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Abstract

Human-driven climate change is triggering unprecedented and dire transformations of ecosys-
tems and habitats worldwide. Remote sensing offers precious tools for monitoring the state
of the Earth, and for understanding how the biosphere functions and is affected by human
activities. Satellite remote sensing capabilities and data processing techniques have rapidly
improved over the last decades, and have considerably advanced the study of life processes
on land masses. The advent of modern machine learning and exponential development of
computational power are crucial for the exploitation of the vast amount of data produced by
remote sensors. In particular, the Sentinel-2 (S2) mission has been providing high spatial and
temporal resolution multi-spectral images at a global scale, for nearly a decade. S2 products
are released with an open-data policy that supports research efforts and various applications,
such as the enhancement of agricultural practices, land management and disaster response.
Remote sensing data is a measurement of incoming radiation and its properties are related to
the nature of elements and processes on the surface of the Earth. Extracting useful represen-
tations that contain relevant information is fundamental for applications of remote sensing.

The objective of this thesis is to find useful representations from remote sensing data
for use in downstream applications. There are several challenges in the retrieval of such
representations. First, in order to be useful to different tasks, the representations need
to be general and interpretable. This can be achieved with bio-physical variables that
characterize the target system, for instance the water and mineral content in the soil, the
pigment concentrations, the canopy structure and the temporal evolution of vegetation. Also,
remote sensing data has an intrinsic uncertainty, and representations of this data should be
associated with a measure of uncertainty. Another challenge lies in the scarcity of reference
data in remote sensing. Although remote sensing measurements are big data, it is difficult
to obtain the corresponding ground truth data. For instance databases of vegetation bio-
physical parameters that can be related to remote sensing measurements are rare. Methods
that attempt to retrieve such parameters therefore commonly resort to physical modeling
and inversion. This Ph.D. is divided into three main parts, which are associated with its
four main contributions. Its first contribution is the identification of a key issue of super-
vised regression models that perform model inversion. Their performance is shown to be very
dependent on the choice of the sampling distribution for simulating their training data-sets.
The second contribution of this Ph.D. is the development of a self-supervised approach for
retrieving physical representations of remote sensing data. This approach is based on the
framework of Variational Autoencoders, and relies on the incorporation of a physical model
and physical knowledge in a deep learning framework. Instead of attempting to optimize the
physical variable retrieval from an unavailable ground truth or a biased simulated reference,
this method uses input data reconstruction as a proxy task. Finally, in a third part, this
thesis reports the results of the application of the proposed approach on the retrieval of
physical variables in two settings. In a first experiment, it is used with the PROSAIL radiative
transfer model for retrieving leaf characteristics and canopy structure variables. The resulting
PROSAIL-VAE model is trained directly using S2 multi-spectral images. Validation with in-
situ data have corroborated the performance of the approach. In a second application, the
proposed approach is used to retrieve phenological variables that characterize the temporal
behavior of vegetation. The so-called Pheno-VAE is trained on annual NDVI time series
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extracted from S2 data.

Keywords Earth Observation, Artificial Intelligence, Vegetation Monitoring, Represen-
tation Learning, Self-Supervised Learning, Model Inversion, Physical Modeling, Stochastic
Modeling, Variational Autoencoders.
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Résumé

Le changement climatique initié par les activités humaines provoque des transformations
drastiques et sans précédent des écosystèmes et des zones habitées dans le monde entier.
La télédétection s’impose comme un outil essentiel pour observer la Terre, pour comprendre
le fonctionnement de la biosphère ainsi que son altération par les pressions anthropiques.
Les capacités d’observation par télédétection spatiale ainsi que les techniques de traitement
du signal ont rapidement évolué lors des dernières décennies. L’émergence des techniques
d’apprentissage statistique modernes et l’augmentation exponentielle de la puissance de calcul
disponible sont cruciaux dans l’exploitation de l’immense volume de données produit par les
capteurs de télédétection. En particulier, la mission S2 produit des images multi-spectrales
à haute résolution spatiale et temporelle depuis une dizaine d’années à une échelle globale,
diffusées gratuitement avec une politique d’accès libre. Les produits S2 ont permis le dévelop-
pement de diverses applications, telles que l’amélioration des techniques agricoles, la gestion
du territoire et la réponse aux catastrophes naturelles. Les données de télédétection sont des
mesures de radiations électromagnétiques dont les caractéristiques sont reliées à la nature des
éléments et aux processus à la surface de la Terre. L’extraction de représentations contenant
des informations pertinentes sur ces éléments est fondamentale pour les applications de télé-
détection.

L’objectif de cette thèse est de proposer une méthode d’inférence de telles représentations
à partir de données de télédétection. Plusieurs défis se présentent pour estimer ces repré-
sentations. D’abord, elles doivent êtres générales et interprétables, afin d’être utilisables par
plusieurs applications. Cela peut être réalisé avec des variables bio-physiques qui caractérisent
les systèmes observés, par exemple le contenu minéral et en eau des sols ou la concentration en
pigments et la structure de la canopée pour la végétation, ainsi que son évolution temporelle.
Par ailleurs, les représentations doivent êtres associées à une incertitudes d’estimation. Le
manque de données de référence pose aussi un défi. Contrairement aux acquisitions de télé-
détection, il est difficile d’obtenir des vérités terrain. Les bases de données qui associent
des variables bio-physiques de la végétation et des données de télédétection sont rares. Les
approches qui estiment ces variables utilisent donc la modélisation physique et l’inversion.
Cette thèse est divisée en trois parties principales qui détaillent ses quatre contributions.
La première contribution est la démonstration de la dépendance des modèles de régression
supervisée au choix de la distribution d’échantillonnage pour leur jeu de données d’entraî-
nement. La seconde contribution est le développement d’une méthodologie d’estimation
de variables physiques non supervisée à partir de données de télédétection, basée sur les
Autoencodeurs Variationnels (VAE). Cela consiste en l’incorporation de modèles et de con-
naissances physiques à priori dans un modèle d’apprentissage profond. Cette approche utilise
la reconstruction comme tâche intermédiaire pour estimer une variable physique, plutôt
que la comparaison avec une vérité terrain indisponible ou une référence simulée. Dans
une troisième partie, ce manuscrit détaille les deux autres contributions de cette thèse :
l’application de la méthodologie proposée à l’estimation de variables physiques dans deux
applications. Dans la première le modèle de transfert radiatif PROSAIL est utilisé dans le
modèle PROSAIL-VAE afin d’estimer les caractéristiques de feuilles et de la canopée à partir
d’images S2. La validation avec des données in-situ a permis de confirmer les performances
de cette approche. Dans la seconde application, des variables phénologiques caractérisant
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le comportement temporel de la végétation sont estimées à partir de séries temporelles de
NDVI, avec le modèle Phéno-VAE.

Mots-clés Observation de la Terre, Intelligence Artificielle, Suivi de la Végétation, Appren-
tissage de Représentations, Apprentissage Auto Supervisé, Inversion de Modèle, Modèles
physiques, Modélisation Stochastique, Autoencodeurs Variationels.
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General introduction

Context
Earth observation (EO) capabilities have vastly improved over the last decades. New remote
sensing satellites have been deployed with improved spatial resolution and with increased
revisit frequency, and have been monitoring the Earth with unprecedented scale and precision.
In parallel, the fast development of both computational power and processing techniques
have supported the exploitation of the vast remote sensing data and new applications. In
particular, optical remote sensing data has enabled to monitor land vegetation globally, by
benefiting from multi-spectral measurements with high revisit frequencies.

In many applications that employ remote sensing data, the information is commonly used
with end-to-end processing pipelines, that directly take the measurements produced by the
remote sensors as input. However, the useful information required for those applications
are usually not remote sensing measurements, but transformation of these measurements
that represent the properties of the ground. The development of such down-stream tasks
could be improved and facilitated if access to useful representations were provided. Deep
learning approaches can provide tools for extracting representations from remote sensing
data. Furthermore, general and interpretable representations could be used by different
applications, and lessen the computation required on the user side.

Physical properties of ground surfaces, such as the state of the soil, and of vegetation are
interesting representations for down-stream tasks. They are interpretable, generalizable, and
can be considered a product by themselves. Finding physical representations from remote
measurement data is an estimation problem. However too little reference data is usually
available for building algorithms that retrieve the desired ground properties at the required
scale. Physical models that relate satellite observations to ground properties can be used to
mitigate this issue, effectively transforming the physical variable estimation problem into an
inversion problem.

Physical models are not perfect and remote sensing data has an intrinsic error, since it
is a physical measurement. As such it is necessary to quantify the uncertainties associated
with the estimated physical variables. The Bayesian theoretical framework provides tools to
incorporate uncertainties into the estimation process.

This Ph.D. proposes to learn interpretable and probabilistic representations of vegetation
from optical remote sensing data, by introducing physical models and knowledge into the
optimization of a deep learning model.

Contributions
This manuscript presents the four main contributions of this Ph.D. thesis:

• The first contribution is the identification of a crucial limitation in supervised deep
learning regression approaches when training on a simulated data-set. Supervised deep
learning methods that learn to retrieve physical variables from remote sensing data
perform model inversion, because reference data is too scarce. These approaches are
trained on data-sets simulated by the physical model to invert. It was shown in this
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GENERAL INTRODUCTION

Ph.D. that the choice of the sampling distribution for generating these data-sets is
crucial to the estimation performances. This is a problem because such distributions
are usually unknown and must be postulated.

• The second contribution of this Ph.D. is methodological. A framework based on varia-
tional autoencoders (VAE) for retrieving physical variables as latent representations
has been developed. It is based on the incorporation of a physical model and prior
knowledge in a deep-learning architecture. The inversion of the model is performed
through a representation learning approach. Crucially, this deep learning approach is
self-supervised: it doesn’t require simulated data-sets and can be trained directly on
remote sensing data.

• In a third contribution, the proposed methodology is applied to the retrieval of vege-
tation bio-physical parameters, with the inversion of the PROSAIL radiative transfer
model. The subsequent PROSAIL-VAE model is trained directly on S2 multi-spectral
images. Validation with in-situ vegetation variable measurements corroborates the
performance of the developed approach compared to classical regression methods. Addi-
tionally, the identification of meaningful correlations between biophysical variables is
investigated.

• In the fourth contribution, the proposed methodology is analyzed with another appli-
cation: the retrieval of vegetation phenology from spectral index time series by inverting
a double-logistic phenological model. Order relationships between variables were incor-
porated into the method to enforce physical constraints. The subsequent Pheno-VAE is
trained directly on S2 normalized difference vegetation index (NDVI) time series, and
shows good prediction performance.

Outline of the thesis
This Ph.D. thesis is organized as follows:

• Part I: introduces the notion of representation of remote sensing data. Chapter 1
discusses the notion of representation and how satellite data represent physical realities
of observed ground scenes. Chapter 2 presents the S2 optical imagery used throughout
this manuscript, and the in-situ measurement data of vegetation properties, used as a
reference for validating the proposed approach.

• Part II: reviews the classical inversion approaches used in remote sensing. Chapter 3
presents the notion of model inversion, along with classical methods with an emphasis
on deep learning. Chapter 4 explains the widely used PROSAIL model and details
the differentiable implementation developed in this Ph.D. The first contribution of this
Ph.D. is introduced in Chapter 5.

• Part III: corresponds to the second contribution. The stochastic modeling and varia-
tional inference framework are introduced in Chapter 6. In Chapter 7 is proposed a
methodology for incorporating physical models into a VAE for self-supervised probabi-
listic inference.

• Part IV: presents the two last contributions, that is the results of the application of
the proposed methodology in two different settings. Chapter 8 presents the application
of the proposed method to the inversion of the PROSAIL model and its evaluation
with in-situ data. In Chapter 9, the proposed methodology is used for inverting a
phenological model.

• Part V: concludes this thesis. A general conclusion and perspectives are provided in
Chapter 10.

2
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• Part VI: contains the appendices. To ensure reproducibility of the research, the data,
repositories and computing environment used for the experiments in this Ph.D are
provided in Appendix A. Appendix B, Appendix C and Appendix D provide mathema-
tical background. Appendix E presents additional results for Chapter 5, Chapter 8 and
Chapter 9. Finally, Appendix F, Appendix G and Appendix H respectively provide a
glossary, the list of acronyms used throughout this Ph.D., and the list of notations.

Support
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by Région Occitanie. This work was supported by the Artificial and Natural Intelligence
Toulouse Institute (ANITI) from the Université Fédérale Toulouse Midi-Pyrénées under Grant
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such as the high performance computing (HPC) infrastructure were provided by the CNES.
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Introduction en français

Contexte

Les capacités d’observation de la Terre ont été grandement améliorées ces dernières décennies.
De nouveaux satellites de télédétection avec de meilleures résolution spatiale et fréquences
de revisite ont été déployés, et permettent de surveiller la Terre à une échelle et précision
sans précédents. En parallèle, le développement exponentiel de la puissance de calcul ainsi
que des techniques de traitement du signal ont permis l’exploitation de grandes quantités de
données de télédétection et l’émergence de nouvelles applications. En particulier, les données
de télédétection optiques permettent le suivi de la végétations terrestre à l’échelle globale,
bénéficiant de mesures multi-spectrales.

Dans de nombreuses applications qui utilisent des données de télédétection, le signal est
souvent traité de bout en bout dans des chaînes de traitement qui prennent directement
les mesures des capteurs de télédétection comme entrée. Cependant, l’information utile
pour ces applications est rarement directement la mesure de télédétection, mais plutôt des
transformations de ces mesures qui représentent des propriétés au sol. Le développement de
ces applications en aval de la mesure pourrait être amélioré et facilité si des représentations
utiles de la données étaient accessibles. Les approches par apprentissage profond1 comportent
des techniques permettant l’extraction de telles représentations à partir de données de télédé-
tection. De plus, des représentations interprétables et généralisables pourraient être utilisées
par plusieurs applications, plutôt que de calculer des représentations spécifiques pour chaque
application a partir des données de télédétection. Cela permettrait de diminuer le coût de
traitement des données pour un utilisateur et de faciliter l’accès à une information pertinente
tout en diminuant l’expertise en télédétection nécessaire à l’utilisation.

Les propriétés physiques des surfaces au sol, telles que l’état du sol et de la végétation sont
des représentations utiles pour des applications en aval. Ces représentations sont interpré-
tables, généralisables et peuvent être considérées comme un produit avec une valeur en soi.
Déduire des représentations physiques à partir de données de télédétection est un problème
d’estimation. Cependant, trop peu de données de référence sont généralement disponibles
pour optimiser des algorithmes d’estimation de ces propriétés physiques à grande échelle.
Ce problème est généralement contourné en utilisant des modèles physiques qui relient des
propriétés physiques au sol avec des observations de télédétection, ce qui transforme le
problème d’estimation en un problème d’inversion de modèle.

Les modèles physiques ne sont pas parfaits, et les données de télédétection ont une erreur
intrinsèque, car ce sont des mesures. Par conséquent il est nécessaire de quantifier l’incertitude
associée aux variables physiques estimées. Le cadre théorique bayésien permet notamment
d’incorporer une mesure d’incertitude aux problèmes d’estimation.

Cette thèse propose de développer des méthodes d’apprentissage de représentations inter-
prétables et probabilistes à partir de données de télédétection optique, en intégrant des
modèles physiques et des connaissances a priori au sein de modèles d’apprentissage profond.

1Deep learning.
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Contributions
Quatre contributions principales sont présentées dans cette thèse :

• La première contribution est l’identification d’une limitation cruciale des approches de
régression supervisée par apprentissage profond, à partir d’un jeu de données simulé.
Les méthodes d’apprentissage profond qui sont entraînées à estimer des variables physi-
ques à partir de données de télédétection réalisent en pratique de l’inversion de modèle
car les données de référence ne sont pas disponibles en quantité suffisante. Ces approches
sont entraînées sur des jeux de données simulés avec le modèle physique à inverser. Il
a été montré dans cette thèse que les performances d’inversion sont très sensibles au
choix de la distribution d’échantillonnage permettant de générer ces jeux de données.
Cela pose problème car ces distributions sont en général mal connues et doivent être
postulées.

• La seconde contribution de cette thèse est méthodologique, avec le développement d’une
approche d’estimation de variables physiques basées sur les Autoencodeurs Variationnels
(VAE)2. Cette approche propose d’incorporer un modèle physique ainsi que de l’infor-
mation a priori au sein d’une architecture d’apprentissage profond. Ainsi, l’inversion du
modèle physique est réalisée à travers une approche d’apprentissage de représentations:
les variables estimées correspondent à une représentation latente. Cette approche d’-
apprentissage profond est auto-supervisée et ne nécessite pas de jeux de données simulés.
Elle peut être entraînée directement sur des données de télédétection réelles.

• Une troisième contribution est l’application de la méthode proposée pour l’estimation
de paramètres bio-physiques de la végétation, avec l’inversion du modèle de transfert
radiatif PROSAIL. Le modèle PROSAIL-VAE qui réalise cette inversion est entraîné
directement sur des images multi-spectrales Sentinel-2 (S2). La performance de cette
approche a été comparée à d’autres méthodes d’inversion par apprentissage profond
supervisé classiques grâce à des données de validation terrain. Par ailleurs, les corrélations
entre les variables bio-physiques estimées ont été étudiées.

• La quatrième contribution est l’application de la méthode proposée pour l’estimation
de variables phénologiques de la végétation par l’inversion d’un modèle phénologi-
que double-logistique. Des relations d’ordre ont été imposées sur les variables latentes
afin de garantir des contraintes physiques. Le modèle Pheno-VAE qui en découle est
entraîné directement sur des séries temporelles de NDVI3 de S2, et montre de bonnes
performances de prédiction.

Plan de la thèse
Ce manuscrit est organisé comme suit:

• Partie I: Cette partie introduit la notion de représentation de données de télédétec-
tion satellite. Dans le Chapitre 1 est étudiée la notion de représentation, ainsi que la
manière dont les données satellites représentent des réalités physiques des surfaces au
sol observées. Le Chapitre 2 présente l’imagerie optique S2 utilisée tout au long de ce
manuscrit, ainsi que les mesures terrain de propriétés de la végétation qui sont utilisées
comme référence pour valider l’approche proposée.

• Partie II: Cette partie liste les approches classiques d’inversion de modèle utilisées en
télédétection. Le Chapitre 3 présente la notion d’inversion de modèle, ainsi que les

2Variational autoencoders (VAE).
3Indice de différence normalisée de la végétation, normalized difference vegetation index (NDVI).
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méthodes classiques en mettant l’accent sur les méthodes d’apprentissage profond. Le
Chapitre 4 détaille le modèle PROSAIL, ainsi que l’implémentation différenciable de
ce modèle développée lors de cette thèse. La première contribution de cette thèse est
exposée au Chapitre 5.

• Partie III: Cette partie correspond à la seconde contribution de cette thèse. Les modèles
stochastiques et l’inférence variationnelle sont introduits au Chapitre 6. Dans le chapitre
Chapitre 7 est proposée une méthodologie d’incorporation de modèles physiques en tant
que décodeur d’un VAE, permettant une inférence probabiliste auto-supervisée.

• Partie IV: Cette partie présente les deux autres contributions de cette thèse, c’est à
dire les résultats d’application de la méthode proposée dans deux cas. Le Chapitre 8
présente les résultats d’application de la méthode à l’inversion du modèle PROSAIL,
et son évaluation à l’aide de données terrain. Dans le Chapitre 9, la méthodologie
proposée est utilisée pour l’inversion d’un modèle phénologique.

• Partie V: Cette partie conclu la thèse. Une conclusion générale ainsi que des perspectives
de recherche sont détaillées au Chapitre 10.

• Partie VI: cette partie contient les annexes. Dans un soucis de recherche reproductible,
les liens vers les dépôts de données et de code sont fournis en Annexe A ainsi que
l’environnement de calcul utilisé pour les expériences dans cette thèse. Des formulaires
et preuves mathématiques sont fournis en Annexe B, Annexe C et Annexe D. Des
résultats complémentaires aux Chapitre 5, Chapitre 8 and Chapitre 9 sont fournis en
Annexe E. Enfin, l’Annexe F, l’Annexe G et l’Annexe H contiennent respectivement
un glossaire, la liste des acronymes utilisés tout au long du manuscrit et la liste des
notations.

Financement

Cette thèse a été dirigée par Silvia Valero et Jordi Inglada. Elle a été réalisée à Toulouse au
Centre d’études spatiales de la biosphère (CESBIO), qui est une Unité Mixte de Recherche
(UMR) du Centre national d’études spatiales (CNES), du Centre national de la recherche
scientifique (CNRS), de l’Institut de recherche pour le développement (IRD), de l’Université
Toulouse III (UT3) et de l’Institut national de recherche pour l’agriculture, l’alimentation et
l’environnement (INRAe). Cette thèse a été cofinancée par le CNES et la région Occitanie.
Cette thèse s’inscrit dans le cadre du projet Artificial and Natural Intelligence Toulouse
Institute (ANITI) de l’Université Fédérale Toulouse Midi-Pyrénées (ANR-19-P3IA-0004).
Ce travail a été soutenu par le projet ANR-JCJC DeepChange (ANR-20-CE23-0003). Cette
thèse est rattachée à la chaire ANITI « Inférence basée sur la fusion de données hétérogènes
» dirigée par Nicolas Dobigeon. Les données ainsi que les ressources de calcul informatiques
telles que l’infrastructure du high performance computing (HPC) ont été fournis par le CNES.

Productions scientifiques

Publications dans des revues internationales à comité de lecture.

• Y. Zérah, S. Valero, and J. Inglada. Physics-constrained deep learning for biophysical
parameter retrieval from sentinel-2 images: Inversion of the prosail model. Remote
Sensing of Environment, 312:114309, 2024. ISSN 0034-4257. doi: https://doi.org/10.
1016/j.rse.2024.114309. URL https://www.sciencedirect.com/science/article/
pii/S0034425724003274
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• Journées des doctorant du CESBIO (abstract et présentation orale, January 2021,
January 2022 and January 2023).
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CHAPTER 1. LAND SURFACE REPRESENTATION WITH SATELLITE IMAGERY

1.1 Introduction

The Earth has never been more monitored than today. The atmosphere, the oceans and
the continental surfaces are being constantly scrutinized by the modern spaceborne fleet
of Earth observation (EO) satellites, that reached 1192 active units in orbit around the
planet by the end of 2023, and is still growing. With instrument technology improving,
observations are carried out at increased spatial resolutions. As a result, remote sensing
satellites produce a tremendous amount of data that contain essential information. Besides
commercial, humanitarian and military uses, satellite data is instrumental to environmental
sciences such as ecology, hydrology, geology, and climate science, which has gained more
awareness in the last few years, as the climate crisis has been increasingly affecting societies.
Satellite data is crucial in understanding and monitoring climate change effects. Guiding
decisions and actions with remote sensed information could help mitigation and adaptation
efforts.

Remote sensing data are physical measurements, that indirectly relate to physical pro-
cesses and phenomena that occur on the ground (notwithstanding atmospheric interactions).
All EO satellite sensors rely on measures of electromagnetic radiation that emanate from
the Earth, from different parts of the spectrum depending on the detector. The Earth
doesn’t emit much photons on its own, aside from the weak blackbody thermal radiation
that is emitted in the long wavelength infra-red (LWIR) domain, radio waves output by
human communication systems and visible light pollution from urban areas. Measuring
radiation intensity from the Earth in most parts of the spectrum requires an external source
for illumination. In such cases, the radiation being measured remotely is one that has
been reflected by the Earth. Remote sensing can be divided into two categories, active and
passive. Active sensors include the electromagnetic source onboard the satellite platform, and
measures the radiation reflected back to the satellite after being sent toward the target scene
and interacting with it1. Among active remote sensors are radar, operating with microwaves
and radio waves, and LiDaR, that sends laser pulses towards the ground. Passive sensing
relies on natural illumination of the Earth from the Sun. Imaging in the visible and infra-red
(IR) spectrum is mostly performed with passive sensors.

The remote measurements performed by different sensors each probe different domains
of the Earth system. They each operate at a specific spectral, spatial and temporal regimes,
both in terms of range and resolutions. Aside from spectral specifications of different sensors
briefly discussed above, the orbiting satellite platforms are restricted to observe a limited
number of scenes on Earth with a given resolution, and with a given frequency dictated by
revisit times. As such, each of these sensors offer their limited point of view of the Earth
systems, and they attempt to describe reality from their perspective. Remote sensing data is
a representation of the Earth surface physical properties. Satellite images are representations
of the ground surface.

Representing the Earth surface from remote measurements is imperfect. The electro-
magnetic signal being sensed interacts with both the atmosphere and the ground surface.
This signal itself is thus not a perfect representation of the surface. The detection process
itself is affected by noise, since the physical device isn’t perfect, and parasite signals can be
observed alongside the “true” signal. These representations are also partial, since each sensor
has a limited resolution and range. The Earth as a whole is a very complex system that
cannot be grasped holistically. The domain of the Earth realm accessed by a given sensor is
limited by which surface materials are observed and how. Vegetation is particularly accessible
in the visible [Tucker, 1979] and IR spectrum, whereas soil moisture can be better characte-
rized in the micro-wave or radio domains [Prévot et al., 1993]. Some spectral domains of the
ground surface are in fact hardly observable, since atmospheric water absorbs all signal within

1The amount of reflected radiation that is sensed by a remote sensor is function of the ground surface
reflectance.
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specific spectral bands. Moreover, since remote sensing is intrinsically about the interaction of
light with Earth systems, it doesn’t directly reflect their nature. Therefore, actual properties
of interest, are not directly accessible from this data, they are hidden, latent. Satellite data is
almost never used as-is. It must be first transformed into other, more useful representations
of Earth properties. This brings about key questions. What are “good” representations that
enable to grasp ground processes and nature? How can these representations be extracted
from remote sensing measurements?

What is a “good” representation is inherently subjective, since it is application-dependent.
From the perspective of a downstream task, the best possible representation of the Earth
surface is the one that straightforwardly provides all relevant information for the given task.
For instance, in a scenario of a response to a natural disaster, such as storms, landslides,
earthquakes, etc., an ideal representation of the ground situation would directly identify
affected settlements, or even prospective search zones for survivors [Gueguen et al., 2017].
For agriculture, a number of representations could enable better crop management [Bégué
et al., 2018]. Early detection of crop sickness or parasites could help minimize yield loss and
phytosanitary products spreading. Mapping hydric stress could improve irrigation practices
[Arun and Karnieli, 2022; Tolomio and Casa, 2020]. Representations can be common to
several applications: hydric stress could also be an input to forestry to prevent and mitigate
wildfires [Balzter et al., 2007]. In the case of ecosystem studies, representations may also
simply be input for scientific models.

Satellite remote sensing data is faced with its own challenges. It is high dimensional, has
high variability, and is non-linearly linked to ground processes. Other constraints depend on
the type of sensor. For instance optical remote sensing is affected by clouds and atmospheric
state, which leads to missing data both spatially and temporally. Conversely synthetic
aperture radar (SAR) imagery has no such data availability outage, but requires more pre-
processing before use, such as speckle noise correction. Overall, collecting reference ground
data is difficult, since the data gathering process most often cannot be automated on the
required scale. It can be designated as a “big data low label” regime.

When extracting representations from remote sensing data, the data from different satellite
sources are generally used independently. Data fusion between different sensors, which is the
joint use of data from different sources, can be difficult to perform. This is because of
heterogeneous data produced by sensors with different specifications (e.g. spectral domain,
spatial resolution), or because the observation conditions are different (e.g. different observation
times, different viewing angles). Nonetheless, combining measurements from different sensors
could provide complementary inputs to produce better representations. For instance, optical
imagery characterizes vegetation well, whereas radar is more sensitive to water contents.
Furthermore, data processing for a given application is tailored to the associated sensor,
which makes it less flexible.

Machine Learning (ML) methods2 have emerged in the last decade as essential tools to
handle remote sensing data. ML designates the set of computational methods to automatically
extract information from data, and perform algorithm optimization to make new predictions,
instead of being explicitly programmed, i.e. to learn (or are trained). These methods have
been successfully used in a wide variety of applications with great performance, including
remote sensing. Deep learning (DL), which are ML methods based on deep artificial neural
networks (ANNs), offer a flexible and powerful framework to infer representations from data.
DL models are highly parallelizable and scalable, which makes them especially adapted to
large scale predictions with remote sensing data. The most straightforward forward optimiza-
tion of a DL model is through supervised training which involves providing pairs of input data
with desired output data (e.g. data-sets of image-label pairs for classification). However,

2ML is frequently put as part of the broader field of study that is AI, that attempts to enable machines to
think, reason and act, in the way humans do — nonetheless, both terms are often employed interchangeably.
AI is perhaps a more “fashionable” expression, since current technology cannot yet be truly qualified as
“intelligent”.
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this approach is dependent on the availability of labeled data, which can be a problem for
certain EO applications where ground truth data is not available in sufficient quantity. This
is why there is potential in methods that lower or eliminate the requirement for labeled input
data, such as unsupervised learning, weakly-supervised learning or semi-supervised learning.
Among these methods, self-supervised learning uses auto-generated reference data to perform
training.

ML methods such as DL can generate representations for downstream tasks from input
remote sensing data as predictions. However, since each application usually requires its own
specific representation, this usually amounts to designing end-to-end computing pipelines,
which takes satellite images as input and produce representations as outputs. This is compu-
tationally expensive, and requires know-how to handle remote sensing data, which can hamper
application development. Furthermore, remote sensing big-data processing consumes a non-
negligible amount of energy, along with manufacturing, delivering and operating modern
material computing infrastructures additionally is resource-hungry, thus lowering the amount
of computation required is crucial to contribute to reducing the global footprint of EO. This
is why there is a need to derive intermediary representations that make relevant ground
information more readily available for downstream tasks than raw images. These representa-
tions need to be general enough to encompass different needs. Also, abstract representations
(e.g. lossless compression encoding) are not suited for downstream task users. As such,
enabling interpretability (explainability) of representations is crucial. Since representations
are of physical measurements, they have to be matched with physical concepts. Within
ML, this can be achieved by incorporating physical information and constraints as prior
knowledge during training. Furthermore, it is fundamentally impossible to truly grasp reality
phenomena. Representations are not perfect, prone to noise and reflect a partial, flawed
knowledge. Therefore, there is a need to associate a measure of uncertainty to derived
representations.

1.2 Mapping with satellite imagery

Space-borne remote sensing is about monitoring the Earth surface properties. The measure-
ments produced by the sensors are transformed into digital signals organized into arrays, i.e.
digital images. Each pixel of these images is associated with a certain area on the ground, the
scale of which is quantified by a spatial resolution. Optical remote sensors perform measure-
ments of electromagnetic signal in one or several spectral bands, so each pixel has one or
several channels dedicated to these spectral bands. The number of these bands defines a
spectral resolution. These measurements are quantized, and thus are characterized with a
radiometric resolution. Similar concepts can be formulated with non optical measurements.

Maps are the natural visual representation of ground properties retrieved from remote
sensing measurements, since the related data, images, are already arranged to reflect spatial
phenomena. Producing cartography from these representations, is about associating them to
a spatial coordinate, to a location on the ground. Depending on the range of available data,
maps can have vastly different ground footprints, from a few meters to a global scale. Maps
are an important product of remote sensing, and have been realized since the early days of
EO satellites. In the following subsection 1.2.1, subsection 1.2.2 and subsection 1.2.3 are
discussed some classical representations used for cartography, whereas in subsection 1.2.4 is
introduced the modern concept of digital twin, that aims at a more general and complete
type of representation than cartography.

1.2.1 Spectral indices

Manual interpretation of optical images is the traditional way to identify and describe elements
of observed scenes. This analysis is based on the exploitation of features of the images: the
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color, the tone, the texture, the shape, the location, and the context [Green, 2000]. The
automated analysis of optical imagery is based on the processing of those features. The advent
of high spatial resolution imaging has naturally improved the ability to characterize ground
elements. Also, multi-spectral measurements enable to identify vegetation better, such as with
a relatively high intensity of measured reflectance in some spectral bands (green in the visible
spectrum, and in near infra-red (NIR)). However, it is challenging to characterize vegetation
with precision, because remote measurement themselves are not directly interpretable. Spe-
cifically, it is difficult to link directly measurements (i.e. reflectances) to particular aspects
of ground elements (e.g. the type of vegetation, its density, is health, etc.), the relevant
information is hidden within the measured signal: remote measurements are not a good
representation for characterizing the land surfaces.

Combining reflectances in different spectral bands together into a single quantity called a
spectral index enables to derive some meaningful representation. In particular, for vegetation,
the NDVI is arguably the most widely used spectral index, and is one the first invented [Rouse
et al., 1974]. It is defined as a combination of red (R) and NIR band reflectances 𝜌:

NDVI = 𝜌NIR − 𝜌R
𝜌NIR + 𝜌R

. (1.1)

NDVI takes values inside [−1, 1], with positive values highly correlated to the density of
photosynthetic vegetation. Negative values generally indicate a water surface, whereas near
0 the NDVI is characteristic of bare soils.

The NDVI enables to distinguish spatially different vegetation better than individual red
and NIR bands, and as such can be considered a “better representation” for vegetation (see
Figure 1.1).

Since it characterizes the density of vegetation, considering the NDVI from a temporal
perspective instead of a spatial perspective also enables useful representations. By collecting
the temporal evolution of NDVI for pixels containing vegetation, it enables to obtain infor-
mation about their phenology3 (see Figure 1.2).

Other spectral indices enable to extract other meaningful representations of vegetation.
There are a number of indices that are modifications of the NDVI that compensate for
potential atmospheric effects [Gitelson et al., 1996; Huete et al., 2002], or soil effects [Huete,
1988], or focus in the red-edge spectral region [Gitelson and Merzlyak, 1994]. There are
actually hundreds of spectral indices [Henrich et al., 2009; Loaiza et al., 2023; Montero et al.,
2023] suited for various different sensors and applications. Although vegetation indices make
up the majority of the spectral indices, other are suited for representing other types of ground
surfaces: bare soil [Nguyen et al., 2021], water [Ma et al., 2019], snow [Hall and Riggs, 2010],
burnt areas [Epting et al., 2005], urban areas [Javed et al., 2021].

It can be noted that extracting spectral indices depends on available measured spectral
bands for a given optical sensor. As such, the spectral indices may have different values across
sensors because of differences in detector specifications, such as the definition of upstream
spectral bands. Therefore the exact same representation can usually not be achieved across
sensors using spectral indices.

1.2.2 Land cover and land use mapping
Another way to represent the physical reality of Earth surface is to associate each element
(e.g. an object or a surface) with a type, a class. For land areas, land use and land cover
(LULC) maps are visual representations of the spatial distribution of different classes of land
use and land cover in a given area over a limited time frame. Land cover classes mostly refer to
the type of physical material, ecosystems that occupy a given area (forest, water, urban area,
crops, bare soil), whereas land use classes refer to a socio-economic functional description

3Vegetation phenology is the cyclic, seasonal progression of plant status through typical stages: dormancy,
active growth and senescence.
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Figure 1.1: Comparison between red reflectance, NIR reflectance and NDVI derived from a S2 image
of the outskirts of Toulouse, France (2023-06-24). NDVI highlights significantly woody area with high
values, and water bodies such as the Garonne river with negative values.
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Figure 1.2: NDVI time series derived from S2 pixels containing different vegetation types. Wheat and
sunflower crops exhibit a characteristic growing season followed by decay, whereas the forest NDVI
doesn’t vary much.
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(residential, commercial, industrial area, agriculture, etc.). The different classes used within
a LULC map are pre-defined within a nomenclature, that may be more or less detailed and
that can have hierarchical levels. Production of LULC maps is about classifying ground
elements into a LULC nomenclature, either unit ground surface area4 (usually matching the
pixel grid of remote sensing images), or objects (in which case it is first necessary to detect
said objects and estimate their ground footprint).

Modern production of LULC maps makes use of high resolution optical imagery Rogan
and Chen [2004], such as produced by the S2 mission, Phiri et al. [2020]. Linking a specific
semantics nomenclature to reflectances is not as straightforward as computing spectral indices,
it involves more complex processing. The recent rise of ML techniques has enabled to tune
classifiers using satellite images and reference data to produce LULC maps. Since a single-
date satellite image of a location usually isn’t enough to accurately determine the LULC
classes, using multi-temporal data has been the focus of much research. In particular, S2
optical imagery has a relatively high temporal frequency, enabling to build Satellite image
time series (SITS) from observations, as a spectral, spatial and temporal representation. ML
classification for LULC maps production has been performed in particular with algorithms
such as random forests (RF) [Inglada et al., 2017b; Pelletier et al., 2016a], DL [Ienco et al.,
2019; Miller et al., 2024; Stoian et al., 2019], and Gaussian processes (GP) [Bellet et al., 2023,
2024].

The CES5 OSO6 is a team made of experts from CESBIO, UMR Ispa, Dynafor, CNRM,
UMR Tetis, IGN–Matis, Costel and Sertit. It has developed ML LULC classification algo-
rithms based on RF, and have produced land cover maps of metropolitan France yearly
since 2016, based on a 23 classes nomenclature since 2018: the OSO land cover map (see
Figure 1.3).

LULC maps are nomenclature-dependent, making it difficult to compare between different
maps. It can be noted nonetheless that there have been efforts to unify those representations,
by performing translation of a given LULC nomenclature into another [Baudoux et al., 2023].

1.2.3 Biophysical variable mapping

Although useful, a LULC map is a rather coarse representation of land properties. Since it is
categorical, it doesn’t allow quantitative comparison between instances of the same class. In
particular, it doesn’t enable to characterize nuances on the state of classified elements, e.g.
whether a forest is healthy or withering, whether an urban area is damaged, whether crop
yield can be expected to be low or high. Conversely, spectral indices, that enable quantitative
comparison, are not directly linked to desired interpretable properties on the ground.

As such, there is a need for mapping other quantities, variables that are more directly
linked to more precise properties of the land elements. These variables can be broadly referred
as bio/geo-physical variables. Relevant biophysical variables at a given location depend on
the type of object present (e.g. LULC), e.g. variables of vegetation may be unsuitable for
describing non-permeable areas of urban sprawl. Identifying these variables also depend on
the considered application. For instance, the Global Climate Observing System (GCOS)
identified biophysical variables as key indicators that are critical to characterize climate,
the essential climate variables (ECVs) [GCOS, 2011; Bojinski et al., 2014]. So far, 55
atmosphere, land and ocean variables have been listed as ECVs, that are related to the

4Associating a class to each pixel of an image is referred as classification in remote sensing and as semantic
segmentation in computer vision.

5From French: Centre d’expertise scientifique.
6From French: Occupation des sols.
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Figure 1.3: OSO land cover map 2022.

state of the hydrosphere7, the cryosphere8, the antroposphere9 and the biosphere10. An ECV
may encompass several related quantities. For instance the fire ECV contains the burnt
area, the active fires, and the fire radiative power. Incidentally, the land cover is listed as a
biosphere ECV. ECVs measurements have requirements, in terms of resolution (spatial and
temporal), of the data delivery delay (timeliness), instrument error and drift (stability) and
uncertainty [Zemp et al., 2022].

Similarly, essential ocean variables (EOVs) have been defined by the Global Ocean Obser-
ving System (GOOS), as indicators of the oceans status. A majority of EOVs are also
ECVs. The group on Earth observation (GEO) biodiversity observation network (BON)
defined essential biodiversity variables (EBVs) that characterize genetic composition, species
population and traits, community composition, ecosystems functioning and structure [Pereira
et al., 2013]. EBV are complementary to ECV. It is worth noting that the goal EBV
representation is that of an “EBV cube”, i.e. data with a temporal, spatial dimensions
and a biodiversity component dimension, highlighting a need to monitor a spatio-temporal
evolution. The concept of “essential variables”, as representations of the status of the
environment, has been used by different scientific and policymakers groups which developed
various sets of biophysical variables according to their mandate and objectives. Besides ECV,
EOV and EBV, other essential variables have been proposed, often as complements: essential
marine ecosystem variables [Hayes et al., 2015], essential variables for invasion monitoring
[Latombe et al., 2017], essential sustainable development goals variables [Reyers et al., 2017],
essential geodiversity variables essential agriculture variables [Whitcraft et al., 2019] and
[Schrodt et al., 2019].

7The hydrosphere refers to the whole of water on Earth, namely oceans, freshwater, surface water,
groundwater, glacial water, and atmospheric water vapor.

8The cryosphere includes the components of the Earth System at and below the land and ocean surface
that are frozen, including snow cover, glaciers, ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice,
permafrost, and seasonally frozen ground, and solid precipitation

9The anthroposphere encompasses the total human presence throughout the Earth system including our
culture, technology, built environment, and associated activities.

10The biosphere refers to the whole of places on Earth where living beings exist.

18



CHAPTER 1. LAND SURFACE REPRESENTATION WITH SATELLITE IMAGERY

1.2.4 Earth digital twin
Most representations reflect a limited set of properties of their target. As such they can
be insufficient to grasp the target as a whole, they can fail at representing interconnected
systems that constitute the target. With the advent of modern computer-aided simulation
techniques, the concept of digital twin has emerged, and has been identified as a major trend
in the last decade. Digital twins can be defined as computer-based models that simulate,
emulate and mirror the state of a physical entity, that can be an object, a process, a human,
or a human-related feature [Barricelli et al., 2019]. Digital twins aim at encompassing all
relevant elements of their target, sometimes even promoting a near-bijection between them
and the modeled object. This concept has been notably first applied in the industrial and
manufacturing sectors, in particular in the aerospace field. They are being developed to
forecast and monitor the life cycle of complex objects.

Digital twins differ from CAD11/CAE12 software that represent device parts and simulate
their behavior in different cases (external forces, vibrations, thermal variations, etc.). Digital
twins are characterized by an extensive use of descriptive data about the target object, that is
exchanged and updated as frequently and continuously as possible, ideally in real-time. This
has been made possible by the development and massive deployment of various sensors and
measurement devices in all sectors. Digital twins are meant to be ultra-realistic computerized
counterparts of a given object, and rely on measurement input to keep it up to date and make
relevant predictions.

The concept of digital twin is currently envisioned for EO, thanks to the large and
increasing number of remote sensors. Destination Earth (DestinE) is an initiative launched
in 2022 by the European Union (EU) that is promoted by the European Space Agency
(ESA) that aims at developing a digital twin for the Earth, or Digital Twin Earth by 2030
[Nativi et al., 2021]. NASA’s Earth System Digital Twins (ESDT) is the equivalent American
initiative.

The Earth being a very complex system made of many interconnected parts, many current
digital twin for earth initiatives focus on building a digital twin on a given sub-system of the
planet, such as hydrological cycles [Brocca et al., 2024], or forests [Buonocore et al., 2022].

Digital twins of the Earth strive for assimilating as many data sources as possible, remote
sensing products, ground measurements, even crowd sourcing [Mazumdar et al., 2017]. They
aim at enabling large scale monitoring of the Earth at fine spatial and temporal resolutions,
and enhance simulation possibilities of different scenarios and help decision-making.

1.3 Scientific representations
Defining and characterizing representations is an ongoing active philosophical debate. Theo-
ries of representations are proposed, and their implications discussed ontologically13 and
epistemologically14. A general definition of representation is that it is something (a source)
that can be used on behalf of something else (a target) to reason, to think, to make predictions.
Images are visual representations of a scene. A map is a visual representation of the spatial
repartition of objects. Art is a representation that can convey emotions, ideas. Red green
blue (RGB) encoding is a representation of the perceived level of “redness”, “greenness” and

11Computer-aided design.
12Computer-aided engineering.
13Ontology is the metaphysical study of the nature of being, of reality itself, for which there are two main

opposing perspectives: realism hypothesizes that reality exists independently from consciousness whereas
idealism argues that some aspects of reality depends on mental constructs.

14Epistemology is the metaphysical study of the nature of knowledge, how we know about it and what
is the relation of knowledge with reality. One of its main questions is about the role and existence of a
prior knowledge (independent of experience and the fruit of pure reason) and a posteriori knowledge (that is
derived from experience). Rationalism emphasizes the importance of the former whereas empiricism values
the importance of the latter.
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“blueness” of pixels in a digital image. One of the key representational questions is: in virtue
of what is a given source a representation of a given target ?

A straightforward, perhaps simplistic stance on that question is that of the stipulative
fiat15: Any source can represent any target as long as it is stipulated. During family dinners
with unavoidable geopolitical debates, a salt shaker may be placed next to some large plate
to represent the African east coast and Madagascar. One may choose to represent a animals
(e.g. cows) as a spheres with constant density to approximate thermal losses of mammals,
while blatantly neglecting actual physical properties. Of course, any source being selectable
to represent any target doesn’t make it necessarily a “good” representation, especially for
scientific purposes. Nonetheless, it enables to highlight two key aspects of representations:
they are always associated with a context and an intent. For instance, a digital image
file is an encoded visual representation, however without context nor intent (i.e. suitable
software and hardware as context, and the intention of people who designed them) this file
just exists in reality as a specific distribution of electric charges within semi-conductors.
When context and intent aren’t explicit, representations are not well defined and subject to
multiple interpretations: what does the Mona Lisa painting represent?

Figure 1.4: Assume a spherical cow - Credit: Abstruse Goose

Representations are also ubiquitous in science, since they enable to grasp and describe the
physical reality. Scientific representations, or epistemic representations (ERs) are debated as
a subject per se, they ought to have some additional properties that set them apart from other
representations, say art. For instance, they differ by their sources (model, theories, data) and
targets (real-world systems, theoretical objects). The debate around those representations
is centered on key questions such as the constitution question of ER [Callender and Cohen,
2006]: “In virtue of what is there representation between scientific sources and their targets?”.
Providing a review of the different positions and currents of the active debate on theories
of ER, with sufficient details and nuance is an enterprise out-of-the scope of this Ph.D. A
general overview of the debate of ER can be found in Frigg and Nguyen [2021]. Nonetheless,
the following subsection 1.3.1 shall attempt to introduce some perspective in which the notion
of representation used in this manuscript is set. Then subsection 1.3.2 will specify the notion
of representation and model within the field of DL.

1.3.1 Scientific models and representations
As Hughes [1997] phrases, “the concept of representation is as slippery as that of a model”.
This is because models are, in fact, representations themselves. Scientific models can be
defined as physical (e.g. model ships or planes, model wings in a wind tunnel, sensor
structural models on electro-dynamic shakers) and/or mathematical (atmospheric model,
radiative transfer model (RTM)) and/or conceptual representations of systems of ideas, events
or processes. A key distinction of models as special representations is that models are tools
that enable thinking and reasoning, they allow to test scientific hypotheses.

15The stipulative fiat is part of General Griceanism that claims that all representations are derived from
more fundamental mental representations.
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Scientific models are notoriously used to make predictions about their target systems,
e.g. models of the solar system enable to predict the position of celestial bodies at a given
moment and enable to design the trajectory of space probes.

Not all representations in science are models, e.g. diagrams and drawings such as Figure 1.4
are representations that also enable scientific discussion without being models. Measurements
are a ubiquitous scientific representations, that are not models. The notion of measurement
is debated just like for models and representations. Overall, measuring is a procedure that
correlates some properties or attributes (characterized by a unit) of a target system to a
number, the measurement. Measurement is not only about the attribution of a number,
but also about the procedure that provides this number. The measurement procedure itself
integrates models about the sensor. For instance, measuring length with a ruler uses the
underlying model of size as a function of the distance between graduations. Surface reflec-
tances, presented as a measurement from optical remote sensors, must be related to the flux
of photons that reaches the detector, requiring models of the atmosphere, of the onboard
optics, of the detector itself, etc. This last example illustrates that the distinction between
measurement and estimation can be blurred.

It is finally important to distinguish models and theories. Both concepts are often used
interchangeably, since models often have a theoretical content and theories are often expressed
by models. However, models are representations, whereas theories are conceptual frameworks,
sets of ideas, that aim to explain reality. Models can be though of as “instantiations16 of
theories, narrower in scope and often more concrete, commonly applied to a particular aspect
of a given theory, providing a more local description or understanding of a phenomenon”
[Fried, 2020]. Models usually use simplifying assumptions from their parent theory, so that
they can be used in practice. The spherical cow model humored in Figure 1.4 is a caricature
of oversimplification in scientific models, that can be useful nonetheless: modeling animals
as balls of flesh enables analytical facilities to study heat transfer and show that mammals
below a certain size cannot exist because compensating heat loss would require unattainable
caloric intake.

In science there are two main ways to build models: first principle modeling and data-
driven modeling. First-principle models are the direct instantiation of a theory, they represent
the fundamental assumptions of a target system, e.g. they are the result of the application
of physical laws to a particular situation. For instance RTM simulate the radiation flux that
propagates through a medium, while relying on the theory of optics and electromagnetism (see
Chapter 4). On the other hand, data-driven, statistical or empiric models, seek to establish
relationships between different components of the target system by using measurements. First
principle modeling and statistical modeling are not mutually exclusive. The use of the theories
underlying the target system can help statistical models achieve better representations, by
introducing biases (see Chapter 6 and Chapter 7). Conversely, oftentimes an empiric model
of a system is first derived from observations, and then the retrieved empirical relationships
are formalized into first principle models, and integrated into a broader theory. One famous
example of this is the description of elliptical orbits by Kepler’s law of planetary motion, which
were not first established through a theory of gravitation, but rather from model-fitting of
observations of time and angle of celestial bodies.

Regression is an approach for fitting a flexible statistical model to a particular data (see
Chapter 3). Regression models can be very simple, for instance linear or affine relationships
can be established from a reduced set of data-points: the Ohm law was found by observing
that the electrical tension was proportional to the current, the proportionality coefficient
being the resistance; similarly, Beer-Lambert’s law is a linear relationship between a solution
concentration and the proportion of light that propagates through, and the transmittance
relating the two. Such models may be valid within restricted regimes of the target systems.

16An instance is a case, an application, of a property (or a class in programming), e.g. 42 is an instance of
numbers, the spherical cow model is an instance of the theory of heat transfer theory.
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More data-points and more complex models become necessary to describe the target more
accurately. In such case, the ML approaches can be relevant to represent the relationships of
the target’s components. In ML, a statistical model is automatically optimized to fit data.
Among these methods, DL is based on a particular class of models: deep neural networks.

1.3.2 Deep learning and representations

In the DL field, the notion of representation and model is actually quite practical and
straightforward, although not often explicitly defined. A DL model is an algorithm that
transforms input data, more specifically an ANN. An ANN is organized into layers that apply
consecutive non-linear transformations to the data. The transformations of data outputted
by each individual given layer are can be understood as hidden internal variables of a DL
model. These internal transformations and the output of the DL model are seen as represen-
tations of the model input data [Rumelhart et al., 1986]. The individual components of the
input data, internal transformations and output data of the model are called features, and
features of a given layer form a representation of the input data [Bengio et al., 2013]. An
important aspect about DL representations, is that they are measurable, since features are
either numerical or categorical. DL is notoriously interpreted as promoting higher level, more
abstract representations of input data within deep layers of the model, enabling in turn to
achieve a higher understanding of the input data. Within DL, representation learning or
feature learning, is about designing models and tuning procedures that automatically enforce
a set of specified properties in certain features [Bengio et al., 2013; Zhong et al., 2016]. Among
them, semantic features are features that are interpretable as a given propriety of the data,
and that can be arbitrarily abstract, such as a dominant color, the expression of human face
[Gudi, 2016].

DL models are typically called black-box models, because they optimize thousands, millions
of parameters and their inner calculations cannot be explained. The internal representa-
tions of DL models are not interpretable, in the sense that they can’t be understood by
humans [Gilpin et al., 2018]. There are significant efforts to make DL more interpretable.
Interpretability is commonly identified post-hoc, i.e. meaning is attributed to the internal
representations of a given black-box model [Fong and Vedaldi, 2017]. Another paradigm,
in which the work of this Ph.D. is inscribed, is to ensure interpretability by design, i.e. by
using DL frameworks that guarantee interpretable representations. One way to apply this
approach is to promote semantic intermediate representations, i.e. having some designated
layers of a DL model matching a specific concept Marcos et al. [2020] (see Chapter 7).

Besides, it can be noted that in DL, the sources of representations are the features of a
given model, whereas the target is naturally the input data. Thus, DL representations are
representations of input data. However, when using DL with scientific purposes, the input
data itself may be a measurement, e.g. remote sensing data within this work. Measurement
is itself a representation, often the result of the processing of a sensed signal. As such it
is argued in this work that DL representations obtained with measurements as input data
are in fact representations of physical processes. Therefore, it is considered more proper to
talk about representations of Earth ground phenomena rather than representation of satellite
images.

1.4 Scope of this Ph.D.

1.4.1 Representing vegetation properties with satellite images

Vegetation covers a significant area of land masses, especially in temperate climatic regions
such as Europe. In metropolitan France for instance, LULC studies estimate that about 92%
of the total land is covered with some type of vegetation (58% of croplands and grasslands,
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32% of forests and groves, and 2% of moorlands). As such, vegetation characteristics should
be a key part of representations of this territory.

S2 data is especially suited to provide EO measurements to characterize vegetation. Its
high spatial resolution of 10 m enables to characterize precisely vegetation elements, and to
identify landscape details, such as parcel boundaries. Some of the measured spectral bands
that operate in the visible and NIR spectrum are especially suited to vegetation, with notably
three spectral bands in the red-edge region. Finally, its frequent revisit of observed scenes
enables to monitor the evolution of vegetated surfaces, and infer representations that reflect
seasonal changes (see section 2.1).

This Ph.D focuses on providing methods to retrieve representations of vegetation at pixel-
level using S2 data. S2 images are measurements which are related to the physical properties
of the observed land surfaces. These properties should intervene in representations retrieved
from S2 data. In particular, for vegetation, the spectral dimension of S2 data is related to
the concentration of various molecules, and to the structure of the canopy (see Chapter 4),
whereas its temporal dimension informs about phenology (see section 9.1). However, purely
data-driven approaches might only find representations of observed surfaces for which the
physical information remains hidden. Disentanglement is a data-driven approach which
incorporates additional statistical biases into DL models, that aim at finding factors of
variation as representations within the data (see section 6.5). While such representations
may be interesting for discovering new relationships within the target systems, they may not
match known physical phenomena. Methods which are solely data-driven retrieve represen-
tations of the data and not of the underlying system, for which additional assumptions and
knowledge are available.

This is why in this thesis, methods for learning semantic representations that contain
physical knowledge will be studied. Such representations aim at being interpretable, and
assimilated to physical quantities. In the case of vegetation, an ideal semantic representation
derived from remote optical measurements can be bio-physical variables. Unfortunately,
there is lack of reference data on vegetation bio-physical variables, which hampers regression
approaches (see Chapter 3). Unsupervised approaches do not necessitate reference data for
optimization, and only need remote sensing data. As discussed above, pure data-driven
models are not enough, even if they were unsupervised. Therefore, this Ph.D. proposes to
investigate the integration of physical knowledge into unsupervised representation learning
models, for both ensuring the physical consistency of of representations and mitigating the
need for reference data.

A common approach to retrieve identified physical variables using physical knowledge is to
perform model inversion: when there are forward models that produce synthetic observations
from input physical parameters, model inversion attempts to retrieve these parameters from
observations (see Chapter 3). As a consequence, the quality of representations inferred by
the method developed in this Ph.D can be assessed in the framework of model inversion.

Finally, quantifying uncertainty over predicted representations is required. This suggests
using Bayesian methods that integrate uncertainty by explicitly modeling predictions and
data as random variables and inferring full posterior distributions for the variables given the
observed data..

1.4.2 Challenges
Retrieving interpretable representations from S2 data at large scale is a complex problem
because of three data-related aspects:

1. the complexity, variability and irregularity of the data;

2. the scale of the data;

3. the lack of reference data.
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S2 data is not available on a regular temporal and spatial grid. Adjacent satellite orbits
have intersecting swaths leading to a difference in revisit frequency between certain covered
area. Furthermore the presence of clouds is a transitory phenomenon both temporally and
spatially, leading to missing clear data in measured images. Mitigating the temporal and
spatial irregularity of this data is not the focus of the present work. Nonetheless the possibility
of missing data will have to be taken into account. This will notably be done by using
the cloud and pixel validity masks that are distributed with the reflectance products. The
geographical and seasonal variability of the landscape itself is transferred to S2 data. As
such, this variability must be taken into account in training data-sets for ML approaches,
otherwise they may not be generalizable, and the results are at risk of not being accurate
outside of a limited spatial and temporal range.

The amount of S2 data is very large. This constrains processing methods to be very
efficient at large scale for feasibility. Some classical Bayesian techniques that could satisfy
the requirement for uncertainty quantification such as Markov Chain Monte Carlo (MCMC)
are especially computer-intensive, and would not be applicable at such a scale. For ML
methods that require training, the variability of the data means that their training data-set
must be of a certain size as well. This limits ML possibilities to approaches that can handle
large data-sets. DL models can fulfill these constraints and has strong advantages which
makes it fit for EO applications [Persello et al., 2022]:

• They can take into account vast amounts of data for training.

• DL can be adapted to a Bayesian framework by using distributions as intermediate
representations and with specific optimization objectives.

• DL models are composable and can integrate differentiable components as modules (e.g.
such as differentiable physical models).

• A wide variety of architectures for DL models are available for taking different aspects
of the data into account (e.g. convolutional neural network (CNN) for S2 images, see
section 3.3).

• The cost of training is outweighed by the relative efficiency of inference, which is only
a forward pass through a model.

• DL models are “embarrassingly parallel”, i.e. neural network computations can be
easily divided into smaller independent computations, and parallelized. This allows to
take advantage of particular hardware such as graphical processing units (GPUs) which
perform parallel tasks very fast.

Finally, contrary to the S2 data that is massive, there is generally very little reference data
about the properties of the ground surface. Measuring vegetation properties, such as leaf area
index (LAI) or phenology requires costly and fastidious field survey effort, and is difficult to
obtain with sufficient spatial and temporal frequency. This limits the feasibility of supervised
ML, which requires labeled17 data-sets for training. It can be noted that training models
to predict a land cover representations such as the OSO land cover map using supervised
classification is made possible by the (rare) existence of reference data in France, such as
the “registre parcellaire graphique” (RPG) that collects the agricultural parcel crop names
and boundaries. In the general case, for arbitrary representations of land surfaces, such
data-bases do not exist, or not in sufficient quantity. To mitigate the lack of labeled data,
some classical approaches simulate labeled data-sets using a simulation (physical) model, and
predict representations from inverting this model. However, as will be discussed in Chapter 5,
these approaches are plagued with different challenges, namely, the difficulty of choosing a

17The term of label refers to the reference data that the model learns to predict. It can be categorical
(classification), or numerical (regression).
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distribution for the simulated samples. There is a need for approaches that do not rely on
reference data for training/tuning, and this is why this Ph.D. focuses on a self-supervised
approach, that can be optimized using only S2 data.

1.4.3 Contributions
This Ph.D. brings 4 main contributions.

When attempting to estimate a ground physical parameter from remote sensing data as an
interpretable representation of the Earth surface, reference data are usually too scarce. This
limits the applicability of data-driven approaches, such as supervised ML. When there exist
scientific models for these quantities, model inversion allows to retrieve them (i.e., physics-
driven approaches). However these methods are usually simulation-driven, i.e. they generate
synthetic samples using the scientific model, effectively replacing unavailable reference data
with simulations. As a first main contribution, this Ph.D. shows in a specific application
case that a mismatch between the distributions of simulations and of EO application samples
impacts the performance negatively. Specifically, the bio-physical variable retrieval accuracy
is hampered when performing the inversion of the PROSAIL RTM using simulated data as
a training data-set for a supervised regression ANN.

To mitigate the shortcomings of supervised methods to retrieve physical variables as
interpretable representations (i.e. the lack of reference data for data-driven approaches
and the sensitivity of simulation-based inversion methods to the distributions of simula-
tions), this Ph.D. develops an unsupervised methodology as a second contribution. The
proposed approach exploits the representation learning framework of variational autoenco-
der to perform probabilistic model inversion. This methodology incorporates physical priors
into training by integrating a user-defined physical model within a DL architecture, effectively
bridging the gap between data-driven and physics-driven approaches. Although this approach
also relies on simulations, it crucially doesn’t require to choose a sampling distribution for
pre-simulations, since it can learn directly from real EO data.

