses (at least) should be non-zero.

In the Standard Model we have three neutrino flavors, so we consider three mass eigenstates
m1, m2 and m3. In neutrino oscillations, m2

2 is measured to be greater than m2
1 from solar

neutrinos, while the difference m2
3 − m2

1 is only known in absolute value from atmospheric
neutrinos. Therefore, m2

3 could be greater or smaller than the two other masses. These two
options are not yet fully differentiated by experiments and observations. The ordered choice
m1 < m2 < m3 is called Normal Ordering (NO), while the second choice m3 < m1 < m2

is called Inverse Ordering (IO). Moreover, experimentally, ∆m2
21 ≪ |∆m2

31| ≃ |∆m2
32|. This

means we have two non-zero and distinct mass gaps, and therefore at least two non-zero masses.
The recent NuFIT 5.3 (2024) [107] gives the best fit for the squared mass differences,

∆m2
21 = (7.41± 0.61)× 10−5 eV2 , (3.26)

∆m2
31 = (2.505± 0.08)× 10−3 eV2 [NO] , ∆m2

32 = − (2.487± 0.08)× 10−3 eV2 [IO] , (3.27)
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where uncertainties were given at the 3σ confidence level. The squared mass gap ∆m2
21 mea-

sured from solar neutrinos is fitted to the same value in both ordering, while the squared mass
gap ∆m2

3l from atmospheric neutrinos depends on the ordering, ∆m2
3l = ∆m2

31 > 0 for NO,
∆m2

3l = ∆m2
32 < 0 for NO.

A simple way to explain these oscillations is to allow the neutrinos to have a Yukawa in-
teraction with a right-handed partner (which remains to be detected). The neutrino masses
would then be given by the Higgs mechanism, in the same way as all the other fermion masses in
the SM. Oscillation experiments then tell us what value the mass differences between different
mass eigenstates should be in order to reproduce the oscillations.

But even if we introduce right-handed partners to the neutrinos, it still remains mysterious
why their masses are so light. While neutrino oscillations don’t fix the absolute value of the
masses and only the squared mass differences, they give an idea of the neutrino mass scale, which
without strong fine-tuning would be expected to be below the eV scale. Moreover, cosmological
constraints independently provide an upper bound on the sum of the neutrino masses [3]∑

i

mi < 0.12 eV (95% C.L.) . (3.28)

Taking neutrinos of masses around 0.1 eV leaves a gap of 6 orders of magnitude with the
lightest particle in the SM, the electron, with its mass of 511 keV. This large separation of
scales between neutrinos and the rest of the SM calls for an explanation. A way to explain this
is called the Seesaw mechanism.

Seesaw mechanism There exists different types of Seesaw mechanisms. The first kind to
have been proposed and that was named "Seesaw" by Yanagida in 1979 is the type-I Seesaw
[108–111]. It involves massive Majorana sterile neutrinos which, in the original version of the
type-I Seesaw, are very heavy such that it acts as a "seesaw", precisely, and makes the active
neutrinos light. There also exists two other types of seesaw mechanisms, the type-II [112–115]
which involves a scalar electroweak triplet, and the type-III [116,117] which involves fermionic
electroweak triplets. The type-I Seesaw is by far the most popular and is the one we work with
in this thesis.

We mentioned that right-handed neutrinos (which are chiral fermions) would allow a Dirac
mass for the active neutrinos. For the type-I Seesaw, we actually need Majorana fermions. A
Majorana particle is described by a spinor N ∈ C4 that satisfies

N c = N , N c ≡ CN
T
. (3.29)

The index c denotes the charge conjugation of the spinor, with C the charge conjugation matrix.
In the chiral representation, we make a choice for γµ and C

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
, C ≡ iγ0γ2 , (3.30)
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σi being the Pauli matrices. This is the mathematical formulation of a particle being its own
anti-particle. We note that a Majorana particle can’t carry any conserved quantum charge,
because the complex conjugation inverts the sign of the charge, so the reality condition imposes
the charge to be zero. In particular, in our model, Majorana neutrinos will be singlets under
the SM gauge group, henceforth called "sterile". For a spinor satisfying (3.29), we can write a
Lorentz invariant mass term

LM = −1

2
MN

c
N . (3.31)

The Majorana spinor N is often written in terms of a right-handed Weyl spinor NR such that

N ≡ NR + iσ2N
∗
R ≡ NR +N c

L , (3.32)

where the reality condition (3.29) is automatically satisfied for N . It is the sum of a right-
handed Weyl spinor, and its charge conjugate. This is why we refer to a Majorana neutrino
sometimes as "right-handed" neutrino, even if per se it has no chirality: we assimilate it to the
NR defined above. In the following, we will note NR the right-handed Weyl spinor from which
we construct the physical Majorana sterile neutrino N .

In order to explain the masses of the active neutrinos, we need more than one sterile neu-
trino. Let us consider nR neutrinos, that we label with the indices I, J = 1, ..., nR, each of them
with Majorana mass MI . The Lagrangian of the theory in this model is

L = LSM +

[
i

2
NRI /∂NRI −

1

2
NRIMIN

c
LI − YIaNRI ϕ̃

†la + h.c.
]
, (3.33)

where LSM is the Lagrangian of the SM, to which we added massive right-handed neutrinos
NRI , and Yukawa couplings YIa mixing them with the active charged leptons. After symmetry-
breaking, the Higgs field ϕ takes a non-zero vev that we define as v√

2
, where v = 246 GeV. We

can then regroup the terms mixing left- and right-handed neutrinos,

L ∋ −
(
1

2
NRIMIN

c
LI +

v√
2
YIaNRIνLa + h.c.

)

= −1

2

(
νcRa NRI

) M︷ ︸︸ ︷(
0 mDJa

mDIa MIδIJ

)(
νLa
N c

LJ

)
+ h.c. (3.34)

We introduced the Dirac mass matrix (mD)Ia ≡ YIa
v√
2
. The final mass eigenstates are found by

diagonalizing block-wise the above matrix M. This can be done perturbatively if we consider
the masses MI to be large compared to (the eigenvalues of) mD . In the end, one obtains

M→Mblock ≈
(
−mT

DM
−1
N mD 0

0 MN

)
≡
(
mν 0
0 MN

)
. (3.35)

We have thus obtained two families of neutrinos, one that is "heavy" with mass matrix
(MN)IJ ≡ MIδIJ , and one that is "light" of mass matrix mν ∝ M−1

N . Note that mν may
still be non-diagonal. We define the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [118–120]
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matrix U to be the unitary matrix between the eigenstates of flavor and the eigenstates of mass
for the light neutrinos, such that(

UT
)
ia
(mν)ab Ubj = miδij ≡ (Dν)ij , (3.36)

with mi’s being the masses of the light neutrinos. The PMNS matrix is similar to the CKM
matrix in the quark sector, and tells us about the mixing between different generations of
fermions. It is a three-by-three unitary matrix that can be written as the product of 3 rotation
matrices together with 6 phases. Not all of these phases are physical due to the possible
redefinition of the fields. If active neutrinos are Dirac particles, only one phase remains physical
(like in the CKM matrix) and is called δ. If they are Majorana fermions, the Majorana condition
forbids certain redefinitions, and 3 phases remain physical, the phase δ and two additional ones
that are called "Majorana" phases, noted α1 and α2. δ is related to CP-violation in neutrino
oscillations, while the Majorana phases are only involved in lepton number violating process
such as neutrinoless beta decay. Keeping the Majorana phases for generality, we can decompose
the PMNS matrix as

U ≡

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

P , (3.37)

with P = diag
(
eiα1/2, eiα2/2, 1

)
. We defined the compact notations cij ≡ cos (θ)ij, sij ≡ sin (θ)ij.

θ12, θ13 and θ23 are the different mixing angles. Various oscillations experiments are sensitive
to different parts of the PMNS matrix. θ12 turns out to be best constrained by measurements
of solar neutrino oscillations, θ23 is best constrained by atmospheric neutrinos, and θ13 is best
constrained in experiments with reactors. Their values given by NuFIT 5.3 (2024) [107], with
uncertainties at the 3σ level, are

θ12 = (33.67± 2.07)◦ , (3.38a)
θ13 = ( 8.54± 0.35)◦ , (3.38b)
θ23 = ( 49.2± 9.6)◦ , (3.38c)

We note that θ13 and θ12 have lower relative uncertainties than θ23. This is due to the fact
that θ23 is close to π/4, such that sin2 (2θ23) (which is the actual quantity determined in oscil-
lation experiments) is flat around this value. It is thus not known which octant (θ23 < π/4 or
θ23 > π/4) is more favorable.

Concerning the phases, the Majorana phases are not yet measured and would only be in-
volved in lepton-number-violating processes, for which we have no evidence yet. The δ phase
is CP-violating (δ ̸= 0, π) to a good confidence level (90%).

The Casas-Ibarra parametrization The Seesaw mechanism explains why the masses mi

can be small; the heavy Majorana masses MI suppress them. The model is constrained to
reproduce neutrino oscillations data, i.e. the correct masses of left-handed neutrinos and their
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mixing angles. Indeed, using the definition of mν and condition (3.36), we get

UTmT
DM

−1
N mDU = −v

2

2
UTY TM

− 1
2

N M
− 1

2
N Y U = −v

2

2

(
M
− 1

2
N Y U

)T
M
− 1

2
N Y U = Dν . (3.39)

We used the fact that MN is symmetric and positive in order to take its square root. We can
now note that, up to an orthogonal matrix, M− 1

2
N Y U is the square root of − 2

v2
Dν . Therefore,

we define

M
− 1

2
N Y U ≡ i

√
2

v
RD

1
2
ν →

v2

2i2

(
M
− 1

2
N Y U

)T
M
− 1

2
N Y U = D

1
2
ν

(
RTR

)
D

1
2
ν = Dν . (3.40)

R is an orthogonal matrix (that can be complex a priori) satisfying RTR = I. Thus, we recover
the good light neutrino masses and their mixing angles by parametrizing our Yukawa coupling
matrix

Y ≡ i

√
2

v
M

1
2
NRD

1
2
ν U
† . (3.41)

This is known as the Casas-Ibarra (CI) parametrization [121]. In this equation, U and Dν are
quantities related to the neutrino oscillation experiments. (MN)IJ =MIδIJ is the matrix of the
masses of the right-handed neutrinos, that we choose for our theory. R is an orthogonal com-
plex matrix that is not measurable in oscillations and mixing experiments; it is an additional
parameter in our theory. Its size will depend on the number nR of right-handed neutrinos that
we add.

A simple and yet useful case is for nR = 2. We have only two right-handed neutrinos, two
Majorana masses, and the complex matrix R is 2 by 3. Two sterile neutrinos can only ac-
count for two massive active neutrinos, so in this case, one of the masses mi of the left-handed
neutrinos is exactly zero (i.e. one of the entries in Dν is zero). We recall the two possi-
bilities compatible with neutrino oscillations: m1 < m2 < m3 (Normal Ordering (NO)), or
m3 < m1 < m2 (Inverse Ordering (IO)). In the case where we set the lightest mass to zero, it
corresponds to m1 = 0 for NO, and m3 = 0 for IO.

The complex orthogonal matrix R is then fixed to be a rotation matrix (up to a discrete
reflection) with one complex angle zR = zr + izi,

R =

(
0 cos zR − sin zR
0 sin zR cos zR

)
[NO] , R =

(
cos zR − sin zR 0
sin zR cos zR 0

)
[IO] . (3.42)

Even though it might be interesting to study the complete dependence of the problem on this
complex angle zR = zr + izi, we will make an assumption and fix the real part of this angle. It
can be realized that the amount of CP-violation in the Yukawa sector, quantified by

aCP ≡ Im
[(
Y Y †

)2
12

]
, (3.43)

is maximized (in absolute value) for zr ≡ π
4

[
π
2

]
, all other parameters being fixed. We will fix

zr = Re(z) = 3π/4 in the following.
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Counting the degrees of freedom in the sterile sector for two sterile neutrinos, we have two
parameters for the complex angle (only one left if we fix zr) and two masses M1 and M2. It is
convenient to define the average mass scale M and the degeneracy ∆M

M ≡ M1 +M2

2
, ∆M ≡M2 −M1 . (3.44)

We therefore have 4 parameters to work with and scan over in the sterile neutrino sector. In
addition to these parameters coming from the hidden sterile sector, some of the constants of the
PMNS matrix, related to SM neutrinos, are measured, but uncertainty bars can be large. This
is the case for the CP-violating phase δ, where it is not even clear yet if there is CP-violation
at all (i.e. δ could be 0 or π). Combined fits [122] of various experiments seem to favor a value
of δ ≈ 3π

2
which violates CP. Additionally, two Majorana phases α1, α2 are allowed but are not

measured yet. For the sake of simplicity, we will fix them,

δ =
3π

2
, α1 = α2 = 0 . (3.45)

The rest of the parameters, that is, the neutrino masses and the mixing angles in the PMNS
matrix, were taken from NuFIT 5.2 (2022) [122], assuming Normal Ordering and m1 = 0 (only
two sterile neutrinos). The central values and uncertainties of these parameters are summarized
in a table presented in Appendix A.

3.3 Thermal and resonant leptogenesis

The first attempt to explain the baryon asymmetry with sterile neutrinos can be traced back
to 1986, with the work of Fukugita and Yanagida [11]. In this scenario, sterile neutrinos are
driven away from thermal equilibrium when their interaction rate Γ(T ) with the SM plasma
becomes smaller than the Hubble rate H(T ). The condition

Γ(T ) < H(T ) (3.46)

is the out-of-equilibrium condition. Once they are out-of-equilibrium and overpopulated, they
will decay into leptons and anti-leptons in a non-symmetric way, characterized by a decay
CP-asymmetry ϵICP for each sterile neutrino flavor,

ϵICP ≡
Γ(NI → lϕ)− Γ(NI → lϕ∗)

Γ(NI → lϕ) + Γ(NI → lϕ∗)
. (3.47)

This model is called thermal leptogenesis. The dynamics of decays (and inverse decays) is
captured by Boltzmann equations [123, 124] (see [105, 125] for reviews on their derivation),
describing the evolution of a number density NNI

of sterile neutrinos, coupled to a lepton
asymmetry NL,

dNNI

dt
+ 3HNI = −γI

(
NNI

N eq
NI

− 1

)
(3.48)
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dNL

dt
+ 3HNL = −

∑
I

[
γI

NL

2N eq
l

− ϵICPγI

(
NNI

N eq
I

− 1

)]
. (3.49)

The lepton asymmetry NL ≡ Nl −Nl is the difference between the lepton and the anti-lepton
number densities. We also defined the equilibrium densities

N eq
l = gW

∫
d3k
(2π)3

e−|k|/T =
gWT

3

π2
, (3.50)

N eq
NI

= gN

∫
d3k
(2π)3

e−(|k|
2+M2

I )
1/2/T = gN

M2
I T

2π2
K2(M/T ) , (3.51)

with gW = 2 the SU(2) degrees of freedom of the lepton doublet and gN = 2 are the helicity
degrees of freedom of the Majorana sterile neutrinos.

The first equation (3.48) describes how the population of sterile neutrinos is approaching equi-
librium. For NNI

> N eq
NI

, the right-hand term is negative and reduces the population with a
decay rate γI . The second equation (3.49) describes the evolution of the lepton asymmetry. It
is reduced by inverse decays washing out the asymmetry, while it receives a source term coming
from the sterile neutrino decays characterized by a CP-asymmetry ϵICP.

We must stress that these equations only describe the dominant processes which are decays
and inverse decays NI ↔ lϕ. They can be refined by including scatterings and diffusion
(see [105,125] for reviews additional processes). Moreover, we worked in the one-flavor approx-
imation for simplicity, meaning that we neglected any flavor effect in the lepton asymmetry.
This can be fully justified only for temperatures T > 1012 GeV [106], when all leptons are out
of equilibrium, as mentioned earlier. Below that temperature, lepton flavors are differentiated
and flavor effects should be taken into account [104,126–129].

The Boltzmann equations can be obtained from particle physics amplitudes, integrated over
momentum. The integration is done by assuming kinetic equilibrium, meaning that the phase
space distribution is taken proportional to the number density, for instance

fI(E) =
NNI

N eq
NI

f eq
I (E) . (3.52)

Neglecting spin-statistics, the equilibrium phase space distribution is the Maxwell-Boltzmann
f eq
I (E) = e−E/T . Various quantities can then be calculated as averages over momentum,

γI = 2ΓI

∫
d3k
(2π)3

MI

(|k|2 +M2
I )

1/2
e−(|k|

2+M2
I )

1/2/T = N eq
NI
ΓI
K1(MI/T )

K2(MI/T )
, (3.53)

where K1 and K2 are modified Bessel functions of the second kind. ΓI = Γ(NI → lϕ)+Γ(NI →
lϕ∗) is the (CP-even) total decay rate.

The crucial element of these equations is the CP-asymmetry ϵICP. Successful leptogenesis re-
quires a sufficiently large value of this parameter, which depends on the Yukawa couplings
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and the masses of the sterile neutrinos. Calculating the decay amplitudes at zero tempera-
ture [125,130–133], we obtain two contributions to ϵICP,

ϵICP = ϵICP,V + ϵICP,wave , (3.54)

where

ϵICP,V =
1

8π

∑
J

Im
[(
Y Y †

)2
IJ

]
(Y Y †)II

f

(
M2

J

M2
I

)
, (3.55)

with f(x) =
√
x
[
1− (1 + x) ln

(
1+x
x

)]
, and

ϵICP,wave =
1

8π

∑
J

Im
[(
Y Y †

)2
IJ

]
(Y Y †)II

MIMJ

M2
J −M2

I

, (3.56)

ϵICP,V is a vertex contribution, corresponding to loop-correction to the vertex NI → lϕ, while
ϵICP,wave is a wave-function contribution corresponding to flavor mixing during the propagation
of sterile neutrinos NI → NJ .

When the sterile neutrinos are hierarchical (for two sterile neutrinos, M1 ≪ M2), the two
contributions are of the same order. The CP-asymmetry in decays is then important only for
large Yukawa couplings, which imposes that the sterile neutrino masses are large. If we want to
reproduce enough baryon asymmetry, this then sets a lower bound on the mass M1, known as
the Davidson-Ibarra bound [134]. The exact bound can depend on the initial sterile neutrino
population as was shown in [135], but the bound roughly says we need M1 > 109 GeV for
thermal leptogenesis to work.

Such high masses make a direct detection of sterile neutrinos impossible in any foreseeable
future. The bound can however be circumvented by abandoning the assumption of hier-
archical sterile neutrinos. Indeed, ϵICP can be made large for degenerate sterile neutrinos
M2 −M1 ≪ M1,M2, which enhance the wave-function contribution. Such a degeneracy al-
lows successful thermal leptogenesis for masses well below the Davidson-Ibarra bound. This
regime is known as resonant leptogenesis.

3.4 ARS leptogenesis

Another option for generating a lepton asymmetry with sterile neutrinos was proposed by
Akhmedov, Rubakov and Smirnov (ARS) in 1998 [136]. It is a scenario based, not on decays,
but on flavor oscillations in the sterile neutrino sector, which are CP-violating. We will call this
mechanism ARS leptogenesis; it can also be referred to as leptogenesis with sterile neutrino
oscillations in the literature. Contrary to thermal and resonant leptogenesis, the sterile neu-
trinos are relativistic during most of the period of interest, with masses around the GeV scale.
Moreover, they are assumed to be absent of the plasma initially, not at thermal equilibrium.
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The lepton asymmetry is then created as sterile neutrinos are being produced; this can be called
the freeze-in scenario.

In ARS leptogenesis, a crucial ingredient is flavor mixing, correlation between sterile neutrino
flavors, that oscillates as the sterile neutrinos propagate. The dynamics of these oscillations
is then best described by considering the (rescaled) sterile neutrino density matrix (for each
helicity h), which is a matrix in the space of sterile neutrino flavors

nh = δnh + neqI , (3.57)

with neq ≡ 3ζ(3)/(4π2) the rescaled equilibrium distribution (for a single helicity) of a rela-
tivistic (effectively massless) fermion. The sterile neutrino density matrix nh and its deviation
from equilibrium δnh are hermitian matrices. Sterile neutrinos couple to the (rescaled) asym-
metry ∆a ≡ nB/3 − nLa , a combination of the baryon and flavored lepton asymmetries. It is a
convenient quantity to consider, because

∑
a∆a = nB−L is the density of B − L asymmetry,

which is preserved in the SM. Note that we are working with the rescaled number densities (see
the definition (2.39)) where we divide by T 3, including the dilution from the expansion of the
Universe. These quantities obey the equations [136–138]

dδnh

dt
= −i

[
⟨H0⟩+

〈
Hh

th

〉
, δnh

]
− 1

2
{⟨Γh⟩ , δnh}+ neq

∑
a

〈
Γ̃h,a

〉 µa + µϕ

T
, (3.58)

d∆a

dt
= Tr [⟨Γa⟩]

µa + µϕ

T
−
∑
I,J,h

〈
Γ̃h,a

〉
JI

(δnh)IJ . (3.59)

The sterile neutrino density matrix δnh is coupled to the lepton asymmetry via the chemical
potentials µa of the lepton flavor a and µϕ of the Higgs field. The latter are directly related by
the relation (3.21) to ∆a from our discussions in the previous section. For two sterile neutrinos,
the diagonal terms δnh,11/22 correspond to the deviation from equilibrium of the population in
each flavor. The off-diagonal term δnh,12 corresponds to quantum flavor mixing.

Equation (3.59) describes the evolution of the asymmetry, which is washed out by inverse
processes ∝ (µa + µϕ) /T that tend to bring the asymmetry back to zero. It is in competition
with a source term ∝ δnh coming from the interactions with the sterile neutrinos.

Equation (3.58) is a matrix equation with several terms involving matrices with flavor in-
dices. First, the commutator with the Hamiltonian describes oscillations, as we will see soon.
The Hamiltonian contains two contributions: a vacuum Hamiltonian H0 given by the energy
in the mass eigenbasis,

(H0)IJ = δIJ
(
|k|2 +M2

I

)1/2
, (3.60)

and a thermal Hamiltonian
〈
Hh

th

〉
, corresponding to thermal masses, given by the Yukawa

couplings 〈
H+

th

〉
≃ O(10−1) T

(
Y Y †

)
,
〈
H−th
〉
≃ O(10−1) T

(
Y ∗Y T

)
. (3.61)

We detail in a later section (section 7.2) how the pre-factors are obtained, and how the thermal
average ⟨ ⟩ is taken. The important point we want to make here is that the thermal Hamilto-
nian is given by a matrix (Y Y † or Y ∗Y T ) that is non-diagonal in the mass eigenbasis. It also
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differentiates between the two helicities.

In addition, we have several collision terms in (3.58): the bracket with ⟨Γh⟩ corresponds to
production of sterile neutrinos, bringing them closer to equilibrium, while the term

〈
Γ̃h,a

〉
cou-

ples them to the lepton asymmetry in the flavor a. Both are given by the Yukawa couplings,
with terms of the form

⟨Γ+⟩ ≃ O(10−2) T
(
Y Y †

)
, ⟨Γ−⟩IJ ≃ O(10−2) T

(
Y ∗Y T

)
, (3.62)

2
〈
Γ̃+,a

〉
≃ ⟨Γ+,a⟩ ≃ O(10−2) T

(
Y·aY

†
a·
)
, −2

〈
Γ̃−,a

〉
≃ ⟨Γ−,a⟩ ≃ O(10−2) T

(
Y ∗·aY

T
a·
)
. (3.63)

In the second line, we extracted the contribution to flavor a from the Yukawa matrices,(
Y·aY

†
a·
)
IJ
≡ YIaY

∗
Ja. We make the same observation as before that these are (complex) matrices

corresponding to a different basis than the mass eigenbasis. In particular, the production rate
contains induces flavor mixing, due to off-diagonal elements ⟨Γh⟩12, for two flavors for example.
This off-diagonal production, together with oscillations, is a crucial ingredient for successful
leptogenesis. Simultaneously, the collision term also reduces the diagonal elements δnh,11/22,
which means bringing the population of each sterile neutrino flavor towards equilibrium.

We now explain how the oscillations occur. The commutator with the vacuum Hamiltonian H0

describes flavor oscillations coming from the vacuum masses. The Hamiltonian coming from
thermal masses can be neglected for our discussion here. For a given momentum k, H0 is a
diagonal matrix

(H0)IJ = δIJ
(
|k|2 +M2

I

)1/2 ≃ δIJ

(
|k|+ M2

I

2|k|

)
, (3.64)

where we used the relativistic approximation in the second equality. In the equation for δnh,
it contributes as an oscillation term

dδnh,IJ

dt
= −i

〈
1

2|k|

〉(
M2

I −M2
J

)
δnh,IJ + ... (3.65)

In particular, for two sterile neutrinos, only the off-diagonal term δnh,12 oscillates, at a typical
rate 〈

M2
2 −M2

1

2|k|

〉
∼ M2

2 −M2
1

2T
≡ ω12(T ) . (3.66)

We used the fact that the (thermal) average of momentum is of the same order as the temper-
ature. Temperature is however evolving along with the expansion of the Universe, so that the
frequency ω12 grows with time. Using the correspondence (2.45), we can better describe the
evolution in terms of z = Tref/T ,

dδnh,12

dz
∼ −i aR

Tref

M2
2 −M2

1

2T 2
δnh,12 + ... = −iaR (M2

2 −M2
1 )

2T 3
ref

z2δnh,12 + ... (3.67)

If vacuum oscillations were all there was, the off-diagonal term would be oscillating like

δnh,12(z) ∼ δnin
h,12 exp

(
−iaR (M2

2 −M2
1 )

6T 3
ref

z3
)
. (3.68)
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This determines the typical value of z over which oscillations occur, defined by [137]

zARS
osc ≡

[
T 3

ref

aR (M2
2 −M2

1 )

]1/3
, (3.69)

or equivalently a temperature of oscillation

TARS
osc ≡

[
aR
(
M2

2 −M2
1

)]1/3
. (3.70)

Note that the power 1/3 came from integrating the temperature-dependent frequency ω12. This
temperature scale will be important later for discussions in the case with a phase transition.

Of course, oscillations are only possible if δnh,12 is produced in the first place, i.e. we want to
have δnin

h,12 ̸= 0 in the oscillation (3.68). This is why the (off-diagonal) production by the ⟨Γh⟩
term is important. The sterile neutrinos are therefore produced from the plasma, trying to reach
thermal equilibrium. They are produced in the interaction basis, given by the Yukawa couplings
Y Y †/Y ∗Y T in the ⟨Γ±⟩ term. This basis is misaligned with the mass eigenbasis, where vacuum
masses drive the oscillations. This misalignment is essential to have CP-violating oscillations.
In addition, the rate of creation of δnh,12 is different for the two helicities, which leads to an
asymmetry δn+,12 − δn−,12 ̸= 0 between them.

The final step in ARS leptogenesis is the conversion of the helicity asymmetry into a lep-
ton asymmetry. This can be understood quite easily by looking at the right-hand term of the
equation (3.59). The source term depends on the helicity asymmetry,∑

I,J,h

〈
Γ̃h,a

〉
IJ
δnh,JI ∼ O(10−2) T Re [Y2aY

∗
1aδn+,12 − Y ∗2aY1aδn−,12]

∼ O(10−2) T (Re [Y2aY
∗
1a]Re [δn+,12 − δn−,12]− Im [Y ∗IaYJa] Im [δn+,12 + δn−,12]) .

(3.71)

A lepton asymmetry can then be produced from the helicity asymmetry; at this stage, flavor
effects are still very important and more could be said. We will however leave this discussion
for later in chapter 7, and refer the reader to the review [137] for more details. As a summary,
we will say that ARS leptogenesis relies on the simultaneity of production and oscillation of
sterile neutrinos. The basis in which they are produced (given by ⟨Γh⟩) is misaligned, in a
CP-violating way (with the complex Yukawa couplings), compared to the basis in which they
oscillate (given by the vacuum Hamiltonian H0). This produces an helicity asymmetry that
sources the lepton asymmetry.

As a final note, it was shown quite recently [139] that ARS leptogenesis and resonant lep-
togenesis can be seen as two sides of the same coin, two solutions of the same equations. As
was already pointed at by previous studies [132, 135, 140–143], one can recover resonant lepto-
genesis from the equations of ARS leptogenesis. The mixing contribution to ϵCP in resonant
leptogenesis is captured by the off-diagonal term δnh,12 in the sterile neutrino density matrix.
Integrating it out of the dynamics leads to effective classical Boltzmann equations with mixing
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included in ϵCP. The two scenarios therefore share a common ground and both rely on mix-
ing between the sterile neutrino flavors. They differ however in how sterile neutrinos deviate
from equilibrium when the asymmetry is created; in resonant leptogenesis, they drop out of
thermal equilibrium because the thermal distribution becomes Boltzmann-suppressed, while in
ARS leptogenesis, their density is zero initially. This leads to different physical mechanisms:
out-of-equilibrium decays (freeze-out) for resonant leptogenesis, out-of-equilibrium production
(freeze-in) for ARS leptogenesis.

In the present work, we will also recover both regimes from the same equations, but they
will be slightly modified as we consider sterile neutrinos affected by a phase transition.

3.5 Scalar extension and FOPT

We detailed how massive sterile neutrinos could produce a lepton asymmetry, either via their
decays or via their flavor oscillations. We introduce in this section a different approach, used in
this thesis, in which a new scalar interacts with the sterile neutrinos, replacing the mass term

−1

2
N

c

IMINI → −
1

2
λISN

c

INI . (3.72)

Note that the constants λI are dimensionless. The sterile neutrinos are therefore massless,
unless S takes a non-zero vev. There exists a vast range of scenarios in which the scalar field
experiences a phase transition to acquire this vev. This is the case for example in Grand Unified
Theories, where S is associated to the breaking of a B − L gauge theory [144–147], or in con-
formal models [18–21] through the Gildener-Weinberg mechanism [148]. In all these cases, the
sterile neutrinos then obtain their Majorana masses needed to explain the neutrino oscillations
experiments.

We will assume the scalar field S undergoes a First-Order Phase Transition (FOPT), like
the ones described in section 2.4, at a certain nucleation temperature Tn. As the FOPT goes
on, regions of space are converted into true vacuum, forming bubbles of true vacuum inside the
rest of the space in a false vacuum state. The bubbles expand, sweeping through the plasma
of particles and end up covering all the space (see Figure 3.1).

In this work, we will remain agnostic on how the FOPT happens exactly, as long as it produces
expanding bubbles of true vacuum, and we will focus only on the dynamics of sterile neutrinos
in this context. There are numerous phenomenological constraints on the parameters of the
scalar potential and its interactions with the SM [149], e.g. scalar mixing with the Higgs field.
For simplicity, we will take a scalar field totally decoupled from the SM.

The main parameters from the scalar sector of interest for our study will be the nucleation
temperature Tn at which bubbles form, and the vev vS taken by the scalar field once the FOPT
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Figure 3.1: Schematic representation of the bubbles expanding during a FOPT. The vev of the
scalar field fixes the mass of the sterile neutrinos, which then varies with time.

is completed. In the true vacuum, the masses of the sterile neutrinos will be given by

MI0 = λIvS . (3.73)

3.5.1 Time-dependent masses

During a FOPT, we described in section 2.4 how bubbles can nucleate, forming an expanding
region of true vacuum (where the vev of the scalar field is vS). For our toy model, we found
that the profile of the field during the expansion of a critical bubble was given by

S(t, r) =
vS
2

(
1 + tanh

(
vw∆t− r

Lw

))
=
vS
2

(
1 + tanh

(
vw(t− tnucl − r/vw)

Lw

))
. (3.74)

r is the radial position with respect to the center of the bubble. vw is the velocity of the bubble
wall and Lw is its spatial thickness. The sterile neutrino mass is proportional to the value of
the field, such that

MI(t, r) = λIS(t, r) =
MI0

2

(
1 + tanh

(
vw(t− tnucl − r/vw)

Lw

))
. (3.75)

At a fixed position in space r, the mass evolves at a certain rate in time γ given by

γ =
vw
Lw

. (3.76)

We now make some assumptions to simplify the space-time dependence of the mass. First of all,
in supercooled FOPT, as was considered in the original Mass Gain scenario [32], the bubbles
are typically expanding at velocities close to the speed of light, so vw ≃ 1 and γ ≃ L−1w . It was
also argued in [32, 64] that for relativistic walls, all particles in the plasma enter the bubble
without reflection. We will assume this is the case in our work, i.e. bubbles expand fast enough
so that all particles enter the bubble and no reflection occurs. Roughly speaking, the transition
corresponds in this case to a "switching on" of the sterile neutrino masses.
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Having this in mind, we will simplify our problem and consider only the time dependence
of the mass profile

MI(t, r) ≃MI(t) =MI0
1 + tanh (γ∆t)

2
, with ∆t = t− tnucl . (3.77)

This is an approximation, but it describes well the fact that, at a time t = tnucl, the sterile neu-
trinos all start feeling a mass at the same time, as the fast expanding bubbles sweep through the
plasma. It will allow us to describe the transition explicitly with the analytical profile (3.77).

