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Titre: Simulation à large échelle et apprentissage profond de la signature en IRM de diffusion
pour le développement de modèles computationnels de l’ultrastructure de la substance blanche
cérébrale
Mots clés: IRM, réseaux de neurones, neuroanatomie, HPC

Résumé: L’équipe Ginkgo (Microstructure)
du laboratoire BAOBAB/GAIA de NeuroSpin
développe dans le cadre du flagship européen
Human Brain Project un environnement ap-
pelé MEDUSA (Microstructure Environment
Designer Using Sphere Atoms) qui permet la
création de tissus virtuels réalistes représen-
tatifs des environnements cellulaires à même
d’être rencontrés dans le cerveau humain, et qui
permet donc de simuler le mouvement brown-
ien de l’eau lié au processus de diffusion et
donc de prédire le signal IRM qu’on obtiendrait
pour chaque tissu virtuel à l’aide d’une IRM
pondérée en diffusion. L’apport majeur des

techniques d’intelligence artificielle notamment
pour l’apprentissage supervisé des grands jeux
de données (ou Big Data) ouvre de nouvelles
perspectives quant au développement de méth-
odes d’imagerie in vivo de la cytoarchitecture
du cortex puisqu’il devient envisageable d’ex-
ploiter l’information microscopique embarquée
dans le mouvement brownien des molécules
d’eau (appelé aussi processus de diffusion de
l’eau) présentes dans le cerveau et dont les tra-
jectoires embarquent une empreinte de la cy-
toarchitecture locale du tissu qu’il devient alors
possible de décoder à l’aide de méthodes d’ap-
prentissage profond.

Title: Large-scale simulation and deep learning of diffusion MRI signatures for the development
of computational models of cerebral white matter ultrastructure
Keywords: MRI, neural networks, neuroanatomy, HPC

Abstract: The Ginkgo (Microstructure) team
of NeuroSpin’s BAOBAB/GAIA laboratory is
developing an environment called MEDUSA
(Microstructure Environment Designer Using
Sphere Atoms) as part of the European flag-
ship Human Brain Project, which allows the
creation of realistic virtual tissues representa-
tive of the cellular environments that can be
found in the human brain, and therefore allows
to simulate the Brownian motion of water re-
lated to the diffusion process and thus to pre-
dict the MRI signal that would be obtained for
each virtual tissue using diffusion weighted MRI.

The major contribution of artificial intelligence
techniques, particularly for supervised learning
of large data sets (or Big Data), opens new per-
spectives for the development of in vivo imaging
methods of the cortex cytoarchitecture since it
becomes possible to exploit the microscopic in-
formation embedded in the Brownian motion of
water molecules (also called the water diffusion
process) present in the brain, and whose trajec-
tories embody an imprint of the local cytoarchi-
tecture of the tissue which can then be decoded
using deep learning methods.
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Résumé de la thèse

L’imagerie médicale est une discipline dont les applications cliniques ou pré-cliniques sont limitées
par des contraintes telles que la résolution spatiale et temporelle, le contraste, le coût ou le

caractère invasif pour le patient. Il existe différentes techniques d’imagerie telles que l’échographie, la
radiographie ou l’électroencéphalographie, chacune présentant des avantages spécifiques par rapport
aux contraintes précédemment énoncées et idéale pour détecter des pathologies spécifiques ou explorer
certaines parties du corps. Depuis sa commercialisation à la fin des années 1980, l’Imagerie par
Résonance Magnétique (IRM) a prouvé son efficacité en réduisant le caractère invasif de l’imagerie
chez les patients tout en permettant une exploration en profondeur des structures cérébrales. De plus,
la modalité d’imagerie IRM dite de diffusion (IRMd), consacrée à la mesure d’un signal sensible au
mouvement des molécules d’eau, a permis l’exploration de la microstructure du cerveau. Le défi que
représente l’étude de la microstructure des tissus cérébraux constitue une nouvelle frontière scientifique
à repousser afin d’étayer notre compréhension du cerveau et de doter les médecins de nouveaux outils
améliorant leurs diagnostics.

C’est dans ce contexte que l’équipe Ginkgo (Microstructure) du laboratoire BAOBAB/GAIA de Neu-
roSpin a développé un environnement appelé MEDUSA (Microstructure Environment Designer Using
Sphere Atoms), permettant la synthèse de tissus virtuels réalistes imitant l’environnement cellulaire
cérébral humain à l’échelle microscopique tout en y simulant le mouvement Brownien de l’eau lié
au processus de diffusion afin d’acquérir l’atténuation du signal IRMd qui en résulte. L’apport des
techniques d’intelligence artificielle, notamment de deep learning, ouvre la voie au développement de
méthodes d’imagerie in vivo des tissus de la substance blanche cérébrale exploitant l’information con-
tenue dans le mouvement Brownien des molécules d’eau présentes dans le cerveau dont les trajectoires
portent une empreinte de la microstructure locale des tissus.

Le sujet de thèse proposé vise à mettre en place, grâce à l’environnement logiciel Ginkgo/MEDUSA,
des campagnes de simulation sur le ”Très Grand Centre de Calcul” (TGCC du CEA, Bruyère-le-
Châtel), afin de dresser une base de données regroupant un grande nombres d’échantillons caractérisés
par différentes géométries cellulaires associées à leurs empreintes en IRMd. Cette base de donnée sera
cruciale pour développer un modèle computationnel robuste de décodage de la microsctructure axonale
au sein de la matière blanche cérébrale. Cette thèse bénéficie du soutien financier du consortium
AIDAS entre le ”Forschungszentrum Jülich” (FZJ) allemand et le ”Commissariat à l’énergie atomique”
(CEA) français.

Les paragraphes suivant visent à établir les différentes réflexions et les successifs développements ayant
mené à la mise en place d’un modèle computationel de décodage de la microstructure de la matière
blanche cérébrale.

Le cerveau humain comme terrain de jeu
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Le cerveau est considéré comme l’une des structures les plus complexes du corps humain, en
conséquent il est fondamental de l’étudier en détail sur le plan anatomique avant de développer des
fantômes numériques réalistes de la microstructure de la matière blanche. Deux échelles d’étude sont
à dissocier: l’échelle macroscopique et microscopique.

Plusieurs critères permettent de séparer l’espace macroscopique au sein des deux hémisphères cérébraux.
On peut ainsi citer des critères morphologiques tels que les plissures (sillons) et lobes (gyri) cérébraux
ou des critères fonctionnels répartissant les différentes fonctions cognitives à certaines régions du
cerveau. On peut également distinguer les régions en fonction de la dichotomie matière grise / matière
blanche, caractérisant respectivement les régions regroupant les corps cellulaires des neurones (ou
soma) d’un part et leurs prolongements appelés axones (ou fibres nerveuses) d’autre part. La matière
blanche porte ce nom du fait de la gaine de myéline blanche entourant les axones.

Concernant l’échelle microscopique, la cyto-architectonie est une approche histologique centrée sur l’ob-
servation de l’arrangement caractéristique des cellules dans les différentes couches du cortex cérébral.
La myélo-architectonie quant à elle étudie l’arrangement des axones qui connectent les neurones les
uns aux autres. L’étude plus fine du cerveau à l’échelle microscopique permet une caractérisation de
la géométrie des axones et des cellules gliales (astrocytes, oligodendrocytes) de la matière blanche,
confortant la configuration des paramètres de notre simulateur. Plus précisément dans le cas de la
matière blanche, les diamètres axonaux mesurent entre 0.1µm et 9.0µm, avec une plus grande pro-
portion de diamètre inférieur à 1.0µm, les fractions volumiques observées sont de 60 à 80% pour les
axones, 15 % pour les cellules gliales, 20% pour l’espace extracellulaire et environ 5% pour les vaisseaux
sanguins. De plus, on observe que 60% des échantillons histologiques présentent des populations de
fibres nerveuses se croisant.

L’imagerie par résonance magnétique
L’imagerie par résonance magnétique (IRM) repose sur la résonance magnétique nucléaire (RMN)

des noyaux des molécules d’eau (protons ou spins) soumis à des impulsions électromagnétiques à la
fréquence de Larmor. L’eau étant abondante au sein des tissus cérébraux et du fluide cérébrospinal,
la technologie IRM est particulièrement adaptée à l’exploration non-invasive du cerveau humain.

L’IRM se distingue de la RMN par la localisation du signal issu de la résonance des protons grâce à
l’usage de multiples gradients électromagnétiques. Le signal IRM peut être pondéré suivant différentes
modalités (anatomique, quantitative, fonctionnelle) dont celle dite de diffusion (IRMd). Le signal issu
d’une acquisition en IRMd est sensible au mouvement Brownien de l’eau dont les trajectoires restreintes
portent l’empreinte de la microstructure locale du tissu.

Modèles biophysiques pour le cerveau
Différents modèles analytiques et computationnels visent à décoder la microstructure des tissus

cérébraux à l’aide de leur empreinte IRMd. L’approche analytique repose sur une représentation
simplifiée des tissus par des formes géométriques simples, permettant la résolution de l’équation de
la diffusion. L’approche computationnelle vise à combler la simplicité des modèles analytiques en
faisant appel à des algorithmes d’apprentissage automatique nourris d’échantillons simulés regroupant
d’une part la paramétrisation de la géométrie des cellules et d’autres part son empreinte en IRMd.
La création d’une base de données regroupant les échantillons simulés nécessite le développement
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Geometry

dMRI Sequence

Diffusion process

MEDUSA: a three-component simulator

MEDUSA sample geometry with it’s 
diffusion orientation distribution function 

(ODF)

Figure 1: Pipeline générale de MEDUSA, regroupant les simulations de géométries cellulaires, de
diffusion et de synthèse du signal IRMd.

d’un simulateur combinant trois composantes: la synthèse de l’environnement cellulaire à l’échelle
microscopique, le mouvement Brownien de l’eau et l’empreinte IRMd résiduelle.

Concepteur d’environnement de microstructure avec simulateur d’atomes
de sphères unifiées (MEDUSA)

Le simulateur MEDUSA est un simulateur regroupant les trois composantes (géométrie, diffu-
sion, signal IRMd) nécessaire à l’élaboration d’un dictionnaire d’échantillons de la microstructure de
la matière blanche associé à son empreinte IRMd. MEDUSA bénéficie d’une approche unique pour
générer les géométries cellulaires reposant sur l’utilisation d’une décomposition des cellules individu-
elles en motifs simples appelés ”atomes”. L’usage d’atomes, allié à l’optimisation computationnelle
de son environnement logiciel (Ginkgo framework), permet à MEDUSA de simuler des échantillons
uniques et ultra réalistes de la microstructure de la matière blanche cérébrale dans des temps réduits.
En effet, on note que la simulation de la géométrie d’un échantillon de trois populations de fibres, pour
un champ de vue de 30µm3, un diamètre axonal distribué autour de 1µm et une fraction volumique
totale avoisinant les 80%, le temps estimé est en moyenne de 14min pour une simulation effectuée sur
une station avec 32 CPU parallélisés.

MEDUSA simule également le mouvement Brownien de l’eau via son simulateur de processus de
Monte-Carlo déplaçant itérativement et aléatoirement des millions de particules d’eau au sein de la
géométrie synthétisée. Enfin, MEDUSA intègre le signal issu de l’empreinte IRMd des trajectoires des
particules d’eau, celui ci étant pondéré en fonction des séquence IRMd sélectionnées et réglables en
amont de la simulation.
Une batterie de tests fut menée afin de valider la justesse des résultats émis par le simulateur MEDUSA.
Ces tests permirent également d’établir le réglage optimal des différents paramètres de la simulation
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Figure 2: Visualisation de 3 échantillons de géométrie MEDUSA présentant respectivement 1, 2 et 3
populations de fibres en vue de face (haut) et de dessus (bas).

tant en terme de réalisme du processus de diffusion simulé qu’en terme d’efficacité computationnelle.
Riche des enseignements de nos campagnes de tests, MEDUSA fut calibré et prêt à être employé dans
le cadre d’une large campagne de simulation.

Mener une vaste campagne de simulation MEDUSA
Cette thèse vise à proposer un modèle informatique pour décoder la microstructure de la matière

blanche en utilisant un algorithme d’apprentissage automatique entraîné sur des échantillons simulés.
Pour alimenter correctement l’algorithme d’apprentissage automatique, un nombre significatif d’échan-
tillons doit être simulé; cet objectif est facilité par l’efficacité informatique du simulateur MEDUSA,
qui permet de générer des échantillons réalistes dans des temps de calcul réduits. Dès le début, le choix
a été fait d’exécuter la campagne de simulation sur une installation de calcul à haute performance
(HPC), car le nombre prévu d’échantillons simulés doit être suffisamment important pour prendre en
compte toutes les configurations plausibles de la microstructure de la matière blanche.

Le Très Grand Centre de Calcul (TGCC, CEA, DAM Île de France, Bruyères-le-Châtel) a accueilli les
différentes campagnes de simulation MEDUSA ayant mené à la synthèse d’environ 40 000 échantillons.
Chaque échantillon est unique et contient une à trois populations de fibres axonales en son sein. Un
algorithme de bruitage et de rotation a permis d’étoffer notre base de données en la faisant passer de
40 000 à 4 000 000 d’échantillons.

Concevoir un réseau de neurones décodant la microstructure de la
matière blanche cérébrale

L’algorithme d’apprentissage automatique élaboré lors de cette thèse repose sur différents réseaux
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AD = 2.48𝞵m, VF = 0.54 AD = 2.75𝞵m, VF = 0.69 AD = 2.70𝞵m, VF = 0.86 

AD = 1.33𝞵m, VF = 0.62 AD = 1.16𝞵m, VF = 0.64 AD = 1.80𝞵m, VF = 0.81 

AD = 0.53𝞵m, VF = 0.53 AD = 0.77𝞵m, VF = 0.60 AD = 0.80𝞵m, VF = 0.86

AD 
Axon Diameter

VF 
Volume fraction

Figure 3: Visualisation de la géométrie d’échantillons synthétisés lors de la campagne de simulation
avec 9 échantillons présentant des diamètres axonaux et des fractions volumiques croissantes. Les
fractions volumiques en abscisses sont compris entre 0.5 et 0.9 et les diamètres axonaux en ordonnée

entre 0.5µm et 3µm.
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Vf 1 = 0.19 
Vf 2 = 0.34
Vf 3 = 0.33

Vf 1 = 0.57
Vf 2 = 0.17
Vf 3 = 0.15

Figure 4: Deux échantillons de la campagne de simulation sont présentés. Ils comprennent tous deux
3 populations de fibres populations de fibres. Les populations sont différenciées par leur couleur RVB

spécifique.

xx



Résumé de la thèse

de neurones conçus et optimisés afin de répondre au problème ciblé par cette thèse : le décodage de
la microstructure de la matière blanche. Ce problème consiste à associer une empreinte IRMd à la
géométrie issue de la microstructure, par conséquent la fonction que l’algorithme doit apprendre est
une régression (supervisée car les données sont étiquetées).

Les paramètres génératifs de la microstructure décodés par le réseau sont la distribution des diamètres
axonaux des populations de fibres, leurs fractions volumiques, leurs orientations ainsi que leurs disper-
sions angulaires. De plus, du fait que les échantillons simulés se composent de une à trois populations
de fibres, un paramètre supplémentaire comptabilisant le nombre de populations est saisi par un réseau
spécifique dont le résultat permet d’aiguiller le décodage. Ainsi, 4 réseaux de neurones différents ont
été conçus et optimisés: l’un comptabilisant le nombre de populations et les trois autres respectivement
dédiés à décoder la microstructure d’échantillons contenant une, deux ou trois populations.

Suite à l’apprentissage des réseaux de neurones basé sur la base de données d’entraînement MEDUSA,
une étude approfondit de l’impact des différents paramètres constituant la base de donnée fut menée
afin d’estimer la qualité des prédictions du modèles. Les résultats furent prometteurs dans le cas
d’échantillons constitué d’une seule population de fibres, en conséquent, une application direct des
modèles prédictifs MEDUSA est à l’avenir souhaitée sur de véritables acquisitions issu du protocole
iCORTEX et centrée sur le corps calleux.

Apports de la thèse, futurs développements et conclusion
Le sujet présenté par cette thèse fait appel à de nombreux domaines scientifiques: anatomie du

cerveau, physique de l’IRM, simulateurs informatiques, gestion de base de données, calcul sur super
calculateur et conception de réseaux de neurones. De nombreux développements ont été portés tels que
l’optimisation du simulateur MEDUSA afin de le rendre transposable à un calcul sur super-calculateur
et d’améliorer l’instanciation de ces paramètres d’entrées. De plus, un dictionnaire d’échantillons
digitaux de géométrie microscopique de la matière blanche associés à leur empreinte en IRMd a été
constitué. Enfin, une pipeline de décodage de la microstructure de la matière blanche a été conçue
s’appuyant sur de multiple réseaux de neurones entraînés.

A l’avenir, de nouvelles campagnes de simulations MEDUSA devront être menées comportant des
géométries plus complexes à étudier via la présence de cellules gliales ou de micro vaisseaux. Une
amélioration de la pipeline de décodage sera nécessaire pour cartographier plus fidèlement les paramètres
de la microstructure.

Pour conclure, l’approche computationnelle d’un modèle de décodage de la microstructure de la matière
blanche, appuyé d’échantillons synthétisés par simulateur, est prometteuse et constitue une alterna-
tive aux modèles analytiques. Les travaux présentés ont de nombreuses applications pratiques chez le
patient via notamment la constitution d’un outil de diagnostique supplémentaire pour les médecins.
Enfin, le sujet de cette thèse est porteur et multi-disciplinaire, ouvrant la voie à de nombreux développe-
ments et réflexions futures, facilités par la flexibilité et la portabilité de l’environnement logiciel Ginkgo
MEDUSA.
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General introduction

General Introduction

Context and motivations

Medical imaging is a discipline in which the quality and feasibility of clinical or pre-clinical appli-
cations are constrained by boundaries such as spatial or temporal resolution, contrast capacity,

cost of implementation, or invasiveness for the patient. Various imaging techniques such as echogra-
phy, radiography, or electroencephalography exist, each with specific benefits regarding the previous
constraints and ideal for detecting specific pathologies or exploring particular body parts. Since its
commercial democratization at the end of the 80s, Magnetic Resonance Imaging (MRI) has proved its
effectiveness in reducing the invasiveness of imaging in patients while enabling in-depth exploration
of the brain’s structures metabolism, and functional network. Part of it, diffusion MRI, based on
the measurement of a signal sensitive to the movement of water molecules, has made it possible to
explore the brain’s microstructure, which is at the heart of this thesis. Quantifying the brain tissue
microarchitecture with a high degree of accuracy remains a real challenge that could open an overcome
to the creation of disruptive tools to understand better the impairments occurring at cellular scales
aiming the development of brain diseases and thus providing immersive tools for the diagnosis.

It is in this context that the Ginkgo (Microstructure) team of NeuroSpin’s BAOBAB/GAIA laboratory
is developing an environment called MEDUSA (Microstructure Environment Designer Using Sphere
Atoms), which allows the creation of realistic virtual tissues representative of the cellular environments
that can be found in the human brain, and therefore allows to simulate the Brownian motion of
water related to the diffusion process and thus to predict the MRI signal that would be obtained for
each virtual tissue using diffusion-weighted MRI. The significant contribution of artificial intelligence
techniques, particularly for supervised learning of large data sets, opens new perspectives for the
development of in vivo imaging methods of brain white matter tissues since it becomes possible to
exploit via deep learning methods the microscopic information embedded in the Brownian motion of
water molecules present in the brain, whose trajectories embed an imprint of the local microstructure
of the tissue.

This thesis aims at launching (using Ginkgo/MEDUSA software platform) large simulation campaigns
on the CEA HPC facility (Très grand centre de calcul, CEA DAM Ile de France, Bruyères-le-Châtel) to
develop a novel computational model for the decoding of brain white matter microstructure compatible
with clinical use, aiming in the long term to provide neuroradiologists with a new monitoring tool.

This project benefited from the financial support of the AIDAS joint institute between the German
”Forschungszentrum Jülich” (FZJ) and the French ”Commissariat à l’énergie atomique” (CEA) and
also benefited from a strong collaboration between the group of Pr. Markus Axer (INM-1, FZJ), and
the Ginkgo team (Baobab, Neurospin, CEA).

Thesis organization
1
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The structure of this thesis seeks to correspond to the path of thoughts and works achieved during
these past 4 years. Thus, the first three chapters deal in detail with the state of the art necessary
for a proper understanding of the subject, with [chapter 1] presenting the human brain’s anatomic
structures, with a distinction between gross anatomy and microscopic anatomy. [Chapter 2] focuses
on presenting the fundamentals of magnetic resonance imaging, focusing on diffusion MRI modality
at the heart of this thesis. Completing the chapters dedicated to the state-of-the-art, [chapter 3]
presents the existing analytical models to decode the brain microstructure based on its dMRI signature
and lists the different features of digital simulators developed by the dMRI community aiming to
synthesize the microstructure geometry and its dMRI footprint to train machine learning algorithm
for computational decoding models. [Chapter 4] introduce the functioning of the MEDUSA simulator,
developed by the Ginkgo team and designed as an all-in-one simulator enabling the synthesis of virtual
brain tissues, diffusion process, and dMRI signature. The MEDUSA framework was used to build a
large dictionary of simulated realistic numerical phantoms of white matter brain tissues associated
with their synthesized dMRI signature during a simulation campaign whose results and features are
presented in [chapter 5]. [Chapter 6] is dedicated to the presentation of the decoding pipeline based on
deep learning machine learning algorithms purposely designed to predict white matter microstructure
axonal features such as axonal diameter, volume fraction, global angular orientation, or fiber mean
orientations based on the dMRI features collected during the simulation campaign. Finally, [chapter
7] is dedicated to the presentations of the ongoing works regarding MEDUSA and future potential
applications based on the presented achievements as well as a general conclusion of the thesis.
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Figure 1.1: Complexity of neuronal system, adapted from [Dunn 2017] and Greg Gun micro
engraving technique and Steve Gschmeissner artistic axon microscopic photos [Gschmeissner 2024].

3



1.1. Macroscopic anatomy

Chapter outline
1.1 Macroscopic anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Gross anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Brain lobes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.3 Grey matter vs white matter . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.4 Brain vasculature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Microscopic anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.1 Brain cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 Cortex histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.3 White matter histology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Frequently referred to as one of the most complex structures of the human body, the brain will be
our playground throughout this thesis. Its structure must be understood to interpret and decode

the MRI signal from it or develop realistic numerical phantoms of its tissues. With this in mind, the
purpose of this chapter is to present the anatomic background of the brain on which this thesis relies,
from macroscopic to microscopic scale.

1.1 Macroscopic anatomy

1.1.1 Gross anatomy

Central nervous system - The human central nervous system (CNS) comprises the spinal cord and
brain also known as encephalon [figure 1.2].

The spinal cord is a 45 cm long cylinder flattened from front to back with a 1-2cm diameter. From an
axial perspective, two areas can be spotted: white matter around the perimeter, which contains the
axons of sensory/motor neurons, and grey matter in the center, shaped like a butterfly, comprised of
the cell bodies of neurons. It should be noted that this layout is opposite to the one in the encephalon
because, in the case of the spinal cord, it allows the innervation of the 31 pairs of spinal nerves along
the spinal cord that emanate from the white matter. It has two bulges corresponding to the roots
that innervate the upper and lower limbs.
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Chapter 1. Human brain anatomy

Figure 1.2: Central nervous system separated into two parts: the spinal cord and the brain, also
called encephalon. The encephalon is composed of the cerebrum, the cerebellum, and the brainstem.
The brainstem comprises the midbrain, the pons, and the medulla. Adapted from [ShutterStock 2024].

In the following sections, we will focus on the description of the encephalon.

Protection of the encephalon - The eight protective bones of the skull [figure 1.3] protects the en-
cephalon: one frontal bone, two parietal bones, two temporal bones, one occipital bone, one ethmoid
bone, and one sphenoid bone. Three protective membranes below the skull [figure 1.3] called meninges,
cover both the encephalon and spinal cord:

• The dura mater - Thick, white layer that delimits expansions via the brain scythe and cerebellum
tent, which divide the intracranial volume. The outer layer adheres to the inside of the bone
and is highly vascularized and innervated. The scythe of the brain insinuates itself between the
two hemispheres. The dura mater wraps the arachnoid membrane.

• The arachnoid - Named for its spiderweb-like appearance, located between the pia mater and
the dura mater is a thin, non-vascularized, and non-innervated layer that adheres to the inner
surface of the dura mater; it’s separated from the pia mater by the subarachnoid space containing
the cerebrospinal fluid (CFS).

• The pia mater - Thin, transparent, fragile, innervated, and non-vascularised membrane. The
Pia mater accompanies the arteries which penetrate the parenchyma.
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1.1. Macroscopic anatomy

(a) Human skull and bones. (b) Meninges scheme and organization.

Figure 1.3: Protection of the brain. Adapted from [Healthliteracyhub 2024] and [Wikimedia 2020].

Ventricular structures - The encephalon is structured around four cavities called ventricles filled with
CFS, allowing the inner nutrition of the brain. The choroid plexus, a set of cells hosted inside the
ventricles, secrete the CSF:

• 1st and 2nd ventricles (lateral) - Symmetric and paired, they supply the brain hemispheres
with CSF and follow the inner structure of the brain thanks to their anterior temporal/occipital
horns.

• 3rd ventricle - Supplies the base of the brain in the diencephalon.

• 4th ventricle - Supplies the cerebellum.

These ventricles are interconnected: the first and second ventricles are linked to the third ventricle by
the inter-ventricular foramen and between the third and fourth ventricles by the aqueduct of Sylvius
[figure 1.4]. The CSF ensures mechanical and immunological protection of the brain as well as its
flotation of it. It participates in homeostasis to regulate the distribution of substances between brain
cells; the glymphatic system allows brain tissues to eliminate biological waste [Bacyinski et al. 2017].
The volume of CSF is about 125mL at any time in the brain and about 250mL is generated daily.
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Figure 1.4: Organisation of the brain ventricles, frontal and lateral views, adapted from [Quizlet
2024].

Encephalon - The encephalon is composed of the cerebrum, cerebellum, and brainstem [figure 1.5].
The brainstem is located between the bottom of the spinal cord and the cerebrum at the top and is
composed from the bottom to the top of the medulla oblongata, the pontella, and the mesencephalon.
It is crossed by the major ascending (sensitivity) and descending (motor) pathways. Its ependymal
cavity expands to form the fourth ventricle.

Figure 1.5: The encephalon can be divided into three main structures: 1. the cerebrum is the biggest
part of the brain, made of two hemispheres; 2. the brainstem consists of the midbrain, the pons, and
the medulla oblongata. It connects the encephalon to the spinal cord. 3. the cerebellum is located in
the posterior cranial fossa and is separated from the overlying cerebrum by a layer of dura mater, the

tentorium cerebelli. Figure adapted from [Staff 2014].

The cerebellum (Latin for little brain) is smaller than the cerebrum and plays a vital role in motor
control. Anatomically, it appears to be a separate structure attached to the bottom of the brain,
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tucked underneath the cerebral hemispheres. Its cortical surface is covered with finely spaced parallel
grooves, in striking contrast to the broad, irregular convolutions of the cerebral cortex. These parallel
grooves conceal that the cerebellar cortex is a continuous thin layer of tissue tightly folded in an
accordion style.

We will describe specifically the anatomy of the cerebrum in the following sections.

1.1.2 Brain lobes

We can take different approaches to divide the areas inside the cerebrum. One of them is to
distinguish its lobes. The cerebrum’s outer layer of neural tissue, the cerebral cortex, is a wrinkled
structure built on ridges (gyri) and grooves (sulci). The foldings create a greater surface area in the
confined volume of the skull and are essential for brain wiring and functional organization. These
wrinkles can be regrouped by lobes and associated with different functions. Each lobe can be found
in both the left and right hemispheres of the brain:

• The frontal lobe - Located in the anterior part of the brain, it extends back to a fissure known
as the central sulcus. The functions linked to this area are motor control, reasoning, emotion,
and language. It contains the prefrontal cortex, responsible for higher-level cognitive functions
such as reasoning skills and decision-making; the premotor and primary motor cortices, which
are involved in planning and coordinating movements; and Broca’s area, involved in speech
production.

• The parietal lobe - Processing all sensory information, it is located behind the frontal lobe. It
contains the somatosensory cortex, which surface encodes the sensory information coming from
the different parts of the body. The encoding on the surface of the somatosensory cortex follows
the proximity of anatomical features.

• The occipital lobe - It is almost exclusively devoted to visual processes such as visual interpre-
tation, object and facial recognition, and distance perception. It is located at the back of the
brain and contains the primary visual cortex, which is responsible for interpreting incoming vi-
sual information from the retina. The occipital cortex is organized retinotopically, which means
there is a close relationship between the position of an object in a person’s visual field and that
object’s representation in the cortex.

• The temporal lobe - Located on the flank of the head this area is associated with hearing,
memory, emotion, and some aspects of language. This lobe contains the auditory cortex that
processes auditory information, called Wernicke’s area, which is crucial for speech comprehen-
sion.
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Chapter 1. Human brain anatomy

Figure 1.6: a. Lateral view of the four external lobes of the human brain: frontal, parietal, temporal,
and occipital. The central and lateral sulci and the precentral and postcentral gyri are also shown. b.

Main functional areas of the brain. Adapted from [Staff 2014].
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To be more specific, two other structures can be considered as lobes:

• The limbic lobe - Subdivided into two limbic lobes: the superior limbic lobe (lobus limbicus
superioris) and the inferior limbic lobe (lobus hippocampi or lobus limbicus inferioris), it is a
complex set of brain structures and an arc-shaped brain region that is crucial in the process
of memory, learning, motivation, and emotion, as well as endocrine functions and some auto-
nomic—automatic, unconscious—bodily functions. It is affected in many neurodegenerative
and neuropsychiatric diseases, including schizophrenia, Alzheimer’s disease, and some forms of
epilepsy [Gupta 2017].

• The insular cortex - It is a cortical region hidden in a lateral view by the temporal and frontal
parietal lobes. It is believed to be involved in consciousness and taste analysis.

1.1.3 Grey matter vs white matter

Another way to separate areas within the cerebellum and all the CNS is through the white and
gray matter dichotomy. This designation results from the fact that grey matter visually appears darker
than the rest of the nervous tissue [figure ??], which is essentially made up of bundles of axonal fibers
sheathed in whitish myelin and so known as white matter. This dichotomy is not perfectly accurate
because the switch from gray to white matter reveals a transition zone sharing both the properties of
gray and white matter.

1.1.3.1 Grey matter

Grey matter is essentially composed of neuronal cell bodies and dendritic trees as well as certain glial
cells (see 1.2.1). In the cerebrum, it is found in the outer layers of the cortex and subcortical regions.
Grey matter can also be found in the cerebellum and the brainstem, but this will not be described in
this section.

Cortex - Located at the periphery of the brain, the grey matter is said to define a cortex. It comprises
a non-uniform stack of layers of nerve cells differentiated by cytoarchitectonic type, cell density, and
connectivity. Its thickness varies according to the location; indeed [Amunts and Zilles 2015] reported
a thickness of 4.2-5.7mm in the primary motor cortex, while the primary somatosensory cortex depicts
a thickness of only 2.4-2.7mm. Anatomically, the cortex is folded to extend at its surface while fitting
within the skull. This folding process occurs during neurogenesis and is driven by neuroepithelial cells,
forming the wall of the closed neural tube in early embryonic development [figure1.7]. This implies
that humans are a gyrencephalon species, contrary to lissencephalon species such as rats or mice with
smooth cortex.
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Figure 1.7: Schematic drawings illustrating different developmental cerebral cortex folding types. A,
true cortical folding (also called bona fide) is characterized by the folding of the pial surface (purple)
and the underlying six neuronal layers (colored bands). In contrast, the surface of the white matter
(wm) remains smooth. B, pseudo cortical folding is typically characterized by the overgrowth of the

early neuroepithelium during neurogenesis. Adapted from [Borrell 2018].

Two types of cortex can be differentiated :

• The neocortex - Located in the superficial portion of the forebrain, it is a highly organized
structure of a few millimeter thicknesses (between 1 and 4.5 for the adult brain) [Fischl and
Dale 2000] that processes sensory, motor, language, emotional, and associative information. It is
the most significant component of the cerebral cortex, filling 90% of it and comprising six layers
of neurons grouped according to their primary input or output circuitry. 80% of the neurons
here are excitatory and project axons to other regions of the neocortex or deep brain structures
such as the thalamus, basal ganglia, cerebellum, hindbrain, or nuclei within the spinal cord.
Therefore, the neocortex plays a role in coordinating the activity of neurons throughout the
central nervous system.

• The allocortex is a much smaller area taking up just 10% of the cortex and found in the olfactory
system and hippocampus and has just three or four layers of neuronal cell bodies in contrast to
the six layers of the neocortex.

Subcortical nuclei - In addition to cortices, grey matter can be found deeper in the brain, around
the cerebral ventricles clumped together in groups of subcortical nuclei. These structures don’t have
the laminar organization of the cortices and can be found in the cerebrum, cerebellum, brainstem, or
diencephalon. Two subcortical nuclei subgroups can be established:
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• Basal ganglia - The basal ganglia are associated with various functions, including control of
voluntary motor movements, procedural learning, habit learning, eye movements, cognition, and
emotion. Their dysfunction results in a wide range of neurological conditions, such as disorders of
behavior, control, and movement, including Tourette syndrome, obsessive-compulsive disorders,
addiction, Parkinsonian syndromes, Huntington’s disease, and dystonia. Among basal ganglia
structures, we can cite the following: the caudate nuclei, the putamen, the nucleus accumbens,
the globus pallidus, the ventral pallidum, the substantia nigra, and the subthalamic nucleus
[figure1.8, 1.9].

• Diencephalon nuclei - The diencephalon acts as a primary relay and processing center for sensory
information and autonomic control. It comprises four structures: the thalamus, the hypothala-
mus, the epithalamus, and the subthalamus. The multiple communication pathways between
its structures and other body parts make the diencephalon functionally diverse. These connec-
tions include pathways to the limbic system (seat of memory and emotion), basal ganglia, and
primary sensory areas, such as auditory or visual.

Figure 1.8: Basal ganglia, 3D illustration. Adapted from [Anatomie-amsterdam 2024]
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Figure 1.9: Coronal slice of a brain’s basal ganglia. The strands of grey matter within the internal
capsule, connecting the caudate nucleus to the putamen, are well visible in this illustration. The

putamen forms with the globus pallidus, the lentiform nucleus. Adapted from [Herrero, Barcia, and
Navarro 2002]

1.1.3.2 White matter

White matter consists of the myelinated axons of the neurons of the central nervous system. It is
located deep in the brain and on the surface of the spinal cord. Afferent and efferent white matter
axonal tracts interconnect cortical areas and gray matter nuclei of the brain and spinal cord. This
section describes projection, commissural, and associative fibers found in white matter.

Projection fibers - Projection fibers associate the cortex and underlying structures. These fibers
may be efferent or afferent, which means conducting information outwards or inwards of the cortex.
Efferent/descending bundles are motor tracts, whereas afferent/ascending bundles form sensory tracts.

Commissural fibers - Commissural fibers associate both cerebral hemispheres. They include:

• The Corpus callosum - It is the largest bundle of commissural fibers located above the dien-
cephalon and forms the roof of the lateral ventricles. It reciprocally connects the cortical areas of
the right and left hemispheres, which are generally homologous. The corpus callosum comprises
the rostrum, the genu, the body, and the splenium [figure1.10].

• The anterior commissural fibers - It includes interhemispheric fibers, which associate the two
regions anterior temporalis, amygdala, and olfactory areas. This bundle is ten times thinner
than the corpus callosum and is crucial in pain sensation, precisely sharp, acute pain.

• The posterior commissural fibers - It includes fibers involved in visual reflexes.
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Association fibers - Association fibers associate different cortical regions in the same hemisphere. They
can be short or long.

• Long association fibers are the inferior fronto-occipital fasciculi, the inferior longitudinal fasciculi,
the middle longitudinal fasciculi, the superior longitudinal fasciculi, the ventral visual streams,
the arcuate fasciculi, the frontal aslant tracts, the uncinate fasciculi, the cingulum and the fornix.
See [figure1.10] for a clear picture of these bundles.

• Short association fibers also called ”U-fibers” [Meynert 1885] or ”superficial white matter fibers
bundles” because of their shorter length, around 90 millimeters in the human brain and the
shape it takes to link to close cortical regions.

1.1.4 Brain vasculature

Vasculature purpose is dual: first is to carry oxygen through the blood necessary to produce
ATP, a fundamental metabolic energy molecule. The second is to evacuate brain waste. The brain
accounts for an average of 2% of body weight yet consumes almost 18% of the oxygen at rest. Cerebral
vascularisation has a specific organization we can schematize as a three-level system [figure 1.11]. The
supply pathways represent the first level. These are made up of a vascular tripod with the two internal
carotid arteries at the front and the basilar trunk at the back, formed by the junction of the vertebral
arteries. The second level consists of anastomoses between the carotid and vertebra-basilar systems
via the intermediary of the basilar trunk. The cerebral arteries represent the third level. They are
characterized by a basal course at the base of the brain, in which they give rise to perforating branches.
These arteries vascularise deep cerebral structures (white matter and nuclei). Numerous anastomoses
between arterial territories complete this system. In some cases, these can partially preserve the brain
from a fall in cerebral blood flow.
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Figure 1.10: A new deep white matter fiber bundles atlas of the human brain. 3D renderings of the 45
white matter bundles composing our long white matter atlas and including the middle longitudinal
bundle, the inferior longitudinal bundle, the arcuate, the frontal aslants, the uncinate, the fornix, the

cingulum (dorsal and ventral), the motor and sensory ascending and descending fibers
(cortico-spinal), the anterior commissure, the optic radiations, the ventral visual stream, the thalamic
radiations (anterior, superior and posterior), the inferior fronto-occipital bundle; the cerebellar fiber
components: the hypothalamic and subthalamic fibers, and the cortico-ponto-cerebellar fibers; The
corpus callosum (CC) components : (left) the four subparts of the CC following Aboitiz labeling
(splenium, isthmus, midbody, genu) and (right) the seven subparts of the Witelson labeling. (inf:
inferior). White matter bundles are all represented with different colors and superimposed to the

cortex pial surface computed from the MNI template and rendered with transparency [Chauvel et al.
2023].
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a) b)

Figure 1.11: a)Major cerebral arteries, adapted from [Neupsykey 2024]. b) Magnetic resonance
angiography, anterior view, adapted from [InstitutDeRadiologie 2024].

1.2 Microscopic anatomy

The brain can be observed at various scales; thus, we will describe its organization at microscopic
scales in this section. Recent studies point out that at this scope, the observable structure within brain
tissues is made of cells, around 100 billion connected neurons, and as many glial cells that handle
neural tissue integrity [Von Bartheld, Bahney, and Suzana Herculano-Houzel 2016]. First, we will
characterize the different cell species populating the brain tissue at the microscale, then highlight the
different approaches to parcellate the brain into areas sharing homogenous microstructure.

1.2.1 Brain cells

The following section will present the cells found in cerebral tissues starting with the most
common one: the neurons.

1.2.1.1 Neurons

A neuron or nerve cell is an electrically excitable cell that fires electric signals called action potentials
across a neural network. Neurons communicate with other cells via synapses, specialized connections
commonly using chemical neurotransmitters to pass the electrical signal from the presynaptic neuron
to the target cell through the synaptic gap. The neuron comprises a cell body (soma), dendrites, and
axon extensions, which will be described hereafter.
Soma - The soma is the core of the neuron and the site of significant metabolic activity. The soma
usually measures between 4 to 100 micrometers in diameter. A cytoplasm wraps it and contains the
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nucleus that encloses the DNA and many organelles, including granules called Nissl corpus and free
ribosomes, synthesizing proteins. The Soma also has different organites, such as the mitochondrion
responsible for cell energy supply or the Golgi apparatus, which regulates the transport of molecules
through the membranes and transforms the proteins and the lysosomes [figure 1.12].

