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Résumé

Le domaine de l’observation de la Terre regroupe différents types d’appareils pour la prise
de vue ou acquisition d’images terrestres. Les satellites d’observation en orbite basse sont
conçus pour prendre des photographies haute résolution depuis l’espace. Ils sont utilisés
pour des missions d’observation urgentes mais aussi pour des missions long terme dites
grandes couvertures. Dans ce cadre une grande zone est photographiée progressivement à
chaque passage de satellites qui acquièrent des zones au sol dites mailles. Au terme de la
mission les images résultant des mailles sont regroupées pour former la grande couverture.

En raison de la taille de la zone à acquérir les missions de grandes couvertures font appel
à plusieurs satellites. La zone doit être acquise par ces satellites de façon à minimiser le
temps de complétion de la mission et à maîtriser l’utilisation des ressources satellitaires. Le
problème d’optimisation défini est complexe. De nombreux facteurs rendent la résolution
en temps raisonnable difficile, comme la taille de la zone, l’hétérogénéité des caractéristiques
des satellites et les prévisions météorologique. L’utilisation d’un algorithme d’optimisation
en méthode approchée est ainsi nécessaire.

Le grand nombre d’entités du problème et le besoin d’adaptabilité justifient l’utilisation
d’un algorithme par raisonnement décentralisé. Dans cette thèse nous adressons la résolu-
tion du problème des grandes couvertures par systèmes multi-agents adaptatifs (AMAS).
Nous proposons d’abord une nouvelle méthode de maillage, le maillage dynamique, qui
permet un positionnement précis des mailles sur la zone entraînant ainsi une nouvelle for-
malisation du problème des grandes couvertures. Pour résoudre ce problème nous présen-
tons le système AMAS Glimpse basé sur le modèle agent AMAS4Opt. Glimpse est ensuite
validé sur divers scénarios simulés.

Une comparaison avec un algorithme glouton illustre les apports de notre méthode pour
l’optimisation des métriques du problème. Glimpse réduit l’utilisation de ressources satel-
litaires en évitant les acquisitions superflues tout en minimisant le temps de complétion
requis pour traiter de très grandes couvertures. Les résultats obtenus ouvrent de nouvelles
directions de recherche dans les domaines des AMAS et des grandes couvertures.
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Abstract

In the Earth observation field a variety of devices are used to take pictures or acquire
ground images. Low Earth orbit satellites are designed to acquire high resolution images
from space. They are used for urgent missions but also long term ones called Large Area
Coverage. In this context a large area is acquired gradually for each pass of satellites that
acquire small surface areas called meshes. At the end of the mission the images acquired
from the meshes are regrouped to form the large coverage.

Due to the size of the area to acquire large area coverage missions require the use of sev-
eral satellites. The area needs to be acquired by these satellites so as to minimize the time
to mission completion and optimize the use of satellite resources. The resulting optimiza-
tion problem is complex. Many parameters render the solve in reasonable time difficult,
such as the size of the area, the heterogeneity of the satellite characteristics and the weather
forecasts. The use of an approximate optimization method is necessary.

The high number of problem entities and the need for adaptability justify the use of a
decentralized reasoning algorithm. In this thesis we address the solve of the large area cov-
erage problem by adaptive multi-agent systems (AMAS). We first propose a new meshing
technique, dynamic meshing, that allows for a precise positioning of meshes on the area
and thus introduces a new formalization of the Large Area Coverage problem. To solve this
problem we present the Glimpse AMAS based on the AMAS4Opt agent model. Glimpse is
then validated on different simulated scenarios.

A comparison with a greedy algorithm illustrates the contributions of our method for
optimizing the problem metrics. Glimpse reduces the use of satellite resources by avoiding
superfluous acquisitions while minimizing the time required to acquire very large areas.
The results open new research directions in the AMAS and large area coverage fields.
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Introduction

As part of Earth observation missions, satellites are used to acquire areas on the Earth’s
surface. Large area coverage missions for example are large-scale acquisition projects. They
require the use of a set of satellites that make several passes over a long acquisition period.
Splitting an area of interest into sub-areas called meshes that can be acquired by satellites
during their passes is a difficult optimization problem.

In this thesis, we present the Glimpse system (self-adaptive and learninG muLtI-agent
model for Meshing and Planning Systems in dynamic Environments) based on adaptive
multi-agent systems for the dynamic splitting and positioning of meshes on a grid of ele-
mentary sub-areas. The experiments carried out and the comparison with an approach that
is part of the operational state of the art show that a decentralised and dynamic approach to
solve this problem is adequate.

Context and Motivation

Earth observation from space is a relatively recent topic with varied applications including
topography, oceanography, mapping. Short term and small scale events such as disaster
control need to be visualized as soon as possible while other long term missions may be
completed after weeks or months of sequential acquisitions. Planning the acquisitions of
observation satellites is a field that has seen increasing complexity in recent years in correla-
tion with satellite availability and on-board technology. The need for higher resolution and
faster imaging lead to the development of agile satellites and constellations able to acquire
any zone on the surface of the Earth within hours. Building and launching these satellites
is costly and each acquisition performed needs optimized methods to obtain clear images
as early as possible.

Optimization of small scale imaging missions for a single or a few satellites is a topic
that has seen interest in the literature. Meanwhile, the optimization of Large Area Coverage
missions covering large surfaces, spanning over months and using satellites with differing
characteristics is a less known and researched problem. The complexity of the problem
increases with the number of acquisitions required to complete the missions and the number
of satellites available to perform them. Satellites coordination is necessary to minimize the
number of redundant tasks being performed by each satellite. Issues common to short
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term acquisitions remain, including the importance of weather forecast with over half of
performed acquisitions leading to blurred images due to partial cloud coverage.

The increased complexity of the Large Area Coverage problem led us to consider resolu-
tion algorithms able to navigate a large research space with additional information during
the resolution. In this thesis we focus on solving the problem with an Adaptive Multi-Agent
System. This type of algorithm uses elementary code components called agents to cooper-
atively solve the problem. Each agent tries to satisfy simple goals by communicating with
a local neighborhood of agents. The emerging behaviour of the algorithm leads to the co-
operation between satellites to acquire different surfaces with high probability of successful
acquisition leading to clear images.

Manuscript organisation

3 The first chapter proposes a summary of the work presented in this thesis in french.
We briefly present the Large Area Coverage problem, our contributions, and the main
results obtained. A short conclusion then proposes an overview of our approach and
the potential research continuations to this work.

3 The second chapter describes the components of Earth observation missions and in-
troduce the process of acquisition from client requests to reception of clear images of
requested areas. We also present the Large Area Coverage optimization problem and
estimate resolution complexity.

3 The third chapter gives metrics to evaluate the quality of obtained solutions to the Large
Area Coverage problem and describes the operational methods to address the problem
in the industry. We introduce our theoretical contribution with a state of the art to
discuss the operational methods used and possible resolution algorithms with their
application to similar problems in the literature.

3 The fourth chapter presents the theory behind Adaptive Multi-Agent Systems and
agent cooperation. We then describe the tools used during the thesis to help with the
conception and development of a multi-agent system.

3 The fifth chapter introduces our practical contribution with the multi-agent system
Glimpse. We first describe its agents with their available actions and goals, and then
the cooperative behaviors between agents and their motivations.

3 The sixth chapter presents the structures of the scenarios built to evaluate the quality
of solutions found using Glimpse. We build a list of scenarios designed to test differ-
ent criteria including the scalability and robustness of resolution algorithms. We then
discuss obtained results relative to the goal of each experiment.

3 The conclusion presents the main results about the approach including dynamic mesh-
ing and using an Adaptive Multi-Agent System and describes the improvements avail-
able to Glimpse for the optimization of the Large Area Coverage problem or similar
problems.
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3 The annex proposes the improved version of the greedy algorithm for the solving of the
Large Area Coverage problem used to benchmark the results of Glimpse. This hybrid
greedy and Simulated Annealing algorithm provides a better comparison for future
performance benchmarks of Glimpse.
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1 Glimpse : maillage de grandes
couvertures par systèmes
multi-agents

Les satellites d’observation en orbite basse ont pour objectif de prendre des photos de zones
d’intérêt à la surface de la Terre. Les missions de grandes couvertures ou Large Area Cov-
erage (LAC) concernent des demandes d’acquisition de grandes zones, à l’échelle d’un
pays ou d’un continent. Les missions LAC fournissent des images utilisées dans des do-
maines tels que la cartographie et la surveillance. Ces missions sont coûteuses en termes de
ressources satellitaires et de temps. L’utilisation d’un seul satellite pour effectuer les mis-
sions LAC est inefficace et peut entraîner des décalages temporels entre les images. C’est
pourquoi un ensemble de satellites est utilisé pendant une longue période pour assurer la
couverture.

Ces satellites peuvent être hétérogènes, avec des caractéristiques et des instruments
d’acquisition différents, et exploités par des centres de planification indépendants et non
communicants. L’un des défis des missions actuelles d’observation par satellite est la co-
ordination des centres de planification pour une résolution réussie des missions LAC par
un ensemble de satellites hétérogènes. Une meilleure coordination permettra une meilleure
utilisation des satellites pendant leur durée de vie limitée et des images de couverture plus
facilement accessibles.

Cette thèse (rédigée en anglais à partir du chapitre 2) a pour objectif de proposer une ap-
proche novatrice à la résolution du problème d’observation satellitaire des grandes couver-
tures. Ce chapitre (rédigé en français) présente un résumé général du travail de recherche
effectué. Il s’organise comme suit. La section 1.1 décrit le problème des grandes couver-
tures. La section 1.2 propose un état de l’art des algorithmes de résolution et techniques de
maillage appliqués à ce problème. La section 1.3 présente nos contributions avec le maillage
dynamique, une technique de maillage innovante, et Glimpse, un algorithme de résolution
du problème des grandes couvertures par systèmes multi-agents adaptatifs. La section 1.4
décrit les résultats d’expérience obtenus pour l’évaluation des performances et de la ro-
bustesse de Glimpse. Finalement la section 1.5 conclut et présente diverses suites possibles
à cette étude.
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1.1 Le problème des grandes couvertures

Le problème LAC est l’optimisation de l’acquisition d’une zone d’intérêt définie par la de-
mande d’un client à l’aide d’un ensemble de satellites exploités par le centre de planification
ou Mission Planning Facility (MPF) qui reçoit la demande du client.

1.1.1 Traitement d’une requête d’acquisition

Un satellite est un outil d’acquisition suivant une orbite polaire et exploité par un MPF.
En fonction de son orbite et de la rotation de la terre, le satellite survole des zones ter-
restres à des intervalles de temps appelés passages. Lors d’un passage donné, une zone
géographique appelée corridor est accessible par le satellite. La largeur d’un couloir
dépend de l’agilité des satellites, c’est-à-dire de leurs capacités d’orientation, et de la réso-
lution minimale des images obtenues par acquisition. Cette terminologie liée aux satellites
d’observation est présentée en figure 1.1.

Figure 1.1: Terminologie des satellites d’observation de la Terre

Une première phase en amont du problème LAC consiste à établir l’ensemble des satel-
lites et leurs passages qui peuvent être utilisés pour acquérir la zone d’intérêt. Ensuite, pour
chaque passage d’un satellite au-dessus de la zone d’intérêt, le MPF en charge de la de-
mande du client suit un processus d’acquisition divisé en 5 phases présentées dans la figure
1.2 :

1. Requête d’acquisition. Réception de la requête d’acquisition client par le MPF. Les
paramètres de la requête comprennent la zone à acquérir, l’urgence d’acquisition et le
délai maximum avant péremption de la requête.

2. Maillage et planification. Placement d’une ou plusieurs mailles qui couvrent la zone
d’intérêt. Ces mailles font l’objet d’acquisitions dans un plan d’acquisition transmis au
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satellite.

3. Acquisition. Réalisation des acquisitions par le satellite lors de l’exécution de son plan
d’acquisition. Cette exécution peut être espacée de la réception du plan de plusieurs
heures. La météo prévue peut donc être différente de celle observée lors de la réalisation
des acquisitions.

4. Validation ou rejet. Réception des images acquises par le MPF. Les images sont ensuites
jugées utilisables ou non suivant la nébulosité constatée. Les images utilisables sont
conservées tandis que les zones nuageuses doivent être réintégrées dans le processus
d’acquisition depuis l’étape de maillage et planification.

5. Images validées. Les images validées forment un ensemble qui couvrent totalement la
zone d’intérêt donnée dans la requête d’acquisition client. Ces images sont renvoyées
vers le client pour terminer le processus d’acquisition.

Figure 1.2: Processus de traitement d’une requête d’acquisition par un MPF

1.1.2 Maillage de grandes couvertures

La résolution d’une mission LAC implique le maillage et la transmission des demandes
d’acquisition aux MPF qui exploitent le satellite. Les MPF ont chacun son processus de
planification qui est considéré comme une boîte noire pendant la résolution. Les demandes
d’acquisition plus urgentes que celles émises par la mission LAC peuvent être traitées en
priorité par les MPF. Les demandes d’acquisition de mailles envoyées aux MPF ne sont
donc pas garanties d’aboutir à l’acquisition de toutes ces mailles.

En outre, la réussite de l’acquisition d’une maille par un satellite dépend des conditions
météorologiques au moment de l’acquisition. L’image obtenue par une acquisition sera con-
sidérée comme claire ou floue en fonction du taux de nébulosité observé. L’acquisition
d’une maille par un MPF peut donc échouer en raison de différences entre les prévisions
météorologiques faites lors de l’envoi du plan d’acquisition au satellite et les conditions
réelles au moment du passage. Pour chaque maille, trois états sont à distinguer :

1. Active Maille en attente de la planification du passage sur lequel elle est positionée.

2. Acquise. Maille incluse dans un plan d’acquisition du satellite et qui sera acquise.

Glimpse: an AMAS for the LAC problem 9
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3. Validée. Maillage dont l’acquisition est réussie et pour laquelle une image sans nuage
est disponible.

Le problème LAC consiste à trouver un ensemble de mailles à acquérir pour chaque pas-
sage de satellite qui minimise à la fois le temps de complétion et les ressources satellitaires
nécessaires à l’obtention d’images sans nuage de l’ensemble de la zone d’intérêt. Le temps
est mesuré par le nombre de passages des satellites depuis le début de la mission LAC ou
l’équivalent en nombre de jours. Les ressources satellitaires utilisées jusqu’à la fin de la
mission LAC sont mesurées par une métrique appelée gâchis, définie comme l’acquisition
excédentaire de zones au cours de la mission. Par exemple, le gâchis d’acquisition minimal
de 0% est atteint si toutes les acquisitions validées de la grande couverture concernent des
zones qui n’ont été acquises qu’une seule fois.

L’entité chargée d’assurer la coordination des MPFs pour couvrir une grande couverture
est nommée Large Area Request Manager (LARM). Un LARM dispose des informations
relatives aux MPFs, aux caractéristiques de leurs satellites respectifs et de leurs passage
sur la zone d’intérêt de la grande couverture. Un LARM suit un processus d’acquisition
parallèle à celui des MPFs qui permet d’acquérir et de valider la totalité des images relatives
à la zone d’intérêt. Ce processus est constitué des étapes suivantes aussi présentées en figure
1.3 :

1. Maillage. Découpage du couloir de passage en mailles.

2. Requêtes d’acquisition. Envoi au MPF responsable de la planification du satellite
d’une ensemble de requêtes d’acquisition concernant les mailles sélectionnées.

3. Réception d’images. Collecte des retours du MPF et enregistrement des images ayant
pu être acquise dans la grande couverture.

Figure 1.3: Processus entre LARM et MPFs pour l’acquisition de mailles sur le passage d’un satellite

1.2 Techniques de maillage

Le problème LAC tel qu’il est présenté dans la section précédente n’est pas traité dans
son ensemble dans l’industrie. Une première approche, couramment rencontrée dans
l’industrie, consiste à appliquer le prétraitement suivant :
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1. Division de la zone d’intérêt en plusieurs sous-zones,

2. Répartition exclusive des sous-zones entre les MPF,

3. Acquisition par les MPF de leurs sous-zones respectives.

Ce prétraitement permet d’éviter de submerger les MPF de demandes d’acquisition sur
l’ensemble de la zone d’intérêt. La coordination entre les MPF n’est pas nécessaire car
chaque sous-zone est traitée séparément. La répartition entre les MPF permet ainsi d’éviter
la complexité du problème LAC sur l’ensemble de la zone d’intérêt. Cependant, cette ap-
proche implique que certains passages de satellites seront ignorés pour les sous-zones car
une autre sous-zone leur a été attribuée. De nombreuses opportunités d’acquisition sont
ignorées pour simplifier le problème et le temps d’achèvement de la mission augmente de
manière significative. Le problème LAC, considéré dans sa globalité, présente une complex-
ité accrue mais permet la coordination des MPF pour des missions à la fois plus rapides et
moins coûteuses en termes de ressources satellitaires.

Une autre technique que nous pouvons souligner dans le contexte opérationnel est le
maillage statique, soit l’utilisation d’une grille de maillage. Dans ce cas une grille de
maillage est établie par le MPF une fois qu’une sous-zone de la zone d’intérêt lui a été at-
tribuée. Cette technique consiste à construire pour chaque passage du satellite un ensemble
d’emplacements de mailles qui peuvent être acquis. Une grille de mailles jointives formant
un pavage régulier sur le couloir du passage est calculée à la réception de la demande du
client. Les mailles obtenues par maillage statique sont fixes et de taille constante dans le
même passage. Cette taille est définie en fonction du maximum des capacités d’acquisition
du satellite pour une seule maille. Le positionnement et les dimensions fixes des mailles
ne permettent pas de les adapter aux besoins d’acquisition géographique au cours de la
mission. Ces contraintes peuvent entraîner des acquisitions supplémentaires de sous-zones
validées.

Pour surmonter cette limite, nous introduisons une nouvelle technique de maillage ap-
pelée maillage dynamique. Une grille de sous-zones élémentaires appelées cellules est
construite sur la zone d’intérêt. Cette discrétisation permet un positionnement plus précis
des mailles dans les couloirs des passages, et en particulier sur leurs bords. La position des
mailles et leurs dimensions peuvent également être adaptées sur la grille de cellules pour
une meilleure utilisation des ressources satellitaires. Les sous-parties de couloirs validées
ou nuageuses peuvent être ignorées au profit de sous-parties non validées et dont la prob-
abilité de validation est plus élevée. L’exemple de la figure 1.4 illustre le placement d’un
ensemble de mailles sur des emplacements de mailles, dans le cas du maillage statique, et
sur une grille de cellule, dans le cas du maillage dynamique.

La distribution de mailles de tailles variées sur une grille de cellules pour chaque pas-
sage de satellite est une tâche complexe. Le problème LAC est un problème d’optimisation
combinatoire NP-Hard comme un sous-cas des problèmes de planification de couverture
[Lemaître et al., 2000]. Nous avons choisi d’implémenter un système multi-agent pour op-
timiser le problème LAC par maillage dynamique. Le système présenté dans cet article est
basé sur la théorie AMAS [Gleizes et al., 2008; Georgé et al., 2003; Glize, 2001; Gleizes et al.,
1999]. Les systèmes multi-agents adaptatifs ont prouvé leur efficacité dans la résolution de
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Figure 1.4: Illustration du placement de mailles suivant la technique de maillage, statique ou dynamique

problèmes d’optimisation hautement combinatoires comprenant un grand nombre d’entités
par l’émergence de fonctions globales de bonne qualité grâce à la coopération d’agents dis-
tribués ayant des comportements locaux simples [Perles, 2017; Brax, 2013; Bourjot et al., 2003;
Verstaevel et al., 2016; Guastella, 2020].

1.3 Le système Glimpse

Glimpse compte trois types d’agents : les agents Cellule, Maille et Passage. Ces agents
suivent un cycle de vie constitué de phases séquentielles :

1. Perception, réception des messages et mise à jour des données internes,

2. Décision, traitement des données et choix d’actions à effectuer,

3. Action, envoi de messages et modification de l’environnement de l’agent.

Dans cette section, nous décrivons les agents du système par leurs objectifs, leurs inter-
actions et leurs comportements représentés par des algorithmes de décision.

Le maillage statique couramment utilisé est une heuristique de placement des mailles
au sein des passages qui présente l’avantage de ne pas autoriser de chevauchements en-
tre mailles. Le maillage dynamique proposé dans cette étude apporte à Glimpse un degré
de liberté supplémentaire dans le maillage. Les mailles peuvent être placées sur n’importe
quelle coordonnée (i, j) appartenant au corridor de leur passage. Le premier objectif des
comportements des agents dans Glimpse est de trouver pour chaque agent Maille un place-
ment coopératif prenant en compte la criticité des agents Cellule qui seront acquis avec
l’agent Maille.

1.3.1 L’agent Cellule

Dans Glimpse, la criticité des agents Cellule représente l’importance d’acquisition de la
zone couverte par la cellule pour un passage donné. Les criticités de plusieurs cellules peu-
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vent être comparées pour déterminer leur ordre d’importance d’acquisition sur un passage.
La comparaison suit un ordre lexicographique : les critères sont normalisés entre eux et
comparés dans un ordre fixe jusqu’à trouver un critère différenciateur qui indique l’agent
Cellule le plus critique. La comparaison de critères issus des données du problème implique
la définition d’une importance relative de ces données.

Dans le cadre de ce travail, l’importance des critères est issue d’analyses d’experts du
domaine. La criticité des agents Cellule dans un passage donné est basée sur les critères
suivants, dans leur ordre lexicographique :

1. Reste à acquérir. La criticité d’une cellule déjà validée est nulle.

2. Probabilité de validation. Probabilité de validation de la cellule si acquise dans ce
passage. Pour une cellule acquise dans des passages antérieurs, elle est pondérée par
les probabilités de validation dans ces passages.

3. Probabilité de validation future. Probabilité de validation de la cellule dans les pas-
sages restants sur l’horizon de planification pour lesquels le corridor couvre cette cel-
lule.

4. Proximité de cellules validées. Ratio de cellules voisines déjà validées sur des passages
antérieurs.

5. Opportunités d’acquisition. Ratio de passages restants sur l’horizon de planification
pour lesquels le corridor couvre cette cellule.

Les agents Cellule ont pour objectif d’être acquis puis validés sur n’importe quel passage
sur l’horizon de planification qui contient la cellule dans son corridor. Le comportement
d’un agent Cellule se base sur ses connaissances locales, notamment les agents Maille visi-
bles par l’agent Cellule dans chaque passage pour maximiser la probabilité d’acquisition de
la cellule. La visibilité des agents Cellule est limitée aux mailles qui les recouvrent ou sont
directement adjacentes sur la grille de cellules.

La résolution de l’insatisfaction des agents Cellule se traduit par une notion d’adhésion
à des mailles sur les passages connus. L’adhésion d’une cellule à une maille décrit la volonté
de faire partie des cellules couvertes par cette maille dans le passage correspondant. Une
cellule ne peut adhérer qu’à une seule maille par passage, soit la maille qu’elle préfère et qui
a accepté sa requête d’adhésion parmi les mailles qu’elle connaît dans ce passage.

L’objectif de l’adhésion est de promouvoir la répartition géographique des mailles dans
le corridor des passages. Cette répartition est nécessaire en maillage dynamique pour éviter
le regroupement et chevauchement des mailles d’un même passage sur les cellules les plus
critiques dans ce passage. Les agents Cellule choisissent la maille à laquelle ils préfèrent
adhérer suivant un tri par criticité des agents Maille visibles dans leur voisinage.

1.3.2 L’agent Maille

Les agents Maille ont pour objectif d’être acquis puis validés dans leur passage. Pour ce
faire, ils utilisent les requêtes d’adhésion des agents Cellule dans leur voisinage pour altérer
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leur géométrie et leur placement dans le corridor de façon à maximiser leur probabilité
d’acquisition et de validation. Une requête d’adhésion traitée par un agent Maille peut faire
l’objet de trois types d’altération de sa géométrie sur la grille de cellules :

3 Déplacement. Les coordonnées d’origine (i0, j0) de la maille sont modifiées.

3 Extension. Le facteur f de largeur ou le facteur g de longueur de la maille est étendu
dans un sens donné.

3 Réduction. Le facteur f de largeur ou le facteur g de longueur de la maille est réduit
dans un sens donné.

L’inclusion d’une cellule fait l’objet d’une extension de la maille tant qu’elle n’a pas en-
core atteint sa largeur maximale f max

k ou longueur maximale gmax
k en nombre de cellules,

suivant la direction relative de la cellule qui émet une requête d’adhésion. Lorsque la
largeur ou longueur maximale est atteinte un déplacement peut être effectué. Ce déplace-
ment causerait l’inclusion à la maille d’un ensemble de cellules et l’exclusion de cellules sur
le bord opposé au sens du déplacement.

Dans ce cas une comparaison entre les criticités des cellules à inclure suite au déplace-
ment potentiel et les criticités des cellules à exclure est simulée au sein de l’agent Maille.
Le déplacement est effectué si la criticité des cellules qui adhéreront à la maille suite au dé-
placement est supérieure car cette altération augmente la criticité de la maille elle-même. La
criticité des agents Maille dépend des criticités des agents Cellule qui adhèrent à elle, triées
par ordre décroissant.

La géométrie libre des mailles permet aussi la réduction des bords de la maille qui ne
comprennent pas de cellules en adhésion. Ces réductions et l’adhésion des cellules aux
mailles les plus critiques dans leur voisinage favorisent la formation de mailles juxtaposées.
Ces juxtapositions diminuent le gâchis dû aux chevauchements de mailles et aux acquisi-
tions surnuméraires de mêmes cellules au sein d’un passage.

1.3.3 L’agent Passage

Les comportements des agents Cellule et Maille ont pour objectif de placer les mailles dans
leur environnement local pour maximiser leur probabilité d’être acquises et validées. Les
altérations et déplacements des mailles sont basés sur leur voisinage de cellules qui émettent
des requêtes d’adhésion. Ces comportements ne suffisent pas pour garantir la couverture
des cellules les plus critiques à l’échelle du corridor d’un passage. Des sous-parties du
corridor peuvent ainsi piéger les mailles dans un optimum de criticité local. La création
de mailles par les agents Passage dans leur corridor correspond à un saut dans l’espace de
recherche similaire à une augmentation de température d’une optimisation par recuit simulé
[Kirkpatrick et al., 1983], ou une mutation d’un algorithme génétique [McCall, 2005].

Les agents Passage ont pour objectif de maximiser la couverture des cellules les plus cri-
tiques au sein du corridor d’un passage. Leur comportement est lié au placement des mailles
placées sur le corridor et doit permettre aux cellules les plus critiques d’être couvertes de
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façon dynamique, par exemple suite à une mise à jour des données météorologiques qui
vient modifier la criticité des cellules.

Afin de laisser le placement local des mailles s’effectuer par les interactions entre agents
Cellule et Maille, le comportement des agents Passage n’est effectué qu’après la stabilisation
des mailles du passage. Les mailles d’un passage sont stabilisées quand toutes les cellules
couvertes par des mailles adhèrent à l’une d’elles, et suite à un délai suffisant pour garan-
tir qu’aucun message, notamment des requêtes d’adhésion, n’est en transit ou en cours de
traitement. Suite à la stabilisation des mailles, les cellules appartenant au corridor du pas-
sage sont parcourues jusqu’à trouver une cellule non couverte ayant une criticité supérieure
au point de référence de criticité de la première maille candidate au remplacement, soit la
cellule la plus critique de la maille la moins critique.

Le remplacement d’une maille est nécessaire pour garantir un nombre de mailles dans
le passage inférieur au seuil maximal défini comme le nombre de mailles suffisant pour
couvrir entièrement le corridor du passage. Ce seuil maximal a pour objectif d’éviter la
surcharge de requêtes d’acquisition de mailles au centre de planification.

1.4 Résultats et discussion

Cette section présente l’évaluation et les performances du système Glimpse
pour l’optimisation de problèmes de grandes couvertures simulés. Les résultats
d’expérimentations sont suivis par une discussion et nos perspectives d’amélioration
du système.

1.4.1 Méthodologie d’expérimentation

Les scénarios de mission considérés comportent les entrées nécessaires au traitement du
problème par un LARM, soit les éléments suivants :

3 La requête de programmation client contenant :

– La zone d’intérêt à acquérir,

– Les centres de planification,

– Les satellites et leurs caractéristiques,

– Les passages des satellites sur la zone.

3 Les données météorologiques pour les cellules de chaque passage,

3 La taille des cellules de la grille,

3 La taille de l’horizon de planification.

Afin de comparer les résultats de Glimpse nous avons choisi de les comparer à un
LARM pouvant être utilisé dans un contexte opérationnel. Un algorithme de type glou-
ton hiérarchique est donc choisi. Cet algorithme a un comportement simple de sélection de
la meilleure maille à court terme, sans aucune remise en question des choix effectués.

Glimpse: an AMAS for the LAC problem 15



Glimpse : maillage de grandes couvertures par systèmes multi-agents

Ce glouton hiérarchique emploie un maillage statique pour placer les mailles dans les
corridors des satellites au cours de la résolution de la grande couverture. La technique
maillage statique utilisée place des emplacements de mailles de taille maximale autorisée
juxtaposées suivant un pavage régulier de sorte à couvrir la zone d’intérêt.

De plus nous considérons des scénarios de missions dont les satellites sont caractérisés
par les dimensions des mailles pouvant être acquises. Des scénarios seront décrits comme
comportant des satellites homogènes si les mailles qu’ils acquièrent sont de mêmes dimen-
sions, et hétérogènes sinon.

1.4.2 Performances

Pour chaque expérimentation les métriques observées sont, par ordre d’importance :

1. Le temps de complétion à 95% de la grande couverture, en nombre de passages.

2. Le gâchis, surplus d’acquisition de surfaces déjà acquises au cours de la grande couver-
ture, en pourcentage.

La première expérimentation propose un scénario de mission avec les caractéristiques
suivantes :

3 L’Australie en zone d’intérêt,

3 Des cellules de bord 30km,

3 4 satellites homogènes aux mailles de largeur 60km et longueur 120km,

3 Un horizon de planification de 10 passages.

Les résultats obtenus montrent des taux de complétion similaires pour les deux algo-
rithmes évalués (Glimpse avec le maillage dynamique et un glouton hiérarchique avec le
maillage statique), et des taux de gâchis égaux à 95% de complétion de la grande couver-
ture. Une différence observable est la progression du gâchis plus importante en début de
mission pour Glimpse mais qui ralentit par la suite. La progression du gâchis du glouton
hiérarchique suit une courbe plus linéaire.