Let us say a few words on the determination of the time rate γw. The connection between
γ ≃ L−1w and the other parameters of the FOPT has been discussed in the literature in the
context of the electroweak phase transition [63, 150], and no exact relation has been derived.
The typical scale of the bubble expansion has only be estimated and is dependent on the scalar
sector and how the bubbles develop, but it is related to the transition happening at the scale
Tn. As an estimate, in order to reduce the complexity of our analysis, we take this parameter
to be equal to the temperature at the time of nucleation,

γ = Tn . (3.78)

We will keep this assumption in our numerical study. Consideration of more realistic profiles
would require more attentive work and a full numerical resolution the bubble profile at any
temperature.

3.5.2 Vacuum expectation value and critical temperature

The FOPT actually starts at a certain critical temperature Tc when the global minimum of the
scalar potential changes, and bubbles of true vacuum are created at the nucleation temperature
Tn ≤ Tc. In general, these temperatures should be different. In the dynamics we study, we are
interested in the passage of the bubble, so on what happens at temperature Tn. The masses of
the sterile neutrinos, however, are given by the vev vS of the scalar field that usually closely
relates to the critical temperature. For a strongly first-order FOPT, as mentioned in section
2.4, we typically have vS ≳ Tc. It is also possible to make Tc ≫ Tn in a supercooled FOPT.
This would allow us to obtain masses well above the nucleation temperature Tn, even though
the coupling λ of sterile neutrinos to the scalar field is of order one, as

MI0

Tn
=
λIvS
Tn

≳ λI
Tc
Tn

. (3.79)

A priori, Tc/Tn can be as large as O(10) for a supercooled FOPT. This means the ratio M/Tn
can be made large even if the coupling λI to S should remain smaller than order 1. In this
work, because we remain agnostic about the details of the FOPT, Tc, Tn and λI are independent
parameters that we should scan over. However, the physics we are interested in are mostly
sensitive to the mass M and the temperature of the bubble nucleation Tn. We will therefore
consider M and Tn as the relevant independent parameters, using Tc/Tn to create a hierarchy
between λI and M/Tn when we would like to consider M/Tn > 1.
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3.5.3 Additional effects: thermal masses

In addition to experimenting a phase transition, the scalar field can have other effects on the
sterile neutrinos, that we mention briefly here.

One effect that we will take into account in the final chapter is the thermal masses induced
for the sterile neutrinos from their interaction with the scalar field. Given the coupling term
−1

2
λISN

c

INI , if the field S has thermalized to a temperature T , it will induce a thermal mass
for the sterile neutrinos given by [37,39]

(
MS

th,I

)2
=
λ2I
12
T 2 . (3.80)

This term is only relevant if S has thermalized with the SM plasma. We assumed earlier for
simplicity that the scalar S is decoupled from the SM. If this is the case, its only coupling to
the fields of interest is the coupling to the sterile neutrinos, which might themselves not be in
thermal equilibrium. For the rest of the study, we will then assume that S is absent from the
plasma, and will only come back to this assumption later, in chapter 7.

Other than the thermal masses, we will neglect all other effects of adding the scalar field,
in this study. In principle, the coupling term −1

2
λISN

c

INI opens up annihilation and produc-
tion channels for the sterile neutrinos. Indeed, either the scalar decays into sterile neutrinos
S → NN , or the sterile neutrinos annihilate into the scalar field NN → S. The first process
could be relevant for light sterile neutrinos, but would be suppressed if the scalar was not
present in the plasma, as we assumed. The annihilation processes can be made negligible if we
consider a large mass for the scalar field, for example. We refer the reader to studies [33,35,39]
of the impact of an extra scalar field on sterile neutrinos for a more detailed discussion.

3.6 Summary and relevant temperature scales

We conclude these introductory chapters on the early Universe and leptogenesis by a short
summary of the epochs of interest and how they compare to each others. On Figure 3.2, we
put the temperature (and time) scales of relevance to our work. After inflation, the Universe
is radiation dominated. As we saw, leptogenesis can happen at different scales; at large scales
(around T ∼ 109 GeV), thermal leptogenesis ("therm. lepto." on the sketch) is relevant,
while at lower temperatures (around T ∼ 103 GeV) the so-called ARS leptogenesis ("ARS
lepto.") is relevant. Two phase transitions are expected to have happened in the SM, the
ElectroWeak Phase Transition ("EWPT" on the sketch) and the QCD Phase Transition ("QCD
PT"). Current constraints on First-order Phase Transitions (FOPT) come mainly from Big
Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background (CMB), and fix Tn ≳ 1
MeV for a FOPT of strength αn = 1. Projection can be made for future GW detectors which
will test higher temperatures, Tn up to 106 GeV for a phase transition of strength αn = 1. In this
work, we will consider a new phase transition, driven by an extra scalar S. It will affect sterile

45



Figure 3.2: Schematic picture of the early Universe. Time is growing from left to right, tem-
perature from right to left. The dark-red area corresponds to the excluded region for a FOPT
of fixed strength αn = 1, while the light-red area is a projected exclusion region from future
GW experiments, for the same strength. Scales on the axis are not respected and the various
points are only indicative of the typical time (or temperature) scales.

neutrinos, during their dynamics for the production of a lepton asymmetry. From the timeline
in Figure 3.2, a phase transition happening at the scales of leptogenesis could actually be
constrained by future GW experiments, and a theory of leptogenesis during a cosmological phase
transition is of phenomenological interest, relating GW detection, cosmological observations
(the BAU η) and particle physics searches (direct or indirect detection of sterile neutrinos).
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Part II

Dynamics during a cosmological phase
transition

This second part is more technical and develops the formalism for understanding the dy-
namics of the fields of interest in the context of a phase transition. First, we address the effect
of the transition itself on a sterile neutrino distribution in Chapter 4. We then move on, in
Chapter 5, to a more general description of the interacting fields in an expanding Universe,
using the Closed-Time-Path formalism for out-of-equilibrium fields.
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Chapter 4

Particle production of sterile neutrinos for
a time-dependent mass

The FOPT induces a time-dependent mass for the sterile neutrino, as the bubble sweeps through
the plasma. This has implications for the evolution of the field, and even for the definition of
the particle states. Indeed, the evolution of the mass modifies what we mean by states of well-
defined energies. This implies a change in the definition of creation and annihilation operators
for the sterile neutrinos, by a so-called Bogoliubov transformation. A direct consequence is
that a vacuum state before the FOPT will not appear empty anymore, after the FOPT. Sterile
neutrinos will get produced, as a consequence of the fact that the phase transition is injecting
energy in the plasma to produce a time-varying background, the time-varying mass.

Particle production from a time-dependent background occurs in other contexts, such as grav-
itational contexts, where space-time is curved. It has been studied extensively in the context
of inflation [151–153], dark matter production [154–156], and also the generation of a baryon
asymmetry in the so-called gravitational leptogenesis scenario [157,158].

For now, we are only concerned with the time dependence coming from the passage of bubbles
in the plasma. In particular, we will neglect the expansion of the Universe, in this chapter.
This is justified, if we recall the profile of the sterile neutrino masses during the FOPT

MI(t) =MI0
1 + tanh (γ∆t)

2
, (4.1)

with γ = Tn the temperature of the phase transition. It evolves over typical time scales
∆t ∼ T−1n , much shorter than the Hubble time H−1(Tn) = aR

Tn
T−1n ≫ T−1n . The dynamics of

the passage of the bubble is well separated from the expansion of the Universe, that we will
neglect here.

In this chapter, we will show how sterile neutrinos behave for a time-dependent mass, by
solving analytically the Dirac equation similarly to what was done in [159]. Note that this
work itself followed the steps of [160] which studied a space-dependent mass. We will then
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deduce how the number density of sterile neutrinos gets changed before and after the phase
transition. This first approach is conducted without interactions (only the time-varying mass).
A more complete description of interactions and flavor will be given in the next chapter.

4.1 Decomposition of the sterile neutrino field into momen-
tum modes

We are interested in the evolution of the sterile neutrino field during a phase transition, when
its mass is time-dependent. Because we neglect interactions for now, we consider only one
sterile neutrino flavor that we denote N , of mass M .

The most general decomposition into spatial momentum modes, in a spatially homogeneous
and isotropic Universe, of a single sterile Majorana neutrino field is given by

N(x, t) =
∑
h

∫
k

[
eik·x

(
Lh(t, |k|)
Rh(t, |k|)

)
⊗ ξkh âh,k + e−ik·x

(
−hR∗h(t, |k|)
hL∗h(t, |k|)

)
⊗ ξk−hâ

†
h,k

]
. (4.2)

Because initially (before the FOPT), the field is massless, we expand it in terms of âh,k / â†h,k,
the annihilation/creation operators for a massless sterile Majorana neutrino, spatial momentum
k and helicity h/2. N is a spinor in C4, where we used the tensor product ⊗ to write it in terms
of C2 vectors. Lh/Rh are (yet) arbitrary complex numbers, functions of time and momentum,
corresponding to the left- and right-handed parts of the field. The ξkh ’s are helicity eigenvectors,
satisfying the eigenvector equation

k · σ
|k|

ξkh = hξkh , with σ = (σ1, σ2, σ3) the Pauli matrices. (4.3)

In order to ensure that the field (4.2) is a Majorana field, we imposed

ξk+ = −iσ2ξk∗− , ξk− = iσ2ξ
k∗
+ . (4.4)

Explicit formulas for the helicity eigenvectors are given in Appendix B, with a description of
their properties.

4.2 Field equation

The Dirac equation for the field N is given by

i/∂N −M(t)N = 0 , (4.5)

which can be rewritten, in terms of the complex functions Lh and Rh,

i∂tLh + h|k|Lh −M(t)Rh = 0 , (4.6)

49



i∂tRh − h|k|Rh −M(t)Lh = 0 . (4.7)

The left- and right-handed parts of the fields are coupled by the mass term in these first-order
differential equations. This set of equations can be re-written as two decoupled second-order
differential equations

∂2tLh −
∂tM

M
∂tLh +

(
|k|2 +M(t)2 + ih|k|∂tM

M

)
Lh = 0 , (4.8)

∂2tRh −
∂tM

M
∂tLh +

(
|k|2 +M(t)2 − ih|k|∂tM

M

)
Rh = 0 . (4.9)

Note that if the mass is constant (∂tM = 0), we recover the Klein-Gordon equation for the field
mode of momentum |k|. It may in general be very complicated to solve these equations for an
arbitrary function M(t). However, as was shown in [159], analytical results can be derived for
the mass profile

M(t) =M0
1 + tanh (γt)

2
. (4.10)

Later on, for the study of the FOPT we will replace t by ∆t = t− tnucl. The equations for the
modes Lh and Rh can then be rewritten in terms of a better-suited variable Z,

Z ≡ 1 + tanh (γt)

2
, ∂t =

dZ

dt
∂Z = 2γZ(1− Z)× ∂Z , (4.11)

∂2t = 2γZ(1− Z)∂Z (2γZ(1− Z)∂Z) = 4γ2Z(1− Z)
[
Z(1− Z)∂2Z + (1− 2Z)∂Z

]
. (4.12)

We will, in the following, note with a prime the derivatives with respect to Z, and use

∂tM = 2γZ(1− Z)M ′ = 2γZ(1− Z)M0 = 2γ(1− Z)M(Z) . (4.13)

The equations (4.6), (4.7) become

2iγZ(1− Z)L′h + h|k|Lh −M0ZRh = 0 , (4.14)

2iγZ(1− Z)R′h − h|k|Rh −M0ZLh = 0 . (4.15)

It turns out that a solution is better found in terms of the sum and difference of those two
functions, defining

uh± ≡
1

2
(Lh ±Rh) , (4.16)

2iγZ(1− Z)u′h± + h|k|uh∓ ∓M0Zuh± = 0 . (4.17)

Acting with ∂Z on the two coupled first-order differential equations (4.17), we obtain two
independent second-order differential equations for uh+ and uh−

4γ2Z(1− Z)
[
Z(1− Z)∂2Z + (1− 2Z)∂Z

]
uh± +

(
|k|2 +M2

0Z
2 ± 2iγM0Z(1− Z)

)
uh± = 0

(4.18)
or equivalently

Z(1− Z)u′′h± + (1− 2Z)u′h± +

[
|k|2 +M2

0Z
2

4γ2Z(1− Z)
± iM0

2γ

]
uh± = 0 . (4.19)
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Following [159], we use a parametrization to factor out of the u functions certain (yet undeter-
mined) powers of Z and 1− Z,

uh±(Z) ≡ Zα(1− Z)βχh±(Z) . (4.20)

The derivatives give

u′h± =
[
αZα−1(1− Z)βχh± − βZα(1− Z)β−1χh± + Zα(1− Z)βχ′h±

]
=

[(
α

Z
− β

1− Z

)
χh± + χ′h±

]
Zα(1− Z)β , (4.21)

u′′h± =
[
α(α− 1)Zα−2(1− Z)βχh± − 2αβZα−1(1− Z)β−1χh± + β(β − 1)Zα(1− Z)β−2χh±

+2
(
αZα−1(1− Z)β − βZα(1− Z)β−1

)
χ′h± + Zα(1− Z)βχ′′h±

]
=

[(
α(α− 1)

Z2
− 2αβ

Z(1− Z)
+
β(β − 1)

(1− Z)2

)
χh± + 2

(
α

Z
− β

1− Z

)
χ′h± + χ′′h±

]
Zα(1− Z)β .

(4.22)

The equation (4.19) becomes one for χh±, where we have not yet fixed the values of α and β,

Z(1− Z)χ′′h± + (1 + 2α− 2(α + β + 1)Z)χ′h±

+

α2 + |k|2
4γ2

Z
+
β2 +

|k|2+M2
0

4γ2

(1− Z)
− 2αβ − α(α + 1)− β(β + 1)± iM0

2γ
− M2

0

4γ2

χh± = 0 , (4.23)

where we used the simple-element decomposition 1
Z(1−Z)

= 1
Z
+ 1

1−Z to regroup terms into 1/Z

and 1/(1 − Z) poles. We will now fix the α and β such that these poles disappear from our
equation. Therefore, we impose

β2 +
|k|2 + (M0)

2

4γ2
= 0 , α2 +

|k|2

4γ2
= 0 , (4.24)

giving

β = ±i

√
|k|2 + (M0)2

2γ
≡ ±iω0

2γ
, α = ±i|k|

2γ
. (4.25)

Choosing β = −iω0

2γ
and α = − i|k|

2γ
, the equation for χh± can be put in the form

Z(1− Z)χ′′h± + [1 + 2α− (2α + 2β + 2)Z]χ′h± −
[
1 + α + β ± iM0

2γ

] [
α + β ∓ iM0

2γ

]
χh± = 0

(4.26)
which of the form

Z(1− Z)χ′′h±(Z) + (c− (a± + b± + 1)Z)χ′h±(Z)− a±b± χh±(Z) = 0 , (4.27)
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where we recover a known equation, the Gaussian hypergeometric equation. The numbers a±,
b± and c are given in terms of α, β and M0,

c = 1 + 2α = 1− i|k|
γ

, (4.28)

a± = 1+α+ β± iM0

2γ
= 1− iω0 + |k| ∓M0

2γ
, b± = α+ β∓ iM0

2γ
= −iω0 + |k| ±M0

2γ
. (4.29)

The solutions of (4.27) are the linear combinations of hypergeometric functions 2F 1,

χh±(Z) = Ah± 2F 1(a±, b±, c, Z) +Bh± Z
1−c

2F 1(a± + 1− c, b± + 1− c, 2− c, Z) , (4.30)

uh±(Z) = Ah± Z
α(1−Z)β 2F 1(a±, b±, c, Z)+Bh± Z

α+1−c(1−Z)β 2F 1(a±+1−c, b±+1−c, 2−c, Z) .
(4.31)

where Ah± and Bh± are constants that we determine in the following.

4.3 Initial conditions and normalization

The constants appearing in uh± can be constrained by initial conditions, and by the relation
(4.17) between uh+ and uh−. At early times, ∆t→ −∞ before the FOPT, the field is massless
so we need to impose that

L− = R+ = e−i|k|t , L+ = R− = 0 , (4.32)

implying
uh± ∝ e−i|k|t . (4.33)

In particular, because Z(t) ≈ e2γt as t→ −∞,

Zα ≈ e−i|k|t , Zα+1−c ≈ e+i|k|t , (4.34)

in equation (4.31) we can only keep the solution proportional to Zα,

Bh± = 0 , (4.35)

uh±(Z) = Ah± Z
α(1− Z)β 2F 1(a±, b±, c, Z) . (4.36)

There exists a relation between the normalization constants A±, as the functions uh± are related
by (4.17). Moreover, normalization of the modes can be imposed,

|Lh|2 + |Rh|2 = 1 = 2
(
|uh+|2 + |uh−|2

)
(4.37)

which finally fixes the constants Ah±. The full procedure is rather involved and requires to use
different formulas for the hypergeometric functions. It is detailed in Appendix C, and we only
give the final results, which is the determination of the constants, Ah+ = 1

2
, Ah− = −h

2
, such

that

uh+ =
1

2
Zα(1− Z)β 2F 1(a+, b+, c, Z) , uh− = −h

2
Zα(1− Z)β 2F 1(a−, b−, c, Z) , (4.38)

Lh =
1

2
Zα(1− Z)β [2F 1(a+, b+, c, Z)− h 2F 1(a−, b−, c, Z)] , Rh = L−h . (4.39)
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4.4 Bogoliubov transformation and particle production

Now that we determined the expression of the field as a function of time for a time-dependent
mass, we can compute observables from it, notably the number of particles. We will see that
the number density is time-dependent, even though our field was so far considered without
interactions. It can be understood by a change in the definition of what a particle is. Because
the mass is explicitly evolving, the way to count modes of definite energy changes and this can
be seen from the Hamiltonian of the field. For a massive Majorana field N , the Hamiltonian
(in the flat Minkowski time direction) is given by

H =

∫
d3x

1

2

[
iNγ ·∇N +M(t)N

c
N
]
. (4.40)

Focusing on the field decomposition (4.2), at a fixed momentum k and helicity h/2, it is
convenient to consider

Nhk ≡ eik·x
(
Lh

Rh

)
⊗ ξkh âh,k + e−ik·x

(
−hR∗h
hL∗h

)
⊗ ξk−hâ

†
h,k , (4.41)

γ0Nhk ≡ eik·x
(
Rh

Lh

)
⊗ ξkh âh,k + e−ik·x

(
hL∗h
−hR∗h

)
⊗ ξk−hâ

†
h,k , (4.42)

N †hk = e−ik·x
(
L∗h
R∗h

)T

⊗ ξk†h â
†
h,k + eik·x

(
−hRh

hLh

)T

⊗ ξk†−hâh,k , (4.43)

and compute its contribution to the Hamiltonian. The spatial derivative acts only on the
complex exponential,

iγ0γ ·∇Nhk = h|k|
[
eik·x

(
Lh

−Rh

)
⊗ ξkh âh,k − e−ik·x

(
hR∗h
hL∗h

)
⊗ ξk−hâ

†
h,k

]
. (4.44)

We recall we work in the chiral basis for the γ-matrices. Our helicity eigenvectors are given
explicitly in Appendix B; in particular, they satisfy

ξk†h · ξ
k
h = 1 , ξk†−h · ξ

k
h = 0 , (4.45)

ξ−k
h = eihφkξk−h, (4.46)

where φk is the azimuth angle of the vector k in the coordinate system we choose to write our
helicity eigenvectors. Using these relations, after taking the scalar product with N †hk, we obtain

iNhkγ ·∇Nhk = h|k|
(
|Lh|2 − |Rh|2

) (
â†h,kâh,k − âh,kâ

†
h,k

)
, (4.47)

iNh−kγ ·∇Nhk = 2|k|LhRhe
−ihφk âh,−kâh,k − 2|k|L∗hR∗he+ihφk â†h,−kâ

†
h,k . (4.48)

The mass term corresponds simply to the scalar product

N †hkγ
0Nhk = 2Re [LhR

∗
h]
[
â†h,kâh,k − âh,kâ

†
h,k

]
, (4.49)
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N †h−kγ
0Nhk = h

(
L2
h −R2

h

)
e−ihφk âh,−kâh,k − h

(
(L∗h)

2 − (R∗h)
2) e+ihφk â†h,−kâ

†
h,k . (4.50)

Integrating over momenta, the (free) Hamiltonian is (see [152,161,162]),

H =

∫
d3k
(2π)3

1

2

∑
h

[
Ωh

k

(
â†h,kâh,k − âh,kâ

†
h,k

)
+
(
Λh

ke
−ihφk âh,−kâh,k + h.c.

)]
, (4.51)

with

Ωh
k = h|k|

(
|Lh|2 − |Rh|2

)
+ 2MRe [LhR

∗
h] , Λ

h
k = 2|k|LhRh + hM

(
L2
h −R2

h

)
. (4.52)

Note that in a free theory for a Majorana neutrino with constant mass, we would expect a diag-
onal Hamiltonian. Because the modes Lh/Rh are complicated functions, it is no longer the case
in general. The Hamiltonian can be diagonalized in a new basis by a Bogoliubov transformation
[163,164]. The eigenvalues, found in the diagonal basis, will correspond to the physical particle
number, multiplied by the individual energies.

The explicit Bogoliubov transformation to new creation and annihilation operators Â†h,k/Âh,k
is

Âh,k ≡ αh,kâh,k + βh,ke
ihφk â†h,−k , (4.53a)

Â†h,k ≡ α∗h,kâ
†
h,k + β∗h,ke

−ihφk âh,−k . (4.53b)

It preserves the anti-commutation relation under the condition

|αh,k|2 + |βh,k|2 = 1 . (4.54)

We can then diagonalize the Hamiltonian (4.51) using

Â†h,kÂh,k = |αh,k|2 â†h,kâh,k + |βh,k|2 âh,−kâ
†
h,−k

+
(
αh,kβ

∗
h,ke

−ihφk âh,−kâh,k + h.c.
)
, (4.55)

which, for the expressions

|αh,k|2 =
1

2
− Ωh

k

2ωk
, |βh,k|2 =

1

2
+

Ωh
k

2ωk
, (4.56)

αh,kβ
∗
h,k =

Λh
k

2ωk
(4.57)

leads to
H =

∫
d3k
(2π)3

∑
h

ωk

[
Â†h,kÂh,k −

1

2

]
. (4.58)

In this basis, the Hamiltonian is simply the sum of the individual energies ωk =
√
|k|2 +M(t)2

times the number operator Â†h,kÂh,k, counting the (quasi)-particles. Note the familiar ωk/2
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vacuum energy. For completeness, we give the expressions (defined up to a global phase) for
αh,k and βh,k,

αh,k =
1√
2

[(
1− h|k|

ωk

)1/2

Lh −
(
1 +

h|k|
ωk

)1/2

Rh

]
, (4.59a)

βh,k =
h√
2

[(
1 +

h|k|
ωk

)1/2

L∗h +

(
1− h|k|

ωk

)1/2

R∗h

]
. (4.59b)

We mentioned at the beginning of this section that the phase transition creates particles. This
is because the Bogoliubov transformation forces us to change our creation and annihilation
operators; if we had started initially (before the phase transition) in a vacuum state |0⟩ for
which âh,k|0⟩ = 0, the number of particles would have been zero,

⟨0|â†h,kâh,k|0⟩ = 0 . (4.60)

However, after the FOPT, the new number operator, counting the particles of definite energy,
gives

⟨0|Â†h,kÂh,k|0⟩ = |βh,k|2 =
1

2
− Ωh

k

2ωk
̸= 0 . (4.61)

We can generalize it to any value of the initial number density ⟨ini|â†h,kâh,k|ini⟩ ≡ f0k. Using the
expression of Ωh

k, similarly to [159,162] we can define an instantaneous phase space distribution

fhk(t) =
1

2
+

1− 2f0k

2
√
|k|2 +M2(t)

[
h|k|

(
|Lh|2 − |Rh|2

)
+ 2M(t)Re [LhR

∗
h]
]
. (4.62)

Note how fhk is actually independent of helicity, as Rh = L−h. At early times, when M = 0,
we recover the initial distribution f0k, while at later times, once M → M0, it converges to a
different value that we will call fPT,k. We plot in Figure 4.1 these final distributions as a func-
tion of momentum for vacuum initial conditions (Figure 4.1a) and for vacuum initial conditions
(Figure 4.1b).

What we realize is that the FOPT is not harmless and modifies the particle distribution for
sterile neutrinos. Starting from vacuum, we have a net creation of particles, that is still very
different from the thermal distribution. Note that the lowest momenta are the ones that are
the most produced. Starting from a thermal distribution, the production is in proportion less
significant, but we see that not all momenta are equally affected, and the profile deviates from
an equilibrium one. What remains true is that the thermal distribution for the massive particle
has lower values than the massless one, which creates a stronger deviation from equilibrium.
The distribution is however symmetric in helicity, which is expected as no CP-violation was
included.

In order to create an asymmetry, we want to include the Yukawa interactions, which are CP-
violating. One can try to repeat the same procedure as the one presented in this section,
considering different sterile neutrino flavors NI ; we detail some attempts and discussions in
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(a) Particle distribution after the FOPT start-
ing from an initial vacuum distribution.

(b) Particle distribution after the FOPT start-
ing from an initial thermal distribution, with
zero mass.

Figure 4.1: We plot (in blue) the particle distribution created by the time-varying mass as a
function of momentum (in units of the mass of the particle). We took M0/γ = 1, for simplicity.
We compare, in both graphs, the produced distribution with the initial distribution (dotted-red)
which is either vacuum ((a)) or massless thermal equilibrium ((b)). We also plot the massive
thermal distribution (dashed-green) in both cases. The deviation from equilibrium after the
FOPT is given by the difference between the blue and the dashed-green curves.

Appendix D. We realized however that the description in terms of fields NI is not well suited
for considering interactions with the SM plasma, and also doesn’t take into account the effect
on the distribution of lepton and anti-leptons, which we want to describe in leptogenesis. A
more accurate approach involves instead the two-point functions of the field and the propagator
SIJ ∼

〈
NINJ

〉
. We should use techniques from Quantum Field Theory, as presented in the

next chapter.
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Chapter 5

Out-of-equilibrium QFT with a
time-dependent mass

In the previous chapter, we were able to describe accurately the dynamics of sterile neutrino
during the phase transition when they have no other interactions. If we turn Yukawa interac-
tions back on, sterile neutrinos will experience a time-dependent mass while also interacting
with the ambient SM plasma. A common playground to capture all these dynamics is out-of-
equilibrium Quantum Field Theory (QFT) which can describe how an initial set of correlation
functions evolves, with parameters that are explicitly time-dependent.

This chapter aims at deriving equations that include all relevant aspects for leptogenesis during
a cosmological phase transition. We want to be able to describe sterile neutrinos that

• are out-of-equilibrium,

• have a time-dependent mass,

• can be relativistic or non-relativistic.

Following previous studies, we are able to deal with all these points using

• the Closed-Time Path (CTP) formalism [165,166] for out-of-equilibrium fields,

• the so-called Local Approximation (LA) [167,168] for a time-dependent mass,

• an estimate of the sterile neutrino self-energy [139] describing all regimes of masses.

The structure of this chapter follows this list, first starting in sections 5.1 and 5.2 with the
CTP formalism leading to equations known as Kadanoff-Baym (KB) equations. We then use
the LA in section 5.3 which reduces the complexity of the KB equations and allows to treat
a time-dependent mass. The self-energy appearing in the equations is described in section 5.4
by an estimate reproducing closely all regimes of sterile neutrino masses. Finally, our final
equations are given in section 5.5.
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5.1 The Closed-Time Path approach

Due to the third Sakharov conditions, in the study of the matter-antimatter asymmetry of the
Universe, we are interested in quantum fields that are out-of-equilibrium. This implies some
technical changes in the way we treat propagators and amplitudes, compared to QFT in vac-
uum. Indeed, in most situations, we only know the initial (quantum) state of our particles.
We therefore do not know the asymptotic states for out-going particles, contrarily to scattering
theory for example. Quantum expectation values can be computed for initial states (so-called
"in" states), but we do not know before hand what quantum states are accessible in the future,
at late time (so-called "out" states). The out-of-equilibrium formalism is sometimes called
"in-in" formalism, in contrast with the "in-out" formalism of scattering theory. We give here
an overview (which is by no means complete) of how this formalism is developed, and refer the
reader to general reviews [169,170] and to [142,171] for its use in baryogenesis and leptogenesis.

What we are interested in are correlators of our fields. Let us consider for now simply a
real scalar field operator ϕ̂(x). It is a function of space and time, and we will assume we know
its state (described by a density matrix ρ) at an initial time ti. We want to know what hap-
pens to the field at later times, and in particular we want to compute correlation functions. A
common object for dealing with n-point functions is the generating functional Z[J ], also called
partition function,

Z[J ] ≡ Tr
[
ρ(ti)TC exp

(
i

∫
C
d4x J(x)ϕ̂(x)

)]
, (5.1)

with
∫
C
d4x ≡

∫
R3

d3x
∫
C
dt . (5.2)

The integral in the exponential is over a path C which we will say more about later; TC defines
the ordering on this path. Z[J ] is a function of an external current J that is usually not a
physical current, but a tool for conveniently computing n-point functions as derivatives of Z
with respect to J . For instance, the time-ordered two-point function〈

TC
(
ϕ̂(x1)ϕ̂(x2)

)〉
≡ Tr

[
ρ(ti) TC

(
ϕ̂(x1)ϕ̂(x2)

)]
=

δ2Z
iδJ(x1)iδJ(x2)

∣∣∣∣
J=0

. (5.3)

The trace in the partition function (5.1) can be replaced by a functional integral,

Z =

∫
Dϕ(1)(x)Dϕ(2)(x)

〈
ϕ(1)
∣∣ ρ(ti) ∣∣ϕ(2)

〉
×
〈
ϕ(2)
∣∣ TC exp(i ∫

C
d4x J(x)ϕ̂(x)

) ∣∣ϕ(1)
〉
. (5.4)

We are integrating over two spatial field configurations ϕ(1)(x) and ϕ(2)(x), which should be
understood as possible values of the field at t = ti. The first factor

〈
ϕ(1)
∣∣ ρ(ti) ∣∣ϕ(2)

〉
corresponds

to the initial condition for the system, while the second term with the exponential is a transition
amplitude, encoding the quantum dynamics. Note that the initial condition is evaluated at ti
only. In this approach, we only know our quantum state, over which we average, at this initial
time.
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The idea of the Closed-Time Path emerges from this last observation. In order to use standard
QFT techniques, and in particular, the Feynman path integral method, the quantum evolution
should bring the states back to the initial time where they are evaluated on ρ(ti). It can be
achieved by choosing the path C in the definition (5.1) to be closed in time, like in Figure 5.1.
It starts from ti and turns around at a certain time tf . The transition amplitude can now be

Figure 5.1: Complex contour used in the CTP formalism. The contour (in the time variable)
is close to the real axis and loops back to its initial time ti.

expressed in terms of a standard Feynman path integral,

〈
ϕ(2)
∣∣ TC exp(i ∫

C
d4x J(x)ϕ̂(x)

) ∣∣ϕ(1)
〉
=

φ(t+i ,x)=ϕ(1)(x)∫
φ(t−i ,x)=ϕ(2)(x)

Dφ(x) exp

(
iS[φ] + i

∫
C
d4x J(x)φ(x)

)
.

(5.5)
We see that we have managed to evaluate the boundary conditions at the initial time ti. The
path C can be decomposed into an upper branch C+ and a lower branch C−, where all times in
the lower branch happen later, on the path C, than the times on the upper one. Integration
over the path can be seen as an integration forwards from ti to tf on the C+-branch and then
backwards on the C−-branch,∫

C
d4x ≡

∫
R3

d3x
∫
C
dt =

∫
R3

d3x

[∫ tf

t+i

dt−
∫ tf

t−i

dt

]
. (5.6)

The action defined with the Lagrangian of the theory, along the Closed-Time Path, can then
also be decomposed

S[φ] ≡
∫
C
d4x L[φ] =

∫
R3

d3x

[∫ tf

t+i

dt L[φ+]−
∫ tf

t−i

dt L[φ−]

]
≡ S+[φ+]− S−[φ−] . (5.7)

The total action along the whole path has been separated into two actions, one for each branch.
The values of the function φ are not necessarily the same on each branch, so we should really
distinguish the function φ+ appearing in S+ from φ− appearing in S−. The same should be
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done to the source term in (5.5), such that

〈
ϕ(2)
∣∣ TC exp(i ∫

C
d4x J(x)ϕ̂(x)

) ∣∣ϕ(1)
〉

=

φ+(t+i ,x)=ϕ(1)(x)∫
φ−(t−i ,x)=ϕ(2)(x)

Dφ+(x)Dφ−(x)

× exp

(
i

(
S+[φ+]− S−[φ−] +

∫
R3

d3x
∫ tf

ti

dt [J+(x)φ+(x)− J−(x)φ−(x)]
))

.

(5.8)

Note that the time integral is now over the real segment [ti, tf ], not along the Closed-Time
Path anymore. tf can be taken arbitrarily large, so we will put it to +∞ in the following. We
now see the price to pay for using the path-integral method in the out-of-equilibrium case: the
system has virtually been doubled in its dynamics. For any real time t, there is a t+ ≡ t + iϵ
point on the CTP with field value ϕ+ and a t− ≡ t− iϵ point on the CTP with field value ϕ−.
The real time t should be considered the physical one at which one wants to compute correla-
tion functions, while t+ and t− are artifacts introduced to describe non-equilibrium cases with
standard techniques.