Finally, the two remaining contributions are the exploitation of the proposed approach
in two applications. The inversion of the canopy reflectance model PROSAIL is performed
with the subsequent PROSAIL-VAE, showing performances on par or superior fine-tuned
production inversion model of the Biophysical Processor (BP) of Sentinel Application Platform
(SNAP). Contrary to classical approaches, PROSAIL-VAE estimates all PROSAIL variables.
The method is then applied to perform the inversion of temporal phenological model on crop
NDVI time series with Pheno-VAE, also showing interesting results. In particular, Pheno-
VAE integrates additional order constraints between temporal variables.

1.5 Conclusion
This chapter has discussed the notion of representation and how it relates to models, data
and measurements, in the context of remote sensing. Before delving into approaches and
models that learn representations from data in Part II and Part III, the measurements, that
is, the proxy for observing and understanding reality, will be described in Chapter 2.
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Chapter 2

Physical measurements
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Measurement is the process of
empirical, objective assignment
of numbers to the attributes of
objects and events of the real
world, in such a way as to
describe them.

Finkelstein and Grattan [1994]

27



CHAPTER 2. PHYSICAL MEASUREMENTS

2.1 Sentinel-2 imagery
Sentinel-2 is an Earth Observation mission, that is part of the Copernicus programme1 of
the EU. The objective of this mission is to acquire high resolution optical images of land
masses and coastal waters. The data produced is freely accessible and is used for land
monitoring, agriculture, forestry, natural disaster assessment and assistance. As of 2024, the
Sentinel-2 mission uses a constellation of two identical satellites, Sentinel-2A and Sentinel-
2B, respectively launched on 2015-06-28 and 2017-03-07 with Arianespace’s Vega launcher.
These satellites were designed with a 7-year nominal mission length, extendable up to 12
years. As such, Sentinel-2A operational use was planned until 2022, but since consumables
(fuel for orbital manoeuvres) are not yet exhausted, it is still in operation as of early 2024.
The scheduled end-of-life of the Sentinel-2 mission is 2038-09-30. Since Sentinel-2A and 2B
will be both retired well before this date, replacement satellites are already planned to pursue
the mission: Sentinel-2C and Sentinel-2D that will respectively substitute 2A and 2B. In fact,
Sentinel-2C is ready and planned for launch in 2024, depending on 2A end-of life, and 2D is
integrated and undergoing test campaigns.

2.1.1 Multi-spectral Instrument
The payload of the Sentinel-2 (S2) satellites is the multi spectral instrument (MSI), which
measures the Earth reflected radiance. The spectral radiance 𝐿 is the derivative of the spectral
flux2 𝜙 that reaches the instrument w.r.t. the detector surface 𝑠 w.r.t. the solid angle Ω𝑠
that covers the light source:

𝐿(𝜆) = d2𝜙 (𝜆)
d𝑠 dΩ𝑠 cos 𝜃𝑠

(2.1)

with 𝜃𝑠 the angle between the normal vector of the source and the normal vector of the
detector.

The multi spectral instrument (MSI) doesn’t actually capture a full radiance spectrum.
Several detectors made of photo-sensitive material are mounted on the instrument. These
detectors measures the radiance transmitted through spectral filters placed in front of them.
These spectral filters have a certain transmittance band [𝜆1, 𝜆2], called a spectral band. For
each spectral band, the radiance measurement performed by the detector is characterized by
a sensitivity function 𝑆 (𝜆). The equivalent radiance in a spectral band, is the total radiance
measured by a detector which has a sensitivity in this band:

𝐿eq =
∫𝜆2
𝜆1

𝐿 (𝜆) 𝑆 (𝜆) d𝜆
∫𝜆2
𝜆1

𝑆 (𝜆) d𝜆
. (2.2)

The MSI uses 13 spectral bands in the visible (B1, B2, B3, B4), near infra-red (NIR) (B5, B6,
B7, B8, B8A, B9) and short wavelength infra-red (SWIR) (B10, B11, B12) domains, and has
a spectral sensitivity in all those bands. The spectral bands are characterized by a central
wavelength 𝜆𝑐, which is the barycenter of the band sensitivity:

𝜆𝑐 =
∫𝜆2
𝜆1

𝜆𝑆 (𝜆) d𝜆
∫𝜆2
𝜆1

𝑆 (𝜆) d𝜆
. (2.3)

The characteristics of the MSI spectral bands are summarized in Table 2.1, and their spectral
response functions are provided in Figure 2.1. It can be noted that although both S2 satellites

1This spelling is in British English, as opposed to program in American English. As the United Kingdom
participates to the European Space Agency and used to be part of the European Union (EU), the natural
spelling is an European Space Agency (ESA) programme, as opposed to a NASA program.

2The electromagnetic power, the derivative of the received energy 𝐸 with respect to (w.r.t.) time: 𝜙 (𝜆) =
d𝐸 (𝜆)

d𝑡 .
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are equipped with the same instrument, there is a slight difference between the sensitivity of
their spectral bands, and with the theoretical values given in Table 2.1.

Table 2.1: MSI spectral bands

Band Use
Central

wavelength
(nm)

Bandwidth
(nm)

Spectral
domain

Spatial
resolution

(m)
B1 Coastal aerosols, AOT 443 20 Visible 60
B2 Vegetation, urban area, water 490 65 Visible (blue) 10
B3 Vegetation, urban area, water 560 35 Visible (green) 10
B4 Vegetation, urban area, water 665 30 Visible (red) 10
B5 Vegetation 705 15 NIR (Red edge) 20
B6 Vegetation 740 15 NIR (Red edge) 20
B7 Vegetation 783 20 NIR (Red edge) 20
B8 Vegetation 842 115 NIR 10
B8A Vegetation 865 20 NIR 20
B9 Water vapour 945 20 NIR 60
B10 Cirrus detection 1375 30 SWIR 60
B11 Vegetation, soil moisture 1610 90 SWIR 20
B12 Vegetation, soil moisture 2190 180 SWIR 20

The MSI is a push-broom instrument, for which a linear array of detectors scans the
surface perpendicularly to the trajectory. The MSI telescope has an across track field-of-view
of 20.88∘ enabling a wide swath of about 290 km.

2.1.2 Orbital characteristics and angular geometry
The S2 constellation is positioned at 786 km altitude on heliosynchronous orbit3. This enables
to acquire images with near constant sun illumination angles. The two S2 satellites orbit the
Earth with a 180∘ phase, i.e. they are on opposing sides of the Earth. The S2 constellation
has a high revisit time. Any location on Earth is sensed at least once every five days, although
it can be even more frequent at high latitudes or at the intersection of the satellite swaths
between two adjacent orbits.

Each point sensed by a S2 satellite is characterized by an angular configuration described
by four angles depending on the satellite (the observer) and the solar directions # »𝑟𝑂 and # »𝑟𝑆
(see Figure 2.2):

• the sun zenith angle4 𝜃𝑆;

• the sun azimuth angle 𝜓𝑆;

• the satellite zenith viewing angle 𝜃𝑂;

• the satellite azimuth viewing angle 𝜓𝑂.

The solar angles are independent from the satellite, they are a function of the geographical
location, the season, and the local solar time. As the S2 satellites passes occur during
the morning, the Sun always appears east of the sensed areas, i.e. with a azimuth angle
𝜓𝑆 ∈ [0°, 180°]. The S2 zenith angle is restricted to about ±11.9∘5. The S2 azimuth angle
can be any value in [0°, 360°], however it becomes indeterminate when the satellite is at the
zenith of the sensed point.

3An heliosynchronous orbit is characterized by a nearly polar trajectory around the Earth, in which the
orbiter flies over any given point on the surface at the same local solar time.

4The zenith angle is not to be mistaken for the elevation angle, which is the angle with the horizontal plane,
i.e. the elevation angle is the complementary of the zenith angle.

5Due to the Earth curvature, the S2 zenith angle range has a maximum value of about 23.9∘, wider than
the MSI 20.9∘ field of view.
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Figure 2.1: Sensitivity function of S2’s MSI spectral bands.
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Figure 2.2: Angular geometry of pixel sensed by an observer with relative direction # »𝑟𝑂 and illuminated
by the Sun with relative direction # »𝑟𝑆, with local ( #»𝑒 , #»𝑛, #»𝑢) orthonormal basis corresponding to east,
north and upward directions.

2.1.3 Products

The data produced by the S2 mission is released to users in the form of different products
designated by a certain level of processing [SUHET, 2015]. Each processing level uses the
previous processing levels as input. The elementary products are partitioned into granules
whose fixed size depends on the product level. The granules are the minimum indivisible area
that a product covers. The different product level descriptions are summarized in Table 2.2.
All Sentinel data up to level-1C are available typically within 3-24 hours of being sensed by
the satellite. The most notable image processing tasks are detailed hereafter.

Table 2.2: Sentinel-2 products overview

Level Production Description availability Granule (km2)
0 Ground segment Compressed raw image not released 23 × 25

1A Ground segment Decompressed level-0 image not released 23 × 25
1B Ground segment Radiometrically corrected TOA

radiance in sensor geometry released 23 × 25

1C Ground segment Ortho-rectified TOA
reflectance in UTM/WGS84 released 110 × 110

2A Ground segment /
On user side

BOA reflectance
(atmospheric corrections) released 110 × 110

3A On user side Composite or synthesis
from several images released 110 × 110

The S2 and solar angles are available from level-1C onward at a 5 km resolution, on the
same geographical projection than the image.

2.1.3.1 Radiometric and geometric corrections

Radiometric corrections are rectifications applied to the measured radiance. The corrected
radiometric effects include:

• The dark signal, that is a residual current in the detector that delivers an erroneous
measurement, even when there is no incident photon.
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• The pixel response non-uniformity, that is the measurement discrepancy between detectors
even when they observe the same incident radiance.

• The defective pixels, which must be identified and mitigated.

• The crosstalk phenomenon, which is caused by the leakage of electrons and photons
between adjacent pixels.

The raw image acquired by a spaceborne sensor is a two-dimensional array of pixels of
radiometric values. These images need to be georeferenced i.e., the pixels must be linked
to ground point coordinates. An ortho-image or ortho-rectified image is a 2-dimensional
pixel array so that geometry of the array matches a particular cartographic projection. The
accuracy of georeferencing can be limited and the computed position of array element can
have too high errors. Image registration attempts to correct georeferencing deviations by
comparing successive images of observed scenes. These corrections are performed in Level-1
processing.

2.1.3.2 MGRS tiling

It is fundamentally impossible to perform a projection without distortion of a 2 dimensional
map onto the surface of a sphere, and vice-versa. As such, cartographic projection aims
at choosing a mapping of the sphere onto 2D maps that minimize an arbitrary distortion
at the expense of others. Flat maps are always an imperfect visual representations of the
three-dimensional Earth. When representing a sufficiently small area on the surface of the
Earth, the effect of the curvature becomes small, so representing this 3D surface with a flat
projection generates negligible distortions.

This is why Sentinel-2 products are projected onto granules. From Level-1C onward,
the granules are a set of tiles that subdivide the Earth, defined in universal transverse
Mercator (UTM)/World Geodetic System 1984 (WGS84) projection. These tiles are defined
as overlapping squares with a surface of 110 × 110 km2. The S2 tiling system is based
on NATO’s Military Grid Reference System (MGRS). Based on the UTM projection, the
MGRS divides the Earth into 60 zones of 6∘ longitude. The MGRS further divides the Earth
surface into 8° latitude zones from S80° to N72°, and in a 12° zone from N72° to N84°. The
georeferencing of polar regions with MGRS is not discussed here, since S2 offers systematic
coverage to land surfaces between S56° to N84°. This partition of the Earth surface produces
a grid, for which each element is associated with an identifier made of a natural number 𝑛
and a letter 𝐿0, or grid zone designator (GZD): 𝑛𝐿0. The number designates the UTM zone,
and thus takes values from 1 to 60, while the letter designates the latitude band, ranging
from C in the southern hemisphere to X in the north (remaining letters are for the poles).
Each GZD is further divided into another grid with square 100 × 100 km2 elements (as the
GZD becomes closer to the poles, the area covered becomes smaller so there are fewer grid
elements). The elements within a GZD do not overlap with each other, however they may
overlap with elements from neighboring GZD. Each of these grid elements is specified with
two letters 𝐿1 and 𝐿2, following a row and column index logic. For instance, the 100×100 km2

GZD element in which Toulouse is located is designated as 31TCJ. These GZD grid elements
are the basis for S2 tiling system. S2 tiles are associated with each GZD grid element and are
called by the same identifiers. The S2 tiles are larger than their MGRS GZD grid element
counterparts so that there is a 10 km overlap between them.

2.1.3.3 Radiance to reflectance

Level-1C transforms the radiance measurement into a reflectance measurements. For wave-
lengths below 3000 nm the radiance of the terrestrial surface essentially comes from the
reflection of solar irradiance6 𝐸𝑠 (𝜆). The radiance 𝐿 (𝜆), as an absolute flux of photons,

6Aside from rare intense light sources such as projectors oriented towrad the detector, or lava flows.
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depends on the scene illumination conditions i.e. the Sun configuration, that varies seasonally
depending on its distance to the Earth. The reflectance 𝜌 (𝜆), as the ratio between incident
and reflected light on a surface, makes abstraction of the solar irradiance and is a radiometric
quantity that solely depends on the surface characteristics:

𝜌 (𝜆) = π𝐿 (𝜆)
𝐸𝑠 (𝜆) cos (𝜃𝑠) . (2.4)

For a detector with a sensitivity 𝑆 (𝜆) within a spectral band [𝜆1, 𝜆2], the equivalent reflec-
tance is defined as:

𝜌eq (𝜆) = π𝐿eq (𝜆)
𝐸𝑠,eq (𝜆) cos (𝜃𝑠) , (2.5)

with 𝐸𝑠,eq (𝜆) = ∫𝜆2
𝜆1

𝑆(𝜆)𝐸𝑠(𝜆) d𝜆
∫𝜆2
𝜆1

𝑆(𝜆) d𝜆
the equivalent solar irradiance.

2.1.3.4 Atmospheric corrections

Level-2A converts top-of-atmosphere (TOA) reflectances into bottom-of-atmosphere (BOA)
reflectances. To do that, it is necessary to take into account the propagation of light in the
atmosphere, which is affected by absorption and scattering, besides line-of-sight interception
by clouds. Correcting these effects is a difficult task that requires modeling the radiative
transfer in the atmosphere. Two atmospheric correction algorithms are Sen2cor, developed
by Telespazio VEGA Deutschland GmbH on behalf of the ESA [Louis, 2021], and MACCS-
ATCOR joint algorithm (MAJA) developped by the Centre national d’études spatiales (CNES),
the Centre d’études spatiales de la biosphère (CESBIO) and the Deutsches Zentrum für Luft
und Raumfahrt (German Aerospace Center) (DLR) [Hagolle et al., 2017; Rouquié et al.,
2017].

2.2 Sentinel-2 image data-sets
Within this work, S2 images are used in two ways. Firstly, training data-sets for unsupervised
models are constituted with S2 images, and they will be used in Chapter 8. Secondly,
S2 images corresponding to field surveys of vegetation are collected, to enable quantitative
evaluation of biophysical variable retrieval techniques, as seen in Chapter 5 and Chapter 8.
These two image data-sets are respectively detailed in subsection 2.2.1 and subsection 2.2.2.

Both data-sets are assembled from a collection of S2 multi-spectral images, freely available
within the THEIA catalog7. The images are orthorectified, terrain-flattened, and atmo-
spherically corrected with MAJA [Hagolle et al., 2017; Rouquié et al., 2017], i.e. they are
a Level-2A S2 product (see Table 2.2). In this work, only 10 S2 bands among 13 are used:
B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12. This is because the excluded bands B1, B9
and B10 are used for cloud detection and atmospheric correction and the corresponding BOA
reflectances are not reliably estimated.

2.2.1 Training patch data-set
The unsupervised biophysical variable retrieval method used in Chapter 8 is used to produce
maps of biophysical variables of vegetation from S2 images. The calibration (i.e. training
in ML terms) of this so-called PROSAIL-VAE model involves reconstructing input images
with an autoencoder architecture. This training data-set, which will be denoted 𝒟S2 and is
described below, is made of S2 images that contain vegetation areas.

7https://www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
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2.2.1.1 Data-set image selection

To ensure that the retrieval of vegetation biophysical variables from images is as general as
possible and not focused on a single type of vegetation, it is important that many types of
vegetation at diverse phenological stages are included in the data-set. To this end, images
from various regions of interest (ROIs) with different types of vegetation across Western
Europe are collected.

Only spectral bands acquired at 10 and 20 m spatial resolutions are considered and 20 m
bands are upsampled using cubic interpolation to 10 m. The satellite viewing and solar
illumination angles (see subsection 2.1.2) are also included in the data-set, and are upsampled
from 5 km to 10 m resolution to the same grid than reflectances. Three angles are taken into
account:

• the solar zenith angle 𝜃𝑆,

• the satellite zenith angle 𝜃𝑂,

• the relative azimuth angle, computed as the difference between the solar and satellite
azimuth angle: 𝜓𝑆𝑂 = 𝜓𝑆 − 𝜓𝑂.

For each tile, 1–3 different ROIs, of size 5120 × 5120 m2 describing croplands and forest
areas are selected (see Table 2.3). For each tile, multiple acquisitions with dates ranging
between January 2016 and December 2019 are considered (see Figure 2.4). Within chosen S2
acquisitions are extracted 512 × 512 pixels patches corresponding to the selected ROIs, when
they are observed (the cloud coverage is below 3%).

2.2.1.2 Data-set splitting for training, validation and testing

As depicted in Figure 2.5, each 512 × 512 ROI patch of the 𝒟S2 data-set is spatially split
into 16 disjoint patches of size 128 × 128 pixels of 10 m2: 14 for training, 1 for validation, and
1 for testing. Any 128 × 128 patch with invalid pixels (due to clouds) is discarded. These
sub-patches are aggregated into 𝒟S2,train training, 𝒟S2,valid validation and 𝒟S2, test testing
data-sets. The number of patches for each data-set is described in Table 2.3. The splitting
scheme of patches is kept constant across each ROI patch of 𝒟S2. This ensures that pixels
related to specific locations are not shared between these training, validation and testing
data-sets. This also ensures that these pixels are observed at several dates in their associated
data-set.

The training data-set 𝒟S2,train is used for PROSAIL-VAE model training (see Chapter 8),
the validation data-set 𝒟S2,valid is used to monitor the loss during training and ensure that
the model does not over-fit. The testing data-set 𝒟S2, test is used to assess the performances
of the trained models8. Specifically, the testing data is used to assess reconstructions and
parameter inference on unseen samples (see Figure 8.9).

2.2.2 Images of field survey sites
Four field surveys over three different sites (Las Tiesas - Barrax, Wytham Woods and
BelSAR), described in section 2.4, have gathered vegetation biophysical parameters data.
These data are to be used as reference data to assess retrieval performances. These quantities
are to be estimated from S2 remote sensing data. As such, S2 images of the measurement
sites are gathered. Since in most cases S2 overpass didn’t occurred on the same day as field
surveys, or clear data weren’t available, for each measurement on the ground, the clear images
that are temporally closest before and after the measurements are chosen. The mapping of
measurement locations of the field surveys are shown in Figure 2.6, Figure 2.7 and Figure 2.8.

8The testing data-set doesn’t intervene in either model parameters nor hyper-parameter tuning.
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Figure 2.3: Red squares: selected MGRS tiles for the S2 training data-set. Small green squares:
location of the in-situ evaluation data sites (Las Tiesas Barrax, Wytham Woods and the BelSAR
Site).
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Figure 2.4: Dates of image acquisitions for each MGRS tile in 𝒟S2.
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Figure 2.5: Splitting of ROI image in training (red), validation (blue), and test (green) patches (S2
image of an ROI in T30TXQ of 2019-09-11)

Table 2.3: Description of patches and pixels in training, validation and testing S2 image data-sets.

S2 Tile Acquisitions ROIs
Training
patches

(32 x 32)

Training
pixels

Validation
patches

(32 x 32)

Validation
pixels

Testing
patches

(128 x 128)

Testing
pixels Total pixels

T30STE 13 1 2688 2 752 512 192 196 608 12 196 608 3 145 728
T30SVG 8 1 1568 1 605 632 128 131 072 8 131 072 1 867 776
T30SWJ 5 3 896 917 504 64 65 536 4 65 536 1 048 576
T30TUM 7 1 1568 1 605 632 112 114 688 7 114 688 1 835 008
T30TXQ 6 1 1344 1 376 256 96 98 304 6 98 304 1 572 864
T30UWU 8 1 1792 1 835 008 112 114 688 8 131 072 2 080 768
T31TCJ 1 1 224 229 376 16 16 384 1 16 384 262 144
T31TFJ 9 1 2016 2 064 384 144 147 456 9 147 456 2 359 296
T31UDP 8 2 1792 1 835 008 128 131 072 8 131 072 2 097 152
T31UFS 8 2 1792 1 835 008 128 131 072 8 131 072 2 097 152
T32TPQ 9 1 1808 1 851 392 144 147 456 9 147 456 2 146 304
T32ULV 10 1 2240 2 293 760 160 163 840 10 163 840 2621440
T33SVB 11 1 2464 2 523 136 176 180 224 10 163 840 2 867 200
T33TWF 8 3 1792 1 835 008 128 131 072 8 131 072 2 097 152

Total 23 984 24 559 616 1728 1 769 472 108 1 769 472 28 098 560
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As shown in Figure 2.3, some tiles of the training data-set (see subsubsection 2.2.1.1)
contain the measurement sites. This is the case for the BelSAR site in tile 31UFS and Las
Tiesas - Barrax site in 30SWJ. However, care was taken to ensure that selected ROIs do not
overlap with these test sites where in-situ measurements were collected.

The images of Las Tiesas - Barrax and BelSAR sites were also taken from the THEIA
catalogue. However S2 tile 30UXC which the Wytham site isn’t part of this catalogue.
Therefore, the related Level-2A S2 product were taken from the CNES PEPS catalogue9,
with on demand MAJA atmospheric correction.

2.3 Biophysical data field surveys
The definitions of the leaf area index (LAI) are reviewed in subsection 2.3.1, and the associated
methods of measurement and estimation are discussed in subsubsection 2.3.1.3. Measurement
methods for chlorophyll content are described in subsection 2.3.2.

2.3.1 Measuring the Leaf Area Index

The LAI [Watson, 1947] is defined as one half of the total green leaf area per unit horizontal
ground surface area. The LAI quantifies the amount of leaf area in an ecosystem and is a
critical variable in processes such as photosynthesis, respiration, and precipitation interception
[Fang et al., 2019]. It is strongly correlated to crop yield and is a feature frequently used for
forecasting [Chen et al., 2018b]. As a fundamental attribute of global vegetation, the LAI is
highlighted as an essential climate variable (ECV) by the Global Climate Observing System
(GCOS) [GCOS, 2011].

2.3.1.1 Definition scopes

A number of vegetation area indices10 closely related to the LAI are commonly defined in
studies, to account for nuances. In all cases, the vegetation area index designates half the area
(or one-sided area) of vegetation elements per unit horizontal ground area. While the LAI
takes all leaves into account, the green LAI (GLAI) is restricted to green leaves, which are
photo-synthetically active and participate in evapo-transpiration [Broge and Leblanc, 2001].
The counterpart for senescent leaves is the brown LAI (BLAI). Their relationship is simply:

LAI = GLAI + BLAI. (2.6)

The LAI and GLAI are generally equivalently used in canopy reflectance models, under the
hypothesis that BLAI is negligible or accounted for by other variables.

Another LAI related index is the green area index (GAI), defined as the area index of
green organs, which includes green leaves, stems, branches, and fruits [Baret et al., 2010; Fang
et al., 2019]. Notably, this excludes brown leaves which are typically accounted for in the LAI.
It should be noted that GAI is not the area index of only photosynthetic elements. Non-green
leaves may also contribute to photosynthesis, and photosynthesis may not be performed in
all green tissues, or under extreme conditions.

The broader plant area index (PAI) accounts for the area of the whole plant, and makes
no distinction between leaves and non leaves-elements, or green and brown areas, [Weiss
et al., 2004]. The LAI is related to the PAI through the woody area index (WAI) [Toda and
Richardson, 2018], which accounts for the area of woody elements (i.e. non-leaves):

PAI = LAI + WAI. (2.7)
9https://www.peps.cnes.fr

10The term vegetation area indices defines here the general set of area indices.
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The non-leaf elements of vegetation can be divided into stem and branches elements, whose
surface is respectively accounted for by the stem area index (SAI) [Duveiller et al., 2011] and
branch area index (BAI) [Kucharik et al., 1998]. The WAI is the sum of those indices:

WAI = BAI + SAI. (2.8)

The contribution of branches through the BAI is usually neglected, and the WAI and SAI
may bee seen as equivalent. In some studies, the contribution of dead leaves are added to
the SAI [Fang et al., 2019]. In such cases, the SAI is complementary to the GLAI:

PAI = GLAI + SAI. (2.9)

Depending on the application, some indices such as SAI can be extended to other plant parts,
or other vegetation area indices specific to those elements may be defined [Duveiller et al.,
2011]. Some vegetation area indices may be designated by other acronyms in some studies,
such as the PAI that is designated as VAI, for vegetation area index in Fassnacht et al.
[1994], or the shoot area index defined in Chen and Cihlar [1995]. The ability to distinguish
the various plant elements and their corresponding vegetation area indices depends on the
application, and on the sensor used for measurement. The correspondence between plant
elements and several vegetation area indices is provided in table 2.4.

The different area indices described here account for the surface area of different parts of
plants while discarding explicitly others. Although the different definitions attempt to put
a precise meaning to each quantity, it can actually hamper understanding and comparison
between studies. The definition of the LAI itself can be blurry: the GCOS actually defines the
LAI as half the surface area of green leaves, which is the definition given for the GLAI. There
can be scientific interest in distinguishing the various plant parts in different area indices,
for given applications. However, it is actually quite difficult and fastidious to measure the
LAI precisely, as will be discussed in subsubsection 2.3.1.3. This is one of the main reasons
for different works to propose other area indices closely related to the LAI. Specifically, with
indirect measurement, separating the contribution of the different plant parts to the global
surface area is difficult. As such, to account for inaccuracies of isolating specific plant parts,
area indices that encompass all measured surface areas can be proposed alternatively to
the LAI. Moreover, distinguishing all plant parts for accurate vegetation area definition is
complicated for ground measurements, therefore it is all the more difficult for space-borne
remote sensing. LAI, GAI, GLAI and PAI may be seen as roughly equivalent from this
perspective.

Table 2.4: Correspondence between vegetation area indices and vegetation elements. (!) indicates
vegetation elements that may or may not be taken into account by the corresponding index, depending
on studies

Leaves Non-leaves

Index Green
leaves

Brown
leaves

Green
stem

Green
branches

Non-green
stem

Non-green
branches

LAI ! !

GLAI !

BLAI !

GAI ! ! !

PAI ! ! ! ! ! !

WAI ! ! ! !

BAI ! !

SAI (!) ! (!) ! (!)
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2.3.1.2 The canopy clumping effect

The LAI (or some other vegetation area indices described in 2.3.1) is usually not acquired
directly when using optical measurement methods (see 2.3.1.3) because of the canopy clumping
effect [Ryu et al., 2010]. When using optical field instruments, the gap fraction of the canopy
is estimated, and an effective LAI (LAIeff) is derived, instead of the actual LAI. The LAIeff
is defined as the product of the LAI with the clumping index Ω (𝜃𝑆), which is a function of
the solar zenith angle 𝜃𝑆:

LAIeff (𝜃𝑆) = Ω (𝜃𝑆) × LAI. (2.10)

The clumping index quantifies the canopy clumping effect, and measures the non-randomness
of the leaf distribution. The LAIeff assumes that the leaf distribution is uniformly random
i.e. that there is no canopy clumping effect Chen et al. [2005]. On the contrary, the LAI is
an index that is obtained by correcting the LAIeff with the clumping index.

2.3.1.3 LAI field measurements methods

The study of leaf shapes and dimensions is called phyllometry. The LAI, which is defined as
half the ratio of leaf surface by ground surface, is a phyllometric parameter. To measure the
LAI, there are two complementary approaches: direct methods, which measure the LAI from
sampled leaves, and indirect methods that rely instead on the measurement of other, more
accessible parameters as a proxy.

Direct methods Direct LAI estimation requires harvesting leaves from within an area
of study [Jonckheere et al., 2004; Weiss et al., 2004]. Leaves can either be destructively
picked from the vegetation, or collected as leaf litter in autumn season during the vege-
tation senescence with leaf litter traps. The area of detached leaves is then measured in
the laboratory. The area of individual leaves can be measured with mechanical or optical
planimeters, scanners or even smartphones with dedicated applications, and automated with
belt conveyors. Alternatively, the LAI can be assessed from the weight of dry leaf samples 𝑤
[Baret et al., 2010] by assuming some constant leaf area per unit of dry leaf mass SLA11:

LAI = SLA × 𝑤. (2.11)

Direct methods are the most precise, as they directly measure the value of interest. However
they are labor and time consuming, and are difficult to deploy over large areas and for
repeated measurements. Therefore, they are only used for local studies and for validating
indirect methods.

Indirect methods Indirect methods estimate the LAI from other vegetation variables.
Indirect methods can be divided into methods with and without physical contact with the
studied vegetation.

One of the earliest LAI measurements techniques involved physical contact with the leaves.
A measure of foliage area of a low growing vegetation within a quadrat12, was derived by
piercing the leaves with a physical probe made of thin needles. The foliage area was derived
by counting the number of contact points between the needles and the leaves: this is the
quadrat point method [E.B. and E.A., 1933]. The method was further improved by inclining
the quadrat at an optimal 32.5° instead of using it vertically with inclined point quadrats
[Wilson, 1960], that reduces the measurement error. While the common random uniform leaf
distribution is not required contrary to other indirect methods, the inclined points quadrats

11specific leaf area
12A quadrat is a frame used in ecology, geography, and biology to identify and isolate a standard unit of

area for studying of the distribution of an item over a given area.

39



CHAPTER 2. PHYSICAL MEASUREMENTS

is work intensive, as it requires a large number of needle insertion. Furthermore, it is hardly
applicable to canopies higher than 1.5 m due to the limited length of needles.

Another indirect contact LAI estimation method is vegetation allometry, which provides
empirical links between the various dimensions of the plants. In particular, for trees, the
leaf area is highly correlated with tree height, sapwood13 basal area14, stem basal area, etc
[McDowell et al., 2002; Waring et al., 1980]. Allometric techniques are specific to site, species,
and phenological stage of the vegetation. Furthermore, they can be destructive, as sapwood
measurements requires to expose the tree cross section.

Non-contact indirect methods use the interaction between the leaves and an electro-
magnetic radiation source and is captured by a sensor. These techniques are also qualified
as optical. For field measurements discussed here, the sensor is on the ground, whereas for
remote sensing, the sensor is either airborne or space-borne. When the radiation source is
artificial, the method is active. One such indirect non-contact active method is based on the
inclined point quadrats method which uses laser beams as probes instead of physical needle
[Denison, 1997].

On the contrary, when the scene exposition is natural (i.e. the Sun), the method is passive.
As Weiss et al. [2004] reviews, non-contact indirect passive methods of field LAI estimation
method are based on the measurement of the gap fraction. The gap fraction represents the
probability of incident radiation to pierce the canopy and reach the observer. Using gap
fraction to retrieve the LAI [Martens et al., 1993] is based on Monsi [1953], which finds
that the light attenuation trough the canopy can be approximated with Beer-Lambert law.
Specifically, it is the LAIeff that is retrieved, and the canopy clumping effect (see 2.3.1.2) must
be estimated to correct for the LAI. For measuring the gap fraction, the technique depends
on the sensor used.

2.3.2 Measuring the chlorophyll content

Chlorophyll is an essential photo-synthetic pigment for plants. This molecule is found in
the chloroplast organelle within plant cells. The chlorophyll is responsible for absorbing
incident sunlight radiation in visible and infra-red (IR) spectrum, and freeing electrons to
enable the photosynthesis chemical reaction. Photosynthesis (see Equation 2.12) transforms
carbon dioxide and water into sugar and dioxygen molecules and is arguably one of the most
important processes for life on Earth.

6 H2O + 6 CO2 −−→ C6H12O6 + 6 O2 (2.12)

There are actually two types of chlorophyll molecules, with very similar composition and
structure with complementary role in the photosynthetic process: chlorophyll A
(C55H72MgN4O5) and chlorophyll B (C55H70MgN4O6). The green color of plants is due
to the chlorophyll pigments that absorb short wavelength (violet/blue) and long wavelength
(orange/red) visible light. The effect of both types of chlorophyll is commonly apprehended
simultaneously with a combined pigment concentration 𝐶𝑎𝑏 = 𝐶𝑎 + 𝐶𝑏.

The chlorophyll content in plant elements is influenced by many factors, the vegetation
type, phenological stages, the environmental conditions, the geographical location, etc [Li
et al., 2018]. As such it is a key quantity to characterize vegetation.

Like the LAI (see subsubsection 2.3.1.3) the chlorophyll content can be measured in-situ
with direct destructive techniques (subsubsection 2.3.2.1), or estimated with indirect methods
(subsubsection 2.3.2.2).

13Soft outer layers of recently formed wood between the heartwood and the bark, containing the functioning
vascular tissue.

14Cross-sectional area of trees at breast height (≈ 1.4 m).
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2.3.2.1 Spectrophotometrical measurement

Most direct measurements of chlorophyll content in plant elements are performed following the
protocol of Lichtenthaler [1987]. Photosynthetic plant elements (e.g. leaves) are destructively
sampled from vegetation, and are dissolved with acetone or ethanol. The absorbance15 𝐴 at
several wavelengths of the solution is then measured with a spectrophotometer. Concentrations
𝐶 can be retrieved from the absorbance, since the Beer-Lambert law links those two quantities:

𝐴 (𝜆) = 𝜖 (𝜆) 𝑙𝐶 (2.13)

with 𝑙 the optical path length and 𝜖𝜆 is the molar attenuation coefficient (or absorptivity)
of the molecular species. Measuring the solution absorption at two wavelengths enables to
distinguish the concentration of chlorophyll A from chlorophyll B16, by solving (i.e. inverting,
see Chapter 3) a linear system derived from the Beer-Lambert law:

{𝐴 (𝜆1) = 𝛼1𝐶𝑎 + 𝛽1𝐶𝑏
𝐴 (𝜆2) = 𝛼2𝐶𝑎 + 𝛽2𝐶𝑏

⟺
⎧{{
⎨{{⎩

𝐶𝑎 = 1
𝛼1𝛽2 − 𝛼2𝛽1

(𝛽2𝐴 (𝜆1) − 𝛽1𝐴 (𝜆2))

𝐶𝑏 = 1
𝛼1𝛽2 − 𝛼2𝛽1

(𝛼1𝐴 (𝜆1) − 𝛼2𝐴 (𝜆2))
(2.14)

with 𝛼1, 𝛽1, 𝛼2 and 𝛽2 coefficients that are function of the species absorptivity at the
two wavelengths. It can be noted that a similar protocol can be applied to measure the
concentration of other pigments, such as carotenoids.

2.3.2.2 Indirect measurements

Like the LAI, indirect chlorophyll measurements involve some sort of model inversion. Esti-
mating the chlorophyll content with remote sensing relies on optical measurements since it is
a pigment whose effect can only be sensed from its spectral signature, although some attempts
to combine multi/hyper-spectral measures with synthetic aperture radar (SAR) have been
performed Zhang et al. [2018].

As for in-situ measurements, chlorophyll-meters are simple, fast and relatively inexpensive
tools to estimate this pigment. These small devices non-destructively estimate the absorbance
of leaves and produce an estimate of the pigment concentration. One of the most popular
chlorophyll-meter is Konica Minolta’s SPAD-502 Markwell et al. [1995]. The SPAD-502
produces dimensionless measurements 𝑀 that are related to the chlorophyll concentration
through an experimental relation (usually linear, polynomial, exponential or homographic)
that must be calibrated beforehand, by using spectrophotometry measurements (see subsub-
section 2.3.2.1), like [Brown et al., 2022]:

𝐶 = 𝑎e𝑏𝑀 . (2.15)

Nonetheless, these kind of measurements are less precise than spectrophotometry, and are
subject to more variability. Besides, the choice of the calibration equation has a direct impact
on the chlorophyll content estimation, which adds to the uncertainty of chlorophyll-meter
measurements [Li et al., 2024].

2.4 In-situ data-sets
In order to assess the inference of vegetation biophysical parameters, as will be performed in
Chapter 5 and Chapter 8, it is necessary to establish reference databases. Here is described

15The absorbance must not be mistaken for the absorbtance. The absorbance is defined as the decimal
logarithm of the transmittance : 𝐴 = log10 𝑇

16with more precision when these wavelengths are chosen to match absorptivity maxima of the dissolved
species.
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the composition of an in-situ measurement data-set 𝒟IS, composed of direct measurements
collected in different field campaigns under the framework of fiducial reference measure-
ments for vegetation (FRM4Veg) and BelSAR projects, and associated S2 images (see sub-
section 2.2.2). The complete data-set contains 211 LAI and 121 canopy chlorophyll content
(CCC) reference measurements with estimated uncertainties. This data serves as a reliable
reference for quantitatively evaluating the accuracy of the biophysical variable estimations.
Nonetheless, prudence must be exerted when using this data-set for validation purposes,
because it contains a limited number of data points of a few vegetation types at few phenological
stages, and because the measurement themselves are affected with an uncertainty. Using more
measurement data in future work will be essential to confirm the results obtained here.

2.4.1 Fiducial reference measurements for vegetation

FRM4Veg is an ESA managed project focused on establishing the protocols required for
traceable in-situ measurements of vegetation-related parameters, to support the validation
of Copernicus products [Origo et al., 2020]. In this project, different field campaigns have
been performed over two test sites covering agricultural crops (Las Tiesas-Barrax, Spain)
and deciduous broadleaf forest (Wytham Woods, UK). Besides LAI, CCC and bare soil
measurements, their associated uncertainties are also available for both test sites.

Considering an elementary sampling unit (ESU) of 20×20m, about 12 to 15 LAI individual
measurements were performed using digital hemispheric photography (DHP). Leaf chlorophyll
content (LCC) measurements were made on 13 points per ESU with a Konica Minolta SPAD-
502 chlorophyll meter. Considering 3 leaves per point with 6 replicates per leaf, 234 measure-
ments were thus performed for each ESU. The relative values provided by the SPAD-502 were
converted to absolute units using calibration functions specific to each vegetation type [Origo
et al., 2020]. Finally, CCC measurements were obtained by applying CCC = LCC × LAI.
Although the measurement of non-destructive chlorophyll can lead to imprecise and unreliable
results [Zhang et al., 2022], it must be noted that measurements provided by the FRM4Veg
campaigns were performed with rigorous and high standard protocols considering important
number of repetitions and uncertainty estimations [Brown et al., 2021a].

The FRM4Veg also estimate the clumping index of the vegetation canopy, which enable
to derive LAIeff and effective CCC (CCCeff) (CCCeff = LCC × LAIeff) measurements (see
subsubsection 2.3.1.2).

In this Ph.D., the measurements collected in 2018 and 2021 over the Barrax test site are
used (see Figure 2.6). As proposed in Brown et al. [2021b], alfalfa measurements are not
considered because these crops had been thinned prior to the S2 acquisitions, but after the
in situ measurements were made. By considering the dates of in-situ measurements, satellite
images acquired on (2018-05-16, 2018-06-13, 2018-07-22) are considered for the Barrax test
site.

In the case of Wytham test site, only data from 2018 is considered due to the lack of clear
satellite image acquisitions over the summer of 2021. For this study area, S2 images acquired
on 2018-06-29 and 2018-07-06 are used.

2.4.2 BelSAR

In the framework of the BelSAR project [Bouchat et al., 2022, 2023; Orban et al., 2021],
field measurements and airborne SAR bistatic acquisitions were collected over a test site
in Belgium, near the town of Gembloux during the summer of 2018. This project had the
objective of assessing the interest of SAR bistatic acquisitions for vegetation and soil moisture
monitoring. It also wanted to validate the capabilities of active-passive satellite configurations
by ensuring the performances of L-band SAR bistatic and multistatic imagery.

In the BelSAR campaign, measurements were collected over 10 maize and 10 winter wheat
fields larger than 1 hectare (ha) in size (see Figure 2.8).
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2018 2021

Measurement	year

Figure 2.6: In-situ measurements of 2018 and 2021 FRM4Veg in Las Tiesas - Barrax test site (S2
image of 2018-06-13).

Figure 2.7: In-situ measurements collected over FRM4Veg Wytham area in 2018.
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The BelSAR project provides PAI measures for wheat parcels and GAI for maize fields.
Considering that PAI and GAI are similar to LAI Fang et al. [2019], both measurements
are interpreted as LAI in our study. For each field, 3 measurements were made at each
date. Accordingly, the average of the measurements computed at each parcel for each date
is considered as reference. Following the same idea, the standard deviation at parcel level is
interpreted as an uncertainty measurement.

A timeline of the BelSAR measurement dates and available S2 images is shown in Figure 2.9.
It should be noted that the measurements of 2018-08-29 were excluded from our study, as
no valid S2 images were available within 24 days before or after. There are three or four
acquisitions for each parcel, as field measurements are not carried out for each maize or
wheat parcel for each measurement date.

Figure 2.8: Field parcels of BelSAR test site over a S2 image acquired on 2018-05-08).

2018−05−08

2018−05−15

2018−05−22

2018−05−29

2018−06−05

2018−06−12

2018−06−19

2018−06−26

2018−07−03

2018−07−10

2018−07−15

2018−07−24

2018−07−31

2018−08−07

2018−08−14

2018−08−21

2018−08−28

Wheat

Maize

S2 image

Figure 2.9: Timeline of measurement dates for maize and wheat parcels of BelSAR campaign, and
available S2 images.
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2.4.3 Validating with the in-situ data-set
The in-situ data-set 𝒟IS contains reference in-situ measurements of LAI and CCC and the S2
images of the sites that are temporally the closest possible to the measurements dates. For
almost all measurements, there is no S2 image captured on the same day. Therefore to assess
the performance of a prediction algorithm with some in-situ data on a given day, predictions
are made using the first prior available image and first posterior available image. For a given
measurement 𝑦⋆, an estimate 𝑦 on the same day (at 𝑡 = 0) is derived from predictions 𝑦before
and 𝑦after performed on images respectively sensed 𝑡before days before and 𝑡after days after,
using linear interpolation:

𝑦 = 𝑡after
𝑡after + 𝑡before

𝑦before + 𝑡before
𝑡after + 𝑡before

𝑦after. (2.16)

When a given algorithm outputs distributions as predictions, the estimate is the interpolation
of expected values, and the uncertainty is derived as the interpolated standard deviation.
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Chapter 3

Model inversion and regression
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3.1 Forward and inverse modeling
Scientific models (e.g. mathematical, numerical models) are a representation of physical or
theoretical systems, that attempt to explain their behavior. Finding relevant models for
those systems is called “modeling”. Models can be designed in two ways. First-principle
modeling, is about using theories, physical or mathematical laws to build models, whereas
empiric modeling forms models from data. These approaches are not exclusive: models can
both have theoretical background and be tuned with data. Many models of interest aim at
representing the relationship between two sets of phenomena, of quantities that correlate in
the target system.

3.1.1 Model inputs, outputs and parameters

Scientific models usually characterize a directional, or conditional relationship that leads
to describe the related phenomena as input, and output of the model. Model inputs are
commonly thought as model parameters, however in this Ph.D., a distinction is made between
the two. Parameters, usually denoted 𝜽, are defined as global variables, attributes that define
the model itself (e.g. artificial neural network (ANN) weights, regression coefficients), whereas
model input are local variables, that vary along with the model output.

In the remainder of this work, model inputs and outputs (and parameters 𝜽) are assumed
to be numerical quantities whose components are put in a vector form, unless specified
otherwise1, and are respectively denoted 𝒙 and 𝒚. Their domains are respectively subspaces
𝕏 of R𝑛 and 𝕐 of R𝑚. Collections of samples 𝒙 and 𝒚 are gathered in data-sets 𝒟𝒙 ⊂ 𝕏 and
𝒟𝒚 ⊂ 𝕐. In this context, the input and output are representations of physical or theoretical
phenomena, whereas the model represents the relationship between those phenomena as a
mathematical relationship between the inputs and outputs. For instance, as discussed in
subsubsection 2.3.2.1, the concentration of a chemical species within a solvent is related to
the absorbance of the solution at a given wavelength. These two quantities can be taken as
input and output of the Beer-Lambert law chosen as a model.

Additionally, the taxonomy of this work enables to make a straightforward distinction
between model inversion (discussed in the subsequent subsection 3.1.2) and model calibration.
Both notions can be qualified as estimation of an unknown quantities, however model inversion
is about retrieving a model input 𝒙, whereas calibration estimates 𝜽.

3.1.2 Model inversion

Characterizing the relationship between 𝒙 and 𝒚 leads to a dual problem. When 𝒙 and
𝒚 are chosen as input and outputs, the direct (or forward) problem is about finding the
direct/forward model that describes the outputs 𝒚 from the inputs 𝒙. The complementary
inverse problem aims at inferring the input 𝒙 from the outputs 𝒚. More formally, solving the
inverse problem associated with the model ℱ (or inverting the model ℱ) is, for a given 𝒚 in
a data-set 𝒟𝒚, to find the input 𝒙 whose propagation (or forwarding) through ℱ produces 𝒚:

∀𝒚 ∈ 𝒟𝒚, Find 𝒙 ∈ 𝕏 s.t. ℱ (𝒙) = 𝒚. (3.1)

Sometimes, additionally to the numerical value of some input samples 𝒙, an inverse model
ℱ−1 to the forward model ℱ can be found. In this case the model input 𝒙 can be found by
simply propagating 𝒚 through ℱ−1:

∀𝒚 ∈ 𝒟𝒚, ℱ−1 (𝒚) = 𝒙. (3.2)

1In this work, only finite dimensional models, that are described with a finite number of parameters are
considered. However in general, there are models that require an infinite number of parameters, countable or
uncountable. In the latter case, functions can be used as parameters.
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It can be remarked that the qualification of models as forward or inverse is arbitrary, since
the associated problems describe the two sides of a bi-directional relationship between two
variables 𝒙 and 𝒚. Deciding if a model is forward or inverse is a matter of context, depending
on which variable can be considered as a cause, which one is a consequence. Usually, one
direction of the relationship is more accessible, more straightforward than the other, so it
is considered to constitute the direct problem. The inputs of the forward model are usually
hidden variables whereas the outputs are observed through measurements. Since forward
models can produce outputs that are comparable to measurements, they are data simulators.

Model ℱ
Input 𝒙 Output 𝒚

Forward problem

Inverse problem

Parameters 𝜽

Figure 3.1: Forward and inverse problems. Dashed arrows indicate the direction of inference.

3.1.3 Well-posedness and approximate inversion

The possibility of solving an inverse problem (or more generally a numerical problem) is
described with Hadamard’s well-posedness conditions:

1. existence of a solution,

2. uniqueness of the solution,

3. stability, i.e. the continuous dependence of the solution on data.

In the case of linear models, these conditions translate to matrix specifications: they must
be invertible and well-conditioned (see subsection B.4.1). Problems that don’t satisfy those
conditions are ill-posed. As a rule of thumb, all interesting inverse problems are ill-posed,
usually because solutions are not unique. Common causes for inverse problem ill-posedness
are over-determined2 and under-determined3 systems of equations, occurring notably because
of a difference in the dimension of input and output space. For instance, the gravitational field
outside of a body is uniquely determined by the spatial distribution of mass, however there
are (infinitely) many different mass distributions that allow a given gravity. To collapse the
set of all possible solutions of an inverse problem to a single solution, additional constraints
must be added, i.e. prior information must be provided. Furthermore, for physical systems ill-
posedness is amplified because of measurements being noisy, and the model being imperfect.
Thus, inverse problems rather aim at finding plausible input values of the model. The model
inversion problem (Equation 3.1) is then usually relaxed as:

∀𝒚 ∈ 𝒟𝒚, Find 𝒙 ∈ 𝕏 s.t. ℱ (𝒙) ≈ 𝒚. (3.3)

Model inversion intersects with estimation theory since it is about estimating unknown
variables 𝒙 from data 𝒚 that can contain an random component.

2More equations than unknown.
3Fewer equations than unknown
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3.1.4 Model inversion and regression

Regression analysis aims at finding relationships between two sets of variables. It estimates a
mapping of dependent variables4 𝝊 as a function 𝑓5 of the independent variables6 𝝃. Usually,
the regression function is assumed to belong to a certain family of functions (e.g., linear,
polynomial, neural networks), which depends on a set of parameters 𝜷, and is fit to the data
by optimizing 𝜷. An error term 𝜺 accounts for effects non-modeled by 𝑓 and for randomness.

𝝊 = 𝑓 (𝝃, 𝜷) + 𝜺 (3.4)

In this paragraph, the notation of inputs and outputs are distinguished between those (𝒙, 𝒚)
of a forward model ℱ and (𝝃, 𝝊). As will be explained below, these quantities do not always
match. Beyond this section, the notation (𝒙, 𝒚) will be used again for all models.

Simple regression refers to regression of a scalar dependent variable 𝜐 ∈ R from a scalar
independent variable 𝜉 ∈ R. Multiple regression refers to regression of a scalar dependent
variable 𝝊 ∈ R𝑘 from a one or several independent variables 𝝃 ∈ R𝑚. Multivariate regression
is a generalization to the case of several dependent variables 𝝊 ∈ R𝑘 and several independent
variables 𝝃 ∈ R𝑚. Linear regression considers the fitting of a model that is linear with respect
to (w.r.t.) the parameters 𝜷.

𝝊 =
𝑘

∑
𝑗=1

𝑓𝑗 (𝝃) 𝛽𝑗 + 𝜺 = Ξ𝜷 + 𝜺 (3.5)

Regression methods can be either parametric or non-parametric (see subsection 3.1.1),
depending on the model 𝑓 being fit to the data (in the non-parametric case, 𝜷 can be a
function, or infinite-dimensional).

Regression analysis is relevant for both forward and inverse modeling, depending on what
is chosen as dependent and independent variables. Empiric modeling, that produces (forward)
models ℱ from data, can be performed using a regression approach on variables separated
into predictors 𝒙 = 𝝃 and outcomes 𝒚 = 𝝊.

Performing the inversion of a model ℱ with regression can be classified in two categories.

1. A local approach, that uses the model ℱ as the regression function 𝑓 , and to retrieve
the model inputs 𝒙 as the unknown parameter 𝜷 of the regression. This implies that
regression must be performed each time for retrieving model inputs 𝒙𝑖 from different
output samples 𝒚𝑖.

2. The global approach is to use regression to estimate an inverse model ℱ−1 = 𝑓 .
The forward model is used to generate samples pairs (𝒙, 𝒚). This is performed by
selecting samples of input data 𝒙 (or drawing them from a prior distribution, as seen in
section 5.1), and by propagating these samples through the forward model to produce
the outputs 𝒚 = ℱ (𝒙). Then, regression is applied on the synthetic data (𝒙, 𝒚), by
using 𝒚 as predictors 𝝃, and 𝒙 as outcomes 𝝊 — in reverse to that of the forward model
ℱ. As such it is only necessary to perform regression once, and then model inversion
can be carried out by forwarding the different samples to the estimated model inverse.

Regression involves fitting a model onto the data (𝒙, 𝒚), usually by optimizing a criterion
(or objective function), commonly denoted 𝐽 , or ℒ for ML, in which the criterion is usually
called a loss function. As such, regression transforms the problem of estimation (of 𝒙) in
inverse modeling into an optimization problem (of a regression model).

4Also called outcomes, regressands, or response or labels in Machine Learning (ML) literature.
5Commonly called the regression function.
6Also called regressors, covariates, predictors, explanatory variables of features in ML
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When performing regression of an outcome 𝝊 from predictors 𝝃 to produce a regression
model 𝑓 , residuals 𝒓 need to be minimized.

𝒓 = ‖𝝊 − 𝑓 (𝝃)‖ (3.6)

Residuals are the difference between an observed outcome and the outcome estimated from
propagating the covariates through the model. They are different from regression errors that
are the difference between the observed outcome 𝝊 and the true value of the outcome 𝝊⋆

which is usually unknown7: 𝜺 = ‖𝝊 − 𝝊⋆‖. The residuals are an observable estimate of an
unobservable error. Least squares regression explicitly minimizes the sum of squared residuals.

3.1.5 Regression metrics
Once a regression function 𝑓 has been set for modeling the relationship between two sets of
variables, it is crucial to assess goodness-of-fit, i.e. how well the model matches the data.
Different metrics can be used to evaluate how well the model fits the data, in two situations:
either to quantify the fitting of the model to the training data, or for estimating how good
the model is at modeling the relationship with new, unseen data. In the latter case, the
regression model is used as a predictive model.

The root mean squared error (RMSE) is the standard deviation (std) of the residuals:

RMSE = 1
𝑁

√√√
⎷

𝑁
∑
𝑖=1

((𝑥𝑖) − 𝑦𝑖)
2. (3.7)

Due to the residual being squared, the RMSE is more affected by large errors: it is sensitive
to outliers. Since the RMSE is related to the mean squared error (MSE) with a square root,
it is also minimized by least-square methods (see subsection 3.2.1).

The mean absolute error (MAE) is the average of the absolute residuals:

MAE = 1
𝑁

𝑁
∑
𝑖=1

|𝑓 (𝑥𝑖) − 𝑦𝑖| . (3.8)

Contrary to the RMSE, the effect of errors on the MAE is proportional to their magnitude,
so large errors affect the MAE less.

The coefficient of determination (𝑅2)8 [Wright, 1921] quantifies the proportion of the
variance in the dependent variable 𝑦 that is predictable from the independent variables 𝑥. It
is defined as one minus the average of squared residuals 𝑟 over the variance of the independent
variable:

𝑅2 = 1 − 𝑟2

var (𝑦) = 1 − ∑𝑁
𝑖=1 (𝑓 (𝑥𝑖) − 𝑦𝑖)

2

∑𝑁
𝑖=1 (𝑦 − 𝑦𝑖)

2 .9 (3.9)

The coefficient of determination ranges from −∞ (arbitrarily bad fit), to 1 (perfect fit),
through 0 (a model that regresses data to the mean 𝑦). Chicco et al. [2021] argues that the
𝑅2 score is the most informative metric for regression analysis, and reports the goodness of
fit more truthfully.

All presented metrics assume that the regression model produces deterministic outcomes.
To apply them in the context of probabilistic models that estimate distributions, point
estimates must be derived (see subsection 6.2.2).

7This “true outcome value” is related to the unobserved “true relationship” (or latent generative model)
that links the predictors and the outcomes.

8Pronounced “r squared”.
9∑𝑁

𝑖=1 (𝑓 (𝑥𝑖) − 𝑦𝑖)2 is commonly called the residual sum of squares and ∑𝑁
𝑖=1 (𝑦 − 𝑦𝑖)2 the total sum of

squares.
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3.1.6 Data assimilation

In remote sensing, or geo-sciences in general, the notion of data assimilation frequently
appears alongside that of inverse problem. From a theoretical point of view, these two
concepts can be seen as equivalent: they are both about using observed data with a model to
estimate hidden variables of a system. In practice, they are nuanced by referring to differently
formulated models and applications. With data assimilation, the model of a target system
is characterized by internal state variables rather than input variables. Those state variables
are governed with an evolution model, which is usually a temporal model that links current
or future values with past values. Therefore, data assimilation is performed with dynamic
systems. The outputs (or observations) are modeled as a function of the internal state with an
observation mapping. The evolution model enables to extrapolate, or forecast future states of
the system. However, the state variable evolution from a known initial value invariably ends
up diverging from their true value, because these models can never be perfect (some effects,
or external forces may not be taken into account correctly, or at all) and states are never
known with infinite precision10. Taking measurements into account aims at re-calibrating the
state estimate. One of the most widespread data assimilation techniques is the Kalman filter
[Kalman, 1960] and its derivatives, which are also ubiquitous in control theory.

Performing data assimilation for retrieving representations of land surfaces in the form
of state variables is out of the scope of this Ph.D., although it makes for an interesting
perspective.

3.2 Regression methods

In this section, an overview of different regression methods is presented, in the perspective
of performing model inversion. There are two ways of performing the inversion of a moel
ℱ using regression (see subsection 3.1.4). Regression is about finding a function 𝑓 fitting
some data. Inversion can be carried out with this function when the inversion target is a
parameter of 𝑓 . This method is mainly performed with least squares methods (see sub-
section 3.2.1) . Alternatively, 𝑓 is used to approximate an inverse model 𝑓 ≈ ℱ(−1), when
training data is produced by ℱ. Most methods described here perform regression that better
suit this latter inversion regime: 𝑘-nearest neighbors in subsection 3.2.2, random forests in
subsubsection 3.2.3.1, support vector regression in subsubsection 3.2.3.2 neural networks in
subsubsection 3.2.3.3.

3.2.1 Least squares minimization

Least squares are parameter estimation methods that can be used to perform (parametric)
regression. These methods aim at adjusting the parameters 𝜷 ∈ R𝑘 of a model 𝑓 on a data-set
of 𝑁 pairs of independent-dependent variables (𝑥𝑖, 𝑦𝑖) ∈ R × R, based on the minimization
of the sum of the squares of the residuals 𝑟𝑖 ∈ R as a criterion ℒ, like the name suggests.

ℒ =
𝑁

∑
𝑖=1

𝑟2
𝑖 =

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑓 (𝑥𝑖, 𝜷))2 (3.10)

Least squares are commonly put into two categories: linear least squares (subsubsection 3.2.1.1)
and non-linear least squares (subsubsection 3.2.1.2), depending on the model 𝑓 considered.
Additionally, like regression, least squares can be qualified as simple, multiple or multivariate
depending on the dimensions of 𝑥𝑖 and 𝑦𝑖 (see subsection 3.1.4).

10For non-linear models, small or infinitesimal differences in the value of a state, can lead to large differences
in later states. This dependence on initial conditions is known as the butterfly effect, and is one of the basic
principles of chaos theory.
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3.2.1.1 Linear least squares

Linear least squares assume that the model is a linear combination of the parameters, i.e.:

𝑓 (𝒙𝑖, 𝜷) =
𝑘

∑
𝑗=1

𝑓𝑗 (𝒙𝒊) 𝛽𝑗 (3.11)

Linear least squares methods are often used to fit linear regression models. In the case of
multiple linear regression, for which there are several independent variables:

• the independent variable is a matrix 𝑋 ∈ ℳ𝑁,𝑚 (R), whose columns 𝒙𝑗 are sets of 𝑁
observations 𝑥𝑖,𝑗 of each of the 𝑚 independent variable components (the rows 𝒙𝑖 are
the 𝑚 values of the independent variable components for a given observation 𝑖),

• the dependent variable is a vector 𝒚 ∈ ℳ𝑁,1 (R), whose columns are the 𝑁 measure-
ments 𝑦𝑖,

• the 𝑚 regression parameters are gathered in a vector 𝜷 ∈ ℳ𝑚,1 (R)

• the error is gathered in a vector 𝜺 ∈ ℳ𝑁,1 (R),
and the linear equations can be written matricially:

𝒚 = 𝑋𝜷 + 𝜺 (3.12)

In this case, the least square criterion is:

ℒ (𝜷) = ‖𝒓‖2
2 = ‖𝒚 − 𝑋𝜷‖2

2 =
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝒙𝑖𝜷)2 . (3.13)

The goal is to retrieve the value of the parameters 𝜷 that minimizes ℒ. It can be noted
that the multiple linear regression can be extended to the multivariate linear regression, for
which there are 𝑘 ≥ 1 dimensions to the dependent variables. However, for linear models,
the dimensions of the dependent variables are assumed independent, therefore it amounts to
solving for each dimension separately.

ℒ is a positive quadratic function of 𝜷, which is convex and admits a single minimum.
To find this minimum, the gradient of the objective function is equated to the zero vector,
which leads to the expression of the normal equations11:

∇𝜷ℒ (𝜷) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕ℒ
𝜕𝛽1

⋮
𝜕ℒ
𝜕𝛽𝑚

⎞⎟⎟⎟⎟⎟⎟
⎠

= 0 ⟺ 𝑋⊤𝑋𝜷 = 𝑋⊤𝒚. (3.14)

Solving the normal equations enable to retrieve the optimal value 𝜷OLS of 𝜷12:

𝜷𝑂𝐿𝑆 = (𝑋⊤𝑋)−1 𝑋⊤𝒚. (3.15)

This solution to the normal equations is an estimator of the unknown parameters that
corresponds to a specific formulation of linear least squares (LLS), called ordinary least
squares (OLS), with a set of associated assumptions are realized. It is an unbiased13 and

11Normal equations are equations obtained by equating to zero the gradient (or the partial derivatives) of
the least square objective function.