Dendrites - Dendrites are extensions of the soma with which they share some organites. They measure
between 1 to 2 µm and their diameter varies from 0.2 to 3 µm for dendrites close to their soma. For
neurons in the cerebral cortex, the dendritic trees are mostly isotropic, whereas elsewhere, like in the
layers of the hippocampus, the trees can be highly anisotropic [Fiala, Harris, and Spacek 1999].s

Axons - They are long tubular extensions of the neuron that typically conduct electrical impulses
known as action potentials away from the soma. Axons may extend from a few millimeters in the case
of superficial white matter bundles to over one meter in corticospinal neurons [Schüz and Braitenberg
2002]. Fiber inner diameters are reported to range from 0.16 to 9 µm in the cerebrum with a large
majority of axons with average diameter values below 1.0µm [Aboitiz, R.S. Fisher, and E.Zaidel 1992;
Liewald et al. 2014], and are up to 15 µm in the human spinal cord [Häggqvist and al 1936]. Myelin is
a lipide and dielectric material that wraps around axons in the nervous system to protect the axonal
membrane and provide efficient conduction of neural signals. Fiber diameter is related to conduction
velocity: in myelinated axons, conduction velocity increases approximately linearly with axon diameter
[Gasser and Grundfest 1939].

Larger axons and a thicker myelin sheath create faster conduction, but there is a trade-off between
myelin thickness and axon size due to spatial constraints imposed by the brain dimensions. Data
derived from serial reconstructions of the adult mouse cortex showed that the degree of myelination
can even vary along a single axon. Thus, neurons located in superficial cortical layers exhibit both
myelinated and large unmyelinated segments, contrasting with the pattern observed, for instance in
the spinal cord or the optic nerve where myelinated axons display regular internodes [Tomassy et al.
2014] called Ranvier nodes [Salzer 1997] [figure 1.12]. In general, larger axons tend to have thicker
myelin sheaths, but the relationship between the two is not linear [Berthold, I. Nilsson, and Rydmark
1983]. There is a link between axon size and myelin thickness captured by a parameter called the
myelin g-ratio, defined as the ratio of the inner (axon) to the outer (axon plus myelin) diameter of the
fiber. The g-ratio that provides maximum conduction speeds, has a broad optimal value around 0.77
[Chomiak and Hu 2009; Stikov et al. 2015].

The Ranvier nodes internode distance d has been extensively studied in [Rushton 1951] leading to the
maximum conduction relationship :

d

D
∝ kg

√

log

(

1

g

)

, (1.1)

where K is a constant, D is the external diameter of the axon (including the myelin sheath) and g is
the g-ratio defined as the ratio between the axonal membrane and the external myelin sheath outer
membrane diameters.
Neurite - Semantically, we refer to as ”neurite,” any projection of the cell body of a neuron. This
projection can be either an axon or a dendrite. This designation comes from the fact that it can be
challenging to differentiate axons from dendrites in imaging.
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a

b

c

Figure 1.12: a) Scheme of a neuron cell exhibiting its main components: the cell body or soma found
in grey matter, the dendrites, the axon with a myelin sheath interrupted by Ranvier nodes. The nerve
impulse is received by the dendrites and is propagated along the axon towards the axon terminals
and the synapses, adapted from Sarthaks. b) Confocal image of an eGFP filled striatal medium spiny
neuron, from [Carlson et al. 2011]. c) Artistic view of a cross-section of a bundle of nerve fibers
adapted from Steve Gschmeissner work.
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1.2.1.2 Glial cells

In 1858, Rudolf Virchow first proposed that neuroglia comprised the brain’s connective tissue and was
composed of cellular elements [Virchow 1858]. Later, Camillo Golgi visualized astrocytes within the
nervous system and developed the concept that these cells constituted the glue of the brain [Golgi
1885]. Glial cells are 80% water and not electrically excitable, they do not conduct action potentials
like their neuronal counterparts.

Astrocytes - The term astrocyte, which referred to the stellate morphology of these cells, was first
used in 1893 by Michael von Lenhossek [Lenhossék 1893]. Among glial cells, astrocytes are the most
numerous in the central nervous system [figure 1.13]. They participate in all essential CNS functions,
including blood flow regulation, energy metabolism, ion and water homeostasis, immune defense, neu-
rotransmission, and adult neurogenesis [Lundgaard et al. 2014]. Their somas vary between 10−15µm
in diameter, with an overall diameter of about 15µm if we consider the processes [N. Oberheim et al.
2009]. These cells were subdivided into fibrous and protoplasmic astrocytes by Kolliker and Andriezen
[Kölliker 1889; Andriezen 1893].

• Protoplasmic astrocytes - They are distributed relatively uniformly within the cortical gray
matter and have many fine processes (50µm long on average). Their density varies between 10
000 and 30 000 per mm3. The surface area of their processes is huge (up to 80 000 m2) and
covers almost all neuronal membranes within reach.

• Fibrous astrocytes - They are organized along white matter tracts, within which they are
oriented longitudinally in the plane of the fiber bundles, their processes are long (up to 300µm),
though much less elaborate with fewer branching compared to protoplasmic astroglia. The
density of fibrous astrocytes is around 200,000 cells per mm3. Experimental evidence points
to fibrous astrocytes as being crucial in facilitating normal myelination during development,
maintaining the right environment for oligodendrocytes, and also ion buffering and metabolic
supply throughout adulthood [Lundgaard et al. 2014; N. Oberheim et al. 2009]. Fibrous astro-
cyte processes also create numerous extensions (”perinodal” processes) that connect axons at
nodes of Ranvier, the sites of action potential propagation in myelinated axons. The cell bodies
are equally spaced, probably because they provide structural support for the axons tract [N.
Oberheim et al. 2009; N. A. Oberheim, Goldman, and Nedergaard 2012].

Oligodendrocytes - It was not until 1919 that oligodendrocytes and microglia were first identified
as separate cell types [Kettenmann and Verkhratsky 2008]. Oligodendrocytes are glial cells with
few processes predominantly found in white matter. Oligodendrocyte’s main function is to create
myelin which insulates axons in the central nervous system. Oligodendrocytes also participate in
the development of nodes of Ranvier and determine their periodicity. They were first described in
[Rio-Hortega 1928] [figure 1.13], where these cells were classified into four main phenotypes (I-IV)
depending on their morphological appearance, the number of processes, and the size of the fibers they
connect.

• Type I - Characterized by having a small rounded cell body (15–20 m diameter) and a high
number (from 5 to 20 or more) of very fine and approximately 100 − 200µm length processes
emerging in multiple directions and towards 10 to 30 thin myelinated axons (diameter < 2µm).
They are present in gray and white matter.
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• Type II - They are only present in white matter but similar to type I. They are polygonal or
cuboidal in shape (20–40 m) with fewer and thicker processes than type I, which are directed
to axons and attached to them longitudinally.

• Type III - Paladino had intuited that myelin had a neuroglial origin [Paladino 1892]. These are
also less abundant than types I and II and have a 200 to 500µm internodal length. They are
present in white matter with thick myelinated fibers (4 to 15µm in diameter) in the brain stem
and spinal cord. They are distinguished by one to four processes emanating from a bulky cell
body and directed toward axons.

• Type IV - These cells don’t have processes and form a single long myelin sheath (as great as
1000µm internodal length) on the largest diameter axons; type IV oligodendrocytes are located
almost exclusively around the entrances of the nerve roots into the CNS.

It seems likely that signals from axons of different caliber regulate oligodendrocyte phenotype diver-
gence. The dimensions of the myelin sheath determines the conduction properties of the axons in
the unit, whereby axons with long, thick myelin sheaths (type III/IV oligodendrocyte axon units)
conduct faster than those with short, thin myelin sheaths (type I/II oligodendrocyte–axon units). In
addition to these classical myelin-forming oligodendrocytes, a small population of non-myelinating
oligodendrocytes known as ”satellite oligodendrocytes” are present in the grey matter, where they are
usually applied to neuronal perikarya. The function of these satellite oligodendrocytes remains poorly
understood.

Microglia - Microglial cells are the immunocompetent cells residing in the CNS. Their soma is around
10µm in diameter, and total coverage (with processes) is about 15 − 30µm [figure 1.13]. Microglia form
the brain’s immune system, activated by various brain injuries and diseases. Microglial cells represent
about 10% of all glial cells in the brain. In the mature CNS, microglial cells may appear in three
distinct states: the resting microglia, activated microglia, and phagocytic microglia. In the normal
brain, microglial cells are resting and characterized by a small soma and numerous very thin and
highly branched processes. Every microglial cell is responsible for a clearly defined territory of about
50 000m3 in volume. There is a clear morphological difference between microglial cells residing in the
grey versus white matter: the former extend processes in all directions, whereas the latter processes
are usually aligned perpendicularly to the axon bundles. Microglial cells are equipped with numerous
receptors, which make them perfect sensors of the status of the CNS tissue: brain injury is immediately
sensed, which initiates the microglia activation process. This process turns microglia into an activated
(or reactive) state, and some of the activated cells proceed further to become phagocytes. Both reactive
microglia and phagocytes provide an active brain defense system [Verkhratsky and Kirchhoff 2007].
Some experimental evidence reported in [Traiffort et al. 2020] points to astrocytes and microglia as
being crucial in both developmental and repairing oligodendrogenesis and myelination.
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Figure 1.13: Drawings of the cerebral cortex (A) and white matter (B, C) after staining with the
Golgi-Hortega method or the silver carbonate procedure by Hortega (inset in A). (A) Notice

pyramidal neurons (PN), protoplasmic astrocytes (PA), vessels (V), and type I oligodendrocytes
(OLGs; O-I) with a variable number of processes, many of them divided in “Y” or “T”. Some OLGs
have processes mainly oriented in the direction of projecting axons (O-I1), while others have a

perivascular (O-I2) or perineuronal (O-I3; see inset) localization. (B) Note a fibrous astrocyte (FA),
some OLGs of the first type (O-I) and one of the second type (O-II), as well as microglia cells (M). (C)
See type I OLGs similar to those in (A, B) (O-I) or with long processes that follow axons (O-I4) and
two dwarf astrocytes (DA). Vessels (V) are also drawn in (B, C). Magnification in Figures (A–C) is

similar. Modified from [Rio-Hortega 1928].
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Ependymal cells - The ependyma is a simple ciliated epithelium that lines the ventricular surface
of the central nervous system, extending from the lateral ventricles to the filum terminale [Del Bigio
2010]. Mature ependymal cells appear along the neural tube as the ventricular zone regresses [Bystron,
Blakemore, and Rakic 2008] and are characterized morphologically by a cuboidal to columnar shape
and a round nucleus with fine stippled chromatin patterns and inconspicuous nucleolus. On the surface
of the ependymal layer is a network of supra-ependymal axons. In 1992, Sarnat alluded to a transport
role for moving small molecules between CSF and the brain [Sarnat 1992]. In a 1995 review, Sarnat
dealt with reactions of ependymal cells to injury, he emphasized the general inability of ependymal
cells to proliferate, the development of reactive astroglial changes and buried clusters of ependymal
cells at sites of erosion, and how viral infection of the ependyma could result in hydrocephalus [Salzer
1997]. Adult lacks ependymal cells over large areas of their lateral ventricles.

Microvasculature - The microvasculature comprises fine capillaries. Capillary walls contain pericytes
that have contractile properties and are lined by a highly specialized blood-brain barrier that regulates
the entry of solutes and ions and maintains the integrity of the composition of CSF. They are also
crucial for the production of CSF [Agarwal and Carare 2021]. The density of the brain capillaries
varies within the brain, depending on location and energy needs, with higher capillary density in
gray versus white matter [Cipolla 2016]. The densities of capillaries and neurons are proportionally
related, with typically about 10µm of capillaries per cortical neuron [Karbowski 2011]. The complex
cross-talk between all entities and cell types of the brain microvasculature is collectively known as the
neurovascular unit (NVU). The NVU is a structure formed by neurons, interneurons, astrocytes, and
basal lamina covered with smooth muscular cells and pericytes, endothelial cells, and extracellular
matrix. Each component is intimately linked to each other, establishing an anatomical and functional
whole, which results in a highly efficient system of regulation of cerebral blood flow [Sweeney, Sagare,
and Zlokovic 2015].

1.2.2 Cortex histology

At the beginning of the twentieth century, the Cécile Vogt-Mugnier and Oscar Vogt couple
started a research program aimed at the parcellation of the cerebral cortex into morphological and
potentially functional units. For the detection of the local structural differences upon which their
parcellations were based, they consistently made use of two histological techniques, which reduce the
ultra-complexity of the cortex to manageable proportions, via the Nissl technique and the Weigert
technique [Nissl 1904]. The Nissl technique stains only neuron granules (called Nissl bodies) and
somas of the neurons in blue, leaving their dendritic and axonal processes almost entirely unstained.
The Weigert technique stains only the myelin sheaths surrounding the neuronal axons. These two
techniques yielded the emergence of two new investigational fields, which were designated by Vogt in
1903 as cytoarchitectonics and myeloarchitectonics [Nieuwenhuys and Broere 2020]. The Vogts dele-
gated the cytoarchitectonic analysis of the cerebral cortex to Korbinian Brodmann, who collaborated
with them. The myeloarchitectonic part of the research program of the Vogt’s was initiated by Vogt
himself and continued by numerous popular neuro anatomists [Vogt 1910; Hopf 1951; Sanides 2013;
Strasburger 1937]. Recently, Nieuwenhuys [Nieuwenhuys 2013] scrutinized the total body of myeloar-
chitectonic studies of the Vogt-Vogt school. It was concluded that the data available is adequate
to establish a myeloarchitectonic map of the entire human neocortex, which was recently published
[Nieuwenhuys, Broere, and Cerliani 2015a; Nieuwenhuys, Broere, and Cerliani 2015b]. It allowed a di-
rect comparison of the cytoarchitectonics and myeloarchitectonics on the human neocortex, proposed
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by Vogt’s school [figure 1.15].

1.2.2.1 Cytoarchitectonic parcellation of the cortex

There is no doubt that among the many proposals of brain mapping, the one that achieved the
most historical popularity was the one from Korbinian Brodmann [Bruner 2022]. Indeed, his work
[Brodmann 1909] offered an unprecedented view of histological structure and organization of cells
within the cortical tissue, also called cytoarchitecture [figure 1.14]. Cytoarchitectonics information,
which are variations in cell shape, size, and density allowed him to depict 43 different areas within
the cortex thanks to the Nissl staining technique [Nissl 1904]. His map has been further improved
and discussed by Von Economo and Koskinas [Economo and Koskinas 1925] in 1925 or Sarkisov in
1945 [Sarkisov, Filimonoff, and Preobrashenskaya 1949] and is still nowadays subject to controversy
due to its histological observations based on a single brain, thus not relevant for interindividual
variability or to the fact that compared with the about 180 areas defined using other approaches
[Amunts and Zilles 2015], the Brodmann’s approach probably underestimated the actual cytological
diversity. Nevertheless, the map proposed by Brodmann is still nowadays considered a cornerstone of
brain anatomy and histology because Brodmann’s map simplicity is part of its strength by supplying
a handier mapping that can be used in various fields [Bruner 2022].

Nowadays, brain parcellation has moved forward from the early pioneering methods and it is based
on a far more complex array of criteria, principles, and methods [Eickhoff, Yeo, and Genon 2018;
M. F. Glasser et al. 2016; Essen, Donahue, and M. Glasser 2018]. part of them, the advent of diffusion
MRI, allowing to decode the microstructure non-invasively, coupled with diffeomorphic registration,
frameworks are now enabling the construction of atlases of brain microarchitectural features from
different subjects that complement and improve the former atlases by accounting for the human
brain’s interindividual variability. To finish, many of the areas defined by Brodmann have since
been correlated closely to diverse cortical functions; area number 17, for instance, corresponds to the
primary visual cortex. Some of these correlations are, however, still under debate [Tremblay et al.
2011].
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Figure 1.14: Brodmann’s areas of the cerebral cortex. Each area presents a distinct cytoarchitecture
and is labeled with a specific number (image taken from illuminamente, based on original work by

Korbinian Brodmann.

The cytoarchitectonic view of a neocortex sample [figure 1.15] enables to identify six cytoarchitectonics
layers. These layers are:

• (I) - The cell-poor zonal layer or molecular layer, with few neurons composed mainly of glial
cells, apical dendrites, and axons parallel to the pial surface.

• (II) - The external granular layer mainly comprises small granular cells that receive afferents
from and send efferents to other cortical areas.

• (III) - The external pyramidal layer containing small pyramidal cells. Layers I- III are referred
to as supragranular layers and constitute the primary origin and termination of intracortical
connections.

• (IV) - The internal granular layer, including dense packing of granular cells.

• (V) - The internal pyramidal layer, containing large pyramidal cells whose axons leave the cortex
and run down to subcortical structures and Martinotti cells.

• (VI) - The multiform layer or polymorphic layer contains few large pyramidal neurons and many
small multiform neurons. Layers V-VI are infragranular layers that are most developed in motor
cortical areas.

1.2.2.2 Myeloarchitectonic parcellation of the cortex

The cortex contains numerous myelinated fibers, which follow two principal orientations within the
cortical ribbon, tangential and radial. The tangential fibers tend to form local concentrations or
bands, some visible with the naked eye in unstained sections [Nieuwenhuys 2013]. The radial fibers
are concentrated in bundles. Their representation as myeloarchitectonic layers is shown in [figure
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1.15] and can be compared to the cytoarchitectonic organization of the cortex. In both schemes, the
neocortex is subdivided into six layers. The corresponding myeloarchitectonic layers are:

• (1) - The zonal layer is differentiated into four sublayers: the narrow sublayer 1o, which contains
only very few fibers, and the external, intermediate, and deep sublayers 1a, 1b and 1c, of which
1a contains clearly more fibers than 1b and 1c.

• (2) - The dysfibrous layer which contains, just like sub-layer 1o, only very few fibers.

• (3) - The suprastriate layer has three sub-layers, of which the superficial sublayer 3a1 is richer
in fibers than the remaining sublayers 3a2 and 3b. The presence of the end segments of the
radial bundles characterizes sublayer 3b.

• (4) - The external stria or outer stripe of Baillarger forms a dark band of tightly packed, tan-
gential fibers.

• (5a) - The intrastriate layer is generally relatively poor in tangential fibers, thus contrasting
with the bordering stripes of Baillarger.

• (5b) - The internal stria or inner stripe of Baillarger is a dense plexus of tightly packed tangen-
tially oriented fibers.

• (6) - This layer is subdivided into the pale substriate lamina 6a1 and laminae 6a2, 6b1 and 6b2,
which show an increasing wealth of tangentially oriented fibers. Sublayer 6b2 forms the zone of
transition to the subcortical white matter.

1.2.3 White matter histology

The white matter comprises three main components: neuronal fibers extending from neuron
bodies, glial cells (including astrocytes, microglia, and oligodendrocytes), and blood vessels. Most of
the space is occupied by neuronal fibers (between 60% and 80% of the space) [Mottershead et al. 2003;
Perge et al. 2009; Stikov et al. 2015]. The extracellular space constitutes about 20% of the volume
[Bourne 2012; Voříšek et al. 2002], blood vessels constitute less than 3% [Voříšek et al. 2002], and
glial cells fill the remaining 15% of the white matter volume. Their density is constant in the brain,
approximately 105 cells/mm3 according to [S. Herculano-Houzel 2014]. If we consider the myelin
sheath as separated from its axon, approximately 25-30% of the volume is occupied by myelin sheaths
in adults [Mottershead et al. 2003; Perge et al. 2009; Stikov et al. 2015]. Moreover, 70% to 95%
of nerves are myelinated fibers [Biendenbach, DeVito, and A. C. Brown 1986; Liewald et al. 2014].
Fibers are bundled together to form homologous populations of fibers sharing similar orientations or
shapes. In a typical white matter imaging 3D voxel of a millimeter scale, we can observe different fiber
populations crossings, kissing, or splitting, and studies in the field of diffusion MRI [T. E. J. Behrens
et al. 2007] have reported a percentage of around 60% of voxels containing such features. Furthermore,
[T. E. J. Behrens et al. 2007] only found that one-third of voxels contain two fiber populations.

Fiber inner diameters are reported to range from 0.16µm to 9.0µm in the human brain [Aboitiz,
R.S. Fisher, and E.Zaidel 1992], [Liewald et al. 2014]. Most of the axons have a diameter below 1.0µm.
Mean axon diameter distribution heterogeneity across white matter regions leads to a significant
variation of nerve fibers density, around 105 cells/mm3 [S. Herculano-Houzel 2014]. Within a fiber
population, we observe a macroscopic angular dispersion that characterizes the global misalignment
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Figure 1.15: Scheme of the cytoarchitectonics layers (designated with Roman numbers) and the
myeloarchitectonics layers (designated with Arabic numbers), from [Nieuwenhuys 2013].
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of axons, as well as a local tortuosity, which can be defined as the ratio between the geodesic distance
along the curvilinear frame specified by the centroid axis of the axonal fiber and the Euclidean distance
between the two extremities of the fiber. Values of microscopic misalignments of axons estimated up
to 18 degrees were reported in [Ronen et al. 2014].

1.2.4 Conclusion

This chapter introduced the primary material necessary to understand the various structures
forming the brain at macro and micro-scales. All these components are crucial to remember when
we try to picture a brain with MRI techniques, as every image produced results from integrating the
observation of physical processes across scales. In the framework of this thesis, we will exploit one
particular imaging modality, diffusion MRI, which will be detailed exclusively in the next chapter.
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Figure 2.1: a) Damadian MRI patent drawing, adapted from [Wikimedia 2020]. b) ”A magnet system
for providing a localized substantially homogeneous field for use in medical magnetic resonance
imaging and its incorporation into a method of siting”, adapted from a 1987 patent [Breneman,
J. R. Purcell, and Burnett 1987]. c) MRI global functioning, adapted from [Hotcore 2024].
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Magnetic resonance imaging (MRI) has revolutionized the exploration of the human brain since
the ’80s. Not only, does MRI give access to the brain anatomy but can also be used to explore

brain functions or metabolism. The main impacts of MRI on neuroscience come from two remarkable
coincidences: first, the water molecule’s magnetic resonance properties, and second, the human body
is made of at least 60% water. In addition, the brain, with its CFS is a likely organ to image with
MRI if we consider that the scientific community of the last century was looking for a great substitute
to invasive imaging methods (such as surgery or X-ray) to investigate the brain in detail. In this
chapter, we will give a short overview of the history of its development and then focus on a specific
MRI modality at the heart of this thesis work, diffusion-weighted MRI (DMRI).

2.1 Historical background

MRI is a relatively recent field of research that started about 60 years ago. Yet, this short period
has seen over 600.000 publications containing the term “MRI” as a keyword and over 40.000 in 2020
alone [Viard, Eustache, and Segobin 2021].

Factually, we can start the story of MRI with the discovery of nuclear magnetic resonance (NMR). In
1938, Isidor Rabi first described and measured this NMR phenomenon [Rabi et al. 1938] by launching
a beam of particles in a static magnetic field and observing the induction of radio frequencies whose
frequencies were dependent on the charge of the particles and the magnitude of the magnetic field.
Bloch and Purcell replicated the experiment in solids and liquids and established the well-known
phenomenological equations known as the Bloch equation.[Packard 1946; Bloch 1946; E. M. Purcell,
Henry Cutler Torrey, and Pound 1946]. Further properties were discovered in 1950, when Erwin Hahn
detected spin echoes and free induction decay [Hahn 1950], and in 1952 when Herman Carr produced
a one-dimensional NMR spectrum [Carr and E. M. Purcell 1954].

At this point, the main issue was the absence of spatial localization of the NMR signal until Vladislav
Ivanov and Raymond Damadian proposed a patent for an MRI device respectively in 1960 and March
1971 [MacWilliams 2003]. These attempts at devising the first MRI prototype were largely unsuccessful
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Figure 2.2: Adapted from [Viard, Eustache, and Segobin 2021]: History of progress in MRI brain imaging as scanners
with higher field strengths were developed. (A) The first brain image published in New Scientist in 1978 showing a

person’s eye-balls and ventricles [Clow and Young 1978] (B) The T1-weighted Brain MRI presented by Professor Godfrey
Hounsfield during his Nobel Prize lecture in 1979 from (ISMRM) (C) T1-weighted image at 0.5 T, (D) 1.5 T [Maubon et al.
1999] and (E) 3 T. High-resolution of distinct regions of the brain are now observed with dedicated sequences like a

proton-density image (F) of the hippocampus acquired at 3 T [Postel et al. 2019] where the CA1, CA2/CA3 and subiculum
subfields are distinguishable to the trained eye. Part (G) shows the acquisition of a white-matter nulled sequence at 7 T

[Su et al. 2019], which is now clinically available, and (H) shows MRI from an ultra-high field scanner at 9.4 T
[Nowogrodzki 2018].

until the fall of 1971 when Lauterbur came up with the idea of using magnetic field gradients along
the three dimensions of the space with the back-projection technique typically used in computed
tomography. This technique was used to acquire the first MR images of two water-filled tubes in
1973 [Lauterbur 1973]. Later, Peter Mansfield introduced echo-planar imaging [Mansfield 1977], a
technique that reduced scanning time from hours to seconds. Raymond Damadian showed the first
tumor image in a mouse’s thorax in 1973, and by 1977, his research group published the first MRI
body scan of a human subject [MacWilliams 2003]. In 1978, Ian Young and Hugh Clow collected the
first MRI data of a human brain [figure 2.2].

The first clinical MRI systems were installed in the early 1980s, giving birth to a long series of
methodological innovations and offering clinicians a pivotal tool to explore the human body non-
invasively. As proof of NMR and MRI research’s significant impact on physics, the Nobel Prize in
Physics was delivered to Rabi in 1944, Bloch/Purcell in 1952, and Lauterbur/Mansfield in 2003.
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2.2 Fundamentals of magnetic resonance imaging

Various imaging modalities exist using nuclear magnetic resonance for multiple purposes. Anatom-
ical MRI mainly relies on exploring the differences in the relaxation of the nuclear magnetization
between tissues to create some contrast mechanisms revealing their nature. Diffusion MRI exploits
the movement of water molecules within tissues to probe their micro-architecture and has been widely
used to explore brain connectivity. However, MRI is not limited to imaging the anatomy and can be
used to probe dynamic processes, such as the blood circulation in the vascular tree using perfusion
MRI or the measure of brain activity using functional MRI relying on the fact that cerebral blood
flow and neuronal activation are coupled. Finally, NMR can also probe the chemistry occurring in the
brain with NMR-spectroscopy able to provide insights about the brain metabolism involving various
chemical processes.

In this section, we will start with an overview of the principle of magnetic resonance imaging.

2.2.1 Nuclear Magnetic Resonance Principle

The NMR phenomenon can be observed in any nucleus that has a non-zero spin, a quantum-
mechanical property conveying an intrinsic form of angular momentum. Atoms composed of an odd
number of nucleons, such as hydrogen, fluorine, sodium, and phosphorus (1 H, 19 F, 23 Na, and 31
P, respectively) possess a net dipole moment that makes it possible to precess or “spin around itself”,
thus inducing a magnetic field. Body tissues are mostly made of water and fat compounds, so they
are extremely rich in hydrogen atoms 1 H, whose nucleus consists of a unique proton with a 1

2 spin.
For this reason, most MRI applications focus on proton imaging. In the case of this thesis, we will
focus only on proton MRI imaging, but imaging with other non-zero spin atoms exists and is called
X-nuclei imaging.

We will describe the nuclear magnetic resonance phenomenon from its three consecutive steps: polar-
ization, resonance/excitation, and relaxation.
Polarization - Magnetic properties of protons can be described both with classical and quantum
mechanics. In the case of classical and intuitive mechanics, the angular momentum or spin S of each
proton can be envisioned as the consequence of the rotational motion of each proton around an axis.
Protons are electrically charged bodies; this rotation creates a magnetic momentum µ, leading to
[equation 2.1]:

µ = γS, (2.1)

with γ the gyromagnetic ratio;  = 42.75M Hz/T for the proton. In the absence of a magnetic field,
each magnetic moment µ is randomly oriented, such that at the level of a grasp of protons µ = 0
[figure 2.3]. Following quantum mechanics, the 1

2 spin of a proton is either up or down. With this in
mind, when an external static magnetic field B0 is applied to protons, their magnetic moment spins
align to B0 in a parallel or anti-parallel way corresponding to respectively a low energy or high energy
level and follows a precession movement around the field axis at the Larmor angular frequency ω0,
defined as:

ω0 = γB0. (2.2)
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The nuclei follow this B0 polarization which results in a net magnetization vector M. At equilibrium
in a static field, the net magnetization vector M is equal to M0, which is parallel to B0 (set along the
+Z direction). M0 is not measurable since its strength is minimal compared to B0. M would become
measurable if it was tilted in the transverse XY plane, resulting in a non-null transverse component
Mxy. This leads to the next step of MRI: spin excitation and resonance.

Excitation - Spins can be flipped by the application of a rotating magnetic field, denoted B1, of rotation
frequency ωr in the transverse plane [figure 2.3]. This tilting is caused by a transfer of energy between
B1 and the spins when the resonance condition ωr = ω0 is met, ω0 being the Larmor frequency of the
spins. At the quantum level, it results in a change in the energy levels of spins from the low-energy
”parallel” state to the high-energy state at 180° or 90°. Because Larmor frequency lies in the range
of radio frequencies, B1 field is called a radio frequency (RF) pulse. The tissue magnetization’s tilt
angle depends on the RF wave’s intensity and duration. For a simpler mathematical representation,
studying the tilt in an XYZ frame rotating at the precession frequency is common.

Relaxation - When the B1 field is stopped, the net magnetization M return to its equilibrium state
aligning with B0. This process is called relaxation, and it is accompanied by the emission of energy
in the form of RF waves, which correspond to the signal recorded by the MRI system. It follows
two phenomena obeying very different mechanisms: longitudinal relaxation, which corresponds to the
regrowth of the longitudinal component, and transverse relaxation, which corresponds to the decay in
transverse magnetization.

• Longitudinal relaxation - It’s the return of excited spins to their low-energy (parallel) level. This
is spin-lattice relaxation. The tissue in which the spins are embedded behaves like a viscoelastic
medium, allowing the return of the longitudinal magnetization to its equilibrium value with a
rapid progression at the beginning and then damped as equilibrium is approached, thus following
exponential decay characterized by the time T1 relaxation time ([ figure 2.4 ], [equation (2.3)]).
T1 is the time the longitudinal magnetization takes to return to 63% of its final value and is of
the order of 200 to 3000 ms for a field of 1.5 T . It is characteristic of tissues and depends on the
mobility of the molecules in which the protons are engaged thus T1 relaxation time is shorter
for large molecules.

Mz(t) = M0e
(1 − t

T1
) (2.3)

• Transverse relaxation - It is due to spin dephasing linked to spin-spin interactions, which create
field heterogeneities and, therefore, a discrepancy in precession frequencies. As the spins do
not have the same frequency, they rapidly dephase, resulting in an exponential decrease of the
transverse magnetizationMXY characterized by the T2 relaxation time taken for the transverse
magnetization to return to 37% of its initial value ([ figure 2.4 ] and [equation (2.4)]). Transverse
relaxation is much faster than longitudinal relaxation: T2 is always shorter than or equal to
T1 by almost an order of magnitude. In practice, this decay is faster than expected because
of further local magnetic field heterogeneities (caused by air/tissue interfaces or paramagnetic
materials) yielding a T2∗ relaxation time, such that T2∗ < T2 [equation (2.5)]. The spin echo
sequence (presented further on) stops T2∗ relaxation time, giving access to the true T2 value
characterizing the tissue.

Mxy(t) = Mxy(0)e
− t

T ∗
2 (2.4)
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Figure 2.3: Illustration of the NMR experiment from [Puiseux et al. 2021]. (a) When no magnetic
field is applied, the spins are randomly oriented. When a B0 field is applied along the z-axis, all
spins precess around the z-axis and (b) an equilibrium magnetization arises (polarization), oriented
along the same axis. The equilibrium magnetization is shifted towards the transverse xy-plane by the
effects of an RF-pulse (B1) applied at resonance frequency (c). When the RF excitation is released, the
magnetization relaxes towards its equilibrium value (d) with a precession frequency that depends on
the magnetic properties.

1

T2∗
=

1

T2
+

1

T2′ (2.5)

The signal resulting from the transverse magnetization is called ”Free Induction Decay” [figure 2.4]
and oscillates at ω0, with an exponential decay driven by the T2∗ relaxation time that can be acquired
using a reception coil placed perpendicular to the transverse plane within the MRI scanner. The cor-
responding MRI signal is a solution to the phenomenological Bloch equations [Bloch 1946], describing
the temporal evolution of the three spatial components of the magnetization M as a function of the
static field B0. With a 90 degrees RF pulse applied in the transverse plane, the solution to Bloch’s
equations is:



















Mx(t) = M0e
− 1

T 2 sin(ωt)

My(t) = M0e
− 1

T 2 cos(ωt)

Mz(t) = M0(1 − e− 1

T 1 )

(2.6)

[Equation 2.6] provides the temporal evolution to the net magnetization of spins after polarization.
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Figure 2.4: Diagram showing the process of the excitation-relaxation phenomenon after a 90° RF pulse
is applied at equilibrium. a) The net magnetizationM0 (red arrow) is at equilibrium, aligned with the
static magnetic field B0. b) When a 90° RF pulse is applied (B1), the longitudinal magnetizationMz

becomes null andM0 lies entirely in the XY plane. c) & d) The net transverse magnetization decays
as the spins (shown by the small black arrows) move out of phase. The overall term for the observed
loss of phase coherence (dephasing) is T2∗ relaxation, which combines the effect of T2 relaxation and
additional dephasing caused by local inhomogeneities in the magnetic field. e) % f) The additional
decay caused by field inhomogeneities can be reversed by applying a 180° refocusing pulse. The
resultant decaying signal is the Free Induction Decay (FID). g)& h) The longitudinal magnetization
gradually recovers to its equilibrium value. The recovery ofMz is an exponential process with a time
constant T1. Courtesy of Cyril Poupon
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2.2.2 Image encoding and reconstruction

This section explains how to transform NMR signal into imaging with the addition of spatial
encoding to the NMR signal.

2.2.2.1 2D image encoding

The term ’encoding’ used here reflects the fact that the spatial information obtained is not in the form
of direct spatial coordinates (such as (x, y, z)). Spatial encoding is based on the successive application
of magnetic field gradients [figure 2.5] to tag the magnetization coming from any point of the acquired
volume.

Slice selection - The first step in spatial encoding is to select the target slice plane. A magnetic field
gradient, called the Slice Selection Gradient (GSS), is applied in a direction perpendicular to the plane
of interest. This field induces a field variation linearly depending on the slice position, which adds to
B0. Due to the Larmor equation, this linear field variation induces a linear precision frequency. At the
same time, B1 tilting magnetic field is applied using a ωr frequency corresponding to the resonance
of the protons in the plane of interest. Thus, tilting of the magnetization is only achieved for the
protons belonging to this plane [figure 2.5]. All the hydrogen nuclei located outside the cut plane
remain unexcited and will therefore provide no contribution to the signal since an RF pulse cannot be
a pure harmonic (which would require it to have an infinite duration); it covers a certain bandwidth,
which depends on the shape of the pulse and its duration [IMAIOS 2024].

36



Chapter 2. Toward Magnetic Resonance Imaging

The slice thickness can, therefore, be adjusted by tuning the RF bandwidth of the selective pulse and
the amplitude of the slice selection gradient:

• Using a fixed amplitude gradient, the wider the bandwidth, the greater the number of protons
excited by the pulse and the thicker the slice.

• Using a fixed bandwidth, the larger the gradient magnitude, the more significant the variation
in precession frequency along the direction perpendicular to the selected plane, and the thinner
the slice.

Phase encoding - The second step involves applying a phase encoding gradient (GPE) within the
selected plane. When applied, it modifies the precession frequencies of the spins, inducing a phase
shift that persists when interrupted. All protons precess at the same frequency but with different
initial phases. More precisely, protons located on the same line, perpendicular to the direction of the
gradient, will all have the same initial phase linearly depending on the line position in the selected
plane.

Frequency encoding - The final stage of spatial encoding involves applying a frequency encoding
gradient (GFE) in the third direction while the signal is collected. This modifies the precession
frequencies in the GFE direction for the duration of its application. This creates columns of protons,
precessing at the same frequency. The frequency information is included as this gradient is applied
simultaneously with the signal collection.

While spatial frequency encoding is performed in a few milliseconds during signal reading, the spatial
phase requires repeating the imaging sequence. In a conventional spin echo sequence, a single phase
encoding step is performed per repetition, with TR repetition times of up to 3 seconds. All the signals
within the same slice define what is called a K-space. The time required for the acquisition of an
entire volume of NS slices, with NP E phase encoding lines, is given by the following equation:

TA = TR ∗NP E ∗NS (2.7)

With TA the acquisition time, TR the repetition time, NP E the number of phase encoding steps and
NS the number of slices composing the 3D volume.

Filling K-space The phase and frequency spatial encoding corresponding to the kx and ky k-space
coordinate results in fact in the construction of a Fourier k-space that can be inverted to get back to
the spatial domain using a 2D Fourier transfer [figure 2.6]. Therefore, The final image is reconstructed
by applying an inverse 2D Fourier transform to the K-space. Low spatial frequencies near the K-
space center contain contrast and general shape information. High spatial frequencies located at the
periphery of the K-space correspond to the higher spatial resolution of the image, as they correspond
to the abrupt changes in grey levels, which means the contours. The higher the spatial frequency of
information, the better the spatial resolution.

2.2.2.2 3D image encoding

Whereas 2D imaging consists of a succession of selective slides, 3D imaging consists of selecting a full
3D volume and adding a further encoding mechanism to tag the position in this third direction. Here
are the specificities of such acquisitions:
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Figure 2.5: On the left side, gradient magnets representation, adapted from [Unil 2024]. On the right
side, slice selective excitation of a human torso using an RF pulse applied concomitantly with a Slice
Selection Gradient (GSS) along the Z direction. The frequency increases from ω1 to ω10 in each plan
P perpendicular to the Z-axis. If ωr = ω6 , only the protons in P6 will be excited and contribute to the

MR signal [Kastler and Vetter 2018].

• The slice thickness the GSS selects corresponds to the entire volume.

• The third spatial dimension is encoded using another phase gradient.

• The number of repetitions changes by a factor equal to the number of cuts/partitions in the
third dimension to fill the entire 3D K-space.

• A 3D Fourier reconstruction replaces the 2D Fourier transform reconstruction.

This 3D image encoding has several consequences:

• Given the large amount of information to be acquired to fill the 3D K-space, TR (gradient echo
type) are used to avoid motion during the whole 3D acquisition of the K-space.

• At each repetition, the signal comes from the whole volume, thus enhancing the signal-to-noise
ratio. Partitions can, therefore, be chosen to be thinner than conventional 2D slices.

• The entire volume of interest is explored, with no spacing or gaps between sections, which can
be reformatted into planes.

• Because of the two-phase and positive encoding mechanisms, folding, and truncation artifacts
can be observed along these two directions.

The following equation gives the acquisition time TA required to acquire a 3D image:

TA = TR ∗NP y ∗NP E ∗NP Z (2.8)

With NP E and NP Z respectively, the number of encoding steps along the phase and partition direc-
tions.

2.2.3 Conventional MRI sequence schemes

We have described how a volume is acquired, slice by slice or all at once, by applying specific
gradients to perform an image frequency and phase encoding. The combination of gradients and radio

38



Chapter 2. Toward Magnetic Resonance Imaging

frequencies form an MRI sequence. Indeed, like in a music sheet, the MRI sequence orchestrates sev-
eral events aiming to manipulate the magnetization that creates specific image contrasts, enabling the
distinction of various tissues. The echo time (TE) and repetition time (TR) need to be adequately
tuned to emphasize these contrast mechanisms. TE corresponds to the time elapsed between spin
excitation and signal acquisition, and TR is the delay between two sequence kernel applications corre-
sponding to an MRI pattern repeated during acquisition. The spin and gradient echo sequences, two
fundamental MRI sequence schemes, are presented hereafter.