Calculating 2-point functions
〈
TC
(
ϕ̂(t1,x1)ϕ̂(t2,x2)

)〉
, we should then consider all possibil-

ities for the t’s, lying either on the upper or the lower branch. They are obtained by deriving
with respect to J+ or J−,

iGss′ ≡
〈
TC
(
ϕ̂(ts1,x1)ϕ̂(t

s′

2 ,x2)
)〉

=
δ2Z

iδJs(x1)iδJs′(x2)

∣∣∣∣
J+=J−=0

, s, s′ = ± . (5.9)

The time ordering on the path then puts all upper-branch points before the lower-branch ones
and is just the time ordering (respectively, anti-time ordering) T (respectively, T ) for two points
lying on the upper (respectively, lower) branch,

iG+−(x1, x2) ≡ iG<(x1, x2) =
〈
ϕ̂(t2,x2)ϕ̂(t1,x1)

〉
, (5.10a)

iG−+(x1, x2) ≡ iG>(x1, x2) =
〈
ϕ̂(t1,x1)ϕ̂(t2,x2)

〉
, (5.10b)

iG++(x1, x2) =
〈
T
(
ϕ̂(t1,x1)ϕ̂(t2,x2)

)〉
, (5.10c)

iG−−(x1, x2) =
〈
T
(
ϕ̂(t1,x1)ϕ̂(t2,x2)

)〉
. (5.10d)

G++ describes a field propagating from the upper (+) branch to the upper branch (+), G+−

describes the propagation from the upper (+) to the lower (-) branch, etc. G≶ are called the
Wightman functions, and the time-ordered propagator G++ corresponds to the Feynman prop-
agator one would usually consider in ordinary QFT.
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For a complex scalar field (relevant for the Higgs field in the Standard Model), we give

i∆+−(x1, x2) ≡ i∆<(x1, x2) =
〈
ϕ̂†(t2,x2)ϕ̂(t1,x1)

〉
, (5.11a)

i∆−+(x1, x2) ≡ i∆>(x1, x2) =
〈
ϕ̂(t1,x1)ϕ̂

†(t2,x2)
〉
, (5.11b)

i∆++(x1, x2) =
〈
T
(
ϕ̂(t1,x1)ϕ̂

†(t2,x2)
)〉

, (5.11c)

i∆−−(x1, x2) =
〈
T
(
ϕ̂(t1,x1)ϕ̂

†(t2,x2)
)〉

. (5.11d)

Similar definitions apply as well to a fermionic field ψ, with the extra care that the time ordering
can induce an additional minus sign from the anti-commutation properties of fermions, and that
we should consider spinor indices α, β

iS+−
αβ (x1, x2) ≡ iS<

αβ(x1, x2) = −
〈
ψβ(t2,x2)ψα(t1,x1)

〉
, (5.12a)

iS−+αβ (x1, x2) ≡ iS>
αβ(x1, x2) =

〈
ψα(t1,x1)ψβ(t2,x2)

〉
, (5.12b)

iS++
αβ (x1, x2) =

〈
T
(
ψα(t1,x1)ψβ(t2,x2)

)〉
, (5.12c)

iS−−αβ (x1, x2) =
〈
T
(
ψα(t1,x1)ψβ(t2,x2)

)〉
. (5.12d)

Among the four propagators for each field, only two are linearly independent, for example

X++(x1, x2) = θ(t1 − t2)X>(x1, x2) + θ(t2 − t1)X<(x1, x2) , (5.13)

X−−(x1, x2) = θ(t1 − t2)X<(x1, x2) + θ(t2 − t1)X>(x1, x2) , (5.14)

with θ the Heaviside function, for X = G,∆, S. It is then sufficient to consider only two of the
propagators as independent. In the present study, we will focus on the Wightman functions
S≶. In the following section, we describe the evolution equations they satisfy, known as the
Kadanoff-Baym equations.

5.2 Kadanoff-Baym equations

We apply the CTP formalism to leptogenesis, involving fermionic fields. We use the assumption
of spatial homogeneity to arrive at compact equations (5.47) that will be the starting point of
the local approximation in section 5.3.

5.2.1 Propagators and kinetic equations

Given a fermionic field ψ, we introduced the two Wightman functions

iS<
αβ(x1, x2) ≡ −

〈
ψβ(x2)ψα(x1)

〉
, (5.15a)

iS>
αβ(x1, x2) ≡

〈
ψα(x1)ψβ(x2)

〉
. (5.15b)
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We use the most commonly used notation with a minus sign for S<, but note that in [167,168,
172], which we follow for the Local Approximation later, the opposite sign is taken. Physically,
ψ could either be a SM fermion, specifically the SU(2) lepton doublet la we will be interested
in for leptogenesis, or a Majorana neutrino N . Some linear combinations of S> and S< are of
physical interest. It is common to introduce the spectral Sρ and the statistical SF correlation
functions

Sρ ≡ i

2
(S> − S<) , SF ≡ 1

2
(S> + S<) . (5.16)

We will also need to introduce the retarded and advanced propagators SR and SA defined as

SR ≡ −2i θ(t1 − t2)Sρ , SA ≡ 2i θ(t2 − t1)Sρ . (5.17)

They contain the information of the spectral propagator Sρ on the two regions t1 < t2 and
t1 > t2. Further more, we can take the hermitian and anti-hermitian parts of these propagators,

SH ≡ 1

2

(
SR + SA

)
, Sρ =

i

2

(
SR − SA

)
. (5.18)

In the Closed-Time-Path (CTP) formalism, one is interested in a path that is formally a loop
in time, such that we consider, roughly speaking, the propagation from x1 to x2 and the
propagation backwards. We can consider the propagator

S(x1, x2) ≡ θC(t1 − t2)S>(x1, x2) + θC(t2 − t1)S<(x1, x2) . (5.19)

The times t1 and t2 can either lie on the upper or on the lower branch of the CTP. They are
ordered by θC(t1 − t2) on the complex path, with θC(t1 − t2) = 1 if t2 is before t1 on the path,
0 otherwise. The self-energy Σ of the field is defined as the correction, due to interactions, of
the dressed propagator S compared to the propagator of the free theory (or bare propagator)
S0. Explicitly, it is defined by the Schwinger-Dyson equation [173]

S−1(x1, x2) = S−10 (x1, x2)− Σ(x1, x2) . (5.20)

This equation summarizes how the interactions modify the free propagator. S0 is given by
the purely kinetic part of the theory; for a massless SU(2) doublet la and a heavy neutrino,
respectively, the free propagators are

(S0,la)
−1 = iδ

(4)
C (x1 − x2)PL/∂1 , (S0,N)

−1 = δ
(4)
C (x1 − x2)

(
i/∂1 −MN(x1)

)
. (5.21)

The partial derivative acts on the x1 variable, we write ∂1 ≡
(

∂
∂xµ

1

)
. Note that the mass matrix

MN is a matrix in the space of neutrino flavors, but is proportional to identity in spinorial space.
It is space-time dependent, as we will consider the evolution of sterile neutrinos during a FOPT.
We also define the contributions of the self-energy to the forward and backward propagation
Σ≶ in the same fashion as in Equation (5.19),

Σ ≡ θC(t1 − t2)Σ>(x1, x2) + θC(t2 − t1)Σ<(x1, x2) , (5.22)

from which we derive the same linear relations as for S≶, in order to define ΣF/ρ, ΣR/A, etc.

In the following, we focus only on the propagator for the neutrinos. Similar manipulations
can be applied to the lepton correlation functions.

62



5.2.2 Derivation of the Kadanoff-Baym equation

A more convenient way to use Equation (5.20) is by first taking the convolution product on the
path C on the right by S

S−1 ∗C S = S−10 ∗C S − Σ ∗C S , (5.23)

where the ∗C product is defined as

(F ∗C G)(x1, x2) ≡
∫
C
d4x F (x1, x)G(x, x2) . (5.24)

Using (S−1 ∗C S)(x1, x2) = δ
(4)
C (x1 − x2) and the expression for S−10 ,

δ
(4)
C (x1 − x2) =

(
i/∂1 −MN(x1)

)
S(x1, x2)−

∫
C
d4x Σ(x1, x)S(x, x2) . (5.25)

It is usually more convenient to work with the Wightman functions S≶. Expressing the prop-
agator S like in (5.19), the derivative term becomes

i/∂1S = θC(t1 − t2)i/∂1S> + θC(t2 − t1)i/∂1S< + iδC(t1 − t2)γ0S> − iδC(t2 − t1)γ0S<

= θC(t1 − t2)i/∂1S> + θC(t2 − t1)i/∂1S< + 2δC(t1 − t2)γ0Sρ (5.26)

We take the limit of equal time t1 → t2 for the spectral propagator in factor of the Dirac δ
function. Given the canonical anti-commutation relation between the field ψ and its conjugate
field ψ, we obtain

lim
t1→t2

iγ0Sρ(x1, x2) = γ0
1

2

〈{
ψ(t1,x1)ψ(t2,x2)

}〉
=

1

2
δ(3)(x1 − x2) . (5.27)

All together, we obtain a δ(4)C (x1 − x2) from the derivative term that cancels out with the one
on the left-hand side of (5.25). We still need to rewrite

Σ(x1, x)S(x, x2) = [θC(t1 − t)Σ> + θC(t− t1)Σ<] [θC(t− t2)S> + θC(t2 − t)S<]

= [θC(t1 − t) (Σ> − Σ<) + Σ<] [θC(t− t2) (S> − S<) + S<] ,
(5.28)

using θC(−u) = 1 − θC(u). In order to regroup the terms, we need to remember that the
integration in (5.25) is over the closed-path C, such that∫

C
d4x θC(t1 − t) [...] =

∫ t1

ti

dt

∫
d3x [...] = −

∫
C
d4x θC(t− t1) [...] , (5.29)

∫
C
d4x θC(t1 − t)θC(t− t2) [...] = θC(t1 − t2)

∫ t1

t2

dt

∫
d3x [..] . (5.30)

63



We can decompose the integral into terms proportional to either θC(t1 − t2) or θC(t2 − t1),∫
C
d4x ΣS =

∫ t2

ti

2iΣ<Sρ −
∫ t1

ti

2iΣρS< + θC(t1 − t2)
∫ t1

t2

(2iΣρ) (2iSρ)

= θC(t1 − t2)
[∫ t1

t2

(2iΣρ) (2iSρ) +

∫ t2

ti

2iΣ<Sρ −
∫ t1

ti

2iΣρS<

]
+ θC(t2 − t1)

[∫ t2

ti

2iΣ<Sρ −
∫ t1

ti

2iΣρS<

]
= θC(t1 − t2)

[∫ t2

ti

2iΣ>Sρ −
∫ t1

ti

2iΣρS>

]
+ θC(t2 − t1)

[∫ t2

ti

2iΣ<Sρ −
∫ t1

ti

2iΣρS<

]
. (5.31)

Identifying the θC components, we get the so-called Kadanoff-Baym equations for S≶

(
i/∂1 −MN(x1)

)
Ss(x1, x2) =

∫ t2

ti

2iΣsSρ −
∫ t1

ti

2iΣρSs , s =<,> . (5.32)

The equations involve an integral over the values of the (unknown) propagator at different
times, making them non local. The boundaries of the integral depend on the argument t1 and
t2. It is usually more convenient to rewrite the right-hand term as integrals over an infinite
interval, using retarded and advanced functions (5.17),

(
i/∂1 −MN(x1)

)
Ss(x1, x2) =

∫ +∞

ti

ΣsSA +

∫ +∞

ti

ΣRSs , s =<,> . (5.33)

For all our purposes, the initial time at which we start our evolution can be considered far in
the past compared to the typical time of the processes we will consider, ti → −∞. We find
that the Kadanoff-Baym equations can be written(

i/∂1 −MN(x1)
)
S<(x1, x2) =

(
ΣR ∗ S< + Σ< ∗ SA

)
(x1, x2) . (5.34)(

i/∂1 −MN(x1)
)
S>(x1, x2) =

(
ΣR ∗ S> + Σ> ∗ SA

)
(x1, x2) , (5.35)

with the ∗-product defined as the standard convolution product

(Σ ∗ S) (x1, x2) =
∫
R4

d4x Σ(x1, x)S(x, x2) . (5.36)

These are the equations that describe the dynamics in full generality. If we know the quantum
state of the field at some initial time, we get the initial conditions for the correlation functions.
It is however hard to solve (5.34) and (5.35), mainly because they are integro-differential equa-
tions. Their right-hand terms, a convolution product between self-energies and the propagator,
involve the value of the propagator (the unknown) at all values of space-time. This makes even
a numerical approach very complex, not to mention analytical approaches. We will describe
how to deal with this problem later.
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5.2.3 Spatial homogeneity and isotropy

The equations (5.34),(5.35) contain information about correlation functions between any two
points in space-time. Assuming the FOPT implies a mass that is only time-dependent (i.e.
neglecting the spatial expansion of the bubble, at least on average), the Universe can be taken
spatially homogeneous. This means the propagators should only depend on the spatial separa-
tion between the two arguments (and also still on the absolute values of time arguments). It
is then convenient to work in momentum space, by taking the Fourier Transform (FT) of the
propagators, defined by

Sk(t1, t2) ≡
∫

d3r S((x1, t1), (x1 + r, t2))eik·r =
∫

d3r S(r; t1, t2)eik·r . (5.37)

The FT replaces the convolution over space-time by convolution only over time,

(Σ ∗ S)k (t1, t2) ≡
∫

d3r (Σ ∗ S) (x1, x2)eik·r =
∫

dt Σk(t1, t)Sk(t, t2) = (Σk ∗ Sk) (t1, t2) .

(5.38)
For simplicity we will keep the same notations for the convolution product over space-time
than the convolution only over time. It should be understood as the convolution over whatever
space-time indices the functions depend on. Taking the FT of (5.34),(5.35), paying attention
to the space-time derivatives, gives the following equations(

iγ0∂t1 + k · γ −MN(t1)
)
S<

k (t1, t2) =
(
ΣR

k ∗ S<
k + Σ<

k ∗ SA
k
)
(t1, t2) . (5.39a)(

iγ0∂t1 + k · γ −MN(t1)
)
S>

k (t1, t2) =
(
ΣR

k ∗ S>
k + Σ>

k ∗ SA
k
)
(t1, t2) . (5.39b)

5.2.4 Local evolution equations

Preparing the ground for the local approximation of the next section, we will focus on the
equation for the local part of the propagators, i.e. the equal-time propagators S</>

k (t, t). Its
interest is that we have extra symmetries (see [138,167]) of the propagators, notably(

iγ0S
</>
k

)†
(t, t) = −iγ0S</>

k (t, t) , (5.40)

(iγ0S
<
k − iγ0S>

k ) (t, t) = 2γ0Sρ
k(t, t) = I . (5.41)

Equation (5.41) is known as the spectral rule, or the sum rule. Equations (5.39a),(5.39b) can
then be decomposed into hermitian and anti-hermitian parts, with the time derivative only
appearing in the anti-hermitian part. The hermitian one is a constraint equation. We write
both explicitly for S<(t, t) (a similar derivation applies for S>), and we have{

(MN(t)− k · γ) γ0, γ0S<
k
}
=
(
ΣR

k ∗ S<
k + Σ<

k ∗ SA
k + h.c.

)
(t, t) , (5.42)

iγ0∂tS
<
k (t, t)−

[
(MN(t)− k · γ) γ0, γ0S<

k
]
=
(
ΣR

k ∗ S<
k + Σ<

k ∗ SA
k − h.c.

)
(t, t) . (5.43)
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We should bear in mind that the time derivative acts on both arguments of S<
k (t, t),

∂tS
<
k (t, t) = lim

t1→t2
[(∂t1 + ∂t2)S

<
k (t1, t2)] . (5.44)

The first two terms of Equation (5.43) are reminiscent of a Schrödinger equation; the commu-
tator with γ0S<

k can be identified as a commutator with a Hamiltonian H0 given by

H0(t) ≡ (MN(t)− k · γ) γ0 =MN(t)γ
0 + γ0k · γ . (5.45)

Note that for more than one sterile neutrino flavor, H0 is a matrix in both the neutrino family
space (in which we assume M to be diagonal) and the spinorial space. Defining S ≡ γ0S,
Σ ≡ Σγ0 (for all propagator indices, R,A,<,>),

{H0,S<
k (t, t)} =

(
ΣR

k ∗ S<
k +Σ<

k ∗ SA
k + h.c.

)
(t, t) , (5.46)

i∂tS<
k (t, )− [H0,S<

k (t, t)] =
(
ΣR

k ∗ S<
k +Σ<

k ∗ SA
k − h.c.

)
(t, t) . (5.47)

These equations, while describing the evolution of the local part of the propagator, are still
non local due to the convolutions on the right-hand side, that involve the propagators’ values
at all times. We will see how to deal with this issue in section 5.3. Let us first describe these
equations in terms of convenient phase space distribution functions.

5.2.5 Mass- and coherence-shell distribution functions

In order to get a better physical understanding of the equation (5.47), it is useful to look at
the simpler case of a free field, with only one flavor. The free part of the above equation is the
equation obtained by putting all interactions to zero, i.e. all self-energies Σ = 0. The equation
is just driven by the vacuum Hamiltonian

∂tS<
k = −i

[
Mγ0 + γ0γ · k,S<

k
]
= −i [H0,S<

k ] . (5.48)

One can define phase space distributions as the components (in a basis that we define further
below) of the sterile neutrino propagator,

f s,s′

h (t) ≡ −iTr
[
Pss′

h (t)S<
k (t, t)

]
, S<

k (t, t) = i
∑
h,s,s′

f s,s′

h (t)Pss′

h (t) . (5.49)

These functions describe how the propagator transports a particle of energy s′ ω (where negative
energies means we actually consider the anti-particle) to a particle of energy s ω, with a given
helicity h. These transitions can then be of two types, a particle-particle one preserving the sign
of energy, and a particle-antiparticle one that changes the sign. Physically, we associate them
to two separate kind of phase space distributions. The ones corresponding to particle-particle
transitions (i.e. s = s′) are called mass-shell (fm,s

h ), and the ones for particle-antiparticle
transitions (i.e. s = −s′) are called coherence-shell (f c,s

h ) ,

fm,s
h ≡ f s,s

h , f c,s
h ≡ f s,−s

h . (5.50)
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These distribution functions are found using projectors on eigenstates of H0. Note how H2
0 =

(M2(t) + |k|2) I ≡ ω2(t)I. The eigenvalues of the free Hamiltonian thus represent the energy
states accessible to the particles (or anti-particles). They can be positive or negative,

Es = s
√
|k|2 +M2(t) = sω(t) , s = ± . (5.51)

Note the explicit time dependence of these energy eigenvalues. We use the Hamiltonian to
define the projectors

Ps(t) ≡ 1

2

(
I+ s

H0

ω(t)

)
, PsH0 = sωPs . (5.52)

Particles of a given energy can have different helicities h = ±; defining a projector on helicity,
we notice that it commutes with the projector on energy,

Ph ≡
1

2

(
I+ hγ0γ · k̂γ5

)
, [Ph,Ps(t)] = 0 , k̂ ≡ k

|k|
. (5.53)

It only depends on momentum direction, in particular it is not time dependent. We now have
detailed enough the states described by our propagator. Given that the accessible energies are
±ω with two possible helicities in both case, we can construct a basis of 8 linear independent
matrices that are used in the definition (5.49),

Pss′

h (t) ≡ N ss′(t)PhPs(t)γ0Ps′(t) . (5.54)

The factor N ss′(t) is a normalization factor. We define it as

N ss′(t) ≡
[
Tr
(
PhPPs

I(t)γ
0Ps′

J (t)γ
0
)]−1/2

=

√
2ω(t)2

ω(t)2 + ss′ (M(t)2 − |k|2)
=

∣∣∣∣∣∣∣∣
ω(t)

M(t)
if s = s′

ω(t)

|k|
if s = −s′

.

(5.55)

It doesn’t depend on helicity, but it does depend on time.

The dynamics of each function, in the free theory, are derived from (5.48),

i∂tf
m,s
h = i

|k|
2

∂tM

ω(t)2
(
f c,s
h + f c,−s

h

)
, (5.56a)

i∂tf
c,s
h = 2sωf c,s

h − i
|k|
2

∂tM

ω(t)2
(
fm,s
h + fm,−s

h

)
. (5.56b)

We made use of the properties of the projector H0Pss′

h = sωPss′

h , Pss′

h H0 = s′ωPss′

h to get
the oscillation term 2sωf c,s

h . The other terms, appearing in both equations, and coupling the
coherence- and mass-shell functions come from the time dependence of the projector, in the
basis we chose to project our propagator on. The time derivatives of the projectors satisfy

∂tPm,s
h = ∂tPss

h =
|k|∂tM
2ω2

(
Pc,s

h + Pc,−s
h

)
, (5.57)
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∂tPc,s
h = ∂tPs,−s

h = −|k|∂tM
2ω2

(
Pm,s

h + Pm,−s
h

)
. (5.58)

This leads to the coupling between mass- and coherence-shell functions in Equation (5.56).

The equations (5.56) illustrate the effect of an explicitly time-dependent mass. Indeed, the
derivative of M implies an interaction between mass- and coherence-shell functions that is not
present otherwise (if ∂tM = 0). These non-trivial dynamics relate to the discussion in section
4 about particle production during the FOPT. Indeed, recalling the Dirac equation for a (free)
Majorana field in terms of the modes Lh/Rh,

i∂tLh + h|k|Lh −M(t)Rh = 0 , i∂tRh − h|k|Rh −M(t)Lh = 0 , (5.59)

it can be checked that

fm,s
h ≡ s

2
+

1− 2f0k

2
√
|k|2 +M(t)2

[
h|k|

(
|Lh|2 − |Rh|2

)
+ 2M(t)Re [LhR

∗
h]
]
, (5.60)

f c,s
h ≡ −

h (1− 2f0k)

2
√
|k|2 +M(t)2

[
M(t)

(
|Lh|2 − |Rh|2

)
+ 2h|k|Re [LhR

∗
h]− 2i

√
|k|2 +M(t)2Im [LhR

∗
h]
]
,

(5.61)
are solutions of the system of equations (5.56). We recognize in fm,+

h the instantaneous particle
distribution in momentum fk that we calculated in Equation (4.62). It is no surprise that we
find the same result, as the free propagator S<

k is constructed from the modes of a field that
is a solution of the Dirac equation. What we conclude here is that the determination of the
Lh/Rh functions not only gives us the particle number density, but also the whole propagator
with a time-dependent mass, at the free level.

5.2.6 Flavored shell functions

The flavored version of the mass- and coherence-shell distribution functions are simply

fm,s
h,IJ ≡ −iTr

[
Pss

h JIS<
k,IJ(t, t)

]
, f c,s

h,IJ ≡ −iTr
[
Ps−s

h JIS
<
k,IJ(t, t)

]
. (5.62)

The (free) Hamiltonian H0 was extended to be also a diagonal matrix in flavor space,

(H0)IJ = γ0MIδIJ + γ0γ · kδIJ =
(
γ0MI + γ0γ · k

)
δIJ = HI

0δIJ . (5.63)

Similarly to before, we have defined the projectors on energy

Ps
I ≡

1

2

(
I+ s

HI
0

ωI

)
, ωI(t) ≡

√
|k|2 +MI(t)2 , (5.64)

and the full projectors for our propagators

Pss′

h,IJ ≡ N ss′

IJ PhPs
Iγ

0Ps′

J , (5.65)
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N ss′

IJ ≡

√
2ωI(t)ωJ(t)

ωI(t)ωJ(t) + ss′ (MI(t)MJ(t)− |k|2)
. (5.66)

The mass- and coherence-shell distributions can still be seen as describing the transition be-
tween a particle of energy s′ ω and flavor J and a particle of energy s ω and flavor I. One of
the main differences with the flavorless case is that we also have oscillations for the mass-shell
function, from transitions between particles of different flavors. The typical frequency for the
mass-shell distribution is given by the energy difference ωI−ωJ . It is smaller (in absolute value)
than the frequency for coherence-shell distributions, which goes as the sum ωI + ωJ .

Because of the Majorana nature of the sterile neutrinos, these distribution functions satisfy
symmetries. For a Majorana field, the symmetries of the (equal-time) propagator are explicitly
written (see Appendix D in [167] for more details)(

S<
k,IJ
)†
(t, t) = S<

k,JI(t, t) , (5.67)

S>
k,IJ(t, t)− S<

k,IJ(t, t) = δIJI , (5.68)(
S<

k,IJ
)T

(t, t) = γ0CS>
−k,JI(t, t)Cγ

0 . (5.69)

The propagators used to define the mass- and coherence-shell function satisfy similar properties,
namely (

Pss′

k,IJ

)T
(t, t) = γ0CP−s−s′−k,JI (t, t)Cγ

0 . (5.70)

In the end, all these relations inserted in the trace give us symmetries for the mass- and
coherence-shell functions

fm,s
h,IJ = 1− fm,−s

h JI =
(
fm,s
h,JI

)∗
, (5.71)

f c,s
h,IJ = −

(
f c,−s
h JI

)∗
= f c,s

h,JI . (5.72)

Both for mass- and coherence-shell functions, the distributions s = + and s = − are not in-
dependent. For two sterile neutrinos, the mass-shell matrix fm,+

h,IJ is a 2-by-2 hermitian matrix,
with 4 independent components, while the coherence-shell matrix f c,+

h,IJ is a 2-by-2 symmetric
complex matrix, with 6 independent components.

We have identified the scalar functions of interest that can be derived from the (equal-time)
propagator S<(t, t). Turning interactions back on, we need to deal with the non-local terms in
the KB equation (5.47).

5.3 Local approximation and adiabatic background

The local approximation (LA), first defined in [167], is a method for reducing the complexity of
the non local KB equations. The idea is to introduce a known adiabatic background containing
the information about the non localities, and to only solve for the remaining local data. This
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method allows us to keep quantum correlations while reducing the complexity.

The first step is to consider an adiabatic background that dominates the self-energy. In the
leptogenesis picture, the thermal bath is the main contribution to the self-energy of the sterile
neutrinos, while small deviation will arise from non-zero chemical potentials for the lepton and
Higgs fields as an asymmetry gets created. We then define the deviations from the adiabatic
background by

Σk(t1, t2) = Σad,k(t1, t2) + δΣk(t1, t2) , (5.73)

Sk(t1, t2) = Sad,k(t1, t2) + δSk(t1, t2) . (5.74)

We will discuss later the choice of Σad and Sad, but the important part is that they are known
and fixed once and for all. We require that they form a stationary solution of our equations,
meaning that the right-hand side of Equation (5.47) should vanish when replacing Sk by Sad,k
and Σk by Σad,k.

So far, we have done no approximation and this is merely a redefinition of what our unknowns
are. The LA is the following step; instead of considering a generic deviation δS, we assume
that its non local values are given by propagating its local values using the (spectral function
of the) adiabatic background. In other words, the LA is written

δS<
k (t1, t2) =

(
2Sρ

ad,k(t1, t)
)
δS<

k (t, t)
(
2Sρ

ad,k(t, t2)
)
. (5.75)

It was noted in [167] that this condition implies that the retarded and advanced propagators
can be taken purely adiabatic, SR/A = SR/A

ad , and in particular δSR/A = 0 . This result is
exact in a free theory, so considering the retarded and advanced deviations from the adiabatic
background would be of higher order in the couplings and we will not consider it here.

The argument t in Equation (5.75) is in principle arbitrary, and it will be useful, depend-
ing on how it gets convoluted, to put it to t = t2, such that the LA (5.75) becomes
δSk(t1, t2) =

(
2Sρ

ad,k(t1, t2)
)
δSk(t2, t2).

The convolutions are now calculated

(Σ ∗ δS)k (t1, t2) =
∫

dt′ Σk(t1, t
′)2Sρ

ad,k(t
′, t2)δSk(t2, t2)

= (Σ ∗ 2Sρ
ad)k (t1, t2)δSk(t2, t2)

≡ Σeff
k (t1, t2)δSk(t2, t2) . (5.76)

The non localities have been packaged into a single object that we call an effective self-energy
Σeff

k , so that convolutions with the actual self-energy become simple products with the effective
self-energy. Proceeding with this approximation, we can transform the non local equation (5.47)
into a simpler equation for the local deformations of the propagator. In particular, most terms
involving the adiabatic background will disappear as we assumed it is a stationary solution of
the equation (5.47). As described in [167, 168], the equation becomes to leading-order in the
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deviations δSk, δΣk,

∂t (δS<
k ) (t, t) =− i [H0, δS<

k (t, t)]− ∂tS<
ad,k

− i
[
Σeff,R

ad,k (t, t)δS
<
k (t, t) + h.c.

]
− i
[(
δΣR

k ∗ S<
ad,k + δΣ<

k ∗ SA
ad,k
)
(t, t) + h.c.

]
. (5.77)

Note that the unknown δS is no longer involved in any convolution product. We recognize
a commutator with a Hamiltonian (the free part of the equation). The adiabatic background
acts as a source for the deviation through its time derivative. The second line corresponds
to a collision term describing the interactions; it is computed from the (effective) self-energy
at equilibrium. Finally, the deviation of the self-energy δaΣ due to non-zero lepton chemical
potential induces a backreaction from the asymmetry on the sterile neutrinos.

We now need to specify a certain adiabatic background in order to move on with these equa-
tions. The adiabatic background is best described in the so-called Wigner representation, for
which we first give a definition.

5.3.1 Wigner representation and gradient expansion

While we switched to momentum space k for spatial coordinates, we kept the time dependence
explicit in these equations to remind ourselves that our fields can be out-of-equilibrium and
that dynamics are not time-translation invariant. It will be however be useful for later to
consider also a momentum representation in the time coordinate, leading to a full 4-dimensional
momentum space described by coordinates k ≡ (k0,k). For propagators such as Sk(t1, t2) with
two time arguments, a 4-dimensional momentum representation is given by the so-called Wigner
representation. In general, we define the Wigner transform as the Fourier transform with respect
to the difference in the time arguments,

S̃(k, t) ≡
∫

d(t2 − t1) Sk(t1, t2)e
−ik0(t2−t1) =

∫
dy Sk

(
t− y

2
, t+

y

2

)
e−ik

0y , (5.78)

y = t2 − t1 , t =
t1 + t2

2
, k = (k0,k) . (5.79)

This expression is particularly convenient when we have time-translation symmetry, like for
fields in thermal equilibrium. In that case, the Wigner transform of an equilibrium propagator
Sk,eq is only a function of 4-momentum, S̃eq(k, t) = S̃eq(k). The inverse Wigner transform is
given by

Sk(t1, t2) ≡
∫

dk0

2π
S̃

(
k,
t1 + t2

2

)
e+ik0(t2−t1) . (5.80)
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The convolution product can be related to the Wigner transforms of the functions by a pretty
complicated expression,

(Σk ∗ Sk) (t1, t2) =

∫
dt′ Σk(t1, t

′)Sk(t
′, t2)

=

∫
dk0

2π
eik

0(t2−t1)
[
Σ̃(k, t)e

i
2(
←−
∂t
−−→
∂k0−

←−−
∂k0
−→
∂t)S̃(k, t)

]∣∣∣
t=(t1+t2)/2

=

∫
dk0

2π
eik

0(t2−t1) ⋄
{
Σ̃(k, t), S̃(k, t)

}∣∣∣
t=(t1+t2)/2

. (5.81)

The ⋄ product is the so-called Moyal product [174],

⋄
{
F̃ (k, t), G̃(k, t)

}
≡
[
F̃ (k, t)e

i
2(
←−
∂t
−−→
∂k0−

←−−
∂k0
−→
∂t)G̃(k, t)

]
= F̃ (k, t)G̃(k, t) +

i

2

[
∂tF̃ ∂k0G̃− ∂k0F̃ ∂tG̃

]
+ ... , (5.82)

where
←−
∂ is only acting on the left function (here, F̃ ) while

−→
∂ only acts on the right one (here,

G̃). It involves, because of the exponential, an infinite tower of derivatives of the functions. It
may be quite impractical to manipulate; it is usually simplified, in out-of-equilibrium studies,
by an approximation called the gradient expansion [175]. It consists in neglecting higher order
derivatives coming from the Moyal product. We therefore require that the product of the
derivatives is small is some sense, that is

(∂t∂k0)≪ 1 . (5.83)

This is usually assumed in standard leptogenesis scenarios, where the macroscopic time scales
of evolution are related to the Hubble time tH ≡ H−1, which is typically large compared to
the microscopic time scales. Indeed, the explicit time dependence, in standard leptogenesis
scenarios, is related to the expansion of the Universe. The estimation of the time derivative
gives

∂t ∼ H =
T 2

aR
, (5.84)

while, for on-shell quantities, k0 will be evaluated at the energy ω

∂k0 ∼
1

ω
. (5.85)

In the thermal bath, both for relativistic (ω ∼ T ) and non-relativistic (ω ∼M) sterile neutrinos,
the product

(∂t∂k0) ∼
T

ω

T

aR
≪ 1 (5.86)

is small and the gradient expansion is justified (for temperature well below the Planck scale,
which is usually the case).

