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Abstract 

Accurate groundwater level (GWL) simulations facilitate reconstructions and projections for 

analysing historical and future groundwater trends and variability at the decadal scale. In 

this thesis, we investigate the use of deep learning (DL) approaches for GWL simulations, 

reconstructions, and projections, with a focus on capturing low-frequency variability and 

leveraging climate reanalysis and GCM model outputs. A wavelet-assisted DL framework 

was developed, using the Maximal Overlap Discrete Wavelet Transform (MODWT) as a pre-

processing step to decompose input signals. We specifically evaluated advanced DL 

models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Bidirectional LSTM (BiLSTM), for single-station and multi-station approaches. The single 

station approach results indicated that MODWT-assisted GRU models allowed for extracting 

low-frequency information and significantly outperformed standalone models in simulating 

GWLs, particularly for inertial-type GWL. The Shapley Additive Explanations (SHAP) 

technique was used to interpret model outputs and highlight important input features. For 

long-term GWL reconstructions, DL models were trained on ERA5 and ERA20C climate 

reanalysis datasets, enabling reconstructions up to 1900 and 1940, respectively. These 

DL-based models were able to capture multi-decadal variability in all reconstructed 

GWLs. Several multi-station training approaches and clustering were used for large-scale 

GWL simulations, incorporating dynamic climatic variables and static aquifer 

characteristics. Models specifically trained on different GWL types, clustered by spectral 

properties, performed significantly better than those trained on the whole dataset. Finally, 

A multi-station GRU model trained for each GWL type with boundary-corrected MODWT 

(BC-MODWT) pre-processing was used to generate projections until 2100. Future changes 

show decreasing trends in groundwater levels and variability, intensifying from SSP2-4.5 

to SSP5-8.5, despite projected groundwater levels being higher on average compared to 

the historical period in all scenarios. We explain this seemingly counter-intuitive result by 

the fact that projected levels are systematically much higher at the beginning of the future 

period (up to ~2050) compared to the historical period. Finally, our results indicate that 

the variability of annual-type aquifers has increased for all emission scenarios. 
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Résumé 

Des simulations précises du niveau des eaux souterraines (GWL) sont indispensables pour 

générer les reconstructions et les projections servant à analyser les tendances et la 

variabilité historiques et futures des eaux souterraines à long terme. Dans cette thèse, 

nous étudions l'utilisation d'approches d'apprentissage profond (DL) pour les simulations, 

reconstructions et projections du niveau des eaux souterraines, en mettant l'accent sur les 

questions liées à la représentation de la variabilité à basse fréquence interannuelle à 

décennale, et en utilisant divers produits de réanalyses climatiques et sorties de GCM. Une 

approche de pré-traitement par ondelettes assistant les modèles DL a été développée, en 

particulier à partir de transformée en ondelettes discrète à chevauchement maximal 

(MODWT) en une étape de décomposition les signaux d'entrée. Les modèles récurrents à 

mémoire long- et court- terme (LSTM) et leurs développements plus récents (unité 

récurrente à porte GRU et LSTM bidirectionnels BiLSTM) ont été plus spécifiquement utilisés 

et évalués, pour développer des approches d’apprentissage à station unique et à stations 

multiples. Les résultats de l'approche à station unique ont indiqué que les modèles GRU 

assistés par MODWT permettaient d'extraire des informations à basse fréquence et 

surpassaient considérablement les modèles « simples » (i.e. sans pré-traitement) dans la 

simulation des GWL, en particulier pour les GWL de type inertiel. La méthode SHAP a été 

utilisée pour appréhender l’interprétabilité des résultats des modèles et le fonctionnement 

des modèles eux-mêmes, mettant ainsi notamment en évidence les caractéristiques 

d'entrée les plus importantes. Pour les reconstructions GWL à long terme, les modèles DL 

ont été construits en utilisant les ensembles de données de réanalyse climatique ERA5 et 

ERA20C du centre européen de prévisions météorologiques à moyen terme (ECMWF), 

permettant des reconstructions jusqu'en 1940 et 1900, respectivement. Ces modèles 

basés ont pu capturer avec succès la variabilité multidécennale dans tous les niveaux de 

nappe reconstruits, un enjeu important en contexte de changement climatique dans la 

mesure où la variabilité multidécennale peut fortement interférer avec les effets du 

changement climatique. Plusieurs approches d’apprentissage multi-stations et de 

clustering ont été utilisées pour les simulations GWL à grande échelle, intégrant des 

variables climatiques dynamiques et des caractéristiques statiques des aquifères. Les 

modèles spécifiquement entraînés sur différents types de GWL, regroupés sur la base de 

leurs propriétés spectrales, ont obtenu des résultats significativement meilleurs que ceux 

entraînés sur l'ensemble des données. Enfin, un modèle GRU multi-stations entraîné pour 

chaque type de GWL avec un prétraitement MODWT avec correction des effets de bord 

(BC-MODWT) a été utilisé pour générer des projections jusqu'en 2100. Les changements 
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futurs indiquent des tendances à la baisse des niveaux et de la variabilité des eaux 

souterraines, s'intensifiant de SSP2-4.5 à SSP5-8.5, malgré des niveaux des eaux 

souterraines projetés plus élevés en moyenne par rapport à la période historique dans tous 

les scénarios. Nous expliquons ce résultat apparemment contre-intuitif par le fait que les 

niveaux projetés sont systématiquement bien plus élevés en début de période future 

(jusqu’à ~2050) par rapport à la période historique. Nos résultats indiquent enfin que la 

variabilité des aquifères de type annuel a augmenté pour tous les scénarios d’émission.  
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Abbreviations and Acronyms  

AI - Artificial Intelligence  

ANN - Artificial Neural Network.  

GWL - Groundwater Level  

DL - Deep Learning  

ML – Machine Learning 

DDMs - Data-driven models  

RNN -Recurrent Neural networks 

CNN -Convolutional Neural networks  

GNN -Graph Neural Networks 

NARX - Nonlinear Autoregressive network with eXogenous inputs 

LSTM - Long Short-Term Memory    

GRU - Gated Recurrent Unit  

BiLSTM - Bidirectional Long Short-Term Memory  

XGBOOST - Extreme Gradient Boosting 

RF - Random Forest  

SVM - Support Vector Machine  

MLR - Multiple linear regression 

CMIP6 - Coupled Model Intercomparison Project Phase 6  

SSP - Shared Socioeconomic Pathway  

ECMWF - European Centre for Medium-Range Weather Forecasts  
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ERA - ECMWF Re-Analysis  

SAFRAN - Système d'Analyse Fournissant des Renseignements Atmosphériques à la Neige  

BC-MODWT - Boundary Corrected Maximal Overlap Discrete Wavelet Transform  

TWSA - Total Water Storage Anomalies  

TWS - Terrestrial Water Storage  

SHAP - SHapley Additive exPlanations  

NLDAS - North American Land Data Assimilation System  

KGE - Kling-Gupta Efficiency  

MAE - Mean Absolute Error 

RMSE - Root Mean Square Error  

NRMSE – Normalised Root Mean Square Error  

NSE - Nash-Sutcliffe efficiency 

AMO - Atlantic Multidecadal Oscillation  

NOAA - National Oceanic and Atmospheric Administration  

ENSO - El Niño-Southern Oscillation  

NAO - North Atlantic Oscillation  

GRACE - Gravity Recovery and Climate Experiment  
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Introduction  

Groundwater resources are crucial in global water security, supporting ecosystems, 

agriculture, and human populations worldwide. In the context of climate change, 

understanding, simulating, and developing scenarios for the temporal evolution of 

variations in groundwater levels (GWLs) over large spatial and temporal scales is critical, 

particularly due to the complex nature of aquifer systems and their response to climatic 

variability. This necessitates the availability of appropriate modelling tools. While 

understanding and simulating long-term GWL variations is important, current modelling 

approaches face several limitations. Distributed modelling methods are difficult to 

implement on large spatial scales, and the scarcity of long-term piezometric data 

(exceeding fifty years) hinders comprehensive analysis (Barthel & Banzhaf, 2016). Several 

approaches are often used to model the hydrological responses of aquifers on these scales: 

conceptual modelling (Jackson et al., 2016; Ascott et al., 2020), physically-based 

modelling (Halloran et al., 2023; Vergnes et al., 2023) and statistical modelling (Coulibaly 

et al., 2001; Wunsch et al., 2021). At large scales, conceptual models are generally 

unsuitable, and the implementation of physically-based models, while still possible, 

becomes very complex due to the need for a large amount of geological information 

(Barthel & Banzhaf, 2016; Condon et al., 2021). On the scale of mainland France, the 

AquiFR project (Habets et al., 2015), a national hydrogeological modelling platform project 

that has been underway for several years, combines different physics-based and 

conceptual modelling approaches with this objective and clearly demonstrates the 

difficulties inherent in developing a relevant large-scale modelling tool for decision support. 

Data-driven models (DDMs) and, in particular, deep learning (DL) methods have been 

receiving increasing attention in the field of hydrology for several years (Fang et al., 2022; 

Klotz et al., 2022; Kratzert et al., 2018, 2019; Vu et al., 2021; Wunsch et al., 2021). They 

offer the possibility of tackling complex problems for highly non-linear cases in hydrology 

and provide potential solutions for hydrological time series classification or regression 

problems for simulation. However, most of these works remained focused on surface water, 

and only a few studies addressed the issue of long-term simulation of GWL, including 

reconstruction or projection. It then appears particularly interesting to analyse the 

capability of DL models to address this issue. 

Aquifers act as low-pass filters, with long-term variabilities sometimes strongly controlling 

piezometric variations, as well as long-term changes in streamflow, in particular in large 

watersheds. Low-frequency multi-year to multi-decadal variability is inherited from large-

scale climatic patterns controlled by atmospheric and ocean circulation (Baulon et al., 
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2022a & b; Massei et al., 2010 and 2017; Rust et al., 2018; Neves et al., 2019; Liesch & 

Wunsch, 2019) and may significantly influence the estimation of piezometric trends and 

extremes as shown in Baulon et al. (2022a & b) or Rust et al. (2019). Such low-frequency 

variability is also known as a potentially significant contributor to uncertainties in future 

time hydrological projections, as it may, in certain circumstances, mask or amplify the 

effect of climate change, as underlined in Boé and Habets (2014). Although groundwater 

systems involve complex interactions between many variables like climate, geology, etc., 

DL models should be able to capture the subsequent nonlinear relationships and be 

typically good at extracting patterns at multiple spatio-temporal scales. Hence, such 

models need to simulate groundwater levels that can be dominated by any of the annual, 

infra-annual, multiannual, decadal variability or any mix of those. 

Several scientific and technical gaps exist. Most previous studies exploring DDM and DL 

models predominantly focused on forecasting, with previous GWLs being used as input 

rather than simulation, relying heavily on autocorrelation in GWL values, which should be 

avoided. Further, there is a clear lack of studies looking at either forecasting or simulating 

GWL time series affected by low-frequency interannual to decadal variability with a 

significant amplitude. In this framework, the major challenge then consists of producing 

consistent long-term GWL simulations using only external input variables (i.e. not using 

previous data of the target variable) and limited observed target variable data (e.g. GWL 

time series that would be too short to display enough low-frequency “oscillations” for 

training the DL model). Different approaches must be developed to ensure the training 

datasets contain all the necessary information for the model to learn effectively. The most 

adequate architectures and approaches should then be capable of properly describing and 

simulating low-frequency variability and long-term trends in groundwater systems. Finally, 

such models should then permit to address one ultimate scientific question about the 

possible evolution of groundwater levels characterised not only by seasonal but also by 

low-frequency climate-induced variations following different climate change scenarios from 

different climate models. 

This thesis explores how deep learning approaches can provide alternatives and 

complement traditional physical-based or conceptual modelling techniques to address 

these challenges. We then aimed to develop robust local to regional DL approaches to 

establish reconstructions and projections of different types of piezometric time series at 

the scale of northern France, leveraging large-scale hydrological and climatic information 

to address issues of trends and variability over the last century in the past and up to 2100 

into the future. To summarise, we aimed to address the following main research questions: 
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1. How can we develop deep learning models that account for various types of 

groundwater level variations beyond annual cyclicities and are not designed only 

for forecasting for a limited number of time steps (and not based on previous values 

of target variables)? 

2. How does spatial resolution of explanatory input climate variables from reanalysis 

datasets impact simulations or reconstruction? How accurate are these in capturing 

different variabilities? 

3. Can such DL models consistently capture trends, long-term oscillations, and 

variability? What relevant strategies are needed to ensure this? 

4. What does DL simulated GWL time series tell about how different types of aquifers 

(e.g. annual dominated or low-frequency dominated) may respond to climate 

change scenarios? 

The work carried out is part of a wider framework aimed at understanding groundwater 

level variations over metropolitan France, their characteristics and origins and developing 

data-driven models suitable for simulating (reconstructing and projecting) their evolution 

on long time scales, past or future. The work presented here builds on previous works 

carried out in the thesis of Baulon (2023), which consisted of understanding the climate-

forcing factors of groundwater level variability. For this purpose, Baulon (2023) curated a 

database of piezometric stations with minimal human influence (i.e., mainly pumping) and 

the longest available records. It eventually resulted in 76 stations which were mainly 

located in northern France.  

The above research questions are addressed in the following five chapters as described 

below and in Figure 0.1: 

In Chapter 1, we review the state-of-the-art DL techniques applied to groundwater studies, 

highlighting current challenges such as limited global datasets, complex geological 

influences, and sensitivity to human activities. It then also explores recent advances in DL, 

including multi-station training and transfer learning, to bolster model generalisation and 

address data scarcity. 

In Chapter 2, we present a wavelet-assisted deep learning approach to model groundwater 

levels that allows for accurately taking into account the low-frequency variability affecting 

some time series. We evaluate and compare the respective performance of wavelet-

assisted models and standalone DL models. This chapter has been published in the Science 

of The Total Environment Journal (https://doi.org/10.1016/j.scitotenv.2022.161035). 

https://doi.org/10.1016/j.scitotenv.2022.161035
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In Chapter 3, we explore the capability of the DL models developed for reconstructing 

groundwater levels (GWLs) in northern France during the past century, using long-term 

climate reanalysis data. We used DL models with and without wavelet pre-processing to 

simulate GWLs from different reanalysis products, namely ERA5 and ERA20C datasets. This 

chapter was published in the Journal of Hydrology: Regional Studies 

(https://doi.org/10.1016/j.ejrh.2023.1016). 

Chapter 4 is dedicated to exploring the so-called “multi-station” approach, which consists 

of training DL models on multiple stations simultaneously to try to include as much 

information as possible in the training process compared to training using only one station. 

The chapter introduces different multi-station approaches incorporating dynamic climatic 

variables and static aquifer characteristics to account for groundwater variations across 

the study area (northern France). Both clustering and wavelet transform decomposition 

were tested to leverage regionalised information along with static attributes and a one-hot 

encoding approach. The content of this chapter has been submitted and is currently under 

review after acceptance with major revisions to Hydrology and Earth System Sciences 

(https://doi.org/10.5194/egusphere-2024-794). 

Finally, in Chapter 5, we use a most suited deep learning approach to generate 

groundwater level projections for northern France under various climate change scenarios 

until 2100, comparing different state-of-the-art climate models. Specifically, we investigate 

the possible changes in GWL average and variability for different GWL types (i.e. more or 

less dominated by low frequency). This chapter corresponds to an article submitted to 

Earth’s Future (https://doi.org/10.22541/essoar.172526712.23981307/v1) and is 

currently under review. 

This thesis was conducted in the framework of the HYDROREC project (Deep learning for 

long-term and large-scale groundwater reconstruction) in collaboration with M2C CNRS 

and BRGM, with the financial support of the Normandie Region and BRGM under the 

agreement No. 21E01959. 

 

  

https://doi.org/10.1016/j.ejrh.2023.1016
https://doi.org/10.5194/egusphere-2024-794
https://doi.org/10.22541/essoar.172526712.23981307/v1
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Figure 0.1: Simplified overview of thesis structure 
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Chapter 1. Deep learning for modelling 

groundwater level variations: Challenges 

and opportunities   

 

Deep learning has gained wide interest in the hydrological community in the last few years 

but mostly focussed on surface hydrology. It then appeared to us that there is a need for 

a comprehensive review of groundwater applications of DL, in particular to highlight the 

current scientific and technical barriers in this field. This chapter is based on a manuscript 

in preparation for a review paper focused on understanding the current state of the art in 

DL for groundwater level variations and exploring future possibilities. 

1.1. Introduction 

Trends and variations in Groundwater level (GWL) are a critical aspect of water resource 

management, particularly in the context of climate changes (Baulon et al., 2022; Jasechko 

et al., 2024; Massei et al., 2020). GWL simulations are vital in creating reconstructions to 

investigate past fluctuations in groundwater resources or developing seasonal to 

multidecadal climate change impact projections (Chidepudi et al., 2024). Evaluating long-

term shifts in GWL is vital for assessing the effects of climate change on aquifers and for 

effective water resource management. For instance, in regions experiencing prolonged 

droughts or increased water demand, accurate simulations of GWL can inform sustainable 

extraction strategies and prevent aquifer depletion (Scanlon et al., 2016). 

 Importance of GWL Simulations 

The significance of GWL and the necessity for precise simulations cannot be overstated. 

Accurate simulations provide valuable insights, enabling us to manage this critical resource 

better (Chidepudi et al., 2023). However, the lack of comprehensive GWL observations 

significantly limits our understanding of historical GWL trends, variations, and the intricate 

relationship between GWL and climate. This lack of data poses a significant challenge to 

our ability to analyse patterns, observe spatial and temporal fluctuations, and establish 

robust correlations between groundwater dynamics and climatic factors (Chidepudi et al., 

2024a; Dorigo et al., 2021; Taylor et al., 2013).  



 

 

21 

 

Deep learning (DL) has revolutionised various aspects of hydrology (e.g., flood forecasting: 

Nearing et al., 2024) and climatology (e.g., weather forecasting and climate projections: 

Bauer et al., 2023). The recent advancements have significantly contributed to the 

progress in developing a high-resolution digital twin for the entire Earth (Bauer et al., 

2024) and its terrestrial water cycle (Brocca et al., 2024). While significant advancements 

have been made in surface hydrology, there remains a need to explore groundwater 

studies within the context of DL applications. Global GWL modelling experiments have 

historically faced challenges due to the complexity of subsurface processes, data scarcity, 

and computational limitations (Condon et al., 2021; Heudorfer et al., 2024). While 

providing valuable insights, traditional physics-based models often struggle to capture the 

full range of heterogeneity and non-linearity in groundwater systems, especially at large 

scales (Chidepudi et al., 2024b). DL offers promising solutions to these challenges through 

its ability to handle complex, non-linear relationships and integrate diverse data sources 

(Kratzert et al., 2021). 

 Objectives of the Review 

In groundwater, research leveraging DL is still emerging (Heudorfer et al., 2024), 

highlighting the critical need to draw comprehensive insights from the progress made in 

DL applications across other relevant fields of hydrology and climatology. Even though 

surface water entities (rivers and lakes) are typically treated separately from groundwater, 

the two are intrinsically linked, interacting at points such as streambeds, floodplains, 

wetlands, and springs, where water can move between surface and underground sources 

(Scanlon et al., 2023). As the surface hydrology community continues to make significant 

strides, it becomes increasingly evident that a parallel advancement in subsurface 

hydrology is imperative. A comprehensive understanding of the current state-of-the-art 

technologies and methodologies becomes indispensable in advancing groundwater studies 

within the broader framework of large-scale hydrology. 

In this review, we aim to provide an overview of the current state-of-the-art research using 

deep learning approaches for simulating, reconstructing, and projecting groundwater 

levels, highlighting the associated challenges and opportunities. In Section 1.2, we discuss 

the evolution of data-driven models used in groundwater studies. In Section 1.3, we 

highlight the current state of the art in DL for groundwater with all different possible 

applications. In Sections 1.4-1.6, we discuss the recent advances in using DL from surface 

hydrology applications and their relevance to groundwater. We highlight the opportunities 

and future directions in Section 1.7. Finally, we provide a summary and conclusion in 

Section 1.8 
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1.2. Evolution of Data-Driven Models in Hydrological 

Simulations and Forecasting 

GWL simulations have often been developed using physically based and conceptual models 

such as MODFLOW (Mcdonald et al., 1988), Aquimod (Jackson et al., 2016), ParFlow 

(Maxwell et al., 2015) and LISFLOOD (Trichakis et al., 2017). While originally designed for 

surface water, LISFLOOD is now also being adapted for groundwater. These models offer 

significant benefits, including their ability to represent complex groundwater flow physics 

through mathematical equations, incorporate diverse hydrogeological parameters, and 

provide insights into underlying hydrological processes. They also allow for better 

generalisation to new scenarios by following physical laws and hydrological principles. 

However, these approaches are often difficult to implement at the global or regional scale, 

which is essential for detecting large-scale hydrological changes (Kingston et al., 2020). 

Due to the substantial computational and specific data requirements associated with these 

models, data-driven methods have become increasingly popular complements or 

sometimes alternatives in recent years (Chidepudi et al., 2023; Hauswirth et al., 2021; 

Wunsch et al., 2022a).  

While previous review papers (Ahmadi et al., 2022; Boo et al., 2024; Nourani et al., 2024; 

Rajaee et al., 2019; Tao et al., 2022; Uc-Castillo et al., 2023) have predominantly focused 

on the application of artificial intelligence (AI), including machine learning (ML) and DL, in 

groundwater studies, their emphasis has always been on forecasting as shown in Table 

1.1. It is important to note that while ML encompasses a wide range of algorithms, such 

as regression trees, random forests, XGBoost, and linear regression, DL specifically refers 

to models based on neural networks. In contrast, our review paper distinguishes itself by 

comprehensively examining forecasting and simulations, reconstructions, and projections 

within the context of DL applied to GWL time series. Furthermore, while traditional 

forecasting methods, as defined by Beven & Young (2013), have relied primarily on past 

target values in GWL, a very recent study has underscored the potential benefits of 

integrating external variables (Precipitation, temperature...) for ungauged regions, even 

within forecasting frameworks (e.g., Nearing et al., 2024).  

Nevertheless, existing review papers have yet to undertake a comparative analysis of these 

models under varying conditions, such as autoregressive (mainly used for forecasting) and 

non-autoregressive approaches (suitable for simulation, reconstruction and projections). 
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Our paper seeks to address this gap by delving into a detailed discussion on the 

distinctiveness of various DL approaches, elucidating their respective limitations and 

opportunities. Through this comprehensive exploration, our review aims to overview the 

application of DL in groundwater studies and discuss potential avenues for future research 

and practical implementation within large-scale hydrology. 

Table 1.1: Recent review papers in groundwater AI applications  

Study Focus Models Articles reviewed 

(Rajaee et al., 2019) Modelling 

(Forecasting):Review 

AI methods 

(2001-2018) 

67  

(Ahmadi et al., 

2022) 

Forecasting: Review Machine learning 

(2010-2020) 

197  

(Tao et al., 2022) Forecasting: Review Machine learning 

(2008-2020) 

138  

(Uc-Castillo et al., 

2023) 

Forecasting-Review Machine learning 

(2000-2023) 

168  

(Nourani et al., 

2024) 

Forecasting 

(GRACE):Review 

ML & DL (2002-2023) 90  

(Boo et al., 2024) Forecasting: Review Machine learning 

(2017-2023) 

142  

 

1.3. DL Models for GWL Studies 

DL techniques have gained significant traction in GWL modelling due to their ability to 

capture complex, non-linear dynamics by leveraging diverse data sources and features. 

These techniques encompass a wide range of neural network architectures, including Long 

Short-Term Memory (LSTM) networks, Gated Recurrent Units (GRU), Bidirectional LSTMs 
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(BiLSTMs), CNN (Wunsch et al., 2021), GNN (Bai & Tahmasebi, 2023). LSTMs and GRUs 

are variants of RNNs that are particularly effective in capturing long-term dependencies 

and temporal patterns, making them well-suited for time series forecasting tasks. CNNs 

excel at extracting spatial features and patterns, which can be beneficial for incorporating 

spatial information in groundwater models. GNNs, on the other hand, are adept at handling 

graph-structured data and capturing spatial relationships, making them suitable for large-

scale groundwater modelling applications. 

Table 1.2: Examples of recent studies using DL for GWL forecasting 

Reference study Lead time 

 

Model used 

  (Collados-Lara et 

al., 2023)  

1-6 months ANN (NAR, 

NARX,ELMAN) 

  (Bai & Tahmasebi, 

2023)  

One week Graph neural 

networks, GRU, LSTM 

(Patra et al., 2023) Three days LSTM – TL (Transfer 

learning) 

(Vu et al., 2023) 30 days BiLSTM 

 

 Simulations, Forecasting, Projections, and 
Reconstructions 

While simulation, forecasting, projections, and reconstructions are often used 

interchangeably in groundwater studies, there is a compelling need to distinguish them to 

prevent ambiguity. According to Beven & Young (2013), forecasting involves quantitatively 

reproducing a system's behaviour in advance, utilising observations of inputs and relevant 

state variables up to the present time, known as the forecasting origin. Conversely, 

simulation entails replicating the behaviour of a system based on predetermined inputs 

without considering observed outputs. Projections, often referred to as 'what-if' simulations 

Beven & Young (2013), involve simulating the future behaviour of a system based on prior 

assumptions about future input data. 
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1.3.1.1. Forecasting 

GWL forecasting using DL is still an active field of research with growing interest 

exponentially in recent years. However, the focus of this study is not on forecasting. A few 

examples of recent GWL forecasting studies, lead time, and model evaluation are shown 

in Table 1.2. It is important to notice that while using previous target values has been quite 

usual in forecasting studies, these studies have limited applicability. For instance, they are 

not transferable to unmonitored locations or used in the periods that GWL data is not 

available. Hence it has been recommended to explore external influencing variables as 

often done in rainfall-runoff modelling.    

1.3.1.2. Reconstruction 

Although Beven & Young (2013) do not explicitly define reconstruction, it can be 

interpreted as applying simulation techniques to historical data, utilising external variables. 

In some cases, nearby groundwater well data can be employed for near-historical 

reconstruction when available, as demonstrated by (Vu et al., 2021). Nevertheless, for 

long-term reconstruction, leveraging external variables from historical reanalysis datasets 

would offer greater advantages (Chidepudi et al., 2024; Hagen et al., 2023; Massei et al., 

2020). Studies on simulations and reconstruction using data-driven models are prevalent 

on streamflow, as shown in Table 1.3, yet a very limited studies have been done on 

groundwater. In a recent effort, Chidepudi et al. (2023) employed recurrent-based DL 

models, including Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Bidirectional LSTM (BiLSTM), to simulate groundwater levels affected by interannual to 

decadal variability. This study utilised meteorological input data from the high-resolution 

SAFRAN reanalysis dataset. Additionally, the study found that applying a wavelet 

preprocessing technique, specifically the boundary-corrected maximum overlap discrete 

wavelet transforms (BC-MODWT), improved the simulations compared to using DL models 

alone, without any pre-processing. In a subsequent study, Chidepudi et al. (2024) used 

recurrent neural network architectures (LSTM, BiLSTM, GRU) with and without wavelet 

preprocessing on groundwater level (GWL) data from the ERA5 and ERA20C climate 

reanalysis datasets. The wavelet-assisted models, especially the BiLSTM, consistently 

outperformed the standalone models in reconstructing GWLs, capturing annual, 

interannual and decadal variability. The reconstructions using the higher-resolution ERA5 

dataset slightly outperformed those using the coarse-resolution ERA20C dataset. The study 

validated the long-term GWL reconstructions against the longest observed time series 

available (Tincques station), confirming the models' ability to capture multidecadal 

variability linked to the Atlantic Multidecadal Variability (Klavans et al., 2022; O’Reilly et 
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al., 2023). More such studies would be needed in diverse groundwater level variations and 

regions for better generalisation.  

Table 1.3: Recent papers in reconstruction 

  (Vu et al., 2021) 

  

Reconstruction of 

missing GWL 

LSTM  Only with nearby 

GWLs 

(Tursun et al., 

2024) 

Reconstruction of 

missing Stream flow 

Data integration 

with LSTM 

In human-regulated 

catchments along 

with global 

reanalysis 

streamflow data 

(GloFAS) 

(Chuphal & Mishra, 

2023) 

Reconstruction of 

streamflow (1951-

2021) 

Land surface 

hydrological and 

river routing models 

Observed 

meteorological 

variables (P, tmax 

and tmin) 

(Mishra et al., 2018) Reconstruction of 

droughts (1951-

2015) 

Land surface models Meteorological 

(Jackson et al., 

2016) 

Reconstruction of 

multidecadal GWL 

Lumped conceptual 

model 

Obs Rainfall and PET 

(Chidepudi et al., 

2024) 

Reconstruction of 

long-term GWL 

DL (LSTM, GRU, 

BiLSTM) along with 

BC-MODWT 

Reanalysis (ERA20C 

& ERA5) 

(Hagen et al., 2023) Reconstructing daily 

stream flow and 

floods 

DL Large-scale 

atmospheric 

variables 

 

1.3.1.3. Projecting Future Trends Under Climate Change Scenarios 

DL models can be used to assess the impact of climate change on groundwater systems 

by incorporating climate projections as input data. These assessments can provide insights 

into potential changes in groundwater levels under different climate scenarios. Recent 

studies have explored using ML/DL methods for groundwater projections, mostly CMIP 5 

data, as shown in Table 1.4. 
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Table 1.4: Recent studies on groundwater projections 

(Secci et al., 2023) Projections NARX, CNN, LSTM CMIP5 

(Wunsch et al., 

2022a) 

Projections CNN CMIP5 

(Chakraborty et al., 

2021) 

Projections XAI (XGBoost, LR) CMIP5 

(Xiong et al., 2022) Projections SVM, RF, ANN CMIP5 

(Nourani et al., 

2023) 

Projections Autoregressive and 

ensemble ML 

CMIP6 

 

Leveraging potential global climate datasets (e.g., historical Reanalysis and climate models 

like CMIP6) is relatively underexplored in groundwater studies. DL techniques have been 

extensively applied in surface hydrology to reconstruct streamflow records and project 

future streamflow under various climate change scenarios (Hagen et al., 2023; Wi & 

Steinschneider, 2022). These studies have demonstrated the potential of DL models to 

capture complex spatiotemporal patterns and non-linear relationships, outperforming 

traditional statistical methods in many cases. However, groundwater-focused 

reconstruction and projection studies have been relatively scarce, partly due to the limited 

availability of long-term groundwater level data and the inherent complexity of 

groundwater systems. 

 Data limitations 

While DL shows great promise, it is important to note that these techniques require large, 

high-quality datasets for training and validation. Groundwater studies face significant 

challenges due to limited global datasets, complex geological factors, and sensitivity to 

human activities (Condon et al., 2021; Heudorfer et al., 2024). Spatially and temporally, 
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data scarcity poses difficulties in training accurate DL models and capturing intricate 

groundwater dynamics. The influence of intricate geological factors and human activities 

introduces additional complexity and sensitivity in simulations. Furthermore, the need for 

historical data, transferability and generalisation in data-scarce regions, and addressing 

interannual to decadal variability in groundwater levels poses additional challenges. Barthel 

et al. (2021) highlighted that groundwater system properties are difficult to obtain and 

require additional efforts to make them suitable for structured analysis. Further, the 

catchment delineation from surface water systems does not apply to groundwater. Another 

challenge in groundwater modelling is the difficulty of operating physics-based (PB) or 

conceptual models on large spatial scales. As the scale of the study area increases, PB 

models become increasingly complex and computationally demanding, often requiring 

detailed parameterisation that may not be available across vast regions. In contrast, DL 

modelling approaches may be more suitable for large-scale applications, as they can 

implicitly account for various processes without explicitly modelling each one. Addressing 

data scarcity is a significant challenge in groundwater modelling and simulations, 

particularly for large-scale or regional applications. Furthermore, uncertainty analysis is 

also crucial in groundwater simulations and projections when models deal with limited data, 

as it helps quantify and account for the various sources of uncertainty inherent in these 

complex systems. For model uncertainty, the ensemble DL models trained with different 

initialisations can be used to estimate uncertainties and quantify model robustness.  

 Model Interpretability and Explainability 

The interpretability and explainability of DL models remain challenging and essential for 

building trust and understanding the underlying mechanisms driving groundwater 

dynamics (Chidepudi et al., 2023; Jung et al., 2024; Niu et al., 2023). Explainability and 

interpretability are crucial when applying DL models for groundwater simulations due to 

the inherent complexity of groundwater systems involving intricate physical processes and 

interactions. Several techniques have emerged to enhance the interpretability of DL models 

in groundwater simulations. Such as 1) Shapley Additive exPlanations (SHAP), a game-

centric approach whose values can be aggregated across datasets to provide a global 

understanding of the model's behaviour, revealing the importance of different features in 

groundwater simulation tasks (Chidepudi et al., 2023). SHAP values can be visualised using 

techniques like summary plots, dependence plots, and force plots, aiding in interpreting 

the model's behaviour and understanding complex relationships between input features 

(e.g., precipitation, temperature) and groundwater predictions. 2) Local Interpretable 

Model-agnostic Explanations (LIME), used to get local explanations by approximating the 

complex model with a simpler, interpretable model around a specific simulation. This 
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approach can be used to identify the most influential features for individual hydrological 

simulations, providing localised insights into model behaviour (Althoff et al., 2021; Cheng 

et al., 2022). 

Another possibility to enhance interpretability is by building hybrid models. The term 

"hybrid modelling" has been used in various ways in hydrological studies. In general, any 

model that combines two or more different approaches is considered a hybrid model. Some 

examples of such hybrid models in relevant subfields of hydrology include physical-based 

models combined with data-driven models (DDMs) (Xu et al., 2024), conceptual models 

combined with DDMs (Espinoza et al., 2024), global hydrological models combined with 

DDMs (Kraft et al., 2022), preprocessing techniques (e.g., BC-MODWT) combined with 

DDMs (Momeneh & Nourani, 2022; Nourani et al., 2014; Rehana & Rajesh, 2023), 

combination of multiple DDMs (e.g., CNN-LSTM, KNN-LSTM) (Barzegar et al., 2021; 

Rehana & Rajesh, 2023), and hybrid Physics-AI approaches (Jiang et al., 2020). 

In recent years, there has been a growing interest in combining different groundwater 

modelling techniques to create hybrid approaches. So far, these hybrid methods have 

primarily focused on combining data-driven methods such as DL architectures like LSTMs 

and CNNs with pre-processing techniques like wavelet transform. However, there is still 

much to explore in the development of hybrid approaches that combine data-driven models 

with physics-based groundwater models, benefiting from the complementary advantages 

of both methodologies (Kraft et al., 2022). The data-driven components, powered by 

machine learning or DL algorithms, can fill gaps or provide boundary conditions for the 

physics-based models rooted in the fundamental principles and equations governing 

groundwater flow. This coupling allows the data-driven models to capture intricate patterns 

and relationships from relevant influencing variables, while the physics-based models 

contribute physical realism and interpretability to the overall modelling approach 

(Tahmasebi et al., 2020; Tripathy & Mishra, 2024). 

Furthermore, multi-model approaches involve ensemble techniques, where multiple 

models (either physics-based, data-driven, or a combination) are employed, and their 

outputs are combined through various strategies, such as model averaging, Bayesian 

model combination, or machine learning-based fusion (Thébault et al., 2024). This 

approach can leverage the strengths of individual models and potentially improve overall 

predictive performance and robustness. Hybrid and multi-model approaches have shown 

promising results in hydrological applications, particularly when data availability is limited, 
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or the physical processes are complex and challenging to accurately model using a single 

approach.  