12The analytical derivation of 𝛽 introduces a matrix inverse (𝑋⊤𝑋)−1. It isn’t necessary to compute this
matrix, and it is almost always more computationally efficient to just solve the linear system.

13An estimator is unbiased, if its bias, which is the difference of the expected value of the estimator and the
true value of the estimated parameter, is zero.
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consistent14 estimator provided the that the errors in the model have a finite variance and are
exogeneous15. It is also an efficient16 estimator if the errors are homoscedastic17. Furthermore,
OLS can be interpreted as maximum likelihood estimation (MLE) (see subsection 6.1.1) with
a Gaussian prior with zero mean and constant variance.

When these assumptions are not fulfilled, other formulations of the least square objective
enable to improve performances. For instance, weighted least squares (WLS) enables to
take heteroscedastic errors into account. General least squares also enables to account for
correlated errors. When the regression system is under-determined, thus ill-posed, regulariza-
tion can be applied to the least square objective, such as Tikhonov regularization [Tikhonov
and Arsenin, 1977] (also known as ridge regression).

3.2.1.2 Non-linear least squares

A key assumption of LLS regression, is that a linear model of the parameters is an accurate
representation of the target system. When the regression model is a non-linear function
𝑓 of the parameters, least square minimization methods are called non-linear least squares
(NLLS). Contrary to LLS, NLLS do not have closed-form nor unique solutions for the least
square objective 𝐽 , aside for specific and simple examples. The gradients of the objective
function, that must be equated to zero to find minimums, are function of both the variables
and the parameters:

∇𝜷ℒ (𝜷) = 2J𝜷 [𝒓 (𝜷)]⊤ 𝒓, (3.16)

with J𝜷 [𝒓 (𝜷)] s.t. (J𝜷 [𝒓 (𝜷)])𝑖,𝑗 = −𝜕𝑟𝑖 (𝜷)
𝜕𝛽𝑗

the Jacobian matrix of the residual 𝒓 (𝜷) w.r.t.

the parameters 𝜷. Since an analytical solution isn’t usually available the optimal parameters
are estimated iteratively instead:

𝜷(𝑛+1) = 𝜷(𝑛) + Δ𝜷 (3.17)

with Δ𝜷 the shift vector, which is the update of the parameters between two iterations.

3.2.1.3 Gradient descent

There are several methods that enable to compute the shift vector. The gradient descent
method uses the property of the gradient of a function being the direction of steepest ascent
to compute the shift vector as the negative gradient of the objective function:

Δ𝜷 = −𝛼𝑛∇𝜷ℒ (𝜷) , (3.18)

with 𝛼𝑛 the learning rate (lr), a coefficient that regulates the update step. Another method,
the Gauss-Newton algorithm derives it from the linearization of the residual at the next
iteration 𝒓 (𝜷(𝑛+1)) with Taylor expansion:

𝒓 (𝜷(𝑛+1)) = 𝒓 (𝜷(𝑛)) − J𝜷 [𝒓 (𝜷(𝑛))] Δ𝜷 + 𝒪 (Δ𝜷) . (3.19)

Using this linearization in the gradient of the objective function ∇𝜷ℒ (𝜷(𝑛+1)) (Equation 3.16)
and equating to the zero vector yields normal equations:

J𝜷 [𝒓 (𝜷(𝑛))]⊤ J𝜷 [𝒓 (𝜷(𝑛))] Δ𝜷 = J𝜷 [𝒓 (𝜷(𝑛))]⊤ 𝒓 (𝜷(𝑛)) = ∇𝜷ℒ (𝜷(𝑛)) , (3.20)
14An estimator x𝑁 is consistent if it converges in probability to a finite value 𝑥∞ with the number of samples

𝑁 increasing.
15The errors 𝜀 are exogeneous if their conditional expectation w.r.t. the predictors 𝑋 is zero : E [𝜀|𝑋] = 0.

As a consequence, the errors must have zero expectation (E [𝜺] = 0) and be uncorrelated with the independent
variables 𝑋 (E [𝑋⊤𝜺] = 0).

16An efficient estimator has the smallest possible variance among all estimators of the same class, and
achieves the Cramér-Rao lower bound.

17The Gauss-Markov theorem states that the OLS estimator is a best linear unbiased estimator (BLUE) if
errors have zero mean, are homoscedastic and are uncorrelated.
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that enable to derive the vector shift18:

Δ𝜷 = 𝛼𝑛 (J𝜷 [𝒓 (𝜷(𝑛))]⊤ J𝜷 [𝒓 (𝜷(𝑛))])
−1

∇𝜷ℒ (𝜷(𝑛)) . (3.21)

Several issues arise from solving NLLS with such iterative procedures:

• there is a need for an initial estimate of the parameters,

• several local minima may exist, which makes the choice of the initial parameters all the
more important, so that the minimum reached is a global minimum,

• computing the Jacobian matrix of the model may be complicated or intractable for
certain models.

Finally, there are several variants of the iterative optimization algorithm for solving NLLS.
The Levenberg-Marquardt algorithm19, sometimes called damped least squares, proposes a
similar procedure that is based on modified normal equations that integrate a damping factor
𝜆:

(J𝜷 [𝑛]⊤ J𝜷 [𝑛] + 𝜆I) Δ𝜷 = J𝜷 [𝑛]⊤ (𝒚 − 𝑓 (𝒙, 𝜷(𝑛))) . (3.22)

The choice of 𝜆 and its evolution throughout optimization enables to tweak the convergence
properties of the algorithm. The Levenberg-Marquardt belongs to the class of trust region
algorithms, that approximate the NLLS objective function with a simpler function (quadratic
for Levenberg-Marquardt), within a sub-space of the parameter space: the trust region. The
size of this trust region changes during optimization (in Levenberg-Marquardt, it is controlled
by 𝜆.), it is reduced when the surrogate objective function badly approximates the NLLS
objective, and increased otherwise.

Finally, sometimes the search region for the parameters estimated must be restricted to
a sub-space of the parameter space 𝕀.

𝜷⋆ = arg min
𝜷

ℒ (𝜷) s.t. 𝜷 ∈ 𝕀 (3.23)

The trust region reflective algorithm (TRRA)20 [Branch et al., 1999], which will be used in
Chapter 9, enables to produce a parameter estimate within bounds. Its basic principle is
to perform a trust-region estimation of the parameters shift vector Δ𝜷, and to accept the
parameter update if it falls within the bounds 𝕀. Otherwise, the parameters are updated in
the direction of the reflection of the shift vector along the crossed boundary.

3.2.2 𝑘-nearest neighbors
The 𝑘-nearest-neighbors (KNN) problem is a non-parametric optimization problem of finding
the 𝑘 closest points to a query data-point among a data-set, w.r.t. to a given space metric
[Cover and Hart, 1967]. More formally, given 𝑁 data-points 𝑝𝑖 in a data-set 𝒟𝑝, a query
data-point 𝑞, and a distance metric ‖⋅, ⋅‖, a KNN search finds the 𝑘 nearest points of 𝑞 in 𝒟𝑝.
Usually, KNN returns the set ℍ𝑘 (𝑞) of the 𝑘 indices of the nearest data-points:

ℍ𝑘 (𝑞) = {𝑖𝑗 ∈ J1, 𝑁K s.t. 𝑗 ∈ J1, 𝑘K} (3.24)

such that
∀𝑖 ∈ ℍ𝑘 (𝑞) , ∀𝑛 ∈ J1, 𝑁K, 𝑛 ∉ ℍ𝑘 (𝑞) ⇒ ‖𝑞, 𝑝𝑖‖ ≤ ‖𝑞, 𝑝𝑛‖ . (3.25)

18The Gauss-Newton and the gradient descent algorithms can be understood as special cases
of the generalized gradient descent algorithm, that compute the parameter update as Δ𝜷 =
−𝛼𝑛𝑄 (𝜷(𝑛)) ∇𝜷ℒ (𝜷(𝑛)), with 𝑄 (𝜷(𝑛)) a symmetrical positive definite matrix.

19This algorithm is implemented in the curve-fit function of the python library scikit-learn, that
performs NLLS.

20Ibid.
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There exist a variety of more or less efficient methods to return the KNN. The most
straightforward approach is to compute the distances of all 𝑁 data-point 𝑝 from the query 𝑞,
and retrieve the indices of the 𝑘 lowest. This approach is relatively inefficient, since it requires
iterating throughout the whole data-set, thus a computational complexity of 𝒪 (𝑁). More
efficient approaches rely on storing data in specific structures such as 𝑘-dimensional trees21.
To improve the query time of KNN, 𝑘 approximate nearest neighbors can be returned instead
of the 𝑘 exact ones.

KNN are commonly used jointly with lookup tables (LUTs), that are arrays that associate
an index to data. LUTs replace runtime computation with array indexing, which can be
interesting when data computation is relatively expensive. In particular, LUTs can be pre-
calculated.

Once nearest neighbors have been retrieved from a data-set, it is possible to use them
to perform regression. Assuming data points 𝑝𝑖 are made of two components 𝒙𝑖 (regressors)
and 𝒚𝑖 (regressands), KNN w.r.t. to a distance along 𝒙 is applied on a “partial” query, 𝒙𝑞:

ℍ𝑘 (𝒙𝑞) = {(𝒙𝑖𝑗
, 𝒚𝑖𝑗

) s.t. 𝑗 ∈ J1, 𝑘K} . (3.26)

The underlying assumption is that data-points that are neighbors w.r.t. 𝒙 are also neighbors
w.r.t. 𝒚. Consequently, an estimate 𝒚𝑞 associated to the query 𝒙𝑞 is derived from the 𝒚
components of the retrieved 𝑘 neighbors. For instance, with 𝑘 = 1 the regressand 𝒚𝑞 is
simply assigned the value 𝒚 of the closest neighbor. For 𝑘 > 1 there are several possibilities,
such as using the median, or the mean of 𝒚𝑖 of the closest neighbors. It is also possible to
use an average weighted by the distances ∥𝒙𝑞, 𝒙𝑖∥. In such case, the regressand is some kind
of interpolated values derived from the closest neighbors.

When the data is simulated from a model, KNN regression effectively performs the
inversion of this model. For inverting the PROSAIL model (see Chapter 4), a classical
approach is to use KNN on data simulated with PROSAIL and organized in a LUT [Schiefer
et al., 2021]. The entries of the LUT are the simulated reflectance spectra 𝒙𝑖 and the leaf and
canopy biophysical parameters 𝒚𝑖. Inverting the PROSAIL model with a LUT is performing
KNN with a reflectance spectra 𝒙𝑞 as a query to retrieve an estimated set of biophysical
variables 𝒚𝑞.

3.2.3 Machine learning regression
3.2.3.1 Random forests

Random forests (RF) [Ho, 1995] are an ensemble learning22 methodology based on training
multiple decision trees. Usually, the prediction of RF is chosen as the average prediction of
the decision trees. Additionally, the dispersion of individual tree predictions can provide a
measure of predictive uncertainty.

Decision trees are a supervised ML algorithm based on tree graph23 models where each
node represents a decision (a computation, an assignment) based on a feature. Decision trees
and RF can be used for classification and regression problems. The predictions output by the
decision trees are contained by nodes that have no children node, that are called the leaves24.
Decision tree learning is about building the tree structure and attributing decision to each
node.

21𝑘-dimensional trees, or 𝑘-d trees are data structures used for organizing and searching points in multi-
dimensional spaces efficiently.

22Ensemble methods are about using multiple predictive algorithms to produce a global prediction with
better performance than individual algorithms. This concept that usually belong to ML or statistics, can be
illustrated by the Wisdom of the crowd theory, which states that for some problems, the collective opinion of
a diverse independent group of individuals is better than that of a single expert.

23A tree is an undirected (i.e. edges are not directional and the relation between two nodes is symmetric)
graph, for which any two nodes are connected by at most one edge (i.e. acyclic).

24They are degree-1 nodes.
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3.2.3.2 Support vector machines

Support vector machines (SVMs) [Cortes and Vapnik, 1995] are supervised learning non-linear
models that are commonly used for classification [Camps-Valls and Bruzzone, 2005], although
a variant for regression exists: support vector regression (SVR) [Smola and Schölkopf, 2004].
The SVR objective is to fit a model 𝑓 to some training data 𝒟𝑇 = {(𝒙𝑖, 𝒚𝑖)}. For regression,
the goal is that this function 𝑓 maps predictors 𝒙𝑖 to regressands 𝒚𝑖 of 𝒟𝑇 with a deviation
of at most 𝜀 (i.e. errors are tolerated up to 𝜀), and that is as flat as possible (i.e. a function
that is close to a hyperplane). The SVR objective is to find a maximum margin solution.
There are two basic ideas for SVR.

• Support vector expansion: the regression function 𝑓 (𝒙) is expressed as a linear combina-
tion of the dot products ⟨𝒙 ⋅ 𝒙𝑖⟩ between 𝒙 and predictors of the training data-set 𝒙𝑖,
which are called support vectors.

• Non-linear mapping: To introduce non-linearity to the fitted function 𝑓 w.r.t. 𝒙, input
data 𝒙 are projected into a feature space using a non-linear mapping Φ. Support vectors
are also mapped with Φ, and the regression function is expressed as a linear combination
of the dot products of the mapped features and mapped support vectors ⟨Φ (𝒙) ⋅Φ (𝒙𝑖)⟩
instead of the dot product in their original space. This dot product of mapped features
𝑘 (𝒙, 𝒙𝑖) = ⟨Φ (𝒙) ⋅ Φ (𝒙𝑖)⟩ are called kernel functions. It is actually not necessary
to compute the coordinates of the regressors in the feature space, nor to explicitely
formulate the mapping Φ, there is only a need to define a kernel function.

SVR is useful for high dimensional data, however they do not handle well training with a large
data-set (big data regime), and are not as efficient and fast as other methods. Additionally,
SVR are ill-suited to multi-variable estimations. Nonetheless, SVR has good performance
when there are few labeled data points available compared to other supervised methods such
as deep learning (DL). Furthermore, it is possible to extend the formulation of SVR to the
multi-output case [Tuia et al., 2011].

3.2.3.3 Neural Network Regression

Neural networks are ML models that process information through successive transformations
through a computation graph organized in layers, mimicking the functioning of a living brain’s
interconnected neurons. They are trained by adjusting the connections weights between the
artificial neurons, by using the gradients of an objective function, that are back-propagated
from the last (output) layer to the innermost layers [Rumelhart et al., 1986]. Neural networks
can be used in supervised and unsupervised setting. However for performing regression, neural
networks are trained in a supervised way. They are universal approximators: provided that
the network complexity is high enough, neural networks can approximate arbitrary functions.
As such, neural networks can be used in regression problems to approximate a regression
function 𝑓 between regressors 𝒙, used as input of the model, and targets 𝒚 output by the
model. The loss function of such regression neural networks typically penalizes a distance
between the model output 𝒚 and a true value 𝒚𝑇 of a training data-set, for instance squared
errors:

ℒ (𝑓, 𝒙𝑇 , 𝒚𝑇 ) = ‖𝑓(𝒙𝑇 ) − 𝒚𝑇 ‖2
2 . (3.27)

Neural networks will be discussed more in depth in section 3.3.

3.2.3.4 Bayesian methods

Bayesian approaches are based on the formulation of the quantities of interest, (𝒙, 𝒚) as
random variables (𝐱, 𝐲). As a consequence the models that represent the relationships
between these variables are probabilistic in nature: they are probability distributions. Provided
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a forward model 𝑝 (𝒚|𝒙) (a so-called likelihood model), performing inversion is about retrieving
𝑝 (𝒙|𝒚) (the so-called posterior distribution). Bayesian approaches can be broadly divided into
two categories:

• Exact posterior approximation with sampling strategies, best exemplified with Markov
Chain Monte Carlo (MCMC),

• Approximate posterior estimation, with variational inference.

Bayesian approaches will be discussed at length in Chapter 6, with an emphasis in variational
inference.

3.3 Regression with deep learning
deep learning (DL) is an approach of ML that is based on ANN models. This section is
dedicated to the presentation of ANN, with well-known classical architectures (subsection 3.3.1),
and of their training, with an emphasis to some technical specificities of the ANN models
used in this Ph.D.

3.3.1 Artificial neural networks
Artificial neural networks (ANNs), or more simply, neural networks or neural nets are models
whose objective is to approximate arbitrary mappings between inputs data 𝒙 and outputs
𝒚 (also called labels). As their name suggests, ANN were inspired by how information
is processed in biological neural networks. Biological neural networks are the groups of
neuron cells that are interconnected with synapses, that transmit signals chemically (with
neuro-transmitters) or electrically. The transmission of a signal from a neuron25 to other
connected downstream neurons is dictated by the synthesis of the signal received by the
neuron from connected upstream neurons. Like in these neuronal networks, ANN are made
of interconnected artificial neurons that mimic the behavior of true neurons: they are abstract
computation units that transmit an output value to other neurons as a function of input values
provided by upstream neurons. ANN are not as complex as biological neural networks.

As will be explained below, data processing by ANN are essentially operations on matrices.
ANN computations (both training and inference) are made significantly more efficient and
fast when they are performed on specialized devices such as graphical processing unit (GPU).
This is because matrix operations can be parallelized (i.e. divided into a set of independent
operations), and GPU are devices that are designed for parallel computations.

3.3.1.1 Multi-layer perceptrons

The artificial neurons are arranged in layers, that form a more or less deep stack (thus the
denotation of deep learning). ANN can be represented by a computational graph that models
the order of the flow of individual operations, for which the vertices (also called nodes) are
the artificial neurons and the edges are the neuron connections (see Figure 3.2). The layers
between the input and output layers are called the hidden layers. For an ANN with 𝑛 hidden
layers (three in the simple example shown), input layer nodes are denoted 𝑥𝑖 with 𝑖 ∈ J1, 𝑘1K,
the output layers nodes are denoted 𝑦𝑖 with 𝑖 ∈ J1, 𝑘𝑛+1K and the nodes of the 𝑗-th hidden
layer are denoted ℎ𝑖,𝑗 with 𝑖 ∈ J1, 𝑘𝑗K. These input and output layers respectively encode the
coordinates of an input 𝒙 and an output 𝒚.

ANN architectures can be broadly divided into two types:

• Feed-forward neural networks only allow the outputs of a given layer to be cast to
the inputs of downstream layers. The flow of information is uni-directional, and the

25The neuron firing
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Figure 3.2: Graph of a feed-forward artificial neural network with three hidden layers.

computational graph is acyclic. In signal processing, such a neural network is analogous
to a finite impulse response (FIR) filter.

• Recurrent neural networks, on the contrary, allow the output of a given layer to affect
the nodes of upstream or current layers. The computational graph contains cycles,
and the flow of information is bi-directional. They are analogous to infinite impulse
response (IIR) filters, and exhibit dynamic behaviors. They also have some internal
memory, that stores information from one input to another, as such they are suited to
sequential data.

The example shown in Figure 3.2, along with all ANN studied in this Ph.D. are feed-forward
ANN. A layer for which all neurons are connected to all neurons of the parent layer is a dense
or fully-connected layer. An ANN model that consists only of dense layers is also qualified
as fully connected.

As stated previously, the artificial neurons that occupy the nodes of ANN mimic the
behavior of biological neurons. They produce an output that is function of the signal received
from upstream neurons, and transmit this output to downstream neurons. For artificial
neurons, the signals transmitted between neurons are real numbers. The output ℎ𝑖,𝑙 of the
𝑖-th neuron of layer 𝑙 is a non-linear transformation 𝜑 of a linear combination of its 𝑁𝑙−1
inputs ℎ𝑘,𝑙−1 (see Equation 3.28 and Figure 3.3).

ℎ𝑖,𝑙−1 = 𝜑 ⎛⎜
⎝

𝑁𝑙−1

∑
𝑘=0

𝑤𝑖,𝑙,𝑘ℎ𝑘,𝑙−1⎞⎟
⎠

= 𝜑 (𝒘⊤
𝒊,𝒍𝒉𝑙−1) (3.28)

The linear combination is weighted by the coefficients 𝑤𝑖,𝑙,𝑘, that are the parameters optimized
in an ANN. For a given architecture, an ANN is entirely determined by these parameters.
It can be noted that the summation in Equation 3.28 is set to begin at 𝑘 = 0, despite the
layer 𝑙 nodes being indexed from 1 to 𝑁𝑙. This is to account for an additional term 𝑏𝑖,𝑙
which is commonly introduced in the sum, the bias. As a convention ℎ0,𝑙−1 = 1 so that
𝑏𝑖,𝑙 = 𝑤𝑖,0,𝑙ℎ0,𝑙−1.

The non-linear function 𝜑 is called an activation function. Activation functions need to be
differentiable almost everywhere so that gradients can be computed for updating the weights
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Figure 3.3: Activation of an artificial neuron in a neural network as a function of the previous layer
outputs. The activation of all neuron in a layer can be expressed as a vector equation.

𝑊 . There is a wide variety activation functions used in the literature [Szandała, 2021], with
different properties regarding optimization and the propagation of gradients throughout the
model (see subsubsection 3.3.2.1). Here are some of the most commonly used:

• the sigmoid (or logistic) function: ∀𝑥 ∈ R, 𝜎 (𝑥) = 1
1 + e−𝑥 ,

• the hyperbolic tangent ∀𝑥 ∈ R, tanh (𝑥) = e𝑥 − e−𝑥

e𝑥 + e−𝑥 ,

• the rectified linear unit (ReLU): ReLU (𝑥) = max (0, 𝑥) = 𝑥 ⋅ 1[0,+∞[ (𝑥).

Originally, the formulation of artificial neurons used a Heaviside activation function (or binary
step function) 𝜑 (𝑥) = 1[0,+∞[ (𝑥) [McCulloch and Pitts, 1943], to mirror the state of biological
neurons that were either activated or inactivated. This type of neuron is called a perceptron.
Multi-layer perceptron (MLP) is actually a misnomer, since it designates fully connected
feed-forward ANN with any kind of activation function, and not just Heavyside activation.

3.3.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) are ANN with a distinct architecture, that compute
activations of the neurons differently than MLP. These architectures are suited to data that
have a grid-like structure, such as time series (1-dimensional data) or images (2-dimensional
data). In a CNN, the layers are convolutional: the output of a particular node 𝑖 of a layer 𝑙
(the feature map) is the result of the application of a convolution filter (called a kernel) 𝐾
with the activation of the previous layer neuron (called input in this context). For each layer
node, the output is a discrete convolution26 between the input and the kernel:

• in 1-D (see Figure 3.4),
ℎ𝑖,𝑙 = (𝐾 ∗ 𝒉𝑙)𝑖 = ∑

𝑟
ℎ𝑖+𝑟,𝑙𝒌𝑟, (3.29)

26Actually, CNNs do not carry out convolutions, but rather the cross-correlation operation, that uses a
flipped kernel/input. The 2-D convolution is actually defined as: ℎ𝑖,𝑗,𝑙 = (𝐾 ∗ 𝐻𝑙)𝑖,𝑗 = ∑𝑟 ∑𝑠 ℎ𝑖−𝑟,𝑗−𝑠,𝑙𝐾𝑖,𝑗.
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• in 2-D (see Figure 3.5),

ℎ𝑖,𝑗,𝑙 = (𝐾 ∗ 𝐻𝑙)𝑖,𝑗 = ∑
𝑟

∑
𝑠

ℎ𝑖+𝑟,𝑗+𝑠,𝑙𝐾𝑟,𝑠. (3.30)

0 1 1 1 0 0 0
𝒉𝑙

∗ 1 0 1
𝒌

= 1 2 1 1 0
𝒌 ∗ 𝒉𝑙

×1 ×0 ×1

Figure 3.4: 1-D convolution in CNN.
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Figure 3.5: 2-D convolution in CNN.

The learnable weights of CNNs are the coefficients of the kernel.
As illustrated in Figure 3.4 and Figure 3.5, kernels are typically of lower size than inputs.

This introduces a sparsity in learnable weights for each filter, and a sense of locality, since
kernel only processes a small domain of the input at a time. One particular feature of CNNs is
that kernels are shared among neurons of the same layers, meaning that coefficients of kernels
are involved in the activation of all nodes of the layers. This reduces further the number of
learnable weights.

Convolutional layers in CNN can be seen as a matrix multiplication27, and can thus be
compared to operations in dense layers. A convolutional layer is equivalent to a dense layer
for which all neurons share the same weights, which are zero everywhere except for a few, i.e.
a very sparse weight matrix 𝑊ℎ.

The dimensions of a kernel are usually referred as width and height in 2-D (usually with
value of 1, 3 or 5). It is also possible to apply the convolution with a stride, which is the
number of rows or columns traversed per slide of the kernel along the input. The size of the
convolution result is a function of the input size, of the kernel size and the stride. To avoid
having the convolution result size smaller than the input size, padding is commonly applied.
It is the augmentation of the input with additional row and columns on the edges, e.g. with
zeros (zero-padding).

Finally, data is commonly arranged in 𝑐 channels (e.g. 𝑐 = 3 with red green and blue for
pixels of an RGB image), which adds a dimension to the data. To process such data, stacked
kernels can be used, each associated to a given channel, and the output of the convolution is
one channel whose elements are the sum of the convolutions of each kernel with its respective
input channel. For instance, with an input data of size 𝑤 × ℎ × 𝑐, a stack of 𝑐 kernels of
size 𝑤𝑘 × ℎ𝑘 (or a 𝑤𝑘 × ℎ𝑘 × 𝑐-sized kernel, i.e. a 3-D tensor) is used. To produce multiple
channels as output of a convolutional layer, several of these kernels can be used, and stacked
in another dimension (i.e. making a 4-D tensor).

27Discrete convolution can be expressed as a product with a Toeplitz matrix, which have constant diagonals.
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3.3.1.3 Residual connections

As will be discussed in subsubsection 3.3.2.1, ANN parameters are updated using the gradients
of neuron activations. Unfortunately, a well known problem of deep neural networks is that
the gradient that is computed within the innermost layers of the network can have a very
low value, effectively not updating these layers: this is the vanishing gradient problem. This
leads to performance stagnation or even degradation when the model depth increases.

Residual neural networks (also called ResNets) are a type ANN that incorporate residual
connections (or skip connections), and are instrumental to the performance of the seminal
ResNet architecture [He et al., 2015a], that enabled to use hundreds of layers effectively. A
residual connection combines with a function 𝑔 the output 𝒉𝑟 of a layer 𝑟 to the output of
a downstream weight layer 𝑠 and bypasses one or several layers denoted 𝑓𝜽 (see Figure 3.6).
An activation function 𝜑𝑠 is applied to the result of this combination rather than the output
of the weight layer 𝑠:

𝒉𝑠 = 𝜑𝑠 (𝑔 (𝑓𝜽 (𝒉𝑟) + 𝒉𝑟)) (3.31)
Usually, the function 𝑔 of the residual connection is either a concatenation operation28:

𝒉𝑠 = 𝜑𝑠 ([𝑓𝜽 (𝒉𝑟)
𝒉𝑟

]) (3.32)

or, as used in this work, a summation:

𝒉𝑠 = 𝜑𝑠 (𝑓𝜽 (𝒉𝑟) + 𝑆𝑟𝒉𝑟) , (3.33)

with 𝑆𝑟 a matrix for performing linear projection. If the dimensions of 𝒉𝑟 and 𝑓𝜽 (𝒉𝑟) match,
𝑆𝑟 is usually simply the identity matrix, and no extra parameter is introduced by the skip
connection. A sub-neural network with a skip connection is commonly called a residual block.

Residual connections provide a shortcut for information processing between the input and
output of a neural network. When training a ResNet, skip connections help to produce a
meaningful model output faster, and the short-circuited layers then gradually learn to model
residuals. This also helps mitigating the vanishing gradient problem: a part of the gradients
can flow directly through the skip connections backwards to the innermost layers, as will be
illustrated in Chapter 8.

layer 𝑟 𝜑𝑟

activation
function

𝒉𝑟 … 𝒉𝑠−1 layer 𝑠 𝑔
combine

𝜑𝑠

activation
function

𝒉𝑠

skip connection

𝒉𝑟

𝑓𝜽(𝒉𝑟)

Figure 3.6: Skip connection between two layers 𝑟 and 𝑠 within a neural network.

3.3.2 Neural Network training
3.3.2.1 Automatic differentiation and gradient propagation

As seen in subsection 3.3.1, the parameters to optimize in ANN are the weights, i.e. the
coefficients of the layers (kernel coefficients for CNN). Like many other optimization problems,

28Concatenation residual connections as are at the basis of most U-net [Ronneberger et al., 2015]
implementations, which use skip connections with convolutional layers for processing jointly different layers
outputs representing information at different resolutions of the input data.
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these parameters 𝒘 are optimized by minimizing a loss function ℒ such as Equation 3.27,
and performing gradient descent (see subsubsection 3.2.1.3):

𝒘 ← 𝒘 − 𝛼 𝜕ℒ
𝜕𝒘, (3.34)

with the hyperparameter 𝛼 the lr that tweaks the size of each gradient update. The weights
in the successive layers of an ANN are updated thanks to a gradient estimation method called
backpropagation. Gradient backpropagation makes use of Leibniz derivation chain rule, that
computes the gradients of the neurons output in a layer w.r.t. its inputs i.e. the output of
the neuron in the previous layer. The chain rule states that for 𝑛 differentiable functions 𝑓𝑖,
the function that is their successive composition 𝑓 = 𝑓1 ∘𝑓2 ∘…∘𝑓𝑖 ∘…∘𝑓𝑛 is also differentiable
and can be computed as:

d𝑓
d𝑥 = d𝑓𝑛

d𝑥
𝑛−1
∏
𝑖=1

d𝑓𝑖
d𝑓𝑖+1

. (3.35)

Depending on the neural network architecture and several optimization hyper-parameters,
efficient update of the model weights with the chain rule can fail due to two phenomena:
vanishing gradients and exploding gradient

In other ML algorithms that use gradient descent, the gradients of the objective function
and the update of the parameters may be expressed analytically and implemented manually.
However with deep neural networks, with very large number of neurons and interconnections,
this is intractable. The advent automatic differentiation has enabled easy and flexible
computation of gradients within DL models. Automatic differentiation is a specific family of
techniques that compute derivatives through accumulation of values during code execution
to generate numerical derivative evaluations rather than derivative expressions [Baydin et al.,
2018].

ANN are commonly optimized using mini-batches, that is, the update of the model
parameters are performed for the gradients of the loss function aggregated (e.g. summed,
averaged) over a subset of training samples of size intermediate between the full training
data-set and 1. Batch gradient descent computes the loss of the model for each sample
in the training dataset, but only updates the model after all training samples have been
evaluated. A common assumption is that this allows to update the model using the best
possible approximation of the true gradient, thus making the convergence stable and efficient.
However this approach is actually slower than other gradient descent approaches (see below),
and the model might only reach a sub optimal accuracy when the lr is not well chosen
[Wilson and Martinez, 2003]. Furthermore, this method can be memory intensive and become
intractable for large data-sets. At the other end of the spectrum stochastic gradient descent
computes the gradient of the loss and updates the model for each training sample. The model
is updated very frequently, which can lead to fast convergence in some cases, and the noisy
update can help avoiding getting stuck in local minima. However backpropagating gradients
and updating the weights more frequently leads to increased computational cost and slower
training, and the noisy gradient descent can make optimization unstable. Mini-batch gradient
descent, which introduces the batch-size as and additional hyper-parameter, makes a trade-off
between these two regimes.

3.3.2.2 Learning rate scheduling

An optimizer is an algorithm that updates the weights of an ANN by using a gradient descent
variant. Most of these optimizers require the specification of the lr as a hyperparameter. This
learning rate may stay constant throughout training, however it can be interesting to have
it dynamically change, so that optimization is more efficient, i.e. to ensure convergence,
stability of the solution, and to avoid being stuck in local minima.
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Some algorithms called learning rate schedulers propose different strategies for updating
the lr across training epochs 𝑡. One of the most basic scheduler is the exponential scheduler:

𝛼 (𝑡) = 𝛼0e−𝜆𝑡. (3.36)

In this Ph.D., using reduce-lr-on-plateau is considered. It is a piece-wise constant learning
rate scheduler, that decays the lr 𝛼 by a factor 𝜂 when an choice metric (e.g. the validation
loss function) doesn’t continue decreasing (with a threshold 𝜀) for a preset time delta (called
patience). 𝛼 is allowed to decay until a minimal value 𝛼min. The rationale is that if the
model doesn’t improve after a while, it may be because the gradient updates overshoot the
objective function minima. When this happens, reducing the lr can enable to resume the loss
function minimization. In this Ph.D., a slightly modified version of this scheduler, which is
named cyclical plateau reduction (CPR) is used. When the lr 𝛼 reaches the minimum values
𝛼min, it is reset to the intial value 𝛼0, and the reduce-lr-on-plateau is restarted again. This
produces an annealing of the lr, that is proposed to help move away from local minima that
low lr cannot help escaping.

Some adaptive optimizers, such as the very popular Adam (Adaptive moment estimation)
[Kingma and Ba, 2015] propose to forego the use of schedulers by incorporating per-parameter
dynamic lr. It can be noted that the Adam optimizer requires a global lr parameter, although
optimization is hopefully more robust w.r.t. to its value than other optimizers. It is still
unclear if using adaptive optimizer like Adam along with lr scheduler is beneficial or not.
Although there are heuristics for choosing an optimization scheme, each ML problem has its
own specificities that makes finding all-purpose strategies difficult. In this Ph.D. the Adam
optimizer is used jointly with the CPR scheduler.

3.3.2.3 Model initialization

Before an update of the model with training can take place, the weights of the layers
must be initialized: this is model initialization. Initialization has a significant impact over
training and final performance. Ideally, an initialized model would have weights such that
the objective function is near a global minima. However in most cases, model weights are
initialized randomly, for instance using a centered Gaussian distribution. The variance of
such a distribution must be appropriate: too low and most weights have near zero value,
and training may be plagued by vanishing gradients, and too high and exploding gradient
may occur. A popular initialization scheme that aim at mitigating those effects is the Xavier
initialization (or Glorot initialization), which uses a centered uniform distribution whose
symmetrical bounds depend on the size of the ANN layers [Glorot and Bengio, 2010]. In
the Pytorch library, Kaiming He initialization (weights are distributed with a zero-mean
Gaussian with variance √ 2

𝐾 with 𝐾 the size of the layer) is performed by default [He et al.,
2015b]

In this Ph.D., an additional initialization step is performed before pursuing training. Even
with proper weight random initialization, convergence and performance can depend on the
model instance [Picard, 2021]. As such, to avoid training a model that is plagued with “bad
luck” with a bad initialization, the hereby named multiple initialization and best instance
training (MIBIT) strategy is applied. MIBIT is about pre-training several model instances
for very few epochs (e.g.) with relatively high constant lr, and retaining only the model
instance that has best minimized the loss function. This model instance is then chosen as
“initialization” to start the true training.

3.3.2.4 Data-set splitting

For training ANN, or ML models in general, a good practice is to split the available data into
three sub-data sets for distinct purposes. These are the training 𝒟𝑡𝑟𝑎𝑖𝑛, validation 𝒟𝑣𝑎𝑙𝑖𝑑
and testing 𝒟𝑡𝑒𝑠𝑡 data-sets.
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The training data-set is dedicated to calibrating the model parameters (weights). In
ANN, gradient back-propagation is performed with this data-set.

The validation data-set serves two purposes:

• detecting over-fitting and

• tuning hyper-parameters29.

The testing data-set (or test set) is designed to assess the model performance after
training, and after hyper parameters have been selected. Ideally this data-set should contain
samples that enable to evaluate the model in the various regimes it can face in real applications.
It can be noted that in this work, an additional data-set is used to evaluate the model
performance: an “evaluation” data-set or “in-situ” data-set. This data-set can occur:

• When the data used to train the model is of different nature than the data it will be
applied on. In Chapter 5, simulated data is used to train the model, but performance
is assessed on and in-situ data-set with real data.

• When the training task is different from the intended task of the model (i.e. a proxy
task). In Chapter 8, the model is trained in a self-supervised manner to reconstruct
input data, but in-situ data is used to assess how close learned representations are from
measurements.

Overfitting The first use of the validation data-set is to provide an unbiased evaluation of
a model fit. A ML model overfits when it fits too closely the training data, even modeling
its noise30. As a consequence, it is unable to accommodate new data and performs poorly
outside of training samples. Overfitting can be detected by computing the loss function on
validation samples: it occurs when the validation loss behaves differently than the training
loss (i.e. when the validation loss increases while the training loss decreases). Overfitting
is a consequence of the model being too complex w.r.t. the size of the training data (e.g.
a data-set with thousands of samples is not enough to train an ANN with millions of para-
meters). It can be mitigated by reducing the model complexity, increasing the data-set size,
and with regularization (e.g. additional loss terms that penalize the weights, such as ridge
regularization, see subsubsection 3.2.1.1).

Cross-validation In statistical analysis the splitting of a data-set into a training subset
and a validation subset for assessing how models generalize with out-of-sample data is known
as cross-validation. Cross-validation actually goes further than that. Since the performance
of the trained model can depend on the specific training and validation subsets, several
iterations of the model are tuned using different splitting. Validation results between all
model instances can then be averaged to assess how the model generalizes to unseen samples,
independently from said samples.

In 𝑘-fold cross-validation, the data is shuffled, then partitioned into 𝑘 subsets with equal
sized, called folds. 𝑘 instances of a model are trained on 𝑘 different associations of these folds
as training and validation sets: for a given iteration, 𝑘 − 1 folds are used to constitute the
training set, and the remaining one is used for validation.

29Hyper-parameters are parameters that are not tuned during the training phase. They are not learned, or
updated with gradient descent.

30Conversely underfitting occurs when the models is unable to accurately represent the data, and performance
is poor as a consequence. It occurs when the model is too simple, with badly selected or scaled input features,
or with excessive regularization.
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3.4 Conclusion
In this chapter, different methods for performing model inversion with regression have been
introduced, with an emphasis on ANN. The DL methodologies discussed here are used
throughout the applications performed in this Ph.D., presented in Chapter 5, Chapter 8 and
Chapter 9. Chapter 5 in particular presents the shortcomings of using supervised regression
ANN for performing the inversion of the PROSAIL model (Chapter 4). Specifically, it will be
shown that regression performances are very sensitive to the choice of the unknown sampling
distributions for generating training samples.
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CHAPTER 4. SPECTRAL MODELS OF VEGETATION

Vegetation has specific spectral features that distinguishes it from other occurring objects
on continental surfaces. It has high absorbance in the visible spectrum so as to enable
energy absorption for photosynthesis, and high reflectance in the near infra-red (NIR). Just
like there is a wide variety of vegetation, there are just as numerous spectral responses
possible. The interaction of light with vegetation is governed, at a smaller scale by its
chemical components, and at a larger scale, by its spatial organization into a canopy. What
is a vegetation made of? How is it organized? These aspects enable to build a representation
of a vegetation that characterizes its state. With light being reflected by vegetation towards a
remote sensor, it is possible to access the underlying bio-physical properties of the vegetation,
as a representation. In this chapter, radiative transfer models (RTMs) that enable to link
bio-physical properties of vegetation and observed light are introduced. Specifically, the
PROSPECT leaf radiative transfer model (RTM) and the SAIL canopy RTM are respectively
presented in section 4.1 and section 4.2. PROSAIL, the composite model of PROSPECT
and SAIL is detailed in section 4.3. section 4.4 explains how the PROSAIL model can
be used for simulating Sentinel-2 (S2) reflectance bands. Finally, section 4.5 details the
particular implementation of PROSAIL developed for the experiments in the remainder of
this manuscript.

4.1 The PROSPECT leaf model
Leaf models aim at characterizing the interaction of incident light onto a leaf. The optical
properties that are sought after are the leaf reflectance 𝜌, the transmittance 𝜏 and absorbtance
𝐴1, which are respectively defined as the ratios of the reflected (Φ𝑅), transmitted (Φ𝑇 ),
absorbed (Φ𝐴) over the incident (Φ𝐼) radiant flux (see Equation 4.1). The conservation of
energy fluxes (see Equation 4.2) implies that 𝜌+𝜏 +𝐴 = 1, and enables to derive one quantity
by knowing the other two. It can be noted that this optical model ignores the chlorophyll
fluorescence phenomenon, in which the chlorophyll pigments can re-emit a fraction of the
absorbed light flux [Maxwell and Johnson, 2000].

𝜌 = Φ𝑅
Φ𝐼

, 𝜏 = Φ𝑇
Φ𝐼

, 𝐴 = Φ𝐴
Φ𝐼

(4.1)

Φ𝑅 + Φ𝑇 + Φ𝐴 = Φ𝐼 (4.2)

As the light interaction with the leaves depends on the wavelength 𝜆, the reflectance 𝜌 (𝜆),
the transmittance 𝜏 (𝜆) and absorbtance 𝐴 (𝜆) are spectra.

Retrieving 𝜌 (𝜆), 𝜏 (𝜆) and 𝐴 (𝜆) requires characterizing the internal structure of the leaf,
and the light propagation inside it. These quantities are described with the radiative transfer
equations established by the seminal work in Chandrasekhar [1960]. They are a set of integral,
non-linear equations that can not be solved in the general case, and are still the object of
a lot of studies today. The various leaf RTM assume different physical properties and use
simplifying assumptions to solve the radiative transfer equations. An overview of the different
leaf optical models is provided in Féret [2009]; Jacquemoud and Ustin [2008].

4.1.1 The plate model

The PROSPECT leaf RTM [Jacquemoud and Baret, 1990], models the leaves as identical
parallel plate stacks, separated by air layers (see Figure 4.1). These leaf plates are a turbid
medium, which contain randomly distributed elements that interact with the light. All plates
are described simply by a refraction index 𝑛 and a transmission coefficient 𝜃, but have all a
distinct reflectance 𝜌 and transmission coefficient 𝜏 . In PROSPECT, the light fluxes are

1not to be confounded with absorbtion, which is a phenomenon in which light is absorbed, whereas
absorbtance is a quantity that measures a ratio of absorption.
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assumed to be isotropic between the different layers. Consequently, the reflectance and
transmittance are described as hemispherical, i.e. integrated over the half-space.

Figure 4.1: Representation of the multiple reflections, refractions and absorptions of an incident beam
of light within a turbid leaf plate. 𝑖 is the radiation incidence angle, with an upper bound 𝛼. The leaf
and ambient air respective have 𝑛 and 𝑛air as refractive index.

The transmission coefficient is linked to the biophysical content of the leaf, and can be
retrieved from the absorption coefficient 𝑘 of the leaf according to the plate model [Allen
et al., 1969; Jacquemoud and Baret, 1990] with Equation 4.3.

𝜃 − (1 − 𝑘) e−𝑘 − 𝑘2 ∫
+∞

𝑘

𝑒−𝑥

𝑥 d𝑥 = 0 (4.3)

The leaf structure parameter 𝑁 designates the number of such plates in the stack that
makes up a leaf. The radiant flux that propagates in the 𝑁 −1 intermediate air layers between
the plates is assumed to be diffuse, and to have no specific direction. The hemispherical
reflectance and transmittance coefficients in these layers are identical, and commonly denoted
as 𝜌90 and 𝜏90. The first (top) plate receives the incident light, which is not isotropic, but
its direction 𝑖 is assumed to be contained inside a solid angle with a half-apex angle 𝛼. The
reflectance and transmittance of this layer is 𝜌𝛼 and 𝜏𝛼. This angle is linked to the leaf
surface roughness. As the incident light is described with a cone, the modeled reflectance
(and transmittance) of the whole leaf are described with a conical-hemispherical reflectance
(transmittance) function [Schaepman-Strub et al., 2006].

The four quantities 𝑁 , 𝑛 (𝜆), 𝑘, 𝛼 characterize entirely the leaf model, and enable to derive
the leaf reflectance 𝜌𝑙, transmittance 𝜏𝑙, and absorbance 𝐴𝑙. In practice, the parameters
𝑛 (𝜆) and 𝛼 are calibrated from leaf measurements and kept constant within a version of
PROSPECT, whereas 𝑁 and 𝑘 are considered variable. A representation of the PROSPECT
plate model is shown in Figure 4.2.

In the generalized plate model [Allen et al., 1969, 1970] on which PROSPECT is based, 𝑁
initially designated an integer number of leaf layers. Using the work of Stokes [1862], the leaf
structure parameter is extended in PROSPECT to a real number 𝑁 ≥ 1. This is conceptually
more difficult to represent and understand, however, this makes the model continuous and
more easily inversible. A continuous leaf structure parameter may be understood as an
average number of air/leaf cell interfaces within leaves. Also, a real 𝑁 can be used to model
the physical properties of leaf with different geometries, rather than just controlling the
transversal light propagation. For instance, monocotyledon plants, such as most cereals, are
characterized with a relatively low structure parameter 𝑁 ∈ [1, 1.5] [Féret et al., 2021]. This
is due to a simpler, more compact tissue layout inside the leaves. Dicotyledon plants, with
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Figure 4.2: Hemispherical leaf reflectance 𝜌𝑙 and transmittance 𝜏𝑙 in the 𝑁 layer model of PROSPECT.
Each layer of the model has the same refraction index 𝑛, absorption coefficient 𝑘, reflectance 𝜌90 and
transmittance 𝜏90. The first layer has a different reflectance 𝜌𝛼 and 𝜏𝛼, with 𝛼 the maximum radiation
incidence angle.

more leaf complexity and inter-cellular air spaces, such as legumes, have higher parameter
𝑁 ∈ [1.5, 3].

4.1.2 Modeling the leaf contents

The spectral absorption coefficient 𝑘 (𝜆) is the sum2 of the contribution of the leaf plate
biochemical contents:

𝑘 (𝜆) = ∑
𝑖

𝑘𝑖 (𝜆) = ∑
𝑖

𝐾𝑖 (𝜆) 𝐶𝑖, (4.4)

with 𝑘𝑖 (𝜆) the absorption coefficient of a component 𝑖. 𝑘𝑖 (𝜆) is the product of the specific
absorption coefficient 𝐾𝑖 (𝜆) and the concentration3 𝐶𝑖 of the component 𝑖 in the plate.
Finally, the specific absorption coefficients are experimentally calibrated, then kept constant.
The only variables remaining are the leaf components contents 𝐶𝑖.

Between the various versions of PROSPECT, the most notable updates lie in the intro-
duction of different components 𝑖 whose absorption is taken into account. The first version
of PROSPECT [Jacquemoud and Baret, 1990] only considered the absorption contribution
of two leaf components: the water content and a leaf pigment content, corresponding to the
chlorophyll 𝑎 and 𝑏. The water content 𝐶𝑤 is associated with the specific absorption coeffi-
cient 𝐾𝑤 (𝜆), and the chlorophyll content 𝐶𝑎𝑏 to 𝐾𝑎𝑏 (𝜆). In this first version of PROSPECT,
𝐾𝑤 (𝜆) and 𝐾𝑎𝑏 (𝜆) are sampled with a 5 nm resolution over the range 400–2500 nm.

The next early versions of PROSPECT improved the spectral resolution to 1 nm, and
introduced the spectral contribution of the dry matter content 𝐶𝑚 in leaf cell wall molecules
[Jacquemoud et al., 2000]. The version 2 of PROSPECT actually distinguishes protein
content 𝐶𝑝 and cellulose and lignin content 𝐶𝑐, whereas the following versions use a dry matter
content that encompasses both. In PROSPECT-4 all photosynthetic pigments are assumed
to be chlorophyll, whereas PROSPECT-5 differentiates chlorophylls from carotenoids [Feret
et al., 2008]. In PROSPECT-5, a brown pigment content 𝐶𝑏𝑟𝑜𝑤𝑛 is also introduced. Brown
pigments account for the spectral influence of different bio-molecules, such as tannins and
polyphenols [Bing Lu and He, 2021]. PROSPECT-D adds the contribution of anthocynanins
[Féret et al., 2017, 2019], and PROSPECT-PRO incorporates nitrogen-based proteins and
carbon-based constituents [Féret et al., 2021]. The leaf content taken into account by each
PROSPECT version is summarized in Table 4.1.

2The absorption of a medium is additive of the absorption of its components.
3Usually a content per unit area of leaf.
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The specific absorption spectra that are used throughout the different PROSPECT versions
may be subject to a re-calibration. The calibrations are updated with the improvement
of calibration data-bases, and of estimation algorithms. Also, the re-definition of the leaf
constituents that are taken into account with each absorption coefficient also requires updating
the reference spectra (e.g. the distinction of carotenoid from chlorophyll pigments as a new
leaf content in PROSPECT-5).

Using PROSPECT-5, the reflectance, transmittance and absorbtance of a maize leaf are
simulated and displayed in Figure 4.3. The values of the leaf contents and 𝑁 used as input
are taken from some LOPEX93 data [Hosgood et al., 1993], which is included in the available
MATLAB implementation of PROSPECT4.

400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400
0

20

40
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Reflectance

N 1.518 Cab 58 µg cm−2

Ccar 15.0 µg cm−2 Cbrown 0.01
Cw 0.0131 cm Cm 0.003 36 g cm−2

Wavelength (nm)

%

Figure 4.3: Simulated reflectance, transmittance and absorbance of maize leaf with PROSPECT-5.

4.2 The SAIL canopy model
The Scattering by Arbitrary Inclined Leaves (SAIL) model [Verhoef, 1984] is an RTM that
simulates vegetation canopy optical properties. It simulates the canopy bi-directional re-
flectance factor from leaf reflectance and transmittance spectra, and canopy structure para-
meters. SAIL models the canopy with the following simplifying assumptions:

• the canopy is a single, horizontal, homogeneous and infinitely extended layer in the
horizontal plane,

• the leaves are planar and bi-Lambertian5 surfaces, with infinitesimal size,

• the leaves are the only canopy elements.

SAIL is a turbid medium model, the light scattering occurs because of small elements (the
leaves) which are assumed to be randomly distributed. SAIL is a four-stream model (see
Figure 4.4), in that it uses four radiative fluxes:

• the directional incident solar flux 𝑒𝑠,
4http://teledetection.ipgp.jussieu.fr/prosail
5Incident light is scattered isotropically.
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• the directional canopy radiance flux toward the observer 𝑒𝑜,

• the diffuse (semi-hemispherical) downward flux 𝑒−,

• the diffuse (semi-hemispherical) upward flux 𝑒+.

Diffuse
downward
flux 𝑒−

Diffuse
upward
flux 𝑒+

Solar
incident
flux 𝑒𝑠

Observed
flux 𝑒𝑜

Atmosphere

Canopy layer

Soil

Figure 4.4: The four-stream radiative transfer in SAIL

The four-stream radiative transfer theory describes the interactions between these four fluxes
with a set of four differential equations6. Also, two additional equations can be provided to
take into account the interactions of the fluxes with the soil, to further constrain the radiative
transfer model. These equations are function of the leaf area index (LAI) and the relative
optical height, which designates the relative height within the canopy and ranges from −1 at
bottom-of-canopy (at soil level), to 0 at top-of-canopy (TOC) level. To obtain the canopy
optical properties, the radiative transfer equations are analytically solved at the boundaries
of the canopy relative optical height. The general form of the solution for TOC radiance, is
a relation between 𝑒𝑠, 𝑒𝑜, 𝑒−:

𝑒𝑜 (0) = 𝜌𝑠,𝑜𝑒𝑠 (0) + 𝜌−,𝑜𝑒− (0) + ∑
𝑖

𝛾𝑖ℎ𝑖 + ∑
𝑗

𝛾𝑗Δℎ𝑗, (4.5)

with 𝜌𝑠,𝑜 the bi-directional reflectance factor at the TOC, 𝜌−,𝑜 the hemispherical-directional
reflectance factor. The ℎ𝑖 are hemispherical thermal fluxes associated with the blackbody
radiance of different elements in the canopy (the leaves in the Sun or in the shade, the
soil, the atmosphere), Δℎ𝑗 are the differences between a pair of such fluxes, and 𝛾𝑖, 𝛾𝑗 are
associated emissivity coefficients. The Equation 4.5 is derived from equation 11 in Verhoef
et al. [2007], which introduced the “unified expression for TOC flux-equivalent radiance”, for
the improved 4SAIL version of the SAIL model. It can be noted that the SAIL model is
constant with respect to (w.r.t.) the wavelength 𝜆 (except for thermal fluxes modeling, see
subsection 4.2.4). This means that calculations need not be performed on entire spectra.

Depending on the application and available information about the canopy, the different
terms in Equation 4.5 are expressed as a function of different input parameters. They can be
simplified, or even removed, to account for, or discard certain phenomena. In particular, the

6The radiative transfer equations become ordinary when discarding the assumption of infinitesimal leaf size
to a finite size, which is performed with SAILH and 4SAIL.
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PROSAIL-VAE application discussed in this work (see Chapter 8) only uses the bi-directional
reflectance factor from the sun incident light to the observer 𝜌𝑠,𝑜, while other are neglected.
In the following parts, the different variables and processes involved in the radiative transfer
are discussed.

4.2.1 Leaf optical properties

The SAIL model considers the canopy as an homogeneous layer of identical leaves. Specifi-
cally, the leaf reflectance 𝜌𝑙 and transmittance 𝜏𝑙 spectra are two required model variables.
This property enables coupling the SAIL model with leaf optical models, such as PROSPECT
introduced in section 4.1.

4.2.2 Soil optical properties

The SAIL model takes into account the influence of the soil over the radiance fluxes inside
the canopy. However, SAIL does not compute soil reflectance spectra, but rather treats them
as an input. There are several possibilities to compute the soil reflectance spectra prior to
inputting it to SAIL. The soil can be considered a Lambertian surface, in which case its
properties are simply defined with a hemispherical reflectance spectra 𝜌𝑆. The 4SAIL version
introduced the possibility of using a non-Lambertian soil, whose properties are expressed
with four reflectance spectra (bidirectional, bihemispherical, directional-hemispherical and
hemispherical-directional).

Modeling the soil reflectance spectra is difficult, especially in a non-Lambertian scenario,
because it requires knowledge about the soil mineral composition, surface roughness, humidity,
etc. The Lambertian behavior of the soil depends on the wavelength, and also on environ-
mental variables. In most applications, the soil is considered Lambertian as a simplifying
assumption.

A possibility to obtain a soil reflectance spectra, is to use a synthetic soil spectra derived
from two reference spectra corresponding to two edge situations: a dry soil 𝜌𝑑𝑟𝑦, with high
reflectance and a wet soil 𝜌𝑤𝑒𝑡 with a lower reflectance:

𝜌𝑆 = 𝑠𝑏 [𝑠𝑤𝜌𝑑𝑟𝑦 + (1 − 𝑠𝑤) 𝜌𝑤𝑒𝑡] . (4.6)

The soil reflectance is thus a sum of the two reference soil spectra, weighted by the wet soil
coefficient 𝑠𝑤 and scaled by a brightness coefficient 𝑠𝑏 (see Figure 4.5). This method enables
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Figure 4.5: Soil reflectance as a weighted sum of dry and wet soil reference spectra.
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to model a relatively wide range of soils, with just two input variables. This approach is used
in the PROSAIL-VAE application presented in Chapter 8.

Another approach is to make soil measurements and build a data-set of reference soil
spectra. The soil spectrum that matches best with a given situation is then provided to the
SAIL model. This spectrum is also scaled by a brightness coefficient 𝑠𝑏. This second method
was selected for the PROSAIL model used to generate the training data-set of the neural
network at the core of Sentinel Application Platform (SNAP)’s Biophysical Processor (BP)
in Weiss and Baret [2016], by using the 7 reference spectra provided in Weidong et al. [2002].

4.2.3 Canopy geometrical structure
4.2.3.1 The LAI

The leaf area index (LAI) is defined as half the surface area of the leaves (see subsection 2.3.1)
per unit horizontal ground surface area. It is a key variable in the SAIL radiative transfer
equations.

4.2.3.2 The leaf inclination distribution function

The SAIL model [Verhoef, 1984] is based on the Suits model [Suits, 1971], which is also a four-
stream RTM, with similar idealized canopy assumptions. In the Suits model, to calculate the
scattering and extinction coefficients involved in the radiative transfer equation, the leaves
were assumed to be only either horizontal or vertical. This assumption in leaf orientation
causes singularities in the modeled reflectance w.r.t. the viewing angle zenith. In SAIL, these
singularities are mitigated by assuming that the leaf orientation, described with a leaf zenith
angle 𝜃𝑙 is random, and bound by a leaf inclination distribution function (LIDF) 𝑔(𝜃𝑙).

The choice of a LIDF is arbitrary. The LIDF are commonly classified into four categories:

1. planophile (mostly horizontal leaves),

2. erectophile (mostly vertical leaves),

3. plagiophile (mostly oblique leaves),

4. extremophile (few oblique leaves).

The extremophile LIDF describes leaves that are mostly horizontal and vertical, i.e. it is
a bimodal distribution. In the original SAIL paper [Verhoef, 1984], the spherical LIDF
distribution 𝑔(𝜃𝑙) = sin 𝜃𝑙 is used. Modelling the canopy with the spherical LIDF assumes
that the angular distribution of leaf area is similar to the distribution of area on the surface
of a sphere. This corresponds to a erectophile LIDF.

Other LIDF options were introduced to better model each type of vegetation. For
instance, in Verhoef [1981] a LIDF was proposed as a deviation of the uniform distribu-
tion. This LIDF is constructed graphically, as a 𝜋

4 rotation of the function 𝑎 sin 𝑥 + 𝑏
2 sin 2𝑥,

with the two parameters 𝑎 and 𝑏 such that (s.t.) |𝑎| + |𝑏| < 1. The parameter 𝑎 controls
the average leaf inclination, whereas 𝑏 controls the bimodality. Thus, this function can be
tuned to adapt to a variety of cases. There is no analytical formula for this LIDF, so it is
approximated with iterative algorithms. This will be referred here as Verhoef’s distribution.

Other common LIDF choices are the De Wit distributions [de Wit, 1965] which are four
parameter-less trigonometrical functions adapted to each four LIDF types, and Beta distribu-
tion fitting, that require two parameters, and fits quite well many cases, except bimodal
extremophiles.

Another popular LIDF, are Campbell’s ellipsoidal functions [Campbell, 1986, 1990] con-
trolled by the mean leaf angle 𝛼. This distribution is designed to be a simple model of
leaf inclination, just as the spherical LIDF, but with more flexibility. Instead of assuming
that the leaf angular distributions is similar to the surface repartition on a sphere, Campbell
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LIDF assumes that this surface is similar to that of an ellipsoid. The spherical distribution
is included as a particular case of the ellipsoidal distribution, for 𝛼 ≈ 58.44. A few examples
of this distribution are plotted in Figure 4.6. This model is well suited to inversion, as it only
requires a single parameter. This is the LIDF used in this work (see subsection 4.5.2).
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Figure 4.6: Campbell’s ellipsoidal LIDF for various mean leaf angles.

4.2.3.3 The hot-spot effect

When observing a 3-D scene illuminated by a directional source, the viewing angle has an
influence over the magnitude of the sensed radiance. In particular, there is a particular
geometric configuration in which the (BRDF) reaches a maximum: when the viewing angle
and the source angle are aligned. This so-called hot-spot effect, occurs because of the light
backscattering on the scene. It depends on the structure of the scene, and in particular,
on the possibility of light being reflected in a particular direction rather others. Notably,
when the observer and the source are aligned, all the scene appears to be illuminated, and
no shadow is visible.

When observing a canopy from the top, there is also a hot-spot phenomenon, because of
the backscattering over the leaves. However, the hot-spot as a single backscattering event
isn’t well suited in canopies. The theory of Kuusk [1985] describes the hot-spot effect in
vegetation canopies, and was used to improve the SAIL model as a updated version, SAILH,
as part of Verhoef’s Ph.D. work [Verhoef, 1998], and present in the subsequent 4SAIL. In
particular, this hot-spot model requires to discard the assumption of infinitesimal leaf size,
and to consider it finite. This theory is based on the description of the (BDGP) 𝑝𝑠𝑜, which
is the joint probability of two events: an incident light ray penetrating the canopy (𝑒𝑠), and
being reflected and transmitted inside in the direction of the observer (𝑒𝑜). These events
are described with their own marginal probabilities 𝑝𝑠 and 𝑝𝑜, called the directional gap
probabilities. The BRDF of the canopy is a function of the BDGP. When the events 𝑒𝑠
and 𝑒𝑜 are independent, the BDGP is simply the product of the marginal gap probabilities:
𝑝𝑠𝑜 = 𝑝𝑠𝑝𝑜. This matches the assumption of a turbid medium. The hot-spot effect occurs
because of leaves have a finite size, which introduces a correlation between events 𝑒𝑠 and
𝑒𝑜, that can be taken into account in the BRDF as a correction factor 𝑐ℎ𝑠: 𝑝𝑠𝑜 = 𝑝𝑠𝑝𝑜𝑐ℎ𝑠.
This correction factor depends on a horizontal correlation length 𝑙, which is a characteristic
quantity of the canopy and depends on its architecture.