For the case of a phase transition, this may not be obvious, so let us say a few words
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on how it can be justified. In the case of sterile neutrinos, of momentum k, we will have
k0 ∼ ω = (|k|2 +M(t)2)

1/2, where M(t) is the time-dependent mass scale of the sterile neutri-
nos. The energy is then time dependent, because the mass is time dependent. If we estimate
the derivatives as

∂k0 ∼
1

k0
∼ 1

ω
, (5.87)

∂t = (∂tω) ∂ω ∼
∂tω

ω
(5.88)

then the gradient expansion is justified as long as

(∂t∂k0) ∼
∂tω

ω2
=
M∂tM

ω3
≪ 1 . (5.89)

For the sterile neutrino mass during a phase transition, recall that we took a profile

M(t) =M0
1 + tanh (γ∆t)

2
, (5.90)

where γ = Tn is related to the temperature of the phase transition. The time derivative
therefore brings out a factor Tn, and ∂tM ∼ TnM . The condition (5.89) becomes a condition
on

M∂tM

ω3
∼ M2Tn

ω3

. (5.91)

Let us consider two extreme cases. For relativistic sterile neutrinos M ≪ Tn, we have a typical
energy ω ∼ Tn and M2Tn

ω3
∼ M2

T 2
n
≪ 1. In the other extreme, for non-relativistic sterile neutrinos,

M ≫ Tn, ω ∼ M and M2Tn

ω3
∼ Tn

M
≪ 1. In both cases, the gradients are suppressed, and the

gradient expansion can be justified. We will assume it holds for the rest of our study.

Expanding the Moyal product to zeroth order in gradients, the convolution product is written
in terms of the Wigner transformations directly.

(Σk ∗ Sk) (t1, t2) ≃
∫

dk0

2π
eik

0(t2−t1)Σ̃(k, t)S̃(k, t)
∣∣∣
t=(t1+t2)/2

. (5.92)

5.3.2 Choice of the adiabatic background

In principle, there is some freedom to choose the adiabatic background. For the self-energy, as
it is given by the lepton and Higgs fields, a natural choice is to decompose into the equilibrium
part and the deviation from the chemical potentials. As presented for example in [138], both
the lepton (µa for each flavor) and the Higgs (µϕ) chemical potentials have an effect on the
sterile neutrinos. We can expand the self-energy in small µa, µϕ/T . The adiabatic background
is then the equilibrium part, while the small deviations come from the chemical potentials,

Σ ≡ Σeq +
∑
a

δaΣ , Σad = Σeq , δΣ =
∑
a

δaΣ . (5.93)
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We will say more about the expressions of Σeq and δaΣ in the next section 5.4. For the
propagator Sad, a particularly transparent choice, made in [167, 172], is to take the retarded
and advanced propagators to be similar to the fermionic propagator with a mass taken at its
instantaneous value at time t,

S̃A,R
ad (k, t) =

1

/k −MN(t)− Σ̃A,R
eq (k)± iϵ

, (5.94)

and to use them to define the adiabatic Wightman functions

S̃<,>
ad (k, t) = S̃R

ad(k, t)Σ̃
<,>
eq (k)S̃A

ad(k, t) . (5.95)

Note that we defined the adiabatic propagator in Wigner representation, where it has a nicer
form. The retarded adiabatic propagator S̃A

ad (respectively, the advanced adiabatic propagator
S̃R

ad) came with a +iϵ (respectively, −iϵ) prescription for the poles, that will be important for
computing residues later. The equilibrium self-energy Σ̃<,>

eq (k) is, by definition, time-translation
invariant, therefore it does not depend explicitly on time (in the Wigner representation). More-
over, it satisfies the Kubo-Martin-Schwinger (KMS) relation [176,177]

Σ̃>
eq(k) = −ek

0/T Σ̃<
eq(k) . (5.96)

This relation carries on to the adiabatic Wightman functions,

S̃>
ad(k, t) = −ek

0/T S̃<
ad(k, t) . (5.97)

This is a central property for relating the different correlation functions among them, like for
example

S̃<
ad(k, t) = fFD(k

0)
(
S̃<

ad(k, t)− S̃>
ad(k, t)

)
= 2ifFD(k

0)S̃ρ
ad(k, t)

= fFD(k
0)
(
S̃A

ad − S̃R
ad

)
(k, t) , (5.98)

S̃>
ad(k, t) = −2i(1− fFD(k

0))S̃ρ
ad(k, t) = −(1− fFD(k

0))
(
S̃A

ad − S̃R
ad

)
(k, t) , (5.99)

The Fermi-Dirac distribution appeared from the KMS relation, as fFD(k
0) ≡ (exp (k0/T )+1)−1.

From these relations, using the adiabatic background (5.94) and going back to the two-time
representation (performing an inverse Wigner transform), one obtains [167]

iS<
ad,k,IJ(t1, t2) =

∫
dk0

2π
fFD(k

0)γ0i
(
S̃A

ad − S̃R
ad

)
IJ

(k, t)eik
0(t1−t2)

≃ −δIJ
∑
s=±

fFD(sωI(t))
e−isωI(t)(t1−t2)

2sωI(t)
γ0
(
sωI(t)γ

0 + γ · k +MI(t)
)

= −δIJ
∑
s=±

fFD(sωI(t))e
−isωI(t)(t1−t2)Ps

I , (5.100)

with t = (t1 + t2)/2. The integral was calculated using complex analysis, taking the residues of
the poles (in the k0 variable) of S̃R,A

ad , which correspond to k0 ≃ ±
√
|k|2 +MI(t)2 ≡ ±ωI(t).
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In doing so, we neglected the deviation induced on the poles by ΣR,A
ad , which are of higher order

in the Yukawa couplings.

Once we have an expression for the adiabatic propagator we can calculate the effective self-
energy, by taking a convolution product with the self-energy. In particular, the effective self-
energy can be expressed [167], at lowest order in the gradient expansion (5.92), in terms of the
Wigner transforms

Σeff
k,IJ(t, t) = (Σ ∗ 2Sρ

ad)k,IJ ≃
∫

dk0

2π
Σ̃IJ(k, t)i

(
S̃R

ad − S̃A
ad

)
JJ

(k, t)

≃
∑
s=±

Σ̃IJ(sωI(t), t)Ps
J(t) . (5.101)

In the end, the effective self-energy is computed from the self-energies taken on-shell, with the
energy component of the 4-momentum k0 = ±

√
k2 +MI(t)2.

Recalling back the equation (5.77), now the adiabatic propagator Sad,k, the equilibrium Σeff,R
eq,k

and deviation δaΣk are fixed,

∂t (δS<
k ) (t, t) =− i [H0, δS<

k (t, t)]− ∂tS<
ad,k

− i
[
Σeff,R

eq,k (t, t)δS
<
k (t, t) + h.c.

]
− i
∑
a

[(
δaΣ

R
k ∗ S<

ad,k + δaΣ
<
k ∗ SA

ad,k
)
(t, t) + h.c.

]
, (5.102)

with expressions for the self-energies given in the next section.

5.4 Sterile neutrino self-energies

We have derived the equations so far with a self-energy made of an equilibrium part Σeq and a
small deviation δΣ. In the context of leptogenesis, they are given by the Yukawa interactions
of the sterile neutrinos with the SM. We explicit in this section which expressions should be
used.

Most self-energies in this section are best calculated in 4-dimensional momentum space, i.e.
considering their Wigner transform (see section 5.2.3). We will therefore work with the 4-
dimensional momentum k ≡ (k0,k), and we will drop the˜ notation for the whole section. It
should be clear from their argument that the self-energies considered here are functions of 4-
momentum. Computing the self-energies from the Lagrangian in the context of non-equilibrium
QFT involves some subtleties and requires to use the so-called two-particle irreducible effective
action method [178, 179]. It is not our goal here to review this technique; we refer the reader
to [180] for a general description and to [143,167] for its use in leptogenesis.
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In leptogenesis, the Yukawa interactions couple the sterile neutrinos to the lepton and Higgs
fields. We detail how expressions are computed at the one-loop level in sub-section 5.4.1.
Higher order corrections can however be important when sterile neutrinos are relativistic. We
will estimate these effects later in sub-section 5.4.2.

5.4.1 Sterile neutrino self-energy: one loop estimate

The sterile neutrino self-energy Σ, at the one-loop level, is computed as a sum of the diagram
presented in Figure 5.2 involving the lepton and Higgs fields,

iΣ<,>
IJ (k) = gW

∑
a

∫
d4p

(2π)4
[
YIaY

∗
JaPLiS

<,>
l,a (p)i∆<,>

H (k − p)

+Y ∗IaYJaPRCiS
>,<
l,a (−p)TC−1i∆>,<

H (−k + p)
]
, (5.103)

where gW = 2 is the number of SU(2) degrees of freedom. In order to compute this self-energy,
we need to know what propagators to use for the lepton and Higgs fields. Because of their fast
gauge interactions, they are assumed to be close to thermal equilibrium. In this case, we have
expressions for their propagators. We first treat the case of exact thermal equilibrium, before
introducing also deviations due to (small) chemical potentials.

Figure 5.2: One-loop diagrams contributing to the sterile neutrino self-energy.

Propagators and self-energy in thermal equilibrium

At thermal equilibrium, propagators are time-translation invariant and the lepton and Higgs
fields have a finite phase space distribution given by the Fermi-Dirac fFD and the Bose-Einstein
fBE distributions, respectively. In that case, propagators are given by [143,167,181,182]

iS<
l,a,eq(p) = PL

[
iS<

eq(p)
]
= PL

[
−2πδ(p2) /p sign(p0)fFD(p

0)
]
, (5.104a)

iS>
l,a,eq(p) = PL

[
iS>

eq(p)
]
= PL

[
+2πδ(p2) /p sign(p0)fFD(−p0)

]
, (5.104b)
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for the lepton field, introducing Seq the thermal propagator for a Dirac fermion (and where sign
is the sign function). Note that we neglected the lepton masses, such that the propagators are
diagonal in lepton flavor. For the Higgs field, we have

i∆<
H,eq(q) = −2πδ(q2) sign(q0)fBE(q

0) , (5.105a)
i∆>

H,eq(q) = +2πδ(q2) sign(q0)fBE(−q0) . (5.105b)

These propagators satisfy convenient symmetries, namely

CiS<
eq(−p)TC−1 = iS>

eq(p) , (5.106a)
i∆<

H,eq(−q) = i∆>
H,eq(q) . (5.106b)

The equilibrium self-energies can then be rewritten

iΣ<,>
IJ,eq(k) = gW [YIaY

∗
JaPL + Y ∗IaYJaPR] iΣ̂

<,>
eq (k) , (5.107)

where iΣ̂<,>
eq doesn’t carry any flavor index and can be computed using the expressions for the

thermal propagators

iΣ̂<
eq =

∫
d4p

(2π)4
S<

eq(p)∆
<
H,eq(k − p)

=

∫
d4p

(2π)2
δ(p2)δ((k − p)2)sign(p0)sign(k0 − p0) /pfFD(p

0)fBE(k
0 − p0) , (5.108)

iΣ̂>
eq =

∫
d4p

(2π)4
S>

eq(p)∆
>
H,eq(k − p)

=

∫
d4p

(2π)2
δ(p2)δ((k − p)2)sign(p0)sign(k0 − p0) /pfFD(−p0)fBE(p

0 − k0))

= −e
k0

T iΣ̂<
eq . (5.109)

In the last line, we recovered the KMS relation (5.96), using the fact that
fFD(−p0) = ep

0/TfFD(p
0) and fBE(−q0) = −eq0/TfBE(q

0). We will focus on the spectral
(equilibrium) self-energy. The computation of the one-loop diagram gives

2Σ̂ρ
eq ≡ iΣ̂>

eq − iΣ̂<
eq

=

∫
d4p

(2π)2
δ(p2)δ((k − p)2)sign(p0)sign(k0 − p0) /p

[
fFD(−p0) + fBE(k

0 − p0)
]
. (5.110)

Note that its spinorial structure is simply the Dirac slash of a 4-vector (whose components are
given by integrals over p).

Deviations from chemical potentials

In our study, lepton and Higgs fields could deviate from equilibrium due to a (small) chemical
potential. The propagators can be modified to include them,

iS<
l,a(p) = PL

[
−2πδ(p2) /p sign(p0)fFD((p

0 − µa))
]
, (5.111a)

iS>
l,a(p) = PL

[
+2πδ(p2) /p sign(p0)fFD(−(p0 − µa))

]
, (5.111b)
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i∆<
H(q) = −2πδ(q2) sign(q0)fBE((q

0 − µϕ)) , (5.112a)
i∆>

H(q) = +2πδ(q2) sign(q0)fBE(−(q0 − µϕ)) . (5.112b)

Note that now the lepton propagators depend on flavor via their chemical potential. These
propagators satisfy a modified KMS relation

iS>
l,a(p) = −e(p

0−µa)/T iS<
l,a(p) , (5.113a)

i∆>
H(q) = e(q

0−µa)/T i∆<
H(q) . (5.113b)

For small chemical potentials µa, µϕ ≪ T , the propagators can be expanded,

iS<,>
l,a ≃ iS<,>

l,eq −
µa

T
PL

[
2πδ(p2) /p sign(p0)fFD(p0)fFD(−p0)

]
, (5.114)

i∆<,>
H ≃ i∆<,>

H,eq +
µϕ

T
2πδ(q2) sign(q0)fBE(q

0)fBE(−q0) . (5.115)

Their properties under charge conjugation are changed compared to (5.106),

CiS<
l,a(−p)TC−1 = iPRS

>
eq(p) +

µa

T
PR

[
2πδ(p2) /p sign(p0)fFD(p0)(1− fFD(p

0))
]
, (5.116a)

i∆<
H(−q) = i∆>

H,eq(q)−
µϕ

T
2πδ(q2) sign(q0)fBE(q

0)fBE(−q0) . (5.116b)

Note how the sign of the extra term is flipped in both cases. The self-energy will have terms
proportional to µa, µϕ/T , at lowest order, relating to our previous notations,

iΣ<,>
IJ (k) ≃ iΣ<,>

IJ,eq(k) +
∑
a

gW [YIaY
∗
JaPL − Y ∗IaYJaPR] iδaΣ̂

<,>(k)

≡ iΣ<,>
IJ,eq(k) +

∑
a

iδaΣ
<,>
IJ (k) , (5.117)

where the small deviation from chemical potentials is found to be

iδaΣ̂
<(k) =

∫
d4p

(2π)4
(2π)2δ(p2)δ((k − p)2) sign(p0) sign((k − p)0) /p

× fFD(p
0)fBE((k − p)0)

[µa

T
fFD(−p0)−

µϕ

T
fBE(−(k − p)0)

]
(5.118)

iδaΣ̂
>(k) =

∫
d4p

(2π)4
(2π)2δ(p2)δ((k − p)2) sign(p0) sign((k − p)0) /p

× fFD(−p0)fBE(−(k − p)0)
[
−µa

T
fFD(p

0) +
µϕ

T
fBE((k − p)0)

]
. (5.119)

Using the fact that fBE(q
0)+fBE(−q0) = −1 and fFD(p

0)+fFD(−p0) = 1, we have the relation

iδaΣ̂
< =

µa + µϕ

T
iΣ̂<

eq − e−k
0/T iδaΣ̂

> . (5.120)

This is simply a consequence of the (linearized version of) KMS relation (5.113). We note that
it relates the deviation δaΣ̂ to the equilibrium Σ̂eq.
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5.4.2 Self-energy beyond one-loop

We gave a derivation of the self-energy calculated at one-loop, in interaction with a ther-
mal bath. This one-loop estimate is valid for Non-Relativistic (NR) regimes. In the Ultra-
Relativistic (UR) regime, thermal corrections are important and more processes need to be
included, leading to significant corrections. Incorporating both regimes was done in [139],
which we follow, in order to write an estimate for the self-energy in all regimes.

Let us focus on the equilibrium spectral self-energy Σρ
eq. Extracting the flavor structure of

the interaction with lepton and Higgs fields, the sterile neutrino’s self-energy at equilibrium (in
all regimes of masses) can be written

Σρ
eq,IJ(k) = gW

[(
Y Y †

)
IJ
PL +

(
Y ∗Y T

)
IJ
PR

]
Σ̂ρ

eq(k) , (5.121)

where Σ̂ρ
eq is a reduced self-energy that doesn’t carry any flavor index. This reduced self-energy

will be computed for different regimes of masses in the following.

NR regime

The first estimate for the self-energy is to use the (bare) one-loop self-energy corresponding to
1→ 2 processes; this is what was done in section 5.4.1. It describes well the decays and inverse
decays, which are central in thermal and resonant leptogenesis, in the NR regime. From the
expression (5.110) found previously, this first estimate is calculated to be

Σ̂ρ,1→2
eq (k) = a1→2

0 γ0 + b1→2
0 γ · k̂ , (5.122)

with the functions a1→2
0 and b1→2

0 computed for example in [167,183] and given by

a1→2
0 ≡ T 2

8π|k|
I1(k

0/T, |k|/T ) , (5.123)

b1→2
0 ≡ T 2

8π|k|

[
k0

|k|
I1(k

0/T, |k|/T )− (k0)
2 − |k|2

2|k|T
I0(k

0/T, |k|/T )

]
, (5.124)

with
In(y0, y) ≡

∫ y+

y−

dx xn
(
f̃FD(−x) + f̃BE(y0 − x)

)
, (5.125)

where
y± ≡

y0 ± y
2

, f̃FD(x) =
1

ex + 1
, f̃BE(x) =

1

ex − 1
. (5.126)

Analytical expressions are known for these integrals (see [183] Eq (78a-b)), leading to

I0(y0, y) = ln

(
ey0+y − 1

ey0−y − 1

)
− y , (5.127)
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I1(y0, y) =
y0 + y

2
ln

(
1 + e(y0+y)/2

1− e(−y0+y)/2

)
− y0 − y

2
ln

(
1 + e(−y0+y)/2

1− e(−y0−y)/2

)
+ Li2

(
−e(y0+y)/2

)
+ Li2

(
e(−y0−y)/2

)
− Li2

(
e(−y0+y)/2

)
− Li2

(
−e(y0−y)/2

)
. (5.128)

The expression we found for the self-energy describes 1→ 2 processes for all regimes of masses.
However, while it is enough for the NR regime, it is too naive for the UR regime, as we will
argue.

UR regime

The 1 → 2 processes do not capture all the relevant physics in the UR regime. Indeed, it is
known [184–186] that when the temperature is much larger than the mass, thermal corrections
cannot be neglected. In particular, gauge interactions in the plasma induce a thermal mass
for the Higgs and the lepton fields (the so called Landau-Pomeranchuk-Migdal effect [187,188])
and 1+ n→ 2+ n processes should be included. The change in the self-energy is significant in
the UR regime, and collision terms are enhanced by several orders of magnitude compared to
the first estimate.

The price to pay for better treatment of the relativistic regime is that the coefficients are
calculated numerically. Data for the collision terms were given in [185, 186] for exactly
massless sterile neutrinos, and for a certain range of momenta |k|

T
∈ [0.01, 12] and tempera-

ture T ∈ [102, 107]GeV. In these studies, numerical values were provided for some functions
Q±(|k|/T ) that are related to the self-energy. In terms of the reduced self-energy,

Σ̂ρ,UR
eq,IJ(k) = aUR

0 γ0 + bUR
0 γ · k̂ , (5.129)

in the UR regime, the functions calculated in [185,186] are related to aUR
0 and bUR

0 ,

aUR
0 (k, T ) =

1

4

(
Q+ +

4|k|2

T 2
Q−

)
T , bUR

0 (k, T ) =
1

4

(
Q+ −

4|k|2

T 2
Q−

)
T . (5.130)

We note that there is no dependency in the sterile neutrino masses, as their masses are negligible
and thermal contributions dominate.

Interpolation between both regimes

We now have an understanding of the form of the spectral self-energy in both extreme regimes
of masses. Exact results are not known in the intermediate regimes and are hard to estimate.
Following a previous work [139] that tackled leptogenesis over different mass regimes, we will
adopt the procedure that we explain here. The total self-energy is estimated as the sum of the
self-energy used in the UR regime and the 1→ 2 self-energy used in the NR regime. The 1→ 2
self-energy should only contribute if the sterile neutrino mass can decay into other particles, so
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the threshold separating the two regimes is estimated at the thermal mass of the Higgs field.
In summary, we consider a total (reduced) self-energy

Σ̂ρ,tot
eq (k;M,T ) ≡ Σ̂ρ,UR

eq (k; 0, T ) + θ (M −mH(T )) Σ̂
ρ,1→2
eq (k;M,T ) . (5.131)

The thermal mass of the Higgs field is mH(T ) ≈ 0.3 T . This self-energy interpolates the two
regimes of interest for our study. We note that a somehow similar estimate was used in a
study of ARS leptogenesis [189] in a regime of relatively large masses. The collision rates were
given as the product of a fixed term (related to the self-energy) and a phase space factor which
changes as the mass is taken to be larger.

5.4.3 Discussion on the temperature dependence

Our study focuses on relativistic as well as non-relativistic regimes. The ratio M/T determines
which regime is relevant, and we want to know how the interactions are affected as temperature
evolves. A key observation, from the expression for the self-energies that we just derived, is that
in both regimes, we could write the self-energy as temperature times a function of κ0 ≡ k0/T
and κ ≡ |k|/T ,

Σ(k;T ) = T σ(k0/T, |k|/T ) = Tσ(κ0, κ) . (5.132)

Once the on-shell condition is imposed,

k0

T
→
√
|k|2 +M2

T
=

√
|k|2
T 2

+
M2

T 2
≡
√
κ2 + x2M , (5.133)

which will be a function of κ and xM ≡M/T only. This observation applies to the interpolated
self-energy (5.131) as well, as θ(M −mH(T )) ≃ θ(0.3 xM − 1).

5.5 General kinetic equations

Now that we derived expressions for the self-energies, we give the general equations for the
mass- and coherence-shell distributions, derived from the propagator’s equation (5.102). We
explain in Appendix E that the term

(
δaΣ

R
k ∗ S<

ad,k + δaΣ
<
k ∗ SA

ad,k
)
(t, t) + h.c. in this equation

can be replaced, considering small deviations coming from the chemical potentials, such that

∂t
(
δS<

k,IJ
)
(t, t) ≃− i [H0, δS<

k (t, t)]IJ − ∂tS
<
ad,k,IJ

− i
[
Σeff,R

eq,k (t, t)δS
<
k (t, t) + h.c.

]
IJ

+ i
∑
a

µa + µϕ

T
gW (YIaY

∗
JaPL − Y ∗IaYJaPR)

∑
η=±

{Fρ,η
J ,Pη

J} , (5.134)

where
Fρ,η

J ≡ fFD(ωJ)(1− fFD(ωJ))
˜̂
Σρ

eq(ηωJ ,k) . (5.135)

81



We will express this equation in terms of the mass- and coherence-shell distribution functions,
defined by

f ss′

h,IJ ≡ −iTr
[
Pss′

h JIS<
k,IJ(t, t)

]
= −iTr

[
Pss′

h JI

(
S<

ad,k,IJ(t, t) + δS<
k,IJ(t, t)

)]
. (5.136)

The adiabatic background S<
ad,k is diagonal in flavor and leads to the decomposition of the

mass- and coherence-shell functions into an equilibrium and a deviation part,

f ss′

h,IJ ≡ δf ss′

h,IJ + sδs,s′δIJ fFD(sωI) . (5.137)

5.5.1 Sterile neutrino evolution

Decomposing the (local) propagator into the various projectors Pss′

h,IJ defined previously and
injecting it in Equation (5.102) leads to

d

dt
δf ss′

h,IJ = −i(sωI(t)− s′ωJ(t)) δf
ss′

h,IJ − sδss′δIJ∂tfFD(sωI(t))

+ ss′
|k|
2

(
∂tMI

ωI(t)2
f−ss

′

h,IJ +
∂tMJ

ωJ(t)2
f s−s′
h,IJ

)
−
∑
L,η

Csηs′

h,ILJδf
ηs′

h,LJ +
(
Cs′ηs

h,JLI

)∗
δf sη

h,IL

+
∑
a

Bss′

h,a,IJ

µa + µϕ

T
. (5.138)

The first two lines can be recognized as the flavor-full version of the (free) equations described
in section 5.2.5. The third line represents interactions among sterile neutrinos, with coefficients
derived from the (effective) retarded self-energy,

Csηs′

h,ILJ(t) ≡ iTr
[
Ps′s

h,JIΣ
eff,R
k,eq,IL(t, t)P

ηs′

h,LJ

]
. (5.139)

The fourth line is the backreaction of the lepton asymmetry on the sterile neutrinos, coming
from deviation of the lepton distribution in the self-energy of the sterile neutrinos,

Bss′

h,a,IJ(t) ≡ gWTr

[
Ps′s

h,JI (YIaY
∗
JaPL − Y ∗IaYJaPR)

∑
η=±

{Fρ,η
J ,Pη

J}

]
. (5.140)

Note that this last term was originally not explicitly written down in [167], because the au-
thors were mainly concerned with resonant leptogenesis in which the backreaction of the lepton
asymmetry plays only a minor role. Indeed, because Fρ,η

a,J ∝ fFD(ωJ)(1 − fFD(ωJ), it can be
thought of as coming from inverse decays, converting the lepton asymmetry back into sterile
neutrinos. They are suppressed if the sterile neutrino mass is large and fFD ∼ exp (−M/T ).
This term is however important to us as we will apply these equations to regimes similar to
ARS leptogenesis.
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Including the expansion of the Universe relates to the discussion on kinetic Boltzmann equations
in section 2.3. Here we have quantum kinetic Boltzmann equations because δfh,IJ is a matrix
but the same reasoning applies. If we consider δf as a function of the rescaled momentum

κ ≡ k
T
, δfh,IJ(k, t)→ δf resc

h,IJ(κ, t) , (5.141)

the equations (5.138) with the replacement above automatically include the Universe’s expan-
sion. For simplicity in the following, we drop the "resc" superscript, and we will make clear
which quantity is considered when needed. This rescaling of the momentum is natural for
the various coefficients appearing in the equation. Indeed, the temperature dependence of the
self-energies tells us that the collision and backreaction can be written as

Csηs′

h,ILJ ≡ T csηs
′

h,ILJ(κ,
{
xIM
}
) , (5.142)

Bss′

h,a,IJ ≡ T bss
′

h,a,IJ(κ,
{
xIM
}
) , (5.143)

where the lower case letter are only function of κ = |k|/T and xIM =MI/T .

5.5.2 Lepton asymmetry evolution

We also give the equation for the asymmetry in the leptons, which can be found derived
in [138,167,190] and whose derivation is sketched in Appendix F,

T 3d∆a

dt
= Wa

µa + µϕ

T
− Sa . (5.144)

We introduced ∆a ≡ nB/3−nLa , the (rescaled) number density for the lepton number B/3−La,
for which the Boltzmann equation in an expanding Universe is written with a T 3 pre-factor
(see the relations (2.45)). It is directly connected to the chemical potentials of the SM particles
when SM interactions are assumed at equilibrium, as we mentioned in section 3.1. We recall
the relation

µa + µϕ

T
≡
∑
b

Aab∆b . (5.145)

We gave the values of A for different regimes of temperatures in section 3.1. The first term in
(5.144) is a washout term, i.e. it tends to reduce the asymmetry in leptons. It is given by

Wa =
∑
I,s

|YIa|2
∫

d3k
(2π)3

fFD(ωI)(1− fFD(ωI))Tr
[
PR

{
˜̂
Σρ

eq(sωI ,k),Ps
I

}]
. (5.146)

The second term Sa in (5.144) is a source term corresponding to the decays of sterile neutrinos
producing leptons. It is proportional to the sterile neutrinos densities and is given by

Sa =
∑
h,s,s′

∑
I,J

∫
d3k
(2π)3

Tr
[(
PRΣ

eff,ρ
eq,k,a,JI +

(
Σeff,ρ

eq,k,a,IJ

)†
PR

)
Pss′

h,IJ

]
δf ss′

h,IJ(k, t) . (5.147)
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From the above discussions, δf is understood as a function of κ = k/T and the self-energies
are of the form Σ = T σ, so the integrals can be re-written in terms of rescaled quantities

Wa = T 4
∑
I

|YIa|2
∫

d3κ

(2π)3
Tr
[
f̃FD(1− f̃FD)PR

{
˜̂σρ

eq,P
s
I

}]
≡ T 4wa , (5.148)

Sa = T 4
∑
h,s,s′

∑
I,J

∫
d3κ

(2π)3
Tr
[(
PRσ

eff,ρ
eq,κ,a,JI +

(
σeff,ρ

eq,κ,a,IJ

)†
PR

)
Pss′

h,IJ

]
δf ss′

h,IJ(κ, t) ≡ T 4sa .

(5.149)
The equation for the lepton asymmetry can then be written in terms of the rescaled quantity
∆a

d∆a

dt
= T wa

∑
b

Aab∆b − T sa . (5.150)

This equation is equivalent to a maybe more familiar expression in the context of ARS lepto-
genesis in terms of a variable z ≡ Tref/T ,

d∆a

dz
=

aR
Tref

wa

∑
b

Aab∆b −
aR
Tref

sa . (5.151)

Both formulations are equivalent, but as we will see, it is sometimes useful to switch from a
time dependence to a z dependence.
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Part III

Numerical and analytical results

This third and final part presents the results of our analysis of leptogenesis with a First-
Order Phase Transition. We consider two regimes: on the one hand, in Chapter 6, large sterile
neutrino masses M > Tn, which recover the so-called Mass Gain mechanism that resembles
thermal and resonant leptogenesis; and on the other hand, in Chapter 7 low masses M < Tn
which recovers a regime similar to ARS leptogenesis.
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Chapter 6

Mass Gain mechanism

In this chapter, we use our general equations (5.138), (5.144) to describe sterile neutrinos whose
masses are larger than the temperature Tn of the FOPT. They are massless before the FOPT
but become (almost) instantaneously massive and non-relativistic. In a FOPT with relativistic
bubble expansion, the change is sudden enough so that the sterile neutrino distribution cannot
stay at equilibrium. They can then decay efficiently and produce a lepton asymmetry. It is a
discontinuous process, contrarily to thermal leptogenesis where the deviation from equilibrium
happens due to the adiabatic expansion of the Universe. Depending on the ratio M/Tn, the
production of asymmetry can be fast compared to the expansion of the Universe.

This scenario was first presented, in the context of baryogenesis, in [32] and called "Mass
Gain" (MG) scenario. In the context of leptogenesis, several studies [28–31] used this mech-
anism with sterile neutrinos. Our goal is to extend these studies by working with kinetic
equations instead of equations for number densities, which will allow us to recover resonant as
well as non-resonant regimes for the production of the lepton asymmetry.

This chapter is organized as follows: we first introduce and describe the mechanism in section
6.1, which will lead us to consider relevant assumptions for simplifying the kinetic equations,
as shown in section 6.2. The equations are then solved and the results presented in section
6.3. These results are interpreted in section 6.4 in terms of sterile neutrino out-of-equilibrium
decays, which may or may not be resonantly enhanced. We then conclude in section 6.5 with
a comparison to previous studies and a discussion on the similarities and differences with the
present work. Our general conclusions on the Mass Gain mechanism are wrapped up in section
6.6.

86



6.1 Leptogenesis in the Mass Gain scenario

Originally, the Mass Gain (MG) scenario [32] is a way to achieve baryogenesis through decays
of an SU(3)-triplet scalar ∆ that is made massive by a FOPT. The sudden mass gain makes
the equilibrium distribution suppressed by a Boltzmann factor exp (−M∆/T ), while the actual
distribution is initially a massless distribution. If the change is fast enough compared to the
typical time of interaction, it results in a scalar population well out of equilibrium that decays
efficiently. Such a rapid transition is typically obtained for supercooled phase transitions, where
the bubbles are expanding at a velocity vw ≃ 1.

We consider the same situation with sterile neutrinos instead of the scalar, as was studied
in [28–31]. We therefore expect them to decay shortly after the FOPT. This can be estimated
by comparing the typical time of decay tΓ ≡ Γ−1, where Γ is the decay rate for the massive
sterile neutrino, and tn ≡ H−1(Tn) which is the Hubble time at temperature Tn,

Γ = Tr
[
Y Y †

]M
8π

, (6.1)

H(Tn) =
T 2
n

aR
, (6.2)

such that the ratio between the two time scales is

tΓ
tn

=
T 2
n

aR

8π

Tr [Y Y †]M
≈ T 2

n

aR

8πv2

mνM
=

(
Tn
M

)2
8πv2

mνaR
, (6.3)

where we used the estimate from the Casas-Ibarra (3.41) parametrization, with order one
coefficients in the R matrix. The parameter mν is the scale of the active neutrino masses; if we
take it around mν ≃ 0.05 eV,

tΓ
tn
≈ 4× 10−2

(
Tn
M

)2

. (6.4)

In the MG scenario, the ratio M/Tn is typically O(10), larger than one at least, because we
consider a supercooled FOPT that allows such large ratios, as argued in section 3.5. This
ensures that the typical decay time is smaller by (at least) two orders of magnitude than the
Hubble time. Most of the decays therefore happen very fast, before the Universe has time to
expand too much and reduce the temperature. Indeed, considering time scales after the FOPT
such that ∆t ≡ t− tnucl ∼ tΓ ≪ tn; recalling the time dependence (2.25) of temperature

T (t) =
(aR
2

)1/2
t1/2 =

(aR
2

)1/2
(tnucl +∆t)1/2 =

(aR
2

)1/2
(tn/2 + ∆t)1/2 , (6.5)

temperature is approximately constant T ∼ Tn during the period of interest. This statement
can be made clear by plotting the asymmetry produced as a function of time, as in Figure
6.1, for different set of parameters. On the left, the temperature is relatively low (Tn = 106

GeV) with a certain mass degeneracy (∆M/M = 10−3), while on the right the masses are less
degenerate (∆M/M = 1) but the temperature (Tn = 108 GeV) is higher. In both cases, a
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Figure 6.1: Baryon asymmetry produced during the MG scenario as a function of time. In both
plots, the mass-to-temperature ratio is fixed at M/Tn = 50, and the angle of the matrix R is
zR = 3π

4
+ i.

plateau at large times signifies that the asymmetry is freezed-out, it is no longer created nor
washed-out after a certain time. We summarize our description of the MG regime in Figure
6.2. Our conclusion is the following: in the MG scenario, at the time of the sterile neutrino
decays, the temperature is approximately constant. For numerical purposes, we will fix the
temperature to be constant, so that we can solve efficiently the kinetic equations.