1.4. Approaches for Regionalisation and Large-Scale 

Modelling 

Large-scale modelling in hydrology has been a long-standing challenge, particularly in 

data-scarce regions or ungauged catchments. Recent advancements in deep learning 

techniques, such as transfer learning and multi-catchment training, have opened up new 

possibilities for addressing these challenges. Review of the significant advancements in the 

application of data-driven models, particularly in areas such as multi-station training and 

transfer learning. 

 Transfer Learning 

Pre-trained DL models from data-rich regions can be fine-tuned or adapted to the data-

scarce areas, reducing the need for extensive local data (Ghobadi et al., 2024; Xu et al., 

2024; Yao et al., 2023). This approach has shown promising results in rainfall-runoff 

modelling, where models trained on multiple catchments can be transferred and tested for 

their capabilities in simulating pseudo-ungauged catchments. Recently Sun et al. (2021) 

showed that Graph Neural Networks (GNNs) are robust in learning spatiotemporal 

dependencies, resulting in similar or better performance than models trained using LSTMs. 

GNNs' ability to capture spatial relationships and leverage graph-structured data makes 

them well-suited for large-scale hydrological modelling, where spatial dependencies play a 

crucial role. 

 Multi-Catchment Training 

With the growing availability of large-scale datasets spanning multiple catchments, recent 

studies have explored multi-station training for data-driven models in hydrology, where 

models are trained simultaneously on data from diverse catchments and stations, 

leveraging information from varied hydro-meteorological conditions. This approach leads 

to more robust and transferable models with improved generalisation performance, 

especially in data-scarce regions, enabling the capture of broader hydrological patterns 

and dynamics. It enhances transferability to ungauged or data-sparse basins, addressing 

the limitations of traditional single-catchment training approaches. DL models trained on 

multiple catchments have shown increased interest and outperformed their single-

catchment counterparts (Kratzert et al., 2019; Klotz et al., 2022; Nearing et al., 2024). 
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1.5. Comparison and Benchmarking Studies 

Benchmarking and comparison across models are necessary to understand the 

advancements and benefits of different approaches. Recent studies have compared the 

performance of LSTM models against conceptual and physically-based hydrological models 

in various contexts, including ungauged basins, historical simulations, climate impact 

studies, and extreme flow estimations (Hauswirth et al., 2021). These comparisons aim to 

assess the strengths and limitations of different modelling approaches and identify areas 

for improvement. Lees et al. (2021) and Kratzert et al. (2019) have benchmarked LSTM 

models against lumped conceptual models (e.g., TOPMODEL, VIC) in Great Britain and 

across the continental United States, respectively. LSTMs have demonstrated better out-

of-sample performance than conceptual models' in-sample performance, particularly in 

capturing complex hydrological patterns and dynamics. However, conceptual models 

maintain water mass balance constraints, which LSTMs do not inherently enforce. 

Comparisons between LSTMs and physically-based models are less common, but some 

studies have explored hybrid approaches that combine the two (Kraft et al., 2022; Liu et 

al., 2024). Recent studies also have highlighted the potential benefits of using 

differentiable models that combine process-based models with machine learning 

techniques like neural networks (Feng et al., 2023; Shen et al., 2023). 

LSTMs have demonstrated their ability to generalise and perform well in ungauged basins 

or for historical simulations, where traditional models may struggle due to limited data 

availability. The ability to simulate hydrological processes in ungauged catchments is a 

critical requirement for large-scale modelling. Several studies have explored the potential 

of DL models in this context. Arsenault et al. (2023) showed that LSTM outperformed the 

traditional hydrological models for streamflow prediction at ungauged catchments. 

(Nearing et al., 2024) showed that AI-based forecasting is reliable even for extreme events 

in ungauged basins with up to five days lead time and performed better than nowcasts 

from GLOFAS. The study did not use previous streamflow data as inputs to forecast in 

ungauged situations with no streamflow data. (Barthel et al., 2021) proposed to build upon 

the learning from the progress in ungauged basins (Streamflow) with similarity-based 

approaches, which are still not widely adopted in groundwater studies for unmonitored 

sites. While these studies are not yet completely evaluated for groundwater, recently, Haaf 

et al. (2023) presented a method to estimate daily groundwater level time series at 

unmonitored sites by linking groundwater dynamics to local hydrogeological system 
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controls. The approach uses regression analysis (XGBoost and MLR) to estimate 

groundwater head duration curves at unmonitored locations using site descriptors, then 

constructs hydrographs using time series from neighbouring monitored locations. More 

such benchmark studies with collaborative efforts would be needed globally to exploit the 

potential of the latest advancements in DL fully. 

1.6. Bridging surface water and groundwater research 

Surface and groundwater systems are interconnected, and their interactions play a crucial 

role in various hydrological processes, including floods, droughts, and water resources 

management. Acknowledging the interconnected nature of surface water and groundwater 

systems is vital for effective water resource management (Scanlon et al., 2023). Recent 

studies have highlighted the importance of accounting for these interactions and the 

interconnected nature of streamflow and groundwater. For instance, Berghuijs et al. (2022) 

conducted a global synthesis of field-estimated groundwater recharge and found that 

recharge rates are strongly linked to climatic aridity. Their study suggests higher estimates 

of global groundwater recharge, implying that groundwater contributes more significantly 

to evapotranspiration and streamflow than previously represented by global hydrological 

models. This finding highlights the need to improve the representation of groundwater 

processes in large-scale models to capture water fluxes and availability accurately. (Barclay 

et al., 2023) demonstrated that incorporating groundwater discharge processes into 

stream temperature models using process-guided DL can significantly enhance predictive 

accuracy, reduce seasonal bias, and better inform habitat management strategies. This 

study underscores the importance of considering groundwater-surface water interactions 

in ecological and environmental applications, such as managing aquatic habitats and 

assessing the impacts of climate change. De Graaf et al. (2024) revealed that 

approximately 20% of globally pumped groundwater stems from diminished streamflow, 

highlighting the significant impact of groundwater extraction on surface water systems. 

This finding emphasises the need to account for groundwater-surface water interactions in 

large-scale water resources assessments and management strategies to ensure 

sustainable water use and maintain ecosystem health. (Slater et al., 2024) developed an 

approach based on quantile regression forests to assess the spatial variability of flood 

drivers across Great Britain. They found that increasing precipitation and urbanisation 

amplify flood magnitude significantly more in catchments with high baseflow contribution 

and low runoff ratio, which are often groundwater-dominated. This finding emphasises the 

need to account for groundwater dynamics in flood risk assessments and management 

strategies, particularly in areas with significant groundwater influence. Sharma & 
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Mujumdar (2024) highlighted the significant baseflow contributions to river floods in India 

and noted that groundwater is often overlooked in flood studies. Their research 

underscores the importance of considering groundwater-surface water interactions in flood 

modelling and risk assessment, as neglecting these interactions can lead to inaccurate 

predictions and inadequate flood management strategies. Hence, future research could 

explore the simulation of groundwater levels, considering interactions with surface 

hydrology (e.g., streamflow). 

1.7. Opportunities & Future Directions 

Extending the advancements in surface hydrology to groundwater studies can open new 

avenues for addressing challenges in data-scarce regions, incorporating physical principles, 

and improving the representation of groundwater-surface water interactions in models. 

The advancements in AI research have progressed at different paces within the surface 

water and groundwater communities, with several potential reasons contributing to this 

disparity. The widespread use of conceptual models has facilitated a smoother transition 

toward DL techniques in the surface water community. This transition is evident from the 

rise in benchmarking studies that compare DL models with conceptual and physics-based 

models for rainfall-runoff modelling. However, such comprehensive benchmarking studies 

are scarce in groundwater, partly due to the lack of globally available datasets akin to 

CAMELS or CARAVAN for streamflow data. Moreover, modelling groundwater systems is 

often not simply a matter of input/output with a single, highly localised outlet response. 

Instead, groundwater modelling requires a fully spatialised representation of hydraulic 

head and flow based on physical laws such as Darcy's law and derived diffusivity equation. 

This inherent complexity in groundwater systems poses unique challenges for applying DL 

techniques, further contributing to the slower adoption of AI in this field. 

The ability of DL models to capture complex, non-linear dynamics by leveraging diverse 

data sources and features has made them attractive for groundwater modelling 

applications. However, it is essential to pre-process the input data carefully, employ 

appropriate architectures tailored to the specific task, and integrate domain knowledge and 

physical constraints to ensure reliable and interpretable results. Several open research 

areas have been highlighted to summarise recent advancements yet to be explored for 

groundwater in DL applications but have been extensively used for rainfall-runoff 

modelling. These include reconstruction and projections (Hagen et al., 2023; Nasreen et 

al., 2022; Zhao et al., 2023), constrained DL for projections (Feng et al., 2022; Tahmasebi 

et al., 2020; Tripathy & Mishra, 2024), extreme flow estimations (Hauswirth et al., 2023; 
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Nearing et al., 2024), and differential modelling (Feng et al., 2023; Shen et al., 2023; Tsai 

et al., 2021; Wang et al., 2024).  

Efforts are underway to address data availability issues; however, the groundwater 

community has traditionally been more interested in modelling groundwater flow processes 

and recharge estimation rather than directly predicting observed groundwater levels at 

wells. The focus on recharge estimation and the inherent complexity of groundwater 

systems have likely contributed to the slower adoption of DL techniques in this field. 

Moreover, the effect of pumping activities is often more pronounced in groundwater levels, 

and the lack of comprehensive data on pumping rates and locations hinders the usage of 

DL models across wide geographic locations, presenting a challenge in developing robust 

and generalisable models for groundwater level simulations.  

Hybrid modelling approaches that can combine DL with classical groundwater models hold 

immense potential for leveraging the strengths of both methodologies. Integrating these 

approaches can lead to more accurate and interpretable simulations, reconstructions, and 

projections of groundwater dynamics. Enhancing the interpretability of DL models, 

handling uncertainty in groundwater data and models, leveraging domain-specific 

knowledge, and developing scalable and computationally efficient DL models are crucial 

aspects for actionable insights from groundwater studies.  

1.8. Conclusion 

Deep learning (DL) techniques hold immense potential for the simulation, reconstruction, 

and projection of groundwater behaviour. These methods enable accurate reconstructions 

of historical groundwater levels and future projections under various climate change 

scenarios. However, spatial and temporal data limitations pose significant hurdles for 

training accurate DL models and capturing the complex dynamics of groundwater systems. 

Integration of physical hydrogeological knowledge and the incorporation of physical 

constraints into data-driven frameworks are crucial for ensuring realistic simulations. It is 

essential to enhance interpretability through techniques like SHAP and hybrid approaches, 

as this is vital for obtaining insights. Bridging the gap between surface water and 

groundwater research is imperative, given the interconnected nature of these systems and 

their significant implications for water resource management. Leveraging recent 

advancements in surface hydrology, such as multi-station training, transfer learning, and 

physics-guided neural networks, can open up new avenues for groundwater studies and 

enhance the representation of groundwater-surface water interactions in models. 
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Addressing uncertainty in GWL data and models through ensemble techniques and 

uncertainty quantification methods is crucial for reliable simulations. Collaborative efforts 

involving global benchmarking, interdisciplinary collaborations, and data-sharing platforms 

are essential for advancing groundwater research, facilitating knowledge exchange, and 

establishing data standards. In conclusion, the application of DL techniques in groundwater 

level (GWL) simulations, reconstructions, and projections presents significant opportunities 

to enhance our understanding of groundwater dynamics. By addressing data limitations, 

enhancing interpretability, bridging the gap with surface water research, developing hybrid 

modelling approaches, and quantifying uncertainties, the groundwater community can 

harness the power of DL to develop more accurate, and actionable models.  
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Chapter 2. A wavelet-assisted deep learning 

approach for simulating groundwater 

levels affected by low-frequency 

variability 

 

The current state of the art and potential opportunities of deep learning techniques in 

modelling groundwater level variations are outlined in Chapter 1. While most of the 

previous groundwater studies focussed on short-term forecasting using previous GWL 

values as input and relied heavily on autocorrelation, as a first step, we aim to assess the 

capabilities of DL for simulations using only external variables in this chapter. More 

specifically, we aimed to develop suitable DL models to simulate groundwater level 

variations affected not only by typical annual variability but also by longer-term multi-

annual to decadal variations inherited from large-scale climate variability.  

Chapter 2 is a paper that was published in the Science of the Total Environment. 

Chidepudi, S. K. R., Massei, N., Jardani, A., Henriot, A., Allier, D., & Baulon, L. (2023). A 

wavelet-assisted deep learning approach for simulating groundwater levels affected by 

low-frequency variability. Science of The Total Environment, 865, 161035. 

https://doi.org/10.1016/j.scitotenv.2022.161035  
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Abstract 

Groundwater level (GWL) simulations allow the generation of reconstructions for exploring 

the past temporal variability of groundwater resources or provide the means for generating 

projections under climate change on decadal scales. In this context, analysing GWLs 

affected by low-frequency variations is crucial. In this study, we assess the capabilities of 

three deep learning (DL) models (long short-term memory (LSTM), gated recurrent unit 

(GRU), and bidirectional LSTM (BiLSTM)) in simulating three types of GWLs affected by 

varying low-frequency behaviour: inertial (dominated by low-frequency), annual 

(dominated by annual cyclicity) and mixed (in which both annual and low-frequency 

variations have high amplitude). We also tested if maximal overlap discrete wavelet 

transform pre-processing (MODWT) of input variables helps to better identify the frequency 

content most relevant for the models (MODWT-DL models). Only external variables (i.e., 

precipitation, air temperature as raw data, and effective precipitation (EP)) were used as 

input. Results indicate that for inertial-type GWLs, MODWT-DL models with raw data were 

notably more accurate than standalone models. However, DL models performed well for 

annual-type GWLs, while using EP as input, with MODWT-DL models exhibiting only minor 

improvements. Using raw data as input improved MODWT-DL models compared to 

standalone models; nevertheless, all models using EP performed better for annual-type 

GWLs. For mixed-type GWLs, while using EP as input, MODWT-DL models performed well, 

with substantial improvements over standalone models. Using raw data as input, 

improvement of MODWT-DL models is marginal compared to that of standalone models; 

nevertheless, they perform better than standalone models with EP. The Shapley Additive 

exPlanations (SHAP) approach used to interpret models highlighted that they preferentially 

learned from low-frequency in precipitation data to achieve the best simulations for inertial 

and mixed GWLs. This study showed that MODWT-based input pre-processing is highly 

suitable to better simulate low-frequency varying GWLs. 

2.1. Introduction 

Accurate and reliable groundwater level (GWL) simulations and forecasting play vital roles 

in water resource management (Liu et al., 2022; Rahman et al., 2020). While the terms 

simulations and forecasting are inherently different, they are often used synonymously in 

an inappropriate way in groundwater studies (e.g., (Ghazi et al., 2021)), even after (Beven 

& Young, 2013) provided clear definitions of these terms. According to (Beven & Young, 

2013), “simulation” is defined as the quantitative reproduction of system behaviour without 
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reference to observed output; “forecasting” is defined as the reproduction of system 

behaviour ahead of time with observed outputs up until the onset of forecast included.  

Traditionally, GWL simulations have been performed using physically based models, such 

as MODFLOW (Mcdonald et al., 1988) and ParFlow (Maxwell et al., 2015), in which a set 

of physical properties of the aquifer is implicitly used in the numerical solution of the 

groundwater equation. However, this type of calculation is often cumbersome and 

complicates the calibration of the model for approximating the hydrodynamic behaviour of 

the aquifer expressed in observational data. Owing to the high computational and data 

requirements (Maxwell et al., 2015) of these models, data-driven approaches have gained 

traction in recent years as viable alternatives (Rahman et al., 2020; Rajaee et al., 2019; 

Tao et al., 2022). Furthermore, earlier studies on these approaches mainly focused on the 

classical multi-layer perceptron (MLP), i.e., a basic form of artificial neural network (ANN), 

which has outperformed MODFLOW in groundwater flow simulations(Mohanty et al., 2013). 

This simple network, which is considered to be the cornerstone of deep learning (DL), has 

demonstrated through several studies its effectiveness to approximate in black box form 

the highly nonlinear relationships that can link piezometric fluctuations to climate signals 

(Coulibaly et al., 2001; Wunsch et al., 2021). However, the popularity of MLP networks in 

processing time series is decreasing in favour of a new generation of neural networks (such 

as LSTM and GRU). These neural networks include memory effect modules that handle 

temporal dependencies not accounted for in traditional neural networks, such as the MLP. 

This popularity is reflected in the numerous articles published in recent years that use this 

type of approach and highlight the effectiveness of standalone LSTMs in GWL simulations 

(Zhang et al., 2018), forecasting (Bowes et al., 2019), and reconstructing missing values 

(Vu et al., 2021). 

To further improve the GWL forecasting performance of artificial intelligence (AI) 

algorithms, a new generation of algorithms called hybrids has been developed. These 

algorithms combine time-series pre-processing tools, such as principal component analysis 

(Cai et al., 2021), singular spectrum analysis (Yadav et al., 2020), DWT (Wu et al., 2021), 

and maximal overlap discrete wavelet pre-processing (MODWT) (Rahman et al., 2020) with 

AI tools. Among these, wavelet transform based pre-processing coupled with data-driven 

models has shown increased efficiency regarding GWL forecasting because of its ability to 

extract time-varying behaviour (Rahman et al., 2020; Rajaee et al., 2019). However, a 

recent study by Quilty & Adamowski (2018) highlighted the frequent incorrect usage of 

wavelet transform in hydrological forecasting and recommended using boundary-corrected 

MODWT. This approach is now gaining traction in hydrological time series forecasting; for 
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example, (Mouatadid et al., 2019) combined LSTM with BC-MODWT for irrigation flow 

forecasting and found it to perform better than standalone LSTM. Rahman et al. (2020) 

used BC-MODWT along with random forest and XGBoost and found the approach promising 

for forecasting GWLs. Finally, a more recent study by Barzegar et al. (2021) coupled BC-

MODWT with CNN-LSTM and found it promising for multiscale lake water level forecasting. 

However, it further highlighted that efforts are required to find a suitable wavelet family, 

filter length, and decomposition level. Even after (Quilty & Adamowski, 2018) suggested 

using BC-MODWT or AT, a few studies (Liang et al., 2021; C. Wu et al., 2021) continued 

to use DWT coupled with LSTM for groundwater forecasting. Other pre-processing 

techniques have also been used for GWL forecasting; for example, (M. Wu et al., 2021) 

combined variational mode decomposition with an extreme learning machine (ELM), and 

(W. Liu et al., 2021) coupled CEEMDAN with the deep belief network (DBN) model. 

 All of these pre-processing techniques coupled with DL are mainly focused on forecasting, 

i.e., they use previous target values in the input. A recent study by (Bahmani & Ouarda, 

2021) coupled EEMD and CEEMD with GEP and M5 with the aim of simulating GWL; 

however, they used GWLs as input, which contradicts the definition of simulation by (Beven 

& Young, 2013a). Hence, the primary purpose of this study is to appropriately assess these 

approaches in simulations. 

As models grow in complexity, there is increasing interest in their explanation and 

interpretation through approaches like SHapley Additive exPlanations (SHAP) which is 

mainly helpful in understanding the influence of input variables on the model simulations. 

According to recent literature, this is particularly true for ML and DL methods; for example, 

(Q. Liu et al., 2022) used the SHAP approach to interpret machine-learning models for 

near-term GWL simulations. This approach allowed the authors to identify that the flow 

volume and distance to the river and reservoir played significant roles in groundwater 

changes. (Anderson & Radić, 2022) also showed that DL models learn the contribution of 

glacial runoff from meteorological variables in streamflow modelling. Even though research 

in this direction is only beginning, there is significant potential for interpreting DL models, 

thereby increasing their credibility for wider adoption across different decision-making 

levels. However, SHAP interpretation is still not very common in hydrology; in particular, 

it has not been used to explore the impacts of pre-processing. 

We identified the following lack of scientific and technical information in the existing 

literature: Most of the previous studies exploring wavelet usage were limited to forecasting, 

with previous GWLs being used as input. Consequently, these models relied heavily on high 
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autocorrelation in previous GWL values, resulting in high accuracy. In contrast, our study 

focuses on simulation (not forecasting), in which only external factors influencing GWLs 

are used as input. Furthermore, we noticed a clear lack of studies looking at either 

forecasting or simulating GWL time series with the low-frequency variability (i.e., 

interannual to decadal) explaining most of the GWL variations. Indeed, being able to 

reproduce and establish simulations (e.g., projections) is critical for accounting for the 

influence of low-frequency climate variability, which can either mask or aggravate the 

effects of climate change on hydrology  (Boé & Habets, 2014; Bonnet et al., 2022; Kingston 

et al., 2020a). 

We hypothesise that wavelet expansion, by extracting the most relevant high- to low-

frequency variability information from external input variables (i.e., precipitation, air 

temperature, and effective precipitation), will help in achieving better simulations of GWL 

variations, even when these are dominated by low-frequency variability that is barely 

visible or even invisible in input variables. In this study, we evaluate the effectiveness of 

coupling recurrent-based DL algorithms (i.e., LSTM, bidirectional LSTM (BiLSTM), and GRU) 

with BC-MODWT signal decomposition for simulating GWL variations in the case of three 

piezometric time series representative of the most contrasting temporal behaviours in 

northern France (Baulon et al., 2022a).  

To test this hypothesis, we 1) evaluate the effectiveness of using raw data (i.e., 

precipitation and air temperature) as input against using processed data, such as effective 

precipitation (EP), as input, 2) compare DL methods with and without wavelet pre-

processing while quantifying the performance of each method, and 3) investigate the 

internal functioning and plausibility testing of the DL models through the SHAP 

interpretative approach. The remainder of this chapter is structured as follows: Section 2.2 

presents the data and normalisation. Section 2.3 presents the theoretical background of 

the methods and pre-processing techniques employed in this study. Section 2.4 presents 

the analysis and interpretation of the results. Section 2.5 presents a detailed investigation 

on what models learn using SHAP. Section 2.6 presents our conclusions. 

2.2. Data  

We used a database consisting of a relatively long GWL time series initially taken from the 

ADES (Accès aux Données sur les Eaux Souterraines) database 

(https://ades.eaufrance.fr/; (Winckel et al., 2022)). These GWL data were especially 

selected because the anthropogenic impact on them was relatively low (Baulon et al., 

https://ades.eaufrance.fr/


 

 

41 

 

2022a). From this database, we selected three GWL time series that fluctuated over a 50-

year period (i.e., 1970–2020) in contrasting manners: the first GWL time series has an 

inertial nature where the low-frequency component dominates the signal; the second is 

the so-called mixed GWL time series because the fluctuations are reflected by the annual 

and interannual components, with the latter being largely influenced by the annual cycle. 

Thus, the numerical simulation tools presented here are confronted with the prediction of 

piezometric fluctuations in aquifers with well-contrasted hydrodynamic regimes.  

The locations of the three stations are shown in Figure 2.1. The GWL time series of the 

three stations are shown in Figure 2.2. 

Figure 2.1: Study area (Red dots indicate the stations GWL1 (Inertial), GWL2 (Annual) 

and GWL3 (Mixed)).  
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The current work uses precipitation, air temperature, or EP as input variables (Figure 2.3: 

Example for one station). The numerical simulation consists of training different types of 

DL networks with meteorological data as input. Specifically, EP is used as one input variable 

on the one hand, and precipitation and air temperature combined are used as input on the 

other hand; the output variable is piezometric responses. 

Precipitation and mean air temperature data were retrieved from the SAFRAN (Système 

d’Analyse Fournissant des Renseignements Atmosphériques à la Neige) Reanalysis (Vidal 

et al., 2010), which is available at a daily time step with a spatial resolution of 8 × 8 km2. 

Although the input time series is available at the daily time step, only the monthly averages 

c) 

b) 

a) 

Figure 2.2: a) Inertial, b) annual, and c) mixed types of GWLs. 
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between 1970–2020 were used to match the monthly time step of the piezometer data. 

EP was derived from a calculation using the water budget method of (Edijatno & Michel, 

1989).  

 

Figure 2.3: Time series of a) air temperature, b) precipitation, and c) effective 

precipitation. 

c) 

b) 

a) 
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Conversely, the processed data came from areas in France with limited anthropogenic 

impacts; hence, the piezometric variations were essentially due to the climatic signal.All 

data used as input and output are normalised into the network to facilitate stable 

convergence in the learning phase. The following equation is used for this normalisation so 

that all data can vary in (0, 1) intervals: 

𝑥𝑠𝑐𝑎𝑙𝑒 = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛), (1) 

Where xmin and xmax represent the minimum and maximum values of the data, respectively, 

whereas x and xscale denote the original and scaled data, respectively. 

We note that there is a common pitfall in this step, i.e., where the previous studies scaled 

all available data—including test data—together; this step results in data leakage by 

allowing the model to be influenced by the test data, which should not have been made 

available at this stage. Consequently, this can lead to overestimated results and 

undesirable expectations regarding the model’s performance. In this study, this was taken 

into consideration, and we scaled out each input variable individually to be in the (0,1) 

range. After normalisation, the database is divided into two main subsets: the training and 

testing sets (constituting 80% and 20% of the database, respectively). Furthermore, the 

last 20% of the training set, which is equivalent to 16% of the total dataset available, was 

used for validation, as shown in Figure 2.4. The purpose of each split is as follows: the 

training data are used for fitting the model on them; the validation data are used for 

hyperparameter optimisation and early stopping; and the testing data are used for 

obtaining the performance of the models on the unseen data. Using only meteorological 

variables as input in this study utilises the long time series of gridded data available at a 

finer spatiotemporal resolution across metropolitan France, with no missing values. For 

instance, SAFRAN reanalysis data are available on a daily scale for 70 years (i.e., 1951–

2019), which is not the case for the GWL time series data, which are heterogeneous with 

missing values. 

 

Validation (Hyperopt and Early stop) 

Training (80%) Testing (20%) 

20% 

Figure 2.4: Data partitioning and the corresponding proportions. 
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2.3. Theoretical background  

The overall modelling methodology developed here involves the use and comparison of 

three types of recurrent-based deep neural networks, as well as a MODWT pre-processing 

approach to improve the recovery of the most useful information from the input data.   

 Wavelet decomposition pre-processing 

In this study, we intended to test the usefulness of wavelet decomposition for detecting 

scale-dependent information to be used as input signals in high- to low-frequency wavelet 

components, thereby helping AI models to better simulate GWL variations. For instance, 

pre-processing approaches using wavelet transform have received particular attention in 

recent years; however, one significant contribution to the field (i.e., Quilty & Adamowski, 

2018) highlighted the incorrect use of wavelet transform as a pre-processing tool for 

hydrological forecasting. In particular, the authors revealed associated future data issues 

when using DWT-MRA and MODWT-MRA; they suggested some best practices while testing 

them on wavelet-based ML methods for urban water demand forecasting.  

 In this methodological framework, we aim to develop the so-called direct approach (Quilty 

& Adamowski, 2018) and address the crucial constraints emphasised in this paper. In this 

approach, wavelet decomposition of the training dataset using MODWT is applied to the 

input signals only, thereby resulting in several high- to low-frequency wavelet components, 

each being used as input to the selected models. When using MODWT-assisted DL 

modelling, all wavelet components of precipitation (Figure 2.5) and air temperature or EP 

time series (not shown) were used as input. 

The MODWT algorithm was used to decompose the input variables into various scale levels 

and extract the variability of the decomposed signal at each time scale. This method is 

well-suited to real-world signals, as it enables the decomposition of a given signal (here, 

precipitation and air temperature or EP) into several components across different time 

scales (i.e., from high to low-frequencies), while keeping the amplitudes of the transform 

aligned with the amplitude in the original signal (Percival & Walden, 2000). This means 

that the discrete wavelet component still bears some “physical” meaning compared to the 

original decimated and non-redundant discrete wavelet transform. Decomposition can be 

achieved up to the maximum decomposition level depending on the length of the time-

series; however, the decomposition depth (or filter length) must be constrained to avoid 

computing values being affected by boundary effects, which is even more critical when 

decomposition is included in a modelling framework (Quilty & Adamowski, 2018). In this 
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study, the boundary-affected coefficients (LJ) were removed from the beginning of the 

input and target variables using the equation recommended by Quilty and Adamowski 

(2018): LJ = (2J-1)(L-1)+1. 

Here, J is the number of decomposition levels, which has been set to 4, and L is the length 

of the filter used, i.e., eight wavelet/scaling values for La8, 12 for La12, and so on. 

Regarding the choice of wavelet filter, we chose the least asymmetric filters (i.e., La8 to 

La16), with periodic boundary conditions selected for the wavelet transform, meaning that 

the original signal is repeated after its last value is reached. The combined use of the 

MODWT and La filters, along with circular shifting of the computed wavelet and scaling 

Figure 2.5: Decomposed components of precipitation with la10 wavelet. (a) Original 

signal of precipitation b-e) Wavelet coefficients (PW1 to PW4) f) Scaling coefficients 
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coefficients, ensured the preservation of the phase alignment between the data and the 

calculated wavelet and scaling coefficients at each scale as much as possible. Scaling 

coefficients are not retained at all levels, but only at the final level; in other words, all 

MODWT components except the last one correspond to wavelet coefficients, while the last 

component corresponds to scaling coefficients. Figure 2.5 shows the decomposed 

components of the precipitation at the conservative level. Further explanation of the 

MODWT and its main interest in hydrological applications can be found in Baulon et al. 

(2022a) and Massei et al. (2017); for full mathematical details, we refer to Cornish et al. 

(2006) and Percival and Walden (2000). 

 Recurrent-based deep neural networks models 

The long-term memory deep neural network (LSTM,(Hochreiter & Schmidhuber, 1997) ) is 

a recurrent network designed to overcome leakage gradient problems and preserve long-

term dependence through the inclusion of a hidden state, ct, that retains historical 

information. In addition, LSTM has internal mechanisms in the form of control gates—

namely forget, input, and output gates—for regulating the flow of information.  

 

The flow of processed information in simple LSTM is described in Figure 2.6 and formulated 

mathematically below in three steps: In step 1, the forget gate manages the information 

from the prior cell state, 𝑐𝑡−1, while subsequently adding it to the present state with the 

⊗ 

 

Figure 2.6: Schematic representation of the simple LSTM cell. 

ht 
ct 

ht 
ht-1 

xt 

Tanh σ  σ 

ct-1 

ft it 
ot 

⊗ 

 

⊕ 

⊗ 

σ 

𝑐ǁt 

 

Tanh 



 

 

48 

 

help of the element-wise multiplication operator (⊗) in the form of 𝑓𝑡 ⊗  𝑐𝑡−1. This gate 

gives the binary output [0,1], with 0 and 1 indicating the deletion and retention of all 

previous information, respectively. 

𝑓𝑡 =  𝜎( 𝑊𝑓𝑥𝑡  + 𝑈𝑓ℎ𝑡−1  + 𝑏𝑓). (2) 

In the second step, the present cell state is computed in three phases. The first phase 

involves converting the values of 𝑥𝑡 and ℎ𝑡−1 into the range of [-1,1] to obtain a new cell 

state, 𝑐ǁ𝑡, using an activation function (tanh). 

𝑐̃𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡  + 𝑈𝑐ℎ𝑡−1  + 𝑏𝑐). (3) 

In the second phase, values resulting from the input gate (𝑖𝑡) are used to reorganise the 

present cell state, 𝑐𝑡, as 𝑖𝑡 ⊗ 𝑐ǁ𝑡. The input gate regulates both the sequence of input data 

at present (𝑥𝑡) and the hidden state information at t−1 (ℎ𝑡−1), which is incorporated into 

the cell state as follows: 

𝑖𝑡  =  𝜎(𝑊𝑖𝑥𝑡  + 𝑈𝑖ℎ𝑡−1  + 𝑏𝑖). (4) 

 

In the final phase, the new cell state, 𝑐𝑡, is obtained by adding a revised cell state in step 

1 (𝑓𝑡 ⊗  𝑐𝑡−1) with the updated cell state in previous phases (2. b) (𝑖𝑡  ⊗  𝑐ǁ𝑡  ). 

𝑐𝑡  =  𝑓𝑡 ⊗  𝑐𝑡−1  +  𝑖𝑡  ⊗  𝑐ǁ𝑡. (5) 

In the third and last step, the information in the new cell state that must pass as an output 

of the present LSTM and the new hidden state to the upcoming cell is managed by the 

output gate (Alizadeh et al., 2021). 

𝑜𝑡  =  𝜎(𝑊𝑜𝑥𝑡  + 𝑈𝑜ℎ 𝑡−1 + 𝑏𝑜), (6) 
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ℎ𝑡  =  𝑜𝑡  ⊗  𝑡𝑎𝑛ℎ(𝑐𝑡), (7) 

Where W and U are the network weight matrices; 𝑓𝑡, 𝑖𝑡, and 𝑜𝑡 constitute the output of the 

forget, input, and output gates, respectively; 𝑐𝑡, 𝑐𝑡−1 are the cell states at t and t−1; 𝜎 is 

the  sigmoid activation function; ℎ𝑡 and ℎ𝑡−1 are the current and previous hidden states, 

respectively; 𝑐ǁ𝑡 is the cell candidate value; and b is the bias vector. 

Bidirectional LSTM trains two LSTM models, as shown in Figure 2.7. The first model learns 

the input sequence, i.e., through the forward state. In contrast, the second model learns 

from the opposite direction of the input sequence, i.e., through the backward state (Saeed 

et al., 2020), as depicted in Figure 2.7.  

Both models are merged using the concatenation mechanism by default. In other words, 

BiLSTMs include an additional layer of training data compared with simple LSTMs. Siami-

Namini et al. (2019) showed that BiLSTMs outperformed regular LSTMs and ARIMA in time 

series forecasting because of the additional training layer in BiLSTM, which improves the 

Figure 2.7: Schematic representation of the bidirectional LSTM (adapted and modified from Saeed 

et al. (2020)). 
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learning of long-term dependencies. The internal processes of the cells used in BiLSTMs 

are explained above for the LSTM. 

The gated recurrent unit (GRU) was developed by (Cho et al., 2014) to address the 

complexity of LSTM and improve computational efficiency. While GRU is relatively similar 

to LSTM as shown in Figure 2.8, unlike LSTM, it has on gates (i.e., reset (𝑟𝑡) and update 

(𝑢𝑡)), as it does not have separate memory cells. The cell structure of GRU is shown in 

Figure 2.8. GRU and, LSTM are modified versions of RNN, where RNN is a type of ANN used 

for sequential data. Moreover, the GRU is computationally less expensive, with a faster 

learning curve owing to the lower number of learnable parameters. 

The GRU phases are summarised as follows: 

𝑢𝑡 =  𝜎( 𝑊𝑢𝑥𝑡  + 𝑈𝑢ℎ𝑡−1  + 𝑏𝑢 ), (8) 

𝑟𝑡 =  𝜎( 𝑊𝑟𝑥𝑡  + 𝑈𝑟ℎ𝑡−1  + 𝑏𝑟  ), (9) 

 𝑐ǁ𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡  + 𝑈𝑐(𝑟𝑡 ⊗ ℎ𝑡−1)  + 𝑏𝑐), (10) 

𝑐𝑡  =  (1 − 𝑢𝑡) ⊗  𝑐𝑡−1  +  𝑢𝑡  ⊗  𝑐ǁ𝑡, (11) 

Where ut and rt are the update and reset gates, respectively; and b is the bias vector. 

 

⊗ 

⊗ 

Figure 2.8: Schematic representation of the simple GRU cell. 
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 Hyperparameter tuning  

Data-driven models involve using hyperparameters that must be defined during model 

initialisation. Hyperparameters play a crucial role in controlling the overall training 

behaviour of the model and substantially impact its performance; therefore, it is necessary 

to determine their optimal values. 

Table 2.1: Hyperparameter values. 