Within SAILH, the hot-spot effect is taken into account by computing the BDGP, to
correct the BRDF. As the BDGP is an analytically un-derivable integral, it is computed
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through numerical integration with a fixed number of steps. The horizontal correlation length
𝑙 is not directly used, but the normalized, dimensionless quantity ℎ = 𝑙

ℎ𝑐
, with ℎ𝑐 the canopy

height, is used instead. ℎ is the hot-spot size parameter, or hot-spot parameter, and is the
only parameter necessary to tune the hot-spot effect within SAILH. In Figure 4.7 is displayed
the angular variation of the BRDF simulated with 4SAIL, from given leaf reflectance and
transmittance and soil reflectance. Increasing the hot-spot size parameter spreads the hot-
spot effect beyond the backscattering direction, i.e. the BRDF increases farther away from
the backscattering direction.

−70 −60 −50 −40 −30 −20 −10 0 10 20 30 40 50 60 70
50

60

70

80

ℎ = 0.01
ℎ = 0.1ℎ = 0.2
ℎ = 0.5

𝜃𝑆 = 45°

𝜓𝑆𝑂 = 0° 𝜓𝑆𝑂 = 180°

𝜌𝑙 48.0% 𝜏𝑙 48.3%
𝜌𝑠 38.6% 𝛼 48.0° (Campbell’s LIDF)
LAI 5.0 𝜃𝑆 45°
𝜓𝑆𝑂 0°, 180°

Observer zenith angle 𝜃𝑂 [°]

BR
D

F
(%

)

Figure 4.7: Effect of the hot-spot size parameter ℎ on the BRDF of a simulated maize reflectance and
transmittance at 𝜆 = 800 nm

The hot-spot parameter characterizes the canopy structure. In Verhoef [1998], ℎ is related
to two growth strategies in vegetation:

1. plants that grow taller rather than wider (wheat, maize),

2. plants that grow wider rather than taller (sugar beet).

In both cases, the leaf surface (i.e. the LAI) is increased. In the first case, the plants grow
taller as they grow new leaves, whereas in the second case, plants let their leaves grow bigger
without increasing the number of leaves. For the first strategy, by assuming that the leaf
size is constant, then ℎ ∝ 1

LAI . Such a relationship between ℎ and the LAI is experimentally
found in subsubsection 8.2.3.4. For the second strategy, the hot-spot parameter is constant
w.r.t. the LAI.

4.2.4 The thermal fluxes
An addition of 4SAIL compared to previous versions, is that it takes into account the
blackbody thermal fluxes into account. The black-body emissions that are considered are
those of the shaded and sun-lit soil, shaded and sun-lit leaves. Each of these additional
sources are associated with a black-body temperature. In the present work’s use of 4SAIL,
these thermal fluxes are neglected, and having to provide these temperatures is avoided.
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4.3 PROSAIL
As discussed in section 4.2, the SAIL model requires a leaf reflectance and transmittance as
inputs. These optical leaf properties can be simulated by a leaf RTM, such as PROSPECT,
introduced in section 4.1. The coupling between a PROSPECT leaf RTM and a SAIL canopy
RTM is known as the PROSAIL model. This composite RTM simulates canopy BRDF from
a set of bio-physical variables (BV) (see Figure 4.8).
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Figure 4.8: The PROSAIL model, fusion between PROSPECT and SAIL.

An example of a PROSAIL simulation is provided in Figure 4.9, which compares a leaf
BRDF generated by PROSPECT with the canopy spectra obtained by PROSAIL, with a
common set of BV.

The specific PROSAIL model depends on the choice of version for its components, PROS-
PECT and SAIL. In the present work, we consider for PROSAIL, the combination of PROS-
PECT-5 and 4SAIL (without incorporating the thermal fluxes into the radiative transfer).
Consequently, the variables taken into account to simulate canopy BRDF are detailed in
Table 4.2.

7Both units are commonly found in the literature, as they are “equivalent”, because the density of water
is 1.0 g cm−3. Thus for the leaf water 𝑥 g is “equivalent” to 𝑥 cm3, so 𝑥 g cm−2 of leaf water content is
“equivalent” to 𝑥 cm3 cm−2 = 𝑥 cm.

8Arbitrary unit per surface unit
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Figure 4.9: Simulated BRDF of a leaf with PROSPECT-5, and a corresponding canopy BRDF with
PROSAIL (PROSPECT-5 + 4SAIL).

Table 4.2: PROSAIL input parameters

Model Input Description Unit
PROSPECT-5 𝑁 Leaf structure parameter -

𝐶𝑎𝑏 Chlorophyll 𝑎 + 𝑏 content µg cm−2

𝐶𝑤 Water equivalent thickness g cm−2 or7cm
𝐶𝑐𝑎𝑟 Carotenoid concentration µg cm−2

𝐶𝑚 Dry matter content g cm−2

𝐶𝑏𝑟𝑜𝑤𝑛 Brown pigments content a.u.p.s.u8

4SAIL LAI Leaf Area Index -
𝛼 Mean leaf angle deg
ℎ Hotspot parameter -
𝑠𝑤 Wet soil factor -
𝑠𝑏 Soil brightness factor -

Geometry 𝜃𝑆 Solar zenith angle deg
𝜃𝑂 Observer zenith angle deg
𝜓𝑆𝑂 Relative azimuth angle deg
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4.4 Sensor measurements simulation

Using a RTM such as PROSAIL enables to simulate the reflectance spectrum of a canopy,
from bio-physical variables. However, the physical quantities that are measured by remote
instruments aren’t reflectance spectra, but energy integrated over spectral bands, proportional
to incident equivalent spectral radiance, which are related to equivalent reflectances (see
subsubsection 2.1.3.3). To simulate a remote sensor measurement of a canopy, it is necessary
to derive the equivalent reflectance spectra, from the canopy reflectance spectra 𝜌𝑐 simulated
beforehand.

The bottom-of-atmosphere (BOA) equivalent reflectance 𝜌𝑖 observed under BOA solar
irradiance 𝑒𝑠 for a spectral band 𝑖, with range [𝜆l,𝑖, 𝜆u,𝑖], and a spectral sensitivity 𝑠𝑖 is
[Tupin et al., 2014]:

𝜌𝑖 (𝜆) =
∫𝜆u,𝑖
𝜆l,𝑖

𝑠𝑖 (𝜆) 𝑒𝑠 (𝜆) 𝜌𝑐 (𝜆) d𝜆

∫𝜆u

𝜆l
𝑠 (𝜆) 𝑒𝑠 (𝜆) d𝜆

. (4.7)

In the present work, the spectral bands considered are the bands of S2’s multi spectral
instrument (MSI) except those dedicated to atmospheric correction (i.e. the 60 m resolution
bands): B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 (see Figure 2.1).
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Figure 4.10: Top-of-atmosphere solar irradiance spectrum

It is important to note that the canopy reflectance 𝜌𝑐 used in Equation 4.7 is a BOA reflec-
tance, such as what is simulated with PROSAIL. Unfortunately, obtaining the required BOA
solar irradiance spectrum 𝑒𝑠 (𝜆) is complicated. Due to the light scattering in the atmosphere,
the BOA solar irradiance spectrum is different to the top-of-atmosphere (TOA) spectrum,
which is more easily accessed. To derive the BOA spectrum from the TOA spectrum, it
is necessary to apply atmospheric corrections, which requires atmospheric modeling and the
computation of corrective factors (see subsubsection 2.1.3.4). Fortunately, the light scattering
by the atmosphere is a negative power function of 𝜆, meaning that except for shorter wave-
lengths, this effect is of low magnitude. For S2’s MSI bands, B2 is the most affected and the
difference between 𝜌B2,𝑡 from 𝜌B2,𝑏 is around 1%. As such, in this Ph.D., the BOA equivalent
reflectance spectra of simulated S2 bands are approximated by using the TOA solar irradiance
spectrum (see Figure 4.10). Besides, the PROSAIL-simulated BOA equivalent reflectances
will be compared to Level-2A S2 reflectance bands. These are BOA reflectances obtained
from TOA acquisitions by applying atmospheric corrections. As such, even for the reference
S2 measurements, there is an unavoidable uncertainty due to correction errors.

82



CHAPTER 4. SPECTRAL MODELS OF VEGETATION

4.5 Refactoring PROSAIL for Deep Learning end-to-end opti-
mization

In this work, the above-defined PROSAIL model is to be integrated within a deep learning
(DL) framework (see Chapter 8). This brings about two implementation requirements:

1. gradient propagation within PROSAIL must be enabled,

2. PROSAIL must be able to deal with array-based, batched data.

PROSPECT and SAIL models were originally implemented in Fortran, and later ported into
Matlab and Python. These codes don’t have these two requirements, as they were intended
for off-line forward modeling. They offer no gradient-related capabilities. While they do
perform canopy reflectance simulation of whole discretized, array-based spectra, they only
simulate one spectrum at a time and cannot perform batched computations.

As a consequence, PROSAIL was adapted in this work, and implemented on Python’s
Pytorch DL library. Pytorch implementations of batched variables as tensors is similar to
Numpy’s implementations as arrays. Therefore, PROSAIL was adapted from the Numpy
code of Domenzain et al. [2019].

Pytorch, like Numpy, meets the second requirement of managing batched data, so long
that variables are encoded as tensors. This also enables to perform efficient, parallel compu-
ting on graphical processing units (GPUs). Also, the library’s automatic differentiation engine
torch.autograd enables gradient computation, forward and backward propagation, on the
condition that all operations are differentiable and written with Pytorch functions.

However, adapting PROSAIL to the Pytorch library is not straightforward, and is not
just about “tensorizing” the model (e.g. encoding all variables as multi-dimensional tensors).
Some operations involved in PROSAIL are not available in the library and must be adapted
into differentiable and batched implementations. The following subsection 4.5.1 and sub-
section 4.5.2 detail key implementation choices to ensure these requirements. Finally, as the
batched implementation of PROSAIL is very memory-intensive, subsection 4.5.4 details how
this issue is mitigated, by down-sampling the model.

4.5.1 The exponential integral function
In PROSPECT, the leaf transmission coefficient 𝜃 from the leaf absorption coefficient 𝑘 (see
Equation 4.3) involves the exponential integral Ei

𝜃 = (1 − 𝑘) e−𝑘 − 𝑘2Ei (−𝑘) , (4.8)

defined as :
∀𝑥 ∈ R∗, Ei (𝑥) = ∫

𝑥

−∞

e𝑡

𝑡 d𝑡 (4.9)

The exponential integral is not an elementary function, and must therefore be approximated.
At the time of this work, this function isn’t available in Pytorch, and therefore must be
implemented manually. Care must be taken that this implementation enables parallel compu-
ting with this function, and that automatic differentiation can be applied to it.

This function is defined on the complex plane, but as PROSAIL only deals with real-
valued numbers, here the exponential integral will only be approximated on the real set.
Besides, as the leaf absorption coefficient is positive, the exponential integral is only used
over negative values. The approximation of this function must be computationally efficient,
and avoid recursion.

The Ei function is linked to another integral Ein, the complementary exponential integral
defined in Equation 4.10.

∀𝑥 ∈ R, Ein (𝑥) = ∫
𝑥

0

(1 − e−𝑡)
𝑡 d𝑡 (4.10)
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Algorithm 1 Iterative computation of the E1 function
with approximation of a continued fraction expansion.

function E1(𝑥, 𝑛)
𝑡0 ← 0
for 𝑖 ∶= 1 to 𝑛 do

𝑘𝑖 ← 𝑛 − 𝑖 + 1
𝑡𝑖 ← 𝑘𝑖

1+ 𝑘𝑖
𝑥+𝑡𝑖−1

end for
𝑦 ← e−𝑥

𝑥+𝑡𝑛
return 𝑦

end function

Equation 4.11 links Ei with Ein over the whole of the definition interval:

∀𝑥 ∈ R∗, Ei (𝑥) = − Ein (−𝑥) + ln |𝑥| + γ, (4.11)

with γ = lim
𝑛→+∞

(− ln (𝑛) + ∑𝑛
𝑘=1

1
𝑘) ≈ 0.57722 the Euler-Mascheroni constant. The Ein

function can be computed by approximating a power series:

Ein (𝑥) =
+∞
∑
𝑘=1

(−1)𝑘+1

𝑘𝑘! 𝑥𝑘. (4.12)

Using this function enables to simply calculate the exponential integral in any evaluation
point. However, it must be noted that for large values of 𝑥, this power series converges
slowly, and approximating it requires many terms. For some intervals, there are different
approximations possible with increased precision.

The function Ei is also linked to the function E1, defined in Equation 4.13.

∀𝑥 ∈ R∗
+, E1 (𝑥) = ∫

+∞

1

e−𝑡𝑥

𝑡 d𝑡 (4.13)

Equation 4.14 shows that the exponential integral can be defined over the negative numbers
by just approximating the function E1.

∀𝑥 ∈ R∗
+, Ei (−𝑥) = − E1 (𝑥) (4.14)

The E1 function has infinite continued fraction representation [Gautschi and Cahill, 1964]
shown in Equation 4.15 9. A good approximation can be computed from a relatively low
number of successive fractions (e.g. 𝑛 = 40), with an iterative algorithm (see Figure 1).

∀𝑥 ∈ R∗
+, E1 (𝑥) = e−𝑥

𝑥 + 1
1+ 1

𝑥+ 2
1+ 2

𝑥+ 3⋱

= lim
𝑛→+∞

e−𝑥 [𝑥 +
𝑛

K
𝑘=1

( ⌊𝑘+1
2 ⌋

𝑥(𝑘+1) mod 2 )]
−1

(4.15)

By using a fixed number of fractions (e.g. 40), a reasonable approximation can be computed
iteratively instead of recursively.

9K is Gauss’s continued fraction operator, for which K𝑛
𝑘=1

𝑏𝑘
𝑎𝑘

= 𝑏1
𝑎1+ 𝑏2

𝑎2+ 𝑏3
⋱ ⋱

𝑎𝑛−1+ 𝑏𝑛𝑎𝑛

, with 𝑎𝑘 the partial

denominators and 𝑏𝑘 the partial numerators.
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It can be noted that the proposed implementation of the exponential integral function may
be further improved to lessen the computational burden. For instance, instead of computing
the exponential integral at each evaluation, an abacus may be created instead. Such case
may be interesting, as it reduces the evaluation of the function to a simple interpolation
between pre-computed values. In the case of PROSPECT, there isn’t really even a need for
pre-computing this function over its entire definition interval, because it is applied only over
a small interval of negative numbers.

Even-though approximating the exponential integral function requires a bit of calculation,
its derivative has an analytical expression. Because Ei is defined as an integral, computing
its derivative (see Equation 4.16) is straight-forward.

∀𝑥 ∈ R∗, dEi
d𝑥 (𝑥) = e𝑥

𝑥 (4.16)

4.5.2 The leaf inclination distribution function
As detailed in subsubsection 4.2.3.2, the LIDF describes the density of the random leaf surface
orientation. Computational constraints guide the choice of a LIDF for 4SAIL. Verhoef’s
LIDF is very flexible, however this function does not have analytical expressions and must be
computed iteratively. As the number of iterations is not constant, it is difficult to parallelize
this function. Furthermore, these functions require two parameters, which increases the
dimension of inversion problems. Similarly Beta distributions also require two parameters.
Alternatively, Campbell ellipsoidal distributions allow a certain flexibility while just requiring
a single input parameter. Furthermore, although analytical computation isn’t possible,
numerical approximation is straightforward and is easily parallelizable. This is why Campbell’s
ellipsoidal LIDF is chosen for this work.

4.5.3 Gradient-based sensitivity analysis
A differentiable implementation of PROSAIL enables to easily compute the gradients of the
outputs of the model w.r.t. to its inputs by using automatic differentiation (see subsub-
section 3.3.2.1). By definition, the gradient describes the rate of change of the output for
a given change in the input. As such, computing these gradients enables to analyze the
sensitivity of the output of PROSAIL (i.e. the canopy reflectance spectra or the S2 bands)
to the PROSAIL input variables. Sensitivity analysis is the study of how the values of a
variable influences the value of a dependent variables. Usually, this encompasses a study
of how uncertainties in the independent variables are propagated to the uncertainty of a
dependent variable.

The distribution of gradients of S2 bands w.r.t. the PROSAIL input variables can be
estimated with the differentiable implementation of the PROSAIL model described in this
section. This is performed by sampling 𝑁 = 10 000 sets of PROSAIL variables (i.e. 14
variables, including S2 and Sun angles), simulating the corresponding S2 reflectance bands
and by using automatic differentiation to retrieve the gradients. Contrary to the simulation
procedure described in Chapter 5, the variables are sampled with a uniform distribution over
their definition range, and no correlation is introduced in sampled variables. This is because
the objective is to estimate the gradients for a maximum of different configurations, rather
than simulate a data-set that mimics the distribution of variables found in nature. The
estimated distribution of gradients is shown in Figure E.4.

A limitation of the above-described sensitivity analysis, is that it is affected by the curse
of dimensionality. The curse of dimensionality broadly refers to problems that arise when
dealing with high dimensional data. For sampling variables in a high-dimensional space,
which is performed here for gradient distribution estimation, the problems are two-fold:

• The number of samples required to map the target space with an arbitrary precision
increases exponentially with the number of dimensions. For instance, the number of
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samples required for sampling all variable combinations on a regular grid of the 𝑑-
dimensional variable space is 𝑛𝑑, with 𝑛 the number of sampled values per dimension.
In the current PROSAIL setting, for a budget of 𝑁 = 10 000 samples, with 𝑑 = 14
dimensions, a regular grid would test 𝑛 = 𝑁1/𝑑 ≈ 1.9 values per PROSAIL variable.

• Samples from a given distribution of a high dimensional space are more likely to be
located near the boundary. This is a geometrical effect, due to most of the “volume” of
a given subspace being distributed closer to the edge of the subspace rather than the
origin (e.g. most the volume of a 3D sphere is contained closer to the surface of the
sphere rather than the center.). As a consequence, the interior of the sampled subspace
is depleted compared to the space near the boundary. This is also called the edge effect.

There are approaches that attempt to mitigate the curse of dimensionality for performing
sensitivity analysis [Moreau et al., 2013; Sheikholeslami et al., 2019], however they are out
of the scope of this work. For the purposes of this Ph.D., a large precision in the estimated
distribution of the gradients of the PROSAIL model is not necessary.

4.5.4 Under-sampling PROSAIL
PROSAIL originally simulates canopy spectra over the range 400 – 2500 nm, with a resolution
of 1 nm10. Therefore, the model output is a vector of size 2101. However, while using
PROSAIL in a batched manner, the spectra of multiple samples are simulated simultaneously.
Consequently, the total output size increases proportionally to the number of samples. For a
single-precision encoding (4 bytes per value), the simulated spectra corresponding to a 32×32
image patch (i.e. 1024 pixels) has a size of over 8 MB.

When using PROSAIL inside a machine learning model with back-propagating gradient,
the output spectra and the intermediary variables are saved as tensors. Because each tensor
is kept in memory for back-propagation, the memory size increases very quickly with the
number of performed simulations. Experiments have shown that for a GPU with a 32 GB,
no more than 10 000 samples can be simulated at a time, before the memory is saturated.

To decrease the computational burden, and eventually increase the number of samples
within each batch, the different spectra used inside PROSAIL are down-sampled, so that all
tensors used within PROSAIL have a reduced size. Besides, in the applications presented
here, the output canopy spectra is not directly used. The sensor model of S2 transforms
the canopy reflectance spectra into 10 reflectance bands values, essentially performing down-
sampling with a factor of more than 200. To simulate those 10 bands, it may be unnecessary
to have such a densely sampled canopy spectra. Nonetheless, as will be shown below, each
simulated S2 band is affected differently by a down-sampling of the input reflectance spectra,
because of their different bandwidth.

To perform down-sampling on PROSAIL, it is necessary to down-sample all the reference
spectra for leaf pigments, soil, as well as the sensor sensitivity spectra (see Figure 4.11,
Figure 4.14 and Figure 2.1). These spectra are constant within PROSAIL, so they only
need to be initialized. The down-sampling of spectra only needs to be performed once, and
doesn’t need to be differentiable. A down-sampled PROSAIL will refer in the following to
a PROSAIL RTM, for which all leaf content spectra, soil spectra are down-sampled with a
given factor 𝑟. This down-sampled PROSAIL is associated with the down-sampled response
spectra of S2 bands. In practice, as the initial resolution of the down-sampled spectra is
1 nm, the down-sampling factor will correspond to the new spectral resolution in nm.

There are multiple down-sampling techniques for one-dimensional signals such as PRO-
SAIL spectra, such as decimation, anti-aliasing filtering or low-pass filtering. In this work,
it was chosen to use a strided moving-average filter, with the down-sampling factor 𝑟 being
the window size, and the stride being equal to the window size (see Figure 4.11). This
down-sampling can also be understood alternatively as:

10In the versions 4, 5, D and PRO of PROSPECT
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Figure 4.11: Down-sampling of chlorophyll absorption spectra 𝐾𝑎𝑏 with strided moving average
method.

• the application of a simple moving-average filter which is a low-pass finite impulse
response (FIR) filter, followed by a decimation step,

• the 1D convolution over the spectra with a kernel of size 𝑟, with weights 1
𝑟 , with stride

𝑟,

• the 1D average pooling of the spectra, with a pool size of 𝑟.

This down-sampling method has the advantage of being simple to implement. Also, unlike
some other techniques, it can be applied directly on the spectral dimension of the signal,
without relying on Fourier transforms.

As shown in a sample simulation in Figure 4.12, using a down-sampled PROSAIL to
simulate canopy spectra and S2 bands introduces some errors. Overall, the larger the down-
sampling factor is, the greater is the error w.r.t. a non down-sampled PROSAIL. For some
bands, with a large down-sampling factor, the error surpasses the uncertainty caused by
MACCS-ATCOR joint algorithm (MAJA) atmospheric correction (see subsubsection 2.1.3.4).
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Figure 4.12: Absolute errors of S2 bands simulated with down-sampled PROSAIL as a function of the
spectral resolution 𝑟. The horizontal red lines are MAJA correction uncertainties.
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To select the spectral resolution, the impact of down-sampling PROSAIL over S2 bands
simulation must be assessed. In Figure 4.13 are displayed the box-plots of the per-band and
per-down-sampling absolute error of simulations w.r.t. a non-down-sampled reference. To
do that, 𝑛 = 5000 sets of PROSAIL BV are sampled, using the distributions and procedures
described in section 5.1. These sets of BV are then used as input to the down-sampled PRO-
SAIL models with different spectral resolutions, so that the simulations are comparable. Like
observed in the sample simulations shown in Figure 4.12, decreasing the spectral resolution
increases the simulation error. The comparison of the errors with the MAJA correction
uncertainties is used here as a selection criteria for the down-sampling factor. The down-
sampling factor is chosen as the maximum values that ensures that the absolute error is
negligible (i.e. an order of magnitude below) compared to the MAJA uncertainties, for all S2
bands. For most bands, the down-sampling error is always well below this threshold, even for
resolutions up to 20 nm. For the bands B5 and B6 however, the error is higher. The resolution
factor 𝑟 = 7 nm ensures that the error is 10 times inferior to the MAJA uncertainty for B5
and B6, and all other bands.

The down-sampling error is much higher with B5 and B6 than the other bands. This is
because these two bands have a narrower spectral support, with a bandwidth of 15 nm (see
Table 2.1). This is illustrated by Figure 4.14, in which the spectral response of the band
B5 and several down-samplings are plotted. With increasing down-sampling, the number of
points in the discretized sensitivity spectra decreases, and becomes too low to accurately
represent the true spectrum. For the band B5 with 𝑟 = 20, only two points have non zero-
sensitivity, and the discretization is significantly different from the original function.

Besides, although the error is overall increasing with the down-sampling factors, for some
bands, there are instances where a higher down-sampling yields a lower error (e.g., for B7,
𝑟 = 12 has a lower error than 𝑟 = 10). This is because of the mismatch between the
sub-sampling grid and the spectrum bandwidth. Some sub-sampling factors lead to a sub-
sampling grid that better aligns with the bandwidth.
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Figure 4.13: Absolute error of S2 bands simulated with a down-sampled PROSAIL as a function of
the spectral resolution 𝑟 (𝑛 = 5000 samples). Box-plots: absolute error. Green circles: root mean
squared error (RMSE). Red line: MAJA correction uncertainty.

89



CHAPTER 4. SPECTRAL MODELS OF VEGETATION

680 685 690 695 700 705 710 715 720 725 730

10−3

10−2

10−1

100

Wavelength [nm]

N
or

m
al

iz
ed

S2
se

ns
iti

vi
ty

of
ba

nd
B3

𝑟 = 1
𝑟 = 5
𝑟 = 10
𝑟 = 20

Figure 4.14: Comparison between the different samplings of the S2 MSI spectral response function of
the B5 band.

4.6 Conclusion
PROSAIL, the composite model of the leaf RTM PROSPECT and the canopy RTM SAIL,
has been detailed in this chapter. This model enables to link vegetation BV and canopy
reflectance, as seen by a sensor. Compared to other canopy RTM, PROSAIL is a relatively
simple, 1-D model. However, this enabled to derive a differentiable and parallelized imple-
mentation of the model, enabling to integrate it within a DL framework. Also, PROSAIL
constitutes the forward model of an inversion problem. Besides, both PROSPECT and SAIL
were originally developed with inversion in mind.

Throughout the remainder of this work, the PROSAIL model will be used in two instances.
In Chapter 5, PROSAIL will be used as a forward model to generate a training data-base
used by artificial neural network (ANN) model for solving the associated inverse problem. In
Chapter 8, PROSAIL will be integrated into the physics-informed variational autoencoder
(VAE) methodology developed in Chapter 7, to perform the full inversion of the model as an
interpretable representation of vegetation.
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Model inversion is a classical approach for inferring interpretable representations from
data, while not having access to sufficient reference data. A very popular approach to model
inversion is to use deep learning models to perform supervised regression on simulated data.
The model to invert is used to generate the missing reference data to train machine learning
methods. The performance of the machine learning model is very dependent on the data it is
trained on, and especially, on their distribution. In particular, the end-goal of models trained
on synthetic data, is ultimately to be used in real-world scenarios. As such, a mismatch
between simulated data and real data may have detrimental consequences on the accuracy of
these models. In this chapter, the influence of the distribution of a simulated training data-set
over the performance of a machine learning model is investigated. First, section 5.1 presents
the simulation procedure to generate a training data-set for an inversion of the PROSAIL
model, with simulated Sentinel-2 (S2) reflectances. Then, section 5.2 presents supervised
regression experiments where a neural network model is trained with synthetic PROSAIL
data. In particular, the influences of the training data simulation process on performances
are highlighted.

5.1 Simulation of training data-sets for supervised regression
of PROSAIL variables

Training data-set are paramount to neural network learning. In particular, there is a need for
data in enough quantity, and diversity, because it must encompass the most cases encountered
in real-world applications as possible. While reference data may not be available, fortunately,
physical models enable to simulate samples and build a synthetic training data-set. Neural
networks trained on synthetic data for supervised regression are de facto performing model
inversion. In the following, this model is PROSAIL (see Chapter 4). Following the notation
introduced in Chapter 3 (see also section H.1), the samples of the training data-set are
denoted (𝒙, 𝒚), with 𝒙 the vectors of PROSAIL input bio-physical variables (BV) and 𝒚 the
corresponding simulated S2 band reflectances. The inverse model, here a neural network, is
trained to infer 𝒙 from 𝒚.

This section discusses the simulation with PROSAIL of the data-sets used for training
this neural network. In particular, the following subsection 5.1.1 and subsection 5.1.2 details
the distribution and sampling procedure of PROSAIL input variables.

5.1.1 Input variable distributions

Generated data-sets are characterized by their distributions, namely, by the joint density
between the input 𝒙 and output 𝒚 data, each having their own marginal distribution. This
synthetic joint density must match the corresponding joint density found in nature, so that
a model trained on simulated data can be applied to real data. There is an asymmetrical
difficulty in estimating the true distribution of the input 𝒙 and outputs 𝒚 of PROSAIL.
Indeed, the distribution band reflectance vectors 𝒚 can be estimated from remote sensing
data, much more easily than the distribution of BV vectors 𝒙 which require field surveys.
With a deterministic forward model such as PROSAIL, the distribution of outputs (i.e.
reflectance vector) is entirely determined by the distributions of the inputs (i.e. BV vector).
Conversely, the distribution of inputs from the distribution of outputs can only be obtained
with model inversion, which is more difficult. Therefore, for setting the joint distribution of
(𝒙, 𝒚), the distribution of the input BV vector 𝒙 is chosen first, and then the distribution
of output reflectance vectors 𝒚, estimated by forward propagation, can be compared to true
reflectances.

The distribution of BV is difficult to assess, and it leads to formulating an inverse problem,
and using supervised regression to solve it. Yet, creating a synthetic data-set for training
a supervised model still requires sampling those distributions. In practice BV individual
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range and distribution are roughly estimated from in-situ measurements. Then, the choice
of the sampling distribution is made arbitrarily as an informed guess. In this work, the
distributions shown in Table 5.1 are used to sample BV and generate training samples with
PROSAIL. These distributions are adapted from those ofWeiss and Baret [2016], with both
those distributions being qualified as canonical.These distributions are almost all truncated
normal (TN), and defined by their four parameters. Because their version of PROSAIL
(PROSPECT-3 + SAILH) is different from the one used here (PROSPECT-5 + 4SAIL),
some variables are different (see Chapter 4), and the associated distributions cannot be
directly used.

As the carotenoid content was introduced in PROSPECT-5, the distribution of 𝐶𝑐𝑎𝑟 is
not available in Weiss and Baret [2016]. In it, the chlorophyll content 𝐶𝑎𝑏 actually takes
carotenoid content into account. Therefore in this work, the distribution 𝐶𝑐𝑎𝑟 is chosen to
be empirically about 1

4 of the distribution of 𝐶𝑎𝑏, i.e. the lower and upper bounds and the
distribution mean are about one fourth of the 𝐶𝑎𝑏 counterparts. This choice follows an oral
advice provided by F. Baret to J. Inglada (supervisor of this work), and is consistent with
measured relative carotenoid to chlorophyll concentrations [Thomas and Gausman, 1977].

Similarly, the PROSPECT version of Weiss and Baret [2016] doesn’t use equivalent water
thickness 𝐶𝑤, but the relative water content (𝐶𝑤,rel) instead. 𝐶𝑤,rel is related to 𝐶𝑤 and 𝐶𝑚
through the formula:

𝐶𝑤,rel = 𝐶𝑤
𝐶𝑤 + 𝐶𝑚

⟹ 𝐶𝑤 = 𝐶𝑚
𝐶𝑤,rel

1 − 𝐶𝑤,rel
. (5.1)

Therefore, the 𝐶𝑤 samples necessary for the PROSPECT version used here are derived from
samples of 𝐶𝑤,rel and 𝐶𝑚, following the distributions defined in Weiss and Baret [2016] and
summarized in Table 5.1.

The soil reflectance spectrum input to Scattering by Arbitrary Inclined Leaves (SAIL) is
chosen differently than Weiss and Baret [2016]. In their work, a reference soil spectrum is
drawn from a catalog, and scaled with a soil brightness factor 𝑠𝑏. Here, a synthetic spectrum
is made with the sum of a dry soil and a wet soil spectra, weighted by a soil wetness factor
𝑠𝑤 as an additional input variable (see 4.2.2). 𝑠𝑤 is simply drawn uniformly. The synthetic
spectrum is then scaled with 𝑠𝑏, and the distribution of this parameter is kept identical to
that of Weiss and Baret [2016].

Table 5.1: Canonical sampling distributions of PROSAIL parameters

Variable 𝑣 Distribution Range Distribution parameters
𝑣𝑙,0 (min) 𝑣𝑢,0 (max) 𝜇𝑣 (mode) 𝜎𝑣 (std)

𝑁 TN 1.2 2.2 1.5 0.3
𝐶𝑎𝑏 TN 20 90 45 30
𝐶𝑤,rel TN 0.60 0.85 0.75 0.08
𝐶𝑐𝑎𝑟 TN 5 23 11 5
𝐶𝑚 TN 0.003 0.011 0.005 0.005
𝐶𝑏𝑟𝑜𝑤𝑛 TN 0.0 2.0 0.0 0.3
LAI TN 0 15 2 3
𝛼 TN 30 80 60 20
ℎ TN 0.10 0.50 0.25 0.50
𝑠𝑤 Uniform 0 1 - -
𝑠𝑏 TN 0.3 3.5 1.2 2.0

Finally, the angular parameters of each observation 𝜃𝑆, 𝜃𝑂 and 𝜓𝑆𝑂, involved in SAIL, are
simulated from S2 orbital characteristics, by uniformly drawing random dates and locations,
like in Weiss and Baret [2016]. The samples drawn are shown in Figure E.1.
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5.1.2 Input variable co-distributions

In nature, the different quantities represented by the input variables of PROSAIL or other
models are correlated. This means that these variables are governed by a joint distribu-
tion, which can’t be described with independent marginal distributions. For example, the
sampled observation angles shown in Figure E.1 correspond to real satellite configurations,
and their joint values are restricted to a specific domain. However, for other PROSAIL
variables, accessing the joint distribution is intractable in practice. In-situ measurements
enable to estimate the marginal distribution of a given vegetation variable that is used as a
radiative transfer model (RTM) input. However estimating the joint distribution of variables
would require measuring jointly the associated quantities in field surveys. While some joint
measurements of biophysical variables do exist [Hosgood et al., 1993], they remain quite
limited. Indeed, they only collect data about a restricted number of vegetation types, at
certain seasonal stages, etc. It is fundamentally impossible to measure exactly the state of
vegetation in all of its aspects, so a given model may always have an input BV that hasn’t
been measured in-situ.

This is why, to perform sampling, correlations between variables are in practice set as
empirical, arbitrary relationships. The LAI is a global variable that can be more easily
related to other vegetation variables. With a high LAI value that indicates a certain density
of vegetation, it is reasonable to assume that other BV, such as the chlorophyll content cannot
be low. Linking the LAI with other BV can be performed with a co-distribution function,
which is a function that restricts the range of variation [𝑣𝑙,0, 𝑣𝑢,0] of a BV 𝑣 along with the
value of the LAI. The co-distribution is applied to a given BV 𝑣 after it has been sampled,
and is transformed with a sampled LAI into a variable 𝑣⋆.

In this work, two linear co-distributions are considered. The first one, hereby designated
as co-distribution type 1, is defined in Inglada [2017], with the Equation 5.2:

𝑣⋆ = 𝑓1 (𝑣, 𝜇𝑣, LAI, 𝑐𝑣,LAI) = 𝜇𝑣 + (𝑣 − 𝜇𝑣) (1 − LAI
𝑐𝑣,LAI

) . (5.2)

This co-distribution requires 𝜇𝑣, the mode of the marginal distribution of 𝑣, and 𝑐𝑣,LAI, a
constant which sets the LAI for which ∀𝑣, 𝑣⋆ = 𝜇𝑣. It must be noted that this was erroneously
implemented for this work, but it lead to interesting observations. In Inglada [2017], the use of
the co-distribution assumes that LAI < 𝑐𝑣,LAI, with, in practice, LAI ∈ [0, LAI𝑇 ] , LAI𝑇 = 5
and 𝑐𝑣,LAI = 10. However, in this work, while sampling sets of PROSAIL BV, the LAI was
allowed to be sampled in the wider range [0, LAImax] , LAImax = 15. Consequently, there
were instances of sampled LAI > LAI𝑇 . To avoid having the range of 𝑣⋆ expanding for
LAI > 𝑐𝑣,LAI, the co-distribution type 1 is modified, from Equation 5.2 to Equation 5.3:

𝑣⋆ = 𝑓1 (𝑣, 𝜇𝑣, LAI, 𝑐𝑣,LAI) = 𝜇𝑣 + (𝑣 − 𝜇𝑣) (1 − min (LAI, 𝑐𝑣,LAI)
𝑐𝑣,LAI

) . (5.3)

This co-distribution is plotted in Figure 5.1. It highlights that the implementation mistake
modifies the behavior of the warping function. In the implemented version, the transformed
BV 𝑣⋆ saturates at 𝜇𝑣 for LAI ≥ 𝑐𝑣,LAI, whereas in the original version, the range of 𝑣⋆ is
restricted, but never reduced to a point.

In Weiss and Baret [2016], another co-distribution, here called type 2, is defined to sample
PROSAIL BV for the training data-set of the regression neural network of Sentinel Appli-
cation Platform (SNAP)’s Biophysical Processor (BP). This function, defined in Equation 5.4,
warps 𝑣 into 𝑣⋆ between a lower and upper bounds that vary linearly with the LAI.

𝑣⋆ = 𝑓2 (𝑣, 𝑣𝑙,0, 𝑣𝑢,0, 𝑣𝑙,𝑀 , 𝑣𝑢,𝑀 , LAI) = (𝑣 − 𝑣𝑙,0) (𝑓𝑢 (LAI) − 𝑓𝑙 (LAI))
𝑣𝑢,0 − 𝑣𝑙,0

+ 𝑣𝑙,𝑀 (5.4)
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Figure 5.1: Warping of a variable 𝑣 with the LAI into 𝑣⋆, with the co-distribution type 1.

The function 𝑓𝑙 (resp. 𝑓𝑢) defined in Equation 5.5 (resp. Equation 5.6), is the lower (resp.
upper) bound of 𝑣⋆ as a function of the LAI.

𝑓𝑙 (LAI) = 𝑣𝑙,0 + LAI
LAImax

(𝑣𝑙,𝑀 − 𝑣𝑙,0) (5.5)

𝑓𝑢 (LAI) = 𝑣𝑢,0 + LAI
LAImax

(𝑣𝑢,𝑀 − 𝑣𝑢,0) (5.6)

This co-distribution requires 4 constants:
• 𝑣𝑙,0 and 𝑣𝑢,0, which are the lower and upper bounds of the marginal distribution of 𝑣,

and are the bounds of 𝑣⋆ for LAI = 0,

• 𝑣𝑙,𝑀 and 𝑣𝑢,𝑀 , which are the lower and upper bounds of 𝑣⋆ for LAI = LAImax.
The co-distribution type 2 is a little more flexible than type 1. It can be noted that type 2

is similar to the original type 1, in that it doesn’t saturate the LAI after a certain threshold,
but warps 𝑣 with converging bounds. The constants required for both co-distribution types
are provided in Table 5.2. Its values are taken from Inglada [2017] for co-distribution type 1
and Weiss and Baret [2016] for co-distribution type 2. As neither 𝐶𝑐𝑎𝑟 and 𝑠𝑤 weren’t used
in either of these works, these parameters are excluded from the co-distribution computation.

5.1.3 Simulated reflectance data-sets
As the distribution of PROSAIL input variables are defined, a simulated data-set can be
generated. Samples of these data-sets are generated by a three step procedure:

1. Sets of PROSAIL input parameters are drawn from marginal sampling distributions,
as described in Table 5.1. Observation angles are drawn separately (see Figure E.1).

2. The PROSAIL input BV drawn are transformed linearly with the LAI, using co-
distribution type 1 (see Equation 5.3) or type 2 (Equation 5.4) along with the constants
defined in Table 5.2. The distribution of samples after applying co-distribution 1 is
shown in Figure E.2, and in Figure E.3 for co-distribution type 2.

3. The sets of sampled and correlated variables are taken as input to PROSAIL to simulate
canopy reflectance spectra, then S2 band reflectances.
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Figure 5.2: Warping of a variable 𝑣 with the LAI into 𝑣⋆, with the co-distribution type 2.

Table 5.2: Sampling co-distributions parameters for PROSAIL variables.

Variable 𝑣
Co-distribution

type 1 parameter
Co-distribution

type 2 parameters
𝐶LAI 𝑣𝑙,𝑀 𝑣𝑢,𝑀

𝑁 10 1.3 1.8
𝐶𝑎𝑏 10 45 90
𝐶𝑤,rel 10 0.70 0.80
𝐶𝑐𝑎𝑟 - - -
𝐶𝑚 10 0.005 0.0110
𝐶𝑏𝑟𝑜𝑤𝑛 10 0.0 0.2
LAI - - -
𝛼 10 55 65
ℎ 10 0.1 0.5
𝑠𝑤 - - -
𝑠𝑏 10 0.5 1.20
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5.2 Limitations of pre-simulation for PROSAIL inversion
Using data-sets generated with the above-defined sampling strategy, a neural network model
is proposed in subsection 5.2.1, to invert the PROSAIL model. Such data-sets are pre-
simulated, because they are generated prior to and independently from the training. Using
variations of this synthetic data-set, subsection 5.2.2 highlights the regression performance
dependence on data-set distribution.

5.2.1 BVNET
Biophysical variable neural network (BVNET) is originally a MATLAB tool developped by
INRA1, that manages the training of regression neural networks that perform the inversion
of PROSAIL to retrieve biophysical variables. In particular, this tool enabled to train the
neural network that is used in the BP of SNAP. In this thesis, BVNET will instead refer to
the class of neural networks whose architecture is the one used in SNAP’s BP. Specifically,
BVNET models take eight S2 band reflectances and observation angles cosines as input, and
predict a BV: (LAI, canopy chlorophyll content (CCC), canopy water content (CWC), fraction
of vegetation cover (F-COVER) or fraction of absorbed photosynthetically active radiation
(FAPAR). Each BV is predicted with a different neural network [Weiss and Baret, 2016]. The
canonical BVNET models in SNAP were trained using PROSPECT-3+SAILH simulations.
BVNET models have a very simple two-layered architecture, with only 66 trainable weights
(see Figure 5.3). The inputs 𝑥 of the model are normalized into ̃𝑥 as follows:

̃𝑥 = 2 𝑥 − min (𝑥)
max (𝑥) − min (𝑥) − 1, (5.7)

and the predicted BV 𝑦 is obtained after “de-normalizing” the network output ̃𝑦 as follows:

𝑦 = 1
2 ( ̃𝑦 + 1) (max (𝑦) − min (𝑦)) + min (𝑦) . (5.8)

BVNET can hardly be qualified as a deep neural network. On the one hand, this puts a
limit on the capacity of the model to perform the inversion, and to generalize to a wide variety
of cases. On the other hand, the low complexity of the model ensures fast convergence, and
prevents overfitting, even with relatively small training data-sets. Specifically, in Weiss and
Baret [2016] a data-set of 41472 samples is used for training a BVNET, which is a small
number for current deep-learning models, but is enough in this application.

In the remainder of this manuscript, the BVNET models that are used to predict BV
in SNAP’s BP (with canonical weights) will simply be referred as SNAP, whereas “BVNET
models” will refer to neural networks that were trained during this thesis. In the following, the
training of BVNET models is performed with simulated data-sets. They are optimized with
a mini-batch gradient descent strategy. They are initialized with the multiple initialization
and best instance training (MIBIT) strategy (see subsubsection 3.3.2.3), and the learning
rate (lr) is scheduled with a cyclical plateau reduction (CPR) (see subsubsection 3.3.2.2).
The mean squared error (MSE) loss of the BV estimate ̂𝑦 from the simulated reference BV 𝑦
is used:

ℒBVNET = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑦𝑖)
2 , (5.9)

with 𝑁 the batch size. The hyper-parameters and configuration for BVNET trainings are
provided in Table 5.3.

It can be noted that it is possible to initialize BVNET with the canonical weights of
SNAP. This neural network can then be used as-is, or it can be further trained on other
data-set. In the latter case, the model benefits from an admittedly good initialization.

1Institut National de la Recherche Agronomique, that merged with Institut national de recherche en
sciences et technologies pour l’environnement et l’agriculture (IRSTEA) into Institut national de recherche
pour l’agriculture, l’alimentation et l’environnement (INRAe) in 2020.
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Figure 5.3: BVNET neural network architecture.

Table 5.3: Training configuration and hyperparameters for BVNET.

Training
Optimizer Adam
Batch size 5000
Epochs 500

lr

lr scheduler CPR
lr at start of training 10−3

lr reduction factor 10
Minimum lr 10−8

Initialization
(MIBIT)

Number of initialized models 10
Number of epochs 20
lr 10−3
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5.2.2 The effect of a LAI distribution mismatch
In the following, the effect of the pre-simulated training data-set on neural-network inversion
performances is assessed with respect to (w.r.t.) the marginal distribution of the parameters.
First, data-sets with different distributions are generated. Specifically, these data-sets are
sampled with the canonical PROSAIL BV distributions, except for the LAI distribution
which is made to vary. Then, BVNET models are trained using these data-sets, and their
performances on LAI retrieval are compared.

5.2.2.1 Data-sets

To evaluate the effect of a distribution difference between data-sets, a reference testing data-
set (see subsubsection 3.3.2.4) 𝒟test is first created. 𝒟test is generated with PROSAIL
(PROSPECT-5 + 4SAIL) as depicted in sec.5.1.3, with the distributions in Table 5.1 and
the co-distribution type 2 with the constants of Table 5.2. A number 𝑁𝑡 = 40000 samples
are drawn.

Then, different data-sets 𝒟𝑖 with 𝑁𝑖 = 40 000 samples are produced, with identical
distributions and co-distributions than 𝒟test, except for the distribution of LAI. The LAI is
sampled from a TN distribution 𝑝𝑖 with range [0, 15], and with parameters 𝜇𝑖 ∈ {0, 1, 2, 3, 4},
𝜎𝑖 ∈ {0.5, 1, 2, 3, 4}. The case 𝜇𝑖 = 2 and 𝜎𝑖 = 3 matches the LAI distribution of 𝒟test. The
data-sets are randomly split into a training data-set 𝒟train,𝑖, and validation data-set 𝒟valid,𝑖,
with 𝑁train,𝑖 = 38 000 and 𝑁𝑣𝑎𝑙𝑖𝑑,𝑖 = 2000 samples (5%).

For each training data-set, 𝑛 = 10 BVNET models are trained, to ensure that training
randomness doesn’t affect the results.

Also, the in-situ data-set of section 2.4, with measured LAI and corresponding true S2
bands 𝒟IS (see section 2.4), is also used as a testing data-set, as a complement to the simulated
𝒟test.

5.2.2.2 Regression performance and distribution divergence

The root mean squared error (RMSE) is the metric used (see Equation 3.7) to quantify
the LAI inference performance on testing data-sets. The mismatch between the distribution
𝑝train,𝑖 of a simulated training data-set and 𝑝test of simulated testing data-set is quantified
with the Kullback-Leibler divergence (KLD) between the theoretical sampling distributions
of LAI of both data-sets: DKL (𝑝test‖𝑝train,𝑖) (see subsubsection C.4.6.1 for derivation and
formula of KLD between TN distributions).

The effect of a difference in LAI sampling distribution between training and testing data-
sets over prediction performance is shown 5.4. For both testing data-sets 𝒟test and 𝒟IS, the
results show that there is a sensitivity of performances to the distribution of the training
data-set, as the RMSE is not constant. Overall, the more the training distribution diverges
from the evaluation data-set, with the KLD between them increasing, and the worse the
inference performance is, on both 𝒟test and 𝒟IS. The best performing BVNET configuration
on 𝒟test, is the one that has the same sampling LAI distribution (𝜇train = 2, 𝜎train,𝑖 = 3).
The behavior of the LAI RMSE over the simulated evaluation data and the in-situ evaluation
data-set is similar. It can be remarked that the RMSE increase with the KLD distributions
isn’t monotonic. This suggests that the 𝐾𝐿𝐷 as a distribution mismatch quantification may
not be the best performance indicator. Perhaps another distribution divergence would show
better correlation with the prediction error.

It can be noted that the BVNET trained with a data-set with 𝜇train,𝑖 = 4 and 𝜎train,𝑖 = 0.5,
with high KLD (8.75), has a similar performance on in-situ data than BVNET with lower
KLD. This can be explained by considering that the reference LAI in in-situ data has an
average of 3.7 (excluding soil measurements), which is close to the mode 𝜇train,𝑖 = 4. With
low LAI standard deviation (std) (𝜎train,𝑖 = 0.5), these models specialize in retrieving LAI
that are close to that observed in 𝒟IS. Conversely, these BVNET perform worse on 𝒟test, as
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Figure 5.4: RMSE of LAI regression (average over 𝑛 = 10 models) on 𝒟test and 𝒟IS as a function of the
KLD between the LAI distributions of the simulated training and testing data-sets, and comparison
with SNAP (horizontal red lines).
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they are too specialized on LAI that are away from the mode 𝜇test = 2 of 𝒟test. Similarly, all
BVNET configurations with 𝜇train,𝑖 = 4 have a RMSE on 𝒟IS that is close to the minimum.

Finally, some BVNET trained here have a comparable LAI RMSE to SNAP on 𝒟IS.
With low KLD, these models have the distributions that match best that of Simplified Level
2 Product Prototype Processor (SL2P)’s BVNET. This corroborates that the LAI distribution
of the evaluation data-set (that is also the distribution used to train SNAP) is well-chosen, as
changing it leads to a decrease in prediction performance on the in-situ data. Interestingly,
SNAP is not the best model on 𝒟test. Despite the distribution of training data-sets being
close to that of SNAP, there are differences in simulations due to the difference in PROSAIL
versions. The influence of the model configuration over performances is further highlighted
in the following subsection 5.2.3.

The influence of a mismatch of a variable of interest distribution between the available
training data and evaluation data over supervised regression accuracy, is not unique to the
retrieval of LAI with BVNET, or even to space-borne remote sensing. For instance, Yang et al.
[2022] attempts to perform the inversion of a so-called seismic full-waveform model to retrieve
seismic wave velocity from seismic data in a scenario of CO2 leakage from an underground
storage reservoir. They perform inversion with “InversionNet” a supervised regression neural
network which can be compared with BVNET. Available (simulated) training data-sets under-
represent certain types of CO2 leakage scenario. By using data-augmentation to add training
samples for these scenarios, their InversionNet performance improves significantly.

5.2.3 The effect of model version and variable co-distributions

The previous subsection focused on the influence of the distribution of a single parameter, the
LAI, in the inversion of PROSAIL. However, as developed in subsection 5.1.2, model para-
meters, matching real-world variables, are governed by joint distributions, and not simply
their marginal distributions. As these joint distributions are usually intractable, arbitrary
co-distributions are used instead. Furthermore, the specific model used for pre-simulating
training samples is not unique. The different versions of PROSAIL can be considered as
different models altogether. In the following, how the choice of an empirical relationship
between variables affect the performance, is investigated for the inversion of PROSAIL. Addi-
tionally, the influence of the version of the PROSAIL model used to generate training samples
is assessed. Also, the retrieval performance will be estimated on LAI and CCC.

5.2.3.1 Data-sets

Similarly to subsubsection 5.2.2.1, different training data-sets are generated with PROSAIL,
this time to evaluate the effect of the choice of a PROSAIL model, and the input variable
co-distribution. More specifically, the effect of the PROSPECT leaf RTM is evaluated (see
section 4.1). For this goal, four different training data-sets are simulated by following the
procedure described in 5.1.3. Each of those data-sets is built with a combination of a PROS-
PECT model version (5 or D) and with a co-distribution type. Besides, the distribution of all
variables is set as described in Table 5.1. These data-sets are denoted 𝒟𝑉 ,𝑖, with 𝑉 ∈ {5, 𝐷}
the PROSPECT version and 𝑖 ∈ {1, 2} the co-distribution type (see subsection 5.1.2).

As discussed in section 4.1, the difference between PROSPECT-5 and PROSPECT-D
lies in the introduction of an anthocyanin content 𝐶𝑎𝑛𝑡, and in the re-calibration of the leaf
refraction index and leaf specific absorption spectra. To keep the parameter distribution
independent of the model version, the required anthocyanin content is set to 0.0 µg cm−2

when generating a data-set with PROSPECT-D.
After generating the data-sets, they are randomly split into a training data-set 𝒟train,𝑉 ,𝑖,

and validation data-set 𝒟valid,𝑉 ,𝑖, with 𝑁train,𝑉 ,𝑖 = 38000 and 𝑁𝑣𝑎𝑙𝑖𝑑,𝑉 ,𝑖 = 2000 samples (5%).
Using these data-sets, different BVNET models that predict either LAI or CCC are trained.
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The CCC samples are simply generated from each data-set as the product of the LAI and
𝐶𝑎𝑏. For each data-set 𝒟𝑉 ,𝑖, there are 𝑛 = 20 BVNET models trained.

In this experiment, a synthetic testing data-set is not used. After training, the BVNET
tuned on 𝒟𝑉 ,𝑖, denoted BVNET𝑉 ,𝑖, are compared through their retrieval performance on the
in-situ data-set 𝒟𝑖𝑛−𝑠𝑖𝑡𝑢 for LAI and CCC (see section 2.4).

5.2.3.2 Regression performance as a function of PROSPECT version and variable
co-distributions

The regression performances of LAI and CCC (RMSE) on the in-situ testing data-set 𝒟IS of
BVNET trained on each data-set are provided in Figure 5.5.

A quantitative evaluation is performed using the previously described in-situ LAI and
CCC validation data (see section 2.4). Figure 5.5 shows the obtained results which corroborate
that the different simulation engineering designs impact the BVNET performances. Unfortu-
nately, concluding which configuration to choose from the results is not straightforward. For
instance, co-distribution type 2 seems to improve LAI predictions whereas it deteriorates the
predictive performances of CCC. Despite being designed “erroneously” (see subsection 5.1.2),
the co-distribution type 1 is better for performing CCC regression. This highlights how
carefully sampling variables with a “well-chosen” distribution doesn’t necessarily imply optimal
performances.

Using PROSPECT-5 instead of PROSPECT-D increases the accuracy of LAI predictions
no matter the co-distribution used. PROSPECT-5 obtains slightly better performances for
CCC than PROSPECT-D for the co-distribution type 1. Conversely, the predictive accuracies
of these models decrease when the co-distribution type 2 is used. It can be noted that the
difference in performance observed here for CCC retrieval between PROSPECT versions in
training data-sets is corroborated in Hauser et al. [2021].

SNAP obtains the best performance on LAI retrieval, with only BVNET5,2 matching
it. However, the situation is very different for the CCC retrieval, as the RMSE of SNAP is
much higher than the other. The impact of simulation modeling design on predictive perfor-
mances explains why results obtained by the BVNET𝑣,𝑖 models are different from the ones
reached by SNAP. This is because the simulated data-set used to train SNAP is generated by
PROSPECT-3 model (this model doesn’t differentiate carotenoid from chlorophyll pigments,
see section 4.1). Besides, different strategies are used to characterize soil spectra required by
the SAIL model.

Another important remark of the obtained results is that the best performances of LAI
and CCC are not reached by the same training data-set.
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Figure 5.5: Box-plots of RMSE of LAI and CCC on in-situ testing data 𝒟IS for BVNET trained with
4 different data-sets. The data-sets naming convention is 𝒟𝑣,𝑖, with 𝑣 being the PROSPECT version
and 𝑖 being the co-distribution type used to generate the data-set samples. The horizontal red line
indicates SNAP metrics.

5.3 Arbitrary joint distributions and model inversion
In this chapter, the preponderant influence of a training data-set simulation for model
inversion with neural networks has been shown. Because the true distribution of the forward
model input parameters is unknown, arbitrary choices must be made. When generating
a training data-set with a forward model, this choice of the input parameter distributions
greatly affects the prediction performance of a model trained on it. The marginal distribu-
tion of each parameter has an influence. When the chosen training distribution diverges from
the testing distribution the model infers on, retrieval performances decline. Actually, when
studying the LAI found in nature, one finds that its distribution is dissimilar to the one
proposed for sampling training data-sets. The true LAI distribution is better fitted with a
log-normal distribution, heavily skewed toward lower values, whereas a TN centered around
𝜇 = 2 is used instead for training.

Moreover, even the correlations between the sampled parameters matters, making the
distribution choice even more difficult, because such correlations are even less established.
As it could be expected, even with identical input distributions, changing even slightly the
forward model used for data-set pre-simulation also has an influence. When contemplating
the choice between different forward models for simulation, one must also consider that their
optimal input parameter distribution may be different.

Furthermore, when considering the retrieval of several variables in model inversions, the
experiments have shown that a training data-set that works best for a given variable isn’t
necessarily optimal for others. Thus, ideally, each retrieved variable should be predicted
by a model trained with a dedicated data-set, to ensure optimal performance. Finally, the
distributions and models are only suited for certain cases (e.g. PROSAIL doesn’t correctly
describe all kinds of vegetation).

Designing and simulating a training data-set for model inversion with neural networks
takes a considerable amount of time and effort. Yet, all this work must be re-started
over, should the application change ever-so slightly: different observations, different sensors,
different models, etc. This approach remains labor-intensive. Therefore, a method that
bypasses the strenuous distribution selection for data-set pre-simulation would be interesting.
Such an approach, based on the theory introduced in Chapter 7, is presented in Chapter 8.
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In nature, observed phenomena are not directly accessible, they can not be known with
a full certainty. In fact, these phenomena can only ever be apprehended through represen-
tations (see section 1.3). Therefore, it is useful to think of these phenomena as random
experiments, on which the outcomes, or events are what is measured. The randomness in
measuring these phenomena can have multiple sources. The phenomena in itself can be
random in nature, such as quantum processes, for which Heisenberg’s indeterminacy principle
imposes a threshold under which the variance of certain pairs of physical properties cannot
be lowered. Stochasticity in the observation of the data itself can appear with measure-
ment noise. Randomness can also stem from the intractability of retrieving the full set
of causes of an event. For instance, a remote sensor may observe a sudden change in its
observation of a scene, (e.g. clouds obstructing the direction of view, crops being harvested,
urban constructions, etc...), that can appear as random because context was missing from
the sensor’s point of view. Phenomena can be aleatoric in nature. But even if they aren’t,
knowledge about them isn’t perfect and absolute but rather partial and flawed, i.e. they are
uncertain.

There is also uncertainty in how observed data can be explained, in how much a represen-
tation of a process (i.e. a model, see subsection 1.3.1) accurately captures its true nature.
For instance, Newton’s theory of gravitation proposes that gravity is a an attractive force
between any two objects that have mass. However, Einstein’s theory of general relativity
instead proposed that gravity isn’t a force per se, but a geometric effect of space-time itself
being curved by mass. The latter model of gravity is arguably closer to reality, and reduces
the uncertainty in our knowledge of the phenomenon. It enabled to take into account other
observations and make more accurate predictions. However, this model probably still isn’t
the whole truth. For instance, gravity still hasn’t been reconciled with quantum mechanics.
Thus the popular saying “all models are wrong, but some of them are useful”. While models
can never account for all aspects of reality, they may give predictions accurate to a certain
degree. Even if “false”, Newton’s model of gravity is still enough to explain the vast majority
of celestial movements. Likewise, PROSAIL (see Chapter 4) is not a perfect canopy radiative
transfer model (RTM), but it has been proved to allow accurate simulations.

In this chapter, probabilistic modeling that takes into account uncertainty of studied
phenomena into account, is introduced with section 6.1. Then inference methods that attempt
to retrieve underlying causes from observed data, are developed with Bayesian theory in
section 6.2. Variational inference, as an approximate Bayesian inference method is then
discussed in section 6.3, to lay the theoretical foundations of variational autoencoder (VAE)
explained in section 6.4. Finally, the disentanglement approaches which attempt to impose
particular solution to learned representations are discussed in section 6.5.

6.1 Stochastic modeling

At the basis of probabilistic modeling lies some observed data 𝒙 (in a vectorized form), part
of a data-set 𝒟𝒙, which is assumed to be drawn from a random variable 𝐱 with domain
𝕏. The significance of this probability attached to observations is discussed in section 6.2.
A statistical model of the data is a set, or family of probability distributions over 𝕏 (e.g.
exponential, Dirichlet distribution, etc...). A probabilistic model (or stochastic model) is one
such probability distribution, i.e. it is an element of a statistical model. For continuous
data, which are exclusively considered here, a stochastic model is a a density function over
the data: 𝑓𝐱 (𝒙) , 𝒙 ∈ 𝕏. In the following, random variables are denoted with capital latin
letters, whereas associated samples are lowercase. Also, the simpler notation 𝑝(𝒙) may be
used for density functions 𝑓𝐱 (𝒙) , 𝒙 ∈ 𝕏, as is customary in Machine Learning literature.