6.2 Kinetic equations

In this section, we present the assumptions made for solving the kinetic equations for leptoge-
nesis. The original MG scenario relies on the fact that the particles are already present in the
plasma and at thermal equilibrium, with zero mass, before the transition. We will therefore
consider an initial thermal distribution of (massless) sterile neutrinos,

[MG] fm,s
k (t = tin) = sfM=0

FD (|k|) = s
1

e|k|/T + 1
, (6.6)

[MG] f c,s
k (t = tin) = 0 , (6.7)

and a vanishing initial lepton asymmetry

[MG] ∆a(t = tin) = 0 . (6.8)

Numerically, the initial time is taken to be γ∆tin = γ(tin − tnucl) = −15, starting a bit before
the bubble totally expands. The time dependence of the mass can also be simplified. Given
the hyperbolic tangent profile we assumed,

M(t) =M0
1 + tanh (γ∆t)

2

Assumption 3.78
= M0

1 + tanh (Tn∆t)

2
, (6.9)
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Figure 6.2: Schematic description of the MG scenario. The top row presents the different steps
of the cosmological context, in which the sterile neutrinos (bottom row) decay to give the lepton
asymmetry (middle row).

the mass should theoretically be dependent for all values of time. However, it approaches its
final value exponentially fast, so that most of the variation happens during a small period
around our reference time ∆t = 0. For |∆t| ≲ few T−1n , the variation can be important, but for
longer times, the mass is close to its final value. Numerically, it is a very good approximation
to take M(t) ≈M0 once ∆t is large enough,

M(t) =M0 for γ∆t = Tn∆t > 15. (6.10)

Moreover, sterile neutrinos are very massive (M > Tn) during the period of interest where
the asymmetry is produced. Inverse decays will then be suppressed by a Boltzmann factor
coming from fFD(ω) ∼ exp (−M/Tn). This means that the backreaction of the asymmetry
on sterile neutrinos is negligible, as well as inverse decays responsible for asymmetry washout.
Neglecting the Ba-factor in the equations (5.138) for the sterile neutrinos and Wa-term in the
lepton asymmetry equation (5.144), leads to

d

dt
δf ss′

h,IJ = −i(sωI(t)− s′ωJ(t)) δf
ss′

h,IJ − sδss′δIJ∂tfFD(sωI(t))

+ ss′
|k|
2

(
∂tMI

ωI(t)2
f−ss

′

h,IJ +
∂tMJ

ωJ(t)2
f s−s′
h,IJ

)
−
∑
L,η

Csηs′

h,ILJδf
ηs′

h,LJ +
(
Cs′ηs

h,JLI

)∗
δf sη

h,IL , (6.11)
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d∆a

dt
= −Sa(t) . (6.12)

The source term is computed from the sterile neutrino distributions

Sa =
∑
h,s,s′

∑
I,J

∫
d3k
(2π)3

Tr
[(
PRΣ

eff,ρ
eq,k,a,JI +

(
Σeff,ρ

eq,k,a,IJ

)†
PR

)
Pss′

h,IJ

]
δf ss′

h,IJ(k, t) . (6.13)

Our justified simplifications allow us to keep the momentum dependence while solving our
equations for mass- and coherence-shell in a reasonable amount of computational time. Our
equations are momentum-dependent. In order to solve them efficiently, we restrain ourselves to
a certain range of momenta, and take a discrete set of them. Following the discussion of section
5.4, we only consider momenta k ∈ [0.01, 12]× T for which we have a numerical expression for
the self-energy in the relativistic regime. We have checked that, in the non-relativistic regime
where we have expression for all momenta, contributions of higher or lower momenta to the
asymmetry are negligible. Once the equations are solved for all momenta in the sterile sector,
we use them to compute the lepton asymmetry. Finally we obtain the yield

YB =
28

79

∑
a ∆a

2π2

45

, (6.14)

and compare it to the (central value of the) observed [3] Y obs
B = 8.75× 10−11.

6.3 MG Results

We recall that we have 4 parameters that are of interest, the temperature Tn, the ratio between
the mass scale and the temperature M/Tn, the mass degeneracy ∆M/M and the imaginary
part zi of the complex angle. We summarize in Table 6.1 which relevant parameters are being
fixed and which ones are being varied, from the discussions in Chapter 3.

FOPT sector neutrino sector
Fixed γ = Tn δ = 3π/2, α1 = α2 = 0, zr = 3π/4
Free Tn M , ∆M/M , zi

Table 6.1: Summary of all parameters of interest. In the scalar sector, the FOPT happens
at a temperature Tn, which (we assumed) is fixing the scale for the relevant parameters of
the FOPT. In the neutrino sector, most low-energy PMNS matrix-elements are determined by
experiments; for the CP and Majorana phases that remain uncertain, we make a choice. The
sterile neutrinos have their own degrees of freedom, their masses and the angle in the R matrix.

We find successful regions for leptogenesis. Plotting the produced asymmetry as a function of
M/Tn and ∆M/M in Figure 6.3a allowed us to verify that the masses needed to be greater by
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(a) Normalized baryon asymmetry as a function
of M/Tn and ∆M/M . The mass of the sterile
neutrinos should be a factor ≃ 10 over the tem-
perature in order to obtain a large asymmetry.
The mass degeneracy exhibits a resonance when
it reaches ∆M/M ≃ 10−6.

(b) Normalized baryon asymmetry as a func-
tion of Tn and ∆M/M . The thick-black con-
tour delimits the region of successful leptogene-
sis. The isocurves in the lower part of the panel
are straight lines in a log-log scale. We plotted
in red the curve corresponding to ∆M = Γ.

(c) Comparison of the normalized baryon asymmetry (on the left) and the CP asymmetry ϵCP (on the
right) as a function of zi and ∆M/M . The ratio M/Tn was fixed at 50, and the temperature of the
FOPT is Tn = 108 GeV. The region of successful leptogenesis is delimited by a thick-black contour.

Figure 6.3: Numerical results in the MG scenario

some factor ten compared to the temperature in order to produce enough asymmetry. For M
too close to Tn, the washout is not suppressed enough by the Boltzmann factor to avoid signifi-
cant washout. However, at fixed ∆M/M , the baryon asymmetry does not increase indefinitely
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as M/Tn is increased. Once the washout is suppressed enough to let the asymmetry survive, it
does not help much to suppress it further.

In the (∆M/M,Tn) plane in Figure 6.3b, we may see that the baryon asymmetry produced
is maximal along a certain line ∆M/M ∝ Tn, which can be seen with the isocurves that are
straight lines of slope 1 (in the log-log scale). We have checked that the maximum corresponds
to M2 −M1 ≈ (Γ1 + Γ2) /2 ≡ Γ, with Γ the decay rates for the sterile neutrinos in the non-
relativistic regime.

For non-degenerate sterile neutrinos, the region where leptogenesis is successful is for tem-
peratures Tn ≳ 108 GeV, i.e. M ≳ 5 × 109 GeV in the upper-right region of the plot. Lower
temperatures (and therefore lower masses because M/Tn is fixed in this case) are successful
only to the price of stronger mass degeneracy (around ∆M/M ∼ 10−6 for M ∼ 5× 105 GeV).
This is reminiscent of thermal and resonant leptogenesis; with hierarchical masses, leptogen-
esis works only above the Davidson-Ibarra bound. For lower masses, the resonant regime is
needed to create enough asymmetry. We make in the next section the connection with resonant
leptogenesis for the interpretation of our results.

6.4 CP asymmetry in decays

We wish to compare and interpret our results in terms of thermal leptogenesis, in which the
asymmetry is also generated by decays. The general kinetic equations (6.11) that we started
with (and solved numerically) are equations for density matrices, that contain flavor-mixing
between sterile neutrinos (the off-diagonal elements δf ss′

h,12). This type of matrix equations are
known [139,143] to lead to the classical Boltzmann equations used in thermal and resonant lep-
togenesis, once kinetic equilibrium is assumed and that the off-diagonal elements are integrated
out of the dynamics. Recall that in thermal leptogenesis, the equations are

dNNI

dt
+ 3HNI = −γI

(
NNI

N eq
NI

− 1

)
(6.15)

dNL

dt
+ 3HNL = −

∑
I

[
γI

NL

2N eq
l

− ϵICPγI

(
NNI

N eq
NI

− 1

)]
, (6.16)

where γI is the decay rate, and ϵICP is the CP asymmetry. We discussed this quantity in 3.3;
it contains contributions from vertex and wave-function corrections. In resonant leptogenesis,
the wave-function contribution dominates, as ∆M ≪ M . We will therefore neglect the vertex
contribution and work with ϵICP,wave only, with a regulated expression compared to our original
definition (3.56),

ϵICP ≃ ϵI,regCP,wave ≡
Im
[(
Y Y †

)2
12

]
(Y Y †)11 (Y Y

†)22

(M2
2 −M2

1 )MIΓJ

(M2
2 −M2

1 )
2
+ (RIJ)

2
, I ̸= J . (6.17)
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We introduced the decay rates (in the non-relativistic regime) ΓI ≡
(
Y Y †

)
II
MI/(8π). RIJ is a

regulator, preventing the expression to blow up as M1 →M2. In resonant leptogenesis, ϵCP,wave

is an input, so there is some arbitrariness in the choice of RIJ . There is indeed no consensus
on what value to take for RIJ ; several possibilities have approximately the same behaviour for
the resonance. Options are [131,132,135,143]

RIJ =MIΓJ , MIΓI −MJΓJ , MIΓI +MJΓJ , (MIΓI +MJΓJ)

∣∣∣Im [(Y Y †)2
IJ

]∣∣∣
(Y Y †)II (Y Y

†)JJ
. (6.18)

We fixed RIJ = MIΓI +MJΓJ , for concreteness, and computed ϵCP ≡ ϵ1CP + ϵ2CP. In this case,
the asymmetry is resonantly enhanced when M2 − M1 ≈ Γ ≡ (Γ1 + Γ2) /2, For degenerate
sterile neutrinos, using the Casas-Ibarra parametrization (3.41)

M2 −M1 = Γ⇔M2 −M1 =
(Y Y †)11 + (Y Y †)22

16π
M

⇔ ∆M

M
=M

∑
i,I mi|RIi|2

16π
= Tn

M

Tn

∑
i,I mi|RIi|2

16π
. (6.19)

The resonance corresponds to a linear relation between ∆M/M and Tn, at fixed M/Tn and
fixed z. This explains the isocurves that are straight lines in this plane, corresponding to equal
values of ϵCP.

Using the expression for ϵCP, we can further compare the baryon asymmetry obtained nu-
merically with the one expected from sterile neutrino decays. In the (zi,∆M/M) plane plotted
in Figure 6.3c, the shape of the isocurves of the (numerical) asymmetry are similar to the shape
of ϵCP values isocurves. The imaginary part zi affects the value of |RIi|2, so that the mass gap
at the resonance, from the expression above, is changed. This reflects the fact that, for different
zi’s, the maximum baryon asymmetry produced is obtained for different ∆M/M .

6.5 Comparison to previous studies

In this section, we compare our approach to previous studies. In previous works [28,31], the final
baryon asymmetry was estimated from semi-analytical results in the strong washout regime.
The asymmetry YB is written as the product of different factors

YB = κpenκdepκw

(
Tn
Treh

)3

κsphϵCPY
0
N . (6.20)

Transmission inside the bubble The penetration rate κpen captures how efficiently the
sterile neutrinos enter the bubble. In practice, for a relativistic bubble wall, the penetration
rate is close to 1, κpen ≃ 1.
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Washout The factors κdep and κw are numerically determined by the Boltzmann equations
and capture the reduction of the asymmetry from two channels. First, the factor κw corresponds
to the usual washout in thermal leptogenesis. Second, the depletion rate κdep includes the
reduction of the sterile neutrino distribution by their annihilation into the scalar field NN → S
(and also into the gauge boson of the B − L symmetry in [28,31]).

Dilution After the FOPT and the entropy injection in the plasma, the asymmetry is diluted

by a factor
(

Tn

Treh

)3
.

Sterile neutrino decays Finally, κsphϵCPY
0
N is the naive estimate of the asymmetry pro-

duced by the decay of an initial sterile neutrino distribution Y 0
N , with a CP-asymmetry ϵCP

creating a lepton asymmetry, converted into a baryon asymmetry by the sphalerons by a factor
κsph = 28

79
. In the Mass Gain mechanism, the sterile neutrinos are initially massless, such that

Y 0
N = 135ζ(3)

4π4g∗
.

These different factors were plotted as a function of the phase transition strength αn. We
recall its definition from (2.71)

αn ≡
∆VS(Tn)

ρSM(Tn)
, (6.21)

which is the ratio between the potential energy released by the phase transition and the energy
density of the SM plasma at the nucleation. The phase transition will have a significant impact
on the plasma energy density if αn > 1. The effect of the energy released is to reheat the
plasma to a temperature Treh such that

ρSM(Treh) = ρSM(Tn) + ∆V (6.22)

which can be rewritten in terms of αn, using ρSM(T ) ∝ T 4,

ρSM(Tn)

ρSM(Treh)
=

(
Tn
Treh

)4

= (1 + αn)
−1 . (6.23)

We obtain a direct relation between the dilution factor (Tn/Treh)
3 and the strength αn.

In general, several factors depend on the strength αn. In [31], the authors conclude that a
strong FOPT with large values of αn reduces the asymmetry because of the dilution factor
from reheating (Tn/Treh)

3, while lower values of αn imply less deviation from equilibrium and
a stronger washout and depletion effect from the Boltzmann equations (smaller values of κw
and κdep). The optimal case, for the mass and coupling values they considered, was found to
be around αn ≈ 5. This corresponds to values of the parameters (see Figure 2 in [31])

αn = 5 : κpen = 1 , κdep ≈ 0.5 , κw ≈ 0.8 ,

(
Tn
Treh

)3

≈ 0.26 . (6.24)
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A reasonable estimate of the reheating for refining our study would then be to add a factor
(Tn/Treh)

3 ∼ 1/4 in our numerical results. We would still obtain large regions of successful
leptogenesis.

These previous approaches did not include particle production during the phase transition.
From section 4, for an initial number density of massless sterile neutrinos, distributed ther-
mally, we can compute the number density obtained after the passage of the bubble, which is
larger due to production. Integrating over all momenta, we describe the production in terms
of a factor κPT defined by

κPT =
NPT

NM=0
eq (Tn)

=
4π2

3ζ(3)T 3
n

∫
d3k
(2π)3

fPT , (6.25)

where fPT was obtained from hypergeometric functions in section 4. Its effect on the baryon
asymmetry produced is simply that it enhances the number of particles able to decay after the
FOPT,

Y in
N = κPTY

0
N , (6.26)

YB = κPTκpenκdepκw

(
Tn
Treh

)3

κsphϵCPY
0
N . (6.27)

The behaviour of κPT as a function of αn is plotted in Figure 6.4a, assuming we fix

(a) κPT as function of the phase transition
strength αn, at fixed M/Treh = 10. The value
αn = 5 is indicated.

(b) κPT as function of the M/Treh, at fixed αn =
5. The value M/Treh = 10 is indicated.

M/Treh = (1 + αn)
−1/4M/Tn = 10. The stronger the phase transition, the more particle

will be produced, as one can expect. In [31], the optimal enhancement of the asymmetry was
found for αn ≃ 5. For this strength, the factor κPT gives only an O(1%) enhancement of the
asymmetry. Augmenting the mass ratio M/Treh improves this factor slightly, but a plateau is
reached at large masses, as seen in Figure 6.4b. The particle production at the phase transition
for the MG scenario has therefore a sub-leading effect on the asymmetry.

In addition to particle production, our approach also included the full dynamics of the mass-
and coherence-shell functions, as function of momentum. We did not assume kinetic equilib-
rium, and moreover, we kept sterile flavor correlations (i.e. off-diagonal terms in the matrices
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δf ss′
12 ) dynamical. In particular, the resonant behaviour of the decays was not put by hand; it

came automatically from the resolution of the equations. No regulator was needed to make the
CP-asymmetry finite when ∆M ≪M,Γ.

6.6 Conclusion for the MG scenario

Working with sterile neutrinos that become very massive during a first-order phase transition,
we found successful regions for leptogenesis. We were able to interpret the results clearly
in terms of sterile neutrino decays, happening shortly after the FOPT. Our equations also
included particle production due to the FOPT, but we estimated its effect to be only a minor
O(1%) improvement. For hierarchical sterile neutrinos, we need M ≳ 5× 109 GeV in order to
successfully reproduce the baryon asymmetry, consistent with the Davidson-Ibarra bound. For
degenerate sterile neutrinos, the asymmetry exhibits a resonant behaviour at ∆M ∼ Γ, like in
resonant leptogenesis. Note that we did not need to put by hand a regulator RIJ in a resonant
CP-asymmetry ϵICP,wave, because we solved for the complete kinetic equations for mass- and
coherence-shell functions, including flavor mixing (from off-diagonal terms δf ss′

h 12). We never
needed the expression for ϵICP, the asymmetry is automatically regulated, coming out of the
equations.
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Chapter 7

ARS-like leptogenesis

In this chapter, we describe the impact of a FOPT on a regime similar to ARS leptogenesis, in
which the asymmetry is created while the sterile neutrinos are produced from the plasma. We
first show that, starting from our kinetic equations (5.138),(5.144), we recover similar equations
to the ones presented in section 3.4 for ARS leptogenesis. We then explain how an extra scalar
S and its FOPT modify them, and what are the physical consequences of this modification. In
particular, the vacuum masses, crucial for flavor oscillations in ARS leptogenesis, are no longer
present since the beginning; they only appear after the FOPT. It is however possible, as we
will see, that thermal masses coming from the scalar S contributed to oscillations before the
FOPT.

We then distinguish three scenarios, that we designate with roman numbers: (I) standard
ARS leptogenesis (without a FOPT); (II) ARS-like leptogenesis with a FOPT and no thermal
masses from S (no oscillations before the FOPT); (III) ARS-like leptogenesis with a FOPT and
with thermal masses from S (oscillations before and/or after the FOPT). Scenario (I) is well
known, so we will only briefly re-derive some known analytical estimates of the asymmetry in
this case, in order to compare them to the other scenarios. Scenario (II) is one of the main
focuses of this thesis and is an original work. We detail the associated numerical and analytical
studies, and compare them to standard ARS leptogenesis. Scenario (III) extends prior stud-
ies [37, 39] on the effect of thermal masses by developing analytical estimates and completes
our description of ARS leptogenesis with a phase transition.

This chapter is organized around the presentation of these scenarios. We start by discussing in
section 7.1 the qualitative differences that we expect between ARS with and without a phase
transition. In both cases, we consider the flavor oscillations of relativistic sterile neutrinos,
for which we derive in section 7.2 equations that are common to all scenarios. The difference
between the scenarios is then concretely given in terms of the coefficients of the equations in
section 7.3. Each scenario is treated separately: section 7.4 presents analytical estimates for
standard ARS leptogenesis, while sections 7.5 and 7.6 present the second scenario numerically
and analytically, respectively. Section 7.7 gives the analytical estimates found in the third sce-
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nario, before we compare all three cases in section 7.8 and conclude on the advantages of each
scenario.

7.1 Qualitative discussion

Before getting started, let us insist on why we expect scenario (II) (ARS-like scenario with a
phase transition) to be qualitatively different from scenario (I) (standard ARS leptogenesis).
In our equations (and in ARS scenarios in general), we expect flavor oscillations in the sterile
sector to be the origin of CP-violation, and eventually of asymmetry generation. Usually, in
standard ARS leptogenesis, sterile neutrinos are massive from the beginning of the evolution,
and as we saw in section 3.4, oscillations start around a typical temperature given by

TARS
osc ≡

[
aR
(
M2

2 −M2
1

)]1/3
. (7.1)

However, in scenario (II), oscillations could not have been started by vacuum masses before the
FOPT because they were exactly zero. At the temperature Tn of the FOPT, we may already
be past the oscillation temperature. This brings us to consider two extreme cases, Tn ≫ TARS

osc
or Tn ≪ TARS

osc :

If Tn ≫ TARS
osc , the FOPT happens long before the oscillations, and sterile neutrinos have

acquired their vacuum masses by then. In this regime, the evolution will be the same as in
ARS leptogenesis, with potentially a different initial condition for the sterile neutrino density,
coming from the particle production at the FOPT.

We are more interested in the second case, where Tn ≪ TARS
osc . Here, the oscillations were

frustrated because the vacuum masses were still zero at T = TARS
osc , so no flavor oscillations

were permitted. Once the FOPT is complete, the oscillations can start. They will occur at
a lower temperature than what is standard. Lower temperatures imply a slower expansion
of the Universe, so we expect the oscillations to happen more rapidly than the evolution of
the temperature. To make this precise, we compare the typical time tosc of one sterile flavor
oscillation (at fixed temperature Tn) to the time for which temperature varies, tn ≡ H−1(Tn).
For a generic particle of momentum |k| ≈ Tn ≫ M1,M2 in the plasma, the energy difference
between the flavors (thus the frequency of flavor oscillations) is

ω12 = ω2 − ω1 ≃
M2

2 −M2
1

2|k|
≈ M2

2 −M2
1

2Tn
. (7.2)

The corresponding time we want to consider is

tosc ≡
(
M2

2 −M2
1

2Tn

)−1
compared to tn ≡

aR
T 2
n

, (7.3)

tosc

tn
= 2

Tn
aR

T 2
n

M2
2 −M2

1

!
= 2

[
Tn
TARS

osc

]3
. (7.4)
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Remarkably, the time ratio is directly related to the ratio of the relevant temperatures. This
is not too surprising; given the power-law dependence in temperature of the time, if the tem-
perature Tn is lower than the typical temperature for which one oscillation occurs (in standard
ARS), then there is enough room, in one Hubble time at temperature Tn, for oscillations to
happen.

We summarize this description in Figure 7.1. The domain we want to explore is the non-
standard scenario in which oscillations happen at (approximately) constant temperature, with
tosc ≪ tn. The flavor oscillations then have time to produce an asymmetry in the different flavors
and then average out, their contribution to the total lepton asymmetry becoming negligible.
Since washout processes are flavor-dependent, they will produce a non-zero total asymmetry.
Eventually, washout will erase this asymmetry; it is then crucial that sphaleron decoupling
occurs before this happens, such that a net baryon asymmetry is produced.

Figure 7.1: Schematic description of scenario (II) (an ARS-like regime with a FOPT).

7.2 ARS-like equations

ARS leptogenesis relies on flavor oscillations in the sterile sector. The quantum nature of the
density matrix should be present in our evolution equations, but we are mainly concerned with
flavor oscillations, which are the (relatively) slow oscillations between states of different masses,
therefore of different vacuum energy. They correspond to the mass-shell functions, oscillating
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at a rate ≈ ωI − ωJ . The coherence-shell functions, as mentioned earlier, oscillate much faster
and are interpreted as particle-antiparticle oscillations.

Consider for instance a typical particle in the plasma, of momentum |k| ≃ T . In ARS lep-
togenesis, masses are much smaller than the temperature, so the energy of such a particle
would be

ωI =
√
|k|2 +M2

I ≈ T +
M2

I

2T
. (7.5)

Then, frequency of mass- and coherence-shell functions are

Ωm = ωI − ωJ ≈
M2

I −M2
J

2T
, Ωc = ωI + ωJ ≈ 2T . (7.6)

The low values of the masses MI ≪ T ensure that Ωm ≪ Ωc. This means that the coherence-
shell functions can be quickly averaged out if we consider evolution over larger scales than 1/T .
Going back to the equations for the sterile neutrino distributions, putting all the coherence-shell
terms to zero leaves only

d

dt
δfm,s

h,IJ =− is (ωI − ωJ) δf
m,s
h,IJ − sδIJ

dfFD(sωI)

dt

−
∑
L

[
Csss

h,ILJδf
m,s
h,LJ +

(
Csss

h,JLI

)∗
δfm,s

h,IL

]
+
∑
a

Bss
h,a,IJ

µa + µϕ

T
. (7.7)

Because δfm,−
h,IJ = −δfm,+

h,JI , (see 5.2.6), we might as well focus only on δfm,+
h,IJ . The equations now

only involve one collision term given by C+++
h,ILJ , and one backreaction per flavor B++

a,IJ , whose
definitions we recall

C+++
h,ILJ ≡ iTr

[
P++

h,JIΣ
eff,R
k,eq,ILP

++
h,LJ

]
= iTr

[
P++

h,JI

(
Σeff,H

k,eq,IL − iΣ
eff,ρ
k,eq,IL

)
P++

h,LJ

]
, (7.8)

B++
h,a,IJ(t) ≡ gWTr

[
P++

h,JI (YIaY
∗
JaPL − Y ∗IaYJaPR)

∑
η=±

{Fρ,η
J ,Pη

J}

]
. (7.9)

With the assumption that the sterile neutrino masses are sufficiently degenerate (ωI ≈ ω in
the computation of the self-energies) and relativistic, the projectors appearing in the definition
of the C and B coefficients can be simplified (see Appendix G). Using the expression for the
self-energies from section 5.4, computing the various coefficients leads to

C+++
h,ILJ = gW

[(
Y Y †

)
h,IL

k + k̃

2ω
+
(
Y ∗Y T

)
h,IL

k − k̃
2ω

]
·
(
Σ̂ρ

eq + iΣ̂Heq

)
(k)

=
T

2

((
Y Y †

)
h,IL

(γ+ + ih+) +
(
Y ∗Y T

)
h,IL

(γ− + ih−)
)
, (7.10)

B++
h,a,IJ = h gWfFD (1− fFD)

[(
Y·aY

†
a·
)
h,IJ

k + k̃

2ω
−
(
Y ∗·aY

T
a·
)
h,IJ

k − k̃
2ω

]
· Σ̂ρ

eq(k)

=
hT

2
fFD (1− fFD)

((
Y·aY

†
a·
)
h,IJ

γ+ −
(
Y ∗·aY

T
a·
)
h,IJ

γ−

)
, (7.11)
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k = (ω,k) , k̃ = (|k|, ω k̂), (7.12)

where we defined, for the matrix A = Y Y † or Y ∗Y T ,

Ah = A if h = +1 , Ah = A∗ if h = −1 . (7.13)

We introduced more standard notation from ARS leptogenesis (for instance used in [137–139])

γ+ ≡
1

T

gW

(
k + k̃

)
· Σ̂ρ

eq(k)

ω
, γ− ≡

1

T

gW

(
k − k̃

)
· Σ̂ρ

eq(k)

ω
, (7.14)

h+ ≡
1

T

gW

(
k + k̃

)
· Σ̂Heq(k)

ω
, h− ≡

1

T

gW

(
k − k̃

)
· Σ̂Heq(k)

ω
, (7.15)

where we recall that at thermal equilibrium, the self-energies with a "hat" correspond to the
self-energies from which we extracted the flavor indices,

Σ
ρ/H
eq,IJ(k) ≡ gW (YIaY

∗
JaPL + Y ∗IaYJaPR) Σ̂

ρ/H
eq (k) . (7.16)

The Minkowski scalar product in k · Σ̂ = kµΣ̂µ is implicitly defined with respect to the 4-vector
associated with the hatted self-energies, Σ̂ ≡ Σ̂µγ

µ. These coefficients were derived from the
spectral (γ) and hermitian (h) parts of the self-energy. Equation (7.7) now takes the form

d

dt
δfm,s

h =− is
[
H0 +Hh

th, δf
m,s
h

]
− dfFD

dt

− 1

2
{Γh, δf

m,s
h }+ fFD (1− fFD)

∑
a

Γ̃h,a
µa + µϕ

T
, (7.17)

(H0)IJ ≡ ωIδIJ ,
(
Hh

th

)
IJ
≡ T

[
h+
2

(
Y Y †

)
h,IJ

+
h−
2

(
Y ∗Y T

)
h,IJ

]
, (7.18)

(Γh)IJ ≡ T
[
γ+
(
Y Y †

)
h,IJ

+ γ−
(
Y ∗Y T

)
h,IJ

]
, (7.19)(

Γ̃h,a

)
IJ
≡ hT

2

[
γ+
(
Y·aY

†
a·
)
h,IJ
− γ−

(
Y ∗·aY

T
a·
)
h,IJ

]
. (7.20)

The hermitian self-energy contributed to a Hamiltonian interpreted as thermal sterile neutrino
masses coming from the Yukawa couplings. The spectral self-energy gave us the collision terms
Γ, Γ̃. So far, we have kept the momentum dependence explicit. In most ARS studies, the
momentum dependence is removed by making the assumption of kinetic equilibrium. It assumes
that the momentum distribution is proportional to the Fermi-Dirac distribution. In this case,
one can integrate over momentum to get an equation involving the number density

δNh ≡
∫

d3k
(2π)3

δfm,+
h . (7.21)

As δf is a function of the normalized momentum κ = k/T , the number density goes like T 3,

δNh = T 3

∫
d3κ

(2π)3
δfm,+

h . (7.22)

101



This T 3-factor is responsible for the dilution of the number density as the Universe expands.
It is therefore convenient to work with a normalized number density

δnh ≡
δNh

T 3
. (7.23)

Kinetic equilibrium assumes that the momentum distribution is a Fermi-Dirac distribution
multiplied by a momentum-independent amplitude,

δf+,s
h = δnh

f̃FD(κ)

neq
, (7.24)

with
f̃FD(κ) ≡

1

e|κ| + 1
, neq =

∫
d3κ

(2π)3
fFD =

3ζ(3)

4π
. (7.25)

We took the Fermi-Dirac distribution for a relativistic particle, which is a good approximation
in our case (M ≪ T during the whole evolution). In particular, the equilibrium distribution is
no longer time dependent. The equation (7.17) can then be integrated over momentum,

d

dt
δnh = −i

[〈
H0 +Hh

th

〉
, δnh

]
− 1

2
{⟨Γh⟩ , δnh}+ neq

∑
a

〈
Γ̃h,a

〉(1) µa + µϕ

T
. (7.26)

We recover the equation (3.58) from section 3.4. The momentum averages are defined by

⟨X⟩ ≡ 1

neq

∫
d3k
(2π)3

X(k) fFD , (7.27)

⟨X⟩(1) ≡
∫

d3k
(2π)3

X(k) fFD (1− fFD) , (7.28)

for all quantities X. The lepton asymmetry equation can also be simplified in the relativistic
regime and once kinetic equilibrium is assumed. In the end, we recover the standard equations
used in ARS leptogenesis

d

dt
δnh = −i

[〈
H0 +Hh

th

〉
, δnh

]
− 1

2
{⟨Γh⟩ , δnh}+ neq

∑
a

〈
Γ̃h,a

〉(1) µa + µϕ

T
, (7.29)

d∆a

dt
= Tr

[
⟨Γh,a⟩(1)

] µa + µϕ

T
−
∑
I,J,h

〈
Γ̃h,a

〉
JI

(δnh)IJ . (7.30)

Γh,a is the contribution of the decay matrix Γh to the flavor a, meaning we replace
(
Y Y †

)
by(

Y·aY
†
·a
)
IJ

in equation (7.19).
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7.3 Different ARS-like regimes

Now that our equations are set, we can describe concretely the differences between each of the
three scenarios we want to consider. The main difference will have to do with the Hamiltonian
H0, responsible for the vacuum flavor oscillations of our sterile neutrinos. In scenario (I)
(standard ARS), the Hamiltonian is simply given by the energy of the particles, of constant
mass matrix M ,

H
(I)
0,IJ ≡

√
|k|2 +M2

I δIJ ≃ |k|δIJ +
M2

I

2|k|
δIJ . (7.31)

The first term is proportional to identity in flavor space, so its commutator will always vanish.
Abusing of our notations, we will identify the Hamiltonian to the part that depends on flavor

H
(I)
0,IJ → H

(I)
0,IJ =

M2
I

2|k|
δIJ . (7.32)

The momentum average of this quantity can be calculated〈
H

(I)
0,IJ

〉
=

π2

36ζ(3)

M2
I

T
δIJ . (7.33)

In the last line, we used the fact that in the UR limit,
〈

1
|k|

〉
= π2

18ζ(3)
1
T

(see for example [8]).
The averaged Hamiltonian therefore goes like 1/T in scenario (I).

