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General Abstract 

Visual object categorization is at the interface between seeing and thinking. Evidences from 

functional MRI (fMRI) studies have described an organization of the ventral stream by visual 

categories, especially between animate and inanimate entities, that decomposed into finer-grained 

distinctions. How does this specific organization come about in humans? This thesis presents a set of 4 

studies addressing this issue. First, I will hypothesize that the first categories infants represent are 

constrained by these dimensions organizing object representation in the visual cortex (chapter 3) and 

study the role of brain maturation and experience in this representation (chapter 4). Then, I will 

investigate how the speed of presentation influences the animate/inanimate categorization in the first 

year of life and in adulthood (chapter 5), and what visual features act in this categorization in adults 

(chapter 6). 

Results show that infants will first be attracted by visual features that are not eliciting 

categorization, such as the size of stimuli, before relying on category membership, representing first 

the animate and inanimate entities. We suggest that representing more and more visual features, and 

being faster in representing the visual features, allows growing up infants to represent more (finer-

grained) categories, and that being exposed to objects guide infants’ behavior towards categories they 

already represent. Part of the big animate-inanimate categorization is based on low-level visual features 

(e.g., power spectrum) that covariate with the categories, but the behavior gets influenced by categories 

only when enough, more mid-level features are presented in the image. 

 

 

Keywords: Visual categorization, infants’ development, eye-tracking, EEG 
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General summary 

 When perceiving a visual stimulus, we immediately retrieve its category. Is it an animal, or an 

inanimate object? Is it a mammal, or a bird? Categorize objects surrounding us allows navigating in 

our environment and interacting with each encountered object. For instance, we can recognize a bench 

in a glance, and decide to sit on it, in order to rest. Categories are the first stage of the sensorial inputs 

interpretation, reflecting the visual features integration in a unique percept. The visual features, such as 

the color, the texture or the shape, are initially encoded into the visual cortex, all along the ventral 

stream. Visual categories will guide both our behavior and reasoning regarding the environment. Thus, 

visual categorization is at the interface between “seeing” and “thinking”. 

 The adult’s visual cortex activation is actually revealing an organization by visual categories 

(Haxby et al., 2011; Konkle & Caramazza, 2013; Op de Beeck et al., 2008, 2019). Indeed, studies have 

shown a big distinction between animate and inanimate object in the ventral stream, that crumble into 

finer-grained distinctions between human and nonhuman animal faces and bodies, and natural and 

artificial big and small inanimate objects. Remarkably, this organization is shared between species, as 

it was also evidenced in another nonhuman primate species, the macaque (Kriegeskorte, Mur, Ruff, et 

al., 2008). Moreover, it was evidenced in the visual cortex of congenitally blind individuals, while 

listening to sounds – either sounds naturally produced by objects, or objects’ name (Mahon et al., 2009; 

Mattioni et al., 2020; Striem-Amit et al., 2012; Striem-Amit & Amedi, 2014; van den Hurk et al., 2017). 

Altogether, it suggests that the visual object categories and its subsequent organization in the ventral 

stream of adults is biologically predisposed, and thus, might be present early in life. But it is not clear 

as to when those categories impact human’s behavior, how the brain maturation or visual experience 

influence the visual categorization, what is the speed of processing of those categories across 

development, or which visual features play a role in the visual categorization? This thesis aims at 

studying the development of visual object categorization: how and when visual categories emerge, 

influencing human behavior? 

 In chapter 3, I studied the visual object categorization in infants’ visual exploration using eye-

tracking. I have shown that infants, as soon as 4 months of age, can represent images according to their 

categories: whether it is an animate or an inanimate object. However, they first explored images 

according to the size of the image on the screen, looking longer at the larger, more compact and less 

elongated image. Around 10 months, they lost their reliance on non-categorical visual features (i.e., 

features that are not eliciting the representation of a category) towards categorical ones (i.e., features 
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eliciting the representation of a category, as co-varying with it). They directly looked similarly at two 

images belonging to the same category, such as a cat and a fish, or a pear and a hat, but longer at animate 

compare to inanimate objects when seen next to each other. Growing up, 19-month-old infants 

represented more visual categories, especially the human and nonhuman categories, as well as 

categories of human body, animal face, animal body and natural small objects. Comparing infants’ 

behavior with the adults’ ventral stream activity measured by functional MRI (fMRI), I have also shown 

that while infants grow up and represent more and more visual categories, their behavior compares to 

larger part of the adults’ ventral stream. This is suggesting that integrating more and more visual 

features, encoded in different portion of the ventral stream, allows to refine the representation of 

objects, thus represent more and finer-grained categories. 

 Chapter 4 follow the previous chapter, extending results to two new age groups, 6- and 8-

month-old infants, as well as to a new population, preterm infants. Results reveals that at 8 months of 

age, infants explored images according to both categorical and non-categorical visual features. Before, 

at 4 and 6 months, infants only explored images according to their size, compactness and elongation, 

although they were able to represent the animate and inanimate categories, but only when the images 

were presented at the same size. After, at 10 and 19 months, infants only explored images according to 

their categorical features. At 8 months, infants did both, showing that one doesn’t preclude the other, 

and that the switch observed between 4 and 10 months of age is a two-steps development; first, 

categorical features attract infants’ look, then, non-categorical features lost interest and did not drive 

infants’ attention anymore. Preterm results revealed that the first step of this transition highly depend 

on the experience; once infants represent a category, being exposed to objects will drive their attention 

towards the category. 

 Chapter 5 studied the impact of the speed of images presentation on their categorization into 

animate and inanimate objects, using EEG, in both adults and infants of 4 and 9 months. The stimuli 

set use in this study was, so far, to my knowledge, the larger stimuli set used to study the animate-

inanimate categorization in 4- and 9-month-old infants. It was selected to be as much as possible 

representative of the tremendous variability observed in the world surrounding us, both between and 

within the animate and inanimate categories. This chapter shows an acceleration of the animate-

inanimate capacity throughout life. Four-month-old infants couldn’t categorize images when they were 

presented at about 167 milliseconds (ms), while 9-month-old infants could still categorize the same 

images when presented at about 83 ms, and adults, at 33 ms. Results show that, for each age, the faster 

the presentation of images, the lowest the categorization, as captured in the EEG signal. Thus, the speed 
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of images presentation does impact humans’ ability to categorize objects, revealing the limits of the 

visual system when encoding visual categories. Such limitation of the visual system decreases by 3 

between 4 and 9 months of age, and by 7 between 4-month-old infants and adults. 

 Finally, chapter 6 revealed that the big animate-inanimate categorization can be captured even 

based solely on low-level visual features, encoded early in the visual cortex of human adults. However, 

this categorization, captured by electroencephalography (EEG) in adults, do not impact adults’ 

behavior. Indeed, they cannot name an image representing only the lower-level visual features of the 

original image, nor can they decide whether this image was originally an “animal” or not. However, it 

shows that the animate-inanimate categorization is resilient to the loss of visual information and that 

lower-level visual features only are sufficient to elicit such categorization in the adults’ brain. It also 

shows that the animate-inanimate categorization captured in the adults’ brain with intact images of the 

world cannot be explained by only few lower-level visual features. 

 Together, this thesis suggests that visual categories in human start, as soon as 4 months of age, 

by the big animate-inanimate categorization, representing objects based on higher-level visual features 

extracted in more anterior regions of the ventral stream. First, categorization will be hindered by 

reliance on lower-level visual features, before completely directing infants’ visual exploration, once 

infants get sufficiently exposed to objects in their environment. Then, the ability to represent more and 

more visual features might allow infants to better represent images into finer-grained distinctions, and 

as infants grow older, more visual categories are represented (chapters 3 and 4). Infants need more time 

to be able to categorize object as animate or inanimate as compare to adults, but this capacity accelerates 

by an incredible amount between 4 and 9 months of age (chapter 5). Finally, adults’ categorization 

show that the animate-inanimate categorization is feasible based only on lower-level visual features, 

but that those lower-level features alone cannot explain the whole animate-inanimate categorization, 

and are not sufficient to influence their behavior (chapter 6). It appears that categories (especially the 

animate and inanimate) will first be represented by extracting higher-level visual features from the 

objects, tuning lower-level areas that extract lower-level visual features towards features co-varying 

with the categories – at the same time, while infants grow older, they become faster in extracting 

features and integrating them together, allowing infants to represent objects faster. They also extract 

more and more visual features, allowing a more furnished representation of the objects, thus, more and 

finer-grained categorization of the objects. 
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Résumé général 

Lorsque nous percevons un stimulus visuel, nous identifions immédiatement sa catégorie. Est-

ce un animal ou un objet inanimé ? Un mammifère ou un oiseau ? Catégoriser les objets nous entourant 

nous permet de naviguer dans notre environnement et d’interagir avec chaque objet rencontré. Par 

exemple, on peut reconnaitre en un coup d’œil un banc dans une rue, et décider de s’y assoir afin de 

s’y reposer. Les catégories constituent la première étape de l’interprétation de l’input sensorielle, 

reflétant l’intégration en un percept unique des propriétés visuelles, telle que la couleur, la texture ou 

encore la forme, initialement codées dans la voie ventrale du cortex visuel. Les catégories visuelles 

influencent notre comportement et notre raisonnement, qui sera ainsi adapté à notre environnement. 

Ainsi, la catégorisation visuelle se situe à l’intersection entre « voir » et « penser ». 

Le cortex visuel des adultes est en fait organisé en fonction de ces catégories visuelles (Haxby 

et al., 2011; Konkle & Caramazza, 2013; Op de Beeck et al., 2008, 2019). On y trouve une distinction 

entre objets animés et objets inanimés, qui se décompose en plusieurs catégories plus détaillées, 

notamment entre visages et corps humains ou animaux (non-humains), ou entre les différentes tailles 

des objets (grands ou petits) artificiels ou naturels. Cette organisation spécifique est remarquablement 

partagée entre différentes espèces, notamment retrouvée chez d’autres primates non-humain, tel que les 

macaques (Kriegeskorte, Mur, Ruff, et al., 2008). Elle est également retrouvée chez des individus 

aveugles de naissance, lorsque ceux-ci écoutent des sons – soit naturellement produits par différents 

objets, soit directement le nom de ces objets (Mahon et al., 2009; Mattioni et al., 2020; Striem-Amit et 

al., 2012; Striem-Amit & Amedi, 2014; van den Hurk et al., 2017). Tout cela suggère que cette 

organisation serait prédisposée biologiquement, et contrainte à se développer. Ainsi, ces catégories 

pourraient être trouvées très tôt dans la vie d’un humain. Néanmoins, il n’est pas clair quand ces 

catégories émergeraient dans le comportement humain, comment la maturation cérébrale et 

l’expérience visuelle influenceraient cette émergence, quelle serait la vitesse d’intégration des 

catégories, ou quelles caractéristiques visuelles joueraient un rôle dans cette représentation des 

catégories ? Cette thèse étudie donc le développement de la catégorisation visuelle des objets : 

comment et quand ces catégories visuelles se mettent en place, influençant le comportement humain ? 

Tout au long du chapitre 3, au moyen de techniques d’oculométrie, j’ai étudié et reporté le 

développement des catégories visuelles durant la première année de vie. J’ai notamment pu montrer 

que les nourrissons, à partir de 4 mois, peuvent représenter des images en fonction de leur catégorie, 

suivant qu’elles représentent un être animé ou un objet inanimé. Néanmoins, ils sont d’abord attirés par 
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la taille de l’image sur l’écran. Par la suite, vers 10 mois, les nourrissons perdent toute attirance envers 

la taille des images, et regardent aussi longtemps deux images appartenant à la même catégorie, par 

exemple un chat et un poisson ou bien une poire et un chapeau. En grandissant, vers 19 mois, les 

nourrissons représentent de plus en plus de catégorie, notamment les humains et les animaux, les corps 

humains, les corps animaux, les visages animaux et les petits objets naturels. En corrélant leur 

comportement avec l’activité mesurée tout au long de la voie ventrale d’adulte, par IRM fonctionnelle 

(IRMf), j’ai également mis en évidence qu’au plus les nourrissons grandissent et représentent de 

catégories, au plus leur comportement reflète l’organisation présente dans différentes parties du cortex 

visuel adulte. Cela suggère qu’être capable d’intégrer de plus en plus de caractéristiques visuelles, 

toutes codées à différents endroits dans la voie ventrale du cortex visuel, permet de représenter de plus 

en plus finement les images, en des catégories plus précises. 

Le chapitre 4 complète le chapitre précédent, étendant ces résultats à des nourrissons âgés de 6 

et 8 mois, ainsi qu’à des nourrissons nés prématurément. Il met notamment en évidence qu’à 8 mois, 

les nourrissons regardent les images non seulement en fonction de leur catégorie, mais également en 

fonction de leur taille, compacité et élongation. Cela révèle une transition en deux étapes : dans un 

premier temps, les caractéristiques catégorielles attirent l’attention des nourrissons, puis les 

caractéristiques non-catégorielles perdent leur importance et n’attirent plus leur regard. Les résultats 

des nourrissons de 8 mois nés prématurément montrent qu’ils regardent les images en fonction de leur 

taille, compacité et élongation, mais également en fonction des catégories « animé » et « inanimé ». 

Cela suggère que cette transition se produit lorsque le nourrissons a été suffisamment exposé a des 

objets. 

Le chapitre 5 étudie l’impact de la vitesse d’apparition des images sur la catégorisation 

d’images entre objets animés et inanimés, en utilisant l’EEG, chez des adultes et des nourrissons âgés 

de 4 et 9 mois. Le set d’image a été sélectionné pour représenter, au maximum, la diversité de ces deux 

catégories dans le monde. C’est, à ma connaissance, jusqu’à présent, le plus grand set d’image utilisé 

pour étudier cette catégorisation chez des nourrissons. Ce chapitre met en évidence une accélération au 

cours du développement. Les nourrissons de 4 mois ne peuvent plus catégoriser les images si celles-ci 

sont présentées autour de 167 millisecondes (ms), alors que les nourrissons de 9 mois sont encore 

capables de le faire avec des images présentées pendant 83 ms, et les adultes, autour de 33 ms. Ainsi, 

la vitesse de présentation des images influe sur la capacité de catégorisation des humains, reflétant la 

limitation du système visuel lors de l’encodage des caractéristiques visuelles ; cette limitation se réduit 

déjà par un facteur 3 entre 4 et 9 mois, et réduit d’un facteur d’environs 7 entre 4 mois et l’âge adulte. 
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Enfin, le chapitre 6 révèle que la grande catégorisation entre objets animés et objets inanimés 

est en réalité déjà visible uniquement sur la base de caractéristiques visuelles codées très tôt dans le 

cortex visuels (caractéristiques visuelles de bas niveau). Néanmoins, cette catégorisation, mesurable 

par électroencéphalographie (EEG) chez l’adulte, n’influence pas leur comportement. En effet, les 

adultes seront incapables de nommer une image tellement déformée qu’elle ne contient plus que ces 

caractéristiques visuelles de bas niveau, ni même de dire si cette image appartient à la catégorie des 

« animaux » ou non. Toutefois, cela montre que chez les adultes, les caractéristiques visuelles de bas 

niveau permettent une catégorisation des objets visuels entre objets animés ou inanimés. Cette étude 

montre également que si ces caractéristiques visuelles suffisent à capturer une réponse catégorielle, 

elles n’expliquent pas entièrement la réponse observée lorsque l’image contient beaucoup plus de 

caractéristiques. 

Ensemble, ces différentes études suggèrent que les catégories visuelles formées au cours du 

développement commencent, dès l’âge de 4 mois, par la représentation des objets animés et inanimés, 

basée sur la représentation de caractéristiques de haut niveau extraites dans des régions antérieures de 

la voie visuelle ventrale. Tout d’abord, cette catégorisation est camouflée par une attirance plus 

important des caractéristiques visuelles de bas niveau, avant de complètement régir l’exploration 

visuelle des nourrissons. Puis, en étant capable de représenter de plus en plus de caractéristiques, les 

nourrissons sont alors capables de mieux représenter les images, en des catégories plus précises 

(chapitres 3 et 4). Les nourrissons ont besoin de temps pour représenter les catégories, mais le chapitre 

5 montre une accélération conséquente au cours de la première année. Enfin, la catégorisation entre 

objet animés et inanimés est réalisable uniquement sur la base des caractéristiques visuelles de plus bas 

niveau (chapitre 6). Il semblerait que les catégories (notamment animé et inanimé) sont, dans un 

premier temps, représentées par l’extraction de caractéristiques de haut niveau, ce qui ajuste les aires 

représentant les caractéristiques de plus bas niveau vers les caractéristiques covariant avec les 

catégories – en même temps, alors que les nourrissons grandissent, ils deviennent de plus en plus rapide 

dans l’extraction et l’intégration des caractéristiques visuelles, ce qui leur permet de représenter les 

objets plus rapidement. Ils extraient également de plus en plus de caractéristiques visuelles, ce qui leur 

permet une représentation des objets plus fournies, et donc, de représenter les objets en plus de 

catégories, plus fines. 
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1. Introduction 

1.1. Categorization at the basis of knowledge 

Imagine this situation: you are at home, lying on your couch, peacefully reading a book – or 

this thesis. Your kid is napping in their room. Your cat is meowing, and jumps next to your head: you 

pat him a little, and understand that he is hungry. You feed him with some biscuits. As you are now 

standing, you noticed the plants are a little dry; thus, you water them. And now your kid is awake, 

calling you. This scene describes what could be a typical day, right? Everything seems natural and easy. 

In this situation, we do not even really think about anything, we just act. Yet, in order to interact and 

behave accordingly (e.g., giving biscuits to the cat rather than the plants; watering the plants rather than 

the couch), we have to know and recognize all the objects1 surrounding us, including the cat, the book, 

the plant, and so on. Typically, we come across much more objects than what described in this little 

scenario, even some that we never have seen before – and somehow, we still manage to make sense of 

every object we possibly encounter in our daily lives. For instance, we might encounter new costumers 

every day, and we effortlessly know that we can interact with each of them – or, we might be confronted 

to a nut cracker for the first time, and yet, we already know that it’s an inanimate object. We might not 

understand the use of it right away, but we still recover its basic properties – it will not move by itself 

and disappear, it will fall if we don’t hold it, it will not be able to pass through other objects, it’s 

definitely a tool, etc. – allowing us to act accordingly. To access and use our knowledge about objects 

relies on cognition (Bayne et al., 2019). One key characteristic of our object knowledge is that it is not 

random, but organized into groups, that constitute the unit of our thought and are called categories 

(Carey, 2009; Harnad, 2005; Lloyd & Rosch, 1978). Categorization is thus at the basis of our cognition, 

organizing our thoughts, and our interaction with our surroundings. 

Categorization helps structuring our mind and making sense of our environment (Carey, 2009; 

Mareschal & Quinn, 2001; Rosch, 1978), even from a young age (Gelman & Markman, 1986; Gelman 

& Meyer, 2011; Harnad, 2005), as it is the first step in accessing the knowledge associated with objects. 

When encountering a new object, such as a new cup, we recognize features diagnostic of a category we 

already know about (e.g., cup), and thus, we recognize it as a member of this category. Categories are 

the reason why we are able to generalize knowledge of previously encountered category members to 

novel ones (Davis & Poldrack, 2014). As structuring our thoughts and knowledge, categories influence 

                                                   
1 In this thesis, the term “object” refers to any material entity, including alive ones such as animals. 
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up until our language. The grammatical rules of most languages have indeed, as the most frequent 

structure for sentences, a subject that is most of the time a human or a non-human animal, followed by 

a verb that describes an action, and an object, animate or inanimate (Dahl, 2008). Neuropsychology 

studies have identified impairments in category ability, describing patients having difficulties not only 

in naming/recognizing some objects, but also in retrieving associated knowledge (Capitani et al., 2003; 

Caramazza & Mahon, 2003; Mahon & Caramazza, 2009; Tyler & Moss, 2001; Warrington & Shallice, 

1984). Most of the time, those impairments are category-specific; meaning that it is a whole category 

(e.g., edible things) that is impacted, but not other categories. These category-specific impairments 

might affect patients’ life, as for instance, if you do not recognize edible things anymore, you can try 

eating random objects, including ones that are not edible (Mahon & Caramazza, 2009; Warrington & 

Shallice, 1984). Categories are really the unit of our thoughts, at the basis of our inferences and decision 

making, organizing the knowledge in our brain. 

However, there is a virtually infinite number of categories, and an object can be categorize in 

many of them at the same time (Anderson, 1991; Bruner et al., 2017; Rosch, 1978). Categorization is 

defined as the ability to recognize different objects as members of the same group, discriminating them 

from members of other groups. Different levels of categorization co-exist, from the most inclusive to 

the most exclusive ones. Take a cat, for instance; it can be categorized into the broad, superordinate 

category commonly called “animal”; into the more specific category of “mammal”; obviously into the 

basic-level category of “cat”; into the even more specific subordinate category of “ragdoll”, etc. (Mervis 

& Rosch, 1981; Rosch, 1978; Rosch & Mervis, 1975). Three levels of categorization are commonly 

described, the superordinate, subordinate and basic-level categories, although many levels exist within 

superordinate and subordinate levels (e.g., mammals and animals are both superordinate categories). 

Superordinate and subordinate categories are both established from the basic-level categories. The 

basic-level category (e.g., cat, dog, chair, ball) is the level we are most likely thinking about, talk about 

and thus refer to in our everyday life. It is the category in which objects have the optimal common 

features (diagnostic of the category) but with still enough features allowing to separate it from another 

category: it maximizes the difference between-category and optimizes the similarity within-category. 

For instance, a cat and a dog are similar in many ways; but also, very dissimilar on many ways – 

allowing a good separation of the 2 categories. On the other hand, if you consider a poodle and a coquer 

spaniel (two specific dog breeds), they are very similar to the each-other, and only few differences 

allow to make the distinction between both, making less obvious categories. The superordinate 

categories (e.g., mammals, animals) regroup a lot of objects that have fewer common features. Those 
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categories are all larger categories compare to the basic-level, regrouping the basic-level categories into 

larger groups. For instance, dogs and cats are part of the same superordinate category, but will still be 

separated from an apple and a chair. Subordinate categories (e.g., ragdoll, poodle) regroup fewer objects 

that are even more alike than objects at the basic-level. They refine objects into smaller groups as 

compare to the basic-level categories. Indeed, not a lot of objects looks more like a maine Coon than a 

ragdoll, yet they are part of different subordinate categories. A hierarchy in our access to the different 

level seems to exists: human adults would, as soon as they see an object, recognize and name this object 

at its basic-level (Grill-Spector & Kanwisher, 2005; Rosch, 1978; Thorpe et al., 1996; VanRullen & 

Thorpe, 2001). We will not access all categories of an object at once, but probably the ones that are of 

most importance for our everyday life, or a given goal – thus, except maybe if we are huge fans of cats, 

we will not identify specifically a ragdoll and a maine coon, but just two cats, retrieving that they are 

both pets, animals that can move, potentially bite when unhappy or threatened, but otherwise quite 

inoffensive. As our learning evolves with age and experience, the different levels of categorization 

might actually evolve, with the categories infants and children access being broader and more inclusive, 

or less distinctive, than the adults’ basic-level categories (Behl-Chadha, 1996; Gelman & Meyer, 2011; 

Pauen, 2002). But what are the first categories that influences the organization of human cognition?  

How do categories emerge in human life? How do infants see the world? Do very young infants already 

categorize things in their environment, even when having little, if any experience at all with those? 

Those questions will be further addressed in this thesis. But first, to be able to start answering those 

questions, we must first understand how categorization emerges in the adults’ brain? 

If for now I described categorization in general, what categories allow us to do, by organizing 

our knowledge with the concept attach to them, I will now focus on the first step of categorization, and 

the main topic of this thesis – the visual categorization. Before being able to retrieve any categories, 

we must first perceive, even for only few milliseconds, the object we will categorize – we can use our 

hands and explore the object by touching it, we can also taste and/or smell some objects, or experience 

their sound. But one of the main sense we use to explore objects, is vision. Every morning, when we 

wake up, we start our day by opening our eyes and turn on the light or open the curtains. Observing the 

things around us comes often before navigating and interacting with them. Early in life, infants are also 

very limited in their movements, and first visually explore their environment before being able to move 

inside and interact further with objects using other sense. Thus, it is only logical that our visual system 

is already tuned towards categories. Indeed, in addition to patients presenting category-specific 

impairments – and associated brain lesions (Capitani et al., 2003; Caramazza & Mahon, 2003; Mahon 
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& Caramazza, 2009; Tyler & Moss, 2001; Warrington & Shallice, 1984) clearly suggesting that the 

brain is functionally organized into categories, patients with visual agnosia or lesion in the visual cortex 

clearly suggest the existence of a specific organization already in the visual areas of the brain (Biran & 

Coslett, 2003; Farah, 2004). For instance, lesions to the visual cortex has been suggested to cause 

selective deficits in naming animals, but not body parts (Caramazza & Shelton, 1998). Those 

impairments of human adults’ vision suggest that categories can be extracted already from visual inputs, 

not only on knowledge (semantic information) associated with objects (e.g., animals can move while 

inanimate objects cannot). Adults’ brain, by processing visual features, extract the visual categories 

from the visual input. By studying the organization of visual inputs in the part of the visual cortex 

dedicated to object recognition (the visual ventral stream), one can identify the main dimensions driving 

object categorization in humans. Indeed, with its major role in object recognition, the visual ventral 

stream is described as being at the interface between perception and cognition, supporting semantic 

categorization and representation of object in the rest of the brain (Carlson, Simmons, et al., 2014; 

Mahon & Caramazza, 2009). 

1.2.  The visual ventral stream 

 The retina is composed of two main cell types, two photoreceptors respectively called rods and 

cones (Wandell, 1995). Those cells project to the lateral geniculate nucleus (LGN) (Watanabe & 

Rodieck, 1989) and, from here, to the primary visual cortex V1 in the occipital lobe (Chatterjee & 

Callaway, 2003). From the primary visual cortex, two main processing streams are usually described: 

a ventral stream and a dorsal stream (Goodale & Milner, 1992; Haxby et al., 1991; Mishkin et al., 1983; 

Ungerleider & Haxby, 1994). The dorsal stream is directed into the parietal lobe and is recruited for 

processing the spatial location of objects (Mishkin & Ungerleider, 1982). On the other side, the ventral 

stream is directed into the temporal lobe and has been described as essential for the visual object 

recognition (Grill-Spector & Weiner, 2014; Reddy & Kanwisher, 2006), and is thus of great interest in 

the understanding of visual object categorization. It is often called the “what” pathways, and is the place 

of encoding of objects from visual inputs, by the integration of the different features extracted all along 

the ventral stream into a unified percept (Biederman, 1987; Marr & Nishihara, 1978; Wagemans et al., 

2012). Typically, a first hierarchical organization is described all along the ventral stream, where we 

find the early, intermediate and anterior visual areas, each encoding different level of abstraction of the 

visual features. Early visual areas typically extract low-level visual features, intermediate areas mid-

level visual features and anterior areas high-level visual features. (Grill-Spector et al., 1998; See for 
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review Grill-Spector & Malach, 2004; Hubel & Wiesel, 1998; Malach et al., 1995). Low-level features 

correspond to local measurements such as orientation, spatial frequency, shape or color. As information 

travel through the ventral stream towards more anterior regions, intermediate areas encode mid-level 

visual features, which are more global than the low-level features, and correspond to the global form 

(global curvi-linearity) of the stimuli and the texture (Long et al., 2017; Long & Konkle, 2017). Finally, 

the high-level visual features correspond to the integration of lower-level features into a comprehensive 

part, into an entity, encoding the most global features such as the shape of the object (Biederman, 1987; 

Marr & Nishihara, 1978). Another organization is described in each visual areas: the visual field maps, 

also called retinotopic maps. Those maps relate to the preservation of the spatial arrangement of the 

features in an image, meaning that central information in the visual field will be encoded in central part 

of visual areas while objects at the periphery will be encoded in part at the periphery of visual areas 

(Grill-Spector & Malach, 2004; Wandell et al., 2007). This specific organization allows us to recognize 

an object even if some pixels are removed from the images. However, the recognition becomes far 

more difficult as soon as the spatial arrangement of the part of the objects (e.g., eyes above nose above 

mouth configuration of a face) is disturbed. 

 The ventral stream also reveals an organization by visual categories, as widely described over 

the past years, using functional magnetic resonance imaging (fMRI). Indeed, categories already come 

out from the topographical activity of the ventral stream for different visual objects. The main 

categories found by studying the ventral pathway topography are the big animate and inanimate objects: 

all along the ventral stream, in both hemispheres, the medial part shows higher activity for inanimate 

objects as compare to animate ones, while the lateral part of the ventral stream shows higher activity 

for animate objects compare to inanimate ones (Bell et al., 2009; Chao et al., 1999; Downing et al., 

2006; Konkle & Caramazza, 2013; Long et al., 2018; Wiggett et al., 2009). This big topographical 

distinction into animate and inanimate categories further breaks up into finer-grained categories, of 

which human and nonhuman animals (Papeo et al., 2017), and small and big (in terms of real-world 

size) objects (Konkle & Caramazza, 2013; Konkle & Oliva, 2012b; Long et al., 2018; Magri et al., 

2020). Underneath this organization lies a mosaic of hot spots with the highest selectivity for 

biologically relevant stimuli such as faces, bodies and scenes (Downing et al., 2001; Epstein & 

Kanwisher, 1998; Grill-Spector & Weiner, 2014; Kanwisher et al., 1997; McCarthy et al., 1997; Pitcher 

et al., 2009; see for reviews Bracci & Op De Beeck, 2023; Op de Beeck et al., 2008, 2019). 

Categorical distinctions also emerge from the different pattern of neural activity evoked by each 

objects (Bobadilla-Suarez et al., 2020; M. A. Cohen et al., 2017; Davis & Poldrack, 2013, 2014; Haxby 
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et al., 2011; Kriegeskorte, Mur, Ruff, et al., 2008). A pattern of activity reflects how the different part 

(i.e., the different voxels, smallest region observed in fMRI studies) of a region (e.g., the ventro 

occipito-temporal cortex, located in the ventral visual pathways) react to an object. Strikingly, patterns 

of activity are more similar (i.e., same voxels activated and same voxels non-activated) one another for 

two animate objects (e.g., a cat and a fish) than between one animate object and one inanimate object 

(e.g., a cat and a nut cracker). Patterns of activation within the ventral stream reveal not only the animate 

and inanimate categories, but also the finer-grain distinction between human and nonhuman animals, 

between the big and small inanimate objects, between the animal faces and bodies, as well as between 

the artificial and natural inanimate objects (M. A. Cohen et al., 2017; Kriegeskorte, Mur, Ruff, et al., 

2008). 

Interestingly, those categories, represented in the ventral pathway in the visual cortex, appear 

to be relevant for human adults’ behavior, accounting for the way individuals parse the visual world. 

Indeed, finding a target-object among a set of distractors seems to be faster when the target belongs to 

a distinct visual category than the distractors (e.g., finding a cat among artificial objects) as compare to 

when the target and the distractors belong to the same visual category (e.g., finding a cat among animals 

including mammals). The search time increases as the neural similarity between the target and the 

distractors increases (Carlson, Ritchie, et al., 2014; M. A. Cohen et al., 2017). In addition, the activity 

recorded in the high-level visual region corresponds to what the subject reported to perceive, more than 

what was physically present. Indeed, the category-selective activation in the high-level visual cortex 

occurs only when the subject reported to perceive the objects (Grill-Spector, 2003). Moreover, proof 

of an animate-inanimate categorical distinction and other categorization at more basic-levels in adults’ 

behavior exist, even with a high speed of presentation (Bacon-Macé et al., 2005; Grill-Spector & 

Kanwisher, 2005; Konkle & Oliva, 2012a; Long & Konkle, 2017; VanRullen & Thorpe, 2001). 

Categorization in the adults’ brain was not only evidenced in fMRI study; 

electroencephalography (EEG) and magnetoencephalography (MEG) studies also reveal 

categorization, and its fast emergence in the brain signal. Indeed, it is possible to decode from the EEG 

activity the signal recorded for animate stimuli from the signal recorded for inanimate objects stimuli, 

already 80 ms after the onset of the stimuli presentation. Other categories are also decodable from both 

signal, including human and nonhuman faces and bodies, as well as natural and artificial inanimate 

objects (Carlson et al., 2013; Cichy et al., 2014; Coggan et al., 2016; Contini et al., 2017; Grootswagers, 

Robinson, & Carlson, 2019; Grootswagers, Robinson, Shatek, et al., 2019; Proklova et al., 2016, 2019; 

Stothart et al., 2017; Thorpe et al., 1996). A lot of research evidenced especially the human face 
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categories, as opposed to all other categories (Gentile & Rossion, 2014; Quek & De Heering, 2024; 

Quek & Rossion, 2017; Rekow, Baudouin, Durand, et al., 2022; Rossion, 2014a, 2014b; Rossion et al., 

2015, 2020; Rossion & Boremanse, 2011). If the spatial resolution of EEG and MEG is not as good as 

fMRI (Pfister et al., 2014), data from one measure can be related to data from another measure 

(Kriegeskorte, Mur, & Bandettini, 2008). In particular, MEG data were shown to first, in the first 

hundreds of milliseconds following the stimuli presentation, correlate with the activity recorded in V1, 

before being more related to the inferior temporal cortex in more anterior part of the ventral pathway 

(Cichy et al., 2014), adding evidence to a categorical organization in the human adult ventral stream. 

If categorization is already captured in V1 and early in time, it suggests that visual 

categorization can be already extracted from low- and mid-level visual features, even before the 

contribution of high-level visual features (Kramer et al., 2023). Indeed, if shape is an important feature 

in the visual object categorization (Ayzenberg & Lourenco, 2019; Bracci et al., 2019; Bracci & Op de 

Beeck, 2016; Chen et al., 2023; Schmidt et al., 2017; Tiedemann et al., 2022), it is not the only feature 

eliciting categorization, and does not account for the whole categorical representation in the ventral 

pathway (Bracci & Op De Beeck, 2023; Jozwik et al., 2022; Kaiser, Azzalini, et al., 2016; Kramer et 

al., 2023; Long et al., 2017, 2018; Magri et al., 2020; Proklova et al., 2016; Ritchie et al., 2020; 

Rosenthal et al., 2018; Wang et al., 2022; Zeman et al., 2020). However, it is not always clear what 

account for the visual categorization in the adult’s brain, as demonstrated by all the studies looking for 

features explaining the broad animate-inanimate distinction, exploring the role of shape, texture, global 

form of the stimuli, presence of faces and bodies, dimensions such as “being alive” (Bracci et al., 2019; 

Chen et al., 2023; Jozwik et al., 2022; Long et al., 2017; Ritchie et al., 2021; Schmidt et al., 2017; Wang 

et al., 2022). All those studies, of which here are only a subset, found evidence for each features acting 

in the animate-inanimate distinction. 

All along this section, I described the organization of the human adult ventral stream, 

sometimes mixing in studies on nonhuman primates. Indeed, the organization of information in the 

humans visual cortex appears to be a hallmark in the evolution of the primate brain: it is replicated in 

the monkeys’ inferior temporal cortex (Bell et al., 2009; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et 

al., 2008; Pinsk et al., 2005; Sigala & Logothetis, 2002; Tompa & Sáry, 2010) but also in other animals 

(See for review Freedman & Miller, 2008). An intriguing characteristic is also that this organization, 

in the visual cortex, is largely resistant to variations of individual visual experience. Indeed, 

congenitally blind individuals present a ventral stream organization similar to the one observed in 

sighted individuals when hearing object sound, or object names (Mahon et al., 2009; Mattioni et al., 
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2020; Striem-Amit et al., 2012; Striem-Amit & Amedi, 2014; van den Hurk et al., 2017). These results 

– i.e. the shared organization between species and across large differences in visual experience – 

suggest a neural code optimized by evolution: one might believe that the dimensions that drive the 

organization of visual object information in the adults’ brain are biologically disposed and determined 

(Caramazza & Shelton, 1997), and thus, may be observable early in life. 

 

1.3. Visual categorization in infancy 

1.3.1.  Infants’ vision 

 Before diving into the question of whether infants already categorize objects in their 

environment, one can wonder whether infants see at all. The visual system, starting from the eye itself, 

is indeed developing from birth to adulthood, revealing an immaturity of the system at birth and in 

infancy (Fielder et al., 1988). However, an immaturity of the visual system does not mean that the 

visual system is not functional at all; it might be just functional enough to allow newborns and infants 

to see what they need to see, and not be overwhelmed by the extremely high amount of information 

surrounding them from the moment they open their eyes (Hainline, 1998; James, 1890). Already at 

birth, newborns, when opening their eyes, can detect a white line on a black background (Lewis et al., 

1978). They do not only see and discriminate lines, but look as well – they actively move their eyes 

and head to obtain information about the world, to follow objects for instance (Candy, 2019; Gibson, 

1988). However, even if they see, their vision is not adult-like yet. First, there is a high prevalence of 

astigmatism – light beams are not focused on the retina, but instead are spreader than what they really 

are, thus rendering a blurred image on the retina – in infancy, higher than in adults (Howland et al., 

1978; Mohindra et al., 1978). This astigmatism will disappear in most infants in the first or second year 

of life, and influence infants’ acuity. Previous studies have measured Vernier acuity and Grating acuity, 

finding that both acuities develop very fast in the first year of life (Braddick et al., 1986; Cavallini et 

al., 2002; Gwiazda et al., 1978, 1980, 1997; Morison & Slater, 1985; Salapatek et al., 1976; Shimojo 

et al., 1984; Skoczenski & Norcia, 2002; see for reviews Dobson & Teller, 1978; Gerhardstein et al., 

2009; Kellman & Arterberry, 2007; Slater, 2002). Vernier acuity is the smallest offset between 2 

segments (or pattern, e.g., squares) allowing the discrimination between the two and thus their 

discrimination from a unique, simple line; grating acuity is the maximum number of grating (parallel 

segments) that can be discriminate from a uniform patch (see Figure 1A). At 6 to 8 months of age, 

infants’ Vernier acuity is 6 to 8 times smaller than adults’ acuity, and about 3 times smaller than what 
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it will be during childhood and early adolescence. Grating acuity will double from 6 months onward 

and reach the adult-level at 6 years of age (Skoczenski & Norcia, 2002). Thus, infants see less details 

than adults, but still see (for a simulation of infants’ visual acuity at birth, 4 months and 9 months 

compared to adults, see Figure 1B). They can, from birth, discriminate orientations of gratings 

(Atkinson et al., 1988; Slater et al., 1988). They also encode size and look longer for bigger objects as 

compared to smaller identical objects such as simple cubes (Slater et al., 1990). Later on, when they 

can move more and start grasping objects, 6-month-old infants will reach smaller, more graspable 

objects with their hands, despite still looking more at bigger object (C. Newman et al., 2001). Binocular 

vision develops only 2 months after birth, allowing infants to see depth (Jandó et al., 2012; see for 

review Norcia & Gerhard, 2015). They can then, at 3.5 months of age, follow, with their eyes, a 

stereoscopic form (3D form) moving in one direction or another (Fox et al., 1980). Infants can also 

discriminate colors such as blue, green, yellow, orange, red and purple from white as early as 2 months 

of age (M. Bornstein et al., 1976; M. H. Bornstein et al., 1976; Teller et al., 1978; Zemach et al., 2007), 

and even discriminate blue from green and purple at 4 months (Franklin & Davies, 2004; see for review 

Skelton et al., 2022). However, newborns might not be able yet to discriminate so many colors, and 

first discriminate red from other colors (Adams, 1995). Infants’ color vision is yet different than adults 

one (for a simulation of infants’ vision of color, see Figure 1B), as the discrimination of a color from 

the background depends on the saturation of color, and infants’ threshold is higher than adults’ one, 

meaning that they cannot see less saturated colors compare to adults’ capacity (Knoblauch et al., 2001). 

Infants are able to see basic features (i.e., color, depth, shape, pattern, size…), and can use those 

features to discriminate an object from another object (Ayzenberg & Lourenco, 2022; Wilcox, 1999; 

Wilcox et al., 2008). For instance, from 3-4 months of age, infants can discriminate geometrical shapes 

such as a triangle from a square (Bomba & Siqueland, 1983; Quinn, 1987). As they are able to 

discriminate objects from each other, based on their dissimilarities, they also see their similarities. It is 

thus possible that, by seeing similarities between objects, they form visual categories early on, and 

represents objects sharing similar features more similarly as compare to objects having less similar 

features. 
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1.3.2. Behavioral evidence of early categorization 

 Visual categorization in infancy has traditionally been studied using specific paradigms of 

familiarization or habituation followed by preference-for-novelty (see for review Aslin, 2007; Fantz, 

1964; Hunter & Ames, 1988; Rose et al., 1982). In these paradigms, infants are presented with a series 

of different images belonging to one category (e.g., cats). After a number of familiarization trials, or 

after they habituated to the category (e.g., look three images in a row for less than 50 % compare to the 

first three images), they are presented with test trials, consisting in either one image of another category 

(e.g., dogs) followed by a new instances of the familiarized/habituated category (e.g., a new cat), or by 

both images presented at the same time next to each other, one being the new category, the other the 

new instances of the familiar category. If infants’ gaze is attracted by the new category (e.g., looking 

longer to the dog, but not to the new cat), this is taken as evidence for the infants’ ability to discriminate 

between the two categories. Another paradigm to study categorization in infancy is the sequential 

Figure 1: Example of figures use to test infants’ visual acuity and simulation of how infants’ vision. (A) Example of Vernier 

and Grating acuity. For the Vernier acuity, each figure is composed of 3 segments, either perfectly aligned and not discriminable 

(left), or more and more misaligned and thus easier and easier to discriminate (middle and right). For the Grating acuity, if the 

gratings are too close, they are not discriminable resulting in the perception of a homogeneous grey patch instead of gratings 

(left). Increasing the space between the gratings helps discriminate the grated pattern from a homogeneous gray patch (middle 

and right). (B) Simulation of how newborns, 4-month-olds and 9-month-olds see as compare to adults. The acuity is simulated 

by applying a Gaussian filter, and the saturation of the color was decrease to estimate how infants see according to their 

threshold of saturation (Knoblauch et al., 2001). 
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touching task, but as this task demand a higher motion ability, it is mainly used at the end of the first 

year onward (Arterberry & Bornstein, 2012; M. H. Bornstein & Arterberry, 2010; Poulin-Dubois et al., 

2015). 