Hyperparameter Value considered 

Sequence length 48 

Dropout 0.2 

Optimizer ADAM 

Early stopping 50 

Number of layers (1,2,3,4,5,6) 

Hidden neurons (10, 20, …,100) by 10 

Learning rate (0.001,0.01) (log values) 

Batch size (16, 32, …,256) by powers of 2 

Epoch (50, 100, …,500)  

 

There are multiple approaches used in data-driven models for optimising hyperparameters, 

the most common of which are the trial-and-error approach (Zhang et al., 2019), grid 

search (Afan et al., 2021), and random search. However, in recent years, an informed 

approach known as Bayesian optimisation has gained traction in hydrological forecasting 

(Barzegar et al., 2021; Quilty et al., 2022; Rahman et al., 2020; Wunsch et al., 2022a). 

The main advantage of this informed approach is that it takes less time to get comparable 
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results as in random search, as it learns from previous iterations while allowing automatic 

hyperparameter selection. Here, Bayesian optimisation was performed to minimise the 

mean squared error. The hyperparameters of all the models were tuned using Bayesian 

optimisation, with the range of values shown in Table 2.1. 

Based on hyperparameter space exploration, as well as on previous works revealing 

substantial hydrological variabilities at scales between 2–4 and 5–9 years over 

metropolitan France (Baulon et al., 2022a; Fossa et al., 2021), northern France (Massei et 

al., 2010, 2017), and even Great Britain (Rust et al., 2019), the sequence length was 

eventually set to 48 months (i.e., four years), as shown in  Table 2.1. Such variability is 

immediately evident, particularly in Figure 2.2 (a, c), and was found to originate from 

precipitation and large-scale climate variability in the studies referenced earlier. For 

instance, such variability was also found in the North Atlantic Oscillation index (Massei et 

al., 2010; Massei & Fournier, 2012) or more directly related to particular sea-level pressure 

patterns over the Euro-Atlantic sector(Massei et al., 2017). The dropout approach was 

adapted to avoid overfitting the models during training. We subsequently tested values 

from 0.1 to 0.5 within the Bayesian optimisation but noticed minimal changes, so we finally 

opted for the commonly used dropout value of 0.2, i.e., dropping out 20% of the neurons. 

After identifying the best hyperparameters from 100 trials of Bayesian optimisation using 

the validation set, we trained an ensemble of 30 pseudo-randomly initialised models and 

fitted them to the training set. This was performed to deal with epistemic uncertainty, 

which was mainly due to the initial model weights obtained from the random number 

generator seed; in other words, it addressed the uncertainties generated by the model 

structure. These ensemble models were tested on an unseen test set to evaluate their 

performances. Simulations obtained with different initialisations were used to compute 

confidence intervals. The confidence interval limits were computed by adding and 

subtracting the 1.96 times standard deviation to the mean of the resulting distribution at 

each timestep. 

 Evaluation and interpretation 

The current framework involved two models: 1. MODWT-assisted, i.e., including MODWT 

pre-processing, and 2. standalone models, i.e., without pre-processing. Three common 

performance evaluation statistics were chosen to evaluate the models on both the training 

and test sets, namely the mean absolute error (MAE), root-mean-squared error (RMSE), 

and squared Pearson’s correlation coefficient (R2). Furthermore, the RMSE percentage 
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change for MODWT-assisted models was computed with respect to standalone models to 

compare the performance improvement. 

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐺𝑊𝐿𝑠𝑖𝑚 − 𝐺𝑊𝐿𝑜𝑏𝑠 

|,𝑛
𝑖=1                                 0 ≤ 𝑀𝐴𝐸 < +∞, (12) 

RMSE = √
∑ (𝐺𝑊𝐿𝑠𝑖𝑚−𝐺𝑊𝐿𝑜𝑏𝑠  )

2𝑛
𝑖=1

𝑛
,                                     0 ≤ 𝑅𝑀𝑆𝐸 < +∞, 

(13) 

 

R2=  1 −
∑(𝐺𝑊𝐿𝑠𝑖𝑚−𝐺𝑊𝐿𝑜𝑏𝑠  )

2

∑(𝐺𝑊𝐿𝑠𝑖𝑚−𝐺𝑊𝐿𝑜𝑏𝑠𝑚𝑒𝑎𝑛    
)2,                                     -∞<R2<1 (14) 

 

% Improvement in RMSE = (
RMSESA – RMSEWT

𝑅𝑀𝑆𝐸𝑆𝐴
) ∗ 100.    0<%Improv in RMSE <100 (15) 

 

Finally, the SHAP approach (Lundberg & Lee, 2017) was implemented to interpret the 

results. Shapley additive explanation (also known as SHAP) is a game-centric approach 

gaining traction in interpreting DL models. The SHAP summary plot helps to explain the 

contribution of each input feature to the final simulated/predicted value through two major 

aspects: i) the relative importance of each variable through the magnitude of the effect, 

wherein a higher mean of absolute SHAP value means a higher influence and ii) the 

direction of the influence, whether it is a positive or negative relationship, where a higher 

number of points on the right side (indicated in red) shows positive relationships, and vice 

versa. The basic framework of the methodology is shown in Figure 2.9. 
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  Software used 

Deep-learning models were built using TensorFlow (Abadi et al., 2016) and Keras (Chollet, 

2015). All figures were prepared using Matplotlib (Hunter, 2007), pandas (McKinney, 

2010), and NumPy (Van Der Walt et al., 2011). Bayesian optimisation was performed using 

the Optuna software(Akiba et al., 2019). All this work was conducted in Python version 

3.8.13, using a Dell workstation with an NVIDIA Quadro RTX 5000 GPU and 128GB RAM. 
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Figure 2.9: Basic framework of single station methodology 
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2.4. Performance and interpretability of the developed 

models  

 On the performances of standalone and MODWT-
assisted models for GWL simulations 

All MODWT-assisted and standalone models using different inputs were tested to simulate 

the GWLs of three types of variability. Figure 2.10, Figure 2.11, and Figure 2.12 present 

the comparison between observed and simulated GWL for each variability type (i.e., 

inertial, mixed, and annual) for different models and input types; the yellow-shaded region 

represents the 95% confidence interval obtained from simulations with different 

initialisations (as explained in section 2.3.3). The red line shows the mean of these different 

simulations, whereas the black line represents the observed GWL. In addition, Table 2.2 & 

Table 2.3 show a comparison summary of the performance evaluation metrics (i.e., MAE, 

RMSE, and R2) on the test set for each of the three DL methods tested (i.e., GRU, BiLSTM, 

and LSTM) for each variability type. Optimal hyperparameters obtained for each of the 

tests are shown in Table S10-S12.  

From the overall results, the following key aspects are evident. For the inertial type, in 

simulations using precipitation and air temperature as input, the performance of the 

MODWT-assisted models (1.52 < RMSE < 1.80; Figure 2.10d-2.10f) is substantially 

improved compared to that of the standalone models (2.46 < RMSE < 2.93; Figure 2.10a-

2.10c). In addition, the MODWT-GRU model (RMSE = 1.52; Figure 2.10d) outperformed 

the standalone GRU (RMSE = 2.93; Figure 2.10a). The standalone GRU performed similarly 

in both cases, i.e., with EP (Figure 2.10g) and precipitation and air temperature as input, 

with RMSEs of 2.89 and 2.93, respectively. In contrast, improvement in MODWT-assisted 

models was only apparent with precipitation and air temperature as input. So, in the case 

of the inertial type of GWLs, models with raw data (i.e., precipitation and air temperature) 

as input (Figures 2.10a-2.10f) outperformed models with processed data (i.e., effective 

precipitation) (Figures 2.10g-2.10l) 
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Table 2.2: Performance metric comparison for models with effective precipitation as input. 

GWL 

Type  

Metrics  

  
EP  EP-WT  

  
  

  
  

GRU  LSTM  BILSTM  GRU-WT  
LSTM-
WT  

BILSTM-WT  

Inertial  

R2  0.15  -0.57  -0.13  -0.09  -0.01  -0.04  

MAE  2.59  3.61  3.03  2.93  2.73  2.96  

RMSE  2.89  3.93  3.33  3.70  3.14  3.20  

RMSE improv. ( 
%)**  

-  -  -  -13.30  19.97  3.91  

Annual  

R2  0.82  0.84  0.86  0.83  0.85  0.86  

MAE  1.54  1.51  1.41  1.55  1.43  1.33  

RMSE  1.92  1.82  1.72  1.86  1.74  1.69  

RMSE improv. ( %)  -  -  -  3.15  4.55  2.10  

Mixed  

R2  0.43  0.66  0.50  0.74  0.71  0.59  

MAE  1.36  1.01  1.19  0.87  0.98  1.12  

RMSE  1.76  1.37  1.65  1.19  1.26  1.51  

RMSE improv. ( %)  -  -  -  32.18  8.29  8.68  

 

** RMSE improv. (%) is an improvement in RMSE in the MODWT-assisted model against 

the corresponding standalone model. 
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Table 2.3:Performance metrics comparison for models with precipitation and air 

temperature as input. 

GWL Type  
Metrics  

  
PT  PT-WT*  

  
  

  
  

GRU  LSTM  BILSTM  GRU-WT  LSTM-WT  BILSTM-WT  

Inertial  

R2  0.12  0.25  0.38  0.76  0.71  0.67  

MAE  2.30  1.73  1.72  1.17  1.28  1.44  

RMSE  2.93  2.71  2.46  1.52  1.67  1.80  

RMSE improv. ( 
%)  

-  -  -  48.09  38.25  26.83  

Annual  

R2  0.74  0.10  0.62  0.79  0.75  0.71  

MAE  1.89  3.62  2.28  1.63  1.71  1.93  

RMSE  2.30  4.28  2.79  2.06  2.25  2.44  

RMSE improv. ( 
%)  

-  -  -  10.58  47.39  12.54  

Mixed  

R2  0.57  0.48  0.59  0.58  0.54  0.64  

MAE  1.15  1.27  1.17  1.24  1.31  1.06  

RMSE  1.53  1.68  1.50  1.52  1.59  1.41  

RMSE improv. ( 
%)  

-  -  -  0.74  5.17  6.00  

 

* Here, PT-WT indicates precipitation and air temperature as input along with the wavelet 

transform. 
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Figure 2.10: Results obtained for different inputs for inertial type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-

c), PT with wavelet transform (PTWT)(d-f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate 

the mean of the simulations and black lines indicate the observed GWL. Yellow shading represents the 95% confidence interval. 
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Figure 2.11: Results obtained for the annual type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-c), PT with wavelet 

transform (PTWT)(d-f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate the mean of the 

simulations and black lines indicate the observed GWL. Yellow shading represents the 95% confidence interval. 
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Figure 2.12: Results obtained for the mixed type with GRU, LSTM, and BILSTM: precipitation and air temperature (PT)(a-c), PT with wavelet 

transform (PTWT)(d-f), effective precipitation (PE)(g-i), and PE with wavelet transform (PEWT)(j-l). Red lines indicate the mean of the 

simulations and black lines indicate the observed GWL. Yellow shading represents the 95% confidence interval.
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For the annual type, both the standalone (1.72<RMSE<1.92; Figures 2.11g-2.11i) and 

MODWT-assisted models (1.69<RMSE<1.86; Figures 2.11j-2.11l) with EP as input always 

performed better than those with precipitation and air temperature as input (Figures 2.11a-

2.11f). However, all these models resulted in better simulations, with the differences 

among these models with EP being very small. On the other hand, standalone models 

(2.30<RMSE<4.28; Figures 2.11a-2.11c) with precipitation and air temperature as input 

yielded less accurate results; the MODWT-assisted models (2.06<RMSE<2.44; Figures 

2.11d-2.11f) improved the results but were not better than those obtained with EP as 

input.  

For the mixed type, such as the annual, models with EP as input performed well; however, 

there were improvements in MODWT-assisted models (1.19<RMSE<1.51; Figures 2.12j-

2.12l) with EP as input as against standalone models (1.37<RMSE<1.76; Figures 2.12g-

2.12i) with EP as input. However, MODWT-assisted models (1.41<RMSE<1.59; Figures 

2.12d-2.12f) with precipitation and air temperature gave comparable results with 

standalone models (1.50<RMSE<1.68; Figures 2.12a-2.12c) with little to no improvement. 

To summarise, the improvement in the inertial type of GWL simulations using precipitation 

and air temperature in MODWT-assisted models was consistently high against standalone 

models, with an improvement in mean RMSE ranging between 26% and 48%, as shown in 

Table 2.3. While improvement varied from 10% to 47% for the annual type, it was much 

lower for the mixed type, varying from 0.7% to 6%. On the other hand, Using EP, MODWT-

assisted models improved consistently only with annual (8%-32%) and is very minor in 

mixed type (2%-4%). Assuming that we can process data (i.e., EP), the best combination, 

along with metrics, is shown in Table 2.4. When only precipitation and air temperature are 

available, the best combination, along with metrics, is shown in Table 2.5. Table 2.6 shows 

the best model combination for each GWL variability. This table shows that GRU combined 

with MODWT decomposed inputs (precipitation and air temperature) leads to the best 

results for the inertial type. Conversely, BiLSTM combined with MODWT with effective 

precipitation was superior for the annual type. Finally, GRU combined with MODWT and 

effective precipitation gave better results for mixed type. But overall, GRU seemed to 

perform better than other models. 
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Table 2.4: Best model combinations for each type of GWL, provided that effective 

precipitation is available. 

GWL 

variability 

Pre-

Processing 

Model Metrics 

Annual EP-WT BILSTM R2=0.86, MAE=1.33, RMSE=1.69 

Inertial EP  GRU R2=0.15, MAE=2.59, RMSE=2.89 

Mixed EP-WT  GRU R2=0.74, MAE=0.87, RMSE=1.19 

 

Table 2.5: Best model combinations for each type of GWL when only raw data (i.e., 

precipitation and air temperature) are available. 

GWL 

variability 

Pre-processing Model Metrics 

Annual PT-WT GRU R2=0.79, MAE=1.63, RMSE=2.06 

Inertial PT-WT  GRU R2=0.76, MAE=1.17, RMSE=1.52 

Mixed PT-WT BILSTM R2=0.64, MAE=1.06, RMSE=1.41 

 

Table 2.6: Overall best models for each type of GWL variability 

GWL variability  Best model    Metrics  

Inertial  GRU-PT-WT    R2=0.76, MAE=1.17, RMSE=1.52  

Annual  BILSTM-EP-WT    R2=0.86, MAE=1.33, RMSE=1.69  

Mixed  GRU-EP-WT    R2=0.74, MAE=0.87, RMSE=1.19  



 

 

63 

 

 

It is noticeable that even though effective precipitation considers both precipitation and air 

temperature in its computation, it did not appear capable of capturing the low-frequency 

variability even after MODWT decomposition. Instead, precipitation and air temperature 

inputs combined with MODWT-based input pre-processing seemed necessary to achieve 

the best simulations. Although the results indicate that MODWT-assisted models perform 

well, we did not find any consistent way to select the most appropriate filter length among 

those used in our study.  

2.5. Towards a deeper investigation of what and how 

the models learn 

Figure 2.13a shows the simple summary plot of standalone models with precipitation and 

air temperature. Figure 2.13b shows the SHAP summary plot for the inertial GWL type, 

indicating the order of importance of each decomposed component. Here, P1 to P5 

represent the MODWT components of precipitation, i.e., P1 to P4 are wavelet coefficients, 

with P1 and P4 being the highest and lowest-frequency coefficients, respectively, while P5 

represents the retained scaling coefficient. The same applies to the air temperature 

components T1–T5. Using the terminology defined earlier, SHAP summary plots were 

generated for all three GWL variability types, and three DL models were tested, as shown 

in Figure 2.14. The SHAP summary plots show that the order of importance of different 

Figure 2.13: SHAP summary results with feature importance of each variable in the GRU: a) 

with precipitation and air temperature (PT) as input and b) with PT with la10 wavelet as input 

for the inertial type. Here, P1 to P4 and T1 to T4 represent wavelet coefficients for 

precipitation and air temperature, respectively. P5 and T5 represent scaling coefficients of 

precipitation and air temperature. 

b) a) 
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features was the same for LSTM and GRU but was slightly different for the bidirectional 

LSTM. This might be attributed to the basic difference in the architectures of LSTM, GRU, 

and BiLSTM, i.e., in LSTM and GRU, information flows in only one direction 

In contrast, in bidirectional LSTM, information flows in both directions. For example, In 

mixed type, SHAP results showed that only BiLSTM could capture the low-frequency 

variability in precipitation (P5) as a major contributor to the simulations. Simulation results 

showed that, in this case, BiLSTM was the most efficient model (RMSE=1.41; Figure 2.12f 

).  

The SHAP plots show that the inertial type always had low-frequency precipitation 

components as major contributors. We note that the difference in performance among the 

MODWT-assisted DL models is relatively small, indicating that retrieving useful information 

plays a more important role than the model itself. Our results (Figure 2.14) show that the 

models mainly use the air temperature input to explain/represent the annual periodic 

variability within GWL; the air temperature is mainly dominated by annual cyclicity. This is 

confirmed by the SHAP analysis, which clearly shows that the MODWT component (T3) 

corresponding to the annual time scale has the highest impact on simulating the annual 

GWL type. Barzegar et al. 2021 highlighted that LSTM is efficient in modelling seasonality, 

which explains why standalone models result in high accuracy in annual GWL time series 

but failed to perform accurate simulations in the case of low-frequency dominated (inertial) 

GWLs. However, as emphasised in Table 2.6, the best results for the so-called inertial GWL 

type could be achieved using precipitation and air temperature time series as input and a 

MODWT-assisted model (best results obtained with GRU). For low-frequency dominated 

GWL, the DL models must access low-frequency information in the input variables to learn 

from it. Our experiments highlighted that, in such cases, pre-processing using MODWT 

helped access the information required. Figure 2.15a shows the normalised precipitation 

used as input and the lowest-frequency component it contains (red line). Although the 

variability explained by the low-frequency P5 component remains relatively low compared 

to that of the original precipitation signal (standard deviation of resp. 0.05 and 0.16 in 

Figure 2.15a), it can be easily seen that the P5 component (displayed in its full range in 

Figure 2.15b) matches very well the targeted GWL time series (Figure 2.15c). One should 

notice here that in this case, although la10-based filters were used to ensure limited 

boundary effects, pre-processing still revealed capable of reaching the desired low-

frequency information required to feed the model.  
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Figure 2.15: Comparison of a) precipitation, b) the last MODWT component 

(approximation) of precipitation (P5), and c) the original GWL timeseries. 

The GWL data used in this study are relatively free from anthropogenic influences; hence, 

pumping was not considered. Nevertheless, for further generalisation, wherever possible, 

pumping data should also be considered. The GWL data can also be used for long-term 

historical reconstructions or direct downscaling using large-scale climate/atmospheric 

variables (e.g., NAO) and climate fields from reanalyses, which could also help study the 

hydrological evolution of GWL time series over the last century. In a benchmark study, 

Hagen et al. (2021) used machine learning models to identify drivers of atmospheric 

variables for the direct downscaling of streamflow and highlighted the need for such 

benchmark studies for DL. Similar studies focusing on interpretable DL for GWL 

downscaling are required to exploit the full potential of these models. 
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2.6. Concluding remarks 

This study assessed the effectiveness of DL models for simulating different types of GWLs, 

including inertial, annual, and mixed. The DL models considered different input types, 1) 

precipitation and air temperature or 2) effective precipitation, and also considered the case 

where the inputs were pre-processed by the MODWT. The MODWT-assisted GRU seemed 

to perform well with all three types of GWLs, mainly when only precipitation and air 

temperature data were used as input. However, MODWT-assisted BiLSTM performed 

slightly better for mixed type; interestingly, although the improvement was very small 

(approximately 7% improvement in RMSE), SHAP results indicated the BiLSTM prioritised 

low-frequency better than GRU in this case. When effective precipitation was used as input, 

both standalone and MODWT-assisted models consistently gave better results for annual 

and mixed types but underperformed for inertial type (i.e., in such a case, using effective 

precipitation as input did not improve the simulation results). However effective 

precipitation relies on evapotranspiration, a complex variable by itself which may also be 

affected by high uncertainty owing to its assessment and computation. This is why 

capturing relevant information directly from source variables may be a better option. 

Nevertheless, the MODWT was still helpful in improving the results of all three models in 

almost all cases. Improvements were more substantial when using precipitation and air 

temperature as input, while they were much smaller when effective precipitation was used. 

The whole framework presented in this study is flexible and reproducible, which means 

that each of the internal steps can be modified or replaced to check for further 

advancements, and can be used to adapt different types of GWL that are not currently 

considered here. For example, pre-processing steps can be replaced with other types of 

signal analysis and processing techniques, or interpretability with SHAP can be replaced 

with the local interpretable model-agnostic explanations  or integrated gradient approach. 

In conclusion, using relevant information and pre-processing techniques, such as MODWT, 

helps DL models generate better GWL simulations. 

The models presented in this study used only meteorological variables. However, in the 

current situation of growing concerns over frequent extreme events, such as heat waves 

and droughts, other input variables, such as climate indices or large-scale climate 

projections, should be considered when simulating the historical and future GWLs, thereby 

improving the decision-making processes. Hence, the models developed in the current 

study can project near long-term GWL simulations under different climate scenarios using 

GCM projections as input. In addition, this study addressed only the epistemic uncertainty 
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owing to the randomness in model weights. Future studies should also consider other 

sources of uncertainty, particularly in input data (Evapotranspiration model when using EP. 

Precipitation and temperature uncertainty associated with the reanalysis products used) 

using the current approach. 

In light of this research, several questions can be raised that could serve as a basis for 

future studies. Does having additional variables (e.g., regional-scale 

hydrological/hydrometeorological variables, temporally static variables indicative of basins' 

physical properties, large-scale climate indices, or large-scale climate field variables from 

gridded reanalysis data) still require pre-processing to extract consistent information? 

Would other types of signal processing techniques (such as empirical/variational mode 

decomposed-based methods, successive LOESS or Savitzky-Golay smoothing of input data 

to extract low-frequency content) improve the simulations even further? Although 

approaches such as multi-basin training are being studied in rainfall-runoff modelling, they 

are yet to be explored in the context of GWL simulations. Future work should determine 

whether one global model is sufficient for learning various GWL variations across multiple 

sites simultaneously without developing a single model for each site. Concerning DL 

approaches, attention-based models are receiving increasing interest in recent years.  

However, further studies would then be required to assess whether such models would 

successfully account for low-frequency variations in GWLs without any help from signal 

pre-processing. 
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Chapter 3. Groundwater level reconstruction 

using long-term climate reanalysis data 

and deep neural networks 

 

Building upon the learning from the wavelet-assisted deep learning approach for 

groundwater level simulations in Chapter 2, Chapter 3 extends this methodology to 

reconstruct long-term groundwater levels using climate reanalysis data and validate across 

northern France. By leveraging recurrent neural networks like LSTM, BiLSTM, and GRU in 

conjunction with wavelet pre-processing, we seek to evaluate the ability of DL models to 

capture multidecadal variability and reconstruct groundwater levels dating back to the 

early 20th century. This long-term reconstruction capability addresses the need for 

historical data and provides a valuable data reconstruction approach for assessing 

hydroclimatic trends and variability. 

The results of this chapter were published in the Journal of Hydrology: Regional Studies. 

Chidepudi, S. K. R., Massei, N., Jardani, A., & Henriot, A. (2024). Groundwater level 

reconstruction using long-term climate reanalysis data and deep neural networks. Journal 

of Hydrology: Regional Studies, 51, 101632. https://doi.org/10.1016/j.ejrh.2023.1016

https://doi.org/10.1016/j.ejrh.2023.1016
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Abstract 

Assessing long-term changes in groundwater is crucial for understanding the impacts of 

climate change on aquifers and for managing water resources. However, long-term 

groundwater level (GWL) records are often scarce, limiting the understanding of historical 

trends and variability. In this paper, we present a deep learning approach to reconstruct GWLs 

up to several decades back in time using recurrent-based neural networks with wavelet pre-

processing and climate reanalysis data as inputs. GWLs are reconstructed using two different 

reanalysis datasets with distinct spatial resolutions (ERA5: 0.25° x 0.25° & ERA20C: 1° x 1°) 

and monthly time resolution, and the performance of the simulations were evaluated. Long 

term GWL time series are now available for northern France, corresponding to extended 

versions of observational time series back to the early 20th century. All three types of 

piezometric behaviours could be reconstructed reliably and consistently capture the multi-

decadal variability even at coarser resolutions, which is crucial for understanding long-term 

hydroclimatic trends and cycles. GWLs'multidecadal variability was consistent with the Atlantic 

multidecadal oscillation. From a synthetic experiment involving a modified long-term 

observational time series, we highlighted the need for longer training datasets for some low-

frequency signals. Nevertheless, our study demonstrated the potential of using DL models 

together with reanalysis data to extend GWL observations and improve our understanding of 

groundwater variability and climate interactions. 

3.1. Introduction 

Understanding variations in groundwater levels (GWLs) is crucial for water resource 

management, especially under changing climatic conditions. Recent droughts across Europe 

have led to new restrictions on water use (Toreti et al., 2023). Hydrological reconstruction can 

be a way forward to address the long-term statistical properties of climate variability (Massei 

et al., 2020) and provide a complementary approach to better assess the impacts of climate 

change on hydrosystems (Bonnet et al., 2017a, 2020; Devers et al., 2021; Dieppois et al., 

2016). 

Traditionally, reconstruction studies are carried out using simulation approaches that make 

use of long-term reanalysis products such as NOAA 20-CR and ERA20C. Bonnet et al. (2017b) 

used ERA 20C and NOAA 20CR for hydrological reconstruction in France using a hydrological 
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model. Bonnet et al. (2020) used a land surface model to reconstruct river flows using SAFRAN 

and NOAA 20CR datasets to understand the influence of multi-decadal variability in high and 

low flows in the Seine basin. Jackson et al. (2016) used a lumped conceptual model (Aquimod) 

to reconstruct multi-decadal groundwater level time series, and Ascott et al. (2020) did the 

same for sub-Saharan Africa and showed that multi-decadal variability plays a role in GWLs. 

These approaches require downscaling and bias correction when using global datasets, which 

is a resource-intensive process. Deep learning (DL) can help to avoid this task. For example, 

Hagen et al. (2023) recently showed that using deep learning models with ERA20C 

atmospheric variables as input could be a complementary approach to reconstructing 

streamflow without having to perform downscaling and bias correction as intermediate steps.  

However, DL in hydrology is mostly used in the context of forecasting or hindcasting, and less 

often in simulation. As we have already mentioned in (Chidepudi et al., 2023) and according 

to (Beven & Young, 2013), “simulation is defined as quantitative reproduction of system 

behaviour without reference to observed output; “forecasting” is defined as the reproduction 

of system behaviour ahead of time with observed outputs up until the onset of forecast 

included”. In other words, forecasting uses past values of the target variable as input to the 

model, i.e. prior knowledge of the target variable is required, whereas simulation depends 

only on the external variables used as input to the model. In this context, ‘reconstruction’ 

corresponds to simulation. The paper by (Beven & Young, 2013b) provides detailed 

information as well as a thorough explanation of all these terms, which are theoretically well 

defined, not always well used and often used interchangeably, which should be avoided. 

Our review of the literature showed that only a few studies dealt with hydrological 

reconstruction (i.e. simulation), highlighting the need for further research in this area. Given 

the immense potential of using DL to reconstruct hydrological variables, some studies have 

demonstrated the usefulness of these approaches. For example, Uz et al. (2022) used deep 

learning to reconstruct GRACE total water storage anomalies (TWSA) using reanalysis data 

(ERA5), and Satish Kumar et al. (2023) used artificial neural networks (ANN) to do the same. 

Kalu et al. (2022a) proposed a DL approach to reconstruct climate-driven terrestrial water 

storage (TWS) using global indices and hydroclimatological datasets to assess the influence of 

global climate on hydrological fluxes. Jing et al. (2023) showed that DL models outperformed 

tree-based models in simulating groundwater levels from GRACE data, even when influenced 

by human activities. Xiong et al. (2022) used random forest (RF), support vector machine 
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(SVM), and ANN to reconstruct monthly GWLs from GRACE data, but such data are not long 

enough to be suitable for long-term reconstruction. Wunsch et al. (2022a) used convolutional 

neural networks, which allowed them to develop projections (‘what-if’ simulation according to 

(Beven & Young, 2013b)) and investigate the influence of climate change on groundwater 

resources in the 21st century using only direct meteorological inputs. Vu et al. (2021) used 

groundwater levels from nearby stations to fill in missing values at piezometric stations, but 

this type of approach requires long-term GWL observations to be available in the vicinity of 

the target station. It is then necessary to explore the use of external input variables to enable 

long term reconstruction in the context of deep learning models. In recent years, DL models 

have also shown some potential in reconstructing missing GWL data (Vu et al., 2021b) and 

forecasting surface and groundwater levels (Jahangir et al., 2023; Kalu et al., 2022b; Vu et 

al., 2023), but there is still a lack of studies that have evaluated the capabilities of DL in 

reconstructing GWLs over longer periods, up to a century. 

Finally, the use of DL for simulation in groundwater studies is still relatively new but has shown 

great potential in simulating groundwater levels, and recently Chidepudi et al. (2023) used 

recurrent-based deep learning models (long short-term memory (LSTM), gated recurrent unit 

(GRU), and bidirectional LSTM (BiLSTM)) to simulate groundwater levels affected by low-

frequency variability using meteorological input data from high-resolution SAFRAN reanalysis. 

This study also showed that the use of some wavelet pre-processing (the so-called BC-

MODWT: Boundary corrected-maximum overlap discrete wavelet transform) would improve 

the simulations compared to standalone (i.e. without any pre-processing) deep learning 

models. As a follow-up to this study, in this work we have analysed the capabilities of 

recurrent-based neural networks to simulate and reconstruct different types of GWL dynamics 

using large-scale climate reanalysis data as input. To the best of our knowledge, this is the 

first study to exploit the potential of deep learning for long-term groundwater level 

reconstruction, especially when GWLs contain both low-frequency (up to decadal) and annual 

cycle timescales.  

Several research questions and scientific locks need to be addressed. First, we examine the 

impact of the spatial resolution of the input reanalysis data, as we know that there are different 

types of reanalysis products that serve different purposes. For example, the coarse resolution 

ERA20C reanalysis is classically used to study hydroclimate variability over the entire 20th 

century, while the finer resolution ERA5 only goes back to 1940. We also assess the ability of 
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such models to produce consistent reconstructions of the GWL that still contain meaningful or 

even crucial information about hydrological variability over more than several decades using 

much shorter lengths of observed data (less than three decades). Finally, we discuss the 

influence of the length of the training data on the performance of the models. 

3.2. Data and Methodology 

 Study Area 

The study area considered is shown in Figure 3.1a and covers mainly the north of France and 

was selected on the basis of data availability. Indeed, the spatial distribution of GWL time 

series duration across France is characterised by a pronounced north-south divide, with the 

longest time series located in the Paris Basin and northeastern France, while time series are 

much shorter from the extreme west to the south of France. This striking north-south divide 

can be attributed to the delayed establishment of the piezometric network in central and 

southern France, which occurred in the 1990s. In northern France, on the other hand, the 

piezometric network was already in place in the 1970s. 

In the area of northern France considered in the present study, most of the GWL time series 

consist of piezometers located in the Seno-Turonian Chalk of the Paris Basin, which is the 

most represented aquifer among the selected piezometers, and in the Jurassic and Eocene 

limestones at the edge of the Paris Basin, respectively at the eastern and southwestern edges 

of the basin. As described in the next section, a major advantage of this area is that it contains 

3 clearly contrasting GWL time series behaviours, despite its more limited spatial coverage. 

 Datasets 

In this study, both the existing GWL data available over contiguous France and external 

climate variables from ERA reanalysis products were used. The GWL data were classified into 

3 different classes according to Baulon et al. (2022a), according to the characteristic time 

scales that define their respective variability. These 3 types correspond to annual, mixed and 

inertial, as shown in Figure 3.1b. The first GWL time series in Figure 3.1b has an annual 

behaviour, i.e. the signal is strongly influenced by the annual cycle; the second is the mixed 

GWL time series with both annual and interannual components, and finally, the inertial GWL 

time series, which was dominated by the low-frequency component. Understanding the 

dynamics of these three main behaviours is crucial for water resources management, as they 



 

 

74 

 

are also related to the physical properties of aquifers, such as recharge rate, permeability and 

storage, etc. Recent studies have highlighted the importance of low-frequency variability and 

how its amplitude plays a crucial role in terms of estimated trends or extremes (Baulon et al., 

2022a; 2022b). 

a) 

   b) 

Figure 3.1: Classification of long-term (1970-2020) groundwater level (GWL) monitoring 

stations based on GWL types: annual (red), mixed (green), and inertial (blue). Figure 

shows GWL station locations (a) and normalised GWLs of all selected stations based on 

class (b).   



 

 

75 

 

Of these three types, mixed behaviour is the most interesting, as it combines the dynamics of 

both annual and low frequency dominated behaviour. The only long observational record (over 

1 century) of groundwater levels available in the database that we could use to assess the 

ability of our models to develop consistent backward extensions (i.e. reconstructions) of 

models that are of such a mixed type.  

The input variables were taken from ECMWF ERA 20C (Poli et al., 2016) and ERA 5 (Hersbach 

et al., 2020a), as summarised in Table 3.1. ERA 20C and ERA 5, being the global datasets 

with comparatively better spatio-temporal resolution, become valuable inputs to the models. 

ERA 20C covers a significant period of historical records dating back to 1900. 

Table 3.1: Summary of data sources used in this study 

Type of data Data source Years Temporal 

resolution 

Spatial 

resolution 

Reanalysis ERA 20C (Poli et al., 

2016) 

ERA 5 (Hersbach et 

al., 2020) 

1900-2010 

1940-2022 

Monthly 1.0 *1.0 

0.25*0.25 

Observed GWL 

data 

ADES (Winckel et al., 

2022) 

Long GWL timeseries 

(Tincques) 

1970-2020 

 

1903-2020 

Monthly 

 

 

Station data 

 

The selected input variables 10m zonal (W-E) U-wind component (u10), 10m méridional (S-

N) V-wind component (v10), 2m temperature (t2m), evaporation (e), mean sea level pressure 

(msl), surface net solar radiation (ssr), total precipitation (tp), with spatial resolution of 0.25 

degrees (ERA5) and 1 degree (ERA20C) and monthly time resolution. The input variables used 

in this study are commonly used forcing data for hydrological and land surface models, as 
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they are representative of atmospheric conditions and circulation, moisture fluxes and 

radiative forcing (Kratzert et al., 2023; Mishra et al., 2018). This would also allow future 

studies to make fair comparisons between reconstructions from data-driven models and other 

models (conceptual, hydrological, land surface models, etc.). Furthermore, the datasets used 

in this study are globally available and widely used for various hydroclimatological 

applications.  

The use and potential of these global datasets in the context of groundwater simulations 

remain unexplored. The GWLs used in this study are from a database developed with wells 

that have not been strongly affected by human activities (water abstraction) and remain 

sensitive to climate variability (Baulon et al., 2022a). Using these datasets, we reconstructed 

groundwater levels using the period 1970-1996 for model training and 1997-2010 for testing. 

The reconstructed period was 1940-1970 for ERA5 and 1900-1970 for ERA 20C.  

The wells used in this study were selected on the basis of data quality, with a minimum of 

continuous gaps or abnormal changes in the data, and with data available from 1976 onwards. 

The models were trained and tested on the same data source (ERA20C or ERA5), using 

standalone models and MODWT pre-processing. 