The data samples 𝒙 are assumed to be generated from a hidden underlying process with
an unknown, “true” distribution 𝑝⋆ (𝒙). The objective of stochastic modeling is to find a
distribution 𝑝 (𝒙) that matches as much as possible the true distribution, among distributions
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proposed by a statistical model. Tuning a stochastic model is about finding the probability
distribution that approximates the true distribution. In the context of machine learning, the
model is learning when it is able to be tuned directly from the observed data.

Probabilistic models can be used to generate data, therefore, in the field of Machine
Learning, they are also commonly called generative models. A generative model must be
able to generate new data 𝒙 that is similar to the observed data 𝒙. Despite not having
access to the underlying process of creation of the observed data, it must emulate it. Their
goal is not to replicate the true underlying process behind the data, but to find a generative
processes that can explain the data. This means that given any set of observed data, there
are multiple generative processes that can produce it (“all models are wrong, but some of
them are useful”). Selecting one generative model among many that can generate the data,
takes into consideration criteria that are outside of the generative models’ ability to generate
data (see section 6.5).

Let’s consider a simple setting to illustrate stochastic modeling, with a coin toss, for which
the observations 𝑥 are either heads (𝑥 = 0) or tails (𝑥 = 1). Bernoulli distributions ℬ, with
parameter 𝜃 are trivially proposed as a statistical model:

x ∼ ℬ (𝜃) . (6.1)

This model is determined by its likelihood function, i.e. the joint probability density1 of
observed data 𝑥 as a function of the parameters 𝜃:

𝑓x (𝜃, 𝑥) = 𝜃𝑥 (1 − 𝜃)1−𝑥 . (6.2)

The parameter 𝜃 represents the fairness of the coin, with 𝜃 = 0.5 for a perfectly fair coin.
The tuning of this model is about finding 𝜃 from observations. In the following, the density
function 𝑓𝐱 (𝜽, 𝒙) of a random variable 𝐱, with parameters 𝜽 is also denoted 𝑝𝜽 (𝒙).

6.1.1 Maximum likelihood estimation
The maximum likelihood estimation (MLE) maximum likelihood estimation is one of the
most used methods to tune probabilistic models from data. Assuming a data-set 𝒟𝒙 =
{𝒙𝑖, 𝑖 ∈ J1, 𝑁K} with independent and identically distributed (i.i.d.) samples 𝒙 of a random
variable 𝐱, the joint likelihood function of the observations can be factorized with the
observation likelihood:

𝑝𝜽 (𝒟𝒙) = 𝑝𝜽 (𝒙1, … , 𝒙𝑁) = ∏
𝒙𝑖∈𝒟𝒙

𝑝𝜽 (𝒙𝑖) . (6.3)

The associated MLE is:

̂𝜽MLE = argmax
𝜽

𝑝𝜽 (𝒟𝒙) = argmax
𝜽

∏
𝒙∈𝒟𝒙

𝑝𝜽 (𝒙) . (6.4)

The logarithm function is strictly increasing, thus for any function 𝑓 , maximizing 𝑓 is
equivalent to maximizing ln 𝑓 , or minimizing − ln 𝑓 . Consequently, maximizing the log-
likelihood of the model, or in the machine learning framework, minimizing the negative
log-likelihood (NLL) is often preferred:

argmin
𝜽

(− ln 𝑝𝜽 (𝒟𝒙)) = argmin
𝜽

⎛⎜
⎝

− ∑
𝒙∈𝒟𝒙

ln 𝑝𝜽 (𝒙)⎞⎟
⎠

. (6.5)

The introduction of the logarithm in the MLE enables to transform the product of the
likelihood of data-points into the sum of log-likelihoods, which is much easier to differentiate.

1Here a discrete probability density, or probability mass function.
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This is particularly interesting when the chosen statistical model is an exponential distribu-
tion family since the sum terms simplify. For instance with Gaussians, each term becomes
quadratic.

In the simple coin toss setting, the data-set 𝒟𝑥 contains a set of 𝑁 tossing results, assumed
to be i.i.d.2. Assuming a number 𝑛 of tails, the NLL is simply:

ℒ (𝜃) = 𝑛 ln 𝜃 + (𝑛 − 1) ln (1 − 𝜃) . (6.6)

The optimal 𝜃 is derived from dℒ(𝜃)
d𝜃 = 0, which yields 𝜃 = 𝑛

𝑁 . The best estimate of the fairness
of the coin is simply the ratio of tails over the number of throws. In this experiment, the
true value of the sought quantity is accessed with a sufficiently large number of repetitions.
As will be discussed in 6.2, this approach is referred as frequentism.

6.1.2 Parametric models
A particular class of statistical models are parametric models. Parametric models are sets ℙ of
probability distributions such that there exists some subset of a finite dimensional Euclidian
space whose vectors 𝜽 (the parameters) index the probability distributions :

∃𝑘 ∈ N∗ such that (s.t.) ℙ = {𝑃𝜽, 𝜽 ∈ Θ ⊂ R𝑘} (6.7)

In other words, a parametric model is a statistical model whose elements, the probabilistic
models (distributions), are associated with a finite dimensional vector parameter. Therefore,
the parametric distributions are uniquely determined by their parameters. When the mapping
between distributions and vector parameters is a bijection, the parametric model is identifiable.
Identifiability is usually a requirement when considering parametric models. In the previous
example of coin toss, the fairness of the coin is the vector parameter that indexes the
parametric Bernoulli statistical model of the experiment.

A distinction must be made when qualifying models as parametric, depending on the
context. The Machine learning field shares common objects of interest with adjacent disciplines,
and in particular with statistics. Nonetheless, despite sharing common tools and methods,
the notions of a parametric model, or even of a parameter, are a little different among
communities. In statistics, a parameter is a characteristic of the data. As discussed above,
statistical parametric models are characterized by their parameter of interest being of finite
dimension. Conversely, in Machine Learning, a model parameter is a configuration variable
that is internal to the model, and that must be optimized from the data (e.g. the weights
of a neural network). A parametric model is a function parameterized by a finite set of
those variables, and that learns to map inputs to outputs. These parameters are fixed when
training is over. Non-parametric machine learning models make weaker assumptions about
the form of the mapping function. These methods may either not use parameters, they may
not be fixed after training, or they may not be constant in number. These methods include
k-means, decision trees and support vector machines (see section 3.2). This difference in
definition tends to blur, because recent Machine Learning (ML) approaches have thrived in
incorporating Bayesian methods, as will be seen in section 6.4. Which parameter is discussed
shall either be specified, or inferred from the context.

6.2 Bayesian inference
In the previous coin tossing experiment, 𝜃 is a parameter of a model of a single coin. The
parameter 𝜃 was unknown, but was assumed to have a true value that can be approximated.
This setup is commonly described as a frequentist approach. In Bayesian statistics [Bernardo
and Smith, 2009], the unknown parameter is treated as a random variable 𝛉, and therefore

2Here, the samples in 𝒟𝑥 can be described by a binomial distribution with parameters 𝑁 and 𝜃
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described with a distribution3. This approach is about assuming a prior distribution 𝑝 (𝜽)
over the unknown variable, as a first guess, which is then updated from observations 𝐱 into
a posterior distribution 𝑝 (𝜽|𝐱), as an educated guess. This approach revolves around the
Bayes’ theorem:

𝑝 (𝜽|𝒙) = 𝑝 (𝒙|𝜽) 𝑝 (𝜽)
𝑝 (𝒙) . (6.8)

𝑝 (𝒙) = ∫ 𝑝 (𝒙, 𝜽) d𝜽 is the marginal likelihood of the data, and 𝑝 (𝒙|𝜽) is, like before, the
conditional likelihood of the data.

Let’s resume our previous coin tossing example with a Bayesian approach. The fairness
of the coin is set as a random variable θ, and its the posterior distribution 𝑝 (𝜽|𝒙) which is
estimated. This time, only a single toss of the coin is considered. The experiment is still
modeled with a Bernoulli distribution : 𝑝 (𝑥|𝜃) ∼ ℬ (𝜃). As a prior 𝑝(𝜃), we choose a beta
distribution 𝛽 (𝑎, 𝑏), a continuous distribution over the interval [0, 1]. For instance, selecting
𝑎 = 𝑏, enables the prior to be symmetrical and centered around 𝜃 = 0.5.

Selecting a beta distribution as the prior is actually a “good” choice, because the Bernoulli
distribution is a conjugate prior for the Bernoulli distribution [George et al., 1993]. This
implies that the posterior distribution is also a beta distribution, thus simplifying the computa-
tion. In this case, the marginal likelihood integral can be analytically computed, and the
right-hand side of Bayes formula (Equation 6.8) can be simplified. The posterior 𝑝 (𝜃|𝑥)
follows a beta distribution whose parameters depend on the observed data 𝑥:

𝑝 (𝜃|𝑥) ∼ 𝛽 (𝑎 + 𝑥, 𝑏 + (1 − 𝑥)) . (6.9)

The posterior distribution was obtained by updating a prior distribution with an observation.
As illustrated by this example, the Bayesian approach has several advantages. It enables

an uncertainty quantification for the unknown variable. Contrary to a frequentist approach
which assumes a certain number of repetitions of the experiment, Bayesian statistics only
consider one instance. By using the computed posterior as the new prior, it is possible to
iterate and take more observed data into account4.

Bayesian statistics are often qualified as “subjective”. This is because it involves selecting
a prior distribution 𝑝 (𝜽), and a stochastic model 𝑝 (𝒙|𝜽). One could argue that frequentist
statistics are just as subjective because they also assume a model for the data. Nonetheless,
the influence of the prior distribution over the posterior decreases the more it is updated with
new data.

Besides, Bayesianism and frequentism differ in their conception of probability. The
frequentist framework only involves probability as an interpretation of frequencies observed
in the long run, when experiments are repeated sufficiently enough. An important question
is then how much repetition should be carried out for the frequencies to be significant. The
probability of an event is an idealized, asymptotic proportion of times in which this even
occurs in a large number of repeated observations under the same conditions. For Bayesian ap-
proaches, the unknown parameter is given a probability distribution for itself, independently
of the observed data. Probability is used to quantify uncertainty, and represents a degree of
belief regarding the system.

6.2.1 Latent variable models
In Bayesian inference introduced in the previous paragraph, the observations 𝐱 are conditioned
on a variable 𝛉 which is also a random variable. This variable isn’t observed (i.e. not

3Technically, 𝛉 is unknown, but with a fixed value, and the associated distribution is a measure of uncer-
tainty about the value of this variable, or degree of belief.

4By modeling the experiment with a binomial distribution with the size of the data-set as parameter 𝑁,
the final posterior can be obtained without iterating through the data-set: 𝑝 (𝜃|𝑥) ∼ 𝛽 (𝑎 + 𝑥, 𝑏 + (𝑁 − 𝑥)),
with 𝑥 the number of tails.
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present inside the data-set), and it must be estimated indirectly. Retrieving the value of
this unobserved variable requires a likelihood model 𝑝 (𝜽|𝒙), a prior 𝑝 (𝜽), and some observed
samples 𝒙. For instance, in the coin tossing experiment, the fairness of the coin, is an
unobserved parameter that can be different for various coins. This variable is directly used
as the parameter of a Bernoulli distribution that conditions the coin toss.

Such a unobserved variable is called a hidden variable, or a latent variable. It is commonly
denoted 𝐳 in the variational inference context (see subsection 6.3.2), and this notation will be
used from now on. A point must be made here about the distinction, or lack thereof, between
latent variables and model parameters, which will denote 𝐳 and 𝜽. Theoretically, Bayesianism
doesn’t actually distinguish unobserved random variables as parameters and latent variables
for a stochastic model. Bollen [2002] acknowledges the diversity of definitions for latent
variablesand gives a general definition as “variables for which there is no sample realization
for at least some observations in a given sample”. A classification between hidden random
variables occurs depending on the context, on the application, and also often depending on
the author. In the following paragraph, an arbitrary distinction between parameters and
latent variables is proposed to accommodate the context of this work.

A parameter 𝛉 is a tuning parameter of a parametric function that implements a proba-
bilistic model. This parameter may be optimized, however it is supposed to remain constant
for all observations 𝒙, it is a global variable. This parameter may be either considered deter-
ministic or random, depending on the needs. In the former case, a parameter can be directly
attributed to the machine learning definition of a model parameter (see subsection 6.1.2),
and its retrieval is referred as calibration rather than inversion (see subsection 3.1.1). A
latent variable 𝐳 is a random variable that is not optimized, and represents an intrinsic
property of the observations which they are conditioned on. Its key feature, is that it is
a local variable, i.e. each observation 𝒙𝑖 is associated with a different latent variable 𝐳𝑖.
Furthermore, latent variables represent properties of observations, expressed through a formal
model. However, latent variables may not be directly identifiable to specific properties, they
may just correspond to an arbitrary feature that explains the variability in observed data.
This aspect will be further discussed in section 6.5.

Recalling the previous coin example, the model of a toss is a Bernoulli distribution, and
the fairness is an unknown distribution parameter. The coin fairness may be computed
as a model parameter, or a latent variable depending on the context. If there is a single
coin from which all observations are made, then the coin fairness may be better seen as a
model parameter (in a frequentist point of view) or as a global latent variable (in a Bayesian
point of view). Once an estimate is found for the coin fairness, it can be used to model all
observations. However, if we consider the possibility of multiple coins, the fairness is not
necessarily identical among the coins. It must be inferred for all coins separately, and is best
described as a local latent variable.

A stochastic model can both have model parameters and latent variables. Suppose a
slightly more complex model of the coin tossing experiment is made. The coin fairness is
still used to model the probability of heads and tails as a Bernoulli distribution. However
the variable of interest, which will be used as a latent variable, will be an intrinsic property
of the coins. For instance, the coins can be assumed imperfect thin and flat cylinders, with
imperfections, they can be bent, or their alloy density is not uniform throughout the coin.
We define as latent variable 𝐳, some sort of deviation of the mass distribution in the coin from
an ideal cylindrical coin. The fairness of the coin will be influenced by this hidden physical
property. We then assume that there is a parametric generative function (deterministic or
not) 𝑓𝜽 (𝒛) that links the fairness of a coin with its physical property. The deterministic
parameter 𝜽 is an intrinsic property of the model but external factors can be considered as
well, such as parameters pertaining to the experiment condition e.g. the local gravity vector,
atmospheric conditions, magnetic fields, etc. In this case, the stochastic model likelihood is:

𝑝𝜽 (𝒙|𝒛) = 𝑝 (𝒙|𝒛, 𝜽) ∼ ℬ (𝑓𝜽 (𝒛)) . (6.10)
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The parametric model 𝑓𝜽 may be arbitrarily complex. In the following of this work in
particular, the trainable weights of neural networks will be designated by 𝜽.

A probabilistic model that implements the relationship between latent variables 𝐳 and
observed data 𝐱 is not only the conditional distribution 𝑝𝜽 (𝒙|𝒛), but the joint distribution
𝑝𝜽 (𝒙, 𝒛). 𝜽 is tuned so that 𝑝𝜽 (𝒙, 𝒛) of the model approaches the true distribution 𝑝 (𝒙, 𝒛).

In most cases, 𝐱 and 𝐳 are not attributed a symmetrical role and meaning. For instance,
𝐱 is assumed to have a higher dimension and/or a higher complexity than 𝐳.

It is depending on the application, that a conditional likelihood between 𝐳 and 𝐱 is
preferred over the other:

• In the context of data generation, the conditional distribution 𝑝 (𝒙|𝒛) is used. In this
case, the conditional likelihood is a generative process and 𝐳 is a generative factor of
𝐱. A parametric generative function 𝑓𝜽 (𝒛) may govern the conditional distribution
of observations 𝐱: 𝑝𝜽 (𝒙|𝒛) = 𝑝 (𝒙|𝒛, 𝜽) = 𝑝𝜽 (𝒙|𝑓𝜽 (𝒛)). 𝜽 are then global generative
parameters.

• In classification or regression, it is rather 𝑝 (𝒛|𝒙) that is used. In this case, the
conditional likelihood is an inference model (or recognition model), with 𝐳 being a
feature, or a representation of 𝐱. An inference function 𝑓𝝓 (𝒙) may govern the conditional
distribution of latent variables 𝐳: 𝑝𝝓 (𝒛|𝒙) = 𝑝 (𝒛|𝒙, 𝝓) = 𝑝 (𝒛|𝑓𝝓 (𝒙)), with 𝜙 a
dedicated global parameter vector.

This leads to introducing a cause-effect relationship, between 𝐱 and 𝐳. This causality
relationship is technically not due to any precedence of 𝐳 or 𝐱, but rather because it leads
to consider 𝐳 and 𝐱 as the input or the output of the model. Nonetheless, in practice 𝐳 is
considered a cause to 𝐱.

In the context of Bayesian statistics inference is commonly defined as the process of
prediction of the cause of a phenomena from the effects. Hence the name of inference model
for 𝑝 (𝒛|𝒙). Estimation of a latent variable from observations is called inference because a
latent variable can be thought as the hidden cause that generates some observed data 𝐱. In
the previous coin tossing example, the fairness of the coin is inferred from heads and tails
observations.

A stochastic model 𝑝 (𝒛, 𝒙) is also called a generative model, especially in the Machine
Learning field. This is because it enables to generate new data 𝐱 by using 𝑝 (𝒙|𝒛), along with
a prior 𝑝 (𝒛). The distribution of latent variables is more simply called the latent distribution.
A realization of this distribution is called a latent vector, that belongs to a finite dimensional
latent space.

6.2.2 Point estimation
When performing statistical estimation, a common goal is to approximate a quantity of
interest. Selecting a single value in the parameter space is performing point estimation, or
choosing a point estimate, as a “best estimate”, a plausible value of the unknown quantity
[Lehmann and Casella, 2006]. Frequentist approaches naturally produce such point estimates,
for they are usually concerned with the expected value of the distribution of the parameter
of interest.

In the case of Bayesian approaches, the parameter of interest is explicitly modeled as a
probability distribution, and the estimated quantity is not a point estimate but the distribu-
tion itself. For Bayesian inference, performing point estimation is therefore about choosing
a particular value of the computed posterior distribution, and is by essence arbitrary. The
most common point estimates of distributions are:

• the expected value, as the average, or barycenter of the distribution,

• the median, as the “middle” value between the lower and higher half of the distribution,
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• the maximum a posteriori (MAP), as the most likely or most frequent value of the
posterior distribution.

Once point estimates have been computed, they can be used for evaluating different estimation
metrics (see subsection 3.1.5).

The computational context matters a lot when selecting a point estimate. In particular,
the dimensionality of the posterior distribution can hamper the computation of some estimates.
For multi-dimensional distributions, the expected vector value is the vector of the expected
values. However, when the vector components are not independent, the mode (resp. the
median) of the distribution cannot be computed as the vector of the mode (resp. the
median) of the marginal distributions. In fact, there is no exact algorithm for computing
the median of a distribution in dimension greater than 1, it is an optimization problem5

[Lin and Vitter, 1992]. For sampling methods (see subsection 6.3.1), the estimation of the
mode of the posterior distribution is very sensitive to the number of samples, which makes it
unreliable for high dimensional posteriors. Finally, the notion of a point estimate falls apart
for multi-modal distributions with similarly high likelihood maxima. With such distributions,
there is no single best representation of the data.

6.2.3 Measuring uncertainty

One of the main advantages of using statistical models, either in a frequentist or in a Bayesian
context, is that uncertainty is taken into account in data analysis. Overall, uncertainty is
accounted for with the use of intervals, that are given a certain probability of containing the
“true value” of some estimated quantity. However, depending on the context, these intervals
are different [Altman et al., 2013].

6.2.3.1 Confidence intervals

Frequentist approaches typically assume that the quantity of interest 𝜃 of some data x is
unknown, but not random. Given data samples 𝒙𝑛 = (𝑥𝑖)𝑖∈J1,𝑛K, confidence intervals are
commonly defined as intervals 𝕀 (𝒙𝑛) = [𝑙 (𝒙𝑛) , 𝑢 (𝒙𝑛)], such that the probability of the
quantity of interest being in the interval is given by a confidence level 𝛼:

𝑃 (𝜃 ∈ 𝕀 (𝒙𝑛)) ≥ 1 − 𝛼 (6.11)

It can be noted that it is confidence intervals themselves that are random in nature, as they
depend on random data samples.

The true definition of confidence intervals is actually a little more subtle. Let there be
a procedure 𝑓 that maps data samples 𝒙𝑛 to subsets 𝑓 (𝒙𝑛) of the parameter space Θ. The
probability 𝑃 (𝜃 ∈ 𝑓 (𝒙𝑛)) is always defined. When ∀𝒙𝑛, 𝑃 (𝜃 ∈ 𝑓 (𝒙𝑛)) ≥ 1 − 𝛼, then the
subsets 𝑓 (𝒙𝑛) are confidence intervals with confidence level 1 − 𝛼. The higher the confidence
level, the larger the confidence interval. The definition of confidence intervals is not about
one given interval, but about the procedure that generates them. Considering a data-set,
from which multiple confidence intervals are computed from data sub data-sets, the long-
term frequency of a given confidence interval containing 𝜃 is defined by the confidence level.
However, in practice, only a single confidence interval is ever computed from data, which
commonly leads to shift the definition.

The nuance can be further appreciated by considering the probability of the true parameter
belonging to confidence intervals. The actual probability of a given confidence interval 𝑓(𝒙𝑛)

5The geometric median generalizes the notion of median to higher dimension, as the point which minimizes
Euclidean distance within the distribution: for samples (𝒙𝑖)𝑖∈J1,𝑚K s.t. ∀𝑖 𝒙𝑖 ∈ R𝑛, the geometrical median
is arg min

𝒙∈R𝑛
∑𝑚

𝑖=1 ‖𝒙𝑖 − 𝒙‖2.
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containing 𝜃, is the interval’s coverage probability. The confidence level however, is the lower
bound of the coverage probability:

1 − 𝛼 = inf
𝜃∈Θ,𝑓(𝒙𝑛)⊂Θ

𝑃 (𝜃 ∈ 𝑓(𝒙𝑛)) (6.12)

Confidence intervals, defined above in the one-dimensional case, are extended into confidence
regions in the multi-dimensional case.

6.2.3.2 Credible intervals

Credible intervals are the Bayesian counterpart of confidence intervals. In Bayesian statistics,
the unknown parameter θ is associated with a probability distribution. A credible interval is
simply a subset of the parameter space, within which samples of the random parameter θ fall
with a certain probability, derived from the distribution of said parameter. For instance, if
the distribution of θ is such that 𝑃(θ ∈ [𝑎, 𝑏]) = 1 − 𝛼, then [𝑎, 𝑏] is a 1 − 𝛼 credible interval
for θ. Contrary to Frequentism, which considers the unknown parameter as fixed, and the
confidence interval as random, Bayesianism defines the unknown parameter as random, and
selects a fixed credible interval. It can be noted that the distribution used to construct credible
intervals isn’t necessarily the posterior distribution 𝑝 (𝜃|𝑥), but it can be the prior 𝑝 (𝜃) as
well. Credible intervals are non unique, and a selection is inherently arbitrary. Common
intervals include:

• Mean-centered intervals, for which the distribution expected value is at the middle of
the interval.

• The equal-tailed intervals, which ensures identical probability of being above and below
the interval. This interval notably includes the median.

• The (HDI), often specified as highest density posterior (or prior) interval, for which the
included values have the maximum possible probablity. This interval is the narrowest
possible, and contains the maximum likelihood. Variations of the HDI which allow
disjoint intervals as subsets that suit well multi-modal distributions, by providing a
finite set of intervals of high probability density around each mode.

6.2.3.3 Prediction intervals

Finally, another type of interval that quantifies uncertainty about an unknown quantity are
prediction intervals. Prediction intervals broadly refer to any interval assumed to contain a yet
unobserved variable of interest6, with a certain probability the prediction interval nominal
coverage (PINC) (the analog of the confidence level of confidence intervals) [Landon and
Singpurwalla, 2008]. The distinction between prediction intervals and the above-defined
intervals is rather blurry. A prediction interval can be considered a confidence interval or a
credible interval depending on the context. In the Bayesian context of this work, prediction
intervals are taken as credible intervals of posterior distributions. Prediction intervals are at
the core of uncertainty quantification [Abdar et al., 2021; Edupuganti et al., 2021].

Like other intervals, the width of a prediction interval depends on the choice of a coverage
probability. This choice largely depends on the considered application, however it can be
noted that imposing high coverage probability (e.g. 95%) usually leads to impractically large,
“embarrassingly wide” prediction intervals [Granger, 1996]. Landon and Singpurwalla [2008]
argues that the choice of this probability should be motivated by the application context,
with the actual use of the prediction interval, in the fashion of an optimization problem. The

6In many domains concerned with forecasting, a variable to be observed is often referred as a future value.
However this terminology only references the type of data that are used, by no mean this variables needs to
be produced in the future, it just means that it hasn’t yet been taken into account by the model.
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size of prediction intervals can be assessed with the mean prediction interval width (MPIW),
which is simply the average width of prediction intervals [𝑎𝑖, 𝑏𝑖]:

MPIW = 1
𝑁

𝑁
∑
𝑖=1

𝑏𝑖 − 𝑎𝑖. (6.13)

The ability of prediction intervals to correctly contain the yet-unknown variable of interest
can be assessed after it has been observed. However, this can’t be done for a single interval,
because then the probability of the interval containing the true value is either 0 or 1, it
can only be inside or outside. This is the prediction interval coverage 𝑐 (𝜃). However,
with multiple prediction intervals related to multiple values of interest, a prediction interval
coverage probability (PICP) can be computed as long term coverage frequency with the mean
of the prediction interval coverage [Ak et al., 2015]:

PICP = 1
𝑁

𝑁
∑
𝑖=1

𝑐𝑖 (𝜃𝑖) . (6.14)

Ideally, the PICP should be as close as possible to the PINC [Zheng et al., 2022].

6.3 Approximate inference
Let there be a probabilistic model that has observations 𝐱 and latent variables 𝐳, with its
joint density 𝑝(𝒙, 𝒛). Given the observations 𝐱, the objective is to perform the inference of
𝐳, i.e. to compute 𝑝(𝒛|𝒙) as the posterior distribution. To do that, the generative process
𝑝 (𝒙|𝒛) is chosen along with a prior distribution on latent variables 𝑝 (𝒛). As introduced in
section 6.2, the Bayes theorem (equation (6.8)) states that :

𝑝(𝒛|𝒙) = 𝑝(𝒙|𝒛)𝑝(𝒛)
𝑝(𝒙) . (6.15)

The right hand side denominator 𝑝 (𝒙) = ∫ 𝑝 (𝒙, 𝒛) d𝒛 is the marginal likelihood of the
observations, also called model evidence, or simply evidence. When the marginal likelihood
can be computed by marginalizing the stochastic model over latent variables, the posterior
distribution can be directly derived from the Bayes formula. In section 6.2 was shown an
example of a coin tossing experiment for which the setting allowed to perform exact inference
of the posterior distribution.

However in most cases the evidence integral is intractable, mainly in cases of high dimen-
sionality of the latent variable. To retrieve the posterior 𝑝(𝒛|𝒙) despite 𝑝 (𝒙) being inaccessible,
there are two main approaches:

1. The sampling approach: the exact posterior distribution is sampled by using a Markov
Chain Monte Carlo (MCMC) algorithm, enabling to estimate various statistics (mean,
median, variance, etc...). These methods are usually very accurate, but very computa-
tionally expensive, and hardly scale up for large inference problems.

2. The variational inference approach [Jaakkola, 1997; Jordan et al., 1998; Saul and
Jordan, 1995]: the posterior distribution is approximated by selecting the closest distribu-
tion among a chosen distribution family. While less accurate than sampling methods,
it is computationally faster, and as detailed in section 6.4, it has been recently used in
conjunction with deep learning for a huge performance gain.

6.3.1 Markov Chain Monte-Carlo
To compute the posterior distribution, MCMC sampling methods take a different approach
than variational inference (see subsection 6.3.2). MCMC sampling consists in building a
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Markov chain over the latent variables, and define its stationary distribution as the posterior
distribution [Geman and Geman, 1984; Hastings, 1970; Metropolis et al., 1957]. Once the
algorithm reaches equilibrium, samples are drawn from the Markov chain and are used to
derive statistics on the posterior distribution. Although very precise, this method has very
slow convergence and cannot scale up for large inference problems.

6.3.2 Variational inference

The variational inference methods approximate the true posterior 𝑝 (𝒛|𝒙) with a surrogate
distribution 𝑞(𝒛|𝒙), from a chosen distribution family 𝒬. This surrogate distribution to
the true posterior distribution is called the variational distribution. Most applications use
fixed-form, or structured variational inference, for which the substitute distribution is a 𝝀-
parameterized distribution 𝑞𝝀, belonging to 𝒬𝝀. In such case, 𝝀 are the variational para-
meters. In the remainder of this work, we assume the variational inference to be fixed-form.
For instance, if the distribution family is chosen as the beta distributions, then 𝝀 = (𝑎, 𝑏),
and 𝑞𝝀(𝒛|𝒙) ∼ 𝛽 (𝝀).

The variational parameters 𝝀 are local parameters (see subsection 6.2.1), meaning that a
variational parameter vector 𝝀𝑖 is associated to each latent variable 𝒛𝑖.

A distinction must be made between the terms variational distribution, latent distribu-
tion, and posterior distribution. The latent distribution is simply the distribution of latent
variables, in a general context. When performing Bayesian inference, the distribution to
derive is the posterior distribution. Here, because it is the latent variables that are retrieved,
the posterior distribution is the latent distribution. The variational distribution, that is
specific to variational inference, is an approximation of the posterior that must be retrieved.
In the variational inference context, these terms all refer to the same distribution of latent
variables, and in this work, we refer to them interchangeably.

The term variational Bayes is often used interchangeably with variational inference.
Variational inference is the broad approach of using optimization to find surrogate distribu-
tions that match with an unknown distribution of interest. Variational Bayes is a variatio-
nal inference applied in the context of Bayesian inference of a posterior distribution. Non-
Bayesian variational inference approximate distributions without relying on a prior distribu-
tion Choi and Rim [2023]. Such methods are rare, variational inference is almost always used
to infer a posterior distribution in a Bayesian setting, and is assimilated with variational
Bayes.

6.3.3 Evidence lower bound

The variational distribution 𝑞𝝀(𝒛|𝒙) must be optimized (i.e. 𝝀 must be learned), so that
it is the best approximation of the true posterior among the variational distribution family
𝒬𝝀. To do that, the Kullback-Leibler divergence (KLD) (also called relative entropy, relative
information content, or I-divergence) is typically used to quantify the similarity between the
variational distribution and the true posterior, and optimized:

𝑞∗
𝝀(𝒛|𝒙) = arg min

𝑞𝝀∈𝒬𝝀

DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛|𝒙)] , (6.16)

with 𝑞∗
𝝀(𝒛|𝒙) the optimized variational distribution. However, this KLD cannot be directly

optimized, because it is still a function of the intractable evidence 𝑝(𝒙):

DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛|𝒙)] = E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑞𝝀(𝒛|𝒙)] − E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒛|𝒙)]

= E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑞𝝀(𝒛|𝒙)] − E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙, 𝒛)
𝑝(𝒙) ]

= E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑞𝝀(𝒛|𝒙)] − E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙, 𝒛)] + ln 𝑝(𝒙).

(6.17)
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Rearranging equation (6.17) yields:

ln 𝑝(𝒙) = DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛|𝒙)] + E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙, 𝒛) − ln 𝑞𝝀(𝒛|𝒙)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒELBO

(6.18)

The DKL is always positive, therefore the term

ℒELBO (𝝀, 𝒙) = E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙, 𝒛) − ln 𝑞𝝀(𝒛|𝒙)] (6.19)

is a lower bound on ln 𝑝 (𝒙). This term is called the evidence lower bound (ELBO)7. The
evidence is not a function of 𝝀, therefore minimizing DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛|𝒙)] with respect to
(w.r.t.) 𝝀 is equivalent to maximizing the ELBO8. Rearranging the ELBO yields:

ℒELBO (𝝀, 𝒙) = E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙, 𝒛) − ln 𝑞𝝀(𝒛|𝒙)]
= E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙|𝒛) + ln 𝑝(𝒛) − ln 𝑞𝝀(𝒛|𝒙)]

= E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙|𝒛)] − E𝐳∼𝑞𝝀(𝒛|𝒙) [ln (𝑞𝝀(𝒛|𝒙)
𝑝(𝒛) )]

= E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙|𝒛)] − DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛)] .

(6.20)

The ELBO is made of two terms with competing effects:

1. E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝(𝒙|𝒛)]: the expected log-likelihood of the observed data conditioned with
a latent vector that was drawn from the variational distribution. This term quantifies
how likely an observed data is generated from the stochastic model from a latent vector.

2. DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛)]: this term quantifies how far the variational distribution is from the
prior on latent variables (which we will also call the latent prior).

For a data-set 𝒟𝒙 with 𝑁 data-points, the variational objective function is simply the mean
(or alternatively just the sum) of the ELBO over each data-point:

ℒ (𝝀1∶𝑁 , 𝒙1∶𝑁) = 1
𝑁

𝑁
∑
𝑖=1

ℒELBO (𝝀𝑖, 𝒙𝑖) . (6.21)

6.3.4 ELBO optimization
The denomination of variational inference as “variational” is taken from the mathematical
field of variational calculus. Variational calculus is about finding the extrema of functionals
by using variations (e.g. derivatives). Indeed, the core principle of variational inference
methods is to transform the intractable integration problem in the posterior estimation to an
optimization problem, with the ELBO.

In many variational inference applications, such as the ones presented in this work, the
variational distribution family is a fully factorized family (also called mean-field family [Neal
and Hinton, 1998]), for which each variable in the latent vector is independent:

𝒬𝝀 = {𝑞𝝀 s.t. 𝑞𝝀 (𝒛) =
𝑁

∏
𝑛=1

𝑞𝝀𝑛
(𝒛𝑛)} . (6.22)

This is because, as shown in equation (6.20), the first term of the ELBO is an expectation
w.r.t. the variational distribution. Assuming factorized and independent factors for the
variational distribution enables to optimize the ELBO for each of these factors. Methods that

7The ELBO is commonly also derived from ln 𝑝(𝒙) with Jensen’s inequality, which states that for any convex
function 𝑓 and random variable 𝑋, 𝑓 (E [𝑋]) ≤ E [𝑓 (𝑋)]. Furthermore, the difference E [𝑓 (𝑋)] − 𝑓 (E [𝑋]) is
called the Jensen gap.

8DKL [𝑞𝝀(𝒛|𝒙)‖𝑝(𝒛|𝒙)] is the Jensen gap between ln 𝑝(𝒙) and the ELBO.
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use a mean-field variational distribution family are called factorized or mean-field variational
inference.

Traditionally, the optimization is performed with the coordinate ascent variational infe-
rence (CAVI) algorithm [Blei et al., 2017], which uses every available data sample for each
posterior update iteration. This approach is inefficient for large data-sets, as it requires a full
pass of the data-set at each iteration, while computing an exact gradient of the objective.
To solve this issue stochastic optimization [Robbins and Monro, 1951] was combined with
variational inference in Hoffman et al. [2013] with stochastic variational inference (SVI). The
data is sub-sampled into mini-batches with size 𝐵 ≥ 1, for which an estimator ℒ̂ of the ELBO
objective function over the whole data-set ℒ is computed:

ℒ̂ (𝝀1∶𝐵, 𝒙1∶𝐵) = 1
𝐵

𝐵
∑
𝑖=1

ℒELBO (𝝀𝑖, 𝒙𝑖) −−−→
𝐵→𝑁

ℒ (𝝀1∶𝑁 , 𝒙1∶𝑁) . (6.23)

Then, a noisy mini-batch gradient of the objective function w.r.t. the variational parameters
∇𝝀ℒ̂ (𝝀1∶𝐵, 𝒙1∶𝐵) can be computed from the ELBO objective function estimate. The classical
update of the variational parameters is performed from this noisy gradient :

𝝀 ← 𝝀 + 𝜌∇𝝀ℒ̂ (𝝀1∶𝐵, 𝒙1∶𝐵) , (6.24)

with 𝜌 the step size.
When the data is sampled independently, the expectation of the noisy mini-batch gradient

∇𝝀ℒ̂ equals the true gradient ∇𝝀ℒ over the whole data-set, enabling a faster optimization.
However, a high variance of the noisy gradient can prevent optimization by making the
updates too unstable in the variational parameter space. This is why SVI approaches pay
special attention to reducing this stochastic gradient variance. In the original SVI paper
[Hoffman et al., 2013], this issue was mitigated by using natural gradients9, instead of classical
gradients.

Nonetheless, a restriction on SVI is that it requires an analytical derivation of the ELBO
to estimate the gradients of individual data-points ∇𝝀𝑖

ℒELBO (𝝀𝒊, 𝒙𝑖). Specifically, differen-
tiating the ELBO (Equation 6.20) yields:

∇𝝀𝑖
ℒELBO (𝝀𝒊, 𝒙𝑖) = ∇𝝀𝑖

E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [ln 𝑝(𝒙𝑖|𝒛𝑖)] − ∇𝝀𝑖
DKL [𝑞𝝀𝑖

(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛𝑖)]
= ∇𝝀𝑖

E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝝀𝑖, 𝒙𝑖, 𝒛𝑖)] − ∇𝝀𝑖
DKL [𝑞𝝀𝑖

(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)] .
(6.25)

The expectation E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖)], with 𝑓 (𝒙𝑖, 𝒛𝑖) = ln 𝑝(𝒙𝑖|𝒛𝑖), on the right-hand side
of Equation 6.25 is intractable unless the likelihood 𝑝(𝒙𝑖|𝒛𝑖) is an exponential distribution
w.r.t. 𝒛𝑖, which limits use cases to very simple models. To generalize SVI to other more
complex statistical models, a workaround is to compute a Monte Carlo (MC) estimate of the
term ∇𝝀𝑖

E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖)] as a tractable substitute. [Paisley et al., 2012]:

∇𝝀𝑖
E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖)] = E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖) ∇𝝀𝑖

ln 𝑞𝝀𝑖
(𝒛𝑖|𝒙𝑖)]

≈ 1
𝐿

𝐿
∑
𝑙=1

𝑓 (𝒙𝑖, 𝒛(𝑙)
𝑖 ) ∇𝝀𝑖

ln 𝑞𝝀𝑖
(𝒛(𝑙)

𝑖 |𝒙𝑖)
(6.26)

MC estimation of the gradient is performed by drawing 𝐿 samples 𝒛(𝑙)
𝑖 of the latent (variatio-

nal) distribution 𝑞𝝀𝑖
(𝒛(𝑙)

𝑖 |𝒙𝑖). The proof for the permutation of the gradient and expectation
9The natural gradient is a generalization of standard gradient that accounts for the curvature of the

optimized function. This is especially useful when the parameter space is not well characterized by a Euclidean
distance, e.g. in this case the dissimilarity between two distributions is not well measured by an 𝑙2 distance
but rather with a KLD. Using natural gradient is instrumental to stochastic variational inference because it
reduces the variance of the gradient and improves optimization.
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operators in Equation 6.26 that enables the MC approximation are provided in section D.2.
Unfortunately, this gradient estimate is noisy with high variance, and cannot usually be used
as is. This is why additional techniques are required to lower this gradient, among which
is the reparameterization trick discussed in subsection 6.4.2. Finally, it could be argued
that the computation of a gradient estimate such as shown in Equation 6.26 is a convoluted
solution. Instead of approximating E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖) ∇𝝀𝑖

ln 𝑞𝝀𝑖
(𝒛𝑖|𝒙𝑖)] with MC, why

not approximating ∇𝝀𝑖
E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝒙𝑖, 𝒛𝑖)] directly? The reasons will also be developed

in subsection 6.4.2.

6.4 Variational autoencoders
As discussed in section 6.3, variational inference is an interesting approach to retrieve proba-
bilistic representations of data 𝒙, in the form of latent variables 𝒛. The core principle of
variational inference is to transform an intractable integral computation into an optimi-
zation problem, based on the ELBO. However this approach traditionally struggles with
both large data-sets and complex statistical models. The former issue is related to a high
computational cost due to the need of performing optimization at each data point, whereas
the latter is due to ELBO gradients intractability. A novel approach to variational inference
that attempts to solve both of these issues was presented in the seminal work Kingma and
Welling [2014], during Kingma’s Ph.D. [Kingma, 2017]. This has led to the development of
the VAE framework, which has seen a large number of contributions and applications.

The two improvements over SVI that brought about VAE are discussed respectively in
subsection 6.4.1 and subsection 6.4.2. The derivation and interpretation of VAE is then
explained in subsection 6.4.2.

6.4.1 Amortized variational inference

Although faster than sampling methods, variational inference struggles when tasked with
large data-set inference. This is because optimization of variational parameters 𝝀𝑖 is performed
for each new data sample 𝒙𝑖 independently. The optimization is memoryless, and infe-
rence using one observation cannot interfere with others. This means that variational infe-
rence cannot take advantage of similarity between data samples to improve or accelerate the
posterior computation. It is also the main reason why this method cannot be well parallelized
either for large scale problems: the computational cost grows with the data-set.

To solve this issue, the optimization of variational parameters is amortized, i.e. the opti-
mization is spread across multiple data instead of being performed independently [Gershman
and Goodman, 2014]. Specifically, amortized variational inference uses a parametric infe-
rence function 𝒈𝝓 that maps observed data points 𝒙𝑖 to their variational parameters 𝝀𝑖
(or alternatively, a parametric stochastic function that directly maps observations to latent
variables 𝒛𝑖). It is this mapping function itself that is optimized instead of the variational
parameters. Amortization shifts the optimization to global parameters 𝝓 instead of local
variational parameters 𝝀𝒊.

This approach makes inference on unseen data straightforward, with simply a function
evaluation, without needing to perform the optimization process on the whole data-set.
Amortized variational inference becomes especially flexible and powerful when the parametric
mapping function 𝒈𝝓 is chosen as a neural network [Kingma and Welling, 2014]. In such
case, the optimized global parameters 𝝓 are the network’s coefficients. With recent deep
learning advances, neural network techniques enabled to learn complex relationships of high-
dimensional data, which makes them a suitable choice for the inference function. Furthermore,
the neural network framework takes advantage of a wide array of efficient optimization
techniques. In particular, graphical processing unit (GPU) hardware enables fast learning
with large amounts of data. Combining deep learning with amortized variational inference
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therefore removes the scalability issues of stochastic variational inference.
Figure 6.1 summarizes the categories of variational and Bayesian inference discussed until

now.

Figure 6.1: Tree of Bayesian and variational inference methods.

6.4.2 Reparameterization trick
As explained in subsection 6.3.4, optimizing the variational parameters requires compu-
ting the gradients of the ELBO w.r.t. the variational parameters, for each data-point 𝒙𝑖.
However in the general case, the term ∇𝝀𝑖

E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [ln 𝑝(𝒙𝑖|𝒛𝑖)] isn’t tractable. A solution
is to approximate it with MC sampling of the latent variables. However, the simple MC
approximation shown in Equation 6.27 cannot be used in the general case.

∇𝝀𝑖
E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓(𝒙𝑖, 𝒛𝑖)] ≈ ∇𝝀𝑖

1
𝐿

𝐿
∑
𝑙=1

𝑓 (𝒙𝑖, 𝒛(𝑙)
𝑖 ) (6.27)

This is because the sampling procedure for latent samples 𝒛(𝑙)
𝑖 from the variational distribu-

tion 𝑞𝝀𝑖
(𝒛𝑖|𝒙𝑖) is usually not differentiable w.r.t. the variational parameters 𝝀𝑖. For instance,

rejection sampling methods are used to design accurate sampling algorithms for most distribu-
tions, but are typically not differentiable10. An example of one such algorithm, is the
Marsaglia and Tsang’s algorithm [Marsaglia and Tsang, 2000] for generating gamma distribu-
tions samples (which are also used in turn to sample Beta distributions).

To solve this problem, Kingma and Welling [2014] propose to use the reparameterize the
latent variable, i.e. to perform sampling with a differentiable transformation 𝒉 of an auxiliary
noise variable 𝝐, parameterized by the variational parameters:

𝐳 = 𝒉 (𝛜, 𝝀) = 𝒉𝝀 (𝛜) . (6.28)
10To draw a sample 𝑥 from a target distribution 𝒳, rejection sampling methods draw a sample 𝑦 from an

auxiliary distribution 𝒴. A sample 𝑢 ∼ 𝒰 (0, 1) is drawn, and 𝑦 is accepted as the final sample 𝑥, following
a criterion 𝑓 (𝑢). Crucially, the criterion depends on the density of the target and auxiliary distribution, and
thus on their parameters. However, the sample 𝑦 accepted into 𝑥 is not a function of the density parameters
of 𝒳, and therefore cannot be differentiated w.r.t. them.
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This is called the reparameterization trick, and it enables to calculate an approximate gradient
by further developing Equation 6.27.

∇𝝀𝑖
E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓(𝒙𝑖, 𝒛𝑖)] ≈ ∇𝝀𝑖

1
𝐿

𝐿
∑
𝑙=1

𝑓 (𝒙𝑖, 𝑔𝝀𝑖
(𝝐(𝑙))) (6.29)

The approximate gradient as computed with Equation 6.29 rather than Equation 6.26 exhibits
lower variance, enabling better optimization. Contrary to Equation 6.26, Equation 6.29
doesn’t require permuting expectation and gradient operator, the MC approximation of the
expectation can be directly used to approximate the ELBO:

ℒELBO (𝝀𝒊, 𝒙𝑖) = −DKL [𝑞𝝀𝑖
(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)] + E𝐳∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [𝑓 (𝝀𝑖, 𝒙𝑖, 𝒛𝑖)]

≈ −DKL [𝑞𝝀𝑖
(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)] + 1

𝐿
𝐿

∑
𝑙=1

ln 𝑝 (𝒙𝑖|𝑔𝝀𝑖
(𝝐(𝑙)))

= ℒ̂ELBO (𝝀𝒊, 𝒙𝑖) .

(6.30)

The ELBO estimator ℒ̂ELBO is originally called the stochastic gradient variational Bayes
(SGVB). The reparameterization trick enables to estimate gradients as the gradient of a MC
approximation of the ELBO, instead of an MC approximation of the gradient of the ELBO.

The original reparameterization trick for sampling factorized Gaussian distributions 𝒩 (𝝁, 𝝈2I)
is denoted by:

𝐳 = 𝝁 + 𝝈⊙𝛜, 𝛜 ∼ 𝒩 (0, I) ⇒ 𝐳 ∼ 𝒩 (𝝁, 𝝈I) , (6.31)

With ⊙ the Hadamard (element-wise) product. There are several options to select a particular
differentiable transformation for sampling distributions, which are described in Kingma and
Welling [2014], and discussed further in section 7.3.

6.4.3 Variational autoencoders, probabilistic autoencoders ?
Auto-encoding variational Bayes (AEVB) is the algorithm that arises when combining amortized
variational inference (see subsection 6.4.1) with the SGVB (i.e., the reparameterization trick,
see subsection 6.4.2). Specifically, a VAE is an AEVB for which the amortization is performed
by using a 𝝓-parameterized neural network 𝒈𝝓 for inferring the variational parameters 𝜆𝑖.

𝝀𝑖 = 𝒈𝝓 (𝒙𝑖) (6.32)

The combination of this function with the reparameterization trick enables to draw samples
from the approximate posterior 𝑞𝝀 (𝒛|𝒙) with a parametric, deterministic function of observed
data 𝒙 and an auxiliary random variable 𝝐.

𝐳 = 𝒉𝝓 (𝒙, 𝛜) (6.33)

The amortized variational distribution will now be denoted 𝑞𝝓 (𝒛|𝒙), as the variational para-
meters are entirely determined by the observed data 𝒙 and the neural network 𝒈𝝓. The
VAE actually goes a step further by choosing to use 𝜽-parameterized neural networks 𝒇𝜽 for
the likelihood model, accordingly denoted 𝑝𝜽 (𝒙|𝒛). This means that the generative model is
actually learned, and not arbitrarily selected.

Finally, the optimization of the ELBO (Equation 6.34) enables to optimize simultaneously
the approximate (variational) posterior 𝑞𝝓 (𝒛|𝒙) and the model likelihood 𝑝𝜽 (𝒙|𝒛), in the form
of a neural networks 𝒈𝝓 and 𝒇𝜽.

ℒ (𝒙𝑖, 𝜽, 𝝓) = −DKL [𝑞𝝓(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)] + 1
𝐿

𝐿
∑
𝑙=1

ln 𝑝𝜽 (𝒙𝑖|𝒛(𝑙)
𝑖 ) (6.34)
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Because of the reparameterization trick, gradients of the ELBO estimator can be directly
computed11.

This specific approximate variational inference setting has been linked to the autoencoder
(AE) framework, due to their similarities, thus the name “variational autoencoder”. An AE
is a two-part neural network, made of an encoder and a decoder. The encoder transforms
input data 𝒙 into a code 𝒚 usually of lower dimension, whereas the decoder uses the code and
attempts to recreate the input data, as a reconstruction 𝒙. An AE goal is to learn compact
representations of unlabeled input data. It is trained by minimizing a reconstruction error,
i.e. a distance between the original input data 𝒙 and its reconstruction 𝒙, which is typically
a mean squared error (MSE). Because the AE only uses unlabeled data as input, it is a
self-supervised method.

As such, VAE can be seen as a variation of AE by seeing the network 𝒈𝝓 that implements
the variational distribution 𝑞𝝓(𝒛|𝒙) as an encoder, and 𝒇𝜽 that models the likelihood 𝑝𝜽 (𝒙|𝒛)
as a decoder. The ELBO objective (which needs to be maximized), can be seen as a more
classical ML loss by considering its opposite (which needs to be minimized). Then, the two
terms of the resulting VAE loss (Equation 6.35) can be linked with classical deep learning
terminology.

ℒVAE (𝒙𝑖, 𝜽, 𝝓) = − 1
𝐿

𝐿
∑
𝑙=1

ln 𝑝𝜽 (𝒙𝑖|𝒛(𝑙)
𝑖 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒrec

+ DKL [𝑞𝝓(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℒKLD

(6.35)

The term ℒrec, which is a negative log-likelihood (NLL), represents the ability of the decoder
to sample the observed data, and can be thought of as a reconstruction loss. In Kingma and
Welling [2014], the authors note that the number of latent samples that must be drawn to
approximate the ELBO can be set as 𝐿 = 1 when the mini-batch size is large enough. This
is because the gradient of the ELBO estimate is averaged between the samples of the batch,
so the variance of the gradient estimate is kept low overall. The KLD loss term ℒKLD can
be seen as a regularizing term, which encourages the output distribution of the encoder to
match the prior distribution. In most applications, including in the original VAE paper, the
variational distribution is chosen as a factorized Gaussian and the prior is selected as the
isotropic standard Gaussian (i.e. q 𝑝 (𝒛) ∼ 𝒩 (0, I)). This allows the KLD loss term to have
an analytical expression (for a 𝑀 -dimensional latent space):

ℒKLD = −DKL [𝑞𝝓(𝒛𝑖|𝒙𝑖)‖𝑝(𝒛)] = 1
2

𝑀
∑
𝑚=1

[1 + ln ((𝝈2
𝑖 )𝑚) − (𝝈2

𝑖 )𝑚 − (𝝁𝑖)
2
𝑚] . (6.36)

A synthetic overview of the classical VAE is given in Figure 6.2.
Compared to a classical AE, the “code” of VAE is of probabilistic nature, because it

corresponds to the random latent variables that are sampled with the reparameterization
trick. Besides, another interpretation of the reparameterization trick can be made: in a deep
learning framework that employs automatic differentiation, the reparameterization trick is
what enables the propagation of gradients between the encoder and the decoder. As the
reconstruction loss ℒrec is computed with the decoder output, gradients must be propagated
from there. If the sampling of the latent variable wasn’t differentiable, the encoder wouldn’t
be reached by the gradients, and couldn’t be trained.

VAE are commonly seen as “probabilistic AE”, with an unusual loss, and a reparameteri-
zation trick that enables training. However, this oversimplified definition of VAE that stems
from their comparison with AE glosses over key aspects of the approach. It brings about
misconceptions that must be dispelled.

11It can be noted that the work of Rezende et al. [2014] had a very similar approach to that of the VAE, in
that it used neural networks to amortize variational inference. However, because they didn’t use a reparame-
terization trick, they couldn’t easily compute gradients of the ELBO, and relied on approximations such as
Equation 6.26.
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The first common misunderstanding of VAE is about the nature of its decoder. In classical
AE, the decoder transforms a code sample 𝒚𝑖 into a reconstruction sample 𝒙𝑖, on which
the loss is directly applied. But in VAE, the decoder network 𝒇𝜽 actually represents the
likelihood distribution 𝑝𝜽 (𝒙|𝒛). The VAE decoder takes a latent random variable sample 𝒛𝑙

𝑖
as input, and outputs the parameters 𝝍𝑖 of the likelihood and not reconstructed samples
𝒙𝑖. For instance, the Gaussian decoder as proposed in Kingma and Welling [2014], is a neural
network that outputs the parameters of a Gaussian likelihood, i.e. (𝝁(𝑙)

𝑖 , 𝝈2,(𝑙)
𝑖 ) = 𝒇𝜽 (𝒛(𝑙)

𝑖 ).
A reconstruction can be obtained from the decoder by sampling the obtained likelihood:
𝐱𝑖

(𝑙) ∼ 𝒩 (𝝁(𝑙)
𝑖 , 𝝈2,(𝑙)

𝑖 ).
Another misunderstanding that is related to the first one exposed above, is about the

reconstruction loss term of VAE ℒrec. This loss term is occasionally wrongly chosen as a
MSE between the input of the encoder and the output of the decoder. This is a mistake for
two reasons. Firstly, as explained above, it is because the outputs of the VAE decoder are
not samples, but parameters 𝝍 of the likelihood distribution 𝑝𝝓 (𝒙|𝒛). Secondly, an MSE
loss doesn’t correspond to the NLL term − ln 𝑝𝝓 (𝒙|𝒛). A MSE loss is actually only adequate
when the likelihood distribution is Gaussian with unit variance, i.e. 𝑝𝝓 (𝒙|𝒛) ∼ 𝒩 (𝝁, I) and
the output of the decoder is the 𝝁 parameter. In such case the Gaussian NLL simplifies into
the MSE.

Neural network
𝑞𝝓 (𝒛|𝒙) = 𝒈𝝓 (𝒙)

Encoder

𝒙
Input

𝝀

Variational
parameter

𝒛

Latent
variable
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Reparamete-
rization

sampling

Neural network
𝑝𝜽 (𝒙|𝒛) = 𝒇𝜽 (𝒛)

Decoder

𝝍

Likelihood
parameter

𝒙̂
Reconstruction

ℒKLD

ℒrec

Figure 6.2: Overview of the classical VAE.

6.5 Disentanglement
The VAE framework introduced in section 6.4 offers powerful tools to learn representations
of data in an unsupervised manner. These representations are predicted as the probabilistic
latent variables. The encoding of VAE has notably some interesting properties. The code of
classical AE commonly lacks regularity, because the model is only trained for data dimen-
sionality reduction. In contrast, the latent space of VAE has continuity properties, i.e., two
points that are close within the latent space are also close in the input data space. This is
because of the probabilistic nature of the encoding. Given an input data 𝒙𝑖, the deterministic
encoder produces a variational parameter vector 𝝀𝑖 = 𝒈𝝓 (𝒙𝑖). However, what is input to the
decoder are not variational parameter vectors, but samples of the variational distribution.
Because of the reconstruction loss term, the distribution embedded in the decoder must be
able to reconstruct the input data. If the latent space was very irregular, then samples 𝒛(𝑙)

𝑖
from a given variational distribution 𝑞𝝓 (𝒛𝑖|𝒙𝑖) (thus related to the same input data 𝒙𝑖),
would produce very different likelihood 𝑝𝜽 (𝒙|𝒛) parameters 𝝍(𝑙)

𝑖 .
Representation learning with VAE is useful for multiple downstream tasks12. They can

be used for generating new data [Razavi et al., 2019], for clustering [Jiang et al., 2016],
classification [Shen et al., 2020], etc. However, the latent representations produced by VAE
can lack interpretability and show poor generalizability between applications. Furthermore,

12tasks involving the representations of predicted by a model after training.
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the inferred latent distributions are often plagued with a phenomenon known as posterior
collapse that hampers representation quality and robustness, as discussed in subsection 6.5.1.

To improve the quality of latent distributions learned by VAE, additional constraints to
enforce desired characteristics are applied. One of the most prolific approaches in representa-
tion learning in the last decade has been disentanglement. Disentanglement aims at learning
representations that match generative factors, or underlying explanatory factors of the data, as
framed by the seminal review Bengio et al. [2013]. Different approaches of disentanglement in
VAE are discussed in subsection 6.5.2, and their shortcomings are debated in subsection 6.5.3.
Finally subsection 6.5.4 concludes on using prior knowledge beyond disentanglement.

6.5.1 Collapse of latent distributions
One common issue with VAE is that occasionally, the latent variables may fail at conveying
useful information for the decoder. The decoder may learn to reconstruct the original data
without taking a given latent component into account. In such case, the corresponding
distribution is no longer constrained by the reconstruction loss to convey information, and is
forced by the KLD loss term to match the prior. This phenomenon is commonly known as
latent distribution collapse Wang et al. [2021], or information preference Chen et al. [2017]. It
negatively affects the quality of latent representations, because it removes all meaning to one
ore more components. This phenomenon occurs in particular when the decoder network is too
powerful, and becomes able to map latent variables to observed data space with embeddings
of lower dimensions. This is in particular the reason why encoder and decoder network
architecture should not be symmetric. Disentanglement approaches therefore must avoid the
latent distribution collapse, which concentrates the explainability and representativity of the
data in fewer entangled variables.

6.5.2 Imposing structures on latent space
Disentanglement assumes that the observed data possesses independent factors of variations
y𝑘, and its goal is to capture those factors with different variables z𝑗 in the learned represen-
tation. The reasoning is that these factors of variation are agnostic to any downstream
task, and because they capture “the true nature” of observed data they are good general
representations. Considering an image of a scene which contains an object, a disentan-
gled representation would for instance be a vector of variables whose coordinates encode
independently the position of the object, its size, shape, color, the direction of the light
source, etc. Conversely, an entangled representation would mix those aspects between the
variables, so that the influence of these factors of variations cannot be clearly separated.

In the numerous works on disentanglement, many different strategies to enforce disent-
anglement are proposed. As reviews Tschannen et al. [2018], disentanglement (among other
constraints on latent representations that will be briefly discussed in subsection 6.5.4), can
be imposed by using three main mechanisms:

1. regularization of the latent distribution,

2. the choice of specific model architectures,

3. the choice of the prior distribution and posterior (latent) distribution families.

6.5.2.1 Regularizing the ELBO

This approach is based on reformulating the ELBO loss to achieve some sort of regularization
and impose statistical properties on the posterior distribution.

𝛽-VAE [Higgins et al., 2017] is arguably the most straightforward among these approaches.
It proposes to improve disentanglement in VAE latent representation by introducing a single
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hyperparameter 𝛽 as a weight of the KLD loss term in the ELBO:

ℒ𝛽-VAE (𝒙, 𝜽, 𝝓) = −E𝐳∼𝑞𝝀(𝒛|𝒙) [ln 𝑝𝜽(𝒙|𝒛)] + 𝛽DKL [𝑞𝝓(𝒛|𝒙)‖𝑝(𝒛)]
= ℒrec + 𝛽ℒKLD.

(6.37)

In this framework, better disentanglement is achieved with 𝛽 > 1, i.e. by increasing the role
of the KLD loss term. This in turns increases the pressure on inferred posterior distributions
𝑞𝝓(𝒛𝑖|𝒙𝑖) to match the prior distribution 𝑝(𝒛), which is kept as the original factorized unit
Gaussian 𝒩 (0, I). The authors argue that more efficient and disentangled representations are
produced this way, because the model is constrained to infer posterior distributions 𝑞𝝓(𝒛𝑖|𝒙𝑖)
whose overlap between each other is increased [Burgess et al., 2018]. When the overlaps
between posterior distributions are increased (when ℒKLD is decreased), decreasing the cost
of the log-likelihood term ℒrec is achieved by assigning neighboring latent distributions to
data-points that are neighboring in the input data space. It is hypothesized that this locality
properties of the latent representation encourages the different latent components to specialize
and have a unique independent contribution to the reconstruction.