 Using the looking time exploration, studies have shown that already at birth, newborn show a 

preference for faces and face-like stimuli (two dots above one dot in an eye-mouth configuration) over 

inverted faces (Farroni et al., 2005; M. H. Johnson et al., 1991; Valenza et al., 1996), for canonical over 

distorted human bodies (Bhatt et al., 2016; Slaughter et al., 2002; Zieber et al., 2010), as well as for 

biological motion over non-biological (random) motion (Bardi et al., 2011; Simion et al., 2008). Later 

on, 4-month-old infants are able to discriminate cats and dogs from birds, cats from dogs, cats from 

tigers and horses, and zebras from horses (Eimas & Quinn, 1994; see for review Mareschal & Quinn, 

2001; Quinn et al., 1993, 2001). However, they were not looking longer at female lions when 

familiarized to cats (Eimas & Quinn, 1994), nor to a new breed of cat or dog when familiarized to a 

specific breed (e.g., Siamese or Beagle; Quinn, 2004) suggesting that some categories might be more 

difficult than others to represent (Mervis & Pani, 1980), and evolved with age. Indeed, 6- to 7-month-

old infants did discriminate female lions from cats when familiarized with cats (Eimas & Quinn, 1994), 

and new breeds from familiarized ones (Quinn, 2004), while younger infants, at 2 months of age, were 

not even able to discriminate cats from other mammals (Quinn & Johnson, 2000). 

Infants can also represent bigger, more global (superordinate) categories, such as mammals. 

Indeed, 3- to 4-month-old infants familiarized with different exemplars of (terrestrial) mammals (e.g., 

cat, dog, rabbit, elephant…) habituated to mammals and were thus not attracted by a new exemplar of 

another mammal (e.g., a deer), but were distinguishing them from non-mammalian animal (e.g., bird 

and fish), looking longer again when those animals were presented to them. They also distinguished 

mammals from furniture such as chairs (Behl-Chadha, 1996). In fact, it appears that infants would start 

to form superordinate categories before basic and subordinate ones, shifting from global-to-basic-level 

(Pauen, 2002; Quinn & Johnson, 2000). In addition, young infants have different expectation for 

animate stimuli compare to inanimate stimuli, suggesting a representation of objects by animacy, 

already early on. Indeed, although later on, preschooler children expect an animal-like agent, able to 

move by itself, to not be empty, while they have no such expectation for an apparent inanimate stimuli, 

only moved by a human agent (Kominsky et al., 2021). Even earlier, 3- to 5-month-old infants are not 

surprised by an animate stimulus moving by itself, or for a self-propelled objects to have goals, while 

they are not expecting such thing for inanimate objects (Baillargeon et al., 2009; Kominsky et al., 2021; 

Kuhlmeier et al., 2004; Luo et al., 2009; Luo, 2011; Luo & Baillargeon, 2005; Rakison & Poulin-
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Dubois, 2001; Saxe et al., 2005; Spelke, 1994; A. Woodward, 1998). However, they expect inanimate 

objects to have a cohesion and not randomly split, to move on a continuous path, to be solid and to fall 

if not supported (Baillargeon et al., 1985, 2008; Kuhlmeier et al., 2004; Needham, 1997; Needham & 

Baillargeon, 1993; Spelke et al., 1992; Spelke, 1994; Spelke, Kestenbaum, et al., 1995; Spelke, Phillips, 

et al., 1995). Finally, around 6 to 8 months of age and later, infants start to identify plants as being 

edible, on the contrary to artifacts, although they also exhibit reluctance to spontaneously touch plants 

compare to other artificial objects and will look more at adults surrounding them before touching plants 

(C. Elsner & Wertz, 2019; Wertz & Wynn, 2014a, 2014b). 

The behavioral studies thus show evidence for an early categorization of objects, based on 

visual features (Quinn, 1987; Spencer et al., 1997). However, the number of categories studied was 

very limited (because of the infant’s attentional limitation), and stimuli were repeated a lot, because of 

the familiarization/habituation phase (Eimas et al., 1994; French et al., 2004). Thus, categories could 

have been formed online, during the experiment; the different experiments thus tested how easy a 

category could be formed, more than whether the category was represented by infants. It is unclear 

whether those categories are spontaneously used by infants, or whether they are only represented when 

learned, after a long enough exposure to the category. Other studies have thus explored the infants’ 

brain activity, using EEG or fMRI and passive viewing of different images, not relying on an online 

learning of a category. 

1.3.3. Neural evidence of early categorization 

Coherent with previous behavioral study, two EEG studies explored 6-month-old infants’ 

ability to learn categories. They both used an event-related potential (ERP) paradigm, exploring how 

the infants’ brain activity changed in function of the stimuli they look at. After being familiarized with 

cats, 6-month-old infants’ brain activity showed a different pattern when looking at exemplar of the 

familiarized category or of a new category (Quinn et al., 2006). Indeed, the ERP reveal a bigger negative 

central component (Nc), which has been related to infants’ allocation of attention (Reynolds & 

Richards, 2005), for exemplars of the new category compared to exemplars of the familiarized category. 

Similar effects were found with a familiarization to bird or fish and test with fish, bird, or car 

(Grossmann et al., 2009). Those studies evidenced 6-month-old infants’ ability to learn to recognize 

exemplars of a category and discriminate them from a new category. 

A similar effect (Nc component) was found in 7- to 8-month-old infants’ ERP when looking at 

animals vs. furniture (B. Elsner et al., 2013; Jeschonek et al., 2010), or human vs. animal (Marinović et 
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al., 2014). However, those studies do not familiarized infants to one or the other category, and the Nc 

component was sometimes bigger for animal exemplars, or, for furniture exemplars. Thus, although 

this component is not directly related to categorization, it reveals a greater attention from infants to a 

different category, and evidenced infants’ visual categorization between at least animals and furniture, 

from 7 months of age onward. 

In addition, a number of studies have singled out a human face-selective response in the EEG 

signal of 4- to 6-month-old infants, by tagging the response to human faces appearing in a stream of 

nonhuman animals and inanimate objects. This response has been found even stronger when infants 

were in presence of their maternal odor (de Heering & Rossion, 2015; Leleu et al., 2020; Rekow et al., 

2020; Yan et al., 2023). The maternal odor even enhances a face-selective response to face-like stimuli, 

so stimuli that have a similar structure than a face (2 eggs and 1 slice of bacon in a pan fry disposed in 

a face-like configuration) but are not a face (Rekow et al., 2021). Such human face- or face-like-

selective response was also described in human adults using the same paradigm (Quek & Rossion, 

2017; Rekow, Baudouin, Durand, et al., 2022; Rossion et al., 2015), emphasizing the evidence of an 

adult-like categorization for human faces already in 4- to 6-month-old infants. Other EEG studies have 

also found a specific response for human faces over the right hemisphere in 2- to 5-month-old infants 

(Adibpour et al., 2018; Di Lorenzo et al., 2020). The ERP component of 3-month-old infants also reveal 

an inversion effect for faces but not for car, revealing the special case of faces, already in infancy (Halit 

et al., 2003; Peykarjou & Hoehl, 2013). Even earlier, in the EEG signal of newborns, a face-selective 

response was found by contrasting upright and inverted face-like configuration (two dots above one 

dot in an eyes-mouth configuration; Buiatti et al., 2019). Besides evidence for face-selective brain 

responses, ERPs of 3-month-old infants also differs when viewing bodies (or faces) as compared with 

distorted counterparts (Gliga & Dehaene-Lambertz, 2005), suggesting an ability to discriminate intact 

from distorted bodies. However, it appears that not all categories develop at the same time, as other 

studies have found different emergence of various categories. Indeed, by tagging the response to 

specific categories such as limb, characters, faces, corridors and cars in infants from 3- to 15-month-

olds, the first category to emerge in youngest infants was found to be the human face category, in 4-

month-old infants, but other category-selective responses were found only later on, from 6 months of 

age (Yan et al., 2023). Tagging animals in a stream of furniture, or furniture in a stream of animals 

revealed categorization between animals and furniture in infants, children and adults, as soon as 4 

months of age (Peykarjou et al., 2023). The categorization response increase with age, and in infants 

(4-, 7- and 11-month-olds), only the categorization of animals in a stream of inanimate objects (4- and 
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11-month-olds) or the reverse (7-month-olds) was found, while both directions were find in children 

and adults. Phase-scramble counterparts did not elicit categorization response in infants, suggesting a 

categorization of images based on more higher-level visual features as compared to what is available 

in phase-scramble stimuli (e.g., low-level features such as color, contract, luminance, power spectrum). 

Decoding analyses can also be employed on infants’ ERP signal, to compare the activity 

recorded for different instances of one category vs. different instances of another category, testing 

whether the overall signal for one category differ from the overall signal of the other category 

(Grootswagers et al., 2017). Using this method, studies have found that infants, from 6 months of age, 

can categorize objects such as toys, bodies, houses and faces at their basic-level, although the 

categorization in the EEG signal of infants emerge later than the one in adults (Xie et al., 2022). As this 

method allows to extract pattern of activity in the EEG response, this study also suggest that the infants’ 

basic-level categorization is based on rather mid-level visual cues. Indeed, as for adults’ fMRI data, 

they extracted the representation of objects from the infants’ EEG signal via the pattern of correlation, 

and found that infants’ representation of objects is similar to the objects’ representation extracted from 

the mid-level layers of a deep neural network (DNN). DNNs are models of the human adults’ visual 

cortex, and mid-level layers are predictive of the objects’ representation in mid-level visual areas, that 

encode mid-level visual features. Thus, they concluded that infants’ representation of objects is based 

on the mid-level features when representing the basic-level category. Later on, 15-month-old infants 

also distinguish objects such as cat, dog, bunny and teddy bear from each other, as well as object part 

such as nose, foot, hand and mouth (Bayet et al., 2020). However, contrary to adults, they seem to not 

represent the more superordinate categorization (i.e., nonhuman animals vs. human body parts). Indeed, 

in adults, the decoding (i.e., discrimination via a support vector machine (SVM) that is trained to 

distinguish between two or more patterns) of the EEG signal between superordinate categories, such as 

hand vs. dog, elicit a higher accuracy (i.e., better performance of the SVM) than the decoding within 

superordinate categories, such as hand vs. nose. This is suggesting that body parts and nonhuman 

animals are eliciting different responses in the adults’ brain, leading to bigger differences between the 

EEG signals, thus an easier decoding, as compare to within nonhuman animal and within body part 

categories. For 15-month-old infants, the difference of the brain response for a nonhuman animal vs. a 

body part is not larger than for a nonhuman animal vs. another nonhuman animal, or for a body part vs. 

another body part, suggesting no representation of categories between nonhuman animal and human 

body part, only the representation of the object at their basic-level (in this study, it is equivalent to the 

identification of a stimuli, as only 8 images were used). However, by 15 months of age, the decoding 
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between categories emerge at similar timing than in adults (i.e., the brain responses start to differ at 

similar timing), although the peak of the decoding (i.e., the timing at which the brain responses are best 

discriminate from each other) is still decade as compare to adults’ one (Bayet et al., 2020). 

As adults’ fMRI studies have evidenced specific, selective activity for categories in the ventral 

stream (Downing et al., 2001, 2006; Epstein & Kanwisher, 1998; Grill-Spector & Weiner, 2014; 

Kanwisher et al., 1997; McCarthy et al., 1997; Pitcher et al., 2009; Reddy & Kanwisher, 2006), 

researchers have investigated the organization of part of the infants’ ventral stream, the extrastriate 

cortex, using fMRI in awake infants while looking at different videos of objects, faces, bodies, or 

scenes. As the adults’ extrastriate cortex present hotspots of activation for stimuli such as faces, bodies 

and scenes, researchers have tried to evidence the same hotspot in infants. They found areas, spatially 

localized in places very similar to what is typically found in adults, showing some selectivity for faces 

vs. scenes, and scenes vs. faces, although the selectivity of those hotspot did not generalize when 

contrasted with objects instead of scenes or faces (Deen et al., 2017). Later on, those local hotspots 

were again identified in other 4- to 6-month-old infants, in addition to another hotspot, for bodies. This 

time, data show, for each hotspot, voxels selective for the corresponding category, so voxels selective 

for faces vs. everything else in the hotspot selective for faces, for bodies vs. everything else in the 

hotspot selective for bodies and for scenes vs. everything else in the hotspot selective for scenes 

(Kosakowski et al., 2022). Those category-selective responses might actually be anticipated, or made 

possible, by the functional connectivity within face-selective visual areas and within scene-selective 

visual areas. Indeed, already in neonates, functional connectivity between regions localized in areas 

corresponding to face-selective adults’ areas and to scene-selective adults’ areas, across the ventral 

stream, was evidenced (Kamps et al., 2020). In adults, an area selective for faces is found in the occipital 

cortex, in addition to the one typically found in more anterior part of the ventral stream, in the ventral 

occipito-temporal cortex (VOTC). Both these face-selective areas are highly functionally connected 

one another, meaning that evidences of anatomical and functional connections (Gschwind et al., 2012; 

Pyles et al., 2013; Zhang et al., 2009), as well as causal activation in adults exist. Indeed, when the area 

in the occipital cortex is de-activated by a pulse of magnetic stimulation, the more anterior face-

selective area is also disrupted (Pitcher et al., 2014). Similar organization was also found between two 

place(scene)-selective areas within the adults’ visual cortex (Gschwind et al., 2012). These functional 

connections between selective regions were demonstrated in areas localized in similar places in the 

neonate’s brain, suggesting that the local hotspot evidence in older infants (4- to 6-month-old infants) 

in fMRI might actually be already in place at birth, or are formed via those pre-existent connection 
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between those areas (Kamps et al., 2020). The similarity between infants’ and adults’ spatial 

organization in the ventral stream was also evidenced in animal studies, that measured nonhuman 

primate inferior temporal activity using fMRI from birth, and found a remarkable spatial organization 

in the fMRI activity that correspond to what was already evidenced in adult monkeys (Arcaro & 

Livingstone, 2017), with spatially similar areas also selective for bodies (Arcaro et al., 2019) and faces 

(Livingstone et al., 2017). 

1.3.4. Summary of the early visual categorization 

Overall, studies of infants’ brain activity and behavior have suggested an early (i.e., found in 

young infants) categorization of objects, although emerging slower than in adults (ERPs studies) and 

based on more mid-level cues compare to adults’ one, as suggested by similarities with different layers 

of DNNs (Peykarjou et al., 2023; Xie et al., 2022). Studies especially revealed the categorization of 

human faces (Adibpour et al., 2018; de Heering & Rossion, 2015; Di Lorenzo et al., 2020; Halit et al., 

2003; Kosakowski et al., 2022; Leleu et al., 2020; Peykarjou & Hoehl, 2013; Rekow et al., 2020, 2021; 

Xie et al., 2022; Yan et al., 2023), and emergence of other categories such as animals vs. furniture (B. 

Elsner et al., 2013; Jeschonek et al., 2010; Peykarjou et al., 2023) from 4 months of age. Other, more 

basic-level categories seem to emerge later on in infancy (Marinović et al., 2014; Quinn et al., 2006; 

Xie et al., 2022; Yan et al., 2023). Yet, due to difficulties in infants’ testing, mainly caused by the short 

attentional span infants have (Aslin & Fiser, 2005), even the studies aiming at exploring infants’ overall 

categorization and organization of visual information in the infants’ visual system were often limited 

to quite narrow categories (i.e., faces, bodies or body parts, toys, places, few mammals, corridors, 

houses, cars), or in the number of instances within category (or both), and usually including faces and 

bodies or body parts (Bayet et al., 2020; Kosakowski et al., 2022; Xie et al., 2022; Yan et al., 2023; See 

Peykarjou et al., 2023 for exception), that do not account for the overall organization present in the 

adults’ visual ventral stream, where we found an organization between animate and inanimate stimuli, 

that crumbles into finer-grained distinction between human and nonhuman faces and bodies and natural 

and artificial big and small objects (Konkle & Caramazza, 2013; Kriegeskorte, Mur, Ruff, et al., 2008; 

see for review Op de Beeck et al., 2008). Thus, infants’ studies have mainly focused on human and 

natural big (i.e., natural scenes) or some basic-level artificial big or small objects (i.e., corridors, houses, 

cars or toys) but without collecting the whole categories together. Especially, categories of animal, such 

as birds, mammals or fish, and natural small objects such as fruits, vegetables or flowers, while being 
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relevant for humans’ everyday life, as being potentially predators and/or foods, have been poorly 

investigated, for the benefit of mainly human faces. 

To better understand the overall development of visual categories and their influence on 

humans’ behavior, understanding their development, the timeline of their emergence in infancy and 

their influence on infants’ visual exploration appears to be fundamental. If studies of infants’ behavior 

have so far informed us about infants ability to form online categories (see for review Mareschal & 

Quinn, 2001) and their reliable preference for faces or face-like stimuli (Farroni et al., 2005; M. H. 

Johnson et al., 1991; Valenza et al., 1996), it is not yet clear which category would drive infants’ 

exploration without previous specific exposure, mirroring closer the infants’ exploration outside of the 

lab. On top of this matter, the respective roles of brain maturation and visual experience in the 

spontaneous representation of visual categories remains to be elucidated; so far, studies have evidenced 

selective areas, similar to what is find in adults, with infants having limited visual experience, 

suggesting a role of the brain maturation. However, experience might still act in this organization, as 

not all categories was yet found in the fMRI activation of the infants’ brain, and as infants had still 

some visual experience when tested. Thus, studies have yet to elucidate whether the brain maturation 

limits the brain organization by visual categories, or whether visual experience majoritarilly acts on 

this organization, in order to better apprehend when infants start to see the world as adults do. Moreover, 

larger categorization such as the big animate-inanimate categorization has still to be characterized in 

young infants, including more within category variability, as studies focused more on narrower 

categorization such as mammals or animals vs. furniture. Finally, if visual categories are the product of 

all the available visual features of the object, the specific role and weight of lower-level features in the 

formation of visual categories, and especially in the big animate-inanimate distinction, remains unclear. 

This thesis aims at investigate the emergence in infants’ visual exploration of a large number 

of categories, representative of the ones organizing the adults’ ventral stream, and the role of the brain 

maturation in this emergence. Then, focusing on the big animate-inanimate distinction, I will 

investigate further the difference between infants’ and adults’ categorization capacity, using the larger 

stimuli set so far for this categorization, and investigating the automaticity and limits of the categorical 

response. Finally, I will study the role of lower-level visual features in the adults’ visual categorization. 
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1.4. Thesis overview 

1.4.1. Current research 

 Investigating the development of visual categories is primordial in understanding the 

organization of humans’ cognition, as the visual categorization is at the interface between seeing and 

thinking about an object. I have here narrowed this big topic in 4 smaller studies, all aiming at 

understanding how the organization found in the human adult’s ventral stream comes about. First, I 

will investigate the emergence of the visual categories that account for the adults’ ventral stream 

organization in the first 2 years of life. Second, I will explore the respective role of brain maturation 

and visual experience in the previously described emergence of visual categories. Third, I will study 

the infants’ limitation in the animate-inanimate categorization. Finally, I will investigate the resilience 

of the adults animate-inanimate categorization. 

1.4.2. Overview of chapters 

 Chapter 3 (study 1) investigates how visual categories influence infants’ visual exploration, 

without any prior experience of any images. We explored the emergence of 8 basic-level categories 

that all encompass the big organization observed in the human adults’ ventral stream, using infants’ 

looking time: human and nonhuman animal faces and bodies, and natural and artificial big and small 

inanimate objects. Because relevant for the organization of the adults’ ventral stream, as well as the 

organization of the primate visual system in general (Kriegeskorte, Mur, Ruff, et al., 2008), those 

categories can indeed be the earliest to account for infants visual exploration in the first 2 years of life. 

We presented images by pair of within or between category images to infants and measure their looking 

time towards each image. Using representational similarity analysis (RSA), we compare infants’ 

looking time to models representing the adults’ organization typically find in the ventral stream, as well 

as directly to the adults’ organization in their ventral stream, as measured by fMRI. Overall, this chapter 

show two milestones in the infants’ visual categorization development. First, infants’ reliance on non-

categorical features (i.e., features that are not eliciting the representation of a category) when exploring 

objects, although already representing the animate-inanimate categorization. Then, the emergence of 

more and more visual categories, while older infants relied more and more on category membership 

when exploring objects, better fitting the adults’ organization of the visual ventral stream. Altogether, 

it suggests that as infants grow older, they represent more and more features when observing objects, 

allowing them to better represent those objects and form finer-grained categories. 
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 Chapter 4 (study 2) investigates further the reliance on category membership over non-

categorical features in infants’ visual exploration, and the roles of brain maturation and experience. It 

replicates the previous study, refining the transitional age at which the reliance on category membership 

emerge spontaneously in infants’ behavior, and investigates the respective roles of brain maturation 

and experience by generalizing previous results to a new population, preterm infants. Results show that 

infants start to explore objects based on their category at 8 months of age, while still be guided by the 

non-categorical features. Preterm infants reveal the importance of the experience in the emergence of 

category membership in infants’ visual exploration. 

 Chapter 5 (study 3) investigates the limitation of the automatic categorization of animate and 

inanimate stimuli in infants and adults, using the largest stimuli set so far. We recorded infants’ and 

adults’ brain activity via EEG, tagging the categorization of a large pool of animate and inanimate 

stimuli, that aims at representing the large variability found in the world. We varied the speed of 

presentation of the stimuli, to explore the limitation of this categorization (i.e., does it breaks down if 

higher speed of presentation, similarly in infants and adults). Results show that with the increase of the 

speed of images presentation, the brain response revealing the categorization decrease, at each stage of 

development. Throughout life, from infancy to adulthood, this response is captured with increasing 

speed of presentation: we were able to capture the response with a speed of presentation 3 times faster 

at 9 months of age compare to 4 months, and even 7 times faster in adults compare to 4-month-old 

infants. Overall, this study revealed the automaticity of the animate-inanimate categorization 

throughout development, which is subject to different time limitations throughout the development.  

 Chapter 6 (study 4) investigates the role of low-level visual features in the big animate-

inanimate categorization in adults. We again recorded adults’ brain activity via EEG, tagging the 

categorization of animate and inanimate stimuli, this time varying the stimuli. We impoverished the 

stimuli so that only mid- to low-level visual features remained. Results show that with all stimuli, even 

with the most impoverished ones containing only few low-level visual features, the adults’ brain is still 

able to categorized unrecognizable animate and inanimate stimuli. However, the response obtained 

from very impoverished stimuli show that the low-level features does not account for the overall 

response obtained with the intact stimuli. Overall, this study shows that if the animate-inanimate 

categorization is resilient to the loss of visual information, higher-level visual features play a major role 

in this categorization. 
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2. General methods 

2.1. Overview of the stimuli 

2.1.1. Stimuli used in Chapter 3 and 4 

The visual stimuli used in chapters 3 and 4 (studies 1 and 2) aimed at increasing the number of 

visual categories studied at once in infancy, while fitting their attentional limitations. Stimuli 

encompassed 8 visual categories, aiming at representing the overall organization of the adults’ ventral 

stream. In total, we used 72 color photographs of isolated real-world objects. Most of them were 

selected from publicly available sets (Kiani et al., 2007), and some were selected from the internet. 

Objects were 9 instances of human faces, 9 instances of human bodies, 9 nonhuman animal faces (e.g., 

cat face), 9 nonhuman animal bodies, 9 natural big objects and scenes (landscapes including only 

natural objects such as mountain and trees), 9 natural small objects (fruits, vegetables, flowers and 

leaves), 9 artificial big objects (e.g., house, chair) and 9 artificial small objects (e.g., hat, key). The 

human bodies were all view from the back with no face visible but with the head, to avoid having a 

categorization of human bodies due to the faces. However, nonhuman animal bodies depicted the face 

of the animals, although from profile view. 

2.1.2. Stimuli used in Chapter 5 and 6 

The visual stimuli used in chapters 5 and 6 (studies 3 and 4) aimed at representing as much as 

possible the huge variability found in the real-world in the animate and inanimate categories. In total, 

we used 640 color photographs of isolated real-world objects superimposed on a gray background, 

taken from the internet. Animals (n = 320) encompassed mammals, fish, birds, amphibians (frogs) and 

reptiles (turtles). The mammal category included all type of mammals, except humans, to avoid a 

categorization of animals only due to the presence of humans. As very similar to humans, primates 

(e.g., gorilla) were only a few. Categories such as dog and cat, that are very common in our everyday 

life, were, as much as possible, underepresented – i.e., there are some instances of cats and dogs, but 

they were not the majority of mammals. Inanimate objects encompassed big and small natural and 

artificial objects. This stimuli set was further impoverished in numerous way in Chapter 6 (study 4). 

The stimuli set had been transform in grayscale, matching the luminance between the animate and the 

inanimate stimuli, and removing all color information. It had been transformed into texform stimuli 

(Deza et al., 2019; Long & Konkle, 2017), removing higher-level visual features. The texform 

transformation preserve the mid-level visual features of the original images, but render the image not 
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recognizable at the basic-level. Finally, the original set of images and the grayscale version were phase-

scrambled, rendering the images not recognizable either, and preserving only low-level visual features 

such as the power of the original image spectrum or the color (if preserved in the original images). 

Those transformations aimed at studying the implication of different features in the animate-inanimate 

big categorization. 

2.2. The looking time in infancy 

2.2.1. The looking time as a measure of dissimilarity 

In Chapters 3 and 4 (studies 1 and 2), the difference of looking time between two images were 

considered as a measure of the dissimilarity between infants’ representation for each image. The 

infants’ looking time is one of the main measure use to study infants’ cognition (Aslin, 2007). We used 

the difference of looking times, assuming that looking times for 2 objects never seen before would be 

more similar, the closest their visual representation is. Indeed, such an effect is suggested by previous 

studies investigating how language influence the infants’ categorization of objects (Balaban & 

Waxman, 1996; Ferry et al., 2010; LaTourrette & Waxman, 2020, 2022; Waxman & Markow, 1995). 

Those studies, like all studies using the habituation and novelty-for-preference paradigm, interpret a 

difference in looking times between 2 images as representing the infants’ ability to distinguish the two 

images. Often, it was used to test infants’ representation of categories, and thus, the differential looking 

time was not only reflecting the infants’ ability to distinguish between the two images presented, but 

as representing the infants’ ability to represent two images as part of different categories. Thus, we 

hypothesize that, when facing two images never previously seen, infants will have a representation of 

each of them, and look at them accordingly. If their representation of the two images is similar, they 

would then look at the two images the same way, and thus, about the same amount of time. On the 

contrary, if they represent the images as being different (more dissimilar), they would react differently, 

thus, look at one of the images more than the other. According to this hypothesis, the differential 

looking time was considered as a measure of the dissimilarity of infants’ representation of each image 

in a pair. 

In the typical habituation and novelty-for-preference paradigm, infants’ looking times were 

used to measured differences between a familiar stimuli or a familiar category, versus a novel stimuli 

or a novel category. The familiarity with a stimuli or a category is then created online, during the 

experimental session, in the lab. Instead, in Chapters 3 and 4 (studies 1 and 2), we used looking times 

to measure the (dis)similarity perceived between two objects, without any previous exposition to one 
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stimuli or its category. This was a methodological challenge, but also an innovation in the exploration 

of infants’ looking time to study infants’ cognition. We were able to represent infants own spontaneous 

representation for each object in relation to the others, exploring the organization of categories in their 

behavior. 

2.2.2. The Representational Similarity Analyses 

The Representational Similarity Analyses (RSA) is an analysis allowing to compare together 

data acquired by different ways, such as fMRI and extracellular recording, coming from different 

measurement (Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, Mur, Ruff, et al., 2008). It is also 

allowing comparison between different species, such as between human and another nonhuman primate 

such as the macaque (Kriegeskorte, Mur, Ruff, et al., 2008). The logic of RSA is to first work out a 

Representational Dissimilarity Matrix (RDM) for each measurement, that represent the dissimilarity 

between all the stimuli of the study, and for each measures. Those matrices are then representing, 

according to each population and/or measure, the dissimilarity between all stimuli. Then, the 

comparison between matrices allows to determine whether the representation, captured in each 

population and/or via different measures, are organized similarly, or not. It also allows to test specific 

hypothesis, by putting together theoretical model representing, according to the challenged hypothesis, 

the dissimilarity across stimuli. 

We thus used the RSA to compare infants’ differential looking time with the organization of 

visual stimuli as measured via fMRI in the adults’ visual ventral stream. RDM were computed, for 

infants’ behavior, with the differential looking time, and for adults’ representation, computing the 

correlation between the different pattern of activity obtained for each stimuli, in 3 different region-of-

interest (ROI) in the ventral stream, and all along a vector-of-ROI ranging all along the postero-anterior 

axis of the ventral stream. The adults’ ventral stream activity was measured by fMRI, in the form of a 

blood-oxygenation-level dependent (BOLD) signal, consisting at mapping the level of oxygenation in 

the brain. Any variation of the BOLD signal is interpreted as reflecting a variation of the neuronal 

oxygen consummation, thus as a variation of the neural activity. The BOLD signal is recorded at 

multiple voxels in the brain. A voxel is a three-dimensional rectangular cuboid of a few millimeters. 

Patterns of activity correspond to the activation (the BOLD signal) of all the voxels in a region for a 

stimulus compare to a baseline. A region being decomposed into many voxels, the pattern of activity is 

as many activation values. It corresponds to the way a region gets activated by a stimulus. By computing 

a correlation between two pattern of activity, each measured for one stimulus, we obtained a measure 
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of the similarity between the two recorded activities. However, as RDM represent the dissimilarity 

between stimuli, we simply subtracted the coefficient of correlation (the measure of similarity), a value 

between 0 and 1, to 1, and obtained a measure of the dissimilarity. Computing those RDM allowed us 

to compare infants’ organization of visual stimuli in their behavior with the organization of the same 

stimuli in the adults’ ventral stream. 

The RSA also allows to test specific hypothesis, by the mean of theoretical models. Those 

models consist of mapping the different dissimilarity between the stimuli, according to hypothesis. For 

example, if we want to test the specific hypothesis that the stimuli will be represented as either animate 

or inanimate, it suggests that all comparison within the animate and within the inanimate categories 

will be less dissimilar than the between animate-inanimate comparisons. To model such a hypothesis, 

we thus will create a RDM, consisting of 0 (non/low dissimilarity) for each comparison within stimuli 

of the same category (e.g., all animate stimuli comparisons), and of 1 (very high dissimilarity) for each 

comparison between 2 categories (e.g., all animate vs. inanimate comparisons). 

2.3. Tagging a category-selective response in the EEG signal 

2.3.1. Basics of electroencephalography (EEG) 

Neuronal activity in the brain produces electrical fields that are recordable, especially in human, 

directly from the scalp. Indeed, neurons function together and communicates via electrochemical 

signals, that do not only go from one neuron to the other, but is also spreading in the neuron 

environment, the tissue surrounding the neurons. Those electrical fields formed oscillation, known as 

neural oscillations. Measuring the neural oscillations as a function of an event allow to study the 

changes in the brain activity according to the event. The EEG is the measurement of the neural activity 

via electrodes placed on the scalp (see for review M. X. Cohen, 2017). The EEG recording takes the 

form of a difference in voltage between two different electrodes placed at different places on the scalp: 

an electrode of reference, typically placed on the vertex, is usually used to compute the voltage at all 

other electrodes on the scalp. The voltage measured at an electrode comes from billions of neurons that 

“fired” (gets activated) simultaneously, producing an electrical signal that spreads in surrounding 

tissues, and is thus reflecting a neural populations activity instead of one neuron activity. Small-scale 

and asynchronous activity is thus difficult or impossible to measure in EEG, and the localization of the 

EEG signal is not better than at the centimeter order (Olejniczak, 2006). However, the temporal scale 

of the EEG signal is near the actual firing of neurons, as the electrical signal travels very fast in the 
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tissue to the electrode. Thus, the EEG signal allows to study rapid changes in the brain activity 

according to specific events, such as viewing specific images from different categories. 

2.3.2. The frequency-tagging paradigm 

Repetitive stimulation of the human brain, by means of visual or auditory stimulations for 

instance, at a constant frequency (e.g., 6 stimulations or cycles per second, or 6 Hz) leads to a 

synchronization of the brain activation (firing of neural population) with this external stimulation 

(Regan, 1966, 2009). This can be measured via EEG, and produces an electrical response oscillating at 

the same stimulation frequency (e.g., 6 Hz). When the stimulation is visual, it elicits a response, called 

steady-state visual-evoked potential (SSVEP) over visual areas (Rager & Singer, 1998; Rossion & 

Boremanse, 2011). Such a response can be visualized and quantified in the frequency-domain. The 

EEG signal is a signal recorded over time, that can be decomposed into frequencies and measured in 

the frequency-domain, by the means of a Fast Fourier Transform (FFT) algorithm. Typically, a high 

amplitude at the stimulation frequency (named fundamental frequency) and its harmonics (multiple of 

the fundamental) is measured after a visual regular stimulation. 

In the frequency-tagging paradigm, the principle is to measure SSVEP for different stimuli, 

presented at specific frequencies. For instance, it was mainly used to study the human face 

categorization. Stream of images randomly selected from different (non-human face) categories (e.g., 

trees, flowers, nonhuman animal faces, bodies…) are presented at a specific frequency, typically 6 Hz. 

In this stream of images, every 5 images, a human face is presented, eliciting a face-selective 

presentation at a frequency of 6/5 = 1.2 Hz. Not only one human face is presented, but different 

instances of human faces. Thus, if a synchronization of the brain activity happens to this face-selective 

frequency, it is interpreted as a categorical response: the brain gets activated similarly between all 

human faces instances, and differently than for all other images (see for review Rossion et al., 2020). 

The presentation of the selective category (i.e., in the previous example, human faces) can be referred 

to as the oddball stimulation, the deviant stimulation or the category-selective stimulation, and is the 

tagging of a category in the human brain. It has been previously used to study human faces 

categorization and other categorization in human adults (see for review Rossion et al., 2020) as well as 

in infants (see for review Peykarjou, 2022). 
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3. The visual object categorization in infancy (study 1) 

This chapter reports and discuss the study published in Spriet et al. (2022). The introduction of 

this paper is a summary of this thesis introduction, and tackled the very first question: which categories 

account for how infants explore their environment, influencing human behavior from the very 

beginning? The supplementary materials of this article can be find in Chapter 9, after the bibliography. 

 

3.1. Introduction 

Objects are the units of attention and perception; categories are the units of thought. We see 

objects (e.g., a rounded spongy red and white-dotted shape on an elongated support), but we think about 

objects primarily in terms of categories (e.g., the mushroom Amanita muscaria). By recognizing an 

object as member of a category, we understand what that object is and retrieve its visible (e.g., it is red 

with white spots) as well as its invisible properties (e.g., it is hallucinogenic). Categorization is thus the 

basis of inference and decision, although not all inferences and decisions require categorization. 

Objects can be categorized according to a virtually infinite number of perceptual and 

nonperceptual dimensions (Anderson, 1991; Rosch, 1978). Insight on the most basic and general 

dimensions for object categorization in humans has been gained by studying how information is 

organized in the vast brain territory for visual object representation, which forms the occipitotemporal 

visual ventral stream. 

Here, categories emerge from the topography of responses to visual objects, resolving into a 

large-scale organization that distinguishes between animate and inanimate objects, and crumbles in 

finer-grained distinctions between human vs. non-human animals, small vs. big (in terms of real-world 

size) (Konkle & Caramazza, 2013; Konkle & Oliva, 2012b), and natural vs. artificial objects (M. A. 

Cohen et al., 2017; Haxby et al., 2011; Konkle & Caramazza, 2013; Kriegeskorte, Mur, Ruff, et al., 

2008; Long et al., 2018; Op de Beeck et al., 2008, 2019; Papeo et al., 2017). Underneath this 

organization lies a mosaic of local hot spots of strong selectivity for stimuli, such as faces, bodies, and 

scenes (Downing et al., 2001; Epstein & Kanwisher, 1998; Kanwisher et al., 1997; McCarthy et al., 

1997). Because of its organization and role in object recognition, the visual ventral stream is regarded 

as the interface between perception and cognition, forming the backbone for semantic categorization 

and representation of object and action knowledge in the rest of the brain (Mahon & Caramazza, 2009). 
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Besides the topography, categorical distinctions in the visual cortex also emerge from 

dissimilarity between distributed patterns of neural activity evoked by individual objects (Bobadilla-

Suarez et al., 2020; Davis & Poldrack, 2013; Kriegeskorte, Mur, Ruff, et al., 2008). Thus, in visual 

areas, activity patterns recorded with functional MRI (fMRI) are more similar (i.e., less discriminable) 

for two animate objects (e.g., parrot and camel) than between an animate and an inanimate object (e.g., 

parrot and car). Visual object categories represented in the visual cortex prove behaviorally relevant, 

predicting the way in which individuals parse the visual world. For example, in a visual search for a 

target–object among a set of distractors, people are faster to discriminate and find a target among 

objects of a different visual category (e.g., a cat among artificial objects) than among objects of the 

same visual category: search times increase as neural similarity between target and distractors increases 

(M. A. Cohen et al., 2017). 

The organization of the human visual cortex by object categories appears to be a hallmark in 

the evolution of the primate brain: it is replicated in the visual cortex of monkeys (Kriegeskorte, Mur, 

Ruff, et al., 2008; Sigala & Logothetis, 2002) and is resistant to variations of individual visual 

experience (Mahon et al., 2009; Mattioni et al., 2020; Striem-Amit & Amedi, 2014; van den Hurk et 

al., 2017). A similar organization across species and conspecifics with different environment and life-

long visual experience suggests a neural code optimized by evolution. This line of thinking encourages 

the hypothesis that object representation in the visual cortex reflects biological constraints and 

dispositions (Caramazza & Shelton, 1998); as such, it would emerge early in life or even be present at 

birth. 

There is initial evidence for signatures, or precursors, of neural specialization to object 

categories (faces, bodies, animals, and scenes) in the visual cortex of newborns or young infants, based 

on electroencephalography (Adibpour et al., 2018; Buiatti et al., 2019; de Heering & Rossion, 2015; 

Gliga & Dehaene-Lambertz, 2007; Peykarjou et al., 2014, 2017) or fMRI (Deen et al., 2017; Kamps et 

al., 2020). Behavioral counterparts of those neural effects include early preference for faces or face-

like stimuli over inverted faces (Farroni et al., 2005; M. H. Johnson et al., 1991; Valenza et al., 1996), 

for biological over nonbiological motion (Bardi et al., 2011; Simion et al., 2008), and for canonical 

over distorted bodies (Bhatt et al., 2016; Slaughter et al., 2002; Zieber et al., 2010). 

While preference implies discrimination between two objects, visual categorization entails the 

ability to use the visual properties of a category (e.g., shape) to identify its members and keep them 

separate from other categories. By 4 mo, infants are already able to do so: exposed to various exemplars 
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of a category (e.g., cats), they exhibit a novelty effect, looking longer at an object of a new category 

than at a novel object of the same category (Pauen & Peykarjou, 2021; Quinn et al., 2001; Quinn & 

Eimas, 1996). 

But when do infants begin to see the visual world as adults do? Here, we investigate whether 

the categorical dimensions that drive the large-scale organization of the human visual cortex could 

account for the spontaneous emergence and development of real-word object categories in infancy. In 

particular, under the hypothesis that the structuring of visual object information toward an adult-like 

organization begins at birth (Buiatti et al., 2019; Deen et al., 2017; Kamps et al., 2020), we asked when 

such organization becomes functional so as to account for how infants explore the visual world. 

We examined the development of visual object categorization in infancy, considering, in one 

experimental design, objects that have highlighted categorical representations in the visual cortex of 

human adults (and monkeys): animate vs. inanimate, human vs. nonhuman (animate), faces vs. bodies, 

natural vs. artificial inanimate, and real-world big vs. small (inanimate) (Kriegeskorte, Mur, Ruff, et 

al., 2008). Each of the above distinctions defines a categorization model, whereby a given (behavioral 

or physiological) correlate of object perception would be more similar for two objects of the same 

category than for two objects of different categories. 

Using eye tracking, we recorded the most reliable and informative measure of infants’ cognition 

thus far: the looking behavior (Aslin, 2007; Hochmann, 2013). Infants of 4, 10, and 19 mo viewed two 

objects at a time on a screen, while we measured the looking time toward either object. We took the 

looking time difference between two stimuli as a measure of dissimilarity, under the assumption that 

looking times for two objects seen for the first time would be more similar, the closer their visual 

representation is (see also ref. LaTourrette & Waxman, 2020). Since two stimuli of the same visual 

category are, normally, more similar than two stimuli from different categories, we expected the 

variations in differential looking times (DLTs) to reflect variations in representational similarity, 

uncovering categorical distinctions. 