3.3. Methodology 

 Recurrent based deep neural networks and wavelet pre-
processing approach for the simulation of the GWL  

In the current study, we trained recurrent-based deep learning models (long short-term 

memory (LSTM), gated recurrent unit (GRU), and bidirectional LSTM (BiLSTM)) designed to 

handle sequential data and capture long-term dependencies. It is not the purpose here to 

explain in detail how these neural network architectures work, and the reader is referred to 

the abundant literature on this topic (Kratzert et al., 2019; Vu et al., 2021; Wunsch et al., 

2022a) or to our previous work using these three types of deep neural network models 

(Chidepudi et al., 2023). In short, LSTM has one memory cell and three gates to regulate the 

flow of information: forget, input, and output. GRU, on the other hand, is a simplified version 

of LSTM with only two gates (reset and update) designed to improve the computational 

efficiency of LSTM (reduced number of parameters compared to LSTM). BiLSTM, on the other 

hand, trains two LSTM models that learn forward and backward states, allowing even better 
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exploitation of the available data. It should also be noted that the BiGRU models, not used in 

this work, can also be used for the same objective (2-way exploration of available information 

and reduced number of parameters). All these models are known for their ability to capture 

the non-linear relationship between input and output variables, such as atmospheric or 

climatological inputs and, in our case, groundwater levels.  

Bayesian optimisation was used to tune the hyperparameters for all models, using the same 

range of values as described in Table 2.1 of (Chidepudi et al., 2023a). As a critical parameter 

for LSTM or GRU recurrent-based neural networks, the sequence length was set to 48 months, 

which was determined based on previous works on hydrological variability over northern 

France (Baulon et al., 2022a and b; Massei et al., 2010 and 2017). These works showed that 

low-frequency multiannual variability in precipitation, originating from large-scale climate 

variability, very often controls either streamflow or GWL variations. Although the amplitude of 

such low-frequency temporal patterns remains very small in precipitation and other climate 

signals, their strong amplitude in GWL variability underscores the need to provide recurrent 

networks with the ability to use information going back several years. While many climate 

models, such as ENSO or NAO would show significant variability on 2 to 8 year time scales, a 

sequence length of 48 months (i.e. the number of continuous time steps used in the form of 

a sequence to compute each point output) proved to be quite consistent to achieve the best 

results (Chidepudi et al., 2023a). 

In addition, maximal overlap discrete wavelet transform (MODWT) pre-processing was used 

to decompose the original input signal into multiple wavelet and scaling coefficients, 

representing the high-frequency and low-frequency components. The appropriate use of this 

pre-processing technique aims to improve the groundwater level simulations by capturing the 

low-frequency variability, as shown in (Chidepudi et al., 2023a), following the best practices 

recommended by (Quilty & Adamowski, 2018). To maintain the uniformity of the results and 

to avoid losing a large amount of data due to boundary conditions, it was decided to always 

use the least asymmetric filter with a width of 8 (La8) for the wavelet models.  

The results obtained from the different models with and without wavelet pre-processing were 

compared using different metrics in the form of cumulative distribution function (CDF) curves 

to understand the performance across all the stations considered in the study. The study also 

used a multimodal approach for uncertainty quantification, with different models, each with 

different initialisations. In addition, the study considered the median to calculate metrics 



 

 

78 

 

instead of the mean to be robust against outliers. The metrics used to evaluate the 

performance of the models were NRMSE (normalised root mean square error), MAE (mean 

absolute error) and KGE (Kling Gupta efficiency) (Gupta et al., 2009). 

3.4. Results 

We investigated how recurrent-based neural networks perform in reconstructing long-term 

(i.e. several decades back in time) time series, where only a few decades are available for 

both training and testing the models, typically ~25 and 15 years, respectively. ERA5 and 

ERA20C, which differ in length and spatial resolution, were tested.  

All models with and without MODWT were tested for all GWL stations. The results obtained 

are then plotted separately for each type of GWL. For a synthetic presentation, these results 

are presented as empirical cumulative distribution functions of Kling-Gupta efficiency (KGE) 

values for all the different model combinations for both ERA5 (in the first column) and ERA 

20C (in the second column) (Figure 3.2). In the current study, KGE is considered over Nash-

Sutcliffe efficiency (NSE) or other metrics as it is more comprehensive than NSE and combines 

three components of model error (correlation, bias, and ratio of standard deviations). 

The standalone models are marked ‘SA’, and the wavelet-assisted models are marked ‘Wav’. 

Each model is represented by a different colour: for example, the standalone models BiLSTM, 

LSTM and GRU are represented by sky blue, light green and violet, respectively, while the 

wavelet models BiLSTM, LSTM and GRU are represented by orange, red and brown 

respectively. 

It is clear from Figure 3.2 that all types of architectures (LSTM, BiLSTM, GRU) often perform 

similarly overall, with only minor differences for annual GWLs with KGE greater than 0.5, while 

the differences are more pronounced for mixed and inertial GWL types. Second, the wavelet-

assisted models (henceforth referred to as Wav models in the text) systematically 

outperformed the standalone models in all cases, confirming the findings of (Chidepudi et al., 

2023a). Indeed, it is easy to see from Figure 3.2 that Wav LSTM/BiLSTM/GRU always had 

higher KGE values. Figure 3.2 also shows that BiLSTM with wavelet pre-processing would 
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slightly outperform the other models in many cases (orange lines in Figure 3.2), suggesting 

that this approach is effective in capturing long-term temporal patterns. 

 

Figure 3.2: Cumulative density functions of the KGE for standalone (SA) and wavelet-

assisted (Wav) models for both ERA5 (first column) and Model is represented by a 

different colour: BILSTM (blue), LSTM (green), and GRU (red) for standalone models 

and corresponding dotted lines for wavelet models.  
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 We then preferred to use this model for further analysis and simulations. There did not appear 

to be any substantial difference in KGE values when comparing ERA5 and ERA20C, although 

it looks like the results are slightly better for ERA5, especially for annual and mixed GWLs; 

this is related to the effect of spatial resolution, which is discussed further below. Nevertheless, 

the KGE values seem to be more inconsistent for the inertial type of GWLs. This will be 

investigated below to assess the reasons for this inconsistency. 

 While the main objective of this study is to develop suitable models for reconstructing the 

GWL as far back as possible, another aim of the study was to assess the impact of the spatial 

resolution of the reanalysis data (i.e. ERA5 vs. ERA20C) on the GWL simulations. To better 

understand the difference between the ERA5 and ERA20C reconstructions, the performance 

of the Wav-BiLSTM model is compared in both cases, as shown in Figure 3.3. ERA5 gave 

slightly better test results than ERA20C in the case of annual and mixed GWL types, while 

very similar results were observed in the case of inertial GWL types. Although there are no 

studies comparing ERA5 and ERA20C in groundwater simulations, a recent work dedicated to 

streamflow reconstruction (Hagen et al., 2023) showed that the scale issues are a softer 

constraint for machine learning than in traditional hydrological modelling. In addition, climate 

impact studies using global climate outputs may require the use of coarse resolution reanalysis 

datasets and longer periods of climate records. This makes it imperative to use ERA20C until 

sufficient long-term fine-resolution data become available. 

Furthermore, validating the model performance of long available GWL observations using the 

long-term climate reanalysis data can provide a basis for identifying the robust models for 

reconstructing GWL. While there are quite a few studies on runoff reconstruction from 

reanalysis datasets (Ghiggi et al., 2019; Hagen et al., 2023; Nasreen et al., 2022), there are 

only a few studies on groundwater levels. 

Figure 3.3: CDF comparison of KGE values of the BiLSTM with wavelet (La8) for different GWL types. 
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Using the only long, consistent and reliable “Tincques” time series available over France 

(Tincques station), we then aimed to validate the approach for long-term reconstruction. 

Figures 3.4a-3.4c show the CDF plots of simulations versus observations over the period 

(1996-2010) for all three wavelet-based models. From Figure 3.4, the GWLs are slightly better 

captured in the case of BiLSTM, although low levels are slightly underestimated, and Figure 

3.4d shows the reconstruction of the Tincques long-term observations in the form of a time 

series plot using wav-BiLSTM. In addition, the reconstruction results in this case are further 

validated on the historical period before 1970 when the long-term observations are available, 

further confirming the performance of the model in producing reliable reconstructions into the 

past. The results on the test set (KGE:068, MAE:1.77 & NRMSE:0.15) are, in this case, 

a) c) b) 

d) 

Figure 3.4: Cumulative density functions (CDF) of simulated vs observed (skyblue) 

Tincques on the test set(a-c). Reconstruction of the longest GWL level time series available 

for double validation (d). 
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comparable to those on the reconstruction set (KGE:0.69, MAE:1.77 & NRMSE:0.16). As 

demonstrated above, our reconstruction approach based on training with ~20-25 years of 

observed GWL revealed the capability of achieving a quite good reconstruction over 60 years 

back in time (i.e. between 1910 and 1970). The only available observed time series (Tincques 

station) dating back to 1903 was used to assess the quality of the extension in the past. 

Fortunately, the Tincques time series is of the so-called mixed type, which means that it was 

a perfect candidate for evaluating the reliability of the developed models in dealing with both 

annual and low-frequency variability. On the other hand, in some cases, no satisfactory results 

could be obtained for the time series of the inertial type (i.e. dominated only by multiannual 

to decadal variability), which needs to be analysed and discussed. It should also be noted that 

systemic changes or changes due to human influence are not part of the current study. 

 

3.5. Discussion: Trends and multidecadal variability 

in reconstructed GWL 

   

We then generated long-term reconstructions for all the short-term time series in the 

database, which are now available for further investigation. Three examples of such 

reconstructions, one for each type of piezometric behaviour, are shown in Figure 3.5.  
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Despite recent studies in defence of metrics, it is challenging to rely entirely on metrics, as 

different metrics can lead to different conclusions, as shown below in Figures 3.5a – 3.5c, 

which compare the comparison of the best reconstructed groundwater levels in each of the 

c) 

a) 

b) 

Figure 3.5: Comparison of reconstructed annual (a), mixed (b) and inertial (c) groundwater 

level (GWL) variations with best Kling-Gupta efficiency (KGE) values 
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three main GWL types, and in Figure 3.6, which compares reconstructions with low KGE 

values. 

Different objectives can be pursued that require long time series. From a hydro climatological 

point of view, assessing trends or changes in extremes over the long term is of great interest. 

We then carried out trend analysis using correlated seasonal Mann-Kendall test (Explained in 

detailed later in Section 5.3.2). Overall from the trend analysis, in the reconstructed 

groundwater levels from ERA20C and deep learning models, there is no significant trend in 

a) 

c) 

b) 

Figure 3.6: Comparison of reconstruction when KGE values are in the range of 0.4-0.5 

for all three types (a-c) 



 

 

85 

 

reconstructed GWLs (Figure 3.7). However, as emphasised in the introduction of this article, 

a particular challenge remains to identify the contribution of multidecadal variability in 

hydroclimatic time series. As highlighted in several previous studies (Boé & Habets, 2014; 

Bonnet et al., 2017), multidecadal variability due to natural climate variability may either 

mask, reduce or amplify the effects of anthropogenic climate change.  

 

This can affect interpretations or conclusions drawn in retrospective studies and increase 

uncertainty in projections or long-term forecasts. Using the same long-term Tincques station 

as in our study, Baulon et al. (2022b) showed that the Atlantic Multidecadal Variability (AMV), 

also known as the Atlantic Multidecadal Oscillation (AMO), would play a role in modulating the 

occurrence of groundwater extremes over the past century. We then investigated how well 

our reconstructions would capture such multidecadal variability for all three types of GWL time 

series. 

To extract such a low-frequency oscillation, all reconstructed and Tincques observed time 

series were smoothed with a LOESS smoothing filter. Figure 3.8 shows the comparison of such 

smoothed time series for all reconstructions (all types combined, grey) and the long-term 

observed data (Tincques, black line). For comparison and presentation purposes, all time 

series have been normalised (which obviously gives an exaggerated perception of the true 

amplitude of this oscillation in the time series). All reconstructed and observed time series 

Figure 3.7: Trend direction (top row) and slope (bottom row) magnitude of reconstructed 

groundwater levels from different models using ERA20C (1900-1970) as input with different 

models  
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show the same long-term multidecadal pattern. It is interesting to note that when only shorter 

time series are available (e.g. from 1970 onwards), such multidecadal variability can easily 

be mistaken for a trend. This multi-decadal pattern was compared with the AMO index, 

confirming a potential influence of the AMO on groundwater levels, as suggested by Baulon et 

al. (2022a) or Bonnet et al. (2020). 

The main limitation of the proposed approach identified concerned GWLs time series that were 

completely dominated by very low frequency variability. In some of these cases, the deep 

learning models did not achieve satisfactory results, even when assisted by wavelet pre-

processing. 

b) 

Figure 3.8: Comparison of loess of smoothing of reconstructed median (light grey) from all 

stations with smoothing of long-term series available(a) with the AMO (b). 

a) 
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Although our results seemed quite consistent overall, we had identified some difficulties for 

the models to achieve good simulations for the most low-frequency GWL time series. For 

a) 

b) 

c) 

Figure 3.9: Reconstruction of high inertial type GWLs time series (a) and reconstruction of 

Tincques based highly inertial time series (obtained by LOESS smoothing of observed 

Tincques GWL) with training date starting in 1970 and 26 years of training(b) and 1950 

(c). 
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instance, a substantial number of low KGE values were obtained for inertial-type GWLs 

(Figures 3.2 and 3.3). The inconsistency of the reconstruction for the highly inertial type of 

GWLs, as shown in Figure 3.9a, could be due to not learning enough relevant data patterns in 

the data. Given the lack of data available in this case, it is not surprising that they did not 

work: the information we get for this case would not be enough to achieve acceptable 

reconstructions.  

To illustrate this hypothesis, we carried out further experiments with synthetic time series that 

would replicate the most inertial time series by applying LOESS smoothing to the available 

Tincques long time series. The observational Tincques time series were smoothed until a highly 

inertial behaviour was observed that would be comparable to the most inertial observed (blue 

line in figures 3.9b and 3.9c). 

Figure 3.9b shows the reconstruction obtained with the same training data as the high inertial 

time series, which, as expected, did not give good results. However, when the training data 

was increased by a further 20 years, the results improved significantly: for example, the KGE 

values would increase from -0.30 to 0.61 (Figure 3.9c). This confirms the need for longer 

training data to achieve a better reconstruction in this case. While it is not always practical or 

possible to increase the amount of training data over time, another alternative could be to 

train on data from multiple stations, leading to regional models. In this way, much more 

information would be available for the model to learn such low-frequency variability. Our 

preliminary experiments with regional models showed improved simulations for this type of 

GWL. However, this approach would require further analysis for generalisation and is therefore 

beyond the scope of the current study. 

3.6.  Concluding remarks 

This study demonstrated the potential of deep learning models to reconstruct groundwater 

levels (GWLs) from reanalysis data with and without wavelet pre-processing. The DL models 

used input variables from two different reanalysis datasets (ERA20C and ERA5) separately. 

The performance of these models was compared for three different types of groundwater level 

behaviour (annual, mixed, and inertial). To further validate the approach for long-term 

reconstructions, the only long, consistent, and reliable time series available in France was 

used. This validation on the historical period before 1970, for which observations are available, 

resulted in results comparable to those of the original test set after 1996, confirming the 
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reliability of the models in providing reliable reconstructions into the past. The ability of the 

models to capture multi-decadal variability was also evaluated for all reconstructions of 

groundwater levels in northern France. Overall, the models presented in this study proved 

capable of significantly extending the temporal information to produce reliable reconstructions. 

For example, these reconstructions were able to capture a meaningful trend that corresponded 

to multidecadal variability originating from the large-scale climate. 

Both ERA5 and ERA20C would be useful in different contexts because while ERA5 has a high 

resolution and leads to a slightly better reconstruction, these data are currently only available 

up to 1940, while ERA20C is available up to 1900, but ends in 2010. Therefore, ERA5 could 

be a good alternative for more recent periods in the future. While wavelet-assisted models 

outperformed standalone models in all cases, wav-BiLSTM consistently outperformed other 

wavelet models. Multi-decadal variability was found in all wav-BiLSTM reconstructions. Inertial 

GWLs have a high variance in uncertainty compared to annual and mixed. An experiment with 

an artificial long-term observational time series suggested that this is logically due to the 

amount of data available for training that would be required to capture enough of the 

information characterising GWL variability. We expect that highly inertial types of GWL would 

require longer training data for the models to achieve acceptable results, and that training the 

models at multiple stations simultaneously may help to overcome this issue. Our preliminary 

results with the multi-station approach showed that there is an improvement in the case of 

the inertial type of groundwater levels, even when very low frequency variability would 

dominate the GWL signals. 

Although the results presented here are only reconstructions, their effectiveness for this 

purpose would lead us to expect that this type of model would be useful for generating 

projections into the next few decades, as the similar types of variables are also available in 

GCM outputs. This would open the possibility of assessing future changes in groundwater 

resources in relation to climate change. In this context, the ability of deep learning models to 

cope with biases in GCM outputs without requiring bias-correction techniques as a prerequisite 

would also be an interesting research topic to address. Future research can also focus on 

developing even more frugal AI to reduce model complexity, testing the proposed models for 

minimal layers and other simple loss functions, and using large spatial grids to capture climate 

regimes or identifying relevant grids using correlation or more sophisticated approaches 

(Massei et al., 2017). 
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Chapter 4. Training deep learning models with 

a multi-station approach and static aquifer 

attributes for groundwater level simulation: 

What’s the best way to leverage 

regionalised information? 

 

While Chapter 3 focused on reconstructing groundwater levels at individual locations, Chapter 

4 expanded the scope to large-scale simulations across northern France. By employing a multi-

station collective training approach, Chapter 4 incorporates both dynamic climatic variables 

and static aquifer characteristics, enabling the consideration of groundwater heterogeneities 

across the study area and then a regional approach for model training. Using clustering along 

with wavelet transform decomposition techniques, we now aim at testing the ability to 

leverage regionalised information and capture local variations, building upon the DL wavelet 

pre-processing methods introduced in Chapters 2 and 3.  

Chapter 3 corresponds to an article accepted in Hydrology and Earth System Sciences (HESS) 

with major revision required, and currently under review in its revised version. It is available 

as preprint as: 

Chidepudi, S. K. R., Massei, N., Jardani, A., Dieppois, B., Henriot, A., and Fournier, M.: 

Training deep learning models with a multi-station approach and static aquifer attributes for 

groundwater level simulation: what’s the best way to leverage regionalised information?, 

EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-794 , 2024. 
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Abstract 

 In this study, we used deep learning models with advanced variants of recurrent neural 

networks, specifically Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and 

Bidirectional LSTM (BiLSTM), to simulate large-scale groundwater level (GWL) fluctuations in 

northern France. We developed a multi-station collective training for GWL simulations, using 

“dynamic variables (i.e., climatic) and static basin characteristics. This large-scale approach 

offers the possibility of incorporating dynamic and static features to cover more reservoir 

heterogeneities in the study area. Further, we investigated the performance of relevant feature 

extraction techniques such as clustering and wavelet transform decomposition with the aim of 

simplifying network learning using regionalised information. Several modelling performance 

tests were conducted.  Models specifically trained on different types of GWL, clustered based 

on the spectral properties of the data, performed significantly better than models trained on 

the whole dataset. Clustering-based modelling reduces complexity in the training data and 

targets relevant information more efficiently. Applying multi-station models without prior 

clustering can lead the models to learn the dominant behaviour preferentially, ignoring unique 

local variations. In this respect, wavelet pre-processing was found to partially compensate 

clustering, bringing out common temporal and spectral characteristics shared by all available 

time series even when these characteristics are “hidden” because of too small amplitude. 

When employed along with prior clustering, thanks to its capability of capturing essential 

features across all time scales (high and low), wavelet decomposition used as a pre-processing 

technique provided significant improvement in model performance, particularly for GWLs 

dominated by low-frequency variations. This study advances our understanding of GWL 

simulation using deep learning, highlighting the importance of different model training 

approaches, the potential of wavelet pre-processing, and the value of incorporating static 

attributes. 

4.1. Introduction 

Understanding the large-scale hydrological functioning of a hydrosystem is the best approach 

for grasping a more global view of water reserves and implementing appropriate long-term 

management strategies (Kingston et al., 2020; Massei et al., 2020). However, this approach 

requires constructing a large-scale hydrological model capable of capturing interactions over 

large areas while respecting hydraulic continuity across the hydrosystem. The model must be 
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able to analyse and test, for example, the effects of different modes of exploitation or any 

other human interventions, as well as the effects of climate change over the long term. 

Building the large-scale model implies collecting and processing a massive database to 

accurately capture all the geological, oceanic, climatic, and anthropogenic forcings that drive 

groundwater flow. However, the numerical, physics-based representation of all the physical 

processes occurring during the hydrological cycle in the subsurface remains an extremely 

complex task to achieve rigorously, particularly in large-scale modelling (Paniconi & Putti, 

2015). Although progress has been made in this field, applications of physics-based models 

are still mainly focused on aquifers in relatively small watersheds.  

Under these conditions, data-driven tools have emerged as an interesting alternative (or 

complement) for capturing the complex interactions that occur on different time and space 

scales, including large ones. They rely on efficiently processing a large database without 

having to rely on numerical physical representations of the non-linear physical processes that 

link climatic and hydraulic signals(Hauswirth et al., 2021). These processes are efficiently 

approximated on the basis of small and simple weight matrices defined to reproduce the 

observed hydraulic signals, either at an aquifer or river(Vu et al., 2023). The application of 

artificial intelligence (AI) algorithms, and deep learning (DL) in particular, is growing in the 

geosciences and especially in the hydrosciences (Nourani et al., 2014, 2023; Rajaee et al., 

2019), thanks to the increase in computational resources, but also the growing availability of 

global datasets for different hydrological variables(Addor et al., 2017; Kratzert et al., 2023), 

which are making it possible to better address issues related to the understanding and 

management of hydrological systems (Muñoz-Carpena et al., 2023). This growing interest has 

been confirmed in several recent studies that have highlighted the potential of deep learning 

tools for hydrological simulations(Fang et al., 2022; Klotz et al., 2022; Kratzert et al., 2019, 

2021; Nourani et al., 2021) and forecasting tasks (Jahangir et al., 2023; Momeneh & Nourani, 

2022; Jahangir & Quilty, 2023; Vu et al., 2023). Most often, these approaches are applied to 

rainfall-runoff modelling due to the availability of long-term runoff data, which is not always 

the case for aquifers due to the high cost of installing piezometers. Furthermore, the highly 

heterogeneous nature of underground reservoirs leads to complex hydrodynamic behaviours 

on a regional or continental scale, which cannot be captured by a limited number of 

piezometers. Consequently, the few applications of DL to groundwater, whether in simulation 

(Chidepudi et al., 2023) or forecasting (Bai & Tahmasebi, 2023; Collados-lara et al., 2023; 

Rahman et al., 2020; Vu et al., 2023; Wunsch et al., 2021), are on a local scale and involve 
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only single station models on a small number of piezometers in the construction of neural 

networks.  

DL models have proved effective on a local scale and are also on a larger scale by collectively 

training a significant number of piezometers (Chidepudi et al., 2023b; Heudorfer et al., 2024). 

This collective approach involves using and processing all available piezometric stations to 

learn about relationships or events likely to occur at the target station, even if they have not 

yet been observed at that station. This approach also requires using and extracting the 

relevant global climate signal and tracking its effects. This can have a delayed effect on 

piezometric fluctuations, making DL models more effective for long-term forecasting.Working 

with groundwater data also presents unique challenges compared to runoff data, such as 1) 

complex and heterogeneous geological factors influencing GWLs, 2) difficulty in linking the 

available data to the appropriate well  (for surface water, this is easily done through catchment 

delineation, but this isn’t the case for aquifer delineation), 3) slow response time (longer time 

series needed, i.e. data availability issue as mentioned above), 4) distinct sensitivities to 

human activities (e.g. pumping), which differ from those affecting runoff data, like river 

straightening and dam construction.  

In some hydrological studies, the term ‘global models’ is being used to describe models trained 

from multiple wells or stations. However, this term can be misleading in the groundwater 

context as it suggests a broader scope than intended. Therefore, in this study, we use the 

term “multi-station approach” for models trained on data from different wells with external 

input variables, which more accurately reflects their scope and methodology. Efforts to use 

data from multiple GWL stations in model training have been limited and have often focused 

on forecasting or reconstruction using data from nearby GWL wells as input. For example, Vu 

et al. (2021) used data from nearby stations to reconstruct the GWLs at a single station, albeit 

using GWLs from nearby stations only while training individual models for each station. 

Another recent study (Patra et al., 2023) developed so-called ‘global models’ for GWL 

forecasting and not simulations, i.e. these models only use past GWL data to forecast future 

GWLs. (Bai & Tahmasebi, 2023) used graph neural networks for GWL forecasting to capture 

the spatial dependencies of nearby wells and compared their performance with the single 

station gated recurrent unit (GRU) and long short-term memory (LSTM). A recent study by 

Gholizadeh et al. (2023) used LSTM alongside static attributes and demonstrated its 

applicability for simulating both streamflow discharge and GWL. However, the scope of the 
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study for GWL simulations was limited to only two dynamic variables: precipitation and 

temperature. This approach was used to simulate 21 GWL wells across Alabama from 1990 to 

2021. Notably, the study focused on annually varying GWLs, which may not represent the 

most difficult GWL variations to model. Cai et al. (2021), in their study conducted in the central 

eastern continental United States, showed that GRU performed better when it was informed 

by hydrogeological characteristics expected to affect groundwater response along with 

dynamic input variables (in this case, precipitation and streamflow).  

Several studies on groundwater modelling also demonstrated the potential of clustering 

methods (Nourani et al., 2022) in hybrid models along with AI approaches such as self-

organising map (Nourani et al., 2015, 2016; Wunsch et al., 2022b), K-means (Ahmadi et al., 

2022; Kardan Moghaddam et al., 2021; Kayhomayoon et al., 2021, 2022; Nourani et al., 

2023), Fuzzy C-means ((Jafari et al., 2021; Nourani & Komasi, 2013; Rajaee et al., 2019; 

Zare & Koch, 2018). However, most of these studies mainly focused on autoregressive 

approaches that rely on using previous GWL or nearby wells’ GWL data as input for forecasting 

or reconstruction. The regionalisation of GWLs, a process that could involve clustering and 

training of DL models using the non-autoregressive approach of learning from external input 

variables on comprehensive datasets, remains underexplored. The potential of multi-station 

approaches, particularly those that integrate static attributes and dynamic data or use 

clustering/pre-clustering, remains largely unevaluated in the context of GWL simulations. 

While these methods have proven effective in runoff modelling (Fang et al., 2022; Hashemi 

et al., 2022; Klotz et al., 2022),  their application to GWL simulation is still not fully explored 

or validated across diverse hydrogeological settings. A comprehensive evaluation of their 

strengths and weaknesses is essential to unlock their full potential in the simulation of GWLs. 

This includes a detailed investigation of the performance of these models in various GWL 

simulation scenarios. In addition, techniques such as wavelet pre-processing, such as BC-

MODWT (Chidepudi et al., 2023a), have shown promise in single-station models but have not 

been extensively tested on regional-scale simulations. Given this background, the current 

study aims to address several research questions:     

1) How do the generalised (multi-station) models compare with the specialised (single-

station) models in simulating GWLs?  

2) Can wavelet pre-processing techniques improve the performance of models for 

different types of GWLs when trained with data from all available stations? 
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3) To what extent do static attributes or one-hot encoding techniques help models  

generalise across different GWL behaviours? Is using a combination of these methods 

more effective than using them individually? Furthermore, how do these models 

compare to those trained on GWL stations grouped by similar spectral and temporal 

statistical characteristics? 

4) What are the key variables that influence the learning of these models, particularly in 

terms of capturing low-frequency variability while it is buried into high-frequency-

dominated explanatory signals? 

By addressing these questions, this study aims to provide a comprehensive evaluation of 

regional modelling approaches for GWL simulations and to compare their performance with 

the local approaches. We want to highlight that the present study is not dedicated to 

‘forecasting’ as is the case in most applications of DL to groundwater modelling. The reader 

can be referred to Beven & Young (2013) for distinctions between ‘simulation’ and 

‘forecasting’. In brief, according to their framework, ‘simulation’ means reproducing system 

behaviour without using observed outputs, while ‘forecasting’ involves reproducing system 

behaviour ahead of time based on past observations. This study focuses on simulation to 

understand GWL dynamics rather than forecasting future levels. This distinction is important 

for framing our approach and interpreting our results. To achieve this, we test different 

approaches for multi-station models while including static attributes and comparing the results 

with those obtained using local models. Furthermore, we evaluate the impact and usefulness 

of integrating wavelet pre-processing with multi-station deep learning models. All our 

experiments are conducted only under the gauged scenario, similar to (Li et al., 2022). 

The rest of the paper is structured as follows: Section 4.2 details study area the datasets used, 

and Section 4.3 presents the methodology and experimental design for the different 

approaches. Section 4.4 discusses the ability of the models and robustness in capturing 

different variations in GWLs and input scenarios. Section 4.5 deals with the discussion on the 

interpretability of the obtained results. Section 4.6 presents our main conclusions and 

perspectives. 
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4.2. Study Area and Data 

 The study area is approximately 80,000 km2 of Northern France, as depicted in Figure 4.1. 

The available GWLs of climate-sensitive wells (i.e., not strongly affected by human activities 

and sensitive to climate variability (Baulon et al., 2022a)) with high data quality until the end 

of 2022 were obtained from the ADES (Accès aux Données sur les Eaux Souterraines) 

database (https://ades.eaufrance.fr/; Winckel et al., 2022). All the wells considered in the 

study are in unconfined aquifers. In addition, the GWL data were clustered into three different 

clusters following the methodology outlined by Baulon et al. (2022b), which is based on 

spectral properties (i.e., characteristic time scales of variability inherent to each cluster). 

These clusters are identified as annual, mixed, and inertial, as depicted in Figure 4.1.  

Specifically, the first cluster showcased in Figure 4.1 exhibits a pattern predominantly 

influenced by the annual cycle, indicating an annual behaviour. The second cluster, the mixed, 

shows characteristics of both annual and interannual variability. The third cluster, the inertial, 

is mainly characterised by its low-frequency variability, as shown in Figure 4.1.  The dataset 

consists of 35 mixed, 23 inertial and 18 annual stations. All the wells considered in the study 

are in unconfined aquifers. A comprehensive list of all analysed wells, including their 

identifiers, GWL type and coordinates, is available in the supplement (Table S1). 

We used the forcing data from ERA5 (Hersbach et al., 2020) with a spatial resolution of 0.25 

degrees to obtain the dynamic climate variables. In particular, we extract seven atmospheric 

variables: 10m zonal (W-E) U-wind component (u10), 10m meridional (S-N) V-wind 

Figure 4.1: Clustering of GWL timeseries data (Background layer: © OpenStreetMap 

contributors 2023. Distributed under the Open Data Commons Open Database License 

(ODbL) v1.0.) based on the spectral statistical properties (Baulon et al., 2022b) 
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component (v10), 2m air temperature (t2m), evaporation (e), mean sea level pressure (msl), 

surface net solar radiation (ssr), total precipitation (tp). These variables are among the most 

commonly used inputs for hydrological and land surface models, representing atmospheric 

conditions and circulation, moisture fluxes and radiative forcing. ERA5 is the best available 

global reanalysis with the data available from 1940 and is generally considered adequate for 

capturing regional and global hydrometeorological variations. Addressing the uncertainty issue 

of ERA5 is beyond the scope of this paper and can be considered a complete research work. 

ERA5 Reanalysis data have uncertainty related to potential regional biases; this and their use 

for hydrological modelling is still ongoing research, particularly in “large-sample hydrology“  

(Maria Clerc-Schwarzenbach et al., 2024.). Precipitation is considered to have more bias than 

temperature. However, recent studies conducted recently concluded that ERA5 temperature 

and precipitation biases had been consistently reduced compared to ERA-Interim and were 

found to be quite accurate for hydrological modelling, for instance, in the case of conterminous 

US (Tarek et al., 2020). Gualtieri (2022) highlighted that ERA5 uncertainties were greater in 

mountainous and particularly in coastal locations located less than 15 km from the coastline 

(in the study presented herein, only 1 station out of 76 is located within the 10-15 km range 

identified in Gualtieri (2022)). Finally, one recent study (Lavers et al., 2022) conducted by 

ECMWF on evaluating ERA5 precipitation for climate monitoring concluded that using ERA5 

precipitation should be recommended for extra-tropical regions. However, for our study area, 

we have been evaluating different potential alternative reanalysis products, such as the 

SAFRAN (Système d'Analyse Fournissant des Renseignements Atmosphériques à la Neige) 

reanalysis developed specifically for France (Vidal et al., 2010). ERA 5 and SAFRAN 

precipitation appeared to have the same low-frequency components as detected in the GWL 

time series, as displayed in Figure 4.3 (this chapter) and Figure 2.15 in Chidepudi et al. 2023a. 

ERA 5, then, is suitable for our purpose.  

Static attributes are available for different ranges of aquifer classes with different resolutions; 

we took the static attribute's value corresponding to each well's location—associated with the 

Well IDs. Static attributes, coming from the BDLISA (Base de Donnée des Limites des 

Systèmes Aquifères) (https://bdlisa.eaufrance.fr/) database, are point-scale information, i.e., 

each well received set of attributes given different possible methods (geographical imputation, 

rule-based, human expertise). BDLISA is based on a mix of information from geological maps, 

piezometric maps, and hydrochemistry at a scale of 25km. BDLISA was originally designed at 

a 25km scale and later upscaled to larger scales. For our study, we kept information coming 
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from BDLISA at its original scale (25km), which means aquifer static attributes have a 

resolution of 25km. This information from BDLISA should be understood as a local-to-regional 

description of aquifers. 

Table 4.1: Summary of the static attributes used in the current study. Comprehensive 

explanation of all descriptions can be found at the URLs provided in the 3rd column. 

Variable Description Possible values and 

details  

type of porosity Type of environment for a 

hydrogeological entity characterised 

based on the level of porosity: porous, 

karstic, fracture.... 

https://id.eaufrance.fr/n

sa/353 

geological 

context at large-

scale 

Hydrogeological entity theme based on 

the different geological formations: 

alluvial, sedimentary, volcanic... 

https://id.eaufrance.fr/n

sa/348 

Lithology Dominant rock types associated with 

the well location: limestone, clay... 

https://id.eaufrance.fr/n

sa/165 

co-ordinates  latitude and longitude of the well 

location 

 

In this work, we also included static attributes (Table 4.1 and Figure 4.2) to assess whether 

such informative data would help to better represent small differences between GWL time 

series owing to different contexts (e.g., type of porosity, overall geological context, lithology, 

location (lon, lat)). Such data were retrieved from the French national database BDLISA ); 

they would be related to the filtering capabilities of the aquifers with respect to the input 

signals (e.g. precipitation). Although they seem somehow redundant, they are expected to 

provide complimentary information about the hydrogeological nature of the hydrosystems. 

Exact details of static attributes for each GWL station can be found in the supplement (Table 

S1). 
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The decision to include the relevant static attributes comes from a trade-off between the 

transposability of models and the availability of attributes, as we have to make sure that all 

those variables are widely available at the required resolution. Also, for some attributes like 

hydraulic conductivity, it might not be straightforward to get the most relevant resolution, 

which is needed to account for the most appropriate characteristic describing the well. For 

instance, a 25km resolution might not be relevant when aquifers are highly heterogeneous. 

Exploring the role of static attributes in more detail would require much further work than 

what was conducted in this study. 