La deuxième expérimentation propose de réutiliser ce scénario en modifiant les dimen-
sions de mailles acquérables par les satellites afin de les rendre hétérogènes. Les 4 satellites
hétérogènes de ce nouveau scénario peuvent respectivement acquérir des mailles qui ont les
dimensions suivantes : 60km/90km, 60km/120km, 90km/150km et 90km/180km.

Les résultats obtenus montrent dans ce cas une amélioration du temps de complétion
et du gâchis de l’ordre de 10% en faveur de Glimpse. De façon similaire à la première
expérimentation, le gâchis accumulé par Glimpse est supérieur en début de mission mais
stagne par la suite. Le gâchis accumulé par le glouton continue de croître au cours de la
mission jusqu’à dépasser celui de Glimpse. Ces résultats démontrent une tendance suiv-
ant laquelle Glimpse positionne mieux les mailles quand l’espace est plus contraint (zones
déjà validées, mauvaise météo) et réduit le gâchis dû aux réacquisitions de mailles dans les
phases avancées de la mission LAC.
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1.4. Résultats et discussion

1.4.3 Robustesse

Les résultats obtenus par Glimpse dans la section précédente ont été obtenus sur quelques
cas d’utilisation spécifiques. Afin de développer ces résultats et d’attester de la robustesse
de Glimpse dans d’autres cas d’utilisation, nous proposons quatre critères définis comme
paramètres de robustesse pour un LARM.

Pour chaque critère, la robustesse de Glimpse est validée par comparaison de Glimpse
utilisant un maillage dynamique avec un algorithme glouton sélectionnant des mailles à par-
tir d’une grille de maillage statique. Les résultats soulignent la robustesse des algorithmes
et des techniques de maillage dans différents scénarios simulés. Les quatres critères étudiés
ainsi que les scénarios définis pour chaque critères sont les suivants :

1. Taille de la zone. Taille de la zone d’intérêt.

2. Forme de la zone. Forme de la zone d’intérêt.

3. Météo. Type de météo sur une zone d’intérêt donnée.

4. Nombre de satellites. Nombre de satellites disponibles pour la grande couverture.

Pour tous les scénarios décrits, les paramètres globaux suivants sont appliqués :

1. Taille des cellules : 20x20km,

2. La taille des mailles varie entre 20x40 km et 60x120 km en fonction du cas d’utilisation,

3. Satellites hétérogènes (toutes les fauchées différentes),

4. Longueur maximale des mailles fixe,

5. Délai de 24 heures entre l’acquisition des satellites et l’acceptation ou le rejet des images.

Les résultats du critère de la taille de la zone valident l’adaptation de Glimpse. Le temps
d’exécution et le gâchis sont considérablement réduits dans le cas de très grandes zones qui
sont plus susceptibles d’être au centre des demandes des clients. Le critère de la forme de la
zone permet de vérifier la capacité d’auto-adaptation des agents. En exploitant les avantages
du maillage dynamique, les agents ont pu placer les mailles de manière appropriée pour
s’adapter aux limites du couloir et à la forme de la zone.

L’anticipation des conditions météorologiques a également été confirmée par le critère
correspondant. Glimpse a réussi à gérer la dynamique et les éventuelles modifications
météorologiques au cours de la planification. Enfin, le critère du nombre de satellites a
révélé que Glimpse peut servir d’outil aux opérateurs pour choisir les meilleures constella-
tions satellitaires. La réduction du gâchis par rapport à l’algorithme glouton a été observée
quel que soit le nombre de satellites, la différence étant plus importante lorsque le nombre
de satellites est faible.

La stabilité de ces observations valide la robustesse de Glimpse pour gérer une grande
variété de cas que l’on peut rencontrer dans le domaine des grandes couvertures. Glimpse
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montre de meilleures performances pour les zones d’intérêt nuageuses de forme irrégulière,
ce qui en fait un bon algorithme pour la résolution des cas les plus complexes du problème
des grandes couvertures.

1.4.4 Analyse de sensibilité

La criticité des agents Cellule dans Glimpse peut être modifiée en changeant à la fois les
critères qui la composent et l’ordre dans lequel ils apparaissent. Comme les critères sont
traités dans un ordre lexicographique, les critères venant en premier ont plus d’impact car
toute comparaison décisive coupe la comparaison des critères suivants dans l’ordre.

Dans cette section, un variant de criticité représente une liste ordonnée de critères de
criticité de l’agent cellule. Un variant est nommé en utilisant les différents critères qui le
composent dans l’ordre lexicographique. Cette section propose une étude de sensibilité
des critères de criticité des agents Cellule de Glimpse en comparant les résultats obtenus
suivant le variant de criticité utilisé. Les métriques considérées sont le temps de complétion
et le gâchis. Un algorithme glouton hiérarchique avec maillage statique est utilisé comme
algorithme de référence.

40 variants différents sont identifiés avec une liste de critères de criticité d’une taille al-
lant de 1 à 4 critères. Des résultats de temps de complétion et gâchis pour chaque critère sont
obtenus sur un ensemble de 10 scénarios. Ces scénarios varient de par leur zone d’intérêt,
le nombre de satellite utilisés, le type de satellites (hétérogènes ou homogènes) ou encore
la date choisie qui influence la météo observée. Les résultats obtenus sont moyennés sur
une série d’expérimentations afin de réduire la variance dûe aux effets aléatoires tels que les
différences entre météo prévue et observée.

Parmi les variants sélectionnés un d’entre eux obtient des résultats favorables à la fois
en terme de temps de complétion et gâchis par rapport aux autre variants. Ce variant est
composé, dans l’ordre, d’un critère de validation des cellules, d’un critère évaluant la météo
du passage courant, d’un critère sur le nombre d’opportunité d’acquisition restante et enfin
d’un critère sur la météo des les passages futurs sur l’horizon de planification. Ce variant est
proche de celui choisi pour effectuer les expérimentations de performances et de robustesse,
et qui avait été choisi en suivant les avis d’experts du domaine.

1.4.5 Discussion

Les résultats obtenus montrent les avantages du maillage dynamique par Glimpse par rap-
port à un maillage statique traditionnel employé par un algorithme glouton hiérarchique.

Les scénarios avec satellites homogènes montrent une amélioration en faveur de Glim-
spe pour la métrique de gâchis de ressources satellitaires. Dans le cas des satellites
hétérogènes, des améliorations en terme de temps de complétion sont également constatées.
Ces observations s’expliquent par de meilleurs placements des mailles par maillage dy-
namique. En effet les zones déjà validées, les chevauchements de mailles inter-passages
et les zones de faible criticité sont évitées grâce au placement plus précis et adaptatif des
mailles de Glimpse.
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1.5. Conclusion

L’étude de la robustesse de Glimpse confirme ces observations. Les résultats montrent
que les performances de Glimpse sont notamment supérieures à celles du glouton hiérar-
chique dans les cas difficiles du problème des grandes couvertures. Les grandes zones, les
zones nuageuses et les zones de forme particulière sont mieux traitées par Glimpse, ce qui
valide la robustesse du système.

Enfin l’analyse de sensibilité des critères de criticité des agents Cellule de Glimpse mon-
tre l’adéquation du critère utilisé sur les expériences de performances et de robustesse. Les
résultats soulignent la possibilité de sélectionner un variant de Glimpse spécifique pour dif-
férents type de scénarios de grandes couvertures.

1.5 Conclusion

1.5.1 Synthèse

Le problème LAC est un problème d’optimisation de l’utilisation de satellites pour la réali-
sation efficace d’acquisitions de zones à la surface de la Terre. Dans ce problème, une entité
dite LARM reçoit une demande de client pour l’acquisition d’une grande zone d’intérêt. Le
LARM envoie des demandes d’acquisition aux centres de missions ou MPFs lors des pas-
sages successifs du satellite. Les demandes d’acquisition peuvent échouer en raison de dif-
férences entre les prévisions météorologiques et les conditions météorologiques observées.
Une fois des images acquises et validées par le MPF, le LARM accumule ces images jusqu’à
pouvoir renvoyer au client la collection d’images acquises, soit le produit de la mission LAC.

Dans cette thèse, nous nous concentrons sur la résolution du problème LAC à l’aide de
systèmes multi-agents adaptatifs. Ces systèmes sont composés d’agents, entités élémen-
taires qui s’auto-organisent pour atteindre des objectifs locaux tout en respectant des règles
de coopération. Nous proposons d’utiliser les systèmes multi-agents pour résoudre le prob-
lème LAC avec une technique de maillage dynamique. Cette technique introduit des cel-
lules, des sous-zones élémentaires qui permettent un placement plus précis du maillage et
une adaptation aux caractéristiques de la mission. Le système multi-agent Glimpse exploite
ce maillage dynamique pour résoudre le problème LAC. Les trois types d’agents du système
Glimpse, Cellule, Maillage et Passage, sont décrits. Leurs interactions coopératives perme-
ttent de faire émerger une fonction d’optimisation du maillage au cours de la résolution
d’une mission LAC.

L’évaluation de Glimpse est composée de trois axes. Dans ces trois axes un algorithme
de type glouton hiérarchique utilisant le maillage statique est utilisé en tant que LARM pou-
vant être rencontré en contexte opérationnel. Les résultats concernant les performances de
Glimpse démontrent sa capacité de placement des mailles sous contrainte et particulière-
ment dans le cas de satellites hétérogènes. Des exéprimentations supplémentaires de ro-
bustesse montrent la capacité de Glimpse à mieux traiter de grandes zones d’intérêt avec
de mauvaises météos, soit les cas difficiles du problème LAC. Enfin une étude de sensibilité
révèle la possibilité de déterminer des variants de Glimpse suivant les caractéristiques de la
mission.

Ces résultats mettent en avant l’adéquation des choix effectués dans la production des
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contributions scientifiques et opérationnelles de cette thèse. L’utilisation de systèmes multi-
agents représente une contribution dans le domaine de l’optimisation des missions satel-
litaires. L’analyse des relations entre critères de criticité d’agents coopératifs et résultats
participe à la recherche et au développement des systèmes multi-agents. Côté industriel,
Glimpse est un potentiel outil d’optimisation de missions LAC et d’estimation de la taille
de constellation à employer pour ces missions. Enfin une proposition est faite d’un type de
maillage innovant, le maillage dynamique, permettant un placement plus fin des mailles et
une adaptation aux contraintes en cours de résolution.

1.5.2 Perspectives

Cette thèse ouvre plusieurs axes de recherche possibles. Une étude comparant les résultats
de Glimpse et d’autres algorithmes candidats mettrait davantage en évidence les forces et
les faiblesses de Glimpse et de la théorie AMAS. Ces résultats pourraient être étendus pour
considérer d’autres types de problèmes d’optimisation similaires au problème LAC. Le sujet
de l’amélioration des résultats de Glimpse pourrait émerger de ces études. Une possibilité
réside dans l’emploi de techniques d’apprentissage par renforcement pour une meilleure
détermination des variants de Glimpse suivant les missions LAC.

Le problème LAC lui-même pourrait également être étudié avec une représentation plus
complète. Une technique de découpage d’image par les MPFs, la validation partielle pour-
rait notamment être utilisée. Le maillage dynamique semble particulièrement adapté à cette
technique avec laquelle les cellules sont validées individuellement au lieu d’être groupée par
maillage. Des caractéristiques des satellites considérées en opérationnel pourraient égale-
ment être ajoutées. Une représentation des manoeuvres des satellites, de la consommation
d’énergie à bord ou encore d’espace de stockage utilisé par les images acquises sont autant
de pistes améliorant la représentation du problème, et autant de contraintes devant poten-
tiellement être considérées dans la conception du comportement des agents de Glimpse.
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2 Programming of Earth
Observation Missions

2.1 Introduction

In this thesis we investigate the Large Area Coverage (LAC) problem. This problem is one
of the different steps of the Earth observation problem. In this chapter, we give a brief in-
troduction to the programming of Earth observation missions by first defining the different
elements of Earth observation, then we introduce the full process of Earth observation mis-
sions and present the important terms to define the LAC optimization problem.

2.2 Earth Observation Components

The Earth observation domain encompasses different kind of fields such as on-site photogra-
phy, aerial acquisition from drones or airplanes, and acquisition from specialized satellites.
In this thesis, we focus on Earth observation missions performed by a constellation of Earth
observation satellites.

A satellite is defined as an artificial object orbiting around the Earth. Satellites can be
differentiated by their altitude and orbit. First, geostationary satellites operate at a height
of approximately 36.000 kilometers. Their orbit maintains them at a fixed point above the
Earth and they can be used for telecommunication and weather tracking for example. Earth
observation satellites operate at Low Earth Orbit (LEO), often around 400 kilometers. Their
speed is approximately 27.000 km/h or 7.5 km/s, allowing them to complete a full rotation
of the Earth in less than 2 hours. Earth observation satellites orbit around a north/south
pole axis, meaning that after a full rotation around the Earth a new Earth surface can be
acquired as Earth rotates around itself. The low orbits improve the precision of acquired
images, with higher resolution and better quality. Different types of satellites including LEO
satellites are presented in figure 2.1.

The mission applications for Earth observation satellites range from oceanography to
forest control, mapping, disaster control and more. Depending on the need, the satellites
can use either optical or radar acquisition technologies. In this thesis, we focus on optical
satellites and their applications. These satellites have an optical sensor pointing towards
the Earth that covers a width or swath and is able to acquire Earth surfaces. The sensor is
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Figure 2.1: Types of satellites by type and operating height

Figure 2.2: Schematic elements of the acquisition of meshes by an LEO satellite

switched on at the start of an acquisition and turned off after a few seconds. The resulting
image is obtained from a mesh, a rectangle of the Earth’s surface of width relative to the
sensor swath and of length proportional to the elapsed time during which the optical sensor
was switched on. A mesh is a geometrical representation of a possible acquisition by a
satellite. A mesh can partially or fully cover the Area Of Interest (AOI), the zone that needs
to be acquired completely to complete the observation mission. Figure 2.2 illustrates the
schematic representation of elements including the acquisition of several meshes by an LEO
observation satellite.

Acquisitions were originally only performed directly under the satellite at a point called
nadir. To improve the flexibility of the acquisition process LEO observation satellites have
since been modified to be agile, meaning they can rotate on 3 different axis. These rotations
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of pitch, yaw and roll are presented in figure 2.3.

Figure 2.3: Angles of rotation of agile satellites

The goal is for the satellite to acquire meshes that are away from nadir relative to its tra-
jectory. Agile satellites perform orientation maneuvers to place themselves towards specific
meshes, a process usually taking a few seconds to complete. Acquiring meshes that are off
nadir lowers the resulting image resolution but greatly reduce the time required to perform
the acquisitions compared to the time imposed by non-agile satellites having to be on an
orbit directly above the mesh.

Indeed over a given orbit agile satellites are able to cover a larger surface of the Earth
during a pass. A pass is defined as the time lapse during which a satellite flies over a
zone called corridor of the pass. A corridor intersects the AOI and defines the limit where
meshes can be acquired relative to the maximum inclination of the satellite using its agile
rotational properties. The difference in acquisition capabilities between acquisitions at nadir
for non-agile satellites and acquisitions in a corridor for agile satellites is illustrated in figure
2.4. Note that, by increasing the covered surface, the search space including the meshes
to be acquired by satellites is also increased. While orbiting around the Earth, satellites
communicate with ground stations.

A ground station communicates with the satellite by radio or light messages, either to
send the next instructions in a mission plan to the satellite, a process called uplink, or to re-
ceive acquired images from the satellite, a process called download. This uplink-acquisition-
download process is illustrated in figure 2.5

Commercial Earth observation satellites are often operated by companies lending their
services to other companies or individuals, allowing clients to request the acquisition of
a specific zone. An organism responsible for client request treatments is called a Mission
Planning Facility (MPF)[Nejad, 2022]. The task of MPFs can be summarized as the assign-
ment of acquisitions to different satellites such as to maximize the use of satellites resources
and minimize the time between request reception and treatment while considering the re-
quest importance. Indeed, requests can vary in client time requirements. An acquisition
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Figure 2.4: Comparison of acquisition abilities between non-agile (left) and agile (right) satellites

Figure 2.5: Satellite cycle of an LEO observation satellite consisting of uplink, acquisition and download

request relative to a forest fire is usually more urgent than a routine task, for example the
acquisition of an image for a longer scientific study. Such concepts and their impact on client
request treatment are detailed in section 2.3.

2.3 Earth Observation Steps

This section presents step-by-step the acquisition process followed by an MPF, from the
reception of an acquisition request to image validation by the client. Figure 2.6 presents the
full process with the following steps:

1. Acquisition request. The acquisition request received by an MPF specifies different
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Figure 2.6: Illustration of an observation request by a client directed to an MPF

criteria guiding the acquisition. First the AOI for acquisition, defines a zone that can
be covered by either a single mesh or a few meshes depending on the optical sensors
characteristics of the satellites operated by the MPF. Then the time before request obso-
lescence, a period varying from a few hours to several months depending on the client
need is defined. A desired minimum resolution can also be specified. Finally different
kind of contracts define a cost relative to the desired request importance.

Based on the listed criteria, the urgency of the acquisition request is established. A
hierarchy of requests is maintained, with tiers that can be simplified as urgent, normal
and routine. This hierarchy impacts the treatment of requests, as presented in the next
steps.

2. Meshing and planning. In this step, the requested zone is split in one or several
meshes. Each mesh is associated to a satellite, with the characteristics of the optical
sensor dictating the swath and maximum length of the mesh. The meshes cover the
whole zone but may be acquired at different times and the resulting images may re-
quire reconstitution later in the acquisition process. The most common way to split the
zone into meshes is to divide the zone using a precomputed grid of meshes and later
selecting successive mesh locations as meshes to acquire. We call this process static
meshing. An example of a static meshing grid over France is presented in figure 2.7.
We describe and compare static meshing to a novel way of splitting the zone called
dynamic meshing in chapter 5.

For each satellite, an acquisition plan must be computed. This plan is composed of
sequential instructions that the satellite follows in chronological order. Instructions in-
clude acquisitions, orientation maneuvers or sending back acquired image to a ground
station using the download process. Current acquisition satellites cannot acquire two
meshes at the same time, a strict order of acquisitions and maneuvers respecting the
satellites characteristics must be defined. While respecting material constraints an MPF
tries to maximize the acquisition of important meshes defined by the hierarchy built in
step 1.

An MPF may operate a constellation of satellites and build plans to avoid acquisitions
of the same AOI by different satellites. As meshes are acquired, plans are continually
updated on ground and sent to the satellites when their orbit intersects with the visibil-
ity of a station able to communicate with them. Another constraint is introduced at this
step: planning around weather issues. Half of the images acquired operationally are
deemed unusable due to clouds being apparent. Indeed, given the position of ground
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Figure 2.7: Example of a static meshing grid for a single satellite with France as AOI

station able to communicate with the satellites and the time required to compute and
validate an acquisition plans, plans are computed ahead using uncertain weather con-
ditions. Thus, a large number of images is rejected due to cloudiness.

3. Acquisition. The satellite receives the acquisition plan and performs the acquisitions
and maneuvers during the set time frame. As described in step 2, the acquisition step
may happen several hours after the plan is sent from an emission station depending on
the distance between the station emitting the plan to the satellite and the AOI. Due to
this gap the weather forecast at the time of plan emission may be inaccurate during
acquisition and captured images may be clouded. The satellite then sends the acquired
images back to a ground reception station.

4. Validation or rejection. At this step received images of the meshes may need to be
reconstructed to form a single or several images expected by the client. Cloudiness is
evaluated and the images are sent to the client. If the images are evaluated as satisfac-
tory by the client, the acquisition process ends. Otherwise the images are rejected and
the process starts again beginning from step 2.

5. Request completion. Obtained images that have been validated by the MPF as conform
to the client prerequisites are the final product of the process. After confirmation with
the client the acquisition request is completed.

A single MPF treating an acquisition request is usually sufficient but as we present in
section 2.4 some large scale requests called LAC requests may require the involvement of
several MPFs.
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Figure 2.8: Representation of multiple satellites acquiring over the same AOI

2.4 The LAC Problem

2.4.1 Context

Planning for satellite missions is a broad subject of research and development. As presented
in chapter 2, many different sources treat the optimization problem summarized in step 2 of
section 2.3. In the following, we refer to this problem as the daily single satellite scheduling
problem. In this thesis, we focus on another specific type of client request aiming on the
acquisition of large areas (i.e. country or continental scale). The acquisition of such zones
could be performed by a single MPF but due to the low number of available satellites, the re-
sulting images would be acquired after several orbits and the AOI coverage span over a very
large time period. This would lead to disparities between images due to varying weather
conditions or seasons. To solve this issue different MPFs and thus operated satellites are
used as illustrated in figure 2.8.

In the context of large scale requests, the clients only specifies the AOI to acquire, a
cloudiness rate threshold ad a deadline to latest completion. The acquisition coverage
should then be performed as quickly as possible. To minimize the time required to fully
acquire the requested zone, we consider the large area request treatment to be performed
by a single super MPF dispatching client requests to a subset of satellites operated by dif-
ferent MPFs. This super MPF called a Large Area Request Manager (LARM) is trying to
solve the LAC problem. The structure between LARM, MPFs and their operated satellites is
described in figure 2.9.

2.4.2 Acquisition Process

The steps followed traditionally by the LARM to complete the LAC mission are similar to
those followed by a traditional MPF described in section 2.3:

1. Request reception. The LARM receives the LAC client request. Its components include
the AOI, the list of MPFs, their available satellites and the lists of passes performed by
all the satellites over the AOI over a large time period.
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Figure 2.9: Process between LARM and MPFs for the acquisition of meshes on a satellite pass

2. Meshing. The LARM divides the AOI into meshes to acquire. The resulting mesh grid
covers the whole area so that each mesh needs to be acquired at least once to complete
the LAC mission.

After these steps are performed the LARM follows the list of satellite passes in chrono-
logical order and performs the following steps for each pass:

1. Mesh selection. The list of acquirable meshes is built from the corridor of the pass.
An acquirable mesh must be fully included in the corridor. A subset of meshes is then
built from acquirable meshes based on the likelihood of being successfully acquired.
The selected meshes are sent to the MPF operating the satellite performing this pass as
acquisition requests.

2. Validation. The MPF either denies or accepts each acquisition request and the satellite
perform acquisition and download for accepted acquisition requests. Images from these
requests are sent to the LARM for cloud coverage estimation. Images with a cloud
coverage rate above the client approved threshold are discarded and corresponding
meshes need to be acquired at a later pass. Images with a cloud coverage under the
threshold are validated and saved as part of the LAC request answer.

For each satellite pass over the AOI in phase 3 the LARM builds an acquisition plan.
However the LARM does not operate the satellites and needs to send acquisition requests
for each mesh to the MPF operating the satellites. A mesh for the LARM is then considered
an AOI by the MPF receiving the relative acquisition request. The MPF then follows its
own acquisition process and either sends the resulting images or responds negatively if the
satellite could not acquire the mesh during the pass due to higher priority acquisitions being
performed.

2.4.3 Waste

Satellite resource waste is the under-utilization of satellite time by performing useless tasks.
In the context of LAC, waste can either be caused by:

3 differences between weather forecast and observed weather causing acquisitions of
cloudy areas,
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3 acquisition of meshes which cover at least partly surfaces which have already been
acquired and validated.

Weather forecast issues are hard to solve in the context of LAC missions. The only lever-
age is to select meshes with high weather forecast confidence for good weather. Better
weather forecasts and shorter gaps between plan transmission and acquisition help with
minimizing waste from this source but technical improvements to the parameters of the
problem are considered beyond the scope of this thesis.

Acquiring the same surfaces several times is a problem encountered due to the use of
satellites operated by different MPFs and a justification for the LARM. Random acquisi-
tions by independent non-communicating MPFs would frequently produce overlaps of
the acquired surfaces. Even with the coordination of an LARM re-acquisitions can happen.
Satellite with different on-board acquisition tools and characteristics may cause overlaps
between meshes and waste satellites resources. This is described further in section 3.4.1.
Requesting the acquisition of the same surface by different satellites may also be necessary
in order to obtain the corresponding image quickly and finish the LAC mission in a shorter
time frame.

Minimizing waste is desirable as each discarded image is non-profitable for the MPF
operating the satellite and by extension the requesting LARM. Waste may also indirectly
extend the time to completion of the LAC mission as discarded images represent missed
acquisition opportunities on satellites passes.

2.4.4 Conclusion

In this chapter the context of Earth observation missions performed by LEO satellites is
presented. Individual satellites follow a scheduling pattern from client request given to
MPFs to image acquisition and validation. Requests regarding large areas require the use of
several MPFs and satellites that are coordinated by an LARM. For each satellites pass over
the AOI, a small number of meshes need to be selected for acquisition from a large pool
of candidate meshes. The resulting LAC problem is a difficult multi-objective optimization
problem which has seen growing interest in the Earth observation literature. In chapter 3
we present a formalization of the LAC problem and its solving metrics. We then propose
a state of the art of approaches for solving the LAC problem encountered in an operational
context and in the research literature.
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3.1 Introduction

The relevance of the Large Area Coverage (LAC) problem is proportionally growing with the
number of Low Earth Orbit (LEO) observation satellites available. As many different satellites
can be matched to perform a single LAC task, the difficulty of distributing the acquisitions
to each satellite grows.

As seen in section 2.4, the LAC problem is considered a multi-objective optimisation
problem. This chapter first starts by defining the metrics used to evaluate the solving ap-
proaches and the obtained solutions. Then, it presents the operational method used by Mis-
sion Planning Facility (MPF) centers. Afterwards, this chapter focuses on different theoretical
approaches explored to solve the studied problem, analyses their advantages and limita-
tions and discusses the adequacy of multi-agent systems to solve this type of problems.

3.2 Problem Formalization

We define the LAC problem as the coverage of the requested Area Of Interest (AOI) in a min-
imal time while minimizing waste. The components of the LAC problem can be formalized
as follows:

3 a Large Area Request Manager (LARM) L receiving a large area coverage acquisition re-
quest of an AOI noted Z,

3 a set of MPFs F = f1, . . . , fi, . . . , f I to which the LARM can send acquisition requests,

3 for each MPF fi a set of operated satellites S = si1, . . . , sij, . . . , si J ,

3 for each satellite sij a set of passes P = pij1, . . . , pijk, . . . , pijK over the AOI with the first
and last available time of acquisition for pass pijk respectively tstartijk and tendijk and a
corridor cijk ∈ Z.

The problem consists in finding for each satellite pass pijk a set of N requested meshes to
acquire M = Mijk1, . . . , Mijkn, . . . , MijkN with Mijkn ∈ cijk which minimizes time to comple-
tion and waste.
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3.3 Evaluation Metrics

3.3.1 Problem Metrics

As described previously the LAC problem implies the use of several LEO satellites during
the course of weeks or months. Indeed the LAC client request is usually treated as a back-
ground task and often relegated to later satellite passes because of more urgent requests.
However the time taken to complete the LAC mission should be minimized to fulfill the
client’s request at the earliest. Completing parts of the acquisition process early also allows
the LARM to send partial updates to the client. The time to completion is the first metric
considered and its minimization is an objective of the LAC problem.

Due to the length and high-scale profile of LAC missions the use of satellite resources is
another important factor. LEO satellites have a lifespan of approximately 10 years in orbit as
the atmospheric drag deteriorates them over time. Because of this lifespan and the high cost
of building and launching the satellites, each acquisition should be optimized to maximize
its likelihood of resulting in a clear image and to acquire as much non-acquired AOI surface
as possible. The waste of a LAC mission defines the rate of wasted satellite resources over
the whole acquisition period. Acquisitions resulting in useless clouded image and surfaces
of the AOI being acquired several times over different satellite passes increase the waste of
the mission. The waste is the second metric considered and its minimization is an objective
of the LAC problem.

On the one hand the optimization of the time to completion metric benefits the client
emitting a LAC request to the LARM. On the other hand reducing waste, benefits the LARM
as the number of requests sent to each MPF during the mission is reduced proportionally
to how well satellite resources are used. Both objectives should be optimized during a LAC
mission but due to this difference, the time to completion is considered to be of a higher
priority than waste. The LAC problem is a multi-objective optimization problem with a
strict order of importance affected to these two objectives. In the following, when comparing
results of a LAC mission simulation, the following hierarchy of criteria in descending order
of importance is used to evaluate the quality of each solution:

1. minimization of time to completion,

2. minimization of acquisition waste.

3.3.2 Solving Metrics

Problem metrics define the quality of a solution for an example of the LAC problem. To
evaluate the performance of the algorithm that led to a solution we consider other metrics
linked to the quality of the problem solving itself. Criteria in this case are dependant on the
type of algorithm used to find the solution. Their relative importance is not discussed here
as criteria may be ranked differently depending on the need of the LARM and the type of
LAC request. In no particular order the solving metrics we identified include:

3 Calculation time, the time required for the algorithm to find a solution in seconds. This
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metric is calculated from the launch of the algorithm at LAC request reception and up
to the validation of the last mesh finishing the acquisition process of the whole AOI,
marking mission completion.

3 Algorithm robustness, the ability of the algorithm to demonstrate good performances
for different types of LAC request. Differences in requests could include discrepancies
in weather, AOI shapes, amount of satellites, mesh sizes, etc...

3 Algorithm scalability, the ability of the algorithm to find solutions of consistent quality
for ever increasing sizes of AOI. Solutions should also be found in reasonable calcula-
tion time as a plan obtained with a very high calculation time will be ready too late for
it to be transferred to the satellite.

3 Local minima sensitivity, the ability of the algorithm to avoid being trapped in local
minima and explore the search space for improved solutions.

Both problem and solving metrics are used in the next sections to evaluate different
approaches to the LAC problem. Later in chapter 4 these metrics are used to discuss the
merits of using an Adaptive Multi-Agent System (AMAS) to solve the LAC problem with a
focus on the robustness of the system to different experimental conditions.

3.4 State of the Art of Solving Approaches

3.4.1 Operational Technique

The decisions behind satellite affectations and acquisitions in the industry have historically
been made by experts in this domain. The estimation of acquisition success for a given
AOI and acquisition time is performed by an expert using recently measured weather data
and knowledge of the region’s climate. Similarly this expertise is used in solving the LAC
problem operationally. The team supervising this study includes domain experts which
shared information regarding common operational practice. The technique used splits the
LAC request into several sub-areas that can be acquired by a single MPF and affects the
adequate MPF to each obtained sub-area. The following process is applied:

1. division of the area of interest into several sub-areas as presented in figure 3.1,

2. exclusive distribution of sub-areas among MPFs

3. acquisition by the MPFs of their respective sub-areas,

4. merge of the acquired sub-area images in a single request answer.