In classic categorization studies, infants’ looking times are used to capture differences in 

novelty/familiarity, created ad hoc within the experimental session [e.g., through the presentation of 

multiple exemplars of a category during familiarization (Pauen, 2000; Pauen & Peykarjou, 2021; Quinn 

et al., 2001; Quinn & Eimas, 1996, 1998)]. Thus, a methodological challenge (and innovation) of the 

current work was to use looking times to capture differences in the perceived (dis)similarity between 

two objects, in the absence of any controlled unbalance in the exposure to a given category (at least 
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within the experimental session). As a result, this approach defined a model where each object was 

represented in relation to the others (i.e., how similar/dissimilar it was from exemplars of the same and 

different categories). A model based on a relative measurement can be quantitatively compared with 

any model based on another relative measurement, whatever the source of the measurements (e.g., 

reaction times, neural activity) (Kriegeskorte, Mur, & Bandettini, 2008). We compared the model of 

visual object representation emerging from the infants’ looking behavior, with synthetic (i.e., 

hypothesis-driven) and data-driven (i.e., fMRI-based) models reflecting visual object representation in 

the mature visual cortex. This approach had previously allowed connecting data from brain-activity 

recording, behavioral measurements in adults, and computational modeling (Kriegeskorte, Mur, & 

Bandettini, 2008). Here, by studying the relationship between the infants’ looking behavior and the 

organization of visual object information in the adults’ brain, we connected another branch, which is 

another step toward a unified theory of the origin and development of functional organization in the 

human brain. 
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Fig. 1. Stimuli, trials, and hypothesis-based models of categorization considered in the design of Exps. 1 and 2. (A) Stimuli 

were 72 images depicting 9 objects from each of 8 different categories. Silhouettes instead of the actual colorful female human 

faces used in the experiments, are shown for illustration. (B) In each trial of Exp. 1, two images were presented within two gray 

frames of identical size, on the right and on the left, equally distant from the center of the screen. (C) In each trial of Exp. 2, 

the image frame was removed and the image size was modified so that each object had the same number of pixels. (D) 

Hypothesis-driven (synthetic) models reflecting the categorical object representations tested in the current design. (E) The 

composite model reflecting the mean of the six synthetic models. 
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3.2. Results 

3.2.1. Experiment 1 

Three groups of infants of 4 (n = 24), 10 (n = 24), and 19 mo (n = 25) saw 36 pairs of images, 

each featuring an object from one of eight categories: human faces, human bodies, nonhuman faces, 

nonhuman bodies, natural-big and natural-small objects, artificial-big and artificial-small objects 

(hereafter, “big” and “small” refer to real-world size) (Fig. 1A). The set of images used here had 

previously been used to study object representation in the visual cortex (Kiani et al., 2007; Kriegeskorte, 

Mur, & Bandettini, 2008). They depicted naturalistic views of real-world objects without meeting any 

specific requirement or manipulation. Objects thus reproduced the natural combination of visual 

features typical of their category, so that we could expect the variations in the objects’ appearance to 

reflect the natural variations within and between categories. All subjects saw all possible combinations 

(Fig. 1B) of between-category and within-category pairs. For each infant, for each pair, we measured 

the absolute difference in looking times between the left and right images (DLT) (Materials and 

Methods). DLTs were used to build a representational dissimilarity matrix (RDM), in which cells off 

the diagonal represented between-category comparisons and cells on the diagonal represented within-

category comparisons (Fig. 2). Since different infants saw different exemplars for each category, group-

averaged RDMs represented relationships (i.e., dissimilarities) between categories, rather than between 

individual objects. 
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Fig. 2. Results of representational similarity analysis and of the pairwise comparisons of MLT between- and within-categories 

for each age group in Exps. 1 and 2. (Left) Mean RDM reflecting dissimilarities between- and within-categories in terms of 

DLTs. Black squares in the RDMs highlight categorization by animacy, humanness, and by the eight categories in 19-mo-olds 

(A), categorization by animacy in 10-mo-olds (B), and in 4-mo-olds of Exp. 2 (D). (Center) Matrix of t-values for each pairwise 

comparison between MLTs of the individual categories for 19- (A), 10- (B), and 4-mo-olds (C) in Exp. 1 and 4-mo-olds in 

Exp. 2 (D). Squares in dark blue denote significant effects; squares in lighter blue denote effects that did not survive the multiple 

comparison correction (trends); red squares denote nonsignificant (n.s.) or nontested comparisons. (Right) Distribution of 

MLTs in 19- (A), 10- (B), and 4-mo-olds (C) of Exp. 1 and of 4-mo-olds of Exp. 2 (D). Box-plots represent the minimum, the 

first quartile, the median, the third quartile and the maximum of the population distribution; outliers are denoted by dots (one 

in the 19-mo-olds group). 
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Reference models of visual object categorization. Using representational similarity analysis 

(Kriegeskorte, Mur, & Bandettini, 2008), we computed the relationship between RDMs based on 

infants’ DLT (DLT-RDMs) and models (i.e., RDMs) of visual object categorization in adults, defined 

with two independent approaches. The first approach defined a set of categorization models based on 

fMRI responses evoked in human adults, when viewing the same objects presented to infants. In the 

fMRI-based RDMs, pairwise between- and within-category dissimilarities reflected correlations 

between neural activity patterns (Materials and Methods). Three RDMs were computed from 

activations in three broad regions-of-interest (ROIs) (Fig. 3 A and B) of the visual cortex (early visual 

cortex, EVC; ventral occipitotemporal cortex, VOTC; and lateral occipitotemporal cortex, LOTC), and 

at each location along the antero-posterior axis of the visual ventral stream (i.e., vector-of-ROIs 

analysis). The second approach defined six synthetic categorization models (RDMs) that may apply to 

the current stimulus set: animate–inanimate (animacy model), human–nonhuman animates (humanness 

model), faces–bodies, natural–artificial inanimates, big–small inanimates, and eight-category model, 

where each category was defined as a category of its own, distinct from the other seven (Fig. 1D). In 

each cell of an RDM, the values 0 or 1 indicated dissimilarities within-category (lowest dissimilarity) 

and between-category (highest dissimilarity), respectively. As a model of visual object categorization 

in adults, a composite-RDM was obtained by averaging the above six models (Fig. 1E). 

In addition to, or instead of, categorical information, infants’ look might be guided by physical 

properties of the stimuli, such as size of the image on the retina (Brannon et al., 2006; Libertus et al., 

2013), elongation (C. Newman et al., 2001), compactness (Huang, 2020), and color (C. Newman et al., 

2001), among others. To assess systematic relations between looking times and visual features of the 

images, irrespective of the category, we computed RDMs representing differences in size, elongation, 

and compactness, relying on signed values to appreciate the looking-time difference between two 

objects but also which one was looked at the longer (the larger one; the more/less elongated one; the 

more/ less compact one). A fourth RDM was computed to represent differences in the image color (SI 

Appendix, Fig. S1). Note that other image properties may affect infants’ behavior; here, size, elongation, 

compactness, and color should be taken as proxies of unspecific physical properties of our stimuli that 

are not necessarily distinctive of a category, but could affect the looking behavior. 
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Fig. 3. Relationship between infants’ looking behavior and visual object representation in the adults’ visual cortex. (A) ROIs 

in the adults’ brain: EVC, VOTC, and LOTC. (B) Mean RDMs reflecting relationships (i.e., dissimilarities) between object 

categories in terms of dissimilarities in the neural activity patterns evoked by viewing objects in the EVC, VOTC, and LOTC 

of adults (fMRI-based RDMs). (C) Results of the representational similarity analysis between the mean fMRI-based RDM in 

each ROI and the DLT-RDM of each infant in each age group of Exps. 1 and 2. Box-plots represent the minimum, the first 

quartile, the median, the third quartile, and the maximum of the population distribution as well as outliers (dots); *P < 0.017; 

***P < 0.0003. (D) Results of the representational similarity analysis between the infants’ DLT-RDMs and the fMRI-based 

RDM derived from each partition along the ventral visual stream. Solid bars represent clusters with significant correlation 

(above 0) for each age group of Exps. 1 and 2. 
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Table 1. Results of the representational similarity analysis reflecting the relationship of the infants’ DLT-RDMs with the 

fMRI-based RDMs, the RDM for the synthetic composite model of categorization, and the RDMs based on size, elongation, 

compactness, and color differences. 

 

Exp. Age (mo) Model Mean ρ (SD) CI (minimum to maximum) t (df) P Cohen’s d 

          

1 19 EVC 0.182 (0.123) 0.123 to 0.273 6.795 (24) <0.0001 1.474 

  VOTC 0.110 (0.200) 0.017 to 0.227 2.985 (24) 0.006 0.552 

  LOTC 0.133 (0.147) 0.065 to 0.226 4.615 (24) <0.001 0.902 

  CM 0.248 (0.195) 0.168 to 0.328 6.371 (24) <0.0001 1.272 

  Size 0.034 (0.194) 0.139 to 0.071 0.874 (24) n.s. 0.175 

  Elongation 0.010 (0.151) 0.092 to 0.071 0.333 (24) n.s. 0.066 

  Compactness 0.074 (0.166) 0.163 to 0.016 2.218 (24) 0.036 0.444 

  Color 0.009 (0.186) 0.092 to 0.109 0.234 (24) n.s. 0.048 

          

1 10 EVC 0.053 (0.252) 0.079 to 0.185 1.029 (23) 0.314 0.210 

  VOTC 0.077 (0.179) 0.017 to 0.171 2.112 (23) 0.046 0.431 

  LOTC 0.086 (0.200) 0.019 to 0.191 2.102 (23) 0.047 0.429 

  CM 0.125 (0.205) 0.038 to 0.211 2.984 (23) 0.007 0.610 

  Size 0.068 (0.208) 0.048 to 0.183 1.592 (23) 0.125 0.327 

  Elongation 0.041 (0.197) 0.150 to 0.068 1.013 (23) n.s. 0.208 

  Compactness 0.054 (0.190) 0.052 to 0.159 1.379 (23) 0.181 0.281 

  Color 0.044 (0.253) 0.096 to 0.183 0.843 (23) n.s. 0.174 

          

1 4 EVC 0.067 (0.201) 0.172 to 0.039 1.629 (23) 0.117 0.333 

  VOTC 0.033 (0.174) 0.058 to 0.124 0.929 (23) n.s. 0.190 

  LOTC 0.025 (0.184) 0.122 to 0.071 0.673 (23) n.s. 0.137 

  CM 0.049 (0.182) 0.028 to 0.126 1.320 (23) 0.200 0.269 

  Size 0.315 (0.173) 0.220 to 0.411 8.950 (23) <0.0001 1.821 

  Elongation 20.321 (0.187) 20.425 to 20.218 28.401 (23) <0.0001 1.717 

  Compactness 0.208 (0.155) 0.123 to 0.294 6.597 (23) <0.0001 1.347 

  Color 0.035 (0.204) 0.078 to 0.148 0.836 (23) n.s. 0.172 

          

2 4 m EVC 0.026 (0.199) 0.131 to 0.079 0.642 (23) n.s. 0.131 

  VOTC 0.051 (0.191) 0.050 to 0.151 1.295 (23) 0.208 0.264 

  LOTC 0.017 (0.184) 0.080 to 0.114 0.453 (23) n.s. 0.092 

  CM 0.102 (0.205) 0.015 to 0.189 2.433 (23) 0.023 0.498 

  Elongation 20.150 (0.187) 20.253 to 20.046 23.924 (23) <0.001 0.802 

  Compactness 0.269 (0.221) 0.146 to 0.391 5.949 (23) <0.001 1.214 

  Color 0.068 (0.182) 0.033 to 0.169 1.837 (23) 0.079 0.374 

          

CM, composite model; mean ρ are the Fisher-transformed ρ; CI, 98.3% confidence interval for EVC, VOTC and LOTC; 95% CI 

for CM; 98.8% CI for size, elongation, compactness, and color. Highlighted in bold are the significant results; α = 0.017 for EVC, 

VOTC, and LOTC; α = 0.05 for CM; α = 0.0125 for size, elongation, compactness, and color; n.s.= nonsignificant results with P > 

0.250. 

Nineteen-mo-olds. The group-averaged DLT-RDM (Fig. 2A) showed an adult-like organization, as 

reflected by significant correlations with the composite-RDM, and the RDMs derived from the EVC, 

VOTC, and LOTC (Fig. 3C; see statistics in Table 1). The vector-of-ROIs analysis showed that the 

DLT-RDM was maximally correlated with object-related responses in early visual areas (V1 to V3) 

and fusiform gyrus (Ps < 0.001) (Fig. 3D). 
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Next, we asked which of the six categorical models underlying the composite-RDM, best 

represented the infants’ DLT-RDMs. A stepwise linear regression (αcorrected: 0.0083, two-tailed) showed 

an effect of the eight-category model [mean β = 0.090; 99.17% confidence interval (CI) [100 × (1–

0.0083)] = 0.026 to 0.155; t(24) = 4.023, P < 0.001; d = 0.804], the animacy model [mean β = 0.077; 

99.17% CI = 0.014 to 0.139; t(24) = 3.514, P = 0.002; d = 0.702], and the humanness model [mean β 

= 0.133; 99.17% CI = 0.009 to 0.256; t(24) = 3.091, P = 0.005; d = 0.618] (for all other regressors: Ps 

> 0.07) (SI Appendix, Table S1). 

In another analysis, we considered another measure of categorization: for the six categorization 

models, we tested whether average between-category DLTs were higher than average within-category 

DLTs (αcorrected: 0.0083, one-tailed). Confirming the results above, we found that this was the case for 

the eight-category model [meandifference = -0.135; 99.17% CI = -∞ to -0.091; t(24) = -7.967, P < 0.0001; 

d = 1.588], the animacy model (meandifference = -0.095; 99.17% CI = -∞ to -0.041; t(24) = -4.481, P < 

0.0001; d = 0.896] and the humanness model [meandifference = -0.158; 99.17% CI = -∞ to -0.060; t(24) 

= -4.160, P < 0.001; d = 0.832], but not for the other models (SI Appendix, Table S2). 

Following evidence of categorization based on the eight-category model, we asked which of 

the eight categories the infants could indeed represent. Separately for each of the eight categories, we 

tested whether average within-category DLTs were lower than average between-category DLTs (t tests; 

αcorrected: 0.0063, one-tailed). We found that, in addition to animates, inanimates, humans, and 

nonhumans, 19-mo-olds showed an ability to represent the subordinate categories of human bodies 

[meandifference = -0.195; 99.37% CI = -∞ to -0.060; t(24) = -3.902, P < 0.001, d = 0.780], nonhuman 

bodies [meandifference = -0.160; 99.37% CI = -∞ to -0.014; t(24) = -2.956, P = 0.004, d = 0.603], 

nonhuman faces [meandifference = -0.216; 99.37% CI = -∞ to -0.094; t(24) = -4.763, P < 0.0001, d = 

0.953], and natural-small objects [meandifference = -0.179; 99.37% CI = -∞ to -0.076; t(24) = -4.727, P < 

0.0001, d = 0.986] (all other Ps > 0.024). 

Difference between images in color, size, elongation, or compactness did not account for the 

infants’ looking behavior (Table 1), suggesting priority of categorical information, over more general 

physical differences, in the processing of visual objects at 19 mo. 

Finally, we assessed possible preferences, considering the mean looking times (MLTs) toward 

each category, averaged across trials and subjects. A one-way repeated-measures ANOVA showed an 

effect of Category [F(7, 168) = 16.259, P < 0.0001; η2 = 0.790], which reflected a preference (i.e., 

longer looking times) for animate (mean = 2.103 s ± 0.344) over inanimate categories [mean = 1.598 s 
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± 0.247; meandifference = 0.505; 95% CI = 0.367 to 0.643; t(24) = 7.551, P < 0.0001; d = 1.509], and for 

nonhuman animals (mean = 2.317 s ± 0.463) over humans [mean = 1.889 s ± 0.452; meandifference = - 

0.428; 95% CI = -0.676 to -0.179; t(24) = -3.552, P = 0.002; d = 0.711] (see SI Appendix, Supplementary 

Results for details). The matrix representing t values for each pairwise comparison of MLTs remarkably 

replicated the structure of the DLT-RDM (Fig. 2A; see SI Appendix, Table S3 for t and P values), 

showing categorization and discrimination based on animacy and humanness. 

Ten-mo-olds. The looking behavior of 10-mo-olds (Fig. 2B) was significantly correlated with the 

composite-RDM of adult categorization as well as with fMRI-based RDMs reflecting object-related 

responses in selective aspects of the adults’ visual ventral stream. Further analyses showed that objects 

were principally categorized by animacy. 

More precisely, although correlations of the infants’ DLT-RDM with activations in the broad 

ROIs (EVC, VOTC, and LOTC) did not reach the significance level (Fig. 3C and Table 1), the vector-

of-ROIs analysis showed correlation with RDMs derived from the early visual cortex (V1) and fusiform 

gyrus (Ps < 0.001) (Fig. 3D). The DLT-RDMs also correlated with the synthetic composite-RDM. 

Infant’s behavior was not explained by differences in visual feature, such as color, size, elongation, or 

compactness (Table 1). 

Which of the six models underlying the composite-RDM best represented the infants’ behavior? 

A stepwise linear regression showed correlation of the infants’ DLT-RDM with the animacy model 

only [αcorrected: 0.0083, two-tailed; mean β = 0.059; 99.17% CI = 0.002 to 0.117; t(23) = 2.981, P = 

0.007; d = 0.608; for all other regressors: Ps > 0.036] (SI Appendix, Table S1). Consistent with this 

finding, average within-category DLTs were significantly lower than average between-category DLTs 

for the animacy model [meandifference = -0.061; 99.17% CI = -∞ to -0.007; t(23) = -2.919, P = 0.004; d 

= 0.592; αcorrected: 0.0083, one-tailed], but not for the other models (SI Appendix, Table S2). 

The analysis of the MLTs revealed an effect of Category [one-way repeated-measures 

ANOVA: F(7, 161) = 9.422, P < 0.0001; η2 = 0.808], reflecting preference (i.e., longer looking times) 

for animate (mean = 2.044 s ± 0.316) over inanimate categories [mean = 1.601 s ± 0.263; mdifference = 

0.443; 95% CI = 0.310 to 0.576; t(23) = 6.901, P < 0.0001; d = 1.409] (SI Appendix, Supplementary 

Results 3). Relationships between categories computed on the MLTs replicated the structure of the 

DLT-RDM, showing that 10-mo-olds categorized objects based on animacy, with a preference for 

animate objects (Fig. 2B and SI Appendix, Table S3). 
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Four-mo-olds. Unlike older infants, 4-mo-olds showed no evidence of categorization; they looked 

longer at human faces and big-inanimate objects or, otherwise, at the larger, less elongated and more 

compact of two images on the screen. 

More precisely, the infants’ DLT-RDM did not match the organization of object-related 

information in any broadly defined ROIs of the adults’ visual cortex (Fig. 3C and Table 1), or in any 

smaller partition of the visual ventral stream (vector-of-ROIs analysis) (Fig. 3D). No correlation was 

found with the composite model of adult categorization (Table 1) or with any of the six underlying 

models (stepwise linear regression: all ts < 1, n.s.) (SI Appendix, Table S1). For none of the 

categorization models were DLTs larger for between-category than within-category comparisons (Ps 

> 0.032) (SI Appendix, Table S2). Instead, infants’ DLT-RDM correlated positively with the RDMs 

based on image size and compactness, and negatively with the RDM based on elongation (Table 1). No 

correlation was found with the color model. 

A one-way repeated-measures ANOVA on the MLTs showed an effect of Category [F(7, 161) 

= 22.970; P < 0.0001; η2 = 0.802], which was driven by a preference for human faces over all other 

categories (αcorrected: 0.0018; all Ps < 0.001) (Fig. 2C and SI Appendix, Table S3). Within the inanimate 

categories, infants looked longer at big over small objects, whether artificial or natural (Ps < 0.0001). 

We note that the two most preferred categories (human faces and big-inanimate) were those with the 

largest image size (>15,000 pixels), the least elongated, and among the most compact shape (SI 

Appendix, Supplementary Results 4 and Fig. S2). Thus, size, elongation, and compactness, rather than 

object identity, could explain object preferences in 4-mo-olds. In line with this, the MLTs computed 

for each image across subjects correlated positively with image size (ρ = 0.515, P < 0.0001) and 

compactness (ρ = 0. 397, P < 0.001), and negatively with elongation (ρ = 0.531, P < 0.0001). That is, 

the larger the image, the less elongated, or the more compact the shape, the longer the looking time. 

Given this result, with a new stepwise linear regression, we reassessed the relationship of the DLT-

RDM with the six categorical models, after removing the variance explained by size, elongation, and 

compactness. Yet, no model accounted for the remaining variance (all Ps > 0.308) (SI Appendix, 

Supplementary Results 4 and Table S4). Likewise, we found no evidence of categorization comparing 

average within- and between-category DLTs (all Ps > 0.136) (SI Appendix, Supplementary Results 4 

and Table S5). 

Comparison between groups. Categorical distinctions. The above analyses showed that categorization 

by animacy emerged by 10 mo, while categorization by humanness, and additional categories of the 
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eight-category model emerged by 19 mo. Additional between-subjects analyses confirmed the 

differences between age groups, with respect to object categorization by animacy, humanness, and by 

the eight-category model. In effect, for each of the three categorization models that appeared to change 

over time (i.e., across groups), we analyzed the variation of the mean difference between averaged 

between-categories vs. averaged within-category DLTs with a one-way ANOVA, including Age as 

between-subject factor (4 mo, 10 mo, 19 mo). 

As for the animacy model, we found a trend for the effect of Age [F(2, 70) = 2.752; P = 0.071; 

η2 = 0.073]. Pairwise comparisons showed that 4-mo-olds differed from 19-mo-olds [mean4-mo-olds = -

0.022 ± 0.121 SD; mean19-mo-olds = -0.095 ± 0.106; 95% CI = 0.009 to 0.139; t(47) = 2.273; P = 0.028; 

d = 0.649] but not from 10-mo-olds [mean10-mo-olds = -0.061 ± 0.103; 95% CI = -0.026 to 0.105; t(46) = 

1.225; P = 0.227; d = 0.354]. Ten- and 19-mo-olds did not differ [95% CI = -0.026 to 0.094; t(47) = 

1.144; P = 0.258; d = 0.327]. As for the humanness model, the effect of Age was significant [F(2, 70) 

= 4.027; P = 0.022; η2 = 0.103]. Nineteen-mo-olds differed from both 4-mo-olds [mean4-mo-olds = -0.036 

± 0.216; mean19-mo-olds = -0.158 ± 0.190; 95% CI = 0.006 to 0.239; t(47) = 2.109; P = 0.040; d = 0.602] 

and 10-mo-olds [mean10-mo-olds = -0.003 ± 0.202; 95% CI = 0.043 to 0.268; t(47) = 2.780; P = 0.008; d 

= 0.794]. Four- and 10-mo-olds did not differ [95% CI = -0.155 to 0.088; t(46) = -0.548; P = 0.586; d 

= 0.158]. As for the eight-categories model, the effect of Age was significant [F(2, 70) = 4.292; P = 

0.018; η2 = 0.109]. Nineteen-mo-olds differed from both 4- [mean4-mo-olds = -0.048 ± 0.120; mean19-mo-

olds = -0.135 ± 0.085; 95% CI = 0.028 to 0.147; t(47) = 2.966; P = 0.005; d = 0.845] and 10-mo-olds 

[mean10-mo-olds = -0.057 ± 0.137; 95% CI = 0.013 to 0.144; t(47) = 2.426; P = 0.019; d = 0.690]. Four- 

and 10-mo-olds did not differ [95% CI = -0.066 to 0.084; t(46) = 0.243; P = 0.809; d = 0.070]. 

In sum, categorization by humanness and by the so-called eight-categories model changed 

between 10 and 19 mo. Categorization by animacy differed between 4 and 19 mo. However, it did not 

differ significantly between 4 and 10 mo, although separate analyses for each group suggest a change 

in the representation of animate and inanimate categories between the two age groups. Given the robust 

evidence for categorization by animacy in 10-mo-olds, the absence of a difference between 4- and 10-

mo-olds might suggest a latent categorization by animacy in the younger age group. Exp. 2 speaks to 

this question. 

Lower-level dimensions. The above analyses showed that features such as size, elongation, and 

compactness contributed to driving the behavior of 4-mo-olds but not of 10- and 19-mo-olds. We 

assessed these differences across groups with three one-way ANOVAs, testing the effect of Age (4 mo, 
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10 mo, 19 mo) on the variation of correlation coefficients for the correlation between the DLT-RDMs 

and the RDMs for each of three visual dimensions (image size, elongation, and compactness). The 

correlation between looking behavior and image size changed over time [Effect of Age: F(2, 70) = 

21.259; P < 0.001]. In particular, correlation was higher in 4-mo-olds than in 10-mo-olds [mean4-mo-olds 

= 0.315 ± 0.173; mean10-mo-olds = -0.068 ± 0.208; 95% CI = 0.136 to 0.359; t(46) = 4.483; P < 0.001; d 

= 1.294] and 19-mo-olds [mean19-mo-olds = -0.034 ± 0.194; 95% CI = 0.244 to 0.455; t(47) = 6.649; P < 

0.001; d = 1.903]. Ten- and 19-mo-olds did not differ [95% CI = -0.014 to 0.217; t(47) = 1.768; P = 

0.084; d = 0.505]. There was also a significant effect of Age for the correlation between elongation and 

looking behavior [F(2, 70) = 22.180; P < 0.001]. Correlation was higher in 4-mo-olds than in 10-mo-

olds [mean4-mo-olds = -0.321 ± 0.187; mean10-mo-olds = -0.041 ± 0.197; 95% CI = -0.392 to -0.169; t(46) = 

-5.051; P < 0.001; d =  1.458] and 19-mo-olds [mean19-mo-olds = -0.010 ± 0.151; 95% CI = -0.409 to -

0.214; t(47) = -6.418; P < 0.001; d =  1.830]. Ten- and 19-mo-olds did not differ [95% CI = -0.131 to 

0.070; t(47) = -0.614; P = 0.542; d = 0.175]. Analogous results were found for the correlation between 

looking behavior and compactness [Effect of Age: F(2, 70) =16.694; P < 0.001]: correlation was higher 

in 4-mo-olds than in 10-mo-olds [mean4-mo-olds = 0.208 ± 0.155; mean10-mo-olds = 0.054 ± 0.190; 95% CI 

= 0.054 to 0.255; t(46) = 3.091; P = 0.003; d = 0.892] and 19-mo-olds [mean19-mo-olds = -0.074 ± 0.166; 

95% CI = 0.189 to 0.374; t(47) = 6.144; P < 0.001; d = 1.757], and higher in 19-mo-olds than in 10-

mo-olds [95% CI = 0.025 to 0.230; t(47) = 2.496; P = 0.016; d = 0.712]. These results, together with 

the above correlation analysis, demonstrated that visual features of the stimuli such as image size, 

elongation, and compactness predicted the behavior of 4-mo-olds but not of older infants. 

3.2.2. Experiment 2 

In Exp. 1, 4-mo-olds showed no evidence of categorization, but a preference for human faces 

and big-inanimate objects, which might be explained by physical properties, such as image size, 

elongation, and compactness (i.e., a tendency to look at the larger/less elongated/more compact image 

on the screen). We asked whether a preference for certain physical properties might have overshadowed 

categorical effects. To this end, we tested a new group of 4-mo-olds (n = 24) with the same images of 

Exp. 1, but all matched for size (i.e., number of pixels) (Fig. 1C). Size, but not elongation and 

compactness, was modified because only the former can change without affecting object identity or 

recognizability. Results confirmed the preference for human faces and big-inanimate object, but also 

showed that, when size was no longer available to discriminate between two stimuli, 4-mo-olds showed 

categorization by animacy. 
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Specifically, the infants’ DLT-RDMs (Fig. 2D) correlated with the composite-RDM, and the 

fMRI-based RDMs extracted from the anterior fusiform gyrus (P < 0.001) (Fig. 3D) in the vector-of-

ROIs analysis (Table 1). There remained a significant negative correlation with the elongation model, 

a significant positive correlation with the compactness model, and no correlation with the color model 

(Table 1). 

Of the six synthetic models that contributed to the composite-RDMs, infants’ behavior was best 

represented by the animacy model [stepwise linear regression, αcorrected: 0.0083, two-tailed; mean β = 

0.074; 99.17% CI = 0.016 to 0.132; t(23) = 3.697; P = 0.001; d = 0.755; for all other regressors, Ps > 

0.12] (SI Appendix, Table S1). The comparison between within-category and between-category DLTs 

confirmed this result, showing lower within-category than between-category DLTs for the animacy 

model [αcorrected: 0.0083, one-tailed; meandifference = -0.076; 99.17% CI = -∞ to -0.021; t(23) = -3.583, P 

< 0.001; d = 0.731], but not for the other models (SI Appendix, Table S2). 

A one-way repeated-measures ANOVA on the MLTs showed a significant effect of Category 

[F(7, 161) = 59.466; P < 0.0001; η2 = 0.869], which reflected a preference for human faces over all 

other categories (αcorrected: 0.0018; all Ps < 0.0001), for non-human faces over human or nonhuman 

bodies and for big- over small-inanimate objects (all Ps < 0.001) (SI Appendix, Supplementary Results 

3 and Table S3). Thus, the preference for human faces and big objects, which were the largest objects 

in Exp. 1, remained despite matching images for size. Moreover, the average MLTs for individual 

images were negatively correlated with elongation (ρ = 0.337, P = 0.004) and positively correlated with 

compactness (ρ = 0. 590, P < 0.001), confirming the bias for the less elongated and more compact 

shapes. Given the last result, we reassessed the correlation of the DLT-RDM with the six categorical 

models, after removing the variance explained by elongation and compactness. Again, the animacy 

model was the only significant regressor [αcorrected: 0.0083; mean β = 0.055; 99.17% CI = 0.005 to 0.106; 

t(23) = 3.176; P = 0.004; d = 0.647; for all other regressors, Ps > 0.061] (SI Appendix, Table S4). 

Categorization by animacy was confirmed by higher between- than within-category DLTs for the 

animacy model only [αcorrected: 0.0083, one-tailed; meandifference = -0.057; 99.17% CI = -∞ to -0.009; 

t(23) = 3.081; P = 0.003; d = 0.629; for all other comparisons P > 0.194] (SI Appendix, Supplementary 

Results 4 and Table S5). 

Can face preference explain the categorization by animacy at 4 mo? The animate–inanimate 

distinction in a group that showed strong face preference could reflect the distinction between objects-

with-face (preferred) vs. objects-without-face. In effect, infants looked longer at human faces but also 
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at non-human faces, compared to body stimuli (SI Appendix, Table S3). However, they also looked 

longer at human bodies, whose faces were not visible than nonhuman bodies, whose faces were visible. 

An additional analysis addressing the correlation between the DLT-RDM of 4-mo-olds and a synthetic 

model considering all the faces as one category, and all other stimuli as another category, only yielded 

a nonsignificant trend [mean β = 0.055; 99.17% CI = -0.027 to 0.137; t(23) = 1.932; P = 0.066; d = 

0.394]. Thus, although it could contribute to it, the face preference cannot fully account for the animate–

inanimate categorization in 4-mo-olds. 

 

3.3. Discussion 

Categorization is the mechanism through which the human mind makes sense of the 

environment by organizing the things of the world in categories. Categorization begins at a young age, 

with the ability to appreciate perceptual similarities between objects, and acquires refinement with 

knowledge and language acquisition. What type of real-world object categories infants can represent 

before developing a sizable lexicon and a rich system of knowledge about the world? We considered 

the hypothesis that the early stages of visual object categorization are guided by the same dimensions 

that structure object representations in the visual cortex of the primate brain. 

Our findings demonstrate that early visual object categorization along the fundamental 

dimensions represented in the human visual cortex, is an incremental process with two milestones. The 

first, between 4 and 10 mo, establishes the transition from an exploration of the environment guided by 

general visual saliency to an organization that corresponds to the animate–inanimate categorical 

distinction; the second, between 10 and 19 mo, presents a spurt of visual object categories toward 

mature organization. 

All the categorization effects that we observed analyzing looking-time differences between 

objects were paired with preference effects, as indexed by MLTs. That is, when infants showed 

categorizing objects by animacy, they also looked longer at animate than inanimate objects; when they 

showed categorizing objects by humanness, they also looked longer at nonhuman than human animals. 

The cooccurrence of preference and categorization suggests that the earliest visual categories to emerge 

in infancy are those that are important enough to give rise to a hierarchy of preferences. 

However, we emphasize that categorization is not equal to preference. We operationalized 

categorization in terms of larger difference for between-category comparisons than within-category 
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comparisons. The systematic cooccurrence of effects in DLTs and in MLTs suggests that categorization 

effects were mainly carried by high between-categories DLTs. However, our approach can in principle 

detect categorization effects that are not paired with a systematic preference (i.e., categorical 

distinctions that do not yield consistent differences in the MLTs); for example, categorization by 

animacy could have been observed as long as within-category differences were lower than between-

categories differences, and even if some infants preferred one category, and others, the other category 

yielding null group preference effect. Clearly, categorization effects are easier to detect, the lower the 

within-category differences (i.e., for rather homogenous object categories). 

3.3.1. Within 4 mo 

Four-mo-olds showed no evidence of categorization based on any of the categorical dimensions 

considered here, when image size allowed discriminating between two images on the screen (Exp. 1). 

Accordingly, their looking behavior did not match visual object representation in any sector of the 

adults’ visual cortex. Infants’ look, however, was not random. They looked longer at the larger image 

and the less elongated and more compact object on the screen, with size, elongation, and compactness 

differences predicting looking-time differences. Moreover, MLTs revealed preference for human faces 

and real-world size big (vs. small) inanimate objects. 

The preference for human faces, extensively documented in very young infants (Farroni et al., 

2005; M. H. Johnson et al., 1991; Valenza et al., 1996), has been explained by the detection of the 

characteristic eyes–mouth configuration, and iris-pupil-sclera contrast of human eyes (Farroni et al., 

2005). However, if performance here reflected detection of those features, infants would have shown 

categorization of human faces, as all our human faces carried those features. Instead, preference for 

faces occurred without categorization (i.e., within-category DLTs were as high as between-categories 

DLTs). This suggests that, in processing two faces, infants focused on individual- rather than category-

level features, possibly reflecting a propensity or need for individuation (i.e., for processing faces as 

individuals rather than category members) (Quinn & Eimas, 1998), which makes the differences 

between two faces as salient to the visual system, as the difference between a face and another object 

(Maurer et al., 2002). 

The preference for real-world big (vs. small) objects also emerged without evidence of 

categorization. In this case, however, within-category DLTs comparable to between-category DLTs 

could reflect the visual heterogeneity of the category of big inanimate objects, which included 

landscapes (e.g., view of a lake), landmarks (e.g., building), and various large objects (e.g., washing-
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machine and stool). This observation leaves open the possibility that categorization of big objects could 

be found for more homogeneous sets than the current one. 

The effect of real-world object size at such a young age is unprecedented and open to multiple 

interpretations. Scholars are debating a proper characterization of the big-small object distinction, 

which might relate to differences in perceptual properties (e.g., texture, spatial frequency) (Long et al., 

2018) and behavior-relevant properties of the objects (Magri et al., 2020). The current results add a 

new piece to the puzzle, showing early asymmetry in the attention toward big vs. small objects. In the 

adult brain, big objects, which typically function as landmarks, are represented in ventral aspects of the 

visual cortex, adjacent to place- and scene-specific areas. Small objects, which are by definition 

graspable, are represented in lateral aspects of the occipitotemporal cortex, also hosting areas for tool 

and action representation (Konkle & Oliva, 2012b). Areas of the scene- and place-specific network are 

functionally interconnected already in the first weeks of life (Kamps et al., 2020), and respond strongly 

to scenes in 4- to 6-mo-olds (Deen et al., 2017). In contrast, at 4 mo, infants are unable to grasp objects, 

showing immaturity of the networks that control hand movements and hand–object interaction. Interest 

in graspable objects increases during the first year of life (Libertus et al., 2013; C. Newman et al., 2001), 

as infants develop grasping skills (McCarty et al., 2001). Consistent with this trajectory, we found that 

by 10 mo, the preference for big over small objects had disappeared. Thus, different developmental 

trajectories of different networks in the visual cortex might contribute to object distinctions captured 

by the effect of real-world size. 

3.3.2. From 4 to 10 mo 

When size was no longer available to discriminate between two images on the screen (Exp. 2), 

4-mo-olds continued to show a preference for human (as well as nonhuman) faces and big (vs. small) 

objects, but they also showed categorization by animacy. Thus, categorization by animacy was 

functional at 4 mo but was overshadowed by physical features, such as size, making an object more 

visible, independently from the category. By 10 mo, infants showed an ability to overcome the 

importance of low-level visual features in favor of categorical information: categorization by animacy 

emerged despite differences in image size. Moreover, by 10 mo, the preference for human faces and 

big (vs. small) objects had given way to interest in the broader category of animate entities. 

Thus, the looking behavior of both 10-mo-olds in Exp. 1 and 4-mo-olds in Exp. 2 revealed 

categorization by animacy and matched the cortical organization of object-related information recorded 
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from anterior (temporal) aspects of the visual ventral stream in adults. Yet, a change between 4 and 10 

mo happens as infants move from prioritizing image size to prioritizing categorical information. 

Animacy is the earliest categorical distinction of visual objects in infancy. This implies that 

representation of animate entities is not an extension of the representation of conspecifics (Bonatti et 

al., 2002; Quinn & Eimas, 1998). Infants would rather start with a broad, underspecified representation 

of what animates look like, which might function as a coarse “life detector” to identify conspecifics as 

well as predators and preys (Vallortigara et al., 2005). The animate–inanimate distinction would thus 

lay the foundation for subtler categorical distinctions, and possibly sets conditions for domain-specific 

processes of naıve psychology (Elizabeth S. Spelke & Amy E. Skerry, 2013; A. Woodward, 1998) vs. 

naıve physics (Saxe et al., 2005; Spelke, 1994). 

3.3.3. From 10 to 19 mo 

With the second developmental change between 10 and 19 mo, infants showed an ability to 

represent the categories animate and inanimate, but also human, nonhuman, human bodies, nonhuman 

bodies, and nonhuman faces. The spurt of categories by 19 mo represents another step toward the model 

of mature visual object representation addressed here. 

While in 4- and 10-mo-olds, categorization limited to two categories was associated with 

object-related responses in the most anterior aspects of the visual cortex, 19-mo-olds’ behavior 

correlated with object-related responses across the broad visual cortex of adults (from early visual 

cortex to ventral and lateral higher-level areas and from posterior to anterior regions along the ventral 

stream). This suggests that the ability to form new visual categories, from very general (e.g., animate-

inanimate) to finer-grained (e.g., human vs. nonhuman bodies), involves the progressive recruitment of 

more and more feature spaces distributed over the visual cortex, and representing features with different 

complexity: as integration across regions (and feature spaces) increases, more and more categories can 

be represented. Promoter of this development, among other structural and functional maturation 

phenomena, could be the myelination of fiber tracts connecting distant areas (Dubois et al., 2014), 

which begins around 4 mo in the occipital lobe and continues later through the temporal lobe (Deoni et 

al., 2011). In the second year of life, categorization may further thrive with language development. 

Verbal labeling and communication of information about objects promote and shape the formation of 

new categories and, in some models, govern the transition from perceptual to conceptual categories 

(Bonatti et al., 2002; Dewar & Xu, 2007; LaTourrette & Waxman, 2020; Waxman & Markow, 1995; 

Westermann & Mareschal, 2014; Xu & Carey, 1996). 
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The developmental course of visual object categorization described here confirms and extends 

current knowledge of object categorization in infancy. Previous studies have shown that, by 5 mo, 

infants can represent the abstract categories of animate and inanimate, which constrain their ability to 

individuate objects (Bonatti et al., 2002; Surian & Caldi, 2010; Xu et al., 2004) and make inference 

about them. Thus, infants expect animate objects to be nonhollow (Setoh et al., 2013), intentional (Luo 

& Baillargeon, 2005; A. Woodward, 1998), to have beliefs (Baillargeon et al., 2010), social affiliation 

(Powell & Spelke, 2013, 2018), and morality (Dawkins et al., 2020; Hamlin, 2013). Inanimate objects 

are rather expected to be solid and obey the continuity principle (Spelke, 1994), to be moved by contact 

(Spelke, Phillips, et al., 1995), and lack intentionality (A. Woodward, 1998) and strong causal power 

(Muentener & Carey, 2010). In that body of research, infants identify animate entities primarily based 

on cues such as self-propelled motion, eyes, furry texture (Saxe et al., 2005; Setoh et al., 2013), and 

agentive/contingent behavior (Baillargeon et al., 2009; Deligianni et al., 2011; Markson & Spelke, 

2006; G. E. Newman et al., 2010; Saxe et al., 2005; Setoh et al., 2013). Three- to 4-mo-olds can also 

learn to represent narrower, basic-level animate categories (e.g., dogs) after repeated exposure to 

various exemplars of a category to emphasize their visual similarity (Pauen & Peykarjou, 2021; Quinn 

et al., 1993, 2001; Quinn & Eimas, 1996). By contrasting two species, or basic-level categories [e.g., 

human vs. ape faces (Peykarjou et al., 2017); human body vs. horse, human body vs. cat (Quinn & 

Eimas, 1998; But see refs. Oakes et al., 1996; Pauen, 2000), the human-nonhuman distinction has been 

observed even before 19 mo. Categorization of exemplars from homogeneous, basic-level categories 

(e.g., a few exemplars of canonical dogs) can rely on a few, very specific physical properties of the 

stimuli. In contrast, here, infants were faced with the harder task of extracting category-relevant 

information from a heterogeneous set of static visual features. That is, categorization required infants 

to recognize as members of the same (animate) category, human faces, zebras, fish, and parrots, on the 

one hand, and hammers, washing-machines, apples, and trees (inanimate objects), on the other hand, 

or to recognize that a human body and a human face fall in the same category, and a horse is closer to 

a fish than to a human body. 