The situation is different in scenarios with a FOPT, because the mass matrix MN is vanishing
before the phase transition. One should use a time-dependent mass,

MI =MI0
1 + tanh (γ∆t)

2
, ∆t ≡ t− tnucl = t− aR

2T 2
n

. (7.34)

We studied the impact of such a profile during the phase transition in chapter 4, with a
creation of particles. Here, we will be interested in a cosmological evolution, so over longer
periods of time. We took γ = Tn, as argued in section 3.5.1. This means that over time scales
∆t ∼ H−1(Tn) =

aR
T 2
n
≫ T−1n , the mass profile can be well approximated by a step function at

time tnucl (or temperature Tn),

MI ≃ θ(t− tnucl)MI0 = θ(T − Tn)MI0 . (7.35)

The vacuum Hamiltonian is then simply

H
(II)
0 = θ(T − Tn)H(I)

0 = θ(T − Tn)
M2

2|k|
, (7.36)

〈
H

(II)
0

〉
= θ(T − Tn)

π2

36ζ(3)

M2

T
. (7.37)

As we mentioned in the introduction of this chapter, this change can make a qualitative differ-
ence, because oscillations can get frustrated and will happen differently than in the standard
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case.

Sterile neutrinos were considered masssless before the FOPT, in this scenario (II). They could
however have a thermal mass, from their interaction with the scalar field, as we briefly described
in section 3.5.3. This is only possible if the scalar field S is present and has thermalized with
the SM plasma. If that’s the case, they contribute to an additional term for the squared mass

M2
I →M2

I +
λ2I
12
T 2 , (7.38)

where λI is the coupling of the sterile neutrino to the scalar field S. In particular, we have
MI0 ≡ λIvS. The Hamiltonian H0 is consequently given by two terms, one from the vacuum
mass and one from the thermal mass,

H
(III)
0 =

λ2I
2|k|

T 2

12
+ θ(T − Tn)

M2

2|k|
, (7.39)

〈
H

(III)
0

〉
=

π2

36ζ(3)

[
λ2I
12
T + θ(T − Tn)

M2

T

]
. (7.40)

Note the interesting temperature-dependence. First, before the FOPT, the vacuum Hamilto-
nian goes like T , then after the FOPT it goes like aT + b/T .

Another complementary difference between standard ARS and ARS with a FOPT is the cre-
ation of particles from the phase transition. The initial condition can no longer be vacuum, but
a non-zero population of sterile neutrinos. The effect on our analytical study is the inclusion of
the factor κ. According to the procedure of section 4, one can compute κ from the parameters
Tn and MI . It should be present in both scenario (II) and III.

We summarize the three scenarios considered in this work by giving their characteristic vacuum
Hamiltonian and the typical temperature at which oscillation occur. We anticipate the discus-
sions in section 7.7 about scenario (III) and give directly its oscillation temperature, which will
be explained later. We will present the three scenarios and compare their conclusions.

Scenario Temperature of oscillation Vacuum Hamiltonian

(I) TARS
osc ≡ (aR (M2

2 −M2
1 ))

1/3
H

(I)
0 = c M2

T

(II) Tn H
(II)
0 = c θ(Tn − T )M

2

T

(III) T
(III)
osc ≡ 12 aR (λ22 − λ21)

−1
H

(III)
0 = c

[
λ2T/12 + θ(Tn − T )M

2

T

]

Table 7.1: Summary of the different ARS-like scenarios. We pose c ≡ π2

36ζ(3)
.
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7.4 Scenario (I): standard ARS leptogenesis

In standard scenarios, without a phase transition, the sterile neutrinos evolve and oscillate due
to their vacuum mass since the first instants of the Universe, at large temperatures T → +∞
corresponding to z = Tref/T → 0. It is then more convenient to work with the variable z instead
of time t as the variable. Sterile neutrinos are assumed to be absent of the plasma initially,

δnh(z = 0) = −neqδIJ , (7.41)

with neq = (3ζ(3))/(4π2) the rescaled number density for one heliticy of relativistic sterile
neutrinos. The equation for the density matrix (7.29), written in terms of the variable z thanks
to the relation (2.43), give

d

dz
δnh =− i aR

2Tref

[〈
π2

18ζ(3)

M2

Tref
z2 + ⟨h+⟩

(
Y Y †

)
h
+ ⟨h−⟩

(
Y ∗Y T

)
h

〉
, δnh

]
− aR

2Tref

{〈
⟨γ+⟩

(
Y Y †

)
h
+ ⟨γ−⟩

(
Y ∗Y T

)
h

〉
, δnh

}
+ h neq

aR
2Tref

∑
a

(
⟨γ+⟩(1)

(
Y·aY

†
·a
)
h
− ⟨γ−⟩(1)

(
Y ∗·aY

T
·a
)
h

) µa + µϕ

T
. (7.42)

So far, we kept all collision terms, but for our analytical approach, we will neglect the terms
⟨γ−⟩, ⟨h−⟩. Indeed, in ARS-like leptogenesis, the sterile neutrinos are relativistic, and ⟨γ−⟩ and
⟨h−⟩ are proportional to 〈

k − k̃
ω

〉
∝ M2

T 2
. (7.43)

They are therefore suppressed by a M2/T 2 factor, which for M = 1 GeV would give a factor at
least 10−4. γ− and h− are usually interpreted as helicity-changing terms, that come from the
non-zero Majorana mass of the sterile neutrinos. For small masses, they correspond to a small
correction.

Under these assumptions, the equation for the lepton asymmetries ∆a is given by

d∆a

dz
=
aR ⟨γ+⟩(1)

Tref

∑
b,I

|YIa|2Aab∆b −
aR
Tref

Sa , (7.44)

Sa ≡
⟨γ+⟩
2

∑
I≤J

(Re [YIaY ∗Ja]Re [δn+ − δn−]IJ + Im [YIaY
∗
Ja]Re [δn+ + δn−]IJ) (7.45)

There are two extreme regimes where ARS leptogenesis can be approached analytically. The
two regimes can be understood from the comparison of two scales in the problem. On one
hand, there is the time at which the sterile neutrinos reach equilibrium, zIeq. It is related to
the strength of the Yukawa couplings, that tend to bring the sterile neutrinos to equilibrium.
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It corresponds to the temperature T I
eq at which the decay rate ΓI of the sterile neutrino is of

similar magnitude as the Hubble function. We obtain

zIeq =
Tref

T I
eq

=
Tref

aR

1

⟨γ+⟩ (Y Y †)II
. (7.46)

On the other hand, sterile neutrinos undergo oscillations due to their vacuum masses. The
typical time over which the oscillations develop is given by the vacuum Hamiltonian and depends
on the mass gap between the two flavors of sterile neutrinos. We give

zARS
osc =

[
T 3

ref

aR (M2
2 −M2

1 )

]1/3
. (7.47)

There is a competition between both scales. The sterile neutrinos are trying to reach equilib-
rium, and doing so they experience oscillations. A race engages, where if the equilibration is
faster, zIeq ≪ zARS

osc , then only a few oscillations can occur. This regime is dubbed the over-
damped regime. If oscillations are faster, zARS

osc ≪ zIeq, they have time to occur many times, and
can average out the off-diagonal part of the sterile neutrino density matrix before equilibrium
is approached. This is simply called the oscillation regime.

Comparing both scales directly,

zARS
osc

zIeq
= ⟨γ+⟩

(
Y Y †

)
II

[
a2R

M2
2 −M2

1

]1/3
∼ ⟨γ+⟩

Mmν

v2

[
a2R

M2
2 −M2

1

]1/3
≃ 5× 10−4

(
M

1 GeV

)2/3(
∆M/M

10−6

)−1/3
, (7.48)

where we used the Casas-Ibarra parametrization with order 1 coefficients for the R matrix. We
took mν = 0.05 eV and ⟨γ+⟩ = 0.012 [185, 186]. We then see that in general, the oscillations
happen long before the equilibration. One way to obtain the overdamped regime is by using the
R matrix to make at least one sterile neutrino flavor more coupled than the standard estimate.
We will only be interested here in the oscillation regime zARS

osc ≪ zIeq, but refer the reader
to [137,138,189,191] for details on the over-damped regime.

7.4.1 Analytical expansion in Yukawa couplings

One way to approach the solution to the equations above analytically is by an expansion in
the Yukawa couplings. In the relativistic regime, the sterile neutrino masses are low and the
Yukawa couplings are typically small. Using again an estimate where the R matrix coefficients
are order one and mν = 0.05 eV for the active neutrino mass scale, we have

Y Y † ∼ Mmν

v2
≃ 8× 10−16

(
M

1 GeV

)
. (7.49)
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We will therefore consider in this section (and in the analytical approaches in the other sce-
narios) an expansion in powers of the Yukawa couplings. This approach is found in many
studies [138,189–192]. Our approach in this section follows closely [138]. We note

δnh = δn
(0)
h + δn

(1)
h + δn

(2)
h + ... (7.50)

where δn(n)
h is of order

(
Y Y †

)n. We do the same for the lepton asymmetry ∆a,

∆a = ∆(0)
a +∆(1)

a +∆(2)
a + ... (7.51)

7.4.2 Zeroth and first orders

Initially, the sterile neutrinos are out-of-equilibrium, and no mixing exists between the sterile
flavors, δn(0)

h is only diagonal. For MI ≪ T , the initial conditions are the same for both flavors
and neq,1 ≈ neq,2 = neq. It is convenient to consider the equation for δnh,11 + δnh,22; keeping
the lowest order in the Yukawa couplings (except for homogeneous terms), we obtain

d
(
δn

(0)
h,11 + δn

(0)
h,22

)
dz

≃ − aR
Tref
⟨γ+⟩

[(
Y Y †

)
11
+
(
Y Y †

)
22

2

](
δn

(0)
h,11 + δn

(0)
h,22

)
. (7.52)

The solution to this equation is simply a decaying exponential,

(
δn

(0)
h,11 + δn

(0)
h,22

)
(z) = −2neq e

− aR
Tref
⟨γ+⟩

[
(Y Y †)

11
+(Y Y †)

22
2

]
z

≡ −2neq e
− aR

Tref
γ0z . (7.53)

The zeroth order describes how the initial deviation from equilibrium evolves, getting closer to

equilibrium at a rate γ0 ≡ ⟨γ+⟩
(Y Y †)

11
+(Y Y †)

22

2
. At zeroth-order, the off-diagonal term δn

(2)
h,12

remains zero.

The off-diagonal term only starts being interesting at first-order in Y Y †. Its equations is

dδn
(1)
h,12

dz
= −i aR

T 3
ref

π2

36ζ(3)

(
M2

1 −M2
2

)
z2δn

(1)
h,12 −

aR
2Tref

⟨γ+⟩
{(
Y Y †

)
, δnh

}
12

≈ −i aR
Tref

π2

36ζ(3)

(
M2

1 −M2
2

)
z2δn

(1)
h,12 −

aR
Tref

γ0δn
(1)
h,12

− aR
Tref
⟨γ+⟩

(
Y Y †

)
h,12

[
δn

(0)
h,11(t) + δn

(0)
h,22(z)

2

]
. (7.54)

It contains an oscillation part given by the vacuum masses MI and proportional to z2, in
addition to a damping term ∝ γ0. It also receives contribution from the zeroth order, that acts
as a source. The solution to the equation is

δn
(1)
h,12 =

aR ⟨γ+⟩
Tref

(
Y Y †

)
h,12

e
− aR

Tref
γ0ze

−i aR
Tref

π2

108π2 (M2
1−M2

2)z3
∫ z

0

dz′ neqe
+i

aR
Tref

π2

108ζ(3)(M2
1−M2

2)z′3 .

(7.55)

107



As long as we are far from equilibration, aR
Tref
γ0z ≪ 1 and the damping is reasonably neglected.

This allows us to obtain a compact solution

δn
(1)
h,12 ≃ neq

aR ⟨γ+⟩
Tref

(
Y Y †

)
h,12

e−ibz
3

∫ z

0

dz′ e+ibz′3

= neq
aR ⟨γ+⟩
Tref

(
Y Y †

)
h,12

[
C − z

3
E2/3(−ibz3)

]
e−ibz

3

, (7.56)

where

En(x) ≡
∫ +∞

1

dt
e−xt

tn
(7.57)

is the exponential integral function. We also defined some constants

b ≡ aR
Tref

π2

108ζ(3)

(
M2

1 −M2
2

)
, (7.58)

C = lim
z→0

z

3
E2/3(−ibz3) =

Γ(1/3)

3b1/3
, (7.59)

with Γ the gamma function. At first-order, the lepton asymmetries ∆a remain zero. It could
in principle be sourced by the zeroth-order, but δn(0)

h is helicity symmetric and no asymmetry
is produced. δn(1)

h , however, has an helicity dependence,

Re
[
δn

(1)
+,12 − δn

(1)
−,12

]
= −2neq

aR ⟨γ+⟩
Tref

Im
[(
Y Y †

)
12

]
Im
([
C − z

3
E2/3(−ibz3)

]
e−ibz

3
)
, (7.60)

Im
[
δn

(1)
+,12 + δn

(1)
−,12

]
= +2neq

aR ⟨γ+⟩
Tref

Re
[(
Y Y †

)
12

]
Im
([
C − z

3
E2/3(−ibz3)

]
e−ibz

3
)
. (7.61)

7.4.3 Second order and lepton asymmetry

It is then only at second order that the lepton asymmetry starts being interesting. Plugging
δn

(1)
h in the equation (7.44) for ∆a, we get

d∆
(2)
a

dz
= −2neq

(
aR ⟨γ+⟩
Tref

)2 (
−Re [Y1aY ∗2a] Im

[(
Y Y †

)
12

]
+ Im [Y1aY

∗
2a]Re

[(
Y Y †

)
12

])
× Im

([
C − z

3
E2/3(−ibz3)

]
e−ibz

3
)
. (7.62)

The asymmetry is simply found by integrating the source over z. An analytical expression [138]
exists for this integral of E2/3, given in terms of a hypergeometric function,∫ z

0

dz′ Im
([
C − z′

3
E2/3(−ibz′3)

]
e−ibz

′3
)

= −z
2

2
Im 2F 2

({
2

3
, 1

}
,

{
4

3
,
5

3

}
,−i|b|z3

)
. (7.63)
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It is instructive to consider the limit of ∆(2)
a at late times, i.e. for z → 1, divided by the entropy

s (
∆

(2)
a,∞

s

)
(I)

= 2neq
45

2π2g∗

(
aR ⟨γ+⟩
Tref

)2
π1/2Γ (1/6)

22/39|b|2/3
Im
[
Y ∗1aY2a

(
Y Y †

)
12

]
= 5neq

1082/3ζ(3)2/3Γ(1/6)

22/3π17/6g∗
⟨γ+⟩2 Im

[
Y ∗1aY2a

(
Y Y †

)
12

]( a2R
M2

2 −M2
1

)2/3

. (7.64)

This result should be compared to the flavored asymmetries derived in [190] (Eq. (4.77)) or
in [141] (Eq. (28)). We have obtained a finite asymmetry, at second order in the Yukawa
couplings.

The estimated lepton asymmetry in flavor a is proportional to a CP-violating imaginary part
Im
[
Y ∗1aY2a

(
Y Y †

)
12

]
, coming from the Yukawa couplings. One can note that it is only flavored;

indeed
∑

a ∆
(2)
a = 0. The asymmetry depends on the mass degeneracy M2 −M1 and is en-

hanced for degenerate sterile neutrinos. This is due to the oscillations, which would have a
higher frequency for a smaller mass gap.

The factor ⟨γ+⟩ coming from collisions is computed from the self-energy. Numerical esti-
mates [186] give ⟨γ+⟩ ≃ 0.012. Computing the pre-factor’s numerical value in the lepton
asymmetry, we keep only the dependence on the parameters(

∆
(2)
a,∞

s

)
(I)

≃ 2.4× 10−5 neqIm
[
Y ∗1aY2a

(
Y Y †

)
12

]( a2R
M2

2 −M2
1

)2/3

. (7.65)

The flavored asymmetry was produced after flavor oscillations in the sterile sector induced
an helicity asymmetry. The Hamiltonian H0 ∝ z2 led to oscillations δnh,12 ∝ exp (−ibz3) and

ultimately to a dependence of the flavored asymmetry ∆
(2)
a ∝

(
a2R

M2
2−M2

1

)2/3
. In the scenarios (II)

and (III), the dependence in z (or time) of the Hamiltonian is different and leads to qualitatively
different results.

7.5 Scenario (II): a numerical study

Scenario (II) is one of the main object of this thesis. Contrarily to ARS leptogenesis that has
been extensively studied, this case has been less explored. In this scenario, a phase transition
happens at a certain temperature Tn and gives their vacuum masses to the sterile neutrinos. We
solve numerically the equation for δnh coupled to the lepton asymmetry ∆a. We first present
some of the underlying assumptions specific to our numerical approach, before detailing the
results of the parameter scan.
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7.5.1 Numerical assumptions

In the ARS-like case, we try to realize leptogenesis by oscillations of low-scale sterile neutrinos
as they are being produced. In scenarios with a phase transition, however, the oscillations will
only occur after the sterile neutrinos obtain their vacuum masses at the FOPT. We therefore
start our numerical analysis at a time tin close to the time tnucl of the phase transition. Before
that time, for higher temperatures T > Tn, no asymmetry is produced, and only production of
the sterile neutrinos is relevant. Using the analytical estimate from the previous section for the
zeroth order of the sterile neutrino density (7.53), we assume an initial distribution, for sterile
neutrinos,

[ARS-like] δnh,IJ(t = tin) = −neq e
− aR

Tref
γ0znδIJ = −neq e

−aR
Tn

γ0δIJ , (7.66)
[ARS-like] ∆a(t = tin) = 0 , (7.67)

where zn ≡ Tref/Tn and Tn (tin − tnucl) = −15. The sterile neutrinos, before the FOPT i.e. until
we reach the temperature Tn, only approach equilibrium and no asymmetry is produced yet.
We assumed that sterile neutrinos are only produced in the diagonal population δnh,11 = δnh,22,
neglecting flavor effects that would be of higher order in the Yukawa couplings.

Moreover, numerically, the mass of the sterile neutrinos will be constant shortly after the
FOPT, like we assumed in the Mass Gain mechanism, for Tn (t− tnucl) > 15.

Finally, recalling our discussion in section 7.1, the domain we want to explore is the non-
standard scenario in which oscillations happen before the Universe expands significantly, with
tosc ≪ tn ≡ H−1(Tn). We will assume this is reasonable as long as

[ARS-like] tosc < 10−2 × tn . (7.68)

Oscillations therefore happen within a single Hubble time. Because it is numerically expensive
to keep track of the oscillatory parts, we manually turn them off after a Hubble time; but when
the above condition is satisfied, a significant number of oscillations already occurred by then,
and their contribution to the asymmetry averages out. We have checked the final asymmetry
is not sensitive to the particular choice of this cut-off time, for the region of parameter space
explored.

7.5.2 ARS-like results

We recall our parameters of interest are, like in the Mass Gain scenario, the temperature of
the phase transition Tn, the sterile neutrino mass scale M , the mass degeneracy ∆M and the
(imaginary part of the) complex angle zi in the R matrix (see Figure 6.1). In all plots in terms
of the parameters, we exclude the regions where the condition (7.68) is not satisfied.

The ARS-like scenario typically requires a certain level of mass degeneracy. The masses are
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Figure 7.2: Baryon asymmetry in the ARS-like scenario as a function of zi and ∆M/M , at
fixed M = 1 GeV and T = 104 GeV. The dotted-black contour shows the region of successful
leptogenesis within the validity domain of our assumptions. The dark-red area corresponds to
the region tosc ≥ 10−2tn.

much smaller, around the GeV scale and Yukawa couplings are therefore small too. They can
be increased by a large value of the imaginary part of the angle zi. This increases both the
CP-asymmetries from the Yukawa couplings and the washout. There is therefore an inter-
play between a higher asymmetry created and a low-enough washout such that the asymmetry
survives until the electroweak scale and the sphaleron decoupling at Tsph. This can be seen
explicitly in the (zi,∆M/M) plot in Figure 7.2; at fixed M = 1 GeV and Tn = 104 GeV, a
degeneracy of at least ∆M/M ≈ 10−3 is needed, and at this value the (imaginary part of the)
angle should be around 2, not too small but not too large either. At fixed nucleation temper-
ature, we do not want the asymmetry to be erased between the time of the FOPT and the
decoupling of sphalerons. If the imaginary part zi is large, even a large asymmetry that would
have been created is washed out. This is particularly visible in the upper-right corner of Figure
7.2, where the angle is large and the masses not degenerate enough to compensate.

In the following, we stick to this value of zi = 2. For ∆M/M = 10−6, we had successful
leptogenesis with sterile neutrinos of mass M = 1 GeV. We investigated masses around the
GeV-scale in Figure 7.3a with the baryon asymmetry plotted as function of mass and tempera-
ture of the FOPT. Greater masses give larger Yukawa couplings, at fixed zi = 2, and therefore
a larger asymmetry. However, if the couplings become too important and the starting tem-
perature is too close to sphaleron decoupling, the washout suppresses the asymmetry before it
reaches the electroweak scale, so the masses should not be too large either. The values compat-
ible with leptogenesis are around the .5 to almost 10 GeV, for temperatures Tn up to 10 TeV.

Trying to reduce the mass degeneracy, we looked at (Tn,∆M/M) plot of Figure 7.3b. We
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(a) Normalized baryon asymmetry as a function
of Tn and M .

(b) Normalized baryon asymmetry as a function
of Tn and ∆M/M . The red line is purely indica-
tive, and has a slope of 2.

Figure 7.3: Numerical results in the ARS-like scenario. The dotted-black contour shows the
region of successful leptogenesis within the validity domain of our assumptions. The dark-red
area corresponds to tosc ≥ 10−2tn. The temperatures are plotted from Tsph to 105 GeV.

find that larger values of Tn up to 10 TeV can accommodate successful baryogenesis with larger
values of ∆M/M . The figure tells us that lower temperature are less favorable, as they leave less
time before the electroweak temperature and sphaleron decoupling. Higher temperature can
be favorable, but we cannot conclude in the shaded region, where our assumption [ARS-like]
(7.68) (that oscillations happen during one Hubble time) is no longer satisfied.

In Figure 7.3b, we find that, for large values of Tn, the isocurves have a slope 2 in log-log
scale, corresponding to a T 2

n

∆M/M
dependency. At fixed M = 1 GeV, consistently with the ana-

lytical estimate (7.81) of the next section, this is equivalent to having the baryon asymmetry
proportional to

YB ∝
T 2
n

M2
2 −M2

1

=
T 2
n

2M2∆M/M
. (7.69)

This dependency however does not hold anymore once Tn is too close to Tsph, i.e. when there
is less time before the electroweak phase transition to produce the asymmetry. We explain how
we obtain the above dependency by analytical estimates of the asymmetry in this scenario (II).
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7.6 Scenario (II): analytical estimates

We will adopt the same procedure as in section 7.4: the solutions to the equations are expanded
in powers of Y Y †, and we only keep the helicity-preserving factor γ+ in the collision terms.

In scenario (II), the interesting dynamics happens shortly after the FOPT. This corresponds to
small values of ∆t ≡ t− tnucl compared to the Hubble time tn. Recalling the time dependence
(2.25) of temperature

T (t) =
(aR
2

)1/2
t1/2 =

(aR
2

)1/2
(tnucl +∆t)1/2 =

(aR
2

)1/2
(tn/2 + ∆t)1/2 , (7.70)

temperature may be considered constant, T (t) ≃ Tn as long as ∆t ≪ tn. In our numerical
analysis, we kept the time dependence of temperature exact, but for our analytical study, we
will simply assume the temperature is constant during sterile neutrino oscillations.

Initially, the population of sterile neutrinos is assumed to have only been produced diagonally

δnh,IJ(t = tin) = −neq e
−aR

Tn
γ0δIJ . (7.71)

Including the effect of the FOPT, we know from Chapter 4 that an extra amount of sterile
neutrinos is produced, reducing the deviation to equilibrium. Calculating the production by
the procedure detailed in Chapter 4, for f0(|k|) = fFD(|k|)

(
1− e−

aR
Tn

γ0
)
, integrating over mo-

mentum, we obtain a total sterile neutrino density nPT once the phase transition is completed,
from which we define the deviation from equilibrium

δnh,IJ(∆t ≈ 0) = (nPT − neq) δIJ ≡ −κ neq δIJ . (7.72)

Note that it is helicity symmetric. The factor κ < 1 signals how the particle production before
and at the FOPT reduced the deviation from equilibrium usually assumed initially in ARS
leptogenesis.

Taking the above initial condition, we can proceed to the expansion in powers of Yukawa
couplings. If we neglect the lepton asymmetry and the off-diagonal term, the lowest order
equation for the total number of sterile neutrinos gives, similarly to the ARS case (Scenario
(I)),

d
(
δn

(0)
h,11 + δn

(0)
h,22

)
dt

≃ −⟨γ+⟩Tn

[(
Y Y †

)
11
+
(
Y Y †

)
22

2

](
δn

(0)
h,11 + δn

(0)
h,22

)
. (7.73)

Recall that we assume the temperature is constant during the time of oscillations, T = Tn. The
solution to this equation is

(
δn

(0)
h,11 + δn

(0)
h,22

)
(t) = −2κ neq e

−⟨γ+⟩Tn

[
(Y Y †)

11
+(Y Y †)

22
2

]
t

≡ 2κ neq e
−γ0Tnt . (7.74)
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Note that it is a decaying exponential as a function of t, and not z as in scenario (I). At
first, the off-diagonal term in the sterile neutrino density matrix is zero. The equation for this
off-diagonal term δnh,12 is, at first-order in Y Y †,

dδn
(1)
h,12

dt
= −i π2

36ζ(3)

(
M2

1 −M2
2

Tn

)
δn

(1)
h,12 −

1

2
{⟨Γh⟩ , δnh}12

≈ −i π2

36ζ(3)

(
M2

1 −M2
2

Tn

)
δn

(1)
h,12 − γ0Tnδn

(1)
h,12 − ⟨γ+⟩

(
Y Y †

)
h,12

[
δn

(0)
h,11(t) + δn

(0)
h,22(t)

2

]
.

(7.75)

The solution to the equation is

δn
(1)
h,12 = e−γ0Tnte

−i π2
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1−M2
2
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)
t
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(
1− e

−i π2

36ζ(3)
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)
. (7.76)

Note how we easily integrated the complex exponentials: in our regime the temperature is
constant for the period of interest, the time dependence is simple. We compare the expression
to numerical results in Figure 7.4a and find very good agreement with the analytical estimate.
The only part dependent on helicity is the

(
Y Y †

)
h,12

. The source of lepton asymmetry depends
on two quantities,

Re
[
δn

(1)
+,12 − δn

(1)
−,12

]
= −2 ⟨γ+⟩ Im

[(
Y Y †

)
12

] 36ζ(3)
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2 −M2
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1 −M2
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)]
e−γ0Tnt , (7.77)

Im
[
δn

(1)
+,12 + δn

(1)
−,12

]
= 2 ⟨γ+⟩Re

[(
Y Y †

)
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] 36ζ(3)
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e−γ0Tnt . (7.78)

The asymmetry at this stage is obtained by integrating the source over time, like in section 7.4

∆(2)
a = −

∫ t

0

dt′ ⟨γ+⟩Tn
[
Re [Y1aY ∗2a]Re

[
δn

(1)
+,12 − δn

(1)
−,12

]
+ Im [Y1aY

∗
2a] Im
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(1)
+,12 + δn

(1)
−,12

]]
.

(7.79)

We can then use the expressions obtained for the δn’s, and integrate over time. We are interested
in the asymptotic limit t→ +∞, such that we obtain

∆(2)
a,∞ =

36ζ(3)

π2
⟨γ+⟩2 κ neqIm
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γ20T

2
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))2 .
(7.80)
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In the parameter space considered in our study, we systematically have (M2
2 −M2

1 )/Tn ≫ γ0Tn.
As an example, for M = 1 GeV, ∆M = 10−6M , Tn = 103 GeV and zi = 2, we obtain γ0 ∼ 10−13

while (M2
2−M2

1 )/T
2
n ∼ 10−9. This simplifies a bit the above estimate for the asymmetry, leading

to (
∆

(2)
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s

)
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⟨γ+⟩κneq

Im
[
Y ∗1aY2a

(
Y Y †

)
12

]
(Y Y †)11 + (Y Y †)22

T 2
n

M2
2 −M2

1
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2 −M2

1

. (7.81)

The parametric dependency is different from scenario (I), where we found

(a) Off-diagonal term of the sterile neutrino den-
sity matrix, as a function of time. In thick-blue,
the numerical oscillations are compared to the
dashed-red analytical estimate. They start after
a typical time ∆t ≃ tosc, represented by a gray
vertical line.

(b) Evolution of the asymmetry in the three fla-
vors (thick line for each color) and the total asym-
metry (dashed), as a function of time. The nu-
merical result is plotted in blue, the analytical re-
sults from late washout are plotted in green, with
initial conditions given by the flavored asymmetry
produced by sterile neutrino oscillations, shown
in red.

Figure 7.4: Comparison of numerical and analytical results in the ARS-like regime. The mass
scale is taken at M = 1 GeV, with a mass degeneracy ∆M/M = 10−6, at a temperature
Tn = 103 GeV. The angle of the R matrix is fixed at 3π
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In both cases, this is so far only a flavored lepton asymmetry. One can check that
∑

a ∆
(2)
a = 0.

The final total asymmetry is created after washout effects redistribute the asymmetry between
the active flavors and the sterile sector. Because washout is flavor dependent, a total lepton
asymmetry gets created. The flavored asymmetry calculated above can be understood as an
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initial condition before these washout effects dominate. The larger they are, the more total
asymmetry we expect.

This late washout effect is described by a set of equations for the asymmetries in the ac-
tive sector ∆a and the diagonal asymmetries in the sterile sector qI ≡ n+ II − n− II . Similarly
to [138], neglecting the contribution of off-diagonal entries in the sterile neutrino density matrix
to the asymmetry,

d∆a

dt
= ⟨γ+⟩(1) T (t)

∑
I

|YIa|2
(∑

b

Aab∆b − qI

)
, (7.83)

dqI
dt

= ⟨γ+⟩(1) T (t)
∑
a

|YIa|2
(∑

b

Aab∆b − qI

)
. (7.84)

The analytical approximation consists in taking the initial condition for this system as given
by Equation (7.81) since ∆t = 0. This approximation amounts to saying that the flavored
asymmetry was instantaneously created by flavor oscillations, and was then converted into a
total asymmetry by the washout. The comparison to the numerical solution is given in Figure
7.4b. At early times, when washout is negligible, the red curve corresponding to the creation
of a flavored lepton asymmetry reproduces well the numerical result. However, when the effect
of washout becomes important, the numerical curve is better reproduced by the green curve
which is the solution to the late washout system.

7.7 Scenario (III): oscillations before the FOPT

In the case where thermal masses coming from the scalar field S are present since the beginning
(z ≈ 0), we should start our equations before the phase transition. z is, just as it was in scenario
(I), the relevant variable instead of time t. Initially, the sterile neutrinos are absent,

δnh,IJ(z = 0) = −neqδIJ . (7.85)

The Yukawa couplings produce the sterile neutrinos and drive the population towards equilib-
rium,

d
(
δn

(0)
h,11 + δn

(0)
h,22

)
dz

≃ − aR
Tref

γ0

(
δn
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h,11 + δn

(0)
h,22

)
. (7.86)

The solution to this equation is(
δn

(0)
h,11 + δn

(0)
h,22

)
(z) = −2neq e

− aR
Tref

γ0z . (7.87)

We directly give the expression for the off-diagonal term at first-order

δn
(1)
h,12 = i ⟨γ+⟩

(
Y Y †

)
h,12

e
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γ0zneq
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12
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(
1− e−i
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12
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. (7.88)
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We observe from the argument of the complex exponential that the oscillations take place once
z reaches a certain value z(III)

osc

z(III)
osc ≡

Tref

aR

12

λ22 − λ21
, (7.89)

corresponding to a temperature

T (III)
osc ≡ aR

λ22 − λ21
12

=
aR
12

M2
2 −M2

1

v2S
. (7.90)

It is interesting to compare this oscillation temperature, coming from the thermal masses, to
the temperature of the phase transition Tn,

Tn

T
(III)
osc

= 12
Tn
aR

v2S
M2

2 −M2
1

= 12
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T 2
n

Tn
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T 2
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T 2
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. (7.91)

In the discussion without thermal masses, we discussed only the ratio Tn/TARS
osc ; if it was large,

then the FOPT happened early, and standard ARS oscillations can happen at TARS
osc . However,

if the ratio was small, the FOPT happened late enough so that all oscillations happen during
a Hubble time, fast compared to the expansion of the Universe.

From the estimate (7.91), we now have a third temperature scale, the temperature at which
oscillations from thermal masses happen. If these oscillations happen before the FOPT, we
can obtain an asymmetry from thermal masses only. If however the temperature of oscillations
is smaller than the temperature Tn, vacuum mass will change our estimate by modifying the
oscillation frequency. In scenario (III), we will assume that oscillations occur before the FOPT
happens, that is

Tn

T
(III)
osc

= 12
v2S
T 2
n

[
Tn
TARS

osc

]3
< 1 . (7.92)

We can compare it to the condition for scenario (II), which was

Tn
TARS

osc
< 1 . (7.93)

Depending on the ratio vS/Tn, the two conditions can be related or not. We recall that for a
strong FOPT, that we consider in this work, vS > Tc > Tn. For a supercooled FOPT, we even
have Tc ≫ Tn, so vS can be much larger than Tn.