This process simplifies the LAC problem by reducing the waste and avoiding the prob-
lem complexity produced by coordinating several satellites each controlled by different
MPFs. Indeed with each MPF treating the coverage of its sub-area the characteristics of
its satellites can be similar. Similar satellites can be used with precomputed grid of mesh
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Figure 3.1: Operational division of a requested AOI and distribution to non-conflicting satellites

placements to acquire over the course of the LAC mission following a technique called static
meshing.

Static meshing efficiently uses meshes of equal dimensions so that their acquisitions
do not overlap which reduces waste due to re-acquisition. Using separated sub-areas also
avoids the LAC problem complexity caused by the large pool of satellites to coordinate dur-
ing the mission. With a reduced number of satellites for each sub-area and a single MPF
to manage them no LARM is required. A simple merging treatment is required when each
MPF has finished its coverage mission.

As a simple solution to the LAC problem, this approach has drawbacks when consid-
ering the time to completion metric. The distribution of satellites in sub-areas restricts
their use in the parts of their passes that overlap other sub-areas of the AOI. An example
of this restriction is presented in 3.1. Each pass restricted in this way may be underused in
number of meshes acquired or be used to acquire meshes with lower probability of clear
weather than what an unrestricted pass of the same satellite would allow. In other terms
the reduction in the search tree of the LAC problem cuts potentially optimal nodes for ev-
ery satellite path. We can conclude that acquisition opportunities lost due to these artificial
restrictions increase the overall time needed to acquire the AOI.

Additional constraints imposed on the problem such as the use of strips (presented in
section 3.4.2) instead of meshes may be used operationally to further simplify the LAC prob-
lem with static meshing. Lifting these restrictions increases the complexity of the LAC prob-
lem by introducing the need to coordinate satellites that may present different characteristics
and to accurately select meshes in the corridors but it allows the full use of each satellite pass
to better optimize the time to completion. In the following we consider the LAC problem
without subdivision formalized in section 3.2 to lead to better overall completion time and
waste than those obtained with the operational technique presented in this section.
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Figure 3.2: Single satellite acquisition problem with possible solutions

3.4.2 Approaches to the LAC Problem

The optimization of LEO satellites observation missions is a wide domain that encompasses
different problems.

Single Satellite Problem. A common example is the optimization by an MPF of an acqui-
sition plan for a single satellite over a set time frame or until a planning horizon. In this
context we consider a single MPF and a set of small scales acquisitions requests also called
spots. Each spot request can be covered by a single mesh of a satellite operated by the MPF.
A number of instructions must be sent to the satellite in advance of a time frame called plan-
ning horizon. The planning horizon is at minimum the time period between two windows
of transmission from a ground station to the satellite. Indeed no other communications can
be made to the satellite and the satellite executes its acquisition plan without additional in-
put possible in this time frame as seen in figure 2.2. For each request a mesh that includes
the AOI is computed and represents a possible acquisition. Acquisition planning for a
planning horizon of a single satellite consists in selecting different meshes and building
a sequence of acquisitions and orientation maneuvers.

An example of a mission planning problem for a single satellite by a MPF is depicted
in figure 3.2. To select a sequence of meshes to acquire different metrics are used. These
metrics include the importance of the corresponding request that is rated relative to other
requests waiting to be completed, the time left before the corresponding request expires and
the weather forecast at the AOI at the predicted time of acquisition.

As is the case in the LAC problem for several heterogeneous satellites, the acquisition
plan of a single satellite can be modified to optimize the metrics mentioned above. This
optimization problem is multi-objective as both the importance of fulfilled requests and the
overall number of fulfilled requests must be maximized. This is a known problem in the
literature and has been characterized by several sources including [Bensana et al., 1999]. The
authors formalize the problem as a set of constraints to satisfy using a subset of possible
acquisitions and maneuvers from the search space that maximizes the weight or importance
of acquired images. The problem is judged similar to a Multi-Knapsack problem and able
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to be represented by a Constraint Satisfaction Problem (CSP) and solved by an Integer Linear
Programming (ILP) solver like CPLEX.

[Frank et al., 2001] expands on the realism of the problem by including on-board con-
straints. An interval based model is built to represent the problem and an heuristic biased
stochastic greedy algorithm is suggested to solve it. [Globus et al., 2004] builds a benchmark
for this type of problem with different realistic use cases for one to three satellites. The com-
pared algorithms include hill climbing, simulated annealing, tournament selection genetic
algorithm and elitist genetic algorithm with three different mutation operators enabling per-
mutations between acquisitions and maneuvers. Simulated annealing was found to show
better results than hill climbing which in turn outperformed genetic algorithms. Based on
this work, [Bonnet, 2017] proposes a multi-agent system adapted to the processing of new
acquisition requests for the optimization of a set of acquisition plans. The system developed
is able to integrate new acquisitions requests to existing plans without recomputing and is
highly scalable. Better results are obtained with this multi-agent system when compared to
a state-of-the-art hierarchical greedy algorithm.

The optimization of a single satellite plan is a complex problem as is demonstrated in
chapter 1 section 5 of [Bonnet, 2017]. [Lemaître et al., 2000] finds the problem to be NP-
Hard: a given solution to this problem can be verified in polynomial time but not found
quickly. [Hall and Magazine, 1994] describe it as the "Space Mission problem" and also cat-
egorize it as NP-Hard. Solutions to NP-Hard problems are often solved through heuristics
and approximate methods such as the algorithms listed above. We then consider the LAC
problem as a planning problem of several satellites over a planning horizon defined by
their passes over a single AOI. In this case the relative importance of meshes is not a relevant
metric as a single large acquisition request is considered.

However the waste as defined in chapter 2.4.3 is a new metric to optimize that appears
with the introduction of a pool of satellites and meshes that can overlap. Another complexity
layer is added as the MPF responsible for the LARM task must emit acquisition requests
to other MPFs operating with a hidden internal planning logic. This is another stochastic
element of the problem to add to the potential differences between weather forecast and
observed weather. From these observations we suggest the LAC problem is similar to the
Space Mission problem in complexity. Both problems require selection of sequential tasks
with uncertainty through weather forecast with additional constraints in the case of the LAC
problem with the introduction of MPF answers.

LAC Problem. When compared to the Space Mission problem, the LAC problem has fewer
examples available in the literature. [Fei and Zhi, 2011] considers the observation of an area
of China large enough to require observation by several satellites. The authors define strips
instead of meshes as illustrated in figure 3.3. The authors also describe a strip grid and a
greedy algorithm for a small set of satellites to acquire the target strips in minimal time.
[Xu et al., 2018] proposes a formalization of the LAC problem. A discretization of the search
space with a set of point coordinates to acquire in order to complete the observation mission
is described. The problem is solved by a genetic algorithm optimizing the selection of strips
and showing good results when compared to a greedy-based heuristic algorithm. [Holvoet
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Figure 3.3: Illustration of an AOI subdivided in strips

et al., 2018] suggests a similar point based discretization for disaster observation missions.
The authors describe the strip building process and solve the problem with a simulated
annealing algorithm. [Niu et al., 2018b] adapted a multi-objective genetic algorithm to solve
the LAC with strips. The authors obtained better results than the greedy algorithm used as
benchmark.

Strips are commonly used in large area observation missions. The use of strips simplifies
the problem and search space to finding a set of observation angles for a set of satellite passes
over the AOI. Acquisition with strips also allows the simplification of weather constraints.
The observation angle of a satellite for a pass is fixed without possible maneuvers and as
a result weather is not considered as an element of the problem. Using strips helps with
addressing problem complexity but it has several drawbacks. First, strips underuse the
agility of the considered satellite. Acquisition of strips only requires the roll angle out of
the three rotation angles available to agile satellites.

Ignoring weather forecasts also causes increased waste on average. Weather may be
favorable for acquisition on parts of the strip and unfavorable on some other parts. Finally
strips are harder to fit in an existing acquisition plan. LAC mission are often low priority
in the hierarchical list of requests managed by the MPFs. Satellites may be available for
acquisition on parts of the strip and unavailable on other parts causing the strip to not be
acquired and adding delay to the mission. We choose to consider meshes as they allow
more precise targeting of favorable weather areas, fully use the agility of satellites and are
easier to integrate in an existing plan due to their short acquisition time requirements.

The LAC problem with meshes is to our knowledge not treated in the literature. The
geometric problem of large area coverage by strips is already difficult. The addition of
weather forecasts increases the size of the search space as each acquisition may result in
acceptation or rejection due to cloudiness of the acquired image. To solve the LAC prob-
lem with meshes another solving approach is explored at the IRT Saint-Exupéry and was
presented in [Hadj-Salah et al., 2019]. The authors consider a mesh grid using static mesh-
ing and a problem formalization similar to the one presented in section 3.2. The problem
is described as an MPF and Deep Reinforcement Learning (DRL) is used to solve it. Results
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obtained with DRL after training outperformed a greedy heuristic on a large coverage use
case of France. Several simplifications are used to allow the use of DRL: a single mesh is
acquired on each satellite path and all satellites share similar acquisition characteristics.

In this thesis, we allow multiple acquisition per pass but choose to ignore maneuver
restrictions for several reasons. First the maneuver computation tools are specific to each
MPF and ignored by the LARM when deciding which mesh acquisition to request. The ac-
quisition plan of each satellite is also not known by the LARM when requesting acquisitions
from MPFs. Other client requests may cause rejection of requests or impossible maneuvers
if planned by the LARM. We also choose to consider satellites with differing acquisition
characteristics as presented in the following.

3.4.3 Optimization Overview

Several types of optimization methods can be used to solve the LAC problem. Different
approaches can be evaluated using the solving metrics presented in section 3.3.2. The choice
of which algorithm to use in order to optimize the LAC problem is discussed in this section.
First we present the groups of suitable optimization algorithms and their characteristics. We
then draw a comparison considering the previously mentioned solving metrics with each
optimization algorithm. Finally we justify the choice of a multi-agent system to solve the
LAC problem using a new meshing approach that we call dynamic meshing and present in
section 5.2.1.

Optimization is the search of solutions of ever-increasing quality through the search
space of a problem. Search spaces can be enumerable or represented by equations or mod-
els. In the case of the LAC problem the search space is considered large enough that Exact
methods are not applicable. Exact methods search the entire search space to find the optimal
solution. As mentioned in section 3.4.2 the LAC problem falls in the NP-Hard category of
optimization problem difficulty. Exact methods could eventually find the optimal solutions
for such problems but the time required is considered impractical. Approximate methods
explore the search space using cuts and heuristics to guide them towards solutions of good
quality. [Lacour, 2014] presents an overview of different exact and approximate approaches
for combinatorial optimization problems using the weight spanning tree problem as exam-
ple. Heuristics are functions evaluating the best path to follow at each step of the search
tree and as such are judged based on the quality of solutions found using them. In the fol-
lowing several approximate optimization algorithms using different types of heuristics are
presented.

3.4.3.1 Greedy Algorithm

A greedy algorithm tries to find good solutions using only vertical search through the search
tree. At each decision node the algorithm selects the best evaluated path and cuts the rest
from the search. This approach prioritizes exploitation which refines existing solutions to
improve them over exploration which finds other solutions to expand on available options
[Macready and Wolpert, 1998]. Greedy algorithms cannot backtrack once a node is chosen
and rely on short-term heuristics to guide the solving through the search tree. As such they
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are easy to implement and require very little computation time. However constraints in
solving can lead the algorithm to be trapped in local minima and to cut long-term quality
solutions that appear worse on short-term evaluations.

An example of a greedy algorithm developed to solve the LAC problem is presented
in [Xu et al., 2020a]. The authors abstract weathers constraints from the problem and use
strips to cover the AOI. This approach may lead to local minima trapping as the decision
of selecting a strip is never challenged afterwards and a single path through the search
tree is explored. Similarly, positioning meshes on a pass leads to local minima as only one
configuration of collective mesh placements is considered.

3.4.3.2 Constrained Optimization

Constrained optimization, presented in [Box, 1965], places constraints on the variables of the
objective function to optimize solutions found. These constraints can either be hard meaning
they must be respected to find a valid solution or soft meaning the evaluation suffers a
penalty if the constraint is not respected. To perform constrained optimization the problem
must be formalized as a Constraint Optimization Problem (COP) with its constraints and then
solved typically by a branch-and-bound algorithm [Narendra and Fukunaga, 1977]. These
algorithms store the best solution found at any point and use backtracking to skip parts of
the search that are evaluated as worse than the best solution.

[Kearfott, 1992] and [Demeulemeester and Herroelen, 1992] use branch and bounds al-
gorithms to solve different constrained optimization problems. [Lawler and Wood, 1966]
presents a survey of different branch and bound methods. Branch and bound algorithms
have also been used to solve space planning problems as seen in [Chu et al., 2017] and
[Madakat et al., 2018]. Constraints can be found to convert the LAC problem in a COP but
exploring the search tree through node exploration proves challenging due the uncer-
tainties of the problem. Weather observations may lead to many different states and mesh
status which renders lateral exploration and cutting difficult.

3.4.3.3 Monte-Carlo Tree Search (MCTS)

MCTS presents similar issues in solving the LAC problem. MCTS requires formulating the
problem as a Markov Decision Process (MDP), a 4-tuple of (S, A, Pa, Ra) with S the states, A
the available actions, Pa the probability that action a in state s at time t will lead to state s′

at time t + 1 and Ra the expected reward received after transitioning from state s to state
s′ after taking action a. MCTS uses simulations called roll-outs to explore the search tree
vertically and put weights on expanded nodes based on an evaluation of the state reached.
The most promising nodes are expanded in priority to cut the search of paths with worse
evaluations.

The best-case problem for MCTS is deterministic as each node expansion leads to a set list
of children nodes to explore. Let us consider the LAC problem solved by MCTS with a set of
mesh placements in a pass as a node of the search tree. Each node expansion leads to many
different children nodes based on the difference between predicted and observed weather
for each selected mesh of the parent node. This greatly increases the search space and
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makes MCTS impractical to solve the LAC problem in reasonable time without significant
problem-dependent modifications [Świechowski et al., 2023].

3.4.3.4 Genetic Algorithm (GA)

GAs have also been used to solve space planning mission previously. A GA formulates in-
dividual solves of a problem as individuals in a population. Each individual has a set of
properties called genome which can be altered to change decision processes in the problem.
A fitness function is used to measure the value of solutions found by individuals of the pop-
ulation. After each solving by the population a subset is created with the fittest individuals.
Mutations may be applied to the genome of some of the selected individuals to create new
solutions, a process similar to a random jump in a tree searching method. A new solving
is then performed using the subset population of individuals. This process continues un-
til certain conditions are met, which can include reaching time or fitness thresholds. Some
researchers have explored GAs as potential algorithms to solve satellite related problems.

[Mansour and Dessouky, 2010] presents a GA to solve the daily single satellite schedul-
ing problem. [Niu et al., 2018a] uses NSGA-II[Deb et al., 2002], a GA that creates a mating
pool composed of parent and offspring populations, selecting the best solutions with re-
spect to fitness and spread. [Xu et al., 2020b] developed a genetic algorithm to solve the
LAC problem using agile satellites and strips. This study proposes a genome that uses 0
to signal that a specific strip was not scheduled for acquisition and 1 otherwise. The study
shows improved result when compared to greedy algorithms, however cloud coverage is
not considered and as a consequence selected strips may result in wasted acquisitions
regularly.

3.4.3.5 Evolutionary Algorithm (EA)

EAs represent a broad family of optimization algorithms inspired by Darwinian evolution
concepts. An EA simulates solutions as individuals of a population and use different func-
tions such as reproduction, crossovers and mutations to search through the population in-
dividuals with high fitness. GAs are a subtype of EAs that encodes the data of individuals
as genes and specifically uses crossovers and mutations. Examples of other EAs cited in
[Bartz-Beielstein et al., 2014] include Evolutionary Programming (EP), Evolution Strategy (ES)
and Genetic Programming (GP).

EP only uses mutations as operator and selects individuals based on a probabilistic fit-
ness function. ES use small global variable changes to parents and mutated offsprings to
select the fittest individuals. GP uses similar strategies as GAs but the individuals are com-
puter programs that are refined to perform a user specified task. While GAs are the most
commonly used EAs to solve observation satellites planning problems, other studies include
approaches using other types of EAs.

[Chang et al., 2022] combines NSGA-II with an Adaptive Large Neighborhood Search (ALNS)
algorithm and adds "Destroy" and "Repair" operators to the evolutionary cycle. [Li and Li,
2019] proposes a Multi-objective Binary-encoding Differential Evolution (MBDE) to solve the
daily satellite scheduling problem without weather uncertainty. The authors use discrete
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values to simulate the start and end of acquisition windows and achieve better overall re-
sults when compared to the NSGA-II algorithm. As for LAC related research, [Li et al.,
2023] proposes an improved NSGA-III algorithm called ESP-NSGA-III for the LAC prob-
lem without weather uncertainty and using strips. The proposed algorithms introduces
extreme solution preservation to keep extreme individuals with specific regional solutions
in the evolution cycle of the GA and thus improve the diversity of solutions available for a
mission.

While these studies all abstract cloud coverage as a simplification of both the daily
scheduling and the LAC problem, they improve the use of traditional GAs as was presented
previously. The modification or addition of operators allows for more specific approaches
to each problem with improved results in performance or diversity of solutions.

3.4.3.6 Simulated Annealing (SA)

SA is an optimization method based on the physical process of materials where the tempera-
ture is adjusted gradually. SA uses a state with neighbours at each iteration of the algorithm.
The algorithms tries to solve the problem by reaching an approximated global optimum
represented by a low energy state. A change of state can worsen the current solution which
reduces the risk of being trapped in a local minimum. An acceptance probability function
regulates the probability of transitioning to a neighbouring state. The algorithm starts with a
temperature T as a high value (or infinity) that represents the energy left in the system. For
high T values, the acceptance probability function allows for transitions to higher energy
neighbours (lower quality solutions) more easily. For low T values, transitions can only be
made towards a state of lower energy than the current one.

This process enforces different rates of exploration, starting with a large exploration and
narrowing to an exploitative process towards the end of the annealing. The algorithm stops
when a certain quality threshold is reached or when a computing budget is exhausted. The
main advantages of SA and similar local search algorithms are their resistance to being
trapped in local minima and their ability to search through large-dimension state spaces
where population based algorithms would encounter memory issues. SA is one of the most
used and compared to algorithm in the field of satellite optimization problems for its sim-
plicity of implementation and due to the scale of the problems.

[Liu et al., 2022] considers the multi-objective multi-satellite downlink problem and opti-
mizes both profit and efficiency to satisfactory results. [Wu et al., 2017] proposes an adaptive
SA for the daily satellite scheduling problem that uses clusters of scheduling tasks to reduce
satellite maneuvers and limit the search space. [Han et al., 2022] solves the daily satellite
scheduling problem with weather uncertainty using a SA with a fast insertion strategy to
include new acquisition requests. The authors compare the results with other algorithms
such as a GA and ALNS to obtain positive efficiency and effectiveness results. [Waiming
et al., 2019] uses a hybrid GA and SA algorithm for a version of the daily satellite scheduling
problem that includes transmission operations with ground stations. The authors show the
feasibility of a two-phase algorithm that finds high quality candidate solutions with a GA
before switching to a SA and solving the issue of local optima trapping.
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SA tends to perform well to solve problems similar to the LAC problem such as the daily
satellite scheduling problem. However SA can lead to precocious solves as the energy of the
system decreases which leads to local optimum trapping. The uncertainty of the states is
often not considered in the cited studies which could be an issue due to a variable decrease
in temperature of the states depending on the outcome of the uncertainty parameters.

3.4.4 Analysis and Comparison

The literature on satellite scheduling problems is comprised of problems similar but not
exactly applicable to the LAC problem as we define it in this study. The daily satellite
scheduling problem is the most encountered, with different hypotheses including the agility,
number and characteristics (i.e. optical or radar lenses) of satellites. For studies consider-
ing these problems, the weather uncertainties are usually abstracted to reduce the search
space to deterministic states involving the scheduling and switching of observation tasks.
This approach to the daily satellite scheduling problem is common as it can then be catego-
rized as a multi-dimensional knapsack problem as seen in [Bensana et al., 1996], which helps
with benchmark and comparison to other algorithms in the literature.

The insertion and modification of observation tasks in visibility windows is the focus of
these studies. Works on the LAC problem often abstract this process by restricting the agility
of the satellites used. In these studies the AOI is made discrete through a number of points
placed on the AOI that all need to be acquired to complete the mission. These points are
acquired by locking the satellites’ rolling ability and acquiring continuous meshes as long
as the AOI called "strips". Using strips simplifies the LAC problem to a problem of selecting
which strip to acquire in which satellite pass. It reduces the need for satellite coordination
as the acquisitions are strictly distinct without overlap. Weather uncertainties are also often
abstracted since an acquisition resulting in a clouded image will be repeated without change
on another pass.

However strips cause a number of issues when considering the LAC problem as de-
fined in section 3.2. The restriction to a single roll angle for satellites may lead to acquisition
of parts of the AOI where the weather was predicted poor. The acquisition of meshes in-
stead of strips allows for the change in roll angle and acquisition of other parts with higher
likelihood of desirable weather. As such strips cause waste, and in most cases lead to an
increase in completion time. Each strip that fails to be acquired due to clouded images will
be re-acquired without change to respect the strip grid created over the AOI.

In the case of meshes being used, a clouded area can be re-acquired using a mesh po-
sitioned differently to cover both the mentioned area and other areas that are still to-be-
acquired. This flexibility makes them easier to fit around constrained areas than strips
which are always as long as the AOI permits. Meshes also allow MPFs to integrate ur-
gent requests to the satellite plans and still continue the acquisition of the large area as a
background task, whereas strips need to be cancelled and re-acquired on a later pass in the
case of urgent request integration.

This overview presented approaches to problems similar to the one detailed in section
3.2. The daily satellite scheduling problem treats meshes but considers a smaller scale due
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Algorithms Computing time Robustness Scalability Local minima sensitivity
Greedy ++ - - - -

Constrained ++ - - ++ - -
MCTS - - + - - +

GA - - + + ++
EA - - + + +
SA - + ++ +

Table 3.1: Evaluation of the LAC problem solving metrics per optimization algorithm graded from - - (low
performance) to ++ (high performance) for each category

to the point of view of a single MPF. The LAC problem using strips takes an LARM point of
view but restricts satellite agility and ignores weather to limit the complexity of the problem.
Due to the increase in the search space caused by the introduction of meshes and the differ-
ence in metrics evaluated we need to consider the adequacy of the optimization algorithms
when considering the LAC problem with weather uncertainty and meshes. Based on pre-
vious observations, we propose in table 3.1 a comparison of the characteristics of previously
mentioned algorithms when applied to the LAC problem. The evaluation for each crite-
rion scales from - - (low performance) to - (below average performance), + (above average
performance) and ++ (high performance).

3.4.5 Conclusion

In this chapter we presented the LAC problem with meshes and its formalization with rele-
vant problem and solving metrics. Based on these definitions, we presented the operational
solving of the problem and an array of possible optimization algorithms used to solve simi-
lar problems. The optimization algorithm used to solve the LAC problem needs to be robust
to the different operational conditions met in observation missions. Due to the size of the
AOI sent to the LARM for acquisition, the scalability of the algorithm is also important. The
solutions must be found in reasonable computation time and need to avoid local minima
that are present in the LAC problem.

From these observations, we propose the use of AMAS as an optimization method to
solve the LAC problem. We suggest that using AMAS answers several difficult issues in the
solving of the LAC problem:

3 a global evaluation function is not needed, which in the case of such optimization prob-
lems is often difficult to find and requires significant computation time,

3 the parallelization of the system is inherent due to the distributed agents processing
simple personal algorithms,

3 the cooperative behavior is adequate to the integration of environment updates during
the solve, for example weather updates in the case of the LAC problem.

In this thesis we focus on the optimization of the scale of the LAC problem as the cen-
tral issue to its efficient solving. For this reason AMAS are studied as good optimization
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candidates over the existing examples present in the LAC literature.

In chapter 4 we present the AMAS theory, the methodology used to apply it to the LAC
problem and show the adequacy of AMAS due to their characteristics related to the ease of
treatment of both scalability and robustness of the problem.
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4 Theory and Tools

4.1 Introduction

As stated in the previous chapter, in this thesis we propose a cooperative multi-agent system
for the solving of the the LAC problem. The proposed system was designed using the AMAS
theory and the AMAS for Optimisation (AMAS4Opt) agent model presented in section 4.2
and 4.3 respectively. The multi-agent system was developed as a research contribution to
the Synapse project of the IRT Saint-Exupéry, a project which focused on mission planning
for Earth observation satellites. The tools used within the Synapse project to develop the
multi-agent system are presented in section 4.5.

4.2 The AMAS Theory: Cooperative Self-Organization

The AMAS theory [Gleizes et al., 2008; Georgé et al., 2003; Glize, 2001; Gleizes et al., 1999] is
based on a bottom-up approach starting from the autonomous entities of the problem and
describing their cooperative interactions in order to design an adaptive multi-agent system
from which the solution of the problem emerges.

It is well-known in computer science that different algorithms can be functionally ade-
quate for a given problem, i.e. the proposed algorithm is able to solve the problem for which
it is designed. The AMAS Theory considers that for any functionally adequate system, there ex-
ists at least one cooperative internal medium system that fulfills an equivalent function in the same
environment [Glize, 2001]. In other terms, by focusing on (and hence understanding) a sub-
set of particular systems (those with cooperative internal mediums) it is possible to obtain a
functionally adequate system in a given environment. We concentrate on a particular class
of such systems, those with the following properties [Gleizes et al., 1999]:

3 the system is cooperative and functionally adequate with respect to its environment.
Its parts do not ’know’ the global function the system has to achieve via adaptation;

3 the system does not have an explicitly defined goal, rather it acts using its perceptions
of the environment as a feedback in order to adapt the global function to be adequate.
The mechanism of adaptation results in the agents trying to maintain cooperation using
their skills, representations of themselves, other agents and the environment;
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3 each agent only evaluates whether the changes taking place are cooperative from its
point of view – it does not know if these changes are dependent on its own past actions;

3 basically, the idea is that it is easier and more efficient to design systems by focusing
on the agents and the cooperative self-organising mechanisms which will result in
the adequate system, rather than trying to produce the right global system directly.

Applications. Several multi-agents systems based on this theory have been designed to
efficiently solve a wide variety of applications. [Perles, 2017] proposes an AMAS based
framework for the solving of common problems encountered in power systems such as
autonomous electrical networks. The study shows the adequation of AMAS systems for
voltage regulation in such highly evolving environments. [Brax, 2013] detects anomalies in
maritime surveys using an AMAS. The author justifies the possibility of instantiating the
proposed model to other surveillance systems due to its robustness and genericity. [Bourjot
et al., 2003] draws from the behavior of social spiders to propose a reactive multi-agent sys-
tem. The resulting swarm mechanism is able to integrate non-local information during the
processing in order to make the system more adaptable to change.

[Verstaevel et al., 2016] introduces an AMAS able to learn from the demonstrations of a
human tutor and reuse contexts in its own use cases. Results on ambient robotics experi-
ments show behaviors that are user satisfying despite the highly combinatorial observation
space of the problem. [Guastella, 2020] estimates missing environmental information in
large scale Internet of Things (IoT) urban environments. The AMAS developed in this study
is very adaptable to changing urban contexts and able to handle a large number of hetero-
geneous devices.

The results of these studies contribute to our interest of an AMAS application to the LAC
problem. The size of the search space, possibility of alterations in the environment and
possible heterogeneity of the problem elements all match the description of the challenges
met with the LAC problem.

4.2.1 Cooperation

Coordination is a central issue in the field of distributed multi-agent systems. Interactions
between agents need to help them perform their respective activities and achieve their goals.
The coordination of agents is a known problem in the multi-agent literature. [Mandiau
et al., 2008] describes a coordination mechanism based on decision matrices for the solving
of simulated traffic problems. [Beer et al., 1999] presents different agent interactions based
on negotiation such as auctions, contract nets and argumentation. [Terán et al., 2013] pro-
poses mathematical models for the different types of coordination mechanisms present in
the multi-agent literature. In this thesis we focus on cooperation as the mechanism of coor-
dination between agents.

Cooperation is defined as the ability agents have to work together in order to realize
a common global goal. It implies that the activities of the agents are supplementary, and
dependency links and solidarity exist between them. They have a cooperative attitude that
satisfies four properties:
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1. Sincerity: If an agent knows that a proposition p is true, it cannot say anything different
to others;

2. Willingness: Agents try to satisfy a request if it is coherent with their own skills and
the current state of the world, and if no prejudice results from the action, either to the
acting agent or to another. If there is a resulting prejudice, refer to property three;

3. Fairness: They always try to satisfy, when it is possible, agents with the higher level of
difficulty or criticality;

4. Reciprocity: Each agent of the same society knows that it and the others verify these
three main properties.

The objective is to design systems where agents:

3 do the best they can when they encounter difficulties. These difficulties can be viewed
as exceptions in traditional programming. From an agent point of view, we call them
Non Cooperative Situation (NCS). An agent locally tries to detect such failures and try to
repair them.

3 anticipate NCS. The agent always chooses the actions with minimal disturbance to the
other agents it knows. It tries to anticipate [Doniec et al., 2005] (for him and others)
problems that can introduce NCS;

3 are cooperative towards the system and other agents. The first point implies that agents
not reaching their own goal can be seen as generating NCS that must be repaired. Be-
ing cooperative toward other agents implies that when detecting or anticipating NCS
agents try to always help agents with the higher level of difficulty ;

To resume, the AMAS theory focuses on designing cooperative agents that act by re-
organizing their acquaintances and interactions adequately with the others agents. The NCS
are cooperation failures that an agent must anticipate or detect and repair. Their handling
follows the agent life cycle : perceive, decide and act. Thus, an agent is in a NCS when:

3 a perceived signal is not understood or is ambiguous;

3 a perceived information does not produce any new decision;

3 the consequences of its actions are not useful to others.

Given that, the AMAS Theory defines seven NCS.

3 Incomprehension. The agent is not able to extract any understandable information
from the received message in its perception life cycle step.

3 Ambiguity. Related to the update of the local representation in the perception life cycle
step, this NCS informs the agent that different interpretations are possible, and by that,
an accurate representation update is not possible.
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3 Incompetence. The agent does not have the competence to treat received requests from
its neighborhood (decision step).

3 Unproductivity. During the decision life cycle step, the agent is unable to propose an
action to do during the action life cycle step.