In studying when and how this task is achieved, the present study introduces two important 

advances. First, it shows that the infants’ DLTs are a reliable measure of categorical similarity, with 

variations in DLTs reflecting variations in the similarity of image-computable features and categorical 

information (see refs. LaTourrette & Waxman, 2020 for converging evidence). Second, by using larger 

category boundaries than in previous studies, and without systematic manipulation of typical cues (e.g., 

self-propelled motion or agentive/contingent behavior for animacy), we have exposed in the infants’ 
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looking behavior, the mechanism through which vision extracts category-relevant information from a 

large, heterogeneous set of features. The correlation between infants’ looking behavior and fMRI data 

in adults suggests that infants can form categories using the same static visual information that yields 

categorical object representation in the visual ventral stream of primates. The so-formed visual 

categories could constitute another cue for early conceptual distinctions such as animate/inanimate and 

human/nonhuman. To test so, future research should study how infants label those categories, and what 

inferences they make about them: for example, do they infer from its static appearance that a crocodile 

is self-propelled, has intentions and beliefs? 

Future studies should also address whether other categories can be captured in the infants’ 

looking behavior by changing the category boundaries (e.g., more/less homogeneous categories), 

adding other real-world features (e.g., motion), or giving infants more time to explore the images. More, 

or finer-grained, categories could also be uncovered by going beyond the unidimensional 

characterization of the infants’ looking behavior afforded by looking times (Kiat et al., 2021), or 

replicating the current methodology using neural correlates of infants’ categorization. Finally, the exact 

nature of the category-relevant visual features that drove DLTs in infants remains to be studied. While 

we focused on visual features, as we targeted the model of object representation in the visual cortex, a 

role of other representational levels, mediated, for example, by language or semantic knowledge, 

remains to be tested. 

3.3.4. Conclusions 

We have shown that infants initiate their exploration of the visual world by giving priority to images 

that are more visible (i.e., the larger ones) and displaying preferences for faces and big objects. By 10 

mo, they show the ability to learn that categorical information relevant to the animate–inanimate 

distinction is more important than general physical properties. Thus, the first act of visual object 

categorization divides the world into animate and inanimate entities. Other categories represented in 

the visual cortex emerge by 19 mo. As visual categories multiply, infants’ behavior correlates with 

neural activity in ever-larger aspects of the adult visual cortex. Integration through growing connections 

within category-specific networks and between distant visual areas could be the driving force of this 

process. Increasing representation, and reliance on, category-relevant information in the first years of 

life may signal the coupling between seeing and thinking. 
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3.4. Materials and Methods 

3.4.1. Eye-Tracking Study 

Participants. The study involved 97 infants in total. Exp. 1 involved 24 infants of 4 mo (11 females; 

mean age: 4 mo, 15 d; range: 4:0 to 4:24), 24 infants of 10 mo (8 females; mean age: 10:26; range: 10:1 

to 11:30), and 25 infants of 19 mo (11 females; mean age: 19:5; range: 18:1 to 20:1). Exp. 2 involved 

24 infants of 4 mo (14 females; mean age: 4:17; range: 4:3 to 5:0). The sample size of 24 was arbitrarily 

chosen for the initial group of 19-mo-olds. Next, we verified that it was superior to the minimal sample 

size (n = 18) required to obtain the smallest categorical effect found in 19-mo-olds (human vs. 

nonhuman: dCohen= 0.6182, power = 0.80, α = 0.05; GPower 3.1), and kept it constant across groups. 

We continued testing until we reached 24 participants per group. The last 19-mo-old infant had a twin; 

parents asked to test him too and we kept him in the sample. Fifty additional infants were tested in 

Exps. 1 and 2, but discarded (see Analyses). Infants were tested in the Babylab of the Institute of 

Cognitive Sciences Marc Jeannerod (Bron, France). Parents received travel reimbursement and gave 

informed consent before participation. The study was approved by the local ethics committee (CPP 

sud-est II). 

Stimuli. We selected 72 total color photographs of isolated real-world objects from publicly available 

sets (Kiani et al., 2007) or from the internet. For Exp. 1, objects were superimposed on a gray 

background and scaled to fit a 350 × 350 pixels black frame. The final set of images consisted of nine 

exemplars for each of eight categories. Human faces were all female faces. For Exp. 2, all objects were 

resized to have the same number of pixels (54,135) without gray background (Fig. 1C). 

Procedure. Infants sat on their parent’s lap, ∼60 cm away from a Tobii Eye-tracker T60XL screen, in 

a dark room. Parents were instructed to keep their eyes closed throughout the experiment. The 

experiment began after the calibration for eye-tracking and consisted of 36 trials. In a trial, two images 

were presented for 5 s on the left and right side of the screen, equally distant from central fixation (Fig. 

1 B and C). Each infant saw a unique set of pairs including all 28 possible between-category 

combinations and eight within-category combinations. The experiment ended after 36 trials (∼3 min), 

or because the infant expressed discomfort, or stopped looking at the screen. Stimulus presentation and 

data recording were controlled through PsyScopeX (psy.cns. sissa.it). 

Analyses. On the eye-tracking screen, we defined two areas-of-interest overlapping with the locations 

of the two images. Areas-of-interest were two 350 × 350-pixel squares in Exp. 1, and two masks 

file:///C:/Users/cspriet/AppData/Roaming/Microsoft/Word/psy.cns.%20sissa.it
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encompassing all nonbackground pixels in Exp. 2. For every trial, we computed the cumulative looking 

times in each area-of-interest. 

Only trials with ≥1 s of look within the areas-of-interest were considered valid. For the analyses, 

we discarded infants with fewer than 27 valid trials (3 of 4 of total trials) or with a strong side bias (i.e., 

fixation on the same side for >80% of the experiment duration). In the final analysis of Exp. 1, 4-mo-

olds contributed, on average, 35 ± 1 trials, 10-mo-olds, 34 ± 2 trials, and 19-mo-olds, 34 ± 2 trials. In 

Exp. 2, 4-mo-olds included in the final analysis contributed on average 29 ± 2 trials. Of all the infants 

tested in Exp. 1, exclusion criteria led us to discard 24 because of insufficient data (13 4-mo-olds, 7 10-

mo-olds, and 4 19-mo-olds) and 1 4-mo-old because of a side bias. Twenty-five tested in Exp. 2 were 

discarded because of a side bias (n = 2) or insufficient data (n = 23). However, stimulus presentation 

differed between Exps. 1 and 2 (Fig. 1 B and C). In Exp. 1 areas-of-interest were fixed, squared areas 

delimited (and highlighted) by a black frame, which contained object and background. In Exp. 2, areas-

of-interest overlapped with the object’s contours without back-ground and frame. In sum, in Exp. 2, 

stimuli might have been less visually salient and, therefore, the exclusion criteria, more stringent, than 

in Exp. 1, yielding higher attrition rate. To address this, we carried out additional analyses adopting 

more lenient criteria in Exp. 2, to reach an attrition rate closer to that of Exp. 1. This analysis confirmed 

all of our results (SI Appendix, Supplementary Results 5). 

For each infant, for each trial, one DLT was computed as the difference in the cumulative 

looking time (LT) between the right and the left area-of-interest divided by the sum of the two (i.e., the 

total time the infant attended to the areas of interest): (LTright - LTleft)/(LTright + LTleft). Absolute and 

signed DLT values were entered in absolute and signed DLT-RDMs, respectively. Values on the 

diagonal (within-category DLTs) and off-diagonal values in one half of the DLT-RDM (between-

category DLTs) were used for analysis. 

Category effects. Separately for each experiment, for each group, we per-formed RSA to correlate the 

absolute DLT-RDMs with each of six categorization models, and the composite model of adult 

categorization, reflecting the average of the above six models. Each model defined an RDM, where 

cells had value of 0, 1, or 0.5 corresponding to within-category comparisons (i.e., lowest dissimilarity), 

between-category comparisons (i.e., highest dissimilarity), and comparisons irrelevant for a given 

categorization, respectively. For example, the humanness model had 0 for human–human (e.g., human 

face–human body) and nonhuman–nonhuman comparisons (e.g., cow face-elephant body), 1 for 
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human–nonhuman comparisons (e.g., human body–camel body), and 0.5 for irrelevant comparisons 

(e.g., artificial small object– natural large object). 

First, we computed the correlation between the composite-RDM and the DLT-RDM of each 

infant. Individual Spearman correlation coefficients ρ for a group of infants were Fisher-transformed 

and tested against chance-level 0 (t test). Then, we performed a stepwise linear regression analysis for 

each infant, with the above six categorical models as regressors. For each regressor, the distribution of 

coefficients β in a group was compared against chance (t test). Categorization was further addressed by 

assessing whether, for each model, average within-category DLTs were higher than average between-

category DLTs (t tests, one-tailed). All above analyses were computed considering the DLTs over the 

total 5-s trial duration. 

Effects of general properties of the images. In Exp. 1, for each image, we computed a score for: 1) 

size (i.e., total number of pixels [350 × 350] minus number of background pixels); 2) shape-elongation 

(i.e., height-to-width ratio with ratio tending to 1 indicating lowest elongation); 3) shape-compactness, 

computed as the ratio between the area of the shape and the area of the disk with the same perimeter 

(values between 0 and 1, with 1 indicating maximal compactness); and 4) color (i.e., for the RGB 

format, the average of the mean values for red, green, and blue). Since each infant of a group saw 

different exemplars of a category, for each infant we created: an RDM representing signed size-

differences for each pairwise comparison [(Sizeright-image – Sizeleft-image)/(Sizeright-image + Sizeleft-image)]; an 

RDM representing signed elongation-differences [(Elongationright-image – Elongationleft-

image)/(Elongationright-image + Elongationleft-image)]; an RDM representing signed compactness-differences 

[(Compactnessright-image – Compactnessleft-image)/(Compactnessright-image + Compactnessleft-image)]; and an 

RDM representing color-differences in the form of Euclidean distance between the average color-value 

vector of two images. For each infant, we computed Spearman correlations between the DLT-RDM 

and each of the three RDMs. For each age group, individual correlation coefficients ρ were Fisher-

transformed and entered in a one-sample t test (chance-level 0). For the signed RDMs (size, elongation, 

and compactness), positive correlation values indicated longer looking times toward larger/more 

elongated/compact objects. 

Effects of size, elongation, and compactness on categorization. As size, elongation, and compactness 

correlated with the 4-mo’ DLTs in Exp. 1, and elongation and compactness correlated with 4-mo’ DLT 

in Exp. 2, we reassessed the effects of categorization after removing the variance explained by those 

physical properties of the images (SI Appendix, Supplementary Results 4). We performed a stepwise 
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linear regression on the signed DLT-RDM of 4-mo, with size RDM, elongation RDM, and compactness 

RDM as regressors. Next, we performed the stepwise linear regression analysis on the absolute values 

of the residual matrices R [R = |signed DLT-RDM – βsize size-RDM – βelongation elongation-RDM – 

βcompactness compactness-RDM|]. 

Analysis of MLT. For each group, we computed the MLT toward each category. Differences across 

categories were analyzed with a one-way repeated-measures ANOVA and followed up with pairwise t 

tests. 

3.4.2. fMRI Study on Adults 

Participants. Fifteen participants took part in the fMRI study (eight females; mean age: 24.9 y ± 3.6 

SD). All had normal or corrected-to-normal vision, were screened for contraindications to fMRI, gave 

informed consent before participation, and were paid for their time. The local ethics committee (Comite 

de Protection des Personnes Sud Est V) approved the study. 

Stimuli, procedures, and analyses. The fMRI study involved: 1) a main experiment to record neural 

responses to the same 72 object-stimuli shown to infants, and 2) a functional localizer session, used to 

define the whole visual ventral stream (from V1 to the fusiform gyrus) and three broad ROIs within the 

visual cortex (bilateral EVC, VOTC, and LOTC). fMRI data were used to create models of visual object 

categorization (i.e., RDM) based on the neural activity patterns evoked by the eight categories within 

each ROI, and, to capture more local effects of visual categorization, within each of the 38 consecutive 

slices along the antero-posterior axis that forms the visual ventral stream. RSA was used to test the 

correlation between the RDM extracted from each ROI and each slice of the ventral stream, and the 

DLT-RDM of each individual infant. See SI Appendix, Supplementary Methods for a detailed 

description of procedures and analysis. 

Data Availability. Stimuli, group map fMRI data, eye-tracking data, and code for the main analyses 

have been deposited in the Open Science Framework repository created for this project 

(https://osf.io/6rm7a/?view_only=dcd 418e45e074e379edee09ba36840be). 

  

https://osf.io/6rm7a/?view_only=dcd%20418e45e074e379edee09ba36840be
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4. The roles of experience and maturation in the development of 

categorical saliency (study 2) 

This chapter is a direct continuation of the previous study. The aim was to study the first stage 

of development previously describe, from 4 to 10 months of age. The first step was to better grasp the 

course of events between 4 and 10 months of age, studying 6 and 8 months. Then, the question was 

about understanding whether the brain maturation limits the influence and saliency of category 

membership in infants’ behavior, or whether the experience drives category membership’s influence 

on infants’ behavior. The supplementary materials of this article can be find in Chapter 9, after the 

bibliography. 

 

4.1. Introduction 

Chapter 3 revealed a major developmental milestone in the saliency of category membership in 

infants’ behavior. Indeed, while 4-month-old infants’ behavior was guided by non-categorical features 

(i.e., features that are not eliciting the representation of a category; physical size on the retina, 

elongation and compactness), 10- and 19-month-old infants spontaneously relied on category 

membership, especially the animate-inanimate distinction, when exploring objects. Yet, we showed 

that 4-month-old infants already represented objects as animate or inanimate; but this representation 

was overshadowed by non-categorical features (Spriet et al., 2022). Thus, between 4 and 10 months of 

age, a major developmental step consists in a modification of the respective weights given to category 

membership (animate-inanimate) and non-categorical features, the former’s weight increasing and the 

later decreasing. In the current chapter, we first tested 6- and 8-month-olds in order to inform the 

timeline of the observed development. Second, we ask what is the driving force of this transition: 

spontaneous maturation of the brain, or visual experience? We test preterm infants, whose visual 

experience is dictated by their chronological age, but their brain maturation depends on their corrected 

age, i.e., the age they would have is they were born at term. 

Between 4 and 10 months of age, infants are developing a lot. They interact a lot more with 

objects and people in their environment at 10 months compare to 4 months: they can stand sited around 

6 months, start to sit by themselves and crawl around 8 months of age (Malina, 2004; Marcinowski et 

al., 2019), reach and grasp smaller, more convenient objects for them to hold, around 6 months of age 

(Libertus et al., 2013), a capacity that still develops and improves around 8 months (Fagard et al., 2009; 
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C. Newman et al., 2001). They also demonstrate joint attention, gaze and point following by 7 to 8 

months of age (Carpenter et al., 1998; Striano & Bertin, 2005). The development of motor skill, such 

as the ability to sit, as well as infants’ social skills, change infants interaction with objects in their 

environment, and thus their possibilities to learn about things in their environment (Libertus & Hauf, 

2017; Soska & Adolph, 2014). This might partly explain the transition in the development between 4 

and 10 months of age. Older infants, when exploring their environment, rely more on category 

membership than younger ones, as with the development of their motor and social skills, they are now 

able to interact with even more objects than before. In addition, infants’ visual short-term memory is 

also improving between 6 and 8 months of age, as 6-month-old infants can only retain information 

(e.g., color) for one object presented in isolation, while 8-month-old infants are able to retain this 

information even if the object is presented in a multiple array (Kwon et al., 2014; Oakes et al., 2011). 

By 7 months, binding the color of an object to its location seems to be facilitated (Oakes et al., 2006, 

2009). Another big development is the acceleration of visuo-attentional processes between 5 and 8 

months of age (Hochmann & Kouider, 2022). Those last developments might in part explain a 

development of visual categorization ability, as older infants are now faster in extracting visual features 

of objects, better at binding those features to objects, and better at remembering them. Finally, one 

more developmental process has the potential to account for the switch in the reliability of category 

membership in infants’ behavior: the brain myelination and maturation. The myelination of the 

occipital and parietal lobes start in the 4th to 6th month of life, but only at 11 months of age the occipital 

lobe is at 50% of its complete myelination (Deoni et al., 2011). All those developmental processes can 

account for the first milestone described between 4 and 10 months of age, and refining the dynamic of 

the two steps of this milestone and the age of the developmental switch(es) will help us to understand 

what is happening at this stage of development. Thus, we extended the previous study, testing 6- and 

8-month-old infants’ reliance on category membership, especially diagnostic of the animate-inanimate 

categorization. To anticipate our findings, 8 months of age appears to be an age of transition, where 

infants both rely on category membership and non-categorical features. 

After having identified this stage of development, we explored the respective role of the 

spontaneous brain maturation and of the visual experience. Both maturation and visual experience 

could theoretically account for the development of the saliency of the animate-inanimate categorization.  

On the one hand, maturation in the form of myelination of the occipital lobe, allows better and faster 

encoding of visual features and thus more efficient visual categorization. On the other hand, visual 

experience with objects and people is the opportunity for statistical learning of visual features that 
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concur in discriminating animate and inanimate objects. To explore the respective roles of brain 

maturation and visual experience on the saliency of category membership in infants’ behavior, we 

tested healthy preterm infants. Myelination of preterm infants’ brain largely depends on their corrected 

age, meaning the age they would have if they were born full-term (Tsuneishi & Casaer, 2007). Their 

visual experience, and more generally their sensory experience, in contrasts, correlates with their 

chronological age (time since birth). Preterm infants’ development is sometimes accelerated with 

respect to their corrected age, suggesting a major role of early experience in development (Caskey et 

al., 2011; Gonzalez-Gomez & Nazzi, 2012). Visual acuity, for instance, is equivalent in preterm and 

full-term 8-month-old infants (Van Hof-Van Duin & Mohn, 1986), thus higher than the acuity in infants 

of the same corrected age. Previous studies have used this approach, concluding that brain maturation 

plays a major role in the development of luminance sensitivity (Bosworth & Dobkins, 2009), language 

discrimination (Peña et al., 2010) but also, perhaps surprisingly, in the case of perceptual narrowing of 

phoneme discrimination (Peña et al., 2012). In contrast, visual experience plays the major role in the 

development of visual acuity (Van Hof-Van Duin & Mohn, 1986), sensitivity to contrast (Bosworth & 

Dobkins, 2009), binocular vision (Jandó et al., 2012) and gaze following (Peña et al., 2014). 

We tested healthy preterm infants at 8 months of chronological age, whose corrected ages were 

about 6 months. This way, preterm infants had a brain maturation similar to the one of 6-month-old 

full-term infants, but a visual exposure as long as 8-month-old full-term infants. We found that preterm 

infants relied on visual features diagnostic of animate and inanimate categories, just like 8-month-old 

full-term infants. Altogether, the results suggested a major role of infants’ experience in the use of 

category membership for exploring the world. 

 

4.2. Materials and Methods 

4.2.1. Participants 

The study involved 96 infants in total. Experiment 1 involved 48 infants of 6 months in 2 

different groups; one group of 24 infants (12 female; mean age: 6 months, 19 days; range: 6:4 to 6:30) 

was tested as 4-, 10- and 19-month-old infants were tested in the previous chapter (Experience 1, 

Chapter 3); the second group of 24 infants (12 female; mean age: 6 months, 15 days; range: 5:29 to 

6:27) were tested as 4-month-old infants in Experiment 2 of the previous chapter. Experiment 2 

involved 24 infants of 8 months (15 female; mean age: 8 months, 15 days; range: 8:0 to 9:1). 
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Experiment 3 involved 24 preterm infants of 8 months of chronological age (15 female; mean 

chronological age: 8 months, 17 days; mean corrected age: 6 months, 13 days; range of chronological 

age: 8:1 to 8:30; range of corrected age: 5:22 to 7:19). We are also acquiring data from preterm infants 

of 10 months of chronological age, but as I am writing this thesis, the group is not complete yet, thus I 

will not report the results here. The sample size of 24 was chosen based on previous experiment using 

the same methodology (Spriet et al., 2022). Thirty-six additional infants were tested in Experiments 1, 

2 and 3, but discarded from the analyses, according to the same inclusion criteria as in the previous 

chapter. 

4.2.2. Stimuli 

The stimuli, procedure and analyses were the same as described in the previous chapter (Spriet 

et al., 2022), except that analysis focus on the animate-inanimate model (see Supplementary Results 

for the same analysis). 

4.2.3. Analyses 

In the final analysis of Exp. 1, 6-month-olds contributed, on average, 35 ± 2 trials and 8-month-

olds, 35 ± 1 trials. In Exp. 2, 6-month-olds contributed on average to 29 ± 2 trials. In Exp. 3, 8-month-

old preterm infants contributed on average 34 ± 2 trials. Exclusion criteria led us to discard 3 infants in 

Exp. 1 because of insufficient data (2 six-month-olds and 1 eight-month-old), 31 six-month-old infants 

in Exp. 2 and 4 eight-month-old preterm infants in Exp. 3. Stimulus presentation differed between Exps. 

1-3 and 2, where stimuli might have been less visually salient in Exp. 2 compare to Exps. 1 and 3. This 

can explain the higher number of exclusion in Exp. 2 as compare to other Exps, as it was already the 

case in the previous chapter. 

 

4.3. Results 

4.3.1. Experiment 1 

Two groups (n = 48, 24 per group) of infants aged 6 months saw 36 pairs of images, in the same 

design than in Chapter 3. Images in Experiment 1a were the same as in Experiment 1 of Chapter 3, 

while images in Experiment 1b were controlled for the size, as in Experiment 2 of Chapter 3. We mainly 

looked for the animacy model in infants’ behavior, as well as the non-categorical features’ influence 

(i.e., features that are not eliciting the representation of a category), as those are the influences that 

changes from 4 to 10 months of age. 
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Using representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008), we 

computed the relationship between RDMs based in infants’ DLT (DLT-RDMs) and the model of 

animacy, as described in the previous chapter. We further explored the relationship between DLT-

RDMs and the set of categorization models based on fMRI responses evoked in human adults in the 

previous chapter, with RDMs computed at each location along the antero-posterior axis of the visual 

ventral stream (i.e., vector-of-ROIs analysis). Finally, as infants’ look was previously shown to be 

guided by physical properties of the stimulus, especially the size of the image, the elongation and the 

compactness, we also computed RDMs representing differences in size, elongation and compactness 

within pairs of images, keeping the signed values to have information about the image that was the 

larger, more compact or more elongated. We used those RDMs to study the implication of each physical 

property cited above as well as the implication of colors in the looking time of infants, keeping the 

signed values’ DLT to know which image infants would look more (e.g., the larger, more compact 

image). These physical properties should only be considered as proxies of physical properties of our 

stimuli, as other image properties could affect infants’ behavior. 

Experiment 1a. Six-month-olds showed no evidence of categorization with the non-controlled images; 

just like 4-month-olds in the previous chapter, they looked longer at human faces and big-inanimate 

objects, or at the larger, less elongated and more compact image on the screen. 

 More precisely, the infants’ DLT-RDM did not match the organization of object-related 

information in any smaller partition of the visual ventral stream (vector-of-ROIs analysis; Fig. 2). No 

correlation was found with the animacy model either (Table 1). The comparison between within-

category and between-category DLTs also failed in revealing smaller within-category DLTs compare 

to the between-category DLTs (Mdifference = -0.024 ± 0.092 SD; 95% CI = -inf – 0.008; t(23) = -1.279; 

P = 0.107; d = 0.261). 

 However, infants’ DLT-RDM correlated positively with the RDMs base on image size and 

compactness, and negatively with the RDM based on elongation (Table 1). No correlation was found 

with the color model. 

 A one-way repeated-measures ANOVA on the MLTs showed an effect of Category (F(7,161) 

= 20.440; P < 0.0001), which was driven by a preference for human faces over all other categories 

(αcorrected: 0.0018; all Ps < 0.0001; Supplementary Table 4). Infants also looked longer at big (M = 1.727 

s ± 0.296) compare to small inanimate objects (M = 1.466 s ± 0.282; Mdifference = 0.261; 95% CI = 0.116 

– 0.406; t(23) = 3.731; P = .001; d = 0.761). 
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 As human faces and large objects are the larger, less elongated and more compact images, size, 

elongation and/or compactness, rather than object identity, could thus explain object preferences in 6-

month-olds. In line with this, the MLTs computed for each image across subjects, correlated positively 

with image size (ρ = 0.335, P = 0.004) and compactness (ρ = 0. 397, P < 0.001), and negatively with 

elongation (ρ = -0.238, P = 0.044). That is, the larger the image, the less elongated or the more compact 

the shape, the longer infant looked at it. Given this result, with a new stepwise linear regression, we 

reassessed the relationship of the DLT-RDM with the six categorical models, after removing the 

variance explained by size, elongation and compactness. Yet, no model accounted for the remaining 

variance (all Ps > 0.02; Supplementary Results 4; Supplementary Table 5). Likewise, we found no 

evidence of categorization comparing average within- and between-category DLTs (all Ps > 0.09; 

Supplementary Results 4; Supplementary Table 6). 

Table 1. Results of representational similarity analysis reflecting relationships between the infants’ DLT-RDMs and the 

models of visual categorization in adults, the model of animacy, and the RDMs based on size, compactness, elongation and 

color differences. 

  

Exp. Age Model mean ρ  (SD) CI (min – max) t (df)   P Cohen’s d 

1a 6 m Animacy .052 (.172) -.021 – .125 1.485 (23) .151 .302 

  Size .169 (.178) .070 – .267 4.650 (23) <.001 .949 

  Elongation -.125 (.201) -.236 – -.014 -3.044 (23) .006 .622 

  Compactness .181 (.143) .101 – .260 6.174 (23) <.0001 1.266 

  Color .057 (.155) -.029 – .143 1.793 (23) .086 .368 

        

1b 6 m Animacy .078 (.152) .014 – .142 2.509 (23) .020 .513 

  Elongation -.235 (.241) -.369 – -.102 -4.792 (23) <.0001 .975 

  Compactness .378 (.228) .252 – .505 8.120 (23) <.0001 1.658 

  Color -.034 (.171) -.128 – .061 -.965 (23) n.s. .199 

        

2 8 m Animacy .188 (.178) .113 – .263 5.170 (23) <.0001 1.056 

  Size .144 (.177) .045 – .242 3.963 (23) <.001 .814 

  Elongation -.107 (.178) -.205 – -.008 -2.937 (23) .007 .601 

  Compactness .160 (.188) .056 – .264 4.180 (23) <.001 .851 

  Color .025 (.170) -.069 – .119 .718 (23) n.s. .147 

        

3 Preterm 
8 m 

Animacy .089 (.177) .014 – .164 2.457 (23) .022 .503 

  Size .164 (.207) .050 – .278 3.890 (23) <.001 .792 

  Elongation -.119 (.191) -.224 – -.013 -3.054 (23) .006 .623 

  Compactness .155 (.171) .060 – .249 4.428 (23) <.001 .906 

  Color .012 (.173) -.083 – .108 .350 (23) n.s. .069 

        

 

Note: Exp., experiment; Age is the chronological age; m, months; mean ρ are the fisher transformed ρ; CI, confidence interval; 

Highlighted in bold are the significant results; α = .05 for Animacy model; α = .0125 for Size, Elongation, Compactness and color 
except for Exp. 2 where α = .017; n.s.= non-significant results with P > .250. 
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Fig. 1. Results of representational similarity analysis and of the pairwise comparisons of MLT between- and within-categories 

for each age group in Exps. 1, 2 and 3. (Left) Mean RDM reflecting dissimilarities between- and within-categories in terms of 

DLTs. Black squares in the RDMs highlight categorization by animacy in 6-month-olds in Exp. 1b (B), 8-month-olds in Exp. 

2 (C) and 8-month-old preterm infants in Exp. 3 (D), and by the eight categories and animacy in 8-month-olds in Exp. 2 (C). 

(Center) Matrix of t-values for each pairwise comparison between MLTs of the individual categories for 6- month-olds in Exp. 

1a (A), the 6-month-olds in Exp. 1b (B), 8-month-olds in Exp. 2 (C) and 8-month-old preterm infants in Exp. 3 (D). Squares in 

dark blue denote significant effects; squares in lighter blue denote effects that did not survive the multiple comparison correction 

(trends); red squares denote nonsignificant (n.s.) or nontested comparisons. (Right) Distribution of MLTs. Box-plots represent 

the minimum, the first quartile, the median, the third quartile and the maximum of the population distribution; outliers are 

denoted by dots. 
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 Experiment 1b. As 6-month-olds showed no evidence of categorization in Exp. 1a, but a preference for 

human faces and big-inanimate objects, just like 4-month-olds (Spriet et al., 2022), which might be 

explained by physical properties such as image size, elongation and compactness, we studied whether 

a preference for certain physical properties might have overshadowed categorical effects, and tested a 

new group of 6-month-olds (n = 24) with the same images, but matched for size (number of pixels). 

Only size was modified because it is the only feature of the three explored that can change without 

affecting object identity or recognizability. Results confirmed the preference for human faces and for 

big-inanimate objects, and, like for 4-month-olds (Chapter 3), revealed evidence for the animate-

inanimate categorization. 

 Specifically, the infants’ DLT-RDMs correlated with the animacy model (Table 1) as well as 

with the fMRI-based RDMs extracted from the anterior fusiform gyrus in the vector-of-ROIs analysis 

(Fig. 2). There remained a significant negative correlation with the elongation model, a significant 

positive correlation with the compactness model and no correlation with the color model (Table 1). 

 The correlation with the animacy model was confirmed by the comparison between within-

category and between-category DLTs, showing that within animate and inanimate DLTs were 

Fig. 2. Relationship between infants’ looking behavior and visual object representation in the adults’ visual cortex. (A) Results 

of the representational similarity analysis between the mean fMRI-based RDM (Spriet et al., 2022) in each ROI and the DLT-

RDM of each infant in each age group of Exps. 1, 2 and 3. Box-plots represent the minimum, the first quartile, the median, the 

third quartile, and the maximum of the population distribution as well as outliers (dots); *P < 0.017; ***P < 0.0003. (B) Results 

of the representational similarity analysis between the infants’ DLT-RDMs and the fMRI-based RDM (Spriet et al., 2022) 

derived from each partition along the ventral visual stream. Solid bars represent clusters with significant correlation (above 0) 

for each age group of Exps. 1, 2 and 3. 
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significantly smaller than between animate/inanimate DLTs (Mdifference = -0.041 ± 0.095 SD; 95% CI = 

-inf – -0.008; t(23) = -2.139; P = 0.022; d = 0.432). For other models, see Supplementary Results 1. 

 A one-way repeated measures ANOVA on the MLTs showed an effect of Category (F(7,161) 

= 73.463; P < 0.0001), which was driven by a preference for human faces over all other categories 

(αcorrected: 0.0018; all Ps < 0.0001; Supplementary Table 4), for animate compare to inanimate (10 out 

of 16 comparisons are significant with Ps < .001; 3 additional comparisons would be significant without 

the multiple tests correction), for big objects compare to small ones, whether artificial or natural (3 out 

of 4 comparisons are significant with Ps < .0001; the remaining does not survive the multiple tests 

correction but would be significant without it, P = .004), for humans compare to nonhuman animals (3 

out of 4 comparisons are significant with Ps < .0001; the remaining one would be without the multiple 

tests correction, P = .014) as well as for faces compare to bodies (all Ps < .0001). Infants looked indeed 

longer at big (M = 1.117 s ± 0.230) compare to small inanimate objects (M = 0.716 s ± 0.221; 95% CI 

= 0.296 – 0.507; t(23) = 7.847; P < 0.0001; d = 1.598), as well as at animate (M = 1.295 s ± 0.189) 

compare to inanimate (M = 0.916 s ± 0.188; 95% CI = 0.266 – 0.491; t(23) = 6.947; P < 0.0001; d = 

1.420), human (M = 1.490 s ± 0.257) over nonhuman (M = 1.100 s ± 0.284; 95% CI = 0.227 – 0.553; 

t(23) = 4.944; P < 0.0001; d = 1.010), and faces (M = 1.928 s ± 0.422) over bodies (M = 0.662 s ± 

0.175; 95% CI = 1.046 – 1.488; t(23) = 11.857; P < 0.0001; d = 2.423). Thus, the preference for human 

faces and big objects, which were the largest objects in Experiment 1, remained despite matching 

images for size. Moreover, the average MLTs for individual images were negatively correlated with 

elongation (ρ = -0.407, P < 0.001) and positively correlated with compactness (ρ = 0. 603, P < 0.0001), 

confirming the bias for the less elongated and/or more compact shapes. Given the last result, we 

reassessed the correlation of the DLT-RDM with the six categorical models, after removing the 

variance explained by elongation and compactness. However, none of the six synthetical models 

explained infants’ behavior (all Ps > 0.07; Supplementary Table 5), and none of the between-category 

and within-category comparisons reveal significant differences either (all Ps > 0.19; Supplementary 

Table 6). 

 

4.3.2. Experiment 2 

After having replicated 4-month-old infants’ behavior with 6-month-old infants, we explored 

the spontaneous use of visual features diagnostic of animate and inanimate categories in 8-month-old 

infants. The group-averaged DLT-RDM showed an adult-like organization (Fig. 1), as shown the 
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vector-of-ROIs analysis, revealing that the DLT-RDM correlated all along the visual ventral stream, 

especially with the fusiform gyrus (where all Ps < 0.001; Fig. 2). The significant correlation between 

infants’ DLT-RDM and the model of Animacy (see statistics in Table 1; Fig. 1) also revealed the 

spontaneous guidance of 8-month-old infants’ look by category membership, further demonstrate by 

the smaller within-category DLTs compare to the between-category DLTs for animate and inanimate 

categories (Mdifference = -0.111 ± 0.098 SD; 95% CI = -inf – -0.077; t(23) = -5.556; P < 0.0001; d = 

1.133). For other models, see Supplementary Results 1. 

 Infants’ DLT-RDM also correlated positively with the RDMs based on image size and 

compactness, and negatively with the RDM based on elongation (Table 1). No correlation was found 

with the color model. Given this result, with a new stepwise linear regression, we reassessed the 

relationship of the DLT-RDM with the six categorical models, after removing the variance explained 

by the size, compactness and elongation of images. This analysis confirmed the effect of the animacy 

model (Supplementary Results 4; Supplementary Table 5). Likewise, we found evidence of 

categorization according to the animacy model comparing average within- and between-category DLTs 

(Supplementary Results 4; Supplementary Table 6). 

 We then assessed possible preferences, considering the mean looking times (MLTs) toward 

each category, averaged across trials and subjects. We thus performed a one-way repeated-measures 

ANOVA, which showed an effect of Category (F(7,161) = 18.248; P < 0.0001), which reflected a 

preference (longer looking times) for human faces over almost all other categories except over 

nonhuman animal faces (αcorrected: 0.0018; all Ps < 0.001 except for the comparison with nonhuman 

animal faces where P > 0.08; Supplementary Table 4 for t- and P-values of all comparisons). It also 

reflected a preference for animate (M = 2.066 s ± 0.317) over inanimate categories (M = 1.483 s ± 

0.234; Mdifference = 0.583; 95% CI = 0.434 – 0.731; t(23) = 8.120; P < 0.0001 ; d = 1.656), as well as for 

faces (M = 2.296 s ± 0.428) over bodies (M = 1.836 s ± 0.328; Mdifference = 0.461; 95% CI = 0.282 – 

0.639; t(23) = 5.331; P < 0.0001; d = 1.090). 

 Finally, because 8-month-old infants’ looking behavior is also driven by physical properties of 

the images, and because of the preference for at least human faces, which were the largest objects in 

Experiment 1, we assessed the correlation between the average MLTs for individual images and each 

physical properties influencing infants’ behavior. The average MLTs were not correlated with the size 

(ρ = 0.211, P = 0.075) nor with elongation (ρ = -0.072, P = 0.547) but positively correlated with 

compactness (ρ = 0. 308, P = 0.009), confirming the bias for the more compact shapes. 
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Comparison between groups 

Categorical distinctions. Results showed that categorization by animacy model emerged by 8 months. 

Additional between-subject analyses confirmed the differences between age groups, with respect to 

object categorization by animacy. We analyzed the variation of the mean difference between averaged 

between-categories vs. averaged within-category DLTs with a two sample t-test, exploring the effect 

of Age (6 months and 8 months), and found a significant difference between the younger and the older 

groups of infants (M6month-olds = -0.024 ± 0.092 SD; M8-month-olds = -0.111 ± 0.098; 95% CI = 0.032 – 

0.143; t(46) = 3.183; P = 0.003; d = 0.784). 

Additional analysis, including 4-, 10- and 19-month-old infants’ data from Chapter 3 revealed 

an increase of category distinctiveness with age, i.e., an increase of the difference between within and 

between category comparisons, either because of a smaller dissimilarity within category and/or because 

of a higher dissimilarity between category (see Supplementary Results 6; Supplementary Fig. 3). 

Lower-level dimensions. The above analyses also showed that features such as size, elongation and 

compactness contributed to driving the behavior of both 6- and 8-month-olds. We assessed whether a 

difference across groups exists considering those dimension, with a two-sample t-test, testing the effect 

of Age (6 months and 8 months) on the variation of correlation coefficients (fisher transformed) for the 

correlation between the DLT-RDMs and the RDMs for each of three visual dimensions (image size, 

elongation, and compactness). 

The correlation between looking behavior and image size, elongation and compactness do not 

appear to change between 6 and 8 months of age. Pairwise comparisons showed no difference between 

6- and 8-month-olds for image size (M6-month-olds = 0.169 ± 0.178 SD; M8-month-olds = 0.144 ± 0.177; 95% 

CI = -0.078 – 0.129; t(46) = 0.493; P = 0.624; d = 0.093), elongation (M6-month-olds = -0.125 ± 0.201 SD; 

M8-month-olds = -0.107 ± 0.178; 95% CI = -0.128 – 0.092; t(46) = -0.329; P = 0.744; d = 0.070) nor 

compactness (M6-month-olds = 0.181 ± 0.143 SD; M8-month-olds = 0.160 ± 0.188; 95% CI = -0.077 – 0.117; 

t(46) = 0.421; P = 0.676; d = 0.083). 

 

4.3.3. Experiment 3 

In Experiments 1-2, we found that both 6- and 8-month-olds explore their visual inputs relying 

on physical properties of the image such as the size, compactness and elongation, while only 8-month-

old infants (and not 6-month-olds) also relied on the category membership, especially on the features 
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diagnostic of animate and inanimate categories. Exp. 1b further showed that, when controlling for the 

size of images, 6-month-olds demonstrated their capacity to represent the categories of animate and 

inanimate. In doing so, they behaved exactly like 4-month-old infants (Spriet et al., 2022). These data 

suggest two sequential developments: (1) between 6 and 8 months, the weight of categorical 

distinctions (animate-inanimate) increases; (2) between 8 and 10 months, the weight of non-categorical 

features decreases. 

We now explore the respective roles of brain maturation and visual experience in the first 

development, by testing preterm infants at 8 months of chronological age, with corrected ages of 6 

months. Thus, their brain maturation is similar to the one of 6-month-old full-term infants, but they 

have the same amount of visual exposure as 8-month-old full-term infants. If the brain maturation 

triggers the transition, 8-month-old preterm infants would then behave as 6-month-old full-term infants. 

However, if the experience drives infants’ attention towards category membership, 8-month-old 

preterm infants would behave as 8-month-old full-term infants. 

Just like 8-month-old full-term infants, 8-month-old preterm infants showed a clear evidence 

of animate-inanimate categorization; they also looked longer at human faces, or at the larger, less 

elongated and more compact image on the screen. Their behavior also compared to the organization 

found in adults’ ventral stream. Indeed, 8-month-old preterm infants’ behavior correlated with a small 

part of the adult ventral stream, although a smaller portion as compare to 8-month-old full-term infants. 

 More precisely, the infants’ DLT-RDM matched a small partition of the visual ventral stream, 

in the anterior part of the fusiform gyrus (vector-of-ROIs analysis; Fig. 2). In addition, infants’ DLT-

RDM did correlate with the Animacy model (Table 1; Fig. 1). The correlation with the animacy model 

was confirmed by the comparison between within-category and between-category DLTs, showing that 

within animate and inanimate DLTs were significantly smaller than between animate/inanimate DLTs 

(Mdifference = -0.051 ± 0.111 SD; 95% CI = -inf – -0.012; t(23) = -2.243; P = 0.017; d = 0.460). For other 

models, see Supplementary Results 1. 

 As for 6- and 8-month-old full-term infants, 8-month-old preterm infants’ DLT-RDM 

correlated positively with the RDMs base on image size and compactness, and negatively with the 

RDM based on elongation (Table 1). No correlation was found with the color model. 

 A one-way repeated-measures ANOVA on the MLTs showed an effect of Category (F(7,161) 

= 17.873; P < 0.0001), which was driven by a preference for human faces over all other categories 

(αcorrected: 0.0018; all Ps < 0.0001; Supplementary Table 3). 



74 

 

 

 Because Experiments 1-2 showed that size, elongation and/or compactness, rather than object 

identity, could indeed explain object preferences in 6- and 8-month-old full-term infants, we explored 

again the correlation between the MLTs computed for each image across subjects, with image size (ρ 

= 0.276, P = 0.019), compactness (ρ = 0. 381, P = 0.001), and elongation (ρ = -0.189, P = 0.111), and 

found that both the size and elongation could account for infants’ preferences. We thus reassessed the 

relationship of the DLT-RDM with the six categorical models, with a new stepwise linear regression, 

after removing the variance explained by size, elongation and compactness. This analysis revealed 

again that the animacy model explained infants’ DLT variance (Supplementary Results 4; 

Supplementary Table 5). Likewise, we found categorization by animacy when comparing average 

within- and between-category DLTs (Supplementary Results 4; Supplementary Table 6). 