Going back to our analytical study, we obtained in equation (7.88) the first-order contribu-
tion to the off-diagonal element δn(1)

h,12. Plugging it in the source Sa, we can compute the
asymmetry ∆a. Taking the limit z → +∞ (and dividing by s) like in the previous sections
gives (
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Now, recall that the sterile neutrino mass is given by its coupling λ to the scalar field times the
vev vS, MI = λIvS, such that(

∆
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. (7.95)

7.8 Comparison of the three scenarios

Following our discussions, we can now summarize and compare the results in each case. We
recall that we considered three scenarios, where (I) is standard ARS leptogenesis, while (II)
and (III) consider a phase transition. The sterile neutrino vacuum masses, in (II) and (III),
only come into play when T < Tn, after the transition. In scenario (II), dynamics are assumed
to start from then, producing an asymmetry shortly after the transition. In scenario (III), we
include thermal masses coming from the scalar field, that induce oscillations even before the
transition, at T > Tn.

Our goal is to find the regions of parameter space where each scenario produces the most
asymmetry. We were able to derive analytical estimates (7.4), (7.81) and (7.95) for the flavored
asymmetries (before washout) that we recall here(

∆
(2)
a,∞

s

)
(I)

≃ 2.4× 10−5 neqIm
[
Y ∗1aY2a

(
Y Y †

)
12

]( a2R
M2

2 −M2
1

)2/3

, (7.96a)(
∆

(2)
a,∞

s

)
(II)

≃ 1.1× 10−3 κ neq
Im
[
Y ∗1aY2a

(
Y Y †

)
12

]
(Y Y †)11 + (Y Y †)22

T 2
n

M2
2 −M2

1

, (7.96b)(
∆

(2)
a,∞

s

)
(III)

≃ 1.3× 10−2 neq
Im
[
Y ∗1aY2a

(
Y Y †

)
12

]
(Y Y †)11 + (Y Y †)22

T 2
n

M2
2 −M2

1

(
vS
Tn

)2

. (7.96c)

Remember that κ, appearing in (7.96b), was estimating the deficit, due to the production of
sterile neutrinos before and during the FOPT in scenario (II), of the deviation from equilibrium,

κ ≡ nPT

neq
− 1 . (7.97)

We estimated that the production during the FOPT only represented up to an order O(1 %)
correction. Neglecting it in this discussion, the production of sterile neutrinos before the FOPT
gives

nPT ≃ neq + δnh(t = tin) = neq

(
1− e−

aR
Tn

γ0
)
, (7.98)

κ ≃ e−
aR
Tn

γ0 . (7.99)

As we emphasized in the previous sections, the estimates (7.96) are not the final asymmetries
because washout effects are crucial in ARS-like leptogenesis. However, here we only wish to
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compare the different scenarios among them. We will therefore only focus on the flavored
asymmetries produced by the oscillations, in order to work with analytical expressions. We
immediately note that the expressions for (II) and (III) have a similar form,(

∆
(2)
a,∞

s

)
(III)

≃ 12κ−1
(
vS
Tn

)2
(
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(2)
a,∞

s

)
(II)

. (7.100)

Their physical origins are quite different, as (II) comes from oscillations due to vacuum masses
in a short time after the FOPT, in less than a Hubble time, while (III) comes from oscillations
going along with temperature evolution and that are caused by thermal masses. Let us also
remind ourselves our discussion in section 7.7 about the different regimes where scenarios (II)
and (III) are relevant. For scenario (II), we want the temperature of nucleation Tn to be low
enough such that standard oscillations are frustrated, so

scenario (II) ⇒ Tn
TARS

osc
< 1 . (7.101)

For scenario (III), we want oscillations to happen from the thermal masses to happen before
the FOPT, so the temperature Tn should also be low enough. As we described in the previous
section from Equation (7.91),

scenario (III) ⇒ Tn
T III

osc
= 12

(
vS
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)2(
Tn
TARS

osc

)3

< 1 . (7.102)

In particular, there is an overlapping region where both scenarios could be considered, because
for vS > Tn, we always have Tn

T III
osc
> Tn

TARS
osc

. This means that whenever scenario (III) is possible,

so is scenario (II). But because of the pre-factor 12
(

vS
Tn

)2
, there are regions where scenario (II)

would be possible but not scenario (III).

We can consider two different cases: first, the case vS = Tn where the scenarios (II) and
(III) correspond roughly to the same region and produce a similar asymmetry. We compare the
amount of asymmetry produced by oscillations in scenario (II) and (III) with the one produced
in standard ARS,(
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where we defined
Teq ≡ aR ⟨γ+⟩Tr

[
Y Y †

]
(7.104)

and used the expression of κ in terms of γ0 defined previously in (7.53)
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11
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22
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2
(Teq/Tn) . (7.105)

We recognize two temperature scales appearing: the oscillation temperature for standard ARS
leptogenesis TARS

osc , and the equilibration temperature Teq. Their value relative to the temper-
ature Tn of the FOPT will determine which scenario produces the most (flavored) asymmetry.
We define

x ≡ Tn
TARS

osc
, y ≡ Teq

Tn
. (7.106)

The domains of dominance for each scenario can be summarized in the comparative diagram
7.5a, drawn in the plane (x, y) . The value of x = Tn/T

ARS
osc determines when scenarios (II)

(x < 1) and (III) (x < (1/12)1/3 (Tn/vS)
2/3 = (1/12)1/3) can be used. The value of y = Teq/Tn

then fixes if the scenarios with a phase transition ((II) or (III)) are better than standard ARS
leptogenesis.

We colored three regions corresponding to the three possible dominating scenarios. The red
color corresponds to the region where standard ARS leptogenesis, which we called scenario (I),
produces more flavored asymmetry, the blue one corresponds to scenario (II) and the green
one to scenario (III). The blue and green zones are restricted to certain values of x from our
discussion above. Because they correspond to different physical scenarios (one in which the
scalar field isn’t thermalized and doesn’t contribute to a thermal mass and one in which it
does), we also show the overlapping region where both scenarios are possible, and both produce
more flavored asymmetry than standard ARS. Note however (from (7.100)) that scenario (III)
always produces more asymmetry than scenario (II).

The boundaries between scenario (I) and the other scenarios are fixed by the relations (7.103).
The asymmetry in scenario (II) has an extra exp (−Teq/(2Tn)) = exp (−y/2) factor compared
to scenario (III), which explains its suppression at larger values of y. We note that scenarios
with a phase transition ((II) and (III)) produce more flavored asymmetry than standard ARS
leptogenesis for low values of the parameters (x ≲ 1, y ≲ 1). The condition x ≲ 1 makes
sense because it is the condition for which our phase-transition-based scenarios are relevant.
The second condition y ≲ 1 corresponds to an equilibration temperature happening later than
the temperature of the FOPT; this is desired if we want our sterile neutrinos to still be out
of equilibrium at the time of the FOPT. The region (x ≲ 1, y ≲ 1) imposes that our phase
transition should happen at a temperature Tn such that

Teq < Tn < TARS
osc (7.107)

in order to have an enhancement of the phase transition scenarios compared to the standard
case.
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Note that the colors in the diagram only represent relative comparison between the scenarios,
but do not tell us if leptogenesis is successful or not. In order to estimate this, we represented
(with black dots) the values of x and y for which leptogenesis was indeed successful in our
numerical study in section 7.5. This study was conducted within scenario (II); points that
end up in the blue sector indicate that scenario (II) was successful and even provides a better
estimate than standard ARS leptogenesis.

Finally, it is worth looking at what changes for a stronger FOPT, for which we could have
vS ≫ Tn. In that case, the asymmetry in scenario (III) can be quite larger than the one
in scenario (II), due to the v2S/T 2

n factor in the comparison (7.100). At the same time, the
temperature of oscillations in scenario (III) is affected, looking at relation (7.91),

Tn

T
(III)
osc

= 12
v2s
T 2
n

[
Tn
TARS

osc

]3
. (7.108)

Scenario (III) becomes relevant for v2s
T 2
n

[
Tn

TARS
osc

]3
= v2s

T 2
n
x3 < 1. The boundary between scenarios

(II) and (III) will then be shifted in the phase diagram. This is what we observe in the diagram
7.5b, fixing vS/Tn = 10. For stronger FOPT, scenario (III) produces more asymmetry and
competes with ARS for higher values of y, but it is only relevant for smaller values of x.

(a) vS = Tn. (b) vS = 10 Tn.

Figure 7.5: Comparative diagram of the different scenarios, for two values of vS/Tn. The black
dots represent points of successful baryogenesis in our numerical study. Each color delimits the
region in the (x, y) plane where a given scenario produces more flavored asymmetry than the
others. The red color represents scenario (I), which is just standard ARS leptogenesis, the blue
one represents scenario (II) and the green one represents scenario (III).
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7.9 Conclusion for ARS-like leptogenesis

In this chapter, we studied the effect of a phase transition on ARS leptogenesis, which involves
relativistic sterile neutrinos. The mechanism that produces the lepton asymmetry is based on
flavor oscillations in the sterile sector that are usually driven by the vacuum masses of these
sterile neutrinos. In a scenario with a phase transition, these vacuum masses only exist after
the transition. If it happens late enough (Tn < TARS

osc ), the oscillations are "frustrated" and
happen differently and at a different time than in the standard case.

We studied ARS-like leptogenesis with a phase transition and found successful regions for
leptogenesis. Compared to previous studies [37, 39], we also gave detailed analytical estimates
and were able to compare standard ARS leptogenesis to ARS-like leptogenesis with a phase
transition. We determined which region of parameter space allows an enhancement of the
produced lepton asymmetry thanks to a phase transition.
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Chapter 8

Discussion and conclusion

We studied a scenario of leptogenesis with sterile neutrinos involved in a cosmological phase
transition. Provided it is first-order, bubbles are nucleated at a certain nucleation temperature
Tn and expand in the early Universe plasma. These bubbles render the masses of the sterile
neutrinos time dependent, and can make them deviate from equilibrium. We first described
the sterile neutrino dynamics analytically, following previous work [159], in the single flavor
case and concluded that sterile neutrinos were produced during the phase transition. Adding
interactions with the Standard Model plasma required that we use out-of-equilibrium Quantum
Field Theory. Using the Closed-Time Path formalism, we provided kinetic equations that allow
us to describe sterile neutrinos interacting with the Standard Model plasma and experiencing
a time dependent mass. The formalism involved the so-called local approximation [167, 168],
and we used an estimate [139] for the sterile neutrino self-energy such that we can describe all
regimes of masses for the sterile neutrinos. In the context of a phase transition, we focused in
particular on two scenarios corresponding to two distinct mechanisms of asymmetry creation.
The first one, called Mass Gain scenario, considers heavy sterile neutrinos decaying after the
phase transition, while the second one, called ARS-like leptogenesis, considers the production
of low-scale sterile neutrinos.

8.1 Mass Gain scenario

In the Mass Gain (MG) regime, we found leptogenesis was indeed successful, and studied the
dependence of the produced asymmetry in terms of our parameters. Similar to previous re-
sults [28–31] and as expected, the asymmetry is best produced for large ratios M/Tn ≳ O(10),
in order to avoid washout effects. Such a large ratio can be obtained considering a supercooled
phase transition, for which the nucleation temperature Tn can be significantly smaller than the
critical temperature Tc of the phase transition, which relates to the vev vS and the masses
M = λvS.
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We find that the baryon asymmetry can be reproduced for a large range of sterile neutrino
mass scales M between 50 TeV up to 1010 GeV, provided we allow a sufficiently strong mass
degeneracy. While for M ≳ 5 × 109 GeV no mass degeneracy is needed, the mass degeneracy
needs to be increasingly strong for lower masses, around ∆M ≃ 10−6M for M ≲ 5 × 105

GeV. These lower values of the mass correspond to nucleation temperature just above the TeV
scale, which will be tested in future Gravitational Wave (GW) detection experiments. For all
masses, we observe a resonance for a mass degeneracy ∆M ∼ Γ of the same order than the
decay rate. We showed it is consistent with an interpretation in terms of decays (that might
be resonantly enhanced or not) of the sterile neutrinos, as they are brought out of equilibrium
by the First-Order Phase Transition (FOPT). We also studied the particle production, coming
from the change in mass during the transition. We estimated its effect to be sub-leading.

We used, in this regime, a description of the sterile neutrinos in terms of kinetic equations for
mass- and coherence-shell matrices. This differs from previous studies of the MG and in partic-
ular all mass degeneracies are treated the same, without the need of a regulator for ∆M ≪ Γ.
The asymmetry produced is shown to be proportional to the resonant CP-asymmetry ϵCP,wave

in the degenerate case.

8.2 ARS-like leptogenesis

In ARS-like scenarios, with low-scale sterile neutrinos, an interesting scenario can be consid-
ered for the production of the sterile neutrinos, as in ARS leptogenesis. Usually, they undergo
flavor oscillations, due to their vacuum mass, as they are being produced. When this vacuum
mass is originating from a phase transition, the oscillations can be frustrated until the moment
of the transition at temperature Tn. Once vacuum masses are present, flavor oscillations are
then completed within a single Hubble time, that is, before temperature has time to evolve
too much. This is different from standard ARS, where the oscillations occur as temperature
evolves. Leptogenesis is still successful in the region we studied, for masses M between .1
and 10 GeV. The mass degeneracy is needed to be as strong as ∆M ≃ 10−7M for nucleation
temperatures close to the electroweak scale Tn ≲ 1 TeV, but the degeneracy can be relatively
mild ∆M ≃ 10−2M for higher nucleation temperatures Tn ≃ 10 TeV. We found a different
parametric dependence, compared to the standard scenario, of the produced asymmetry on the
parameters. In particular, ARS-like leptogenesis is sensible to the mass degeneracy; in standard
ARS, one expects YB ∝ (∆M/M)−2/3 while with a phase transition, we found (analytically and
numerically) a dependence YB ∝ (∆M/M)−1. The asymmetry obtained in the scenario with
a phase transition can thus be greater than the one obtained in standard ARS scenarios, as
∆M ≪M .

A distinction can also be made depending on whether the scalar field S provides a thermal
mass for the sterile neutrinos or not. If it does, oscillations can happen before the phase transi-
tion because of the misalignment between the thermal masses (diagonal in the mass eigenbasis)
and the Yukawa couplings. We studied each possibility analytically and compared their esti-
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mates for the produced asymmetry. Scenarios with a phase transition were found to be more
favorable than standard ARS leptogenesis for a temperature Tn of the phase transition such that
Teq < Tn < TARS

osc , where Teq is the typical temperature at which sterile neutrinos equilibrate,
and TARS

osc is the temperature at which they would oscillate, in standard ARS leptogenesis.

8.3 Outlook

Our work in this thesis relied on a number of assumptions that could be relaxed for future work.
For instance, we would like to investigate more the effect on the dynamics of the additional
scalar field S. In this work, we assumed it was weakly coupled to the Standard Model, and
only considered (in the ARS-like scenario) its contribution to sterile neutrino thermal masses.
If we consider a stronger coupling to the Standard Model, especially in the ARS-like regime,
we expect it can have an influence on the lepton asymmetry produced, by opening new decay
or production channels for the sterile neutrinos.

Moreover, the FOPT itself contains more complex dynamics that we exposed here. During
the nucleation and expansion of bubbles, reflection R and transmission T coefficients at the
bubble wall may affect the densities recovered inside the bubble. In the present work, we as-
sumed all particles entered the bubble, hence R = 0, T = 1. A more ambitious goal would be to
consider realistic bubble expansion, that would be inhomogeneous in space. The "post-FOPT"
sterile neutrino distribution would be more complicated, being a combination of a produced
distribution as was studied in this paper, and the reflection and transmission of the pre-existing
distribution.

More generally, a complete first-principle approach to the dynamics during the phase tran-
sition is lacking. Non-local effects together with the explicit time dependence are usually not
included in practice but could be relevant for describing all the physical processes. This might
involve equations more intricate than Boltzmann equations, keeping the non-local parts of the
propagators dynamical.

Finally, studies of phase transitions are interesting because of their close connection to Grav-
itational Waves (GW). In an era where GW detection becomes more and more precise, over
a wider range of frequencies, phenomenological studies of early Universe phenomenon could
soon start using GW constraints. In the context of baryogenesis with a phase transition, the
ultimate goal is to find close correlations between the parameters of the phase transition (its
temperature and strength, for instance) and the baryon asymmetry produced. This participates
in the interplay between theory and experiments; GW experiments define parameter regions of
phenomenological interest, where interesting theories can be developed.

125



Part IV

Appendices
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Appendix A

Active neutrino parameters

In this thesis, we worked the preferred value of combined fits provided by the NuFIT collab-
oration (without including atmospheric data from Super-Kamiokande). We assumed Normal
Ordering (NO) as well as m1 = 0, such that m3 =

√
|∆m2

31| and m2 =
√
|∆m2

21|. We fixed
the CP-violating phase δ = 3π

2
for simplicity, and both Majorana phases were taken to be zero

α1 = α2 = 0. Otherwise, we used the central values of the parameters given in Table A.1.

Figure A.1: Table of the values taken in our analysis for the parameters in the neutrino sector.
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Appendix B

Helicity eigenvectors

In the field decomposition (4.2), we introduced the helicity eigenvectors ξkh that satisfy the
eigenvector equation

k · σξkh = h|k|ξkh . (B.1)

Using the coordinates of k in spherical coordinates

kx = |k| cos (φk) sin (θk) (B.2)

ky = |k| sin (φk) sin (θk) (B.3)

kz = |k| cos (θk) , (B.4)

we can write the helicity eigenvectors

ξk+ =

(
cos (θk/2)

eiφk sin (θk/2)

)
, (B.5)

ξk− =

(
e−iφk sin (θk/2)
− cos (θk/2)

)
. (B.6)

It can be easily checked that these eigenvectors are normalized such that

ξk†h · ξ
k
r = δh,r , (B.7)

and the phase has been fixed in order to obtain the additional relation

ξkh = −h iσ2ξk∗−h , (B.8)

useful for computing the charge-conjugation of the fields. Once the helicity eigenvectors are
written this way, we can check that for k→ −k,

θk → π − θk (B.9)

φk → π + φk (B.10)

and
ξ−k
h = eihφkξk−h . (B.11)
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Appendix C

Mode normalization

We detail in this Appendix the steps needed in order to determine the constants Ah± appearing
in section 4 in the functions

uh± = Ah±Z
α(1− Z)β 2F 1(a±, b±, c, Z) . (C.1)

Following [159], we start by the Dirac equation (4.17) written in terms of u’s,

[2iγZ(1− Z)∂Z −M0Z]Ah+Z
α(1− Z)β 2F 1(a+, b+, c, Z)

= −h|k|Ah−Z
α(1− Z)β 2F 1(b+ + 1, a+ − 1, c, Z) , (C.2)

where we used a− = b+ +1 , b− = a+− 1. The left-hand term will involve the derivative of the
hypergeometric function,

[2iγZ(1− Z)∂Z −M0Z]Ah+Z
α(1− Z)β 2F 1(a+, b+, c, Z)

= Ah+Z
α(1− Z)β [2iγZ(1− Z)∂Z + α2iγ(1− Z)− β2iγZ −M0Z] 2F 1(a+, b+, c, Z) .

(C.3)

We can now use the relations

∂Z [2F 1(a+, b+, c, Z)] =
a+b+
c 2F 1(a+ + 1, b+ + 1, c+ 1, Z) , (C.4)

a+b+
c

Z 2F 1(a++1, b++1, c+1, Z) = (c−1) [2F 1(a+, b+, c− 1, Z)− 2F 1(a+, b+, c, Z)] , (C.5)

in order to simplify further more the term involving the derivative

[2iγZ(1− Z)∂Z + α2iγ(1− Z)− β2iγZ −M0Z] 2F 1(a+, b+, c, Z)

= 2iγ [(c− 1)(1− Z) [2F 1(a+, b+, c− 1, Z)− 2F 1(a+, b+, c, Z)]

+

(
α−

(
α + β − iM0

2γ

)
Z

)
2F 1(a+, b+, c, Z)

]
= 2iγ [(c− 1)(1− Z) 2F 1(a+, b+, c− 1, Z)− (α− (c− 1− b+)Z) 2F 1(a+, b+, c, Z)] . (C.6)
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We need to transform the arguments of the hypergeometric function in order to match the one
on the right-hand part of Equation (C.2). Hypergeometric funcitons satisfy

(c− 1) 2F 1(a+, b+, c− 1, Z) = b+ 2F 1(a+, b+ + 1, c, Z) + (c− 1− b+) 2F 1(a+, b+, c, Z) , (C.7)

(1−Z)b+ 2F 1(a+, b++1, c, Z) = α 2F 1(a+− 1, b++1, c, Z)+ (b+−α) 2F 1(a+, b+, c, Z) . (C.8)
We can regroup all hypergeometric functions with same arguments,

2iγ [(c− 1)(1− Z) 2F 1(a+, b+, c− 1, Z)− (α− (c− 1− b+)Z) 2F 1(a+, b+, c, Z)]

= 2iγ [(1− Z)b+ 2F 1(a+, b+ + 1, c, Z)− (α− (c− b+ − 1)) 2F 1(a+, b+, c, Z)]

= 2iγα 2F 1(a+ − 1, b+ + 1, c, Z) = |k| 2F 1(a+ − 1, b+ + 1, c, Z) . (C.9)

Going back to the equation (C.2), after the simplifications presented above, one finds

Ah+ |k| 2F 1(a+ − 1, b+ + 1, c, Z) = −Ah− h|k| 2F 1(a+ − 1, b+ + 1, c, Z) (C.10)

which gives the simple condition that Ah+ = −hAh−. Note that our final expression is much
simpler that what is derived in [159], because we considered the sterile neutrinos as massless
before the FOPT.

The constants can be totally fixed if we add the requirement that the modes are normalized,
meaning

|Lh|2 + |Rh|2 = 1 = 2×
(
|uh+|+ |uh−|2 .

)
(C.11)

Because h2 = 1, we have |Ah+|2 = |Ah−|2 and, noting that Zα(1 − Z)β has norm 1 because α
and β are purely imaginary, the above normalization condition gives

|Ah+|2 ×
[
| 2F 1(a+, b+, c, Z)|2 + | 2F 1(a+ − 1, b+ + 1, c, Z)|2

]
=

1

2
. (C.12)

We can use successively the property of complex-conjugation

2F 1(a, b, c, Z)
∗ = 2F 1(a

∗, b∗, c∗, Z) , with a∗+ = 2− a+ , b∗+ = −b+ , c∗ = 2− c , (C.13)

and the properties relating a hypergeometric function to its "adjacent" functions, whose argu-
ment are shifted by one, as in

(1− a)× [2F 1(2− a,−b, c, Z)− 2F 1(1− a,−b, c, Z)]
= −b [2F 1(1− a, 1− b, c, Z)− 2F 1(1− a,−b, c, Z)] , (C.14)

(a− 1)× [2F 1(a, b, c, Z)− 2F 1(a − 1, b, c, Z)]

= b [2F 1(a − 1, b + 1, c, Z)− 2F 1(a − 1, b, c, Z)] . (C.15)

The complex norms of the two functions appearing in Equation (C.12) can then be manipulated
into

| 2F 1(a, b, c, Z)|2 + | 2F 1(a − 1, b + 1, c, Z)|2

= 2F 1(a, b, c, Z) 2F 1(2− a,−b, 2− c, Z) + 2F 1(a − 1, b + 1, c, Z) 2F 1(1− a, 1− b, 2− c, Z)
= 2F 1(a, b, c, Z) [2F 1(2− a,−b, 2− c, Z)− 2F 1(1− a,−b, 2− c, Z)]
+ 2F 1(a, b, c, Z) 2F 1(1− a,−b, 2− c, Z) + 2F 1(a − 1, b + 1, c, Z) 2F 1(1− a, 1− b, 2− c, Z) .

(C.16)

130



From the previous derivation, due to the equation (4.17) between uh+ and uh−, we know

|k| 2F 1(a+ − 1, b+ + 1, c, Z) = [2iγZ(1− Z)∂Z + 2iγα− 2iγZb+] 2F 1(a+, b+, c, Z) (C.17)

which is given in terms of the constants a+, b+, c

2F 1(a+ − 1, b+ + 1, c, Z) =
2

c− 1

[
Z(1− Z)∂Z +

c− 1

2
− Zb+

]
2F 1(a+, b+, c, Z) . (C.18)

A similar relation is found for different arguments (a+ → 1− b+, b+ → 1− a+, c→ 2− c),

2F 1(2−a+,−b+, 2−c, Z) =
2

1− c

[
Z(1− Z)∂Z +

1− c
2
− Z(1− a+)

]
2F 1(1−b+, 1−a+, 2−c, Z) ,

(C.19)
which allows to write the write the sums of the squared norms in terms of derivatives

| 2F 1(a+, b+, c, Z)|2 + | 2F 1(a+ − 1, b+ + 1, c, Z)|2

= 2F 1(a+, b+, c, Z) 2F 1(2− a+,−b+, 2− c, Z)
+ 2F 1(a+ − 1, b+ + 1, c, Z) 2F 1(1− a+, 1− b+, 2− c, Z)

= 2F 1(a+, b+, c, Z)
2

1− c

[
Z(1− Z)∂Z +

1− c
2
− Z(1− a+)

]
2F 1(1− b+, 1− a+, 2− c, Z)

+
2

c− 1

[
Z(1− Z)∂Z +

c− 1

2
− Zb+

]
2F 1(a+, b+, c, Z) 2F 1(1− a+, 1− b+, 2− c, Z)

=
2Z(1− Z)

1− c
W [2F 1(a+, b+, c, Z), 2F 1(1− b+, 1− a+, 2− c, Z)]

+ 2F 1(a+, b+, c, Z) 2F 1(1− b+, 1− a+, 2− c, Z)
(
2− 2Z

1− a+ − b+
1− c

)
(C.20)

In the process, we introduced the Wronskian W of two functions defined as W [f, g] ≡ fg′−f ′g.
For two independent solutions to the hypergeometric equations, the Wronskian is known and
is given by

W [2F 1(a+, b+, c, Z), z
1−c

2F 1(1+a+−c, 1+b+−c, 2−c, Z)] = (1−c)z−c(1−z)c−a+−b+−1 (C.21)

Using a Pfaff transformation [193], the second function can be turned into one of our functions
of interest,

W [2F 1(a+, b+, c, Z), z
1−c(1−z)c−a+−b+ 2F 1(1−a+, 1−b+, 2−c, Z)] = (1−c)z−c(1−z)c−a+−b+−1 .

(C.22)
Deriving the Wronskian explicitly,

W [2F 1(a+, b+, c, Z), 2F 1(1− a+, 1− b+, 2− c, Z)]

+ 2F 1(a+, b+, c, Z) 2F 1(1− a+, 1− b+, 2− c, Z)
(
1− c
Z
− c− a+ − b+

1− Z

)
= (1− c)z−1(1− z)−1 .

(C.23)
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This directly relates to the equation we found above, leading to

|uh+|2 + |uh−|2 = |Ah+|2 ×
[
| 2F 1(a+, b+, c, Z)|2 + | 2F 1(a+ − 1, b+ + 1, c, Z)|2

]
= 2|Ah+|2 =

1

2
.

(C.24)
We can then simply choose Ah+ = 1/2 = −hAh− and

uh+ =
1

2
Zα(1− Z)β 2F 1(a+, b+, c, Z) , uh− = −h

2
Zα(1− Z)β 2F 1(a−, b−, c, Z) , (C.25)

Lh =
1

2
Zα(1− Z)β [2F 1(a+, b+, c, Z)− h 2F 1(a−, b−, c, Z)] , Rh = L−h . (C.26)
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Appendix D

Particle production with flavor

In the main text, we derived an analytical estimate of the sterile neutrino production when the
mass is time-dependent. The results were obtained for a single flavor, without interactions. If
we want to add flavor and interactions with the Standard Model plasma, additional terms will
appear in the Dirac equation for the fieldsNI . An analytical approach is then more complicated;
we give in this section a description of how we could estimate the production in the flavored
case.

D.1 Dirac equation in the flavored case

Let us consider the lepton la and Higgs ϕ fields interacting with the sterile neutrinos. First,
we write down the full Dirac equations, including the ones for the lepton field now including
Yukawa couplings,

i/∂NI −MINI = PLYIalaϕ
† + PRY

∗
Ial

c
aϕ

T , (D.1)

i/∂la = PRY
∗
JaNJϕ , i/∂l

c
a = PLYJaNJϕ

∗ . (D.2)

Differentiating (D.1) leads to a second-order differential equation

−∂2NI − i/∂ (MINI) = PRYIaY
∗
JaNJϕ

†ϕ+PLY
∗
IaYJaNJϕ

Tϕ∗+PRYIaγ
µla∂µϕ

†+PLY
∗
Iaγ

µlca∂µϕ
T .

(D.3)
As before, the derivative acts on the mass, and we can use the Dirac equation (D.1) to get

∂2NI+i∂t (MI) γ
0NI +M2

INI + PRYIaY
∗
JaNJϕ

†ϕ+ PLY
∗
IaYJaNJϕ

Tϕ∗

= −PLMIYIalaϕ
† − PRMIY

∗
Ial

c
aϕ

T − PRYIaγ
µla∂µϕ

† − PLY
∗
Iaγ

µlca∂µϕ
T (D.4)
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or equivalently, replacing NI in the γ0NI factor,

∂2NI−
∂tMI

MI

γ0γµ∂µNI +M2
INI + PRYIaY

∗
JaNJϕ

†ϕ+ PLY
∗
IaYJaNJϕ

Tϕ∗

= i
∂tMI

MI

γ0
[
PLYIalaϕ

† + PRY
∗
Ial

c
aϕ

T
]

− PLMIYIalaϕ
† − PRMIY

∗
Ial

c
aϕ

T − PRYIaγ
µla∂µϕ

† − PLY
∗
Iaγ

µlca∂µϕ
T (D.5)

This equation involves a number of undesirable terms. To deal with them, we will assume
thermal equilibrium for both lepton and Higgs fields for the entirety of the phase-transition,
meaning in particular that the quantum state for the SM particles factors out of the total
wave-function and is equal to a thermal state of temperature T ≡ 1/βT ,

|ψ⟩ = |ψN⟩ ⊗ |βT ⟩ . (D.6)

The wave-function |βT ⟩ contains the thermal fluctuations of the lepton and Higgs fields. By
averaging over these fluctuations, we can largely simplify our previous equation, using

⟨βT |la|βT ⟩ = 0 , ⟨βT |ϕ|βT ⟩ = 0 , ⟨βT |∂µϕ|βT ⟩ = 0 , etc. (D.7)

while the only non-zero average (for two-point functions) is for the norm-squared of the Higgs
field (an SU(2)-doublet scalar) [194]

⟨βT |ϕ†ϕ|βT ⟩ =
T 2

6
= ⟨βT |ϕTϕ∗|βT ⟩ . (D.8)

Averaging (D.3) over the thermal state, we get an equation that only involves the sterile neutrino
field, however including corrections from the thermal bath. It takes the same form as in the
flavorless case, but with an additional term,

∂2NI + iγ0 (∂tMI)NI +

[
(MI)

2 δIJ + PRYIaY
∗
Ja

T 2

6
+ PLY

∗
IaYJa

T 2

6

]
NJ = 0 . (D.9)

The vacuum mass squared M2
I has been added a thermal mass squared M2

th,IJ ≡
[PRYIaY

∗
Ja + PLY

∗
IaYJa] T

2/6. Note that it is a matrix in flavor space; it couples mass eigen-
states NI of different flavors.

Let us try to repeat the procedure from section 4 in the main text, and take as our start-
ing point a decomposition of the mass eigenstate NI that allows mixing among flavors,

NI =
∑
h

∫
k

[
eik·x

(
LIJ
h

RIJ
h

)
⊗ ξkh âJh,k + e−ik·x

(
−hRIJ∗

h

hLIJ∗
h

)
⊗ ξk−hâ

J†
h,k

]
. (D.10)

âJh,k/â
J†
h,k are the annihilation and creation operators for the Majorana sterile neutrino J before

the phase transition. Note that the modes Lh and Rh are now matrices, as they can mix creation
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(or annihilation) operators from different flavors. In terms of these modes, the thermal average
of Equation (D.9) gives a second-order differential equations for each chirality mode

∂2tL
IJ
h −

∂tMI

MI

∂tL
IJ
h +

(
|k|2 + (MI)

2 + ih|k|∂tMI

MI

)
LIJ
h + (Y ∗Y T )IK

T 2

6
LKJ
h = 0 , (D.11)

∂2tR
IJ
h −

∂tMI

MI

∂tR
IJ
h +

(
|k|2 + (MI)

2 − ih|k|∂tMI

MI

)
RIJ

h + (Y Y †)IK
T 2

6
RKJ

h = 0 . (D.12)

Note how the thermal masses are different for Lh and Rh. This logically comes from the chiral
Yukawa interaction, coupling the sterile neutrinos to the left-handed lepton. This is interesting
in order to create an asymmetry; recall how in the single flavor case, we had Rh = L−h because
they obeyed the same equation (and boundary condition) up to the sign of the ih|k|∂tM/M .
Now there is another discrepancy, which is the thermal mass matrix which is either Y ∗Y T or
Y Y †. We may expect that the CP-violating Yukawa couplings, mixing the different flavors, will
allow an asymmetry in the sterile sector, between the two helicities.