3 Conflict. This NCS is detected when the agent considers that modifying the environ-
ment can prevent other agents from reaching their goals (i.e. when using a resource
required by another agent).

3 Concurrence. The agent is able to perform the actions but considers that there are other
agents able to perform the same actions and reach the same state in the environment.

3 Uselessness. This last NCS is detected when the agent considers its actions or itself not
useful for the system or its environment.

To solve a NCS, three generic behaviors can be used by an agent:

3 Reorganization: change its relation with other agents, meaning contact other agents,
stop interacting with a given agent or change the importance allocated to existing rela-
tions.

3 Adjustment: modify its behavior by adjusting its internal parameters.

3 Openness: decide to create a new agent or to delete itself.

4.2.2 Achieving Self-Adaptation and Self-Organization

We consider that each part Pi of a system S achieves a partial function fPi of the global func-
tion fS (figure 4.1). fS is the result of the combination of the partial functions fPi , noted by the
operator "◦". The combination being determined by the current organization of the parts, we
can deduce fS = fP1 ◦ fP2 ◦ ... ◦ fPn . As generally fP1 ◦ fP2 ̸= fP2 ◦ fP1 , by transforming the
organization, the combination of the partial functions is changed and therefore the global
function fS changes.

This is a powerful way to adapt the system to its environment. A pertinent technique
to build these kinds of systems is to use adaptive MAS. As in Wooldridge’s definition of
multi-agent systems [Parsons and Wooldridge, 2002], we will be referring to systems con-
stituted by several autonomous agents, plunged into a common environment and trying to
collectively solve a common task.

4.2.3 AMAS Agents

Agent Life Cycle. The agents of an AMAS follow a life cycle including phases known as
perceive, decide and act. To cooperatively optimize progress and waste, agents are able to
communicate using messages. Each agent unpacks messages during the perceive phase,
updates their own status and/or chooses possible messages to send during the decision
phase, and emits the chosen messages during the act phase. These messages can be requests,
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Figure 4.1: Adaptation: changing the function of the system by changing the organization

status updates or acknowledgments. Several messages can be emitted at once by an agent
during its act phase but each message is addressed to a single agent only. Messages contain
the identity of the emitting agent and the data required for the receiving agent to decide the
action to perform.

Communication. Messages are used to ensure the coherence of the system and homo-
geneity of information between the agents of the system. Agents run independently and
asynchronously, as a result the direct gathering of data about another agent is subject to er-
rors as the information could have been modified either before or after the gathering during
the current cycle of the agent. Messages are an answer to this issue but can only be used as
representations of the state of the emitting agent in the previous agent cycle. Acknowledg-
ments and updates are then required to confirm the expected actions were taken and had an
impact on the environment. Using messages can be avoided when an information that is
not subject to change during agent cycles is required by an agent. The information can then
be gathered directly in order to reduce the message load. These direct exchanges of stable
information will not be mentioned in the following for simplification reasons. For example
the length of a mesh is an information subject to change which may be gathered through an
exchange of messages between agents, while the satellite associated to a pass is not subject
to change and may be gathered through direct observation.
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4.2.4 ADELFE

Designing adaptive multi-agent systems requires a specific methodology different from the
top down traditional methods. Indeed, in such systems, we concentrate on the different
parts of the system and their interactions. The global function of the system emerges from
these interactions. Thus, the Atelier de Développement de Logiciels à Fonctionnalité Emer-
gente (ADELFE) methodology [Bernon et al., 2002; Picard and Gleizes, 2004; Bernon et al.,
2005; Rougemaille et al., 2008] was developed. ADELFE is a toolkit to guide designers
through the development phase of complex, open and distributed systems based on the
AMAS theory and the concept of emergence. It is based on some well-known tools and
notations coming from the object-oriented software engineering: UML (Unified Modelling
Language) and RUP (Rational Unified Process). It uses AUML (Agent-UML) to express
interaction protocols between agents.

4.3 The AMAS4Opt Agent Model

AMAS4Opt. To specify the usage of the ADELFE methodology for solving optimization
problems under constraints, the AMAS4Opt agent model was introduced in [Kaddoum,
2011]. The goal of the model is to allow the development of AMAS applications for multi-
disciplinary and multi-objective problems. Generic behaviors and local interactions are
defined to facilitate the solving of complex optimization problems. AMAS4Opt has been
used to solve optimization problems in varied fields of research. [Degas, 2020] develops an
AMAS with cooperative agents based on AMAS4Opt to solve multi-objective air traffic con-
trol problems. In a similar context, [Mykoniatis et al., 2017] address delays in flight schedules
with AMAS4Opt agents estimating probabilistic states of other agents. [Bonnet, 2017] uses
AMAS4Opt for the daily satellite scheduling problem and injection of urgent requests in the
mission plans of observation satellites.

Optimization. AMAS4Opt agents are specifically designed to solve complex optimization
problems. As such the AMAS4Opt model proposes two agent roles based on their goals
and resources: a Constrained role and a Service role. Agents can have one or both roles
depending on the context. A Constrained agent can use request messages directed to a Ser-
vice agent to perform a specific service. The consequences of the service include an impact
on the environment, modifications in the internal representation of the Service agent or
the gathering of information for the Constrained agent through answer messages. Agents
send requests depending on their internal algorithm and environment and may send mul-
tiple requests of different types to the agents in their neighborhood during a single life cy-
cle. Requests are sent to contribute to the local goal of the agent or to solve an identified
NCS. Thus, each request is associated to a measure of criticality, representing the request-
ing agent’s difficulty or distance to reach its goal. In section 5.3 we present Glimpse, an
AMAS for the solving of the LAC problem. Its agents are specified with their goals, roles
and interactions as developed under the ADELFE toolkit and AMAS4Opt agent model.
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4.4 AMAS for the LAC Problem

In section 3.3.2 the solving metrics of the LAC problem are defined. The calculation time, al-
gorithm robustness, scalability and local minima sensitivity are evaluated when discussing
the adequacy of an algorithm to the problem. In this chapter the properties of the multi-
agents systems based on the AMAS theory are presented. Problems solved using AMAS
include difficult characteristics such as high combinatorial, dynamic environment, missing
information and heterogeneous problem elements. Recent studies regarding multi-objective
optimization problems use the AMAS4Opt agent model to facilitate the development of
agents and their communications for the solving of these problems. Good results are ob-
tained in resource allocation problems such as the daily satellite scheduling and air traffic
control problems. Due to the similar nature of the LAC problem, we suggest AMAS based
solution to be adequate.

The bottom-up approach of AMAS, where simple elementary algorithms are designed
for each agent instead of a complex overarching algorithm, matches with the scalability
criterion. Indeed the interactions between agents do not grow in complexity with the size
of the search space. The nature of distributed complexity also helps with the calculation
time. The agents’ life cycle can be allotted to different calculation units to perform parallel
tasks and lower the time required for the system to progress to the next cycle. The solving
of NCS between cooperative agents help with the avoidance of local minima trapping.

Finally the robustness of the system depends on the behavior of agents in different ex-
perimental environments and is able to be tuned during the design of the AMAS. From these
observations we suggest that an AMAS is an adequate optimization algorithm for the solv-
ing of the LAC problem. In chapter 6 the results of Glimpse on a variety of LAC scenarios
are presented. Resolution metrics are discussed and table 3.1 of section 3.4.4 is expanded to
include AMAS. This classification provides an estimation of the advantages and drawbacks
to using AMAS to solve the LAC problem as formalized in this study.

4.5 Synapse Project Tools

Programming Language. AMAS applications have well defined entities in the form of
agents. Agents are always exactly the same in their definition, changing only by their in-
ternal representation. As such, Object Oriented Programming (OOP)[Rentsch, 1982] lan-
guages are suited to the development of AMAS. We decided to use Java as programming
language to develop Glimpse. The popularity of the language ensured easier access to in-
dependent functionalities and libraries. The automatic memory management is specifically
desirable when using AMAS due to the cyclic process of deletion and creation of agents.
Moreover the AMAS framework providing the structure of agents with their life cycle, basic
communication functions and agent scheduler called AMAK[Perles et al., 2018] was also de-
veloped using Java. The interface between AMAK and Glimpse was simplified considerably
by using the same development environment, programming language included.
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Versioning. For the versioning of Glimpse, we used an internal framework based on
Github. This allowed for the group development and review of the AMAS, its Graphical
User Interface (GUI) and additional programs such as an ILP(Integer Linear Programming) al-
gorithm (annex A). The collaborators included members of the scientific contribution, the
SMAC team from the IRIT laboratory and the ISAE-Supaéro, and professional contribu-
tion represented by Airbus and Thales Alenia Space. The scientific contributions including
Glimpse are discussed in chapter 5.

Weather Data. The data used for the experimentations of section 6 was also provided by
Airbus and Thales Alenia Space. The satellites’ ephemeris, meaning their position and
velocity through time, their characteristics and the relevant MPF attributions were col-
lected from operational data of previously performed observation missions. Similarly the
observed weather at the time of the these past observation missions is also collected. The
observations are used to simulate forecasts as explained in section 6.2.2. The experiments
presented in this study alter the characteristics of the satellites and their operating MPF but
the ephemeris and weather are kept identical so as to approach operational conditions of
actual observation missions. Indeed LARM operators cannot modify the ephemeris of the
satellites in order to move the corridors of the passes over the AOI as the satellite may be
shared with other clients with their own acquisition requests.

4.6 Conclusion

In this chapter we present a type of multi-agents systems called AMAS. AMAS make use of
distributed and cooperative agents. These agents can communicate and react to their envi-
ronment to achieve local goals. Through the use of Non Cooperative Situations and agent roles
the agents self-organize and an emergent function is produced. AMAS have been used suc-
cessfully in the solving of difficult optimization problems with dynamic environments and
large search spaces. As such, they appear as a candidate optimization method for the solv-
ing of the LAC problem. In chapter 5 we propose the contributions of the thesis including
the design of Glimpse, an AMAS for the solving of the LAC problem.
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5.1 Introduction

Some of the methods and tools presented in chapter 4 help with the design of any multi-
agent system. Meanwhile methods like AMAS4Opt help with the design of multi-agent
systems developed to solve complex optimization problems. In this chapter the Glimpse al-
gorithm is presented. Glimpse is a multi-agent system that uses agents based on AMAS4Opt
components to solve the LAC problem. The solving is distributed in each agent using com-
munication and cooperation tools. The next sections describe the agents of Glimpse and
discuss relevant design choices.

5.2 Problem Formalization

5.2.1 Dynamic Meshing

In section 3.4.1 static meshing was introduced as a common technique used by an individ-
ual MPF to divide an AOI in mesh placements to be acquired by homogeneous satellites
- sharing similar characteristics. Identical swaths are the best case for static meshing as
each mesh acquired by different satellites can be placed on a single grid if mesh dimensions
are shared. The lack of overlaps between meshes means that each mesh needs to only be
acquired once. This guarantees that no re-acquisition due to acquisition overlaps occur, po-
tentially using satellite resources optimally. However when using static meshing acquired
images that are discarded due to bad weather will need to be re-acquired entirely at the
corresponding mesh placement. Meshes are also locked in their placement to the precom-
puted grid to ensure that no overlaps are occurring and cannot be moved or altered.

Heterogeneous Satellites. Static meshing can also be used in the LAC context with several
MPFs and over a larger AOI. If used in this context the best use case of static meshing
is when every satellite is homogeneous as no overlap occurs between meshes. However
operationally LARMs most often send acquisition requests to MPFs operating different types
of heterogeneous satellites - presenting different characteristics. If a precomputed grid of
mesh placements is built using heterogeneous satellites the resulting grid presents overlaps
between mesh placements. Figure 5.1 illustrates this case using 2 heterogeneous satellites
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Figure 5.1: Example of overlapping mesh grids of heterogeneous satellites

and their respective mesh grids over the AOI. Because of these overlaps acquisitions may
partially re-acquire subparts of the AOI acquired by other satellites. The guarantee of
having no overlaps is only true for the different meshes of a single satellite, not with other
heterogeneous satellites. Having forced overlaps between satellites increases waste but also
problem complexity as the problem cannot be formalized as a single grid of enumerated
meshes to acquire. Static meshing is less useful in this context as the rigidity of the method
still exists while its benefits are reduced or nullified.

Dynamic Meshing. We propose a new meshing technique adapted to heterogeneous satel-
lites called dynamic meshing. To answer the continuity of the search space we use a seg-
mentation of the AOI that is common to all satellites. This segmentation is a precomputed
grid of subareas called cells. Each cell represents an elementary square zone to acquire and
has a length ranging from 1km to the greatest common divisor of all satellite swaths. The
AOI is fully covered by cells and only a subset of cells is covered by the corridor of a given
satellite pass. The meshes inside the corridor are placed over this cell grid that follows the
same north/south axis. The placement and size of meshes may also change on the cell grid.
The difference in mesh placement between static and dynamic in a sample corridor without
considering optimality is highlighted in figure 5.2.

This discretization of the problem operated using a cell grid allows for a more flexible
meshing. Indeed with dynamic meshing the meshes can be placed and resized to fit ge-
ographical acquisition needs during a satellite pass. A mesh can cover an area estimated
to have clear weather more precisely by altering its position which is not a possibility with
static meshing. The overlaps between meshes of different satellites discussed previously
when using static meshing can be avoided using dynamic meshing by placing the meshes
to border the already validated surfaces with as little overlap as possible. These improve-
ments cause meshes to be placed on areas that either contribute more to the global com-
pletion of the mission or that are of a higher probability of resulting in clear and usable
images. Meshes can also be placed on the border of passes or AOI more precisely as to
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Figure 5.2: Comparison of static and dynamic meshes on the same corridor

Figure 5.3: Dynamic meshes placed as to avoid cloudiness and already validated elementary surfaces

remain inside the corridor or AOI while targeting a specific sub-area.

This targeting cannot be performed using static meshing as dynamic meshes can be sum-
marized as aggregates of cells, a list of elementary coordinates all included in an acquirable
surface area. As a consequence dynamic meshes can be rearranged to fit around already
validated cells and weather forecasts as seen in figure 5.3. This improves their likelihood of
successful acquisition and optimizes the satellite resource usage for each mesh. In the case
of heterogeneous satellites, the acquisition of static meshes often lead to re-acquisitions of
parts of the meshes already acquired by another satellite. Dynamic meshes can be placed
to avoid re-acquisitions and acquire more useful (non acquired and non validated) cells
during each pass.

Partial Validation. Dynamic meshing also pairs well with partial validation, a technique
where each cell is independently acquired and validated or rejected. This is favorable for
dynamic meshing as meshes can be placed on future passes to precisely fill the gaps where
cells were not validated whereas static meshes need to be re-acquired in the same position
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due to the precomputed mesh grid. Partial validation is not used in the experiments of
chapter 6 as its use is dependent of operational implementation in MPFs. We discuss it
further as a future work perspective in chapter 7.

5.2.2 Problem Formalization

Using this new meshing technique of the LAC problem with dynamic meshing and its cell
grid we propose the following formalization; given:

3 A zone Z on which is placed a grid of width W and length L of cells c11, . . . , cxy, . . . ,
cXY, with x and y the geographical coordinates of the lower left corner the cell cxy. Z is
divided into a set of cells C = {(x, y) | cxy ∩ Z ̸= 0} inside or partially inside the area.
The cells are characterized by:

– a width lc and a length Lc per kilometer.

– An acquisition status status(cxy, t) ∈ {Active, Acquired, Validated} indicating
respectively if the cell cxy is waiting for planning, included in an acquired mesh or
included in a mesh validated at time t.

3 The set of satellites S = s1, . . . , sj, . . . , sJ of minimum mesh acquisition width f min
j ∗ lc

and maximum mesh acquisition width f max
j ∗ lc with f min

j , f max
j ∈ N; and minimum

mesh acquisition length g min
j ∗ Lc and maximum mesh acquisition length g max

j ∗ Lc

with g min
j , g max

j ∈ N.

3 The known passes P = pj1, . . . , pjk, . . . , pjK of satellite sj. Passes are known up to a
planning horizon H, in number of passes, to avoid weather prediction errors on distant
passes. Passes are characterized by:

– a date of occurrence tpjk

– a set of acquirable cells Cpjk = {(x, y) | cxy ∈ Corridorpjk}
– a maximum mesh number threshold

|Mpjk | <
|Cpjk |

f max
j ∗ g max

j

to avoid overloading the MPFs with mesh acquisition requests. This threshold is
defined as the number of meshes of maximum size sufficient to cover all cells in
the corridor of the pass.

Goal. The goal of the solving is to determine for each pass a set of meshes to include in an
acquisition request defined as

Mpjk = mpjk1, ..., mpjkn, ..., mpjk N

mpjkn = (xn, yn, f , g)

with:
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Figure 5.4: Visual representation of the formalized LAC problem with a cell grid and dynamic meshes

3 xn, yn the coordinates of the lower left corner of the mesh,

3 and f min
j ≤ f ≤ f max

j and g min
j ≤ g ≤ g max

j .

Reaching this goal consists in aggregating the cells of a given pass to re-construct meshes
considering the characteristics of the satellite performing the pass.

Figure 5.4 summarizes the graphical elements of this formalization with the example of
a zone Z of width W and length L covered by a grid of cells cxy, and a pass pjk of the satellite
sj that contains in its corridor a mesh mpjkn.

Objectives. The main objective is to minimize the time required to complete the LAC
mission. This objective is reflected in the validation of all cells in the area of interest. The
completion of the mission is reached at a time noted tcomp.

The measure of progress in completing the project is noted as:

Progress(Z, t) =

(
∑ x,y | cxy ∈ C ∧ status(cxy, t) = Validated cxy

∑ x,y | cxy ∈ C cxy

)

with Progress(Z, tcomp) = 1.

The secondary objective is to minimize the waste, i.e. the surplus of acquisition of
surfaces already acquired during the mission. With the discretization of the area of interest
into cells, a mission without waste can be represented as the acquisition of all cells once
only. We note the waste

Waste(Z, t) =
Nbacq

NbCacq

− 1

with:

3 Nbacq the total number of cell acquisitions in the Z area from the beginning of the work
to the moment t,
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3 and NbCacq the number of cells of Z acquired at least once from the beginning of the
mission to the moment t. For example, if all cells of Z were acquired only once, Nbacq =

NbCacq and Waste(Z, t) = 0.

5.3 Glimpse System

Multi-agent systems utilize small programming modules called agents that are able to per-
ceive and modify their local environment. AMAS based systems such as Glimpse are co-
operative and as a result define action rules or communication protocols between agents to
help each other achieve local goals relative to their environment. The first step in the design
of Glimpse is the identification of agents among system entities. This is explained further
with agent interactions and cooperation design choices. Finally the Glimpse scheduler co-
ordinating agents with real-time events is described step by step.

5.3.1 Agentification and Motivations

In section 5.2.1 we established a new meshing technique called dynamic meshing. When
using dynamic meshing a precomputed grid of elementary subzones called cells covers the
whole AOI. Meshes can then be placed and resized on the cell grid. A simple overview
of the problem when formalized with dynamic meshing can be described as the follow-
ing: an LARM receives a LAC request, a list of MPFs and passes over the AOI from their
satellites. In a top-down approach the LARM must find meshes placed on the cell grid and
contained within the corridors of the passes to reduce the rate of unsuccessful acquisition
due to cloudy weather and thus optimize problem objectives. This process is presented in
figure 5.5. However designing an AMAS requires a bottom-up approach where the be-
havior of the individual entities of the problem define the emergent behavior of the system
overall. The agentification process thus starts from the micro level and gradually goes up to
macro levels.

Agents. Based on this overview we identify system entities that have goals and could
make decisions using their local environment to try and achieve these goals. First the cells
and meshes share the goal of being acquired and validated during any pass. The goal for
each pass can be described as achieving the best ratio of surface validated by surface sent
for acquisition to the corresponding MPF.

Having identified these entities as agents of Glimpse we refer to them as Cell, Mesh and
Pass agents in the following. Cell, Mesh and Pass agents need to cooperate to find the best
positioning and size for meshes. For example Cell agents provide information and send
coverage requests to Mesh agents and Pass agents create and destroy Mesh agents based on
their criticality. Figure 5.6 summarizes the interactions between the three types of agents.

Criticality. In order to guide these cooperative interactions we define the agent criticality.
The criticality of an agent represents its importance relative to the other agents of the system.
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Figure 5.5: Treatment of a large area acquisition request by an LARM using dynamic meshing

Figure 5.6: Organization of Glimpse agents: Cell, Mesh and Pass agents

The highest the criticality of an agent is the more prioritized it is by other agents and the
more likely its local goals are to be fulfilled.

Each agent has its own local goal but in most cases in Glimpse only a subset of the
agents relative to a pass can have their local goal fulfilled. For example in a pass that
contains 100 cells with a limit of 5 meshes of maximum length and width 2x5 only 50 Cell
agents can achieve their local goal of being validated in the best case scenario. The agent
criticality is used in order to select which agents should have their local goal fulfilled.
These criticalities are comprised of several criteria depending on the current properties and
knowledge of the agent. They are subject to change during the life cycle of the agent as their
properties are modified by their perception either direct or by message updates from other
agents. Agent criticalities are used during the decision phase of the agents to decide their
action. Agent interactions are thus based on criticalities and the messages exchanged are a
result of their own decision process.

In the following, each agent is described with its representation of the system, knowl-
edge of its environment, its local goals and eventual criticalities. Cooperation processes
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between agents are then explained and illustrated through elementary interactions.

5.3.1.1 Pass Agents

Internal Representation. Pass agents are Service agents that represent both the temporal
and geographical aspects of a pass. A Pass agent knows the characteristics of the satellite
performing the acquisitions, the coordinates relative to its corridor (the sub-zone of the large
area available for acquisition) and the anticipated time of start and end of the satellite flight
over its corridor. It also knows the list of cells contained within the pass and the list of
meshes that are available for acquisition on this pass. This list of meshes can vary in size as
dynamic meshing allows for the creation and removal of meshes. The goal of a Pass agent
is to maximize the surface validated after the acquisition of the corresponding satellite.

A visual representation of the characteristics of a Pass agent is represented as an agent
diagram in figure 5.7. An agent diagram presents the internal elements of the agent with
its variables and methods in the upper section of the diagram. Linked to the agent section
are the perception and the action modules in which are listed the methods available to the
agent during the perception and action phases of its life cycle. Finally the agent or agents
listed below these modules are the agents with which the agent can communicate through
the exchange of messages.

Behavior. The behavior of Pass agents is an iterative and correcting mesh creation process.
Pass agents first need to determine initial placements for Mesh agents and create them
on these positions. The method manageMeshCreation() is used by Pass agents to decide how
many meshes need to be created and their initial placements. The meshes created are ini-
tially only as large as a cell, with length and width of one by one relative to the cell grid.

As cooperative agents, Pass agents create Mesh agents to help Cell agents with the highest
criticality on the pass, to satisfy their goal. Thus, Pass agents select individual cells scoring
the highest criticality as initialization coordinates for each newly created Mesh agent.

Mesh agents then interact cooperatively with the Cell agents following a process called
adhesion to expand and improve their placement in the corridor. Once this process stabi-
lizes (i.e. no more messages are emitted between Cell and Mesh agents), meaning no move-
ment or expansion of the meshes can happen further, and the Pass agent is informed. The
Pass agent then uses the checkStabilization() and manageMeshCreation() methods to ensure that
no Mesh agent is trapped in local minima. In other words, there is no other part of the cor-
ridor that contains more critical cells than those already included in the currently placed
meshes. Indeed, as high critical cells are often centralized on a small zone inside the corri-
dor of the pass, this zone can be smaller than the areas covered by all the meshes initially
created by the Pass agents. As a result meshes may travel from their initial placements to
zones of lower criticality than the cell on which they were created initially. In which case,
they can be trapped in local minima.

Each Pass agent is able to act cooperatively and allocate the resources (the meshes in its
corridor) to the remaining most critical Cell agents that would not be acquired at the time
of stabilization. Starting from the most critical cells and in descending order, Pass agent
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Figure 5.7: Pass agent diagram

removes and recreates meshes on the most critical cells not covered by a mesh. This is
performed for all cells in the corridor of a pass. The following property is verified at the
end of this process: no cell exists on the corridor more critical for this pass than the most
critical cell adhering the least critical mesh. At which point removing and creating a mesh
again would lead to its creation on the same cell it already covered with no progress made.
The comparison to the most critical adhering cell of a mesh is tied to the criticality of mesh
agents, further details are given in the Mesh agent description. Algorithm 1 summarizes in
pseudo code the manageMeshCreation() method, with Cpjk the cells included in the corridor
of the pass pjk of the satellite sj.

The behavior of Pass agents ends when no mesh creation is needed after a stabiliza-
tion. The condition fulfilled then is that no single cell not adhering to a mesh in the corridor
is more critical than the most critical cell of the least critical mesh. The sequence diagram of
figure 5.8 illustrates the interactions between a Pass agent and the Mesh agents in its corridor
after the pass stabilizes. In a sequence diagram such as this one the agents are represented
as generic entities following a sequence in time from top to bottom. Internal methods are
noted as arrows looping back on themselves while messages are noted as arrows directed
towards other entities. The opt operator corresponds to a conditional statement where the
section of the diagram is executed only if the boolean variable checked is verified as being
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Algorithm 1 Mesh creation algorithm ((manageMeshCreation() method)

1: sorting of cells c ∈ Cpjk by criticality
2: for all cell cxy ∈ Cpjk do
3: if cxy not covered and highly critical compared to the covered cells in the corridor

then
4: creation of a mesh m = (x, y, 1, 1)
5: if maximum number of meshes threshold exceeded then
6: removal of the least critical mesh
7: end if
8: end if
9: end for

true.

In figure 5.8, the Pass agent first checks the condition for stabilization on the pass. If it is
verified it gathers all updated mesh criticalities using the requestMeshCriticality() service of
the corresponding Mesh agents and receives the answer through the answerMeshCriticality()
method. If the Pass agent detects any Mesh agent without any Cell agent adhering to it (re-
moveUnadheredMeshes()), it sends destruction messages through requestMeshDestruction() to
these Mesh agents that remove themselves from the system using destroySelf() method. This
cleaning phase is only performed after pass stabilization as Mesh agents can have temporary
states without any cell adhesion during the self-organization process followed by cell adhe-
sion in later agent cycles. The adhesion process is explained further in section 5.3.2. The
Pass agent then removes and recreates meshes using the method manageMeshCreation().

After this is done, if no meshes have been created the mesh placement on this pass is
considered complete and sendPlanningRequest() is used by the Pass agent to send the list of
meshes to acquire to the MPF following a schedule presented in section 2.4. Indeed, if no
meshes are created the absence of cells justifying the process of removing and creating new
meshes is verified. If meshes are created the self-organization process between Mesh and
Cell agent starts and the Pass agent continues at step 1 in the sequence diagram.

Pass Agents and Adaptability. As an algorithm following the AMAS theory, Glimpse is
a single-solution algorithm. In this type of optimization algorithm, a single candidate so-
lution is iterated upon and improved to tend towards the global optimum. This is in op-
position to population-based algorithms [Beheshti and Shamsuddin, 2013]. At any point in
time (which can be represented as an agent cycle) during the solving of the LAC problem,
Glimpse agents have a memory of their neighborhood, characteristics and state of planning.
Single-state algorithms such as greedy algorithms often require a new launch and a total
reset of the parameters when the data of the problem is modified. For the LAC problem we
need to consider the possibility of data modification when weather forecasts are updated.

In this case a greedy algorithm applied to the LAC problem needs to be reset as the
decisions early in the algorithm have a strong impact on the decisions made later in the
solving. This is specifically true for greedy algorithms as no backtracking is allowed in the
decision tree, but is also true for most single-solution algorithms such as SA algorithms
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Figure 5.8: Sequence diagram of the interactions between a Pass and Mesh agents

as the shape of the objective function may have changed and present new local or global
optima late in the solving process. AMAS algorithms are more resilient to updates during
the solving as they can keep the existing parts of the solution that are not affected by the
updates and only have the affected agents react to the change.

In the case of Glimpse, the behavior of Pass agents ensures that only the Mesh agents that
are covering Cell agents which had their criticality worsened by an update are removed and
other meshes created elsewhere on the corridor. Existing Mesh agents that are still covering
critical Cell agents may move or extend to adapt to the new criticality of neighboring Cell
agents but will not be recreated, which avoids restarting the computation of mesh place-
ments in the corridor from zero. This process is illustrated in figure 5.9 using the same
corridor through time and subareas of different criticality represented from light red (least
critical) to bright red (most critical).

5.3.1.2 Mesh Agents

Internal Representation. Mesh agents are Service and Constrained agents that are the sys-
tem representation of meshes. A Mesh agent has origin coordinates, length and width, a
maximum size and a state of acquisition of its corresponding mesh. It knows the pass in
which the mesh it is representing is contained and the list of cells that are covered by the
mesh or adjacent to it within the pass. The local goal of a Mesh agent is for the correspond-
ing mesh to be validated. To do so, the Mesh agent seeks to increase the likelihood of its
corresponding mesh to be validated by covering the cells with the best chance of validation
(highly critical cells). Thus, a Mesh agent is able to communicate with the cells covered by
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Figure 5.9: Adaptation of Glimpse agents to a weather update through creation of meshes and self-organization

the mesh, adjacent cells within the pass, and the pass in which it is contained. The local
neighborhood of a Mesh agent consists of the agents representing the cells that are covered
or neighboring the mesh and the pass on which the mesh is placed. Mesh agents are the only
agents to interact with both Cell and Pass agents as presented in the agent diagram of figure
5.10.

Criticality. Mesh agents have a criticality based on a list of hierarchical criteria. This crit-
icality represents the importance of acquisition of the mesh on the pass (their likelihood
to be validated),and is thus relative to the cells covered by the mesh. To ensure that at least
the most critical Cell agent covered by the mesh and willing to stay covered by the mesh
has its local goal fulfilled, we based the criticality of a Mesh agent on the criticality of this
Cell agent. The notion of a Cell agent willing to be covered by a Mesh agent is described
as adhesion and explained in section 5.3.2. The criticality of a Mesh agent is based on the
following normalized criteria:

1. Adhering Cell agents. The criticalities of the Cell agents currently adhering to a Mesh
agent are the defining criterion for the criticality of the Mesh agent. The criticalities of
the adhering Cell agents are listed in descending order. Comparison of Mesh agents with
this criterion implies the comparison of the respective most critical adhering Cell agents
two-by-two and in descending order, until a more critical adhering Cell agent is found.
The Mesh agent with the first more critical adhering Cell agent is considered more
critical in the comparison. In the case of equality but different numbers of adhering
Cell agents, the Mesh agent with the most adhering Cell agents is more critical. In the
case of equality and same number of adhering Cell agents the comparison is considered
equal.