 As we were interested into comparing preterm infants’ behavior to full-term infants’ behavior, 

we assessed which of the two averaged full-term infants’ behavioral matrices best represented the 

infants’ DLT-RDMs, performing two correlations between 8-month-old preterm infants’ DLT-RDM 

and the averaged DLT-RDM of 6-month-old infants in Exp. 1a and the averaged DLT-RDM of 8-

month-old infants in Exp. 2. This analysis revealed that, while 8-month-old preterm infants’ behavior 

mimicked 8-month-old full-term infants’ behavior in their use of animate-inanimate features, but not 

so much 6-month-old full-term infants’ behavior, 8-month-old preterm infants’ behavior was 

corresponding to 6-month-old full-term infants’ behavior (Mfisherρ = 0.110 ± 0.216 SD; 97.5% CI = 

0.020 – 0.215; t(23) = 2.493; P = 0.020; d = 0.509) as well as with 8-month-old full-term infants’ 

behavior (Mfisherρ = 0.103 ± 0.234 SD; 97.5% CI = -0.012 – 0.217; t(23) = 2.145; P = 0.043; d = 0.438). 

 

4.4. Discussion 

Following the previous chapter, we explored the transitional age at which the features important 

for the animate-inanimate categorization gain sufficient salience to guide infants’ behavior in their 

visual exploration of objects. We further sought to understand the respective roles of the brain 

maturation and visual experience in this development. Our results revealed that infants started to 

spontaneously rely on category memberships at 8 months of age, though non-categorical visual features 

(i.e., features that are not eliciting the representation of a category) such as the physical properties of 

the images still influenced them, pointing to a milestone at 8 months in the visual categorization 

development. This transition was mainly driven by experience, as 8-month-old preterm infants 

demonstrated a behavior guided by animate-inanimate features as well. 
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First step of the visual categorization development. Younger infants did not rely on category 

membership when exploring objects. The representation of objects by category was present, but 

hindered by a greater reliance on other, non-categorical visual features. Indeed, 4- and 6-month-old 

infants looked longer at the bigger, more compact and less elongated objects in a pair, without paying 

attention to the category of the images. However, once objects were presented at the same size, 

controlling for some non-categorical visual features, infants showed evidence of categorizing images 

according to animacy.  

 By 8 months, infants’ looks were spontaneously guided by category membership when 

exploring objects, especially those responsible for the animate-inanimate categorization. Their behavior 

was still influenced by non-categorical visual features as well: they also looked longer at the bigger, 

more compact and less elongated images. This pattern is supporting a two-stages development in the 

saliency of visual features diagnostic of a category in infants’ behavior. First, between 6 and 8 months 

of age, infants start to pay more attention to category membership, and explore images according to 

both the non-categorical features and the features diagnostic of a category of the images. Second, 

between 8 and 10 months of age, infants attribute less importance to non-categorical features and only 

explore images based on their category membership. Eight-month-old infants’ behavior also reflected 

the organization of object categorization observed in the adults’ visual ventral stream, in both posterior 

and anterior regions. It was only the case in anterior regions for 6 month-olds, and only when image 

size was controlled. 

Effect of brain maturation and experience. By studying preterm infants that have the same 

chronological age as 8-month-old full-term infants but a corrected age of 6 months, thus a brain 

maturation equivalent to that of 6-month-old full-term infants, we were able to evaluate the respective 

roles of brain maturation and visual experience on the saliency of features diagnostic of a category in 

infants’ exploration of the world. Our results revealed that for the category membership to become 

salient enough to drive infants’ behavior, infants need visual experience. Indeed, 8-month-old preterm 

infants’ behavior paralleled the behavior of infants with the same chronological age: 8-month-old full-

term infants. Both groups paid attention to non-categorical features but also categorized images 

according to animacy. Both groups’ behaviors reflected the organization of object categorization as 

found in the adults’ visual ventral stream.  

The effect of categorization appears however stronger in full-term 8-month-olds than in preterm 

8-month-olds, and the full-terms’ behavior reflected the organization of a larger portion of the ventral 



76 

 

 

stream than preterms’ behavior. Thus, even though our main analyses highlighted the role of visual 

experience, a subsidiary role for maturation is not to be excluded. 

Importantly, we repeatedly showed, in 6-month-olds and in 4-month-olds (Chapter 3), that 

visual categorization is present in young infants. What develops between 6 and 8 months, as a 

consequence of visual experience, is not the categories per se, but rather their weight in guiding infants 

looking behavior. Below we begin a reflection about the type of visual experience and the learning 

mechanism that might account for the observed development. 

 Between 6 and 8 months of age, infants develop in many respect. They start to be able to seat 

around 6 months of age, but still depend on their parents reach the seating position. Only by 8 months 

do they start to actually seat by themselves, in addition to be able to crawl (Malina, 2004; Marcinowski 

et al., 2019). A major difference between 6 and 8 months of age seems to be the infants’ independence 

in their interaction: they start to move by themselves, they can now better chose with what and when 

to interact with objects in their environment. They suddenly also exponentially increase their 

possibilities to learn about objects in their environment (Libertus & Hauf, 2017; Soska & Adolph, 

2014). In addition to those motor developments, they also demonstrate an acceleration in the processing 

of visual information (Hochmann & Kouider, 2022) and developments of social skill, such as the 

beginning of joint attention, and interpreting referential gazes and pointing (Carpenter et al., 1998; 

Striano & Bertin, 2005). 

The increasing weight of categorical information around 8 months may be related to the 

increased amount of varied interactions with objects, consequences of independent locomotion and 

increased social interactions. If so, the interpretation of the development of preterm infants observed in 

Experiment 3 depends on the respective roles of maturation and experience in the development of motor 

and social skills. Gaze following developed at 7 months of age, in both full-term and preterm infants 

(Peña et al., 2014), while prematurity had different effect on different motor skills, either shown as 

delayed compare to infants of the same corrected age, or shown to partly differ between infants of the 

same chronological age but not in a majority of preterm infants (Celik et al., 2018; see for review 

Fuentefria et al., 2017), pointing towards social skills as potential co-variates of the increase weight of 

categorical information in infants’ behavior. 

 Another account for this switch comes from a more specific visual exposure. Indeed, while 

infants grow older and become more independent in their exploration of the world, they are still 

evolving in a specific environment. They are, in general, exposed to their caregivers, some example of 
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animals, as well as some examples of natural and artificial objects. While being exposed to all those 

objects, their visual system might become tuned toward the statistical regularities of those objects, and 

as their brain is already able to pick up those regularities, being sufficiently exposed to those objects 

leads to the saliency of category membership in driving infants’ attention. 

This question could be address with preterm infants, although it was not the aim of this study. 

Studies have shown that motor development in preterm infants was mainly delayed, not only as 

compare to their chronological, but also corrected age (Celik et al., 2018; see for review Fuentefria et 

al., 2017), although not a majority of preterm infants were showing delay in their motor development 

compare to their corrected age (Valentini et al., 2019). However, infants’ gaze following appeared to 

be equivalent in preterm and full-term infants of the same chronological age (Peña et al., 2014), 

suggesting equivalent gaze control in preterm infants compare to their chronological age. Coupled with 

an adequate screening of visual exposition (e.g., reading book with many examples of animals), and a 

better inspection of the time spent in a neonatal care unit after being born, comparing preterm infants 

with and without social delays might inform further studies about the specific and aspecific role of 

visual experience and overall experience in the category membership’s saliency.  

Conclusion. We have shown that by 8 months of age, once infants were sufficiently exposed to their 

environment, features diagnostic of a category become salient enough to influence infants’ looking 

behavior. Infants are still sensitive to the stimuli size, elongation and compactness, but they also give 

higher weight to their category membership, especially their animacy. 

 

  



78 

 

 

5. Perceptual acceleration enhances visual object categorization 

(study 3) 

This chapter focuses on the animate-inanimate superordinate categorization, using a set of 

images selected to represent the big variability of within each category of animate and inanimate objects 

(photographs of objects superimposed on a gray background). It aims at examining the speed of 

categorization, in adults and infants in the first year of life. 

 

5.1. Introduction 

Visual categorization is at the basis of our reasoning. It allows us to start making sense of the 

environment in a glance, and it is already present early on in life (Kellman & Arterberry, 2007; Slater, 

2002). Categorizing an object leads us to automatically retrieve information attached to this object, and 

permits to act accordingly (e.g., fleeing a predator; eat an apple). The visual categorization is based on 

the accumulation of evidence, from encoding simple lower-level visual features such as the color, the 

spatial frequency, the orientation or the contrast of objects, that decay fast in time, to encoding higher-

level visual features via the abstraction of the visual input, that decay more slower in time and lead to 

categorical representations, and to the classification and identification of the object (Groen et al., 2017). 

Previous studies have found that categorical brain response were only captured when adults report 

perceiving a face, even in objects stimuli that had no face but were arranged in a face configuration 

(e.g., eggs and bacon in a pan), suggesting that processing visual information into categories elicits 

perceptual awareness in adults (Rekow, Baudouin, Brochard, et al., 2022; Retter et al., 2021). 

Perceiving visual categories thus reflects adults’ ability to perceive the object, be aware of it, and think 

about it. Evidence for infants’ capacity to categorize objects were already described at 4 months of age, 

especially for the human face categorization (de Heering & Rossion, 2015; Leleu et al., 2020; Rekow 

et al., 2021), as well as for larger categories, such as mammals and furniture (Peykarjou et al., 2023, 

2024), or animate and inanimate objects (Spriet et al., 2022). The categorization of animate and 

inanimate objects reflect a fundamental step for reasoning developments as it may drive different kinds 

of inferences in infancy, referred to as naïve psychology and naïve physics (Carey, 2009; Spelke, 2022). 

That is, infants have different expectations and apply different principles (the principles of naïve 

psychology) when reasoning about animate agents that have goals (A. Woodward, 1998), beliefs 

(Kovács et al., 2010) and causal power (Adibpour & Hochmann, 2023; Muentener & Carey, 2010), and 
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inanimate objects, that are processed according to the laws of physics (naïve physics; Carey, 2009; 

Spelke, 2022). 

The processing of visual information begins at birth but gets faster and faster throughout 

development, and especially accelerates in the first year of life. Previous studies have explored the 

developmental changes in the P300 component of event-related potentials (ERP) measured by 

electroencephalography (EEG). This component is found in a large variety of tasks in adults, and is 

specifically associated with the detection of targets and novel objects in a visual task, and considered 

as an index of the speed of information processing (Duncan-Johnson & Donchin, 1982). In infants, the 

P300 has a slower latency, which accelerates throughout development, especially throughout the first 

year of life (De Haan et al., 2003; Fuchigami et al., 1995; Kouider et al., 2013; Nelson & Salapatek, 

1986; Riggins & Scott, 2020; Van Dinteren et al., 2014). An acceleration of internal brain rhythm such 

as the alpha or the mu rhythms has been describe from infancy to adulthood (Bender et al., 2023; 

Elhamiasl et al., 2023). Also the speed of information transmission increases from infancy to adulthood, 

as evidenced by the decrease of the latency of an evoked response (Van Blooijs et al., 2023). Such 

acceleration of the information processing is also reflected in visuo-attentional processes such as the 

attentional blink, an attentional phenomenon reflected by a miss of a target after reported a first target, 

when the two targets are presented in a short window. Such process was recently found to be more than 

6 times longer at 5 months of age compared to adults, and already about 2 to 3 time faster in 8-month-

old infants compare to 5-month-old infants (Hochmann & Kouider, 2022). This acceleration of 

information processing in infancy is probably related to the myelination of the occipital and parietal 

lobes, that start in the 4th to 6th month of life, and is, already at 11 months of age, at 50% of its final 

adults’ myelination, in the occipital lobe (Deoni et al., 2011; Dubois et al., 2014). 

The encoding of visual features that eventually lead to the representation of visual categories, 

is done in the ventral stream (Grill-Spector, 2003; Grill-Spector et al., 1998; Grill-Spector & Weiner, 

2014; Groen et al., 2017; Konkle & Caramazza, 2013; Reddy & Kanwisher, 2006; Ritchie et al., 2021; 

Wiggett et al., 2009). In this stream, lower-level features are encoded in more posterior regions, but 

also decay faster in time compared to higher-level features, that are encoded in more anterior regions 

(Gao et al., 2020; Groen et al., 2017; Kiebel et al., 2008). Previous results evidenced that younger 

infants’ categorization of objects as animate or inanimate (denoted by looking times) is predicted by 

the patterns of neural responses to objects in the most anterior part of the adult’s ventral stream (Spriet 

et al., 2022), suggesting that infants mostly rely on higher-level visual features for categorizing objects 

by animacy, features that decay more slowly as compare to lower-level features. When they grow older, 
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between 6 to 8 months of age, their categorization performance correlates with information in larger 

portion of the visual ventral stream (Chapter 4), a timeline that is similar to the acceleration of 

information processing (Hochmann & Kouider, 2022). Thus, we hypothesized that the acceleration of 

visual information influences the representation of categories throughout development, and the infants’ 

perceptual awareness of the categories. According to this hypothesis, because younger infants are 

slower in processing information, and especially here visual information, they would only be able to 

integrate higher-level visual features when representing objects’ category, that decay more slowly as 

compare to the lower-level visual features, and are encoded in more anterior regions of the ventral 

stream. Then, as infants get older, and as the speed of information processing accelerates, they would 

be able to integrate visual features earlier in time increasing the categorization of already represented 

categories. However, another possibility is that as soon as a category is represented, the speed of 

information processing does not affect the content of the representation at all. This chapter aims at 

studying the impact of the acceleration of visual processes on infants’ and adults’ representation of the 

visual object categories. 

Based on the work in previous chapters, this study focuses on the animate-inanimate 

categorization. We used the frequency-tagging paradigm (Norcia et al., 2015; Rossion, 2014b) and a 

regular category-selective stimulation to study the animate-inanimate categorization in adults and 

infants at 4 and 9 months of age, with different frequencies of images presentation: 4, 6, 12 and 30 Hz 

(250ms, 167ms, 83ms and 33ms per image respectively). This paradigm is suitable for infants’ studies 

as the response is specified a priori by the stimulation frequency of the oddball, easily extracted from 

the signal noise as not being so much influenced by random (i.e., not regular) artifacts such as 

movements, and as it can be recorded with short images presentation, allowing to have a response even 

though the infants’ attention is very limited (Kabdebon et al., 2022; Peykarjou, 2022). 

We show evidence for an automatic and fast visual categorization of animate and inanimate 

objects in all age groups, starting from 4 months of age. This categorical response consistently 

decreased as the stimulation frequency increased for all age groups, but accelerates through 

development. In particular, it was only observed with the 4 Hz presentation, but not with the 6 Hz 

presentation in 4-month-old infants; it was found at both 6 and 12 Hz in 9-month-old infants, and in 6, 

12 and 30 Hz in adults. We thus measured a dramatic acceleration of the categorization processes, that 

is at least 3 times faster at 9 months of age compare to 4 months of age, and get even faster later on, 

until adulthood. While younger infants need time to process objects and learn about them, older infants 
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get faster in retrieving information based on the visual features into a better understanding of the 

environment, up until adulthood.  

 

5.2. Materials and Methods 

5.2.1. Participants 

The study involved a total of 128 infants and 36 adult participants. Experiment 1 involved 36 

healthy adults (3 groups of 12 adults; 15 identified their gender as male, 21 as female, mean age 27.7 

± 6.7 years) with normal or corrected-to-normal vision and no report of history of psychiatric or 

neurological conditions. An additional participant was tested but excluded from the analysis for falling 

asleep during the experiment. The sample size for adults’ experiment (N = 12) was chosen based on a 

power analysis of the results of experiment with similar design (see Chapter 6) that indicates a minimum 

of 3 participants with this set of stimuli (Cohen’s d = 3.826, ß= 0.95, α = 0.05, one-tail t-test; GPower 

3.1). Experiment 2 involved 64 infants of 4 months divided in 2 groups of 32 infants each (35 male, 29 

female; mean age 138.3 ± 9.3 days), and 10 additional infants were tested but excluded from the 

analysis for crying and moving too much, leading to not enough trial included (see preprocessing). 

Experiment 3 involved 64 infants of 9 months divided in 2 groups of 32 infants each (32 male, 30 

female; mean age 288.0 ± 8.9 days) with 7 additional infants being tested but excluded from the analysis 

for not looking at the screen, moving too much or pulling off the net during the experiment, leading 

again to not enough trial included. The sample size for infants’ experiments (N = 32) was chosen based 

on a statistical power analysis performed on prior work using frequency-tagging to study the 

categorization of human faces (de Heering & Rossion, 2015). In that study, 15 infants of 4 months of 

age showed evidence of categorizing face stimuli. The minimal sample size for the observed effect was 

estimated to be 9 infants (Cohen’s d = 1.298, ß = 0.95, α = 0.05; GPower 3.1). In the present study, we 

expected a smaller effect size as we were studying categories with higher within-category variability 

than the human face category. Moreover, we aimed at comparing 2 speed conditions at each age. Thus, 

we decided to test 32 infants per group. After having tested the first group, we verified that this sample 

size was larger than the minimal sample size (N = 19) required to obtain the effect (group of 4-month-

olds tested with 4 Hz presentation: Cohen’s d = 0.610, ß = 0.95, α = 0.05; GPower 3.1). and keep the 

same sample size. 
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5.2.2. Stimuli 

Stimuli were colored photographs of isolated real-world objects picked from the internet, with 

the intention to reflect as much as possible the actual variability of each category in the real world. All 

stimuli were superimposed on a gray background, and each image was resized at 629x629 pixels. 

Images depicted 320 different animate (51 fish, 70 birds, 14 amphibians, 6 turtles and 179 non-human 

mammals including 10 nonhuman primates, 5 cats and 8 dogs) and 320 different inanimate objects (16 

constructions, 108 graspable objects such as tools, 54 fruits and vegetables, 43 flowers bushes and trees, 

66 pieces of furniture and 33 vehicles). Both animate and inanimate stimuli contained different views 

of the objects, i.e., objects could be in front-view, but also seen from the top, or the side. Not all images 

were centered into the square, again aiming at increasing the variability of the stimulus set. For a better 

description of the stimuli, see Chapter 6, “original set”. 

5.2.3. Experimental procedure 

Adult participants sat on a chair ~60 cm away from a 60 Hz computer screen (resolution 

1920x1200 pixels, size 51.5x32.2cm), where stimuli were presented centrally (16° of visual angle). 

Infant participants sat on their parents’ lap, in the same apparatus adults were. Stimuli were presented 

via a fast periodic visual stimulation (FPVS), at the frequency of 4, 6, 12 or 30 Hz (250, 166.67, 83.33 

or 33.33 ms per image), using Psychtoolbox (Brainard, 1997) and MATLAB (The MathWorks, 

Nantucket, MA) in a squarewave design. 

Experiment 1. Each participant was tested in one condition only (6, 12 or 30 Hz) with 32 trials. Each 

trial lasted 32s and consisted of one stream of images, pseudo-randomly selected from one category 

(animate or inanimate) with the regular insertion, every five images, of one image of the other category, 

leading a category-selective stimulation of 6/5 = 1.2 Hz; 12/5 = 2.4 Hz or 30/5 = 6 Hz (Figure 1 A). 

Half of the trials used animate as the rare, category-selective stimulation, and half used inanimate. Each 

trial started by a fade-in (increase in contrast) of 2s and ended by a fade-out (decrease in contrast) of 

2s, to ease the presentation for participant eyes and avoid eye movement caused by an abrupt 

appearance or disappearance (de Heering & Rossion, 2015). At the end of each trial, participants were 

presented with one image from the regular category (e.g., animate) to avoid creating an attentional bias 

toward the rare category (e.g., inanimate), as attention could enhance categorization (Kaiser, Oosterhof, 

et al., 2016). Participants were asked to say if they saw the image in the previous stream, by pressing 

one of two keys. This task was only designed to help participant to stay focus on the screen and the 

experiment, and results were not analyzed. 
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Experiments 2-3. The procedure for infants’ group was identical to that of Experiment 1, except for 

the following aspects. First, 4-month-olds were tested with 4 Hz or 6 Hz streams (Experiment 2) and 

9-month-olds with 6 or 12 Hz streams (Experiment 3). For the 4 Hz streams, the rare category images 

occured every 4 images instead of every 5 images, leading a category-selective frequency of 4/4 = 1 hz 

(Figure 1 A).  Second, infants only saw a maximum of 16 trials, which all shared the same rare category 

(either anomate or inanimate). The experiment ended when all the 16 trials were shown, or when the 

infant started to cry, fell asleep, moved a lot or stopped looking at the screen anymore. Finally, infants 

did not take the memory test. 

5.2.4. EEG 

EEG recordings. EEG data was acquired using 128-channel EGI nets (Electrical Geodesics, Inc.). Data 

were acquired with vertex reference, using the EGI Net Station acquisition software, continuously 

digitized at a sampling rate of 1kHz (net amp 400 system EGI). Impedance was lowered for each 

participant as much as possible, not exceeding 40kΩ. During the experiment, triggers were sent from 

the experimental computer to the acquisition computer via a light sensor: a white square appeared in 

correspondence to the sensor (i.e., at the bottom right of the screen) at the beginning and at the end of 

each trial.  

EEG preprocessing. All preprocessing steps were performed using EEGLAB toolbox (Delorme & 

Makeig, 2004) and MATLAB R2015b. Raw data for each participant were first filtered using a 4th-

order high pass butterworth filter at 0.1 Hz and a 4th-order low pass butterworth filter at 100 Hz. When 

needed, electrodes were interpolated (no more than 3 electrodes per adult participant and 1 electrode 

per infant participant). For adult participants, all electrodes were re-referenced using the average of all 

electrodes as a reference. For infants, we removed outer band electrodes due to the presence of 

increased noise (i.e. electrodes 1, 8, 14, 17, 21, 25, 32, 38, 43, 48, 49, 56, 63, 68, 73, 81, 88, 94, 99, 

107, 113, 119, 120, 121, 125, 126, 127, and 128), mostly due to movement artifacts. The remaining 

100 electrodes were re-referenced using their average as a reference. Finally, recordings were 

segmented by trials, taking 25s of each trials (25, 30, 60 or 150 complete cycles for respectively 4, 6, 

12 and 30 Hz presentation) starting 2.5s after the beginning of the trial, except for the 4 Hz presentation 

for which the divided trials started 3s after the beginning of the actual trial. 

For infants’ data, we only considered trials for which we were certain infants paid attention to 

the sequence of images. For this, we applied a Fast Fourier Transform (FFT) to each trial, over the 3 

occipital electrodes, where we expect to find high visual response to the image streams. We averaged 
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the spectra of those 3 electrodes, per trial and per participant, and computed the signal-to-noise ratio 

(SNR) by dividing the amplitude at the frequency of the image presentation (i.e., 4, 6 or 12 Hz) and 2nd 

harmonic (i.e., 8, 12 or 24 Hz), by the local average signal, that is the mean of amplitudes of the 20 (for 

4 Hz presentation rate) or 24 (for 6 and 12 Hz presentation rate) surrounding bins (10 or 12 bins on 

each side of the amplitude, excluding the immediate adjacent bins). If the SNR at the 1st and/or 2nd 

harmonic of the image presentation frequency was superior to an arbitrary threshold of 2, as previously 

used in infants EEG experiment of frequency tagging (de Heering & Rossion, 2015; Peykarjou, 2022), 

the trial was included in further analyses. 

In addition, we excluded trials for which the experimenter noted online that the infant moved 

too much, did not look at the screen, touched the mother with their head, pulled off, touched or grabbed 

the net, or cried. Infants that provided only one trial were not included in the final sample (in total, 

eleven 4-month-old infants and eight 9-month-old infants). On average, 4-month-old infants tested with 

4 Hz streams contributed 6.75±3.53 trials, 4-month-old infants tested with 6 Hz streams contributed 

6.75±4.28 trials, 9-month-old infants tested with 6 Hz streams contributed 6.41±3.64 trials and 9-

month-old infants tested with 12 Hz streams contributed 6.19±2.80 trials. 

Included trials were averaged in the time domain for each participant, each electrode and each 

trial type (animate rare category and inanimate rare category). We then applied a FFT to those averages 

for examination in the EEG frequency-domain at the high frequency resolution of 0.04 Hz (=1/25 

seconds). EEG spectra were averaged across trial types (for adult participants), leading to one EEG 

spectrum per participant, at each electrode. The baseline-corrected amplitudes were computed for each 

participant and electrodes by subtracting to the amplitude of interest the local baseline, that is the mean 

of amplitudes of the surrounding bins (10 bins on each side for the 4 Hz presentation; 12 bins on each 

side for other presentations). That corresponds to a frequency range of ± 0.8 and ± 0.96 Hz. The number 

of bins were reduced for the 4 Hz presentation to avoid that the same bin was used in computing the 

baseline-corrected amplitude of 2 different harmonics of the category-selective frequency. The 

baseline-corrected amplitudes were also computed for all bins surrounding each frequency of interest, 

and used to visualize the data (Figure 2). 

5.2.5. Analysis  

Group analyses. To select the harmonics and electrodes to further include in the analyses, grand-

averaged spectrum (average EEG spectrum of the group) was computed for each adult groups by 

averaging together all the participants’ spectrum in the time domain for each type of trial and electrode, 
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applying the FFT, averaging the spectra across the type of trials and finally averaging the spectra across 

all electrodes. For infants’ analyses, we only considered the 27 posterior electrodes. On this grand-

averaged spectra, z-scores were computed as the difference between the amplitude at the frequency of 

interest and the average amplitude of the surrounding bins divided by the standard deviation of the 

surrounding bins excluding the maximum and minimum (Quek & Rossion, 2017; Retter & Rossion, 

2016). For each category-selective frequency (i.e., 1, 1.2, 2.4 or 6 Hz), all harmonics below 50 Hz with 

a z-score higher than 1.64 (one-tailed, α = .05) were selected. When analyzing the category-selective 

response, harmonics that are common to the visual presentation rate (i.e., 4, 6, 12 or 30 Hz and 

harmonics) were not considered). After having identified harmonics that may show an effect, electrodes 

were selected based on the z-score computed at each electrode. For each electrode, z-scores at all 

previously identified harmonics were averaged, and this average was compare to a threshold at 3.33 

(one-tailed, α = .0004, Bonferroni correction for 128 electrodes) for adults or 2.88 (one-tailed, α = 

.0019, Bonferroni correction for 27 posterior electrodes) for infants. 

To assess whether the amplitude at the frequency of interest and harmonics was significantly 

higher than the noise level for each group, a one-tailed one-sample t-test tested the sum of baseline-

corrected amplitudes at the identified harmonics averaged over the identified electrodes for each 

participant (Retter et al., 2021), against 0 (noise level). In addition, we evaluated whether each 

participant, individually, exhibited a category-specific response, defined as z-scores above 1.64 for the 

first harmonic (1, 1.2, 2.4 or 6 Hz depending on the condition) on at least 2 neighboring electrodes. 

Comparisons between groups. The responses measured in the different groups were also compared in 

each experiment, performing a cluster-mass permutation analysis. We looked for differences between 

groups computing the sum of baseline-corrected amplitudes over all harmonics of the category-

selective frequency under 50 Hz for each electrode and participants. For each electrode, we performed 

a one-way ANOVA to compare the three adult groups (Experiment 1), or two-sample t-test to compared 

infant groups (Experiment 2-3). Neighboring electrodes showing an above threshold effect (P < .05) 

were clustered and tested for significance using nonparametric cluster-mass permutation test (Maris & 

Oostenveld, 2007) with 5000 random permutations of the condition labels of the original data.  
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Figure 1. Experimental design and frequency spectrum. (A) Two seconds extracts from streams of visual stimuli testing for the 

categorization of animals among inanimate objects at different speed of presentation: 4, 6, 12 and 30 Hz. Images squared in 

blue are the animate categorical stimulation. (B) Frequency spectrum of adults, denoting visual synchronization with the 

different speed of presentation, as seen by peaks at 6 Hz (left panel), 12 Hz (middle panel) and 30 Hz (right panel), as well as 

visual categorization of animals and inanimate objects at Ft (pointed by arrows). Frequency spectra are computed over the 

average of all electrodes. (C) Infants’ frequency spectrum for 4-month-olds (left) and 9-month-olds (right), denoting visual 

synchronization with the different speed of presentation, as seen by peaks at 4 Hz (left panel – 4-month-olds), 6 Hz (right panel 

– 4-month-olds; left panel – 9-month-olds) and 12 Hz (right panel – 9-month-olds), as well as visual categorization of animals 

and inanimate objects at Ft (arrows). Frequency spectra are computed over the average of posterior electrodes. 
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5.3. Results 

5.3.1. Experiment 1 

Experiment 1 tested three groups of adult participants (N = 12 per group) with streams presented 

at 6, 12 or 30 Hz, and one image from the rare category every five images (Figure 1). Each group 

showed responses largely distributed over the scalp and peaking over posterior electrodes (6 Hz group: 

MAmplitude±sd = 0.284±0.160; 95% CI = 0.201 – Inf; t(11) = 6.149; P < .0001; d = 1.775; 12 Hz group: 

MAmplitude±sd = 0.211±0.085; 95% CI = 0.167 – Inf; t(11) = 8.623; P < .0001; d = 2.489; 30 Hz group: 

MAmplitude±sd = 0.108±0.085; 95% CI = 0.064 – Inf; t(11) = 4.405; P < .001; d = 1.272; Figure 2 A). All 

participants exhibited an individual significant response at the category-selective frequency, as shown 

by the individual baseline-corrected amplitudes (Figure 2 A). 

A cluster-mass permutation test relying on a one-way ANOVA compared the baseline-

corrected amplitudes for different conditions (i.e., different group), summed for all harmonics of the 

category-selective frequency under 50 Hz, at each electrode. This analysis revealed a significant cluster 

of 86 electrodes where the category-selective responses varied depending on the speed of stimuli 

presentation (P < .0001). In that cluster of electrodes, the category-selective response did not differ for 

6 Hz and 12 Hz streams (MDifference±sd = 0.087±0.137; 95% CI = -0.029 – 0.203; t(22) = 1.562; P = 

.133; d = 0.638), but it was higher for both of these conditions than for 30 Hz streams (6 Hz vs. 30 Hz 

streams: MDifference±sd = 0.215±0.131; 95% CI = 0.104 – 0.326; t(22) = 4.007; P < .001; d = 1.636; 12 

Hz vs. 30 Hz streams: MDifference±sd = 0.128±0.076; 95% CI = 0.063 – 0.193; t(22) = 4.101; P < .001; d 

= 1.674). 

We thus observe a decrease in the category-selective response resulting from an increase in the 

speed of the stream of images from 12 to 30 Hz. This pattern reflects weaker integration of visual 

features into visual categories at high presentation speeds. 
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5.3.2. Experiment 2 

Experiment 2 and 3 examined how slow processing of visual information in infancy (Hochmann 

& Kouider, 2022) impacts the capacity of infants to categorize visual stimuli as animate or inanimate 

Figure 2. Category-selective response for stimulus streams of different speeds and at different ages. Results of Experiment 

1 (A) and Experiments 2-3 (B). Sum of baseline-corrected amplitudes for the selected harmonics, averaged over the selected 

electrodes and all participants of each group. Baseline-corrected amplitude responses were computed subtracting the average 

amplitude of surrounding frequencies to the amplitude of the category-selective response. On the right of each sub-panel, each 

dot indicates the response of one participant, and the diamond indicates again the group-level average. Selected electrodes for 

theses analyses are indicated by dots on the topoplots below each graph. *: Different from chance P < .05. 
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objects, as a proxy of their ability to make sense of the visual input. Experiment 2 tested one group of 

4-month-old infants (N = 32) with stream of images at a rate of 4 Hz and one image of the rare category 

every 4 images (category-selective frequency: 4/4 = 1 Hz), and a second group of 4-month-olds (N = 

32) with streams of images at a rate of 6 Hz and one image of the rare category every 5 images 

(category-selective frequency: 6/5 = 1.2 Hz). We observed a significant category-selective response 

over 8 posterior electrodes (Figure 2 B) for the 4 Hz streams (MAmplitude±sd = 0.240±0.393; 95% CI = 

0.122 – Inf; t(31) = 3.449; P < .001; d = 0.610). No significant category-selective response was 

observed for the 6 Hz streams (MAmplitude±sd = 0.063±0.230; 95% CI = -0.006 – Inf; t(31) = 1.547; P = 

.066; d = 0.273). At the individual level, 11 infants (34%) showed a significant category-selective 

response with the 6 Hz streams, whereas 21 infants (66%) showed a significant category-selective 

response with the 4 Hz streams. These distributions differed significantly (Fisher’s exact test CI = 1.299 

– 10.226; OR = 3.645; P = .024). 

A cluster-mass permutation test relying on a t-test comparing the baseline-corrected amplitudes 

of the spectrum summed for all the harmonics of the category-selective frequency below 50 Hz at each 

electrode revealed a significant cluster of 7 posterior electrodes where the category-selective response 

for the 4 Hz streams was higher than the category-selective response for the 6 Hz streams (P < .0001). 

In sum, 4-month-olds’ categorization capacities decreased strongly when streams accelerated from 4 

Hz to 6 Hz. 

 

5.3.3. Experiment 3 

Experiment 3 tested one group of 9-month-old infants (N = 32) with streams of images at a rate 

of 6 Hz and one image of the rare category every 5 images (category-selective frequency: 6/5 = 1.2 

Hz), and one group of 9-month-olds (N = 32) with streams of images at a rate of 12 Hz and one image 

of the rare category every 5 images (category-selective frequency: 12/5 = 2.4 Hz). We observed a 

significant category-selective response over 5 posterior electrodes (Figure 2 B) for the 6 Hz streams 

(MAmplitude±sd = 0.503±0.805; 95% CI = 0.261 – Inf; t(31) = 3.533; P < .001; d = 0.625), and a significant 

category-selective response over 10 posterior electrodes (Figure 2 B) for the 12 Hz streams 

(MAmplitude±sd = 0.242±0.301; 95% CI = 0.152 – Inf; t(31) = 4.550; P < .0001; d = 0.804). At the 

individual level, 19 infants (59%) showed a category-selective response with the 6 Hz streams and 24 

(75 %) with the 12 Hz streams. These distributions did not differ significantly (Fisher’s exact test CI = 

0.168 – 1.416; OR = 0.487; P = .287). 
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A cluster-mass permutation test relying on a t-test compared the baseline-corrected amplitudes 

of the spectrum summed for all harmonics under 50 Hz at each electrode for the two speed conditions. 

This analysis revealed no cluster of electrodes with different category-selective response for the 6 Hz 

and 12 Hz streams, suggesting that an acceleration of the visual streams from 6 to 12 Hz had little 

impact on 9-month-old infants’ categorization capacities. 

 

5.3.4. Comparison at different stages of development 

We compared the responses of 4- and 9-month-olds to 6 Hz streams in Experiments 2 and 3. A 

cluster-mass permutation test relying on two-sample t-test at each electrode compared the baseline-

corrected amplitudes summed over all harmonics of the category-selective frequencies under 50 Hz 

and identified a cluster of 4 posterior electrodes showing a larger category-selective response at 9 

months than at 4 months of age (P < .001; 4 months; MAmplitude±sd = 0.018±0.524; 9 months; 

MAmplitude±sd = 0.514±0.742). 

 

5.4. Discussion 

Overall, adult participants effectively showed a categorization response for images presented at 6, 

12 or 30 Hz, though the categorization response decreased significantly at 30 Hz (Experiment 1). Four-

month-olds showed categorization response for images presented at 4 Hz, but not for images presented 

at 6 Hz (Experiment 2), whereas 9-month-olds showed categorization response for images presented at 

6 Hz or even 12 Hz. These results show that infants are capable of integrating visual information in 

order to extract the fundamental visual categories corresponding to animate and inanimate objects, even 

at a very young age, despite the large variability of those categories and the limited direct experience 

of our young urban participants with animals. Additionaly, we have demonstrated that as infants grow 

older, from 4 to 9 months of age, and later, to adulthood, their categorization response get faster and 

faster (Figure 2 B). At 4 months, infants appeared about 7 times slower (4 Hz vs. 30 Hz) than adults. 

By 9 months, infant perception had greatly accelerated by a factor of about 3; the category-specific 

response was qualitatively and quantitatively equivalent at 4 Hz for 4-month-olds and at 12 Hz for 9-

month-olds. The observed acceleration along development parrallels the estimated acceleration of 

visuo-attentional processes causing event segmentation and perceptual sampling (factor of 6 between 

5 months and adults; factor of 2 to 3 between 5 and 8 months (Hochmann & Kouider, 2022)). This 
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congruence suggests that the acceleration of attention is shaping the efficiency and rapidity of visual 

categorization. 

5.4.1. The animate-inanimate categorization 

Categorization is a fast process, that occurs as soon as human adults detect objects in a visual 

scene (Grill-Spector & Kanwisher, 2005). The animate-inanimate categorization is the first to be 

represented in infancy (Spriet et al., 2022) and perhaps the most important distinction for the survival 

of many species, as it allows a rapid detection of a potential predator or prey in the environment. 

Animacy acts as an organizing principles for both grammar and discourse (Dahl, 2008), influence 

human memory (Bonin et al., 2014; Hagen & Laeng, 2017; Nairne et al., 2013, 2017), and visuo-

attentional capacities (Guerrero & Calvillo, 2016; Lindh et al., 2019). Earlier, children also interact 

more with live animals than toys (LoBue et al., 2013), and infants look more at animate compare to 

inanimate stimuli (Spriet et al., 2022). Infants also show different expectations for animals and 

inanimate objects. For instance, they are surprised when animates, but not inanimate objects are empty 

inside (Kominsky et al., 2021), and they do not expect an object to move by itself (Kuhlmeier et al., 

2004; Saxe et al., 2005). They also understand that agents are more likely to have goals and intentions 

(A. Woodward, 1998). All those studies evidence the importance of the animate-inanimate 

categorization, in shaping adults, children and infants’ interaction with the world. Our results suggest 

that this specific animate-inanimate categorization is already fast and automatic in young infants, as 

soon as 4 months of age, and accelerates throughout development, based on the infants’ speed of 

integration of the visual features.  

5.4.2. The consequences of slower categorization abilities 

What could be the consequences of slow vision in young infants? To get a sense of what it 

means for infants to see slowly, one might consider the interaction between the actual speed of scene 

in the real-world, and the rate of image capture of a camera that would captured the scene. If both 

speeds are identical, we perceive events at their actual pace, and looking at the actual scene or at its 

recording wouldn’t change anything. But if the capture is slower than the actual scene, we shall perceive 

accelerated events, faster changes. We would have difficulties to understand everything the same way 

when looking at the recording as compare to the actual scene. Analogously, slow perception in early 

infancy might lead to the experience of a fast-moving, fast-changing world. Thus, if infants’ perception 

is seven times slower than adults’ perception, infants would experience a world that moves and changes 

seven times faster than the world adults experience. Consequently, infant perception may be unable to 
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process certain fast moving events, which may be filtered out, sparing more stable, enduring properties 

of the world. Slow perception in infancy may paradoxically constitute an efficient feature of early 

development, reminiscent of the “less is more” hypothesis that highlighted the potential role of limited 

executive functions in early learning (Newport, 1990). By starting slow, perception highlights the basic 

and stable structure of the world at the beginning of life. As perception accelerates with development, 

it gradually introduces more detailed and variable events. The acceleration also happens in time for the 

development of locomotion (Adolph & Hoch, 2019; Campos et al., 2000). Before they crawl or cruise, 

infants’ visual input consists of relatively long and stable episodes. People and objects pass through 

their visual field, but the frame and landscape vary little, unless an external force (typically an adult) 

moves the baby. As infants begin to crawl, typically around 9 months (DeMasi et al., 2023), they self-

generate a more variable visual input, segmented in shorter episodes and requiring faster perception. 

It follows from these observations that a deregulation of the typical acceleration in the course 

of development could have major implications. One recent study suggested faster perceputal sampling 

in autistic children relative to neurotypical peers (Freschl et al., 2021). Could fast perception be a causal 

factor of autistic disorders? Autistic children appear to integrate visual information within shorter time 

windows than their non-autistic peers. This would lead to overly detailed visual representations, as 

highlighted in recent theories of autism (e.g., Happé & Frith, 2006; Lawson et al., 2015; Mottron & 

Burack, 2001; Pellicano & Burr, 2012; Van de Cruys et al., 2014). In sum, typical symptoms of autism 

could result from temporal alterations in the information process, which in turn alter the amount of 

information intake, with catastrophic cascading effects. Studying infants speed of categorization might 

be a direction for futur studies in autism and their speed of perception. 

5.4.3. Conclusion 

To conclude, the present work opens a breach in the mystery that constitutes young infants’ 

experience of the world, constraining future theories of learning, typical and atypical cognitive 

development. What is it like to be a baby? How does it feel to sense the world through an infant’s body, 

to interpret it with an infant’s brain? How much of their input can infants exploit for learning? These 

problems appear as intractable as understanding what it is like to be a member of another species, such 

as a bat or a fish (Nagel, 1974). But human babies being human, their experience of the world may not 

be that foreign from our own human adult experience. Infant perception may be conceived as an altered, 

not yet mature, version of adult perception. We showed that infants’ vision is much slower than adult 

vision, leading to the experience of a faster-moving and faster-changing visual world. As perception 
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accelerates in the course of development, the perceived world slows down. Infants’ perception can thus 

be simulated by combining appropriate filters reflecting variations in visual acuity and color perception 

with an acceleration of the video frame rate. These simuations provide a unique glimpse into infants’ 

experience of the world and novel insights on the birth of human learning and human thinking. 
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6. Animate-inanimate object categorization from minimal visual 

information in the human brain and deep neural networks 

This chapter is focusing on human adults’ categorization ability to categorize objects into the 

large, superordinate categories of animate and inanimate. The aim is to study which features are 

necessary and sufficient to see animacy. We use the same stimuli set as in the previous study, and 

transformation of this set, so that images were unrecognizable and only retain few, low- and mid-level 

features, encoded at different level in the adults’ ventral stream, survive the transformation. We further 

explore infants’ categorization capacity with stimuli retaining low-level features as well; these results 

can be appreciated in the supplementary results, in Chapter 9, after the bibliography. 