Spin echo sequence - Historically, spin echo was the first sequence introduced to perform imaging. It
consists of a starting 90° RF pulse followed by a 180° rephasing pulse at TE/2, with a signal readout
at TE [figure 2.6]. Each repetition of this pattern fills a line in the K-space, each time with a different
phase encoding. The 180° rephasing pulse is used to compensate for the constant field heterogeneities
and to obtain a T2-weighted echo rather than a T2∗-weighted echo [equation (2.5)]. To reflect T1

relaxation, a short TR is reacquired to forbid the longitudinal magnetization regrowth, which depends
on T1. The decrease in TR will weigh the image in T1 as differences between tissues will be highlighted.
To reflect T2 relaxation, a long TR is required to recover the longitudinal magnetization fully. During
the next flip, the influence of T1 on the magnitude of the signal will be minimized. Combined with a
long TE, the different tissues will be better highlighted according to their T2. Tissues with long T2 will
show a hypersignal, whereas structures with short T2 will show a hyposignal. The proton density spin
echo sequence minimizes the influence of both T2 and T1 by combining short TE and long TR. The
major disadvantage of T2-weighted spin echo sequences is their long TR, which results in prohibitive
acquisition times. While T1-weighted spin echo sequences can be used in clinical practice, providing
good-quality anatomical imaging, other types of faster sequences are preferred for T2 weighting.
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Gradient echo sequence - The gradient echo generally relies on an excitation tilting the magnetization.
The sequence differs from spin echo because the flip angle is lower than 90° and there is no 180°
rephasing RF pulse. A flip angle of less than 90° reduces the amount of magnetization tilted. The
return to equilibrium occurs more quickly because residual magnetization is still along Mz. Thanks
to these modifications, TR and TE’s can be significantly reduced. Thus, the main advantage of
gradient echo is the time saved, which allows 3D imaging to be carried out. Unlike spin echo, constant
field heterogeneities are not compensated for in gradient echo by a 180° pulse. The signal obtained
is T2∗-weighted rather than T2-weighted. Gradient echo sequences are more sensitive to magnetic
susceptibility artifacts than spin echo sequences.

Figure 2.6: Up: 2D acquisition spin echo sequence diagram. Bottom left: K-space filling procedure.
Bottom right: final image reconstruction example. Courtesy of Cyril Poupon.

2.3 Diffusion MRI

Diffusion MRI (dMRI) is an imaging technique sensitive to the local displacement of water
molecules within biological tissues. This has proven to be a great tool over the years for the early
diagnosis of brain stroke, the study of brain structural connectivity, and a precious tool for pre-
operative planning in neurosurgery [Johansen-Berg and T. E. Behrens 2013; Jones 2010; Chauvel et al.
2023]. During this section, we will first present the diffusion process phenomenon and then describe
how to make MRI receptive to it. Finally, we will show the diffusion process models for dMRI.

2.3.1 Brownian Motion

At the microscopic scale, particles follow a random motion following a thermal equilibrium, de-
fined by a given temperature [figure 2.7]. It was called Brownian motion after the botanist Robert
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Figure 2.7: On the left, a 3D simulation of Brownian motion, adapted from [CultureMath 2024]. On
the right are the different diffusion experiment steps, adapted from [ScienceSparks 2024].

Brown, who first described the phenomenon in 1827 while looking through a microscope at the displace-
ment of pollen grains immersed in water [R. Brown 1827]. In 1855, Fick was the first to demonstrate
that the existence of a concentration gradient of molecules led to a diffusion process [Fick 1855].
The first and second Fick’s law are expressed respectively as:

J = −D∇n(r, t) (2.9)

∂n

∂t
= D∇2n, (2.10)

with J the diffusion flux (amount of substance crossing a unit area per unit time), D the diffusion
coefficient, which measures the speed of molecules (diffusivity), r and t respectively the space and time
variables, n the liquid concentration.

The diffusion equation is the same as the heat equation proposed in 1827 by Joseph Fourier [Fourier
1827], Fick used it without having proof that the Brownian diffusion process is involved. It was 60
years later that Einstein recognized that Brownian motion was associated with diffusion [Einstein
1905], the flux of particles arising from a gradient in concentration. In the case of Brownian motion,
however, no macroscopic concentration gradient is needed, as the molecules undergo a process of “self-
diffusion” arising from local concentration fluctuations. Albert Einstein rewrote Fick’s laws for the
diffusion of molecules in a concentration gradient in terms of diffusion under probability gradients.
This step enabled a description of Brownian motion as a stochastic process. Here is the rewriting of
the diffusion law proposed by Einstein:

∂P (r|r′, t)

∂t
= D∇2P (r|r′,t) (2.11)

J = −D∇P (r|r′, t), (2.12)

with P(r|r′,t) the conditional probability that a particle starting at r at time zero will move to r
′ after

a time t. P(r|r′,t) has several names in the literature as diffusion propagator, diffusion function, or
displacement distribution function.
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In an unrestricted medium, the distribution of the displacements becomes Gaussian with a distribution
width expanding over time. The Gaussian nature of the conditional probability for self-diffusion,
represented by [equation 2.11] leads to Einstein’s equation:

< (r − r
′)2 >= 6Dt, (2.13)

where <...> stands for an average over spins ensemble. We can define the diffusion coefficient as:

D =
1

3

∫ ∞

0
< ν(τ)ν(0) > dτ, (2.14)

where < ν(τ)ν(0) > is known as the auto-correlation function of the molecular velocity ν. The
correlation time of this function is defined as :

τc =

∫ ∞

0

< ν(τ)ν(0) >

ν2
dτ, (2.15)

where τc gives a measure of the timescale over which the fluctuating molecular velocity becomes
decorrelated and the mean-squared velocity <ν2> is a constant for the ensemble, which is taken to
be stationary.

Furthermore, if we substitute [equation (2.11) (2.12)] we obtain the diffusion propagator equation:

P (r|r′, t)

[

∂

∂t
− ∇D

]

= δ(r − r
′)δ(t). (2.16)

In the case of free diffusion without restriction in a homogeneous medium, the solution to this equation
is given by the Gaussian propagator PG:

PG(r|r′, t) = ((4πDt)3)− 1

2 exp(−|r − r
′|2/(4Dt)) (2.17)

In anisotropic media without Gaussian approximation, we shall find it necessary to define a diffusion
tensor and rewrite differential equation [equation 2.1] by replacing D with D. D is known as the diffusion
tensor and describes how the particle flux in any direction is related to the probability gradient in any
direction. A principal Cartesian axis frame may be found where D is diagonal, with elements Dxx,
Dyy, and Dzz. These elements may differ for anisotropic diffusion, whereas for isotropic diffusion, they
are equal. We will describe the diffusion tensor later in detail.

Flow and dispersion - Until now, we have described self-diffusion from the motion of molecules. Never-
theless, the molecular motion is also governed by flow and dispersion [Jones 2010], especially in blood
vessels or tissue through which fluids perfuse. Dispersion is the process whereby molecules that start
together in the same neighborhood become separated due to translational motions. Like diffusion,
dispersion involves stochastic processes that necessitate the language of statistical physics. In ther-
mal equilibrium, and in the absence of fluid flow, Brownian motion alone will be sufficient to induce
molecular separation; thus, in the rest of the thesis, we will rely only on Brownian motion from water
molecules, thus consciously neglecting the other phenomena.

2.3.2 Sensitizing MRI to the diffusion process

Until now, we have described the essence of the diffusion phenomenon independently from its
effect on the MRI signal. The following section explains how the NMR signal can be sensitized to
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Figure 2.8: Chronogram of a PGSE sequence. Adapted from [Beaujoin 2018].

diffusion.

2.3.2.1 Pulsed gradient spin echo sequence

In 1963, McCall, Douglass, and Anderson suggested that a gradient might be used in the form of
rectangular pulses inserted respectively in the dephasing and rephasing parts of the MRI echo sequence
[McCall, Douglass, and Anderson 1963]. This pulsed gradient spin echo (PGSE) sequence was first
demonstrated by Stejskal and Tanner (1965) [Stejskal and Tanner 1965]. PGSE modifies a spin echo
sequence by applying two identical linear gradients of amplitude G and duration δ before and after the
refocusing pulse. The two gradients are separated by a time interval ∆ as shown in [figure 2.8]. The
role of the first gradient is to tag each spin with a phase depending on its position. The second gradient
does precisely the same but with an opposite sign. Suppose spins move between the application of the
first gradient and the application of the second gradient. In that case, the second phase tag doesn’t
compensate for the first one, thus resulting at the voxel level to a signal decay [figure 2.9].

The expression of the diffusion attenuation can be written as follows:

S ∝ S0e
−bADC , (2.18)

with S the received signal, S0 the signal value without diffusion sensitization (but including T2 relax-
ation), b-value the degree of sensitization to diffusion (in s/mm2), and ADC is the apparent diffusion
coefficient in the direction of the applied diffusion gradient. In the case of a free isotropic medium,
the ADC remains the same whatever the diffusion direction. If the diffusion process is hindered or
restricted in a given direction, then ADC will decrease along the direction.
In the case of rectangular gradient pulses, which is the ideal case, the b-value is defined as follows:
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Figure 2.9: The spin dephasing during the PGSE experiment: in the presence of a diffusive motion,
spins are not rephased by the second diffusion gradient. This phase incoherence at the readout leads

to a signal loss at the origin of the dMRI contrast. Adapted from [Beaujoin 2018].

b = (Gγδ)2(∆ − δ/3) = q2τ (2.19)

γ being the gyromagnetic ratio and q is called wave vector and is equal to (G.γ.δ). If we consider the
hypothesis of a Gaussian diffusion process, the signal follows the following equation driving attenuation
in any direction:

S(q, τ) = S0e
−τ(qT Dq), (2.20)

with D a real, symmetric, and positive definite diffusion tensor that holds the information of the ADC
value in any spatial direction.

2.3.2.2 Limitations

As mention earlier, [equation (2.19)] stands only in the case of Gaussian diffusion. The previous
formalism cannot be used to characterize the non-monoexponential signal attenuation that is found
at high b-values (> 3000s/mm2) for water in neuronal tissues [Beaulieu 2011]. [Figure 2.10] depicts
different displacement distribution profiles of tert-butanol and water in neuronal tissue at different
diffusion times, showing the drift of certain distributions from the Gaussian function.

Therefore, other formalisms must be used to represent a non-Gaussian displacement distribution func-
tion. For example, diffusion kurtosis imaging (DKI) analyses non-Gaussian water diffusivity using a
higher-order polynomial model according to the following equation:

S = S0e
−b∗Dapp+ 1

6
∗b2∗D2

app∗Kapp . (2.21)

In comparison with the monoexponential formalism [equation 2.18], this equation yields two variables
(Dapp and Kapp). The parameter Kapp represents the apparent diffusional kurtosis (unitless), and
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Figure 2.10: Displacement distribution profiles for tert-butanol and water in neuronal tissue at
different diffusion times. (a) A free diffusing reference sample of tert-butanol depicting the broadening
of the displacement profile with increased diffusion time. Displacement profiles for excised rat brain
(b) and an excised bovine optic nerve measured parallel (c) and perpendicular (d) to the long axis of
the nerve show a mixed behavior of two components: a broad component that follows the tert-butanol
behavior as a function of the diffusion time, and a narrow component that does not change its width

with the increase in the diffusion time. Reproduced from [Assaf and Y. Cohen 2000].

Dapp is the diffusion coefficient that is corrected to account for the observed non-Gaussian behavior
[Rosenkrantz et al. 2015].

Other formalisms exist; however, their analytical base form is restricted to simple geometries such as
spheres, cylinders, or ellipsoids. Alternatively, as shown later, one can use the Fourier relation between
the MR diffusion signal decay and the three-dimensional (3D) displacement distribution function to
propose a non-Gaussian distribution formalism.

2.3.2.3 Introduction to the q-space

In [equation 2.19] we presented the wave vector q. We can draw here an analogy with the k-space (see
section 2.2.2.1). Indeed, just like Fourier frequency K-space is fundamental for the final reconstruction
of the image, the wave vector q is fundamental to draw a q-space that will allow the reconstruction of
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a diffusion-weighted image. Completing the q-space using a certain model is called q-space sampling;
the different q-space samplings are presented in [figure 2.15]. The different construction models of this
q-space regarding diffusion signal acquisition will be detailed later.

2.3.2.4 Oscillating Gradients Spin Echo

Most diffusion MRI applications rely on PGSE, nevertheless, other diffusion MRI sequence schemes
have been introduced for instance depending on ”Oscillating Gradients Spin Echo” (OGSE). In their
paper, [Gore et al. 2010] replaced the mono-polar trapezoidal pulses with oscillating diffusion gradients,
whose frequency can be related to the adequate diffusion time in the experiment. Such sequences
enable to access shortened diffusion times in comparison with PGSE sequences, thus increasing their
sensitivity to smaller pore sizes. The ADC curve as a function of the oscillation frequency of the OGSE
gradients varies as the pore diameter varies [figure 2.11]. In time, measuring this function may make
it possible to identify the average diameter of the axons. The major drawback of OGSE sequences is
that only small b-values can be reached on the current NMR apparatus due to gradient limitations.

Figure 2.11: Calculated values of the apparent diffusion coefficient (ADC) as a function of frequency
for diffusion between two infinite impermeable planes for different spacings. The dispersion with
increasing frequency is initially much more rapid for larger separations. Adapted from [Gore et al.

2010].
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Trapezoidal OGSE waveforms [figure 2.12] are usually preferred in practice since they offer stronger
b-values while preserving the frequency selectivity [Van Nguyen et al. 2014], which is essential to
measure the diffusion spectrum. Cosine-like waveforms enable getting rid of the null frequency peak
of sine-like waveforms and are thus the sequence of choice for temporal diffusion spectroscopy.

Figure 2.12: An illustration of a PGSE (top) and an OGSE (bottom) sequence showing all the
variables. The presented OGSE sequences have a trapezoidal shape with minimum achievable rise
time to maximize diffusion weighting. The PGSE sequence is a special case of OGSE for N=1.

Adapted from [Drobnjak, H. Zhang, et al. 2016].

2.3.3 Models of the diffusion process

The development of models is motivated by the desire to synthesize the information contained
in the many diffusion-weighted volumes acquired. Moreover, models can provide access to parameters
characterizing the microstructure. Several representations of diffusion-weighted data exist. Two main
groups can be drawn: model-based techniques that make physical assumptions about diffusion or
tissue properties and model-free techniques that do not make these hypotheses.

2.3.3.1 Model-based techniques

Thanks to the pioneering work from Denis Le Bihan [Le Bihan et al. 1986] who first acquired diffusion-
weighted MRI, helping the characterization of the tissues microstructure thanks to images obtained
from healthy subjects and patients analyzed in terms of a mean diffusivity. This work on diffusion
anisotropy took off with the introduction of the more rigorous formalism of the diffusion tensor [Basser,
Mattiello, and LeBihan 1994]. With diffusion tensor imaging (DTI), diffusion anisotropy effects in
diffusion MRI data can be fully extracted, characterized, and exploited, providing even more exquisite
details of tissue microstructure.
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Mathematically, following [equation (2.20)], the signal attenuation can be modeled using a symmetric,
positive, and definite diffusion tensor:

D =









Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dxy Dzz









(2.22)

Since D is symmetric, only six parameters are unknown. Thus, if we add the acquisition to obtain
the S0 signal [equation (2.20)] a total of 7 acquisitions are required to solve [equation (2.22)] even if
in practice, a few dozens of isotropically distributed gradient directions are used to become robust to
the MRI data corruption. Each of these acquisitions, with a different gradient orientation, can count
as a filling of the q-space mentioned earlier. The tensor can be visualized as an ellipsoid [figure 2.13].
Once D is estimated, its eigenvalues λ1, λ2, λ3 with λ1 ≥ λ2 ≥ λ3 and eigenvectors e1, e2, e3 can be
computed, providing a series of rotation-invariant characteristics of the tissue microstructure:

• Mean Diffusivity or Apparent Diffusion Coefficient (ADC) - It represents the average diffusivity
of water within the voxel and can be computed from the trace of the diffusion tensor D:

ADC = Tr(D) =
λ1 + λ2 + λ3

3
in m2s−1 (2.23)

• Fractional anisotropy (FA) - It quantifies the degree of anisotropy of the diffusion process within
the voxel ranging from 0 (isotropic case) to 1 (anisotropic case):

FA =

√

3

2

√

(λ1 −ADC)2 + (λ2 −ADC)2 + (λ3 −ADC)2

λ1 + λ2 + λ3
(2.24)

• Radial and longitudinal diffusivities (D⊥/D//) - Radial diffusivity represents the diffusivity
perpendicular to the mean axis of the tensor, whereas longitudinal diffusivity highlights the
diffusivity along it:

D⊥ =
λ1 + λ2

2
D// = λ1 both in m2s−1 (2.25)

Despite DTI being one of the first models developed in dMRI, DTI remains widely used for clinical
applications thanks to its simplicity (dozen acquisitions) and robustness. Nevertheless, DTI suffers
from severe limitations:
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• Due to the mathematical representation of the tensor, only one principal direction can be
decoded [T. E. J. Behrens et al. 2007]. As a result, DTI cannot account for multiple fiber
populations crossing within the voxel, a typical case in white matter tissue, as seen in chapter
one (see 1.2.3).

• DTI relies on a Gaussian hypothesis that cannot account for the multiple exponential decay
observed when exploring higher b-values.

• Finally, DTI features lack specificity regarding the underlying microstructural changes in the
tissues; for example, FA can decrease because of damaged myelin or decreased axonal density
[Curran, Emsell, and Leemans 2016].

Figure 2.13: Representation of the diffusion tensor as a sphere in the case of isotropic diffusion (a)
and as an ellipsoid (b) for anisotropic diffusion behavior. The λ1, λ2, λ3 and e1, e2, e3 correspond to

the eigenvalues and eigenvectors of the tensor respectively. Adapted from [Jones 2010].

A plethora of alternative models have been proposed relying on the representation of the signal using
specific distributions such as Wisharts, Bingham, Watson, or Von Mises-Fisher distributions [McGraw
et al. 2006; Jian and Vemuri 2007]; or using higher order tensors like the Multi-Gaussian tensor model
from Tuch [Tuch et al. 2002].

DTI’s incapacity to solve fiber crossings led to the emergence of new model-free reconstruction tech-
niques, based on the Callaghan fundamental Fourier equation linking the q-space and the displacement
space.

2.3.3.2 Model free techniques

In the case of a model-free approach, we need to avoid the Gaussian diffusion distribution hypoth-
esis. Several approximations can be made to describe diffusion signal attenuation in the case of
non-Gaussian diffusion such as ”Short Pulse Gradient” (SPG), ”Gaussian Phase Distribution” (GPD)
[Neuman 1974] or ”Multiple Correlation Function” (MCF) [Grebenkov 2007]. SPG approximation is
explained hereafter.

Short Pulse Gradient (SPG) - This approximation, also known as ”Narrow gradient approximation”
assumes that in [equation (2.19)] δ is infinitely smaller than ∆ (δ << ∆), thus allowing to write the
effect of the two gradients on a spin moving from r to r′ as a phase shift (γ δ G) * (r′ - r) contributing
to the signal decay. We are defining E(G,∆) the NMR normalized signal as follow:
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E(G,∆) =
S(G,∆)

S(0,∆)
, (2.26)

where S(G,∆) and S(0,∆) are respectively, the T2 weighted MR signals with and without diffusion
sensitivity.

E(G,∆) is an ensemble average in which each phase term exp(iγδG ∗ (r′ − r)) is weighted by the
probability P(r)P(r|r′, ∆) for a spin to move from r to r′. Using this SPG approximation, Stejskal
and Tanner [Stejskal and Tanner 1965] come up with the following equation:

E(G,∆) =

∫

P (r)
∫

P (r|r′,∆)exp(−iγδG.[r − r
′])dr

′dr (2.27)

The phase shifts appearing in [equation (2.27)] depends only on the dynamic displacement, R = r
′ − r.

We can now introduce P(R,t) the probability that a particle moves by R over a time t called ”average
propagator” [Kärger and Heink 1983] thus yielding :

P (R, t) =

∫

P (r)P (r|r + R, t)dr (2.28)

We can rewrite equation (2.20) as follow:

E(G,∆) =

∫

P (R,∆)exp(−iγδG.R)dR (2.29)

Using the q wave vector definition, [equation 2.29] can be modified using Fourier transform of E(G,∆)
and P(R,∆):

E∆(q) =

∫

P (R,∆)exp(−i2πq.R)dr (2.30)

The SPG is a convenient hypothesis, nevertheless it is not valid in practice due to hardware limitations
in gradient amplitudes, which impose a certain duration of the gradient application to reach a sufficient
diffusion sensitization. For the in vivo case, the SPG approximation requires DW gradient pulse
duration to be 1 ms or less [King et al. 1994]. This condition cannot be achieved for common clinical
scanners, so the displacement distribution profile retrieved with SPG is relative rather than absolute
numbers. However, violating this assumption may not be as problematic as might appear because
even if quantitative measurements of displacement will be underestimated [Bar-Shir et al. 2008], the
orientations themselves are unlikely to be affected [Wedeen et al. 2005].

SPG and q-space - From [equation 2.28], we can obtain the displacement distribution function by ap-
plying an inverse Fourier transform to the normalized diffusion-weighted MRI signal. To reconstruct
a complete displacement distribution function, the diffusion-weighted normalized signal must be col-
lected for a large set of q wave vectors, which corresponds to the sampling of the q space introduced by
Callaghan [P. T. Callaghan et al. 1991]. This simple, model-free approach allows characterization and
quantification of the displacement distribution function without the use of complicated mathematical
procedures or hypotheses on the diffusion response of tissues diffusion. Once the displacement distribu-
tion function is reconstructed, a few quantitative parameters can be extracted: the mean displacement
(measured as the width at half maximum of this function), the probability for zero displacement (P0,
measured as the peak intensity of this function), and the kurtosis (measured as the deviation from
the Gaussian distribution) [Assaf and Y. Cohen 2000][figure 2.14]).
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Figure 2.14: Cartoon depicting the steps involved in obtaining the displacement and probability maps
from a diffusion-weighted imaging (DWI) data set. The DWI data set is organized in a

three-dimensional (3D) array. The normalized signal decay (EΔ,q) as a function of q is calculated for
each pixel. The signal decay calculates the displacement distribution profiles by Fourier transform.
Then, the two parameters characterizing the displacement distribution profile of each pixel are
computed and collected into two sub-images. Reproduced from [Assaf and Y. Cohen 2000].

In theory, propagator imaging reacquires an exhaustive sampling of the q-space:

• q magnitude must be sampled from 0 to an infinite value in theory.

• The diffusion time td must be large enough for the water molecules to explore their surrounding
media, thus implying ∆ to be larger than l2

2D with l being the size of the compartment and D
being it apparent diffusion coefficient.

• The gradient pulse duration  must be chosen such that the displacement of molecules remains
much smaller than the compartment size l (δ << l) [P. T. Callaghan et al. 1991].

• Finally, as mentioned earlier, SPG approximation is required, so that diffusion during the pulse
is minimal, otherwise it will influence the extraction of the displacement distribution function
[Mitra and Halperin 1995].

The q-space formalism described above can be expanded to q-space imaging (QSI), whose key motiva-
tion was to infer the compartment structural connectivity. The diffusion community introduced the
concept of orientation distribution function (ODF) [Tuch et al. 2002], relying on the angular profile
of the propagator. The ODF function ψ is described as follow:

ψ(u) =

∫ ∞

0
P (ru)dr (2.31)

Mapping the ODF provides invaluable information about the tissue microstructure [Tuch et al. 2003].
A direct application of QSI is proposed with the diffusion spectrum imaging (DSI) method, described
below.

Diffusion spectrum imaging (DSI) - Diffusion spectrum imaging is the direct three-dimensional (3D)
imaging extension of q-space spectroscopy described until now, providing an estimate of the q-space
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Figure 2.15: Evolution of the q-space sampling schemes with the refinement of local models of
diffusion MRI data. Courtesy of Cyril Poupon.

spin propagator within each imaging voxel [Wedeen et al. 2005]. It requires a Cartesian q-space sam-
pling acquisition, whereby a large number of DW images are collected. These q-vectors are arranged in
a regular 3D Cartesian grid to obtain an adequate sampling of the DW signal as a function of position
in q-space [figure 2.15]. After performing the requisite 3D Fourier transform, we obtain an estimate
of the spin propagator within each imaging voxel. The fiber orientations are assumed to coincide with
distinct peaks in the ODF, representing the directions of maximum diffusion. An illustration of DSI
q-space sampling is presented in [figure 2.15].

DSI is considered the ultimate q-space sampling as it covers the full q-space 2.15. However, the most
significant obstacle to its routine use is the large amount of required data that is incompatible with an
acceptable scan duration. DSI has an inefficient sampling strategy: a complete 3D data set is acquired
for each voxel, only to be projected down to a 2D ODF.
High angular-resolution diffusion imaging (HARDI) To tackle the limitations of the DSI method, the
diffusion community has developed various approaches aiming at mapping the ODF from a simplified
q-space sampling corresponding to a single sphere (or shell) of the q-space with a predefined radius
corresponding to a single b-value (b = q2τ , [equation 2.23]), introducing the concept of high angular
resolution diffusion imaging (HARDI). Although the HARDI approach provides no information about
the propagator, it does give the most concise characterization of its angular profile. With HARDI, the
acquisition can be tailored to target a specific region of the q-space. With a complete 3D cartesian
q-space acquisition like in DSI, a significant proportion of data samples will be located in low-SNR
regions (high q-values) or low-contrast areas (low q-values), while with HARDI acquisition, it is
possible to focus on an optimal b-value, resulting in an improvement of the contrast-to-noise ratio per
unit of scan time.

The most popular HARDI reconstruction techniques are listed below:
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Figure 2.16: Illustration of the Funk–Radon transform (FRT) at the heart of q-ball imaging and ODF
reconstruction. Great circle integrals are computed from the measured signal to obtain the ODF.

Adapted from [Descoteaux 2015].

• Q-Ball Imaging (QBI) - Q-ball imaging was proposed as a way of directly obtaining an estimate
of the diffusion ODF using HARDI acquisitions [D. S. Tuch 2004]. It relies on the Funk-Radon
transform [Funk 1915] providing, in certain conditions, a good approximation of the projection of
the propagator onto the orientation space [figure 2.16]. Fiber orientations can be extracted from
QBI by finding the peaks in ODF and used to track through crossing-fiber regions [Campbell
et al. 2005; Perrin et al. 2005; Berman et al. 2008].
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QBI is fast and capable of producing results similar to DSI, with substantially reduced acqui-
sition times. As with all q-space methods, large b/q-values are required to obtain adequate
separation of the peaks in the ODF.

• Persistent Angular Structure MRI (PAS-MRI) - It provides an estimate of the persistent angular
structure (PAS) of the diffusion propagator using HARDI data [Jansons and Daniel C Alexander
2003]. The PAS is defined as the angular dependence of the spin propagator, assuming its radial
dependence is a function at a fixed radius r. In other words, spins are considered to diffuse at
a fixed distance r, with an angular distribution given by the PAS.

• The Diffusion Orientation Transform (DOT) - The diffusion orientation transform also operates
on HARDI data and provides an estimate of the spin propagator evaluated at a given radius
R0 [Özarslan, Shepherd, et al. 2005]. To make the 3D Fourier transform tractable, the radial
dependence of the DW signal is assumed to be monoexponential. With this assumption, the
DOT can be performed efficiently, with the additional benefit that the spin propagator can be
evaluated at any radius R0.

• Analytical Q-ball imaging (aQBI) - aQBI is an improvement of the QBI method relying on the
decomposition of the signal acquired on a sphere into a spherical harmonics base [figure 2.17].
Whereas QBI relies on a Funk-Radon transform, aQBI relies on the Funk-Hecke transform
[Descoteaux et al. 2007], adapted to the signal’s spherical harmonic decomposition. aQbi has
been proven to be 15 times faster than QBI, robust to noise, and more accurate in ODF maxima
detection at the cost of slightly reducing angular resolution [Descoteaux et al. 2007].

• Constrained Spherical Deconvolution (CSD) - This method computes fiber ODF relying on
the representation of the diffusion-weighted signal as the spherical deconvolution of a single
fiber response function [Tournier et al. 2008]. CSD cannot be considered as a pure model-free
technique because it relies on a preconception of a single fiber response, thus CSD is at the
frontiers of model-free and model-based techniques.

Figure 2.17: Plots of the absolute value of the low-order spherical harmonic functions, with l the order
value and m the index. Adapted from [Jones 2010] on page 462.
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Chapter 2. Toward Magnetic Resonance Imaging

2.4 Conclusion

In this chapter, we introduced the principles of magnetic resonance imaging with a focus on
diffusion-weighted MRI being at the heart of this work. We tried as much as possible to avoid
assumptions on the type of tissues concerned by the imaging. In fact, because of the historical link
between MRI and neuro-imaging, the improvements of the models targeted white and grey matter
brain tissue characterization. The next chapter describes the most common models established in the
diffusion community, focusing on their assumptions to understand their limitations fully.
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Figure 3.1: Illustration of the hindered diffusion process within brain white matter tissues.

57



3.1. Brain tissues as restricted environment

Chapter outline
3.1 Brain tissues as restricted environment . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Design of hardware microstructural phantoms . . . . . . . . . . . . . . . . . . 60

3.3 Multi compartmental analytical models . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Computational models and dMRI simulator . . . . . . . . . . . . . . . . . . . 67

3.4.1 Simulation of cell population geometries . . . . . . . . . . . . . . . . . . 67

3.4.2 Simulate the diffusion process using Monte-Carlo simulations . . . . . . . 75

3.4.3 Synthesis of the dMRI signal . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.4 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

In this chapter, we will present the state of the art of dMRI techniques developed to characterize the
microstructure of brain tissues. Two main applications exist: first are local dMRI models computed

at the voxel level to allow for specific reconstruction whole-brain tractograms [Mori et al. 1999; Poupon
1999]. In the last chapter, we saw some key elements concerning this application, notably through
QBI and aQBI. The second application is the creation of biophysical models based on a geometrical
model of the underlying tissue to solve the inverse problem of microstructure parameter estimation.
Here, we will tackle only the second application as this thesis relies exclusively on it.

3.1 Brain tissues as restricted environment

Brain tissue microstructure affects the displacement of water molecules as demonstrated by
[Chenevert, Brunberg, and Pipe 1990; Beaulieu and Allen 1994; Pierpaoli and Basser 1996]. The
axonal fibers populating white matter bundles cause the observed average displacement to be smaller
perpendicular to the fibers than parallel to the fibers [figure 3.2]. It was first thought that this
observation does not contradict the Gaussian hypothesis of water diffusion in neuronal tissue, and the
Stejskal-Tanner formalism was used to develop new frameworks to characterize the anisotropy of the
diffusion process using the DTI model.

White matter (WM) tissue has a complex microstructure. It consists mainly of long axonal extensions
of neurons, generally arranged into bundles, often represented as parallel tubular structures [figure
3.2]. WM also embeds glial cells surrounding and supporting the axonal fibers and microvasculature
(see 1.2.3).
Biological membranes, such as cell membranes, are permeable to water molecules at various degrees,
but it is expected to assume the existence of distinct water compartments to represent WM, each
associated with a specific cell population or cellular space. Since the behavior of the diffusion process
can be very different among these various compartments due to their geometrical and biophysical
characteristics, diffusion MRI might be an adequate modality to probe the key features characterizing
them, like size, density, or permeability.

Non-Gaussian displacement of water in brain tissue was reported in the mid-1990s [Beaulieu and Allen
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*

a b c

Figure 3.2: Hindered water diffusion in white matter fibers. On the left, adapted from [Lazar et al.
2014]: Water diffusion in white matter is modeled using a two-compartment approach that assumes
that the diffusion signal arises from intra-axonal (light gray) and extra-axonal (light pink) water. On
the right, adapted from [Poupon 1999]: The restricted nature of diffusion inside white matter fibers or
axons: Myelin, the axonal membrane, microtubules, and neurofilaments are all longitudinally

oriented structures that could hinder water diffusion perpendicular to the length of the axon. On the
bottom right from [Le Bihan 2003]: diffusion might be hindered by obstacles that result in tortuous
pathways (a). Diffusion of molecules can be restricted in closed spaces (b), such as cells. Exchange

between compartments also slows down molecular displacements (c).
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1994; King et al. 1994]. These experiments showed that water diffusion is at least partially restricted.
The primary supporting experimental evidence was the finding that the relation between signal decay
and diffusion tagging (b-value) is not mono-exponential when exploring a wide range of diffusion
sensitivity, in other words, when high gradient amplitude and long diffusion times are reached. The
non-mono-exponential signal decay may imply the existence of several diffusing components in the
tissue and the effects of restricted diffusion. It was assumed that bi-exponential functions [Niendorf
et al. 1996] then multi-exponential functions [Assaf and Y. Cohen 1998; Mulkern et al. 1999] were
leading to a better signal decay representation.

Usually, the bi-exponential signal decay is associated with two components: a fast and a slow diffusing
component. The fast-diffusing component is linked with water molecules in the extracellular space,
whereas the slow-diffusing component may reflect water in the intracellular space. The fast component
appears to be characterized by Gaussian diffusion, thus showing unrestricted or slightly hindered
diffusion, whereas the slow component appears to be strongly restricted [Assaf and Y. Cohen 2000].
The main supporting experimental evidence comes from a multi-diffusion time experiment, which
indicated that the mean square displacement grows linearly with the diffusion time (Einstein’s relation)
for the fast component, whereas the slow component’s mean square displacement reaches a plateau
and does not change when the diffusion time is increased.

Basically, by increasing the diffusion time, the weighting of the component exhibiting restricted diffu-
sion increases, and most of the restricted diffusion in white matter originates from the axonal compart-
ment. In addition, it was found that the magnitude of restricted diffusion reduces when demyelination
and axonal loss occur [Assaf, Kafri, et al. 2002]. It has been speculated that the multiple lamellae of
myelin membranes significantly reduce the exchange rates of water molecules between intra-axonal and
extra-axonal spaces, causing the intra-axonal molecules to be restricted. Some studies have calculated
that the intra- to extra-axonal exchange time may reach 500 ms [Assaf and Y. Cohen 2000; Meier,
Dreher, and Leibfritz 2003].

Within brain tissue, water diffusion is regulated by the different cellular compartments. Different
models were developed to decode the microstructural properties of these cellular compartments and
will be described later in the section dedicated to compartmental analytical models (see section 3.3),
and their accuracy on WM microstructure estimation will be evaluated thanks to the use of physical
phantoms, which is the topic of the following section.

3.2 Design of hardware microstructural phantoms

To challenge and evaluate the accuracy of the microstructural information obtained from q-space dif-
fusion MRI under different experimental conditions, it is important to devise and study hardware
phantoms that share similar microstructural characteristics. Thus, microstructural hardware phan-
toms of different sizes and mixtures have been studied [Drobnjak, Neher, et al. 2021] [figure 3.3].
Originally, glass and plastic capillaries were proposed to design artificial crossing fibers [C.-P. Lin
et al. 2003; Tournier et al. 2008] with diameters ranging from 50 to 350 µm, thus remaining out of
the range from real axons. Then, some hardware phantoms proposed hydrophobic and resistant syn-
thetic fibers of diameters ranging from 5 to 50 µm [Hagen and Henkelman 2002; Fieremans, De Deene,
et al. 2008; Poupon et al. 2008; Moussavi-Biugui et al. 2011; Burcaw, Fieremans, and Novikov 2015].
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Finally, innovative phantoms proposed to create more realistic hollow fibers using electro-spinning or
melt-spinning techniques [Zhang 2012; Hubbard et al. 2015; Guise et al. 2016].
The phantoms define geometries of known size for which there is an empirical solution to the signal
decay dependency on the q-value. [Avram, Assaf, and Y. Cohen 2004] conducted a comprehensive
validation study of q-space diffusion MR of cylindrical micro-capillaries of different sizes under different
experimental conditions using different pulsed gradient stimulated echo sequences. The test leading
to signals shown in [figure 3.4] is a standard for validation and is systematically used to confirm the
relevance of a model.

3.3 Multi compartmental analytical models

Since the observation of the bi-exponential nature of the diffusion MRI signal in WM tissue, multi-
compartmental models have been proposed by the state of the art. Most of them rely on the modeling
of compartments assumed to be impermeable, which remains acceptable for myelinated axons, enabling
to write the acquired diffusion-weighted MRI signal as a sum of signal contributions stemming from
the various compartments. Below, we present an exhaustive list of these models:

Restricted diffusion in Bovine Optic Nerve - Stanisz first introduced a model to explore the non-
gaussian behavior of the dMRI signal in the bovine optical nerve [Stanisz et al. 1997]. It relies on an
analytical multi-compartment model of the bovine optic nerve associated with 3 compartments and
yielding [equation 3.1]:

S(b) = ME(b) +MS(b) +MT (b), (3.1)

with S(b) the total PGSE signal value and ME(b)/MS(b)/MT (b)/ respectively the PGSE signals asso-
ciated to the extracellular space, the glial cells and the axons. Geometrically, axons were represented
as ellipsoid and glial cells as spheres [figure 3.5]. Parameters in this model were then adjusted to
fit data collected from PGSE experiments, including intra- and extracellular diffusivities, axons and
glial cell average lengths, volume fractions, and permeabilities. The extended set of parameters to
be estimated requires high-quality diffusion MRI data, leading to very long acquisition times. Such
an approach cannot be translated to clinical applications; simpler models with fewer parameters have
thus been developed.

Figure 3.5: Postulated tissue model as an approximation of bovine optic nerve structure. The axon
cells are represented by prolate ellipsoids with short dimension aT (⊥) and long dimension aT (‖),
glial cells are represented by spheres with diameter aS , adapted from [Stanisz et al. 1997].
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a) Fiber Cup dMRI phantom    b)   Synthetic fibers

   c)   Electro-spinning hollow fibers

   d)   Melt-spinning hollow fibers

Figure 3.3: Hardware phantoms of the microstructure. a) Phantom filled with distilled water inside its
plexiglass container, adapted from [Fillard et al. 2011]. b) Example of synthetic fibers: (left) acrylic
fiber of diameter 20 μm; (right) Dyneema® fiber of diameter 10 μm. Adapted from [IRB n.d.]. c)
Melt-spinning: Hollow Polypropylene Yarns of inner diameter 12 μm and outer diameter 34 μm
obtained by melt-spinning extrusion. Reproduced from [Guise et al. 2016]. d) Electro-spinning:
Example of electrospun hollow fibers with different inner diameters according to the process flow.

Reproduced from [Hubbard et al. 2015].
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Figure 3.4: a) Illustration of a phantom comprising microcapillaries. Gx and Gz are the gradient
directions perpendicular and parallel to the main axis of the microtubes, respectively, and α is the
rotational angle between the applied diffusion gradient, Ga, and the main axis of the cylinder, thus,
the z-axis. b) Normalized signal decay (E/E0) for the 20 μm cylinders at a rotational angle α of 90°, as
a function of q-values, for different diffusion times (Δ). Reproduced from [Avram, Assaf, and Y. Cohen

2004].

Ball and Stick - [T. E. Behrens et al. 2003] proposed two compartments: one extra-axonal and one
intra-axonal space, respectively, described as balls and sticks. It relies on the following equation:

S/S0 = fe−bD(n.G) + (1 − f)e−bD, (3.2)

with f being the volume fraction of the anisotropic compartment (the sticks), n the mean orientation of
axons and G the diffusion gradient direction. In this model, diffusion is assumed to occur only parallel
to the axons inside the sticks, while it diffuses isotropically in the extra-axonal space (the balls). The
simplification brought by this approach allows a clinical application, but it shows some limits as well
in the capacity to reflect the real ground truth notably related to the assumption of isotropic diffusion
in the extra-axonal space.