Figure 4.2: Distribution of Geological Features by Class 
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4.3. Methodology: from single station to multi-station 

training   

 Theoretical modelling background 

In the current study, we explored the use of recurrent-based deep learning models to simulate 

GWLs across multiple stations using different approaches as described in section 3.2. We apply 

three types of recurrent neural networks: Long Short-Term Memory (LSTM, Hochreiter & 

Schmidhuber, 1997), Gated Recurrent Unit (GRU, Cho et al., 2014), and Bidirectional LSTM 

(BiLSTM, Graves & Schmidhuber, 2005), alongside a wavelet pre-processing strategy (BC-

MODWT). Each of these methods is designed to process data that changes over time, capturing 

patterns and dependencies that occur over extended periods. In brief, LSTM has a single 

memory cell and three gates (forget, input, and output) to manage the flow of information. 

GRU simplifies this design, with only two gates (reset and update), to increase computational 

efficiency by reducing the number of parameters compared to LSTM. BiLSTM further optimises 

data analysis by simultaneously processing sequences in both forward and backward 

directions. These models are particularly good at identifying various patterns in data 

sequences, making them ideal for simulating GWLs that change over time (Vu et al., 2023). 

We also explored the potential of wavelet decomposition (BC-MODWT) to decompose the data 

into components of varying frequencies (Figure 4.3), from high to low, to provide more 

detailed input to the DL models to better simulate the GWLs. As explained in Chidepudi et al. 

(2023a), decomposition depth (i.e. the choice of the number of components) was constrained 

by the trade-off between 1- achieving a sufficiently high level of decomposition to ensure the 

low-frequency variability is properly reached and 2- keeping the number of coefficients 

affected by boundary conditions as low as possible since these have to be ultimately removed 

from the input time series. All input time series were decomposed using BC-MODWT, with a 

decomposition depth of 4, as in Chidepudi et al. (2023a). Figure 4.3 illustrates the 

decomposition result for the precipitation time series. A 4-level decomposition efficiently 

extracted the first 4 so-called wavelet details (tp_1 to tp_4) while the last fifth (so-called 

smooth) tp_5 component remains of sufficiently low frequency. It is clearly visible that tp_5, 
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almost invisible in the original tp precipitation time series, corresponds well to the variability 

of the most inertial GWL types (Figure 4.3, in red, with a few month time lag with respect to 

tp). 

 

Figure 4.3: Total precipitation(tp) and its wavelet components: High(tp_1) to low 

frequency(tp_5) and GWL (in red). 
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4.3.1.1. Model training and evaluation 

To maintain consistent comparison criteria across all methods evaluated in the study, Bayesian 

optimisation was used for hyperparameter tuning. Details of the range of hyperparameters 

used are shown in Table 4.2  

 

Table 4.2: Hyperparameter details (Modified and adapted from Chidepudi et al. 2023a) 

Hyperparameter Value considered 

Sequence length 48 

Dropout 0.2 

Optimizer ADAM 

Early stopping 50 

Number of layers 1 

Hidden neurons (10, 20, …,100) by 10 

Learning rate (0.001,0.01) (log values) 

Batch size (16, 32, …,256) by powers of 2 

Epoch (50, 100, …,500)  

Furthermore, the range of hyperparameters used for optimisation was standardised across all 

methods, following the best practices outlined for both standalone and wavelet-assisted 

models, as detailed in Chidepudi et al. (2023a) and Quilty and Adamowski (2018). However, 

we made an important update to the model architecture by setting the number of layers to 

one for all models rather than optimising it. This decision was based on findings (Figure 4.4) 

that optimising the number of layers did not significantly improve performance and was in line 

with recent studies in related fields like rainfall-runoff modelling (Kratzert et al., 2019, 2021). 

Other adjustments included reducing the number of initialisations to 10 and setting the 

number of trials in the Bayesian optimisation to 30. These changes were aimed at reducing 

the computational requirements of our approach, making it more efficient without significantly 

affecting the quality of our results and are consistent with recent studies (Wunsch et al., 

2022a).  The intricacies and specific technical details of the architectures these models are 

well documented in the existing body of deep learning research applied to hydrological 
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simulations, as detailed in several studies (Chidepudi et al., 2023a;2024; Fang et al., 2022; 

Kratzert et al., 2021; Li et al., 2022; Vu et al., 2023).  

To further interpret and decrypt the results for better understanding, we used the SHAP 

approach(Lundberg & Lee, 2017), which is an increasingly popular game-centric approach for 

explaining the outcomes of deep learning models. SHAP, or Shapley Additive Explanations, 

explains how each input feature influences the model's simulations. It does this by highlighting 

two key aspects: the importance of each variable, where a higher mean absolute SHAP value 

indicates a greater impact, and the nature of that impact, whether positive or negative. 

 

 

Figure 4.4: Comparison of 

performance of single layer 

DL models (left column) and 

multiple-layer DL models 

(right column) with respect to 

single station model as a 

reference. SA represents 

Standalone models while Wav 

represents Wavelet-assisted 

models. 
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4.4. Experimental design 

This section details the experimental design used to assess the effectiveness of training models 

using data from all available stations. Our study uses different strategies to incorporate 

numerical and categorical data into the models. The aim is to improve the accuracy of GWL 

simulations by exploring ways of incorporating regional variability into the models. The 

experimental setup is structured to test different modelling strategies, as described below and 

visualised in Figure 4.5 &  Figure 4.6: 

1) Single station or local models (models trained and tested individually per station): 

These models are trained and evaluated on data from individual stations. As a baseline, 

their performance provides a benchmark for evaluating the effectiveness of more 

generalised models. This approach is dominant in developing data-driven models for 

GWL simulations and is discussed in detail in  Chidepudi et al. (2023a; 2024). The 

Figure 4.5: Construction of the different multi-station approaches for standalone and 

wavelet models and associated covariates (input features). 
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optimal hyperparameters for all standalone and wavelet models in the single-station 

approach are presented in the supplement (Table S3-S4). 

2) Multi-station (models trained and tested together on many stations): These models 

are trained using data aggregated from multiple stations and tested with different input 

configurations. The covariates and input shapes for various multi-station approaches 

are summarised in Figure 24, and the exact shapes of 3D tensors are provided in the 

supplement (Table S5): 

a) NO (dynamic inputs only): Models are trained on all stations using dynamic variables 

only, excluding static attributes and one-hot encoding.  

b) OHE (One-Hot Encoding): This method involves one-hot encoding to represent 

individual station ID information as binary vectors to ensure that the specific information 

is obtained from collective training, similar to the one-hot vector strategy developed in 

rainfall-runoff modelling (Li et al., 2022). This study showed that one-hot vector (one hot 

encoding using basin ID) could produce similar results to using catchment attributes in 

gauged basin scenarios. One-hot encoding serves as an alternative to incorporating static 

attributes directly into the model (Table 4.3). 

Table 4.3: Example of one hot encoding based on different wells 

WELL Dynamic 

variables  

Well_ID_1 Well_ID_2 Well_ID_3 

 

1 … 1 0 0 

2 … 0 1 0 

3 ... 0 0 1 

c) STAT (Static attributes and dynamic Variables): Models include both static attributes 

(e.g., latitude, longitude) and dynamic variables as inputs, with categorical variables 

encoded similarly to one-hot encoding but represented in separate columns for each 

unique value or class (Table 4.4). 



 

 

106 

 

 

Figure 4.6: Comparison of 

different approaches adopted in 

the current study: a) single 

station (Top) b) multistation 

without clustering (Middle) c) 

multistation with clustering based 

on spectral properties(bottom). 

(Background layer: © 

OpenStreetMap contributors 

2023. Distributed under the Open 

Data Commons Open Database 

License (ODbL) v1.0.) 

a) 

b) 

c) 
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d) STAT_OHE (Static attributes, one-hot encoding, and dynamic variables): This 

configuration combines static attributes, one-hot encoding for well IDs, and dynamic 

variables to provide a comprehensive dataset for model training. In other words, it is a 

combination of the two input strategies above. 

Table 4.4: Example with static attributes of numeric and categorical types 

WELL Dynamic 

variables  

Static_1 

(Lattitu

de) 

Static_2 

(Longitu

de) 

Category_ 

1 

(Alluvial) 

Category 2 

(sedimentar

y) 

Category 3 

(Mountaino

us) 

1 … 5.1 9.5 1 0 0 

2 … 2.8 10.8 0 1 0 

3 …. 5.4 9.2 0 0 1 

 

In addition to these configurations, we investigated the performance of multi-station models 

trained on GWLs with similar spectral statistical properties. This approach assesses the 

effectiveness of models tailored to specific GWL behaviours compared to more generalised 

models using the aforementioned strategies. In this study, Kling-Gupta efficiency (KGE, Gupta 

et al. 2009 ) is preferred over Nash–Sutcliffe efficiency (NSE) and other metrics because it 

offers a more comprehensive evaluation by integrating three aspects of model error: 

correlation, bias, and the ratio of standard deviations. 

For the single-station approach, the data was split into training (80%) and testing sets (20%), 

as described in Chidepudi et al., 2023. Furthermore, to facilitate hyperparameter tuning, the 

last 20% of the training data was used as a validation set. For the multi-station approach, the 

train-test split was also performed at each station, following the same procedure as the single-

station approach. However, the data from all stations was then collectively combined during 

the training. The rationale behind the specific train-test split is to ensure that the models 

capture the multi-annual to decadal variability in GWLs observed in the region. To achieve 

this, a minimum of 34 years of data (1970-2014) was used for training, while the most recent 
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8.66 years of data (2015/01-2023/08) were reserved for testing. This split corresponds to 

approximately 80% of the data for training and 20% for testing. By following this approach, 

we aimed to ensure that the models were exposed to a sufficiently long period of data during 

training, enabling them to capture the amplitude and variability of GWL fluctuations over 

multi-annual to decadal timescales. The testing period was chosen to be the most recent 

years, allowing for an evaluation of the models’ performance on the latest available data. The 

specific dates and periods used for training and testing at each station are detailed in the 

supplement (Table S2). 

Our methodology for comparing single-station and multi-station approaches, both with and 

without prior clustering based on spectral properties, is consistent with the research conducted 

in rainfall-runoff modelling by Hashemi et al. (2022), where the catchments were divided into 

five subsets according to hydrological regimes. This comprehensive experimental design aims 

to identify the most effective strategies for using multi-station data to simulate groundwater 

level variations. Detailed hyperparameters for all the multi-station standalone and wavelet 

models can be found in the supplement (Tables S6-S9) 

4.5. Capabilities, performances and interpretability of 

multi-station approaches 

  Different strategies for multi-station approach 

All models tested in the case of this study performed more or less equivalently and eventually 

yielded very satisfactory results. This can be attested by the performance comparison shown 

in Figure 4.4 (comparison of the 3 model types in single-station mode) and by comparing 

Figure 4.7 (GRU Multi-station) with Figure 4.8 (LSTM Multi-station) and Figure 4.9 (BiLSTM 

Multi-station). We finally decided to favour the GRU architecture owing to its recognised 

computational efficiency over more traditional LSTM-based architectures (Cho et al., 2014; 

Cai et al., 2021; Chidepudi et al., 2023, 2024). Figure 4.7 shows the results of different GRU 

model configurations for simulating GWLs. The first row shows the performance of the 

standalone GRU model for different GWL categories, while the second row shows the wavelet-

assisted GRU results. 
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Several observations can be made from Figure 4.7. Wavelet pre-processing generally improves 

model performance, especially in the inertial GWL category, where cumulative distribution 

functions (CDFs) are steeper and shifted to the right, indicating a higher proportion of 

simulations with high performance.  

Figure 4.7: CDF Comparison of KGE values of the GRU With different approaches and GWL 

types. 
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This is in line with previous findings as already reported in our earlier works (Chidepudi et al., 

2023a & 2024). This demonstrates the wavelet decomposition ability to extract “hidden” 

inertial dynamics features, which facilitate their assimilation by the model in the learning 

process. In other words, the improvement attributed to wavelet pre-processing becomes more 

pronounced as we move from annual to mixed and then further to inertial behaviour. This is 

because, in the case of annual-type GWL, the dominant variability (annual cycle) is already 

well expressed in several input variables (e.g. t2m, msl, ssr).  

Figure 4.8: CDF Comparison of KGE values of the LSTM With different approaches 

and GWL types. 
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In the case of mixed- and inertial GWL types, the dominant low-frequency variability, while 

also present, is barely expressed, almost “hidden”, in the input data, and becomes prominent 

in GWL due to the low-pass filtering action of aquifers (Baulon et al., 2022a; Schuite et al., 

2019). Wavelet decomposition allows the unravelling of such hidden information, helping the 

neural networks to reach it for enhanced learning. This is illustrated in Figure 4.3 with the low-

frequency component of precipitation (tp5) matching the variations of one inertial-type GWL 

(in red, with a few month-lag time), whereas it is masked by other higher-frequency 

components in the original precipitation time series (tp). The combination of static attributes 

and OHE gives competitive results, particularly in the inertial category, demonstrating the 

effectiveness of this method without the need for prior clustering of GWL behaviour. Multi-

station models generally outperform those trained on aggregated data when trained 

separately for each GWL cluster. This is reflected in higher KGE values for cluster-specific 

Figure 4.9: CDF Comparison of KGE values of the BiLSTM With different approaches and 

GWL types. 
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models, suggesting a better representation of the unique characteristics of each GWL type. 

However, this advantage diminishes for mixed GWLs, which are the majority in the study area. 

Although single-station models perform best for all GWL types, some multi-station models 

approach or match their performance, highlighting their potential for regional-scale GWL 

simulations. For the annual GWL category, models trained on mixed GWL data without wavelet 

pre-processing and relying solely on static attributes do not show significant performance 

improvements, suggesting that static features alone may not adequately represent the 

dynamic nature of groundwater behaviour.  

 

 

Figure 4.10: Results with wavelet assisted GRU in annual type of GWLs through a) Single 

station (top) and b) Multi station model trained on annual type of GWLs with static and ohe 

(bottom) 
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Figure 4.10-Figure 4.12 show the best GWL simulations obtained of different types (annual, 

mixed and inertial) for single and multi-station models. While single station models perform 

best, multi-station models are valuable where single station modelling is impractical either 

due to data limitations or computational requirements. 

In summary, wavelet-assisted GRU models are particularly effective, especially for low-

frequency dominated GWL behaviour, and multi-station models designed for specific GWL 

types (i.e. training over specific pre-clustered datasets) generally outperform generalised 

models. The multi-station approach is sensitive to the dominant GWL type in the training 

dataset, with the best results seen in models trained for the predominant mixed GWL type in 

the study region. To address the issue of model learning dominant behaviour in collective 

training of multi-station approaches, possible future investigation may involve generating 

synthetic time series with randomised amplitude changes of constituting frequencies to 

Figure 4.11: Results with wavelet assisted GRU in mixed type of GWLs through a) 

Single station (top) and b) Multi-station model trained on mixed type of GWLs with 

static and ohe (bottom) 
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increase the dataset while balancing all the important behaviours. This could also help in 

understanding the influence of the size of the dataset on using multi-station approaches. 

 

 Understanding GWL Simulations Through SHAP 

Interpretability 

This section deals with the deeper understanding of the simulations from the insights obtained 

from the SHAP analysis on model’s interpretability. In this study, we investigated the key 

contributing factors for GWL simulations in different approaches that were previously 

evaluated above in terms of accuracy. 

Figure 4.12: Results with wavelet assisted GRU in inertial type of GWLs through a) Single 

station (top) and b) Multi-station model trained inertial type of GWLs with static and ohe 

(bottom) 
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Figure 4.13a shows the SHAP representative summary plot for the standalone models using a 

single station approach. These plots highlight the influence of different variables/attributes on 

the final simulation. In particular, the distribution of data points in the SHAP summary plots 

(Figure 4.13), with more points to the right (coloured red) indicating positive influences and 

the opposite indicating negative relationships. 

From the analysis of Figure 4.14 and  Figure 4.15, several notable patterns emerge regarding 

the contribution of different variables to GWL simulations using standalone models and those 

with wavelet pre-processing, and the impact of clustering as well as pre-clustering based on 

spectral statistical properties. In single station standalone models, SHAP analysis shows that 

certain variables consistently influence GWL simulations, although their order of importance 

can change. Total Precipitation (TP) emerges as the key factor, with Surface Net Solar 

Radiation (SSR) occasionally overtaking in mixed GWL cluster, especially in models trained on 

clusters, along with static features, or one-hot encoding (OHE). Nonetheless, TP and SSR are 

the primary drivers in these simulations. In multi-station standalone models without 

clustering, TP and SSR lead in importance, followed by wind speed at 10 meters (v10), 

Figure 4.13:  SHAP summary plot examples for single station model and multi station model 

with static attributes 



 

 

116 

 

evaporation (e), and air temperature close to the ground (2-meter temperature, t2m), which 

vary in their influence. Notably, v10 plays a bigger role in models in multi-station approaches. 

When models are trained on clusters, evaporation becomes more significant, yet the impact 

of clustering on variable importance is generally minor.  

The spectral statistical characteristics (amplitude of high and low frequencies) were used for 

the pre-clustering of GWLs. These characteristics are related to the filtering of the input signal 

by the physical properties of the hydrological system. This highlights the importance of pre-

clustering in capturing the physical characteristics of basins and suggests that it may be 

preferable to cluster based on these properties rather than relying on static attributes, 

especially when the relevance of static attributes is uncertain. 

SHAP analyses show that standalone models maintain similar variable importance rankings 

even after clustering with static attributes and OHE. However, wavelet pre-processing shifts 

the importance towards dynamic components, reducing the contributions of static features or 

OHE. When clustering is combined with wavelet pre-processing, low-frequency precipitation 

components emerge as key contributors, improving model performance. When models are 

trained after clustering, low-frequency components (e.g., tp_5, t2m_5) are prioritised in 

mixed and inertial clusters: components not seen without clustering. Annual types prioritise 

relevant frequencies (1 to 3), consistent with single-station model patterns. The addition of 

static attributes to the OHE does not significantly alter the contributions, suggesting a 

dominance of dynamic variables after decomposition. Also, differences among multi-station 

approaches after clustering are minimal for both standalone and wavelet models. Wavelet pre-

processing performs a similar function to pre-clustering based on spectral properties by 

revealing information across all frequencies, including low-amplitude frequencies that may be 

obscured. Based on the results, the order of best approaches is wavelet plus pre-clustering, 

followed by pre-clustering only, then wavelet only, and finally standalone, highlighting the 

effectiveness of this approach. There is a clear pattern when clustering is applied; without 

clustering, the high-frequency component of the 2-meter temperature (T2m_1) is dominant. 

Multi-station models show less diversity in variable contributions than single-station models. 

The exception is the Stat_OHE without clustering approach, which uniquely captures low-

frequency information from T2m_5 and e_4. Otherwise, the static and NO approaches gave 

similar results. The influence of static attributes or OHE appears to be minimal, possibly due 

to the high dimensionality introduced by numerous dynamic and static attributes. This 



 

 

117 

 

observation suggests that future research could investigate alternative methods, such as 

target encoding, to address this dimensionality issue. 

The purpose of the study presented here was not to determine the forcing factors of GWL 

variations; in this aim, a more comprehensive evaluation of such links would require specific 

approaches that have been undertaken and presented in several previous works (Lee et al., 

2019; Heudorfer et al., 2019; Liesch & Wunsch, 2019; Haaf et al., 2020; Giese et al., 2020). 

In some of our previous works (albeit for the Normandy region only), the linkages between 

GWL variability and potential forcing factors such as the thickness and lithology of surficial 

formations, aquifer thickness, vadose zone thickness, upstream/downstream location along 

the flow path, distance to the river, presence of karst,  were investigated using dedicated 

approaches combining multivariate analysis, clustering and time series / spectral analysis and 

decomposition (Slimani et al., 2009; El Janyani et al., 2012 and 2014), which showed that 

GWL dynamics could be related to some basin and aquifer properties, although these 

relationships remained rather complex.  In a recent study, Haaf et al. (2023) developed an 

innovative methodological approach for modelling GWL at unmonitored locations using basin 

properties and machine learning on a daily time-step basis for alluvial aquifers with probably 

quite high hydraulic conductivity overall. The models developed performed quite well in 

representing GWL variations at both intra- and interannual time scales using physiographic, 

land cover and geological characteristics. However, the amplitude of low-frequency, 

interannual to decadal variability of the dataset used in their study was much lower than what 

could be encountered in our monthly time step database. The specific type of aquifer Haaf et 

al. (2023) investigated likely explains their high sensitivity to many surface processes. In our 

study, alluvial aquifers only represented approximately 10% of the GWL stations (8 over 76 

stations) and were only of annual (3 stations)  or mixed (4 stations) types. Almost all other 

wells were located in chalk or limestones. 
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Figure 4.14: Top four important variables by cluster for standalone GRU models 

with different approaches. On Y-axis, Percentage of stations for each variable within 

in the cluster. 
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Figure 4.15: Top four important variables in regional GRU wavelet assisted model 

trained with different approaches for different classes 
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In the framework of our study, we decided to exclude some relevant characteristics such as 

vadose or saturated zone thickness: even when averaged over quite long periods (several 

years), these values actually represent GWL (the target variable). For mixed or inertial types 

in particular, it would probably make our models irrelevant for simulations over long-term 

predictions of several years or even decades when used along with climate projections and in 

another recent and relevant study by Heudorfer et al. (2024) developed entity-aware deep 

learning models with static attributes such as aquifer type (based on porosity). These authors 

concluded that the models did not show any entity awareness and eventually utilised static 

attributes as simple identifiers (almost similar to the OHE approach presented herein), 

meaning that the models did not make use of the relevant (hydro)geological information. 

Although the added value of static variables was found to be marginal in the current study, 

they may prove useful in settings where no measurement is available. Further research is 

required to determine their utility in simulating such ungauged hydro systems. The approaches 

presented (except OHE) may be applicable to unmonitored aquifers but require validation in 

a pseudo-ungauged environment. The use of data from multiple stations can enrich the 

dataset, improving the representation of groundwater systems and the robustness of the 

models. This multi-station approach also allows the model to be applied to areas without GWL 

monitoring, thereby capturing regional dynamics. However, single-station modelling remains 

important for understanding local interactions. Therefore, the choice of method should be 

guided by research objectives, data availability and the hydrogeological context. Where 

clustering results in too many groups, future studies should consider fine-tuning the general 

model for each cluster, following the approach of Mohammed & Corzo (2024). 

4.6. Concluding remarks 

This study has demonstrated the different multi-station approaches to GWL simulations with 

emphasis on the use of static attributes, one-hot encoding and the combination of both while 

training on all available data or by training on each GWL type based on the clustering. The 

study also highlights the potential of these approaches compared to the traditional single-

station approach with and without the use of BC-MODWT. Key findings from this research 

highlight the advantages of clustering based on spectral properties, which have been shown 

to significantly improve the results of multi-station models, surpassing those of general 

models. Clustering is preferred over the use of static attributes, as the use of static attributes 
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alone may not be sufficient to effectively distinguish different behaviours. Wavelet pre-

processing is very effective at extracting relevant information at all levels, from high to low-

frequency, allowing low-frequency dominated GWLs to be handled with increased accuracy. 

The combination of clustering and wavelet pre-processing produced the most accurate 

simulations, indicating that wavelet pre-processing likely captured key information needed for 

accurate modelling. 

The study also showed that a multi-station approach, without clustering, should be used  

cautiously, as models tend to adopt dominant behaviour, which may not always be desirable. 

In scenarios where wavelet pre-processing is not applied, the combination of static attributes 

and OHE demonstrated promising results, particularly for GWLs dominated by low-frequencies. 

However, the minimal effect of static attributes or OHE observed in wavelet-assisted models 

may be due to the high-dimensional nature of these variables (due to wavelet decomposition 

that increases the number of covariates), suggesting a potential avenue for future research 

to explore alternative encoding strategies, such as target encoding. SHAP analyses 

consistently identified key contributors across models, with clustered models highlighting the 

pivotal role of low-frequency components, especially precipitation and temperature, in 

achieving superior simulations for inertial and mixed types of GWL. 

In this article, we introduced the following question: “What’s the best way to leverage 

regionalised information?”. In light of our results, it then seems like this is highly dependent 

on the amount and types of static attributes. It is generally expected that a much higher 

number of static attribute types would allow for a much better improvement of the multi-

station simulation approach. However, Heudorfer et al. (2024) found no improvements using 

around 28 static features (including 18 environmental and ten time series-based). Also, as 

pointed out by these authors, employing static attributes for model training might be more 

relevant in applications on larger scales and/or larger datasets. Moreover, one must remember 

that a trade-off must be found between the amount of static attributes required and data 

availability, especially for applications at unmonitored sites. However, the use of static 

attributes and OHE yielded similar results in the gauged scenario (this study) and proved 

efficient in accounting for local station information, which aligns with the findings of Heudorfer 

et al. (2024). On the other hand, in the study presented herein, wavelet pre-processing 

allowed for deciphering the “hidden” dynamic components of GWL variability (i.e. by 

separating low-frequency variations from annual or intra-annual variability), which eventually 
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corresponded to taking into account the influence of (hydro)geological, geomorphological and 

physiographic properties. Ultimately, the latter – which varies across the study region - 

operates a differential filtering effect of the input signals. Pre-clustering the dataset also 

yielded significant improvements that were even more noticeable when combined with wavelet 

pre-processing. However, owing to its capability of leveraging pre-processing the different 

frequency components in the time series of the whole dataset, wavelet pre-processing 

somehow acts in the same way as pre-clustering, which consists of grouping inertial (i.e. low-

frequency dominated), mixed and annual time series in different clusters. 

In summary, although the study has led to a better understanding of GWL simulation 

approaches with limited static attributes, further research is needed in the following areas, 

also exploring other physical basin parameters such as the thickness of overlying formations, 

altitude, distance from the sea, etc. It should also be pointed out that clustering can be a 

source of information on the physical properties of the basin. Indeed, the three groups 

determined in this study on the basis of spectral properties indirectly carry information on the 

modalities of water transfer in the shallow formations and aquifer, which are controlled by the 

hydraulic properties of the basin. The study of the importance of using static data in 

groundwater modelling using deep learning tools needs to be extended to cover level 

prediction at sites with no piezometers. The insights gained here pave the way for future 

efforts to simulate GWLs in unmonitored or new locations, taking advantage of the robustness 

offered by multi-station models while recognising the value of single-station models for 

capturing local-scale interactions. Finally, it is noticeable through our study that the overall 

approach is compatible with a frugal AI approach (keeping in mind that our datasets are very 

small compared to classical big datasets from other fields like natural language processing 

etc.): compact networks were tested and preferred (one layer), Bayesian optimisation was 

used instead of grid search for hyperparameter tuning. In addition, multi-station approaches 

pave the way for transfer learning, reducing the need for specialised models and retraining 

new models. The way forward is clear: to improve the GWL simulations efficiently, we may 

need to adopt a nuanced mix of efficient input signal pre-processing, potentially new encoding 

strategies to incorporate all possible additional knowledge of the system, and possibly 

clustering. Yet, we would recommend using advanced pre-processing over clustering, which 

would allow for leveraging the same type of information while preventing from separating the 

dataset and reducing its size. 
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Chapter 5. Groundwater level projections for 

aquifers affected by annual to decadal 

hydroclimate variations 

 

The multi-station training strategy and wavelet pre-processing techniques developed in 

Chapter 4 provided a robust foundation for generating groundwater level projections under 

different climate change scenarios. By leveraging 16 CMIP6 models and 3 Shared 

Socioeconomic Pathways (SSPs), Chapter 5 extends the groundwater simulations to future 

projections, enabling the assessment of potential impacts on groundwater resources.  

Chapter 5 has been submitted to Earth’s Future and is currently under review and available 

as preprint as follows: 

Sivarama Krishna Reddy Chidepudi, Nicolas Massei, Abderrahim Jardani, et al. Groundwater 

level projections for aquifers affected by annual to decadal hydroclimate variations. ESS Open 

Archive. https://doi.org/10.22541/essoar.172526712.23981307/v1  
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Abstract 

In a context where anticipating future trends and long-term variations in water resources is 

crucial, improving our knowledge about most types of aquifer responses to climate variability 

and change is necessary. Aquifers with variability dominated by seasonal (marked annual 

cycle) or low-frequency variations (interannual to decadal variations driven by large-scale 

climate dynamics) may encounter different sensitivities to climate change. We investigated 

this hypothesis by generating groundwater level projections using deep learning models for 

annual, inertial (low-frequency dominated) or mixed annual/low-frequency aquifer types in 

northern France from 16 CMIP6 climate model inputs in an ensemble approach. Generated 

projections were then analysed for trends and changes in variability. Generally, groundwater 

levels tended to decrease for all types and scenarios across the 2030-2100. The variability of 

projections showed slightly increasing variability for annual types for all scenarios but 

decreasing variability for mixed and inertial types. As the severity of the scenario increased, 

more mixed and inertial-type stations appeared to be affected by decreasing variability. 

Focusing on low-frequency confirmed this observation: while a significant amount of stations 

showed increasing variability for the less severe SSP 2-4.5 scenario, low-frequency variability 

eventually showed slight yet statistically significant decreasing trends as the severity of the 

scenario increased. For the most severe scenario, almost all stations were affected by 

decreasing low-frequency variability. Finally, groundwater levels seemed, in most instances, 

slightly higher in the future than in the historical period, without any significant differences 

between emission scenarios. 

5.1.  Introduction   

Groundwater is a vital freshwater resource for sustaining domestic, agricultural, and industrial 

activities. However, the sustainability of groundwater resources is under threat due to the 

impacts of climate change and human interventions (Jasechko et al., 2023; Mishra et al., 

2024; Scanlon et al., 2023; Taylor et al., 2013). Assessing the potential effects of climate 

change on groundwater levels is of paramount importance, particularly in regions that heavily 

rely on groundwater resources and are vulnerable to changes in climate, such as northern 

France (Habets et al., 2013; Vergnes et al., 2023). Robust projections of future groundwater 
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levels under different climate change scenarios are essential for informed water resource 

management and the development of effective adaptation strategies. The Coupled Model 

Intercomparison Project Phase 6 (CMIP6) provides state-of-the-art information on plausible 

global to regional climate changes in the past, present, and future (Eyring et al., 2016). 

However, climate models show large uncertainty due to model physics differences, emission 

scenarios sensitivity, and internal climate variability (Atawneh et al., 2021; Hawkins & Sutton, 

2009; Lehner et al., 2023). In addition, when analysing climate change impacts on 

hydrological variations and trends, additional uncertainties arise from the hydrological model 

structures and parameterisations (Clark et al., 2016; Melsen et al., 2018; Wu et al., 2024; 

Yuan et al., 2023). Nevertheless, only 20% of groundwater impact studies considered the 

influence on climate model uncertainties (Atawneh et al., 2021). Characterising such 

uncertainties is crucial for enhancing the reliability of climate change impact scenarios for 

groundwater resources.  

Most of the time, physically-based hydrological models have been employed to assess the 

impacts of climate change on groundwater resources (Costantini et al., 2023; Halloran et al., 

2023; Mishra et al., 2024; Vergnes et al., 2023). However, due to the substantial 

computational time and specific data requirements associated with these models, data-driven 

methods have become increasingly popular complements or sometimes alternatives (Bhasme 

et al., 2022; Chidepudi et al., 2023a; Hauswirth et al., 2021; Rehana & Rajesh, 2023; Wunsch 

et al., 2022). In recent years, some studies have employed artificial intelligence (AI), machine 

learning (ML), and Deep Learning (DL) models in conjunction with CMIP5 and CMIP6 climate 

projections to assess the impacts of climate change on groundwater levels (Chakraborty et 

al., 2021; Kayhomayoon et al., 2023; Nozari et al., 2022; Roshani & Hamidi, 2022; Xiong et 

al., 2022; Wunsch et al., 2022; Nourani et al., 2023; Secci et al., 2023). Most of these 

approaches used neural networks and at least one deep neural network architecture (i.e., DL). 

Many different architectures exist that can be mostly suited for specific tasks in handling time 

series data. Recently, Secci et al. (2023) compared different types of DL models (NARX, LSTM, 

and CNN) and found that long short-term memory neural networks (LSTM) outperformed the 

others due to their ability to handle long-range dependencies. Long et al. (2024) reached 

similar conclusions and demonstrated the ability to capture complex spatiotemporal patterns 

and nonlinear relationships between climate variables and hydrological processes.  
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Most of the studies dealing with groundwater level simulation using DL approaches either 

mainly considered aquifers dominated by seasonal variability or develop forecasts on quite 

short forecasting horizons, up to a few days or weeks (Boo et al., 2024; Rajaee et al., 2019; 

Tao et al., 2022; Uc-Castillo et al., 2023). However, it is now well-recognised that interannual 

to decadal variability affecting groundwater level originates from large-scale climate variability 

(Baulon et al., 2022a; El Janyani et al., 2012; Hanson et al., 2006; Holman et al.,2011; Liesch 

& Wunsch, 2019; Massei et al.,2010; Neves et al., 2019; Rust et al., 2019), and can 

significantly impact decadal trends at the regional scale in climate change projections. Such 

interannual to decadal variability is represented differently by different climate models and 

individual simulations from the same climate model (i.e., different ensemble members; Deser 

et al., 2012; Deser & Phillips, 2023). Emission scenarios can also modify low-frequency 

variability as climate change impacts large-scale modes of variability and teleconnections 

(Klavans et al., 2022; Mahmood et al., 2022; Terray, 2012). Therefore, It is also crucial to 

consider aquifers that behave on more low-frequency dynamics, develop and apply DL tools 

that can appropriately describe such variability in groundwater systems, and assess how 

systems subject to low-frequency variability would behave under climate change compared to 

those dominated by seasonal variations, which seemed to have received more attention so 

far. 

The study presented here uses DL techniques and CMIP6 climate change scenarios to provide 

an overview of the potential impacts of climate change on groundwater levels for different 

types of aquifers dominated by seasonal variability or low-frequency variability (or a mix of 

the two). These three examples of contrasted behaviours are observed in northern France, 

which is here used as a case study. The research assesses potential alterations in groundwater 

level trends and variability due to future climate conditions. Employing a multi-station deep 

learning approach, we generated groundwater level projections for the region, incorporating 

three different climate change scenarios and socioeconomic pathways. This approach aims to 

capture the spatial patterns and temporal evolution of projected groundwater level changes 

across northern France according to the hydrological systems' characteristic behaviour 

(annual, mixed, inertial) to assess their sensitivity to different climate change scenarios. 

Furthermore, the study evaluates the performance, uncertainties, and limitations of the deep 

learning methodology and the climate model projections utilised in the groundwater level 

projection analysis. 
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The rest of the paper is structured as follows: Section 2 presents the data and study area. 

Section 3 presents the methodology of models and the trend and variability assessment of 

projections. Section 4 presents the dispersion of GWL projections under different scenarios. 

Section 5 discusses the time evolution of GWL projections. Section 6 presents our comparison 

with other relevant studies and conclusions.   

5.2. Study Area and Data  

The study focuses on the northern region of France, primarily encompassing the Paris Basin 

and its surrounding areas (Figure 5.1). This region was selected due to long-term groundwater 

level (GWL) data availability, which is crucial for accurate projections. A significant advantage 

of this area is the presence of three distinct GWL behaviours despite its relatively limited 

spatial coverage: 1- reactive aquifers dominated by seasonal variability ("annual" type), 2- 

aquifers with marked seasonal variations along with significant low-frequency variability 

(“mixed" type), and 3- aquifers dominated by low-frequency variability ("inertial" type). 

Figure 5.1: Study area and location of stations with details of GWL types: Annual (red dots), 

Inertial (blue triangles), Mixed (green lozenges) 
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Example time series of these three types are provided in Figure 5.4 - Figure 5.6 (observational 

data, left panel). This diversity in groundwater level patterns provides a valuable opportunity 

to assess the performance of the deep learning models in capturing various hydrogeological 

conditions and responses to climate variability. 

The dynamic climate variables (precipitation and temperature) were obtained from the ERA5 

reanalysis dataset (Hersbach et al., 2020), which provides forcing data at a high spatial 

resolution of 0.25 degrees. The selection of these two variables was made for several reasons. 