 

6.1. Introduction 

An astonishing capacity for life detection underlies animals’ survival. Humans and other 

animals are endowed with mechanisms for rapid and accurate discrimination between animate and 

inanimate things. Accordingly, categorization by animacy is a main organizing principle of object-

related information in mind/brain (Caramazza & Shelton, 1998; Grill-Spector & Weiner, 2014; Martin, 

2007; Warrington & Shallice, 1984), the first to emerge in infancy (Spriet et al., 2022), and one of the 

most efficient mechanisms of visual perception (New et al., 2007; Thorpe et al., 1996; VanRullen & 

Thorpe, 2001). 

Categorization by animacy is resolved, for the large part, on the basis of visual information. 

While motion is a critical cue to distinguish animate from inanimate objects, even for static stimuli, 

this distinction is computed within milliseconds (Carlson et al., 2013; Cichy et al., 2014; Contini et al., 

2017; Proklova et al., 2019). Yet, the features that are necessary and sufficient to see animacy remain 

debated (Bracci & Op De Beeck, 2023; Jozwik et al., 2022; Thorat et al., 2019). 

Object categorization is the result of tuning to complex visual features in higher-level visual 

areas, but new results show that low- or mid-level features also carry information about animacy 

(Grootswagers, Robinson, Shatek, et al., 2019; Jagadeesh & Livingstone, 2024; Kramer et al., 2023; Li 

& Bonner, 2020; Lieber et al., 2024; Long et al., 2017; Wang et al., 2022). Among the mid-level 

features which are encoded in middle areas of the visual ventral stream and would capture distinctive 

properties of animacy are shape and texture (Schmidt et al., 2017; Tiedemann et al., 2022). The role of 
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these features had, for instance, been highlighted using texforms stimuli that only retain the texture and 

global form of real-world objects, and yet elicit effects similar to those associated with the animate-

inanimate distinction in visual cortex (Kramer et al., 2023; Long et al., 2017, 2018; Wang et al., 2022). 

Lower-level features such as color, encoded in posterior areas of the ventral stream, can also carry 

information about animacy (Rosenthal et al., 2018).  

Many features contribute to the animate-inanimate distinction, but what exactly accounts for 

the fast, automatic categorization that supports life detection? We used frequency-tagging 

electroencephalography (ftEEG), to capture the fast and automatic neural response locked to a stimulus 

appearance. We tested whether such response to visual object perception already distinguishes between 

animate and inanimate and, if so, which features – low-, mid- or high-level – are sufficient to observe 

such categorization-response. 

In ftEEG, stimuli presented in rapid sequence at a regular frequency, elicit steady-state visual 

evoked potentials (SSVP) at the same frequency, which allegedly capture the immediate, automatic 

response to stimulus perception (Liu-Shuang et al., 2014; Norcia et al., 2015; Rossion, 2014b; Rossion 

& Boremanse, 2011). We presented stimuli at 6 Hz with a regular categorical change at 1.2 Hz, such 

that every five exemplars of a category (e.g., inanimate), an exemplar of another category (i.e., animate) 

was presented. We expected a peak of activity at 6 Hz; furthermore, if animates were readily 

represented as distinct from inanimate objects, we should observe a distinctive signal at 1.2 Hz, 

corresponding to the categorical change. This approach has been used to show automatic, relatively 

narrow, distinctions such as faces vs. non-face stimuli (e.g., Rekow, Baudouin, Durand, et al., 2022; 

Rossion et al., 2015), or categories of natural vs. artificial objects (Stothart et al., 2017). Here, we 

considered the broad distinction between animate and inanimate (and the largest stimulus set so far), 

testing whether, say, a zebra, a fish, a hamster and a turtle, however visually different, are readily seen 

as more similar to each other than to a hammer, a rock, a flower and a plane, and vice versa. Moreover, 

in different conditions and experiments, we manipulated the original images to test whether mid-level 

(global form, texture) or low-level features (spectral power, color, contrast, luminance, number of 

pixels) alone could elicit fast and automatic categorization by animacy. The same question was studied 

using behavioral judgments obtained from human participants, and the categorization performance of 

VGG-19 (Simonyan & Zisserman, 2015) and GoogLeNet (Szegedy et al., 2015). In these two deep 

convolutional neural networks (DNNs), which provide successful artificial models for human visual 

object recognition, we tested how different sets of images were classified in different layers. 
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6.2. Experiment 1 

6.2.1. Materials and Methods 

Participants. 

Experiment 1 involved twelve healthy adults (7 identified their gender as female, 5 as male, 

mean age 25.7±4.7 years). An additional participant was tested and excluded from the final sample 

for falling asleep during the experiment. Without prior data, Experiment 1 was exploratory with 

respect to the sample size. Results were used for a power analysis to select the sample size for the 

next experiments. Participants had a normal or corrected-to-normal vision and reported no history 

of psychiatric or neurological conditions. This and the following experiments were approved by 

the local ethics committee (CPP Ile de France VIII). 

 

Stimuli. 

Experiment 1 involved two sets of stimuli: 640 intact colorful images (hereafter, original set), 

and the corresponding phase-scramble version. 

Original set. Stimuli were created from 640 colorful photographs of real-world animate (n=320) and 

inanimate (n=320) objects taken from the internet, representing as much as possible the diversity of 

objects in the real world. Each object was presented in a box of 629x629 pixels with a gray background 

(Figure 1A). The animate set included 51 fish, 70 birds, 179 nonhuman mammals, 14 amphibians and 

6 turtles, all different from one another. Humans were excluded to prevent a bias in the animate-

inanimate categorization. Insects, spiders and reptiles (except for turtles) were also excluded to prevent 

emotional reactions (e.g., disgust or fear). The inanimate set included 223 artificial and 97 natural 

objects. Among the natural objects, there were 54 different fruits and vegetables, and 43 different 

flowers, bushes and trees. Among the artificial objects, there were 16 different exemplars of buildings 

and constructions, 108 different exemplars of clothes, pieces of jewelry, buttons, coins, and tools, 66 

pieces of furniture and 33 vehicles. Objects could appear in all sorts of orientations and visual angles. 

From these images, two types of stimulation sequences were created (animate and inanimate), named 

after the category that served as oddball, i.e., the less frequent stimulus-category used to elicit the 

periodic categorization response (Figure 1B). Thus, in the animate-sequence, 320 inanimate objects 

were shown as standard (i.e., the frequent stimulus-category in the sequence), and 68 animate objects 
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were shown as oddballs; in the inanimate-sequence, 320 animate objects were shown as standard, and 

68 inanimate objects were shown as oddballs.  

Phase-scramble stimuli. Phase-scramble stimuli were created manipulating the spatial spectrum of the 

images in the original colorful set through phase-scrambling, using the imscramble function 

(http://martin-hebart.de/webpages/code/stimuli.html) run in Matlab (The Mathworks, Natick, MA). 

This manipulation preserved the number of pixels, color, contrast, luminance and power-spectral 

distribution of the original images, but removed mid-level (shape and texture) information effectively 

rendering the object identity unrecognizable (see below). 

Figure 1. Illustration of stimuli and experimental design in Experiments 1-3. (A) Examples of stimuli from the original set 

(Experiment 1) in the inanimate condition (top) and animate condition (bottom) and the different versions of those images: 

phase-scramble (Experiment 1), grayscale (Experiments 2-3), grayscale phase-scamble (Experiment 2) and texforms 

(Experiment 3). (B) One-second extract from the “animate” stimulation sequence based on the original set, testing for the 

categorization of animates (oddball category) among inanimate objects (standard category).  

 

http://martin-hebart.de/webpages/code/stimuli.html
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Procedures. 

Participants sat on a chair ~60 cm away from a 60 Hz computer screen (resolution 1920x1200 pixels, 

size 51.5x32.2cm), where stimuli were presented centrally (16° of visual angle). Stimulus presentation 

was controlled using Psychtoolbox (Brainard, 1997) through Matlab. Each participant was tested in 

two conditions involving the original and the phase-scramble set, respectively. Each condition included 

16 trials of animate-sequences (i.e., animate stimuli used as oddball among inanimate stimuli), and 16 

trials of inanimate-sequences (i.e., inanimate stimuli used as oddball among animate stimuli). 

Therefore, each participant completed a total of 64 trials (16 trial x 2 conditions x 2 types of sequences). 

Each trial started by a fade-in phase (increase in contrast) of 2 s and ended with a fade-out phase 

(decrease in contrast) of 2 s, to ease the stimulus presentation for the participant’s eyes and avoid eye 

movements caused by abrupt appearance or disappearance. Each trial lasted 32 s, and consisted of a 

sequence of stimuli, presented at a base frequency of 6 Hz (6 images per s; 166.67 ms per image), in a 

squarewave design, where every 5 images of one category (standard), one image of the other category 

(oddball) was presented. With this trial structure, a categorization response was expected at 6/5, i.e., 

1.2 Hz (Figure 1). The five standard stimuli that preceded each oddball were pseudo-randomly selected 

to prevent the repetition of the same image in a trial and the presentation of two images from the 

subordinate-level category at the same frequency as the oddball presentation (e.g., a dolphin and a cat, 

both from the mammal category, presented with only five images in between). For a participant, the 

same list of images was used in the “original” and “phase-scramble” conditions.  

The 16 trials of a condition were presented in a single block, yielding a total of four blocks 

(animate and inanimate sequences in the original and phase-scramble conditions). The two blocks 

belonging to the same condition were presented one after the other, with the order of type of sequence 

(animate or inanimate) and condition (original or phase-scramble) counterbalanced across participants. 

At the end of the trial, a test-image from the standard category was shown. Participants were instructed 

to pay attention to each image in a trial and to report whether the final test-image was shown during the 

last trial, by pressing “A” or “P” (“yes” or “no”, counterbalanced between participants). The test-image 

was chosen from the standard category to prevent an attentional bias toward the oddball category. This 

task was included to encourage attention towards the stimuli. The whole experiment lasted ~45 minutes. 

EEG. 

EEG recording. EEG data were acquired using 128-channel EGI nets (Electrical Geodesics, Inc.). Data 

were acquired with vertex reference, using the EGI Net Station acquisition software, continuously 
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digitized at a sampling rate of 1kHz (net amp 400 system EGI). Impedance was lowered for each 

participant as much as possible, not exceeding 40kΩ. During the experiment, triggers were sent from 

the experimental computer to the acquisition computer via a light sensor: a white square appeared in 

correspondence to the sensor (i.e., at the bottom right of the screen) at the beginning and at the end of 

each trial. 

EEG preprocessing. All preprocessing steps were performed using the EEGLAB toolbox (Delorme & 

Makeig, 2004) and MATLAB R2015b. Raw data for each participant were filtered using a 4th-order 

high pass butterworth filter at 0.1 Hz and a 4th-order low pass butterworth filter at 100 Hz. All 

electrodes were re-referenced using the average of all electrodes as a reference. Data were segmented 

by trials, taking 25 s for each trial (30 complete cycles) starting 2.5 s after the trial onset. Trials were 

averaged for each participant, for each condition (original and phase-scramble) and for each type of 

sequence (animate and inanimate). A Fast Fourier Transform (FFT) was applied for data examination 

in the EEG frequency-domain at the high frequency resolution of 0.04 Hz (1/25 seconds). Baseline-

subtracted amplitudes were computed for each participant, for each condition, at each electrode, and 

for each harmonic of the response (base and oddball) by subtracting from the amplitude of interest, the 

average amplitude of the local baseline, that is, the mean of amplitudes of the 24 surrounding bins (12 

on each side excluding the immediate adjacent bins for a frequency range of ±0.48 Hz) excluding the 

maximum and minimum (Retter and Rossion, 2016; Quek and Rossion, 2017). To define the peaks at 

the frequencies of interest (harmonics of the base and oddball responses), we averaged the EEG signal 

of all participants in the time domain to obtain grand-averaged spectra for each condition, at each 

electrode. We then applied the FFT, and averaged the sequence type. We then computed z-scores for 

each condition, first on the average over all electrodes, by subtracting from the amplitude of interest, 

the average amplitude of the local baseline and dividing this difference by the standard deviation of the 

local baseline. Electrodes showing an effect were identified computing the z-score at each electrode 

and for each condition. 

EEG data analyses. 

Data were analyzed considering the two image-type conditions (original and phase-scramble), 

averaging across the sequence type (animate, inanimate), after applying the FFT (see preprocessing). 

First, we identified the harmonics showing a response as follows. We computed the z-score 

(see above) for all harmonics of the oddball frequency under 12 Hz (excluding the base frequency at 6 

and 12 Hz), and for all harmonics of the base frequency under 50 Hz. We selected harmonics with z-
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score higher than a threshold of 1.64 (α = .05, one-tailed). Second, we identified the electrodes at which 

a significant response was found. Again, we computed a z-score on the grand-averaged spectrum but 

this time for each electrode independently, for the harmonics previously selected. We averaged those 

z-scores and tested them against a threshold of 3.33 (corresponding to α = .0004, one-tailed, Bonferroni 

correction for 128 electrodes). 

We used parametric statistical tests to address the following effects. First, we assessed whether 

the amplitude of the response in each condition separately (base response or oddball response) was 

significantly higher than the noise level. To this end, we used a one-tailed t-test testing the baseline-

subtracted amplitude, summed over the identified harmonics, averaged over the identified electrodes 

for each participant (Retter et al., 2021), against 0 (noise-level). Second, we compared the two 

conditions (original vs. phase-scrambled image type) using a paired t-test testing the difference between 

baseline-subtracted amplitudes, summed over the identified harmonics, averaged over the identified 

electrodes, for each participant and each condition. Finally, we ran a 2 Image Type x 2 Sequence Type 

repeated-measures ANOVA to test whether the oddball response in the conditions with the original and 

the phase-scramble set was affected by the type of sequence (animate or inanimate). 

Data availability. 

Stimuli, EEG data and code for the main analyses will be deposited in the Open Science 

Framework repository created for this project. 

6.2.2. Results 

 Experiment 1 tested whether the fast presentation of a sequence of images from a large and 

heterogeneous set, could elicit a response in correspondence to a regular categorical change from 

animate to inanimate object, and vice versa. Furthermore, by using phase-scramble images, we tested 

whether such categorization-response could be elicited by stimuli that only preserved low-level visual 

features of animate and inanimate objects (i.e., power-spectrum, color, contrast and luminance). 

Base-frequency response. We first verified that we could measure a response at the base stimulation 

frequency of 6 Hz in each condition. All harmonics below 50 Hz showed a significant response (z > 

1.64). The response was widely distributed over the scalp (Figure 2A) for both the original condition 

(MAmplitude±sd = 0.802±0.360; 95% CI = 0.615 – Inf; t(11) = 7.714; P < .0001; d = 2.227) and the phase-

scramble condition (MAmplitude±sd = 0.771±0.348; 95% CI = 0.591 – Inf; t(11) = 7.671; P < .0001; d = 

2.215). This result showed reliable synchronization of electrical activity with the visual stimulation at 

6 Hz, in both conditions. 
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Figure 2. Response at the base frequency. (A) Experiment 1. Left: Baseline subtracted amplitudes as a function of 

frequencies in the conditions with the original set (in orange) and the phase-scramble set (in blue). Circles signal the significant 

harmonics of the base response, at the group level. The scalp distribution of baseline subtracted amplitudes summed over 

harmonics show a widespread response, peaking over posterior electrodes. Right: Baseline subtracted amplitudes summed over 

harmonics and averaged over electrodes for each condition (original in orange and phase-scramble in blue). Small dots represent 

participants’ individual response, thicker dots represent the average responses, lines represent the standard error of the mean. 

(B) Experiment 2. Left: Same measures as in Fig. 2A left but for the conditions with grayscale stimuli (orange) and grayscale 

phase-scramble stimuli (blue). Right: Same measures as in Fig 2A right but for the conditions with grayscale stimuli (orange) 

and grayscale phase-scramble (blue). (C) Experiment 3. Left: Same measures ad in Fig. 2A left but for the conditions with 

grayscale stimuli (orange) and texforms (blue). Right: Same measures as in Fig. 2A but for the conditions with grayscale stimuli 

(orange) and texforms (blue). 
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 Oddball response. We analyzed the response at the oddball frequency, which we took as a signature 

of automatic visual categorization by animacy. This response was first compared against the noise-level 

separately for each Image-Type condition (original and phase-scramble), and then compared between 

the two conditions. For the original condition, we found nine harmonics showing a significant 

widespread categorization-response (Table 1), peaking over posterior electrodes (MAmplitude±sd = 

0.319±0.083; 95% CI = 0.276 – Inf; t(11) = 13.254; P < .0001; d = 3.826; Figure 3 A). For the phase-

scramble condition, we found a significant categorization response in the first four harmonics, 

spreading over the scalp (MAmplitude±sd = 0.126±0.059; 95% CI = 0.096 – Inf; t(11) = 7.480; P < .0001; 

d = 2.159). This response was further evidence in an additional group of 4-month-old infants (see 

Supplementary Results). A t-test revealed a difference between conditions, with greater categorization-

response for the original-set condition (MDifference± sd = 0.205 ±0.100; 95% CI = 0.142 – 0.269; t(11) = 

7.108; P < .0001; d = 2.052). This effect was further replicated in 4-month-old infants (see 

Supplementary Results). 

Finally, the 2 Image Type x 2 Sequence Type ANOVA showed that the difference in the 

categorization-response between the two Image type conditions was not affected by the type of 

sequence; that is, a significant categorization was found irrespective of whether the sequence involved 

animate oddballs among inanimate standards, or vice versa. In fact, only the effects of Image Type was 

significant, F(1,11) = 51.006, P < .0001, but there was no effect of Type of sequence, F(1,11) = 1.146,  

P = .307, or interaction, F(1,11) = 0.959, P = .349. 

 

 

Table 1. Z-scores of the 8 first harmonics, excluding the 5th, for the category-selective frequency and for each condition and sub-

condition of Exp. 1, Exp. 2 and Exp. 3 

          

Exp. Condition         

  1.2 Hz 2.4 Hz 3.6 Hz 4.8 Hz 7.2 Hz 8.4 Hz 9.6 Hz 10.8 Hz 

1 Original 6.170 13.400 23.622 13.717 9.372 11.232 2.853 3.432 

 Phase-scramble 1.877 6.943 6.824 4.062 0.886 0.854 -0.146 -2.009 

          

2 Grayscale 3.148 6.205 7.002 7.598 12.047 7.254 4.189 2.903 

 Grayscale Phase-scramble -0.231 1.538 2.884 0.881 -3.189 0.818 -0.060 -0.284 

          

3 Grayscale 4.635 24.176 17.457 16.135 11.941 6.316 3.702 2.915 
 Texform 0.721 2.454 0.939 0.960 3.536 1.233 -1.050 0.654 

          

 

Note: Exp., experiment; Highlighted in bold are the significant results (z-scores > 1.64). 
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Figure 3. Response at the oddball frequency. (A) Experiment 1. Left. Baseline subtracted amplitudes as a function of 

frequencies below 12 Hz, for the conditions with original stimuli (orange) and phase-scramble stimuli (blue). Circles signal the 

harmonics with significant oddball response. The distribution over the scalp of the summed harmonics baseline subtracted 

amplitudes show a widespread response peaking over posterior electrodes. Right. Baseline-subtracted amplitudes summed over 

harmonics and averages over electrodes show a difference between conditions. (B) Experiment 2. Left and right panels show 

the same measures as Fig. 3A, but for the conditions with grayscale stimuli (orange) and phase-scramble grayscale stimuli 

(blue). (C) Experiment 3. Left and right panels showed the same measures as Fig. 3A, but for conditions with grayscale stimuli 

(orange) and texforms (blue). 
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6.3. Experiment 2 

6.3.1. Materials and methods 

Participants. 

Experiment 2 involved twelve healthy adults (9 identified their gender as female, 3 as male, 

mean age 26.3 ±6.3). One additional participant was tested and excluded from the final sample for 

falling asleep during the experiment. A power analysis based on the results of Experiment 1 estimated 

that a sample size of 7 was required to obtain the smallest categorization effect observed in Experiment 

1 (phase-scramble condition; Cohen’s d = 1.421, ß= 0.95, α = 0.05; GPower 3.1). Therefore, we decided 

to keep the same sample size of 12 across all the experiments. Participants had normal or corrected-to-

normal vision and reported no history of psychiatric or neurological conditions. 

Stimuli, procedures and analyses. 

In Experiment 2 everything was identical to Experiment 1 except for the stimuli: the original 

set in Experiment 1 was modified using the step1_lumContrastOriginals_fromGreen function 

(https://github.com/brialorelle/texformgen), to create grayscale versions of each image (hereafter, 

grayscale set). From these grayscale versions, the corresponding (grayscale) phase-scrambled versions 

(hereafter, grayscale phase-scramble set) were created following the procedure described in Experiment 

1, with animate and inanimate stimuli matched for luminance and contrast (Figure 1A). In addition, we 

ensure grayscale phase-scramble stimuli were unrecognizable (e.g., a fish that could not be recognized 

as “fish”, a flower that could not be recognized as “flower” and so on). Recognition was evaluated 

using the data of a naming task administered to an independent group of native-French speaker 

participants (n=19). For this task, participants were informed that they would see transformed versions 

of existing objects, and had to name each object, using one word, or more if needed. Stimuli were 

shown in the center of the screen (16° of visual angle – assuming a distance of ~60 cm from screen) 

until the participant responded. Underneath each image, there was a box in which the participant could 

type the response. Images were presented in a random order. An image was considered to be 

unrecognizable when no more than one participant named it correctly at the basic-level. Only 2 

grayscale phase-scramble images were recognizable, as being correctly named by 2 participants – a 

bird and a stone. Thus, we considered the phase-scramble sets as not recognizable. 

6.3.2. Results 

Results of Experiment 2 replicated those of Experiment 1, with animate and inanimate stimuli 

that lacked color information and were matched for contrast and luminance. 

https://github.com/brialorelle/texformgen
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Base-frequency response. Results revealed a significant response over all harmonics, widely 

distributed over the scalp (Figure 2 B) for both conditions (grayscale condition: MAmplitude ±sd = 0.439 

±0.171; 95% CI = 0.351 – Inf; t(11) = 8.927; P < .0001; d = 2.577; grayscale phase-scramble condition: 

MAmplitude±sd = 0.359 ±0.156; 95% CI = 0.278 – Inf; t(11) = 7.983; P < .0001; d = 2.305). 

Oddball-frequency response. Response at the oddball-frequency was first compared against noise-level 

separately for each Image Type condition (grayscale and grayscale phase-scramble) and then compared 

between the two conditions. For the grayscale condition, nine harmonics showed significant 

categorization response (MAmplitude ±sd = 0.240±0.153; 95% CI = 0.161 – Inf; t(11) = 5.424; P < .001; d 

= 1.566; Table 1; Figure 3 B). For the phase-scramble grayscale condition, a significant categorization 

response was found in the third harmonic (MAmplitude±sd = 0.012 ±0.017; 95% CI = 0.003 – Inf; t(11) = 

2.459; P = .016; d = 0.710; Table 1; Figure 3 B). A t-test revealed a significant difference, with greater 

categorization-response in the grayscale than in the grayscale phase-scramble condition (MDifference ±sd 

= 0.180±0.171; 95% CI = 0.071 – 0.289; t(11) = 3.640; P = .004; d = 1.051). 

Finally, the 2 Image Type x 2 Sequence Type ANOVA only revealed an effect of Image Type 

(F(1,11) = 13.066, P = .004) but no effect of Sequence Type (F(1,11) = 0.013, P = .913) or interaction 

(F(1,11) = 0.232, P = .640). 

 

6.4. Experiment 3 

6.4.1. Materials and Methods 

Participants. 

Experiment 3 involved twelve healthy adults (9 identified their gender as female, 3 as male, 

mean age 23.7 ±2.7 years). An additional participant was tested and excluded from the final sample for 

falling asleep during the experiment. Participant had normal or corrected-to-normal vision and reported 

no history of psychiatric or neurological conditions. 

Stimuli, procedures and analyses. 

In Experiment 3, everything was identical to Experiment 1, except for the stimuli. Here, stimuli 

consisted of the same grayscale images used in Experiment 2, and corresponding texforms (Figure 1A). 

Six-hundred-forty texforms were created from the 640 grayscale images following the method in Deza 

et al. (2019). We then selected the inanimate texforms (n=175) and animate texforms (n=195) that were 

unrecognizable. As for grayscale phase-scramble stimuli in Experiment 2, texform stimuli recognition 
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was evaluate evaluated using the data of a naming task administered to another independent group of 

native-French speaker participants (n=19). We chose to include only texforms that were not 

recognizable as our goal was to measure categorization that relied on the visual features only 

(without/before semantic categorization). Based on this selection, we obtained 195 animate and 175 

inanimate texforms. To match the number of items between conditions, we randomly removed 20 

animate images. The corresponding grayscale images used to create the texforms were also included in 

Experiment 3. A subset of 47 images in each category were used as oddball stimuli. 

6.4.2. Results 

Experiment 3 tested whether the mid-level visual features that are preserved in the texforms 

(texture and global form) could elicit an automatic animate-inanimate categorization-response as 

measured with ftEEG. Results of Experiment 3 replicated those of Experiments 1-2. 

Base-frequency response. A significant response at the base-rate frequency was widely distributed 

over the scalp (Figure 2 B), in both conditions (grayscale: MAmplitude ±sd = 0.605±0.311; 95% CI = 0.444 

– Inf; t(11) = 6.745; P < .0001; d = 1.947; texform: MAmplitude ±sd = 0.456±0.191; 95% CI = 0.357 – Inf; 

t(11) = 8.262; P < .0001; d = 2.385). 

Oddball-frequency response. The response at the oddball-frequency was first compared against noise-

level separately for each Image Type condition (grayscale and texform), and then compared between 

conditions. For the grayscale condition, nine harmonics showed a significant and widespread 

categorization-response (MAmplitude ±sd = 0.270±0.087; 95% CI = 0.224 – Inf; t(11) = 10.697; P < .0001; 

d = 3.088; Table 1; Figure 3 C). For the texform condition, two harmonics showed a significant response 

which was the strongest in posterior electrodes (MAmplitude ±sd = 0.018±0.023; 95% CI = 0.006 – Inf; 

t(11) = 2.648; P = .011; d = 0.764; Figure 3 C). A t-test revealed difference between conditions, with 

greater response to grayscale images than texforms (MDifference ±sd = 0.241±0.101; 95% CI = 0.177 – 

0.305; t(11) = 8.292; P < .0001; d = 2.394). 

A 2 Image Type x 2 Sequence Type ANOVA only showed an effect of Image Type (F(1,11) = 

70.443, P < .0001), but no effect of Sequence Type (F(1,11) = 0.027, P = .872), or interaction (F(1,11) 

= 3.808, P = .077). 

In summary, Experiment 3 replicated the effect of categorization by animacy for grayscale 

images. A significant, although weaker, categorization-response was found for the texforms that 

preserved mid-level visual features, while making the objects unbrecognizable.  
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Comparison between Experiments. Experiments 1-3 were compared considering the EEG 

categorization-responses to different image-type conditions, averaged across the types of sequence 

(animate, inanimate). For this analysis we included all the harmonics showing a significant 

categorization-response in at least one condition, summed their baseline-subtracted amplitudes, 

averaged the 128 electrodes for each participant in each experiment and condition, and performed an 

ANOVA with Image Type (intact: colorful or grayscale vs. impoverished: phase-scrambled or texform) 

as a within-subjects factor and Experiment as a between-subjects factor. 

The ANOVA revealed the effects of Image Type, F(1,33) = 96.203, P < .0001, and Experiment, 

F(2,33) = 7.566, P = .002, but no interaction between the two, F(2,33) = 0.775, P = .469. In all three 

experiments, the categorization-response was larger for the intact condition than for the impoverished 

condition. Moreover, there was a significant difference in the amplitude of the categorization-response 

between Experiment 1 and 2 (MDifference±sd = 0.105±0.075; 95% CI = 0.041 – 0.169; t(22) = 3.399; P = 

.003; d = 1.388) and between Experiment 1 and 3 (MDifference±sd = 0.065±0.047; 95% CI = 0.025 – 

0.105; t(22) = 3.397; P = .003; d = 1.387): Experiment 1 showed the largest categorization-response, 

which instead did not differ between Experiment 2 and 3 (MDifference±sd = -0.040±0.073; 95% CI = -

0.023 – 0.102; t(22) = -1.317; P = .202; d = 0.538). 
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6.5. Behavioral judgments 

6.5.1. Materials and Methods 

Participants. 

A total of 60 healthy native-English speakers (28 identified their gender as female, 31 as male, 

1 as other, mean age 25.4 ± 4.1 years), living in different countries (Africa, America, Asia, Europe) and 

external to the above EEG study, were recruited online. All participants had normal or corrected-to-

normal vision and reported no history of psychiatric or neurological conditions. Each participant 

performed one of three categorization tasks: 1) animate-inanimate categorization of phase-scramble 

Figure 4. Comparison between Experiments. Sum of baseline subtracted amplitude averaged over electrodes and 

participants, and standard error of the oddball response harmonics in Experiment 1 (left), 2 (middle) and 3 (right). In orange is 

the oddball response to intact images (colorful or grayscale) and in blue is the oddball response to impoverished images (phase-

scramble or texform). Dots represent individual participants’ mean. Horizontal bars and * denote significant effect with P < 

.05 
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stimuli in Experiment 1 (n=20, English speakers, 12 identified their gender as female, 8 as male, mean 

age 26.6 ± 4 years); 2) animate-inanimate categorization of grayscale phase-scramble stimuli in 

Experiment 2 (n=20, English speakers, 7 identified their gender as female, 12 as male, 1 as other, mean 

age 26.5 ± 4.1); 3) animate-inanimate categorization of the 640 texform images used to select stimuli 

for Experiment 3 (n=20, English speakers, 9 identified their gender as female, 11 as male, mean age 

26.7 ± 3.3). 

Stimuli and Procedures. 

Participants were tested online on Testable.org (Rezlescu et al., 2020). They were asked to sit 

60 cm away from the screen (about the length of an arm), align their eyes with the center of the screen, 

and make an effort to not move during the experiment. They were also asked to turn off their phone 

and any other device. Prior to the experiment, they gave informed consent and followed instructions 

for screen calibration. Instructions were as follow: we used a yes-or-no forced-choice task in which 

participants were instructed to decide whether each image depicted an animal or not. Instructions were 

in English and, for this task, we recruited English-speaking participants. They were informed that they 

would see 640 transformed images of existing object, presented one by one and to decide whether the 

image could be an animal with a yes-or-no response. Stimuli were shown in the center of the screen 

(16° of visual angle – assuming a distance of ~60 cm from screen) until the participant responded. 

Underneath each image two buttons appeared, for yes or no. The side of the “yes” and “no” buttons 

were counterbalanced between participants but were always the same for one participant. Participants 

were instructed to respond by clicking on “yes” or “no” using the mouse. Images were presented in a 

random order. Three different groups performed the task on the phase-scramble stimuli of Experiment 

1, the grayscale phase-scramble stimuli in Experiment 2 and the texforms of Experiment 3, respectively. 

Analysis. 

Using data from the categorization task, we tested whether even if a specific object in the impoverished 

set was not recognizable, participants could still guess its superordinate-level category (i.e., animate or 

inanimate) in a forced-choice. To this end, participants’ accuracy rates (i.e., proportions of correct 

responses) in the categorization task were tested against chance (one-sample t-test). 

6.5.2. Results 

Categorization was at chance for grayscale phase-scramble stimuli (MAccuracy = 0.503±0.192; 

95% CI = 0.488 – 0.518; t(639) = 0.382; P = 0.703; d = 2.620), and above chance for colorful phase-

scramble stimuli (MAccuracy = 0.523 ±0.187; 95% CI = 0.508 – 0.537; t(639) = 3.104; P = 0.002; d = 
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2.797) and texforms (MAccuracy = 0.628±0.179; 95% CI = 0.614 – 0.642; t(639) = 18.079; P < 0.0001; d 

= 3.508). Moreover, categorization accuracy was significantly higher for texform (texform vs. phase-

scramble: Mdifference = 0.105±0.183; 95% CI = 0.085 – 0.125; t(1278) = 10.262; P < 0.0001; d = 0.574; 

texform vs. grayscale phase-scramble: Mdifference = 0.125±0.185; 95% CI = 0.104 – 0.145; t(1278) = 

12.048; P < 0.0001; d = 0.674), and did not differ between the two phase-scramble sets (Mdifference = 

0.020±0.189; 95% CI = -0.001 – 0.041; t(1278) = 1.892; P = 0.059; d = 0.106). Results did not change 

when we considered only the texforms included in Experiment 3 – i.e., above chance categorization 

(MAccuracy = 0.592±0.180; 95% CI = 0.573 – 0.611; t(349) = 9.539; P < 0.0001; d = 3.289), higher than 

categorization accuracy for phase-scramble sets (texform vs. phase-scramble: Mdifference = 0.073±0.185; 

95% CI = 0.045 – 0.100; t(698) = 5.204; P < 0.0001; d = 0.393; texform vs. grayscale phase-scramble: 

Mdifference = 0.089±0.187; 95% CI = 0.062 – 0.117; t(698) = 6.319; P < 0.0001; d = 0.478). In sum, 

performance in forced-choice categorization showed that color, contrast, luminance, texture and global 

form carry information that may aid the recognition of objects as animate or inanimate; among those 

features, texture and global form, appear to be the most reliable for making that decision. 

 

6.6. DNN data 

6.6.1. Materials and methods 

DNN. 

We selected two convolutional deep neural networks, VGG-19 (Simonyan & Zisserman, 2015)  

and GoogLeNet (Szegedy et al., 2015), which have been very successful in reaching human-level object 

recognition, and provide a reliable model of the primate visual system, particularly the ventral temporal 

cortex (VTC) (e.g., Khaligh-Razavi & Kriegeskorte, 2014; but see Storrs et al., 2020; Kheradpisheh et 

al., 2016; Kubilius et al., 2016; Yamins et al., 2014). Using these models, we explored whether the 

different features preserved in the stimulus sets of Experiments 1-3 supported the animate-inanimate 

categorization at different processing stages, or layers of the visual hierarchy. In particular, we tested 

whether, depending on the visual features preserved in the different stimulus sets, categorization by 

animacy emerged in the first, middle or deeper layers of the models, modelling low-, mid- and higher-

level visual areas (VTC), respectively. 

Multiple processing stages in these DNNs transform input images through a series of nonlinear 

operations. Initially, convolutional layers apply kernels to small regions of the input image, capturing 
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spatial hierarchies of visual features. Then, a rectified linear unit (ReLU) function introduces 

nonlinearity by thresholding activations at zero, allowing only positive activations to pass forward. 

Then, max pooling layers perform downsampling, which reduces the spatial dimensions of the input 

while preserving important features. Finally, fully connected layers flatten the processed input into a 

one-dimensional vector, which represents the class scores. These networks were trained on 

approximately 1.2 million images from the ImageNet database (ILSVRC2012), encompassing 1,000 

classes including animals (40%) and objects (60%). We used pretrained versions of these models 

available in MATLAB (MatConvNet; Vedaldi and Lenc, 2016), with standardized preprocessing steps 

such as mean subtraction of the training images and scaling of all stimuli to 224x224 pixels. 

Analysis. 

For VGG-19, we extracted features from convolutional layers ('conv1_1' through 'conv5_4') 

and fully connected layers ('fc6', 'fc7', and 'fc8'). For GoogLeNet, we extracted features from initial 

convolutional layers ('conv1_7x7_s2' and 'conv2_3x3'), various inception modules 

('inception_3b_output' through 'inception_5b_output'), and the final classification layer 

('loss3_classifier'). For each layer, we computed a dissimilarity matrix (Kriegeskorte, Mur, & 

Bandettini, 2008) representing the dissimilarity between the features extracted for each of the stimuli 

used in the EEG study (see Figure 5 for examples of matrices at different layers for VGG-19): original 

set (Experiment 1), grayscale set (Experiment 2-3), phase-scramble set (Experiment 1), grayscale 

phase-scramble set (Experiment 2) and texform set (Experiment 3). In a dissimilarity matrix, 

dissimilarity between each pair of stimuli was computed as 1-rho, where rho is the Spearman 

coefficient of the correlation between vectors of features extracted for the two stimuli, at a given layer. 

For each stimulus set, we performed Pearson correlations between the matrix extracted from each layer 

and the reference matrix, corresponding to the dissimilarity matrix extracted for original (intact 

colorful) stimulus set from the output layer of the DNN (‘fc8’ for VGG-19 and ‘loss3_classifier’ for 

GoogLeNet). This reference matrix was selected as it reflected the performance on the stimulus set with 

the highest complexity (i.e., highest number of features), and the closest to the stimuli used for training 

the DNN, thus providing the best representation of the stimuli by the DNN, typically associated with 

the best performance of the model. Finally, the performance throughout all the layers of a DNN was 

compared between the different stimulus sets, using pairwise t-tests on the fisher-transformed 

correlation coefficients. 
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6.6.2. Results 

The purpose of this study was to investigate the representation of the visual features that may 

distinguish between animate and inanimate objects, across different layers and stimulus sets, using two 

artificial DNNs. In the EEG study, we reasoned that intact stimuli carrying higher-level visual features 

and impoverished stimuli only preserving low- and/or mid-level features (phase-scramble, grayscale 

phase-scramble and texform), would be processed at different levels of the visual hierarchy – i.e., in 

higher-level anterior areas vs. early or middle areas of the ventral stream. We sought to study whether 

categorization by animacy could emerge also for impoverished stimuli involving early/middle aspects 

of the visual stream. Using DNNs, we sought to test the processing differences between stimulus sets 

across layers and whether and how categorization by animacy is extracted from deeper as well as first 

and middle layers of the model. Since the results were similar for both models, for simplicity, we only 

report the results of VGG-19.  

First, we tested whether object representation, yielding the broad animate-inanimate distinction 

as evidenced by the significant correlation of the reference matrix and a model of animacy (ρ = 0.826, 

P < .001), could be found when the DNN was tested with the intact as well as the impoverished sets. 

Providing an affirmative answer to this question, results showed that stimulus information represented 

by the dissimilarity matrices, increasingly matched the reference matrix as the stimulus complexity 

increased. However, although correlations were the highest for the intact grayscale set (maximum 

correlation in layer fc8, ρ = .817, P < .001), they were also significant for all the impoverished sets 

(maximum correlation: phase-scramble, layer conv2_1, ρ = .345, P < .001; grayscale phase-scramble, 

layer conv2_2, ρ = .270, P < .001; texform, layer conv2_2, ρ = .265, P < .001) (Table 2). This means 

that the categorical animate-inanimate distinction emerged in the DNN also for the most impoverished 

images. Next, we asked where this distinction emerged and peaked for different stimulus sets.  

For both intact sets (original and grayscale), the coefficients of the correlation with the reference 

matrix increased as layers got deeper in the DNN (Table 2), with no difference between layers of the 

two sets (Mdifference = 0.066 ±0.004; 95% CI = -0.068 – 0.201; t(36) = 1.001; P = 0.324; d = 17.223). 

This indicates a shift in representation (i.e., a better representation of the images) at the final stages 

(i.e., deepest layers) of processing. No such increase was observed for the impoverished sets in the last 

fully connected layers. Here, compared with the intact sets, correlations with the reference matrix across 

layers were different, reflecting the stability between layers for the impoverished sets as compared to 

the increase of correlation throughout layers for the intact sets (phase-scramble: Mdifference = 0.157 
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±0.061; 95% CI = 0.046 – 0.267; t(36) = 2.956; P = 0.008; d = 2.559; grayscale phase-scramble: 

Mdifference = 0.207 ±0.056; 95% CI = 0.096 – 0.318; t(36) = 3.910; P = 0.001; d = 3.701; texform: 

Mdifference = 0.130 ±0.047; 95% CI = 0.020 – 0.239; t(36) = 2.490; P = 0.023; d = 2.750). In effect, for 

the phase-scramble and texform sets, correlation coefficients did not change much from the first and 

middle layers to the deeper layers (Figure 5A), implying that the information extracted in deeper layers 

did not add to the representation of those images in the DNN. In some cases, (i.e., for both phase-

scramble sets), correlation coefficients were even higher in middle than in deepest layers, meaning that 

middle layers were better tuned to the low- and middle-level features carried by those stimuli. Beyond 

representational differences between different sets of stimuli, these results showed that the animate-

inanimate distinction is pervasive in object representation, emerging across different processing stages 

of the visual hierarchy –not just the deepest layers– and for different, more or less impoverished, visual 

inputs. 

Table 2. Results of the correlations between the reference matrix extracted for the intact colorful set, from the last 

layer Fc8 (highlighted with the frame), and the matrix extracted for each stimulus set, from each layer of VGG19. 