2. Random. Pre-generated value affected to each agent at creation to avoid oscillation if
computed at each comparison. Used only if an equality is found when comparing the
first criterion.

Behavior. The behavior of a Mesh agent consists of improving its situation by expanding
and moving the mesh on the cell grid. Each Mesh agent communicates with its covered
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Figure 5.10: Mesh agent diagram

and neighboring Cell agents and follows the adhesion process (section 5.3.2) to decide if it
should expand or move. At pass stabilization the Mesh agent answers the request of its
relative Pass agent for its criticality. If the condition for planning is satisfied and the Mesh
agent is included in the meshes sent for planning its internal state changes to acquired. After
the delay necessary for the acquisition and answer from the corresponding MPF, the Mesh
agent state becomes either validated or back to active for future passes.

Figure 5.11 presents the states and transitions of a Mesh agent. In this type of state di-
agrams a specific variable of the agent goes through different states depending on certain
conditions. In this example the states available for the variable state of a Mesh agent (figure
5.10) are presented. The transitions between states are dependent on a conditional statement
being verified as true for leaving the state. The modification of internal parameters and re-
ception of messages during the behavior of the agent are possible causes for state transitions.
As the behavior of Mesh agents is tied to the one of Cell agents, they are described jointly in
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Figure 5.11: States of a Mesh agent and conditional transitions

section 5.3.2.

5.3.1.3 Cell Agents

Internal Representation. Cell agents represent the geographical zone covered by a cell in
the LAC problem. A Cell agent has coordinates and knows the state of acquisition of its
corresponding cell. It also knows the passes on which a satellite can potentially acquire
the cell. For each of these passes, the cell agent knows the list of meshes that are either
covering or adjacent to the cell. The local goal of a Cell agent is for the corresponding cell
to be validated. For a cell to be validated an acquisition of a mesh covering the cell must
be validated on any pass. To achieve validation a Cell agent is able to send messages to
Mesh agents it knows. These agents represent the meshes previously mentioned and form
the local neighborhood of the Cell agent. The agent diagram in figure 5.12 highlights the
properties of a Cell agent and its modules for interacting with Mesh agents.

Criticality. The criticality of a Cell agent for a pass represents the importance of acquir-
ing the corresponding cell on this pass. It is computed following a lexicographic order of
criteria. To find the most critical of two Cell agents each criterion is compared one by one
sequentially with the first inequality guiding the choice. For each criterion a place in this
hierarchical list needs to be found representing their importance of acquisition. The criteria
and their order in the criticality of Cell agents has been determined by experts of the research
field and experimental results. Cell agents have a separate criticality for each pass on which
they could be acquired. Indeed the criteria may change based on the local knowledge of
the agent on this pass. A Cell agent could be very critical on a pass for which its weather is
favorable and less critical on a pass with unfavorable weather for example. The criticality of
Cell agents in a given pass is based on the following normalized criteria:

1. Validation. The criticality of a cell that has already been validated is null.

2. Weather. Probability of validation of the cell if acquired in this pass based on weather
predictions. For cells also acquired in previous passes this criterion is weighted by their
probability of validation in these passes.
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Figure 5.12: Cell agent diagram

3. Anticipated weather. Probability of validation of the cell in the remaining passes based
on weather predictions on the planning horizon for which the corridor covers this cell.
A higher chance of being acquired in future passes lowers the cell criticality.

4. Available passes. Ratio of remaining passes on the planning horizon for which the
corridor covers this cell. Represents the future acquisition opportunities of the cell.

5. Grid neighbor ratio. Ratio of neighbouring validated cells. Cells with a high concen-
tration of neighboring validated cells being more critical helps with the reduction of
small gaps between validated areas on the grid. The acquisition of such gaps leads to
reacquisition of validated cells and opportunity costs for the acquisition of meshes with
more non validated cells. An example of gaps that the grid neighbor ratio criterion tries
to solve is illustrated in figure 5.13.

6. Random. Pre-generated value affected to each agent at creation to avoid oscillation if
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Figure 5.13: Gap between validated areas on the cell grid

computed at each comparison.

In this section and the experiments of section 6, the criticality of Cell agents follows the
order presented above. Different criticality criteria and orders affect the behavior of Glimpse
as different cells are prioritized during the acquisition. A more in-depth analysis of the
importance of criticality criteria of Cell agents and their order is presented in section 6.5.

Behavior. The behavior of a Cell agent is one of a Constrained agent in AMAS4Opt. It con-
sists of observing its covering and neighboring meshes and sending messages to either
adhere to a covering mesh or ask for the movement of a neighboring mesh in order to
adhere to it once it moves to cover the cell. A Cell agent has a separate planning state for
each pass that includes it in its corridor. The states of a Cell agent are dependant of the
coverage and adhesion status when active. A Cell agent can only be validated on a pass on
which it is covered. If it is covered, it can adhere to a single mesh on this pass. If a mesh
covering the cell on the pass is validated, the state of the corresponding Cell agent changes
to become validated for all passes that include it in their corridor. Figure 5.14 presents the
states of a Cell agents and the conditional transitions between states. An important part of
the Cell agent behavior is its interaction with the Mesh agent through the adhesion process
described in section 5.3.2.

5.3.2 Adhesion Process

The goal of the adhesion process is to satisfy the local goals of both Cell and Mesh agents. A
Cell agent adhering to a Mesh agent on a pass represents its will to remain covered by the
relative mesh in the corridor. A Cell agent can adhere to a single Mesh per pass but a Mesh
agent can have several Cell agent adhering to it. By default a Cell agent always adheres
to a Mesh agent if this Mesh agent is the only one the Cell agent knows for a pass and if the
mesh covers the cell for this pass. In the case of several meshes covering the same cell, the
Cell agent observes which Mesh agent is more critical and adheres to it. This satisfies its
local goal as being covered by a highly critical mesh which improves its likelihood of being
acquired on this pass.

The adhesion of cells is used to guide the behavior of Mesh agents on the cell grid. As
seen in section 5.3.1.1, meshes are initially created by Pass agents with the smallest possible
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Figure 5.14: States of a Cell agent and conditional transitions

size of width and length one by one relative to the cell grid. After their creation Mesh agents
receive adhesion requests from covered and neighboring Cell agents. The already covered
cell is considered adhering if it emitted an adhesion request message to the mesh agent that
acknowledges it back. To include a Cell agent that requests adhesion, a Mesh agent may
need to adjust its geometry and expand or move on the grid. By default a Mesh agent
always expands until its maximum width or height has been reached, at which point only
a movement is possible to include neighboring cells. All mesh movements are made by
moving the mesh in a cardinal direction by a distance of a cell which equals to shifting one
of its origin coordinates by one on the cell grid.

Mesh Expansion and Movement. In the case of expansion, the Mesh agent updates its
geometry and informs all the newly covered and newly neighboring Cell agents of its new
status. Covered Cell agents can then observe their neighborhood and, if the Mesh agent is
still the most critical one that is covering them, inform it of their adhesion.

In the case of movement, a Conflict NCS is reached where moving the mesh in a cardinal
direction implies that the mesh will cover a new strip of cells, the destination strip, and that
it will no longer cover a strip of cells on the opposite direction, the origin strip. To solve the
NCS the Mesh agent compares the criticality of the most critical cell on the destination strip
with the criticality of the most critical cell on the origin strip. If the destination strip has the
most critical cell the movement is performed as it improves the criticality of the Mesh agent.
If the origin strip has the most critical cell the adhesion request of the cell on the destination
strip is rejected and the mesh does not move.

Figure 5.15 shows a Cell agent sending an adhesion request to a neighbouring Mesh agent
and the result of an inclusion of the cell by expansion of the mesh.

Algorithms 2 and 3 respectively present the computeAdhesion() method of a Cell agent,
and the manageAdhesionRequest() method of a Mesh agent, executed during the decide phase
of the agents. The messages generated during the decide phase are then sent during the act
phase.
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Figure 5.15: Adhesion request of a Cell agent to a neighbouring Mesh agent and expansion of the mesh

Algorithm 2 Cell agent adhesion process (computeAdhesion() method)

1: for all known pjk do
2: sorting of known meshes Mpjk by criticality
3: for all mpjk ∈ Mpjk do
4: if non adhered cell and no adhesion request then
5: mesh adhesion request to mpjk

6: end if
7: end for
8: end for

Algorithm 3 Mesh agent adhesion process (manageAdhesionRequest() method)

1: for all adhesion request of cij do
2: if cxy is covered by the mesh then
3: adhesion request acceptance
4: else
5: if cxy is north or south of the mesh and mesh length limit is not reached then
6: expansion towards cxy

7: adhesion request acceptance
8: else
9: if cxy criticality is higher than the most critical adhering cell of the opposite mesh

strip then
10: movement towards cxy

11: adhesion request acceptance
12: inform opposite cells of exclusion
13: else
14: adhesion request rejection
15: end if
16: end if
17: end if
18: end for
19: reduction of edges without adhesion
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Figure 5.16: Sequence diagram of the interactions between Cell and Mesh agents during mesh arrival

The sequence diagram of figure 5.16 presents the arrival of a mesh near a cell, either
by creation or movement, and the potential messages between Cell and Mesh agents. The
alt operator corresponds to alternate states reached during the execution depending on the
verification of a boolean variable. The internal methods and messages used in figure 5.16
are also present in the agent diagrams of figures 5.10 and 5.12.

In the sequence diagram of figure 5.16 the mesh is either created next to or on the cell,
or moved or extended itself towards the cell during the previous agent cycle. Using the
method informMeshArrival() a first message is sent by the Mesh agent to the Cell agent. The
Cell agent updates its internal representation of its neighborhood. It then computes the
benefit of adhering to the newly arrived mesh following algorithm 2 (computeMeshAdhesion()
method). In this diagram ,the case in which the Cell agent requests to adhere to the Mesh
agent is considered. The Cell agent then answers with a requestMeshAdhesion() message to
the Mesh agent. Algorithm 3 (manageAdhesionRequest()) is then executed by the Mesh agent
to determine the adhesion of the requesting cell.

If the adhesion of the cell is accepted by the Mesh agent but the cell is outside of the
mesh, the mesh first adapts its geometry to include the cell. The includeCell() method of the
Mesh agent determines the type of the required operation, either expansion or movement,
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and performs this operation on the mesh. The Mesh agent then answers the adhesion request
with a answerMeshAdhesion(true) message, updates its criticality and informs all the cell of its
neighborhood of its new criticality. Like in the case of a mesh arrival, this criticality update
may trigger new adhesion processes from these cells. The Cell agent that receives the accep-
tation of its adhesion request, updates its internal adhesion representation. It then checks if
the Mesh agent to which it is now adhered to has the best criticality in its neighborhood. If a
more critical Mesh agent is found a new adhesion process is started by the Cell agent.

If the original adhesion request of the Cell agent was instead rejected the Mesh agent
answers with a answerMeshAdhesion(false) message. In this case the Cell agent marks the
Mesh agent as having refused its request and enters a rejected state relative to this Mesh
agent. In this state the Cell agent do not send further adhesion request to the Mesh agent.
The Cell agent then uses the computeMeshAdhesion() method to check for additional adhe-
sion opportunities. The state of rejection of Cell agents relative to each Mesh agent in their
neighborhood is reset in the event of a mesh criticality update or when the mesh leaves the
neighborhood of the cell. This allows for criticality updates on the pass or additional cell
adhesion to the Mesh agent to restart the self-organization process with previously rejected
cells.

Adhesion Process Dynamic Adaptation. The goal of the adhesion process is to allow
Mesh agents to self-improve on a micro level after their creation on a macro level by the
Pass agent. Mesh agents always reach their maximum allowed size if their position on the
corridor allows it. The adhesion of Cell agent to a Mesh agent is not definitive and Cell
agents are always searching for a better Mesh agent to adhere to, improving their likeli-
hood of acquisition and potentially the likelihood of acquisition of any Mesh agent entering
their neighborhood.

The adhesion process also helps in solving the problem of mesh overlaps present in
both static and dynamic meshing in the case of heterogeneous satellites. The restriction of
Cell agents to adhere to only one Mesh agent per pass helps in spreading meshes over the
corridors. Indeed, Cell agents adhere to the most critical Mesh agent while the less critical
Mesh agent accepts adhesion requests from Cell agents in the opposite direction of the most
critical Mesh agent. This phenomenon is illustrated in figure 5.17. Overlaps are still allowed
and can happen as a single Cell agent adhering to a Mesh agent can prevent the movement
of the mesh in the opposite destination strip.

Adhesion example. Figure 5.18 presents an example of the adhesion process at different
steps of an experimental scenario. In this case, meshes are initially created on the least
critical cells instead of the most critical cells. The Cell and Mesh agents then self-organize
through the adhesion process. The final result is a meshing pattern covering the most critical
cells without overlap which emerged from the cooperation of Cell and Mesh agents.
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Figure 5.17: Adhesion request and possible consequences on the opposite cell strip of the mesh

Figure 5.18: Example of the adhesion process between Cell and Mesh agents at different steps of an experimental
scenario
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5.3.3 Glimpse as an LARM

In order to replicate the process followed by an operational LARM, Glimpse simulates the
steps of this process from large area request reception to the mission completion. Passes
are created progressively during the mission and are treated chronologically. During the
execution of Glimpse the present is represented by a current pass. Future passes up to the
planning horizon are created to provide data for the probability of future validation criticality
criterion of Cell agents. Passes in the past can either be labelled as acquired or validated.
An acquired status represents passes for which the MPF has sent acquisition orders to the
corresponding satellite but has not yet received the resulting images. A validated status rep-
resents passes for which the images resulting from the acquisitions have either been validated
or rejected, and in the case of mesh validation the relevant Mesh and Cell agents have been
updated in Glimpse.

To illustrate the life cycle of a pass in Glimpse we consider the steps from creation to
validation. At its creation a pass is part of future passes on the planning horizon, or directly
the current pass in the case of the very first pass of the mission. As past passes are acquired,
the following pass in this example becomes the current pass. The Pass, Mesh and Cell agents
then find optimized positions and shapes for meshes up to a number of meshes allowed on
the pass. When the pass has reached its final stabilization its status is changed to acquired,
as is the case for the Pass agent and each Mesh and Cell agents included in the acquisitions,
and the next pass in chronological order becomes the current pass.

For each pass acquired a lapse of time tacq is then simulated, corresponding to the es-
timated time between acquisition orders to the satellite and image reception on a ground
station. The pass, of occurrence date tocc, changes its status to validated when the date of oc-
currence of the current pass is further than tocc + tacq, representing the reception of acquired
images by the corresponding MPF and transmission to the LARM, in our case Glimpse.

The time tacq is one of the mission parameters that form the Glimpse input. Other inputs
include:

1. the AOI,

2. the MPFs and their satellites characteristics,

3. a list of passes over the AOI for each satellite,

4. weather data for each pass,

5. a cell size in km,

6. a length of planning horizon in number of passes.

5.3.4 Conclusion

In this chapter we proposed our contributions. Dynamic meshing is a novel approach to
meshing based on a grid of elementary geographical entities called cells. The formalization
of the LAC problem is updated to incorporate the freedom of mesh placements over of the
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cell grid. We then describe Glimpse, an AMAS for the solving of this formalized LAC prob-
lem. Glimpse is an LARM that uses Cell, Mesh and Pass agents to coordinate the meshing
and mesh selections over successive satellite passes. Using the respective criticality of Cell
and Mesh agents, the agents of Glimpse self-organize to answer the local goals of the most
important agents. The adhesion process between Cell and Mesh agents is central to this or-
ganization as the mechanism driving the expansion and movements of the meshes in the
corridors. As a result Glimpse optimizes the solving metrics through an emergent function
produced by the cooperation of its agents.

In chapter 6 we present the results of Glimpse obtained on different use cases and using
several sets of parameters. We then compare the results with references including those
of a greedy algorithm and discuss the differences and implications on the performance of
Glimpse.
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6 Experimentation

6.1 Introduction

Operationally, LAC missions are often optimized either by human expertise or greedy al-
gorithms selecting the most promising meshes. To best compare the dynamic meshing of
Glimpse and other contributions to state of the art methods we used operational data from
previous LAC missions. The results presented in this chapter are obtained by running differ-
ent algorithms or sets of parameters on these use cases. First we evaluate the performances
of Glimpse regarding the problem metrics. We define use cases for measuring the perfor-
mances and describe the parameters used. We then compare the results obtained using a
greedy algorithm and static meshing.

To expand on these results we evaluate the robustness of Glimpse. Additional use cases
are defined with a focus on the variety in the AOI acquired and the Glimpse parameters
used. The robustness results are then discussed and linked to the choices made during the
design of Glimpse.

The goal of the experiments in both cases is to show the adaptability of Glimpse and the
results in performance and ease of treatment of a variety of scenarios.

Finally, a sensitivity analysis regarding the criteria of the Cell agent criticality is pre-
sented. The impact on the quality of solutions found when using different sets of criteria
and in different lexicographic orders is discussed.

6.2 Experimental Environment

6.2.1 Data

Input data for Glimpse includes MPF, satellite and pass characteristics that are coherent
with the data used operationally to perform relevant experiments in this field of research.
While these data can be recreated or simulated, the industrial partners of this thesis allowed
us to use data from previous LAC missions as a base for experimentation. This gives us all
mission parameters, which can be modified to allow tests of different use cases and monitor
the behavior and results of Glimpse. For the weather during our test missions we used
the observed weather at the time of the real mission as predicted weather. This simulated
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weather prediction allowed us to use a realistic weather model for observation missions.

6.2.2 Weather

Weather is simulated using old weather observation data as previsions. An observation
value is drawn over a normalized distribution around the weather prevision. A prevision
consists of a value on this distribution obtained with inverse probability to its distance from
the observation value. The observation value remains the same as the original observation
data. In order to account for outliers in the global weather simulation during a mission,
all scenario results presented in this chapter are averages over a sample of 100 runs of each
tested algorithm. Standard deviation on these results is low as the large size of the AOI and
number of passes smooth outliers over time. This also reduces the randomness inherent to
a Glimpse execution due to the presence of the random criterion presented in section 5.3.1.3
in the Cell agents that acts as a decider between identical agent comparisons.

6.2.3 Metrics

As presented in section 3.3.1 two different metrics are considered for the LAC problem: the
time required to complete the mission and the waste of satellite resources. For all experi-
ments in this chapter both completion time and waste are considered as determinant factors
to judge the quality of the obtained results.

Completion time. Completion time is measured as the number of passes necessary to
reach 95% validated surface of the LAC. Indeed, at the end of most scenarios a common
occurrence is the difficulty of validating the remaining 5% of the AOI as it is often the most
clouded and most difficult area to acquire during the rest of the mission. A bottleneck effect
can be created where every resolution algorithm needs to wait for a few favorable passes to
occur in order to finish the mission to 100%.

These bottlenecks reduce or negate the differences in acquisition performances as less
efficient algorithms have time to catch up to better algorithms during the waiting periods.
To avoid this phenomenon near the end of the LAC mission 95% completion is chosen as the
threshold of estimated completion time when measuring performances. This is also justified
by industry practices where an LARM may send preliminary updates to the clients with
parts or most of the AOI already validated. The remaining 5% are then sent at a later date.

Waste. Waste is measured in percentage of surplus acquisition of surfaces during the mis-
sion. 100% waste corresponds to acquisitions having covered twice the AOI during the
mission. The superfluous acquisition of a mesh is registered as waste whether the mesh
was rejected by the MPF or in the case of clouded acquisition. In this study we consider
the waste to be a result of clouded acquisitions only. Indeed, this provides more accurate
results for the prediction abilities of the meshing algorithms as the waste is only dependant
on the placement of meshes and independent of an internal and unknown MPF planning
method.
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For both metrics the results are observed at the end of the mission, defined as 95% acqui-
sition of the AOI, but also during mission progression. As mentioned previously updates
may be sent to the client during the mission, making intermediary results relevant to the
industry process. The evolution of completion and waste on graphs during the mission also
help to explain the differences between approaches or use cases employed.

6.2.4 MPF Simulation

As presented previously, an LARM such as Glimpse can be related to the MPFs controlling
the satellites. In this study we consider the more generic approach in which MPFs are in-
dependent and unrelated to the LARM. This implies that each MPF has its own planning
algorithm and may select any number of meshes from the ones selected by the LARM to
acquire. To simulate this, an MPF is implemented as a module consisting of a planning al-
gorithm and with which Glimpse can interact. For the purpose of simplification, each MPF
is considered as having a planning algorithm that acquires every mesh selected for acqui-
sition by Glimpse. This behavior can be modified to reduce the number of meshes planned
by the MPF as to simulate heavy load or more urgent requests being prioritized by the MPF.

6.2.5 Greedy Algorithm

In the LAC problem as defined in section 5.2.2 the goal of the resolution algorithms is to find
for each pass a set of meshes to include in an acquisition request for the MPF responsible for
this pass. A greedy approach to this goal is to select the best mesh relative to its criticality
and include it in the acquisition request. This selection is then never reevaluated as per
the greedy methodology. Selected cells on the pass have their criticality set to zero and
the algorithm continues with the selection of best candidates meshes until the acquisition
request is full relative to the acquisition capacity of the satellite. Algorithm 4 presents this
simple greedy algorithm, with:

3 solution: the list of selected meshes

3 nmesh: the number of meshes in the solution,

3 nlines: the number of lines in the solution,

3 criticality(): the function calculating the criticality of a mesh, the same function is used
to calculate the criticality of Mesh agents in Glimpse,

3 nb_lines(): the function calculating the number of lines in the solution,

3 list_mesh: the list of meshes in the pass,

3 mesh: a mesh represented by a list [i,j,H,L] with i,j the coordinates of the cell on the
lower left corner of the mesh and H, W its height and width

3 Lmax: the maximum number of lines of cells that can be acquired during the pass, rep-
resenting the maximum acquisition capacity of the satellite.
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Algorithm 4 Greedy algorithm

Require: Nm ≥ 0
nmesh = 0
nlines = 0
solution = []

1: while nmesh ≤ Nmax&nlines ≤ Lmax do
2: best_criticality = 0, best_mesh = 0
3: for all mesh ∈ list_mesh do
4: if criticality(mesh) > best_criticality&nlines = nb_lines(mesh) ≤ Lmax then
5: best_mesh = mesh
6: best_criticality = criticality(mesh)
7: end if
8: end for
9: if best_criticality ≥ 0 then

10: list_mesh = list_mesh\best_mesh
11: nmesh += 1
12: nlines += nb_lines(best_mesh)
13: solution.add(best_mesh)
14: end if
15: end while
16: return solution

This algorithm shows a greedy behavior of selecting meshes one by one. However the
optimal solution is the best set of N meshes, which may be different from the set of the best
N meshes. Indeed not taking into account the crossover surfaces of meshes means a mesh
cannot be evaluated independently from others but needs to be evaluated jointly with the
other meshes of the solution, making the problem NP-Hard.

6.3 Performances

As an LARM the goal of Glimpse is to optimize the metrics of the LAC problem. In order to
evaluate how adequate the AMAS approach is to this problem a methodology of testing the
performances of Glimpse has to be defined. In this section a preliminary study is proposed.
The evolution of the completion time and waste are measured during the solving and at the
end of LAC missions. A benchmark method and a LAC scenario on which the benchmark is
run are first presented. Then the results of this preliminary are discussed in relation to the
behavior of the benchmarked algorithm during the solving.

6.3.1 Comparison

For the purpose of comparison we choose to compare Glimpse using dynamic meshing to
the greedy algorithm of section 6.2.5 using static meshing instead of the operational method
of manually splitting the zone in subzones before mission start. The goal is to obtain a
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benchmark of both mission result and evolution of the completion time and waste in or-
der to observe the benefits of one method over the other. The grid used by the static meshing
algorithm is obtained by dividing the zone in mesh placements covering the AOI entirely.
For homogeneous satellites (with equal swathes for acquisitions) these grids overlap. For
heterogeneous satellites these grids are distinct. In this experiment we test the performances
of static and dynamic meshing approaches on missions including either homogeneous or
heterogeneous satellites.

For fairness, we use the same evaluation method for meshes in static meshing as in
dynamic meshing. This means the importance of acquiring a dynamic mesh, which for
Glimpse is tied to its criticality, is the same for a static mesh placed at the exact same coordi-
nates.

6.3.2 Scenario

With no knowledge of the benefits of a particular scenario to either meshing technique we
selected a scenario relevant to operational use cases to compare static and dynamic meshing
algorithm. The following characteristics were used:

1. Australia as AOI,

2. cell size of 30x30km,

3. 4 MPFs operating 1 satellite each,

4. a delay tacq between satellite acquisitions and acceptation or rejection of images of 24h.

For the homogeneous satellite experiment we used mesh sizes of 60km in width and
120km in length. For the heterogeneous satellite experiment we used 4 different mesh sizes,
one for each satellite, respectively:

3 60km/90km,

3 60km/120km,

3 60km/150km,

3 90km/180km.

All of the above characteristics were obtained by consulting domain experts and follow-
ing a mission pattern that could have been followed operationally, with the exception of cell
size which was chosen as a common denominator for the heterogeneous mesh sizes selected.

6.3.3 Results

Figures 6.1 and 6.2 respectively show a comparison of the completion rate and waste be-
tween dynamic meshing and static meshing for the same scenario using homogeneous satel-
lites. The graphs present an evolution of each metric during the resolution, with time rep-
resented as the number of passes on which the meshing and planning process have been
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Figure 6.1: Evolution of the completion rate by meshing type for a scenario with homogeneous satellites

Figure 6.2: Evolution of the waste by meshing type for a scenario with homogeneous satellites

executed. Numerical results are presented in table 6.1, with the completion time represented
by the number of passes computed at 95% completion and the waste by the percentage of
total extraneous surface acquired at 95% completion.

Similarly, figures 6.3 and 6.4 respectively show a comparison of the completion rate and
waste between static meshing and dynamic meshing for the same scenario using hetero-
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Passes Waste(%)
Greedy (static meshing) 227 50

Glimpse (dynamic meshing) 222 50

Table 6.1: Performances of meshing methods on a scenario with homogeneous satellites

Figure 6.3: Evolution of the completion rate by meshing type for a scenario with heterogeneous satellites

geneous satellites. Numerical results are presented in table 6.2, with the completion time
represented by the number of passes computed at 95% completion and the waste by the
percentage of total extraneous surface acquired at 95% completion.

Passes Waste(%)
Greedy (static meshing) 163 61

Glimpse (dynamic meshing) 144 52

Table 6.2: Performances of meshing methods on a scenario with heterogeneous satellites

6.3.4 Analysis

From the results presented in the previous section we propose several observations:

3 similar completion time and waste results are obtained with both meshing types on the
scenario that features homogeneous satellites,

3 improved completion time and waste results are obtained with dynamic meshing
above static meshing on the scenario that features heterogeneous satellites,
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Figure 6.4: Evolution of the waste by meshing type for a scenario with heterogeneous satellites

3 the curves of the waste evolution graphs for both types of meshing show differences in
the rate of waste accumulation during the missions.

Homogeneous Satellites. As previously discussed in section 5.2.1 homogeneous satellites
are the best case scenario when using static meshing. Meshes of the different satellites do not
overlap, meaning a mesh acquired and validated on a pass of one satellite corresponds to
the same mesh area being validated on all passes of any other satellite. The results obtained
in table 6.1 show equivalent performances for both completion time and waste using both
meshing methods, with only a small improvement in the number of passes necessary to
reach 95% completion when using dynamic meshing. This improvement can be attributed
to small optimizations present in dynamic meshing such as a better use of mesh placements
close to the edges of the corridor or AOI where mesh positioning is more constrained.

The result presented in figure 6.1 intuitively points towards similar mesh placements in
both meshing methods as the evolution of completion is similar during the mission. How-
ever the analysis of figure 6.2 reveals that using static meshing, the initial mesh placements
create less waste than those placed using dynamic meshing. For example at 25 passes ac-
quired the waste using static meshing is at 25% while the waste using dynamic meshing is
at 38%. Inversely, more waste is created later during the solving when using static mesh-
ing as the total waste observed at 95% equalizes at 50% for both meshing methods. This
corresponds to our assumption that using dynamic meshing is less efficient than static
meshing early on in the LAC missions as the freedom of mesh placements creates gaps be-
tween meshes and overlaps that worsen the observed waste.

The waste using static meshing in these early stages is low due to the high number of
meshes in each pass that present sufficient weather forecasts. As the mission progresses
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more static meshes are validated and less static meshes are available for acquisition in each
pass. Static meshes are then acquired repetitively even when only part of the acquisition is
predicted cloudy, which makes the waste rise as a pass with good weather needs to be found
to acquire each remaining mesh. When using dynamic meshing the meshes created during
the later stages of the solving adapt to the already validated areas and clouded weather
forecasts to target specific areas presenting high likelihood of successful acquisition. The
initial high waste is compensated by the adaptive placement of meshes lowering the rate
of waste accumulation to reach similar total levels to those observed using static meshing.
In the case of scenarios using homogeneous satellites we find consistent similar results be-
tween static and dynamic meshing.

Heterogeneous Satellites. Strictly heterogeneous satellites (no satellite pair has the same
swath) is on the opposite as the worst case for static meshing and intuitively the best case for
dynamic meshing. In this case the static meshes have a high surface of overlap as the mesh
grid of each satellite is distinct from each other. Dynamic meshes are less affected as their
placement and shape can change to fit in the gaps created by the acquisition of meshes of
different sizes. This is reflected in the obtained results. Figure 6.2 presents an improvement
relative to the completion time of 19 or 11% less passes necessary to reach 95% completion
using dynamic meshing. The waste is also improved at 9% less extraneous surface acquired
using dynamic meshing.

To track the evolution of the results through the solving we use the same tools as for the
scenario with homogeneous satellites. Figure 6.3 shows a near constant validation rate for
dynamic meshing during the mission only decreasing near the end of the solving. Static
meshing is initially as effective but gradually reduces its validation rate during the solv-
ing. From our observations in the previous experiment we can assume that the evolution of
waste is relevant to the difference in completion time. Figure 6.4 presents similar behaviors
of waste accumulation than those observed on the scenario with homogeneous satellites.
The waste using dynamic meshing is initially high and stabilizes in the middle of the execu-
tion with a small augmentation near the end of the mission. The waste using static meshing
is more constantly accumulated during the mission but also higher initially.