Nonetheless, the 𝛽-VAE notoriously worsens the reconstruction ability compared to the
orginal VAE, because the bottleneck on information transmission in the latent space is
tightened, and the capacity of the latent variables is diminished. As the inferred posterior
distributions overlap a lot between themselves (and with the prior distribution), it becomes
more difficult to discriminate between the observed data used as input.

Other regularization approaches introduce more complex loss terms. For instance, the
PixelGAN [Makhzani and Frey, 2017] adds to the usual VAE loss a negative mutual informa-
tion13 term I (𝐱, 𝐳). Esmaeili et al. [2019] shows that many approaches that add regularization
terms can be explained by re-formulating the original ELBO.

Finally, since disentanglement is about finding independent factors of variations, some
approaches have proposed constraining the aggregate posterior distribution 𝑞𝝓 (𝒛):

𝑞𝝓 (𝒛) = ∫
𝑥∈𝒟𝐱

𝑞𝝓 (𝒛|𝒙) 𝑝 (𝒙) d𝒙. (6.38)

The aggregate posterior distribution is a data-set-wide quantity, that in principle shouldn’t
be available with mini-batch training strategies. Nonetheless, mini-batch estimates are
commonly used, for instance with kernel density estimation. Approaches that constrain the
aggregate posterior mostly use a dedicated loss term in the ELBO to enforce independence
of the distribution components [Mathieu et al., 2019]. Typically, divergences between the
aggregate posterior 𝑞𝝓 (𝒛) and the usual factorized unit Gaussian 𝑝 (𝒛) prior can be minimized
(KLD, Wasserstein distance, Jensen-Shannon divergences, etc.). This is because the original
prior 𝒩 (0, I) promotes independence between the latent components, and the aggregate
posterior being close to it would encourage its components independence as well. This
approach is used by InfoVAE [Zhao et al., 2019], which adds the term DKL (𝑞𝝓 (𝒛) ‖𝑝 (𝒛))
to the ELBO.

However, Kumar et al. [2018] argues that this term doesn’t have a closed-form expression,
and using an estimator poses optimization challenges. This is why they propose to match the
moments of the two distributions instead of minimizing a distance between them, with the
DIP-VAE approach (for “Disentangled Inferred Prior”). Specifically, they choose to match the
covariance matrix of the aggregate posterior to that of the prior (i.e. the identity matrix), by
minimizing the 𝑙2-norm between the matrix components. Their approach assumes a Gaussian
variational distribution, i.e. 𝑝𝝓 (𝒛𝑖|𝒙𝑖) ∼ 𝒩 (𝝁𝝓 (𝒙𝑖) , 𝚺𝝓 (𝒙𝑖)), so that the covariance matrix

13The mutual information between two random variables 𝐱 and 𝐳 is I (𝐱, 𝐳) = DKL (𝑝 (𝒙, 𝒛) ‖𝑝 (𝒙) 𝑝 (𝒛)) and
is a measure of the information shared between those variables. Its generalization to more than two random
variables is the total correlation TC.
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of the aggregate posterior can be simplified:

Cov𝐳∼𝑞𝝓(𝒛) (𝑧) = E𝐱∼𝑝(𝒙) [Cov𝐳∼𝑞𝝓(𝒛|𝒙) (𝒛)] + Cov𝐱∼𝑝(𝒙) (E𝐳∼𝑞𝝓(𝒛|𝒙) [𝒛])
= E𝐱∼𝑝(𝒙) [𝚺𝝓 (𝒙)] + Cov𝐱∼𝑝(𝒙) (𝝁𝝓 (𝒙)) .

(6.39)

From this expression, they propose two loss term variants. DIP-VAE-II minimizes the 𝑙2
distance between components of the aggregate posterior full covariance matrix Cov𝐳∼𝑞𝝓(𝒛) (𝑧)
and the identity matrix. DIP-VAE-I only performs this optimization for the term Cov𝐱∼𝑝(𝒙) (𝝁𝝓 (𝒙))
(see Equation 6.39), by remarking that the cross-correlation between the latent components
𝐳 are only expressed through this term when the variational posterior is factorized14 (i.e.
𝚺𝝓 (𝒙) is a diagonal matrix).

Alternatively, Factor-VAE [Kim and Mnih, 2018] proposes to minimize the total correlation
TC (𝑞𝝓 (𝒛)) between the aggregate posterior components. This promotes the factorization of
latent variables without explicitly using the prior.

6.5.2.2 Moving away from the Gaussian

The choice of the prior and variational distribution family has a strong impact on learned
representations. Therefore, there have been some approaches that have proposed to turn
away from the classical Gaussian posterior and the factorized standard Gaussian prior. For
instance Casale et al. [2018] proposes to use Gaussian processes (GP) as a prior to improve
correlations between latent variables.

Additionally, one of the VAE limitations is that it can originally only handle continuous
distributions in the latent space. Some approaches have therefore sought to introduce discrete
prior and posterior distributions, such as VQ-VAE and VQ-VAE-2 (VQ standing for “vector
quantization”) [Razavi et al., 2019; van den Oord et al., 2017]. VQ-VAE introduces discrete
latent variables by using a deterministic mapping of the encoder output to a given categorical
distribution using learnable embeddings.

It can be noted that the methodology developed in the current work warrants using
non-Gaussian distributions, because of the need for bounded variables (see section 7.3).
Nonetheless, it can be noted that integrating a non-standard prior/posterior configuration
often adds theoretical or computational complexity.

6.5.2.3 Adapting the autoencoder architecture

Designing a specific network architecture can be a way to enforce disentanglement between
latent representations. A common approach is to use multiple layers of latent representations,
so as to obtain a hierarchy between them [Gulrajani et al., 2017]. In so-called hierarchical
models, the inference of a given layer of latent representation will depend on the sampling of
the parent latent layers, i.e. ancestral sampling [Kingma and Welling, 2019].

Noticing that non-Gaussian priors can be difficult to use, as discussed previously, Miao
et al. [2022] proposes a simple architecture tweak to that of standard VAE to allow more
flexibility. With Intermediary Latent Space VAE, they propose to use a parametric deter-
ministic mapping to samples of variational distribution. Then the image of this mapping (in
the mathematical sense) is used as the latent variable to enter the decoder. It enables more
general and more flexible priors to be incorporated, by removing the need to express them
with an explicit density function. It also allows parts of the mapping to be learned during
training. A similar technique is proposed in this Ph.D., as will be discussed in section 7.3.

6.5.3 Challenges of disentanglement
Although there are a wide variety of techniques for imposing disentanglement of represen-
tations, they mostly fall short of expectations of a generalized, interpretable, downstream

14This is the usual mean-field approximation.
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task agnostic representation, beyond simple toy examples or simplistic real-case scenarios.
One of the main issues with disentanglement, is that its original definition as the retrieval of
factors of variation within the data [Bengio et al., 2013] is rather vague. Consequently, all
works that attempt to tackle disentanglement end up augmenting this definition with pro-
perties that are fulfilled within the framework that they propose. For instance, many posit
that disentanglement is characterized by a factorized aggregate posterior 𝑞𝝓 (𝒛) (thus the
regularization approaches that focus on this term). Another formulation is the independence
of features in latent representations.

Some other works attempt to improve on the definition of disentanglement, such as Higgins
et al. [2018], which attempt to formalize the concept as the retrieval of symmetries that exist
within the data, and links it with group theory. Furthermore they argue that disentangled
representations should fulfill three requirements, formulated as:

• modularity, that posits that a latent component of a disentangled representation should
encode at most one factor of variation of the data,

• compactness, that measures whether all factors of variation are each encoded by a single
latent component,

• explicitness, according to which factors of variations could be retrieved from the disen-
tangled representation up to a linear transformation.

Nonetheless, they note that these requirements do not make consensus.
Mathieu et al. [2019] proposes an alternative extension of disentanglement into decompo-

sition, with two requirements. The first is that latent encodings should have an “appropriate”
amount of overlap. This is derived from the 𝛽-VAE framework, that promotes disentangle-
ment through latent overlapping. The second requirement is that the aggregate posterior
𝑞𝝓 (𝒛) should match the prior 𝑝 (𝒛). This condition echoes the regularization techniques
introduced in subsubsection 6.5.2.1. Still, this increases the importance of the choice of the
prior distribution, that is the factorized unit Gaussian for the majority of works.

A symptom of the lack of a universally accepted view on disentanglement, is the variety
of metrics that attempt to measure disentanglement. Many disentanglement papers also
propose their own metric, which coincidentally the proposed method is good at.

For instance, the Z-diff score of 𝛽-VAE [Higgins et al., 2017], improved in FactorVAE [Kim
and Mnih, 2018] propose to use as metric the accuracy of a linear classifier that predicts which
generative factor is 𝐲𝑘 kept constant among varying others in batches of latent representations
𝐳. In Chen et al. [2018a], the mutual information gap measures how much each generative
factor y𝑘 is related to a single latent component z𝑗, and uses the mutual information between
pairs of latent components and generative factors:

MIG = 1
𝐾

𝐾
∑
𝑘=1

1
H (y𝑘) (I (z𝑗⋆

𝑘
, y𝑘) − max

𝑗≠𝑗⋆
𝑘

I (z𝑗, y𝑘)) s.t. 𝑗⋆
𝑘 = arg max

𝑗
I (z𝑗, y𝑘) . (6.40)

It can be noticed that these metrics directly measure the ability of latent representations
to predict true factors of variation. This limits the use of these metrics in real-case scenarios,
where the generative factors are usually unknown, or not measured. Eastwood and Williams
[2018] proposes metrics of disentanglement, completeness and informativeness, following a
description of disentanglement properties that are similar to that of Higgins et al. [2018]
discussed above. As Sepliarskaia et al. [2021] remarks, the proposed metrics quantify some
properties rather than disentanglement itself. Many metrics even fail at satisfying two basic
properties: assigning a high score to representations that are disentangled (according to a
given definition) and assigning a low score to those that aren’t.

Finally, disentangling latent representations is by essence a subjective enterprise, because
it entails enforcing some kind of prior onto the learning process. Locatello et al. [2018] shows
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that achieving disentanglement in an unsupervised way (i.e. while only having access to
observations 𝒙 during training) is impossible without incorporating biases, i.e. arbitrary
assumptions about the system. They also show that a factorized aggregated posterior
doesn’t guarantee uncorrelated representation components. Also, according to their findings,
representations that are deemed disentangled by a given metric do not show improved
performance on independent downstream tasks, suggesting that performance gains for disen-
tangled methods were not necessarily due to disentanglement itself.

6.5.4 Introducing prior knowledge in representation learning
As discussed in the previous sub-section, it might be illusory to try to infer general represen-
tations that maximize performance in all down-stream tasks, while providing the learning
task no insight on what is expected. This is why incorporating prior knowledge is crucial
Locatello et al. [2018]. In the end, there is always intention behind representation, there
is no good representation in-itself. There are several types of prior knowledge that can be
incorporated into representation learning Bengio et al. [2013], besides disentanglement. Such
“meta-priors” [Tschannen et al., 2018] include:

• disentanglement, as already discussed,

• hierarchy between explanatory factors, which can describe various levels or abstraction
of the data,

• natural clustering, by having representations of different classes being associated with
different manifolds within the latent space.

Enforcing those priors is believed to have the potential to improve the learned representations.
Karniadakis et al. [2021] categorizes three types of biases, according to the range of

associated techniques, that can be incorporated to guide learning of better representations:
observational biases, inductive biases and learning biases (see Figure 6.3).

Figure 6.3: Incorporation of prior knowledge in machine learning models.

Observational biases are biases brought through the choice of the data used to train
the model. For instance the distribution of samples, is one such bias, and as discussed in
section 5.1 and section 5.2, it has a great influence over the model performance. Inductive
biases are incorporated by tailoring the machine learning models themselves, their architecture,
so that learned representations adopt specified behaviors. Convolutional neural networks
(CNNs) typically enforce spatially consistent representations. The techniques discussed
in subsubsection 6.5.2.3 and subsubsection 6.5.2.2 can be thought of as inductive biases.
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Learning biases are enforced through objective functions. The regularization of the ELBO
for achieving disentanglement falls under this category (see subsubsection 6.5.2.1).

In this work representation learning is to be applied on remote sensing data that have
a distinctive property, compared to many standard datasets commonly used in the machine
learning community (MNIST [Deng, 2012], CelebA [Liu et al., 2015], ImageNet [Deng et al.,
2009], etc.). Remote sensing images are measurements of physical quantities, that are bound
by the laws of physics. Earth surface processes studied with remote sensing are the objects
of a rich literature, that produced many models, as discussed in section 9.1 and Chapter 4.
Therefore, an interpretable useful representation of remote sensing data should be a represen-
tation that incorporates some of this expert knowledge as priors. If possible, the latent
representation itself should match physical quantities. Besides, physical quantities are not
necessarily disentangled, on the contrary they may be tied with strong correlations, yet they
are arguably good representations of a physical system. In the next chapter, methods of
incorporating knowledge about physical data into the VAE framework will be discussed.
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Space-borne Earth observation with remote sensing has for object of study measurements
of ground physical processes. As such there is a wide variety of kinds of information that
can guide the representation learning to embeddings that are interpretable and physically
consistent. Introducing priors pertaining to physical knowledge into machine learning is
broadly referred to as physics-informed machine learning [Karniadakis et al., 2021], scientific
machine learning [Rackauckas et al., 2021], or even hybrid machine learning [Kurz et al.,
2022]. These approaches attempt to bridge the gap between so called knowledge-driven mo-
deling (or first principle modeling) and data-driven, (or empirical modeling). While the former
reflects physical laws and fundamental properties, the latter is about building models based
on the observation of data (with traditional machine learning as the canonical example).
These two modeling approaches are also commonly respectively referred as Newtonian and
Keplerian paradigms. Incorporating physical knowledge in the form of biases into data-
driven approaches is about leveraging the advantages of both worlds. The powerful model-
ing and simulating abilities of machine learning can scale up to large problems and data.
Including physical knowledge enables to improve robustness, interpretability and explainabi-
lity of models. Moreover it can help mitigate the lack of reference data, in the small label /
big data regime [Karniadakis et al., 2021], which plagues many disciplines including remote
sensing [Camps-Valls et al., 2021]. As such, even supervised neural network regression like the
biophysical variable neural network (BVNET) (subsection 5.2.1), can be classified as “physic-
informed”, or “physics-aware”. Indeed, training a supervised model to retrieve vegetation
variables is impossible with a purely data-driven approach, since reference data is too scarce.
Simulating training data-sets with physical models (i.e. PROSAIL, see Chapter 4) allows to
train models despite that. Nonetheless, as discussed below, integrating physical knowledge
into Machine Learning (ML) models goes beyond simply the simulation of a training data-set.
Integrating remote sensing physics into deep learning approaches is framed as “geoscience-
aware deep learning” by Ge et al. [2022].

In section 7.1 unsupervised methods for incorporating physical priors into machine learning
are reviewed. A methodology to integrate physical model into a variational autoencoder
(VAE) framework is proposed in section 7.2. It is based on the idea of replacing the traditional
learnable decoder neural network by a physical model. In particular, because many physical
models are mechanistic they are usually deterministic, therefore adjustments are required so
as to borrow the VAE framework. In section 7.3, the choice of variational distributions and
priors is discussed.

7.1 Introducing physical biases into machine learning
As discussed in subsection 6.5.4, priors incorporated into a ML framework can be divided
into observational biases (biases related to the learning data), learning biases (related to the
learning procedure, and the objective function), and inductive biases (about the architecture
of the trained model) [Karniadakis et al., 2021]. Willard et al. [2020] does an extensive
survey on the integration of physics in ML models. They classify a sizable literature in terms
of applications, such as data generation, uncertainty quantification, and inverse modeling,
and in terms of methods used to integrate physics, that can be understood as instances of
incorporation of biases. These biases are practically never used separately, because priors are
about implicit or explicit assumptions that surround a given model. There are always priors
of all three types into each proposed method, although the focus of some works leans towards
a particular bias type.

For instance, Yang et al. [2022] proposes a VAE-based data-augmentation method to
generate samples of seismic wave velocity maps. To improve physical consistency of generated
samples, they consider two additional loss terms: a perception loss1 (i.e. a learning bias),

1A perception loss or perceptual loss measures an error in terms of high-level features extracted from a
pre-trained neural network, instead of an error in the original data space.
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and a physical regularization loss that encourages temporal consistency between samples
generated from a sequence of input data (i.e. a learning bias and observational bias).
Arguably, their choice of model architecture as convolutional is an inductive bias, since
it favors the prediction of spatial features within seismic velocity maps. It could be noted
however, that this work has two misunderstandings about VAE, that were discussed in sub-
section 6.4.3. Firstly, their decoder outputs are directly samples (thus the decoder is deter-
ministic), when in a classical VAE it should be a distribution. Secondly, they use a mean
squared error (MSE) reconstruction loss between input and output samples, when classical
VAE would use a negative log-likelihood (NLL) between input samples and distributions of
output reconstructions.

One of the most notable advances in physics-informed ML in the last decade is the
physics-informed neural networks (PINNs) [Rackauckas et al., 2021; Raissi et al., 2017a,b,
2019]. PINN tackle systems and data that can be described with partial differential equations
(PDEs), which are ubiquitous in physics and engineering. PINN approaches have been applied
to fluid motion [Cai et al., 2021a], quantum computing [Vadyala and Betgeri, 2023], heat
transfer [Cai et al., 2021b], mechanics [Zhang et al., 2024], fusion plasma physics [Rossi
et al., 2023], etc. PINN can be used both for solving partial differential equations and per-
forming equation identification (i.e. discovering PDE terms). In both cases, a PINN is a
𝜽-parameterized neural network whose inputs are domain coordinates 𝒓 ∈ 𝔻𝒓 (time, space,
spectral, etc...) and whose outputs 𝒖̂𝜽 (𝒓) approximate the solution 𝒖 (𝒓) to a given PDE in
the form:

𝒫 (𝒖 (𝒓) , 𝒩𝝀 [𝒖 (𝒓)]) = 𝑓𝝀 (𝒖 (𝒓)) = 0. (7.1)

𝒩𝝀 is a non linear, 𝜆-parameterized operator (learnable or not), that can incorporate deri-
vatives of 𝒖 (𝒓). Specifically, PINN make use of modern automatic differentiation techniques
to compute the derivatives of 𝒖̂𝜽 (𝒓). It is the model loss that enforces the PDE and ensures
that the neural network output 𝒖̂ is indeed a solution to it (thus a learning bias):

ℒPINN (𝒟𝒙, 𝝀, 𝜽) = 1
𝑁𝑗

∑
𝒓𝑗∈𝔻𝒓

∥𝑓𝝀 (𝒖̂𝜽 (𝒓𝑗))∥2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MSE𝒇

+ 1
𝑁𝑖

∑
(𝒙𝑖,𝒓𝑖)∈𝒟𝒙×𝔻𝒓

‖𝒖̂𝜽 (𝒓𝑖) − 𝒙𝑖‖2
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MSE𝒙

. (7.2)

The 𝒓𝑗 are a finite set of 𝑁𝑗 evaluation points, associated with the loss term MSE𝒇 that
encourages the neural network output 𝒖̂𝜽 to be solution to the PDE. The 𝑁𝑖 data-points 𝒙𝑖
of the training data-set (or mini-batch) 𝒟𝒙, with associated coordinates 𝒓𝑖 are compared to
the neural network output 𝒖̂𝜽 (𝒙𝑖) in the loss term MSE𝒙, to ensure that the approximate
solution matches observed data. Boundary conditions can be similarly applied by means of
an additional MSE term in the loss. Besides, choosing to represent a solution to a physical
PDE with a neural network is a strong inductive bias. Recently, the PINN approach has
been combined with VAE in Zhong and Meidani [2023] to enable solving stochastic PDE.

Nonetheless, in the context of VAE, these approaches can be delved deeper. Firstly,
although added physical constraints may improve the interpretability of latent representa-
tions, it is still not guaranteed that the latent vector will match a specific physical quantity.
Secondly, the PINN approach presented above is limited to cases where the associated
physical system is described by a differential equation. As it will be discussed in the
next section, there is a particularly interesting approach to be taken with autoencoding
frameworks: to incorporate inductive biases while tweaking the generative process of the
model.

7.2 Physical models as decoders
Autoencoder (AE) and VAE have a remarkable property when it comes to the relation
between the encoder and the decoder. The decoder, being a generative model of the data, acts
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as a forward simulator with the latent variables as input, and the observed data as output. In
this setting, the encoder performs inversion of the model embedded in the decoder. Without
additional constraints, the decoder and encoder can be optimized to be any forward and
inverse model of the data. The latent embedding is then the inversion of an arbitrary model
of the data. With AE and VAE, representation and model inversion are the two sides of the
same coin. This in itself can be interesting, as this embedding has been proven to be useful
for downstream tasks. With disentanglement (see section 6.5), or physics-informed ML (see
section 7.1), additional properties can be given to the encoder, decoder and latent represen-
tation of VAE. Still, the latent representation can converge to be arbitrary combinations and
rotations of physical variables.

The indeterminacy of latent representations comes from the fact that the latent variables
are unspecified and uninterpretable as long as the decoder network is an unknown simulator
of the data. What if, instead of a black-box neural-network, the decoder that simulates the
reconstructed data was a known physical model? In subsection 7.2.1, the concept of using a
user-defined physical model as a VAE is introduced. In order to enable a model likelihood
estimation for computing the evidence lower bound (ELBO), a variation of the Gaussian
log-likelihood reconstruction loss is proposed in subsection 7.2.2. Finally, subsection 7.2.3
investigates the possibility of estimating a non-factorized Gaussian likelihood to enable taking
a structured uncertainty into account.

7.2.1 User-defined decoders

Substituting the neural network in traditional decoder by a user-defined physical model is
a strong inductive prior that renders the latent variables entirely interpretable. In such a
setup, the latent variables are semantically tied to the variables of the chosen model, and
the encoder is forced to produce a semantic encoding (i.e. with a specific meaning) of the
input data. Like with a neural network decoder, it is latent realizations that are input to the
user-defined decoder (UDD). As discussed above, the trained encoder becomes an estimator
of the inverse of the selected model.

This concept is used for instance in Aragon-Calvo [2020] in the case of a deterministic
AE, in an approach denoted by “semantic autoencoder”. They use an AE to retrieve galaxy
characteristics from monochromatic images. By replacing the neural-network in the decoder
by a simple exponential model of elliptic galaxies, they force each coordinate of a three-
dimensional encoding to match precisely the three parameters of the said model (major
semi-axis, ellipticity and position angle).

When applied to VAE instead of deterministic AE, the inversion of the user-defined model
becomes probabilistic, because each prediction is associated with a latent distribution. A
general framework to incorporate a user-defined decoder into VAE is proposed by Takeishi
and Kalousis [2021b]. They propose a decoder that is composed of two parts: a learnable (𝜽-
parameterized neural network) decoder 𝑓𝐴, and a physics-based user-defined, non learnable
decoder 𝑓𝑃 . To match these decoders, the latent variable vector is split into two parts
𝐳 = [𝐳𝑃 , 𝐳𝐴], respectively associated with 𝑓𝑃 and 𝑓𝐴. This means that the resulting latent
representation is made of an interpretable and identified part which matches a physical model,
and a non-interpretable part associated with a learned generative process. This is especially
interesting to account for effects in the observed data 𝒛 that are ignored or not well modeled
by 𝑓𝑃 . It can both act as a complement to the physical model and a correction of residuals
or modeling errors. The likelihood model 𝑝𝜽 (𝒙|𝒛) associated with the decoder is a distribu-
tion that is a functional2 of the decoders and the latent space ℱ [𝑓𝑃 , 𝑓𝐴, 𝒛𝑃 , 𝒛𝐴]. They
choose the likelihood to be a (non-factorized) Gaussian distribution 𝒩 (𝝁𝒙, 𝚺𝒙). As for the
variational distribution, they use Gaussian distributions and introduce a hierarchy between

2The decoders architectures and hidden features themselves may be accessed, this can be more than a
function of inputs and outputs of the decoders.
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the latent vectors 𝐳𝑃 and 𝐳𝐴, by conditioning the sampling3 of the interpretable 𝐳𝑃 on the
uninterpretable 𝐳𝐴:

𝑞𝝀 (𝒛𝑃 , 𝒛𝐴|𝒙) = 𝑞𝝀𝐴
(𝒛𝐴|𝒙) 𝑞𝝀𝑃

(𝒛𝑃 |𝒙, 𝒛𝐴) . (7.3)

Finally, to compute the ELBO, they define the Gaussian priors 𝑝 (𝒛𝐴) ∼ 𝒩 (0, I) and 𝑝 (𝒛𝑃 ) ∼
𝒩 (𝝁𝑃 , 𝝈2

𝑃 I), with 𝝁𝑃 and 𝝈2
𝑃 defined as prior knowledge. The choice of prior distributions

for variables with physical meaning is further discussed in subsection 7.3.4. The proposed
configuration is represented in Figure 7.1. They frame this approach as physics-integrated
VAE4. They consequently apply their proposed framework for the retrieval of human gait
characteristics by using a gait engine as the decoder of a VAE [Takeishi and Kalousis, 2021a].

𝒙

𝒈𝐴

𝒈𝑃

𝒈𝝍

Encoder

𝝀𝐴

𝝀𝐴

𝒛𝐴

𝒛𝑃

𝒇𝐴

𝒇𝑃

ℱ

Decoder

𝒇𝜽

𝝁𝒙

Σ𝒙

Figure 7.1: Physics-integrated variational autoencoder. Full lines indicate input or output, and dashed
lines indicate a reparameterization sampling. The covariance matrix 𝚺𝒙 is learned, not predicted.

Overall, there are a few constraints associated with a UDD that can limit its use:

• The model must be generative, i.e. it must be a simulator that can produce samples of
observed data.

• The model must be a function of some input variables that are used as latent variables.

• As it must be used within a deep-learning architecture as a replacement of a decoder,
gradients of the model outputs with respect to (w.r.t.) the model inputs must be
computable. Ideally, the model itself should be differentiable. Gradient approximations
may be used, such as finite differences [Svendsen et al., 2021], but they are less accurate
and computationally efficient.

In this Ph.D., a similar framework to integrate physical models into VAE has been deve-
loped. This methodology, on which the remaining part of this manuscript is based on,
concentrates on cases where the physical-model takes up the entire decoding function, so
that there is no additional learnable decoder, and all latent variables are interpretable.
Adding complementary uniterpretable latent variables could be the focus of future work.
The applications of this methodology are discussed in Chapter 9 and Chapter 8.

7.2.1.1 Interpretation of user-defined decoders

When using a VAE with UDD, the encoder effectively performs the inversion of the physical
model. Discarding the probabilistic nature of retrieved variables, the approach can appear

3I.e. ancestral sampling.
4Perhaps this naming is more adequate to this method than the more general “physics-informed”, that

characterizes the whole domain of study. With a UDD, the model is not just “informed” of physics, physics
is explicitly part of it.
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similar to a supervised regression technique for which simulations are used as a training data-
set. Indeed, a supervised regression model is trained on a simulated data-set (see Chapter 5),
whereas for VAE with UDD, simulations are performed during training for each encoded
sample. Both methods are thus simulation-dependent. Therefore, a VAE with UDD can
seem like “supervised regression inversion with extra steps”, with the encoder being related
to a regression model. However, this interpretation misses a key aspect of the method. In a
VAE with UDD input data can be unlabeled real data, unlike supervised regression models.
This is because optimization is not directly performed on the retrieved variables, but on the
observed data and its simulations/likelihood, i.e. the burden of the loss is transferred to the
observed data instead of relying on the label. Even-though both approaches are simulation-
driven, their role is not identical: the order of simulation and variable estimation is reversed
in VAE with UDD. The VAE with UDD performs self-supervised inversion, with one essential
advantage: unlike supervised regression, no distribution of the retrieved variables has to be
postulated. This necessity of supervised regression has massive influence over the accuracy
of the inversion, as shown in section 5.2. Instead of the distributions of the latent physical
variables, it is now the distributions of the unlabeled observed data that must be selected,
which are arguably a much simpler choice.

A VAE with UDD bridges the gap between the two modeling approaches, the knowledge-
driven paradigm and the data-driven paradigm. A physical model as a decoder enables to
embed first-principle models into a data-driven approach. Indeed, the data-based represen-
tation learning methodology is linked to the physical model inversion.

7.2.1.2 Variance estimation for Gaussian likelihood

Gaussian likelihood models are a reasonable choice for VAE when dealing with continuous
real-valued data, all the more so for the output of a physical UDD.

Estimating a Gaussian likelihood for a VAE is about estimating its mean parameter 𝝁
and variance 𝝈2 (or covariance matrix 𝚺) for computing the NLL reconstruction term of the
ELBO. The 𝝁 is ubiquitously defined as the output of the VAE decoder, and this is still valid
for a UDD. However to estimate the parameter 𝜎 (or 𝚺), several choices are available:

• 𝝈2 can be preset to a constant value. This is a very strong assumption that can degrade
performances. The classical “error” of mistaking the reconstruction loss for a MSE is
equivalent to (unknowingly) setting 𝝈 = 1.

• 𝝈2 can be a learnable parameter, optimized simultaneously with the encoder and
decoder networks. This option was chosen by the previously discussed physics-integrated
VAE methodology [Takeishi and Kalousis, 2021b].

• 𝝈2 can be the output of a neural network. This assumes an heteroscedastic5 likelihood
model, and it is the option from the original VAE paper [Kingma and Welling, 2014].

The work in Rybkin et al. [2021] discusses further these different possibilities.
These options for variance estimation are all available for a VAE with UDD. With physical

data, uncertainty is reasonably sample dependent, therefore the two first homoscedastic
options are discarded. Estimating the likelihood variance with a neural network can be harder
to train and doesn’t necessarily lead to improved performance. Therefore, for the purposes of
this work, a different method to estimate heteroscedastic likelihood without additional neural
network has been proposed, and is explained in subsection 7.2.2.

7.2.2 Monte Carlo reconstruction loss
The physics-informed deep learning methodology presented in this work proposes the use
of physical-based UDD ℱ as shown in Figure 7.2. However, many physical models such as

5with sample dependent, varying standard deviation.
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phenological models (see section 9.1) or PROSAIL (see Chapter 4) are deterministic. The
VAE framework requires the 𝜽-parameterized decoder to embed a likelihood model 𝑝𝜽(𝒙|𝒛),
that can be framed as a “distribution of reconstructions”. Specifically, the so-called recon-
struction loss term of the ELBO objective is approximated with Monte Carlo (MC) sampling
(see subsection 6.4.2):

ℒrec(𝒙𝑖, 𝝓, 𝜽) = −E𝐳𝑖∼𝑞𝝓(𝒛𝑖|𝒙𝑖) [ln 𝑝𝜽(𝒙𝑖|𝐳𝑖)]

≈ − 1
𝐿

𝐿
∑
𝑙=1

ln 𝑝𝜽(𝒙𝑖|𝒛(𝑙)
𝑖 ).

(7.4)

For mini-batches large enough, 𝐿 can be set to 1 without hampering training, thus the
reconstruction loss term is simplified as ln 𝑝𝜽(𝒙𝑖|𝒛𝑖), and the summation is omitted. For
deterministic decoders, a model likelihood 𝑝(𝒙|𝒛) is not available67. In the original VAE, the
decoder outputs the parameters 𝝍 of the model likelihood and uses them to compute the
reconstruction loss. But a deterministic decoder can only produce reconstructions ℱ (𝒛)8.

Therefore, it is proposed here to estimate the parameters 𝝍 of a model likelihood by MC
sampling. Considering physical models with real-valued simulations, the model likelihood
is specified as a continuous distribution. With no additional hypothesis, it is chosen as a
factorized Gaussian (like in most VAE implementations), since it is computationally convenient.
i.e. 𝑝 (𝒙|𝒛) ∼ 𝒩 (𝝍) , 𝝍 = (𝝁, 𝝈2). The Gaussian parameters are estimated by drawing
𝐾 latent vector samples 𝒛(𝑘) and propagating them with the UDD into 𝐾 reconstructions
ℱ (𝒛(𝑘)):

𝝁 (𝐳) = E𝐳∼𝑞𝝓(𝒛|𝒙) [ℱ(𝐳)] ≈ 1
𝐾

𝐾
∑
𝑘=1

ℱ(𝒛(𝑘)), (7.5)

𝝈2 (𝐳) = E𝐳∼𝑞𝝓(𝒛|𝒙) [var (ℱ(𝐳))] ≈ 1
𝐾 − 1

𝐾
∑
𝑘=1

(ℱ(𝒛(𝑘)) − 𝝁 (𝐳))2 . (7.6)

The likelihood parameters 𝝍 (𝐳) = (𝝁 (𝐳) , 𝝈2 (𝐳)) are computed as the MC estimate of
the expectation w.r.t. 𝐳 of some deterministic function 𝒢 of ℱ (𝐳): 𝝍 (𝐳) = E𝐳∼𝑞𝝓(𝒛|𝒙) [𝒢 (𝐳)].
Alternatively, these parameters could be expressed as deterministic functions of 𝐾 latent
samples 𝝍 (𝒛(1)

𝑖 , … , 𝒛(𝐾)
𝑖 ). Comparatively, a neural-network decoder would have directly

output the Gaussian parameters 𝝍𝜽 (𝒛(𝑙)
𝑖 ) by forwarding single latent samples.

The estimated Gaussian likelihood parameters enable to compute the NLL for a given
sample 𝑖 of the batch is:

ℒMCRL (𝒙𝑖, 𝐳𝑖) = − ln 𝑝(𝒙𝑖|𝐳𝑖) = 1
2 ((𝒙𝑖 − 𝝁 (𝐳𝑖))

2

𝝈2 (𝐳𝑖)
+ ln (𝝈2 (𝐳𝑖)) + ln (2π)) . (7.7)

This NLL is optimized as a modified reconstruction loss term for VAE with a user defined
decoder. It is coined in this Ph.D. as the Monte Carlo reconstruction loss (MCRL). The MC
sampling of latent space brings up the new hyper-parameter 𝐾: the number of latent samples
drawn from the latent distribution inferred from each input sample 𝒙𝑖. The choice of 𝐾 is
a trade-off between accuracy of 𝝁 (𝐳𝑖) and 𝝈2 (𝐳𝑖), and training time, because each latent
distribution sample requires a forward pass through the decoder. Although they are both a
number of samples, 𝐾 is fundamentally a different parameter than 𝐿 (see Equation 6.26 and

6It could be chosen as a Dirac distribution, i.e. 𝑝 (𝒙|𝒛) = δℱ(𝒛) (𝒙). Nonetheless, uses would be limited
considering that log-likelihood and its gradients are not defined.

7𝜽 is omitted to designate the likelihood associated with a UDD, because it doesn’t have learnable para-
meters.

8Contrary to the VAE decoder, the output of a UDD can be qualified as reconstructions, because they are
samples, and not distributions.
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Figure 7.2: VAE with user-defined decoder

Equation 6.34 of Chapter 6), which is the number of MC samples to compute the expectation
of the log-likelihood. The parameter 𝝈2 is the variance of the model Gaussian likelihood,
which is considered factorized, i.e. the covariance matrix is diagonal 𝚺 = 𝝈2I. This assumes
the independence of the decoder output vector components. The possibility of estimating
a non-diagonal covariance matrix for a non-factorized Gaussian likelihood is discussed in
subsection 7.2.3.

The MCRL (Equation 7.7) deviates from the classical VAE theory, because the role of
MC samples is different. The original log-likelihood terms (see Equation 7.4) ln 𝑝𝜽(𝒙𝑖|𝒛(𝑙)

𝑖 )
are computed from a single latent vector sample 𝒛(𝑙)

𝑖 . These terms on their own are random
in essence, because 𝒛(𝑙)

𝑖 is sampled (and this is why approximating the expectation w.r.t. 𝐳𝑖
makes sense).

Conversely, the (single) likelihood term ln 𝑝𝜽(𝒙𝑖|𝐳𝑖) in Equation 7.7 for the MCRL is
computed from a set of samples (𝒛(1)

𝑖 , … , 𝒛(𝐾)
𝑖 ). Estimating this likelihood term multiple

times (e.g. for deriving an expectation such as in Equation 7.4) would yield similar values
each time.

− E𝐳𝑖∼𝑞𝝀𝑖 (𝒛𝑖|𝒙𝑖) [ln 𝑝𝜽(𝒙𝑖|𝐳𝑖)] ≈ − ln 𝑝𝜽(𝒙𝑖|𝐳𝑖) (7.8)

With the proposed MCRL setting, the distribution of reconstructions is inferred by propagating
uncertainties of latent variables (i.e. by sampling the latent distribution) into a determinis-
tic model. Perhaps calling the MCRL a negative log “likelihood” is inadequate, because it
asymptotically doesn’t depend on individual samples, but on distributions that are determi-
nistic functions of the sample 𝒙𝑖.

Even though the MCRL deviates from the original VAE framework, it has some interesting
properties from the optimization point of view. The Gaussian NLL MCRL (Equation 7.7)
promotes small sample reconstruction errors (i.e. 𝝁𝑖 close to 𝒙𝑖). It also encourages the recon-
struction variance 𝝈2𝑖 to model the decoder uncertainty. If the error isn’t small, the variance
can be increased to still minimize the loss (e.g. when the error cannot be minimized, uncer-
tainty is increased). The ln (𝝈2 (𝐳𝑖)) term prevents the variance from arbitrarily increasing
as a trivial way of minimizing the loss.

It is important that the likelihood distribution is chosen in accordance with the selection
of the variational distribution (see section 7.3), or more generally on the actual distribution
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of the samples outputted by the UDD. In particular, a mono-modal likelihood model (such
as the Gaussian used here) isn’t adapted to model a multi-modal sample distribution. It
can even be detrimental to training. For instance, attempting to estimate the parameters of
mono-modal Gaussian likelihood model fails when the reconstruction distribution is bi-modal
with modes 𝑚1 and 𝑚2, since a 𝜇 parameter MC estimate would neither match 𝑚1 nor 𝑚2 but
be placed somewhere in-between. An advantage of the MCRL associated with a UDD, is that
it compatible with any likelihood distribution without changing the VAE architecture, as long
as the distribution parameters 𝝍 can be reliably and efficiently estimated from samples ℱ (𝒛)
of the UDD. By contrast, a VAE with a learnable decoder needs to adapt its architecture to
the model parameters.

7.2.3 Multivariate decoder distribution
In subsection 7.2.2, the MC sampling of the latent variables and the forward propagation
through the decoder enables the estimation of the parameters of a Gaussian output distribu-
tion. However, the underlying assumption is that the decoder output vector 𝐱 coordinates
are independent and identically distributed (i.i.d.). This grants a simple expression for the
NLL reconstruction loss. Nonetheless the decoder model combines the input variables, so
that the output vector components are in fact correlated.

The correlations between the decoder output vector components can be taken into account
in the reconstruction loss. This is done through the use of a covariance matrix estimate 𝚺̂,
instead of using only variance estimates 𝜎̂ for each component:

𝚺̂(𝐳) = E [(ℱ(𝐳) − E [ℱ(𝐳)]) (ℱ(𝐳) − E [ℱ(𝐳)])⊤]

≈ 1
𝐾 − 1

𝐾
∑
𝑖=1

(ℱ (𝒛(𝑘)) − 𝝁 (𝐳)) (ℱ (𝒛(𝑘)) − 𝝁 (𝐳))⊤ ,
(7.9)

with E the expectation taken w.r.t. 𝐳 ∼ 𝑞𝝓(𝒛|𝒙) The MCRL must then be changed accordingly:

ℒMCRL (𝒙𝑖, 𝐳𝑖) = 1
2 [(𝒙𝑖 − 𝝁 (𝐳𝑖))

⊤ 𝚺̂(𝐳𝑖)−1 (𝒙𝑖 − 𝝁 (𝐳𝑖)) + ln (∣𝚺̂(𝐳𝑖)∣)] . (7.10)

The covariance matrix inverse 𝚺̂(𝐳)−1 and determinant ∣𝚺̂(𝐳)∣ are involved in the updated
reconstruction loss Equation 7.10, making the computation notably harder. Notably, the
inverse of the covariance matrix9 itself must be computed, and there is no possibility of
reducing the computational burden by solving an equivalent linear system. The necessity
of inverting this matrix is the reason why a non-factorized Gaussian likelihood isn’t used
in practice with MCRL. The covariance matrix estimate is very likely to be ill-conditioned,
thus preventing the computation of the inverse and hampering training (see subsection B.4.1).
Furthermore, even in cases when this matrix is guaranteed to be invertible, the computational
cost is high (see subsection B.4.2). For VAE without MCRL, it is possible to use this approach
by estimating the matrix inverse directly with a neural network [Dorta et al., 2018].

7.3 The variational distribution as an inductive bias
The use of a physical-based decoder implies that latent variables are tied to physical measure-
ments. Therefore, the usual choices for the prior and posterior distributions may not suit the
latent variables with a physical meaning. Informed choices for these distributions must be
made depending on the meaning of each individual model variable. In the following, different
options for the choice and computation of prior and variational distributions of variables
representing physical quantities are investigated.

9Also called the precision matrix.
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7.3.1 Reparameterization sampling techniques
The choice of the variational distribution is limited to distributions that can be sampled in
a differentiable way, so that gradients can be propagated through. Three different sampling
techniques can be considered to enable various distribution choices Kingma and Welling
[2014]:

1. A reparameterization trick to sample location-scale family distributions Koike-Akino
and Wang [2022], such as the usual Gaussian distribution (see Equation 6.31).

2. The composition of random variables by non-linear functions enables to transform
“elementary” distributions into others. For instance, log-normal, logit-normal, Dirichlet,
exponential distribution samples can be generated respectively by composing Gaussian
with logarithm, Gaussian with sigmoid, Gaussian with softmax Srivastava and Sutton
[2017] and uniform with logarithm.

3. The inverse transform sampling (ITS) method described in Equation 7.11 can be used
to sample any continuous random variable z ∼ 𝒜. This technique can be used when
its inverse cumulative distribution function (ICDF) 𝐹 −1

𝒜 is is differentiable almost
everywhere. It entails sampling u from 𝒰(0, 1) (the uniform distribution), and then
calculating the desired z as:

z = 𝐹 −1
𝒜 (u) , u ∼ 𝒰 (0, 1) ⇒ z ∼ 𝒜 (7.11)

7.3.2 Bounded latent distributions
When using a user-defined physical model as a decoder, the latent variables become associated
with a physical meaning, and as such they can have a restricted domain. In particular, these
physical variables are often defined on an interval, i.e. bounded. For instance, a concentration
can only be a positive quantity below 100%, a normalized difference vegetation index (NDVI)
level always belongs between −1 and 1. It is important to ensure that latent variables that are
semantically tied to bounded variables are constrained so that their sampling never leaves
their definition range. Physical models can be mathematically defined even with out-of-
bounds parameters, but samples generated with these parameters would not be realistic.
Such reconstructions could still minimize the reconstruction loss, and hamper training while
the encoder learns to infer wrong model parameters. This can be especially detrimental when
some training samples are not well described by the physical model. As such, the unbounded
traditional Gaussian variational distribution cannot be used without performance limitations.

To choose the variational family, the properties that must be imposed on latent variables
must be analyzed. Bounded variational distributions which can achieve a variety of densities,
with modes reaching the whole intervals, and varying variance, seem especially suited for
physical variables. Additional properties can be expected, such as asymmetry (skew), or
heavy tailing (kurtosis). Overall, the chosen distributions need as much parameters as the
number of distribution moments to be tuned. In the case of mode and spread, two-parameter
distributions can be considered.

The sampling techniques described in subsection 7.3.1 can be used to sample bounded
distributions. This can be achieved by composing unbounded distribution samples, such
as Gaussian samples drawn from the reparameterization trick, with sigmoid functions10

(logistic11, hyperbolic tangent, arc-tangent, etc...).
However care must be exerted, because non-linear transformations of random variables

changes the dynamic of the distribution. With this method, the transformed distributions
are distorted and may become bimodal. For instance, it can be detrimental to apply a

10More generally, composing unbounded samples with a monotonic, smooth enough, bounded function.
11The composition of a Gaussian distribution with a logistic function is the logit-normal distribution.
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sigmoid transformation to Gaussian samples obtained with the reparameterization trick to
get bounded samples. This is because the resulting logit-normal distribution can be bimodal
for some (𝜇, 𝜎) configurations.

To avoid such limitations, the ITS can be considered instead, because it enables the
sampling of distributions that are natively with bounded support such as raised cosine
distributions, beta distributions, etc. Still, some computational precautions must be taken:
in practice, the gradient of the ICDF computed during training may diverge. In intervals of
near-zero density, the cumulative distribution function (CDF) is almost constant at 𝑦 = 𝑐
and its reciprocal has infinite derivative at 𝑥 = 𝑐. Therefore, uniform sampling of 𝑢 must be
done inside an interval 𝕐 where the CDF is strictly monotonous. In fact, due to the numerical
accuracy 𝜖, the interval 𝕐 has to be restricted even further (see Equation 7.12).

𝕐 = 𝐹𝒜 (𝕏) , 𝕏 = {𝑥 ∈ [0, 1] s.t. d𝐹𝒜 (𝑥) ≥ 𝜖} (7.12)

This means that exceptional (very low probability) events are never observed with the inverse
sampling method, although this isn’t an issue for the considered applications.

The Kumaraswamy distribution (see section C.2) which has been considered as an option
for bounded distributions, can illustrate these considerations. The Kumaraswamy distribu-
tion is bounded between 0 and 1, it depends on two parameters 𝑎 and 𝑏 , with an analytical
simple expression of the probability distribution function (PDF), CDF and ICDF, which
makes sampling very easy. This distribution is quite flexible, which can make it useful to
model physical variables. Depending on the values of the parameters, the Kumaraswamy
distribution has numerical issues because the gradient of the ICDF diverges (see subsub-
section C.2.4.1), so the range for the uniform sampling for the ITS must be restricted,
as explained above. In the end, Kumaraswamy distributions were discarded for this work
because of three reasons:

• Despite a relative flexibility which enables a variety of densities, achieving low variance
can require extremely high values of the parameters 𝑎 and 𝑏, diverging beyond the range
double precision (≈ 1.8 ⋅ 10308).

• Analytical expressions of Kullback-Leibler divergence (KLD) between pairs of Kuma-
raswamy distributions or even between Kumaraswamy and other distributions are
intractable.

• The distribution parameters had uninterpretable meaning, because they have a combi-
ned effect on all moments.

Truncated normal (TN) distributions were finally chosen as the variational distribution
family (see section C.4). These distributions form an exponential family that restricts the
usual variational Gaussian into an interval, making it suitable for the considered purposes.
A TN is a function of a location 𝝁 and scale parameter 𝝈 like the usual Gaussian. When the
TN has low enough variance, there can be domains within the bounded definition interval
that have almost zero density, making gradients of the ICDF diverge. Still, computing a good
interval 𝕐 to draw uniform samples for the ITS is straightforward:

𝕐 (𝜇, 𝜎) = [max (𝜇 − 𝑛𝜎, 0) , min (𝜇 + 𝑛𝜎, 1)] , (7.13)

with 𝑛 the number of standard deviations taken into account. In practice, 4 < 𝑛 < 5 is
enough. Furthermore, the TN are a maximum entropy distribution for bounded probability
distributions, meaning that they are one of the least informative distributions among this
category. As such, it is an adequate choice because it minimizes the amount of prior infor-
mation given to the distribution.

One limitation of TN is that there is no expression for the ICDF in the multivariate
case. Therefore, the inverse transform method used here cannot be applied. Other sampling
methods that are differentiable w.r.t. the distribution parameters (i.e. mean vector and
covariance matrix) must be found.
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7.3.3 Intermediary latent space
There are additional choices to be made when it comes to the bounds of the physical-based
latent variables. First a decision must be made about whether those bounds are pre-set as a
prior knowledge, or learned (as an additional output of the neural network, or as an additional
learnable parameter). In practice, the former option is easier to implement, doesn’t require
optimization, and makes use of available knowledge about the physical model in the UDD.

Once the variable bounds [𝑙, 𝑢] are fixed, how can they be enforced on the latent variables?
One straight-forward option would be to directly predict variational parameters corresponding
to distributions bounded on the selected intervals. Alternatively, the variational distributions
can be chosen to be bounded all on a common interval [0, 1], and latent samples 𝑧 are re-scaled
with an affine transformation to match the chosen interval [𝑙, 𝑢].

𝑧 ∈ [0, 1] ⇒ (𝑢 − 𝑙)𝑧 + 𝑙 ∈ [𝑙, 𝑢] (7.14)

This configuration has one major advantage compared to simply sampling variables directly
on their definition domain. It enables to apply equivalent KLD loss regularization on all the
latent variables. The KLD between bounded variational and prior distribution is a function
of the domain (e.g. see Equation C.9). Differently-sized intervals could lead to priors being
applied unevenly to the latent dimensions. This is why the latter option, which is similar
to the intermediary latent space approach Miao et al. [2022] (see subsubsection 6.5.2.3), is
better.

7.3.4 Prior distribution for physical variables
While the variational distribution should be chosen with physical variables meaning in mind,
it also has to be paired with a prior distribution that enables computation of the KLD loss
term. It may unfortunately be more complicated to find a meaningful prior whose KLD
with the variational distribution admits a closed-form expression12. Fortunately, the chosen
TN distributions (see subsection 7.3.2) admit analytical KLD (see subsubsection C.4.6.1).
This enables to impose a prior similarly to that of the original factorized unit Gaussian prior
onto Gaussian variational distributions, or similarly to the physics-integrated VAE framework
[Takeishi and Kalousis, 2021b] (see subsection 7.2.1).

However, using a TN as prior is akin to promoting a specific mode to the posterior
distribution. This is why when the true distribution of a physical quantity associated to the
posterior distribution doesn’t have the same mode, this prior is detrimental. Furthermore,
it has been discussed in Chapter 5 that the true distribution of physical variables often isn’t
known accurately (justifying the current approach).

To reflect the lack of information on a physical parameter distribution, it is proposed here
to use a uniform distribution (over the bounded interval) as a prior. The analytical expression
of the KLD between a TN and the uniform distribution is provided in subsubsection C.4.6.2.
This prior is the least informative possible, besides using no prior at all. Computing the
derivatives of the KLD between a TN and a uniform distribution w.r.t. the TN parameters
(𝜇, 𝜎) (see subsubsection C.4.6.3) enables to assess what kind of distribution is promoted by
this prior, which in turn allows to analyze the effect of the KLD loss term in the ELBO. The
uniform prior promotes TN posterior with a larger variance, and more weakly encourages a
distribution centered on the interval mid point (i.e. 𝜇 = 0.5).

7.4 Conclusion
This chapter has presented a methodology for integrating a physical model as the decoder
of a VAE. The MCRL was introduced for enabling Gaussian likelihood estimation with a

12The KLD between two distributions can be estimated with MC sampling. However KLD estimators can
have high variance and require many samples, thus increasing the computational cost.
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deterministic decoder. The choice of the variational and the prior distributions for modeling
physical variables has been discussed. The different elements of this approach are the building
blocks that will enable to predict interpretable representations of land surfaces from remote
sensing measurements.

In the next part, this methodology will be applied with the incorporation of two physical
models: PROSAIL in Chapter 8 with PROSAIL-VAE, and a temporal, phenological model
in Chapter 9 with Pheno-VAE.
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The methodology developed in Chapter 7 proposes to incorporate a physical model as the
decoder of a variational autoencoder (VAE). The inputs of the physical model are semantically
tied to the latent variables of the VAE, and as such can be understood from two comple-
mentary points of view. The latent variables become a physically consistent representation
of the encoded data, and they estimate the input of a model from its output, i.e. they are
a solution to a model inversion. The encoder of the VAE is trained to become a inverse
model of whatever model is in the decoder. Crucially, it can be trained directly on real data,
without having to build simulated training data-sets.

The PROSAIL model introduced in Chapter 4 is a radiative transfer model (RTM) that
simulates canopy reflectances from a set of biophysical parameters. When coupled with
the model of a remote sensor, it constitutes a physical model that relates ground physical
properties to remote sensing observations.

This chapter studies the incorporation of PROSAIL into a VAE as a so-called PROSAIL-
VAE, and the training of the model using Sentinel-2 (S2) images. Using in-situ measurement
data, the inversion of certain variables of PROSAIL with PROSAIL-VAE can be assessed
and compared with other methods. In particular, it is compared with Sentinel Application
Platform (SNAP), which is a operational neural-network in SNAP based on the biophysical
variable neural network (BVNET) architecture (see Chapter 5).

In section 8.1, the PROSAIL-VAE approach is introduced, alongside two supervised
neural-network based deep learning approaches: SNAP and multiple probabilistic supervised
regression (MPSR). Then in section 8.2, the performance of one PROSAIL-VAE model is
investigated, by comparing its inversion performance against that of SNAP, and by analysing
the inference over S2 images. Finally, the section 8.3 discusses different design choices for
PROSAIL-VAE.

8.1 PROSAIL inversion methods
8.1.1 PROSAIL-VAE
8.1.1.1 Integrating PROSAIL as the decoder of a VAE

PROSAIL-VAE is defined as a class of VAE in which PROSAIL is integrated as a physics-
based user-defined decoder (UDD) (see subsection 7.2.1). This is performed with the deve-
loped differentiable implementation of PROSAIL (see section 4.5). The neural-network
encoder 𝑓𝝓 takes S2 reflectances and observation angles as input, and outputs the variatio-
nal parameters 𝝀 that define the latent distributions, and thereby the approximate posterior
approximate 𝑞𝝓 (𝒛|𝒙). The samples from these latent distributions are semantically tied to
the input variables of PROSAIL and taken as input by the PROSAIL-decoder. The decoder
then simulates the S2 bands matching the canopy reflectance spectra corresponding to these
input variables. These simulations are reconstructions of the encoder input S2 bands.

The training loss of PROSAIL-VAE is the evidence lower bound (ELBO) objective function
(see Equation 6.35) weighted by a 𝛽 hyper-parameter in the manner of 𝛽-VAE (see Equation
6.37):

ℒPROSAIL-VAE = ℒrec + 𝛽ℒKLD. (8.1)

The reconstruction loss term ℒrec penalizes the ability of the VAE to accurately model its
input data. In the present case, it is the ability of the PROSAIL decoder to reconstruct
the input S2 bands, from the PROSAIL variables inferred by the encoder. The KLD loss
term ℒKLD encourages the approximate posterior to match the prior distribution on latent
variables, and acts as a regularizing term. The 𝛽 coefficient balances both terms in the loss.

The latent variables samples drawn from the inferred variational distribution by the
encoder are not directly taken as PROSAIL variables and input to the decoder. PROSAIL-
VAE uses an intermediary latent space (see subsection 7.3.3): the latent variables 𝒛 are
constrained to belong to the [0, 1] interval, and PROSAIL variables are obtained by an affine
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Figure 8.1: Description of the proposed PROSAIL-VAE methodology

transformation of the latent variables. The latent distributions are chosen as truncated
normal (TN) for ensuring that their samples are bounded (see subsection 7.3.2).

The reconstruction loss doesn’t penalize individual reconstructions (i.e. simulated S2 re-
flectance bands), but a likelihood distribution 𝑝 (𝒙|𝒛). For PROSAIL-VAE, this reconstruc-
tion loss is computed as the Monte Carlo reconstruction loss (MCRL) (see subsection 7.2.2).
Several sets of latent variables are sampled, transformed into PROSAIL variables and forwarded
to PROSAIL for simulating sets of S2 reflectance bands. These sets of reconstructions
enable to estimate the parameters of a Gaussian likelihood. Then, the reconstruction loss is
computed as the negative log-likelihood (NLL) of the estimated distribution with respect to
(w.r.t.) the encoder input S2 bands.

The training workflow of PROSAIL-VAE is summarized in Figure 8.1a. Once trained,
the encoder is a fast probabilistic inverser of PROSAIL. During inference, the decoder is
discarded, and only the encoder is used for retrieving biophysical variables (see Figure 8.1b).

8.1.1.2 Training of PROSAIL-VAE

PROSAIL-VAE is trained in a self-supervised manner by directly using S2 band reflectances
as input. Its training data-set is the S2 patch data-set 𝒟S2, described in section 2.2. This
data-set contains patches extracted from S2 images of various locations across Europe and
at different dates between 2016 and 2019.

PROSAIL-VAE is initialized by using the multiple initialization and best instance training
(MIBIT) approach (see subsubsection 3.3.2.3). It consists in training several deep learning
model instances for a few epochs, and then pursuing the training only for the model with the
best validation loss. The learning rate (lr) is commanded throughout training with the cyclical
plateau reduction (CPR) scheduler (see subsubsection 3.3.2.2). This scheduler reduces the
lr when the validation loss doesn’t improve for a chosen number of epochs. When the lr
crosses a threshold, it is reinitialized to its initial value and the cycle starts over. The Adam
optimizer is used to update the weights of the encoder.
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8.1.1.3 PROSAIL-VAE base configuration

Table 8.1: Range of the PROSAIL input variables in PROSAIL-VAE

Variable 𝑁 𝐶𝑎𝑏 𝐶𝑤 𝐶𝑐𝑎𝑟 𝐶𝑚 𝐶𝑏𝑟𝑜𝑤𝑛 LAI 𝛼 ℎ 𝑠𝑤 𝑠𝑏

min 1.2 20.0 0.0075 5 0.003 0 0 30 0.0 0 0.3
max 1.8 90.0 0.0750 23 0.011 2 10 80 0.5 1 3.5

The target ranges of the PROSAIL variables for PROSAIL-VAE are shown in Table 8.1.
These definition intervals for PROSAIL variables are chosen identical to the canonical sampling
intervals used for simulating the training data-set of SNAP in Weiss and Baret [2016], when
possible. Since the version of PROSAIL is different from the one used here, the ranges of
some variables are unavailable and must be defined separately. The range of the soil para-
meters 𝑠𝑏 and 𝑠𝑤 is kept identical to that of the implementation of Domenzain et al. [2019].
The range of the equivalent water thickness 𝐶𝑤 is arbitrarily chosen with a very high upper
bound. These intervals represent a prior knowledge about the PROSAIL variables. This
knowledge is less informative than sampling distributions, and thus much easier to provide.

The prior distribution 𝑝 (𝒛) considered for PROSAIL-VAE are uniform distributions over
the range [0, 1]. The associated loss term ℒKLD is the KLD of the TN latent distribution
𝑞 (𝒛|𝒙) w.r.t. the uniform prior 𝑝 (𝑧) (see subsubsection C.4.6.2). This KLD depends on the
range of the bounded distributions. Therefore, to ensure that the ℒKLD loss term affects all
variables equivalently, the prior is not defined w.r.t. the distribution of PROSAIL variables,
but w.r.t. the latent distributions. This is because the latent variables are defined on the
same interval, contrary to the PROSAIL variables.

The training of PROSAIL-VAE is relatively random access memory (RAM)-intensive,
because of the use of the differentiable version of PROSAIL as a decoder. Applying automatic
differentiation throughout the PROSAIL model requires keeping a lot of intermediary variables
and their gradients in memory. Furthermore, the use of the MCRL necessitates these
computations to occur for several samples at once. As a consequence, the memory of the
used graphical processing unit (GPU) (see section A.2) reaches saturation quickly. To lessen
the computational burden, the PROSAIL spectra and simulations are down-sampled from
an original 1 nm resolution to to 7 nm (see subsection 4.5.4). In the current implementation
of PROSAIL-VAE, the used hardware can handle training steps with approximately 7 × 104

total simulations. In practice, this corresponds to simulating 𝑁 = 70 reconstructions (for
the MCRL) of a single 32 × 32 pixels S2 patch (i.e. 1024 pixels). Increasing the mini-batch
size (i.e. increasing the number of patches taken into account at each step) requires either
reducing the size of the patches or the number 𝑁 of Monte Carlo (MC) samples for the
MCRL. As such, the number 𝑁 of MC samples for the MCRL is selected jointly with the
batch size 𝐵, so that the total number of reconstructions at one step is maximized without
the GPU memory being saturated, i.e. 𝑁 × 𝐵 ≈ 7 × 104.