           

 Original Grayscale Phase-scramble Grayscale phase-

scramble 

Texform 

           

Layers Rho P Rho P Rho P Rho P Rho P 

conv1_1 .225 <.001 .136 <.0001 .277 <.001 .190 <.001 .185 <.001 

conv1_2 .216 <.001 .131 <.0001 .254 <.001 .183 <.001 .181 <.001 
conv2_1 .331 <.001 .183 <.0001 .345 <.001 .238 <.001 .218 <.001 
conv2_2 .221 <.001 .242 <.0001 .237 <.001 .270 <.001 .265 <.001 
conv3_1 .218 <.001 .220 <.0001 .171 <.001 .136 <.001 .241 <.001 
conv3_2 .273 <.001 .243 <.0001 .199 <.001 .126 <.001 .262 <.001 
conv3_3 .273 <.001 .244 <.0001 .166 <.001 .107 <.001 .255 <.001 
conv3_4 .339 <.001 .257 <.0001 .201 <.001 .109 <.001 .252 <.001 
conv4_1 .260 <.001 .224 <.0001 .179 <.001 .088 <.001 .229 <.001 
conv4_2 .263 <.001 .237 <.0001 .162 <.001 .107 <.001 .239 <.001 
conv4_3 .248 <.001 .232 <.0001 .200 <.001 .143 <.001 .248 <.001 
conv4_4 .223 <.001 .201 <.0001 .243 <.001 .216 <.001 .236 <.001 
conv5_1 .274 <.001 .227 <.0001 .243 <.001 .189 <.001 .224 <.001 
conv5_2 .357 <.001 .283 <.0001 .229 <.001 .176 <.001 .227 <.001 
conv5_3 .377 <.001 .327 <.0001 .218 <.001 .168 <.001 .253 <.001 
conv5_4 .348 <.001 .331 <.0001 .189 <.001 .171 <.001 .254 <.001 
fc6 .745 <.001 .582 <.0001 .187 <.001 .164 <.001 .248 <.001 
fc7 .818 <.001 .636 <.0001 .190 <.001 .166 <.001 .261 <.001 

fc8 1.000 <.001 .817 <.0001 .145 <.001 .131 <.001 .265 <.001 

           

           

Highlighted in bold are the significant results; α = .05; correlations are with the last layer (Fc8) of the model when 

classifying the original set of images. 



114 

 

 

 

 

 

Figure 5. Correlation coefficients and dissimilarity matrices across stimulus sets and layers of VGG-19. (A) Coefficients 

of the correlation (y-axis) between the representation of a given stimulu set at each layer, and the representation of the intact 

colorful set in the layer fc8 (x-axis). Each plot corresponds to a stimulus set: intact colorful, intact grayscale, phase-scramble, 

grayscale phase-scramble, and texform. (B) Examples of dissimilarity matrices extracted from different layers for different 

stimulus sets. Each row represents a stimulus set, each column corresponds to a different layer. These matrices illustrate 

representational dissimilarities at different stages of processing. Dissimilarity values are from 0 (lowest dissimilarity, dark blue) 

to 1 (highest dissimilarity, dark red). This figure illustrates the extent to which the dissimilarity structure changed across layers 

and conditions. 
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6.7. Discussion 

The animate-inanimate distinction underlies a life detection capacity that is crucial for the 

survival of many animal species. Thus, in an evolutionary perspective, it is not surprising that such 

distinction emerges right after visual information reaches the visual cortex, suggesting an underlying 

feedforward mechanism (Carlson et al., 2013; Cichy et al., 2014; Contini et al., 2017; Proklova et al., 

2019). On the hypothesis that categorization by animacy is primarily a visual process, we used fast 

periodic visual stimulation combined with ftEEG, to investigate: (1) whether the automatic neural 

response locked to the stimulus appearance, already carries information about the categorical animate-

inanimate distinction, and (2) whether such information can be even extracted from impoverished 

images, which only retain low- to mid-level features of animate or inanimate objects. To this end, we 

used an unprecedented set of stimuli, testing the hard task of identifying category membership in a 

large and heterogeneous set of images, in which animate objects were as varied as mammals, birds, fish 

and amphibians, and inanimate objects were as varied as furniture, vehicles, tools, plants and 

vegetables.  

ftEEG results demonstrated that information relevant for the animate-inanimate distinction was 

extracted rapidly from higher-level as well as mid- and low-level visual features. In particular, a strong, 

widespread response to a regular categorical change in the stream of visual images was found for 

colorful, intact, depictions of real-world objects. This response was only moderately diminished when 

the same images were in grayscale, and persisted, although weaker, for unrecognizable images that 

only kept low-level spectral (color, contrast, luminance, number of pixels, power spectrum) information 

(phase-scramble set) or mid-level (texture and global form) information (texforms). These findings add 

to a growing body of studies demonstrating that object categorization is the result of tuning to complex 

visual features in higher-level visual areas, but can be also resolved based on low- and mid-level visual 

information encoded in early and middle aspects of the visual ventral stream for object recognition 

(Kramer et al., 2023; Rosenthal et al., 2018; Wang et al., 2022). Furthermore, these findings 

characterize object recognition as an incremental process in which the accumulation of visual 

information increases categorization performance, which would be reflected in the amplitude of the 

categorization response in the EEG signal (see also Carlson et al., 2013; Cichy et al., 2014). 

Our analysis of the DNNs confirmed this model. First, we found that intact (colorful or 

grayscale) images were represented across all layers of the DNN, with increasingly high accuracy, and 

the highest accuracy in deeper layers, modeling higher-level visual areas (VTC). Instead, for 
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impoverished (phase-scramble) images, representation was the most accurate in middle layers, 

suggesting that those layers are better tuned to the low- and middle-level features carried by those 

stimuli. Second, above and beyond the differences, stimulus representation yielding the animate-

inanimate distinction emerged across all layers and for all stimulus sets (the correlations with the 

“reference matrix” were all significant). This supports the view that the earlier layers of the network, 

modelling early and middle visual areas, are tuned to distinctions in low- and mid-level features, 

informative about the animate-inanimate categorization. 

Finally, with a behavioral study, we addressed the extent to which features at different levels 

of complexity could support explicit categorization by animacy in a forced-choice task. The analysis 

of the participants’ responses showed that, while animate-inanimate classification was at chance for the 

grayscale phase-scramble set, texforms and colorful phase-scramble images yielded above chance 

performance (although performance was not reliably different between the two phase-scramble sets). 

These findings suggest that the categorization response in the EEG signal, as weak as it might be (in 

the case of phase-scramble and textform sets), is behaviorally relevant, supporting deliberative 

processing of objects (see also Long et al., 2017). Interestingly, these findings also imply that 

information about low- and mid-level features gives access to supra-ordinate (animate-inanimate) 

categories. In the preliminary study of our stimuli, we asked participants to name texforms and phase-

scramble images, under the hypothesis that, in naming objects, individuals privilege basic-level 

category labels (e.g., they name a zucchini “zucchini”, rather than “vegetable” or “inanimate object”; 

Mervis & Pani, 1980; Mervis & Rosch, 1981; Rogers & Patterson, 2007; e.g., Rosch, 1978; see also 

Long and Konkle, 2017; Long et al., 2017). Only 2 of the phase-scramble images were named correctly, 

and only a subset of texforms was named by more than 2 participants (see Stimuli, procedures and 

analyses of Experiment 3). This suggests that, while low- and mid-level features give access to supra-

ordinate (animate-inanimate) categories, access to finer-grained categorical distinctions may require 

more (and higher-level) information. In line with this, recent findings on development of visual object 

recognition showed that very young (4-month-old) infants can represent the broad animate-inanimate 

distinction among real-world objects, but the representation of finer-grained (e.g., basic-level) 

categories develops later based on the progressive recruitment and integration of more and more feature 

spaces distributed across the visual cortex (Spriet et al., 2022; Chapter 3). 

In sum, we asked in this study what accounts for the efficient animate-inanimate categorization 

that supports life detection. Our results demonstrate that, while higher-level features (e.g., the presence 

of eyes and limbs) may be necessary for recognizing objects at least at the basic-category level, 
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information relevant for the animate-inanimate distinction is already extracted from low- and mid-level 

features, suggesting tuning of early and middle level areas of the visual stream to animacy. Put in 

another way, the absence of higher-level information in our impoverished sets implies that the animate-

inanimate distinction observed for those stimuli did not result from top-down connections, but 

perception is optimized to classify animate and inanimate stimuli in the early stages of visual 

processing.  

Now, in the light of the present results, what makes things look animate to humans? It is clear 

that a variety of features, from low- to higher-level, participate in this categorization. With our 

methodological approach, it may also be possible to define a hierarchy of distinctiveness, as roughly 

captured in Figure 4. If the amplitude of the EEG categorization-response is an index of classification 

accuracy, then higher-level features carried by the intact sets are clearly more informative than mid- 

and low-level features, isolated in the impoverished sets. On this reasoning, compared with low-level 

features in phase-scramble images, mid-level features carried by texforms (global shape and texture) 

add evidence towards the animate-inanimate distinction (see also Grootswagers, Robinson, & Carlson, 

2019; Long et al., 2017, 2018; Wang et al., 2022). Among the low- and mid-level features, color seems 

to add significant gain in terms of classification accuracy: presence of color increased the 

categorization-response for the colorful (vs. grayscale) intact set, and for the colorful (vs. grayscale) 

phase-scramble set, and yielded above-chance classification in the force-choice task with phase-

scramble stimuli (see also Rosenthal et al., 2018). Future research may continue the systematic work 

to establish the impact of each specific visual feature on categorization. However, it is unlikely that this 

quest will reveal one feature responsible for animacy perception, but that animacy perception would 

result from the combination of a range of visual features of the kinds investigated here, which can be 

further disambiguated by co-occurring dynamic and non-visual information. 

In conclusion, we showed that the animate-inanimate distinction is pervasive in the processing 

of visual stimuli, and resilient to the loss of information in the visual input: low- and mid-level features, 

encoded in early and middle-level aspects of the visual ventral stream for object recognition, are 

sufficient to elicit the fast, automatic categorical response in the human brain, and can inform 

deliberation on the broad animate-inanimate distinction. However, impoverished sets induced smaller 

categorization responses relative to intact objects, and could not be recognized beyond a coarse (forced) 

animate-inanimate distinction. This contributes to defining visual categorization as an incremental 

process involving the integration of various features distributed across the visual cortex – or encoded 

across different layers of a DNN. Based on the present behavioral results and previous research (Spriet 



118 

 

 

et al., 2022; Chapter 3), this incremental process may explain how finer-grained (e.g., basic-level) 

categories emerge from broader visual categories such as animate and inanimate. 
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7. General Discussion 

7.1. Summary of findings 

In this thesis, I investigated the development of visual categorization, especially in the first year 

of life. In a series of 4 studies (Chapter 3-6), I asked the following questions: 1) When does the visual 

categories accounting for the visual system organization in Human adults emerge in infants’ behavior? 

2) What are the respective role of spontaneous brain maturation and visual experience in the visual 

saliency of features diagnostic of a category? 3) How does the speed of images’ presentation impact 

the animate-inanimate categorization, throughout life? 4) How do low-, mid- and high-level visual 

features impact the animate-inanimate categorization in adults? 

Chapter 3 revealed that at 4 months of age, infants first explore images based on their physical 

properties (size, compactness, elongation). This reliance on features that are non-categorical (i.e., 

features that are not eliciting the representation of a category) overshadowed their representation of 

objects as animate and inanimate. By 10 months of age, infants’ looking behavior was spontaneously 

guided by the animate and inanimate categories when exploring images, and they lost the guidance by 

the physical properties of the images. Later on, by 19 months of age, other categories represented in 

the adults’ visual cortex emerged, especially the human-nonhuman categorization, as well as some of 

the basic-level categories tested (i.e., nonhuman faces and bodies, human bodies and natural small 

objects). In addition, results showed that while infants’ categorization ripened with age, bringing about 

the representation of more categories, infants’ behavior correlated with the activity recorded in ever-

larger portion of the adult ventral stream. Altogether, those results suggest that the ability to represent 

finer-grained categories comes with the ability to integrate more and more visual features, integrated 

in different portion of the ventral stream in adults. It also demonstrates a switch in relying on physical 

properties of the images towards being guided by category membership when exploring the 

environment, between 4 and 10 months of age. 

Chapter 4 investigates further the age at which the previous observed switch, from relying on 

physical properties of the object to relying on category membership, happened. Results showed that 

this switch happens in two steps. Just like 4-month-olds, 6-month-old infants relied primarily on the 

physical properties of the images, which overshadowed their representation of animate and inanimate 

objects. Eight-month-old infants relied on both category membership and physical properties of the 

object. Their behavior also correlated with the activity recorded in the adult ventral stream. Thus, 
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between 6 and 8 months, the saliency of category membership increases, but the saliency of physical 

properties (non-categorical features) decreases later, between 8 and 10 months. After having identified 

the timeline of the increasing saliency of category membership, Chapter 4 explored the role of 

spontaneous brain maturation and visual experience in this switch. Preterm infants born about 2 months 

before term and aged 8 months, have a brain maturation equivalent to that of full-term 6-month-olds 

(their corrected age; i.e., the age they would have if they were born at term), but equivalent amount of 

visual experience as full-term 8-month-old infants (their chronological age). Thus, comparing 8-month-

old preterm infants with 6- and 8-month-old full-term infants informed us about the respective influence 

of brain maturation and experience in the increased saliency of category membership in infants’ 

behavior. Results revealed that preterm 8-month-olds (i.e., averaged corrected age: 6 months) behaved 

similarly to full-term 8-month-olds, relying on both the physical properties of the objects and the 

category membership (animate/inanimate). In addition, preterm’s behavior correlated with the 

organization of the anterior part of the adult ventral stream. This suggests a major role of visual 

experience in the infants’ use of category membership when exploring their environment. 

Chapter 5 revealed that the speed of presentation of visual stimuli interacts with the human’s 

brain ability to categorize animate and inanimate objects. Moreover, this categorization process gets 

faster and faster with age. Relying on frequency-tagging EEG, we showed that the adult brain 

categorize images presented at 30 Hz, while 4-month-olds require a maximum speed of 4 Hz. The adult 

brain is thus 7 times faster than the 4-month-old brain. Nine-month-old infants could categorize images 

presented at 12 Hz, suggesting that the 9-month-old brain is already at least 3 times faster than the 4-

month-old brain. Because of a slower perceptual system, we argued that younger infants might 

experience a world that is changing faster compare to older infants and adults. They might be able to 

only encode stable structure of the world, i.e., structures that do change slowly. Thus, the speed of 

infants’ categorization impacts the content of infants’ representation of the world. 

Finally, Chapter 6 studied the role of different visual features in the adult categorization of 

animate and inanimate objects. Using frequency-tagging EEG, we demonstrated that this superordinate 

categorization was already extracted from very few, low-level visual features, such as the power 

spectrum of the images. Yet, the more features in the image, the bigger the categorical response was in 

adults (and infants’, as shown in Supplementary Results) brain. This was further supported by deep 

neural networks (DNNs) performance with the different impoverished version of the images, showing 

the best performance with the images containing the greatest amount of features. In addition, lower-

level visual features were not sufficient to influence adults’ behavior in a forced-choice task. Only when 
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images contained more mid-level visual features were adults able to recognize their superordinate 

category, although not their identity. This is suggesting that while lower-level visual features are 

already diagnostic of animate and inanimate categories, influencing both adults and infants’ brain, they 

are not sufficient to influence behaviors and be used in our everyday life. 

 

7.2. Infants represent visual categories from 4 months of age 

Over the years, researchers have used infants’ looking behavior as a tool to study infants’ 

cognition. While infants can’t speak, they can direct their eyes and explore things surrounding them as 

they want. As such, infants’ look is typically interpreted as revealing where infants’ allocate their 

attention. The longer they look at something mirrors their interest in the stimuli (Aslin, 2007). 

Categories, as warranting an organization of the world into meaningful units, facilitate our 

comprehension of every object we could encounter. Moreover, they offer a key mechanism for 

understanding how humans, and especially developing infants, make sense of the world surrounding 

them, considering the overwhelming amount of information they have access to. As such, previous 

research focused on infants’ categorization abilities, as a window of infants’ cognition, by heavily 

relying on infants’ looking time (e.g., Behl-Chadha, 1996; Mareschal & Quinn, 2001; Pauen, 2002; 

Quinn, 2004; Quinn et al., 1993, 2001; Quinn & Eimas, 1996, 1998). I also used infants’ looking time 

in this thesis, to study their ability to represent categories. However, the paradigm I used in Chapter 3 

and 4 differ from the typical paradigm employed in previous studies. Instead of measuring a difference 

of looking time between stimuli of 2 different categories after having habituated/familiarized infants to 

one of the category (Behl-Chadha, 1996; Hunter & Ames, 1988; see for review Mareschal & Quinn, 

2001; Rose et al., 1982), I recorded a more spontaneous (i.e., direct, without prior exposition) measure 

of the difference of looking time between 2 stimuli of same or different categories, precluding a possible 

online formation of a category during the typical familiarization or habituation phase. The aim was to 

study what features would spontaneously guide infants’ behavior when confronted to new objects; 

would they spontaneously be guided by categorical features, and which categorical features would 

mainly guide infants’ visual exploration? In addition, this paradigm allowed me to study many different 

categories (eight categories) in one short experiment, despite infants’ short attentional span. Thus, 

categories observed in Chapter 3 and 4 were more likely reflected categories infants spontaneously 

represent in their everyday life, where they are facing lots of different objects from lots of different 

category at once. I further targeted categories that appeared as good candidates to be represented by 
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young infants, by considering 8 basic-level categories, encompassing 4 superordinate categories as well 

as the big animate-inanimate categorization, all found as eliciting different brain activation not only in 

the human adults’ ventral stream, but also in other species, such as macaques (Konkle & Caramazza, 

2013; Kriegeskorte, Mur, Ruff, et al., 2008; Op de Beeck et al., 2008; Sigala et al., 2002), which 

suggests a biologically pre-determined organization, enhancing chances to develop early on in life. 

 

7.2.1. Infants’ gaze is guided by category membership 

When considered all together, results of Chapters 3, 4, 5 and 6 (Supplementary Results) all 

revealed that young infants, as soon as 4 months of age, already represent objects as animate and 

inanimate, despite the huge variability within each category. However, category membership was not 

yet salient enough to guide infants’ exploration in a simple preferential looking task. In particular, 

Chapters 3 and 4 revealed that young infants, at 4 and 6 months, looked at images based on category 

membership only when the images were presented at the same size. When image size was not 

controlled, 4- and 6-month-old infants were looking at images according to their size, elongation and 

compactness, looking at the bigger, less elongated and most compact images. Thus, this paradigm 

reveal that although infants, as soon as 4 months of age, already represent the animate and inanimate 

categories, they do not yet rely on those categories when exploring objects surrounding them. Chapters 

3 and 4 further replicated the highly documented preference for human faces, from birth (Farroni et al., 

2005; M. H. Johnson et al., 1991; see for review Nelson, 2001; Valenza et al., 1996). Whenever a 

human face was presented to infants, they would prefer to look at this face, no matter what was 

presented next to it, reflecting the importance of human face compared to anything else. However, 

when 2 human faces were presented at the same time, young infants would discriminate them and prefer 

to look at one of the two. 

Infants only started to spontaneously rely on category membership by 8 months of age, and this 

development was mainly linked to infants’ visual experience, as preterm infants aged of 8 months were 

showing a similar behavior. Older infants, at 10 and 19 months of age, did not exhibit any reliance on 

the physical properties of objects, but only on category membership, particularly the animate-inanimate 

categories. Nineteen-month-old infants also represent the human and non-human categories, as well as 

human bodies, non-human animal bodies, non-human animal faces and natural small objects. In 

addition, 8- 10- and 19-month-old infants’ behavior reflected the organization of large portions of the 

adults’ ventral stream. Results from 8- to 19-month-old infants suggest that once infants have a better 
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distinction of animate and inanimate categories and represent and rely on more categories than the 

broad animate-inanimate categorization, they represent more and more features integrated in different 

portion of the ventral stream. 

As visual experience account for the infants’ reliance of categorical features when exploring 

objects (Chapter 4), exploring the changes between 6 and 8 months of age can inform about how 

categorization and behavior are interconnected. Between 6 and 8 months of age, infants develop in 

many aspects. In particular, a striking development is their development of motor skills. Indeed, infants 

start to sit around 6 months (Marcinowski et al., 2019), sometimes creep on their stomach (see for 

review Malina, 2004), but do not move very far from where their caregiver put them, and rely on their 

caregivers to be placed in a seating position. They also start to reach and grasp objects, heading for 

small ones that would be more convenient for them to hold (Libertus et al., 2013). While those motor 

skills develop, they offer more and more possibilities for infants to explore objects, using their hand, 

reaching to objects, but also visually, especially when sitting, as it provides a vertical view compare to 

lying that provides an horizontal view (Libertus & Hauf, 2017; Marcinowski et al., 2019; Soska & 

Adolph, 2014). It is interesting to see that before those motor skills fully develop, and before infants 

move in their environment by themselves, they do not rely on category membership, despite being able 

to represent some of them already (animate and inanimate evidence in 4 and 6 months, Chapters 3-5). 

Most of 8-month-old infants are able to sit by themselves, start to crawl on their knees and hand, some 

even pull on tables or couch to stand up (see for review Malina, 2004). They better reach and grasp 

objects compare to 6-month-old infants (Fagard et al., 2009; C. Newman et al., 2001). Motor skills 

develops a lot during the end of the first year and the second year of life, and by 19 months, infants 

walk by themselves and some even start to walk up stairs (see for review Malina, 2004). Because of 

this increasingly motor capacities, infants gradually explore more and more their environment and 

interact consequently with even more objects and more special partners, as they better move by 

themselves, relying less and less on their caregivers. It is noteworthy to highlight that being able to 

categorize objects in the environment might favor infants’ interactions with different objects, helping 

them to discover statistical regularities between certain visual features and conceptual categories (e.g., 

animacy, function). 

Instead of motor skills eliciting categorical saliency, the reverse might be further explored: 

saliency of categorical features allows infants to better explore objects in their environment by 

themselves. They will be surprised if an object they spontaneously recognized as inanimate start to 

move by itself; but they won’t be so surprised to see the cat suddenly standing and heading to the 
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kitchen, where its dry food is, and might even be interested into following it. Although infants are 

already able to represent the animate and inanimate categories of objects, they appeared to start paying 

attention to the categories of objects when they start to increasingly move by themselves and interact 

with more and more objects. 

In this thesis, I have focused on static images categorization, studying static features of images 

in the development of categorization; but in the world, one key feature of animate objects, is that they 

move by themselves, driven by an internal force, when inanimate objects require an external force to 

be moved. Several studies suggest that, early on, infants first and foremost rely on motion when 

exploring objects in their environment; indeed, already at birth, infants discriminate and prefer to look 

at biological motion compare to other type of motion (Bardi et al., 2011; Simion et al., 2008). This is 

also supported by previous results showing that 3- to 5-month-old infants infer goals to an inanimate 

object, a box, that has the key feature of animate, as it is self-propelled (Luo, 2011; Luo & Baillargeon, 

2005). 

 

7.2.2. The special case of the animate-inanimate categorization 

All Chapters revealed the animate-inanimate categorization throughout development, from 4 

months of age. In addition to Chapters 3-4, revealing animacy categorization in 4-, 6-, 8-, 10- and 19-

month-olds’ behavior, Chapter 5 and 6 additionally revealed that 4-month-old infants’ brain 

automatically extract visual features diagnostic of the animate and inanimate categories, relying on 

another paradigm, and an even bigger set of stimuli. In these Chapters, I recorded infants’ brain activity, 

using electroencephalography (EEG). Specifically, I used the frequency-tagging paradigm, to further 

study the animate-inanimate categorization in 4-month-old infants. The frequency-tagging paradigm 

aims at capturing an automatic and fast response of the brain (de Heering & Rossion, 2015; Peykarjou, 

2022; Rossion et al., 2015), tagging a specific brain response, occurring each time the subject is 

presented with a specific stimulus, presented regularly. As the stimulation occurence is regular, it is 

possible to capture the brain response in the EEG frequency spectrum. Indeed, a regular brain activity 

would be reflected by a peak of activity at the frequency of presentation of the tagged category, in the 

frequency domain of the EEG signal. However, this peak would not visible if the brain response was 

always different between the images, as then, there would be no regular brain activity. Thus, such peak 

is diagnostic of a categorical response of the brain. In this case, the regular stimulation was for a 

category, meaning that I presented different exemplars of one category (e.g., the animate category) at 
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a specific frequency, within different exemplars of the other category (e.g., the inanimate category). I 

used a stimuli set that was designed to represent, as much as possible, the colossal variability present 

in the world, both within and between the animate and inanimate categories. In particular, the inanimate 

set of stimuli was, to my knowledge, the larger ever used. Until now, past research focused on the 

artificial, man-made categories (B. Elsner et al., 2013; Jeschonek et al., 2010; Peykarjou et al., 2023, 

2024), or on the plant category (C. Elsner & Wertz, 2019; Wertz & Wynn, 2014a, 2014b), but not to 

both the natural and artificial categories at the same time, as part of the inanimate category. I considered 

big and small natural and artificial objects in the inanimate category, ensuring that any categorical 

response would correspond to the categorization of objects as either animate or inanimate objects.  

Chapters 5 and 6 revealed a categorical response of objects as animate and inanimate, for 4-

month-old infants. This response was captured over posterior electrodes, adding evidence for an 

automatic categorization of animate and inanimate objects based on visual features at 4 months of age, 

despite the huge variability, both within and between categories, and even when images were 

impoverished so that they were not recognizable anymore, but preserved lower-level visual features 

such as the color, contrast, luminance and spectral properties, although those images elicited smaller 

categorical response as compare to the intact images (Supplementary Results of Chapter 6).  

Those results suggest that the first categorization infants represent (and rely on) is the animate-

inanimate categorization, adding evidence to already existent evidences of global-level (i.e., 

superordinate-level) categorization being the first represented across development (Pauen, 2002; 

Peykarjou et al., 2024; Quinn & Johnson, 2000). 

Being able to categorize animate and inanimate in our environment provides us, but also other 

species, with a good survival mechanism. Indeed, as categorization is a fast process, occurring as soon 

as human adults detect an object in a visual scene (Grill-Spector & Kanwisher, 2005), categorizing 

objects as animate and inanimate facilitates the attention to animate stimuli that can represent predators 

or preys. Such survival advantage might explain that this categorization is observed from early on in 

life (Spriet et al., 2022), in different species (see for review Freedman & Miller, 2008), especially in 

primates (Bell et al., 2009; Kiani et al., 2007; Kriegeskorte, Mur, Ruff, et al., 2008; see for a review 

Tompa & Sáry, 2010), influencing the organization of the ventral stream, this brain territory dedicated 

to decoding of visual objects (e.g., Carlson et al., 2013; Konkle & Caramazza, 2013; Kriegeskorte, 

Mur, Ruff, et al., 2008), but also influencing human behavior, as suggested by results of Chapters 3-4 

in infancy, as well as results in Chapter 6 in adults. Studies further revealed that animacy appears as an 
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organizing principles for both grammar and discourse (Dahl, 2008), influence human memory (Bonin 

et al., 2014; Hagen & Laeng, 2017; Nairne et al., 2013, 2017), and visuo-attentional capacities 

(Guerrero & Calvillo, 2016; Lindh et al., 2019), or children interactions (LoBue et al., 2013). 

 

7.3. Factors influencing the animate-inanimate categorization 

To categorize objects into meaningful units (i.e., categories) facilitates every aspect of our life. 

Instead of having to store every little details for each object we have to interact with in our life, 

categories permit to store general, shared knowledge for groups of objects sharing similar properties, 

reducing the effort we have to do by a considerable amount. Categories can be formed based on an 

infinite number of properties – the most useful ones in our everyday life might be the functional 

properties of objects (e.g., toy, phone, food, pets…). However, when very little, or even no knowledge 

at all is available for an object, as it is the case the first time we encounter something new (e.g., virtual 

reality machine or simulation machine if we don’t have one at home or at work), we are still able to 

explore it and interact with it accordingly, to a certain extent. Indeed, even though we don’t know the 

object, or even recognize its basic category and function, we recognize features that indicate its 

superordinate category (i.e., whether it is an animal or an inanimate object, a natural or an artificial 

object). This is true for adults, but it is especially true for a newborn, that is constantly confronted to 

novel objects. One of the first exploration of objects we do, both in our everyday life as well as in our 

lifetime, is visual: we move our eyes and see the objects in our environment, and the features composing 

them, before touching them. As such, it is not so surprising that our visual system itself is already 

organized according to important broad categories (Caramazza & Shelton, 1998; Konkle & Caramazza, 

2013; Kriegeskorte, Mur, Ruff, et al., 2008; Op de Beeck et al., 2008, 2019). Those categories nicely 

correspond to conceptual categories, such as the broad distinction between animate and inanimate 

objects, so that we can name those categories easily; yet, those are visual categories, categories that are 

based on the similarity of the visual features of the objects. We have seen that early on, human infants 

are already able to categorize objects, at least between animate and inanimate objects, as soon as 4 

months of age. This categorization is based on the visual properties of the objects, as I mainly showed 

novel unknown objects to infants. Results of Chapter 5 show that this categorization between animate 

and inanimate objects is indeed especially recruiting posterior regions of infants’ brain. Chapters 5 and 

6 especially studied the factors influencing the animate-inanimate categorization. Such factors were 
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also investigated with the correlation between infants’ behavior and the organization of objects as 

recorded in the adults’ ventral stream (Chapters 3-4). 

 

7.3.1. The animacy categorization is recruiting many features 

Different features are processed in the adults’ visual system, throughout the ventral stream, 

forming a hierarchy of the level of processing from posterior to anterior regions (Groen et al., 2017). 

The most posterior regions of the ventral steam process features that are referred to as low-level; those 

features correspond to the local measurements of the visual stimulus, such as the local orientations, 

spatial frequency, color or contrast of the object (Groen et al., 2017; Xie et al., 2022). In mid-level 

regions are processed the mid-level features, that correspond to more global measurement of bigger 

parts of the object, such as the global form (how curvy or rectilinear the object is) or the texture (Groen 

et al., 2017; Long et al., 2017). Finally, in the most anterior regions of the ventral stream are processed 

higher-level visual features, corresponding to the overall organization of the smaller parts of the object 

into the configuration of the entity, such as faces, plants and other objects (Groen et al., 2017). This is 

the place of the object recognition, allowing the identification of the object, and the semantic access to 

all information we have from it. 

Previous research have demonstrated that earlier areas, so earlier level of processing of the 

object, such as mid-level features, already elicit in adults a categorization of the objects by animacy, 

even influencing humans’ behavior (Long et al., 2017, 2018). Other results provided evidences that 

some features, such as the shape of the objects, might be more important than other features in the 

adults’ representation of the categories, although not sufficient to fool adults’ explicit recognition of 

objects’ category (Bracci et al., 2019; Bracci & Op de Beeck, 2016; Chen et al., 2023). Chapter 6 aimed 

at studying the role of various levels of features in the animacy categorization in adults’ brain as well 

as adults’ behavior, and revealed that even low-level visual features, such as the power spectrum of the 

object, or the color, contrast and luminance, already elicited a categorization of the objects by animacy, 

both in adults and infants (Chapter 6 – Supplementary Results). Thus, information relevant for the 

animate-inanimate categorization are already extracted from lower-level visual features. However, 

unrecognizable stimuli that only contained lower- to mid-level visual features elicited smaller 

categorization than the recognizable stimuli preserving higher-level visual information. Furthermore, 

adults’ behavior revealed that unrecognized images depicting only low-level features of the object 

(phase-scramble images) were not correctly categorized in a forced-choice task by adults, while images 
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containing more mid-level features were. Overall, these results suggest that the more visual features 

are available, the stronger the brain categorization by animacy, and the influence on humans’ behavior. 

Chapters 3 and 4 further suggested that young infants represent animate and inanimate 

categories by mainly recruiting higher-level visual features, as suggested by the correlation between 

infants’ behavior and the most anterior part of the adults’ ventral stream. Indeed, the anterior part of 

the adults’ ventral stream is where the higher-level visual features are represented and extracted from 

the visual inputs. The fact that infants, when (and only when) representing the animate and inanimate 

categories, show a similar representation of the objects as compare to this anterior part suggests that 

infants’ representation of the objects are mainly based on higher-level visual features, extracted in those 

anterior regions. As they grow older, infants’ behavior did correlate with increasing portion of the 

ventral stream, including more posterior areas, suggesting that they now also recruit lower-level visual 

features in their representation of objects. While doing so, they also revealed a better distinctiveness of 

the animate-inanimate categories (Supplementary Results of Chapter 4), meaning that the difference 

between within-category dissimilarity and between-category dissimilarity increase with age, as infants 

better represent the within-category similarities and/or the differences between animate and inanimate. 

Overall, it suggests that representing the visual features of animacy (i.e., co-varying and diagnostic of 

the categories) already from the lower-level features largely improves the representation of animacy, 

but also that lower-level visual features are not yet eliciting categorical distinction in early infancy. 

This might reveal a potential tuning of lower-level visual features towards visual features diagnostic of 

a category. Such tuning might develop by statistical learning, after being exposed to many visual objects 

revealing the co-variance of lower-level visual features with categories, or by better connections 

between the different brain areas and increasing feedback processing from anterior regions to posterior 

regions in the ventral stream. 

All those results converge together, and support the idea that the categorization of animate and 

inanimate objects is an additive process, in which the accumulation of visual information increases 

categorization performance, starting from the representation of higher-level visual features early in life 

and recruiting all level of features later on, optimizing the perception in classifying animate and 

inanimate stimuli from the early stages of visual processing. 
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7.3.2. Acceleration of visual object categorization throughout life 

Chapter 5 showed that the animacy categorization is both fast, and automatic, accelerating 

throughout development. This categorization was especially recorded in posterior areas on the infants’ 

brain, encompassing the occipital electrodes, adding evidence that it is indeed a visual categorization 

of the stimuli that is captured, as soon as 4 months of age. The speed of categorization did increase with 

development. Indeed, 4-month-old infants revealed categorization of objects when presented for at least 

250ms (but not when presented for 166 ms), while 9-month-old infants revealed categorization of 

objects when images were presented for as few as 83ms. There is, in 5 months of development, an 

acceleration of the categorization processes by at least a factor of 3; 9-month-old infants are at least 3 

times faster compared to 4-month-old infants. This process might still accelerate through life, and 

Chapter 5 revealed that adults were 7 times faster than 4-month-old infants, and possibly 2 to 3 times 

faster than 9-month-old infants in categorizing images as animate and inanimate. Indeed, results 

showed categorization of objects in adults with images flashed for 33ms. This acceleration of 

categorization might be linked to the previous observation that infants, at 4 to 6 months of age, revealed 

an animacy categorization based on mainly higher-level visual features, while older infants also 

recruited features extracted all along the adults’ ventral stream, including lower-level features. The 

recruitment of more and more features in the animacy representation might be facilitated by the 

acceleration of information processing, in turns, accelerating the speed of categorization. Indeed, 

studies revealed that different visual features activate the ventral stream in different areas, from 

posterior to anterior regions; as doing so, the activation for the different features decays at a different 

speed, from faster decaying in posterior regions to slower decaying in anterior regions (Gao et al., 2020; 

Kiebel et al., 2008). Thus, being slower to integrate features would have an effect on the amount and 

the level of features still represented: only the features that are encoded in the most anterior regions of 

the ventral stream would still be available for the integration. Such theory is congruent with the 

observation that 4- and 6-month-old infants’ representation of the animate and inanimate categories is 

mainly based on higher-level visual features. Then, with age, the information processing gets faster and 

faster, adding more and more visual features in the integration, allowing a faster categorization and a 

better representation of the world. 

Noteworthy, this acceleration in the processing of categories echoes the one observed for 

attentional processes, from 4 to 9 months of age (Hochmann & Kouider, 2022). It is not clear whether 

attentional processes play a role in this automatic categorization of objects. However, previous studies 
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have found, in adults, that the perceptual awareness of the category is linked to the robustness of the 

categorical response of the brain (Rekow, Baudouin, Brochard, et al., 2022; Retter et al., 2020). It might 

be that only when the attentional system is fast enough, the categorization of objects accelerates as well. 

Overall, being faster in categorizing objects in our environment facilitates our comprehension 

of the world; as growing up, we become more and more expert and fast in categorizing, thus 

recognizing, objects in our environment, improving our interaction with them, facilitating our choices 

to sit on the couch and not on the floor or to eat the delicious strawberries instead of spinach. 

 

7.4. Open questions and future directions 

 Despite highlighting visual categorization influence in infants’ behavior, especially the 

animate-inanimate categorization, and the role of higher-level visual features in the representation of 

objects, this thesis leaves open a number of questions. In particular, we began our investigations with 

4-month-olds, thus beggin the question of what happens earlier in development, particularly in 

neonates. Our study with preterm infants showed a major role of visual experience to increase the 

saliency of the animate-inanimate categories, but there are several reasons to believe that the 

representation of those categories pre-exist, are genetically predefined and may therefore be observed 

at birth. Several populations with radically different visual experience indeed exhibit the same broad 

organization of the ventral stream by animacy (macaques, congenitally blind humans), suggesting that 

this organization is independent from visual experience. 

 Another unanswered question is whether infants make conceptual inferences from the 

identification of the visual categories that we studied. Previous studies suggest that infants expect 

different things from animate or inanimate objects, such as being able to move by itself, have goals 

(Luo, 2011; Luo & Baillargeon, 2005; A. Woodward, 1998; A. L. Woodward, 1999), being non-

hollowed (Kominsky et al., 2021; Setoh et al., 2013) and have social affiliation (Powell & Spelke, 2013, 

2018) for animate, while inanimate are expected to follow physics principles, being continuous (Spelke, 

1994), moving only by contact (Spelke, Phillips, et al., 1995) without intentionality (A. Woodward, 

1998). But what knowledge infants extract from static images in those designs remain unclear. One can 

also ask how language interfere with the representation of visual categories; is it refining them, or is it 

only helping more conceptual categories to emerge? Although it appears that language invites infants 

to categorize objects that are designated by the same label (Balaban & Waxman, 1996; Ferry et al., 
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2010, 2013; LaTourrette & Waxman, 2020, 2022; Waxman & Markow, 1995), it is not clear whether 

infants visual representation change when learning the name of objects they already represent, or 

whether a new category is formed, associating common visual features to a common name. 

A similar question comes with the role of attentional processes in the representation of visual 

categories. Does the representation of categories require attention, automatically recruiting and using 

attentional resources? Is it only a coincidence that infants start to use visual categories in their visual 

exploration when they start to move by themselves? However, preterm infants’ behavior, whose motor 

development can be delayed but visual categorization is not, suggest that the development of visual 

categories may be independent from motor development, although more studies are needed to 

investigate such link.  

Another interesting question comes with the level of features in the animate-inanimate 

categorization. The animacy categorization is recorded in the adults’ and infants’ brain even from 

images only retaining lower-level visual features, while not influencing their behavior, and while other 

low-level features overshadowed the influence of categorical features in infants’ behavior. Is there any 

advantage for our brain to be able to capture such an early categorization? Those early process might 

facilitate to flee a predator, preparing to run before we even be conscious about the presence of a 

predator in the environment. Such effect could be investigated by recording of cardiac rhythm or 

sudation, or of muscular activity. 

Finally, another interesting question not addressed in this thesis is what happens if there is an 

early dysfunction of visual categorization processes? I expect that such impairments would have big 

consequences on cognition. An easy category impairment and its consequences to think of is the human 

face categorization. If infants are delayed in their representation of the human face category, they might 

not pay attention to social features when they were supposed to, and this might impact the development 

of social cognition. A very known disorder of social cognitive skills is the autism spectrum disorder 

(ASD); some evidence suggests that overall categories, not just the human face category, might be 

impacted in ASD subjects (Gastgeb & Strauss, 2012; C. R. Johnson & Rakison, 2006; Vanmarcke et 

al., 2016). 
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7.5. Conclusion 

In conclusion, this work highlight the development of visual categories, starting with the broad 

animate-inanimate categorization, and its role in infants’ behavior. I propose that being able, early in 

life, to already distinguish between what is animate and what is not helps infants to build expectations 

about novel objects they may encounter. It helps infants making sense of this numerous and varying 

stimulations they receive. Growing up, infants get better and faster at categorizing and recognizing 

objects, leading them to be able to interact with every objects accordingly, and to navigate properly, to 

take informed decisions, to think about objects, to live their life. 
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9. Supplementary materials 

9.1. Chapter 3 – Supplementary results 

1. Stepwise linear regression analysis (Experiments 1-2) 

 We run a stepwise linear regression with the six synthetic models as regressors for each group in 

Experiments 1-2. As reported in the main text, this analysis showed an effect of the eight-category 

model, animacy model, and humanness model for 19-month-old infants (Experiment 1), and of the 

animacy model only for 10-month-old infants (Experiment 1) and 4-month-old infants in Experiment 

2. See Supplementary Table 1 for statistical values of this analysis. 

 

 

Supplementary Table 1. Results of representational similarity analysis (Stepwise linear regression) reflecting 

relationships between the infants’ DLT-RDMs and the synthetic models of categorization 

        

Exp. Age Regressor Mean β (SD) CI 

(min – max) 

t (df) P Cohen’s d 

1 19 m Eight-categories .090 (.112) .026 – .155 4.023 (24) <.001 .804 

  Animacy .077 (.109) .014 – .139 3.514 (24) .002 .702 

  Humanness .133 (.215) .009 – .256 3.091 (24) .005 .618 

  Faces/Bodies .022 (.135) -.056 – .099 0.811 (24) n.s. .163 

  Natural/Artificial .017 (.219) -.109 – .143 0.384 (24) n.s. .078 

  Big/Small .066 (.176) -.036 – .167 1.866 (24) .074 .375 

        

1 10 m Eight-categories .051 (.113) -.015 – .118 2.222 (23) .036 .451 

  Animacy .059 (.098) .002 – .117 2.981 (23) .007 .608 

  Humanness .002 (.200) -.116 – .119 0.039 (23) n.s. .010 

  Faces/Bodies .045 (.181) -.062 – .152 1.207 (23) .240 .249 

  Natural/Artificial -.026 (.122) -.098 – .046 -1.054 (23) n.s. .213 

  Big/Small .038 (.128) -.038 – .113 1.448 (23) .161 .297 

        

1 4 m Eight-categories .013 (.101) -.047 – .073 0.634 (23) n.s. .129 

  Animacy .014 (.118) -.055 – .084 0.598 (23) n.s. .119 

  Humanness .034 (.206) -.088 – .156 0.809 (23) n.s. .165 

  Faces/Bodies .012 (.200) -.106 – .130 0.304 (23) n.s. .060 

  Natural/Artificial .031 (.250) -.117 – .178 0.606 (23) n.s. .124 

  Big/Small .021 (.246) -.124 – .166 0.421 (23) n.s. .085 

        

2 4 m Eight-categories .026 (.142) -.057 – .110 0.906 (23) n.s. .183 

  Animacy .074 (.098) .016 – .132 3.697 (23) .001 .755 

  Humanness -.061 (.223) -.192 – .070 -1.341 (23) .193 .274 

  Faces/Bodies .019 (.211) -.106 – .143 0.430 (23) n.s. .090 

  Natural/Artificial .096 (.296) -.079 – .271 1.591 (23) .125 .324 

  Big/Small .008 (.232) -.129 – .145 0.165 (23) n.s. .034 

        

        

Note: Exp., experiment; m, months; CI, 99.17% confidence interval; Highlighted in bold are the significant results; α = .0083, 

two-tailed; n.s.= non-significant results with P > .250. 
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2. Difference between within-category and between-category DLTs (Experiments 1-2).  