Composite Hindered and Restricted model of diffusion (CHARMED) - CHARMED is a two-compartment
model of white matter describing a more realistic representation of the intra- axonal space [Assaf and
Basser 2005]. Indeed, axons are represented as a distribution of packed parallel and impermeable cylin-
ders forming one or two populations of fibers. The extra-axonal space is modeled by hindered Gaussian
diffusion. CHARMED estimates the axonal fiber orientations, the parallel intra-axonal diffusivity, the
extracellular diffusivity, and the respective volume fractions.

AxCaliber - AxCaliber [Assaf, Blumenfeld-Katzir, et al. 2008] is an extension of the CHARMED model,
which assumes a known fiber direction and aims to estimate the distribution of axon diameters. Based
on the histological work of Aboitiz [Aboitiz, R.S. Fisher, and E.Zaidel 1992], it assumes that axon
diameters follow a Gamma distribution. The AxCaliber framework is well suited to the estimation
of axon diameter in sciatic and optic nerves, but is not appropriate for clinical applications since it
requires many measurements perpendicular to the studied bundle and assumes prior knowledge of
fiber orientation.
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ActiveAx - The purpose of the ActiveAx [Alexander 2008; Alexander 2010] model was to tackle the
limitations of the AxCaliber framework to make the estimation of axon diameter feasible in a clini-
cal routine. It uses rotative invariant dMRI acquisitions to infer the fiber orientation. The Gamma
distribution model of axon diameter in AxCaliber is replaced by an ”axon diameter index” correspond-
ing to a single diameter value deduced from the mean volume-weighted diameter of the distribution.
The extra-axonal space model follows the CHARMED intra-axonal space model but a third compart-
ment featuring isotropic free diffusion is added to the signal model, describing partial volume effects
stemming from CSF within tissues. The ActiveAx model relies on the following equation:

S = fintraSintra + fextraSextra + fisoSiso, (3.3)

with f the volume fraction of each compartment such as fintra+fextra+fiso = 1. Intra- and extracellular
diffusivities are fixed to a constant. Despite the reduction of the number of parameters compares to
AxCaliber, the ActiveAx framework still requires high-quality data and strong gradient strengths for
the parameter estimation. In particular, estimating the axon diameter on a clinical setup remains
challenging and controversial [Markus Nilsson et al. 2017].

One of the limitations of previous models was to consider axon populations as parallel structures,
which is a strong approximation. Indeed, even in the corpus callosum, considered to be a region with
strong axonal parallelism, some orientation dispersion can be observed [Ronen et al. 2014; Mollink
et al. 2017].

Neurite Orientation Dispersion and Density Imaging (NODDI) - The next improvement regarding
analytical models came from the NODDI approach [Zhang 2011; Zhang 2012]. It assumes that a
parametric Watson distribution can represent fiber dispersion. The model is composed of three water
pools: intra-cellular, extracellular, and CSF:

S = (1 − viso)(vicSic + (1 − vic)Sec) + visoSiso, (3.4)

with S the full normalized signal, Sic and vic the normalized signal and volume fraction of the intra-
cellular compartment, Siso and viso the normalized signal and volume fraction of CSF and Sec the
normalized signal of the extra-cellular compartment.

The intra-neuritic signal contribution Sic adopts the following orientation dispersed cylinder model
simplified for sticks:

Sic =

∫

S2

f(n)ebd||(qn)2

dn, (3.5)

with q the gradient direction, f(n)dn the probability of finding sticks along orientation n, ebd||(qn)2 the
signal attenuation due to unhindered diffusion along sticks with intrinsic diffusivity d|| and orientation
n. f(n) is modeling the orientation distribution function with a Watson distribution such as:

f(n) = M

(

1

2
,
3

2
, κ

)−1

eκ(µ.n)2

, (3.6)

with M the confluent hypergeometric function, µ the mean orientation and κ a concentration parameter
that measures the extent of orientation dispersion µ. A Watson distribution is the simplest orientation
distribution that can capture the dispersion in orientations [Mardia and Jupp 2009].
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Figure 3.6: Maps of RGB-encoded principal direction µ, FA, orientation dispersion index OD,
intra-cellular volume fraction νic, and isotropic (CSF) volume fraction νiso computed using the

four-shell data, showing every 4th slice of the inferior half of the brain. Adapted from [Zhang 2012].

Same formalism can be applied for Sec, such as :

log(Sec) = −bqT
(

∫

S2

f(n)D(n)dn
)

q, (3.7)

NODDI adopts a classic isotropic Gaussian diffusion distribution for the CSF compartment.

The 2012 version of NODDI has the benefit of estimating all model parameters with only 2 HARDI
shells (two b-values), thus feasible in a clinical routine [figure 3.6], making the NODDI model popular,
as shown by the studies using it to characterize healthy and pathological brain states [Kodiweera et al.
2016; Colgan et al. 2016].

Extensions to NODDI were made notably by proposing different orientation dispersion models dis-
tribution such as the Bingham distribution [Tariq et al. 2016] or including spherical decomposition
[Zucchelli, Descoteaux, and Menegaz 2017]. The NODDI-DTI model [Edwards et al. 2017] is ignoring
the CSF compartment, thus allowing extraction of biophysical parameters from DTI data. NODDIDA
model [Jelescu et al. 2016] ignores CFS contribution, and all diffusivities are independent of each other.
This approach removes some incorrect assumptions from NODDI, but the problem remains ill-posed:
multiple parameter sets can describe the dMRI signal equally well, and hence, the solution is not
unique. Also, it reduces NODDI from a three-compartment model to a two-compartment model, by
eliminating the isotropic compartment, the NODDIDA model is only applicable in brain regions with
minimal CSF occupancy [Mozumder et al. 2019]. The LEMONADE(t) [Novikov, Veraart, et al. 2018]
model aims at overcoming some of the issues of NODDIDA by accounting for the degeneracy in model
parameter estimation, LEMONADE enables one to choose between two parameter branches, selecting
the one corresponding to biophysical ground truth.
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Soma and neurite density imaging (SANDI) - While previous models successfully describe diffusion
data in white and grey matter, it has been shown to fail in the grey matter at high b values (>
3.000 s/mm2 ). SANDI [Palombo 2020] hypothesized that the unmodelled soma compartment also
embedding neurogli and neurons may be responsible for this failure. Thus, SANDI proposes a three-
compartment model considering a signal contribution from cell bodies assumed to arise from a pool
of diffusion water molecules restricted in a sphere:

S = fic(finSin + fisSis) + fecSec, (3.8)

with S the resulting T2 normalized signal, fic and fec the intra and extracellular relative fractions
satisfying fic + fec = 1, Sin and Sis the normalized signals for restricted diffusion within neurites
and soma and Sec the normalized signal stemming from the extracellular space. Notably, the model
uses GPD approximation [Neuman 1974] for normalized signal representations. SANDI also involves
Monte-Carlo simulation of spin-diffusion in realistic digital models of dendritic structures to investigate
the regime of validity of the assumption of non-exchanging intra-cellular compartments and investigate
the sensitivity to soma size and density within that regime. Monte-Carlo simulations will be further
discussed in the next section. Compared to NODDI, SANDI is not an easy model to apply to clinical
routines as high b values are required, relying on gradient hardware to deliver substantial gradient
magnitude.

Cellular Exchange Imaging (CEXI) - CEXI is a model tailored for permeable spherical cells [Gardier
et al. 2023]. As SANDI, CEXI model results were compared with Monte-Carlo simulations and show
stable estimates of cell size and intracellular volume fraction. CEXI accurately estimates the exchange
time for low to moderate permeability levels. This study highlights the importance of accurately
modeling the exchange time to quantify microstructure properties in permeable cellular substrates.

This non-exhaustive list of analytical multi-compartmental models of WM dMRI signal points to a
general trend that can be highlighted by this quote extracted from [Zhang 2012]:

Our approach is first to choose a model that is sufficiently simple yet complex enough
to capture the key features of neurite morphology, then identify the optimal acquisition
protocol for such a model under scanner hardware and acquisition time constraints typical
in a clinic setting.”

Indeed, as we saw in the previous chronological list, the analytical model approach constantly struggles
to balance model accuracy and clinical feasibility. However, since the first analytical model from
Stanisz [Stanisz et al. 1997], a computational approach was already considered, based on satisfying
results of Monte-Carlo simulations [Szafer, Zhong, and Gore 1995] but not developed further for
technical limitations on computational times. The following paragraph introduces biophysical models
based on a computational approach.
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3.4 Computational models and dMRI simulator

Analytical models have multiple limitations, starting from the oversimplistic geometry represen-
tation that doesn’t reflect authentic biological architecture. Moreover, the mathematical formalism
doesn’t always bring unique solutions, as several local minima can exist in the parameter space, which
may induce degeneracy [Jelescu et al. 2016]. These issues are linked to the lack of solutions to the
diffusion equations for complex geometries, which is, unfortunately, an intrinsic problem of dMRI.

The rise of High-Performance Computing (HPC) over the last decades supports the idea of computa-
tional models as an alternative to analytical models. The idea is to train a machine learning algorithm
to decode microstructural parameters from brain tissues based on their dMRI signal footprint. To train
the algorithm, it must be provided with a database including the information from the microstructure
geometry and its dMRI footprint. Creating a database stemming from dMRI acquisitions of histolog-
ical samples of brain matter is unrealistic, given the number of samples required and, consequently,
the potential costs in terms of time and resources. An alternative is to implement a computational
simulator to synthesize digital phantoms representative of the biological tissue microstructure, employ
these phantoms to simulate the diffusion of water process within it, and then use a discrete model of
the dMRI signal attenuation resulting from the integration of all water molecule trajectories.

The geometrical parameters describing the microstructure and its dMRI signature are the two sides
of the targetted database we want to synthesize and from which the machine learning algorithm is
assembling a regression function. These simulations are limitless concerning cellular microstructure
realism, diffusion process hypothesis, or simulated MRI hardware if the framework is well designed
and the computational resources to perform the simulations are sufficient. The simulator must address
the following key issues:

• A high level of realism for each simulated sample must be reached: the geometry must be
simulated accurately with respect to the ground-truth anatomy at cellular scales, the simulated
diffusion process must match real phenomenon, and the diffusion sequences generated must
correspond to what can be acquired with real MRI hardware.

• A computational efficiency must be found to generate large collections of samples, which is
essential to robustly train machine learning algorithms.

With these two challenges in mind, a review of the literature is proposed hereafter about the three key
components required to meet them: simulation of brain tissue geometry, simulation of the diffusion
process, and simulation of the dMRI signal attenuation. This review will be followed by a descrip-
tion of the first computational models established by the community for decoding the brain tissue
microstructure.

3.4.1 Simulation of cell population geometries

The membrane geometry of cell populations present in gray and white matter tissue can be very
different from one species to another. Their cell shapes are drastically different, the grey matter
being mostly populated by neurons and the white matter being mostly populated by their axonal
prolongations assembled into large bundles. Because of the key application of dMRI to infer brain
structural connectivity, first geometry simulations have addressed the representation of white matter
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Figure 3.7: Pioneering cellular membranes simulators. On the left side, adapted from [Szafer, Zhong,
and Gore 1995], a cell represented by a box surrounded by a membrane of permeability. On the right
side, adapted from [Liu et al. 2004], we can observe a cross-sectional view in the XY plane of 3D
synthetic phantoms. The black dots are uniformly distributed in the initial positions of the spins. a:
Phantom 1, isotropic sphere. b: Phantom 2, single tube. c: Phantom 3, crossing tube. d: Phantom 4,
Y-shaped tube. Tubes have a square cross-section with a width of 20 µ, and the boundaries of the
tubes were assumed to be impermeable. Spins can diffuse freely inside the phantom and are reflected
elastically at the boundary indicated by the solid lines. The box in the middle, drawn with a dotted

line, is the voxel of interest.

samples [Matt G. Hall and Daniel C. Alexander 2009; Balls and L. R. Frank 2009; Fieremans, Novikov,
et al. 2010; Harkins and Does 2016; Villarreal-Haro et al. 2023; K. Ginsburger et al. 2018]. Later were
proposed geometry simulation of grey matter [Yeh et al. 2013; Ginsburger et al. 2019; Kerkelä et al.
2020; J.-R. Li, V.-D. Nguyen, et al. 2019; Fang et al. 2023]. The following section presents these
different methods to simulate brain tissue microstructure.

3.4.1.1 Synthetic geometries

Various geometry representations can be considered depending on the objectives with respect to bio-
realism, computational efficiency, and IT maturity.

Grid representation - [Szafer, Zhong, and Gore 1995] first proposed a cellular general tissue model
represented by a periodic 3D grid where the individual square element represents a cell surrounded
by a membrane with specific permeability [figure 3.7]. The edges of the structure are assimilated
to the extracellular space, and both intra and extracellular spaces share the same bulk diffusivity.
This attempt to represent the space as a 3D cartesian grid had the benefit of being computationally
efficient but lacked realism regarding the ground-truth microstructure complexity. More adaptative
representations were then developed, allowing more complex representations.

Generative model - The cells composing any simulated sample can be associated with a geometric
pattern described by a reduced set of parameters describing the key geometrical features of its mi-
crostructure. As first approximations, white matter fibers were represented by cylinders [Balls and
L. R. Frank 2009; Matt G. Hall and Daniel C. Alexander 2009] and neuron somas by spheres [Yeh et al.
2013; Ginsburger et al. 2019]. Despite being oversimplistic, these representations are very useful for
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assessing the accuracy of diffusion simulations since the analytical solutions of the diffusion equation
exist only for cylinders, spheres, ellipsoids, and plans. Accordingly, [Liu et al. 2004] synthesized four
different 3D phantoms presented in [figure 3.7] and [Kuchel, Lennon, and Durrant 1996; Duh, Mohorič,
and Stepišnik 2001] respectively proposing to simulate phantoms of a sphere and two plates.

To enhance the realism of cell representation, another approach consists of using 3D surface meshes to
represent the geometry of each cell [Balls and L. R. Frank 2009; Matt G. Hall and Daniel C. Alexander
2009; Yeh et al. 2013; D. V. Nguyen et al. 2014; M. Lin et al. 2016]. Triangular or quadrilateral 3D
meshes are the most common representations of 3D surfaces. The vertex density greatly impacts the
accuracy of the geometrical representation and the computational efficiency. The following quote from
[Balls and L. R. Frank 2009] confirms this statement:

”Generating meshes representing true fiber dimensions from histology is a painstaking
process, so perfect realism in our simulations may be too much to expect.”

As an alternative to meshes, MEDUSA simulator [K. Ginsburger et al. 2018] proposes to decompose
cells into simple geometric elements called ”atoms”, which allow the compression of the representation
of cells. The next chapter will further develop the MEDUSA simulator approach.

Experimentations have shown that random packing of axons in their transverse plane plays a crucial
role in the time-dependence of the diffusion coefficient in white matter [Burcaw, Fieremans, and
Novikov 2015]; thus, generative simulators that represent white matter as an arrangement of regularly
packed parallel cylinders miss the actual complexity of the diffusion process in white matter.

69



3.4. Computational models and dMRI simulator

To improve the realism of the representations of WM microstructure, alternative simulators [Balls and
L. R. Frank 2009; Matt G. Hall and Daniel C. Alexander 2009; Yeh et al. 2013; Ginsburger et al. 2019;
Villarreal-Haro et al. 2023] propose to define fibers with more complex shapes and configurations
(straight, bent, crossing, kissing, twisting, and fanning configurations) with an adjustable volume
fraction. The realism can be enhanced by varying the radius of axonal cylinders within the scene using
an adequate model of the axon diameter distribution (commonly a Gamma distribution). Dispersing
the orientations of fibers is also crucial for realism; the CAMINO simulator [Matt G. Hall and Daniel C.
Alexander 2009] was the first to propose a WM geometry simulator able to create crossing fiber bundles.
The DMS simulator [Yeh et al. 2013] was going further by offering more than two different populations
of fibers and a global angular dispersion parameter, allowing fibers from the same population to drift
slightly from the mean population orientation, thus creating a more organic organization of the bundle.
Furthermore, the DMS simulator proposes additional geometries, like ellipsoids or spheres, that are
ideal to mimic the geometry of glial cells or somas. [figure 3.8] presents 2D and 3D samples of simulated
WM microstructure with mixed sophistication.

i

Hall and Alexander 2009 Fieremans et al. 2009

Balls and Frank 2009 Yeh and al. 2013

Harkins and Does 2016

Li and al. 2019

Figure 3.8: Examples of packing methods developed to create white matter numerical phantoms. On
the top are illustrated cross sections of three different simulated geometries, and on the bottom are
illustrated three 3D phantoms of simulated geometries relying on meshes. Figures adapted from
[Matt G. Hall and Daniel C. Alexander 2009; Fieremans, Novikov, et al. 2010; Harkins and Does

2016; Balls and L. R. Frank 2009; Yeh et al. 2013; J.-R. Li, V.-D. Nguyen, et al. 2019].
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The improvements in brain tissue microstructure representation techniques have made it possible
to depict more than healthy tissues; consequently, different studies [Matt G. Hall and Daniel C.
Alexander 2009; Budde and J. A. Frank 2010; Landman et al. 2010; Yeh et al. 2013; M. Lin et al.
2016; K. Ginsburger 2019] have proposed to simulate damaged neurite structures [figure 3.9]. Beading
of axons, notably, is known to be pathologically associated with ischemic stroke and is an appropriate
application of computational models [Lee, Jespersen, et al. 2020] since analytical models cannot easily
be developed for axonal beading.

(E) Axon with beading model

Figure 3.9: Damaged neurites simulations : (A to D) plot the 10th, 50th, and 90th percentile
isosurfaces of the motion-probability propagators for different axonal structures, adapted from

[Landman et al. 2010]. (E) Simulator of packed beading neurites. Beading cylinders were packed in a
hexagonal pattern, adapted from [Budde and J. A. Frank 2010].

The development of ultra-realistic generated geometries has become pivotal these few last years, as
shown by [M. Palombo et al. 2018] work focusing on the synthesis of substrates mimicking one cellular
branch presenting microscopic details such as spines, leaflets, or beads. The MEDUSA simulator
[Ginsburger et al. 2019] was one of the first to simulate with a high degree of realism WM fiber
bundles, including extra microstructural details such as fibers tortuosity, beading, Ranvier nodes, or
myelin sheath. Moreover, MEDUSA also simulates realistic astrocytes and oligodendrocytes. The
Config simulator [Marco Palombo 2019; R. Callaghan et al. 2020] proposed to mimic the natural fiber
growth relying on a set of rules motivated by biological axonal guidance mechanisms. Recently, the
CACTUS simulator [Villarreal-Haro et al. 2023] implemented a ”fiber radial growth” method, allowing
the fibers to deform radially and thus modify their cylindric shape to become more bio-realistic. These
ultra-realistic generative simulators are presented in [figure 3.10].

3.4.1.2 Acquired geometries with microscopic imaging modalities

To fully catch the complexity of the brain microstructure, the generative approach must integrate
multiple parameters, and methods within the simulator to mimic the anatomical ground truth, which
can be complex and a never-ending challenge regarding the complexity of the brain tissue microstruc-
ture. Therefore, an alternative solution would be to extract tissue ground-truth membrane geometries
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directly by meshing their surfaces. Various biological or chemical materials sharing similar microstruc-
ture with the human brain were scanned using high-resolution imaging methods; examples of such
materials are gel foam [Baete et al. 2008] or asparagus steam [Panagiotaki et al. 2010] scanned respec-
tively with micro CT-scan and high-resolution confocal laser scanning microscopy and then reconstruct
using 3D surface representations [figure 3.11].

Figure 3.11: Biological and chemical materials as white matter phantoms. On top of the illustration:
a) DW-MRI image of a transverse section of the asparagus stem. The red square indicates the ROI,
containing one of the vascular bundles. b) Scanned image of the same ROI. c) Three-dimensional
mesh model shown from two different angles. Adapted from [Panagiotaki et al. 2010]. At the bottom,
on the left, a 3D micro CT image of gel foam, and on the right, a three-dimensional view of one set of
processed micro CT images of gel foam with each air bubble represented by a triangulated surface.

Adapted from [Baete et al. 2008].

Benefiting from the advances in microscopy, the approach was further pushed towards the scanning of
brain tissue samples directly, enabling the reconstruction of ground-truth geometries stemming from
2D [Chin et al. 2002; T. Xu et al. 2018]and 3D scans [K.-V. Nguyen et al. 2018; Marco Palombo
2019; Lee, Jespersen, et al. 2020; Lee, Fieremans, and Novikov 2021] [figure 3.12]. To complete the
full diffusion simulation, the segmented and meshed geometries need to be put as inputs of diffusion
simulators like ”SpinDoctor” [J.-R. Li, V.-D. Nguyen, et al. 2019] or ”Disimpy” [Kerkelä et al. 2020]”
that computes the dMRI footprint resulting from meshes. ”Neuromorpho” [Ascoli, Donohue, and
Halavi 2007] is an online website storing the different meshes of brain cells, whose database has been
expended over the years and used to complete full diffusion simulations [Marco Palombo 2019; Fang
et al. 2023].

It should be pointed out that the search for optimal realism of simulated microstructure may prove
futile, as the simulated substrate is aiming to be decoded through the simulation of its dMRI footprint,
and the diffusion sensitivity is capped such that the signal ignores small details from the simulated
substrate.
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3.4.1.3 Filling the field of view (FOV)

The FOV is the dimension that encloses the scene comprising the simulated geometry. State-of-the-art
simulators rely on cubic FOVs [Szafer, Zhong, and Gore 1995; Liu et al. 2004; Kuchel, Lennon, and
Durrant 1996; Duh, Mohorič, and Stepišnik 2001] as the goal of the simulation is to be bio-realistic;
nevertheless, most of the simulators propose a cross-section view of their geometry and therefore
following a 2D formalism [Liu et al. 2004; Fieremans, Novikov, et al. 2010; Matt G. Hall and Daniel C.
Alexander 2009] [figure 3.8].

Volume fraction and cell overlapping - Within a simulated substrate, the cell populations are distinct
compartments with their own volume fractions within the FOV. This volume fraction is weighting the
contribution of the compartment to the final dMRI signature of the sample. In the case of generative
geometry, the synthesized cells might overlap during their creation process and thus reduce the realism
of the simulated geometry. Various strategies emerged to fill digital phantoms with cells according to
this potential overlapping. In MCell simulator [Balls and L. R. Frank 2009], each element (cylinder,
sphere, ellipsoid) is added one after the other to reach the desired volume fraction. The fiber is
discarded if an intersection is found, and another location and radius are randomly pushed up. In
CAMINO [Matt G. Hall and Daniel C. Alexander 2009] and CACTUS [Villarreal-Haro et al. 2023], a
deformation is applied to the cylinder representing the fiber when an intersection occurs, contributing
to the elimination of any potential cell overlapping.

Overlapping makes high volume fractions difficult to reach and thus a challenge in the competition
for realistic samples of the brain microstructure as the intracellular space can constitute up to 80%
of the voxel volume [Bourne 2012; Voříšek et al. 2002]. Recent simulation frameworks, like Config
[R. Callaghan et al. 2020] or CACTUS [Villarreal-Haro et al. 2023], reached respectively 80% 94.7%
in the case of a single bundle simulation [figure 3.10]. CACTUS allows the generation of large fields
of view and takes approximately 4 hours to create a substrate of 500µm*500µm*500µm on a desktop
station equipped with 64 cores (2.4 GHz) and 400 MBytes of RAM.

3.4.2 Simulate the diffusion process using Monte-Carlo simulations

Most simulations of the diffusion process rely on Monte-Carlo (MC) simulations consisting of dis-
tributing a large number of particles (or random walkers) within a geometry and making them move
according to iterative trajectories of length ”r” and randomly oriented until reaching a final echo time
(TE). MC simulations are designed to mimic the Brownian motion of water observed empirically [R.
Brown 1827] and formalized by an adjustment of Einstein’s initial diffusion equation [Einstein 1905]:

r =
√

6Dts, (3.9)

where ts is the time step, D is the diffusion coefficient, and r is the step length. The factor 6 corresponds
to the 6 degrees of freedom in a 3D space. In the case of a 2D diffusion process, one has to consider a
factor 2. ts and r are respectively the time and displacement step of the global diffusion phenomenon
discretized into NIterationCount steps with NIterationCount = TE/ts.

Whatever the MC implementations, first introduced by [Lipinski 1990], remain similar and consist of
the following iterative process:

• At time t = 0, a set of Np random walkers is created within the field of view of the virtual
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sample at spatial positions randomly drawn from a 3D uniform distribution.

• After each time step, displacements are drawn randomly for all particles in order to replicate
the real Brownian motion of water molecules.

– If the particle stays in the same compartment after moving, its new position is kept.

– If the particle collides with a cell membrane along its displacement, a new position has to
be computed with respect to a particle-to-membrane membrane interaction model. Various
interaction models exist that will be described later.

• The displacement of particles induces phase shifts related to the diffusion encoding schemes.
Each particle’s resulting phase shift contributes to the dMRI signal decay.

• The previous steps are repeated iteratively until reaching the echo time TE of the MRI chosen
sequence.

Particle-to-membrane interaction - Here is a list of different ”particle-to-membrane” interaction strate-
gies described in [Xing et al. 2013] and illustrated in [figure 3.13]:

• Elastic boundary reflection (EBR) - EBR interaction consists of moving the particle to a symmet-
ric position with respect to the direction normal to the point of the collision on the membrane.
The collision of the reflected step is checked, until no further membrane barrier cells are detected.

• Non-elastic boundary reflection (NBR) - Another approach is to keep the reflection effect from
EBR but not consider it elastic. Thus, NBR interaction keeps the particle reflected but along
another random direction.

• Equal-step-length random leap (ERL) - This approach considers that steps share the same
length; thus, when a particle faces a membrane, the resulting trajectory is canceled and replaced
with a new one, integrating a new orientation. This process is iteratively applied to the particle
until it stops colliding with a membrane or until it reaches a maximum interaction count.

Computationally, ERL can easily exclude the computational cost linked with the reflection position.
Indeed, considering that millions of collisions will be computed during the MC simulation, each re-
duction of computational cost for one particle actually impacts the simulation overall. When the step
number is sufficiently large, and the step size is much smaller than the restriction size, the non-crossing
random leap agrees with elastic collision, at least in the case of impermeable membranes [Xing et al.
2013].

Figure 3.13: Three particle-to-membrane interaction models. A is the starting point, and B is the
ending point. B′ is the supposed endpoint without barrier; (a) EBR. The length of the reflected step is
the sum of AC and CB, which is equal to AB′; (b) NBR. CB returns to the original side along a random
direction. The sum of AC and CB is also equal to AB′; (c) ERL. AB is sampled randomly to replace

AB′, and AB should not cross the barrier. Adapted from [Xing et al. 2013].
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Boundary conditions - The diffusion process is simulated within the FOV of the simulated geometry,
thus establishing a bounding box for the distributed particles. A finite bounding box may influence the
simulation result [Fieremans and Lee 2018], as all the particles crossing its edge see their contribution
erased. This effect can be reduced at moderate diffusion times by calculating the impact of particles
exclusively located in the central portion of the phantom as presented in [figure 3.7]. Still, it becomes
essential to consider the impacts of the bounding box for long diffusion times, during which many
particles are likely to cross these boundaries. A First solution, called ”periodic boundary condition,”
used in CAMINO [Matt G. Hall and Daniel C. Alexander 2009], consists of reintroducing the particle
at the opposite edge of the phantom. However, if not appropriately treated while building the phantom,
geometrical discontinuities over the boundary could introduce an additional restricted diffusion effect
corresponding to the box size. Another solution, the ”mirroring boundary condition”, simulates the
diffusion outside the phantom by mirroring the particle position concerning the phantom edge it
crosses. This mirroring method can artificially increase the fiber orientation dispersion of the phantom
[Fieremans and Lee 2018] but can be used on a broader range of phantoms since it does not require
periodicity.

Constant steps - Whereas first simulation frameworks relied on a Gaussian distribution [Lipinski 1990;
Liu et al. 2004] of step lengths, the CAMINO simulator [Matt G. Hall and Daniel C. Alexander 2009]
first proposed to switch to a constant step length. This choice corresponds to a numerical optimization
mathematically justified by the statistical properties of random walks. Indeed, although a Gaussian
distribution of velocities occurs in a real physical system, generating steps with Gaussian-distributed
lengths is unnecessary to approximate them as the central limit theorem ensures that values obtained
summing repeatedly over random values drawn from any distribution will converge to a Gaussian
distribution. Using variable step size methods also exists [Grebenkov 2011], but these methods are
harder to implement; in particular, they lead to a more complex computation of particle phase shifts,
which prevents the code from being optimally parallelized.

Convergence and parameter choice for Monte-Carlo Simulation - Although the overall implementation
of Monte Carlo simulations remained the same over the years, the realism of the simulated diffusion
process increased jointly with the computational capacities. The quality of an MC diffusion simulation
is correlated to its ability to catch the infinitesimal behavior of the water Brownian motion, which
requires establishing a trade-off between computational resources and the degree of realism. The two
parameters driving this balance are the particle count (Np) and the step length (r).

If we visualize the phantom as a playground that needs to be investigated, the more particles there
are, the greater the chance to cross all the space and capture the real diffusion signal decay. The same
consideration stands for step length, which is linked to the time step [equation (3.9)]; the shorter it is,
the closer the particles will envelop microstructural details from substrate elements. The remaining
question is: ”What’s an optimal value for ”Np” and ”r”? The answer will depend on the dimension of
the microstructural elements and the targeted field of view. Based on studies from [Matt G. Hall and
Daniel C. Alexander 2009; Xing et al. 2013] we can introduce two mathematical concepts helping to
answer the question:

• Complexity (U) - The complexity U of a MC simulation is described as
U = NpNIterationCount. With NIterationCount, the number of updates during the simulation. In
[Matt G. Hall and Daniel C. Alexander 2009], the duration of the simulation was 0.1s with a
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time step dt = 0.1
T E . In a simulation applied on simple geometries (packed cylinder), different

values of U were considered to draw the graph of mean square error (MSE) of the signal obtained
with simulation compared with its analytical ground truth [figure 3.14]. The minimum MSE
observed on the graph corresponds to the optimal setting, although no dependence on the field
of view or cell sizes was considered in this study.

• Relative Step Length (RSL) - It measures the ratio between the step length and the dimension
of the structuring element. In Xing’s paper [Xing et al. 2013], the geometry was composed of
cylinders, with RSL representing 1%, 3%, 8%, 16%, 22%, or 28% of the radius. For different
values of Np, the signal acquired was compared with the corresponding analytical solutions
(known for cylinder geometries), and a standard deviation and bias graph was established [figure
3.15]. The minimal value indicates the optimal value for the couple RSL/Np. Xing’s work focuses
on the simple geometry of a cylinder; thus, there is no mention of the field of view size, which
certainly also plays a role in the case of complex geometries.

The choice for Np and step length r depends on the type of geometry. In their cookbook, [Fieremans
and Lee 2018] wrote this recommendation:

”A diffusion simulation without including enough particles effectively lowers the SNR
(signal-to-noise ratio)[...] A clear cut-off for a minimally required number of particles
has not been proposed so far, but a rule of thumb often used is that 105 − 106 particles
diffusing from random initial positions generally provide reliable simulation results ([Balls
and L. R. Frank 2009; Matt G. Hall and Daniel C. Alexander 2009; Landman et al. 2010;
Yeh et al. 2013].[...]thereby keeping in mind that simulations with a higher degree of
freedom [...] require more particles to obtain similar precision.”

They also mentioned the key role of the step size:

”The step size is limited by the smallest microstructural length scales in a numerical
phantom, [...] empirically, the minimally required step size was set to be smaller than
a tenth of the cylinder radius [Fieremans, Novikov, et al. 2010]. In general, numerical
simulations’ accuracy and computational speed have to balance each other out. To better
approach the continuous diffusion process, simulations with a small step size are required
for accurate results, which is computationally expensive for a given diffusion time.”

Look up tables (LUT) - Computational efficiency is crucial to creating a sizeable simulated phantom
dictionary. One strategy regarding the Monte-Carlo algorithm is to use look-up table structures [Yeh
et al. 2013; Matt G Hall, G. Nedjati-Gilani, and Daniel C Alexander 2017; Ginsburger et al. 2019]
consisting of subdividing the global voxel field of view with a periodic 3D grid to reduce the number of
collision checks of each particle to the neighboring membranes, thus reducing the overall computational
time of Monte-Carlo simulations.
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i

Figure 3.14: Bias of synthetic diffusion-weighted signals. Worse-case, mean squared differences between
signals from the Monte-Carlo and analytical models are shown for sets of 30 simulations with different pairs of
Np and T for several values of complexity U=NT. Results for U = 106, U = 107, and U = 108 for sets of

hexagonally packed cylinders. Adapted from [Matt G. Hall and Daniel C. Alexander 2009].
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Figure 3.15: Effects of relative step-length on convergences and biases of synthesized signals. From top to
bottom, the figures correspond to EBR, NBR, and ERL, respectively. Different relative step lengths (RSL in
legends) are denoted by different logos. Black lines with filled blocks (1%), red lines with filled circles (3%),
blue lines with upward-facing triangles (8%), green lines with downward-facing triangles (16%), purple lines
with leftward-facing triangles (22%), and brown lines with rightward-facing triangles (28%) represent the
results at different RSL for the four methods respectively. Increasing values of RSL increases the bias; an

increasing number of particle counts decreases the standard deviation and the bias. Adapted from [Xing et al.
2013].
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Permeability - Different simulators propose to take into consideration membrane permeability or ab-
sorption, resulting in more complex implementations requiring, in the case of permeability, to adjust
the step size to maintain the particle-density balance between intra and extra-axonal compartments
[Fieremans, Novikov, et al. 2010]. Water exchange due to the permeability of cell membranes can
be modeled by a transmission probability for the particle to pass through the membrane [Fieremans,
Novikov, et al. 2010; Landman et al. 2010; Matt G. Hall and Daniel C. Alexander 2009]. The exchange
can happen on the whole membrane surface or at selected areas such as the Ranvier nodes for axons
[M. Nilsson et al. 2010].

Alternative to Monte-Carlo simulations - Most diffusion process simulations rely on Monte-Carlo
simulations; nevertheless, an alternative has been proposed relying on solutions to the Bloch-Torrey
equation [Henry C Torrey 1956] in the case of SPG hypothesis [Neuman 1974]. From a computational
point of view, this solution implies a discretization of the spatial domain with a Cartesian grid [J.-R.
Li, Calhoun, et al. 2013] or finite elements [Van Nguyen et al. 2014; Fang et al. 2023]. The accuracy of
the signal depends on the sharpness of the discretization, which means, in the case of finite elements,
the need for a high resolution of meshes. The Spin Doctor simulator proposes synthesizing the dMRI
footprint according to the Boch-Torrey formalism.

3.4.3 Synthesis of the dMRI signal

In the case of constant step sizes, the diffusion-weighted MR signal is computed by integrating the
phase changes of each step along each particle’s trajectory over time. The total phase shift Φ from a
particle is given by the following equation:

Φ =
N

∑

j=0

Φj =
N

∑

j=0

γ < G(tj , r(tj) > t, (3.10)

with< . > the scalar product between vectors, N the total number of steps, Φj the particle phase
shift at step j, G(tj) the magnetic field gradient at step j, r(tj) the particle position at step j, t the
time step, and γ the gyromagnetic ratio. Summing Φ of all particles gives access to the global phase
shift. In the absence of shift, the overall diffusion signal attenuation for M particles at the echo time
is given for each gradient direction by:

S(TE)

S0
=

1

M

i=1
∑

M

cos(Φi) (3.11)

dMRI sequence schemes - As the computed phase shift depends on the diffusion sensitization scheme, a
good simulator must propose a flexible framework to design various dMRI sequences. Accordingly, the
Mcell simulator proposed to model PGSE sequences with tunable b-values and gradient orientations,
whereas DMS simulator first added OGSE sequences. In addition, the DMS simulator distributes
the direction of the diffusion gradient randomly from a pre-allocated look-up table, which includes
uniform and symmetric orientations obtained using an electrostatic repulsion algorithm [Dubois et
al. 2006]. To enable a comparison with hardware dMRI settings, synthesized dMRI sequences must
keep reasonable values for b-values despite the fact they can artificially depict infinitely high gradient
values or infinitely small δ values. To mimic the limitations of actual dMRI hardware, the MEDUSA
simulation framework proposes a syntax that enables the design of any new diffusion MRI sequence
[Ginsburger et al. 2019].
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3.4.4 Computational model

The main application of dMRI simulators is the creation of large dictionaries of simulated tissues and
of their dMRI signatures representing all possible microstructural configurations. Such dictionaries
allow the training of machine-learning algorithms in a supervised manner to decode the estimation of
the underlying microstructural parameters from a diffusion signal.

Nilson [M. Nilsson et al. 2010] proposed a database of 60.000 samples using Monte-Carlo simulations
performed in a three-dimensional geometry mimicking myelinated axons with Ranvier nodes following
a two-compartment model. The intra-axonal exchange time was investigated for exchange occurring
exclusively at the nodes of Ranvier using 105 simulated particles. A nearest-neighbor algorithm was
employed to estimate microstructure parameters. They concluded that water exchange in the white
matter could be an essential biomarker in neurological disease and brain maturation. Another model
was proposed by [Nedjati-Gilani 2017], extracting orientationally invariant features derived from the
diffusion-weighted signals using a robust random-forest regressor based on reported 12.500 generated
unique white matter substrates.

These two studies were successful proofs-of-concepts that need to be further developed, for instance,
to enhance the realism of the geometrical representation of the tissues, or the precision of the machine
learning algorithm, taking benefit from the development of high-performance computing and deep
learning tools over the last decades.

In 2023 [Fang et al. 2023] implemented a neuron mesh generator that simulated grey matter sub-
tracts based on digital neuronal reconstructions archived in (neuromorpho. org) [Ascoli, Donohue,
and Halavi 2007]. They mention 1213 neuron meshes that can be randomly combined with a free
diffusion compartment to mimic an artificial grey matter sample. Therefore The generation of 1.45
million artificial brain samples is reported. The model relies on the Bloch-Torrey equation solution for
simulating diffusion signal decay over time. A Multilayer perceptron (MLP) was trained to estimate
the volume fraction corresponding to the soma, neurites, and extracellular compartment. The trained
neural network predictions are compared with the SANDI analytical model [Palombo 2020] from in
silico neurons originating from the homemade dataset first, then from in vivo data sets stemming from
the MGH ”Connectome Diffusion Microstructure Dataset” (CDMD) [Tian et al. 2022]. Nevertheless,
the imaging data required for the MLP described in this paper are not feasible for most practitioners.
Computationally, the authors mention a 10-minutes simulation, for 1,000 simulated dMRI signals and
a neuron mesh of around 80.000 vertices [figure 3.12.

To conclude on computational models, the lack of substrate can deter good machine-learning training.
Thus, the sampling scheme can be further improved using smart sampling techniques where each new
sample is optimally chosen to fine-tune the regression results of the learning algorithm [Pedergnana,
García, et al. 2016].