First, precipitation and temperature are available across all 16 selected climate models and 

three scenarios, ensuring consistency and reliability in the data used for analysis. Second, 

using these variables maintains coherence with other studies within the same research 

framework, allowing for better comparability and integration of results. Third, precipitation 

and temperature are fundamental drivers of hydrological processes, making them the most 

relevant basic variables for projections. Finally, focusing on these two key variables keeps the 

approach parsimonious regarding data availability and processing requirements, enhancing 

the efficiency and reproducibility of the analysis while still capturing the essential climate 

dynamics for groundwater projections. The groundwater level data were sourced from the 

ADES (Accès aux Données sur les Eaux Souterraines) database (https://ades.eaufrance.fr/; 

Winckel et al., 2022), specifically focusing on climate-sensitive wells minimally influenced by 

human activities and exhibiting strong sensitivity to climate variability (Baulon et al., 2022a).  

To generate future GWL projections, climate data from 16 CMIP6 models were used as inputs 

in deep learning models trained on data from ERA5. Three Shared Socioeconomic Pathway 

(SSP) scenarios were considered: SSP2-4.5 (moderate emissions), SSP3-7.0 (severe 

emissions), and SSP5-8.5 (extreme emissions). These scenarios represent different future 

pathways of greenhouse gas emissions and socioeconomic factors, allowing for a 

comprehensive assessment of potential climate change impacts on groundwater resources.  

We chose to utilise the bias-corrected datasets from the NEX-GDDP-CMIP6 dataset, which has 

data for only one variant for each CMIP6 model. Hence, the uncertainty related to internal 

climate variability is not considered (Deser et al., 2012). 

5.3. Methodology  

 DL models and neural network architectures 

https://ades.eaufrance.fr/
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This study employs a deep learning approach to project future groundwater levels in northern 

France using climate projections from CMIP6 models under different emission scenarios. The 

methodology builds upon Chidepudi et al.'s (2024b) findings, which demonstrated the 

effectiveness of models trained with a multi-station approach on clustered data combined with 

wavelet preprocessing.  

While the efficiency of LSTMs has long been demonstrated, other recurrent-based 

architectures have emerged more recently, like the Gated Recurrent Unit (GRU), as Cho et al. 

(2014) described. GRUs have a simpler architecture than LSTMs, which can lead to faster 

training. Additionally, GRUs have shown comparable or sometimes superior performance to 

LSTMs in various sequence modelling tasks, making them an attractive alternative for 

groundwater level modelling (Chidepudi et al., 2023a). The core of our approach then utilises 

GRU neural networks according to their ability to capture long-term dependencies in sequential 

data and their computational efficiency. 

Our neural network models are trained with inputs from ERA5 data pre-processed using the 

Boundary Corrected Maximal Overlap Discrete Wavelet Transform (BC-MODWT), implemented 

with a 'la8' (least asymmetric) wavelet and four decomposition levels, as in Chidepudi et al. 

(2023a). This technique effectively separates input signals into different frequency bands while 

preserving time information and mitigating boundary effects (Quilty & Adamowski, 2018; 

Chidepudi et al., 2023a). It is important to note that for each input time series or feature, BC-

MODWT produces five new time series: four wavelet detail levels corresponding to the 

decomposition levels and one smooth approximation. For more details about discrete wavelet 

transform and MODWT, the reader can refer to the very rich literature on the application of 

wavelet methodology to hydrology, such as Labat et al. (2000), Percival & Walden (2000) and 

Massei et al. (2017). This pre-processing step is applied to climate reanalysis data, which 

serves as input for the GRU models during training and validation. Specifically, if the original 

input consisted of N features, the BC-MODWT pre-processing would result in a 5N time series 

as input to the model, each maintaining the original temporal resolution but capturing different 

frequency components of the original signals. The observed groundwater levels are used as 

the target variable. 

This study adopts a multi-station approach, where GRU models are trained within each GWL 

cluster (annual, mixed, or inertial) using aggregated data from multiple stations. Most recent 

studies have focused on single-station approaches, which consist of training DL models based 
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on a single target time series (i.e., the DL model learns from known values of the one-time 

series to be eventually simulated). For the last couple of years, recent research has suggested 

that models trained with more diverse data can result in more reliable hydrological projections 

(Wi & Steinschneider, 2022), as this would enhance the capabilities of the models for 

generalisability and transferability. The approach consists of training DL models for time series 

regression on multiple time series (in our case, GWL time series) simultaneously, hence 

leveraging a wider range of relevant values or hydrological events than available in a single 

station time series. The approach has already been called the “global models” or “multi-well” 

approach (Heudorfer et al., 2024) or “multi-station” (Chidepudi et al., 2023b & 2024b). This 

key finding highlights the potential advantages of multi-station approaches over single-station 

methods. Typically, the multi-station approach used herein leverages collective information 

from stations with at least 42 years of data (1970-2022), enhancing the model's ability to 

capture spatial patterns and increasing the generalisability of the projections. Only dynamic 

variables, such as precipitation and temperature, are used as input features. 

Data pre-processing includes normalising each input variable individually to be in the 0-1 

range and reshaping it into a 3D format suitable for GRU models. A sequence length of 48 

months is used to capture long-term patterns in the data. To enhance robustness and mitigate 

the effects of random weight initialisation, multiple GRU models (10) are trained with different 

initialisations, creating an ensemble approach. As described in Chidepudi et al. (2024b), 

hyperparameter tuning was performed using Bayesian optimisation. The models are trained 

using early stopping and model checkpointing techniques to prevent overfitting and save the 

best-performing model. A 20% validation split is used to monitor performance during training. 

Importantly, models are trained with collective data from all stations in each cluster with at 

least 42 years of data (1970-2022), ensuring a comprehensive historical context. 

 Assessing trends and variability in projected GWL under 

three SSP scenarios 

The trained ensemble GRU models are applied to the wavelet-transformed CMIP6 climate 

projection data to generate projections. As a reminder, the total number of features would 

equal 10 (two variables, i.e., precipitation and temperature, each decomposed into five 

wavelet components). The median of the ensemble predictions is calculated for each CMIP6 

model, as shown in Figure 5.2. Then, the median across all models is computed to produce a 

robust projection for each scenario. For each GWL station, up to 160 projected time series 
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were generated, corresponding to 16 climate models and 10 initialisations of the DL model. 

For each climate scenario, the results are presented either: i) for each climate model 

individually (i.e., for each climate scenario, 10 GWL projected time series corresponding to 10 

DM model initialisations; cf. Fig. 2); ii) 2- for all climate models together (i.e., 160 GWL 

projected time series corresponding to 16 climate models with ten initialisations of the DL 

model). A median time series of the 10 or 160 projections is derived in these two cases. It is 

then used to assess the ensemble trend and explore a possible change in the amplitude of the 

variability of GWL. In other words, the ensemble median time series (ensemble of either only 

10 or 160 projected time series) is tested for stationarity in the weak sense (i.e. change in 

mean and variance) throughout the period 2030-2100 to assess whether a change in GWL is 

to be expected on average, and if the overall variability would also tend to change. Figure 5.3 

illustrates such changes using one randomly selected GWL projection and is described later in 

the text. Ultimately, it comes to exploring whether water levels and their amplitude of variation 

(difference between high and low levels) will be expected to increase, decrease, or remain 

unchanged. 

Trend analysis is performed using the Correlated Seasonal Mann-Kendall (CSMK) test, an 

extension of the classical Mann-Kendall trend test proposed by Hipel & McLeod (1994). The 

CSMK test is a non-parametric statistical method that detects monotonic trends in seasonal 

time series data with serial correlation. It is particularly suitable for hydrological and climate 

variables (Hussain et al., 2019). This test accounts for both seasonality and the correlation 

between observations in consecutive months or seasons, addressing the limitations of the 

classical MK test. The CSMK test does not require the data to follow a specific distribution and 

can handle missing values and outliers. It operates by separating the time series into seasonal 

groups, calculating the MK test statistic for each season, adjusting for serial correlation, and 

then combining the results to obtain an overall trend assessment. A standardised test statistic 

is computed and compared to a critical value (using a P-value of 0.05) to determine if a 

statistically significant trend exists. The CSMK test is robust against non-normality and 

censored data, making it particularly valuable for analysing trends in groundwater levels, 

precipitation, temperature, and other variables relevant to groundwater projections using 
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deep learning models, especially when these variables exhibit strong seasonal patterns and 

serial correlation. Sen’s slope is also computed as part of the CSMK test. 

This analysis is conducted for each groundwater station, climate scenario, and GWL  type. For 

assessing trends in GWL, the time series used for the MK trend test is the median of the 

ensemble. The ensemble would consist of either 10 or 160 projected time series: 

- 10 projected time series when climate models are taken separately, i.e. for each climate 

model, ten projections corresponding to the ten different initialisations of the DL model are 

obtained; 

Figure 5.2: Structural workflow of the methodological approach for projections. 
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- 160 projected time series when all climate models are grouped, leading to 10 DL 

initialisations * 16 climate models. 

Figure 5.3: a) median of projections and fit line b) Scale averaged wavelet power for total 

variability c) Scale averaged wavelet power for low-frequency variability d) Continuous 

wavelet spectrum (scalogram) of GWL time series: red indicates high variance, and blue 

indicates low variance. 
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For assessing a change in the variability at each station, the time series used for the MK trend 

test is the estimated variance across time of the median of several projections. The times 

series’ variance is estimated using so-called scale-averaged wavelet power, following the 

procedure described in Torrence and Compo (1998). At each time point, the scale-averaged 

wavelet power measures the variance in GWL for either all-time scales or a range of time 

scales. In the first case (all time scales), it measures the total variance of the time series 

across time (i.e. for all time steps). In contrast, the second case (selected range of time 

scales) measures the variance associated with one particular frequency band across time. The 

reader is referred to Torrence and Compo (1998) for a detailed and comprehensive explanation 

of wavelet scale-averaging's calculation and main interest.  

Figure 5.3 illustrates this for one randomly selected GWL projection, representing the variance 

through time obtained for one GWL projection for a time scale greater than five years (i.e., 

low-frequency fluctuations of GWL at this station). In this example, scale-averaged wavelet 

power shows that total variability (Fig. 5.3b) and >5-yr low-frequency variability (Fig. 5.3c) 

tend to decrease over time. In order to prevent the results from being too much affected by 

edge effects, we removed the first and last 36 months from these scale-averaged power time 

series (Fig. 5.3b and c), which corresponded to removing as many wavelet coefficients as 

possible falling into the so-called cone of influence (cross-hatched area in Figure 5.3d). Such 

coefficients can be identified on the continuous wavelet spectrum of the time series and are 

located before the first. After the second vertical dashed line (Fig. 5.3d). The continuous 

wavelet spectrum also clearly shows that low-frequency variability (i.e. variance for periods 

higher than ~5 years / ~60 months on the plot) tends to decrease through time. 

5.4. Dispersion of climate change impact projections on 

various GWL types under contrasting emission 

scenarios 

Here, all 16 downscaled GCM were used as input to the DL models with ten different parameter 

initialisations (i.e. initialisation of the neural network weights) to create an ensemble of 160 

projections per SSP scenario at each time point.  
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While projections are usually presented and quantified using the ensemble mean or median, 

relying on these metrics alone could suppress the information on the variations and 

uncertainty.  

 

Figure 5.4: Annual type groundwater projections for three SSP scenarios (Top-bottom): 

a)(left panel)Training and testing results with confidence intervals, b)(middle panel) 

Projections for SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios show median (black), high 

variance (HV, red), low variance (LV, blue) projections, and confidence intervals (grey). c) 

(right panel) Cumulative Distribution Functions (CDFs) comparing historical observations 

(dotted black) with HV and LV projections (resp. as red and blue CDFs). 
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Here, we chose to represent our results in percentile rather than box plots, as recently 

suggested by Müller & Döll (2024), who found such a representation more suited to support 

participatory climate change adaptation processes and uncertain local climate hazards. 

Figure 5.4-Figure 5.6 show the groundwater projections of three types (annual, mixed and 

inertial) for three SSPs. The left panel shows the training and test results of the historical 

period. The central panel shows the projected median groundwater level and the 95% 

Figure 5.5: Mixed-type groundwater projections for three SSP scenarios (Top-bottom): 

a)(left panel)Training and testing results with confidence intervals, b)(middle panel) 

Projections for SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios show median (black), high 

variance (HV, red), low variance (LV, blue) projections, and confidence intervals (grey). 

c) (right panel) Cumulative Distribution Functions (CDFs) comparing historical 

observations (dotted black) with HV and LV projections (resp. as red and blue CDFs).  
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confidence interval. We highlighted the projections with the highest and lowest variability 

(from now on referred to as HV and LV, resp. represented as red and blue lines in Figures 5.4-

5.6 ), as these naturally correspond to either more pronounced or more dampened extremes 

resp, for HV and LV projections. In addition, comparisons between GWL types, i.e. with 

different amplitudes of low-frequency variability, provide information on how various 

representations of climate variability may impact the projections released.  

Figure 5.6: Inertial type groundwater projections for three SSP scenarios (Top-bottom): 

a)(left panel)Training and testing results with confidence intervals, b)(middle panel) 

Projections for SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios show median (black), high 

variance (HV, red), low variance (LV, blue) projections, and confidence intervals (grey). 

c) (right panel) Cumulative Distribution Functions (CDFs) comparing historical 

observations (dotted black) with HV and LV projections (resp. as red and blue CDFs). 
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The results for the training and testing stage are always quite satisfactory, with small 

confidence intervals (Figures 5.4a-5.6a). On the other hand, big differences may exist 

between the different projections for any given GWL type (annual, mixed and inertial), hence 

translating the uncertainty linked to the various climate models (Figures 5.4b-5.6b). While LV 

projections are relatively close to the median, HV ones would deviate substantially from the 

median and LV time series. The median time series always displayed a much more pronounced 

seasonal variability and a much lower low-frequency variability (the median time series 

appears somewhat “shrunk”) compared to historical observations - noticeable for all GWL 

types - and even more particularly for the inertial. This increased seasonal variability is due 

Figure 5.7: Variability comparison of all stations in annual-type GWL: Ratios of 

Median(black), HV (red) and LV (blue) projection standard deviations to observed 

standard deviations across all stations(X-axis) and emission scenarios (top-bottom). 
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to the stochastic nature of low-frequency variability (stochastic noise eventually cancels out 

on average). In contrast, the annual cyclicity is, by definition, almost entirely deterministic: 

median computation from all 160 projections at each time point ultimately results in a low 

amplitude of any other variability than the annual cycle, which, in contrast, is over-expressed. 

On the other hand, comparisons of the CDFs (Figures 5.4c-5.6c) of the LV and HV  projections 

with the historical observed time series show that for the annual and mixed types, LV 

projections seem to approximately fit the historical observations for all 3 SSP scenarios 

Figure 5.8: Variability comparison of all stations in mixed-type GWL: Ratios of 

Median(black), HV (red) and LV (blue) projection standard deviations to observed standard 

deviations across all stations(X-axis) and emission scenarios (top-bottom). 
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(Figures 5.4-5.5). which is not the case for the inertial type (Figure 5.6), for which the 

variability of the LV projection is always lower than for the historical period. 

 To check whether this observation drawn from the three randomly selected annual, mixed 

and inertial GWL stations presented in these figures can be generalised, we compared the 

variability of HV and LV projections to that of the historical GWL time series at each station. 

 

Figure 5.9: Variability comparison of all stations in inertial-type GWL: Ratios of 

Median(black), HV (red) and LV (blue) projection standard deviations to observed standard 

deviations across all stations(X-axis) and emission scenarios (top-bottom). 
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 To this aim, we simply computed the standard deviation of HV, LV and observed GWL time 

series at each station and represented the ratios of HV standard deviation to observed 

standard deviation and of HV standard deviation to observed standard deviation (Figures 5.7-

5.9) for all 3 GWL types and all emission scenarios.  

The results confirmed the conclusions drawn from Figures 5.4 to 5.6 presented above. For all 

stations of the annual type and all emission scenarios (Fig.5.7), the LV to observation ratio is 

always close to 1, meaning that the overall variability of LV and observed historical GWL are 

always close. 

In contrast, the HV projection always has a much higher standard deviation than the 

observation (~1.5 to 2 times), which is also true for the mixed-type GWL, albeit to a - slightly 

- lesser extent but does not hold for GWL projections of inertial types (Fig.5.9). Finally, as 

already mentioned above, one can notice here that except for the annual GWL type, the 

variability of the median projection time series is always lower than the LV projection for any 

given GWL station; the same explanation as provided above can be given here. No obvious 

differences among the different emission scenarios could be observed for any GWL type (Fig. 

5.7 to 5.9). 

 

5.5. Time evolution of GWL: Future trends and variability 

for annual, mixed and inertial types 

 Trends based on the ensemble approach 

In the previous section, we described the different projections that could be obtained owing 

to the use of 16 different models for different GWL types and three emission scenarios. Here, 

we focus the analysis on the time evolution of GWL. For clarity, we evaluated such changes 

using the median time series only. Although we showed that the total amplitude of median 

projections is artificially lower than that of the observed historical time series, the aim here is 

not to assess the change between the historical and the future periods but only the change 

during the future period. We use the median as in most other works (Martel et al., 2022; 

Wunsch et al., 2022). In particular, we examined three different aspects of GWL time 

evolution: 1- we first assessed the potential changes in water levels using the MK trend test 
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performed on the median GWL time series, 2- we tested for changes in the variability of GWL 

using the MK trend test on scale-averaged power of the median GWL series, as described in 

the methodology section, 3- we repeated step 2- with a specific focus on the low-frequency 

variability. Here, low-frequency variability corresponds to time scales above five years, which 

have been recognised as responsible for several extreme events in groundwater levels in 

northwestern Europe (Massei et al., 2010; Baulon et al., 2022b; Rust et al., 2019; Neves et 

al., 2019; Liesch & Wunsch, 2019). 

It is clear from Figure 5.10 that almost all GWL would decrease, regardless of the emission 

scenario and the GWL type. On the other hand, the overall variability of GWL through time 

showed more contrasted results (Figure 5.11). In all three SSP scenarios, the total variance 

of annual-type GWL is expected to increase while decreasing for almost all inertial and mixed 

types. No clear difference shows up between the scenarios. GWL types strongly influence the 

trends in total variance. Specifically, Annual type aquifers predominantly show increasing 

variance (blue circles). Inertial and mixed-type aquifers mostly exhibit decreasing variance 

(red triangles and diamonds). The increasing variance in annual type aquifers suggests these 

areas may face more extreme fluctuations in groundwater levels, i.e., be more prone to 

extremely high and low groundwater levels. The spatial patterns of increasing and decreasing 

variance trends persist across all three SSP scenarios (SSP2-4.5, SSP3-7.0, SSP5-8.5), 

Figure 5.10: GWL trend on multi-model ensemble median projections from 16 CMIP6 

models and 10 DL models for each scenario: Blue (Increasing) and Red (Decreasing) 
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suggesting that the overall pattern of change is relatively robust to different emission 

scenarios. 

The trend in total variability (Figure 5.11) of annual type is always increasing. In contrast, for 

mixed and inertial types, it either decreases or shows no significant trends (central and South-

central parts of the area). 

 

We then focused on low-frequency, i.e. interannual-to-decadal variability only, defined as 

fluctuations over time scales exceeding five years. Such time scales are usually employed to 

compare hydro-climatic variability and large-scale climate variations (often along with their 

moving average) as depicted by climate indices and teleconnections mentioned in the 

introduction. Figure 5.12 shows the trends and slopes of low-frequency variance obtained from 

CWT. Changes in low-frequency variance could impact the occurrence and intensity of multi-

year drought or wet periods. Our analysis (from Figure 5.12) revealed distinct trends across 

different emission scenarios. Under the SSP 2-4.5 scenario, many stations showed increasing 

trends. In contrast, the number of stations with increasing trends significantly decreased to 

very few for the SSP 3-7.0 scenario, while all stations displayed decreasing trends under the 

SSP 5-8.5 scenario. 

To summarise (Figure 5.11-5.12), as emission scenarios worsen, the overall variability 

increases for annual-type stations, whereas interannual to decadal variability decreases for all 

Figure 5.11: Trends and slopes in the total variability of projected GWL 
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stations. Generally, more pessimistic emission scenarios correlate with a reduction in long-

term groundwater level variability. While the magnitude of variability increase is typically low, 

it appears more pronounced in less pessimistic scenarios. These findings raise an important 

question: Could this be an effect of climate change reducing the amplitude of natural climate 

variability? The results suggest that low-frequency natural climate variability may diminish 

under more pessimistic emission scenarios, directly impacting interannual to decadal water 

level variations. This observation warrants further investigation into the complex interactions 

between anthropogenic climate change and natural climate variability that we did not explore 

in the current study. 

 Differences in GWL projections according to different 
climate models 

In the previous section, we explored trends in GWL and temporal changes in GWL variability 

using the median time series computed from all projections generated with different climate 

models (16 models) and different initialisations (10 initialisations). It is well known that 

estimating the differences in hydrological projections from climate change models and 

scenarios is crucial for understanding the sources of uncertainty and communicating 

contrasted but equally plausible outcomes to stakeholders. This is why we extracted and 

studied the highest and lowest variability of all projections in section 4 (Figures 5.4 to 5.6). 

The results of section 4 showed that large differences between projections would most likely 

Figure 5.12: Trends and slopes in low-frequency variability from CWT 
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be due to the use of 16 climate model inputs rather than from DL models. Although we did 

not specifically assess their respective parts in the total uncertainty, comparing the range of 

uncertainty related to DL model initialisation on observed data (Figures 5.4a to 5.6a) and that 

obtained for projections (Figures 5.4b to 5.6b) showed quite clearly that climate model inputs 

would result in a much higher difference in GWL projections. In this section, we then explored 

the differences in trends and changes in variability of projections owing to the 16 climate 

models taken separately.  

Similarly to what was done for the ensemble approach in section 5.1, we examined the 

direction (increasing or decreasing) and slope magnitudes of trends (level and variability) at 

all stations. As explained in the methodology section, in this case, the time series used for 

calculating GWL trends corresponded to the median of the 10 DL model initialisations for each 

climate model and each scenario. For assessing trends (i.e. potential change) in GWL 

variability (either total or considering low-frequency variations only), the time series used was 

the scale-average wavelet spectrum of the same median of the 10 DL model initialisations. 

Figures 5.13a and 5.13b show, respectively, the trend direction and Sen’s slopes of GWL 

projections from 16 CMIP6 models (as lines) and three scenarios each (as columns). Although 

the results seem rather contrasted, three main outcomes could be distinguished. First, for all 

SSP scenarios, decreasing or non-significant trends (with very slight decreasing or increasing 

slopes less than 10 mm/month) appeared to dominate. Amongst all models, most of the 

statistically significant increasing trends were observed for only SSP 2-4.5 with 4 out of 16 

models (CMCC, GFDL, MRI and, to a lower extent, FGOALS). These models showed increasing 

trends with magnitudes up to more than 25 mm/month. Second, for SSP 3-7.0 and SSP 585 

(2nd and 3rd column), all models showed mostly decreasing GWLs and some non-significant 

trends, except the CanESM5 and MPI-ESM1 models. The magnitude of negative slopes for SSP 

3-7.0 and SSP 5-8.5 showed decreasing GWLs at rates as low as, or lower than, -50 

mm/month. Although slightly increasing slopes could be identified in many models for those 

2 SSP scenarios (e.g., EC-Earth3 SSP 3-7.0, CNRM SSP 3-7.0 and SSP 5-8.5), they were never 

statistically significant, except for the CanESM5 and MPI-ESM1 models. Third, it was noticeable 

that for the worse scenario, SSP 5-8.5, all stations located in the most eastern part of the 

area were affected by decreasing trends (or with no significant trends) for all 16 climate 

models; these stations consisted mainly of annual-type GWLs. 
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           Figure continued…. 
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Figure 5.13: Individual groundwater level trends and slope magnitudes from 16 CMIP6 models under SSP2-4.5 (left), SSP3-7.0 

(middle), and SSP5-8.5 (right) scenarios for 2100: Blue indicates increasing trends(a) or positive slopes(b), and Red indicates 

decreasing trends(a) and negative slopes. Grey indicates no significant trend. 
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Figure Continued…… 
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Figure 5.14: Trend and slope analysis on total variability from 16 CMIP6 models under SSP2-4.5 (left), SSP3-7.0 (middle), and SSP5-

8.5 (right) scenarios for 2100: Blue indicates increasing trends(a) or positive slopes(b), and Red indicates decreasing trends(a) and 

negative slopes. Grey indicates no significant trend. 
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  Figure continued… 
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Figure 5.15:Trend and slope analysis on low-frequency variability from 16 CMIP6 models under SSP2-4.5 (left), SSP3-7.0 

(middle), and SSP5-8.5 (right) scenarios for 2100: Blue indicates increasing trends(a) or positive slopes(b), and Red indicates 

decreasing trends(a) and negative slopes. Grey indicates no significant trend 
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As done with the ensemble approach, we then investigated how the different climate 

models led to potential changes in both total GWL variability and low–frequency variability. 

Figures 5.14a and 5.14b illustrate the results obtained for the total variability of the 

projected (median) time series. Unlike the results about changes in GWL, it seemed less 

easy to distinguish any general tendency in terms of changes in time series total variability 

according to the emission scenario for any model. As a first step, for the sake of simplicity, 

examination of trend direction only (Fig. 5.14) showed the same consistent pattern as 

previously noticed with the ensemble approach, albeit less clearly, where an obvious 

distinction between the eastern part (mainly annual-type aquifers) and the western part 

of the area was quite readily visible (Fig. 5.10).  The magnitude of the slopes confirms this 

finding: for most models, one could observe either rather strong variability trends 

separating the eastern (increasing variability, blue-labelled stations) and western regions 

(decreasing variability, red-labelled stations), or only low-magnitude trends (most of the 

time not statistically significant). In brief, although differences between climate models 

exist, the inertial and mixed types (i.e., those with strong low-frequency variability) were 

mostly affected by decreasing variability through time over the period 2030 to 2100, 

whereas the annual-type aquifers would be characterised by increasing variability over the 

same period. 

It then seemed that the amplitude low-frequency variability would decrease over time 

during the 2030 to 2100 period. The results of the ensemble approach showed that apart 

from SSP 2-4.5, the more pessimistic the emission scenario, the higher the number of 

stations (and the larger the region) affected (Fig. 5.12): there is a clear evolution from 

SSP 2-4.5 to SSP 5-8.5 for low-frequency variability. However, considered individually (Fig. 

5.15), the 16 different models could show noticeable discrepancies in some cases: for 

instance, INM-CM5, NorESM2 or CanESM5 shows increasing low-frequency variability in 

terms of trend direction, contrary to many other models for SSP 3-7.0. Despite such 

disagreements, it seems rather clear that many models still display significantly increasing 

low-frequency variability for all station types (inertial, mixed or annual) with Sen’s slopes 

of rather high magnitude for SSP 2-4.5, and that conversely, many models would display 

decreasing variability with strong Sen’s slope magnitudes. Decreasing variability is also 

even more pronounced for SSP 5-8.5 than SSP 3-7.0. These results are consistent with the 

conclusions of the ensemble approach (Fig. 5.12). However, they also confirm that using 

the median time series in the ensemble approach seems well suited to identify clear general 

trends properly. 
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5.6. Discussion and Conclusion 

In this study, we aimed to develop projections of GWL under three different climate change 

scenarios, focusing on three different GWL types: annual, mixed, and inertial. While some 

aquifers can be rather reactive to seasonal changes, dominated mainly by annual cyclicity, 

others are sometimes largely dominated by interannual to decadal variations that are 

driven by large-scale climate (Hanson et al.,2006; El Janyani et al., 2012; Rust et al.,2018; 

Baulon et al., 2022a). However, most studies dealing with groundwater level simulation or 

forecasting mainly considered time series represented by seasonal variations with a strong 

annual cycle governing water level variability. It was then desirable to study more complex 

aquifer dynamics mainly controlled by internal climate oscillations and assess how these 

different types of aquifers might be affected by climate change. In this framework, 

potential changes in variabilities under different SSP scenarios for such aquifers were 

explored by using deep learning GRU with wavelet pre-processing and CMIP6 bias-

corrected precipitation and temperature data as input from 16 climate models. We 

analysed trends in groundwater levels and changes in variability (i.e. the amplitude of GWL 

variations) over time across the 2030-2100 period. Ten different initialisations of DL 

models and 16 climate model inputs resulted in an ensemble of 160 projections for each 

of the 3 SSP scenarios (SSP 2-4.5, 3-7.0, 5-8.5). 

The analysis of the ensemble of 160 projections revealed that the lowest-variability (LV) 

GWL projections closely aligned with the range of variation of historical observations for 

annual and mixed types. In other words, only projections with the lowest possible 

variability would allow for maintaining the same range of variability encountered during 

the last ~60 decades. This was not the case for inertial-type GWL, for which the LV 

projection still has a significantly lower variability than previously observed in the historical 

period. The highest-variability (HV) projected GWL time series exhibited a much greater 

variability than all observed time series, with standard deviations approximately 1.5 to 2 

times higher than for observed GWL. The annual-type GWL showed increasing total 

variability, while mixed and inertial types indicated decreasing across all scenarios. 

Additionally, distinct patterns for total variability showed up separating the eastern and 

western parts of the area (resp. increasing and decreasing variability): it seems like this is 

because the eastern part comprises almost all annual-type GWL, which are the ones 

exhibiting increasing variability. On the other hand, low-frequency variability seemed to be 

decreasing for almost all stations except for the less severe SSP 2-4.5 scenario; as well, 

more stations tended to exhibit decreasing low-frequency variability as emission scenarios 

became more severe (with all stations in this case for the most severe scenario). 
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Our CSMK test results on the median time series of the 160 projection ensemble indicated 

decreasing trends in groundwater levels for all scenarios and GWL types in northern France. 

This finding aligns with Habets et al. (2013), who projected a significant decrease in water 

resources for rivers and aquifers in two northern French basins despite model differences 

and uncertainties. 

Conversely, Vergnes et al. (2023) projected higher groundwater levels on average over 

France in the future, including northern France, with mean annual GWL increasing by up 

to approximately 2 m. Vergnes et al. (2023) noted that their results did not match those 

of Wunsch et al. (2022) and were in contradiction with previous studies from Caballero et 

al. (2007) or Dayon et al. (2018). However, Wunsch et al. (2022) computed trends and 

relative changes essentially for the future period (2014-2100) from the projected levels 

alone, whereas Vergnes et al. (2023) compared the future period (2070-2099) to the 

historical period (1976-2005). In Germany, Wunsch et al. (2022) projected a median 

relative decrease in groundwater levels between 2014 and 2100, which seems to agree 

with our findings on trends in projected levels. It is also interesting to note that these 

authors showed increased variability in the annual cycle towards 2100, while our results 

highlighted an increase in the total variability of annual-type GWL in the eastern part of 

northern France (i.e., closest to Germany). 

To facilitate comparison with these studies, we computed the mean difference (expressed 

as the relative change in %) between future periods and two historical reference periods: 

1. Near future (2030-2050), 2. Middle future (2051-2070), 3. Far future (2071-2100), 4. 

Whole future period (2030-2100). We used 1970-2022 as our primary reference historical 

period (Figure. 5.16) and 1976-2005 as a secondary reference period (Figure. 5.17) to 

compare with Vergnes et al. (2023) directly. Figures 5.16 and 5.17 are used to support 

this analysis, from which several main points could be underlined. Typically, changes are 

generally small for all periods and scenarios, ranging from +8% to -6% (1970-2022 

reference) and +8% to -10% (1976-2005 reference). The magnitude of changes is similar 

to Wunsch et al. (2022), although slightly less pronounced. There is a distinct pattern 

between the western and eastern parts, with future levels higher in the west and lower in 

the east compared to the historical reference as noticed for projected change in total 

variability (decreasing variability to the West, increasing to the East). No significant 

differences were observed between scenarios. Yet, a noticeable difference exists between 

the periods. Relative change is higher in mid and far-future periods than in the near future. 

Moreover, in the near future period (2030-2050), more stations indicated positive changes 
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in mean, followed by stabilisation in later periods. These increasing mean changes in some 

areas align with results from Vergnes et al. (2023). 

Our results reconcile those from Vergnes et al. (2023) and Wunsch et al. (2022), although 

according to Vergnes et al. (2023), they were apparently contradictory. Indeed, while 

projected GWL is expected to decrease over time (our study and Wunsch et al., 2022), 

changes in the annual mean projected levels remained slightly higher than historical levels 

(our study and Vergnes et al., 2023). This intriguing result warrants further investigation 

Figure 5.16: Relative change for future periods with respect to historical mean from 

1970-2022 
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and could be an interesting research question for future studies. It is worth noting that the 

relative positive change is mainly observed for inertial and mixed GWL types and much 

lower for annual types. Additionally, the differences between periods seemed consistent 

with the expected decreasing trends: for the far future, the difference in mean compared 

with the historical reference period seemed a little less than that of the near future, 

although the changes are so slight they are barely visible on the maps in figures 5.13 and 

5.14. 

Finally, it is also important to note that all these studies used different types of projected 

climate inputs (CMIP5 RCP or CMIP6 SSP scenarios, CMIP5 Euro-CORDEX regionalised 

climate projections for France, different ensembles or number of members), which makes 

direct comparison challenging. This highlights the need for a comprehensive, community-

wide benchmarking experiment to understand better and reconcile these differences in 

future groundwater level projections.  

Figure 5.17: Relative change for future periods with respect to historical mean from 

1976-2005 (similar to Vergnes et al. 2023) 
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While our study employed advanced techniques like utilising multiple CMIP6 climate models 

and scenarios, as well as training different initialisations for the GRU deep learning models, 

there are inherent strengths and limitations associated with these approaches that 

contribute to the total uncertainty affecting the results. The uncertainty associated with 

hydrological impact projections arises from multiple origins: it is partly linked to the climate 

model used (physics, initialisation), to the internal or "natural" variability, to the different 

emission scenarios, and ultimately to the hydrological model used. In particular, as 

mentioned in the introduction, low-frequency/long-time scale, natural variability can play 

a crucial role in modulating the effects of climate change by amplifying or attenuating 

(masking) hydroclimatic trends and associated extremes, e.g. as shown by Boé and Habets 

(2014) and emphasised by Massei et al. (2020). On interannual to decadal scales, climate 

oscillations and teleconnections such as the North Atlantic Oscillation (NAO) or the El Nino-

Southern Oscillation (ENSO) were identified as a significant forcing factor of groundwater 

resources variations (Holman et al., 2011; Liesch & Wunsch, 2019; Massei et al., 2007, 

2010; Rust et al., 2019). In many instances, such fluctuations may correspond to 

significant hydrological events, as shown in Baulon et al. (2022b) and describe multi-year 

periods of successive dry or wet years, to which human activities are  

particularly vulnerable. This led Blösch et al. (2019) to classify the understanding of these 

phenomena as one of the "23 unsolved hydrological problems". The 16 model variants 

used in the work presented herein still represented the stochastic low-frequency climate 

variability differently, which allowed us to appreciate its potential impacts on GWL 

projections. However, using only one variant for precipitation and temperature of each of 

the 16 climate models prevented us from analysing the contribution of natural variability 

to the total uncertainty in the GWL projections released. A larger-ensemble approach would 

be needed to properly assess the contribution of natural climate variability to the 

uncertainty of GWL projections. 