For each Experiment, for each age group, for each of the six categorization models, we tested whether 

within-category differential looking times (DLTs) were lower than between-category DLTs. As 

mentioned in the main text, this analysis showed an effect of the eight-category model, animacy model, 

and humanness model in 19-month-old infants (Experiment 1), and of the animacy model only in 10-

month-old infants (Experiment 1) and in 4-month-old infants of Experiment 2. Supplementary Table 2 

report all statistical values of this analysis. 

 

Supplementary Table 2. Results of the DLTs analyses of within versus between category comparisons 
        

Exp. Age Comparisons within/between Mean of the 

difference 

(SD) 

CI 

(min – max) 

t (df) P Cohen’s d 

1 19 m Diagonal -.135 (.085) -inf – -.091  -7.967 (24) <.0001 1.588 

  Animate and inanimate -.095 (.106) - inf – -.041 -4.481 (24) <.0001 .896 

  Human and nonhuman -.158 (.190) - inf – -.060 -4.160 (24) <.001 .832 

  Faces and Bodies -.057 (.141) - inf – .016 -2.013 (24) .028 .404 

  Natural and Artificial -.035 (.210) - inf – .074 -.825 (24) .209 .167 

  Big and Small -.074 (.178) - inf – .018 -2.071 (24) .025 .416 

        

1 10 m Diagonal -.057 (.137) - inf – .016 -2.018 (23) .028 .416 

  Animate and inanimate -.061 (.103) - inf – -.007 -2.919 (23) .004 .592 

  Human and nonhuman -.003 (.202) - inf – .104 -.066 (23) n.s. .015 

  Faces and Bodies -.045 (.202) - inf – .061 -1.096 (23) .142 .223 

  Natural and Artificial .029 (.139) -inf – .102 1.036 (23) n.s. .209 

  Big and Small -.041 (.145) - inf – .036 -1.370 (23) .092 .283 

        

1 4 m Diagonal -.048 (.120) - inf – .016 -1.940 (23) .032 .400 

  Animate and inanimate -.022 (.121) - inf – .042 -.873 (23) .196 .182 

  Human and nonhuman -.036 (.216) -inf – .078 -.811 (23) .213 .167 

  Faces and Bodies -.013 (.205) - inf – .095 -.316 (23) n.s. .063 

  Natural and Artificial -.043 (.252) - inf – .090 -.840 (23) .205 .171 

  Big and Small -.027 (.262) - inf – .111 -.513 (23) n.s. .103 

        

2 4 m Diagonal -.024 (.133) - inf – .046 -.891 (23) .191 .180 

  Animate and inanimate -.076 (.104) - inf – -.021 -3.583 (23) <.001 .731 

  Human and nonhuman .087 (.232) - inf – .209  1.836 (23) n.s. .375 

  Faces and Bodies .018 (.225) - inf – .136 .383 (23) n.s. .080 

  Natural and Artificial -.086 (.308) - inf – .077 -1.360 (23) .094 .279 

  Big and Small -.014 (.259) - inf – .123 -.267 (23) n.s. .054 

        

        

Note: Exp., experiment; m, months; CI, 99.17% confidence interval; Highlighted in bold are the significant results; α = .0083, one-

tailed; n.s.= non-significant results with P > .250. 
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3. Analysis of mean looking times (Experiments 1-2)  

Separate one-way ANOVAs for 4-, 10- and 19-month-olds in Experiment 1 and for 4-month-olds in 

Experiment 2, revealed the effect of categories on mean looking times (MLTs). The following post-hoc 

analyses were carried out to follow up on the effect of category. For 19-month-old infants in 

Experiment1, pairwise comparisons (one sample t-tests, αcorrected: 0.0018) revealed longer looking times 

towards animate than inanimate objects (9 out of 16 comparisons were significant; 4 of the 7 remaining 

comparisons showed non-significant trends, that is, effects that did not reach the significance level, 

corrected for multiple comparisons). A t-test comparing all animate vs. all inanimate categories 

confirmed this effect (animate: M ± SD = 2.103 s ± 0.344; inanimate: M ± SD = 1.598 s ± 0.247; 

Mdifference ± SD = 0.505 ± 0.335; 95% CI = 0.367 – 0.643; t(24) = 7.551, P < 0.0001; d = 1.509). 

Comparisons between human and nonhuman categories showed significant or non-significant trends 

(Ps < .03), which can be summarized as a preference for nonhuman categories (M ± SD = 2.317 s ± 

0.463) over human (M ± SD = 1.889 s ± 0.452; Mdifference ± SD = -0.428 ± 0.602; 95% CI = -0.676 – -

0.179; t(24) = -3.552, P = 0.002; d = 0.711). Among the inanimate categories, only the comparison 

between natural-small vs. artificial-big showed a non-significant trend (P = 0.019; for other 

comparisons all Ps > 0.11). 

The same analyses on 10-month-old infants (Experiment 1) showed that infants looked longer 

at the animate than inanimate categories (10 out of 16 comparisons were significant with αcorrected = 

0.0018; 4 of the 6 remaining comparisons showed non-significant trends with Ps < 0.05; for the 

remaining two comparisons, Ps > 0.062). A t-test comparing MLTs for all animate vs. all inanimate 

objects showed significantly longer MLTs for animate (M ± SD = 2.044 s ± 0.316) than for inanimate 

categories (M ± SD = 1.601 s ± 0.263; Mdifference ± SD = 0.443 ± 0.314; 95% CI = 0.310 – 0.576; t(23) 

= 6.901, P < 0.0001; d = 1.409). When two animate or two inanimate categories were compared, only 

1 out of 12 comparisons showed a non-significant trend (P = 0.007; for all other comparisons Ps > 

0.056). 

For 4-month-old infants in Experiment 1, pairwise comparisons (one sample t-tests, αcorrected = 

0.0018, two-tailed) revealed that infants looked longer at human faces relative to all other categories 

(Ps < 0.001 for 6 of the 7 comparisons between the human face category and other categories 

respectively), except the natural big objects, for which the MLTs only marginally differed (P = 0.002). 

No other difference was observed within the animate categories. Within the inanimate categories, 

infants looked longer at big than small objects, whether artificial or natural (Ps < 0.0001). 
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Four-month-old infants in Experiment 2 showed to prefer (i.e., looked longer at) human faces 

vs. all other categories (all Ps < 0.0001) and big vs. small (natural or artificial) inanimate objects (all 

Ps < 0.001). Unlike in Experiment 1, the preference for human faces and big objects in Experiment 2 

was not conflated with the preference for large images, as all images featured the same number of 

pixels. However, the mean looking time for individual images, averaged across participants, negatively 

correlated with the image shape elongation (ρ = -0.396, p < 0.001): the less elongated the shape, the 

longer the looking time (see also Supplementary Results 4). See Supplementary Table 3 for t-values 

and P-values of all the pairwise comparisons reported here. 

 

4. Relationship between MLTs and low-level features of images. 

Because 4-month-olds’ looking behavior appeared to be guided by low-level features such as the size 

of images or the elongation (Supplementary Fig. 1), we tested whether the categories of images that 

infants looked at for a longer time, corresponded to the categories including larger images and/or less 

elongated objects. To this end, we computed the MLTs, the mean number of pixels and the mean 

elongation ratio for each category (Supplementary Fig. 2). The three preferred categories, human faces 

and natural/artificial big objects, constituted the largest (Experiment 1) and least elongated 

(Experiments 1-2) images. Furthermore, mean looking times (MLTs) correlated significantly with both 

size and elongation in Experiment 1, and with elongation in Experiment 2 (see Main text).  
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Supplementary Figure 1. Signed DLT-RDM (left), size RDM (middle left), elongation RDM (middle right) and color RDM 

(right) for 4-, 10- and 19-month-olds in Experiment 1 and 4-month-olds in Experiment 2. Example of a signed DLT-RDM, a 

size RDM, an elongation RDM and a color RDM for one subject of the 19-month-old group (a), the 10-month-old group (b) and 

the 4-month-old group (c) in Experiment 1, and one subject of the 4-month-old group in Experiment 2 (d). 
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Supplementary Figure 2. Looking times as a function of image size (left) and elongation (right) for 4-month-olds in 

Experiments 1-2. Relationship between looking times (s) and average size of the images (number of pixels) for each category and 

average elongation (ratio between width and height) for each category for 4-month-olds in Experiment 1 (a) and relationship 

between looking times (s) and average elongation for each category for 4-month-olds in Experiment 2 (b). 
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Given these results, for each group of 4-month-olds, we performed a novel stepwise linear 

regression analysis and DLTs analysis, after removing the variance explained by size and elongation in 

Experiment 1, and by elongation only in Experiment 2 (Supplementary Tables 4- 5). 

 

Supplementary Table 4. Results of the stepwise linear regression with artificial models, removing variance explained by 

size and/or elongation of 4-month-old infants’ DLT-RDM in experiment 1 and 2 
       

Exp. Regressor Mean β (SD) CI 

(min – max) 

t (df)    P Cohen’s d 

1 Eight-categories -.002 (.101) -.062 – .057 -.117 (23) n.s. .020 

 Animacy .012 (.142) -.072 – .096 .416 (23) n.s. .085 

 Humanness .045 (.246) -.100 – .189 .887 (23) n.s. .183 

 Faces/Bodies -.026 (.237) -.166 – .114 .531 (23) n.s. .110 

 Natural/Artificial -.029 (.186) -.139 – .081 .755 (23) n.s. .156 

 Big/Small -.042 (.179) -.148 – .064 1.148 (23) n.s. .235 

       

2 Eight-categories -.020 (.121) -.091 – .051 -.806 (23) n.s. .165 

 Animacy .064 (.096) .008 – .121 3.282 (23) .003 .667 

 Humanness -.069 (.212) -.194 – .056  -1.584 (23) .127 .325 

 Faces/Bodies -.013 (.204) -.133 – .108 -.303 (23) n.s. .064 

 Natural/Artificial .085 (.285) -.084 – .253 1.453 (23) .160 .298 

 Big/Small -.016 (.215) -.142 – .111 -.365 (23) n.s. .074 

       

       

Note: Exp., experiment; CI, confidence interval; Highlighted in bold are the significant results; α = .0083, two-tailed; n.s.= non-

significant results with P > .250. 

 

 

 

Supplementary Table 5. Results of the DLTs analysis of within versus between category comparisons, removing variance 

explained by size and/or elongation of 4-month-old infants in experiment 1 and 2 

 

Exp. Comparisons within/between Mean of the 

difference 

(SD) 

CI 

(min – max) 

t (df) P Cohen’s d 

1 Diagonal -.021 (.110) - inf – .037 -.943 (23) .178 .191 

 Animate and inanimate -.016 (.143) - inf – .059 -.543 (23) n.s. .112 

 Human and nonhuman -.048 (.247) - inf – .082 -.955 (23) .175 .194 

 Faces and Bodies .015 (.238) - inf – .141 .310 (23) n.s. .063 

 Natural and Artificial .041 (.203) - inf – .148 .998 (23) n.s. .202 

 Big and Small .046 (.179) - inf – .141 1.257 (23) n.s. .257 

       

2 Diagonal .002 (.119) - inf – .064 .075 (23) n.s. .017 

 Animate and inanimate -.068 (.101) - inf – -.015 -3.314 (23) .002 .673 

 Human and nonhuman .090 (.226) - inf – .209 1.937 (23) n.s. .398 

 Faces and Bodies .043 (.221) - inf –.160 .959 (23) n.s. .195 

 Natural and Artificial -.079 (.307) - inf – .083 -1.256 (23) .111 .257 

 Big and Small .018 (.248) - inf – .149 .355 (23) n.s. .073 

       

       

Note: Exp., experiment; CI, confidence interval; Highlighted in bold are the significant results; α = .0083, two-tailed; n.s. = non-

significant results with P > .250 
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5. Experiment 2: Data analysis with more lenient inclusion criteria  

In Experiment 2, the attrition rate for 4-month-olds was larger compared to 4-month-olds in Experiment 

1 (37% in Exp. 1 and 50% in Exp. 2). Data from 24 out of 48 tested infants were discarded in 

Experiment 2, while data from 14 out of 38 tested infants were discarded in Experiment 1. A larger 

attrition rate may lead to the inclusion of more attentive infants, which could explain the different 

results in Experiment 2 compared to Experiment 1. 

To take into account this possibility, we ran a novel analysis on the data from Experiment 2, 

using inclusion criteria that yielded an attrition rate comparable to that of Experiment 1. In particular, 

we modified the criterion for trial inclusion, selecting all trials in which infants looked at images for at 

least 800 ms (instead of 1000 ms in the original analysis reported in the main text). This change yielded 

the exclusion of 16 out of 48 infants (attrition rate of 33%). The analysis of this dataset confirmed the 

results reported in the main text. The stepwise linear regression analyzing the structure of the absolute 

RDMs identified only one significant regressor (αcorrected = 0.0083), corresponding to the animacy model 

(mean β ± SD = 0.066 ± 0.094; 99.17% CI = 0.020 – 0.113; t(31) = 3.991; P < 0.001; d = 0.705) (for 

other regressors, ts < 2.313; Ps > 0.028). The DLTs analysis also showed that the difference between 

within-category and between-category DLTs was only significant for the animacy model (Mdifference ± 

SD = -0.065 ± 0.094; 99.17% CI = -inf – -0.023; t(31) = -3.927; P < 0.001; d = 0.691) (for other models, 

ts > -2.208; Ps > 0.017).  
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9.2. Chapter 4 – Supplementary results 

1. Stepwise linear regression analysis (Exps. 1-3) 

We first performed a correlation between infants DLT-RDMs and the set of categorization models 

based on fMRI responses evoked in human adults with RDMs computed at different location in the 

ventral stream (EVC, VOTC and LOTC; see Supplementary Table 1), as well as with the composite 

model, revealing a correlation for 6-month-old full-term infants in Exp. 1b and for 8-month-old full-

term infants in Exp. 2 (6-month-old in Exp. 1a: Mfisherρ = 0.046 ± 0.183 SD; 95% CI = -0.032 – 0.123; 

t(23) = 1.220; P = 0.235; d = 0.251; 6-month-old in Exp. 1b: Mfisherρ = 0.096 ± 0.170 SD; 95% CI = 

0.024 – 0.168; t(23) = 2.766; P = 0.011; d = 0.565; 8-month-old in Exp. 2: Mfisherρ = 0.192 ± 0.171 SD; 

95% CI = 0.120 – 0.265; t(23) = 5.521; P < 0.0001; d = 1.123; 8-month-old in Exp. 3: Mfisherρ = 0.062 

± 0.159 SD; 95% CI = -0.005 – 0.130; t(23) = 1.926; P = 0.067; d = 0.390). We run a stepwise linear 

regression with the six synthetic models as regressors for each group in Exps. 1-3. As reported in the 

main text, this analysis showed an effect of the eight-category model and the animacy model for 8-

month-old infants (Exp. 2). See Supplementary Table 2 for statistical values of this analysis. 

 

Supplementary Table 1. Results of representation similarity analysis reflecting relationships between the 

infants’ DLT-RDMs and the synthetic models of categorization 

 

Exp. Age Model Mean ρ  (SD) CI 

(min – max) 

t (df)   P Cohen’s d 

1a 6 m EVC -.061 (.160) -.128 – .007 -1.870 (23) .074 .382 

  VOTC .024 (.152) -.040 – .089 .781 (23) n.s. .160 

  LOTC -.014 (.189) -.093 – .066 -.350 (23) n.s. .072 

        

1b 6 m EVC -.032 (.187) -.111 – .048 -.825 (23) n.s. .168 

  VOTC .063 (.149) -.00004 – .126 2.067 (23) .050 .422 

  LOTC .043 (.176) -.032 – .117 1.188 (23) .247 .243 

        

2 8 m EVC .087 (.110) .041 – .133 3.894 (23) <.001 0.795 
  VOTC .171 (.131) .116 – .227 6.381 (23) <.0001 1.303 
  LOTC .152 (.121) .101 – .203  6.165 (23) <.0001 1.258 
        

3 8 m EVC .004 (.216) -.087 – .096 .100 (23) n.s. .019 

  VOTC .049 (.170) -.023 – .121 1.408 (23) .173 .288 

  LOTC .040 (.174) -.033 – .114 1.136 (23) n.s. .230 

        

        

Note: Exp., experiment; Age is the chronological age; m, months; EVC, early visual cortex; VOTC, ventral 

occipitotemporal cortex; LOTC, lateral occipitotemporal cortex; mean ρ are the fisher transformed ρ; CI, 

confidence interval; Highlighted in bold are the significant results; α = .017 for EVC, VOTC and LOTC; n.s.= 

non-significant results with P > .250. 
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Because 8-month-old infants’ behavior showed evidence of categorization based on the eight-category 

model, we wondered which of the eight categories infants indeed represented. Thus, for each category, 

we tested whether the average within-category DLTs were lower than the average between-category 

DLTs (t-tests; αcorrected: 0.0063, one-tailed). We found that, in addition to animates and inanimates, 8-

month-olds represented the subordinate categories of human faces (Mdifference = -0.270; 99.37% CI = -

inf – -0.120; t(23) = -4.868, P < 0.0001; d = 0.993) and of natural small objects (Mdifference = -0.152; 

99.37% CI = -inf – -0.031; t(23) = -3.399, P = 0.001; d = 0.710) (all other Ps > .03). 

 

2. Difference between within-category and between-category DLTs (Exps. 1-3).  

For each Experiment, for each age group, for each of the six categorization models, we tested whether 

within-category differential looking times (DLTs) were lower than between-category DLTs. As 

Supplementary Table 2. Results of representational similarity analysis (Stepwise linear regression) reflecting 

relationships between the infants’ DLT-RDMs and the synthetic models of categorization 

        

Exp. Age Regressor Mean β (SD) CI 

(min – max) 

t (df) P Cohen’s d 

1a 6 m Eight-categories .010 (.120) -.061 – .080 0.407 (23) n.s. .083 

  Animacy .022 (.086) -.029 – .073 1.260 (23) .220 .256 

  Humanness .013 (.234) -.125 – .151 0.272 (23) n.s. .056 

  Faces/Bodies -.031 (.163) -.127 – .065 -0.919 (23) n.s. .190 

  Natural/Artificial -.003 (.149) -.091 – .086 -0.084 (23) n.s. .020 

  Big/Small .001 (.161) -.094 – .096 0.033 (23) n.s. .006 

        

1b 6 m Eight-categories .025 (.112) -.041 – .091 1.090 (23) n.s. .223 

  Animacy .041 (.086) -.009 – .092 2.350 (23) .028 .477 

  Humanness .042 (.248) -.105 – .188 .820 (23) n.s. .169 

  Faces/Bodies .053 (.177) -.052 – .157 1.464 (23) .157 .299 

  Natural/Artificial -.036 (.173) -.138 – .066 -1.012 (23) n.s. .208 

  Big/Small .027 (.245) -.118 – .171 .534 (23) n.s. .110 

        

2 8 m Eight-categories .089 (.080) .042 – .136 5.442 (23) <.0001 1.113 

  Animacy .099 (.099) .041 – .157 4.914 (23) <.0001 1.000 

  Humanness .044 (.145) -.041 – .129 1.500 (23) .147 .303 

  Faces/Bodies .058 (.201) -.060 – .176 1.413 (23) .171 .289 

  Natural/Artificial -.020 (.159) -.114 – .073 -.631 (23) n.s. .126 

  Big/Small .077 (.181) -.030 – .184 2.089 (23) .048 .425 

        

3 8 m Eight-categories .036 (.101) -.024 – .095 1.724 (23) .098 .356 

  Animacy .050 (.110) -.015 – .114 2.213 (23) .037 .455 

  Humanness .062 (.169) -.037 – .162 1.811 (23) .083 .367 

  Faces/Bodies .083 (.221) -.048 – .213 1.834 (23) .080 .376 

  Natural/Artificial -.072 (.162) -.168 – .023 -2.193 (23) .039 .444 

  Big/Small -.035 (.176) -.138 – .069 -.966 (23) n.s. .199 

        

        

Note: Exp., experiment; m, months; CA, corrected age; CI, 99.17% confidence interval; Highlighted in bold are the significant 

results; α = .0083, two-tailed; n.s.= non-significant results with P > .250. 
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mentioned in the main text, this analysis showed an effect of the eight-category model, animacy model, 

and big-small real-world size model in 8-month-old infants (Exp. 2). Supplementary Table 3 report all 

statistical values of this analysis. 

 

3. Analysis of mean looking times (Exps. 1-3)  

Separate one-way ANOVAs for 6-month-olds in Exp. 1a-b, for 8-month-olds in Exp. 2 and for 8-

month-olds in Exp. 3 revealed the effect of categories on mean looking times (MLTs). Following t-

tests were carried out to follow up on the effect of category.  

For 6-month-old infants in Exp. 1a, pairwise comparisons (one sample t-tests, αcorrected = 0.0018, 

two-tailed) revealed that infants looked longer at human faces relative to all other categories (Ps < 

0.0001 for all of the 7 comparisons between the human face category and other categories respectively). 

Within the inanimate categories, infants looked longer at big artificial objects than at small ones (P < 

Supplementary Table 3. Results of the DLTs analyses of within versus between category comparisons 
        

Exp. Age Comparisons 

within/between 

Mean of the 

difference (SD) 

CI 

(min – max) 

t (df) P Cohen’s d 

1a 6 m Eight-categories -.006 (.119) - inf – .056 -.257 (23) n.s. .050 

  Animacy -.024 (.092) - inf – .024 -1.279 (23) .107 .261 

  Human and nonhuman -.027 (.242) -inf – .101 -.538 (23) n.s. .112 

  Faces and Bodies .027 (.172) - inf – .118 .773 (23) n.s. .157 

  Natural and Artificial -.0003 (.153) - inf – .081 .010 (23) n.s. .002 

  Big and Small -.002 (.163) - inf – .088 .046 (23) n.s. .012 

        

1b 6 m Eight-categories -.020 (.113) - inf – .040 -.847 (23) .203 .177 

  Animacy -.041 (.095) - inf – .009 -2.139 (23) .022 .432 

  Human and nonhuman -.043 (.243) - inf – .085  -.865 (23) .198 .177 

  Faces and Bodies -.055 (.195) - inf – .048 -1.375 (23) .091 .282 

  Natural and Artificial .051 (.177) - inf – .144 1.405 (23) n.s. .288 

  Big and Small -.009 (.250) - inf – .123 -.170 (23) n.s. .036 

        

2 8 m Eight-categories -.119 (.083) - inf – -.076 -7.033 (23) <.0001 1.434 

  Animacy -.111 (.098) - inf – -.060 -5.556 (23) <.0001 1.133 

  Human and nonhuman -.057 (.142) - inf – .018 -1.976 (23) .030 .401 

  Faces and Bodies -.070 (.216) - inf – .044 -1.581 (23) .064 .324 

  Natural and Artificial .007 (.142) -inf – .082 .229 (23) n.s. .049 

  Big and Small -.093 (.162) - inf – -.007 -2.806 (23) .005 .574 

        

3 8 m Eight-categories -.049 (.458) - inf – .008 -2.233 (23) .018 .458 

  Animacy -.051 (.111) - inf – .008 -2.243 (23) .017 .460 

  Human and nonhuman -.076 (.180) -inf – .019 -2.078 (23) .025 .422 

  Faces and Bodies -.089 (.233) - inf – .034 -1.869 (23) .037 .382 

  Natural and Artificial .090 (.152) - inf – .170 2.880 (23) n.s. .592 

  Big and Small .056 (.198) - inf – .160 1.389 (23) n.s. .283 

        

        

Note: Exp., experiment; m, months; CA, corrected age; CI, 99.17% confidence interval; Highlighted in bold are the significant results; α 

= .0083, one-tailed; n.s.= non-significant results with P > .250. 
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0.001), and in general at big than small objects, although comparisons do not survive the multiple 

comparisons correction (Ps < .03 except for the comparison between big and small natural objects for 

which P < .27). For 6-month-old infants in Exp. 1b, results revealed that they prefer (i.e., looked longer 

at) human faces vs. all other categories (all Ps < 0.0001) as well as animate vs. inanimate (10 out of 16 

comparisons are significant with Ps < .001; 3 additional comparisons would be significant without the 

multiple tests correction), big vs. small (natural or artificial) inanimate objects (3 out of 4 comparisons 

are significant with Ps < .0001; the remaining does not survive the multiple tests correction but would 

be significant without it, P = .004), for humans compare to nonhuman animals (3 out of 4 comparisons 

are significant with Ps < .0001; the remaining one would be without the multiple tests correction, P = 

.014) as well as for faces compare to bodies (all Ps < .0001). Unlike in Exp. 1a, the preference for 

human faces and big objects in Exp. 1b was not conflated with the preference for large images, as all 

images featured the same number of pixels. However, the mean looking time for individual images, 

averaged across participants, negatively correlated with the image shape elongation (ρ = -0.407, P < 

0.001), and positively correlated with the image compactness (ρ = 0. 603, P < 0.0001): the less 

elongated and the more compact the shape, the longer the looking time (see also Supplementary Results 

4). See Supplementary Table 4 for t-values and P-values of all the pairwise comparisons reported here. 

For 8-month-old infants in Exp. 2, pairwise comparisons (one sample t-tests, αcorrected: 0.0018) 

revealed longer looking times towards animate than inanimate objects (11 out of 16 comparisons were 

significant; 3 of the 5 remaining comparisons showed non-significant trends, that is, effects that did not 

reach the significance level, corrected for multiple comparisons). A t-test comparing all animate vs. all 

inanimate categories confirmed this effect (animate: M ± SD = 2.066 s ± 0.317; inanimate: M ± SD = 

1.483 s ± 0.234; Mdifference ± SD = 0.583 ± 0.352; 95% CI = 0.434 – 0.731; t(23) = 8.120, P < 0.0001; d 

= 1.656). Comparisons between faces and bodies categories showed mostly significant difference (3 

out of 4 comparisons were significant), which can be summarized as a preference for faces categories 

(M ± SD = 2.296 s ± 0.428) over bodies (M ± SD = 1.836 s ± 0.328; Mdifference ± SD = 0.461± 0.423; 

95% CI = 0.282 – 0.639; t(23) = 5.331, P < 0.0001; d = 1.090). Among the inanimate categories, only 

the comparison between artificial-big vs. artificial-small showed a non-significant trend (P = 0.005; for 

other comparisons all Ps > 0.10). The MLTs analysis also revealed a preference for human faces over 

almost all other categories, except over nonhuman animal faces (all Ps <.001 except for the comparison 

with nonhuman animal faces where P = .085). 

Eight-month-old preterm infants in Exp. 3 looked longer at human faces vs. all other categories 

as well (all Ps < 0.0001). Comparisons between faces and bodies categories showed mostly significant 
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difference (3 out of 4 comparisons were significant), which can be summarized as a preference for faces 

categories (M ± SD = 2.098 s ± 0.360) over bodies (M ± SD = 1.564 s ± 0.362; Mdifference ± SD = 0.534± 

0.353; 95% CI = 0.385 – 0.683; t(23) = 7.417, P < 0.0001; d = 1.513). 
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4. Relationship between MLTs and low-level features of images. 

Because 6- and 8-month-olds’ looking behavior, whether full-term or preterm (Exps. 1-3), appeared to 

be guided by low-level features such as the size of images, the compactness or the elongation 

(Supplementary Fig. 1), we tested whether the categories of images that infants looked at for a longer 

time, corresponded to the categories including larger images, more compact and/or less elongated 

objects. To this end, we computed the MLTs, the mean number of pixels and the mean elongation ratio 

for each category (Supplementary Fig. 2). The three preferred categories, human faces and 

natural/artificial big objects, constituted the largest, the least elongated and the more compact images. 

Furthermore, mean looking times (MLTs) correlated significantly with size, compactness and 

elongation in Exp. 1a for 6-month-olds, with compactness and elongation in Exp. 1b for 6-month-olds 

(see Main text), with compactness in Exp. 2 for 8-month-olds and with size and compactness for 8-

month-old preterm infants in Exp. 3. 
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Supplementary Fig. 1. Signed DLT-RDM (left), size RDM (middle left), elongation RDM (middle), compactness (middle 

right) and color RDM (right) for 6-month-olds in Experiment 1a and b, 8-month-olds in Experiment 2 and 8-month-old 

preterm infants in Experiment 3. Example of a signed DLT-RDM, a size RDM, an elongation RDM, a compactness RDM and a 

color RDM for one subject of the 6-month-old group in Experiment 1a (a), for one subject of the 6-month-old group in Experiment 

1b (b), for one subject of the 8-month-old group in Experiment 2 (c) and for one subject of the 8-month-old preterm infants group 

in Experiment 3 (d). 
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Supplementary Fig. 2. Looking times as a function of image size (left), elongation (middle) and compactness (right) for 6-

month-olds in Experiment 1a and b, for 8-month-olds in Experiment 2 and for 8-month-old preterm infants in Experiment 

3. Relationship between looking times (s) and average size of the images (number of pixels) for each category, average elongation 

(ratio between width and height) for each category and average compactness for 6-month-olds in experiment 1a (a), relationship 

between looking times (s) for each category and average elongation and compactness for 6-month-olds in Experiment 1b (b), 

relationship between looking times (s) for each category and average size of the images, average elongation and average 

compactness for 8-month-olds in Experiment 2 (c), and for 8-month-old preterm infants in Experiment 3 (d). 
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Given these results, we performed a novel stepwise linear regression analysis and DLTs 

analysis after removing the variance explained by compactness, size and elongation for 6-month-old 

(Exp. 1a) and for 8-month-old (Exp. 2) full-term infants as well as for 8-month-old preterm infants 

(Exp. 3; Supplementary Tables 5-6), and the variance explained by elongation and compactness for the 

second group of 6-month-old in Exp. 1b (Supplementary Tables 4- 5). 

Supplementary Table 5. Results of the stepwise linear regression with artificial models, removing variance explained by size, 

compactness and elongation for 6- and 8-month-old infants’ DLT-RDM in Experiments 1-3, and by compactness and 

elongation for 6-month-old infants’ DLT-RDM in Experiment 1 
        

Exp. Age Regressor Mean β (SD) CI 

(min – max) 

t (df)    P Cohen’s d 

1a 6 m Eight-categories -.037 (.116) -.105 – .032 -1.549 (23) .135 .319 

  Animacy .036 (.114) -.031 – .103 1.551 (23) .135 .316 

  Humanness .042 (.263) -.113 – .196 .774 (23) n.s. .160 

  Faces/Bodies -.094 (.198) -.211 – .022 -2.338 (23) .028 .475 

  Natural/Artificial .005 (.221) -.126 – .135 .102 (23) n.s. .023 

  Big/Small -.050 (.146) -.136 – .036 -1.682 (23) .106 .342 

        

1b 6 m Eight-categories -.043 (.114) -.110 – .024 -1.846 (23) .078 .377 

  Animacy .019 (.101) -.041 – .078 .901 (23) n.s. .188 

  Humanness .018 (.218) -.111 – .146  .392 (23) n.s. .083 

  Faces/Bodies -.075 (.210) -.199 – .049 -1.755 (23) .093 .357 

  Natural/Artificial -.002 (.214) -.127 – .124 -.033 (23) n.s. .009 

  Big/Small -.018 (.264) -.174 – .137 -.343 (23) n.s. .068 

        

2 8 m Eight-categories .070 (.080) .023 – .117 4.301 (23) <.001 .875 

  Animacy .111 (.114) .044 – .179 4.780 (23) <.0001 .974 

  Humanness .071 (.174) -.031 – .173 2.001 (23) .057 .408 

  Faces/Bodies .045 (.181) -.062 – .151 1.208 (23) .239 .249 

  Natural/Artificial .044 (.177) -.060 – .148 1.220 (23) .235 .249 

  Big/Small .064 (.180) -.042 – .170 1.736 (23) .096 .356 

        

3 8 m Eight-categories -.049 (.105) -.013 – .111 2.292 (23) .031 .467 

  Animacy .060 (.082) .012 – .108 3.571 (23) .002 .732 

  Humanness .077 (.237) -.063 – .217 1.597 (23) n.s. .325 

  Faces/Bodies .037 (.197) -.080 – .153 .907 (23) .038 .188 

  Natural/Artificial -.103 (.209) -.226 – .021 -2.398 (23) .177 .493 

  Big/Small -.015 (.205) -.135 – .106 -.349 (23) n.s. .073 

        

        

Note: Exp., experiment; m, months; CA, corrected age;  CI, confidence interval; Highlighted in bold are the significant results; α 

= .0083, two-tailed; n.s.= non-significant results with P > .250. 
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5. Experiment 1: Data analysis with more lenient inclusion criteria  

The attrition rate for the group of 6-month-olds in Exp. 1b was larger compared to the group of 6-

month-olds in Exp. 1a (8% versus 64% in Exp. 2). Data from 42 out of 66 tested infants were discarded 

in Exp. 1b, while data from 2 out of 26 tested infants were discarded in Exp. 1a. A larger attrition rate 

may lead to the inclusion of more attentive infants, which could explain the different results in Exp. 1b 

compared to Exp. 1a. 

To take into account this possibility, we ran a novel analysis on the data from Exp. 1b, using 

inclusion criteria that yielded an attrition rate comparable to that of 6-month-olds in Exp. 1a. In 

particular, we modified the criterion for trial inclusion, selecting all trials in which infants looked at 

Supplementary Table 6. Results of the DLTs analysis of within versus between category comparisons,  removing variance explained by 

size, compactness and elongation for 6- and 8-month-old infants in Experiments 1 and 3 and by compactness and elongation for 6-month-

old infants in Experiment 2 

  

Exp. Age Comparisons within/between Mean of the 

difference 

(SD) 

CI 

(min – max) 

t (df) P Cohen’s d 

1a 6 m Diagonal .032 (.104) - inf – .087 1.487 (23) n.s. .308 

  Animate and inanimate -.030 (.105) - inf – .026 -1.375 (23) .091 .286 

  Human and nonhuman -.032 (.280) - inf – .116 -.558 (23) n.s. .114 

  Faces and Bodies .108 (.199) - inf – .213 2.644 (23) n.s. .543 

  Natural and Artificial .010 (.212) - inf – .122 .231 (23) n.s. .047 

  Big and Small .063 (.146) - inf – .141 2.117 (23) n.s. .432 

        

1b 6 m Diagonal .042 (.119) - inf – .104 1.729 (23) n.s. .353 

  Animate and inanimate -.019 (.104) - inf – .036 -0.872 (23) .196 .183 

  Human and nonhuman .0005 (.203) - inf – .107 -0.012 (23) n.s. .002 

  Faces and Bodies .086 (.217) - inf –.201 1.951 (23) n.s. .396 

  Natural and Artificial .018 (.219) - inf – .134 .412 (23) n.s. .082 

  Big and Small .023 (.267) - inf – .164 .418 (23) n.s. .086 

        

2 8 m Diagonal -.108 (.101) - inf – -.054 -5.221 (23) <.0001 1.069 

  Animate and inanimate -.112 (.113) - inf – -.053 -4.863 (23) <.0001 .991 

  Human and nonhuman -.074 (.196) - inf – .029 -1.847 (23) .039 .378 

  Faces and Bodies -.048 (.190) - inf – .053 -1.229 (23) .116 .253 

  Natural and Artificial -.029 (.185) - inf – .069 -.761 (23) .227 .157 

  Big and Small -.053 (.175) - inf – .040 -1.468 (23) .078 .303 

        

3 8 m Diagonal .041 (.188) - inf – .021 -1.701 (23) .051 .348 

  Animate and inanimate -.062 (.085) - inf – -.017 -3.581 (23) <.001 .729 

  Human and nonhuman -.087 (.266) - inf – .053 -1.608 (23) .061 .327 

  Faces and Bodies -.047 (.212) - inf – .065 -1.082 (23) .145 .222 

  Natural and Artificial .108 (.189) - inf – .208 2.803 (23) n.s. .571 

  Big and Small .034 (.219) - inf – .150 .753 (23) n.s. .155 

        

        

Note: Exp., experiment; m, months; CA, corrected age;  CI, confidence interval; Highlighted in bold are the significant results; α = .0083, two-

tailed; n.s. = non-significant results with P > .250 
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images for at least 300 ms (instead of 1000 ms in the original analysis reported in the main text). This 

change yielded the exclusion of 6 out of 66 infants (attrition rate of 9%). The analysis of this dataset 

confirmed the results reported in the main text. The stepwise linear regression analyzing the structure 

of the absolute RDMs did not identify significant regressor (αcorrected = 0.0083), although when looking 

at the correlation between the animacy model and infants’ matrices, we found a significant correlation 

(MFisherρ ± SD = 0.056 ± 0.151; 95% CI = 0.017 – 0.095; t(59) = 2.874; P = 0.006; d = 0.371). The DLTs 

analysis however showed a significant difference between within-category and between-category DLTs 

for the animacy model (Mdifference = -0.036; 99.17% CI = -inf – -0.004; t(23) = -2.778, P = 0.004; d = 

0.364) but no other models (ts < 2.190; Ps > 0.01).  

 

6. Analysis of category distinctiveness from 4 to 19 months of age  

In addition to the previous analysis, we also explored the relation between infants’ age and their 

category distinctiveness (Nordt et al., 2023), including full-term infants tested in chapters 3 and 4. The 

category distinctiveness is defined as the difference between the within-category dissimilarity and the 

between-category dissimilarity. Thus, a negative score of distinctiveness reveals a smaller within-

category dissimilarity compare to the between-category dissimilarity, so a better distinctiveness of the 

category. We assessed the existence of a linear relationship between infants’ age and infants’ category 

distinctiveness for the 8-individual categories, the animacy (animate-inanimate) and the humanness 

(humans-nonhuman animals) categories. For the 8-individual categories distinctiveness, we averaged, 

for each infant, the dissimilarity of the 8 diagonal values of the infant’s DLT-RDM as the within-

category dissimilarity, and all other values off the diagonal as the between-category dissimilarity. For 

the animacy distinctiveness, we averaged the dissimilarity within all animate-animate and inanimate-

inanimate comparisons of the infant’s DLT-RDM as the within-category dissimilarity, and the 

dissimilarity between animate-inanimate comparisons as the between-category dissimilarity. For the 

humanness distinctiveness, we averaged the dissimilarity within all human-human and nonhuman 

animal-nonhuman animal comparisons of the infant’s DLT-RDM as the within-category dissimilarity, 

and the dissimilarity between human-nonhuman animal comparisons as the between-category 

dissimilarity. We then subtracted the between-category dissimilarity to the within-category 

dissimilarity, and evaluated a linear relationship between infants’ category distinctiveness and infants’ 

age. 
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Results show a linear relationship between age and the distinctiveness of the 8-individual 

categories (F(1,119) = 10.369, P = .002; Supplementary Fig. 3), animacy (F(1,119) = 5.516, P = .020) 

and humanness (F(1,119) = 5.786, P = .018). Altogether, this analysis suggests an increase in 

distinctiveness of categories with age, from 4 to 19 months of age. 

  

Supplementary Fig. 3. Evolution of infants’ category distinctiveness through age. Category distinctiveness increases as infants 

grow older, for the 8-individual categories, the Animacy and the Humanness categories. Age are express in days, and group 

age are represented by colors. 
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9.3. Chapter 6 – Supplementary results 

In addition to study the role of low-level visual features in adults, we also studied whether 

infants’ categorization of animate and inanimate objects, as captured in Chapter 5, could also be 

captured with only lower-level visual features, just like in adults. We adapted the experiment to 4-

month-old infants, the youngest group for which we found categorization between animate and 

inanimate, presenting the images at 4 Hz, and the categorical stimulation as 1 Hz (1 tagged image every 

4 images). We used the color phase-scrambled stimuli set, to make sure infants could easily see them 

on the screen, and would be willing to look at it. 

We found a significant brain response over one occipital electrode for 4-month-old infants 

looking at phase-scramble images (MAmplitude ±sd = 0.223±0.598; 95% CI = 0.044 – Inf; t(31) = 2.112; P = .021; 

d = 0.373). 

Supplementary Figure 1. SNR and topoplot. Infants Signal-to-noise ratio (SNR) and distribution over the scalp (topoplot) of 

the response for the animate-inanimate categorization of phase-scrambled images. 

 