D.2 Flavored Bogoliubov transformation

The flavored Hamiltonian is calculated as before, starting with

H =
∑
I

∫
d3x

1

2

[
iNIγ ·∇NI +M(t)N

c

INI

]
, (D.13)

and using the decomposition (D.10), we arrive at

H =
1

2

∑
h

∑
K,J

∫
d3k
(2π)3

[
Ωh

k,KJ â
K†
h,kâ

J
h,k − Ωh∗

k,KJ â
K
h,kâ

J†
h,k +

(
Λh

k,KJe
−ihφk âKh,−kâ

J
h,k + h.c.

)]
,

(D.14)

where the coefficients Ωh
k,KJ and Λh

k,KJ are now matrices with sterile flavor indices, defined as

Ωh
k ≡ h|k|

(
L†hLh −R†hRh

)
+ L†hMNRh +R†hMNLh , (D.15)

Λh
k ≡ 2|k|

(
LT
hRh +RT

hLh

)
+ hLT

hMNLh − hRT
hMNRh , (D.16)

where (MN)IJ = MI δIJ is the diagonal mass matrix. Similarly to before, this Hamiltonian
can be diagonalized, this time by a flavored Bogoliubov transformation, given by a change of
annihilation and creation operators

ÂI
h,k ≡ αIJ

h,kâ
J
h,k + βIJ

h,ke
ihφk âJ†h,k (D.17a)

ÂI†
h,k ≡ αIK∗

h,k â
K†
h,k + βIK∗

h,k e
−ihφk âK†h,k . (D.17b)
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The matrices α and β are found to be the generalization of the flavorless expressions (4.59),

αh,k =
1√
2

[(
1 +

h|k|
ωk,N

)1/2

Lh +

(
1− h|k|

ωk,N

)1/2

Rh

]
, (D.18a)

βh,k =
h√
2

[(
1− h|k|

ωk,N

)1/2

L∗h −
(
1 +

h|k|
ωk,N

)1/2

R∗h

]
. (D.18b)

where now ωk,N ≡ (|k|2 +M2
N)

1/2 is a diagonal matrix, with the square-root taken in the mass
eigenbasis where MN is diagonal so that it is well-defined. Lh and Rh are also matrices in the
above expressions.

The Bogoliubov transformation is only valid if it preserves the anti-commutators of the an-
nihilation and creation operators. Imposing{

ÂI
h,k , Â

J†
r,k’

}
= δ(3)(k− k’) δhrδIJ , (D.19){

ÂI
h,k , Â

J
r,k’

}
=
{
ÂI†

h,k , Â
J†
r,k’

}
= 0 (D.20)

leads to two conditions in terms of the matrices α and β. The first one is

αh,kα
†
h,k + βh,kβ

†
h,k = I , (D.21)

which is the flavored version of the condition |αh,k|2 + |βh,k|2 = 1 imposed in the previous
section. The second one is

βh,kα
T
h,k − αh,kβ

T
h,k = 0 , (D.22)

which is automatically satisfied in the flavorless case, but is non-trivial for matrices.

The mixing of different flavors is however an issue for solving the equations. The equations
(D.11), (D.12) are equations for matrices, with couplings between the various matrix elements.
Moreover, if we want to diagonalize the Hamiltonian, we should also satisfy the conditions
(D.21) and (D.22). The matrix structure of the equations and of the normalization conditions
makes this problem much harder than the single flavor case.

We may think of two ways to address this issue and get an estimate of the sterile neutrino
dynamics. The first one involves a perturbative expansion in the Yukawa couplings, the second
one is an attempt to diagonalize the mass term.

D.3 Expansion in Yukawa couplings

One attempt would be to consider an expansion for small Yukawa couplings. More precisely, it
would mean consider the thermal mass as a small correction to the vacuum mass,

Tr
[
M2

th

]
= Tr

[
Y Y †

] T 2

6
≪M2

I . (D.23)
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Depending on the regime of masses, this may or may not be relevant. For instance, a naive esti-
mate from the Seesaw condition (considering the matrix R in the Casas-Ibarra parametrization
(3.41) to be of order 1), we have

Tr [M2
th]

M2
∼ Mmν

v2
T 2

M2
≃ 8× 10−9

(
M

109 GeV

)(
10

M/T

)2

= 8× 10−9
(

M

10 GeV

)(
10−3

M/T

)2

. (D.24)

In the estimate, we took the scale of active neutrino masses mν = 0.05 eV for concreteness.
We gave the numerical estimates for two scenarios of interest in this thesis, both for a heavy
sterile neutrino mass M ∼ 109 GeV in a non-relativistic scenario M ∼ 10T , and for a low-scale
relativistic sterile neutrino M ∼ 10 GeV and M ∼ 10−3T . In both cases, the thermal mass
constitutes a small correction.

The equations (D.11) and (D.12) can then be approximately solved by considering an expansion
of Lh and Rh in terms of the Yukawa couplings,

Lh = L
(0)
h + L

(1)
h + ... , Rh = R

(0)
h +R

(1)
h + ... (D.25)

where Lh(0) is the zeroth-order, L(1)
h is of order Y Y †/Y ∗Y T , etc. We can then use our results

from the single flavor case because the equation for L(0)
h for example is

∂2tL
(0)IJ
h − ∂tMI

MI

∂tL
(0)IJ
h +

(
|k|2 + (MI)

2 + ih|k|∂tMI

MI

)
L
(0)IJ
h = 0 . (D.26)

This is the same equation as in the previous sections, with MI instead of M . We know its
solutions, given in terms of hypergeometric functions. The first order contribution L(1)

h is then
computed from (D.11),

∂2tL
(1)IJ
h −∂tMI

MI

∂tL
(1)IJ
h +

(
|k|2 + (MI)

2 + ih|k|∂tMI

MI

)
L
(1)IJ
h = −(Y ∗Y T )IK

T 2

6
L
(0)KJ
h . (D.27)

The zeroth-order plays the role of a source for the first-order. The resolution becomes a bit
more involved as there is now an inhomogeneous term in the equation for L(1)

h . The perturbative
expansion starts with the equations (D.11), (D.12) for Lh and Rh including a thermal mass,

∂2tL
IJ
h −

∂tMI

MI

∂tL
IJ
h +

(
|k|2 + (MI)

2 + ih|k|∂tMI

MI

)
LIJ
h + (Y ∗Y T )IK

T 2

6
LKJ
h = 0 , (D.28)

∂2tR
IJ
h −

∂tMI

MI

∂tR
IJ
h +

(
|k|2 + (MI)

2 − ih|k|∂tMI

MI

)
RIJ

h + (Y Y †)IK
T 2

6
RKJ

h = 0 . (D.29)

It is, as in the free case, convenient to write these in terms of uh± ≡ (Lh ±Rh) /2, such that

∂2t u
IJ
h±± i (∂tMI)u

IJ
h±+

(
k2 + (MI)

2)uIJh±+Re
[
(Y Y †)IK

] T 2

6
uKJ
h± − iIm

[
(Y Y †)IK

] T 2

6
uKJ
h∓ = 0 .

(D.30)
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Contrary to the flavorless case, the second-order differential equations for the uh± are not
decoupled. Recall that we were able to find solutions when the interactions were off, Y = 0.
Now, more terms are involved and an analytical direct solution is not available. However, for
small Yukawa couplings, we can find an approximate solution by expanding in power of Y .
Indeed, let us rewrite Equation (D.30) as an homogeneous term and a source term,

LI
±u

IJ
h± = −Re

[
(Y Y †)IK

] T 2

6
uKJ
h± + iIm

[
(Y Y †)IK

] T 2

6
uKJ
h∓ , (D.31)

LI
± ≡ ∂2t ± i (∂tMI) + |k|2 +MI(t)

2 . (D.32)

The operator LI
± has already been solved for in the flavorless case, for M = MI . We know

the basis of solutions is made of hypergeometric equations times powers of Z and 1− Z, with
coefficients that may now depend on flavor,

f I
A± ≡ Zα(1− Z)βI

2F 1(a
I
±, b

I
±, c, Z) , (D.33a)

f I
B± ≡ Zα+1−c(1− Z)βI

2F 1(a
I
± + 1− c, bI± + 1− c, 2− c, Z) , (D.33b)

LI
±
[
f I
A±/f

I
B±
]
= 0 . (D.34)

Expanding the flavored functions uIJh± in powers of
(
Y Y †

)
/
(
Y ∗Y T

)
, we define

uIJh± ≡ u
IJ(0)
h± + u

IJ(1)
h± +O(Y 4) , (D.35)

where uIJ(0)h± is of order 0, uIJ(1)h± is of order 1. The zeroth-order should be a solution of the
homogeneous equation LI

±u
IJ(0)
h± = 0 so it is given in terms of the hypergeometric functions of

flavor I described above (see (C.25) for the single flavor case),

u
IJ(0)
h± = A

IJ(0)
h,± f I

A± +B
IJ(0)
h,± f I

B± . (D.36)

Moreover, the first-order equation is found by plugging the zeroth-order solution in the right-
hand term of Equation (D.31),

LI
±u

IJ(1)
h± = −Re

[
(Y Y †)IK

] T 2

6
u
KJ(0)
h± + iIm

[
(Y Y †)IK

] T 2

6
u
KJ(0)
h∓ ≡ SIJ

h± . (D.37)

Here, the right-hand term is fixed and acts as a source term for the first order. The homogeneous
part of the equation is known and has two linearly-independent solutions. A particular solu-
tion can be constructed generically from the homogeneous solutions (D.33) for a second-order
differential equations,

u
IJ(1)
h± = f IJ

part,± = f I
A±(Z)

∫ Z

0

dU
f I
B±(U)S

IJ
h±(U)

W [f I
A±, f

I
B±](U)

− f I
B±(Z)

∫ Z

0

dU
f I
A±(U)S

IJ
h±(U)

W [f I
A±, f

I
B±](U)

(D.38)

where W is the Wronskian of the two functions, defined as

W [f1, f2](U) ≡ (f1f
′
2 − f ′1f2) (U) . (D.39)
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The Wronskian for two solution of the hypergeometric equation is known (see Appendix C,
(C.22)) and leads to

W [f I
A±, f

I
B±](U) = (1− c)U−1−α(1− U)−βI . (D.40)

The first-order is then determined by the zeroth-order. Imposing the normalization condi-
tions to hold at all orders would impose a series of conditions on the integration constants
A

IJ(0)
h± /B

IJ(0)
h± , but we did not attempt to solving this system.

D.4 Degenerate sterile neutrinos

The perturbative expansion in Yukawa couplings we just showed presents the advantage of being
straightforward and general, as long as the thermal masses are small. It is however hard to fix
all the integration constants and check all the normalization conditions. A non-perturbative
attempt at solving (D.11) and (D.12) could be to try to diagonalize the mass term, in order to
find decoupled equations for the elements in the diagonal basis, i.e. we want to diagonalize

M2
tot,IJ(t) ≡MI(t)

2δIJ +
(
Y ∗Y T

)
IJ

T 2

6
(D.41)

For instance, we can already diagonalize the matrix Y ≡
(
Y ∗Y T

)
T 2/6 which is constant once

we fixed our parameters. A more detailed discussion on how the diagonalization is done and
how it relates to the parameters of interest is presented in Appendix D.5. We will here simply
state that YL is a hermitian matrix, which means it has positive real eigenvalues and that it
can be diagonalized by a unitary matrix U0

YL = U0D
2
0U
†
0 , (D.42)

where D2
0 is a diagonal matrix of positive real elements. Another combination of the Yukawa

couplings appears in the equations, namely YR ≡
(
Y Y †

)
T 2/6 which has the same eigenvalues

but is diagonalized by U∗0
YR = Y∗L = U∗0D

2
0U

T
0 . (D.43)

We want to diagonalize the total mass M2
tot,IJ , which is also a hermitian matrix. It can be

diagonalized but in a basis that is time-dependent, in principle,

M2
tot(t) = U(t)D2(t)U(t)† . (D.44)

This still leaves the problem quite complicated, because even if we change the flavor basis to
go in the diagonal eigenbasis, new terms coming from the derivatives of U would appear in the
equations.

A limit in which we can derive simpler results is the case where sterile neutrinos are per-
fectly degenerate,M1 = M2 = M for two flavors. This amounts to taking the mass matrix
(MN)IJ =MIδIJ =MδIJ proportional to identity in flavor space. In this case,(

M2
tot

)
=M2(t)I+ (Y ∗Y T )

T 2

6
= U0

(
M2(t) +D2

0

)
U †0 . (D.45)
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We diagonalized the mass term in a fixed basis (U0 is time-independent). We then just have to
rotate the mode matrices Lh on the left by U0, and Rh by U∗0 ,

L̃h ≡ U0Lh , R̃h ≡ U∗0Rh , (D.46)

so that the rotated matrices satisfy

∂2t

(
L̃ĨJ
h

)
− ∂tM

M
∂t

(
L̃ĨJ
h

)
+

(
|k|2 +M2(t) +

(
D2

0

)
Ĩ Ĩ
+ ih|k|∂tM

M

)
L̃ĨJ
h = 0 , (D.47a)

∂2t

(
R̃ĨJ

h

)
− ∂tM

M
∂t

(
R̃ĨJ

h

)
+

(
|k|2 +M2(t) +

(
D2

0

)
Ĩ Ĩ
− ih|k|∂tM

M

)
R̃ĨJ

h = 0 . (D.47b)

We recover similar equations compared the flavorless case, except for an additional (con-
stant) (D2

0)II term. Following the same procedure as before, (change the variable to
Z ≡ (1 + tanh (γt))/2, such that M(t) = M0Z(t), divide by 4γ2Z(1 − Z), look for poles
in 1/Z or 1/(1 − Z)), this term will contribute to both types of poles in 1/Z and 1/(1 − Z).
These poles are absorbed by the powers of the scaling Zα(1−Z)β, which will now be found to
be

α2
Ĩ
= −|k|

2 + (D2
0)Ĩ Ĩ

4γ2
⇔ αĨ = ±i

√
|k|2 + (D2

0)Ĩ Ĩ
2γ

, (D.48)

β2
Ĩ
= −|k|

2 +M2
0 + (D2

0)Ĩ Ĩ
4γ2

⇔ βĨ = ±i
√
|k|2 +M2

0 + (D2
0)Ĩ Ĩ

2γ
. (D.49)

In particular, they now dependent on flavor. The solutions for L̃ are therefore given by hyper-
geometric functions, similarly to the flavorless case.

L̃IJ
− (Z) = ZαI (1− Z)βI

[
AIJ

L,+ 2F 1(a
I
+, b

I
+, c) + AIJ

L,− 2F 1(a
I
−, b

I
−, c)

]
, (D.50a)

R̃IJ
− (Z) = ZαI (1− Z)βI

[
AIJ

R,+ 2F 1(a
I
+, b

I
+, c) + AIJ

R,− 2F 1(a
I
−, b

I
−, c)

]
. (D.50b)

The determination of the constants remains to be done, using the normalization conditions.

D.5 Diagonalization of the thermal mass matrix

The matrix YL ≡
(
Y ∗Y T

)
T 2/6 can be diagonalized analytically, rather simply in the case of

two flavours. Indeed, for two flavors, a hermitian matrix like the one we have here M2
th can be

written as a linear combination of Pauli matrices σx/y/z and the identity σ0 ≡ I2,

YL ≡
T 2

6
(m0σ0 + m · σ) , (D.51)

with
m0 =

1

2

((
Y ∗Y T

)
11
+
(
Y ∗Y T

)
22

)
, (D.52)

mz =
1

2

((
Y ∗Y T

)
11
−
(
Y ∗Y T

)
22

)
, (D.53)
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mx = Re
[(
Y ∗Y T

)
12

]
, (D.54)

my = −Im
[(
Y ∗Y T

)
12

]
. (D.55)

A diagonal matrix in this case is only a linear combination of σ0 and σz. The unitary matrix that
realizes the diagonalization by conjugation can only affect the σ’s coordinates, and therefore
should be seen as a rotation of m. Indeed, it can be shown that

e−iθσα/2m · σeiθσα/2 = Rα(θ)(m) · σ , (D.56)

where Rα(θ)(m) is the vector m rotated by an angle θ around the α = x/y/z-axis. Finding
the unitary that diagonalizes our matrix amounts to rotating m along the axis z (because σz
is diagonal). Very generically, we can define the angles η and φ such that

e−iησy/2
(
e−iφσz/2m · σeiφσz/2

)
eiησy/2 = m̃zσz , (D.57)

φ = arctan

(
my

mx

)
, η = arctan

(√
m2

x +m2
y

mz

)
. (D.58)

Basically, we first rotate m in the (x, y) plane until its component in this plane is aligned along
the x-axis. Then, in the (x, z) plane, we rotate until it is only aligned along the z-axis. All
these operations preserve the norm of the spatial vector m, thus m̃z =

√
m2

x +m2
y +m2

z.

For our specific matrix, in the two-flavor case,

m̃z =
1

2

(
4|
(
Y ∗Y T

)
12
|2 +

((
Y ∗Y T

)
11
−
(
Y ∗Y T

)
22

)2)1/2
, (D.59)

φ = − arctan

(
Im
[(
Y ∗Y T

)
12

]
Re [(Y ∗Y T )12]

)
, (D.60)

η = arctan

(
2

|
(
Y ∗Y T

)
12

(Y ∗Y T )11 − (Y ∗Y T )22

)
. (D.61)

We note that φ is only non-zero when the Yukawa couplings are complex, i.e. when there is
CP-violation. The diagonalization of YL is then realized by

YL = U0D
2
0U
†
0 (D.62)

with
U0 ≡ e−iησy/2e−iφσz/2 (D.63)

D2
0 ≡

T 2

6
m̃z

(
1 0
0 −1

)
. (D.64)
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Appendix E

Backreaction of the lepton asymmetry

In this Appendix, we detail some of the steps needed to arrive at the master equations from
the Kadanoff-Baym equation (5.77). In particular, the backreaction of the lepton asymmetry
on the sterile neutrinos was computed and encapsulated in the deviations δΣ. It appeared
in a combination of retarded and advanced propagators. We will use the definitions of these
propagators, namely

δΣR
k = δΣHk − iδΣ

ρ
k , S

A
ad,k = SHad,k + iSρ

ad,k . (E.1)

This allows us to re-write the right-hand side of Equation (5.77)

δΣR
k ∗ S<

ad,k + δΣ<
k ∗ SA

ad,k

=
(
δΣHk − iδΣ

ρ
k

)
∗ S<

ad,k + δΣ<
k ∗
(
SHad,k + iSρ

ad,k

)
= δΣHk ∗ S<

ad,k + δΣ<
k ∗ SHad,k + iδΣ<

k ∗ S
ρ
ad,k − iδΣ

ρ
k ∗ S

<
ad,k

= δΣHk ∗ S<
ad,k + δΣ<

k ∗ SHad,k +
1

2

(
δΣ<

k ∗
(
S<

ad,k − S>
ad,k
)
− (δΣ<

k − δΣ>
k ) ∗ S<

ad,k
)

= δΣHk ∗ S<
ad,k + δΣ<

k ∗ SHad,k +
1

2

(
δΣ>

k ∗ S<
ad,k − δΣ<

k ∗ S>
ad,k
)
. (E.2)

Following [138], once we take the hermitian part of the expression above, we get

δΣR
k ∗S<

ad,k+δΣ
<
k ∗SA

ad,k+ h.c. =
[
δΣHk ,S<

ad,k
]
+
[
δΣ<

k ,SHad,k
]
+
1

2

({
δΣ>

k ,S<
ad,k
}
−
{
δΣ<

k ,S>
ad,k
})

.

(E.3)
We introduced commutators (and anti-commutators) that should be understood as commuta-
tors with respect to the convolution product. Hence for example

[δΣk,Sk] ≡ δΣk ∗ Sk − Sk ∗ δΣk . (E.4)

For T ≫ MI or MI ≈ MJ , S<
ad,k and SHad,k are proportional to identity in flavor space, so the

commutator with them will vanish, at leading order [138]. The contribution of these terms is
then sub-leading. What is left are the anti-commutators, such that

δΣR
k ∗ S<

ad,k + δΣ<
k ∗ SA

ad,k + h.c. ≃ 1

2

({
δΣ>

k ,S<
ad,k
}
−
{
δΣ<

k ,S>
ad,k
})

. (E.5)
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In the main text, we described how the convolution product at equal time can be related to the
Wigner representation of the propagators. At lowest order in the gradient expansion, we have(

δΣ>
k ∗ S<

ad,k
)
(t, t) ≃

∫
dk0

2π
δΣ̃

>
(k, t)S̃<

ad(k, t) (E.6)

such that the anti-commutators above give{
δΣ>

k ,S<
ad,k
}
(t, t) ≃

∫
dk0

2π

{
δΣ̃

>
(k, t), S̃<

ad(k, t)
}

(E.7)

We can then use the KMS relation (5.97) satisfied by the adiabatic propagator,

S̃>
ad(k, t) = −ek

0/T S̃<
ad(k, t) (E.8)

and the (linearized) KMS relation (5.120) for the self-energy deviation

δa
˜̂
Σ<(k, t) =

µa + µϕ

T
˜̂
Σ<

eq(k)− e−k
0/T δa

˜̂
Σ>(k, t) (E.9)

where
δΣ<,>

IJ =
∑
a

δaΣIJ = gW
∑
a

(YIaY
∗
JaPL − Y ∗IaYJaPR) Σ̂

<,>
(E.10)

We then write the difference between the anti-commutators in (E.5) as a single anti-commutator

1

2

({
δaΣ

>
k ,S<

ad,k
}
−
{
δaΣ

<
k ,S>

ad,k
})

IJ

≃ 1

2

∫
dk0

2π

{(
δaΣ̃

>
(k, t) + ek

0/T δaΣ̃
<
(k, t)

)
, S̃<

ad(k, t)
}

IJ

=
gW
2

µa + µϕ

T
(YIaY

∗
JaPL − Y ∗IaYJaPR)

∫
dk0

2π

{
ek

0/T ˜̂Σ<
eq(k), S̃<

ad,JJ(k, t)
}

= gW
µa + µϕ

T
(YIaY

∗
JaPL − Y ∗IaYJaPR)

∫
dk0

2π

(
1− fFD(k

0)
){ ˜̂

Σρ
eq(k), iS̃<

ad,JJ(k, t)
}

≃ −gW
µa + µϕ

T
(YIaY

∗
JaPL − Y ∗IaYJaPR)

∑
s

fFD(sωJ) (1− fFD(sωJ))
{
˜̂
Σρ

eq(sωJ ,k),Ps
J

}
.

(E.11)

In the first line we used the gradient expansion to write the convolution product as a product
of Wigner transforms. In the last line, we computed the residue at the poles k0 = ±ωI coming
from the adiabatic background. The chirality projectors could be extracted as they commute
with Σ̂

ρ
≡ Σ̂ργ0 and S<

ad. We can also make one final observation that fFD(−ω) = (1−fFD(ω),
such that

1

2

({
δaΣ

>
k ,S<

ad,k
}
−
{
δaΣ

<
k ,S>

ad,k
})

IJ

≃ −gW
µa + µϕ

T
(YIaY

∗
JaPL − Y ∗IaYJaPR) fFD(ωJ)(1− fFD(ωJ))

∑
s

{
˜̂
Σρ

eq(sωJ ,k),Ps
J

}
.

(E.12)
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Appendix F

Lepton asymmetry evolution

In this Appendix, we sketch the derivation of the equation for the lepton asymmetry. It is
convenient to work with the four-current for the lepton asymmetry in the flavor a, defined as

Jµ
l,a(x) ≡ iTr

[
γµS<

l,a(x, x)
]
. (F.1)

If we focus on the (spatial integral of the) zeroth-component of this vector, Nl,a−N l,a ≡ NLa =∫
d3x J0

l,a, we obtain the asymmetry in lepton number a. For now, we do not consider spectator
effects, such that only the sterile neutrino Yukawa couplings are changing the lepton number.
We also don’t consider the expansion of the Universe yet. Using the Kadanoff-Baym equation
for the lepton field (see [143,167]), we derive

d

dt
NLa =

∫
d3x Tr

[
iγ0∂tS

<
l,a(x, x)

]
=

∫
d3x Tr

[
iγj∂jSl,a +

1

2

∫
dt′
(
Σ<

l,a(x, x
′)S>

l,a(x
′, x)− Σ>

l,a(x, x
′)S<

l,a(x
′, x) + h.c.

)]
≃ 1

2

∫
d4k

(2π)4

(
Σ̃<

l,a(k, t)S̃
>
l,a(k, t)− Σ̃>

l,a(k, t)S̃
<
l,a(k, t) + h.c.

)
. (F.2)

Σl,a is the self-energy of the lepton field. The first term on the right-hand side on the second
line is the integral of a space-derivative, it therefore vanishes for vanishing (spatial) boundary
conditions. In the last line, we applied inverse Fourier and Wigner transforms and used the
gradient expansion to relate the convolution product to the Wigner transforms.

The lepton self-energy can be related to the sterile neutrino self-energy, allowing us to write
the equations above in terms of the sterile neutrino self-energy and propagator. Its one-loop
expression involves a loop of sterile neutrino (of propagator SN where we restore an explicit N
subscript for clarity) and Higgs propagators,

iΣ̃<,>
l,a (p) = gW

∫
d4k

(2π)4
Y ∗IaYJaPR iS̃<,>

N,IJ(k)i∆
<,>
H (−(k − p)) , (F.3)
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where the indices I, J are implicitly summed over. In the equation for the lepton asymmetry,
it appears multiplied by a lepton propagator in the combination∫

d4p

(2π)4
iΣ̃<

l,a(p)iS̃
>
l,a(p) = gWY

∗
IaYJa

∫
d4p

(2π)4
d4k

(2π)4
PRiS̃

<
N,IJ(k)i∆

<
H(−(k − p))iS>

l,a(p)

= gWY
∗
IaYJaPR

∫
d4k

(2π)4
iS̃<

N,IJ(k)

[∫
d4p

(2π)4
i∆>

H(k − p)iS̃>
l,a(p)

]
= PR

∫
d4k

(2π)4
iS̃<

N,IJ(k)PLiΣ̃
>
JI;a(k) . (F.4)

We defined

iΣ̃<,>
JI;a(k) = gW

∫
d4p

(2π)4

[
YJaY

∗
IaPL iS̃

<,>
l,a (p)i∆<,>

H (k − p)

+Y ∗JaYIaPR CiS̃>,<
l,a (−p)TC−1i∆>,<

H (−k + p)
]
. (F.5)

keeping simply the flavor a contribution to the total sterile neutrino self-energy iΣ<,>
JI (k). The

right-hand term of (F.2) is then expressed in terms of the sterile neutrino self-energy iΣ<,>
JI and

propagator iS<,>
N . They both contain an equilibrium part and a small deviation; keeping only

first-order terms in the deviations, the equation for the lepton asymmetry becomes [143,167]

dNLa

dt
=
i

2

∫
d4k

(2π)4
Tr
[
PRΣ̃

>
a PLS̃

>
N − PRS̃

<
NPLΣ̃

<
a

]
+ h.c.

≃ 1

2

∫
d4k

(2π)4
Tr
[
PR

{
δaΣ̃

<
, iS̃>

ad

}
− PR

{
δaΣ̃

>
, iS̃<

ad

}]
+

1

2

∫
d4k

(2π)4
Tr
[
PRΣ̃

<

eq,aiδS̃> − PRΣ̃
>

eq,aiδS̃<
]
+ h.c. (F.6)

where we extracted the contribution Σ̃
<

eq,a to the flavor a of the total (equilibrium) self-energy,
replacing

(
Y Y †

)
IJ

by YIaY ∗Ja,(
Σ̃eq,a

)
IJ
≡ gW [YIaY

∗
JaPL + Y ∗IaYJaPR]

˜̂
Σeq . (F.7)

This leads to
dNLa

dt
=W + Sa , (F.8)

where
W ≡ 1

2

∫
d4k

(2π)4
Tr
[
PR

{
δaΣ̃

<
, iS̃>

ad

}
− PR

{
δaΣ̃

>
, iS̃<

ad

}]
, (F.9)

Sa ≡
1

2

∫
d4k

(2π)4
Tr
[
PRΣ̃

<

eq,aiδS̃> − PRΣ̃
>

eq,aiδS̃<
]
+ h.c. . (F.10)

Both expressions can be manipulated into clear and simpler forms. Let us start with the
washout term W . We can use the equation (E.12) for relating the anti-commutator in W to
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the chemical potentials

W = −µa + µϕ

T
gW
∑
I,s

|YIa|2
∫

d3k
(2π)3

fFD(ωI)(1− fFD(ωI))Tr
[
PR

{
˜̂
Σρ

eq(sωI ,k),Ps
I

}]
≡ −Wa

µa + µϕ

T
, (F.11)

Wa ≡
∑
I

∑
s

|YIa|2
∫

d3k
(2π)3

fFD(ωI)(1− fFD(ωI))Tr
[
PR

{
˜̂
Σρ

eq(sωI ,k),Ps
I

}]
(F.12)

=
∑
I

∑
s

|YIa|2
∫

d3k
(2π)3

Tr [PR {Fρ,s
I ,Ps

I}] . (F.13)

The source term Sa can be simplified by recalling that the sterile neutrino propagators, at equal
time, satisfy the spectral (or sum) rule (5.41)

iδS> = iδS< , (F.14)

such that

Sa = −
1

2

∫
d4k

(2π)4
Tr
[
PR

(
Σ̃

<

eq,a − Σ̃
>

eq,a

)
iδS̃<

]
+ h.c. (F.15)

=

∫
d3k
(2π)3

Tr
[
PR

(
Σρ

eq,k,a ∗ δS
<
k
)
(t, t) + h.c.

]
(F.16)

where we recovered the convolution product by integrating over k0, and used the gradient
expansion. The convolution product with the function δSk makes the effective self-energy
appear. Together with the projection of the propagator in terms of mass- and coherence-shell,
we obtain an Sa term given in terms of the δf ss′

h,IJ , like in [167],

Sa =
∑
h,s,s′

∑
I,J

∫
d3k
(2π)3

Tr
[(
PRΣ

eff,ρ
eq,k,a,JI +

(
Σeff,ρ

eq,k,a,IJ

)†
PR

)
Pss′

h,IJ

]
δf ss′

h,IJ . (F.17)

The change in lepton charge is thus given by the equation
dNLa

dt
= −Wa

µa + µϕ

T
+ Sa . (F.18)

This equation was derived without considering the spectator effects. If we add them, there
are actually other interactions that would modify a lepton asymmetry. The number ∆a corre-
sponding to the quantum number B/3 − La is better suited than NLa , as it can only receive
a source from the sterile sector and the lepton number violating Yukawa couplings. What we
computed should actually be the evolution of the charge ∆a, with a minus sign (because of the
minus sign in front of La in the definition of ∆a).

Moreover, including the expansion of the Universe and recalling that ∆a is a rescaled quantity,
we get the final equation used in the text

T 3d∆a

dt
= Wa

µa + µϕ

T
− Sa . (F.19)
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Appendix G

Relativistic and non-relativistic projectors

The different coefficients in the master equations (5.138) were derived from a self-energy valid
for all values of the masses. It has a quite complicated form in general. In order to get a better
physical understanding, we give here expressions in two extreme regimes of interest for us, the
Non-Relativistic (NR) regime M ≫ T and the Ultra-Relativistic (UR) one M ≪ T .

NR regime For large values of the mass M ≫ T , the on-shell 4-momentum on which the
self-energies are evaluated is approximately

kNR ≈ (M, 0, 0, 0) . (G.1)

The projectors on energy Pss′

h,IJ can also be simplified for a non-relativistic field,

Ps
I =

1

2

(
I+ s

HI
0

ωI

)
≃ 1

2
(I+ sγ0) , (G.2)

Pss′

h,IJ = Ph
N ss′

IJ (s+ s′)

4

(
I+ sγ0

)
= Phsδss′

1

2

(
I+ sγ0

)
, (G.3)

where we calculated the normalization constants N ss′
IJ in the NR regime

N ss′

IJ ≡
(

2ωIωJ

ωIωI + ss′ (MIMJ − |k|2)

)1/2

≃ δs,s′ +
2MIMJ

(MI +MJ)|k|
δs,−s′ . (G.4)

UR regime For lower values of the mass M ≪ T , the on-shell four-momentum is approxi-
mately

kUR ≈ (|k|,k) . (G.5)

The various projectors give

Ps
I ≃

1

2

(
I+ s

MI

|k|
γ0 + sγ0γ · k̂

)
, (G.6)
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Pss′

h,IJ ≃ Ph
N ss′

IJ (1− ss′)
4

(
γ0 + s′γ · k̂− 2

MI +MJ

|k|
γ0γ · k̂ + 2s′

MI −MJ

|k|
− 2

MIMJ

|k|2
γ0
)

+ Ph
N ss′

IJ (1 + ss′)

4

MI +MJ

2|k|
γ0
(
s′γ0 + γ · k̂ +

MIMJ

MI +MJ

)
≃ Ph

δs,−s′

2

(
γ0 + s′γ · k̂

)
+ Phs

′ δs,s′

2
γ0
(
γ0 + s′γ · k̂

)
= Ph

1

2

(
γ0 + s′γ · k̂

) (
δs,−s′I+ s′δss′γ

0
)
, (G.7)

where the normalization constants in the UR regime give

N ss′

IJ ≡
(

2ωIωJ

ωIωI + ss′ (MIMJ − |k|2)

)1/2

≃ 2|k|
MI +MJ

δs,s′ + δs,−s′ . (G.8)
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