At pass 25, the observed waste levels with static meshing and dynamic meshing are
respectively 34% and 41%. This corresponds to an augmentation of 9% for static meshing
but only 3% for dynamic meshing when compared with the scenario with homogeneous
satellites. During the rest of the solving we observe the same pattern with the waste using
static meshing being higher than the waste using dynamic meshing after 95 passes or 58%
of the total completion time. This behavior confirms the difficulty of validation of the static
meshing at later stages of the solving. As the mission progresses more static meshes overlap
already validated parts of the AOI and the total surface validated per pass is reduced. The
near constant rate of validation of the dynamic meshing shows that the surface validated
per pass remains constant as the dynamic meshes adapt to fit around the validated areas.
This hypothesis is reinforced by the waste evolution stagnating as the validated areas are not
re-acquired, with only a small increase near the end of the solving related to the difficulty of
finding passes with sufficient weather to acquire remaining meshes.
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Overview. These experiments show the improved performances of the dynamic meshing
over the static meshing on the same LAC scenario with homogeneous and heterogeneous
satellites. In the best-case scenario for the static meshing of homogeneous satellites the dy-
namic meshing produces small improvements in completion time. In the best-case scenario
for the static meshing of heterogeneous satellites both the completion time and waste are
significantly improved when using dynamic meshing. In the next section we expand on this
experiment with other scenarios to test the robustness of Glimpse and dynamic meshing.

6.4 Robustness

Earth observation using satellites features a wide range of possible client requests. The goal
of an LARM is to be flexible in order to answer any type of client request. An LARM needs
optimize in order to find the best solution regarding the problem metrics with the resources
available. The robustness of LARMs represents this ability to adapt. In this section we con-
sider a larger variety of LAC scenarios and evaluate the robustness of Glimpse using these
scenarios. First we describe the robustness criteria of the scenarios, the goal of studying
the impact of each criterion and the scenarios themselves. We then present the results of
Glimpse and dynamic meshing and compare them to those obtained with the greedy al-
gorithm of section 6.2.5 and static meshing. Finally we discuss the robustness of Glimpse
taking into account the results for each criterion and the evolution of the problem metrics
during the solving.

6.4.1 Robustness Criteria

As presented in section 5.3.1 the input data of an LARM consists of several elements such
as the AOI, satellites, passes and weather data. In order to verify our initial performance
results, we define these elements as 4 criteria that are representative of the scenarios used.
These criteria are:

1. Area size. Size of the AOI in km2. The AOI in the acquisition request can be of different
properties depending on the need of the client. The size of an AOI can range from small
countries to continents. This criterion is related to the scalability of Glimpse as the
search space grows exponentially with the the surface area to acquire.

2. Area shape. Shape of the AOI. This criterion has an impact on the mesh placements
over the edges of the area. Irregular edges can cause meshing challenges depending
on the method used. Additionally, a long and narrow AOI presents different corridors
when compared to a short and large AOI. Because of the ephemeris of the LEO satellites
which follow a slightly tilted north/south axis the average area covered during a pass
is higher for a long area compared to a large one. The amount of meshes available for
acquisition during each pass is tied to the length of the corridor. Longer areas thus
allow for more meshes to be acquired in each pass. This criterion allows us to validate
the ability of the system to self-adapt to a variable number of meshes acquired and
different configurations of meshes to place to cover the whole AOI.
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3. Weather. Type of weather of a fixed area of interest. The acquisition of a specific AOI
may vary depending on the starting date of the mission. Seasons have an impact on
how likely it is that a given mesh is successfully acquired on average. This in turn
impacts the completion time and waste due to weather related rejected acquisitions.
This criterion is used to study the ability of Glimpse to adapt to different types of
weather observed in operational contexts.

4. Number of satellites. Number of satellites available during the mission. Satellite con-
stellations vary in size and may be operated by one or several MPFs. Different numbers
of satellites allotted to the mission change the minimum completion time. The coordi-
nation between satellites is also accentuated particularly in the case of heterogeneous
swathes. This criterion allows us to experiment on the adaptability of Glimpse to adapt
to large heterogeneous satellites constellations. It also guides operators in choosing the
best size of constellations or individual satellites to submit for a mission.

Following the reasoning used in section 6.3.1 we benchmark Glimpse using dynamic
meshing to a greedy algorithm using static meshing. We compare completion time and
waste for both algorithms at 95% of the total AOI surface validated.

6.4.2 Scenarios

For each criterion presented in the previous section we define several example inputs and
by extension scenarios to be used as benchmarks. Chosen scenarios represent both usual
operational use cases and atypical or exotic use cases to highlight the potential differences
in results obtained per criterion. Experiments on these scenarios are performed in batches of
10 and the results averaged in order to reduce the variance caused by the simulated weather.
In this section we discuss the choice of scenarios.

For all robustness scenarios a number of global parameters are defined as follows:

3 cell size of 20x20km,

3 mesh size varying between 20x40km and 60x120km depending on the scenario,

3 4 MPFs operating 1 satellite each except when specified otherwise,

3 strictly heterogeneous satellites (no identical swath pair),

3 a delay tacq between satellite acquisitions and acceptation or rejection of images of 24h.

The parameters for the robustness criteria defined in section 6.4.1 are as follow:

1. Area Size. For this criterion the following countries are selected by ascending order of
area surface in km2: Italy (301 338), France (643 801), Myanmar (676 575), Algeria (2 382
000) and Australia (7 692 000). An overview of each country and its precomputed cell
grid in ascending order of size is shown in figure 6.5. Chosen countries show a range of
AOI sizes from a medium sized country to a country of continental scale, with the size
of the smallest sample (Italy) at 4% of the size of the biggest (Australia). Though the
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Figure 6.5: AOI of the scenarios used in the area size criterion evaluation by ascending order of surface size

Figure 6.6: AOI of the scenarios used in the area shape criterion evaluation

range is not strictly continuous, the evolution of completion time and waste through
the different scale may outline a function of performance relative to the area size when
using static or dynamic meshing.

2. Area Shape. For this criterion 2 areas are selected by their shape: mainland Norway
and Ivory coast both represented with their cell grid in figure 6.6. Both areas share a
similar surface of about 320 000 km2 but the outline of the corridors during the solving
varies drastically. Ivory Coast presents a rectangular shape with mostly straight edges
while mainland Norway is tilted diagonally from the north/south axis with irregular
edges. These scenarios are chosen to highlight the importance of mesh placements in
irregularly shaped corridors and the relation between area shape and performance for
each meshing method.

3. Weather. For this criterion we consider a single AOI with a large variability between
weather forecast depending on the date of the mission. Myanmar is chosen as the im-
pact of the monsoon on both completion time and waste is expected to highlight the
difficulty of acquisition during unfavorable weather when compared to other more fa-
vorable seasons. The starting dates for the two scenarios are fixed as January 2015 and
June 2015, with June as the start of the monsoon season. Figure 6.7 shows an example of
typical expected weather for both January and July on Myanmar with the precomputed
cell grid.

4. Number of Satellites. For this criterion the coverage of Australia by 2, 3 and 4 satellites
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Figure 6.7: AOI of the scenarios used in the weather criterion evaluation of Myanmar
in January (left) and June during monsoon (right)

Figure 6.8: AOI and example corridors of the scenarios used in the number of satellites
criterion evaluation from 2 satellites (left) to 4 (right)

is considered. As each satellite is strictly heterogeneous from each other the problem
becomes more combinatorial for each added satellite. The difference in time necessary
to complete the mission and waste relative to the number of satellites is also studied
through this criterion. Figure 6.8 presents the AOI and different consecutive passes for
each scenario by number of satellites operated.

6.4.3 Results and Analysis

1. Area Size

Completion time for this criterion are presented in table 6.3. Small AOI are represented
by Italy, France and Myanmar. Time completion for Italy and France is equal between both
algorithms, showing similar paths and bottlenecks in the search space leading to equal re-
sults in passes required. Myanmar is used as control sample for the possible improvement
in completion time on small AOI by Glimpse. In the case of Myanmar Glimpse found solu-
tions that are 13 passes better than the greedy solutions on average. We suppose that better
use of earlier passes led to acquisitions of subareas that are otherwise only acquirable at
pass 98. This corresponds to Glimpse avoiding a local minimum and finding a better overall
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optimum than the one found on average by the greedy algorithm.

Similar results are found when considering larger AOI such as Algeria and Australia.
Glimpse shows an improvement of around 10% in completion time over the greedy algo-
rithm. With these results we validate the scalability of Glimpse as it is best adapted to
large countries and high number of cells. On smaller countries the results may be equal
or sometimes better for Glimpse. The improvement in time completion itself does not scale
and remains stable at around 10% for each case of large AOI.

Glimpse also reduces the waste for every case by different margins as shown in table
6.4. Depending on the AOI the waste produced by Glimpse is decreased by 4% for France to
42% for Algeria. This constant decrease underlines the adequacy of the criticality measure
to guide the agent decisions. We suppose better mesh placements during the solving lead to
both a decrease in the waste produced and a better exploitation of passes to find better time
optimums as mentioned previously. Differences in ratio of decreased waste and completion
time observed may be due to other experimental factors that are explored in the following
criteria.

Italy France Myanmar Algeria Australia
Greedy (static meshing) 66(17d) 82(17d) 98(20d) 156(26d) 224(23d)

Glimpse (dynamic meshing) 66(17d) 82(17d) 86(19d) 143(24d) 204(21d)

Table 6.3: Completion time of static and dynamic meshing for areas of different sizes

Italy France Myanmar Algeria Australia
Greedy (static meshing) 267 458 86 50 67

Glimpse (dynamic meshing) 219 440 58 29 40

Table 6.4: Waste(%) of static and dynamic meshing for areas of different sizes

2. Area Shape.

Due to the rectangular shape of Ivory Coast, a large number of meshes placed during
the solving are not neighboring the outline of the AOI. The inverse is true for mainland
Norway. This can be verified with an hypothetical AOI of width equal to the largest allowed
swath between all satellites. In this example every mesh is adjacent to the edge of the AOI.
As the width extends and the length reduces to keep the same area size and form a more
rectangular shape more meshes become non-adjacent to the edges of the AOI. Similarly,
Ivory Coast and mainland Norway share the same area size but present a very different
distribution of area and outline.

Experimental results when using Glimpse and the greedy algorithm on both areas are
shown in tables 6.5 and 6.6 for completion time and waste respectively. When considering
Ivory Coast, the solving is fast in number of passes needed and a low amount of waste is
produced. Results are similar for both algorithms with only a slight decrease in waste using
Glimpse. In the case of mainland Norway both a diminution in completion time and waste
are observed. 5 less days are required to acquire 95% of the AOI and waste is reduced by
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36% when using Glimpse. We suppose this is due to the re-acquisition of cells on the edges
of the AOI. Static meshes placed by the greedy algorithm cannot adapt their size to only
acquire a few cells on the borders and utilize satellite resources to acquired many already
acquired cells doing so. Meanwhile dynamic meshes placed by Glimpse vary in height to
only acquire Cell agents that requested to be acquired and do not cover already acquired
areas if not required.

This leads to a better overall use of satellite resources and the observed decreases in both
completion time and waste. Glimpse is thus more adapted to AOI presenting irregular
edges while producing equal or better results on straight-shaped ones. As for difference
in completion time between both AOI it could be explained by different weather forecasts
as explored in the next criterion experiment.

Ivory Coast Norway
Greedy (static meshing) 37(12d) 447(75d)

Glimpse (dynamic meshing) 37(12d) 416(70d)

Table 6.5: Completion time of static and dynamic meshing for areas of different shapes

Ivory Coast Norway
Greedy (static meshing) 62 3 801

Glimpse (dynamic meshing) 52 2 422

Table 6.6: Waste(%) of static and dynamic meshing for areas of different shapes

3. Weather.

Figure 6.7 presents the results of Myanmar in January 2015 and Myanmar during the
monsoon season in June 2015 solved by Glimpse and the greedy algorithm. Similar results
are observed both in the case of favorable and unfavorable weather forecasts for both algo-
rithms, suggesting the monsoon conditions equalizes results instead of accentuating them.
Through review of the experiments we noted that during bad weather events bottlenecks
appeared in the solving. These bottlenecks correspond to specific areas that need to be ac-
quired but are only under favorable weather during a few passes. The margins gained in
completion time before these passes are negated as the observed bottleneck allows for more
time to acquire other areas.

We observe this phenomenon with the advance gained by Glimpse using dynamic
meshes being lost by waiting for a few specific passes to occur. Because of this phenomenon
completion time results are smoothed out for both algorithms. Although local improve-
ments obtained when using Glimpse before bottlenecks could be used to send early client
answers or subareas of the AOI, the final results using completion time at 95% show equal
completion time when using both algorithms.

Glimpse is however better at avoiding waste accumulation as shown in table 6.8. This is
due to the adaptation of meshes to weather forecasts and reduction in meshes re-acquired
due to being partially covered with clouds as is often the case with the greedy algorithm and
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static meshes. The decreases completion time needed to reach each bottleneck when using
Glimpse is due to this adaptation. Clouded weather is thus still favorable for Glimpse as
it utilizes satellites resources better and can provide anticipated client answers in the case
of bottlenecks in the solving.

Myanmar January 2015 Myanmar June 2015
Greedy (static meshing) 63(15d) 670(166d)

Glimpse (dynamic meshing) 59(15d) 670(166d)

Table 6.7: Completion time of static and dynamic meshing for scenarios with different weather

Myanmar January 2015 Myanmar June 2015
Greedy (static meshing) 130 2844

Glimpse (dynamic meshing) 77 2427

Table 6.8: Waste(%) of static and dynamic meshing for scenarios with different weather

4. Number of Satellites

All 3 scenarios for this criterion present similar completion time results between both
compared algorithms as shown in table 6.9. On average the greedy algorithm is ahead by 3
passes on the scenario using 2 satellites and 2 passes behind on the scenario using 3 satel-
lites. From these results we find that the difference in completion for both algorithms is
not impacted by the number of satellites. The inverse is true when considering waste results
presented in table 6.10. When compared to the waste produced by the greedy algorithm, the
waste produced by Glimpse represents a decrease of 36%, 25% and 22% on the respective 2,
3 and 4 satellites scenarios.

While waste results are consistently improved, the best waste reductions using Glimpse
are obtained for a small constellation of strictly heterogeneous satellites. This may be due
to the fact that strictly heterogeneous swathes create incompressible waste for both algo-
rithms. Another important point to consider here is the low difference in days to completion
between 3 and 4 satellites. Adding a satellite reduced the number of days as one can expect
but only by 2 while increasing the acquisition waste by 50% from 3 to 4 satellites. This can be
explained by the overlaps between the corridors of the satellites and the gradual reduction
in meshes to acquire over the course of the coverage.

Based on these results we consider Glimpse as a potential tool to optimize the number
of satellites both at the start of a LAC problem and through its resolution. In this example
the best configuration for the LAC mission could be the 3 satellites one as its completion
time is 50% faster than the 2 satellites one while only producing 69% of the waste generated
by the 4 satellites scenario. A new metric combining both completion time and waste is
discussed is section 6.6.
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2 satellites 3 satellites 4 satellites
Greedy (static meshing) 155(31d) 123(16d) 140(14d)

Glimpse (dynamic meshing) 158(32d) 121(16d) 140(14d)

Table 6.9: Completion time of static and dynamic meshing for scenarios with different number of satellites

2 satellites 3 satellites 4 satellites
Greedy (static meshing) 107 83 116

Glimpse (dynamic meshing) 68 62 90

Table 6.10: Waste of static and dynamic meshing for scenarios with different number of satellites

6.4.4 Robustness Discussion

Through experimentation on several scenarios of 4 criteria we evaluated the robustness of
Glimpse and dynamic meshing when compared to a greedy algorithm using static mesh-
ing. Results obtained with Glimpse were consistently equal or better than those obtained
with the greedy algorithm. Some scenarios presented specific strengths of Glimpse for each
experimental criterion.

The area size criterion results validated the scalibility of Glimpse. Completion time
and waste are significantly reduced in the case of very large areas which are more susceptible
to be the focus of client requests.

The area shape criterion verified the ability of agents to self-adapt. By exploiting the
advantages of dynamic meshing the agents were able to place meshes appropriately to fit
the corridor borders and the area’s outline geometry. The waste reduction is important in
this case, showing a low number of validated subareas re-acquisitions on the edges of the
AOI.

Weather anticipation was also confirmed with the corresponding criterion, proving the
ability of Glimpse to handle dynamics and possible weather modification during plan-
ning. Waste reduction was important though the presence of bottlenecks was highlighted
to show that in these cases the completion time equalizes through all algorithms used.

Finally the number of satellites criterion revealed that Glimpse may act as a tool for
operators in choosing the best constellations of satellites in order to cover a specific zone
in a given time. Waste reductions compared to the greedy were observed for any number of
satellites with a larger difference for low amounts of satellites.

The stability of these observations validates the robustness of Glimpse to handle a large
variety of cases that can be encountered in the LAC problem. Glimpse is best suited for
large, irregular shaped, cloudy areas making it a good algorithm for the solving of the
most complex cases of the LAC problem.
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6.5 Criticality Sensitivity Analysis

Section 5.3.1.3 described the criticality of the Cell agents. This internal parameter guides
the behavior of Cell and Mesh agents towards the prioritization of cells considered most
critical (as in most important) throughout the agents’ lifecycles. During the adhesion process
presented in section 5.3.2 critical Cell agents requesting to be covered by neighboring Mesh
agents have their requests accepted over less critical adhering Cell agents if the mesh already
reached its maximum size and needs to move in order to satisfy the request.

In turn, more critical meshes are prioritized over less critical meshes in the acquisition
request sent to the MPF. The criticality of Mesh agents is based on the criticality of the Cell
agents that they are covering. This implies that the criticality of agents is a determining
factor in the quality of results produced by Glimpse as different versions of Cell agent
criticalities lead to different acquisition patterns. In this section a sensitivity analysis of the
Cell agent criticality is described. First the criteria included in the criticality are presented,
then the methodology used to compare these criteria and finally the results obtained through
a benchmark of the different criteria combinations.

6.5.1 Methodology

The criticality criteria of Cell agents are described in section 5.3.1.3. Hereafter they are re-
ferred to as:

3 "Adhesion" for the inverse ratio between passes on which the cell is adhering to a mesh
and the total remaining passes on the planning horizon,

3 "Anticipation" for the ratio between passes with better weather for the cell than the
current one and total remaining passes on the planning horizon,

3 "Grid" for the ratio of validated cells neighboring the cell on the grid,

3 "Passes" for the inverse ratio between passes including the cell and the total remaining
passes on the planning horizon,

3 "Validation" for the state of validation of the cell,

3 "Weather" for the probability of successful acquisition of the cell on the pass in regards
to the weather weighted by the probability of successful acquisition on previous passes,

The criticality of Cell agents in Glimpse can be modified by changing both the cri-
teria composing it and the order in which they appear. As the criteria are treated us-
ing a lexicographic order, criteria coming first in order have more impact as any deci-
sive comparison cuts the comparison of criteria next in order. In the following a crit-
icality variant represents an ordered list of Cell agent criticality criteria. A variant is
named using the different criteria that compose it in lexicographic order, for example "val-
idated_weather_pass_anticipation_grid". The list of variants is presented in table 6.11,
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"weather_exp" is a different method of weather estimation that led to a decrease in per-
formance and was not used as a result as presented in section 6.5.2 and "greedy" the greedy
algorithm with static meshing included for the sake of comparison.

grid 0 validation_weather 21
passes 1 weather_grid 22

anticipation 2 weather_passes 23
validation 3 weather_anticipation 24

weather_exp 4 weather_validation 25
weather 5 validation_grid_passes 26

grid_passes 6 validation_anticipation_grid 27
grid_anticipation 7 validation_anticipation_weather 28
grid_validation 8 validation_weather_anticipation 29
grid_weather 9 validation_anticipation_weather_grid 30
passes_grid 10 validation_anticipation_weather_passes 31

passes_anticipation 11 validation_weather_grid_passes 32
passes_validation 12 validation_weather_grid_anticipation 33
passes_weather 13 validation_weather_passes_grid 34

anticipation_grid 14 validation_weather_passes_anticipation 35
anticipation_passes 15 validation_weather_anticipation_grid 36

anticipation_validation 16 validation_weather_anticipation_passes 37
anticipation_weather 17 adhesion_validation_weather_passes_anticipation 38

validation_grid 18 greedy 39

validation_passes 19
adhesion_validation_weather

_passes_anticipation_grid
40

validation_anticipation 20

Table 6.11: Criticality variants with relative criteria in lexicographic order

In order to compare different variants, experiments are performed on an aggregated
test with 10 scenarios including the ones presented in section 6.3 and scenarios with perfect
weather. All 10 scenarios of the aggregated test are numbered from 0 to 9 with their different
parameters available in table 6.12. Scenario 8 features a simulated perfect weather as an
experiment of the performances of variants on such a scenario, thus it does not have a start
date. A set of 20 Glimpse executions is considered for each scenario to reduce the impact
of randomness in weather and agent execution order. In section 6.5.2 criticality variants are
referred to as the corresponding identification number in table 6.11.

6.5.2 Results and Analysis

Average Completion. The first benchmark for variants is the average completion of each
variant for all 10 scenarios with aggregated results presented in figure 6.9. On this graph the
theoretical maximum value is 0.95 representing 95% mission completion as per the mission
constraints. Despite the unlikelihood of homogeneous satellites in an operational context
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AOI Cell size(km) Satellites Mesh type Passes Date(dd/mm/yyyy)
1 Algeria 20 4 Heterogeneous 500 17/01/2015
2 France 20 4 Homogeneous 100 04/05/2015
3 France 20 4 Homogeneous 100 21/01/2015
4 France 20 4 Heterogeneous 100 04/05/2015
5 France 20 4 Heterogeneous 100 21/01/2015
6 France 30 4 Homogeneous 100 02/08/2015
7 France 30 4 Homogeneous 100 09/02/2015
8 France 30 4 Homogeneous 100 29/11/2015
9 France 20 3 Heterogeneous 300 X (perfect weather)
10 Italy 20 4 Heterogeneous 500 27/12/2015

Table 6.12: LAC scenarios for the aggregated sensitivity test of Glimpse variants

Figure 6.9: Average completion using different criticality variants on an aggregated scenarios experiment

we include 5 homogeneous satellites use cases due to them being the best case scenario for
the greedy algorithm. The greedy algorithm then proves marginally better due to the high
concentration of these homogeneous satellites scenarios in the set of scenarios experimented
on. As for the variants evaluated, only 5 variants improve the results of the variant 5 which
is only taking the weather of the cell into account:

3 variant 23 (weather_passes),

3 variant 24 (weather_anticipation),

3 variant 28 (validation_anticipation_weather),

3 variant 35 (validation_weather_passes_anticipation),

3 variant 38 (adhesion_validation_weather_passes_anticipation).

A zoomed in view of the best results of figure 6.9 is available in figure 6.10. The results
for the greedy algorithm average around 0.94 while the best variants average around 0.93 to
0.933.
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Figure 6.10: Zoom on the best criticality variants of the average completion graph

Figure 6.11: Average passes using different criticality variants on an aggregated scenarios experiment

Average Passes. A different approach of evaluating results is the observation of the aver-
age passes necessary to reach these levels of mission completion. To measure an average of
passes across all scenarios a normalization of the data is required. Indeed depending on the
scenario the average may vary a lot (for example 500 passes are necessary for a mission with
Algeria as AOI while only 100 passes are necessary for France as AOI). Thus average the
data without normalization would increase the weight of some scenarios. For each scenario
the number of passes of a scenario is divided by the sum of all different passes on this sce-
nario. Table 6.13 illustrates this process and figure 6.11 presents the results of the different
variants in regard to the average passes found on the aggregated test.

Data Raw Raw Normalized Normalized
Scenario Variant 1 Variant 2 Sum Variant 1 Variant 2
Algeria 500 550 1050 0.47 0.52
France 95 100 195 0.48 0.51

Table 6.13: Normalization process for the number of passes on two example scenarios

In this case the best variant goes from left to right on the graph as a low number of
passes indicates efficiency in the acquisition process to reach the completion level obtained
in figure 6.9. 6 variants (29, 37 35, 24, 17, 21) show better results than variant 5 (weather
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Figure 6.12: Average waste using different criticality variants on an aggregated scenarios experiment

criterion only) but only 2 are both better in both average completion and average number of
passes:

3 variant 24 (weather_anticipation),

3 variant 35 (validation_weather_passes_anticipation).

Average Waste. Figure 6.12 presents the waste for each variant on the aggregated test. The
first observation is that variant 39, representing the greedy algorithm, averages ∼70% waste
and performs worse than most Glimpse variants. Variant 5 (weather criterion only) does
not provide good waste results either. As for the most promising variants found previously,
two variants also show good results for the waste metric:

3 variant 24 (weather_anticipation) with ∼60% average waste,

3 variant 35 (validation_weather_passes_anticipation) with ∼57% average waste.

Overview. According to these results the best overall variant of the ones tested appears to
be variant 35 (validation_weather_passes_anticipation). It proves to be competitive with
all other variants and the greedy while significantly reducing the waste when compared to
the greedy and other variants that performed well in terms of completion rate. For a more
detailed analysis the comparison between this variant and the greedy algorithm is presented
in figure 6.13.

Average passes of both the greedy algorithm and the best variant are equal or similar
for most of the scenarios, particularly those featuring heterogeneous meshes. In the case
of heterogeneous meshes, only scenario 8 of table 6.12 presents a significant difference in
terms of number of passes to completion. In terms of waste, the best variant proves to be
much more efficient than the greedy algorithm for almost all scenarios except scenario 6 of
table 6.12. This may be due to the relatively small size of the AOI, France, and the favorable
weather at the time of acquisition with a starting date of the scenario in August. These
factors contribute to an easier acquisition overall which may favor the greedy algorithm as
the selection of the best meshes in strict order and without going back on decisions may be
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Figure 6.13: Comparison of average results per scenario of the best Glimpse variant (orange)
and the greedy algorithm (blue)

sufficient for the solving. However on harder experimental conditions the greedy algorithm
that uses static meshing suffers from a large amount of reacquisitions which worsen the
waste results compared to the more accurate placement of the best variant of Glimpse that
uses dynamic meshing.

Analysis. The results from this sensitivity analysis show that different criticality variants
do have an impact on the performance of Glimpse as a system for the solving of the LAC
problem. The intuitive approach that led to the design of the first criticality variant used
for the experiments of section 6.3 proves to be reasonable. Indeed the variant used for these
experiments is "validation_weather_anticipation_pass_grid" and the best variant found in
this analysis is "validation_weather_pass_anticipation". However the best variant found in
the case of this aggregated test may not be the best for another set of scenarios. Indeed,
different variants may be more adequate depending on the number of satellites used, the
size of the AOI or the average weather encountered during the time of the year from the
starting date of the mission on the AOI.

In this regard Glimpse allows for the tuning of parameters through the criticality cri-
teria. By using different Cell agent criticality criteria and orders of appearance one may find
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a variant that is suited for the LAC missions of a specific AOI. The other approach consists
of a systematic recommendation of variants suited to the characteristics of the mission. For
example above a certain number of satellites a specific criterion may be recommended to be
placed high in the lexicographic order. Indeed, a more in-depth sensitivity analysis demon-
strated that the performances of Glimpse are improved through this method. Such a meta
sensitivity analysis on more countries and using different sets of experimental conditions is
a possible continuation of this work.

6.6 Synthesis

In this chapter the experimental conditions for the evaluation of performances of Glimpse
and other LAC solving algorithms is first established. In this study weather forecasts are
simulated using previous weather observations. This ensures a proximity with operational
weather as randomly generated weather forecasts may presents patterns that are not ob-
served in actual conditions. The metrics for evaluations are also chosen, with completion
time and waste defined. A measure of the completion time at 95% of AOI validation is se-
lected. This is justified by the lack of differences in performances when comparing LAC
solving algorithm due to acquisition bottlenecks.

Indeed the areas in the remaining 5% are usually the harder to acquire, for example be-
cause of chronic cloudiness, meaning every solving algorithm needs to wait for a favorable
pass which lets the less effective algorithms catch up on other acquisitions. For the sake
of simplification an MPF that acquires every mesh included in acquisition requests is also
chosen. The analysis of reasons for which an MPF would reject individual meshes is out
of the scope of this study. To best compare the performances of LARM algorithms without
this added parameter a compliant MPF is selected, though the algorithms are developed to
communicate with an MPF that may reject acquisition requests.

Performances. A preliminary performance analysis is presented using Australia as AOI.
The goal of this experiment is to observe the performances of LARM algorithms for differ-
ent types of satellites constellations. The results of Glimpse using dynamic meshing and
a greedy algorithm using static meshing are benchmarked on a use case of homogeneous
satellites first, then on a use case of heterogeneous satellites. The homogeneous case is the
best one for static meshing as no overlap exists between meshes, meaning the mesh grid
of every satellites is the same. In this case results are near equal and the evolution of each
metric similar, with Glimpse showing slight decrease in completion time required. In the
case of heterogeneous satellites a larger gap in results observed as both completion time
and waste are significantly lowered using Glimpse.

The evolution of waste through the execution of the greedy algorithm explains this dif-
ference. Indeed this waste gradually increases through the mission which can be explained
by reacquisitions of already validated areas or worsening weather. However the evolution
of the waste using Glimpse and dynamic meshing remains stable through most of the ex-
periments, meaning the weather does not worsen on average. This shows that the greedy
using static meshing reacquires validated areas due to the overlaps between the mesh

100 Timothée Jammot



6.6. Synthesis

grids of the satellites. The diminution in efficient satellite resources use on each pass causes
a decrease in average area acquired per pass. The completion time is impacted as a result,
with less passes required for Glimpse to reach 95% completion than its greedy counterpart.

Robustness. These preliminary results are then expanded upon through the analysis of the
robustness of Glimpse. The goal is to demonstrate the increase in performances when using
Glimpse and dynamic meshing over static meshing on different use cases. This is justified
by the large variety of LAC missions that may be encountered in an operational context.
The parameters of the LAC missions that are modified to simulate this are the size and the
shape of the AOI, the weather and the number of satellites. Relevant scenarios are built to
represent possible differences in the respective parameters, such as Norway and Ivory Coast
for the area shape parameter or Myanmar during monsoon or clear weather for the weather
parameter.