The neural network architecture for the encoder of PROSAIL-VAE is described in Figure
8.2. It is based on a residual network backbone (see subsubsection 3.3.1.3), with three
residual connection blocks, and they infer bio-physical variables (BV) for each pixel of the
input images. All layers are 32 neurons wide, and are connected with ReLU activation. The
residual blocks are two layers deep. Two variants for this architecture are proposed. The first
variant is a pixel-wise multi-layer perceptron (MLP) (see subsubsection 3.3.1.1) for which the
neurons are fully connected and which handles independently each pixel of the input patch.
The second is a convolutional neural network (CNN) (see subsubsection 3.3.1.2), for which the
neurons are convolution filters. This architecture is designed to allow capturing the spatial
context information within patches. However, only the first layer of this architecture uses
3×3 sized filters, the remaining layers are 1×1. Therefore, only the very close neighborhood
of a pixel is taken into account by this architecture.
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For each S2 input pixel, 17 features are taken into account by the encoder:

• 10 S2 reflectance bands : B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12 (all except B1, B9
and B10)

• 3 Sun / S2 angles: the Sun zenith angle 𝜃𝑆, the S2 zenith angle 𝜃𝑂 and the relative
azimuth angle 𝜓𝑆𝑂 (see subsection 2.1.2),

• 4 spectral indices derived from S2 bands.

The 4 spectral indices taken as input are:

• the normalized difference vegetation index (NDVI) (see subsection 1.2.1):

NDVI = B8 − B4
B8 + B4

(8.2)

• the normalized difference infrared index (NDII) [Klemas and Smart, 1983]:

NDII = B8 − B11
B8 + B11

(8.3)

• the normalized difference leaf mass area (NDLMA) [le Maire et al., 2008]:

NDLMA = B12 − B11
B12 + B11

(8.4)

• the leaf area index soil adjusted vegetation index (LAISAVI) [Bulcock and Jewitt, 2010;
Huete, 1988]:

LAISAVI = log (∣0.371 + 1.5 × B8−B4
B8+B4+0.5 ∣)

2.4 (8.5)

These spectral indices are proposed in the literature as quantities that correlate well with the
leaf area index (LAI) and chlorophyll content. Therefore, they are relevant input features for
the encoder of PROSAIL-VAE.

Finally, the input features are transformed before being input to the encoder. Rather
than the raw Sun / S2 angles, the min-max normalization (see Equation 8.6) of cosines of
these angles are input to the encoder. This normalization is identical to that of BVNET and
SNAP (see subsection 5.2.1), and uses the same min and max values for each angle.

𝑥norm = 𝑥 − min𝑥
max𝑥 − min𝑥

(8.6)

The spectral bands and indices are transformed using quantile normalization:

𝑥norm = 𝑥 − 𝑞0.5
𝑞0.95 − 𝑞0.05

, (8.7)

with 𝑞𝛼 the quantile 𝛼. The values of these quantiles are computed from the pixel values of
the training S2 data-set 𝒟S2. This ensures that the distributions of the normalized spectral
bands and indices have the same dynamic. In particular, the MCRL reconstruction loss is
applied to the normalized spectral bands, rather than the raw bands, so that each spectral
dimension is penalized equivalently.

The base configuration for PROSAIL-VAE is summarized in Table 8.2. A model trained
with this configuration is assessed in section 8.2, and variants are discussed in section 8.3.
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Table 8.2: Base configuration for PROSAIL-VAE

Category Element Value

Architecture

Encoder Pixel-wise

Encoder input features
B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12, NDVI, NDII, NDLMA,
LAISAVI, cos 𝜃𝑆, cos 𝜃𝑂 and cos 𝜓𝑆𝑂

Decoder PROSPECT-5+4SAIL

Latent distribution Truncated Normal

Objective function

loss ℒrec + 𝛽ℒKLD

Reconstruction Loss MCRL
S2 band penalization
in reconstruction loss

B3, B4, B5, B6, B7, B8, B8A
B11, B12 (all except B2)

Number of MC samples 70

KLD coefficient 𝛽 = 2
Prior distribution 𝑝 (𝒛) Uniform
Variable regularized with
the prior with ℒKLD

LAI

Initialization
(MIBIT)

Number of initialized models 10

Number of epochs 10

lr 10−3

lr schedule

lr 10−3

lr scheduler CPR

Scheduler patience 5 epochs

lrmin 10−8

lr decay factor 10

Scheduler patience 5 epochs

Training

Optimizer Adam

Batch size 1

Patch size 32 x 32

Epochs 300

Batches per epoch 50
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Figure 8.2: Backbone of the encoder of PROSAIL-VAE, with a first input layer followed by 3 blocks
of 2 layers with skip connections, and a last layer that outputs the parameters of the distribution of
PROSAIL variables. For the pixel-wise version of the encoder, all linear layers are dense layers of size
32. For the spatial version, all linear layers are 2D convolutional layers with size 32 and stride 1. The
first layer has a filter size of 3 × 3, whereas the size of the rest of the layers is 1 × 1.

8.1.2 A related approach

A similar prior approach to PROSAIL-VAE was proposed in Svendsen et al. [2021]. In it, two
different variational inference strategies relying on Monte Carlo Expectation Maximization
(MCEM) and VAE are developed to retrieve three BV from Landsat-81. Analogously to
PROSAIL-VAE, their latter approach integrated PROSAIL as the decoder of a VAE, so that
the latent variables are semantically bound to the PROSAIL variables.

However, their work presents several crucial differences with that of PROSAIL-VAE. Their
experimental setup is more limited than that of PROSAIL-VAE. They only used simulated
data for their experiments, both for training and evaluating their approach. They predicted
three PROSPECT parameters (i.e. leaf parameters): 𝐶𝑎𝑏, 𝐶𝑤 and 𝐶𝑚. The rest of the
necessary PROSAIL variables were set constant throughout the training data-set. In their
approach, the latent space was three-dimensional which means that there were fewer latent
variables than reconstructed spectral bands, contrary to PROSAIL-VAE.

There are also key differences in the implementation of the VAE model. They neither
used a differentiable PROSAIL model nor a differentiable emulator, so they had to estimate
gradients of the model without relying on automatic differentiation. They approximated the
gradients by using finite differences. For the variational distributions, they used multivariate
Gaussians. Since these distributions are unbounded, they ensure that the sampled PROSAIL
parameters remain meaningful by mapping negative parameters to 0. They note that this
modifies the likelihood and introduces multimodality, since 0 becomes a mode because of
this mapping. Their likelihood model 𝑝 (𝒙|𝒛) is Gaussian, however they do not estimate the
variance and pre-set it to a constant 𝜎2 = 10−7.

1Landsat-8 is an optical remote sensing satellite launched by NASA in 2013. With an open data policy, the
Landsat-8 images are similar to S2 images: they use nine bands (with two for atmospheric correction) with
similar spectral sensitivity to some S2 bands, with 15 m and 30 m spatial resolution. Landsat-8 has 16 days
revisit frequency.
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Finally, the prior 𝑝 (𝒛) used in the KLD loss term in their model is different from the
uniform prior used in PROSAIL-VAE. They use a multivariate Gaussian prior, whose para-
meters (mean vector and covariance matrix) are learned, instead of pre-set. This means that
the prior distribution is first initialized, then updated throughout the training, to reflect
a property of the training data-set rather than an arbitrary belief. Each new observation
alters the prior and enables to infer more informed posterior distributions. After training,
their learned prior approximated the distribution of PROSAIL parameters of their simulated
training data-set, i.e. the mean and covariance of the prior matched that of their simulations.
This is an interesting approach because it doesn’t require much prior knowledge about the
data. A comparable prior is investigated for PROSAIL-VAE in subsubsection 8.3.1.2. Since
the prior is multivariate, the correlations between the variables in the data-set are estimated
through the covariance matrix. In essence, this approach derives the prior as the distribution
which minimizes the KLD loss term for all inferred posteriors 𝑞𝒛|𝒙 over the whole data-set.
This definition of the prior is not agnostic to the data: the prior approximates the training
data distribution and may not suit data with a different distribution.

Despite the similarity with their approach, PROSAIL-VAE was developed independently,
and is more oriented toward a practical application, since it was designed to learn on real
data from the start.

8.1.3 Supervised regression strategies
Besides the proposed self-supervised PROSAIL-VAE, two supervised deep learning regression
methods are also studied for the inversion of PROSAIL.

SNAP The first strategy is the well-known Biophysical Processor (BP) tool in SNAP [Weiss
and Baret, 2016] which uses a BVNET neural network (see subsection 5.2.1). The canonical
weights of the operational SNAP model are used and no BVNET is trained for the experiments
of this chapter.

MPSR The second approach is the so-called MPSR. It is a supervised deep learning model
that uses the architecture of the probabilistic encoder of subsection 8.1.1 (see Figure 8.2).
Such models are trained using pre-simulated data-sets generated with PROSAIL. The training
data-set for MPSR is simulated with the procedure detailed in section 5.1. The PROSAIL
variables are first sampled with chosen distributions, then correlations are applied between
each variable and the LAI using a co-distribution function, and these variables are then
forwarded to PROSAIL which simulates the corresponding canopy reflectance spectra. For
MPSR, 3 × 105 training samples are generated, using the variables distributions of Table 5.1,
and using the co-distribution type 2 (see Equation 5.4). This number of simulated pixels is
lower than the number 2.4 × 107 real S2 pixels for training PROSAIL-VAE (see Table 2.3),
but much higher than the 4 × 104 used for SNAP. The pixel-wise architecture of the encoder
is considered rather than the spatial one because PROSAIL doesn’t generate images, but
individual pixels.

Like the encoder of PROSAIL-VAE, MPSR doesn’t output estimates of the PROSAIL
variables, but parameters 𝝀 of distributions that are, up to an affine transformation, the
distribution of those variables. Like PROSAIL-VAE, the parameters of independent TN
𝝀 = (𝝁, 𝝈) and are estimated.

Given sampled PROSAIL variables 𝒗, associated to simulated S2 reflectance bands 𝒙,
the corresponding latent variables 𝒛 are derived using the inverse affine transformation
to that used for scaling the latent variables in PROSAIL-VAE. The objective function of
MPSR is the NLL of the estimated TN distribution w.r.t. the latent variable 𝒛 (see sub-
section C.4.3). Like PROSAIL-VAE, MPSR predicts an approximate posterior distribution
𝑞 (𝒛|𝒙). Both methods can be seen as amortized (see subsection 6.4.1) maximum likelihood
estimation (MLE) estimation methods (see subsection 6.1.1). Both methods use a NLL as
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objective function (the reconstruction loss for PROSAIL-VAE). However, the optimization is
not applied to the same element: for MPSR, the predicted distribution is directly optimized
whereas for PROSAIL-VAE the NLL is applied on the reconstruction as a proxy.

Compared to BVNET, this strategy has two advantages:

• More complex relationships can be discovered since MPSR is a deeper, more complex
neural network.

• Multiple PROSAIL variables are retrieved simultaneously by a single model, while
BVNET uses a different network for each variable.

• The predictions of the model are probabilistic, so they can quantify uncertainties.

The training configuration of MPSR (see Table 8.3) is similar to that of the base PROSAIL-
VAE (see Table 8.2). MPSR is a pixellic approach trained on individual simulated pixels,
rather than patches. Thus, a size of 1024 is used for pixel batch size as an equivalent of the
32 × 32 patches in PROSAIL-VAE. The MPSR approach is not computationally intensive
like PROSAIL-VAE, because there is no simulation with PROSAIL involved at training time,
which enables to iterate through the optimizations steps faster.

Table 8.3: Configuration of MPSR.

Category Element Value

Architecture
Neural network Pixel-wise encoder

Input features
B2, B3, B4, B5, B6, B7, B8, B8A,
B11, B12, NDVI, NDII, NDLMA,
LAISAVI, cos 𝜃𝑆, cos 𝜃𝑂 and cos 𝜓𝑆𝑂

Output TN distribution parameters
Objective function loss TN NLL

Initialization
(MIBIT)

Number of initialized models 10
Number of epochs 10
lr 10−3

lr schedule

lr 10−3

lr scheduler CPR
Scheduler patience 5 epochs
lrmin 10−8

lr decay factor 10
Scheduler patience 5 epochs

Training

Optimizer Adam
Batch size 1024
Input data S2 pixel
Epochs 5000

8.1.4 Variable estimates and prediction intervals
PROSAIL-VAE and MPSR output TN distribution parameters. For each variable characte-
rized by such a distribution, an estimate and a prediction interval are derived. For a given
variable, the estimate is taken as the expectation 𝑚 of the TN distribution. This enables to
easily interpolate these estimations to the dates of measurement of in-situ data from the two
closest S2 images, with only the assumption of independence of predicted distributions (see
subsection 2.4.3). The interpolation of expected values is the expected interpolated value
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(as opposed to using the mode or median). The uncertainty for each prediction is charac-
terized by the standard deviation (std), which is derived from the distribution parameter,
and interpolated if needed (see subsection 2.4.3). The prediction intervals are derived as 2𝜎
intervals: [𝑚 − 2𝜎, 𝑚 + 2𝜎], with 𝜎 the std.

For variables that are inferred by PROSAIL-VAE or MPSR (e.g. the LAI), the expected
value 𝑚 and std 𝜎 are directly derived from the inferred TN. For canopy chlorophyll content
(CCC), the predicted value is obtained by assuming the independence of LAI and CCC
predictions2:

CCC = 𝑚LAI × 𝑚𝐶𝑎𝑏
. (8.8)

The estimated prediction intervals of CCC are derived from the variance of the product of
LAI and 𝐶𝑎𝑏, by assuming that they were not correlated [Goodman, 1960]:

var CCC = var (LAI × 𝐶𝑎𝑏) = (var (LAI) + 𝑚2
LAI) (var (𝐶𝑎𝑏) + 𝑚2

𝐶𝑎𝑏
) − 𝑚2

LAI𝑚2
𝐶𝑎𝑏

. (8.9)

8.2 Performances of PROSAIL-VAE
In this section, the performances of a single PROSAIL-VAE model, with the base configura-
tion (see Table 8.2) are analyzed.

The training of this model is discussed in subsection 8.2.1. In subsection 8.2.2, its accuracy
in retrieving the LAI, CCC and leaf chlorophyll content (LCC) from S2 images is compared
to that of SNAP and MPSR, by using in-situ validation data. Using the testing S2 data-set
𝒟S2,test, the reconstruction of input data is discussed in subsection 8.2.2, and the inference
of PROSAIL variables is discussed in subsection 8.2.3.

PROSAIL-VAE refers to a class of models, therefore PROSAIL-VAE models are instances
of this class (sometimes with different configurations), but with different training results. The
presented PROSAIL-VAE model was chosen as one instance with the best in-situ validation
performance, and it will serve as a reference for assessing the different design choices for
PROSAIL-VAE later in this chapter. It will be denoted PV⋆.

8.2.1 Training
The evolution of the training and validation losses for PROSAIL-VAE, along with the variation
of the lr are shown in Figure 8.3. PROSAIL-VAE shows no sign of overfitting, since the total
training and validation loss (ℒsum) both decrease at the same rate throughout training.

Thanks to the MIBIT initialization scheme, the optimization of PROSAIL-VAE was
given a head-start prior the 300 epochs displayed here. It enabled the loss to be decreased
significantly so the subsequent training could be more efficient. Most of the loss decrease
occurs within the 50 first epochs, and converged slowly afterwards. The CPR lr scheduler
decreased the lr when the validation loss no longer progressed. Variations of the lr coincided
with small improvement of the validation loss. Most of the decrease in the validation loss
occurred before the lr had changed once, and the scheduled change in lr seems to have help
decreasing it a little further.

One specificity about the reconstruction loss ℒrec is that it can be negative. This loss is
a NLL, which can be negative when the term (𝑥−𝜇

𝜎 )2 becomes small relative to log 𝜎2. This
occurs when both 𝑥 − 𝜇 and 𝜎 are small, i.e. when the predicted distribution is narrow and
well centered around the target value 𝑥. This is a sign that PROSAIL-VAE reconstructs the
input S2 bands well.

The KLD loss term varies in reverse to the reconstruction loss, showing a competing effect.
This term is a regularizing term, and since it is the KLD between the TN posterior and a

2These distributions are independent by design in PROSAIL-VAE and MPSR, since they are sampled
independently. However their parameters are derived by a deterministic function of the same input data, and
they represent quantities that are correlated in reality. Nonetheless, this assumption is necessary since the
correlation between the LAI and CCC is not estimated.
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uniform distribution, it promotes latent distributions with larger variance. Conversely, the
reconstruction loss term is improved when the variance of reconstruction is low, and promotes
low variance latent distributions as a consequence.
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Figure 8.3: Training and validation losses and learning rate of the PV⋆ PROSAIL-VAE model.

It can be observed that the performance of PROSAIL-VAE on retrieving PROSAIL
variables varies during the training. In particular, validation with the in-situ data of the
LAI retrieval with the in-situ dataset 𝒟 is performed at regular intervals during training.
The evolution of the root mean squared error (RMSE) of the LAI and CCC retrieval for
another instance of PROSAIL-VAE is shown in Figure 8.4. It can be observed that the best
LAI and CCC RMSE do not occur simultaneously during training, and do not coincide with
a minimum of the validation loss. In particular, the best LAI performance is obtained at the
beginning of training, while the total loss is far from convergence.

There are several phenomena at stake during training. PROSAIL-VAE retrieves simulta-
neously all PROSAIL variables, and as observed, the optima of performance for each variable
are reached at different times during training. In the present case, the optimum for LAI
was achieved before that of the 𝐶𝑎𝑏. Additionally, certain variables can have a competing
effect in the simulation of S2 bands by PROSAIL, i.e. on the reconstruction of S2 images.
As such, a variable whose optimum was reached first may have its performance decline later
in training when another competing variable is optimized. Besides, the discrepancy between
the validation loss and the in-situ validation performances has multiple causes:

• First and foremost, the training task (i.e. a regularized reconstruction of an input S2
image) is a proxy task, which is different from the variable retrieval evaluation taken

157



CHAPTER 8. RADIATIVE TRANSFER MODEL INVERSION

as the downstream task.

• Second, the images involved during training are different from the images of the measure-
ment sites. This was done on purpose to avoid a bias of the model toward the measure-
ment data. However this also means that a performance on the training data, may not
be exactly mirrored by performance on images of the measurements sites.

• Third, the in-situ data is quite limited in quantity and diversity, even more compared
to the diversity of the S2 used for training. Therefore, the measurement data is not
representative enough of the vegetation found the training images. As such, in-situ
validation performance varying during training may be a consequence of the model
generalizing to a greater diversity of vegetation than what is found in in-situ data.

Finally, this introduces a limitation in the present study. The validation loss cannot be
used as a metric for selecting the PROSAIL-VAE model with the best performance among
other. This is simply because models with a similar loss may have different variable retrieval
performances on the in-situ data.
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Figure 8.4: Evolution of the RMSE of the LAI and CCC on in-situ data, and of the validation loss
during the training of a PROSAIL-VAE model. The red dot on each curve marks the lowest (best)
value reached by each metric.

8.2.2 Validation on in-situ data

The performances of the PV⋆ are compared against that of the MPSR and pre-trained SNAP,
using the in-situ validation data 𝒟IS. These methods are compared w.r.t. the estimation
of LAI, CCC and also effective LAI (LAIeff) and effective CCC (CCCeff) since the fiducial
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reference measurements for vegetation (FRM4Veg) campaign include those measurements
(see subsection 2.4.1)

Accuracy of variable retrieval As SNAP is a deterministic approach, only variables
estimates can be compared with this method, with regression metrics like the RMSE (Table 8.4
and Table 8.5) and the coefficient of determination (𝑅2) (Table 8.6 and Table 8.7) metrics
(subsection 3.1.5).

Table 8.4: RMSE of the LAI and CCC on in-situ data-sets for PV⋆, SNAP and MPSR.

Variable LAI CCC
Model PV⋆ SNAP MPSR PV⋆ SNAP MPSR

BelSAR 1.30 1.22 1.26
Barrax 2018 1.42 1.43 1.99 27.60 83.92 30.35
Barrax 2021 0.72 0.48 0.76 20.51 84.53 30.31

Wytham 2018 1.21 1.77 1.42 80.78 101.35 85.77
All 1.16 1.24 1.35 40.06 89.33 46.53

Table 8.5: RMSE of LAIeff and CCCeff on in-situ data-sets for PV⋆, SNAP and MPSR.

Variable LAIeff CCCeff

Model PV⋆ SNAP MPSR PV⋆ SNAP MPSR
Barrax 2018 0.77 0.71 1.10 17.45 112.87 43.05
Barrax 2021 1.16 1.06 0.56 38.85 125.65 71.81

Wytham 2018 1.82 0.94 1.31 71.85 135.39 106.99
All 1.25 0.93 0.93 42.66 125.02 74.24

Table 8.6: 𝑅2 of LAI and CCC on in-situ data-sets for PV⋆, SNAP and MPSR.

Variable LAI CCC
Model PV⋆ SNAP MPSR PV⋆ SNAP MPSR

BelSAR 0.24 0.33 0.28
Barrax 2018 0.78 0.77 0.56 0.91 0.20 0.90
Barrax 2021 0.86 0.94 0.84 0.94 -0.08 0.86

Wytham 2018 0.02 -1.09 -0.34 0.08 -0.44 -0.03
All 0.75 0.71 0.66 0.82 0.22 0.78

PV⋆ obtained slightly better overall RMSE and 𝑅2 metrics for the LAI than SNAP, and
much better for the CCC. The MPSR was worse for the LAI than both other methods, and
a little worse than PV⋆ on the CCC. This method did not outperform the others on any
retrieved variable in any campaign.

Figure 8.5 corroborates these results by showing the individual predictions of PV⋆ and
SNAP. For the LAI, similar predictions were obtained by PROSAIL-VAE and SNAP. For
instance, the LAI on the poppy class of the 2018 campaign was underestimated by both
methods, although the underestimation was slightly lower for PROSAIL-VAE. Both methods
predicted a limited range of LAI values for the Wytham site. PROSAIL-VAE performed
better than SNAP. Such an underestimation of the LAI by SNAP on heterogeneous forest
canopies is corroborated in Brown et al. [2021b]; Xie et al. [2019]. Besides, PROSAIL-
VAE slightly overestimated the prediction of low LAI values. For the CCC, SNAP has an
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Table 8.7: 𝑅2 of LAIeff and CCCeff on in-situ data-sets for PV⋆, SNAP and MPSR.

Variable LAIeff CCCeff

Model PV⋆ SNAP MPSR PV⋆ SNAP MPSR
Barrax 2018 0.88 0.90 0.76 0.93 -1.52 0.63
Barrax 2021 -0.26 -0.05 0.71 0.26 -7.08 -1.64

Wytham 2018 -6.71 -1.05 -2.98 -1.47 -7.80 -4.49
All 0.44 0.66 0.62 0.56 -2.69 -0.30

overestimation problem. PROSAIL-VAE on the other hand performs much better. However
it has a tendency to predict a constant CCC value for forests pixels, and that leads to
underestimating a part of these values.

As for effective variables, the LAIeff is better correlated to SNAP and MPSR than PV⋆,
contrary to CCCeff which is better correlated to PV⋆. The LAIeff is the product of the LAI
with the canopy clumping index which is lower than 1. As such, the LAIeff and CCCeff
have a lower value than their LAI and CCC counterparts. As a consequence, by comparing
predictions to effective variables, underestimation may be mitigated, whereas overestimation
is amplified. This explains why using in-situ effective values as reference worsens the accuracy
of SNAP on CCC and PV⋆ on LAI. It can be noted that there are PROSAIL-VAE models
other than PV⋆ which are better correlated to the LAIeff than even SNAP – but are worse
on the LAI on the other hand.

Since FRM4Veg also provides LCC measurements, the retrieval of this variable is also
evaluated. A comparison of the predictions of LCC is provided in Figure 8.7. This comparison
is detrimental to SNAP: since it doesn’t output LCC, estimates are computed from SNAP
predictions of LAI and CCC, as LCC = CCC/LAI. Nonetheless, for PV⋆, the prediction of
LCC is rather accurate, except for a few outliers, such as the garlic class. The LCC predictions
with the worst accuracy by PROSAIL-VAE are underestimations. As will be discussed in
subsubsection 8.2.3.3 with Figure 8.13, the experimental upper bound on predicted 𝐶𝑎𝑏 with
PV⋆ is around 45 µg cm−2. Thus, the retrieval performance of LCC with PV⋆ is probably
limited, and worse performance would be observed with more in-situ data with higher LCC
values. It is also worth noting that PV⋆ can be limited in the prediction of lower values of
LCC, because the allowed lower bound for 𝐶𝑎𝑏 is 20 µg cm−2 (see Table 8.1). Consequently,
predicting a near-zero 𝐶𝑎𝑏 for non-vegetated pixels (e.g. bare soil) is not possible for PV⋆.
In this configuration, the CCC variable is better for PV⋆, since in can have a value of zero
thanks to the lower bound of the LAI being zero.

The temporal evolution of the LAI predictions of both methods is also studied in Figure 8.6.
This figure displays the LAI time series predictions obtained over a maize parcel belonging
to the BelSAR site. Both predicted time series show a well-defined summer crop phenology
curve, that can be fitted with a double-logistic model (see Chapter 9). As observed, similar
predictions for both PROSAIL-VAE and SNAP closely matched the maize in-situ measure-
ments.

Uncertainty quantification with prediction intervals The mean prediction interval
width (MPIW) and prediction interval coverage probability (PICP) metrics are derived for
the prediction interval produced by PV⋆ and MPIW, and shown in Table 8.8 and Table 8.9.
The width of the prediction intervals of both MPSR and PV⋆, as measured by the MPIW
are wide enough that the frequency of them containing the in-situ reference value (PICP) is
good. Since the prediction intervals are derived as 2𝜎 intervals, the target for the PICP is
approximately 0.953. The PICP reached by PV⋆ and MPSR are close to this target. This

3This is known as the empirical rule, (or three-sigma rule or 68-95-99.7 rule), which defines the frequency at
which some observed data falls within 𝑛 std of the mean of a normally distributed data. A 1𝜎 intervals contains
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Figure 8.5: Scatter-plots of LAI and CCC predictions from SNAP and PV⋆ PROSAIL-VAE versus
in-situ test sites measurements. For each data point, the horizontal black lines correspond to the
in-situ uncertainty measures. The vertical black lines indicate PV⋆ 2𝜎 prediction intervals, derived
from the inferred PROSAIL variable distributions.
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Figure 8.6: LAI time series predictions obtained over a maize parcel belonging to the BelSAR site. PV⋆

PROSAIL-VAE and SNAP predictions are obtained by considering non-cloudy S2 available images
acquired on 2018. The blue area is the LAI std predicted by PROSAIL-VAE and the blue line is the
interpolated expectation. The vertical black lines are the measurement std of in-situ data.
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Figure 8.7: Scatter-plots of LCC predictions from SNAP and PV⋆ PROSAIL-VAE versus in-situ test
sites measurements. For PROSAIL-VAE, LCC is taken as the infered 𝐶𝑎𝑏 value, whereas for SNAP
it is computed as LCC = CCC/LAI. For each data point, the horizontal black lines correspond to
the in-situ uncertainty measures. In contrast, the vertical black lines indicate PROSAIL-VAE 2𝜎
prediction intervals, derived from the inferred PROSAIL variable distributions.

suggests that the uncertainty quantified by prediction intervals is well suited to the level of
errors for both methods. For each campaign, the prediction intervals are the same between
LAIeff and LAI, and between CCCeff and CCC because they are derived from the same
inferred distribution, it is only the reference measurement that changes.

For the LAI, the MPSR achieves similar PICP to PV⋆ while having lower MPIW and
despite a larger RMSE. This suggests that MPSR produced better prediction intervals, that
quantify uncertainty a little more accurately than PV⋆. For the CCC however, the prediction
intervals are much larger for MPSR, and it leads to overestimating uncertainty, with PICP
that overshoot the 0.95 target.

Table 8.8: MPIW of LAI, LAIeff, CCC and CCCeff on in-situ data-sets for PV⋆ and MPSR.

Variable LAI LAIeff CCC CCCeff
Model PV⋆ MPSR PV⋆ MPSR PV⋆ MPSR PV⋆ MPSR

BelSAR 4.74 4.37
Barrax 2018 3.74 2.93 3.74 2.93 140.53 177.80 140.53 177.80
Barrax 2021 2.72 2.06 2.72 2.06 94.02 127.17 94.02 127.17

Wytham 2018 5.45 6.76 5.45 6.77 235.20 406.36 235.20 406.36
All 4.04 3.83 3.80 3.67 147.96 222.56 147.96 222.56

8.2.3 Inference on testing data-set

The in-situ validation data 𝒟IS enabled to quantitatively assess the performance on several
vegetation variables for PV⋆. Using the testing S2 data-set 𝒟S2, the next paragraphs further
characterize this model.

about 68% of the data, a 2𝜎 95% and 3𝜎 99.7%. This rule is applied here to derive a 95% PICP target, by
assuming that the TN distributions can be assimilated to Gaussians (which is a reasonable approximation,
except for distributions that are truncated close to the mode).
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Table 8.9: PICP of LAI, LAIeff, CCC and CCCeff on in-situ data-sets for PV⋆ and MPSR.

Variable LAI LAIeff CCC CCCeff
Model PV⋆ MPSR PV⋆ MPSR PV⋆ MPSR PV⋆ MPSR

BelSAR 1.0 1.0
Barrax 2018 0.88 0.83 1.0 0.86 0.95 0.97 1.0 1.0
Barrax 2021 0.96 0.94 0.87 0.96 0.98 0.98 0.96 1.0

Wytham 2018 0.95 0.98 0.97 1.0 0.84 1.0 0.96 1.0
All 0.95 0.94 0.93 0.94 0.93 0.98 0.98 1.0

8.2.3.1 Reconstructions

The main driver of PROSAIL-VAE variable retrieval performance is arguably the penalization
of reconstructions with MCRL as a proxy task. As such, since the objective of this model
is to provide the closest reconstructions possible to real S2 images, it is important to assess
how well this task is performed.

Figure 8.8 shows the reconstruction performances obtained by PV⋆ on the testing part of
the S2 data-set 𝒟S2. The scatter plots compare original S2 band reflectance values against
reflectances reconstructed by PV⋆. Overall, the reconstructions produced with PROSAIL-
VAE match the original spectral S2 bands. All reconstructed bands have a 𝑅2 score greater
than 0.9, except for B2, which has a lower 𝑅2 = 0.65. This is a consequence of not penalizing
the B2 band with the reconstruction loss.

The assessment of the reconstruction can also be done with individual patches. For
instance Figure 8.9, illustrates visible and infra-red color compositions and their corresponding
reconstructions. These visual results corroborate the accurate reconstruction of crops areas
for both color compositions.

8.2.3.2 Prediction of PROSAIL variables on S2 patches

Besides reconstructions, it is also possible to produce patches of inferred PROSAIL variables.
In Figure 8.10, the predictions of SNAP and PV⋆ are compared over the patch shown in
Figure 8.9. For both methods, the LAI, CCC and canopy water content (CWC) are well
correlated to the presence of vegetation.. The predictions made by PV⋆ look sharper than
the prediction by SNAP, and some structures, such as roads and the shapes of the parcels, are
better outlined by PV⋆. Within the parcels, the predictions of PV⋆ seem more homogeneous.
The CCC and CWC tend to be predicted with higher values within the parcels. For LAI,
CCC and CWC, the stds are correlated to high expected values.

In Figure 8.11 are shown the expectations and std of PROSAIL variables, besides the LAI,
predicted by PV⋆ from the example patch of Figure 8.9. This S2 image patch contains both
crop vegetation elements, and areas without vegetation: roads, buildings, bare soils. In areas
devoid of vegetation, variables besides 𝑠𝑤 and 𝑠𝑏 are irrelevant, even though some of them
exhibit high values (𝐶𝑐𝑎𝑟, 𝐶𝑚, 𝛼, ℎ). In particular, the soil wetness factor 𝑠𝑤 is well correlated
to the bare soil areas. For areas with vegetation, 𝑁 , 𝐶𝑎𝑏, 𝐶𝑏𝑟𝑜𝑤𝑛, 𝐶𝑤 seem correlated to the
density of vegetation. Overall, the predicted 𝑠𝑡𝑑 are correlated to the expected values.

8.2.3.3 PROSAIL variable distributions

Beyond sample patches, it is of interest to evaluate the distributions of inferred variables over
the whole testing data-set 𝒟S2. In Figure 8.12, the predictions of the LAI, CCC and CWC
variables over all the testing data-set of SNAP and PV⋆ are compared. A strong correlation
was observed between LAI predictions, whereas a different behavior was obtained for CCC
and CWC variables.
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Figure 8.8: Scatter-plots comparing the original S2 band reflectance values against reflectances
reconstructed by PV⋆ on S2 test data-set.
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Original image (visible) Reconstruction (visible)

Original image (infra-red) Reconstruction (infra-red)

Figure 8.9: S2 region of interest (ROI) image from test data-set acquired on 2023-05-13 and located
at T31UFS tile (Southern Belgium). First column shows true and false color composites constructed
by original S2 reflectance values whereas PROSAIL-VAE reconstruction results are displayed at the
second column. The red green blue (RGB) true color composite corresponds to bands (B4, B3, B2).
The RGB false color composite corresponds to bands (B11,B8,B5)
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ROI is located at T31UFS tile (Southern Belgium) and acquired on 2018-06-01.
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Figure 8.11: Inference of PROSAIL variables (mean and standard deviation) by PV⋆. BV are predicted
at pixel level in a ROI of the Military Grid Reference System (MGRS) tile T31UFS (Southern Belgium)
on 2023-06-01.
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SNAP tended to predict higher CCC values than PV⋆ which saturated at 250 µg cm−2.
In this case, the in-situ validation showed that SNAP tended to overestimate the CCC. The
same behavior is observed by CWC where PV⋆ predictions saturated at 0.17 cm. To assess
these results, more in-situ measurements would be required to corroborate the quality of
these two predicted variables. A visual comparison of the results can be found in Figure 8.10,
where predicted biophysical variable maps are shown.
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Figure 8.12: Scatter-plots of LAI, CCC, and CWC predictions from SNAP and PV⋆ computed on the
testing S2 image data-set 𝒟S2. The regression line is plotted in red and orange points correspond to
predictions of in-situ measurements.

Despite PV⋆ performing the inversion of all input PROSAIL parameters, not all predicted
variables can be compared with SNAP results. Therefore, the distribution of the other
variables as predicted by PV⋆ are provided in Figure 8.13. This figure shows the histograms
of expectation and std of PROSAIL variables predicted on the testing S2 image data-set.
The histograms of the PROSAIL variable expectations are compared to the distribution of
variables (see Table 5.1) used to generate training data-sets for BVNET (see subsection 5.2.2).

Figure 8.13 shows that the leaf parameter index 𝑁 is likely to be poorly estimated. The
histogram of the expectation of the leaf parameter 𝑁 is concentrated on the lower bound of
its definition interval at 𝑁 = 1.2, which is associated with monocotyledon vegetation [Féret
et al., 2021]. Unfortunately, it is well-known that vegetation with 𝑁 values significantly
higher than 1.3 occurs in real scenarios, and should be present in the images of the testing
data-set.

Besides 𝑁 , looking at the histograms of expected values of 𝐶𝑎𝑏, 𝐶𝑐𝑎𝑟, 𝐶𝑏𝑟𝑜𝑤𝑛, 𝐶𝑤, 𝛼, it
can be observed how predictions do not occur over the full range of their definition intervals
described in Table 8.1. For these variables, it is uncertain whether their predictions are
flawed, or if they reflect the vegetation observed in the data-set. The low predicted 𝐶𝑎𝑏 values
corroborate the CCC saturation effect observed in Figure 8.12, and the underestimation of
in-situ LCC as shown in Figure 8.7. On the contrary, 𝐶𝑐𝑎𝑟 is predicted within a small high
value range. The chlorophyll and carotenoid pigments are both involved in photosynthesis,
and it can be difficult to isolate their respective contribution to the leaf reflectance can be
difficult. As such, the range restriction of 𝐶𝑎𝑏 and 𝐶𝑐𝑎𝑟 could be explained by compensation
effects between both variables predicted by PV⋆. For 𝐶𝑚, predicted values saturate on the
upper bound (at 𝐶𝑚 = 0.011 µg2 cm−1) of its definition interval, suggesting that it is too
tight. Similarly 𝐶𝑤 saturates on its lower bound (at 𝐶𝑤 = 0.0075 cm), which may be lowered
to 0 cm. On the other hand, the upper saturation of 𝐶𝑤 is at 0.03 cm, well below its upper
bound that was set at 0.075cm. The set upper bound for 𝐶𝑤 is at 0.075 cm, which is an
extremely high, arguably rare value. In spite of that, PV⋆ kept 𝐶𝑤 predictions in a more
reasonable range, below 0.03 cm. This suggests guidelines for setting variables definition
intervals for PV⋆ distributions. Bounds for TN distributions should only encompass possible
values (e.g. no negative bio-chemical content value). However they could be set rather
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Figure 8.13: Blue: Histograms of expected values and standard deviation of PROSAIL variables
inferred by PV⋆ on S2 testing data-set. Red: PROSAIL variables distributions well-established in the
literature (see Table 5.1).
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loose, since PV⋆ appears to be able to restrict effectively predicted values to a reasonable
range. This highlights that the definition intervals for variables in PROSAIL-VAE are a weak
prior that can be set roughly, contrary to the parameters for the sampling distributions for
supervised approaches. In general, the distributions used in the literature (see Table 5.1)
are very different from the variable distributions predicted by PV⋆. The closest match is
observed for LAI and 𝐶𝑏𝑟𝑜𝑤𝑛 variables.

8.2.3.4 Correlations between PROSAIL variables

The results corroborate that a meaningful correlation between LAI and hot-spot parameters
was predicted by PV⋆. Figure 8.14 shows the scatter plot between these variables, which
are inferred for a wheat crop parcel of the BelSAR site at different 2018 dates. The hot-
spot parameter effect accounts for the variation of the sensed reflectance as a function of the
viewing angle, due to reflections inside the canopy, and is controlled in PROSAIL by the
hot-spot parameter. This effect is related to the 3D structure of the canopy. As observed in
Figure 8.14, the hot-spot parameter decreases when LAI values are greater than one. This
correlation inferred by PROSAIL-VAE follows the theory about the hot-spot parameter of
the Scattering by Arbitrary Inclined Leaves (SAIL) model [Verhoef, 1998] suggesting that
ℎ ∝ 1/LAI for plants growing taller with constant leaf size, such as wheat (see subsub-
section 4.2.3.3).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
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Figure 8.14: Scatter-plot of LAI versus hot-spot parameters predicted by PV⋆. Blue dots are the
expected value of LAI and hot-spot, and horizontal and vertical lines correspond are the std. The
predictions are averaged over a wheat crop parcel of the BelSAR campaign. The prediction are
performed over the year 2018.

For a further analysis, the scatter-plots between the expectation of all pairs of PROSAIL
variables predicted by PV⋆ on the S2 testing data-set are available in Figure 8.15. These
figures characterize the co-distributions between PROSAIL variables experimentally disco-
vered by PROSAIL-VAE from remote sensing data. These experimental correlations must
be handled carefully because additional validation is required to ensure that each variable
relationship is verified with in-situ data. At this stage, the discovered correlations cannot
be guaranteed to match the true biophysical variables correlations, let alone the marginal
distributions of single variables. For instance, the predicted carotenoid content 𝐶𝑐𝑎𝑟 is
correlated negatively with the predicted chlorophyll content 𝐶𝑎𝑏, contrary to the current
understanding [He et al., 2023; Thomas and Gausman, 1977]. In fact, 𝐶𝑐𝑎𝑟 is predicted within
a restricted range of within the definition interval, showing little variability. This parameter
may not be estimated accurately, likely because the carotenoid content has a limited spectral
contribution to sensed S2 bands. As shown by the gradient based-sensitivity analysis (see

170



CHAPTER 8. RADIATIVE TRANSFER MODEL INVERSION

subsection 4.5.3), the gradient of the S2 bands w.r.t. the carotenoid content is non-zero only
for B2 and B3. Furthermore, for PV⋆, the reconstruction of B2 less accurate than others,
because it is not penalized in the loss, which lowered the influence of the carotenoid content
in the training.

Other pairs of variables have unrealistic correlations. It is improbable that PROSPECT
leaf parameters are strongly correlated with SAIL canopy parameters. The chlorophyll
content 𝐶𝑎𝑏 should not be correlated to the hotspot parameter ℎ which only depend on
the canopy structure. The LAI should also not be correlated with 𝐶𝑐𝑎𝑟, 𝐶𝑤. The soil para-
meters 𝑠𝑤 and 𝑠𝑏 should be relatively independent from other PROSAIL variables, contrary to
what observed with 𝐶𝑏𝑟𝑜𝑤𝑛, 𝐶𝑚 and 𝛼. These unlikely correlations corroborate the existence
of some mechanism of compensation between the variables in the simulation/reconstruction
process in PV⋆: variables with competing effects in the simulation of S2 bands are not well
jointly estimated. It is also likely caused by the ill-posedness of the inversion problem: there is
more PROSAIL variables to estimate than S2 bands on which to apply the objective function.
A potential mitigation of compensation would be to reduce the problem complexity, either
by reducing the number of PROSAIL variables estimated (i.e. reducing the degree of freedom
of the solution) or increasing the number of bands penalized in the reconstruction. Besides,
different PROSAIL-VAE models with different configurations can display different variable
correlations, as will be discussed in the next sections.
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Figure 8.15: Pair-plots between PROSAIL variables retrieved by PROSAIL-VAE from the testing S2
image patch data-set 𝒟S2 (see section 2.2). Each data point is the expected value of a PROSAIL
variable predicted by PV⋆.
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8.3 PROSAIL-VAE variants
In this section, the influence of variations of the base PROSAIL-VAE configuration (see
Table 8.2) are discussed. In subsection 8.3.1, changes in the prior distribution are investigated.
Different methods for computing the reconstruction loss are discussed in subsection 8.3.2.
The architecture of the PROSAIL-VAE encoder is discussed in subsection 8.3.3. Finally, a
semi-supervised training strategy for PROSAIL-VAE is introduced in subsection 8.3.4.

8.3.1 The prior distribution
First, subsubsection 8.3.1.1 studies the influence of the hyper-parameter 𝛽, and of different
sets of latent variables being penalized by the KLD loss term. Then, subsubsection 8.3.1.2
introduces a different kind of prior that is learned rather than pre-set. Finally, subsub-
section 8.3.1.3 discusses the use of an external model to provide a prior for PROSAIL-VAE.

8.3.1.1 Uniform prior distribution

PROSAIL-VAE configurations The base PROSAIL-VAE configuration uses a uniform
prior distribution for computing the KLD loss term, applied only on the latent dimension
related to the LAI and with 𝛽 = 2. Two variations of these elements are investigated here:

1. Applying the uniform prior on different sets of PROSAIL variables.

2. Changing balance between the reconstruction and the KLD loss by tweaking the coeffi-
cient 𝛽. Three different values are considered: 0, 1 and 2.

The configuration 𝛽 = 0 is denoted as PV-NP and it indicates that no prior is considered4

(PROSAIL-VAE “no prior”). To investigate the effects of penalizing different sets of variables
with the KLD loss term, three configurations with different sets of variables affected by the
uniform prior are considered:

• a single prior on the LAI (PV-L),

• the use of priors on LAI and 𝐶𝑎𝑏 (PV-LC),

• priors on all PROSAIL variables (PV-AV).

The seven combinations of these configurations are detailed in Table 8.10. They are
thereby refered by an acronym that accounts for the variables affected by the uniform prior
and the value of 𝛽. For instance, the PV⋆ model which has been investigated thoroughly in
section 8.2 is a PV-L-B2 model.

Quantitative assessment using in-situ data-sets For each of these configurations des-
cribed above, 10 PROSAIL-VAE models are trained (see subsubsection 8.1.1.2), enabling to
assess the influence of those configurations despite the variability between trained models.
Figure 8.16 shows the RMSE, MPIW and PICP for the LAI, whereas these mterics for CCC
are shown in Figure 8.17 for the different test sites. These figures also compare the RMSE
metrics obtained with SNAP.

In terms of LAI RMSE, PROSAIL-VAE models with all configurations consistently out-
performed SNAP on the Wytham site. In contrast, SNAP performed a little better on
Barrax’s 2021 campaign, although PV⋆ also has high accuracy with low RMSE. On the
BelSAR campaign, some PROSAIL-VAE models of all configurations overcame SNAP. The
results on this campaign highlight the variability of performance between the different PROSAIL-
VAE configurations. The PV-AV configuration forcing the prior on all input PROSAIL

4This is equivalent to assuming that the inferred approximate posterior 𝑞 (𝒛|𝒙) is always equal to the prior
𝑝 (𝒛), and therefore their KLD is zero. Such a “prior” therefore brings no information to the model.
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Figure 8.16: Box-plots of LAI metrics obtained on in-situ data-sets with PROSAIL-VAE models and
MPSR. For each configuration, 10 models are trained and attained min and max values are displayed
by boxplot whiskers. The box sites are the 25th and 75th centiles, and the line inside corresponds
to the median. The vertical red lines on the left column indicate SNAP’s RMSE. The vertical green
line on the right column indicates the target ratio of values that lie within 2-𝜎 prediction intervals
(≈ 0.95)
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Table 8.10: Studied PROSAIL-VAE configurations which depend on the value of 𝛽 and on the used
variable priors. The configuration acronyms consider : NP for “no prior”, L for “LAI”, LC for “LAI
and 𝐶𝑎𝑏”, AV for “all variables”. The acronyms also incorporate the value of the parameter 𝛽 by
appending “-B𝛽”

Configuration acronym Prior type Variable prior 𝛽
PV-NP-B0 None None (PV-NP) 0
PV-L-B1

Uniform

LAI
(PV-L)

1
PV-L-B2 2
PV-LC-B1 LAI, 𝐶𝑎𝑏

(PV-LC)
1

PV-LC-B2 2
PV-AV-B1 All variables

(PV-AV)
1

PV-AV-B2 2
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Figure 8.17: Box-plots of CCC metrics obtained on in-situ data-sets with PROSAIL-VAE models and
MPSR. For each configuration, 10 models are trained and attained min and max values are displayed
by boxplot whiskers. The box sites are the 25th and 75th centiles, and the line inside corresponds
to the median. The vertical red lines on the left column indicate SNAP’s RMSE. The vertical green
line on the right column indicates the target ratio of values that lie within 2-𝜎 prediction intervals
(≈ 0.95)

175



CHAPTER 8. RADIATIVE TRANSFER MODEL INVERSION

parameters obtained the worst results. In contrast, PV-LC reaches the best performances on
BelSAR campaign by only considering LAI and 𝐶𝑎𝑏 priors. As for the Barrax 2018 campaign,
it was the PV-L configuration that performed best. All configurations except PV-AV had
PROSAIL-VAE models that achieved a better overall RMSE performance than SNAP. It is
noteworthy that even with no prior at all (PV-NP-B0), a performance similar to SNAP could
be achieved.

For the CCC RMSE, the PROSAIL-VAE models consistently outperformed SNAP in
all in-situ data-sets. The different PROSAIL-VAE configurations obtained similar results,
except for PV-AV that performed slightly worse. The results obtained in Wytham shows
how the use of a prior on all PROSAIL variables led to the decrease of the accuracy of the
results, which was exacerbated by 𝛽 = 2.

Predicted uncertainties for PROSAIL-VAE are evaluated with the MPIW and PICP
metrics respectively in the center and right column of Figure 8.16 for the LAI, and of
Figure 8.17 for CCC.

The MPIW values obtained for the LAI and CCC show that adding KLD regularization
terms (𝛽 > 0) increased the variance of LAI and CCC distributions. In general, the prediction
intervals become wider when 𝛽 increases, as theorized in subsection 7.3.4. The narrowest
intervals were reached by PV-NP. On the LAI, the MPIW was further increased with PV-L
and with PV-AV with 𝛽 = 2.

The PICP depends on both the estimation error being low and the prediction intervals
being large enough. When the estimation RMSE is similar between models, the PICP
increases as the MPIW increases. For instance for the LAI, PV-L had a greater PICP than
PV-NP because it had wider prediction intervals (larger MPIW) and a similar RMSE. For
the CCC, the RMSE varied relatively little between PROSAIL-VAE models so the ordering
of the models in terms of PICP is consistent with the MPIW.

For most models in all configurations, the PICP on the LAI was close to the 0.95 target for
all campaigns, except for Barrax 2018. Due to a higher error (RMSE) in this campaign and
prediction intervals not wide enough to compensate, the PICP falls short of the target. The
uncertainty on the Barrax 2018 LAI was underestimated, leading to most models obtaining an
overall PICP lower than the target. Compared to other experiments, the PV-L configuration
achieved lower RMSE and had larger MPIW on this campaign. This configuration thus
achieved a PICP close to the target.

Concerning CCC, models of all experiments except PV-NP could achieve the 2𝜎 target,
in all campaigns and in overall results. PV-NP underestimated uncertainty because of lower
MPIW than other experiments. Nonetheless, a PICP of 1 for the PV-LC and PV-AV
configurations indicates that the prediction intervals always intercepted the true CCC value.
These intervals were too large, they overestimated the uncertainty and the PICP target was
overshot.

8.3.1.2 Learned prior distribution

A prior distribution 𝑝 (𝒛) similar to that used in Svendsen et al. [2021] is studied: the use
of a learnable prior (see subsection 8.1.2). For PROSAIL-VAE, this prior is a factorized
TN distribution whose parameters 𝜇 and 𝜎 are optimized during training. Subsequently,
the associated 𝒟KLD loss term is the KLD between two TN distributions (see subsub-
section C.4.6.1). A PROSAIL-VAE model, denoted PVLP is trained with the same configura-
tion than PV⋆, but using this learnable prior, applied on all variables and with 𝛽 = 1.

Compared to PV⋆, PVLP did not obtain enhanced in-situ validation results (see Table 8.11).
This configuration has an overall lower variable estimation accuracy, and due to smaller
prediction intervals, the PICP doesn’t reach the 0.95 target.

Nonetheless, it is interesting to compare the values of the learned prior with the predicted
distribution of PROSAIL variables over the testing data-set. Specifically, the expected value
and variance of each PROSAIL variable prior distribution 𝑝 (𝑧) is compared to the mean
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Table 8.11: Performance on the retrieval of in-situ LAI and CCC with PROSAIL-VAE with a truncated
normal learnable prior.

Variable LAI CCC
Metric RMSE MPIW PICP RMSE MPIW PICP
PVLP 1.34 2.30 0.77 50.09 104.55 0.86
PV⋆ 1.16 4.04 0.95 40.06 147.96 0.93

and variances of the distribution 𝑞 (𝑧) of inferred PROSAIL variables over the testing 𝒟S2,
in Table 8.12. Like with Svendsen et al. [2021], a close matching of the mean is observed
between the learned prior 𝑝 (𝒛) and the aggregate posterior PROSAIL variable distribution
𝑞 (𝒛). For the variance however, only the LAI, 𝛼 and 𝑠𝑏 had close values. For the other
variables, the learned prior 𝑝(𝒛) had a larger variance than the aggregated posterior 𝑞 (𝒛),
sometimes an order of magnitude higher.

Table 8.12: Comparison between the mean and variance of the learned prior of PROSAIL-VAE 𝑝 (𝒛)
and the inferred PROSAIL variable distributions 𝑞 (𝒛).

Mean Variance
Variable 𝑝 (𝒛) 𝑞 (𝒛) 𝑝 (𝒛) 𝑞 (𝒛)

𝑁 1.49 1.44 2.81 × 10−2 8.41 × 10−3

𝐶𝑎𝑏 39.02 38.94 2.75 × 101 1.18
𝐶𝑐𝑎𝑟 18.62 19.59 7.10 2.68 × 10−2

𝐶𝑤 0.095 0.045 6.35 × 10−3 7.43 × 10−4

𝐶𝑚 0.022 0.023 3.85 × 10−5 5.53 × 10−6

𝐶𝑏𝑟𝑜𝑤𝑛 0.0093 0.010 1.41 × 10−6 7.82 × 10−7

LAI 1.26 1.23 1.26 1.43
𝛼 69.42 69.32 2.50 × 101 2.16 × 101

ℎ 0.13 0.13 5.81 × 10−4 1.01 × 10−5

𝑠𝑤 0.89 0.92 8.67 × 10−3 1.13 × 10−2

𝑠𝑏 0.71 0.74 1.23 × 10−1 1.21 × 10−1

8.3.1.3 Hyper-prior

Another design choice for the prior distribution that has been considered in this Ph.D. is the
use of a dynamic, local prior, that changes for each new encoded sample 𝒙, as opposed to
a global prior that is the same for all data. Such a prior should be provided by a method
external to PROSAIL-VAE, e.g. an auxiliary neural network. Since this “prior” would be
conditional to the input data: 𝑝 (𝒛|𝒙), thus it is not a prior in the Bayesian sense.

Nonetheless, the idea is to improve or help with the training of PROSAIL-VAE, by
introducing the knowledge of an already working algorithm. This “prior” is hereby called
informed prior or hyper-prior. Two possibilities have been considered for producing a hyper-
prior.

• A MPSR neural network that predicts TN distributions of the PROSAIL variables
could be used. Then, the hyper-prior would regularize the training of PROSAIL-VAE
through the KLD between two TN distributions.

• A classical deterministic supervised neural network model such as SNAP could provide
an estimate of some PROSAIL variables. This “prior knowledge” would be enforced by
using the NLL of PROSAIL-VAE TN distributions w.r.t. this variable estimates. This
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option further diverges from the classical use of prior in the VAE framework, since it
no longer involves a KLD.

Unfortunately, experiments with the hyper-priors have not been conclusive. Since the
PROSAIL-VAE model already performs well on validated variables, no improvement could
be observed by using the output of the less accurate models that are MPSR and SNAP.

8.3.2 Likelihood model
Here, different designs for the likelihood model in PROSAIL-VAE (i.e. the distribution of
the decoder) are investigated. A deterministic version of PROSAIL-VAE is proposed in
subsubsection 8.3.2.2. The effect of penalizing a subset of the reconstructed S2 bands in the
loss is discussed in subsubsection 8.3.2.3.

8.3.2.1 Alternative variance computation

For computing a Gaussian NLL reconstruction loss, it is the variance computation that
differentiates the different VAE methods (see subsubsection 7.2.1.2). The MCRL approach
is compared by computing the reconstruction variance with two different methods:

• The use of a pre-set, constant variance, set to 1 × 10−7 like in Svendsen et al. [2021].
This is a very low variance value, that assumes that the reconstruction are very realistic.
The related PROSAIL-VAE is denoted PVcst.

• The use of an auxiliary neural network that takes the sampled latent variables as input
and outputs a variance estimate. The architecture of this neural network is similar to
that of the encoder of PROSAIL-VAE (see Figure 8.2), with adapted input and output
layers and with only one residual connection block to make it simpler. The related
PROSAIL-VAE is denoted PVNN.

In both cases, only one latent sample 𝒛 is drawn, contrary to the MCRL. The reconstruc-
tion that is obtained by forwarding this latent sample is taken as the mean 𝜇 of the Gaussian
likelihood, like with classical VAE. After training, these PROSAIL-VAE variants are assessed
using the in-situ validation data. The overall in-situ validation RMSE provided in Table 8.13
are worse than for the reference PV⋆ (see subsection 8.2.2) and than even all models of
the same PV-L-B2 configuration (see subsubsection 8.3.1.1), suggesting that the MCRL
approach was superior. The LAI RMSE is sub-par compared to other PROSAIL-VAE

Table 8.13: Performance on the retrieval of LAI and CCC with PROSAIL-VAE with alternative
decoder variance computation PVcst and PVNN.

Variable LAI CCC
Metric RMSE MPIW PICP RMSE MPIW PICP
PVcst 1.45 0.23 0.09 41.84 8.86 0.03
PVNN 1.49 2.04 0.45 44.94 63.26 0.40

models. Nonetheless, the CCC RMSE is comparable to other PROSAIL-VAE configurations.
But the main issue with PVNN and PVcst is that they predicted very narrow distributions,
as showed by the low MPIW values. As a consequence, uncertainty is underestimated, and
the PICP is very far from the 0.95 target.

8.3.2.2 Deterministic PROSAIL autoencoder

The idea of introducing a physical model into the decoder of a VAE can also be applied to
a deterministic auto-encoder. As such, an additional experiment is performed: PROSAIL
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is integrated as the decoder of a classical autoencoder, which uses the encoder architecture
of PROSAIL-VAE. This approach is referred as P-AE. No sample is drawn in the latent
space, the encoder’s output is the code that is scaled to PROSAIL variables, and input to the
decoder. A simple mean squared error (MSE) reconstruction loss is the objective function of
P-AE. Since it is not a probabilistic approach, only the LAI and CCC retrieval RMSE are
evaluated on in-situ data.

For the LAI, the RMSE is 1.55, and it is 45 µg cm−2 for CCC. While the CCC is on par
with PROSAIL-VAE models, the LAI is not estimated as well.

The superiority of PROSAIL-VAE can be interpreted by the space of PROSAIL variables
being explored more during optimization due to the sampling of the latent space. Additio-
nally, the use of probabilistic objective function terms (the NLL in the reconstruction loss
and the KLD loss) introduce regularization effect during training.

8.3.2.3 Penalization of the B2 band

The base PROSAIL-VAE configuration uses the MCRL NLL applied on all reconstructed
spectral bands except B2. This band was involved in the estimation (i.e. it is input to the
encoder) but not in the optimization (i.e. it is not taken into account in the reconstruction
loss). This design choice for PROSAIL-VAE was made because it significantly improved
the accuracy on the retrieval of the LAI, and enabled PV⋆ to have a better RMSE than
SNAP. Besides, B2 is a band for which atmospheric corrections have higher uncertainty (see
subsubsection 2.1.3.4). Also, this band neither is used for training nor is taken as input by
SNAP (along with B8). In Table 8.14 are shown the in-situ validation performances for a
PROSAIL-VAE with the base configuration but includes the B2 into the reconstruction loss,
referred as PVB2.

Table 8.14: Performance on the retrieval of LAI and CCC with PROSAIL-VAE with the reconstructed
B2 band being penalized in the loss.

Variable LAI CCC
Metric RMSE MPIW PICP RMSE MPIW PICP
Score 1.40 4.88 0.97 46.86 133.39 0.93

The validation performances of PVB2 are inferior to that of PV⋆. Additionally, this
configuration changes the inferred distribution of certain the PROSAIL variables on the
testing 𝒟S2. In particular, the distribution of the carotenoid content 𝐶𝑐𝑎𝑟 is different. In
PV⋆, this distribution was concentrated on the upper bound of the variable allowed range, and
had a negative correlation with 𝐶𝑎𝑏. On the contrary, for PVB2 values are concentrated on
the lower bound of the allowed range, and the correlation with 𝐶𝑎𝑏 is positive. This positive
correlation seems to be an improvement of PVB2 over PV⋆. However, it is not possible at the
moment to conclude if this variable is correctly predicted in either case without validating
with in-situ data, especially considering the small range of the predicted 𝐶𝑐𝑎𝑟 in both models.

8.3.3 Encoder architecture
8.3.3.1 Gradient propagation and residual connections

The encoder architecture is based on a residual neural network backbone. The rationale
behind this choice is to help improve the propagation of gradients throughout the model so
that the update of weights is more efficient, and to avoid the vanishing gradient problem (see
subsubsection 3.3.1.3).

To evaluate the impact of this architecture choice on PROSAIL-VAE’s training, the
gradients of the model are retrieved for the first iteration of the first epoch. The values
of these gradients are compared layer by layer in Figure 8.18, for a PROSAIL-VAE model
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with the base configuration and for a PROSAIL-VAE with the same number of neurons and
layers, but no residual connection in the encoder.
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Figure 8.18: Comparison of the gradients in the layers of the encoder PROSAIL-VAE with or without
residual connections.

It can be observed that the gradients in the neural networks layers have different behaviors.
Without residual connections, the gradient values steadily decreased from the last layer (8)
to the input layer (1), with a factor 102. With residual connections, the gradient keeps a
more constant average value throughout the model layers, and the first layer has a similar
gradient level than the last layer.

Since the gradients are estimated at the very beginning of the training, they have quite
high values, so the optimization of all layers still occurs. However, when the training
progresses and when the loss begins to converge, the gradients become lower, and the decrease
due to the depth of the model may prevent the innermost layers from being updated.