3.5 Conclusion

During this chapter, we presented analytical and computational models aiming to characterize
the microstructure of brain tissues. We insisted on the technical aspect of a simulation framework that
should rely on a bio-realistic phantom generator, an efficient simulator of the diffusion process, and
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an accurate simulator of the dMRI signal attenuation. This thesis relies on the MEDUSA simulator
[K. Ginsburger et al. 2018], developed at Neurospin, whose functioning will be developed through the
next chapter.
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Figure 4.1: Geometry voxel sample from a MEDUSA simulation of 3 fiber populations oriented
respectively along X, Y, and Z axis. A view from the top corner of the voxel is presented (left), and
views from the voxel’s top and bottom are presented (right). The FOV is [50µm, 50µm, 50µm], the
axonal diameter from three populations is 0.8µm and the volume fraction from each fiber population

is 20%.
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The Microstructure Environment Designer with Unified Sphere Atoms simulator (MEDUSA) [Gins-
burger et al. 2019] is a three-component simulator built on some of the achievements of DMS

[Yeh et al. 2013; K. Ginsburger et al. 2018] enriched with a new approach to generate the cellular
compartmental geometries within the simulated sample through notably the use of a decomposition of
individual cells into simple glyphs called ”atoms”. As a full dMRI simulator, MEDUSA’s first compo-
nent relies on the simulation of a microscopic, bio-realistic virtual tissue geometry composed of white
or grey matter cells. The second component replicates the Brownian motion of water, thanks to the
use of a Monte-Carlo process [Fieremans and Lee 2018], and finally, the third component consists in
the simulation of a dMRI sequence recording the attenuation of the diffusion signal from the move-
ment of water within the geometry. MEDUSA shines through its computational efficiency brought by
the use of atoms. Therefore MEDUSA is calibrated to be launched in large simulation campaigns to
generate large dictionaries of tissue samples associated with their diffusion MRI footprints, essential
to create computational models of the brain microstructure.

In the course of this chapter, we will first present the overall pioneering contribution from Kevin
Ginsburger [Ginsburger et al. 2019] for MEDUSA, then describe MEDUSA’s functioning by showing
how it successfully depicts one diffusion simulation within a microscopic digital phantom of brain
tissue. Furthermore, we will present the pipeline, allowing us to launch large simulation campaigns,
and finally, several results supporting the validity of MEDUSA simulations will be highlighted.
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Geometry

dMRI Sequence

Diffusion process

MEDUSA: a three-component simulator

MEDUSA sample geometry with it’s 
diffusion orientation distribution function 

(ODF)

Figure 4.2: MEDUSA overall structure. MEDUSA is a three-in-one simulator, embedding the
simulation of cellular geometry, diffusion process and dMRI signal decay. The sample presented

illustrates these simulation modalities by presenting both the geometry and the ODF stemming from it.

4.1 The MEDUSA simulator

We will first list the milestones reached during the previous work [Ginsburger et al. 2019] on
MEDUSA, then introduce the object-oriented design covering its code to finish with the presentation
in detail of how the simulator executes a simulation through its three components: the geometry, the
diffusion process, and the dMRI signal attenuation [figure 4.2].

4.1.1 State of the art

As mentioned in the introduction, MEDUSA was first presented by Ginsburger in 2019 [Ginsburger
et al. 2019]. The article’s pioneering work focuses on the design of brain tissue microarchitecture
geometries: axonal fibers, astrocytes, and oligodendrocytes for white matter and neuronal somas for
grey matter. The geometry procedure relies on the use of ”atoms” which are elementary construction
objects used as an alternative to meshes. Atom functioning and implementation will be developed
later. The simulator proposes to create different complex cell populations crossing each other with
additional details, including Ranvier nodes, tortuosities, and beadings.

The article focuses only on the geometry but MEDUSA actually implements the full simulation pipeline
till the generation of the dMRI signal attenuation [K. Ginsburger 2019]. It’s reported that for a typical
white matter phantom characterized by an axonal packing density of 0.7, a mean diameter of 1.0µm,
105 random walkers, a diffusion time of 200ms and a time step of 1.0µs, the sample takes 10 min
and 27 sec to be generated with a GPU implementation using a Nvidia® DGX station. Different
sequences were implemented, such as PGSE or OGSE. Moreover, a machine learning algorithm based
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on a random forest approach was developed to quantify the impact on the signal of an axon damaged
by beading. The database used to feed the random forest was composed of 4902 samples. The current
thesis aims to improve the design of the MEDUSA framework and to exploit its software design to
establish a novel computational model of brain white matter microstructure.

4.1.2 Object oriented software design

Object-oriented programming (OOP) is a programming paradigm based on the concept of objects
containing data in the form of fields (known as attributes or properties), and code in procedures
(often methods). Objects can share features through interfaces thanks to polymorphism. Compared
to its 2019 version, one of MEDUSA’s new features relies on combining the rigor of OOP, through the
C++ language in which it is written, to the anatomical reality of the elements that make up biological
white matter tissue. In other words, the exact anatomical classification that allows the biologist to
discriminate cells within a tissue is used by the simulator to differentiate objects. Curiously, the
polymorphism concept is originally known to be inspired by biology [Oracle 2021].

Design patterns are the different writing schemes allowing the code to be articulated in a way to pro-
mote re-usability, flexibility, and readability, and OOP benefits from a good choice of design patterns
[Gamma et al. 1999]. In the case of MEDUSA, the code benefits from a high degree of readability
because the logic behind OOP is directly inspired by the reality it simulates. Moreover, OOP is opti-
mized to work as quickly as possible and thus meets our big data creation requirements. Finally, OPP
facilitates the evolution of the code over time. Indeed, MEDUSA can be improved both in terms of
realism and computational optimization, thanks to its careful design that makes the slightest update
(creating a new method or class) independent from the existing code and thus not disturb its initial
paradigm. In practice, the addition of a new population of cells to the geometry can be simply done
by implementing a new class inherited from parent classes.

4.1.3 Geometry simulator

In this section, we will describe the MEDUSA geometry simulator, being the first component of the
entire simulation.

4.1.3.1 A generative procedure

The geometry component of MEDUSA has been designed to answer a simple question: what is a
virtual tissue mimicking a microscopic brain sample? A virtual tissue is described as a voxel with
a specific field of view (FOV) in which we can observe an assembly of different cell populations,
filling the space each with a particular volume fraction. The cells can have different natures and are
represented based on a decomposition using the packing of atoms. Virtual tissue, cell populations,
cells, and atoms correspond all to individual C++ classes representing concepts. Their interface is an
aggregation, which means that virtual tissue is made of cell populations themselves made of individual
cells themselves made of atoms as shown in [figure 4.3].
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Figure 4.3: The elementary classes composing MEDUSA geometry framework.

We will describe the different geometry classes by starting from the smallest element: the atom.

4.1.3.2 Atom: a fundamental generative brick

In the previous chapter, we discussed the limitation of using meshes to represent the cell membranes
(see 3.4.1.1) as they significantly impacted the computational efficiency of the simulation and required
large amounts of memory for storage. MEDUSA proposes an alternative approach using elementary
glyphs called atoms to represent cells. Atoms composing a cell are strongly overlapping each other to
provide smooth representation. The MEDUSA simulator today implements two different atom classes:

• Spherical atoms - The name MEDUSA (Microstructure Environment Designer with Unified
Sphere Atoms) comes originally from the exclusive use of such atoms [Ginsburger et al. 2019].
Their benefit is to be computationally optimal as each sphere only requires storing four floats
in memory: one for its radius and three for its center [figure 4.4]. Interaction between sphere
atoms within the 3D space is simple as it only requires comparing distances separating atoms
with their respective radius.

• Ellipsoid atoms - Nothing prevents us from trying other atoms’ shapes; indeed, in some scenarios,
different geometry could help increase the realism of the sample or further compress the cell
representation, which improves the computational efficiency of MEDUSA. With that in mind,
a new MEDUSA approach was developed to replace sphere atoms with ellipsoid atoms. These
new atoms are more complex and computationally heavy to implement as they require a matrix
formalism with ten independent parameters to store [figure 4.4]. It’s believed that they could
help represent axon cylinders more efficiently than spheres. For more details about ellipsoid
atoms, the reader should consider looking at my co-worker Anas Bachiri’s thesis work, as he
mainly developed the new ellipsoid interface within the MEDUSA simulator.
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Medusa Geometry

SphereAtom

- radius< float >

- center< vector< float > >Atom

+ getType:uint8_t

+getParameterCount:int32_t

+setCenter:void

+getCenter:vector<float>

+ getVolume

+isRayCollidingWithAtom:bool

+ belongTo:bool

+ getAtomLutVoxel:void

+distanceToMembrane:void

EllipsoidAtom

- radius1< float >

- radius2< float >

- radius3< float >

- axis1< vector< float > >

- axis2< vector< float > >

- axis3< vector< float > >

- center< vector< float >

Inheritance

Figure 4.4: UML structure of the Atom classes within MEDUSA. Sphere Atom is characterized by four
independent parameters whereas ellipsoid is characterized by 10.

In the following sections, all MEDUSA simulations presented will rely on the use of sphere atoms as
optimization regarding ellipsoid atoms is not part of this PhD work.

4.1.3.3 Cells

Overlapped atoms contribute to the creation of larger structures: cells. Here is an exhaustive list of
cells that can be created using the MEDUSA simulator:

• Axonal fibers - These cells are composed of axons wrapped with a myelin sheath. They mostly
intervene in the structure of white matter tissue. As a first approximation, they can be compared
to simple cylinders.

• Soma - They represent the cell body and, in particular, the neuron cell bodies. We depict them
as a sphere (using a unique sphere atom). They populate gray matter tissues.

• Glial cells - MEDUSA proposes two types of glial cells: oligodendrocytes and astrocytes. They
both share common structuring properties such as processes and soma, thus both inheriting
from a parent class ”Glial cell” [figure 4.5].

• Dendrites - Dendrites are extensions of the cell body of neurons represented as cylinders in
MEDUSA.

• Neurons - They were developed in the frame of Anas Bachiri’s thesis and stem from real neurons
scanned using electron microscopy.
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Each of these cells inherits from a virtual class called ”Cell”, thus sharing some common attributes
as can be seen in [figure 4.5]. The different design stages of each cell will be further developed in the
next section dedicated to ”cell populations,” as the generation of one cell is called at the level of the
constructor of the concrete population’s classes.

4.1.3.4 Cell populations

A cell population gathers cells of the same type, sharing the same generative distributions of parameters
describing their geometries. The creation of a cell population relies on three consecutive steps:

• Initialization - The cells are created one after the other until the target volume fraction of the
population within the simulated sample is reached. The cells are randomly created indepen-
dently of each other, ignoring their respective positions and thus putatively overlapping each
other.

• Remove overlap - The initial overlap of distinct cells is unwanted as it is not a realistic repre-
sentation of the microstructure. The remove-overlap process consists of separating the atoms of
the overlapped cells from each other by using repulsion forces. Within the MEDUSA geometry
simulation, it’s the most computationally expensive step; it will be described in detail later.

• Adding details - The cells are initially created with fewer microstructural details than their final
representations which allows it to speed up the remove overlapping procedure. Once all cell
populations see their overlaps removed, the representations of cells are improved to add further
details, increasing their realism.

Let’s now describe the inherited population classed implementing the various cell species:

Fiber population - When generated, fibers are first assimilated to parallel straight cylinders whose
origins are controlled by a Watson distribution [Fisher, Lewis, and Embleton 1993] using a method
consisting in spreading initialization points across a sphere, wrapping the FOV of the simulation [figure
4.6]. Like seeds for a tree, each of these points constitutes the center of the first atomic sphere of the
fiber. All cylinders are then decomposed into overlapping sphere atoms and sphere atoms outside of
the surrounding sphere are removed from the final FOV [figure 4.6a].

The direction in which the cylinder grows follows a mean orientation specific to the population and
is provided as an input generative parameter. To give a more organic look to the fiber population,
a random drift angle from the mean orientation is applied to each fiber iteratively until reaching a
desired global angular dispersion within the fiber population [figure 4.6b].

The fiber relies on two inner and outer cylinders representing the axon and the myelin sheath respec-
tively. If we consider the inner axonal sheath has a diameter ”d” and the outer myelinated has a
diameter ”D”, then the two diameters are linked by the g-ratio parameter described as follows:

g − ratio =
d

D
. (4.1)

To be more bio-realistic, the fiber’s cylindrical shape can further be improved by proposing more mi-
crostructural details such as tortuosity, beading, or Ranvier nodes. MEDUSA allows to choose whether
the target sample contains each of these details or not; thus, as these details are not computationally
expensive to compute, the choice to add them or not to a simulation can be driven by the will to
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Figure 4.5: UML structure of classes related to cells. Oligodendrocyte and astrocyte cell classes are
merged in the same block for readability but actually represent separated classes.
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Figure 4.6: Waston distribution pattern. a) Only one fiber is created, resulting from the successive
overlapping of sphere atoms from one side of the Watson distribution sphere to the other. b) Multiple
fibers are drawn; they are oriented in the direction of a mean orientation vector, but drift is allowed

between fibers, creating a global angular dispersion around the main orientation.
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enhance or discard their contribution to the final MRI signal attenuation. [Figure 4.10] depicts the
results of various simulations with different levels of detail for targeted fiber populations.

To be more specific, tortuosity is implemented iteratively as a local drift of spherical atoms belonging to
fibers. For each iteration, random atoms from a random fiber are selected to apply a local deformation
characterized by a magnitude and a waveform. The wavelength parameter drives the number of atoms
the transformation concerns, whereas the deformation magnitude parameter drives its displacement.
Wavelength and magnitude both tune a Gaussian deformation [figure 4.7]. The orientation of this
deformation is randomly chosen in the plane perpendicular to the fiber at the position of the selected
atom.

Figure 4.7: Illustration of the induction of tortuosity within axonal fibers. A Gaussian deformation is
applied at a randomly selected sphere in a random direction orthogonal to the main fiber orientation.

Adapted from [Ginsburger et al. 2019].

Inducing axonal beading consists of the application of a local variation of the axon diameters. This
feature depends on three parameters: the beading magnitude, the beading width, and the inter-
beading length, respectively, driving the radius increasing amplitude, the number of neighboring atoms
concerned by the beading, and the space between two consecutive beading patterns in the same fiber.
Beading is known to be found in damaged axons [Budde and J. A. Frank 2010] following an ischemic
stroke, but it is also found in healthy white matter tissues to a lesser extent, as demonstrated in several
studies [Lee, Yaros, et al. 2018; Abdollahzadeh et al. 2017].

Finally, Ranvier nodes can be computed by locally using the same radius value for sphere atoms
corresponding to both fiber’s outer and inner sheath. Ranvier nodes are distributed at regular intervals
corresponding to the inter-nodal length, computed using the maximal conduction relationship 1.1, as
illustrated in [figure 4.9].
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Figure 4.8: Illustration of the induction of beading within axonal fibers. Fiber spheres are swollen
according to a sinusoidal or bell-shaped function to locally increase axonal diameter. Adapted from

[Ginsburger et al. 2019].

Figure 4.9: Creation of a myelin sheath and Ranvier nodes on axonal fibers. The illustration presents
the diameters d and D from the inner and the outer sheath (myelin) of the axons. The Ranvier node is
purposely exaggerated in the illustration for visualization purposes.Adapted from [K. Ginsburger

2019].
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Soma population - Various types of neurons exist (pyramidal, monopolar, multipolar) that are char-
acterized by various shapes. In its original release, the MEDUSA framework proposed a very simple
model to represent neurons with sphere atoms whose radii are distributed according to a Gamma dis-
tribution. [Figure 4.11] illustrates the laminar structure of the cortex that can be simulated with
MEDUSA using for each sample mimicking a specific cortex layer 2 tangential and radial fiber-
populations and a soma population. More realistic neuron representations have been proposed in
the literature [Marco Palombo 2019; Lee, Fieremans, and Novikov 2021] that all rely on mesh sur-
faces extracted from electron microscopy data sets. My partner, Anas Bachiri, is currently developing
a novel neuron population model in MEDUSA that is based on the use of real neuron models also
stemming from electron microscopy scans performed on human brain samples but decomposed into a
sphere or ellipsoid atoms to get compressed representations.

Figure 4.11: Simplified grey matter phantoms with spherical neural cell soma in dark blue, tangential
and radial axons in green and red, and isotropically oriented dendrites in yellow. The constructed
phantoms are shown beside a Nissl stain of the visual cortex from [Schmolesky 2016]. Six different
samples with distinct soma densities and diameter distributions are aligned vertically to show the

possibility of mimicking cortical layers. Adapted from [K. Ginsburger 2019].

Glial cell populations - Astrocytes and oligodendrocytes are star-shaped cells sharing a similar struc-
ture. They are composed of a soma (whose radius is drawn by a Gamma distribution) from which
emerge processes giving them their star shape. While processes of the oligodendrocytes don’t branch,
those of the astrocytes can branch with various degrees of branching.
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Figure 4.12: Illustration of the astrocyte creation procedure. On top is the initial node distribution
over a sphere centered on the root. Below are 2D and 3D representations of astrocytes for balancing
factors equal to 0.3, 0.6, and 0.9. The 3D astrocytes are created with MEDUSA. Adapted from

[K. Ginsburger 2019]

To generate glial cells, the Medusa framework relies on the construction of a minimum spanning tree
(MST), considering the soma center as the central node of the MST and randomly seeding points
within a sphere centered on the soma and of radius corresponding to the extension of the glial cell.
[Figure ??] illustrates the MST obtained for various branching factors (bf) as well as the evolution
of the process diameter progressively decreasing with the geodesic distance from the soma center.
Oligodendrocytes are simply obtained with a branching factor set to bf = 1 as they do not depict any
branching. The extension of the oligodendrocyte and astrocyte processes is limited by a threshold
value. In the case of astrocytes, this threshold limits the radius of the MST point cloud, whereas, for
oligodendrocytes, it limits the neighboring axon search radius.

Another difference concerns the number of processes known to be lower in oligodendrocytes than in
astrocytes. Last, processes of the oligodendrocytes extend to the myelinated axons and surround
their membrane to create a myelin sheath. Furthermore, one oligodendrocyte can be connected to
neural axons. Therefore, a specific process has to be added to the generative process to create those
connections to fiber populations. This process relies on a dedicated look-up table, which allows the
efficient identification of each extremity of a process to the neighboring fibers to be attached to.

MEDUSA simulator proposes different features to increase the realism of glial cells. As for axons,
tortuosity can also be added to the glial cells processes, and in addition, the radii of processes decrease
when the distance d to the soma increases, according to the following equation:

r = r0 e
−α d

R , (4.2)
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Figure 4.13: Illustration of the oligodendrocyte creation procedure. Each oligodendrocyte searches
for outer axonal membrane spheres within a search area and connects to one of these. The connection

algorithm employs a lookup table to make the search procedure efficient. Adapted from
[K. Ginsburger 2019].

where α is an adjustable parameter (typically equal to 2), r the modified radius of the process, r0

the original radius of the process, R the total radius of the astrocyte (process plus soma) and d the
distance to the soma. This feature has been added regarding the observations over astrocytes made
in [N. Oberheim et al. 2009].

To conclude on the generation of cell population geometries, we can state that the tremendous amount
of details proposed by MEDUSA allows us to generate bio-realistic samples of white and grey matter.
Nevertheless, one should remember that offering a high level of geometry details may prove futile.
Indeed, any simulated geometry is generated to perform a specific dMRI simulation strongly depending
on the hardware limitations of the simulated MRI instrument and some details represented within the
voxel might be too small to be detected due to these hardware limitations. In other words, it can be
useless to increase the level of realism to some details that will not be encoded in the dMRI signal
attenuation. A good example is Ranvier nodes, which are approximately 2µm long and spaced 1mm
apart (depending on the axon diameter, see 1.1), and thus constitute only 0.2 % of the axon surface
[Giuliodori and DiCarlo 2004]. One could question the actual impact of Ranvier nodes on the final
signal decay.

The UML structure dedicated to the population of cells in MEDUSA is presented in [figure 4.14].

4.1.3.5 Overlapped atom

Atom oversampling ratio - MEDUSA relies on overlapped atoms to form its cells. The atom oversam-
pling ratio (AOR) parameter allows the tune of the distance d separating two atoms. In the case of
spherical atoms of radius RSatom, the AOR is defined by the following equation:

d =
AOR

RSatom
. (4.3)
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Figure 4.14: UML structure of classes related to the population of cells. Astrocytes and
oligodendrocytes population classes are merged for readability but are actually separated.
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a) 2D diagram of overlapped sphere atoms within a fiber

b)   3D MEDUSA simulation of overlapped sphere 
atoms within a fiber

Figure 4.15: Overlapping spheres atoms from the same cell, 2D (a) and 3D (b) illustration. The fiber
on the left depicts an oversampling ratio of 1; the fiber on the right depicts an oversampling ratio of

20. Figure visualized with the anatomist toolbox

Increasing the AOR enhances the quality of the simulation by reducing inter-spherical space. Nev-
ertheless, it increases the number of atoms necessary to create a cell, thus the overall computation
time. Different values of the AOR case are presented in [figure 4.15] where we can notice the gaps
between sphere atoms for fibers with a small value of AOR. These gaps can truncate the volume
fraction obtained for each fiber as it is computed as the volume of the enveloping cylinder.

In [figure 4.16], we can observe three geometries of fiber populations with an AOR fixed to 1, 10, and
20; the wire-framed representation of the simulated substrates on top supports the idea that poorly
overlapped atoms create a vacuum for the diffusion process, thus preventing a good simulation of the
dMRI signal.

Remove overlap process - When different populations of cells are generated, they fill the FOV to reach
a specific volume fraction, taking care not to exceed a total volume fraction of 1.0. However, each cell
fills the voxel independently, ignoring the space filled by other cells; thus, the cells overlap. This leads
to a not suitable geometric environment and must be tackled by using a remove overlapalgorithm. This
algorithm takes benefits from the object-oriented design of the simulator and relies on the definition
of lookup tables (LUT) to speed up the process. The overlap from atoms belonging to the same cell
must be preserved, as it makes the cell a whole; only the overlap from different cells must be tackled.
Thanks to OOP, each atom is associated with a cell ID, thus allowing the discrimination of atoms
from different cells. Two sphere atoms are considered overlapped if the distance between their center
is smaller than the sum of their radius. The following equation quantifies this overlap:

O(s1, s2) = r1 + r2 − d(c1, c2), (4.4)

where s1/s2, r1/r2 and d(c1, c2) respectively represent the sphere atoms, their radius and the distance
between their center. When two sphere atoms from different cells are intersecting, a repulsion force is
applied to remove the overlap:

F (s1, s2) =
O(s1, s2)

2

c1 − c2

|c1 − c2| (4.5)



This force is applied to every overlapped atom from different cells over multiple iterations. If the
repulsion of one atom makes it leave the field of view, the repulsion is canceled. A total repulsion
force norm (TRF) over all atoms for each iteration of the remove overlap procedure is computed. The
repulsion of one atom might make it intersect with another atom, thus increasing the overall global
overlap and TRF within the voxel. This phenomenon can be observed in TRF plots [figure 4.16]:
at the beginning, TRF is decreasing fast, proof that very close overlapped cells are separating as
expected, then the function reaches a minimum which can be explained by the fact that the atoms
within the scene found a balance position, making hard for them to be moved without intersecting
other elements.

In the case of densely populated geometries (high volume fraction), it’s hard to remove the unwanted
atom overlapping. Therefore, two mechanisms prevent the algorithm from endlessly applying repulsion
forces over atoms: first, if a maximum iteration count is reached, the procedure stops. Second, a
minimum total repulsion force threshold is set during the simulation; when the repulsion function
reaches it, the remove overlap procedure stops. This threshold is calculated as a percentage of the
initial total repulsion force. Nevertheless, as previously mentioned, the function decreases overall, but
every repulsion can lead to more overlap, thus increasing the TRF locally. This causes the function
to decrease in an undulatory way [figure 4.16]; therefore, when the minimum threshold is reached,
the following steps might hide an increase in the TRF. A repulsion force moving average window is
applied during the iteration to avoid this issue, ensuring that the minimum threshold has been reached
continuously. The management of the TRF presented here is an improvement from [Ginsburger et al.
2019].

The remove overlap procedure is the most computationally expensive step of MEDUSA geometry
simulation. Therefore, its code was parallelized using the Kokkos toolkit, which will be detailed in
the next chapter. In addition, a Cartesian grid look-up table (LUT) of atoms was constructed to
efficiently identify each atom and its neighboring atom [figure 4.17]. The resolution of the LUT grid
must be chosen adequately, taking into account the cell dimensions, the local density, and the available
memory to reach a compromise (see the validation section 4.3.2.3). In the latest version of MEDUSA,
this grid resolution is directly linked with the dimension of the cells composing the geometric sample.

During this thesis, the implementation of the LUT was improved. Before, the total memory space
allocated for LUT (LUTmemory) was implemented such as :

LUTmemory = Nsub−voxels . MaxAtomPerLutV oxel . 4floats, (4.6)

where Nsub−voxels is the total of sub-voxels and MaxAtomPerLutVoxel is the maximum of atoms found
among sub-voxels. The ”4 floats” correspond to the memory required to store a sphere atom (one for
its radius and three for its center). This approach had the advantage of statically fixing an overall
memory for the LUT but was overestimating the number of atoms in the LUT, thus increasing the
computation times. The new approach considers the exact amount of atoms from each sub-voxel by
dynamically considering the atom count offset brought by each sub-voxel. This feature helped to
reduce the computation time overall.

The remove overlap procedure has a beneficial side effect regarding the realism of the geometry. Indeed,
the repulsion of atoms from each other creates an additional tortuosity effect on the axonal fiber or
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glial cell processes, thus bringing a more bio-realistic effect to the geometry.
Sphere atom interpolation - During this thesis, an additional feature called ”smoothing” has been
implemented for MEDUSA. After applying the remove overlap procedure, some cells see their original
shape disturbed, creating, in some cases, gaps between consecutive atoms from the same cell. The
interpolation algorithm fills these gaps as the space between atoms is completed with atoms following
the atom oversampling ratio parameter. This step contributes in enhancing the realism of the geometry
as the gap within the cell might bring errors during the diffusion process simulation, with particles
crossing those gaps.

After detailing the MEDUSA geometry simulator, let’s see how virtual tissue samples can be used to
simulate the water diffusion process.

4.1.4 Diffusion process simulator

To simulate the Brownian motion of water, MEDUSA relies on a Monte-Carlo approach randomly
distributing and moving particles within MEDUSA simulated geometries. The particles can be dis-
tributed within the geometry in three different ways: only in the intracellular space, only in the
extracellular space, and everywhere (both intra- and extracellular space) [figure 4.18].

a)

c)

b)

Figure 4.18: MEDUSA samples of geometries associated with distributed particles cloud. a) The
particles are distributed all over the FOV. b) The particles are only distributed in the extracellular

space. c) The particles are only distributed in the intracellular space.

The MEDUSA diffusion process simulator takes into consideration the permeability of membranes.
During a collision, the particle has a probability of crossing the membrane according to a permeabil-
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ity ratio that can be tuned for every population cell. If the permeability is set to 0.0, the cell is
impermeable, whereas if it is set to 1.0, the cell becomes inexistent in terms of diffusion.

On the one hand, particles are associated with a specific ID corresponding to the compartment in
which they are located. On the other hand, each atom has its own ID as well as a couple of labels
corresponding to the cell and population to which it belongs (the extracellular compartment has its
own identification index). With such a double particle/atom identification system, it’s possible to
track the path of particle trajectories during the Monte-Carlo simulation.

Once initialized, particles move iteratively with a constant step length in a randomly drawn direc-
tion until the echo time is reached. As introduced in the previous chapter 3.4.2, the choice for a
constant step length is not exact regarding the physical diffusion phenomenon, but it remains a valu-
able approximation supported by the law of averages. At each step, a particle can face two distinct
scenarios:

• In the first scenario, the particle is located in the extracellular space.

– If the step yields a situation where the particle remains in the extracellular compartment,
the particle step is accepted.

– If the step yields a situation where the particle moves to the intracellular compartment,
a collision with a membrane occurs, depending on the membrane permeability. If the
permeability test allows it, the particle penetrates the membrane. Otherwise, the particle
collides with the membrane.

• In the second scenario, the particle is initially located in the intracellular space.

– If the step yields a situation where the particle remains in the same atom, the step is
accepted.

– If the step yields a situation where the particle moves to another atom belonging to the
same cell, the step is accepted.

– If the step yields a situation where the particle moves to the extracellular space, the particle
undergoes a permeability test. If it’s positive, the particle penetrates the membrane.
Otherwise, the particle collides with the membrane.

– If the step yields a situation where the particle moves to another atom belonging to another
cell, the particle undergoes two successive permeability tests corresponding to the crossed
membrane. Depending on the results, the particle collides with the first membrane, the
second membrane, or none of them.

The MEDUSA diffusion simulator proposes two types of membrane collision: equal step length random
leap (ERL) and elastic bouncing reflection (EBR), both introduced in the previous chapter (see 3.4.2).
The use of atoms helps to track particles during the Monte-Carlo simulation and participate in the
computational efficiency of MEDUSA. However, it involves one approximation: MEDUSA cells are
composed of overlapped atoms. Thus, the particle may leave the cell and re-enter it as it moves
through the gap created by the overlapped atoms, knowing that this gap size directly correlates with
the AOR [figure 4.15]. Nevertheless, with a correct AOR value, this approximation has a minimal
impact because the number of particles facing such a situation is considered to be negligible.
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During Monte-Carlo simulations, only the last position of a particle is kept in memory, to avoid
memory overload during the process. However, if the user wants to save particle trajectories, there
still is a possibility to specify before simulating a percentage of particle trajectories to save, as shown
in [figure 4.19]. Monte-Carlo diffusion simulation can involve large numbers of particles that could still
lead to memory overload; to prevent this risk it’s possible to split the simulation into several sessions,
each session being responsible for the simulation of the pseudo-random trajectories of a subset of the
total particle set.

Figure 4.19: Particle trajectories simulated using the MEDUSA diffusion process simulator. The
simulation contains 200 000 particles, moving all over the FOV, during an experiment longing 130

000µs with a time step of 10µs.

As the remove overlap procedure from the geometry simulation, the diffusion process benefits from
a parallelized code based on Kokkos implementation and LUT. The LUT dedicated to diffusion was
improved in the same way as the one dedicated to geometry, thus improving the diffusion simulation
performances compared with the previous version of MEDUSA. An UML diagram of the MEDUSA
diffusion simulator code is provided in the appendix of this thesis for more details concerning its
Kokkos implementation.

In the next section, we will focus on the use of MEDUSA diffusion simulations of the dMRI signal
attenuation corresponding to various dMRI sequence schemes.

4.1.5 DMRI sequences and simulator of the dMRI signal attenuation

The diffusion-weighted MRI signal attenuation is synthesized by computing the phase shift from every
particle for each time step (see chapter 3 3.4.3) induced by the presence in the MRI sequence of
diffusion pulses used specifically to sensitize the MRI signal to the diffusion process. Different schemes
of MRI sequences exist, such as PGSE and OGSE. It is a major interest for a dMRI simulator to
be able to address any of these sequences as for a given simulated geometry and diffusion process,

105



4.1. The MEDUSA simulator

one would like to simulate the dMRI signal attenuation for various MRI hardware and for various
dMRI sequences. These observations have pushed us to propose a generic design for dMRI sequences,
inspired by the previous DMS development done in the team [Yeh et al. 2013] to be able to develop
any sequence scheme generically.

Within MEDUSA, sequences, and their common features are built by the generic class MRI Sequence;
these features include parameters such as echo time, gradient orientations/magnitudes, and methods
such as phase shift and b-value computation. Magnitudes and orientations can be filled manually,
nevertheless, an automatic approach is recommended, considering that a large number of different
gradient orientations need to be specified during a dMRI acquisition. Therefore, taking inspiration
from DMS [Yeh et al. 2013], MEDUSA proposes to automatically select the direction of diffusion
gradient by randomly choosing it from a pre-allocated lookup table, which included uniform and
symmetric orientations obtained using an electrostatic repulsion algorithm [Dubois et al. 2006].

To imitate the limitations of real MRI hardware, a slew rate is applied to sequences, which limits the
gradient magnitude shift quickness. The existence of the slew rate implies gradients to be shaped as
trapezoids rather than rectangles in the case of PGSE or trapezoid OGSE.

Inheriting from MRI Sequence class, PGSE Sequence and OGSE Sequence MEDUSA classes propose
to describe PGSE and OGSE dMRI sequences. PGSE are built by assembling two trapezoids of length
δ, of respective amplitude G and -G and separated by a time ∆, as depicted in [figure 4.20]. Due
to their oscillating shape, OGSE can be built using a sine/cosine function or trapezoidal sine/cosine
function [figure 4.20]. ∆ value is still necessary to specify for OGSE to separate the first pulse gradient
from the second; nevertheless, the δ value is replaced by the gradient period count, giving access to
the frequency of the OGSE.

The expression for bValue b = γG2δ2 (∆ − δ
3) (see chapter 2 ??) is prohibited as it only applies in

the case of perfectly rectangular shaped gradient, thus as its not our case, bValues are computed by
following its more general integral expression derived from the Bloch-Torrey equations [J. Xu, Does,
and Gore 2009; Henry C Torrey 1956].

The MEDUSA class MRI Sequence Pool allows us to acquire several sequences with different b-values
and orientations during the Monte-Carlo simulation. Each gradient contribution to the phase shift is
computed and stored in a specific gradient vector before the diffusion process. During the diffusion
process, every particle’s trajectories are computed with the gradient vector to update the global phase
shift. Each b-value from each sequence allows a multiple diffusion contrast characterization. The
gradient vector’s size impacts the simulation’s computational efficiency as it needs to integrate all
particle’s phase shifts for each step; thus, we observe an increase in simulation time for sequences with
a high amount of orientations.

106



Chapter 4. Microstructure Environment Designer with Unified Sphere Atoms simulator

N
or

m
al

iz
ed

 g
ra

di
en

t 
m

ag
ni

tu
de

N
or

m
al

iz
ed

 g
ra

di
en

t 
m

ag
ni

tu
de

N
or

m
al

iz
ed

 g
ra

di
en

t 
m

ag
ni

tu
de

N
or

m
al

iz
ed

 g
ra

di
en

t 
m

ag
ni

tu
de

time (µs) time (µs)

time (µs) time (µs)

a) PGSE sequence b) OGSE sequence, 
trapezoid-sine waveform 

c) OGSE sequence, sine 
waveform 

c) OGSE sequence, cosine 
waveform 

slew 
rate

Figure 4.20: Exemples of dMRI sequences simulated with MEDUSA. a) PGSE sequence, b) OGSE
sequence with trapezoid-sine waveform, c) OGSE sequence with sine waveform, and d) OGSE

sequence with cosine waveform.

An UML diagram is provided in the appendix of this thesis for more details concerning the implemen-
tation of dMRI sequences classes within MEDUSA.

4.1.6 Conclusion

MEDUSA is an all-in-one simulator beneficiating from code optimization due to the massive use of
OOP and the parallelization of the remove overlap procedure and diffusion process. The code from
the MEDUSA simulator is open source and available on framagit.org [FRAMAGITMEDUSA 2024].
In the next section, we will introduce the implementation formalism surrounding the input parameters
of a MEDUSA simulation.

4.2 Driving large simulation campaigns

MEDUSA aims to be an efficient and user-friendly simulator with a simple input formalism.
However, the simulation parameters are numerous and diverse as we roughly count 26 parameters
for a fiber population, 28 for an astrocyte population, 27 for an oligodendrocyte population, 9 for
a diffusion process, and 9 for each implemented dMRI sequence, which gives an overview of the
complexity of the simulator. For a single all-in-one MEDUSA simulation, 3 configuration files need to
be provided:

• A geometry JSON file tuning the generative geometry model.

• A diffusion process JSON file tuning the Monte-Carlo simulation.
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• A Mri sequence JSON file tuning the set of dMRI sequences.

The Python JSON format has been chosen for these configurations because of their simple structures,
allowing a hierarchical description of the parameters with Python dictionaries. MEDUSA is embedded
in the Ginkgo software toolbox, which offers the possibility to launch the simulator from the command
line or an inherited Gingko Python module.

4.2.1 Simulation input dictionaries

In the following sections, the JSON inputs related to the simulation of geometry, diffusion, and dMRI
sequences are introduced.

4.2.1.1 Sructure of the geometry input dictionnary

Within the JSON dictionary dedicated to geometry, some information concerning the whole sample
parametrization is placed beforehand as follows:

Geometry_Dictionary =
{

"apply_add_details": 1, # Boolean indicating if details are integrated
# to the cell's geometry

"apply_atom_regularization": 1, # Boolean for interpolation procedure to
# fill gaps with further atoms

"apply_remove_overlaps": 1, # Boolean indicating if the remove overlap
# procedure is integrated into the simulation

"field_of_view": [-10.0, # [ -x, +x, -y, +y, -z, +z ] dimensions of
-10.0, # the field of view
-10.0,
+10.0,
+10.0,
+10.0],

"grid_resolution": 0.25, # The resolution of the look-up table grid
# associated with removing overlap procedure

"maximum_atom_count": 5000000, # The maximum number of atoms carried by the simulation
"maximum_force_norm": 0.25, # The maximum force threshold applied to

# atoms during the remove overlap procedure
"minimum_repulsion_force_attenuation_percentage": 10.0, # Threshold after which the

# remove overlap procedure stops
"repulsion_force_moving_average_window_size": 10,
"repulsion_force_stddev_percentage_threshold": 1.0,
"atom_overlap_solver_maximum_iteration_count": 500, # Number of iteration after which

# the remove overlap procedure stops
"populations": # Dictionnary listing all populations within the simulation
{

"fiber-population -01":
{

[ ... ]
},
"fiber-population -02":
{

[ ... ]
},
"astrocyte -population -01":
{

[ ... ]

108



Chapter 4. Microstructure Environment Designer with Unified Sphere Atoms simulator

}
}

}

Each cell population is described in individual sub-dictionaries. The example of a fiber population
JSON dictionary is presented as follows:

"fiber-population":
{

"type": "fiber-population", # Label of the population, if it's unknown, an error occurs
"parameters":
{

"atom_oversampling_ratio": 10.0,
"global_angular_dispersion_in_degrees": 5.0,
"has_beading": 0,
"has_tortuosity": 1,
"has_myelin_sheath": 1,
"mean_orientation": [ 0.0, 0.0, 1.0 ], # [x, y, z] coordinates of fiber

# population mean orientation
"axon": # Dictionary listing the axon parameters from the fiber population
{

"beading": # Dictionary listing the parameters describing beading
{

[ ... ]
},
"diameter_distribution": # Dictionary listing the parameters

# describing axon diameter distribution
{

[ ... ]
},
"tortuosity": # Dictionary listing the parameters describing tortuosity
{

[ ... ]
}

},
"myelin_sheath": # Dictionary listing the myelin sheath

# parameters from the fiber population
{

"g_ratio_distribution":
{

[ ... ]
},
"has_ranvier_nodes": 1, # Boolean indicating if Ranvier nodes are integrated

# into the fiber geometry
"internodal_length_to_node_width_distribution":
{

[ ... ]
}

},
"volume_fraction": 0.5 # Volume fraction from the fiber population,

# the total volume fraction cant exceed 1.0
}

The same formalism is applied to astrocytes, oligodendrocytes, dendrites, or soma populations such
that the parameters defined are adapted to the geometry of each cell.