Finally, from a more technical standpoint, the DL models used herein have shown strong 

performance in identifying complex patterns in large datasets and capturing GWL 

variability, as also emphasised in our previous studies (Chidepudi et al., 2023a, 2024a), 

making them efficient for long-term simulations. They have proven to be a relevant 

alternative or complement to more complex modelling frameworks, like physically-based 

models, that are often more difficult to develop and implement. Their efficiency could be 

leveraged to facilitate benchmarking of hydrological and hydrogeological projections under 

climate change by conducting more similar studies globally
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Conclusion and Pespectives 

The thesis mainly focused on using DL for three aspects of groundwater modelling: 

simulation, reconstruction, and projection. We evaluated different DL models, including or 

not different pre-processing techniques, such as wavelet pre-processing or pre-clustering 

the training datasets, in both single-station and multi-station training modes. Three 

different types of GWLs were considered that would allow the DL models to encompass the 

main types of variability that can be generally encountered: “simple”, almost periodic 

variability with a certain amount of infra-annual variations, low-frequency variability 

(rather smooth, long-term varying water tables), and mixed-type variability which 

corresponded to the superimposition of the two previous types. We then tested the 

relevance of the models to simulate the long-term evolution of groundwater levels in the 

past or the future. The northern part of metropolitan France was eventually selected as a 

case study because it fulfilled two major requirements: availability of the longest time 

series possible and the presence of the three contrasted above-mentioned types.  

Our analysis of the current state-of-the-art, in which the most recent developments in 

using deep learning for groundwater were presented, highlighted the existence of clear 

potential opportunities and the need for advancing the knowledge about the application of 

DL for groundwater level simulation beyond the mainstream “forecasting” approach. While 

the application of DL for surface watersheds seemed to be quite advanced, a clear lack of 

investigation regarding groundwater systems appeared. We then first developed single-

station DL models using recurrent-based architectures (LSTM, Bi-LSTM, GRU) and 

evaluated them for the three main GWL behaviours (annual, inertial and mixed) to test 

their capability to capture all types of frequency information. Results showed that wavelet 

pre-processing was a necessary step to make the models capable of representing the low-

frequency part of GWL variability. Indeed, while all the necessary information for model 

training was readily available in precipitation and temperature for annual-type GWL, the 

models encountered difficulties in extracting low-frequency information from precipitation 

or temperature signals, which are commonly dominated by either random noise or annual 

cyclicity. The application of wavelet MODWT pre-processing enabled the retrieval of this 

information that was previously “hidden” within the input features, thereby significantly 

enhancing the learning process.  MODWT-assisted models then significantly improved GWL 

simulations, especially for inertial and mixed types, with GRU models performing the best. 

Model outputs were interpreted using SHAP to understand the importance of different input 

features. These findings confirmed that wavelet-based pre-processing enhanced the ability 
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of DL models to capture low-frequency variability in GWL simulations. Subsequently, the 

single-station approach was extended all over northern France to achieve GWL 

reconstruction using ERA5 and ERA20C reanalysis datasets as input. The results 

highlighted the models' ability to achieve consistent reconstructions on the basis of the 

only one-century mixed-type GWL time series available. The model efficiently captured 

multi-decadal variability in all reconstructions: the influence of the Atlantic Multi-decadal 

Oscillation (AMO) on GWLs, already documented in a number of previous works, could be 

identified in all reconstructions, emphasising the potential of deep learning models to 

provide reliable long-term GWL simulations. The correlated seasonal Mann-Kendall trend 

test was applied to this database of reconstructed GWL time series and showed that no 

significant trend existed across the study area over the past century. However, this DL 

reconstruction experiment also emphasised the impact of a limited length of training GWL 

time series for achieving consistent simulations, especially in the case of low-frequency 

dominated GWL. The question then arose of the most appropriate way to maximise the 

amount of training information. We then investigated the possibility of retrieving 

information from all available adjacent time series usable for training but also from physical 

“static” features related to basins’ properties. The previously developed DL models were 

then adapted to use regionalised information for large-scale simulation: several multi-

station approaches were tested and compared with the specialised single-station approach. 

Results highlighted the effectiveness of clustering-based modelling in reducing data 

complexity and efficiently targeting relevant information. Additionally, it demonstrated the 

significant performance improvements achievable through the combination of wavelet pre-

processing and prior clustering, particularly for GWLs dominated by low-frequency 

variations. The models developed allow quite a consistent capability for long-term 

simulation. We finally used a multi-station MODWT-GRU architecture trained for each GWL 

type to generate future groundwater projections under varying climate scenarios and 

discuss the possible changes in GWL in northern France up to 2100. Results from projected 

changes indicated decreasing trends in both groundwater levels (GWL mean) and GWL 

variability (GWL standard deviation), intensifying from SSP2-4.5 to SSP5-8.5. The 

variability of annual-type aquifers increased for all emission scenarios. Paradoxically, 

groundwater levels seemed higher in the future compared to the historical period for all 

scenarios, although the trends of GWL seemed to decrease throughout the future period 

consistently. Indeed, it seemed that on average, levels would tend to be higher in the near-

future period, until approximately 2050, before decreasing to the end of the century. It 

would then explain overall higher future GWL compared to the historical period on average, 

although such future GWL would still tend to decrease until 2100. 
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Overall, several takeaways emerged from this thesis: 1) wavelet pre-processing 

consistently improved model performance across different GWL types and modelling 

approaches; 2) reconstructed GWLs were able to capture key multi-decadal variability 

related large-scale climate variations (AMO), with no significant noticeable trends affecting 

GWL during the historical period; 3) multi-station approaches, especially when combined 

with clustering based on spectral properties, showed promises in improving model 

accuracy; 4) climate change projections indicated decreasing trends in GWLs across 

northern France, with slightly increasing variability for annual types for all scenarios but 

decreasing variability for mixed and inertial types.  

At the beginning of this dissertation, several research questions were raised, which we 

tried to answer in this work briefly, as summarised below: 

1. How can we develop deep learning models that would account for various types of 

groundwater level variations beyond solely annual cyclicities and not designed only for 

forecasting for a limited number of time steps (and not based on previous values of target 

variables)? 

For the models to be able to provide long-term simulations (Reconstruction and 

projections), it is necessary to use only external climate variables that are widely available 

from reanalysis (Chapter 3) or CMIP6 (Chapter 5) datasets. To better capture variations in 

low-frequency dominated GWL, BC-MODWT pre-processing is preferred for both DL 

modelling approaches (Single station (Chapter2) and Multi-station (Chapter4)). Multi-

station approaches are preferred for very inertial GWL types. However, although both 

clustering and wavelet pre-processing improved the simulations in the multi-station 

framework, we still recommend the priority be placed on pre-processing rather than 

clustering wherever possible while still allowing for leveraging the same type of information 

(i.e. detecting the low-frequency). As it would prevent separating the dataset and reducing 

its size, which is not desirable for optimal training. 

2. How does spatial resolution of explanatory input climate variables taken from reanalysis 

datasets impact simulations or reconstruction? How accurate are these in capturing 

different variabilities? 

Though high-resolution SAFRAN reanalysis provides accurate simulations (Chapter 2), 

there is a need to look into global reanalysis datasets for better generalisation. Hence, 

ERA5 is an imminent alternative and gave comparable accuracy (Chapters 2 & 3), and for 
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very long-term reconstruction up to 1900, ERA20C is suitable, though ERA5 gave slightly 

better accuracy. 

3. 3. Can such DL models consistently capture trends, long-term oscillations, and 

variability? What relevant strategies are needed to ensure this? 

BC-MODWT-DL models (wavelet-assisted DL models) allowed for extracting low-frequency 

information and improved simulations in all cases (Chapters 2-4). They could also capture 

multi-decadal variability systematically in all reconstructed GWLs (Chapter 3). Despite the 

low-frequency component in input features (precipitation and temperature) projections 

being almost non-existent, DL models trained for inertial or mixed behaviours were 

successful in generating projected GWLs that would comprise some amount of low-

frequency variability: the models effectively contain the necessary information (related to 

physical basin properties) to represent such behaviours. 

4. What does DL simulated GWL time series tell about how different types of aquifers (e.g. 

annual dominated or low-frequency dominated) respond to climate change scenarios? 

While there were no significant trends on past reconstructed GWL (Chapter3), future 

projected changes indicated decreasing trends in groundwater levels and variability, 

intensifying from SSP2-4.5 to SSP5-8.5. The variability of annual-type aquifers increased 

for all emission scenarios (Chapter 5). 

The results from this work are mainly focused on the monitored locations where the data 

is available for longer periods. After validating the results at wider scales, the approaches 

could be extended to unmonitored locations. Thereby investigating the potential of transfer 

learning and frugal AI approaches.  

Future research could explore the simulation of groundwater levels, considering the 

magnitude of the interactions with surface hydrology (i.e., from high streamflow-

groundwater interactions to almost nil interactions for confined aquifers). In all cases, the 

geological characteristics of the basins, as well as human influences such as land use and 

volumes of water abstracted, would need to be investigated. This means that all 

piezometric data, regardless of human impact or connectivity to the surface, and surface 

hydrological data in cases of significant surface-ground interactions could be utilised. In 

such complex situations where significant knowledge about different influences is required, 

data scarcity may be a challenge (e.g., knowledge about water abstraction, pumping data 

etc.). In such a case, physics-informed neural network approaches may help compensating 
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the lack of data by increasing the constraint on the neural network optimisation based on 

physical knowledge. Further, the spatialisation of groundwater information could be 

another open challenge. Currently developed models simulate groundwater point by point 

(i.e., only one piezometric station is simulated, whatever the learning conditions), but a 

major issue and challenge lies in producing spatialised simulation results in the form of a 

groundwater map. 

BC-MODWT consistently improved the performance of the DL models for aquifers affected 

by low-frequency variability (i.e., mixed and inertial) in all approaches. Its impact on 

annual-dominated groundwater is relatively minimal. While all three DL models (LSTM, 

GRU and BiLSTM) were suitable for groundwater simulations with slight differences in their 

performance on unseen data, GRU is computationally the most efficient, taking less time 

to train models and to tune hyperparameter values. The usual approach of training models 

on a single station is widely adapted in building specialised models. For better 

generalisation and regionalisation efforts, a multi-station approach could become 

necessary, and the performance of these approaches could potentially depend on bigger 

datasets with relevant hydrogeological information. This would also require exploring more 

advanced encoding strategies for static attributes. 

More research focusing on benchmarking these models is needed. Further integration of 

physical constraints and domain knowledge into DL models (e.g. physics-informed neural 

networks) or complementary with existing operational physically based groundwater 

models would be required with coordinated efforts from the global groundwater 

community. Similarly, for assessing trends and variability, standardising the approaches 

for different climate projections and future periods considered for computations will be 

needed for better generalisation and future comparisons with different modelling 

approaches. Regarding projections, uncertainty related to internal climate variability was 

not considered in this study, and this could be tested in future studies by exploring 

improved uncertainty quantification methods. 
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Table S1: List of GWL stations and corresponding class and static attributes  

Well ID Class longit
ude 

latitu
de 

Geological 
Context 

Medium: 
Type of 

Porosity 

Lithology 

00068X0010/
F295 

mixed 2.09 50.80 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Chalk 

00182X0010/

P1 
annual 2.27 50.50 Sedimentary Matrix / 

cracks 
Chalk 

00241X0012/
P1 

mixed 1.82 50.39 Sedimentary Matrix / 
cracks 

Chalk 

00263X0006/
P1 

mixed 2.70 50.39 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Chalk 

00271X0002/
P2 

mixed 2.89 50.35 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Chalk 

00332X0007/

S1 
mixed 1.95 50.19 Sedimentary Matrix / 

cracks 
Chalk 

00471X0095/
PZ2013 

mixed 2.58 50.02 Sedimentary Matrix / 
cracks 

Chalk 

00572X0010/
S1 

inertial 0.51 49.79 Sedimentary Matrix/fract
ure/karst 

Chalk 

00578X0002/
S1 

inertial 0.71 49.74 Sedimentary Matrix/fract
ure/karst 

Chalk 

00583X0005/

S1 
inertial 0.91 49.78 Sedimentary Matrix/fract

ure/karst 
Chalk 

00608X0028/

S1 
inertial 1.80 49.76 Sedimentary Matrix/fract

ure/karst 
Chalk 
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00671X0052/
S1 

annual 4.04 49.84 Sedimentary Matrix / 
cracks 

Chalk 

00755X0006/

S1 
mixed 0.42 49.56 Sedimentary Matrix/fract

ure/karst 
Chalk 

00766X0004/

S1 
inertial 0.84 49.57 Sedimentary Matrix/fract

ure/karst 
Chalk 

00773X0002/
S1 

mixed 1.28 49.60 Sedimentary Matrix/fract
ure/karst 

Chalk 

00791X0017/
S1 

mixed 1.82 49.62 Sedimentary Matrix / 
cracks 

Chalk 

00794X0021/
S1 

mixed 2.09 49.60 Sedimentary Matrix / 
cracks 

Chalk 

00805X0002/
S1 

mixed 2.21 49.55 Sedimentary Matrix / 
cracks 

Chalk 

00817X0145/

PZ_SN 
mixed 2.70 49.55 Sedimentary Matrix / 

cracks 
Chalk 

00821X0035/

S1 
mixed 2.96 49.65 Sedimentary Matrix / 

cracks 
Chalk 

00847X0043/
S1 

annual 3.86 49.52 Sedimentary Matrix / 
cracks 

Chalk 

00853X0030/
PZ2013 

annual 4.16 49.61 Sedimentary Matrix / 
cracks 

Chalk 

00862X0005/
S1 

annual 4.42 49.60 Magmatic 
and 
metamorphic 

Porous Sand 

00957X0005/
S1 

mixed -0.90 49.37 Sedimentary Karst / 
fissures 

Limeston
e 
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00993X0002/
S1 

inertial 0.98 49.48 Sedimentary Matrix/fract
ure/karst 

Chalk 

01003X0008/

S1 
mixed 1.26 49.43 Sedimentary Matrix/fract

ure/karst 
Chalk 

01013X0004/

S1 
mixed 1.63 49.44 Sedimentary Matrix/fract

ure/karst 
Chalk 

01024X0058/
S1 

mixed 2.10 49.45 Sedimentary Matrix / 
cracks 

Chalk 

01031X0023/
S1 

mixed 2.21 49.50 Sedimentary Matrix / 
cracks 

Chalk 

01045X0015/
S1 

mixed 2.54 49.36 Sedimentary Matrix / 
cracks 

Chalk 

01046X0010/
S1 

mixed 2.61 49.38 Sedimentary Matrix / 
cracks 

Chalk 

01053X0058/

S1 
inertial 3.07 49.45 Alluvial Porous Sand 

01074X0006/

S1 
annual 3.92 49.49 Sedimentary Matrix / 

cracks 
Chalk 

01086X0011/
LS4 

annual 4.10 49.34 Sedimentary Matrix / 
cracks 

Chalk 

01116X0138/
F1 

annual 5.16 49.37 Magmatic 
and 

metamorphic 

Karst / 
fissures 

Limeston
e 

01192X0043/
S1 

annual -0.60 49.25 Sedimentary Karst / 
fissures 

Limeston
e 

01194X0069/
S1 

mixed -0.43 49.29 Sedimentary Karst / 
fissures 

Limeston
e 
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01198X0002/
S1 

inertial -0.38 49.21 Sedimentary Karst / 
fissures 

Limeston
e 

01245X0010/

S1 
inertial 1.09 49.22 Sedimentary Matrix/fract

ure/karst 
Chalk 

01252X0011/

S1 
mixed 1.54 49.30 Sedimentary Matrix/fract

ure/karst 
Chalk 

01258X0020/
S1 

mixed 1.71 49.20 Sedimentary Matrix/fract
ure/karst 

Chalk 

01264X0029/
S1 

mixed 2.08 49.24 Sedimentary Matrix/fract
ure/karst 

Chalk 

01287X0017/
S1 

mixed 2.75 49.21 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Sand 

01347X0002/
S1 

annual 4.86 49.17 Magmatic 
and 

metamorphic 

Porous Gaize 

01381X0070/

P25 
annual 6.18 49.30 Sedimentary Porous Alluvium 

01461X0012/
S1 

inertial -0.29 49.06 Sedimentary Karst / 
fissures 

Limeston
e 

01473X0087/
S1 

inertial 0.24 49.06 Sedimentary Matrix/fract
ure/karst 

Chalk 

01491X0009/
S1 

inertial 0.77 49.11 Sedimentary Matrix/fract
ure/karst 

Chalk 

01516X0004/

S1 
inertial 1.61 48.98 Sedimentary Matrix/fract

ure/karst 
Chalk 

01584X0023/

LV3 
annual 4.29 49.07 Sedimentary Matrix / 

cracks 
Chalk 
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01871X0031/
S1 

mixed 3.65 48.89 Not available Porous Marl 

01995X0012/

342B 
annual 7.98 48.81 Sedimentary Porous Alluvium 

02206X0022/

S1 
inertial 2.68 48.61 Magmatic 

and 
metamorphic 

Karst / 

fissures 
Limeston

e 

02225X0016/

S1 
mixed 3.28 48.62 Sedimentary Karst / 

fissures 
Limeston

e 

02347X0022/

314 
mixed 7.75 48.65 Sedimentary Porous Alluvium 

02566X0019/

S1 
inertial 1.90 48.46 Magmatic 

and 
metamorphic 

Karst / 

fissures 
Limeston

e 

02617X0009/

S1 
annual 3.83 48.44 Sedimentary Matrix / 

cracks 
Chalk 

02636X0009/

S1 
mixed 4.49 48.44 Sedimentary Porous Alluvium 

02726X0029/
238 

annual 7.66 48.49 Sedimentary Porous Alluvium 

02923X0007/
F 

inertial 1.99 48.38 Magmatic 
and 

metamorphic 

Porous Sand 

02931X0008/
S1 

inertial 2.24 48.36 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Limeston
e 

02974X0004/

S1 
annual 3.87 48.36 Sedimentary Matrix / 

cracks 
Chalk 
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03272X0006/
PZ 

inertial 1.89 48.24 Magmatic 
and 
metamorphic 

Karst / 
fissures 

Limeston
e 

03276X0009/
P 

inertial 1.92 48.10 Magmatic 
and 

metamorphic 

Karst / 
fissures 

Limeston
e 

03287X0018/
S1 

inertial 2.35 48.09 Magmatic 
and 

metamorphic 

Karst / 
fissures 

Limeston
e 

03622X0027/

PZ 
inertial 1.58 47.99 Magmatic 

and 
metamorphic 

Karst / 

fissures 
Limeston

e 

04132X0086/
PP6 

mixed 7.31 47.82 Sedimentary Porous Alluvium 

04137X0018/

15 
mixed 7.42 47.72 Sedimentary Porous Alluvium 

04398X0002/

SONDAG 
annual 5.32 47.53 Sedimentary Karst Limeston

e 

04458X0023/
S3 

mixed 7.52 47.59 Sedimentary Porous Alluvium 

00061X0117/
PZ1 

mixed 1.82 50.87 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Chalk 

00263X0129/
PZASA4 

mixed 2.72 50.33 Magmatic 
and 

metamorphic 

Matrix / 
cracks 

Chalk 

00275X0005/

P1 
inertial 2.89 50.25 Magmatic 

and 
metamorphic 

Matrix / 

cracks 
Chalk 

00346X0011/

S1 
mixed 2.33 50.11 Sedimentary Matrix / 

cracks 
Chalk 
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00463X0036/
H1 

mixed 2.36 49.95 Sedimentary Matrix / 
cracks 

Chalk 

02603X0009/

S1 
inertial 3.44 48.58 Sedimentary Karst / 

fissures 
Limeston

e 

  

  

 

Table S2: Station wise training and testing dates and period. The first four years 

in the training period were used to make sequences hence only ERA5 data was 
used for this period.         

   

Code Training 
Period (Dates) 

Training 
Period 

(Years) 

Testing Period 
(Dates) 

Testing 
Period 

(Years) 

00068X0010/
F295 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00182X0010/
P1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00241X0012/

P1 
1968-04-01 to 

2014-12-01 
47 2015-01-01 to 

2022-12-01 
8 

00263X0006/
P1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00271X0002/
P2 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00332X0007/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00471X0095/
PZ2013 

1966-06-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 
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00572X0010/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00578X0002/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00583X0005/
S1 

1967-03-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

00608X0028/

S1 
1966-10-01 to 

2014-12-01 
48 2015-01-01 to 

2022-12-01 
8 

00671X0052/
S1 

1970-03-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

00755X0006/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00766X0004/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00773X0002/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00791X0017/
S1 

1970-04-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

00794X0021/

S1 
1966-10-01 to 

2014-12-01 
48 2015-01-01 to 

2022-12-01 
8 

00805X0002/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00817X0145/
PZ_SN 

1966-11-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

00821X0035/

S1 
1970-04-01 to 

2014-12-01 
45 2015-01-01 to 

2022-12-01 
8 

00847X0043/
S1 

1966-10-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 
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00853X0030/

PZ2013 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00862X0005/

S1 
1967-02-01 to 

2014-12-01 
48 2015-01-01 to 

2022-12-01 
8 

00957X0005/
S1 

1970-02-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

00993X0002/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01003X0008/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01013X0004/

S1 
1967-03-01 to 

2014-12-01 
48 2015-01-01 to 

2022-08-01 
8 

01024X0058/
S1 

1970-02-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

01031X0023/

S1 
1966-10-01 to 

2014-12-01 
48 2015-01-01 to 

2020-03-01 
5 

01045X0015/
S1 

1966-10-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

01046X0010/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01053X0058/

S1 
1966-10-01 to 

2014-12-01 
48 2015-01-01 to 

2022-12-01 
8 

01074X0006/
S1 

1966-10-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

01086X0011/
LS4 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01116X0138/

F1 
1971-05-01 to 

2014-12-01 
44 2015-01-01 to 

2022-12-01 
8 
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01192X0043/

S1 
1970-02-01 to 

2014-12-01 
45 2015-01-01 to 

2022-12-01 
8 

01194X0069/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01198X0002/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01245X0010/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01252X0011/
S1 

1967-03-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

01258X0020/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01264X0029/

S1 
1970-04-01 to 

2014-12-01 
45 2015-01-01 to 

2022-12-01 
8 

01287X0017/
S1 

1970-04-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

01347X0002/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01381X0070/

P25 
1967-09-01 to 

2014-12-01 
47 2015-01-01 to 

2022-12-01 
8 

01461X0012/
S1 

1966-06-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

01473X0087/
S1 

1970-02-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

01491X0009/

S1 
1968-12-01 to 

2014-12-01 
46 2015-01-01 to 

2022-12-01 
8 

01516X0004/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 
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01584X0023/

LV3 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01871X0031/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

01995X0012/
342B 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

02206X0022/

S1 
1969-06-01 to 

2014-12-01 
46 2015-01-01 to 

2022-12-01 
8 

02225X0016/
S1 

1967-02-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

02347X0022/
314 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

02566X0019/

S1 
1970-03-01 to 

2014-12-01 
45 2015-01-01 to 

2022-12-01 
8 

02617X0009/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

02636X0009/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

02726X0029/

238 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

02923X0007/
F 

1970-12-01 to 
2014-12-01 

44 2015-01-01 to 
2022-12-01 

8 

02931X0008/
S1 

1966-09-01 to 
2014-12-01 

48 2015-01-01 to 
2022-12-01 

8 

02974X0004/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

03272X0006/
PZ 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 
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03276X0009/

P 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

03287X0018/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

03622X0027/
PZ 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

04132X0086/

PP6 
1970-03-01 to 

2014-12-01 
45 2015-01-01 to 

2022-12-01 
8 

04137X0018/
15 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-01-01 

7 

04398X0002/
SONDAG 

1970-02-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

04458X0023/

S3 
1971-12-01 to 

2014-12-01 
43 2015-01-01 to 

2022-12-01 
8 

00061X0117/
PZ1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00263X0129/
PZASA4 

1970-02-01 to 
2014-12-01 

45 2015-01-01 to 
2022-12-01 

8 

00275X0005/

P1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 

00346X0011/
S1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

00463X0036/
H1 

1966-02-01 to 
2014-12-01 

49 2015-01-01 to 
2022-12-01 

8 

02603X0009/

S1 
1966-02-01 to 

2014-12-01 
49 2015-01-01 to 

2022-12-01 
8 
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Table S3: Best hyperparameters for all standalone models of single station 

approach        

Code Best Params GRU Best Params LSTM Best Params BILSTM 

00068X0010/

F295 
{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0042856407357
95779, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00182X0010/
P1 

{'learning_rate': 
0.007291305160
743269, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0097074802958
41904, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00346316715848
3116, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

00241X0012/

P1 
{'learning_rate': 

0.006938969099
74053, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0089934631695
84801, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00263X0006/
P1 

{'learning_rate': 
0.006821777398
460312, 

'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
144, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553
2596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 
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00271X0002/

P2 
{'learning_rate': 

0.008103056755
532596, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0051430942767
31783, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

160, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

00332X0007/
S1 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0052693290249

71373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00144078517827

5633, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

00471X0095/

PZ2013 
{'learning_rate': 

0.009605417373
868429, 

'optimizer': 
'adam', 'epochs': 
100, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0013001227621
881476, 

'optimizer': 'adam', 
'epochs': 450, 
'batch_size': 16, 

'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00194064070422
48572, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

00572X0010/
S1 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 

'epochs': 450, 
'batch_size': 16, 
'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

00578X0002/

S1 
{'learning_rate': 

0.003729090520
557473, 

'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

64, 'n_layers': 1, 

{'learning_rate': 

0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

{'learning_rate': 

0.00194643885317
50198, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
224, 'n_layers': 1, 



 

 

204 

 

'n_units_l0': 70, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00583X0005/

S1 
{'learning_rate': 

0.001009132669
840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0068217773984
60312, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
144, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00608X0028/
S1 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640
40375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

00671X0052/
S1 

{'learning_rate': 
0.001986907762

1547677, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0081030567555

32596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00276587898399

04367, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

00755X0006/
S1 

{'learning_rate': 
0.001300122762
1881476, 

'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0027658789839
904367, 

'optimizer': 'adam', 
'epochs': 250, 

'batch_size': 160, 
'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00147195875060
7762, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

00766X0004/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 

{'learning_rate': 
0.0052693290249

71373, 'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00134601324950

3339, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

450, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

00773X0002/

S1 
{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00791X0017/
S1 

{'learning_rate': 
0.006562911757

711773, 
'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 
'epochs': 450, 

'batch_size': 16, 
'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218

81476, 'optimizer': 
'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

00794X0021/

S1 
{'learning_rate': 

0.008819753706
964301, 

'optimizer': 
'adam', 'epochs': 
500, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0010091326698
40099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00348774213479
9628, 'optimizer': 

'adam', 'epochs': 
100, 'batch_size': 
96, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00805X0002/
S1 

{'learning_rate': 
0.009773436531

085809, 
'optimizer': 
'adam', 'epochs': 

100, 'batch_size': 
96, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00158215925824

87883, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 



 

 

206 

 

00817X0145/

PZ_SN 
{'learning_rate': 

0.002200924832
9412116, 

'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0013001227621
881476, 

'optimizer': 'adam', 
'epochs': 450, 

'batch_size': 16, 
'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

00821X0035/
S1 

{'learning_rate': 
0.008103056755

532596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

00847X0043/

S1 
{'learning_rate': 

0.009981263429
23339, 

'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0076309011781
66286, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00853X0030/
PZ2013 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00862X0005/

S1 
{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 

{'learning_rate': 

0.0083294603490
14989, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 
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'n_units_l0': 80, 

'dropout_l0': 0.2} 
'n_units_l0': 20, 

'dropout_l0': 0.2} 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

00957X0005/

S1 
{'learning_rate': 

0.005262638466
167993, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0057414347702
68582, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00422875276545
60056, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

00993X0002/
S1 

{'learning_rate': 
0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497
1373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

01003X0008/
S1 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

01013X0004/
S1 

{'learning_rate': 
0.009720173077
87352, 

'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
128, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0034877421347
99628, 'optimizer': 

'adam', 'epochs': 
100, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00176389596063
53453, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 10, 
'dropout_l0': 0.2} 

01024X0058/
S1 

{'learning_rate': 
0.009707480295

841904, 
'optimizer': 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 

{'learning_rate': 
0.00241961944935

71197, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

'epochs': 450, 

'batch_size': 16, 
'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

400, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

01031X0023/

S1 
{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0010091326698
40099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00148866227544
44637, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

01045X0015/
S1 

{'learning_rate': 
0.008819753706

964301, 
'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00276587898399

04367, 'optimizer': 
'adam', 'epochs': 
250, 'batch_size': 

160, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

01046X0010/

S1 
{'learning_rate': 

0.004871081986
35781, 

'optimizer': 
'adam', 'epochs': 
250, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0092420621207
6548, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

01053X0058/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 
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01074X0006/

S1 
{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

01086X0011/
LS4 

{'learning_rate': 
0.003565014524

3888115, 
'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0088197537069

64301, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

01116X0138/

F1 
{'learning_rate': 

0.001300122762
1881476, 

'optimizer': 
'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0086252835696
44069, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00184844635333
47947, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

01192X0043/
S1 

{'learning_rate': 
0.008819753706

964301, 
'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0065084096605

82904, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

01194X0069/

S1 
{'learning_rate': 

0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 

{'learning_rate': 

0.0038865529957
636045, 

'optimizer': 'adam', 
'epochs': 400, 
'batch_size': 48, 

'n_layers': 1, 

{'learning_rate': 

0.00199050936881
78995, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
64, 'n_layers': 1, 
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'n_units_l0': 80, 

'dropout_l0': 0.2} 
'n_units_l0': 50, 

'dropout_l0': 0.2} 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

01198X0002/

S1 
{'learning_rate': 

0.001009132669
840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0013001227621
881476, 
'optimizer': 'adam', 

'epochs': 450, 
'batch_size': 16, 

'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00276587898399
04367, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

01245X0010/
S1 

{'learning_rate': 
0.007735205021
322065, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640
40375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

01252X0011/
S1 

{'learning_rate': 
0.007865894872

388346, 
'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00148866227544

44637, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

01258X0020/
S1 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0034877421347
99628, 'optimizer': 

'adam', 'epochs': 
100, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

01264X0029/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00215569338528

25582, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

500, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

01287X0017/

S1 
{'learning_rate': 

0.008103056755
532596, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

01347X0002/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0088637875812

70316, 'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

01381X0070/

P25 
{'learning_rate': 

0.009774776777
496903, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0087595994048
09302, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

01461X0012/
S1 

{'learning_rate': 
0.001300122762

1881476, 
'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 
'epochs': 450, 

'batch_size': 16, 
'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00198690776215

47677, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 
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01473X0087/

S1 
{'learning_rate': 

0.007630901178
166286, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0059063699148
93648, 'optimizer': 

'adam', 'epochs': 
50, 'batch_size': 

176, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00198690776215
47677, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

01491X0009/
S1 

{'learning_rate': 
0.005913127352

3082, 'optimizer': 
'adam', 'epochs': 

100, 'batch_size': 
48, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00215569338528

25582, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
96, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

01516X0004/
S1 

{'learning_rate': 
0.007476627885

185544, 
'optimizer': 

'adam', 'epochs': 
100, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698

40099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00674294126495

3408, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

01584X0023/
LV3 

{'learning_rate': 
0.009707480295
841904, 

'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00809134420894
3023, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 30, 
'dropout_l0': 0.2} 

01871X0031/
S1 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

{'learning_rate': 
0.0027428312554

128097, 
'optimizer': 'adam', 

'epochs': 400, 
'batch_size': 128, 
'n_layers': 1, 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
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'n_units_l0': 80, 

'dropout_l0': 0.2} 
'n_units_l0': 40, 

'dropout_l0': 0.2} 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

01995X0012/

342B 
{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0019464388531
750198, 
'optimizer': 'adam', 

'epochs': 250, 
'batch_size': 224, 

'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

02206X0022/
S1 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

02225X0016/
S1 

{'learning_rate': 
0.001300122762

1881476, 
'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 

'epochs': 450, 
'batch_size': 16, 

'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

02347X0022/
314 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640
40375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00198690776215
47677, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

02566X0019/
S1 

{'learning_rate': 
0.008103056755

532596, 
'optimizer': 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

02617X0009/

S1 
{'learning_rate': 

0.009282156083
736918, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0025030353278
011654, 

'optimizer': 'adam', 
'epochs': 300, 
'batch_size': 16, 

'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

02636X0009/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0052693290249

71373, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

02726X0029/

238 
{'learning_rate': 

0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

02923X0007/
F 

{'learning_rate': 
0.008103056755

532596, 
'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0019362365596

948302, 
'optimizer': 'adam', 
'epochs': 100, 

'batch_size': 32, 
'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 
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02931X0008/

S1 
{'learning_rate': 

0.005913127352
3082, 'optimizer': 

'adam', 'epochs': 
100, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0031514252640
40375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00279405696109
45824, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

176, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

02974X0004/
S1 

{'learning_rate': 
0.008103056755
532596, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00861933971780
5171, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 20, 
'dropout_l0': 0.2} 

03272X0006/
PZ 

{'learning_rate': 
0.006595550405

089572, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

03276X0009/
P 

{'learning_rate': 
0.008103056755
532596, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698
40099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

03287X0018/
S1 

{'learning_rate': 
0.008103056755

532596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

{'learning_rate': 
0.0087595994048

09302, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 

{'learning_rate': 
0.00155969671765

8343, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 
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'n_units_l0': 40, 

'dropout_l0': 0.2} 
'n_units_l0': 20, 

'dropout_l0': 0.2} 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

03622X0027/

PZ 
{'learning_rate': 

0.008103056755
532596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.0031514252640
40375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

04132X0086/
PP6 

{'learning_rate': 
0.009774776777
496903, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
80, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0051430942767
31783, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

160, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00215569338528
25582, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

04137X0018/
15 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0013001227621

881476, 
'optimizer': 'adam', 

'epochs': 450, 
'batch_size': 16, 

'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218

81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

04398X0002/
SONDAG 

{'learning_rate': 
0.008819753706
964301, 

'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0028645860502
692654, 

'optimizer': 'adam', 
'epochs': 300, 

'batch_size': 16, 
'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00722764205305
542, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 50, 
'dropout_l0': 0.2} 

04458X0023/
S3 

{'learning_rate': 
0.002794056961

0945824, 
'optimizer': 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

150, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00061X0117/

PZ1 
{'learning_rate': 

0.009704538365
201885, 

'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0081030567555
32596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00263X0129/
PZASA4 

{'learning_rate': 
0.007192474099

753512, 
'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0019977680760

372763, 
'optimizer': 'adam', 
'epochs': 300, 

'batch_size': 16, 
'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00156352407732

0178, 'optimizer': 
'adam', 'epochs': 
500, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

00275X0005/

P1 
{'learning_rate': 

0.009347592099
550283, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0052693290249
71373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00346X0011/
S1 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0045575999412

6212, 'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00382438842202

89666, 'optimizer': 
'adam', 'epochs': 
350, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 



 

 

218 

 

00463X0036/

H1 
{'learning_rate': 

0.001009132669
840099, 

'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0031514252640
40375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00222183627400
39905, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 

144, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

02603X0009/
S1 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.0031514252640

40375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

 

Table S4: Best hyperparameters for all wavelet models in single station approach 

Code Best Params GRU Best Params LSTM Best Params BILSTM 

00068X0010/
F295 

{'learning_rate': 
0.0031514252640

40375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

00182X0010/

P1 
{'learning_rate': 

0.0095344032189
46923, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00659519923431
437, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 
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00241X0012/

P1 
{'learning_rate': 

0.0070966206604
84497, 

'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
80, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00687582920646
6048, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 90, 
'dropout_l0': 0.2} 

00263X0006/
P1 

{'learning_rate': 
0.0031514252640

40375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00638982993645

5146, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
96, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00271X0002/

P2 
{'learning_rate': 

0.0095344032189
46923, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00946996820746
49, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
128, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

00332X0007/
S1 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00722404436644

8904, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

00471X0095/

PZ2013 
{'learning_rate': 