The area size parameter shows that larger AOI tend to favor Glimpse as the differences
in mesh positioning are exacerbated by the number of passes to reach 95% completion. The
area shape parameter reveals a tendency to favor Glimpse for elongated and irregular
shapes such as Norway due to the rigidness of the static mesh grid and its interaction with
the edges of corridors on the irregular outline of the AOI. The weather parameter highlights
the ability of Glimpse to place and adjust meshes according to difficult weather patterns,
with equal waste results when compared to the greedy algorithm and static meshing during
clear weather but reduced waste during monsoon season. Equal results are found in terms
of completion time due to a significant number of acquisition bottlenecks through the exe-
cution, indicating that Glimpse acquired meshes more efficiently overall but needed to wait
favorable passes to continue the solving. The number of satellites parameter shows similar
results in terms of time to completion but consistent improvements in terms of waste when
using Glimpse.

An observation is made that Glimpse may be used as a tool to find the optimal num-
bers of satellites for different LAC missions regarding the number of passes or days required
to perform the acquisition. This study shows the robustness of Glimpse as every use case
considered showed promising results either in completion time, waste or both when com-
pared to a greedy algorithm and static meshing. It also highlights the potential of Glimpse
as a decision tool to better tune mission parameters such as the number of satellites or their
characteristics.

Criticality Analysis. The results obtained by Glimpse depend on the behavior of agents
but also on the criteria chosen for the criticality of agents. In the previous experiments of
this chapter the criticality of Mesh agents is based on a list of the most critical adhering cell
agents in descending order, and the criticality of Cell agents on a list of criteria in a lexico-
graphic order. These criteria and their order were found using advice from professional of
operational systems and empirical tests. The last section of this chapter presents a sensitivity
analysis that evaluates the performances of Glimpse depending on different sets and orders
of criticality criteria called variants.

Experiments similar to the ones used in the robustness section are chosen in order to
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benchmark the different variants. Most variants obtain worse performances than the one
using only the weather forecast as criterion which shows that the input of domain ex-
pert is sufficient to find a good variant. The best variants found overall are both using
a weather forecast criterion for the current pass followed by a criterion for future weather
forecasts. This reasoning is applied in the original criteria ordering as the future passes help
differentiate the potential for cells to be acquired successfully at a later date, diminishing the
importance for them to be acquired on the current pass. The best variant adds two selection
criteria, with the non validated cells and the cells having less remaining available passes on
the planning horizons being prioritized.

This is also found in the original variant though the order of the future weather criterion
and the remaining passes criterion is switched. Conversely, the cell grid criterion is not
present in this variant, indicating that it may cause the worsening of performances contrary
to the intuition of the criterion. This analysis shows that the original variant used in the
performance and robustness experiments is intuitively sound though it can be improved.
Different use cases may also benefit from different orders or criteria activated, the finding of
which may be the goal of a future sensitivity analysis in the continuity of this study.

Glimpse. The performances of Glimpse were analyzed both in the context of comparison
with a state of the art greedy algorithm and regarding its internal parameters represented
by the criticality criteria. Using the observations and discussions of this chapter we add an
AMAS row to the table 3.1 of section 3.4.4 as presented in table 6.14. AMAS are single state
algorithms which lowers computing time. The agent life cycles are computed in parallel to
allow for faster calculations, however the greedy algorithms are still faster due the absence
of backtracking in the exploration of the search tree.

Section 6.4 showed the ability of Glimpse to handle different types of LAC scenarios with
varied characteristics regarding the size and shape of the AOI, the number of satellites and
the weather. The bottom-up approach of multi agent systems is suited for a large number of
problem entities. The scalability of Glimpse was verified using LAC scenarios with cells
on large AOI such as Australia. The ability of AMAS to avoid local minima sensitivity in
optimization problems is tied to the representation of the constraint agent criticalities in the
AMAS4Opt model. In section 6.5 this criticality was discussed in the context of the LAC
problem and Glimpse. Though good criticality variants may be found using the logic and
knowledge of experts of the LAC problem, systematic methods could be used to determine
the best variants for specific problems. This perspective is discussed further in chapter 7.

A global observation based on the results of this chapter is the ability of Glimpse using
dynamic meshing to reduce the waste when compared with the greedy algorithm using
static meshing. This is partly explained by the better mesh positioning limiting waste due
to meshes overlapping with areas subject to bad weather. Another explanation comes from
the possibility of adapting the meshes to the geometry of the problem in the case of het-
erogeneous satellites. Overlapping meshes tend to create small gaps that lead to numerous
reacquisitions when using static meshing, but only few reacquisitions when using dynamic
meshing. Improvements in the completion time required to reach 95% of the LAC mission
can be observed as a result but not always.
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Algorithms Computing time Robustness Scalability Local minima sensitivity
Greedy ++ - - - -

Constrained ++ - - ++ - -
MCTS - - + - - +

GA - - + + ++
EA - - + + +
SA - + ++ +

AMAS + ++ ++ +

Table 6.14: Evaluation of the LAC problem resolution metrics per optimization algorithm including AMAS
graded from - - (low performance) to ++ (high performance) for each category

Indeed, a number of use cases present acquisition bottlenecks that lead to equalization
of performances at one point in time during the mission and a homogenization of results.
However a better acquisition rate during the mission is still useful operationally as client
update can be performed when reaching a bottleneck. Glimpse and dynamic meshing
appear suited to reduce the mission completion time in some use cases including the case
of heterogeneous satellites covering a very large AOI which is relevant operationally.

Even for shorter missions, Glimpse can utilize satellites resources better than the greedy
alternative to provide earlier update and can be used as a decision tool for the optimization
of missions characteristics. As such, we suggest the use of a cost metric including both
completion time, waste and number of satellites to evaluate LAC algorithms. This metric
represents best the actual resources consumption of the observation satellites for the LAC
mission and may be an alternative to completion time for long term acquisition missions
such as Earth observation ones.

6.7 Conclusion

In this chapter we presented the experiments and methodology used to evaluate Glimpse.
Different uses cases were established and Glimpse was compared to a greedy algorithm.
Variants of the Glimpse agent criticalities were also presented with the associated results.
The problem metrics obtained were analyzed and discussed for each experiment. In chapter
7 we summarize the contributions of the thesis and conclude with thoughts regarding the
future of the LAC problem optimization.
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7 Conclusion

EARTH observation using Low Earth Orbit (LEO) satellites is a field that includes a wide
variety of optimization problems. Control centers called Mission Planning Facilities

(MPF) handle a small constellation of satellites to answer client requests related to Areas
Of Interest (AOI) that are completed after few acquisitions. This thesis considers the point
of view of an overarching entity called a Large Area Request Manager (LARM). A LARM an-
swers client requests related to large AOI that require weeks or months of acquisitions to
complete. The LARM itself acts as a client to several MPF in order to spread the acquisition
workload. The scheduling of satellites is left to the MPF while the positioning and shape of
meshes to acquire forms a new problem that the LARM needs to solve. We call this the Large
Area Coverage (LAC) problem.

In chapter 2 we introduce the entities of the LAC problem. In this problem an LARM
receives a client request for the acquisition of a large AOI. The LARM sends acquisition re-
quests to MPFs during successive satellite passes. Acquisition requests may fail due to dif-
ferences between weather forecasts and observed weather. Additionally, acquired meshes
may partly cover areas that have already been validated. Both factors cause the under-
utilization of satellite resources, also called waste.

This is expanded upon in chapter 3 in which time to completion and waste are intro-
duced as metrics for the LAC problem. A formalization of the problem is proposed and dif-
ferent approaches are considered. A simple operational technique that consists in dividing
the area between available satellite is considered inefficient. Indeed limiting the acquisition
possibilities of the satellite to limit interactions reduces the complexity of the problem but
under uses the satellite resources. The formalized LAC problem is NP-Hard and as such we
consider meta-heuristics instead of exact approaches. A state of the art of several candidate
optimization algorithms for the solving of the LAC problem is then established.

In this thesis we focus on the solving of the LAC problem using Adaptive Multi-Agent Sys-
tems (AMAS). These systems are composed of agents, elementary entities that self-organize
to reach local goals while respecting cooperation rules. AMAS have been used to solve com-
plex optimization problem and have proved efficient in their adaptation to perturbations
during the execution. Chapter 4 presents the AMAS theory and several applications where
the AMAS theory has been used to solve optimization problems.

In chapter 5, our proposition to address the problem using a dynamic meshing technique
is introduced. This technique introduces cells, elementary subareas that allow for more
precise mesh placement and adaptation to mission characteristics during the execution. A
new formalization of the LAC problem is proposed. Based on this formalization, Glimpse,
an AMAS for the solving of the LAC problem, is presented. The agents of Glimpse and their
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interactions are then described.

Chapter 6 highlights several experimental results that validate the good performances
and high level of robustness provided by Glimpse as an optimization algorithm for the LAC
problem. A sensitivity analysis of the Cell agent criticality criteria shows the adequacy of
the parameters used in previous experiments and the potential for tuning criteria variants
to specific LAC use cases.

Scientific Contribution

The LAC problem explored in this thesis is an optimization problem that features resource
allocations under time constraints. The number of acquirable meshes per pass is limited by
the characteristics of the satellites such as maneuverability and speed. This restriction in the
amount of resources and the importance of the meshes point towards similarities between
the LAC problem and the knapsack problems[Martello and Toth, 1990]. In this field of opti-
mization problems a container with limited capacity needs to be filled with items of differing
importance and weight. The cutting stock problem[Cheng et al., 1994] is another problem
of the optimization literature with similarities to the LAC problem. In this type of problem
different shapes need to be extracted from a plane while minimizing the wasted, unused
surface. Glimpse as an AMAS represents a contribution to these fields of optimization
problems, a topic on which we expand in the perspectives for future work.

Relative to the research in AMAS, this thesis features an analysis of the importance of
agents through the criticality criteria. The AMAS4Opt[Kaddoum, 2011] agent model intro-
duces "constrained" and "service" agent roles. Service agents use a notion of criticality to
prioritize the fulfilment of requests sent by constrained agents. Agent criticalities consist of
criteria listed in descending order of importance. A sensitivity analysis is presented in this
thesis relative to the performance of Glimpse when using different presets of criteria and
order of criteria, called variants. The results show that different Glimpse variants lead to
performances gaps when considering the metrics of the LAC problem. As a generalization,
Glimpse variants may be used to optimize different problem metrics. Specific variants
may also be considered for specific use cases after a sensitivity analysis or other methods
of finding the best variants. This topic is also discussed further in the perspectives of the
thesis.

The criticality in Glimpse is used by Pass agents to relocate the least critical meshes and
by Mesh agents to navigate on the cell grid. This agent architecture features different scales
on the problems. Mesh agents represent a macro scale that communicates with Cell agents
on a micro scale. The arrival of a Mesh agent triggers the start of a series of messages for
neighboring and covered cells. The proposed adhesion process between Cell and Mesh
agents can be generalized to other optimization problems. Indeed this process can be
replicated using any macro scale agent that needs to answer to a large number of interde-
pendent smaller scale agent that only accept one affection of a macro agent. This ensures
potentially desirable properties such as a low number of affectation overlaps in macro agent
over micro agents. In the LAC problem this is visible by the distribution of dynamic meshes
over areas of high average criticality.
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Operational Contribution

The process of developing a solving algorithm for a problem such as the LAC problem is
often made considering the resolution in a top-down approach. Using the LAC example
this refers to solving the problem with a central decision making entity that places meshes
on the satellite passes and selects which meshes to send as acquisition requests to the MPF.
In this thesis we propose a bottom-up approach to the LAC problem. The local goals of
Cell and Mesh agents are first considered. Goals and communications to find the best mesh
placements based on the local knowledge of the agents are described. Pass agents only relo-
cate low criticality meshes after the self-organization of Cell and Mesh agents. This approach
helps identifying the elementary agents and potential local goals for the LAC problem.

A decentralized decision making system answers some of the challenges of the problem.
Multi-objective optimization with different problem metrics, such as the time to comple-
tion and waste, makes the definition and treatment of a global objective function difficult.
Elementary agents with local goals allow for simple design and tuning phases during the
development of the algorithm. The scalability of the algorithm is another important aspect
for the solving of the LAC problem. A decentralized approach parallelizes the reasoning in
different agents. The behavior of the agents can then be performed in parallel threads to
lower computation time. The agents and relations of the LAC problem developed in this
thesis may be used for the design of other bottom-up optimization algorithms.

The subdivision of the AOI in a cell grid itself is proposed in this thesis. The goal of the
cell grid is to allow more accurate mesh placements in order to optimize satellite resource
use. We call the meshing process over a cell grid "dynamic meshing" in opposition to
the static meshing method where meshes are placed on a precomputed grid. In the case of
static meshing meshes are never modified during the solving to keep the mesh grid intact
while dynamic meshes can vary in both position and length. The hypothesis for the use
of dynamic meshing is that meshes can be positioned to avoid overlaps between already
validated areas, or to avoid unfavorable weather. Dynamic meshes should also help with
irregular corridor shapes and small gaps between validated areas. The experimental results
show the adequacy of dynamic meshing with overall better results in completion time
and especially in waste reduction. As suggested dynamic meshing uses satellite resources
more efficiently than static meshing in every considered use case.

The LAC problem is a known optimization problem in the Earth observation literature.
Other approaches include the resolution of the problem using "strips", meshes obtained by
acquiring in a straight line over the AOI. The goal of the problem when using strips is to find
a series of satellite orientations, and thus strips, that maximizes area coverage. The introduc-
tion of meshes to the LAC problem adds a layer of complexity. When using static meshing a
series of meshes on the mesh grids need to be selected for each pass. When using dynamic
meshing a series of meshes need to be found on the cell grid for each pass. In this thesis we
formalize the LAC problem for both static and dynamic meshing with problem characteris-
tics, goal and objectives. As operational contributions, these formalizations may be used
to develop other optimization algorithms for the LAC problem using meshes.
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Future Work

This work opens new directions in both fields of Earth observation and AMAS research.

From a Scientific Point of View

As proposed earlier in this chapter the LAC problem shares similarities with different types
of known optimization problems. Despite these similarities a number of characteristics of
the problem contribute to its uniqueness and complexity. The number of meshes that can be
acquired per pass varies in the case of dynamic meshing as the length of the meshes can be
modified. The acquisition of meshes impacts future acquisition, cutting parts of the search
tree for each validation. The uncertainty of the acquisitions means that each mesh needs to
be considered as potentially validated or rejected after acquisition. All these characteristics
separate the LAC problem from traditional knapsack or cutting stock problems.

However specific examples in these fields of problems similar to the LAC problem could
be found. [Fajemisin et al., 2023] presents an uncertain cutting stock problem in which the
stock shapes are not known. [Neumann et al., 2022] proposes an EA to limit the impact of
uncertainty for the solving of a knapsack problem with stochastic profits. The literature
regarding these problems and other similar problems would indicate potential optimization
algorithms that have proved to be adequate to solve them. A study comparing the results
of Glimpse and other candidate algorithms would further highlight the strengths and
weaknesses of Glimpse and the AMAS theory when considering the types of problems
similar to the LAC problem.

Regarding Glimpse itself, the sensitivity analysis proposed in chapter 6.5 reveals possible
directions to improve the system. This analysis proved that the intuition of experts in the
field of Earth observation led to good criticality variants that were used in the experiments
of this thesis. The comparison of variants also showed significant differences between the
worst and best performing variants when considering both problem metrics. A new variant
that is not considered in this study could theoretically improve the results of Glimpse in
most explored use cases. Finding a best variant for each use case is an optimization problem
in itself, one that may be solved through the use of metaheuristics.

A possible approach is the use of machine learning to find both the criteria and their
hierarchy. This would ensure a better performances when using Glimpse. Indeed, a more
accurate determination of the criticality of cells and meshes would improve the likelihood
of meshes being successfully acquired and increase the coordination between the passes of
satellites. This reasoning can be generalized to all constraint agents of the AMAS4Opt
model. Finding the criticality criteria that lead to the best self-organization of agents during
the solving of any optimization problem is a topic that may be explored in future studies.

From an Operational Point of View

Earth observation problems can be viewed from different levels of relation to the satellites.
The LAC problem considers a macro viewpoint where individual MPFs have their respec-
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Figure 7.1: Partial validation of meshes and adaptation of dynamic meshes to the updated validated areas

tive planning and scheduling methods but share the characteristics of the satellites with the
LARM. New technologies onboard the satellites or in image treatment on the ground can
modify the problem. For example the improvements in the agility of the satellites in re-
cent decades allows for the acquisition of meshes and a more flexible division of the AOI.
Another technology that is not explored in this thesis is the partial validation of meshes.

Indeed each mesh acquired is considered fully validated or rejected after the acquisi-
tion process. This is reasonable when using static meshing as the precomputed mesh grid
does not allow the adjustment of future meshes even if parts of the current mesh could be
validated. Dynamic meshing allows the use of partial validation where each cell that
is usable in an otherwise clouded picture is validated. This technique is made possible
through image treatment on ground and reassembly of image parts when answering to the
large area client request.

Dynamic meshes are adequate to use with partial validation as they can be rearranged to
fit around already validated cells. Partially validated meshes drastically reduce waste and
time to completion as they would be entirely rejected otherwise. Partial validation can be
used with static meshing but its advantage is reduced as meshes often need to be re-acquired
entirely if part of the resulting images is clouded. An illustration of partial validation used
with dynamic meshing on a corridor is presented in figure 7.1. Using Glimpse with partial
validation is a possible continuation of this thesis in the evaluation of its performances
with improved observation and imaging technologies.

The LAC problem as formalized in section 5.2.2 abstracts a number of operational con-
straints for the sake of simplification. Another future continuation of this work is the im-
plementation of parameters that are considered operationally. With ever-increasing image
resolution capabilities the memory on-board of satellites is a constraint that needs to be con-
sidered in actual LAC missions. Memory calculations are performed to validate a mission
plan for the satellite acquisitions between two downloading events. These are done by each
MPF operating the satellites but could also be included in the mesh limit per pass that is
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already implemented in Glimpse.

Similarly, the battery of satellites need to be recharged periodically through states dur-
ing which the solar panels are directed towards the sun and the acquisitions are stopped.
The satellites also need to perform maneuvers between each mesh acquisitions that are not
strictly continuous. In the formalization of the LAC problem presented in this thesis all of
these constraints that are abstracted by considering the MPFs as black boxes. The exchanges
between LARM and MPFs are simplified as the MPFs always find an adequate satellite plan
to acquire each of the requested meshes.

In operational conditions, this step may result in a number of rejected acquisition re-
quests due to the impossibility to chain the maneuvers between acquisitions or due to other
constraints such as the memory or power of the satellite. A more transparent communica-
tion between LARM and MPFs would improve the coherence of simulated LAC scenarios
and allow the comparison of Glimpse to other algorithms that can be used in operational
contexts.

Learning versus Adaptation

The field of wide coverage has highlighted a recurring issue when using cooperative agents
for solving optimization problems: that of defining priority criteria guiding the decisions
of agents. This work has shown the sensitivity of results to the hierarchical order of criteria,
even if experts are able to specify a restricted subset of relevant criteria. There are two main
methods for determining the ideal hierarchy:

1. by learning from a corpus of examples, based on feedback on the performance of each
hierarchy. The first difficulty is the inherent combinatorial nature of all the criteria. The
second difficulty is that learning presupposes a certain stability of the environment in
which the learning takes place. This is not an obvious presupposition when we are
interested in meteorology, especially in the current period of climate change which re-
quires models to be constantly adjusted,

2. by cooperative organization, in which each agent can individually receive feedback
from his or her neighbors, prompting for a reevaluation of its goals and a readjustment
of the relative importance of these criteria. When this introduces a potential hierarchy
update, the agent informs other agents of the same type to decide how to collectively
self-organize the criteria. Cooperation thus becomes a means of adapting the internal
behavior of agents, avoiding a fixed list of criteria.

Final Words

Earth observation problems form a vast field of research in optimization. Each step of the
image acquisition process features numerous entities and resources that need to be man-
aged. The scheduling of acquisitions and downloads by the MPFs operating the satellites
are problems that are already discussed at length in the literature. In this thesis we focus on
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the macro level, from the viewpoint of an LARM coordinating the MPFs to acquire a large
area. The LAC problem we formalized in this context is complex. A continuous area needs
to be imaged mesh by mesh over a long time period.

We increase the complexity further by proposing dynamic meshing, a novel approach
to meshing that eases the constraints on mesh placements and shapes. To solve the LAC
problem with dynamic meshing Glimpse, an AMAS, is developed. The results obtained
using Glimpse on a variety of LAC scenarios show the adequacy of AMAS for the solving of
such problems. Dynamic meshing itself proves to be a cost-efficient way to manage mesh
placements, with significant improvements in the use of satellite resources over a more rigid
meshing technique.

Through the study of the LAC problem using AMAS, this thesis contributes to several
topics that may inspire future research. The coordination of satellites by an overarching
manager is a complex field in which Glimpse provides an example of resolution by AMAS.
The approach of using several types of macro and micro level cooperative agents for the
solving of optimization problems is also described in this work. Additional improvements
are also proposed for Glimpse such as the optimization of criticality criteria.

The emergence of a general behavior in the system is dependant on the local goal of
agents and finding the best agent criticality for different types of problems and problem
configurations appears essential. Machine learning and cooperative organization appear
as possible adaptation mechanisms for the processing of updates with adjusted criticality
criteria. An initial sensitivity analysis of the variants of Glimpse also suggests that finding
optimal agent criticalities is itself a difficult optimization problem that may require meta-
heuristics. As such this thesis highlights the importance of the methodology used to find
agent criticalities during the design of AMAS for the solving of difficult optimization prob-
lems.
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A Greedy Optimization

In section 3.4.3 we discussed the state of the art of optimization algorithms applied to the
LAC problem and similar problems such as the daily satellite scheduling problem. Greedy
algorithms were presented as optimization algorithms that are easy to implement but suf-
fer from local minima trapping and scalability issues. Section 3.4.4 compares different al-
gorithms with their estimated performances relative to the resolution metrics of the LAC
problem that were introduced in section 3.3.2.

From these comparisons we can extract several better candidate algorithms to solve the
LAC problem. This study presents the results of an internship by Enzo Pezzali on the im-
provement of the greedy algorithm used in section 6.3. The greedy algorithm developed as a
result of this internship can be used to benchmark Glimpse against an algorithm with a more
flexible mesh placement approach. This comparison is out of the scope of the thesis due to
time constraints but may constitute a future perspective for the improvement of Glimpse.
In this section an optimal approach for the solving of the LAC problem is presented, then
the improved greedy algorithm that uses simulated annealing is described and finally the
optimal approach and the two versions of greedy algorithms are benchmarked.

A.1 Optimal Solutions

A.1.1 Exact Approach

Integer Linear Programming (ILP) problems[Graver, 1975] are optimization problems of
which objectives and constraints are written as linear equations or inequalities with vari-
ables that only accept integer values. This type of problem is NP-Hard [Sherali and Driscoll,
2000]. An ILP problem can be formulated as follows:

maximize z = c.x

subject to A.x ≤ b,

x ≥ 0,

and x ∈ Zn

With:

3 x = (x1, x2, ..., xn)T the variable vector that contains the n variables of the problem,
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3 A = (ai,j)∀i ∈ {0, 1, ..., n}, ∀j ∈ {0, 1, ..., m} the constraint matrix, with m the number of
constraints,

3 c = (c1, c2, ..., cn) the profits vector,

3 b = (b1, b2, ..., bm)T the vector of second members.

One of the appeal of converting a problem in an ILP problem is the possibility of using
an exact solver to find optimal solutions. Optimal solutions are commonly found on small
instances of the problem as exact methods explore the entire search space. On such small
scale instances we can compare implemented algorithms and observe the distance between
obtained results and the optimum. Due to the size of LAC instances (up to 500 000 variables)
an exact solving is not feasible on large instances. Comparison with the optimal solution
on small LAC instances can however confirm empirically that the heuristics used are near
the optimum.

Solving a linear problem may be done using the simplex algorithm or the interior point
method, which have the benefit of being exact methods as shown in [Mancel, 2004]. But
the solving of an ILP is more complex and the simplex is not always satisfactory. Indeed
the continuous relaxation of an ILP only has integer solutions in a few specific cases. As
this is not the most common case, other methods are used such as branch-and-bound[Boyd
and Mattingley, 2007] (separation and evaluation) on small instances. For larger problems,
column generation methods such as described in [Mancel, 2004]. However for the size of
problems similar to the size of big LAC instances, heuristics are better suited as they are
faster [Sherali and Driscoll, 2000].

As such, a formulation of the LAC problem as an ILP problem allows for the compar-
ison of implemented algorithms to an exact solving on small scale instances. In section A
we propose a formulation of the LAC problem as an ILP problem and use it to implement
an exact solver and compare its results to those of an improved greedy algorithm.

A.1.2 CPLEX

As an NP-Hard problem the LAC problem cannot be solved in reasonable time by an exact
approach. For small instances of the problem however an ILP solver may find the optimal
solution. This is useful for the comparison of performances of different algorithms and
for measuring the distance to the optimum in each scenario. Section A.1.1 describes the
formulation of an ILP problem. To solve small instances of the LAC problem as an ILP
problem, we use CPLEX, an optimization tool developed by IBM to solve linear problems.
CPLEX uses the simplex algorithm to find exact solutions of an ILP problem if execution is
able to finish in reasonable time.

To illustrate this we consider the following example:

3 France as AOI

3 Weather data from July and August 2016
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Figure A.1: Cell grids over France of respective size 30km (upper left), 20km (upper right) and 10km (lower
right)

3 A single MPF and two satellites of respective swathes 30km and 60km for 120km of
maximum acquisition length

The cell grid is used to modify the scenario and change the number of variables that the
CPLEX algorithm has to process. Three use cases are studied with cell sizes of 30x30km,
20x20km and 10x10km. Figure A.1 presents the three use cases with the respective cell
grids and table A.1 presents the results of the execution of CPLEX on these instances. These
experiments are performed on an Intel(R) Xeon(R) CPU E5-2695 v3 @ 2,30GHz two cores.

Cell sizes (km) 30 20 10
Number of variables per pass 4000 13 100 95 500

Computing time 1min10s 14min30s >48h

Table A.1: CPLEX computing time relative to the size of the LAC problem instances

These results confirm the ability of CPLEX to solve small instances over larger ones.
Indeed cell sizes of 30km and 20km require less than 15 minutes to find exact solutions which
can be considered reasonable time. However the change from 13 100 to 95 500 variables
when using 10km cells makes CPLEX require several days to complete the solving. The
exponential change in variables is carried over to the computation time, making the use
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Figure A.2: Comparison of mesh placements between the CPLEX solver and the greedy algorithm for an early
pass during a LAC mission

of CPLEX inadequate in this instance. This example is also a relatively small scale one as
countries several times bigger than France may be AOI of client requests. Similarly, the
solving is exponentially longer with the growing number of passes. For a use case of a small
AOI but difficult weather, such as the monsoon example previously presented, the number
of passes may render the exact solving impossible in reasonable time as well.

To solve larger instances metaheuristics are necessary but their performances can be
evaluated using CPLEX on small instances. In section 6.2.5 a greedy algorithm for the
solving of the LAC problem is described and a comparison to Glimpse in section 6.3. In
section A.2 a preliminary evaluation of this greedy algorithm using CPLEX is presented.

A.2 Greedy Algorithm Evaluation Using CPLEX

To understand the difference between greedy solutions and CPLEX solutions we consider
the scenario presented in section A.1. Figure A.2 shows the difference between the first ac-
quisition performed by CPLEX and the greedy algorithm on the same instance. The obtained
solutions differ by two meshes, which can impact the following solving on later passes sig-
nificantly. The difference between acquiring the best set of meshes (left) and acquiring the
best meshes one by one (right) is visible here. To note: the cells are not validated following
the same patterns as the simulated weather differs in these cases but the relevant observa-
tion is that the greedy algorithm does perform suboptimal mesh selection when compared
to the optimal solution of the CPLEX.

A simple demonstration is sufficient to show that the greedy algorithm can diverge by
several meshes from the optimal solution as early as the first pass of a LAC instance. In
section A.3 the greedy algorithm is improved using simulated annealing as a metaheuristic
in order to get closer to the optimum while keeping reasonable computation time for large
instances.
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A.3 Hybrid Algorithm

A preliminary study of the greedy algorithm shows that its results are close to the optimal
solution but vulnerable to local minima trapping. To solve this local minima trapping is-
sue, a local search is added to the greedy algorithm, making it a hybrid algorithm of a
greedy algorithm using simulated annealing. Simulated annealing is an algorithm pre-
sented in section 3.4.3 that gradually progresses from a exploratory state to an exploitative
one using heating and cooling inspired methods. Simulated annealing is more resilient to
local minima trapping than the greedy algorithm due to possible jumps in the search tree
and an early exploration phase designed to avoid this phenomenon. However using sim-
ulated annealing alone proved to give similar results to the hybrid greedy and simulated
annealing algorithm while requiring significantly more computing time.

Like the greedy algorithm, the hybrid algorithm needs to find a solution represented by
a list of selected meshes. Its initialization state is obtained from the solution of the greedy on
the instance. The algorithm progresses through the search tree by creating random neighbor
states and evaluating their potential. To create a random neighbor to the current solution a
mesh is selected and moved by a length of 1 cell in any possible direction, as is described
in algorithm 6.

Algorithm 5 presents the general process of the hybrid algorithm. It first uses the greedy
algorithm then looks for a good initial temperature thanks to a heat up loop and finally
optimizes with the cooling. The internal process of the heating and cooling functions are
abstracted for simplification. The parameters α, NB_TRANSITIONS and ϵ were chosen
empirically. The function check_constraints has a solution as input and returns a boolean
indicating if the constraints relative to the capacity in number of meshes and lines are valid.

Algorithm 5 Hybrid algorithm

Require: Nm ≥ 0
1: solution = greedy()
2: init_temperature = heat_up_loop(solution)
3: solution = cooling_loop(init_temperature, solution)
4: return solution

Simulated annealing does not only move meshes. Indeed the greedy algorithm has a
tendency to select bigger meshes as they often have the best criticalities. The line capacity
constraint is then quickly reached but not the number of meshes. To solve this issue the
initial solution of the simulated annealing is modified by splitting the bigger meshes in
two if the mesh capacity constraint is not saturated. Figure A.3 shows the purpose of this
change as the hybrid finds the same solutions as the CPLEX algorithm due to this ability
of splitting the mesh. The regular greedy algorithm only selects the mesh and is then unable
to fit more meshes inside the corridor, wasting the acquisition of 3 acquirable cells with a
better mesh split.