4.2.1.2 Structure of the diffusion input dictionary

The structure of the JSON dictionary dedicated to the diffusion process parametrization is presented
as follows:
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Diffusion_Dictionary =
{

"particle_initialization": "everywhere", # Choice among intracellular,
# extracellular and everywhere

"particle_to_membrane_interaction_type" : "equal-step-length-random-leap",
# Elastic bouncing reflection exists as well

"session_count": 4, # Number of sessions dividing the total
# particle computed during the simulation

"particle_diffusivity_in_um2_per_us" : 3e-3, # For water at 37 degrees Celsius
"particle_count": 1000,
"grid_resolution_in_um" : ( 1.0, 1.0, 1.0 ), # Grid resolution from lookup

# table dedicated to Monte-Carlo simulation
"time_step_in_us": 10.0,
"total_duration_in_us": 130000.0, # Diffusion time
"particle_backup_percentage": 10.0 # Percentage of particle trajectories

# saved for visualization purposes
}

4.2.1.3 Structure of the dMRI sequence dictionary

The structure of the JSON dictionary dedicated to dMRI sequences is presented as follows:
dMRI_Sequence_Dictionary =
{

"sequence -pgse-delta12 -DELTA43 -b0200" :
{

"type": "pgse", # PGSE sequence type
"parameters" :
{

"echo_time_in_ms": 75.0,
"time_offset_to_diffusion_module_in_ms": 9.85,
"little_delta_in_ms": 12.0,
"big_delta_in_ms": 43.3,
"maximum_gradient_slew_rate_in_tesla_per_m_per_s": 200,
"gradient_time_resolution_in_us": 10.0,
"gradient_magnitudes" : # In mT/m

(
( 22.9 ) # All gradients are set with the same magnitude

),
"gradient_orientations" :

(
200 # Orientations are randomly selected from a pre-built orientation table

),
"noise_standard_deviation" : 0.0 # Signal attenuation corruption

}
},
"sequence -ogse-f80-b0300" :
{

"type": "ogse", # OGSE sequence type
"parameters" :
{

"echo_time_in_ms": 128.0,
"waveform_type" : "trapezoid -sine",
"time_offset_to_diffusion_module_in_ms": 10.0,
"period_in_ms": 12.50,
"period_count": 4,
"big_delta_in_ms": 58.0,
"maximum_gradient_slew_rate_in_tesla_per_m_per_s": 200,
"gradient_time_resolution_in_us": 10.0,
"gradient_magnitudes" :

(
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( 59.0 )
),

"gradient_orientations" :
(

200
),

"noise_standard_deviation": 0.0
}

}
}

Only one PGSE and one OGSE sequence were presented in this JSON, nevertheless, a larger number
of sequences can be individually defined, such as the sequences specific to the ICORTEX protocol
presented in the section 4.3.2.1, with a total of 15 sequences.

4.2.1.4 Distribution of the parameters

MEDUSA via its JSON, offers distinct ways to implement the value of a parameter during the simu-
lation:

• The value is constant.

• The value follows a distribution function with a specific mean and standard deviation. Usually,
a Gamma distribution function is applied in MEDUSA.

The following pseudo-code illustrates the implementation of the axon diameter following a Gamma
distribution function, and the volume fraction fixed to a constant value:

"fiber_population_01":
{

"type": "fiber-population",
"parameters":
{

"axon":
{

"diameter_distribution":
{

"type": "gamma-distribution", # The parameter value follows a Gamma distribution
"parameters":
{

"mean": 0.7, # Mean of the Gamma distribution
"stddev": 0.07, # Standard deviation of the Gamma distribution
"multiplicator": 1e3, # Scaling factor
"upper_boundary": 5.0 # Upper threshold of the distribution

}
}

[ ... ]

"volume_fraction": 0.5, # The parameter value is fixed
}

}
}

The difference between the two approaches lies in the fact that, unlike constant parameters, the
parameters defined by a distribution function have values different for each use of the same JSON input,
evolving along a band of definition in line with the mean and standard deviation of the distribution
function.
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4.2.2 Meta simulation dictionary configuration

The JSON formalism presented until now allows the generation of a single complete MEDUSA simu-
lation. Considering the objective of creating a large database of samples, it is not sufficient. Indeed,
repeatedly launching a simulation described by the same three JSONs will result in generating look-
alike samples, both in terms of geometry and diffusion. Moreover, we want to avoid manually writing
thousands of different JSON files. Thus, it’s necessary to distribute the parameters within the dictio-
naries to offer a broad spectrum of representation. To do this, a ”Meta-JSON” configuration file was
implemented to meet this requirement. This file combines the three original JSONs and is written
slightly differently from the classic JSONs. Each parameter can now be characterized by two specific
keywords, which are: ”Random” or ”Linked”. The ”Random” keyword specifies that the concerned
parameter should be randomly distributed according to a uniform distribution. The ”Linked” keyword
specifies that the parameter depends on another parameter value, which can be modified according to
a specific pattern. The Meta JSON configuration file also embeds a ”simulation target count” param-
eter. This parameter indicates the number of samples to generate during the simulation campaign.
Unlike the MEDUSA simulator, the Meta JSON script is written in Python and is based mainly on
recursivity. The following pseudo-code presents the overall structure of the Meta-JSON dictionary:
"one_fiber_campaign_simulation": # Name of the simulation campaign, helpful for file/folder

# management when simulation campaign results are written
{

"target_sample_count": 10, # Total number of samples synthesized by the simulation campaign
"geometry": # Sub-dictionary dedicated to the geometry
{

[ ... ]
},
"diffusion_process": # Sub-dictionary dedicated to the diffusion process
{

[ ... ]
},
"dMRI_sequences": # Sub-dictionary dedicated to the dMRI sequences
{

[ ... ]
}

}

The following pseudo-code shows an example of how keywords ”Random” and ”Linked” can be imple-
mented within a Meta-JSON, taking as an example the axon diameter parameter:
"one_fiber_campaign_simulation":
{

"target_sample_count": 10,
"geometry":
{

[ ... ]
"populations":
{

"fiber_population_01":
{

"type": "fiber-population",
"parameters":
{

"atom_oversampling_ratio": 10.0,
"axon":
{

"diameter_distribution":
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{
"type": "gamma-distribution",
"parameters":
{

"mean":
{

"random": # Key-word specific to Meta-JSON, the distribution
# of the parameter follows a uniform function

{
"lower_value": 0.5, # Upper threshold of the distribution
"upper_value": 3.0 # Lower threshold of the distribution

}
},

"stddev":
{

"linked": # Key-word specific to Meta_JSON, the value of the parameter
# follow the value of another parameter from the JSON

{
"type": "scaling_function", # Specify the type of relation

# linking the two parameters, here
# it's a scaling function

"parameters":
{

"coefficient": 0.1, # The scaling ratio
"linked_paths": # Indicate the position of the

# linked parameter within the Meta-Json
[[

"one_fiber_campaign_simulation", # Successive embedded
"geometry", # dictionary key-word
"populations",
"fiber_population_01",
"parameters",
"axon",
"diameter_distribution",
"parameters",
"mean"

]]
}

}
},
"multiplicator": 1e3,
"upper_boundary": 5.0

}
},

[ ... ]
}

}
}

The benefit of distributing the mean and standard deviation values from a distribution function is to
allow the sampling of different variation ranges corresponding to various areas of brain tissues. For
example, we do not expect the same variation of axon diameters in the corpus callosum as in the
cortico-spinal tracts, which contain larger motor-related fibers.

In conclusion, the use of dictionaries as inputs to launch MEDUSA simulations is simplifying the
clarity of parameter management. The MEDUSA input structure is presented in [figure 4.21]. In
the future, this input formalism could be the foundation stone of a MEDUSA web service, where the
input parameters of these dictionaries will be modified by users via a GUI interface, thus improving
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MEDUSA’s user-friendliness.

Meta-Json
GEOMETRY

Json

DIFFUSION
Json

dMRI
Json

Dictionary analyzer
MEDUSA 

command
MEDUSA
simulator

MEDUSA data

Figure 4.21: Overview of the MEDUSA input pipeline.

4.3 Validation

Until now, we have detailed the concepts used to create the MEDUSA framework and described
the formalism surrounding the efficient way to generate simulation campaigns with their associated
configuration files. But we still have to answer a question: How reliable are MEDUSA simulations
regarding ground-truth?

For the simulation of brain samples, the tuning of the generative microstructural parameters of the
MEDUSA simulator relies on the in vivo and ex vivo observations made on brain tissue architectures
(see chapter 1 1.2.3). A closer investigation of numerous brain matter histology slices would be
necessary to draw an accurate distribution table of actual microstructural characteristics of brain
matter. Nevertheless, to illustrate the complexity of such a task, we can mention the brain map project
from Google, freely available online, including 50,000 cells, all rendered in three dimensions, forming
130 million synaptic connections [Shapson-Coe et al. 2021]. To achieve such a colossal breakthrough,
a tiny piece of brain from a 45-year-old woman was cut into slices of 30µm thickness and observed
with an electron microscope for an unprecedented data set amounting to 1.4 petabytes. Such work
requires colossal human and computational resources. Thus, within the framework of this thesis, we
will consider the observations on brain microstructure presented in chapter one to be sufficient. Our
confidence in MEDUSA geometry settings is supported by the fact that microstructural parameters
are assigned using a Gamma distribution; thus, if the distribution bandwidth is large enough, a large
proportion of bio-realistic samples should be synthesized during a large-scale simulation campaign.

As for the diffusion process, it remains fundamental to check that the dMRI signal attenuations
resulting from the MEDUSA experiments match the physical ground truth. The simulator attempts to
combine realism and computational efficiency using parsimonious cell representation based on atoms,
which reduces calculation times, but according to the state of the art, only MEDUSA offers this
method. Thus, it is legitimate that the question arises whether the signal resulting from the MEDUSA
simulator is coherent and realistic. We also want to quantify the impact of the simulation parameters
on the accuracy of the signal in order to identify an acceptable compromise between realism and
computational complexity.
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Free diffusion particles 
trajectories

Normalized dMRI signal as a function 
of b-value, free diffusion scenario

Figure 4.22: On the left: the plot from the simulated normalized signal concerning b-values matching
the analytical computed signal for free diffusion water. On the right: MEDUSA plot of 2% of the 106

distributed particle trajectories after a diffusion time of 70.2ms and a time step of 100µs. Courtesy of
Anas Bachiri.

Consequently, two different validation steps will be presented. The first validation is inspired by the
standards set by the previous simulators (see chapter 3 3) and will consist of obtaining the dMRI signal
attenuation resulting from a generic spherical geometry for which the analytical diffusion equations
have been solved. The second validation is an approach specific to this thesis and relies on diffusion
MRI signal attenuation stemming from more complex geometries, thus deprived of any analytical
ground-truth.

4.3.1 MEDUSA reliability regarding analytical solutions

Following the recommendations from [Fieremans and Lee 2018], two tests were performed to quantify
the reliability of MEDUSA regarding analytical solutions of the diffusion equation: the simulation of
the dMRI signal attenuation resulting from the case of a free diffusion of water and, the simulation
of dMRI signal attenuations resulting from the case of diffusion in a sphere. These two investigations
were performed by my co-worker Anas Bachiri.

In the case of free diffusion, the dMRI signal attenuation is obtained using a set of PGSE sequences
whose b-values range from 0 to 3000 s.mm−2 and with gradients oriented along a single direction.
A Monte-Carlo simulation of the diffusion process was launched for a distribution of 106 particles
initially located at the same point, for a time step of 100 µs, a diffusion time of 70.2 ms, and a particle
bulk diffusivity of 2.10−3µm2.µs−1. The dMRI signal attenuation S

S0
is plotted as a function of the

b-values and compared with the analytical signal. As depicted in [figure 4.22], the two plots match
exactly, and the straight monotonically decreasing line observed on this log representation assesses
the mono-exponential decay of the dMRI signal attenuation.
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Figure 4.23: On the top, simulated dMRI normalized signal according to the quantity qa in the case of
a sphere, courtesy of Anas Bachiri. On the bottom, the analytical dMRI signal stems from particles

trapped in a spherical medium for several values of ∆, adapted from [P. Callaghan 1995].

For the second experiment, we considered the diffusion within a sphere bounded by an impermeable
membrane. Since the analytical form of the dMRI signal attenuation is known from [P. Callaghan
1995], we can compare it with the simulated dMRI normalized signal according to the dimensionless
quantity qa, with a being the radius of the sphere and q being the wave vector q norm. In practice,
we performed a MEDUSA Monte-Carlo simulation with 106 particles within a sphere of radius a =
10µm during a diffusion time of 500ms and with a time step of 35.5µs. Sequences were all PGSE with
gradients oriented toward the same direction, with a ∆ value of 498 ms and a δ value of 1.5 ms. The
membrane interaction considered is an elastic bouncing reflection (EBR). The quantity qa evolves only
through increasing G norm ranging from 0.5 to 3.4e−3T.m−1. We compared the analytical equation
proposed in [P. Callaghan 1995] with the simulated results [figure 4.23] and observed that both curves
depict multiple pics, with the first one obtained for qa = 0.736, which corresponds to the expected
theoretical value.

4.3.2 MEDUSA validation in the case of complex geometries

Diffusion simulations cannot be validated by comparison with analytic solutions of the diffusion equa-
tion in the case of complex geometries such as the one encountered in bio-realistic simulated white
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matter with numerous fiber populations crossing each other. We will examine the influence of crucial
simulation parameters by benchmarking the signal attenuation stemming from different simulation
settings with the signal attenuation obtained from a reference simulation purposely configured with
a high level of detail, thus being considered to include a high level of realism regarding the ground
truth diffusion phenomenon. Computational times following each simulation setting will also be inves-
tigated to reach an optimal tuning of the simulation parameters in order to satisfy both computational
requirements and simulation realism.

4.3.2.1 Relative step length and complexity

We first investigate the influence of the time step ∆s and step length ∆l. They are both related by
Einstein’s equation:

∆l =
√

6 ·D · ∆s, (4.7)

where D is the bulk diffusivity, set to 3.10−3 m2s−1 in the case of water at 36.6◦C [Olaf 2002], which
represents the average temperature of the human body. The step length value must be adapted to the
size of the microstructural elements we want to probe within the simulated geometry, such as small
elements require small step lengths [Xing et al. 2013]. From the equation 4.8, we associate ∆l with a
percentage of the dimension of the smallest simulated element of scene x, and thus define a Relative
Step Length ratio (RSL) that can be defined as such:

RSL =
x

∆ l
(4.8)

The study of the RSL alone is not sufficient. We can establish a link between the quality of a
Monte-Carlo simulation and the capacity of the particles filling the field of view to explore the whole
geometrical space during a given diffusion time. Thus, we should consider in addition the number of
particles Np as well. The notion of complexity developed in [Matt G. Hall and Daniel C. Alexander
2009] establishes a link between Np and ∆s with the the following equation:

U = Np.Ni, (4.9)

with U the complexity and Ni the number of iterations during the Monte-Carlo process such that:

Ni =
TE

∆ s
, (4.10)

with TE, the echo time. Finally we can re-write (4.9) according to (4.10), (4.8) and (4.7) to link the
notion of complexity and RSL:

U = Np.
6.TE.D

(RSL.∆ l)2
(4.11)

The previous equation is the union of notions both discussed in [Xing et al. 2013] and [Matt G. Hall
and Daniel C. Alexander 2009]. The impact of Np and ∆l on a Monte-Carlo simulation is illustrated
in [figure 4.24], where we can observe that a good diffusion simulation is achievable only if both
parameters are adequately tuned.

The question to answer now is the question of the optimum number of particles and time step value.
How can we assess the quality of the results, given that the analytical diffusion equations do not
apply directly to our geometries? The higher the number of particles and the smaller the time step,
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a) b) c)

Figure 4.24: 2d illustrations of Monte-Carlo simulations. a) The step length is small enough, but too
few particles are distributed, leading to insufficient space coverage. b) The large number of particles
allowed to fill the space, but the large step length reduces the chance to probe the finest details of the

simulation correctly. c) Both Np and sl are correctly set, leading to an optimal Monte-Carlo
simulation.

the more realistic the simulator is because the simulations mimic the infinitesimal nature of the water
particle diffusion phenomenon but at the price of a loss of computational efficiency and a lot of memory
consumption. As suggested in the introduction, we need to set up a reference simulation with a high
number of particles and a small time step. Following the recommendations from [Xing et al. 2013],
we chose an RSL of 3%, a particle count Np=100000, and an echo time of 130ms. The average size
of the elements within simulated geometries has been set around 1µm. Consequently, an RSL of 3%
yields a time step of 3.10−2µs and a number of iterations of 4.3.106. According to [Rafael-Patino et al.
2020], such settings provide an adequate reference simulation, as we can observe on the relative mean
absolute error (RMAE) heat map stemming from simulated dMRI signal attenuations compared to
analytical solutions in the case of cylindrical geometries [figure 4.25].

The dimension of the smallest element varies according to the simulation as it is randomly distributed.
To figure out which population of cells contains the smallest element, the MEDUSA simulator uses the
potential offered by Meta-JSON files formalism by linking the value of the step length to the diameter
of the smallest distributed sphere atoms. The same approach is used to explore the impact of Np,
whose value is linked to RSL, following equation 4.11.

After simulating the reference sample, the focus was put on the simulation of other samples with the
time steps tuned via the RSL criterion and the number of particles adjusted via the U complexity
parameter. A comparative study was carried out from all the samples and the reference signal was
computed for the mean absolute error value from the signals attenuation computed for all the simulated
dMRI sequences. The sequences in question are presented in [table 4.1] and correspond to the sequences
used for the simulation campaign presented in the next chapter. Following recommendations of [Xing
et al. 2013] and [Matt G. Hall and Daniel C. Alexander 2009], we sampled the RSL values at 5%,
8%, 12%, 20%, 35%, 50%, 65%, 90%, and the complexity U to 106, 107, 108 and 109 (respectively
called complexity 6, complexity 7, complexity 8, complexity 9). To reduce the potential bias of our
experiment, we applied the test to 8 different simulated geometries whose characteristics are specified
in [table 4.2] and correspond to simulations of three fibers populations.
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Mean RMAE error
Setting diffusion 
parameters for the 
MEDUSA reference 
simulation

Figure 4.25: Heat map of the mean RMAE from simulated dMRI signals compared to analytical
solutions for all the combinations between the number of steps and the number of samples. The

number of samples here means the number of particles. Each cell corresponds to the mean RMAE of
50 repeated simulations. The purple square shows our equivalent configuration for the referential
MEDUSA simulation. It should be noted that the actual step iteration count for the referential

simulation is 4.3.106, but the heat map stops at the value 2104. Adapted from [Rafael-Patino et al.
2020].

Big delta
(in ms)

Little delta
(in ms)

Gradient
magnitude B-value

Gradient
orientation
count

Sequence 1 31.72 20.24 6.41 30 6
Sequence 2 31.72 20.24 9.07 60 6
Sequence 3 31.72 20.24 11.11 90 6
Sequence 4 31.72 20.24 12.84 120 6
Sequence 5 31.72 20.24 14.36 150 6
Sequence 6 31.72 20.24 15.74 180 6
Sequence 7 31.72 20.24 17.00 210 6
Sequence 8 31.72 20.24 18.18 240 6
Sequence 9 31.72 20.24 19.29 270 6
Sequence 10 31.72 20.24 20.34 300 6
Sequence 11 31.72 20.24 27.58 550 30
Sequence 12 31.72 20.24 31.15 700 30
Sequence 13 31.72 20.24 37.25 1000 30
Sequence 14 31.72 20.24 48.70 1700 60
Sequence 15 31.72 20.24 67.07 3200 60

Table 4.1: DMRI sequences settings for the simulation campaign, adapted from the settings from
iCORTEX protocol.
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Field of view
(μm³)

Diameter
mean*
1

(μm)

Diameter
mean*
2

(μm)

Diameter
mean*
3

(μm)

Volume
fraction

1

Volume
fraction

2

Volume
fraction

3

Geometry
01 50.6 1.26 2.38 2.53 0.16 0.44 0.25

Geometry
02 34.8 1.74 0.81 1.71 0.22 0.17 0.33

Geometry
03 40.2 2.00 0.90 2.01 0.18 0.17 0.33

Geometry
04 57.6 2.88 1.57 1.90 0.18 0.21 0.39

Geometry
05 48.6 2.29 2.02 2.43 0.17 0.29 0.38

Geometry
06 42.2 2.1 1.92 1.03 0.30 0.25 0.20

Geometry
07 57.8 1.99 1.33 2.89 0.23 0.28 0.30

Geometry
08 47.8 2.39 1.30 1.51 0.18 0.15 0.18

Table 4.2: Main features of the geometries simulated during the test campaigns. The geometries
correspond to the simulation of three fiber populations, accordingly, the diameter and volume
fractions 1, 2, and 3 are respectively attributed to fiber populations number 1, 2, and 3.

* More precisely, it’s the mean value from the Gamma distribution function associated with the
distribution of axon diameters.

Two different campaigns were performed, with two membrane interaction settings: first with an equal
step length random leap (ERL) and second with an elastic bouncing reflection (EBR). The referential
simulation considered in the case of ERL and EBR is different. For ERL, the RSL value is, as
mentioned earlier, 3%; for EBR, we take 5%. This was due to RAM limitations encountered during
the tests. The results from the campaign are presented in [figure 4.26, 4.27 and 4.29].
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Figure 4.26: Evolution of the mean absolute error of the diffusion signal from simulations compared
with a reference simulation as a function of the relative step length (RSL) for U = 106, U = 107, U =

108 and U = 109, case of a random leap membrane interaction.
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Figure 4.27: Evolution of the computational elapsed time as a function of the relative step length (RSL)
for U = 106, U = 107, U = 108 and U = 109, case of random leap membrane interaction.
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Figure 4.28: Evolution of the mean absolute error of the diffusion signal from simulations compared
with a reference simulation as a function of the relative step length (RSL) for U = 106, U = 107, U =

108 and U = 109, case of an elastic bouncing membrane interaction.

123



4.3. Validation

C
om

pu
ta

tio
na

l  
Ti

m
e 

in
 m

in

C
om

pu
ta

tio
na

l  
Ti

m
e 

in
 m

in

C
om

pu
ta

tio
na

l  
Ti

m
e 

in
 m

in

C
om

pu
ta

tio
na

l  
Ti

m
e 

in
 m

in

Relative step length Relative step length

Relative step length Relative step length

COMPLEXITY 6 COMPLEXITY 7

COMPLEXITY 8 COMPLEXITY 9

Figure 4.29: Evolution of the computational elapsed time as a function of the relative step length (RSL)
for U = 106, U = 107, U = 108 and U = 109, case of elastic bouncing membrane interaction.

124



Chapter 4. Microstructure Environment Designer with Unified Sphere Atoms simulator

As expected, higher geometry complexities yield an increase in computational times. Because the
complexity is linked with the RSL, the number of particles evolves according to RSL. A smaller value
of RSL implies a large number of particles; reciprocally, a larger value of RSL implies a smaller number
of particles. The presented results only depict the mean absolute error, but an experiment has also
been performed to calculate the mean square error which leads to the same trend.

Concerning the precision requirement, since typical dMRI acquisitions are corrupted by the presence of
noise, we set our quality threshold to 5%. In this case, and for the random leap membrane interaction
type, the ideal simulation was found for an RSL value of around 15% and a complexity level of 8. The
complexity 9 is undesirable as the quality increase is too slim compared to the loss of computational
efficacy.

Particular attention must be paid to conclusions concerning campaigns between ERL and EBR particle-
to-membrane interaction models because their reference simulations did not follow the same require-
ments. Thus, the apparent better results from EBR methods must be taken with caution. Nevertheless,
globally, we observe that ERL is more sensitive to a lack of particles than EBR, which is coherent
with the warnings from the writers of [Xing et al. 2013], mentioning the necessity of a high Np in the
case of ERL. EBR seems to be impacted by high RSL values; we can suppose that this is due to the
bouncing on membranes that are more frequent in the case of high step lengths with an overall signal
impairment.

The number of parameters explored during the simulations implies that the conclusions drawn can have
various reasons. For instance, we could have discussed the impact of the field of view on the simulated
signal attenuation. Moreover, the number of different geometries proposed here is insufficient to draw
accurate general conclusions; thus, a more extensive simulation testing campaign regarding RSL and
complexity would be worth being conducted to support the current observations. Nevertheless, the
observations relayed here constitute a reasonable basis for an adequate tuning of future simulation
campaigns.

4.3.2.2 Impact of the field of view ratio

Both [Xing et al. 2013] and [Matt G. Hall and Daniel C. Alexander 2009] ignored the role of the FOV
on signal quality because their tests were performed on simple cylindrical geometries, which do not
require large FOV. But in the case of MEDUSA, the question of the FOV is fundamental because
the larger it is, the more information is embedded in the diffusion process. However, an infinite-sized
FOV isn’t necessary to grasp the true nature of the signal, as symmetry patterns are drawn by the
cells composing the simulated geometry. Basically, the particles moving towards the geometry are not
informing on the precise geometry of each composing element; they instead are averaging the pattern
that composes the whole. Knowing this, the FOV from the sample must propose enough repeated
patterns to statistically reveal the microstructure characteristics and must be as small as possible to
limit computational cost, since a large FOV implies more cells and consequently more particles to
explore the space.

The goal here is to find an adequate criterion to tune the FOV satisfying the need for realistic simulation
while keeping computational times acceptable. Thus, the same methodology used for the RSL tests was
applied here, which means comparing different simulation settings with a reference simulation. Both
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ERL and EBR particle-to-membrane interaction models were taken into account. A key difference
compared to the previous testing campaigns was that the time step and the number of particles were
kept fixed. For ERL, the reference simulation was set with RSL = 20% and U = 1010, whereas testing
simulations were set with RSL = 20% and U = 109. Since the EBR model reacquires fewer particles
[Xing et al. 2013], the reference simulation was set to RSL = 20% and U = 109, whereas testing
simulations were set to RSL = 20% and U = 108.

It was decided to create an intermediate parameter called FOV ratio to tune the FOV value. This
parameter links the FOV value to the dimensions of the microstructural elements composing the
geometry, such as:

FOV = FOVratio ∗ 1

Npop







Npop
∑

P opi∈ΩP op

DSA(Popi)







, (4.12)

where Ωpop represent the population ensemble within the simulation, Npop the total number of pop-
ulations, and DSA(Popi) the mean sphere atom diameter distribution for cell population i. The idea
was to correlate the FOV with the element composing the geometry, as larger microstructural ele-
ments require larger FOV to be correctly observed, whereas small elements require smaller FOVs. The
following FOV ratios have been arbitrarily implemented: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25,
27 and 29. The reference FOV ratio was set to 30. The testing simulation campaign was applied to
the same eight geometries described in [table 4.2]. The results from this testing simulation campaign
are presented in [figure 4.30] based on the study of the mean square error.

If we consider a 5% error acceptable, then a FOV ratio value in the range [10,13] is satisfying for both
ERL and EBR. Nevertheless, the number of particles is fixed for every FOV which can be problematic
as we can expect that larger samples require a larger amount of particles to grasp the microstructure
correctly. Thus, we proposed to launch the same simulation testing campaign but with particle count
correlated to the FOV value, such as:

Np
′

= Np ∗
{

FOVratio

10

}3

, (4.13)

with Np
′ is the particle count fitting the dimensions of the FOV, Np is the particle count applied

in the previous test and corresponding to an RSL of 20% with a complexity of 9 for ERL, and an
RSL of 20% with a complexity of 8 for EBR. Division by a factor of 10 is explained as a FOV ratio
of 10 correspond to an average value such that simulations with an FOV ratio above 10 see their
particle count increase, and reciprocally, simulations with an FOV ratio under 10 see their particle
count decrease.

The grid resolution of the atom LUTs also needs to be optimized. This grid resolution drives the
computational time required to identify the neighbors of an atom. For the geometry, a sphere atom is
enquiring neighboring sphere atoms, whereas, in the case of diffusion, the particles are enquiring the
neighboring sphere atoms. A sphere atom is considered a neighbor if its centroid is located within the
same sub-voxel or within one of the 26 adjacent sub-voxels surrounding the voxel of interest within
the 3D LUT Cartesian grid. Geometry and diffusion processes have their own LUT and, thus, their
own grid resolutions. Knowing this, we can optimize the grid resolution according to the worst-case
scenario.
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Figure 4.30: On the left, the evolution of the mean absolute error of the diffusion signal from
simulations compared with a reference simulation as a function of the field of view ratio, case of ERL
(top) and EBR (bottom). On the right, the evolution of the computational time as a function of the field

of view ratio, case of ERL (top) and EBR (bottom).
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For the geometry, this scenario is met with two sphere atoms with the same maximum radius; the
first atom belongs to the sub-voxel of interest, and its center is on one edge of the sub-voxel. The
second sphere atom is out of the sub-voxel of interest and neighboring sub-voxels. However, because
its center is at the edge, its radius can still reach the first sphere atom [figure 4.31]. To avoid this
situation, we can conclude that the LUT grid resolution must equal the diameter value of the largest
sphere atom of the scene.

Sphere atoms of same 
radius are intersecting

Radius 1 Radius 2

Sphere center is out of the 
neighbouring sub-voxel  but 

close to the edge

Neighbouring sub-voxel Sub-Voxel of interest

Zooming in one sub-voxel, 2D 
point of view

Grid resolution

Figure 4.31: Illustration of the worst-case scenario during a ”Remove overlap” procedure. Two
sphere atoms see their centers located at the edge of neighboring sub-voxels.

For diffusion, the worse scenario is met when a particle located at the edge of the sub-voxel of interest
is colliding with a sphere atom whose center is on the opposite edge of a neighboring sub-voxel [figure
4.32]. We conclude that optimal LUT grid resolution for diffusion equals the particle step length plus
the largest sphere atom radius.
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Zooming in one sub-voxel, 2D 
point of view

Sub-Voxel of interestNeighbouring sub-voxel

Particle is colliding with 
a sphere atom

Radius 

Particle
 Step length

Sphere center is out of the 
neighbouring sub-voxel  but 

close to the edge

Grid resolution

Figure 4.32: Illustration of the worst case scenario during an iteration stem of the Monte-Carlo
procedure. The sphere atom center and the particle are located at two opposite edges of a neighboring

sub-voxel.

After implementing the grid resolution and particle count optimization, we launched again the FOV
testing simulation campaign, which results are shown in [figure 4.33].

At first glance, the results look similar to the first FOV testing campaign observed in [figure 4.30];
however, if we look in detail, there is a tiny difference between both results, supporting the idea that
the change in the number of particles had no significant effect on the quality of the simulated signals.
The computation times are reduced when the FOV ratio is chosen smaller than 10 and increased when
the value is chosen larger than 10.

Both FOV testing simulation campaigns support the idea that FOV has an impact on the signal, as
we can see that the error decreases when increasing the FOV ratio. The computational time presented
corresponds to the simulation’s global time, including the geometry and diffusion process. To measure
the impact of the FOV ratio on computational times more accurately, we need to observe these two
components separately [figure 4.34].
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Figure 4.33: On the left, the Evolution of the mean absolute error of the diffusion signal from
simulations compared with a reference simulation as a function of the field of view ratio, case of ERL
(top) and EBR (bottom). On the right is the evolution of the computational elapsed time as a function
of the field-of-view ratio in the case of EBR and ERL. Implementation of a new way to compute

particle count and LUT grid resolution.
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Figure 4.34: Global computational time compared with geometry computational time, case of ERL
and EBR. To obtain the diffusion simulation time, it’s necessary to deduct the geometry time from the

global time
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We observe that diffusion times are higher than geometry simulation times. As expected, the compu-
tational time for geometry and diffusion increases as the FOV increases.

To our knowledge this is the first study of the impact of the FOV on the dMRI signal, as no mention
of such tests has been reported before. Nevertheless, The relatively small number of geometries used
during the test makes any statistical conclusion tricky. Moreover, it would be worth investigating more
in detail the impact of the b-values with respect to the dimensions of the microstructural elements
since the sensitivity of dMRI depends on it. The current results are mixing signals stemming from
different b-values, which may explain the lack of difference between the first FOV testing simulation
campaign and the second improved one.

4.3.2.3 Impact of the overlap removal process

In this last section, we propose to quantify the impact of the remove overlap procedure on the accuracy
of the dMRI signal attenuation. We want to quantify its impact on the simulated dMRI signal. To
do so, we reproduced a methodology similar to that of previous sections. We consider the signal
attenuation stemming from a reference sample of one fiber population obtained after 500 remove
overlap iterations, and we compare it with samples generated after 0, 20, 50, 100, 200, 300, and 400
iterations. To take into account the role of the b-value, we considered three simulation scenarios: first,
a unique dMRI sequence with a b-value of 200 s/mm2, then a unique sequence with a b-value of 3200
s/mm2 and finally, a simulation gathering 15 different sequences with b-values ranging from 30 to
3200 s/mm2, thus following the imaging protocol established for our future large simulation campaign
(see next chapter). The resulting plots are reported in [figure 4.35]:

As expected, the larger the number of iterations for the remove overlap procedure, the lower the dMRI
signal attenuation MAE. The geometry arising from a lack of iterations within the remove overlap
process remains unplausible, with overlapped cells erasing the microstructural details. Nevertheless,
the information of more ”gross” microstructural characteristics, such as mean orientation, is preserved.
The difference results from the tests with b-value equal to 200 s/mm2 and 3200 s/mm2 support this
statement: the error from b = 3200 is greater than the one equal to 200 because high b-values are more
sensitive to details. The resulting error is an average of both sensitivities for the simulation, gathering
simultaneously high and small b-values. An unexpected result can be observed, before decreasing, the
signal error is slightly increasing before decreasing. We can explain this by the relatively organized
structure of the initial fully overlapped structure, thus providing a coherent signal decay. The first
step of the remove overlap procedure is increasing the disorder of the geometry before reaching an
equilibrium.

132



Chapter 4. Microstructure Environment Designer with Unified Sphere Atoms simulator

M
ea

n 
ab

so
lu

te
 e

rr
or

M
ea

n 
ab

so
lu

te
 e

rr
or

M
ea

n 
ab

so
lu

te
 e

rr
or

Remove overlap iteration count

Remove overlap iteration count

Remove overlap iteration count

Figure 4.35: Evolution of the mean absolute error of simulated dMRI signals compared to a reference
simulation as a function of the remove overlap iteration count, case of an ERL, b-value = 200s/mm2,

b-value = 200s/mm2 and b-value in [30, 3200]s/mm2.
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To conclude this final testing campaign, we can mention that the amount of different samples generated
is less numerous than in the previous testing campaigns. It was performed on a local computer, whereas
the previous campaign needed the use of an HPC facility. Nevertheless, the observations confirm the
sensitivity of the b-value to geometry details and help us quantify the impact of the remove overlap
procedure on the signal.

4.3.3 Conclusion

We provided two arguments to support the use of MEDUSA as a reliable simulator. First, the ana-
lytical results for the diffusion in a sphere geometry confirm that MEDUSA correctly simulates the
diffusion phenomenon in simple geometries. Second, a more empirical approach enabled us to frame
the ranges of variation of the various parameters of the geometry and diffusion according to compu-
tational times and signal quality. Further investigations are worth conducting in the future, such as
questioning the role of geometry details like Ranvier nodes on the dMRI signal or the influence of the
voxel boundary limits on the signal. The final aim of this thesis is to propose a decoding model of
the white matter brain tissue based on the use of a deep learning algorithm trained with simulated
data. Consequently, the ultimate test to validate MEDUSA will also be brought by the validation of
the model.

Now that MEDUSA has been presented and validated, we can confidently set the settings of a realistic
large simulation campaign. The next chapter will describe this simulation campaign in detail.
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Driving a large MEDUSA simulation campaign

Figure 5.1: Joliot-Curie supercomputer. Installed at the end of 2017 at the CEA’s ”Très grand centre
de calcul” (TGCC) in Bruyères-le-Châtel (Essonne), with 22 petaflops/s of power, Joliot-Curie serves
French and European researchers through the GENCI national and PRACE European research

infrastructures. Picture adapted from 2022 Genci’s activity report [GENCI 2024].
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This thesis aims to propose a computational model to decode the white matter microstructure.
This model is based on a machine learning algorithm trained on simulated samples mimicking

the membrane geometry of WM tissue microstructure as well as their respective dMRI signature. To
properly feed the machine learning algorithm, a significant number of samples must be delivered; this
objective is facilitated by the computational efficiency of the MEDUSA simulator, allowing realistic
sample generation within low computation times. From the beginning, the choice was made to run
the simulation campaign on a high-performance computing (HPC) facility as approximately tens of
thousands of samples were targeted.

In the following chapter, we will present the various concerns that governed the simulation campaign,
starting with the choice of the computational architecture and the description of the ”Très Grand
Centre de Calcul” (TGCC), the HPC facility on which our simulations have been performed. We will
then explain in detail the chosen strategy to sample the microstructural parameter space and launch
large simulation campaigns. Finally, the campaign results and the data post-processing pipeline will
be presented at the end of this chapter.
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Chapter 5. Driving a large MEDUSA simulation campaign

5.1 Computational architecture

The computational efficiency of our simulation campaign is crucial to synthesize numerous sam-
ples and thus provide enough material to train the decoding model. Consequently, the following
sections are dedicated to the different questions guiding the choice of an optimized computational
framework for the simulation campaign.

5.1.1 Kokkos framework

As shown previously, a MEDUSA simulation involves different steps, two of them being real compu-
tational bottlenecks: the cell overlap removal and the Monte Carlo method to simulate the diffusion
process of water. The efficiency of these two steps is directly linked to their optimization. Fortunately,
these algorithms can be parallelized and can, therefore, benefit from the use of multicore GPU or
CPU architecture. The parallelization programming language depends on the hardware architecture
on which the code is launched. For instance, an NVIDIA® GPU (Graphics Processing Unit) archi-
tecture involves a CUDA (Compute Unified Device Architecture) coding language [CUDA 2024]. In
contrast, a full multicore CPU (central processing unit) architecture can be parallelized using the
OpenMP [OpenMP 2024] library. The first release of MEDUSA [K. Ginsburger 2019] was designed for
NVIDIA® GPU parallelization and was consequently written in CUDA. The future of HPC seems to
be turning toward all GPU, as demonstrated by the opening in 2019 of the ”Jean Zay” supercomputer
hosted in the IDRISS [IDRISS 2022] HPC facility located in Orsay Essone, whose architecture aims
to capitalize on the growing importance of artificial intelligence, which is heavily dependent on GPU
architecture. However, many HPC facilities still operate on a CPU basis, and their replacement is not
going to happen any time soon, given the prohibitive price of GPU installations. In addition, even if
we assume that, in the future, all supercomputers will be equipped with GPU architectures, there is
no guarantee that they will come from the same manufacturer since Intel® or AMD® also propose their
own GPU. As proof of this concern, the future ”Jules Verne’ exaflopic supercomputer to be installed
at the TGCC in 2025 could be based on AMD GPUs. Consequently, our code must be adaptive if
portability to any architecture is desired.

MEDUSA framework should work on any computational architecture for two reasons: first, not to
rely on the HPC facility architecture that will operate our code, and second, to be able to run
benchmarks to identify the best architectures. However, creating parallelization code specific to each
type of architecture is tedious work. To remedy this problem, the MEDUSA framework was highly
parallelized using the Kokkos toolkit [Trott et al. 2022], a programming model for writing parallelized
applications, portable in terms of performance, open to all HPC platforms. Kokko’s use in MEDUSA
required a redesign of the parallelization procedures, which resulted in a novel MEDUSA release being
compatible with all types of computational architectures.

In terms of performance, Kokkos and CUDA programming models were used to implement Monte Carlo
particle transport in an application that models simple 1D photon attenuation on NVIDIA® GPUs
[Bossler and Valdez 2018]. The benchmark was performed on three NVIDIA® GPU architectures:
Tesla K40, Tesla K80, and Tesla P100; on average, Kokkos was up to 11% slower than the CUDA
version for the K40 and K80 but only 5% slower for the P100, which reinforced our choice to integrate
Kokkos into MEDUSA as this loss in efficiency is deemed satisfactory given the flexibility offered by
Kokkos.
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5.1. Computational architecture

Figure 5.2: TGCC’s partitions overall characterization, with MpC the amount of memory per core,
CpN the number of cores per node, SpN the number of sockets per node, CpS the number of cores per

socket, TpC the number of threads per CPU core and GpN the number of threads per GPU.

5.1.2 TGCC facility

HPC relies on very high-powered supercomputers for its development and requires exceptional infras-
tructures to host and operate them. The ”Très Grand Centre de Calcul” (TGCC, DAM Ile de France,
CEA), located at Bruyères-le-Châtel and conceived by the CEA in 2006, is part of a national vision
to host and operate world-class power and visibility supercomputers in France. Currently, the TGCC
welcomes the ”Joliot Curie” supercomputer funded by ”GENCI” (”Grand Equipement National de
Calcul Intensif”) [GENCI 2024], which is France’s contribution to the European PRACE infrastruc-
ture (Partnership for Advanced Computing in Europe) [PRACE 2024]. The TGCC is also intended
to be a forum for scientific exchange and the promotion of intensive computing.