0.0087950557776
15794, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

64, 'n_layers': 1, 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

{'learning_rate': 

0.00604097315782
2555, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 
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'n_units_l0': 90, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00572X0010/

S1 
{'learning_rate': 

0.0074956599352
95373, 
'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00578X0002/
S1 

{'learning_rate': 
0.0010091326698
40099, 

'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00704596221982
4817, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

96, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 60, 
'dropout_l0': 0.2} 

00583X0005/
S1 

{'learning_rate': 
0.0099526522024

5213, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

00608X0028/

S1 
{'learning_rate': 

0.0097838534719
61944, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

00671X0052/
S1 

{'learning_rate': 
0.0098730181203
25887, 

'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

{'learning_rate': 
0.00433872650630
5758, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
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200, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

208, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00755X0006/
S1 

{'learning_rate': 
0.0052693290249

71373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00776472317821

43064, 'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
112, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

00766X0004/

S1 
{'learning_rate': 

0.0052693290249
71373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

00773X0002/
S1 

{'learning_rate': 
0.0031514252640

40375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

00791X0017/

S1 
{'learning_rate': 

0.0099526522024
5213, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
48, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00862528356964
4069, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00794X0021/

S1 
{'learning_rate': 

0.0044709229134
21275, 

{'learning_rate': 

0.00314692359433
92057, 'optimizer': 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 
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'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

00805X0002/
S1 

{'learning_rate': 
0.0031514252640

40375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00455759994126

212, 'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

00817X0145/

PZ_SN 
{'learning_rate': 

0.0070966206604
84497, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00859663550237
6394, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00608654733670
4553, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00821X0035/
S1 

{'learning_rate': 
0.0094984715755

58025, 
'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
112, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218

81476, 'optimizer': 
'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00693557208179

7071, 'optimizer': 
'adam', 'epochs': 
500, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

00847X0043/

S1 
{'learning_rate': 

0.0052693290249
71373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00975129834881
6691, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
112, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 
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00853X0030/

PZ2013 
{'learning_rate': 

0.0052693290249
71373, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00451870284882
19705, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

128, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00864452955566
9741, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 90, 
'dropout_l0': 0.2} 

00862X0005/
S1 

{'learning_rate': 
0.0049694459490

93749, 
'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00790662661539

0122, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
80, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00656548450192

3348, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

00957X0005/

S1 
{'learning_rate': 

0.0018772035233
25561, 

'optimizer': 
'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00721435484848
2611, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
144, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

00993X0002/
S1 

{'learning_rate': 
0.0044709229134

21275, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

01003X0008/

S1 
{'learning_rate': 

0.0092458860883
52598, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

64, 'n_layers': 1, 

{'learning_rate': 

0.00668904742157
4244, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
224, 'n_layers': 1, 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 
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'n_units_l0': 30, 

'dropout_l0': 0.2} 
'n_units_l0': 90, 

'dropout_l0': 0.2} 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

01013X0004/

S1 
{'learning_rate': 

0.0091564675275
1386, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00683453354251
3314, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

01024X0058/

S1 
{'learning_rate': 

0.0081030567555
32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00722404436644
8904, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

01031X0023/
S1 

{'learning_rate': 
0.0051614275817
75894, 

'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00382691428780
26804, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00608654733670
4553, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

01045X0015/

S1 
{'learning_rate': 

0.0031514252640
40375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00741548593668
1335, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00100913266984
0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

01046X0010/
S1 

{'learning_rate': 
0.0095344032189
46923, 

'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

{'learning_rate': 
0.00608654733670
4553, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
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150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

208, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

01053X0058/
S1 

{'learning_rate': 
0.0092821560837

36918, 
'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00215569338528

25582, 'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
96, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00250031442481

7318, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
112, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

01074X0006/

S1 
{'learning_rate': 

0.0081030567555
32596, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00763090117816
6286, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

01086X0011/
LS4 

{'learning_rate': 
0.0097045383652

01885, 
'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218

81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

01116X0138/

F1 
{'learning_rate': 

0.0097074802958
41904, 

'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00947294557900
3304, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 
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01192X0043/

S1 
{'learning_rate': 

0.0087595994048
09302, 

'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00526428413536
6972, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 30, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00990729816398
8354, 'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

01194X0069/
S1 

{'learning_rate': 
0.0049694459490

93749, 
'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00608654733670

4553, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

01198X0002/

S1 
{'learning_rate': 

0.0081030567555
32596, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

01245X0010/
S1 

{'learning_rate': 
0.0095344032189

46923, 
'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00198690776215

47677, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

01252X0011/

S1 
{'learning_rate': 

0.0092821560837
36918, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

80, 'n_layers': 1, 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 
16, 'n_layers': 1, 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 
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'n_units_l0': 100, 

'dropout_l0': 0.2} 
'n_units_l0': 70, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

01258X0020/

S1 
{'learning_rate': 

0.0081030567555
32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00721003619251
7294, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
144, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

01264X0029/
S1 

{'learning_rate': 
0.0044709229134
21275, 

'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00241961944935
71197, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 90, 
'dropout_l0': 0.2} 

01287X0017/
S1 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218

81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00968129886587

7503, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
192, 'n_layers': 1, 

'n_units_l0': 50, 
'dropout_l0': 0.2} 

01347X0002/
S1 

{'learning_rate': 
0.0099813009825
99807, 

'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00130012276218
81476, 'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

01381X0070/
P25 

{'learning_rate': 
0.0049694459490

93749, 
'optimizer': 

{'learning_rate': 
0.00774217464900

856, 'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 
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'adam', 'epochs': 

250, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

250, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

01461X0012/

S1 
{'learning_rate': 

0.0097045383652
01885, 

'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00970748029584
1904, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00859006914551
327, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
96, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

01473X0087/
S1 

{'learning_rate': 
0.0099526522024

5213, 'optimizer': 
'adam', 'epochs': 
350, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00196730571379

36214, 'optimizer': 
'adam', 'epochs': 
350, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00795099128844

7225, 'optimizer': 
'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

01491X0009/
S1 

{'learning_rate': 
0.0044709229134

21275, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00382689023785

1838, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

01516X0004/

S1 
{'learning_rate': 

0.0099891338549
917, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00791787644685
8305, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
144, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

01584X0023/

LV3 
{'learning_rate': 

0.0042842519067
62034, 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 
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'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

01871X0031/
S1 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

01995X0012/

342B 
{'learning_rate': 

0.0043589747030
68952, 
'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00810305675553
2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00680668645414
4779, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

02206X0022/
S1 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984

0099, 'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

02225X0016/

S1 
{'learning_rate': 

0.0013001227621
881476, 
'optimizer': 

'adam', 'epochs': 
450, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00130012276218
81476, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00487509561760
3179, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 
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02347X0022/

314 
{'learning_rate': 

0.0087595994048
09302, 

'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00276587898399
04367, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

160, 'n_layers': 1, 
'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

02566X0019/
S1 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00679440211334

5505, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
96, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00447092291342

1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 
'n_units_l0': 60, 

'dropout_l0': 0.2} 

02617X0009/

S1 
{'learning_rate': 

0.0031514252640
40375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00276587898399
04367, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

02636X0009/
S1 

{'learning_rate': 
0.0097747767774

96903, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00749565993529

5373, 'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
112, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

02726X0029/

238 
{'learning_rate': 

0.0097747767774
96903, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

80, 'n_layers': 1, 

{'learning_rate': 

0.00875959940480
9302, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 

{'learning_rate': 

0.00881975370696
4301, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 
16, 'n_layers': 1, 
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'n_units_l0': 100, 

'dropout_l0': 0.2} 
'n_units_l0': 20, 

'dropout_l0': 0.2} 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

02923X0007/

F 
{'learning_rate': 

0.0044709229134
21275, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

02931X0008/
S1 

{'learning_rate': 
0.0051430942767
31783, 

'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
160, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

02974X0004/
S1 

{'learning_rate': 
0.0092821560837

36918, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00928215608373

6918, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
80, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00810305675553

2596, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

03272X0006/
PZ 

{'learning_rate': 
0.0094699682074
649, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

208, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

03276X0009/
P 

{'learning_rate': 
0.0042287527654
560056, 

'optimizer': 
'adam', 'epochs': 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

{'learning_rate': 
0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
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350, 'batch_size': 

48, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

03287X0018/
S1 

{'learning_rate': 
0.0031514252640

40375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00297410648841

76733, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
80, 'n_layers': 1, 
'n_units_l0': 90, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00686499840083

5032, 'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
112, 'n_layers': 1, 
'n_units_l0': 70, 

'dropout_l0': 0.2} 

03622X0027/

PZ 
{'learning_rate': 

0.0031514252640
40375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00276587898399
04367, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00276587898399
04367, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 
160, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 

04132X0086/
PP6 

{'learning_rate': 
0.0020822598979

197784, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00721435484848

2611, 'optimizer': 
'adam', 'epochs': 

450, 'batch_size': 
144, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

04137X0018/

15 
{'learning_rate': 

0.0081733824901
97835, 

'optimizer': 
'adam', 'epochs': 
500, 'batch_size': 

80, 'n_layers': 1, 
'n_units_l0': 50, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00970748029584
1904, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 30, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

'n_units_l0': 60, 
'dropout_l0': 0.2} 
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04398X0002/

SONDAG 
{'learning_rate': 

0.0087595994048
09302, 

'optimizer': 
'adam', 'epochs': 

500, 'batch_size': 
16, 'n_layers': 1, 
'n_units_l0': 20, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00881975370696
4301, 'optimizer': 

'adam', 'epochs': 
500, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 20, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00966052980088
0094, 'optimizer': 

'adam', 'epochs': 
250, 'batch_size': 

16, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

04458X0023/
S3 

{'learning_rate': 
0.0081030567555

32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 
32, 'n_layers': 1, 

'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00412291764662

70265, 'optimizer': 
'adam', 'epochs': 

200, 'batch_size': 
48, 'n_layers': 1, 
'n_units_l0': 100, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00970748029584

1904, 'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 30, 

'dropout_l0': 0.2} 

00061X0117/

PZ1 
{'learning_rate': 

0.0095344032189
46923, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00687582920646
6048, 'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
112, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

00263X0129/
PZASA4 

{'learning_rate': 
0.0022046805972

118027, 
'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 
16, 'n_layers': 1, 

'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00315142526404

0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00975129834881

6691, 'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
112, 'n_layers': 1, 
'n_units_l0': 40, 

'dropout_l0': 0.2} 

00275X0005/

P1 
{'learning_rate': 

0.0081030567555
32596, 

'optimizer': 
'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 

{'learning_rate': 

0.00447092291342
1275, 'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 1, 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 
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'n_units_l0': 40, 

'dropout_l0': 0.2} 
'n_units_l0': 60, 

'dropout_l0': 0.2} 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

00346X0011/

S1 
{'learning_rate': 

0.0081030567555
32596, 
'optimizer': 

'adam', 'epochs': 
200, 'batch_size': 

32, 'n_layers': 1, 
'n_units_l0': 40, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00315142526404
0375, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.00526932902497
1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

00463X0036/
H1 

{'learning_rate': 
0.0052693290249
71373, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00100913266984
0099, 'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

02603X0009/
S1 

{'learning_rate': 
0.0074956599352

95373, 
'optimizer': 

'adam', 'epochs': 
400, 'batch_size': 

112, 'n_layers': 1, 
'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00455759994126

212, 'optimizer': 
'adam', 'epochs': 

400, 'batch_size': 
112, 'n_layers': 1, 

'n_units_l0': 100, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.00526932902497

1373, 'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

  

Table S5: Input shape of different multi-station approaches  

Approach  Shape of input 
data for training  

(Standalone) 

 Wavelet 

NO  (39952, 48, 7) (39952, 48, 35) 

OHE (39952, 48, 83) (39952, 48, 111) 
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STAT (39952, 48, 24) (39952, 48, 52) 

STAT_OHE (39952, 48, 100) (39952, 48, 128) 

 

Table S6: Hyperparameters of Multi-station Standalone Models  

Approac
h  

GRU LSTM BiLSTM 

NO  {'learning_rate': 
0.001009132669840

099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.005269329024971

373, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0010091326698400

99, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

  

OHE {'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0052693290249713
73, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 
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STAT {'learning_rate': 
0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.003487742134799
628, 

'optimizer': 'adam', 

'epochs': 100, 

'batch_size': 96, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.0029166390295633
435, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 64, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

STAT_O

HE 

{'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.0010091326698400
99, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

 

Table S7: Hyperparameters of Multi-station Wavelet models 

Approac

h  

GRU LSTM BiLSTM 

NO  {'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

{'learning_rate': 

0.005269329024971
373, 

'optimizer': 'adam', 

{'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 
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'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

OHE {'learning_rate': 

0.001009132669840
099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.005269329024971
373, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.005269329024971
373, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

STAT {'learning_rate': 
0.001009132669840

099, 

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.005269329024971

373, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 
0.005269329024971

373, 

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

STAT_O
HE 

{'learning_rate': 
0.001009132669840
099, 

{'learning_rate': 
0.001009132669840
099, 

{'learning_rate': 
0.005269329024971
373, 
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'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

  

'optimizer': 'adam', 

'epochs': 300, 

'batch_size': 224, 

'n_layers': 1, 

'n_units_l0': 70, 

'dropout_l0': 0.2} 

  

'optimizer': 'adam', 

'epochs': 150, 

'batch_size': 240, 

'n_layers': 1, 

'n_units_l0': 80, 

'dropout_l0': 0.2} 

 

 

Table S8: Hyperparameters of cluster based multi-station standalone models  

Approach GWL 
Typ

e 

GRU LSTM BILSTM 

Cluster_NO ann
ual 

{'learning_rate': 
0.0052693290249

71373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

inert
ial 

{'learning_rate': 
0.0027940569610

945824, 
'optimizer': 
'adam', 'epochs': 

250, 'batch_size': 
192, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 
0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 
0.2} 
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mix

ed 
{'learning_rate': 

0.0052693290249
71373, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 
0.2} 

{'learning_rate': 

0.001009132669
840099, 

'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

Cluster_OHE ann

ual 
{'learning_rate': 

0.0052693290249
71373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

{'learning_rate': 

0.001009132669
840099, 

'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

{'learning_rate': 

0.001009132669
840099, 

'optimizer': 
'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

inert

ial 
{'learning_rate': 

0.0052693290249
71373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 

0.005269329024
971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

mix

ed 
{'learning_rate': 

0.0010091326698
40099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 1, 
'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.005269329024
971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 

0.001009132669
840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

Cluster_Stati
c 

ann
ual 

{'learning_rate': 
0.0052693290249

71373, 

{'learning_rate': 
0.001009132669

840099, 

{'learning_rate': 
0.001009132669

840099, 
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'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 0.2} 

'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

inert

ial 
{'learning_rate': 

0.0050280148578
66192, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

256, 'n_layers': 1, 
'n_units_l0': 90, 
'dropout_l0': 0.2} 

{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 

0.005269329024
971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

mix
ed 

{'learning_rate': 
0.0010091326698

40099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

Cluster_Stati
c_OHE 

ann
ual 

{'learning_rate': 
0.0052693290249

71373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

inert
ial 

{'learning_rate': 
0.0052693290249

71373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
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240, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 

0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 

0.2} 

mix
ed 

{'learning_rate': 
0.0010091326698

40099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 1, 

'n_units_l0': 70, 
'dropout_l0': 0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

 

Table S9: Hyperparameters of cluster based multi-station wavelet models 

Approach GWL 

Type 
GRU LSTM BILSTM 

Cluster_NO ann
ual 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 
0.2} 

{'learning_rate': 
0.004470922913

421275, 
'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
208, 'n_layers': 

1, 'n_units_l0': 
60, 'dropout_l0': 
0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 
0.2} 

inert
ial 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 
0.2} 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 
0.2} 

{'learning_rate': 
0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 
0.2} 
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mixe

d 
{'learning_rate': 

0.001009132669
840099, 

'optimizer': 
'adam', 'epochs': 

300, 'batch_size': 
224, 'n_layers': 
1, 'n_units_l0': 

70, 'dropout_l0': 
0.2} 

{'learning_rate': 

0.006821777398
460312, 

'optimizer': 
'adam', 'epochs': 

350, 'batch_size': 
144, 'n_layers': 
1, 'n_units_l0': 

50, 'dropout_l0': 
0.2} 

{'learning_rate': 

0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
240, 'n_layers': 
1, 'n_units_l0': 

80, 'dropout_l0': 
0.2} 

Cluster_OHE ann

ual 
{'learning_rate': 

0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 

80, 'dropout_l0': 
0.2} 

{'learning_rate': 

0.003151425264
040375, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 
0.2} 

{'learning_rate': 

0.005269329024
971373, 

'optimizer': 
'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 

80, 'dropout_l0': 
0.2} 

inert

ial 
{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

mixe

d 
{'learning_rate': 

0.005269329024
971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 

0.001009132669
840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 

224, 'n_layers': 
1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

{'learning_rate': 

0.005269329024
971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

Cluster_Stati
c 

ann
ual 

{'learning_rate': 
0.003151425264

040375, 

{'learning_rate': 
0.004470922913

421275, 

{'learning_rate': 
0.005269329024

971373, 
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'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 

'dropout_l0': 
0.2} 

'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 

208, 'n_layers': 
1, 'n_units_l0': 

60, 'dropout_l0': 
0.2} 

'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

240, 'n_layers': 
1, 'n_units_l0': 

80, 'dropout_l0': 
0.2} 

inert

ial 
{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

{'learning_rate': 

0.005028014857
866192, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

256, 'n_layers': 
1, 'n_units_l0': 
90, 'dropout_l0': 

0.2} 

{'learning_rate': 

0.003151425264
040375, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 

64, 'n_layers': 1, 
'n_units_l0': 80, 
'dropout_l0': 

0.2} 

mixe
d 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

Cluster_Stati
c_OHE 

ann
ual 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.004470922913

421275, 
'optimizer': 

'adam', 'epochs': 
350, 'batch_size': 
208, 'n_layers': 

1, 'n_units_l0': 
60, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

inert
ial 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 

{'learning_rate': 
0.003151425264

040375, 
'optimizer': 
'adam', 'epochs': 

150, 'batch_size': 
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240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 

0.2} 

64, 'n_layers': 1, 

'n_units_l0': 80, 
'dropout_l0': 

0.2} 

mixe
d 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.005269329024

971373, 
'optimizer': 

'adam', 'epochs': 
150, 'batch_size': 
240, 'n_layers': 

1, 'n_units_l0': 
80, 'dropout_l0': 

0.2} 

{'learning_rate': 
0.001009132669

840099, 
'optimizer': 

'adam', 'epochs': 
300, 'batch_size': 
224, 'n_layers': 

1, 'n_units_l0': 
70, 'dropout_l0': 

0.2} 

 

Table S10: Optimal parameters for standard and MODWT-assisted GRU Models for 
three types of GWLs (Mixed, inertial and annual) and two different input types 

(Effective precipitation (PE) or Precipitation and air temperature (PT)) 

GRU PT PTWT PE PEWT 

Mixed {'learning_rate'
: 

0.00686772761
630292, 

 'optimizer': 
'adam', 

 'epochs': 300, 

 'batch_size': 
64, 

 'n_layers': 2, 

 'n_units_l0': 

80, 

 'dropout_l0': 
0.2, 

{'learning_rate'
: 

0.00399060693
9187562, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 
144, 

 'n_layers': 6, 

 'n_units_l0': 

40, 

 'dropout_l0': 
0.2, 

{'learning_rate'
: 

0.00649562525
4590144, 

 'optimizer': 
'adam', 

 'epochs': 350, 

 'batch_size': 
192, 

 'n_layers': 2, 

 'n_units_l0': 

100, 

 'dropout_l0': 
0.2, 

{'learning_rate': 
0.001240110471

0986497, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 48, 

 'n_layers': 3, 

 'n_units_l0': 

100, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 

100, 
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 'n_units_l1': 

40, 

 'dropout_l1': 
0.2} 

 'n_units_l1': 

10, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 

40, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 

20, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 
90, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 
10, 

 'dropout_l5': 
0.2} 

 'n_units_l1': 

80, 

 'dropout_l1': 
0.2 

 'dropout_l1': 

0.2, 

 'n_units_l2': 50, 

 'dropout_l2': 
0.2} 

Inertial {'learning_rate'
: 

0.00215462711
26850858, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 
16, 

 'n_layers': 3, 

 'n_units_l0': 

40, 

{'learning_rate'
: 

0.00878375813
5456727, 

 'optimizer': 

'adam', 

 'epochs': 250, 

 'batch_size': 
32, 

 'n_layers': 3, 

 'n_units_l0': 

30, 

{'learning_rate'
: 

0.00110988495
92139203, 

 'optimizer': 

'adam', 

 'epochs': 350, 

 'batch_size': 
32, 

 'n_layers': 6, 

 'n_units_l0': 

60, 

{'learning_rate': 
0.003487742134

799628, 

 'optimizer': 
'adam', 

 'epochs': 100, 

 'batch_size': 96, 

 'n_layers': 5, 

 'n_units_l0': 50, 

 'dropout_l0': 

0.2, 
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 'dropout_l0': 

0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
40, 

 'dropout_l2': 

0.2} 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
100, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
10, 

 'dropout_l2': 

0.2} 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
90, 

 'dropout_l2': 

0.2, 

 'n_units_l3': 
70, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 
50, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 
100, 

 'dropout_l5': 
0.2} 

 'n_units_l1': 50, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 70, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 60, 

 'dropout_l3': 

0.2, 

 'n_units_l4': 70, 

 'dropout_l4': 
0.2} 

Annual {'learning_rate'

: 
0.00428161777

3380174, 

 'optimizer': 
'adam', 

 'epochs': 500, 

 'batch_size': 

80, 

 'n_layers': 5, 

{'learning_rate'

: 
0.00924087994

1149954, 

 'optimizer': 
'adam', 

 'epochs': 200, 

 'batch_size': 

32, 

 'n_layers': 5, 

{'learning_rate'

: 
0.00399060693

9187562, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 

144, 

 'n_layers': 6, 

{'learning_rate': 

0.003966724265
631709, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 80, 

 'n_layers': 3, 

 'n_units_l0': 70, 
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 'n_units_l0': 

40, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 

30, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 

50, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 
20, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 
80, 

 'dropout_l4': 
0.2} 

 'n_units_l0': 

60, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 

50, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 

10, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 
50, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 
80, 

 'dropout_l4': 
0.2} 

 'n_units_l0': 

40, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 

10, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 

40, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 
20, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 
90, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 
10, 

 'dropout_l5': 

0.2} 

 'dropout_l0': 

0.2, 

 'n_units_l1': 50, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 10, 

 'dropout_l2': 

0.2} 

 

Table S11: Optimal parameters for standard and MODWT-assisted LSTM Models 

for three types of GWLs (Mixed, inertial and annual) and two different input types 
(Effective precipitation (PE) or Precipitation and air temperature (PT)) 

LSTM PT PTWT PE PEWT 
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Mixed {'learning_rate'

: 
0.00399060693
9187562, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 
144, 

 'n_layers': 6, 

 'n_units_l0': 
40, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
10, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 
40, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 

20, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 

90, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 

10, 

{'learning_rate'

: 
0.00164260206
3722058, 

 'optimizer': 
'adam', 

 'epochs': 500, 

 'batch_size': 
16, 

 'n_layers': 3, 

 'n_units_l0': 
100, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
100, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 
30, 

 'dropout_l2': 
0.2} 

{'learning_rate'

: 
0.00172437908
93987354, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 
16, 

 'n_layers': 4, 

 'n_units_l0': 
30, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 
40, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 

10, 

 'dropout_l3': 
0.2} 

{'learning_rate': 

0.001128644869
2694375, 

 'optimizer': 

'adam', 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 30, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 

0.2} 
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 'dropout_l5': 

0.2} 

Inertial {'learning_rate'
: 
0.00192796810

79150224, 

 'optimizer': 
'adam', 

 'epochs': 250, 

 'batch_size': 

80, 

 'n_layers': 4, 

 'n_units_l0': 
70, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
80, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
40, 

 'dropout_l2': 

0.2, 

 'n_units_l3': 
10, 

 'dropout_l3': 

0.2} 

{'learning_rate'
: 
0.00367256227

77068682, 

 'optimizer': 
'adam', 

 'epochs': 500, 

 'batch_size': 

32, 

 'n_layers': 5, 

 'n_units_l0': 
60, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
10, 

 'dropout_l2': 

0.2, 

 'n_units_l3': 
60, 

 'dropout_l3': 

0.2, 

 'n_units_l4': 
10, 

 'dropout_l4': 

0.2} 

{'learning_rate'
: 
0.00625324623

607946, 

 'optimizer': 
'adam', 

 'epochs': 350, 

 'batch_size': 

80, 

 'n_layers': 3, 

 'n_units_l0': 
30, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
40, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
20, 

 'dropout_l2': 

0.2} 

{'learning_rate': 
0.003990606939
187562, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 
144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 

0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 

0.2} 
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Annual {'learning_rate'

: 
0.00973723666
6114474, 

 'optimizer': 
'adam', 

 'epochs': 500, 

 'batch_size': 
64, 

 'n_layers': 5, 

 'n_units_l0': 
40, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 
30, 

 'dropout_l2': 
0.2, 

 'n_units_l3': 

100, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 

100, 

 'dropout_l4': 
0.2} 

{'learning_rate'

: 
0.00649562525
4590144, 

 'optimizer': 
'adam', 

 'epochs': 350, 

 'batch_size': 
192, 

 'n_layers': 2, 

 'n_units_l0': 
100, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
80, 

 'dropout_l1': 
0.2} 

{'learning_rate'

: 
0.00431216771
92285894, 

 'optimizer': 
'adam', 

 'epochs': 400, 

 'batch_size': 
16, 

 'n_layers': 2, 

 'n_units_l0': 
50, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 
60, 

 'dropout_l1': 
0.2} 

{'learning_rate': 

0.001562653587
605288, 

 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 90, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 

100, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 50, 

 'dropout_l2': 

0.2} 
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Table S12: Optimal parameters for standard and MODWT-assisted BiLSTM Models 

for three types of GWLs (Mixed, inertial and annual) and two different input types 
(Effective precipitation (PE) or Precipitation and air temperature (PT)) 

BiLSTM PT PTWT PE PEWT 

Mixed {'learning_rate': 

0.00421277294
4331677, 

 'optimizer': 
'adam', 

 'epochs': 450, 

 'batch_size': 
80, 

 'n_layers': 3, 

 'n_units_l0': 70, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 80, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 

0.2} 

{'learning_rate': 

0.00343097669010
50947, 

 'optimizer': 'adam', 

 'epochs': 350, 

 'batch_size': 16, 

 'n_layers': 4, 

 'n_units_l0': 70, 

 'dropout_l0': 0.2, 

 'n_units_l1': 30, 

 'dropout_l1': 0.2, 

 'n_units_l2': 80, 

 'dropout_l2': 0.2, 

 'n_units_l3': 50, 

 'dropout_l3': 0.2} 

{'learning_rat

e': 
0.002966383
208485377, 

 'optimizer': 

'adam', 

 'epochs': 
200, 

 'batch_size': 

16, 

 'n_layers': 3, 

 'n_units_l0': 
80, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
90, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
70, 

 'dropout_l2': 

0.2} 

{'learning_rate': 

0.0021817210181128
8, 

 'optimizer': 'adam', 

 'epochs': 450, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 100, 

 'dropout_l1': 0.2} 

Inertial {'learning_rate': 
0.00399060693
9187562, 

{'learning_rate': 
0.00131494455612
9716, 

 'optimizer': 'adam', 

{'learning_rat
e': 
0.002141506

081144842, 

{'learning_rate': 
0.0039906069391875
62, 

 'optimizer': 'adam', 
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 'optimizer': 

'adam', 

 'epochs': 450, 

 'batch_size': 
144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 
0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 

0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 
0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 
0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 

0.2} 

 'epochs': 500, 

 'batch_size': 16, 

 'n_layers': 6, 

 'n_units_l0': 60, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 20, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 30, 

 'dropout_l4': 0.2, 

 'n_units_l5': 30, 

 'dropout_l5': 0.2} 

 'optimizer': 

'adam', 

 'epochs': 
400, 

 'batch_size': 

16, 

 'n_layers': 3, 

 'n_units_l0': 
40, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
70, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
40, 

 'dropout_l2': 

0.2} 

 'epochs': 450, 

 'batch_size': 144, 

 'n_layers': 6, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 10, 

 'dropout_l1': 0.2, 

 'n_units_l2': 40, 

 'dropout_l2': 0.2, 

 'n_units_l3': 20, 

 'dropout_l3': 0.2, 

 'n_units_l4': 90, 

 'dropout_l4': 0.2, 

 'n_units_l5': 10, 

 'dropout_l5': 0.2} 

Annual {'learning_rate': 

0.00440998056
7805262, 

 'optimizer': 

'adam', 

{'learning_rate': 

0.00851591319485
923, 

 'optimizer': 'adam', 

{'learning_rat

e': 
0.004849787

847878661, 

{'learning_rate': 

0.0020512170635433
725, 

 'optimizer': 'adam', 
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 'epochs': 250, 

 'batch_size': 

208, 

 'n_layers': 2, 

 'n_units_l0': 80, 

 'dropout_l0': 
0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 

0.2} 

 'epochs': 200, 

 'batch_size': 16, 

 'n_layers': 2, 

 'n_units_l0': 100, 

 'dropout_l0': 0.2, 

 'n_units_l1': 40, 

 'dropout_l1': 0.2} 

 'optimizer': 

'adam', 

 'epochs': 
350, 

 'batch_size': 

48, 

 'n_layers': 3, 

 'n_units_l0': 
10, 

 'dropout_l0': 

0.2, 

 'n_units_l1': 
60, 

 'dropout_l1': 

0.2, 

 'n_units_l2': 
60, 

 'dropout_l2': 

0.2} 

 'epochs': 400, 

 'batch_size': 16, 

 'n_layers': 3, 

 'n_units_l0': 40, 

 'dropout_l0': 0.2, 

 'n_units_l1': 70, 

 'dropout_l1': 0.2, 

 'n_units_l2': 20, 

 'dropout_l2': 0.2} 

 

 

 

 

 

 

 

 

 

 



 

 

254 

 

Deep learning fοr the simulatiοn, recοnstructiοn & prοjectiοn οf grοundwater level 

variatiοns 

Keywords: MODWT, Groundwater, LSTM, GRU, BiLSTM 

Résumé 

Des simulations précises du niveau des eaux souterraines (GWL) sont indispensables pour générer les 
reconstructions et les projections servant à analyser les tendances et la variabilité historiques et futures des eaux 
souterraines à long terme. Dans cette thèse, nous étudions l'utilisation d'approches d'apprentissage profond (DL) 
pour les simulations, reconstructions et projections du niveau des eaux souterraines, en mettant l'accent sur les 
questions liées à la représentation de la variabilité à basse fréquence interannuelle à décennale, et en utilisant 
divers produits de réanalyses climatiques et sorties de GCM. Une approche de pré-traitement par ondelettes 
assistant les modèles DL a été développée, en particulier à partir de transformée en ondelettes discrète à 
chevauchement maximal (MODWT) en une étape de décomposition les signaux d'entrée. Les modèles récurrents 
à mémoire long- et court- terme (LSTM) et leurs développements plus récents (unité récurrente à porte GRU et 
LSTM bidirectionnels BiLSTM) ont été plus spécifiquement utilisés et évalués, pour développer des approches 
d’apprentissage à station unique et à stations multiples. Les résultats de l'approche à station unique ont indiqué 
que les modèles GRU assistés par MODWT permettaient d'extraire des informations à basse fréquence et 
surpassaient considérablement les modèles « simples » (i.e. sans pré-traitement) dans la simulation des GWL, 
en particulier pour les GWL de type inertiel. La méthode SHAP a été utilisée pour appréhender l’interprétabilité 
des résultats des modèles et le fonctionnement des modèles eux-mêmes, mettant ainsi notamment en évidence 
les caractéristiques d'entrée les plus importantes. Pour les reconstructions GWL à long terme, les modèles DL ont 
été construits en utilisant les ensembles de données de réanalyse climatique ERA5 et ERA20C du centre européen 
de prévisions météorologiques à moyen terme (ECMWF), permettant des reconstructions jusqu'en 1940 et 1900, 
respectivement. Ces modèles basés ont pu capturer avec succès la variabilité multidécennale dans tous les 
niveaux de nappe reconstruits, un enjeu important en contexte de changement climatique dans la mesure où la 
variabilité multidécennale peut fortement interférer avec les effets du changement climatique. Plusieurs 
approches d’apprentissage multi-stations et de clustering ont été utilisées pour les simulations GWL à grande 
échelle, intégrant des variables climatiques dynamiques et des caractéristiques statiques des aquifères. Les 
modèles spécifiquement entraînés sur différents types de GWL, regroupés sur la base de leurs propriétés 
spectrales, ont obtenu des résultats significativement meilleurs que ceux entraînés sur l'ensemble des données. 
Enfin, un modèle GRU multi-stations entraîné pour chaque type de GWL avec un prétraitement MODWT avec 
correction des effets de bord (BC-MODWT) a été utilisé pour générer des projections jusqu'en 2100. Les 
changements futurs indiquent des tendances à la baisse des niveaux et de la variabilité des eaux souterraines, 
s'intensifiant de SSP2-4.5 à SSP5-8.5, malgré des niveaux des eaux souterraines projetés plus élevés en moyenne 
par rapport à la période historique dans tous les scénarios. Nous expliquons ce résultat apparemment contre-
intuitif par le fait que les niveaux projetés sont systématiquement bien plus élevés en début de période future 
(jusqu’à ~2050) par rapport à la période historique. Nos résultats indiquent enfin que la variabilité des aquifères 
de type annuel a augmenté pour tous les scénarios d’émission. 
 

Abstract 
 
Accurate groundwater level (GWL) simulations facilitate reconstructions and projections for analysing historical 
and future groundwater trends and variability at the decadal scale. In this thesis, we investigate the use of deep 
learning (DL) approaches for GWL simulations, reconstructions, and projections, with a focus on capturing low-
frequency variability and leveraging climate reanalysis and GCM model outputs. A wavelet-assisted DL framework 
was developed, using the Maximal Overlap Discrete Wavelet Transform (MODWT) as a pre-processing step to 
decompose input signals. We specifically evaluated advanced DL models, including Long Short-Term Memory 
(LSTM), Gated Recurrent Unit (GRU), and Bidirectional LSTM (BiLSTM), for single-station and multi-station 
approaches. The single station approach results indicated that MODWT-assisted GRU models allowed for 
extracting low-frequency information and significantly outperformed standalone models in simulating GWLs, 
particularly for inertial-type GWL. The Shapley Additive Explanations (SHAP) technique was used to interpret 
model outputs and highlight important input features. For long-term GWL reconstructions, DL models were trained 
on ERA5 and ERA20C climate reanalysis datasets, enabling reconstructions up to 1900 and 1940, respectively. 
These DL-based models were able to capture multi-decadal variability in all reconstructed GWLs. Several multi-
station training approaches and clustering were used for large-scale GWL simulations, incorporating dynamic 
climatic variables and static aquifer characteristics. Models specifically trained on different GWL types, clustered 
by spectral properties, performed significantly better than those trained on the whole dataset. Finally, A multi-
station GRU model trained for each GWL type with boundary-corrected MODWT (BC-MODWT) pre-processing was 
used to generate projections until 2100. Future changes show decreasing trends in groundwater levels and 
variability, intensifying from SSP2-4.5 to SSP5-8.5, despite projected groundwater levels being higher on average 
compared to the historical period in all scenarios. We explain this seemingly counter-intuitive result by the fact 
that projected levels are systematically much higher at the beginning of the future period (up to ~2050) compared 
to the historical period. Finally, our results indicate that the variability of annual-type aquifers has increased for 
all emission scenarios. 