The neighborhood of a simulated annealing algorithm is important, as the computing
time can grow considerably due to a bad neighborhood function or may even cause conver-
gence issues. Another possible approach is the random addition or suppression of a mesh
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Algorithm 6 Neighborhood

Require: len(solution) > 0
1: neighbor = f alse
2: while neighbor is f alse do
3: S′ = solution
4: ind_mesh = random(0, len(solution))
5: ind_coord = random(0, 1)
6: ind_direction = random(−1, 1)
7: S′[ind_mesh][ind_coord] += ind_direction
8: neighbor = check_constraints(S′)

9: end while
10: return S′

Figure A.3: Illustration of the impact of mesh splitting for the acquisition of more meshes within satellite use
constraints with the same corridor acquired without mesh splitting (left) and with mesh splitting (right)

to the solution. This neighborhood function is commonly used in the knapsack problem
and is easy to implement. This however presents several problems when considering the
LAC problem.

First, the size of the instances is large enough that a search with so little guidance re-
quires a large number of iterations to converge. Second, although a neighbor is easy to find
computing its criterion requires a long time as the evaluation depends on the other meshes
selected due to the possible overlaps. For these two reasons, the convergence of this neigh-
borhood is long when compared to the neighborhood presented in algorithm 6 which is
small and searches around a local optimum. [Cheh et al., 1991] compares several neighbor-
hoods used on different problems and shows that a small neighborhood is often better as
larger neighborhood spend time looking far to find good solutions.

In sections A.1 and 6.2.5 the exact approach and the greedy algorithm are presented. In
this section a hybrid greedy solution using simulated annealing is proposed. Section A.4
describes the experimental use cases for the comparison of these algorithms.
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A.4 Data Set

Section 6.2 describes the experimental environment for the comparison of Glimpse and the
greedy algorithm. In this section the same experimental conditions are considered regarding
the MPFs and satellites configurations. The instance pool evaluating different parameters
includes:

3 the number of cells using France (small instance) and Brazil (large instance),

3 the weather using Myanmar with good weather and during monsoon,

3 the shape of the country using Norway and Ivory Coast.

An additional emphasis on the weather randomization is considered in these experi-
ments. Several methods of validation of the cells and meshes are possible as previously
discussed in section 5.2.1. Three methods are presented in figure A.4.

3 Partial validation. The weather for each cell is simulated using a uniform random se-
lection between 0 and 1. If the obtained probability is inferior to the probability of val-
idation of the cell then it is validated, otherwise it is rejected. However as is apparent
in figure A.4 this approach creates many cell-sized holes that require additional meshes
on future passes reacquiring already validated cells. It also doesn’t consider the opera-
tional scenarios in which a cell that presents good weather is likely to be neighbored by
other cells that present good weather, and vice-versa for bad weather.

3 Total validation. Validation is done mesh by mesh instead of cell by cell, with either the
whole mesh validated or rejected. The probability of validating a mesh is the sum of
the probabilities of validating each included cell. A drawback of this method appears
when considering crossovers. A cell covered by two meshes on the same pass can have
its weather drawn for each mesh and be validated for one and rejected for the other.
This leads to incoherent situations and better validation chances for cells covered by
several meshes.

3 The third method and the one used in the following sections is a hybrid between partial
and total validation. In this method the cells are validated depending on the weather
mesh they are included in. A random selection is performed for each weather mesh
and cells are validated depending on their relative weather mesh. This solution is more
spatially coherent as cells belonging to the same weather mesh are validated or rejected
together if they are acquired on the same pass, and only subject to a single random
selection for each pass.

Each instance was tested several times to average results obtained with different weather
seeds and thus different mesh validations. As per the preliminary experiment of section
6.2.5 all experiments in section A.5 were performed on an Intel(R) Xeon(R) CPU E5-2695 v3
@ 2,30GHz two cores.
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Figure A.4: Cell validation methods from left to right: partial validation, total validation and weather mesh
validation

A.5 Results and Discussion

A.5.1 Area Size

The first use cases evaluated is France as a scenario with a small AOI. Experimental condi-
tions are as follows:

3 Cell size of 20x20km,

3 Weather data from January to April 2015,

3 2 MPFs : one controlling two satellites of swathes 40km and respective maximum ac-
quisition length of 80km and 120km and the other controlling to satellites of swathes
60km and respective maximum acquisition length of 120km and 160km.

Figure A.5 presents the evolution of the completion through passes during the execution
of the greedy algorithm, the hybrid greedy and annealing algorithm and the CPLEX solver.
The results indicate that, during the execution, the completion rate of the hybrid algorithm is
on average below the optimal solution of the CPLEX solver but above the greedy algorithm.

Table A.2 compares the results of the algorithms at mission completion. The number of
passes required for greedy algorithm is on average above the optimal CPLEX solution by
4.6% while the hybrid algorithm is on average above by 2.8%. While the computing time of
the hybrid algorithm is above the one of the greedy algorithm, it remains reasonable when
compared to the computing time of CPLEX. The hybrid algorithm also presents comple-
tion time results closer to the optimal solution when compared to the greedy algorithm.
The standard deviation for these results is of 5 passes for each algorithm, indicating that the
random weather validation element of the experiments is consistent for each algorithm.

To benchmark these results with a bigger AOI use case Brazil is considered. Experimen-
tal conditions are as follows:

3 Cell size of 20x20km,

3 Weather data from January to November 2015,
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Figure A.5: Average evolution of the completion rate for the greedy, CPLEX and hybrid algorithms on the use
case of France as AOI starting from the 01/01/15

Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX 84,9 201 862
Greedy 89 (4,6%) 217 14
Hybrid 87,3 (2,8%) 207 153

Table A.2: Benchmark for the area size use case using France as AOI

3 2 MPFs : one controlling two satellites of swathes 40km and respective maximum ac-
quisition length of 80km and 120km and the other controlling to satellites of swathes
60km and respective maximum acquisition length of 120km and 160km.

The scenario using France include 13 100 variables per pass while the scenario using
Brazil include 68 000 variables per pass. Experimental parameters regarding the number
of MPFs, number of satellites and characteristics of the satellites are unchanged between
the scenarios using France and Brazil as AOI. Table A.3 presents the results of the three
algorithms on the scenario using Brazil. Similar to the experiment of section 6.2.5 the CPLEX
solver cannot find an optimal solution in reasonable time. The hybrid algorithm requires
4 times more computing time than the greedy algorithm but the time remains reasonable
when compared to the CPLEX solver. Small improvements in both completion time and
waste are obtained using the hybrid algorithm.
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Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX - - >48h
Greedy 385 181 327s
Hybrid 382 (-0,7%) 178 20min8s

Table A.3: Benchmark for the area size use case using Brazil as AOI

A.5.2 Area Shape

To evaluate the performances of the greedy, hybrid and CPLEX algorithms regarding the
area shape Norway and Ivory Coast are chosen as AOI. Experimental conditions are as
follows:

3 Cell size of 20x20km,

3 Weather data from January to April 2015 for Norway, from June to November 2015 for
Ivory Coast

3 2 MPFs : one controlling two satellites of swathes 40km and respective maximum ac-
quisition length of 80km and 120km and the other controlling to satellites of swathes
60km and respective maximum acquisition length of 120km and 160km.

These countries are selected due to their similar size (385 203km2 for Norway and 322
463km2 for Ivory Coast) while having drastically different shapes with Norway being elon-
gated and Ivory Coast more compact. These areas were also selected for the area shape
scenarios of the Glimpse benchmark of section 6.4.2 with figure 6.6 illustrating the respec-
tive area shapes.

The results of table A.4 and table A.5, respectively for Norway and Ivory Coast, show
how the shape of the AOI impact the performances of each algorithm. For an elongated
area such as Norway, the differences between each algorithm are smaller while they are
more apparent for a compact area such as Ivory Coast. This is partly due to the sameness
of the solutions found for each pass when considering Norway as each corridor covers a
small area with an equally small search space. The choices made by each algorithm have
a higher likelihood of being the same and thus close to the optimal solution. A second
explanation comes from the improved chance of having a pass that only covers already
validated cells late during the execution. This extend the total time required to reach 95%
acquisition as these passes count towards the overall number of necessary passes. Results
are thus normalized and the differences in performance between algorithms lowered.

To consider the possibility that the results are being normalized when using Norway due
to unfavorable weather additional experiments are performed on Norway at another time
period. Results of Norway between June and August 2015 are presented in table A.6. The
favorable weather appears to have an impact on the number of passes to completion but the
gaps in results between each algorithm remains small.
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Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX 188,5 648 23min
Greedy 190 (1,1%) 636 31s
Hybrid 190,3 (1%) 625 5min34s

Table A.4: Benchmark for the area shape use case using Norway as AOI

Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX 29,8 61,7% 109s
Greedy 31,2 (4,5%) 67,3% 3s
Hybrid 30,6 (2,6%) 64,9% 63s

Table A.5: Benchmark for the area shape use case using Ivory Coast as AOI

Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX 127,6 734 12min18s
Greedy 127,9 (0,2%) 685 15s
Hybrid 127,8 (0,1%) 666 3min21s

Table A.6: Benchmark for the area shape use case using Norway in summer as AOI

A.5.3 Weather

Myanmar during monsoon is considered to compare the performances of each algorithm in
unfavorable weather patterns. Experimental conditions are as follows:

3 Cell size of 20x20km,

3 Weather data from January to April 2015,

3 2 MPFs : one controlling two satellites of swathes 40km and respective maximum ac-
quisition length of 80km and 120km and the other controlling to satellites of swathes
60km and respective maximum acquisition length of 120km and 160km.

Table A.7 presents the results and figure A.6 the evolution of the rate of completion
through the passes during the execution. These results can be compared to those of a sce-
nario with an AOI of similar surface area but more favorable overall weather such as those
obtained in figure A.5 using France. The differences for the Myanmar instance are smaller
than for the France instance, with respective 0.5% and 4.6% gaps and the shape of the evo-
lution graph indicate a faster initial progression. These observations are explained by the
relative difficulty of acquiring new surface for each pass during monsoon. Results equalize
at weather bottlenecks during the mission where no mesh can be acquired for long peri-
ods, leaving time for slower algorithms to catch up and stabilize at the same overall surface
acquired.
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Algorithms (km) Passes at 95% completion Waste (%) Computing time
CPLEX 398 1042 1h37min
Greedy 400 (0,5%) 996 68s
Hybrid 399 (0,25%) 967 9min17s

Table A.7: Benchmark for the area shape use case using Myanmar during monsoon as AOI

Figure A.6: Average evolution of the completion rate for the greedy, CPLEX and hybrid algorithms on the use
case of Myanmar during monsoon as AOI

The observed waste is high due to the unsuccessful acquisition and multiple reacqui-
sition of cells. A small improvement in terms of waste can be observed when using the
hybrid algorithm over the greedy algorithm. Figure A.7 presents the evolution of the waste
when using CPLEX for the acquisition of Myanmar during monsoon and illustrates the lin-
ear difficulty of successful acquisition through the mission.

A.6 Discussion

Results in this section show the importance of metaheuristics in solving the LAC problem.
The proposed greedy and hybrid algorithms obtain results that are close to the exact solver
CPLEX in regards to the completion time on small instances as shown in sections A.5.1 and
A.5.2 while being much faster in computing time. The number of passes to complete a
small scale LAC mission never exceeds 5% difference to CPLEX for the greedy algorithm,
and 3% for the hybrid algorithm. The waste is dependant on the instance considered, with
no clear algorithm performing better than all others.
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Figure A.7: Average evolution of the waste for the CPLEX algorithm on the use case of Myanmar during mon-
soon as AOI

Larger instances such as the scenario of Brazil presented in section A.5.1 show that the
CPLEX solver is not adequate for these instances of the LAC problem. Indeed the compu-
tation time exceeds several days while the metaheuristics represented by the greedy and
hybrid algorithms remain under 15 minutes necessary which is considered reasonable. The
exponential computing time of the CPLEX solver quickly becomes too high for opera-
tional use. In an operational context launching the LARM algorithm several times may be
required due to weather updates. This highlights the importance of efficient computing
time. Furthermore a more precise grid cell also greatly impacts the size of the instance and
variables for the CPLEX solver, which makes the solving of a single pass difficult to achieve
in reasonable time using an exact approach.

The importance of metaheuristics is also shown through the study of different shaped
AOI. For example when considering the elongated shape of Norway (section A.5.2) the cor-
ridors often intersect only a small subarea of the AOI which lowers the search space and
normalizes the results between optimization algorithms. This is also the case for Myanmar
during monsoon season (section A.5.3), this time due to unfavorable weather and the diffi-
culty of acquisition on a significant number of passes. This is verified by the waste being as
high as 1000%, meaning that a single cell needs to be acquired 11 times to be validated on
average.

The obtained results also show that the maximum observable differences in perfor-
mance between the CPLEX, greedy and hybrid algorithms during the solve are often
found at around 50 to 80% mission completion. This can be explained by gradual bet-
ter optimization choices normalizing after reaching local weather bottlenecks during the
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Figure A.8: Comparison of the offsets for the completion rate between CPLEX and the greedy algorithm and
between CPLEX and the hybrid algorithm during the execution of an Ivory Coast LAC mission

mission, similar to those reached in the case of Myanmar during monsoon. As an example
the hybrid algorithm may have validated all France except a specific subarea during the first
60 passes while the greedy algorithm required 65 passes, but both algorithm then need to
wait until the 80th pass to acquire the specific subarea and complete the mission. This phe-
nomenon explains the relative small differences in performance gaps between algorithms at
95% completion when compared to those observed at 50-80% completion.

Figure A.8 presents the differences in completion rates between the CPLEX and greedy
algorithms and the CPLEX and hybrid algorithms using the scenario of Ivory Coast. The
evolution observed confirms that the gaps in performances gradually lower towards the
end where the two metaheuristics algorithms acquire surfaces that have already been ac-
quired by CPLEX while CPLEX waits for area with unfavorable weather on average to be
acquirable.

An observation applicable to each experiment using the greedy and hybrid algorithm
is the consistently improved performances of the hybrid algorithm throughout the mis-
sions. Any client update performed before the end of the mission is then guaranteed to
have better completion rate when using the hybrid algorithm over the greedy algorithm.
Although the hybrid algorithm always improves on the results obtained by the greedy algo-
rithm the margins are small in relation to the optimal solution. Such is the case for Norway
in section A.5.2 where the hybrid algorithm only performs 0.1% better than the greedy algo-
rithm while being 1% away from the optimal solution.

For other examples such as Ivory Coast, the improvement is of almost 50% (the hybrid
algorithm being 2.6% away from optimal and the greedy algorithm being 4.5% away from
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Figure A.9: Improvements of the simulated annealing over the greedy solution in average of newly acquired
cells per pass on the use case of Ivory Coast

optimal) but the margin relative to the optimal solution remains significant. These cases can
be explained by the relatively low number of iterations in the annealing part of the hybrid
algorithm (NB_TRANSITIONS in the cooling loop is inferior to 1000) as the computing time
of metaheuristics is limited by several factors:

3 On large instances the computing time is limited by operational constraints and the
algorithms need to run in reasonable time depending on the number of satellites
used. If the mission only includes one satellite which only has visibility on the AOI ev-
ery 24h an algorithm that requires several hours of computing time is sufficient. How-
ever if 20 satellites are used the algorithm needs to solve the problem in minutes instead.

3 On smaller instances the computing time is limited by the exact solution found by
the CPLEX solver. Using metaheuristics is justified if the solution is found in lower
time than the time necessary for an exact solver to find an optimal solution. As such
NB_TRANSITIONS cannot be set arbitrarily high or the hybrid algorithms risks being
slower than the CPLEX solver.

In addition it may be counterproductive to augment the number of iterations in the cool-
ing loop as it now always possible to improve on the solution found by the greedy algorithm.
Indeed figure A.9 presents the improvement found by the simulated annealing part of the
hybrid algorithm over the greedy algorithm for each pass and a number of passes can be
observed for which the solution was not improved.
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A.7 Conclusion

In this annex an improved benchmark for the sake of future comparisons with Glimpse is
proposed. A first contribution is the formalization of the LAC problem as an ILP problem.
Using the exact solver CPLEX optimal solutions can be found on small LAC scenarios. The
exponential growth in complexity of the LAC problem is apparent through testing as larger
LAC scenarios cannot be solved within reasonable time by CPLEX. Exact solutions found by
CPLEX provide a reference for candidate optimization algorithms when considering small
scale LAC instances.

An improved greedy algorithm is then presented. Using the output of a hierarchical
greedy algorithm as input for a simulated annealing algorithm is proposed as a solution to
the local minima trapping problem encountered by the greedy algorithms. The resulting
hybrid algorithm uses elementary movements of a cell’s length in the neighborhood of the
meshes to explore the search tree. An alternative search that uses addition and suppression
of meshes to a corridor is also evaluated. The mesh movement neighborhood search is
preferred as the addition and suppression of meshes tend to create large neighborhoods
and create overlaps between existing and added meshes.

Finally the greedy algorithm, the hybrid algorithm and CPLEX are compared. The ro-
bustness criteria of section 6.4.1 and similar experimental use cases are considered for this
benchmark. The results indicate small but consistent improvements in both completion time
and waste when using the hybrid algorithm over the greedy algorithm. The experiments
also show the importance of metaheuristics for the solving of the larger LAC instances for
which CPLEX is unable to find solutions in reasonable time. A future continuation of this
work is the benchmark of Glimpse with the hybrid algorithm proposed in this annex and
other candidate optimization algorithms.
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Monte carlo tree search: A review of recent modifications and applications. Artificial In-
telligence Review, 56(3):2497–2562, 2023.

Juan TERÁN, José L AGUILAR and Mariela CERRADA: Mathematical models of coordination
mechanisms in multi-agent systems. CLEI electronic journal, 16(2):5–5, 2013.

Nicolas VERSTAEVEL, Christine RÉGIS, Marie-Pierre GLEIZES and Fabrice ROBERT: Prin-
ciples and experimentations of self-organizing embedded agents allowing learning from
demonstration in ambient robotics. Future Generation Computer Systems, 64:78–87, 2016.

Zhu WAIMING, Hu XIAOXUAN, Xia WEI and Jin PENG: A two-phase genetic annealing
method for integrated earth observation satellite scheduling problems. Soft Computing,
23:181–196, 2019.

Glimpse: an AMAS for the LAC problem 137



Bibliography

Guohua WU, Huilin WANG, Witold PEDRYCZ, Haifeng LI and Ling WANG: Satellite obser-
vation scheduling with a novel adaptive simulated annealing algorithm and a dynamic
task clustering strategy. Computers & Industrial Engineering, 113:576–588, 2017.

Y. XU, X. LIU, R. HE, Y. CHEN and Y. CHEN: Multi-objective satellite scheduling approach
for very large areal observation. In IOP Conference Series: Materials Science and Engineering,
volume 435, page 012037. IOP Publishing, 2018.

Yingjie XU, Xiaolu LIU, Renjie HE and Yingguo CHEN: Multi-satellite scheduling
framework and algorithm for very large area observation. Acta Astronautica, 167:93–
107, 2020a. ISSN 0094-5765. URL https://www.sciencedirect.com/science/

article/pii/S0094576519313694.

Yingjie XU, Xiaolu LIU, Renjie HE and Yingguo CHEN: Multi-satellite scheduling frame-
work and algorithm for very large area observation. Acta Astronautica, 167:93–107, 2020b.

138 Timothée Jammot



List of Figures

1.1 Terminologie des satellites d’observation de la Terre . . . . . . . . . . . . . . . 8

1.2 Processus de traitement d’une requête d’acquisition par un MPF . . . . . . . . 9

1.3 Processus entre LARM et MPFs pour l’acquisition de mailles sur le passage
d’un satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Illustration du placement de mailles suivant la technique de maillage, sta-
tique ou dynamique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Types of satellites by type and operating height . . . . . . . . . . . . . . . . . . 22

2.2 Schematic elements of the acquisition of meshes by an LEO satellite . . . . . . 22

2.3 Angles of rotation of agile satellites . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Comparison of acquisition abilities between non-agile (left) and agile (right)
satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Satellite cycle of an LEO observation satellite consisting of uplink, acquisition
and download . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Illustration of an observation request by a client directed to an MPF . . . . . . 25

2.7 Example of a static meshing grid for a single satellite with France as AOI . . . 26

2.8 Representation of multiple satellites acquiring over the same AOI . . . . . . . 27

2.9 Process between LARM and MPFs for the acquisition of meshes on a satellite
pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Operational division of a requested AOI and distribution to non-conflicting
satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Single satellite acquisition problem with possible solutions . . . . . . . . . . . 35

3.3 Illustration of an AOI subdivided in strips . . . . . . . . . . . . . . . . . . . . . 37

4.1 Adaptation: changing the function of the system by changing the organization 49

5.1 Example of overlapping mesh grids of heterogeneous satellites . . . . . . . . 54

5.2 Comparison of static and dynamic meshes on the same corridor . . . . . . . . 55

139



List of Figures

5.3 Dynamic meshes placed as to avoid cloudiness and already validated elemen-
tary surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Visual representation of the formalized LAC problem with a cell grid and dy-
namic meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Treatment of a large area acquisition request by an LARM using dynamic
meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6 Organization of Glimpse agents: Cell, Mesh and Pass agents . . . . . . . . . . . 59

5.7 Pass agent diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.8 Sequence diagram of the interactions between a Pass and Mesh agents . . . . . 63

5.9 Adaptation of Glimpse agents to a weather update through creation of
meshes and self-organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.10 Mesh agent diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.11 States of a Mesh agent and conditional transitions . . . . . . . . . . . . . . . . 66

5.12 Cell agent diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.13 Gap between validated areas on the cell grid . . . . . . . . . . . . . . . . . . . 68

5.14 States of a Cell agent and conditional transitions . . . . . . . . . . . . . . . . . 69

5.15 Adhesion request of a Cell agent to a neighbouring Mesh agent and expansion
of the mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.16 Sequence diagram of the interactions between Cell and Mesh agents during
mesh arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.17 Adhesion request and possible consequences on the opposite cell strip of the
mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.18 Example of the adhesion process between Cell and Mesh agents at different
steps of an experimental scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 Evolution of the completion rate by meshing type for a scenario with homo-
geneous satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Evolution of the waste by meshing type for a scenario with homogeneous
satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 Evolution of the completion rate by meshing type for a scenario with hetero-
geneous satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Evolution of the waste by meshing type for a scenario with heterogeneous
satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 AOI of the scenarios used in the area size criterion evaluation by ascending
order of surface size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 AOI of the scenarios used in the area shape criterion evaluation . . . . . . . . 88

6.7 AOI of the scenarios used in the weather criterion evaluation of Myanmar in
January (left) and June during monsoon (right) . . . . . . . . . . . . . . . . . . 89

140 Timothée Jammot



List of Figures

6.8 AOI and example corridors of the scenarios used in the number of satellites
criterion evaluation from 2 satellites (left) to 4 (right) . . . . . . . . . . . . . . . 89

6.9 Average completion using different criticality variants on an aggregated sce-
narios experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.10 Zoom on the best criticality variants of the average completion graph . . . . . 97

6.11 Average passes using different criticality variants on an aggregated scenarios
experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.12 Average waste using different criticality variants on an aggregated scenarios
experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.13 Comparison of average results per scenario of the best Glimpse variant (or-
ange) and the greedy algorithm (blue) . . . . . . . . . . . . . . . . . . . . . . . 99

7.1 Partial validation of meshes and adaptation of dynamic meshes to the up-
dated validated areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.1 Cell grids over France of respective size 30km (upper left), 20km (upper right)
and 10km (lower right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.2 Comparison of mesh placements between the CPLEX solver and the greedy
algorithm for an early pass during a LAC mission . . . . . . . . . . . . . . . . 118

A.3 Illustration of the impact of mesh splitting for the acquisition of more meshes
within satellite use constraints with the same corridor acquired without mesh
splitting (left) and with mesh splitting (right) . . . . . . . . . . . . . . . . . . . 120

A.4 Cell validation methods from left to right: partial validation, total validation
and weather mesh validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A.5 Average evolution of the completion rate for the greedy, CPLEX and hybrid
algorithms on the use case of France as AOI starting from the 01/01/15 . . . . 123

A.6 Average evolution of the completion rate for the greedy, CPLEX and hybrid
algorithms on the use case of Myanmar during monsoon as AOI . . . . . . . . 126

A.7 Average evolution of the waste for the CPLEX algorithm on the use case of
Myanmar during monsoon as AOI . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.8 Comparison of the offsets for the completion rate between CPLEX and the
greedy algorithm and between CPLEX and the hybrid algorithm during the
execution of an Ivory Coast LAC mission . . . . . . . . . . . . . . . . . . . . . 128

A.9 Improvements of the simulated annealing over the greedy solution in average
of newly acquired cells per pass on the use case of Ivory Coast . . . . . . . . . 129

Glimpse: an AMAS for the LAC problem 141





List of Tables

3.1 Evaluation of the LAC problem solving metrics per optimization algorithm
graded from - - (low performance) to ++ (high performance) for each category 43

6.1 Performances of meshing methods on a scenario with homogeneous satellites 83

6.2 Performances of meshing methods on a scenario with heterogeneous satellites 83

6.3 Completion time of static and dynamic meshing for areas of different sizes . . 90

6.4 Waste(%) of static and dynamic meshing for areas of different sizes . . . . . . 90

6.5 Completion time of static and dynamic meshing for areas of different shapes 91

6.6 Waste(%) of static and dynamic meshing for areas of different shapes . . . . . 91

6.7 Completion time of static and dynamic meshing for scenarios with different
weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.8 Waste(%) of static and dynamic meshing for scenarios with different weather 92

6.9 Completion time of static and dynamic meshing for scenarios with different
number of satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.10 Waste of static and dynamic meshing for scenarios with different number of
satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.11 Criticality variants with relative criteria in lexicographic order . . . . . . . . . 95

6.12 LAC scenarios for the aggregated sensitivity test of Glimpse variants . . . . . 96

6.13 Normalization process for the number of passes on two example scenarios . . 97

6.14 Evaluation of the LAC problem resolution metrics per optimization algorithm
including AMAS graded from - - (low performance) to ++ (high performance)
for each category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1 CPLEX computing time relative to the size of the LAC problem instances . . . 117

A.2 Benchmark for the area size use case using France as AOI . . . . . . . . . . . . 123

A.3 Benchmark for the area size use case using Brazil as AOI . . . . . . . . . . . . 124

A.4 Benchmark for the area shape use case using Norway as AOI . . . . . . . . . . 125

A.5 Benchmark for the area shape use case using Ivory Coast as AOI . . . . . . . . 125

143



List of Tables

A.6 Benchmark for the area shape use case using Norway in summer as AOI . . . 125

A.7 Benchmark for the area shape use case using Myanmar during monsoon as AOI126

144 Timothée Jammot



Titre : Maillage dynamique pour l'acquisi�on de grandes couvertures par systèmes mul�-agents adapta�fs
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Résumé : Le domaine de l’observa�on de la Terre regroupe différents types d’appareils pour la prise de vue ou acquisi�on d’images terrestres. Les
satellites d’observa�on en orbite basse sont conçus pour prendre des photographies haute résolu�on depuis l’espace. Ils sont u�lisés pour des
missions d’observa�on urgentes mais aussi pour des missions long terme dites grandes couvertures. Dans ce cadre une grande zone est
photographiée progressivement à chaque passage de satellite qui acquiert des zones au sol dites mailles. Au terme de la mission les images résultant
des mailles sont regroupées pour former la grande couverture. 

 En raison de la taille de la zone à acquérir les missions de grandes couvertures font appel à plusieurs satellites. La zone doit être acquise par ces
satellites de façon à minimiser le temps de complé�on de la mission et à maîtriser l’u�lisa�on des ressources satellitaires. Le problème d’op�misa�on
obtenu est complexe. De nombreux facteurs rendent la résolu�on en temps raisonnable difficile, comme la taille de la zone, l’hétérogénéité des
caractéris�ques des satellites et les prévisions météorologiques. L’u�lisa�on d’un algorithme d’op�misa�on en méthode approchée est ainsi
nécessaire. 

 Le grand nombre d’en�tés du problème et le besoin d’adaptabilité jus�fient l’u�lisa�on d’un algorithme par raisonnement décentralisé. Dans ce�e
thèse nous adressons la résolu�on du problème des grandes couvertures par systèmes mul�-agents adapta�fs (AMAS). 

 Nous proposons d’abord une nouvelle méthode de maillage, le maillage dynamique, qui permet un posi�onnement précis des mailles sur la zone, et
une formalisa�on du problème des grandes couvertures. Pour résoudre ce problème nous présentons le système Glimpse développé basé sur le
modèle agent AMAS4Opt. Glimpse est ensuite validé sur divers scénarios simulés. 

 Une comparaison avec un algorithme glouton illustre les apports de notre méthode pour l’op�misa�on des métriques du problème. Glimpse réduit
l’u�lisa�on de ressources satellitaires en évitant les acquisi�ons superflues tout en minimisant le temps de complé�on requis pour traiter de très
grandes couvertures. Les résultats obtenus ouvrent de nouvelles direc�ons de recherche dans les domaines des AMAS et des grandes couvertures.

Title: Dynamic meshing of large area coverage using adap�ve mul�-agent systems
Key words: Op�miza�on, Mul�-agent systems, Earth observa�on
Abstract: In the Earth observa�on field a variety of devices are used to take pictures or acquire ground images. Low Earth orbit satellites are designed
to acquire high resolu�on images from space. They are used for urgent missions but also long term ones called large area coverage. In this context a
large area is acquired gradually for each pass of satellite that acquire small surface areas called meshes. At the end of the mission the images acquired
from the meshes are regrouped to form the large coverage. 

 Due to the size of the area to acquire large area coverage missions require the use of sev- eral satellites. The area needs to be acquired by these
satellites so as to minimize the �me to mission comple�on and op�mize the use of satellite resources. The resul�ng op�miza- �on problem is
complex. Many parameters render the solve in reasonable �me difficult, such as the size of the area, the heterogeneity of the satellite characteris�cs
and the weather forecasts. The use of an approximate op�miza�on method is necessary. 

 The high number of problem en��es and the need for adaptability jus�fy the use of a decentralized reasoning algorithm. In this thesis we address
the solve of the large area cov- erage problem by adap�ve mul�-agent systems (AMAS). We first propose a new meshing technique, dynamic
meshing, that allows for a precise posi�oning of meshes on the area, and a formaliza�on of the large area coverage problem. To solve this problem
we present the Glimpse AMAS developed using the AMAS4Opt agent model. 
Glimpse and dynamic meshing are then validated on different simulated scenarios. A comparison with a greedy algorithm illustrates the
contribu�ons of our method for op�- mizing the problem metrics. Glimpse reduces the use of satellite resources by avoiding superfluous
acquisi�ons while minimizing the �me required to acquire very large areas. The results open new research direc�ons in the AMAS and large area
coverage fields.
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