We regularly obtained resources from the GENCI through the DARI project call, the last one operating
on the Joliot-Curie TGCC supercomputer being accepted for the 2023/2024 period, with 5 million
core hours allocated to the Ginkgo team. TGCC resources are separated into different partitions, each
with its specific computational architecture, as shown in [figure 5.2]. As previous campaigns were
performed on GPU [K. Ginsburger 2019], we decided to ask for CPU allocation this time to prove
MEDUSA’s portability in both architectures. Accordingly, the resources from the ”ROME” partition
were allocated to the project, with 2283 nodes equipped with 2 AMD CPUs (AVX2, 64 cores per CPU)
and 256GB RAM/node, yielding a total of 292224 cores.

To run a job on the partition of a supercomputer, a request is submitted using a configuration file
including all the information regarding the computational resources to allocate and the code to launch.
Notably, the total computation time, the number of nodes, and the number of cores per node can be
tuned. The MEDUSA simulation strategy relies on a two-level fold parallelization approach: Nnode

parallel nodes iteratively execute Nsample MEDUSA simulations where the code is parallelized within
each node over the Ncore allocated cores. To reach a total simulated sample count NT otalSampleCount,
the user must adequately tune the number of nodes Nnode and the number of samples per node
NSamplesP erNode such as NT otalSampleCount = Nnode.NSamplesP erNode. The simulation campaign overall
scheme is presented in [figure 5.3].

Scheduler - To launch a job on the TGCC, the demand is examined by an internal scheduler that checks
the requested resources and compares them to the requests on hold from other users and the available
resources on the current partition. Depending on the resources requested, the task is positioned in
a waiting queue, ranging from instant execution to several days of waiting. Other criteria help the
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Figure 5.3: Overall simulation campaign diagram: the job request instigates the deployment of the
MEDUSA image from the docker container via the TGCC Peacock interface. Details of the simulation
campaign are provided via a Meta-JSON. Depending on the resources available, the request is

validated by the scheduler. The scenario of one and N MEDUSA sample simulations are presented.
The simulation sample data are regrouped in individual folders and gather signal decay files for each
gradient sequence and the three JSON files (geometry, diffusion, dMRI sequence) allowing the sample

synthesis.
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scheduler in its choice, such as the number of hours consumed by the project or the usage frequency,
promoting a homogenous use of the computational hours, thus facilitating the flow of requests on the
partition.

Empirically, we can observe that one of the main criteria that limits the validation of a job by the
scheduler is the total computational requested time, as a request exceeding 24 hours has little chance
of being accepted. In the case of an application designed as a single sequential block computing for
more than 24 hours, this implies the need for intermediate backups to split the procedure into several
jobs. Yet, in the case of MEDUSA, each node is simulating NSamplesP erNode samples independently
from other nodes. Thus, no backup is required between job requests. However, in the case of an
unfinished procedure within a node, the time limit can result in the cancelation of the undergoing
simulation.

5.1.3 Docker virtual containers

Although it is possible to locally compile a framework at the TGCC, the use of containers is highly
recommended to avoid compatibility and dependency issues. DOCKER containers [DOCKER 2024]
behave as a virtual box, including every code, library, and dependency required for MEDUSA. For
security reasons, as the original Docker container tool needs access to root access, the containers are de-
ployed within the TGGC through an intermediate containerization tool called ”Peacock” [PEACOCK
2024].

5.2 Monitoring large scale simulation campaigns

The following section will present the approach developed in the frame of the thesis to monitor
large-scale simulation campaigns, including the tuning geometry, diffusion process, and dMRI signal
attenuations.

5.2.1 Tuning the geometry sampling

In the frame of our study, the simulated cells aim to depict the microstructure of WM only. WM
microstructure is mostly composed of axonal bundles representing approximatively 60% of the WM
volume fraction [Mottershead et al. 2003; Perge et al. 2009; Stikov et al. 2015]. This thesis proposes a
proof of concept for implementing a computational model of WM. Consequently, the contributions of
glial cells and micro-capillaries on the dMRI signal were neglected at first glance, and the geometries
simulated during the campaign only depict axonal fibers.

Simulating a large number of white matter samples involves a relevant sampling of the microstructural
parameter space. Currently, the MEDUSA framework relies on the definition of a JSON geometrical
configuration file to generate a single sample. The structure, of this configuration file, has been
presented in the previous chapter and relies on the tuning of microstructural parameters either with a
constant value or with a specific distribution from which the corresponding parameter can be randomly
drawn

When moving from the simulation of a single WM sample to a large number of WM samples, one has to
create as many configuration files as the number of samples, each time with different microstructural
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parameters. To achieve this more automatically, a second level of sampling has to be considered
which role is, at a higher level, to sample the constant parameters and the distribution parameters
to generate various WM samples with respect to this second-level sampling strategy. In addition, the
tuning of certain parameters can depend on the tuning of other parameters. For instance, the global
field of view is typically set up depending on the distribution of axon diameters to generate samples
including enough axons to statistically provide robust dMRI simulations of the diffusion process. This
second-level sampling strategy is implemented with a Meta-JSON configuration file.

The geometries simulated were separated into three categories, respectively representing one, two, and
three fiber populations, which is sufficient to cover most voxel configurations at millimeter resolution,
each characterized by a specific Meta-JSON dictionary. The parameters describing the geometry
will be part of the data set feeding the decoding model of the WM microstructure. As such, the
distribution range of the geometry parameters must be wide enough to ensure a good sampling of
simulated geometries. However, the more distributed the parameters and the wider the distribution
range, the more simulated samples are required to fill the parameter vectorial space accurately; thus,
as a first attempt and to limit the number of simulations needed during this campaign, only six
generative parameters were distributed as follows:

• The mean axonal diameter of the Gamma distribution (AD),

• The mean global angular dispersion of the Gamma distribution (GAD),

• The volume fraction (VF),

• The three coordinates from the vector of the mean orientation of the fiber population.

As a result, the size of the vector combining the geometry settings changes according to the number
of fiber populations within the sample as every population within a sample sees their AD, GAD, VF,
and mean orientation distributed. Accordingly, samples with one, two, or three fiber populations
have respective microstructural parameter vectors of sizes 6, 12, and 18. An additional parameter
corresponding to the sample’s population size is added to the vector. [Table 5.1] summarizing the
tuning of geometrical parameters for the target simulation campaign.

The volume fraction of each fiber population is uniformly distributed in accordance with the volume
fractions of the other populations so as not to exceed a total volume fraction of 1.0. In practice, this
involves subtracting the volume fraction previously given for a population from the desired maximum
volume fraction. We decided to threshold the minimum volume fraction of each population at 0.15 so
that their dMRI footprint would not be confused with the one from other populations.
The mean orientation implementation differs according to the number of fiber populations simulated
within the sample:

• If only one fiber population is simulated, the orientation vector is arbitrarily fixed to (0,0,1).
This choice comes from the fact that the acquired signal resulting from the dMRI sequence can
be rotated to generate samples for all the other mean fiber orientations.

• If two fiber populations are simulated, one population sees its mean orientation fixed to (0,0,1),
whereas the other population’s mean orientation results from a rotation in a 2D plan following
an angle θ randomly distributed according to a continuous and uniform distribution function.
All rotated variants of each simulated WM sample can also be easily obtained by applying
rotation to the generated dMRI signal.
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Microstructural feature Sampling strategy Range
Field of view Field of view ratio equal 10 [5 ; 30] in μm³

Oversampling ratio Fixed 20

Axon diameter Gamma distribution
Uniform distribution

of the mean
[0.5 ; 3.0] in μm

Uniform distribution
of the standard deviation

[0.05 ; 0.3] in μm

Global Angular Distribution Uniform distribution [5° ; 15°]

Mean orientation
One fiber population Fixed

Population 1 ->(x1, y1, z1)
with x1 = 0, y1 = 0, z1 = 1

Two fiber population

First population : fixed

Second population : rotation
along one axis

Population 1 ->(x1, y1, z1)
with x1 = 0, y1 = 0, z1 = 1

Population 2 ->(x2, y2, z2)
with x2 = 0, y2 = -sin(theta), z2 = cos(theta)

with theta uniformly distributed in [10°; 80°] range

Three fiber population

First population : fixed

Second population : rotation
along one axis

Third population : rotation
along two axis

Population 1 ->(x1, y1, z1)
with x1 = 0, y1 = 0, z1 = 1

Population 2 ->(x2, y2, z2)
with x2 = 0, y2 = -sin(theta), z2 = cos(theta)

with theta uniformly distributed in
[10°; 80°] range

Population 3 ->(x3, y3, z3)
with x3 = cos(theta)*sin(phi), y3 = -sin(theta), z3 = cos(theta)*cos(phi)

with theta and phi uniformly distributed in
[10°; 80°] range

Tortuosity

Has tortuosity Fixed on
Magnitude Fixed 0.02 in μm

Angular dispersion Fixed 2.5°
Wave length Fixed 25 (spheres atoms concerned)

Myelin sheath
Has myelin sheath Fixed on

G-ratio Gamma distribution
Mean 0.7 (dimensionless)

Standard deviation 0.07 (dimensionless)

Ranvier nodes
Has Ranvier Nodes Fixed on

Internodal length Gamma distribution
Mean 2.5 in μm

Standard deviation 0.5 in μm

Volume fraction
One fiber population Uniform distribution Population1 : V1 = [0.5 ; 0.9]

Two fiber population Uniform distribution
Population1 : V1 = [0.15 ; 0.45]
Population2 : V2 = [0.15 ; x]

such as x = 0.9 - V1

Three fiber population Uniform distribution

Population1 : V1 = [0.15 ; 0.45]
Population2 : V2 = [0.15 ; x]

such as x = 0.6 - V1
Population3 : V3 = [0.15 ; y]
such as y = 0.9 - V1 - V2

Beading Has Beading Fixed off

Table 5.1: Tuning of the microstructural parameters as provided by a specific Meta-JSON
configuration file used to perform large-scale simulation aiming at the simulation of a dictionary of

plausible WM samples.

142



Chapter 5. Driving a large MEDUSA simulation campaign

• If three fiber populations are simulated, the first two follow the same pattern as presented above
while the third fiber population sees its mean orientation resulting from the random rotation in
the 3D sphere following an angle θ and φ randomly distributed according to a continuous and
uniform distribution function.

[Figure 5.4] depict examples of WM samples containing 1, 2, and 3 simulated fiber populations with
different mean orientations.

5.2.2 Tuning the diffusion process simulation

The settings regarding the simulation of the diffusion process were made according to the results
stemming from validation tests (see chapter 4 4.3.2.1). Consequently, the complexity of the Monte
Carlo simulation U = Niteration ∗Nparticle was chosen to be equal to 109 with Nparticle = 300.000 and
RSL = 10%. The particle-to-membrane kept for the campaign was random leap type (ERL) with a
bulk diffusivity of 3.10−3 corresponding to a body at 37 degrees. According to the validation study
from the previous chapter, those settings assure a realistic diffusion simulation for an expected average
simulation time of 30 minutes per sample.

5.2.3 Tuning of the dMRI sequences

The choice of dMRI sequences during the campaign brings the question of the characteristics of the
dMRI data feeding the machine learning algorithm as different choices of b-values imply different se-
quence ranges on which the algorithm is trained to decode the microstructure. Several dMRI sequence
configurations might result in good algorithm training; nevertheless, after training with synthetic data,
the model must be validated according to dMRI data stemming from hardware MRI and acquisition
protocols. Thus, we chose to simulate dMRI sequences mimicking the settings of an acquisition pro-
tocol designed by the Ginkgo team and currently running in the lab called ”iCORTEX”.

iCORTEX imaging protocol - Within the framework of this project entitled ”In vivo mapping of the
CORTex cytoarchitecture, myeloarchitecture of brain functional networks using EXtreme scale analyt-
ics and EXtreme fields”(iCORTEX), the ambition is to characterize the cyto- and myelo-architecture
of brain functional networks to understand the organization of the cortical tissue at a scale approach-
ing the mesoscopic scale with high and ultra-high magnetic fields using different MRI modalities such
as functional, diffusion and quantitative MRI. The iCORTEX project relies on the massive acquisition
of gradient echo, T1, T2, and T2∗ as well as dMRI images with a dense q-space sampling on a cohort
of about a hundred healthy subjects aged 20 to 80 years old who will all undergo about 11 imaging
sessions including 6 sessions on a 3T Prisma MRI scanner and 5 sessions on a 7T MRI scanner. Two
3T MRI sessions are dedicated to diffusion-weighted imaging relying on PGSE and trapezoidal OGSE
dMRI sequences. The first set of imaging data on the 20 young subjects aged 20 to 35 is expected by
the end of 2024. Bosco Taddei operates the iCORTEX project under the supervision of Cyril Poupon
(Ginkgo/Gaia team) and Christophe Pallier (Unicog team).

The iCORTEX dMRI acquisitions, therefore, constitute a valuable framework to evaluate our compu-
tational model. Therefore, the dMRI sequences simulated during the campaign mimic the sequences
composing the dMRI iCORTEX imaging protocol. [Table 5.2] below describes the PGSE sequence
schemes part of the iCROTEX protocol and simulated during the campaign.
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∆
(ms)

δ
(ms)

Gradient
magnitude (mT.m−1) B-value (s.mm−2)

Gradient
orientation
count

Sequence 1 31.72 20.24 6.41 30 6
Sequence 2 31.72 20.24 9.07 60 6
Sequence 3 31.72 20.24 11.11 90 6
Sequence 4 31.72 20.24 12.84 120 6
Sequence 5 31.72 20.24 14.36 150 6
Sequence 6 31.72 20.24 15.74 180 6
Sequence 7 31.72 20.24 17.00 210 6
Sequence 8 31.72 20.24 18.18 240 6
Sequence 9 31.72 20.24 19.29 270 6
Sequence 10 31.72 20.24 20.34 300 6
Sequence 11 31.72 20.24 27.58 550 30
Sequence 12 31.72 20.24 31.15 700 30
Sequence 13 31.72 20.24 37.25 1000 30
Sequence 14 31.72 20.24 48.70 1700 60
Sequence 15 31.72 20.24 67.07 3200 60

Table 5.2: dMRI sequences settings for the simulation campaign, adapted from the settings from
iCORTEX protocol.

5.3 Simulation campaign results and post-processing

The simulation campaign led to the creation of 10287, 15767, and 16619 samples, including
respectively one, two, and three fiber populations, for a total of 42673 simulated samples. The overall
time of the simulation campaign took approximately two months; still, it should be noted that the total
simulation time was mainly driven by the TGCC Joliot-Curie supercomputer’s scheduler since a job
request can take several days to be validated. Independently from the scheduler, we have observed in
the case of three fiber populations simulations, with 100 nodes containing 32 CPUs each, the synthesis
of 5328 samples in 24 hours and so approximately 20 samples per hour and per node. This result is
in accordance with the expected times drawn after the validation campaign (see chapter 4 4.3.2.1).

It is difficult to present a non-exhaustive representation of all the simulation campaign samples. How-
ever, the key geometric characteristics of some samples are shown in [figures ??, ??, ??]. Precisely,
[figure ??] presents different samples according to their axon diameter and volume fraction, showing
the wide variety of geometries synthesized during the campaign. [Figure ??] presents two samples with
different GAD, demonstrating the deterioration of geometry regularity for large GAD. Finally, [figure
??] presents two samples of three fiber populations with a different distribution of their respective
volume fractions, their volume fraction results from both the number of fibers in the samples and their
diameter.
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Figure 5.5: Simulation campaign results: volume fraction (X-axis) and axon diameter(Y-axis) of
different samples stemming from the simulation campaign data-set. The field of view is the same for

each snapshot in order to catch the differences between the sample’s axon diameters.
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Global angular dispersion = 5.5° Global angular dispersion = 13.7°

Top views 

Corner views 

Figure 5.6: Simulation campaign results: global angular dispersion (GAD) of two samples of one fiber
population stemming from the simulation campaign is presented with two different point views (corner
and top). The two samples reflect the minimal and maximal threshold from GAD distribution ([5°,
15°]). Visually, a significant difference is spottable between the two samples as the sample with more
GAD shows more tortuosity resulting from the fibers crossing each other whereas the samples with

low GAD show a certain regularity particularly spotted in the top point of view.
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Vf 1 = 0.19 
Vf 2 = 0.34
Vf 3 = 0.33

Vf 1 = 0.57
Vf 2 = 0.17
Vf 3 = 0.15

Figure 5.7: Two samples from the simulation campaign are presented. They both include 3 fiber
populations and a slice cut stemming from the center of the sample voxel is also delivered on the side.
The populations are differentiated with color RGB, and their different volume fraction values Vf1, Vf2,

and Vf3 are presented relatively to a specific population color.
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The results for each simulated sample are organized within a dedicated directory on disk containing the
geometry and diffusion footprint information. The geometry description is stored in a JSON dictionary,
whereas the simulated dMRI signal decay is stored in a sub-directory where each iCORTEX sequence
has a dedicated file storing the dMRI attenuations relative to the number of gradient orientations
from the sequence.

It is challenging to quantify the quality of the simulated dMRI signals directly from the simulation
output; consequently, we designed a post-processing pipeline, which had a threefold purpose:

• Enabling us to study the dMRI signal decay in more detail through the use of dMRI reconstruc-
tion techniques of the ODF and associated metrics.

• Grouping each sample’s geometry and diffusion footprint in a synthetic table.

• Increasing the database by further generating for each native sample a series of inherited samples
with random rotation and noise.

The post-processing pipeline scheme is described in [figure 5.8].

5.3.1 Compressed representation of the dMRI signal attenuation

The samples synthesized after the simulation campaign were exported from the TGCC storage system
and stored on the Neurospin storage system. At this point, the dMRI data correspond to the full set
of dMRI signal attenuation acquired for the various iCORTEX dMRI sequences along the different
gradient orientation sets; yielding 270 dMRI values for each sample.

To further take into account the parsimony of the diffusion propagator, each of the different shells
composing the 270 values are further summarized by:

• collecting the rotationally invariant DTI metrics including the apparent diffusion coefficient
(ADC), the radial diffusivity (D⊥), the longitudinal diffusivity (D‖), and the fractional anisotropy
(FA) (see chapter 2 2.3.3.1),

• decomposing the signal attenuation on the current shell onto a spherical harmonics basis as
proposed by [Descoteaux et al. 2007], resulting in a reduced set of spherical harmonics coefficient
NSH such as:

NSH =
(SHOrder + 1).(SHOrder + 2)

2
, (5.1)

where SHOrder is the spherical harmonic count. In our case, SHOrder = 4 thus SHCount = 15.

The original set of 270 diffusion MRI signal attenuations could be reduced to:

NP = (NDT I +NSH) . NShell, (5.2)

with NP the total number of diffusion parameters for one sample, NDT I and NSH the number of
parameters resulting respectively from diffusion tensor imaging and spherical harmonics techniques
and NShell the total number of sequences. Since we mimic the iCORTEX protocol, NShell = 15, thus
NP = 285.
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Figure 5.8: Overall diagram of the post-processing pipeline: each simulated sample holds a folder in
which their description input JSONs and dMRI signal decay output data are stored. A post-processing
pipeline gathers the data from the simulation within a CSV table, with each line corresponding to a

sampling and each row corresponding to a parameter.
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We arbitrarily decided to compress the original signal with these two representations, but alterna-
tive approaches could have been considered, such as polar harmonics decomposition as proposed by
Ozarslan in his SHORE model [Özarslan, Koay, and Basser 2013] or Taylor series decomposition in-
tegrating orders higher than just the second-order tensor, as proposed by Fieremans, Novikov, and
Kiselev [Novikov, Fieremans, et al. 2019].

5.3.2 From geometric and diffusion data to CSV representations

After completing the simulation campaign, the data is stored in different folders, each containing the
geometric and diffusion information for each sample. It’s tedious to read the data correctly in this
state as approximately 8.5 million files are stored, for a total amount of 34.6 GBytes.

To collect geometric and diffusion information from the simulation campaign, a table representation in
which rows represent the samples and columns represent their geometric and diffusion descriptions has
been chosen. The first column gathers the geometry characteristics, and the following 285 columns
gather the computed diffusion representation. As the number of geometrical parameters varies de-
pending on whether the simulation is composed of one, two, or three populations, a specific table is
drawn for each scenario with 7, 13, and 19 columns dedicated to geometry, respectively. [Figure 5.8]
illustrates the structure of the output table created by the post-processing pipeline.

5.3.3 Data augmentation

The native simulated database does not take into account 2 further effects:

• the presence of noise corrupting the real dMRI signal attenuation; despite MEDUSA can add
noise on the fly during the simulation of the signal attenuation, it was deliberately decided to
keep the signal attenuation free of noise to be able to add it a posterior since it strongly depends
on the hardware and imaging protocol;

• the rotation of the simulated geometry to arbitrarily represent all the inherited dMRI signal
representations simply resulting from the rotation of the geometry and of its associate dMRI
signature.

To take into account these two points, we artificially corrupted the dMRI signal attenuations using
a noise standard deviation similar to that of the real dataset acquired in the frame of the iCORTEX
project. In addition, we applied rotations to the virtual WM samples generated using the MEDUSA
framework [figure 5.9].
The desired number of rotations sets the size of the final database. We choose to apply 100 rotations
to each simulated sample, creating a dataset containing 4.267.300 samples. Nevertheless, this enlarged
dataset does not come without a downside, as most parameters are invariant to the rotation. Indeed,
only the mean orientation of fibers and spherical harmonics of order higher than one sees their values
change; the first spherical harmonic corresponds to a sphere and thus is invariant to the rotation.

The histograms [figures 5.10, 5.11, 5.12,5.13,5.14,5.15] present the distributions of the geometry and
diffusion parameters from the data set after rotation and noise algorithm application. The histograms
are separated according to the total number of fiber populations within the samples and provide the
distribution of the parameters according to all populations within the sample. The distribution of
the AD, GAD, and VF presented in the histograms match the desired distribution bandwidth from
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Original simulated 
dMRI gradient

Rotation

Original MEDUSA 
simulated sample

Rotated MEDUSA 
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Original qSpace 
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Figure 5.9: Illustration of the rotation algorithm: one fiber population simulated samples and its
dMRI signature is rotated, resulting in a resampling of the q-space.
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[table 5.1]. More precisely, we observe an exponential decrease of the VF histogram in the case of
three fiber populations, which is explained by the relation we set between the VF of the different
fiber populations, as the total should not go beyond 1.0. The distribution of the fiber population
mean orientation along the X and Y axes from the cartesian basis depicts maxima for -1 and 1 values
while mean orientation along the Z axis depicts maximum value for 0 value. That is explained by
the fact that we arbitrarily decide to orient the first fiber population along (0, 0, 1), and the rotation
applied to the mean orientation is done through the use of a rotation matrix tuning pitch, yaw, and
roll rotations according to angles distributed uniformly between 0 to 2π resulting in an oversampling
of mean orientations along XY plan.

Concerning the tensor diffusion parameters, ADC,D⊥ andD‖ values less than 1.0 to 1.1 10−9m2/s are
generally acknowledged for white matter [Radiopaedia 2005-2024] which is in line with the histograms.
FA are unitless, varying between 0 (maximal isotropic diffusion) and 1 (maximal anisotropic diffusion)
as expected. Only spherical harmonics of order 0, 3, 9, and 12 are represented. The missing spherical
harmonics histograms show Gaussian distributions similar to the spherical harmonics of order 6, 9, and
12. Precisely, spherical harmonics range from -10−1 to 10−1 for orders 1, 2, 3, 4, 5 and 6; -10−2 to 10−2

for order 7, 8, 9, 10, 11 and 12; and finally -10−3 to 10−3 for order 13 and 14. We are observing non-
Gaussian distribution of spherical harmonics of order 0 and 3. The consistency of diffusion parameters
is difficult to establish using histograms alone. ODFs were built from randomly picked simulations to
check the coherence of the diffusion signature with the mean orientation of the fiber population. This
check was done only for a few samples and, therefore, does not ensure the accuracy of the entire data
set.

The post-processing pipeline benefits as well from the parallelization of its code with a total rotation
count of 100. The rotation and noising of 38600 original samples generated 3.860.000 samples and
took 1 hour and 48 minutes to achieve on Intel Xeon 2.60GHz desktop station with 16 CPUs.

5.4 Conclusion

The simulation campaign and its results presented in this chapter are the culmination of several
previous simulation campaigns performed during the time of this thesis. Indeed, the large number of
parameters and the complexity of the simulations, combined with the campaign’s length and weight,
made several attempts necessary to reach the outputs presented. In the future, we can expect new
simulation campaigns with more samples synthesized and different parameters distributed. The next
chapter presents the deep learning model developed to decode the microstructure of cerebral WM
using the data set synthesized during the simulation campaign to train its neural network.

153



5.4. Conclusion

Single fiber population : geometry

axon diameter volume fraction

global angular dispersion mean orientation X

[ 0.5 ; 3.0 ] [ 0.5 ; 0.9 ]

[ 5° ; 15° ] [ -1.0 ; 1.0 ]

m

mean orientation Y [ -1.0 ; 1.0 ] mean orientation Z [ -1.0 ; 1.0 ]

Figure 5.10: Histograms of geometry parameters from simulations gathering one simulated fiber
population. The histograms gather parameters stemming from 926.000 different samples.
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adc fa axial diffusivity

radial diffusivity Spherical harmonic 0 Spherical harmonic 3

Spherical harmonic 6 Spherical harmonic 9 Spherical harmonic 12

5.30 e-10 1.70 e-9 0.23 0.53 7.02 e-10 2.38 e-9

4.43 e-10 1.38 e-9 1.58 3.47

-0.16

0.14

-1.06 e-2 1.06 e-2 -8.94 e-3 8.94 e-3 -9.84 e-3 9.84 e-3

Single fiber population : diffusion

Figure 5.11: Histograms of diffusion parameters from simulations gathering one simulated fiber
population. In red and framing each histogram, each parameter’s first and last quartile value. The

histograms gather parameters stemming from 926.000 different samples.
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Two fiber populations : geometry
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Figure 5.12: Histograms of geometry parameters from simulations gathering two simulated fiber
populations. The histograms gather parameters stemming from 1.496.700 different samples.
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Two fiber populations : diffusion 

adc fa axial diffusivity
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Figure 5.13: Histograms of diffusion parameters from simulations gathering two simulated fiber
populations. In red and framing each histogram, each parameter’s first and last quartile value. The

histograms gather parameters stemming from 1.496.700 different samples.

157



5.4. Conclusion

Three fiber populations : geometry

axon diameter volume fraction
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Figure 5.14: Histograms of geometry parameters from simulations gathering three simulated fiber
populations. The histograms gather parameters stemming from 1.437.300 different samples.
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Three fiber populations : diffusion
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Figure 5.15: Histograms of diffusion parameters from simulations gathering three simulated fiber
populations. In red and framing each histogram, each parameter’s first and last quartile value. The

histograms gather parameters stemming from 1.437.300 different samples.
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Figure 6.1: Artificially generated pictures depicting a multilayer perceptron neural network. These
images have been generated with the online AI tool ”dall-e 3” [openai 2024].
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Machine learning (ML) is a subtopic of artificial intelligence (AI) involving algorithms trained
to identify recurring patterns in data sets. Unlike analytical models, ML’s purpose is not to

determine the exact function or relationship characterizing a problem but to propose a model whose
predictions are consistent with empirical observations of the phenomenon. The benefit of such an
approach is that it is only limited by the size and quality of the training dataset stemming from the
phenomenon to study, without regard to any model hypothesis inherent to a mathematical expression.
ML functioning leads to a limit, or rather an intellectual frustration, because the result expressed by
the ML algorithm can be translated into a logic escaping from human sense, evolving with a black box
logic. As an illustration to the previous statement, Ali Rahimi, a researcher in artificial intelligence,
assessed that ML algorithms have become a form of “alchemy” [Hutson 2018], thus depicting the logic
inherent in the optimization of ML algorithms, beyond absolute mathematical rigor.

Nevertheless, ML revealed itself to be a powerful engineering tool for research, as illustrated by the
great number of scientific papers published on this topic over the years, with a daily publication of
around 100 papers related to ML reported in 2019 [data-mining 2019]. When it comes to ML, several
steps of reflection must be taken into account to ensure a good implementation of the algorithm, as
presented hereafter:

• One should determine and organize a training data-set feeding the ML model. In our case, the
data-set results from the simulation campaign presented in the previous chapter and organized
as a table of parameters gathering millions of MEDUSA simulated sample parameters describing
both WM microarchitectures and their corresponding dMRI signatures. Data-set management
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is crucial because an under- or over-sampling of the learning vectorial space can lead the ML
algorithm to make inaccurate predictions, drifting away from the empirical observations.

• The type of ML algorithm should be chosen according to the task it is intended to perform, the
dataset’s size, and the available computing resources. Once chosen, the ML algorithm is trained
using the training data-set.

• Finally, the ML algorithm is exposed to data stemming from real situations where parameters
are potentially distributed differently from the training data-set. This step reveals the ML
algorithm’s robustness, facing all the specificities from real case scenarios.

This chapter presents the state of the art concerning the different existing ML algorithms with an
emphasis on the neural network approach as it is the one chosen for our model. The design of our
microstructure decoding pipeline will be presented as well as the performance of these models in terms
of learning capability and precision. Ultimately, this chapter will discuss the approach, and propose
some work in progress and improvements to be achieved in the future concerning our model.

6.1 Machine learning algorithms

The first use of the term machine learning dates back to 1959, following the creation of the
first program playing draughts that learns and improves while playing [Samuel 1959]. The advent of
ML is therefore largely linked to the second half of the 20th century, correlated to advances made
in computer science. The following section proposes to list and describe some of the most popular
ML models relevant in the field of supervised regression problems, which corresponds to our situation
aiming at proposing a decoding model for WM microstructure.

6.1.1 Linear regression

Linear regression [Gauss 1809; Legendre 1805] is a straightforward approach for tackling regression
problems with a few but strong assumptions. First, it is assumed that the relationship between features
x and target y is approximately linear, such as the conditional mean E[Y|X = x] can be expressed as a
weighted sum of the features x. This setup allows the target value to deviate from its expected value
with respect to an observation noise which is assumed to follow a Gaussian distribution [d2l 2024].
Linear models are by construction restrictive, which can weaken their predictive performance due to
an oversimplification of the problem.

6.1.2 K-nearest neighbour

The K-Nearest Neighbors (KNN) algorithm tackles classification and regression problems. It is a non-
parametric approach that does not make any underlying assumption about the distribution of data.
The KNN algorithm finds the nearest neighbors to a given data point based on a distance metric, such
as the Euclidean distance. The class or value of the data point is then decided by the preponderance
vote or average of the K neighbors. This approach allows the algorithm to adapt to different patterns
and make predictions based on the local structure of the data [Gfg 2024].
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6.1.3 Support-vector machine

Developed in the 1990s [Vapnik, Golowich, and Smola 1996], the support-vector machine (SVM) model
distinguishes different classes within the data by finding the optimal hyperplane that maximizes the
margin between the closest data points of opposite classes, which can be used for classification and
regression problems. The number of features in the input data determines the dimension of the
hyperplane space. The lines that are adjacent to the optimal hyperplane are known as support vectors
as these vectors run through the data points that determine the maximal margin. These algorithms
are widely used in machine learning as they can handle both linear and nonlinear classification and
regression tasks. However, when the data is not linearly separable, kernel functions are used to
transform the data into higher-dimensional space to enable linear separation [IBM 2023].

6.1.4 Decision tree

a decision tree is a supervised machine-learning algorithm, which is used for both classification and
regression problems and built as a flowchart-like tree structure where each internal node denotes a test
performed on an attribute. Each branch represents an outcome, and each leaf node holds a class label.
A decision tree is constructed by recursively dividing the training data-set into subsets established on
the values of the attributes until a stopping criterion is satisfied, such as the maximum depth of the
tree or the minimum number of samples required to split a node [Gfg 2023a]. However, trees do not
handle linear relationships as any linear relationship has to be approximated by splits, creating an
inefficient step function. Moreover, slight changes in the input feature can have a big impact on the
predicted outcome. Trees are also quite unstable as a few changes in the training dataset may lead to
a completely different tree.

6.1.5 Random Forest

A Random Forest (RF) algorithm constructs multiple decision trees, thus forming a forest. The results
from several combined trees are likely to be better than those from a single tree. Given a dataset with
several features, an RF algorithm will sample subsets of observations with different features from the
dataset during a process known as ”bootstrapping”. When assembling the decision tree, RF chooses
the most optimal split at each node, this process is repeated on a different subset of the data with
varying features until the specified number of trees has been assembled. After obtaining results from
all the trees, the final prediction will be obtained through majority voting for classification or averaging
for regression.

6.1.6 Extra trees

The Extremely Randomized Trees algorithm, also known as Extra Trees (ET), constructs multiple
trees similarly to RF algorithms. Different subsets of the data may introduce different biases in the
results obtained, hence ET prevents this by sampling the entire dataset. Extra Trees are also reducing
variance thanks to the randomized splitting of nodes within the decision trees.

Several computational models have shown potential in decoding the microstructure of WM, based on
Random forest [Nedjati-Gilani 2017] or Extra trees [K. Ginsburger 2019]. [Figure 6.2] illustrates the
different machine learning presented. Nevertheless, with a database containing several million samples

164



Chapter 6. Implementing a neural network decoding the white matter microstructure

Figure 6.2: Illustration of the principle of important machine learning algorithms for supervised
learning of tabular data. Adapted from [K. Ginsburger 2019]

and given the popularity of deep learning in the world of ML, we decided to explore the potential of
a neural network approach trained to decode WM microstructure from its dMRI signature.

6.2 Neural network: an overview

Before introducing the neural network architecture used to establish a MEDUSA computational
model of MW microstructure, a brief overview of the history of neural networks is first presented to
introduce the concepts.

6.2.1 Historical background

In 1943, McCulloch and Pitts [McCulloch and Pitts 1943] modeled an artificial neuron as a regulator
that receives input from other neurons and, depending on the total weighted input, is either activated
or remains inactive. These weights can be positive to be excitatory or negative to be inhibitory. In
1958, Rosenblatt [Rosenblatt 1958] demonstrated that simple networks of such models of artificial
neurons called ”perceptrons” could learn from examples. It was shown that networks of such models
of artificial neurons have properties that can be compared to the cognitive capacities of the human
brain as they can perform complex pattern recognition, and the weights, by which the input from
other artificial neurons is multiplied, can be assimilated to synaptic potentials. Moreover, like the
human brain, neural artificial networks proved to operate even if some of the neurons are destroyed.
Nevertheless, Minsky and Papert [Minsky and Papert 1969] demonstrated that perceptrons alone
could only solve the very limited class of linearly separable problems.

In the ’70s, the first multilayered neural network was designed [Fukushima 1975], followed in the 80s,
by the research on ”error back-propagation method” [Rumelhart, Hinton, and Williams 1986; LeCun
et al. 1988], which made complex networks of neurons learn from examples, succeeding in solving
problems that were not linearly separable. Nevertheless, neural network methods, also known as deep
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learning methods, had to wait for two more technological revolutions before becoming the essential
method of machine learning it is today:

• GPU - The first revolution came from the advent in the late 90’s of GPU architectures, allowing
faster processing of parallel tasks, particularly suited to deep learning problems. Thanks to
GPUs, deep learning algorithms began to compete with other machine learning models such as
support vector machines, offering better results using the same training data-set [dataversity
2024].

• Big Data - The second revolution started in the 2000s with the increase in the range of sources
and types of data available for neural network training, linked with the growth of the internet.
Accordingly, in 2009, Fei-Fei Li [Fei-Fei, Deng, and K. Li 2009] assembled a free database of
more than 14 million labeled images called ImageNet, announcing the era of Big Data.
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Since the 2010s the complexities of neural networks and their accuracy have increased inexorably in
parallel with the improvement of GPUs and the wide spreading of HPC facilities. A non-exhaustive
list of the remarkable breakthroughs made in neural network research is listed below:

• Google®’s ”Cat Experiment” creating a neural network learning to recognize cats by watching
unlabeled images taken from frames of YouTube videos [Le 2013].

• Facebook®’s DeepFace system using neural networks identifying faces with 97.35% accuracy
[Taigman et al. 2014].

• Advent of the transformer architecture [Vaswani et al. 2017] allowing faster parallel training of
neural networks on sequential textual data, originating the current enthusiasm for AI virtual
assistants.

The popularity and rise of neural network models undeniably participated in ensuring our decision to
use deep learning for our model. However, it is necessary to remember that a large number of the
networks that have recently made deep learning so popular, like vision detection or chatbots, respond
to problems far from the one here discussed. Indeed, our problem here is to train a neural network to
predict the microstructure of WM according to its dMRI signature based on a labeled table dataset,
which makes it a supervised regression problem. The main components of a neural network solving a
supervised regression problem are detailed in the following section.

6.2.2 Multi-layer perceptron architecture

A neural network can be assigned different tasks such as classification, computer vision, or noise fil-
tering, each requiring specific neural network and optimization methods. The Multi-Layer Perceptron
(MLP) architecture was shown to be suited for supervised regression in numerous papers [Murtagh
1991; Agirre-Basurko, Ibarra-Berastegi, and Madariaga 2006; Nassif, Ho, and Capretz 2013]. MLPs
are part of the feed-forward networks family characterized by the direction of the flow of information
between their neuron layers. MLP has the particularity to fully connect the neurons from each layer
to the neurons of the following layer as presented in [figure 6.3a].

The input layer constitutes the first layer of an MLP whereas the output layer is the last layer of an
MLP. Input and output layers are respectively composed of as many neurons corresponding to the
different parameters defining the input and the output of the data stemming from the problem we wish
to tackle. The information, or impulse, from the input, is carried from the input layer to the output
layer, passing by the intermediary hidden layers composing the MLP. The impulse, from a neuron, is
weighted by a parameter judiciously called ”weight”. These weights determine the importance of a
given impulse, with the largest weights contributing more significantly to the output.

Let us describe the functioning of an MLP with N hidden layers: the impulse xl
j produced by a neuron

j from a layer l ∈N is defined by the following equation:

xl
j =

n
∑

k=1

hl−1
k wl

jk + bl
k, (6.1)

with wl
jk the weight associated with the connection between the neuron k in layer l−1 and the neuron

j in layer l, bl
k the bias associated with neuron k in layer l and hl−1

k being the output impulse from
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a)

c)

b)

h = b

b

Figure 6.3: a) Overall structure of a multilayer perception with xji the output impulse of node i to a
node j, and wkij the weight connecting node i in layer k-1 to node j in layer k. Layer 1 is the first
hidden layer, and the inputs can be considered Layer 0. Predicted parameters are presented as the
output Z. b) Zoom on a neuron j from layer k: the input impulses xji from neurons belonging to the
previous layer k-1 are weighted by wkij and summed. A bias b is added to the summed impulse and the
total is entered in an activation function σ informing the excitatory or inhibitory state of the neuron. c)

Example of a sigmoïd activation function. Adapted from [Ruck, Rogers, and Kabrisky 1990]
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a) b)

Figure 6.4: Effect of bias and weight on activation function: a) Plot of sigmoids without bias, passing
by the origin and weighted by w value equal to 0.5, 1.0, and 2.0. b) Plot of sigmoids with weight

w=1.0 and bias equal to -5, 1, and 5. Adapted from [A. W. He 2017]

neuron k in layer l − 1 such as:
hl−1

k = σ(wl−1
jk xl−1

k + bl−1
k ), (6.2)

with σ the activation function, wl−1
jk the weight associated with the connection between the neuron k

in layer l− 2 and the neuron j in layer l− 1, xl−1
k the impulse produced by a neuron k from a layer

l − 1 and bl−1
k the bias associated with neuron k in layer l − 2.

The impulse from layer l is then itself transmitted to layer l+ 1 and formalized by a hl
k function. This

iterative process of transmitting the impulse from one layer to the next defines this neural network
as a forward propagation network, as illustrated by [figure 6.3a/b]. The activation function adds
non-linearity to the neural network model and different functions can be used including the sigmoid
function σ(x) = 1

1+e−x , the hyperbolic tangent function tanh(x) = sinh(x)
cosh(x) , the exponential function

ex, and the standard rectified linear unit (ReLU) function ReLU(x) = max(0, x) [Pytorch 2024]. The
bias acts as a translation of the activation function. Without bias, the activation function would be
restrained from passing via the origin [figure 6.4], which would limit the flexibility of the model. By
introducing biases, the model can better capture the complex patterns and non-linear relationships in
the data, which generally leads to better prediction performance [Turing 2024].

The training of the neural network consists of tuning the weights and biases from every neuron to
build a network correctly identifying the targetted problem. This training is achieved by an iterative
submission of data to the network to improve its parametrization. The weights and biases associating
a layer l − 1 to a layer l can be formalized using a matrix representation:

Wl−1,l =











w11 . . . w1n

... . . . ...
wm1 . . . wmn











, Bl−1,l =











b1

...
bm











, (6.3)

with m being the number of neurons in the layer l− 1 and n the number of neurons in layer l. B is a
column matrix as only one bias is associated with each neuron. The matrix WN and BN regroup the
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whole set of weights and biases associating the N layers of the neural network. The size of the matrix
WN and BN characterizes the complexity of the MLP. It is reported that modern neural network
models can contain up to a trillion parameters [Thirunavukarasu et al. 2023].

Various algorithms can implement the training of the neural network [Robotics 2020], but one of
the most prominent ones is the back-propagation algorithm [LeCun et al. 1988; Rumelhart, Hinton,
and Williams 1986]. To introduce back-propagation, let us first define the target function FD that
the neural network wants to approximate, from a training data-set D. To find FD, it is necessary to
determine the optimum WN and BN matrices by solving the following equation:

wl
jk(t+ 1) = wjk(t) − α

∂FD

∂wl
jk(t)

, (6.4)

bkl(t+ 1) = bk(t) − α
∂FD

∂bl
k(t)

, (6.5)

with wl
jk(t) and bl

j(t) respectively the weight and bias connecting node k in layer l − 1 to node j
in layer l during the training step t and α the learning rate. The partial derivative ∂FD

∂wl
jk

(t)
and

∂FD

∂bl
k

(t)
are symptomatic of the gradient descent technique used in backpropagation error method. The

hyperparameter α affects the speed of gradient descent and α > 0 ensures the decrease of the partial
derivative.

For clarity, the following demonstration is supposed to be achieved for a training step t. To find the
optimal weight and bias, ∂FD

∂wjk
and ∂FD

∂bk
is decomposed as the multiplication of three partial derivatives

such as:
∂FD

∂wl
jk

=
∂hl−1

k

∂wl
jk

∂xl
k

∂hl−1
k

∂FD

∂xl
k

, (6.6)

∂FD

∂bl
k

=
∂hl−1

k

∂bl
k

∂xl
k

∂hl−1
k

∂FD

∂xl
k

. (6.7)

According to equations 6.1 and 6.2 we can deduce the following equations:

∂xl
k

∂hl−1
k

=
n

∑

k=1

wl
jk, (6.8)

∂hl−1
k

∂wl
jk

=
∂

∂wl
jk

(

σ(wl−1
jk xl−1

k + bl−1
k )

)

, (6.9)

∂hl−1
k

∂bl
k

=
∂

∂bl
k

(

σ(wl−1
jk xl−1

k + bl−1
k )

)

. (6.10)

Equations (6.9) and (6.10) depend on the activation function chosen during the training. As an example
∂hl−1

k

∂wjk
= σ(xl

j)σ(1 −xl
j) for a sigmoid activation function σ or ∂hl−1

k

∂wjk
= (1 − tan(xl

j)2) for an hyperbolic
tangent activation function tan.

The partial derivative ∂FD

∂xl
k

is the error function between the computed impulse xl
k for a layer l and

the correct impulse yl
k. We can infer this error using a Mean Square Error (MSE) function or a Mean

Absolute Error (MAE) formulated as follows:

MSE :
∂FD

∂xl
k

=
1

2
(xl

k − yl
k)2, (6.11)
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MAE :
∂FX

∂xl
k

=
1

2
|xl

k − yl
k|. (6.12)

The error function has an impact on the training of the neural network and is therefore one of the
parameters to be identified for the training. In particular, MSE is more sensitive than MAE to large
errors.

For a specific activation function and error function, and thanks to the combinations of the previous
equations, a new estimation of the weight and the bias can be obtained, associated with the neurons
from layers l and l− 1. Nevertheless, the backpropagation training seeks to estimate new weights and
biases for every layer of the MLP. Accordingly, the neural network is supplied with a ground truth
impulse at its output allowing the computation of new weights and biases at layer N only. These new
weights and biases supply the network with the correct impulse for the neurons of the layer N − 1.
By iteration, all the weights and biases from every layer are then modified, starting with the output
layer and finishing with the input layer. This backward iteration process, associated with the gradient
descent algorithm gives this method the name of backpropagation.
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Figure 6.5: Illustration of overfitting. The left illustration depicts an underfitting, referring to the
situation in which a model does not perform well on the data it was trained on and is also unable to
generalize its results well. The right illustration depicts an overfitting as the curve matches the data
but is unable to generalize its results well. The middle illustration depicts the optimal curve, striking a
compromise between underfitting and overfitting, maximizing both generalization and prediction

performance. Adapted from [Aliyu, Mokhtar, and Hussin 2022]

The different steps of MLPs can be summarised as follows:

• Step 0 - After setting the number of layers and neurons per layer of the MLP, the weights and
biases are initialized.

• Step 1 - The network is fed with data stemming from the data-set associated with the target
problem. Iteratively, samples of the dataset are inputted to the network creating impulse
crossing every layer of the network until reaching the output layer and providing an answer in the
form of a vector storing parameters estimations, this is the prediction. This step characterizes
the feed-forward aspect of MLP networks.

• Step 2 - The prediction is compared to the correct answer, supplied by the training data set
and allows the backpropagation method to tune the weights and biases of the network to match
the correct answer.

• Step 3 - Steps 1 and 2 are repeated with different samples from the data set until reaching a
total training step count. A training step is called an ”epoch”.

• Step 4 - After reaching the desired epoch count, the training is stopped. To estimate the
generalization performance of the neural network, one needs to test it on independent data,
which have not been used to train the network. This independent data-set is called the testing
data-set and aims to prevent the neural network from overfitting. Overfitting occurs when the
network tries to predict closely or exactly the training data, thus failing to fit additional data
or predict future observations reliably [figure 6.5]. The error stemming from the prediction of
the testing data is called accuracy and informs on the capacity of the model to correctly and
robustly fit the target function.
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Concerning step 0, different initialization strategies exist and are crucial to improve the algorithm’s
learning capabilities as it can determine whether the algorithm converges at all, with some initial points
being so unstable that the algorithm encounters numerical difficulties and fails altogether [Goodfellow,
Bengio, and Courville 2016a].

MLP design comes with the tuning of numerous parameters such as the number of layers, number of
neurons, initialization of weight and biases, learning rate, epoch count, activation and error function.
Tuning of the parameters is not straightforward and often comes through iterations over empirical
experiments to capture their impact on the convergence of the neural network. The following section
will describe in detail the choices made to tune our MLP network described to the decoding of WM
microstructure.
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6.3 MEDUSA neural network implementation

The MEDUSA simulation campaign performed on the TGCC HPC facility resulted in the syn-
thesis of 42 673 samples augmented by the noise and rotation algorithm for a total of 4 267 300 samples
stored in labeled CSV tables. Each sample is characterized by 285 diffusion parameters corresponding
to 4 DTI parameters (ADC, FA, λ‖, λ⊥) and 15 coefficients of the spherical harmonics decomposition
of the signal acquired on each shell of the 15 iCortex dMRI sequences. For each sample, a set of 7, 13,
or 19 generative microstructural parameters is recorded according to the number of fiber populations
created in the sample and corresponding respectively to 1, 2, or 3 populations. A neural network
was designed considering the set of dMRI (DTI and SH) parameters as the inputs of the neural net-
work and the generative microstructural parameters as the output parameters. The following sections
present the different concerns surrounding this design.

6.3.1 General design of the decoding pipeline

The neural network seeks to decode the WM microstructure of samples according to their dMRI
signature. The first approach developed was to store all the simulated samples together, without
distinguishing the number of populations within the sample. It resulted in the creation of a unique
CSV table with columns describing generative parameters some of them being unfilled since one fiber
population sample is described by only 7 geometric parameters whereas two or three fiber populations
have respectively 13 and 19 generative parameters. These unfilled parameters were associated with
a ”null” value and led to poor training of the neural network as it was unable to interpret the ”null”
value correctly.

The sampling strategy was then improved to propose 4 different neural networks rather than one to
overcome the issue of the unfilled column. The first neural network was fed with all the simulated
samples and only aimed to infer the number of fiber populations within the samples. The task of this
first network resembles a classification problem but it remains a regression as the answer might drift
from whole numbers like 1,2 or 3 to decimal numbers, illustrating the uncertainty of the prediction.
The following three networks are respectively dedicated to predicting the microstructural parameters
in the case of one, two, and three fiber populations, avoiding thus the problem of unfilled parameter
values. The arrangement of the data-set parameters according to the neural network to be trained is
presented [figure 6.6].

The network dedicated to the prediction of the number of fiber populations is placed upstream of the
decoding pipeline in a way to guide the prediction according to the number of populations encountered
within the sample, as illustrated in [figure 6.7]. The decoding pipeline and its neural networks have
been coded using the PyTorch library adapted for C++ API [Pytorch 2024].

6.3.2 Tuning of the NEDUSA white matter neural network

Different strategies exist to find the optimal configuration of an MLP neural network [Bronlee 2019],
which are listed below:

• Experimentation - Experimentation consists of trying several settings until reaching a satisfying
convergence of the training; it is a common strategy since the tackled problem is likely to be
unique as well as the stemming data-set.
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Population 
count 

prediction

Signal decay volume
 ( 15 dMRI sequences )

1 population 
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parameters  
prediction

2 populations 
geometry 

parameters  
prediction

3 populations 
geometry 

parameters  
prediction

Prediction X

X in [0 , 1.5] X in [1.5 , 2.5] X in [2.5 , +inf [
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 ( 4 DTI parameters + 

15 Spherical Harmonics ) = 
285 parameters

Pre-processing
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 each predicted 
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Figure 6.7: Illustration of the overall decoding pipeline: the 285 diffusions parameters from one voxel
are computed by the first neural network aiming to predict the number of populations within the
sample. According to the result, the data are then transferred to the network dedicated to this

population count. A set of geometry parameters is then predicted to fill an output prediction volume.
The process is iteratively achieved until decoding the full volume. A total of 36 maps are predicted by
the decoding pipeline, as a sum of the number of parameters predicted by the 3 networks dedicated to

decoding 1, 2, and 3 populations samples geometrical parameter.
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• Intuition - Despite being based on a ”black box” logic, deep learning seems to have its own logic,
of which we can have an intuition after several experiments. Intuition can sometimes be useful
for the experienced neural network designer to improve learning convergence.

• Inspiration - Although each neural network is unique, it is still possible to classify them into
certain categories making the numerous neural networks developed over the years potential
inspirations to the neural network being designed.
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The network designed here is the result of a combination of these three strategies and resulted in the
setting of a neural network whose various parameters are described hereafter:

6.3.2.1 Number of layers

Increasing the number of hidden layers might improve the accuracy depending on the complexity of
the problem [Goodfellow, Bengio, and Courville 2016b]. Nevertheless, it may also cause the accuracy
estimated from any test data-set to decrease whereas the network overfits the training data-set as
illustrated in [figure 6.5]. In our model, a balance was found resulting in the design of an MLP
network including 11 layers.

6.3.2.2 Number of neurons per layer

Similar to the strategy used to tune the number of layers, it may be useful to increase the number of
neurons per hidden layer to make the MLP more suitable for complex problems. Input and output
layers have a fixed number of neurons equal to the input and output size of the data-set considered for
the training. In hidden layers, the number of neurons per layer decreases from the first post-input layer
to the last pre-output layer starting from 4096 neurons to 16 neurons following decreasing powers of 2
for computational optimization purposes. This decrease in the number of neurons was motivated by
the will to reduce the dimensionality of the problem by projecting the data onto a lower dimensional
subspace that captures its essence.

Increasing the number of layers and the number of neurons per layer implies some increased computa-
tional resources required to train the network and more memory storage to structure the MLP weights
and biases.

6.3.2.3 Activation function

The choice of activation functions is crucial in the design of the MLP, as they act as buttons adjusting
the network parameters. A different activation function can be set up for each layer of the network,
but we have chosen to keep a ReLU activation function for all layers. ReLU activation function
standing for ”rectified linear unit” was computed for our model, and is defined as the positive part of
its argument such as:

σ(x) = max(0, x), (6.13)

with σ the ReLU activation function. Several activation functions were tested, such as the Gelu
(Gaussian Error Linear unit) function used in [Fang et al. 2023], but ReLU has shown satisfactory
results and has the advantage of not requiring any heavy processing. [Figure 6.8] presents a plot of
the ReLU function.

6.3.2.4 Optimizer

The Optimizer is the method in charge of updating the weights, biases, and learning rate during the
learning stage. Various optimizers exist and the ADAM (adaptive moment estimation) optimizer was
selected for our model because it is computationally efficient, has little memory requirement, and
is well suited for problems that are large in terms of data/parameters [Kingma and Ba 2014]. The
ADAM optimizer comes with the tuning of the learning rate, set in our model to 10−3, and beta
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Figure 6.8: Rectified linear unit function plot.

parameters β1 and β2 respectively fixed to 0.9 and 0.999 according to [Keras 2024]. Betas control
the moving average of the gradient at stake in the application of ADAM’s stochastic gradient descent
[Alabdullatef 2020]. One of the advantages of the ADAM optimizer lies in its ability to adapt the
learning rate during the learning process, thus accelerating the convergence of the learning.

6.3.2.5 Batch size

The batch size is a further hyperparameter that defines the number of samples the network works
through before updating the parameters using backpropagation. Within a batch, samples are drawn
randomly from the database which allows smoothing of the loss function curve providing an adequate
representation of the model learning. Indeed, batches make the model adapt to a larger number of
samples, thus eliminating the potential specificity of each sample during training. The batch size,
therefore, acts as an average of the samples, and for our model, we set it to 20 000 samples, which
represent approximately 2% of the total samples composing the training data-sets.

6.3.2.6 Dropout

Dropout refers to removing forward and backward random connections of neurons within the network
resulting in the reduction of potential overfitting [towardsdatascience 2024]. The neurons are dropped
out by a probability set in our model to 10%, following the recommendations of the state of the art
and after experimenting with different values of dropout probability. Indeed, empirically we observed
that a dropout probability set too high can lead the model to be unable to learn.

6.3.2.7 Initialization

During backpropagation, the gradients propagate back through the network layers and decrease signif-
icantly. As a result, the weights associated with the first layers are poorly updated at each iteration of
the optimization process [Gfg 2023c]. This phenomenon is called the vanishing gradient problem and
can be tackled by the Kaiming initialization [K. He et al. 2015] technique implemented in our model
that facilitates efficient training of the parameters from the first layers [Gfg 2023b].
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6.3.2.8 Data normalization

Successful models are built on the quality of the data they are trained on. To enhance this quality,
some data preprocessing is required such as normalization which is necessary because features from the
data don’t contribute equally to the final prediction as they differ in range and unit. Normalization
ensures uniformity of the numerical magnitudes of features. Within the pipeline dedicated to neural
networks, we have implemented a data normalization pre-processing procedure before training the
neural networks. This command allows each parameter in the database to be normalized according
to its distribution, without the need to save the normalized version locally. Various normalization
methods are available, such as rescaling, logarithm or z-score [Patel 2022]. Each of these normalization
methods requires information about the mean and standard deviation, which can be estimated using
distribution histograms of the parameters (see ??). Our model benefited from a rescaling normalization
of the generative parameters, ranging them in [0,1] while the population count and the diffusion
parameters were not normalized.

6.3.2.9 Batch normalization

As input data, the impulses stemming from the network’s hidden layers can be normalized. This
technique is called ”batch normalization” as it’s computed with the mean and standard deviation
of the parameter distribution within the batch under consideration. According to [Ioffe and Szegedy
2015], batch normalization is good for preventing the ”internal covariate shift” phenomenon, defined as
a change in the distribution of network activation functions due to the change in network parameters
during the training stage. These small changes in input distribution add up fast and amplify greatly
deeper into the network. Ultimately, the input distribution received by the deepest neurons changes
greatly between every epoch. As a result, these neurons need to continuously adapt to the changing
input distribution, meaning that their learning capabilities are severely bottlenecked. Furthermore,
batch normalization is said to be good against the vanishing gradient and overfitting problems [Vinod
2020; Ioffe and Szegedy 2015], which may add up with dropout and initialization techniques. The
effects of batch normalization on neural network learning are still debated, as shown by [Santurkar
et al. 2018] stating that batch normalization improvement in learning is more due to the predictive
and stable behavior it brings to gradients rather than reducing the internal covariate shift.

The previous settings were set to the 4 different networks of our pipeline, indiscriminately to the
complexity of the neural network task correlated to the number of parameters to be decoded. In
the future, an adaptation of the different network settings is desirable to adapt the design of neural
networks for each task.

6.3.3 Training and testing the networks

Each of the 4 networks constituting the decoding model beneficiated from its own training with its
dedicated data-set. Networks learning was divided into two steps: the training and the testing:

• The different neural networks dedicated to the prediction of the number of fiber populations
and to the prediction of the generative parameter for the 3 cases of 1, 2, 3 populations were
trained using 772 000, 962 000, 1 496 700 and 1 437 300 samples respectively.

• The different neural networks dedicated to the prediction of the number of fiber populations
and to the prediction of the generative parameter for the 3 cases of 1, 2, 3 populations were
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Figure 6.9: Evaluation of the mean square error of the population count neural network predictor
(top) and of the microstructure neural network predictor for 1 fiber population according to the epoch

count.

tested using 81 480, 102 700, 139 400, and 165 200 samples respectively.

Gaussian noise of approximately 10% was added corresponding to the typical noise level observed on
acquisitions performed with a 3T Prisma MRI system. It would be interesting in the future to vary
the noise standard deviation to better evaluate the robustness of our neural networks to noise.

[Figures 6.9, 6.10] show the training and testing error of the different models for each learning epoch.
The training errors and accuracies presented correspond to the mean of the mean square errors of each
parameter decoded by the models.
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Figure 6.10: Evaluation of the mean square error of the microstructure neural network predictor for 2
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population according to the epoch count.
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6.3. MEDUSA neural network implementation

The range of mean square errors for the population count neural network predictor differs from the
others because the population count was not normalized between [0, 1] like other parameters. The
divergence of the training and testing error curves for the 1 and 2 population decoding models indicates
an overfitting of the neural network after epoch 20. To complete the analysis of training results [table
6.1] shows the testing error obtained after 150 epochs for each parameter independently.

If we look more closely at the error stemming from the prediction of each parameter, we observe that
the prediction of fiber orientations, whatever the number of populations, is insufficient compared to
other parameters. Fiber’s mean orientation direction variability explains these poor results. Indeed,
fiber orientations, because they are described in Cartesian coordinates, retain information about their
directions, yet vector direction has no impact on the diffusion phenomenon, it is therefore necessary to
prevent the data from this variability to improve the performance of the predictive model. Nevertheless,
the fact that the predictive models are also insensitive to the direction of the vectors in their prediction
is surely proof of good learning of the diffusion phenomenon by the model, and therefore a first
promising validation of the quality of the simulated diffusion-weighted signals provided.

A post-processing code was added to the training data. This code aims to force the alignment of fiber
orientation vectors to an arbitrarily defined direction oriented along the upper half of the angular
sphere of the orthonormal reference frame (X,Y,Z). To achieve this result, the coordinates (x,y,z) of
each fiber population orientation vector were iteratively read to identify the orientations for which
z < 0, in which case a scalar product (x,y,z)*(-1,-1,-1) was applied resulting in the standardization
of all fiber orientation vector direction toward angular sphere upper half. [Figure 6.11] illustrates the
application of this post-processing code in the case of a sample with two fiber populations.

Based on the rotated data-set, networks were trained once again, except for the one dedicated to
decoding population numbers as this does not involve fiber orientation. [Figure 6.12] shows the
evolution of the training and testing error networks decoding the microstructure of samples with 1, 2,
and 3 populations in the case of a database with rotated orientation vectors.
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Chapter 6. Implementing a neural network decoding the white matter microstructure

180°

Figure 6.11: 2D Illustration of a two fiber populations simulated sample with it means orientation
vector in red re-oriented to the top part of the surrounding angular sphere using rotation angle of

180°.

As expected, new networks have better prediction results for fiber population orientations, with for
instance a reduction of the testing error by a factor of 50 in the case of one population [table 6.2].
Overall, the accuracy of the models has been improved by the rotation of the data-set as the error
from each parameter prediction decreased compared to the previous networks. Furthermore, the
overfitting observed during the previous training session decreased as well, despite that, the models
corresponding to 2 and 3 population decoding were trained again with fewer epochs to minimize
the remaining overfitting, resulting in stopping the training after epochs 31 and 41 respectively for
networks of 2 and 3 populations decoding.
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6.3. MEDUSA neural network implementation
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Figure 6.12: Evaluation of the mean square error of the microstructure neural network predictor for 1,
2, and 3 fiber population network predictor after applying the rotation post-processing algorithm.
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6.3. MEDUSA neural network implementation

[Figures 6.13, 6.14, 6.15] give a representation of the prediction versus ground-truth accuracy for the
1, 2, and 3 fiber populations computational models. These figures also feature the model’s predic-
tive results dedicated to decoding the number of fiber populations in the case of samples composed
respectively of 1, 2, and 3 fiber populations exclusively.

In those figures, the axon diameter (AD), the global angular dispersion (GAD), and the volume fraction
(VF) are distributed in lines perpendicular to the ground truth axis, unlike the mean orientations
coordinates (x,y,z). This difference is due to the rotation augmentation algorithm applied to the data-
set before the learning step that doesn’t impact the AD, GAD, and VF, resulting in an oversampling
of these parameters proportional to the rotation count factor. Nevertheless, this line structure makes
it possible to identify model predictions’ mean and standard deviation for a given ground truth.

Let’s take a closer look at the results shown in [figure 6.13], dedicated to 1 fiber population MLP:

• The population count prediction is centered on the value 1.5. In our model, because of rounding,
any prediction between ]-inf, 1.5] is associated with samples composed of 1 fiber population. This
limits the model’s prediction error, although some values still lie outside this range. The same
goes for the 2 and 3 fiber population count decoding, with variation ranges of [1.5,2.5] and
[2.5,+inf[ respectively.

• Axonal diameter prediction obtains a coefficient of determination of 0.95. It is a promising
result, but there is a deterioration in the standard deviation of prediction as a function of
axonal diameter. This observation counters our expectations, since in dMRI, large-diffusion
elements have a greater impact on the signal than small ones, so it’s the opposite trend we
were expecting. Two elements can explain this anomaly: first, it could be attributed to network
learning, which reduces its overall error by increasing the standard deviation of large axonal
diameters. The second explanation could come from the dMRI sequences selected and derived
from the iCORTEX protocol, to decode axonal diameters, as the iCORTEX protocol only
proposes a single diffusion time for all sequences, or we know that this parameter is crucial if
we want to correctly predict axonal diameter [Alexander 2010].

• Global angular dispersion prediction obtains a coefficient of determination of 0.62. This is the
least convincing score among the predicted parameters. This can be explained by the more
limited role of GAD on the dMRI signal.

• Volume fraction obtains a coefficient of determination of 0.94. The standard deviation of the
predictions is narrowed and the accuracy is evenly distributed along the range [0.5, 0.9].

• Coordinates of mean fiber orientation X, Y, and Z obtain respectively 0.91, 0.92, and 0.97 scores.
The prediction accuracy is evenly distributed along the range [-1.0, 1.0] for X and Y, and along
[0.0, 1.0] for Z, this distinction results from the rotation of orientations along the upper half
of the angular sphere of the orthonormal reference frame (X,Y,Z), making all z coordinates
positive.

Results attributable to models decoding samples with 2 and 3 populations show similar trends to those
observed for one population, with a few distinctions:

• The greater the number of fibers, the lower the accuracy. In particular, GAD predictions are
considered null in the case of two and three populations with determination coefficients of 0.19
and 0.02.
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Chapter 6. Implementing a neural network decoding the white matter microstructure

1 - fiber population MLP 

First  population

Figure 6.13: Point cloud plots presenting the prediction capacities of the network dedicated to decoding 1 fiber
population microstructure. The first plot exhibits the prediction results from the population count network. The
point cloud is formalized as a color map to highlight the precision results from the prediction of each parameter.

A determination coefficient R2 is displayed for each predicted parameter.
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6.3. MEDUSA neural network implementation

First  population
Second population

2 - fiber population MLP 

Figure 6.14: Point cloud plots presenting the prediction capacities of the network dedicated to decoding 2 fiber
population microstructure. The predicted parameters are separated by color depending on the fiber population
they belong to within the sample. A determination coefficient R2 is displayed for each predicted parameter.
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Chapter 6. Implementing a neural network decoding the white matter microstructure

First  population
Second population

Third population

3 - fiber population MLP 

Figure 6.15: Point cloud plots presenting the prediction capacities of the network dedicated to decoding 3 fiber
population microstructure. The predicted parameters are separated by color depending on the fiber population
they belong to within the sample. A determination coefficient R2 is displayed for each predicted parameter.
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6.3. MEDUSA neural network implementation

• Figures showing the distribution of volume fractions reveal an uneven distribution. This is due
to the arbitrary choice made during the simulations to distribute the VFs of successive fiber
populations according to the remaining volume, as the total VF from a sample cannot exceed
1.0. As a result, populations placed further downstream during generation are less likely to be
able to obtain a large volume fraction.

• The belonging of a parameter to a given population does not seem to influence the prediction
accuracy from a trend point of view. However, from a qualitative point of view, the parameters
associated with fiber populations labeled 2 are less well predicted than those associated with
fiber populations labeled 1, the same goes for fiber populations labeled 3 compared to 2 and
1. This is explainable by the distributions of VFs previously discussed. Indeed, if the volume
fraction is low, so is the impact of the generative parameter on the overall geometry of the
sample, and therefore the impact on the dMRI signal and hence on the ability to be decoded
by the networks.

The prediction of the microstructure parameters in the case of one population is very satisfying with a
high determination coefficient R2 value for most of the generative parameters prediction. The number
of populations in the sample has an impact on the learning quality of the model as predictions are
much more accurate for 1 population than for 2 or 3 populations. Among the predicted parameters,
the mean orientation of the fiber populations is the most reliable followed by their volume fractions,
the axonal diameter, and finally the angular dispersion.

[Figures 6.16] present the feature importances from model prediction dedicated to 1 fiber population
decoding. The importance value is computed using a permutation technique that measures the contri-
bution of each feature by calculating the mean square error difference between the original prediction
and the one after shuffling the model features [ScikitLearn 2024]. The features designate the 285
dMRI parameters used to train the decoding methods, however, the figures present only the FA and
spherical harmonics (SH) stemming from the 15 iCORTEX PGSE sequences, and the 15 SHs of each
sequence were summed to form a unique SH feature. The ADC, the axial and transversal diffusivity
(λ⊥,λ‖) importance were not drawn because these features did not influence the training of any models,
even worse it seems that these parameters are noising features as they importance score is sometimes
negative. This was predictable as the dMRI parameters were consciously not normalized, the range
from ADC λ⊥,λ‖ made them invisible for the model. Several observations can be made on the feature
importances:

• The 15 summed spherical harmonics are more important than the FA in model predictions.
More precisely, only the FAs of sequences with b values greater than or equal to 550 have an
impact on learning.

• The importance of SH increases with bvalue, with a first characteristic step when passing from
6-direction sequences (bvalue = 300) to 30-direction sequences (bvalue = 550) and another step
when passing from 30-directions sequences (bvalue = 1000) to 60-direction sequences (bvalue =
3200). These steps are positive in the case of AD, GAD, VF, and Z mean orientation coordinates,
and negative in the case of X and Y mean orientation coordinates.

• The feature importances of X and Y mean orientation coordinates show the same trend, which
is consistent with the fact that these two parameters simulate a similar geometry and have been
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6.3. MEDUSA neural network implementation

equally distributed. Z coordinates differ from X and Y, which can be explained by the different
distributions implied by the rotation algorithm.

• Except from the AD, sequences with great b-value and numerous directions (bvalue = 1700 and
bvalue = 3200, 60 directions) show the most significant importances overall.

The fact that the importance of features correlates with the sequences from which the different pa-
rameters stem is an expected result. DMRI signals from large b-value sequences are more sensitive
to the simulated microstructure inside the samples. However, the relationship is not linear, as some
inconsistencies in this rule can be observed, notably for AD or fiber orientation coordinates along X
and Y. These inconsistencies may be explained by model optimization, which is difficult to pin down,
or they may be due to the affinity of certain generative parameters, distributed in certain ranges, with
specific sequences. This is the case with AD, which gives more importance to sequences with bvalue
= 550 than to those with greater bvalues.

6.3.4 Discussion

The established computational model of white matter microstructure shows promising validation re-
sults. The capabilities and limitations of our model must now be discussed.

First, the results of our model are particularly efficient for decoding samples with a single fiber pop-
ulation. Different reasons can explain the correlation between decoding efficiency and the number of
populations: from a computational point of view, 2 and 3 populations correspond to a larger number
of parameters to decode, and despite feeding the models with more samples, the complexity of the
regression is thus higher than with 1 fiber population. From a dMRI perspective, the signal used to
decode the microstructure lacks information to correctly distinguish the generative parameters from
the different populations.

Overall, we can state that the ability of the models to decode certain generative parameters better
than others can be explained by the impact of these parameters on the diffusion signal. For example,
the GAD is distributed between [5°, 15°], thus impacting the geometry less than the fiber population
orientation parameter which variation contributes to the 3D rotation of the whole fiber population.

One limitation of our approach, highlighted by [figure 6.13, 6.14, 6.15] is that the AD, the GAD
and the VF profited from less unique samples during the training than fiber orientation due to the
augmentation of the data-set with the rotation and noising algorithm. More precisely there are 100
times more uniquely distributed orientations than AD, GAD, and VF. Reducing the rotation count
might balance the accuracy of predictions.

To improve the precision of our predictions, the straightforward approach would be to feed our networks
with more samples by launching larger simulation campaigns. Moreover, the simulated samples must
benefit from PGSE sequences with high b-values and numerous orientations, as signal stemming from
such sequences has more impact on the network learning. However, it should be noted that in the
case of the current presented simulation campaign, the number of directions and the b-values were
specifically designed to suit the iCORTEX protocol, this constraint was added to be able to test
directly our model on acquisitions stemming from real hardware MRI scans.
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Chapter 6. Implementing a neural network decoding the white matter microstructure

This led us to a limit of our computational model based on MLP networks: it relies on the simulations
of signal attenuations stemming from dMRI sequences that must suit hardware protocol, as our model
only works for a specific set of dMRI data. This is limiting the potential application of a MEDUSA
model to any kind of dMRI acquisition. A few years ago a direct solution to tackle this issue would
have been to implement a ”zero padding” method, consisting of replacing missing values from dMRI
acquisitions with ”0”, but this solution is pretty limited [stackexchange 2016], the best would be to
replace our current limited MLP network with recurrent neural networks (RNN), suitable for such a
task. Even better, the use of ”transformers” [Vaswani et al. 2017] might excel for such a task, as last
year such technology tended to replace RNN architecture [Budu 2023]. Changing the type of neural
network architecture might as well change our current model consisting of separating the different
population decoding into different networks. Nevertheless, the use of MLP during this thesis was
driven by the will to propose, at any cost, a proof of concept regarding the decoding of microstructure,
without consideration of a multi-sequential application of the model. Furthermore, the use of MLP
reduced the amount of data required as well as the complexity of both network design and learning.

The implementation of our rotation and noise algorithm can be replaced by neural networks directly
implementing the rotational variation of the dMRI signal like graph convolutional neural networks
[Chen et al. 2020] or spherical convolutional neural networks [T. S. Cohen et al. 2018].

Providing more samples, or changing the network architecture might not be the only solution to
improve the precision of our model. As seen in [figures 6.16] parameters as ADC or axial and transversal
diffusivity are irrelevant for the learning due to their lower distribution range. To avoid this issue it
is necessary to normalize the dMRI parameters. The current models avoid the normalization of
dMRI parameters as this solution proves itself to be the one providing the best results, but in the
future, a suitable normalization scheme must be found to optimize the input dMRI parameter space.
Furthermore, it could be worth removing some dMRI parameters from the input as some of them
appear to contribute negatively to the training.

Increasing the learning data-set or the model’s architecture might imply moving the model’s training
to a better computation hardware resource. Indeed, the results presented regarding the training of
the network were performed on a local workstation with an NVIDIA® RTX A5000 GPU comprising
16Gb of RAM. This limitation restrained the number of neurons in our MLP networks to fit as close
as possible to the RAM capacity. Launching our training on GPU-oriented HPC is doable considering
the resources accessible in the laboratory notably the access to the ”Jean Zay” supercomputer hosted
in the IDRISS [IDRISS 2022] HPC facility. In the future, if the choice to change architecture is made,
notably with the implementation of transformer networks within the model, it is strongly recommended
to consider launching the training on available HPC or servers more suited to GPU-intensive tasks.

If we take a step back from the training of the neural network, we can discuss as well the choices made
to define the framework of our simulations, in other words, the definition of the fiber populations
within the samples. In the case of a single fiber population, the results are promising and in the
future, other microstructural parameters such as tortuosity or Ranvier nodes could be studied. In
addition, certain parameters such as AD or GAD could benefit from an extended range of variation,
especially for GAD, whose contribution to the signal decrease appears to be erased compared with
other decoded parameters such as fiber orientation. For cases with two and three populations, it is
getting tricky, as the definition of what constitutes a population in the sense of MEDUSA does not
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6.3. MEDUSA neural network implementation

always make sense in the context of the simulated dMRI signals, and by extension, to dMRI signal
stemming from hardware acquisitions. For example, within MEDUSA and the simulation framework,
two populations of fibers within a sample can have similar geometric parameters, which creates a
problem during decoding because the sample might most likely be decoded as a sample with a single
population, which is true in term of dMRI analysis, but wrong in term of MEDUSA computation,
leading to the computation of an error during training. To limit this phenomenon, the simulations
currently presented have seen the orientation of their fibers separated by a minimum angle of 5°
between the populations along the two axes of the spherical coordinates. This criterion might be too
tight, in the future we recommend increasing this threshold angle, to differentiate populations more
significantly from each other and thus better characterize fiber populations between each other.

6.3.5 Conclusion

The white matter microstructure decoding model presented here shows promising results in the de-
coding of samples composed of one fiber population. As the models were trained to fit iCORTEX
acquisitions, a good proof of concept would be to apply MEDUSA models to an iCORTEX acquisi-
tion centered on the corpus callosum, with a priori on the number of fiber population in the area fixed
at one.

The design of the decoding pipeline proved itself to involve a great complexity due to the number
of sequences and the consideration of three different scenarios for the geometry (1, 2, and 3 fiber
populations). To tackle this complexity, the coding of the pipeline beneficiate from an optimized and
adaptative API, making further development on the Ginkgo framework faster.
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Conclusion

To conclude this thesis, the following sections will list the contribution and the milestones reached,
present the prospect, and finally conclude.

7.1 Contributions

The following sections summarise the various contributions of this thesis work.

7.1.1 Optimization of MEDUSA simulator and new input user-friendly dictio-
nary

From the very beginning, the focus was put on improving the MEDUSA simulator capacity to be
HPC compliant. Consequently, the code of both the geometry and diffusion simulations was entirely
re-designed to improve their computational efficiency and to allow its evolution using a generic coding
approach. Moreover, its API was designed to be able to be used either with command lines or through
the Ginkgo python module using a simple JSON config file. Two levels of input dictionaries were
defined: one dedicated to the simulation of individual MEDUSA samples, and the other dedicated to
the management of a full simulation campaign through the use of META-JSON. Additional monitoring
tools were developed such as the computation of the total energy from the remove overlap process.

7.1.2 Validation of MEDUSA

To validate the consistency and accuracy of the MEDUSA simulations, several testing campaigns were
launched to quantify the impact of different parameters on diffusion signal acquisition. Notably, the
RSL, FOV, and remove overlap iteration count were investigated, resulting in optimal settings for the
large-scale simulation campaigns.

7.1.3 Launching of a simulation campaign on HPC facility

A total of three simulation campaigns were launched during the frame of this thesis, approximately
two months long each, and all carried on the TGCC HPC facility. The environment developed to allow
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7.2. Prospects

efficient use and exchange with the HPC, like dockers and job submission, now makes the MEDUSA
simulation framework very convenient to deploy on supercomputers.

7.1.4 Implementing a neural network decoding the white matter microstructure

Four different MLP neural networks were designed and optimized to suit the regression problem
brought by the decoding of white matter microstructure. The pre- and post-processing0 code allowing
formatting of the data stemming from the simulation will benefit the future application of MEDUSA
models. The analysis of the impact made by both generative and diffusion features on the learn-
ing capacity of the model will help future investigation and participate in a better sampling of the
parameters from simulations.

7.2 Prospects

7.2.1 Web servibe MEDUSA

MEDUSA simulations are launched by inputting JSON dictionaries, which provide better visibility of
the various simulation parameters, thereby increasing ease of use. The next step would be to offer a web
service that combines the ergonomics of JSON dictionaries with the laboratory’s access to a powerful
computing infrastructure (TGCC and local server). In this way, users unaware of all the MEDUSA
functionality or JSON would be invited to complete different online widgets, the ergonomics of which
would be simplified and directly connected to fill in the various simulation JSONs. This project could
democratize the use of MEDUSA to many people and thus contribute to its perenniality and visibility.

7.2.2 Implement a new neural network architecture

The current model suffers from its inability to adapt the input made of dMRI parameters stemming
from PGSE sequences. This limitation is due to the choice of an MLP architecture for our networks.
In the future, a model based on recurrent neural networks (RNN) or transformers is to be preferred
to improve the efficiency of the model.

7.2.3 Sampling more geometry parameters

The simulation campaign proposed in this thesis proposed to distribute 4 different parameters of the
geometry of fiber populations, namely: the axonal diameter, the volume fraction, the global angular
dispersion and, the mean orientation. Additional parameters such as tortuosity, or Ranvier nodes could
be distributed to extend the number of decoded WM microstructure parameters. Moreover, additional
cell populations as glial cells, already existing and implemented within the MEDUSA framework, could
be added to the simulations, thus extending the number of elements perceptible by the decoder.

7.2.4 Test more parameters from the simulation

The various test campaigns presented during this thesis have enabled us to clarify the optimal choice
of certain parameters in terms of realism and computational time. We would like to take these test
campaigns a step further, in particular by quantifying the impact of the presence of Ranvier nodes
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within the simulation. A dedicated and simplified pipeline would be recommended for these tests,
enabling simple adaptation and rapid transposition to an HPC facility.

7.2.5 Simulation of new white matter tissues

MEDUSA can currently simulate approximately over 90% of the cell volume fraction found in WM.
However, the simulation of glial cells such as microglia or vascularisation is still lacking. Simulating
micro-vascularity could have an impact on the simulation of the diffusion process, adding the necessity
to simulate blood flow and its contribution to the signal.

7.3 Conclusion

The computational approach of a model for decoding the microstructure of white matter, supported
by digitally synthesized samples, is promising and constitutes an alternative to analytical models. The
work presented has numerous practical applications for patients, notably through the creation of an
additional diagnostic tool for doctors. The topic of this thesis is multi-disciplinary, opening the way
to numerous developments and future reflections, facilitated by the flexibility and portability of the
Ginkgo MEDUSA software environment.
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