8.3.3.2 Spatial encoder

The architecture of the encoder of PROSAIL-VAE has two variants: the pixel-wise variant,
which uses classical fully connected neural layers, and the spatial variant which is a CNN. All
experiments with the different configurations presented until now have used the pixel-wise
variant. In parallel, the same experiments have been carried out using the spatial variant.
However, no notable difference between results obtained by pixel-wise and spatial encoder
architectures has been observed.

This similarity in results can be attributed to the fact that only the first layer of the CNN
used convolution filters larger than 1 pixel in order to preserve the input data resolution.
Therefore, only the first layer of the neural network does take into account the spatial context.
Besides, perhaps more importantly, the PROSAIL model is a 1D RTM which doesn’t take into
account the spatial context, and the reconstruction loss is applied to each pixel independently.
Therefore, neither the decoder nor the objective function promote taking the spatial context
into account for inference.

8.3.4 Semi-supervised cyclical training
PROSAIL-VAE is a purely self-supervised approach. It only requires some S2 data as
input, and learns to reconstruct it while inferring a set of PROSAIL variables. Supervised
deep learning approaches however rely on the simulation of a training data-set, and their
performance depend on the choice of the distribution made for sampling this data-set.
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The PROSAIL-VAE approach still relies on simulations. However those simulations do not
play the same role as in supervised approaches. In particular, they are not driven by samples
of arbitrary distributions, but by inferred parameters that hopefully match the vegetation
observed in real remote-sensing data. The distribution of retrieved parameters may not be
a good approximation of the true underlying distribution of vegetation variables. However,
at the very least, since PROSAIL-VAE minimizes the a reconstruction loss, the distribution
of simulated reflectance bands is by design a good approximation of the distribution of S2
bands found in real images.

This introduces an opportunity for a hybrid, semi-supervised approach. Real S2 images
do not have an associated PROSAIL variable reference mapping, which is why supervised
approaches must resort to simulation. However, the reconstructions of PROSAIL-VAE have
reference PROSAIL variables by design, because they are simulations. What makes those
simulations different is that they were made to match the S2 input data. Therefore, an
approach that could improve PROSAIL-VAE, would be to use the estimated PROSAIL
variables along with their reconstruction as supervised training data. In practice, the encoder
of PROSAIL-VAE would be also trained like MPSR, but with data that is generated on-the-
fly for each new S2 image rather than pre-simulated data. Once reconstructions 𝒙1 are
generated by PROSAIL-VAE from estimated PROSAIL variables 𝒚1, they are forwarded as
a new input to the encoder, which estimates new PROSAIL variables distributions 𝒚2 that
can compared to the “reference” 𝒚1. For instance, the latent distribution produced by the
encoder can be penalized with a supervised loss term ℒsup, e.g. the NLL of the distribution
w.r.t. 𝒚1. This approach is hereby referred as cyclical training, because it involves feeding
the encoder with the output of the decoder.

Implementations of cyclical training can be set in two categories.

• PROSAIL-VAE is optimized jointly with the usual VAE ELBO loss and with the
additional supervised loss term, weighted with 𝛾:

ℒ = ℒrec + 𝛽ℒKLD + 𝛾ℒsup. (8.10)

• PROSAIL-VAE is optimized sequentially with either the ELBO or the ℒsup. The
training would then cyclically be self-supervised, then supervised. When starting with
a self-supervised phase, this could enable to train the encoder efficiently so that recon-
structions become realistic.

This approach could even be used to train spatial (e.g. CNN) models that require images
and not just pixels as input. This is because reconstructions with PROSAIL-VAE are images.
Besides, the reconstructions generated by a PROSAIL-VAE model could even be used off-
line for training a spatial model. In other-words, PROSAIL-VAE could be used perform
simulations of images of entire landscapes, even-though PROSAIL is a 1D model.

For now, experiments using such training strategies for PROSAIL-VAE have been incon-
clusive. Further investigation is required in the future to quantitatively assess the potential of
these techniques, for improving the quality of retrieved PROSAIL variables, both in accuracy
and in uncertainty quantification.

8.4 Conclusion
PROSAIL-VAE is a self-supervised deep-learning method that performs the probabilistic
inversion of PROSAIL. It is based on the use of PROSAIL as the decoder of a VAE, based
on the methodology developed in Chapter 7. One of its main advantages is that contrary
to supervised models, it can be directly trained on remote sensing data, and doesn’t require
pre-simulating a training data-set. Therefore, it is not affected by an arbitrary choice of
sampling distributions for physical parameters. The model has, to discover this underlying
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distribution. On the contrary, supervised methods like SNAP and the MPSR are trained
with a pre-simulated data-set, and the distribution of the sampled variables has an influence
over performances, as discussed in subsection 5.2.2.

The use of in-situ measurements has enabled to compare the performance between different
configurations of PROSAIL-VAE and with SNAP and MPSR. In particular, PV⋆, a PROSAIL-
VAE model with good in-situ validation performance has been deeply investigated. However,
it is important to acknowledge that in operational contexts, selecting a model by using
validation data can lead to an over-fitting risk since testing data should be never used for
setting hyper-parameters or choosing the best configuration. Therefore, reliable solutions
based on cross-validation techniques (see 3.3.2.4) could be proposed to compare trained mo-
dels if a large number of in-situ samples was available. Unfortunately, the experiments
have also highlighted that the PROSAIL-VAE objective function is not a good indicator
of a model’s performance on in-situ data. This is because reconstruction is a training
proxy task not the actual intended downstream task. Finding model indicators that do
not require measurement data, but correlate well with in-situ validation performance, could
enable selecting a model more reliably.

Nonetheless, the PROSAIL-VAE approach introduces an interesting method for identifying
correlations between biophysical variables, based only on remote sensing data. The discovered
relationship between the LAI and hostpot is one example of that. Furthermore, the arbitrary
co-distributions traditionally used in the literature and used to sample biophysical variables
for simulations (see subsection 5.1.3) are different than those found with PROSAIL-VAE. This
suggests that these co-distributions may not describe real relationships between variables. For
instance, a key difference is that with PROSAIL-VAE, most of the predicted variables do not
exhibit a simple linear relationship with LAI. Nonetheless, prudence is warranted regarding
these experimental correlations, since some pairs of variables had unrealistic relationships.
This is likely due to the ill-posed nature of the inverse problem, and compensation mechanisms
between PROSAIL variables. Perhaps a way to improve inversion performance would be to
enforce known relationships between variables. Such constraints could be applied using disent-
anglement methods that penalize the aggregate covariance between variables, like DIP-VAE
(see subsubsection 6.5.2.1).

Visual results and inferred distributions have suggested that some PROSAIL parameters
were better predicted than others. This could be explained by the ill-posedness nature of
the inverse problem or by the importance of each input variable in the PROSAIL model.
Furthermore, in-situ measurements related to less studied parameters such as carotenoids,
brown pigments or dry mater content are necessary to quantitatively assess the performance of
predicted variables. More in-situ data is also needed in both quantity and variety (vegetation
types, location, season) to further validate the proposed hybrid methodology.

Compared to the existing simulation-assisted regression methods, PROSAIL-VAE requires
little prior knowledge about the distribution of input model parameters. For instance,
the configuration PV-NP-B0, (see subsubsection 8.3.1.1) has shown that accurate results
can be obtained by only setting information about the input PROSAIL parameter’s value
ranges (only upper and lower bounds, not their distributions). The experiments have also
corroborated that the selection of priors to be used in the KLD regularization term is not
trivial. Adding some few priors describing well-known variables such as LAI can improve the
prediction accuracies. Conversely, straightforwardly applying a prior on all latent variables
can be detrimental to performances.

The results have also corroborated that the MCRL approach was better than traditional
VAE approaches for computing a reconstruction loss.

Improvements in prediction accuracy could be also obtained by changing the SAIL version
considered in our PROSAIL-VAE implementation. The obtained results have shown that a
positive bias can exist for low LAI values, which may be explained by the insufficient capacity
of the model to simulate realistic soil spectra. Instead of combining only two reference soil
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spectra, the use of a soil spectral library could improve the prediction of low LAI values
where the ground is visible. In the same direction, using other PROSPECT model versions
or other RTM could improve the performances of our hybrid methodology. Using 4SAIL2
instead of SAIL could enable taking into account the canopy clumping effect, i.e. the effect
of leaf distribution on the canopy that modifies the apparent LAI (see subsubsection 2.3.1.2).
An important remark is that the change of the physical-based decoder to be inverted does not
require any additional tuning task, which would be the case for simulation-based approaches
as BVNET.

The PROSAIL-VAE used S2 images of vegetated areas for training. Nonetheless these
images also contained non-vegetation elements (artificial, mineral or water surfaces), that
were not filtered. This suggests that the PROSAIL-VAE approach is relatively robust to out-
of-distribution elements in its training data-set. Since no labels are necessary for training, the
model could use data-sets with images from all continental surfaces and not only Europe. The
distribution of vegetation variables could be estimated in different parts of the world. Also,
the approach is based on deep neural networks, whose operations can be easily parallelized on
dedicated hardware (GPU). Therefore, the inference, which amounts a forward pass through
the neural network model, can be scaled up to a global coverage.

The VAE-based inversion approach developed in this Ph.D. and investigated in this
chapter is not specific to the PROSAIL RTM nor to S2 data. Future research efforts may
concentrate on the incorporation of different physical models and on the use of different
remote sensing data, such as other optical data or radar data. In Chapter 9, it is proposed to
apply this methodology to a different problem: the retrieval of phenological parameters from
NDVI time series. Notably, in this second application, additional priors are incorporated
into the latent space to take into account the physical constraints between the phenological
parameters.
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In Chapter 8, the PROSAIL model is integrated as a user-defined decoder (UDD) of a
variational autoencoder (VAE), using the methodology developed in Chapter 7. This enables
to retrieve canopy biophysical variables from S2 images as interpretable representations of
vegetation. In these experiments, the extracted representations are produced by exploiting
the spectral dimension of the S2 imagery, because PROSAIL is a model that links biophysical
variables to canopy spectra.

However, S2 data can also be interpreted temporally, because its relatively short revisit
time (see section 2.1) enables to build image time series1. This chapter proposes another
application of the Chapter 7 methodology. A phenological model, presented in section 9.2,
which relates the normalized difference vegetation index (NDVI) time series with phenological
variables, is integrated as the decoder of a VAE. The subsequent Pheno-VAE model, presen-
ted in section 9.2 incorporates additional constraints to ensure ordering of certain inferred
distributions. This enables to invert the phenological model and retrieve phenological variables
as a temporal representation of vegetation, in experiments shown in section 9.3.

9.1 Phenological model
Most vegetation goes through cyclical stages across time: this is phenology. Phenology can
be represented as a succession of plant temporal phases, such as growth, stagnation, decay,
dormancy, and landmark key moments or transition dates, such as sprouting, bud break,
flower blooming, leaf onset, growth peak, senescence.

Each plant species has its own phenology. Even between plant individuals of the same
species, there exist spatial disparities in phenology, due to different environments (e.g. temp-
erature, humidity, solar illumination). As such, vegetation phenology is very diverse, but
also case specific: some phenologies are typical of specific species in specific environments.
Furthermore, climate change disturbs environmental conditions, with for instance shorter
winters and longer summers, and plant phenology is thereby modified and not constant
anymore in-between years [Chen et al., 2022].

Nonetheless, it is possible to propose phenological models that can represent a variety
of plant phenologies that follow well-defined temporal patterns. Phenological models link
measurements on vegetation to physiological stages. For optical remote sensing measure-
ments, phenological models usually relate these phenophases to spectral indices, oftentimes
the NDVI (see subsection 1.2.1) [Berra et al., 2017; Hall-Beyer, 2003; Zhu et al., 2012]. For
S2, the NDVI is computed from the B4 (red) and B8 (near infra-red (NIR)) reflectance bands:

NDVI = B8 − B4
B8 + B4

. (9.1)

In this work, phenology is derived from S2 NDVI time series.

9.1.1 Logistic model
For deciduous vegetation and many crops, the leaf onset is usually followed by a rapid growth
period, then a phenophase of maximum vegetation density (and leaf area index (LAI)). This
growth in terms of plant size, leaf surface (i.e. lai), photosynthetic activity (i.e. NDVI,
fraction of absorbed photosynthetically active radiation (FAPAR)) can be represented by a
temporal logistic model:

𝑓 (𝑡) = 𝑐
1 + e𝑎+𝑏𝑡 + 𝑑 (9.2)

with 𝑎, 𝑏, 𝑐, 𝑑 the model parameters, and 𝑡 the time, usually in day of years (DOYs). The
parameter 𝑑 is the minimum attained by the logistic model, while 𝑐 is the amplitude of

1S2 data can be arranged into a Satellite image time series (SITS), a four-dimensional array (two dimensions
of space, one temporal dimension and one spectral dimension).
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change. The parameters 𝑎 and 𝑏 respectively control the offset of the growing phenophase,
and its slope. Senescence and dormancy phenophases of these vegetation after reaching their
peak can also be presented by logistic models. In both cases, logistic models can be used to
represent a transition between low and high vegetation activity regimes.

Usually plant phenology considers transition dates 𝑡1 and 𝑡2 such that (s.t.) 𝑡1 < 𝑡2,
that represent the beginning and end of the transition phenophase, rather than the abstract
parameters 𝑎 and 𝑏 that controls the transition phenophase in the model. For instance,
Zhang et al. [2003] recovers the transition dates from the maxima of the rate of change of the
logistic model. In Pelletier et al. [2016b], transition dates 𝑡1 and 𝑡2 are defined as the dates
of intersection of the tangent of the transition phenophase inflection point, with respectively
the plateau levels 𝑦 = 𝑐 and 𝑦 = 𝑐 + 𝑑. Using this definition, the logistic model can be
re-parameterized2 as:

𝑓 (𝑡) = 𝑐 (1 + exp (2𝑡2 + 𝑡1 + 2𝑡
𝑡2 − 𝑡1

))
−1

+ 𝑑. (9.3)

When using this re-parameterized model of a growth phenophase, 𝑡1 represents a start of
season (SoS)3 and 𝑡2 a maturity (Mat) date (see Figure 9.1). Conversely, for a decaying
phenophase, 𝑡1 and 𝑡2 are a senescence (Sen) date and an end of season (EoS)45.
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Figure 9.1: Re-parameterized logistic model (blue) representing a growing phenophase of vegetation.

9.1.2 Double-logistic model
When vegetation exhibits different growth and/or decay phenophases throughout a given time
frame (e.g. a year), the phenological model can incorporate each phenophase by combining
different logistic models, by summation [Pelletier et al., 2016b] or multiplication [Caglar et al.,
2018]. The double-logistic phenological model used in this work (see Figure 9.2) is defined as:

Ω (𝑡, 𝝓) = (𝑀 − 𝑚) [(1 + exp (2𝑀𝑎𝑡 + 𝑆𝑜𝑆 + 2𝑡
𝑀𝑎𝑡 − 𝑆𝑜𝑆 ))

−1

− (1 + exp (2𝐸𝑜𝑆 + 𝑆𝑒𝑛 + 2𝑡
𝐸𝑜𝑆 − 𝑆𝑒𝑛 ))

−1
] + 𝑚,

(9.4)

2This reparameterization was published in Zérah et al. [2023a].
3Also called greenup onset.
4Also called dormancy onset date.
5to obtain a decreasing model for representing a decay, 𝑡1 must be swapped with 𝑡2
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with 𝝓 = (𝑚, 𝑀, 𝑆𝑜𝑆, 𝑀𝑎𝑡, 𝑆𝑒𝑛, 𝐸𝑜𝑆) the phenological parameters, summarized in Table 9.1.
In this model, depending on the context, (see section 9.3) 𝝓 can be seen either as model
parameters or as inputs (see subsection 3.1.1). For instance as described later in this chapter,
Pheno-VAE considers 𝝓 as an input whereas curve-fitting algorithm considers 𝝓 as model
parameters. This phenological model represents a vegetation index (e.g. the NDVI) that
starts at a minimum NDVI level (m), grows up to a maximum NDVI level (M) and then
decays back to 𝑚.

Table 9.1: Parameters of the double-logistic phenological model and their proposed range for Northern
hemisphere vegetation.

Variable Description Range [𝑎, 𝑏]
𝑀 Maximum of double logistic [0, 1]
𝑚 Minimum of double logistic [0, 1]
𝑆𝑜𝑆 DOY of start of season, the start of NDVI growth [-45, 410]
𝑀𝑎𝑡 DOY of maturity, the end of NDVI growth [-45, 410]
𝑆𝑒𝑛 DOY of senescence, the start of NDVI decay [-45, 410]
𝐸𝑜𝑆 DOY of end of season, end of NDVI decay [-45, 410]
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Figure 9.2: Double-logistic model representing an annual phenological cycle.

Phenological parameters are defined as bounded. 𝑀 and 𝑚 are constrained to the same
definition interval than the NDVI index, whereas the phenological dates (𝑆𝑜𝑆, 𝑀𝑎𝑡, 𝑆𝑒𝑛, 𝐸𝑜𝑆)
are restricted to a range of given calendar year, extended by 90 days. The 45 days considered
before January 1st and after December 31st allow less restrictive estimations and take into
account vegetation whose cycle started or ended outside the calendar year.

There are many variations of logistic models used in the literature for phenology monito-
ring [Yang et al., 2012; Zeng et al., 2020; Zhang et al., 2003]. The model defined in Equation 9.4
is relatively simple, with few parameters, which makes it relatively easy to invert. However,
it has limitations, which will be apparent in experiments: it assumes that the senescence
phase brings the vegetation index back at the starting level, even-though there could be some
residuals after senescence (e.g. crop regrowth, inter-cropping, presence of forest undergrowth).
Other asymmetrical models such as in Caglar et al. [2018] do not make such an assumption.
Furthermore, this double logistic model is limited to one growth phase and one decay phase in
vegetation, and therefore cannot accommodate correctly time series with multiple phenological
cycles, such as crops with intermediate cover or sequential crops.
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9.1.3 Pheno-VAE
Pheno-VAE is defined as a VAE with the phenological model (see Equation 9.4) as a UDD
(see subsection 7.2.1). The encoder of Pheno-VAE takes NDVI time series 𝒙, and the UDD
uses the phenological model to generate NDVI time series reconstructions 𝒙̂. The encoder
of Pheno-VAE is a multi-layer perceptron (MLP) (see subsubsection 3.3.1.1) neural network,
with a simple architecture shown in Figure 9.3. The input NDVI time series are assumed
to be sampled on a regular temporal grid, representing a full year, with 5 days of temporal
resolution (i.e. 73 data-points per time series). Similarly the outputs of the decoder are
reconstructed time series with data-points on the same temporal grid.

The encoder infers the 6 sets of variational parameters 𝜆𝑖 that define the latent distribu-
tions that latent variables 𝑧𝑖 are drawn from. Each variable 𝑧𝑖 of its 6-D latent space is
semantically bounded to a phenological parameter 𝜙𝑖 (see Table 9.1). Since all phenological
variables are defined on bounded intervals, truncated normal distributions are used as varia-
tional distributions (see subsection 7.3.2). Instead of directly sampling the phenological
parameters from the inferred latent distributions, an intermediary latent space is used (see
subsubsection 6.5.2.3). The domains of the variational distributions are all set as [0, 1], and
phenological parameters 𝜙𝑖 are derived from latent samples 𝑧𝑖 with affine transformations,
using the interval bounds 𝑢𝑖, 𝑙𝑖 of the associated 𝜙𝑖 (see Table 9.1):

𝜙𝑖 = (𝑢𝑖 − 𝑙𝑖) 𝑧𝑖 + 𝑙𝑖. (9.5)

The loss function for training Pheno-VAE is the evidence lower bound (ELBO) (see Equation
6.35), which is the sum of a reconstruction loss term and a regularization KLD loss term
weighted by a coefficient 𝛽 (see Equation 6.37):

ℒPheno-VAE = ℒrec + 𝛽ℒKLD. (9.6)

ℒrec is computed as a Monte Carlo reconstruction loss (MCRL) (see subsection 7.2.2) which
uses multiple latent samples 𝒛, forwarded through the phenological model UDD for estimating
the parameters of a Gaussian decoder distribution 𝑝 (𝒙|𝒛), and compute a negative log-
likelihood (NLL) reconstruction loss (see Equation 7.7). The prior distribution 𝑝 (𝒛) used in
the KLD loss term ℒKLD is chosen as a uniform distribution on the same range ([0, 1]) as the
truncated normal output by the encoder (see subsection 7.3.4 and subsubsection C.4.6.3).
This prior doesn’t promote specific modes in inferred distributions, which avoids favoring
any phenological parameter set. The data-set used with Pheno-VAE (see subsection 9.3.1)
contains various phenological configurations, making this a reasonable choice.

Aside from the encoder architecture, the data and the model used as UDD, Pheno-VAE
is very much like PROSAIL-VAE (see Chapter 8). However, contrary to PROSAIL-VAE,
physical variables inferred in the latent space are tied by order relationships, linked to the
time temporal aspect of the data and of the physical model. Ensuring that these constraints
are fulfilled is crucial, and methods to incorporate ordering between the latent variables of
Pheno-VAE is discussed in the section 9.2 below.
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Figure 9.3: Encoder architecture used in Pheno-VAE, with 4 fully connected hidden layers (FCHL).

9.2 Integrating order constraints in latent distributions
The double logistic model requires that the phenological variables provided as input are
ordered. Specifically, the phenological dates, and the minimum and maximum NDVI must
be two sequences of ordered (consecutive) variables:

• 𝑚 < 𝑀

• 𝑆𝑜𝑆 < 𝑀𝑎𝑡 < 𝑆𝑒𝑛 < 𝐸𝑜𝑆.

This requirement is implicit, since the function Ω (𝑡, 𝒙) (Equation 9.4) is well-defined for
𝒙 ∈ R6 s.t. 𝑆𝑜𝑆 ≠ 𝑀𝑎𝑡 and 𝑆𝑒𝑛 ≠ 𝐸𝑜𝑆. However, un-ordered phenological parameters
must be excluded, else the phenological model doesn’t function as intended and can no longer
accurately represent a growth-decay annual cycle of vegetation. Figure 9.4 shows examples
of time series simulated with the phenological model with unordered parameters. Some
simulated time series completely bend the model and no longer fit a growth/decay phenology
type (Figure 9.4a, Figure 9.4b and Figure 9.4d). Other time series such as Figure 9.4c
appear correct even though they were generated from unordered time series. In the case of
Figure 9.4c, the parameter 𝑀 is no longer consistent with the true NDVI maximum reached
by the time series. Another issue with these kinds of time series is that they represent an
alternate possible solution (with unrealistic parameters) to the fitting of the phenological
model, i.e. they make the inversion problem ill-posed (see subsection 3.1.3).

As a consequence, additional constraints must be added to the latent space of Pheno-
VAE. The phenological variables that are input to the UDD (the phenological model) must
be ordered. This means that the latent distributions that these variables are tied to must be
tweaked so that relevant samples are ordered. In this work, two random variables z𝑖 and z𝑖+1
or their associated distributions are qualified as ordered or consecutive, if their samples are
always ordered: 𝑧𝑖 < 𝑧𝑖+1

67. Two ordered random variables are denoted z𝑖 < z𝑖+1.
One straightforward method of ensuring that two distributions are ordered is to have the

distributions on disjoint domains. Then, the distributions are ordered provided their domains
are ordered (see Figure 9.5b). However this solution is too simplistic, and it doesn’t suit
situations for which distributions have the same domain, such as is the case for phenological

6Order theory is the branch of mathematics that studies binary relations, which, among other things, give
meaning and properties to objects being smaller or greater than others [Dean, 2022; Russell, 1903].

7The meaning of ordered random variables is different in this work than in the literature. Ordered
random variables are usually about characterizing the order of samples drawn from random variables, that
are oftentimes of independent and identically distributed (i.i.d.) (e.g. order statistics) [Shahbaz et al., 2016].
In this Ph.D., they refer to a property of the random variables distributions themselves, i.e. it is not about
finding the order of samples a posteriori to their drawing, but rather a priori characterizing their order from
their associated distribution.
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(a) SoS and Mat are unordered.
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(c) Mat and Sen are unordered.
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Figure 9.4: Examples of time series simulated by the phenological model with unordered phenological
variables.
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variables. In the general case, the marginal distributions of random variables can overlap8 (see
Figure 9.5c). Crucially, random variables with overlapping PDF cannot be ordered if they
are independent: the area of their overlap is the probability of drawing unordered samples.
As a consequence, to ensure the ordering of samples whose distributions intersect, some sort
of dependence must be introduced. Therefore, adaptations are required for VAE, in which
latent dimensions are usually independently sampled.

In the following are discussed three strategies for constraining latent distributions of
consecutive phenological variables to be ordered appropriately.

𝑝 (𝑧𝑖+1) 𝑝 (𝑧𝑖)

𝑧

(a) Unordered distributions
on disjoint domain.

𝑝 (𝑧𝑖) 𝑝 (𝑧𝑖+1)

𝑧

(b) Ordered distributions on
disjoint domain.

𝑝 (𝑧𝑖) 𝑝 (𝑧𝑖+1)

𝑧

(c) Distributions on
common domain with
overlapping densities.

Figure 9.5: Densities of two random variables that are supposed to be ordered z𝑖 < z𝑖+1.

9.2.1 Penalizing out-of-order latent samples
A first straightforward possibility of enforcing order of latent samples would be to penalize
samples that are unordered, e.g. with an additional loss term such as:

ℒunordered (𝑧𝑖, 𝑧𝑖+1) = ReLU (𝑧𝑖 − 𝑧𝑖+1) . (9.7)

However such a solution isn’t applicable in practice. Such a loss term doesn’t change
the independent drawing of latent variables, so it would merely promote latent distributions
that minimize their overlap (see Figure 9.5b). As a consequence, the width of consecutive
latent distributions would be encouraged to decrease, harming uncertainty quantification.
They would also be prevented from being close, hampering the accuracy of the variable
retrieval: the encoder would arbitrarily infer disjoint marginal distributions. This solution
introduces an inductive prior of distribution disjointedness that is not necessarily assumed
by the physical-based decoder. Furthermore it would also hamper training by introducing
noise into the loss.

9.2.2 Inferring the distribution of the difference between two variables
A second method for ordering latent variables is to predict the greater variable as the sum
of the smaller variable and an auxiliary positive random variable:

z𝑖+1 = z𝑖 + Δz𝑖+1. (9.8)

This solution tackles the shortcomings of the previous method: two consecutive random
variables are no longer independent, which enables distributions with overlapping densities.
Also, this method guarantees that the random variables are properly ordered. It is also
compatible with usual VAE implementations. Although z𝑖+1 is dependent from z𝑖, it can be

8The overlap can be defined as the area intersected by two probability distribution functions (PDFs).
Distributions on the same domain 𝔻 overlap if their domain of non-zero density overlap, i.e. {𝑧 s.t. 𝑝(𝑧𝑖) > 0}∩
{𝑧 s.t. 𝑝(𝑧𝑖+1) > 0} ≠ ∅.
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derived with a deterministic function of two independent random variables. This can be seen
as an intermediary latent space (see subsubsection 6.5.2.3):

(z𝑖+1
z𝑖

) = (1 1
0 1) (Δz𝑖+1

z𝑖
) . (9.9)

However, this method has a crucial limitation related to uncertainty quantification. The
variance of the sum of two random variables is always equal or greater than the variance of
these variables. In the general case the variance of the sum is:

Var (x + y) = Var (x) + Var (y) + 2Cov(x, y) (9.10)

but for x = z𝑖 and y = Δz𝑖+1 which are independent in a VAE latent space, it is simply
expressed as:

Var (x + y) = Var (x) + Var (y). (9.11)
In fact, the PDF of the sum of random variables is the convolution product of the PDF of
these variables, and the convolution of two densities results in a wider density (see Figure 9.6):

𝑓x+y (𝑡) = (𝑓x ∗ 𝑓y) (𝑡) = ∫ 𝑓x (𝜏) 𝑓y (𝜏 − 𝑡) d𝜏 (9.12)

5 10 15 20 25 30 35

𝑓y (𝑡)

𝑓x+y (𝑡)

𝑓x (𝑡)

𝑡

Figure 9.6: Densities of two random variables x ∼ 𝒩 (10, 2) and y ∼ 𝒩 (20, 2) and their sum x + y ∼
𝒩 (30, 4).

This is a problem because this means that the predicted variance of the actual variable of
interest z𝑖+1 is fundamentally larger than the uncertainty of both Δz𝑖+1 and z𝑖. This effect
is amplified for multiple consecutive variables, such as is the case for the phenological dates.
Using this method would arbitrarily impose that Var (𝑆𝑜𝑆) < Var (𝑀𝑎𝑡) < Var (𝑆𝑒𝑛) <
Var (𝐸𝑜𝑆).

9.2.3 Inferring the distribution of the maximum of two variables
To overcome the shortcomings of the two previous methods, it is proposed to use the distribu-
tion of the maximum of two successive variables as the distribution of the greater variable (see
Figure 9.7). Let’s assume two random variables z𝑖 and z𝑖+1 whose samples must be ordered
𝑧𝑖 < 𝑧𝑖+1. Samples 𝑧⋆

𝑖 and 𝑧⋆
𝑖+1 are drawn independently from their respective distributions.

𝑧⋆
𝑖 is first conserved as the sample of z𝑖. Then if 𝑧⋆

𝑖+1 > 𝑧⋆
𝑖 , 𝑧⋆

𝑖+1 is kept as the sample of z𝑖+1,
otherwise 𝑧⋆

𝑖 is chosen instead:
𝑧𝑖+1 = max (𝑧⋆

𝑖 , 𝑧⋆
𝑖+1) . (9.13)

To ensure a strict ordering, the following computation can be performed:

𝑧𝑖+1 = max (𝑧⋆
𝑖 + 𝜀, 𝑧⋆

𝑖+1) , (9.14)
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with 𝜀 > 0. This procedure that enables to sample the maximum of two distributions is
hereby referred as sample rectification. The analytical expression density of the maximum of
random variables is provided in section C.1.

𝑝 (𝑧⋆
𝑖 )

𝑝 (𝑧⋆
𝑖+1)

𝑝 (max (𝑧⋆
𝑖 , 𝑧⋆

𝑖+1))

𝑧

Figure 9.7: Distribution of the maximum of two Gaussian distributions.

This procedure ensures that samples are ordered no matter their distributions, and doesn’t
arbitrarily increase the variance of the greater variable. However, the inference of meaningful
distributions can be hampered because ordered samples can be produced no matter the
distributions. This is due to the rectification step taking place after the inference variational
parameters and the sampling. For instance, when z⋆

𝑖+1 < z⋆
𝑖 (see Figure 9.5a), this procedure

will only produce 𝑧𝑖+1 = 𝑧𝑖 (or 𝑧𝑖+1 = 𝑧𝑖 + 𝜀).
Therefore, it is necessary to promote the inference of distributions that are at least

partially ordered9 (see Figure 9.5c). This is achieved through the addition on two additional
constraints on the latent distribution, that ensure that the encoder outputs variational para-
meters that allow to satisfy those requirements.

To ensure that the latent distributions are at least partially ordered prior to the sample
rectification step, it is proposed to force the expectation 𝑚𝑖 of the latent variables z𝑖 (alterna-
tively the median or the mode) to be ordered as well (i.e. 𝑚𝑖+1 > 𝑚𝑖). This amounts to
constraining the variational parameters 𝜆𝑖 produced by the encoder so that the expectations
𝑚𝑖 are ordered. In practice, this can be performed when one parameter of the variational
distribution family controls the expectation, such as the mean parameter 𝜇 of Gaussians. In
this work, truncated normal (TN) distributions are used, and their parameter 𝜇 controls the
mode of the distribution, and therefore are suited to this method. The partial ordering of
TN distributions is achieved by ordering the parameters 𝑚𝑖 = 𝜇𝑖.

Firstly, the 𝜇𝑖 are rectified, similarly to the latent samples:

𝜇𝑖+1 = max (𝜇⋆
𝑖 , 𝜇⋆

𝑖+1) , (9.15)

with 𝜇⋆
𝑖 and 𝜇⋆

𝑖+1 the mean parameters actually output by the encoder for the latent distribu-
tion of consecutive variables, and 𝜇𝑖+1 the rectified parameter for the greater variable. This
rectification step ensures that the distributions associated with ordered variables are also
partially ordered themselves (see Figure 9.5b and Figure 9.5c). This avoids producing
ordered latent samples (with the sample rectification step) from unordered distributions (see
Figure 9.5a)

Because this rectification step always produces partially ordered distributions, the encoder
might never learn to actually output ordered distributions, hampering the ability to infer
accurate and meaningful distributions. To encourage the encoder to infer such distributions,
while only relying parsimoniously on the expectation rectification, a soft constraint is added

9Here, the notion of partial ordering refers to distributions that have a certain degree of overlap, but for
which there is a non zero probability of predicting correctly ordered samples.
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in the form of a regularization loss term, named the order loss term.

ℒorder = 1
𝑁𝑗

𝑁𝑗

∑
𝑗=1

𝜇𝑖𝑗
− 𝜇⋆

𝑖𝑗
. (9.16)

The order loss sums the difference of the rectified parameter 𝜇𝑖𝑗
with the parameter 𝜇⋆

𝑖𝑗

actually produced by the encoder10, for all 𝑁𝑗 variational parameters that have been rectified.
This promotes the inference of ordered distributions directly by the encoder, i.e. 𝜇𝑖𝑗

= 𝜇⋆
𝑖𝑗

.
This loss term can be interpreted as an additional prior (a learning bias, see subsection 6.5.4)
on latent distributions that the original KLD term doesn’t enforce.

Using the maximum of consecutive variables to order the them does change their distribu-
tion (see appendix C.1 for the density of the maximum of random variables). The prior
distribution 𝑝 (𝒛) and the KLD loss term can both be expected to become harder to derive for
such latent distributions. In the present case, the analytical expression of the KLD between
the distribution of the maximum of TN and a uniform distribution is intractable. Therefore,
it is advocated here to use the latent distribution without taking the ordering procedure into
account in the computation of the prior and the KLD term. Nonetheless, since the analytical
expression of the distribution of the maximum of two (or more) distributions is tractable, a
NLL of this distribution can be computed.
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Figure 9.8: Sampling procedure of latent variables 𝒛 in Pheno-VAE. Blue arrow indicate rectification
operations, green arrow indicate a re-scaling and dashed arrow indicate reparameterization sampling.
The encoder output 𝝈 is omitted.

In Pheno-VAE, this method of using the maximum of two distributions as the distribution
of the greater of two successive random variables is used for ordering the latent variables tied
to the phenological dates and the min/max of NDVI (see Figure 9.8). Thus, the loss function
minimized during the training of Pheno-VAE is composed by the next three terms :

ℒPheno-VAE = ℒrec + 𝛽ℒKLD + ℒorder. (9.17)

The loss components are:

• ℒrec the Gaussian NLL reconstruction loss,

• ℒKLD the KLD between the TN latent variables and the uniform prior.
10𝜇𝑖𝑗 − 𝜇⋆

𝑖𝑗 is positive because of Equation 9.15.
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• ℒorder term to promote ordered latent variables.

In practice, ℒorder converges to zero very fast, leaving only the two other terms in most of
the training process.

9.3 Experiments
In this section, the experimental setup and the evaluation metrics used to evaluate the quality
of the inferred phenological parameters are described, then the obtained results are presented.

9.3.1 Data-sets
Two data-sets are used to evaluate the performances of Pheno-VAE for phenological parameter
retrieval. The first data-set is composed of real satellite observations of annual NDVI time
series and is used for Pheno-VAE training and qualitative validation. The second data set is
composed of simulated crop NDVI profiles. The construction of this data-set is proposed for
three main reasons:

1. to perform a quantitative evaluation of parameter retrieval on a large scale data-set,

2. to assess the robustness of Pheno-VAE to the noise of complex satellite observations,

3. to compare the results of Pheno-VAE against supervised methods.

Examples of NDVI time series from both of data-sets are illustrated in Figure 9.11.

9.3.1.1 S2 data-set

The first data-set, denoted 𝒟S2, is composed of 106 annual time series of pixels from 31TCJ
Sentinel-2 tile (Toulouse area in southern France, see subsubsection 2.1.3.2). The corresponding
NDVI time series are computed from the spectral bands B4 and B8 (see Equation 9.1). The
resulting time series describe different land cover classes which can be associated to the class
legend used in the CES OSO land cover map Inglada et al. [2017a] (see subsection 1.2.2).
Accordingly, a large number of time series do not represent vegetation classes following the
double-logistic phenological model. The ideal behavior for Pheno-VAE on those data would
be to have high reconstruction errors but high predicted uncertainty to compensate. Despite
the availability of land cover class information, it must be remarked that such information
is only used for validation purposes. Land cover classes do not intervene in the training
procedure of Pheno-VAE, and all samples are taken into account within a single training.
The distribution of the land cover classes in the data-set is detailed in Table 9.2.

The time series are acquired on irregular time intervals for two main reasons. Firstly, the
two Sentinel-2 satellites have intersecting ground footprints and some locations get increased
coverage. Secondly, cloud cover leads to inconsistent temporal sampling for each pixel on
the ground. As a consequence, the number of valid observations in time series varies (see
Figure 9.9). For each time series, a validity mask is available to denote the valid satellite
observations. Since the encoder of Pheno-VAE learns from regular sampled time series, this
mask is used to linearly interpolate raw time series to a common regular temporal grid.

9.3.1.2 Simulated data-set

While the above dataset 𝒟S2 of S2 NDVI time series enables to train Pheno-VAE, the
phenological parameters associated with vegetation of observed pixels (when these pixels
do contain vegetation) are unavailable. To mitigate the lack of data-set with reference
phenology, a simulated data-set 𝒟G is created. This data-set contains a large number of
simulations obtained by the double-logistic model. A high number of combinations of input
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Table 9.2: Distribution of the land cover classes composing the Sentinel-2 time series data-set. The
class legend is taken from the OSO land cover map product [Inglada et al., 2017a].

Label Percentage in data-set
Continuous Urban Fabric 0.6%
Discontinuous Urban Fabric 4.1%
Industrial and Commercial Units 3.1%
Road Surfaces 0.3%
Rapeseed 4.5%
Straw Cereals 9.9%
Protein Crops 2.5%
Soy 7.2%
Sunflower 33.0%
Corn 5.8%
Roots 0.2%
Intensive Grasslands 3.4%
Orchards 0.6%
Vineyards 1.8%
Broad-leaved Forests 6.7%
Coniferous Forests 5.5%
Grasslands 5.5%
Woody Moorlands 2.3%
Bare Rock 0.1%
Water Bodies 2.8%
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Figure 9.9: Distribution of the temporal acquisitions composing the Sentinel-2 time series data-set.
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parameter values are generated by sampling the phenological parameters distributions given
in Table 9.3. From these known phenological parameters, this data-set allows to compute
quantitative metrics to validate the performances of Pheno-VAE. Additionally, generated
data is also used for training Pheno-VAE to assess the influence of the training data on
performance. Simulated data is therefore put into different data-sets: 𝒟G,𝑡𝑟𝑎𝑖𝑛 for training,
𝒟G,𝑣𝑎𝑙𝑖𝑑 for validation and 𝒟G,𝑡𝑒𝑠𝑡 for testing (see subsubsection 3.3.2.4).

To generate synthetic time series, sets of ordered phenological parameters are firstly
sampled using uniform distributions, as depicted below. The double-logistic model is then
used to produce the corresponding NDVI temporal profiles. To simulate the irregular temporal
sampling, binary validity masks of real S2 time series are considered. These masks are applied
on simulated time series to select time series values at certain dates. To generate more
realistic time series simulations, a Gaussian noise of randomly sampled standard deviation
𝜎𝑛 ∼ 𝒰(0, 0.1) is added to the NDVI profile. It accounts for epistemic uncertainty, as no real
time series is perfectly described by the phenological model. The resulting time series are
finally interpolated at a regular 5-days time grid. The data generation procedure is depicted
in Figure 9.10.

The parameter sampling procedure is detailed in the following. The maximum value
of the standard deviation 𝜎𝑛 of the noise level is set at 0.1 which corresponds to 10% of
the maximum expected range for NDVI values. The interval between 0 (bare soil) and 0.4
(presence of vegetation) is set as for the range of m. The value of M is sampled relatively to
m. In general, it can be considered that M is at least 0.3 higher than m for crop classes, and
M can not be higher than 1.

A strategy is proposed to enforce the temporal order of the 4 phenological dates. A
given phenological date is defined from the previous one. EoS is allowed to occur right
after Senescence and up to 90 days later. Sen is defined in the same way with respect to
Mat and Mat follows the same rationale with respect to SoS. To improve the plausibility of
simulated time series, the SoS parameter is sampled such that it can represent the start of
season date of winter and summer crops, instead of allowing it to be any date. To this end,
an additional variable 𝑆𝑜𝑆𝑖 for modeling the degree to which the simulated time series is a
winter or a summer crop. 𝑆𝑜𝑆𝑖 is used to adjust the lower bound of the sampling interval of
SoS. The earliest DOY for SoS (for a winter crop) is set at 30 (end of January) and its latest
DOY summer crop is set at 120 (late April). 𝑆𝑜𝑆𝑖 and 𝜎𝑛 are additional variables of the
generative process of synthetic data that are not inferred by Pheno-VAE, and not assessed
during experiments.

It can be noted that this sampling strategy is equivalent to sampling the deltas between
consecutive variables (see subsection 9.2.2).

Table 9.3: Distributions of reference phenological parameters sampled for NDVI time series simulation
with the double-logistic model.

Parameter Sampling interval Parameter Sampling interval
m 𝒰(0, 0.4) M 𝒰(𝑚, 1)
𝑆𝑜𝑆𝑖 𝒰(30, 120) 𝑆𝑜𝑆 𝒰(𝑆𝑜𝑆𝑖, 𝑆𝑜𝑆𝑖 + 90)
Mat 𝒰(𝑆𝑜𝑆, 𝑆𝑜𝑆 + 90) Sen 𝒰(𝑀𝑎𝑡, 𝑀𝑎𝑡 + 90)
EoS 𝒰(𝑆𝑒𝑛, sen + 90) 𝜎𝑛 𝒰(0, 0.1)

Figure 9.11 shows some examples simulated NDVI time series of 𝒟G obtained by the
proposed generation process, alongside real S2 NDVI time series of 𝒟S2. Even though the
𝒟G is generated to be as realistic as possible, it is still different from the S2 data-set. Because
of the uniform sampling of phenological dates in the synthetic data-set, there is more diversity
in the phenology in 𝒟G than in 𝒟S2. On the one hand, the 𝒟S2 is biased by the samples that
have been chosen among available real NDVI time series (observational bias). All samples
belong to the same S2 tile so NDVI time series of pixels of the same type are highly correlated,
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Figure 9.10: Procedure of generation of a data-set of synthetic NDVI Time series.

and cloud coverage similarly affects all time series. On the other hand, the synthetic data-set
contains samples whose phenology may not be frequent in reality, or even phenology types
that don’t exist.

9.3.2 Experimental setup
Different experiments are carried out to assess the performances of Pheno-VAE. Firstly, the
reconstructions of NDVI time series obtained by Pheno-VAE trained on the S2 data-set
𝒟S2 are visually evaluated in subsection 9.3.3. Secondly, a quantitative assessment of the
performance of inference of phenological parameters Pheno-VAE is carried out using the
simulated data-set 𝒟G, through two experiments:

1. the evaluation of the influence of 𝛽 in subsection 9.3.4,

2. the comparison of Pheno-VAE with different standard parameter retrieval algorithms
in subsection 9.3.5.

For the comparison, a multiple probabilistic supervised regression (MPSR) method, a curve
fitting (CF) algorithm and a Markov Chain Monte Carlo (MCMC) algorithm (see sub-
subsection 9.3.2.3) are considered. These methods are compared to Pheno-VAE in terms
of parameter estimation performance, and uncertainty quantification. All these methods
perform the inversion of the phenological model on the NDVI time series of single pixels.
The performances of CF, MCMC and MPSR are provided as an upper bound for parameter
retrieval performances.

MCMC and CF strategies have critical computational limitations that limit their use in
large-scale parameter retrieval applications. Specifically, these methods are local inversion
approaches (see subsection 3.1.4) for which optimization must be performed for each pixel
time series: inference is not amortized. In particular MCMC approaches are notoriously
slow to converge and have a high computational cost. Conversely, the MPSR approach
approximates a model inverse with a neural network. Its computational cost at inference is
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Figure 9.11: NDVI time series of samples of S2 data-set (left) and simulated data-set (right).
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lesser than CF and MCMC since it doesn’t require optimization, but only a forward pass.
However, it is a supervised method that requires a labeled training data-set. This data-set
can either be made from measurements (that are usually unavailable in sufficient quantity),
or from simulated data such as what is performed in this chapter. But this means that
the MPSR is sensitive to the choice of the sampling distributions of the simulations as was
shown in Chapter 5. This dependence of MPSR performances on the phenological parameter
distribution for the inversion of the phenological model is acknowledged, but not investigated
in this chapter.

Besides CF, MPSR and MCMC methodologies, two training scenarios for Pheno-VAE
are considered to evaluate the influence of the training data-set. In the first scenario Pheno-
VAE models are trained on the S2 data-set, whereas training is performed with the synthetic
data-set in the second. The characteristics of the different methods used for the qualitative
assessment experiment are summarized in Table 9.4.

Table 9.4: Characteristics and hyper-parameters of each phenological model inversion method.

Method Supervised Training Optimizer Batch size Learning Rate Epochs Latent samples Point estimate Parameter
distribution

CF 7 7 7 7 7 7 7 Deterministic 7

MCMC 7 7 7 7 7 7 7 Median Full posterior
approximate

MPSR !
Simulated
Data-set Adam 2048 5.10−4 500 7 Mode Truncated

Normal

Pheno-VAE-G 7
Simulated
Data-set Adam 2048 5.10−4 200 10 Mode Truncated

Normal

Pheno-VAE-S2 7 S2 Data-set Adam 2048 5.10−4 200 10 Mode Truncated
Normal

9.3.2.1 Supervised neural network regression

A supervised neural network, trained on the simulated data-set 𝒟G,train is proposed to perform
regression (see section 3.3). This neural network uses the same architecture as the encoder of
Pheno-VAE (see Figure 9.3): it takes interpolated NDVI time series as input and outputs the
mean and variance of the TN distributions associated to the 6 phenological parameters (up
to an affine transformation). As such, this approach estimates a distribution simultaneously
for all phenological variables. It is thus referred as MPSR. The loss function of for training
the neural network is the NLL of ordered TNs (see appendix C.1). Knowing the phenological
parameter values of the synthetic data sets, the NLL compares the phenological distributions
estimated from the regression algorithm against the known phenological parameters. Since
the MPSR uses the same architecture as Pheno-VAE encoder, the model complexity will not
influence comparative results.

9.3.2.2 Non-linear least squares regression

The CF algorithm solves a non linear least squares problem for each NDVI time series, with a
trust region reflective algorithm (TRRA) Coleman and Li [1996] (see subsubsection 3.2.1.3).
This method can take the boundaries of the parameters into account. Although it is not
a Bayesian approach, the CF algorithm outputs a covariance matrix that can be used to
estimate prediction intervals, along with the parameters estimates. Unfortunately, as the
inversion is frequently ill-conditioned, the estimated parameters covariances often diverge.
Thus prediction intervals estimation is discarded with this method. Contrary to other
inversion methods presented here, the CF requires an initial guess 𝑧0 on the parameters
(i.e. it requires more prior information). The initial guess used to fit the phenological model
on NDVI time series is detailed in Table 9.5. This method was implemented by using the
curve_fit function of Python’s scipy.optimize library.
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Table 9.5: Initial guess of the phenological parameters for the curve fitting algorithm.

Parameter Initial guess Parameter Initial guess
m min (𝑦𝑖) M max (𝑦𝑖)
SoS arg max (𝑦𝑖) − 30 Mat arg max (𝑦𝑖) − 15
Sen arg max (𝑦𝑖) + 15 EoS arg max (𝑦𝑖) + 30

9.3.2.3 MCMC inference

MCMC algorithms are typically used in Bayesian inference to approximate an intractable
posterior distribution by sampling (see subsection 6.3.1). As such, it can be used to estimate
the posterior distribution of phenological variables, in the phenological model inversion
problem. Following the methodology of [Gao et al., 2021], Hamiltonian Monte Carlo as per
the NUTS11 algorithm [Homan and Gelman, 2014] is used, as implemented in the NumPyro
library [Bingham et al., 2019; Phan et al., 2019]. To implement Bayesian inference through
MCMC, the likelihood function for the observed data is defined using the double-logistic
model. At inference, NDVI time series irregularly sampled are injected into MCMC algo-
rithm i.e. no interpolation to a regular grid is performed. As prior distributions, the uniform
distributions described in Table 9.3 are chosen.

9.3.2.4 Evaluation metrics

The accuracy of the retrieved parameters and their predicted uncertainties are evaluated on
the synthetic testing data-set 𝒟G, with 10000 samples. The mean absolute error (MAE)
(see Equation 3.8) between the inferred phenological parameters and their reference value
in the testing data-set is used as estimation metric. While CF directly predicts parameter
estimates, Pheno-VAE, MPSR, and MCMC predict distributions, and a point estimate is
necessary to compute the MAE. The point estimates for these different methods are detailed
in Table 9.4. As MAE is sensitive to outliers, box-plots of the absolute errors are provided
in subsection E.3.2 for complementary result interpretation.

Prediction intervals for phenological variables are estimated from inferred distributions:
the sampled distributions for MCMC, the truncated Gaussian distributions inferred with
MPSR and in the latent space of Pheno-VAE. To assess the quality of these intervals, two
prediction intervals metrics are used:

• The mean prediction interval width (MPIW) (see Equation 6.13) — because it is
sensitive to outliers, box-plots of the prediction interval widths are provided sub-
section E.3.5.

• The prediction interval coverage probability (PICP) (see Equation 6.14). It measures
the frequency of the model parameters true value being inside the prediction interval,
and its value should be as close to the confidence level as possible.

In the following, these metrics are computed for prediction intervals with a selected 90%
confidence level, by using the 5th-95th percentile intervals. Results obtained with different
confidence levels are shown in subsection E.3.4 and subsection E.3.3.

These three evaluation metrics are computed for Pheno-VAE and MPSR by using a 𝑘-fold
cross-validation procedure (see 3.3.2.4), with 𝑘 = 6. For MCMC, metrics are independently
obtained on 𝑘 subsets of the testing data-set 𝒟test. The averages and standard deviations of
the results on those subsets are computed.

11No-U-Turn Sampler.
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9.3.3 Evaluation of the reconstruction results

To assess the performances of Pheno-VAE, a visual evaluation is presented in Figure 9.12.
This figure shows the reconstruction of different S2 NDVI time series obtained by the Pheno-
VAE model trained on S2 data. For each example, the estimated phenological parameter
distributions are also illustrated. In most cases shown here, the setting 𝛽 = 0 imposes that
no prior information from the data-set is incorporated.

In general, the error and variance of reconstructions are both low for temporal profiles
well-characterized by the phenological model. The estimated phenological distributions seem
well centered on likely phenological parameters. Figure 9.12a shows NDVI time series of a
pixel of corn, the inferred phenological distributions and the reconstruction of its mode. The
reconstruction curve is observed to accurately match the original time series. The distribu-
tions of phenological dates characterize well the growth and decay phases of this summer
crop.

The influence of 𝛽 can be evaluated by comparing the results observed in Figure 9.12a
and Figure 9.12b. The same NDVI time series of a corn pixel is taken as input by two
Pheno-VAE models with different values of 𝛽. The modal reconstructions are very similar.
With increasing 𝛽, the phenological distributions widen, and the variance of reconstructions
increases. This is coherent with the influence of the KLD loss terms, that discourages narrow
latent densities. With both results well matching the original NDVI time series, the choice
of 𝛽 is to be made considering the prediction interval metrics.

On Figure 9.12c, a protein crop time series shows how the presence of data gaps can
lead to bad phenological parameter estimation. In this figure, the phenological cycle is
easily identifiable. However, bad weather in winter led to a lack of data points for the first
two months, and the backward extrapolation of points at preprocessing has kept the NDVI
artificially constant, at a higher value than after harvest. As the encoder of Pheno-VAE
doesn’t take into account the temporal information, here the reconstruction is disrupted by
the gap-filling step. This extrapolation artifact made the input time series not well described
by the phenological model at the beginning of the year. The SoS estimate is inaccurate,
yet the distribution large spread indicates greater uncertainty. This bad inference of the
SoS seems to have prevented a good estimation of the maturity date as well, with this time
a narrow distribution. Nonetheless the senescence and end of season seem well inferred.
Similarly with a broad-leaved forest time series (Figure 9.12d), senescence and end of season
distributions are not well positioned due to interpolated data points at the end of year. These
results show that the gap-filling preprocessing task can lead to wrong parameter estimations
when long data gaps include key phenological dates. This highlights the need for encoder
architectures that mitigate the need for inputs interpolated on constant grids [Bellet et al.,
2024; Dumeur et al., 2024]. However, the study and incorporation of such neural networks is
out of the scope of this Ph.D.

In Figure 9.12e, there are several crops in the pixel, and the NDVI time series shows
several phenological cycles. As the model can only take one cycle into account, it only fits
the largest, and takes the average of the remaining signal. The distribution of the minimum
of NDVI is very large, indicating uncertainty.

In Figure 9.12f, the phenological model doesn’t suit at all the NDVI time series of a dense
urban area pixel. Therefore, reconstruction errors are high. Still, phenological distribution
variances increase to take this epistemic uncertainty into account. These results show that
large uncertainties could be associated to the model discrepancy with the data.

Another remark is that, inferred marginal phenological distributions sometimes show
significant overlap. This highlights the interest of the proposed order constraints on the latent
distributions, as reconstructions are consistent with the phenological model, and variables
constraints are always respected.

More reconstruction examples are available in subsection E.3.1.
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(a) Corn pixel (𝛽 = 0)
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(b) Corn pixel (𝛽 = 5)

Ja
n

Fe
b

M
ar

A
pr

M
ay

Ju
n

Ju
l

A
ug Se

p

O
ct

N
ov

D
ec

0

0.5

N
D

V
I

(c) Protein crops pixel (𝛽 = 0)
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(d) Broad-leaved forest pixel (𝛽 = 0)
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(e) Rapeseed pixel (𝛽 = 0)
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(f) Dense urban area pixel (𝛽 = 0)

Figure 9.12: Reconstruction and distributions of phenological parameters from the encoding of the
NDVI time series by Pheno-VAE trained on S2 data-set. Central quadrants, S2 NDVI time series
(black), reconstructions from the modes of phenological parameters distributions (red), and recon-
struction 5th-95th prediction interval - Upper quadrants: TN distributions of the 4 phenological dates,
SoS (blue), Mat (red), Sen (dark green), EoS (magenta) - Right quadrants: TN distributions of M
(orange), and m (light green) - Upper and right quadrants: distribution densities are in solid lines,
distribution modes are in dashed lines.
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9.3.4 Influence of the KLD loss term on Pheno-VAE performances

The impact of the KLD term is studied by comparing results obtained by using different 𝛽
values. In this experiment, Pheno-VAE is trained with samples from the S2 data-set. The
prediction interval metrics presented here are derived for a confidence level of 1 − 𝛼 = 0.9.

Table 9.6: Evaluation performances obtained on a simulated data-set for different Pheno-VAE models
trained on the S2 data-set, and for various KLD loss coefficients 𝛽. Prediction intervals are derived
from phenological distributions with a confidence level 1 − 𝛼 = 0.9.

(a) Mean Absolute Error (the lower the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 0 0.05 ± 0.00 0.02 ± 0.00 11.13 ± 0.46 10.22 ± 0.08 11.01 ± 0.47 13.35 ± 0.52
Pheno-VAE-S2, 𝛽 = 1 0.05 ± 0.00 0.02 ± 0.00 11.82 ± 0.27 10.38 ± 0.33 11.61 ± 0.65 13.48 ± 0.69
Pheno-VAE-S2, 𝛽 = 2 0.05 ± 0.00 0.02 ± 0.00 11.93 ± 0.60 10.58 ± 0.25 12.15 ± 0.60 14.75 ± 0.97
Pheno-VAE-S2, 𝛽 = 5 0.07 ± 0.00 0.02 ± 0.00 14.87 ± 0.21 14.37 ± 0.61 18.37 ± 0.75 18.69 ± 0.47

(b) Prediction Interval Coverage Probability (the closer to 0.9 the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 0 0.67 ± 0.01 0.95 ± 0.01 0.34 ± 0.05 0.25 ± 0.03 0.34 ± 0.04 0.58 ± 0.02
Pheno-VAE-S2, 𝛽 = 1 0.60 ± 0.01 0.95 ± 0.01 0.53 ± 0.02 0.48 ± 0.02 0.55 ± 0.01 0.71 ± 0.02
Pheno-VAE-S2, 𝛽 = 2 0.61 ± 0.02 0.94 ± 0.01 0.64 ± 0.02 0.56 ± 0.01 0.64 ± 0.01 0.76 ± 0.03
Pheno-VAE-S2, 𝛽 = 5 0.63 ± 0.03 0.92 ± 0.01 0.77 ± 0.01 0.69 ± 0.02 0.69 ± 0.02 0.83 ± 0.01

(c) Mean Prediction Interval Width (the lower the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 0 0.12 ± 0.01 0.13 ± 0.00 14.69 ± 2.85 8.81 ± 1.11 13.75 ± 1.01 30.60 ± 1.83
Pheno-VAE-S2, 𝛽 = 1 0.11 ± 0.00 0.12 ± 0.00 22.97 ± 1.38 18.24 ± 1.05 23.35 ± 1.18 36.60 ± 2.38
Pheno-VAE-S2, 𝛽 = 2 0.11 ± 0.00 0.12 ± 0.00 27.93 ± 1.54 22.81 ± 0.75 28.43 ± 1.53 43.30 ± 3.10
Pheno-VAE-S2, 𝛽 = 5 0.16 ± 0.00 0.12 ± 0.00 41.79 ± 1.64 38.24 ± 1.65 42.18 ± 1.36 59.64 ± 2.30

As previously observed, the KLD term tends to increase the dispersion of the phenological
parameters distributions. The MPIW (Table 9.6c) and prediction interval width (PIW)
(Figure E.12)) increases for the phenological dates along with 𝛽 and consequently the PICP
(Table 9.6b) also increases.

The MAE results (Table 9.6a) tend to increase along with 𝛽, decreasing performance,
although the distributions of the absolute errors (Figure E.6) only worsen significantly above a
certain threshold of 𝛽. These results corroborate that the hyper-parameter 𝛽 must be selected
by using an independent validation data-set. For the prediction intervals to be informative,
the KLD term needs to be high enough, while keeping it below a certain threshold ensures
that precision is acceptable.

Also, different performances are obtained for the different phenological parameters. The
minimum of NDVI m is the best estimated parameter, as with simulated time series, a large
part of available data points are around the value of the minimum — although, it is so
well estimated that its prediction interval almost always contains it, overshooting the PICP
= 1 − 𝛼 target. The parameter M is more challenging to estimate than m. The value of the
true maximum of the phenological model can differ from the parameter M when Mat and Sen
are close. The highest errors are obtained on phenological dates, most certainly because of
the gap-filling problem highlighted with reconstruction results (such as with Figure 9.12c and
Figure 9.12d). This limitation is more visible in MPIW values obtained for SoS and EoS than
Mat and Sen. This is because the Pheno-VAE is confronted with more severe extrapolation
aberrations at both ends of the time series than in the middle, where interpolation is better,
with higher temporal availability in the original time series.

In the following, the setting 𝛽 = 2 will be used, as it increases the PICP without degrading
too much the MPIW and the MAE.
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9.3.5 Quantitative assessment of Pheno-VAE

Quantitative results obtained by Pheno-VAE trained on S2 data-set, Pheno-VAE trained on
the synthetic data-set, MCMC and MPSR by inferring the phenological distributions of the
simulated data-set are compared here. Obtained results are presented in Table 9.7.

Table 9.7: Evaluation performances obtained on a simulated data-set for different experiments of
inversion of the phenological model. Prediction intervals are derived from phenological distributions
with a confidence level 1 − 𝛼 = 0.9.

(a) Mean Absolute Error (the lower the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 2 0.05 ± 0.00 0.02 ± 0.00 11.93 ± 0.60 10.58 ± 0.25 12.15 ± 0.60 14.75 ± 0.97
Pheno-VAE-G, 𝛽 = 2 0.06 ± 0.00 0.02 ± 0.00 8.89 ± 0.53 10.51 ± 0.49 10.59 ± 0.52 9.23 ± 0.26
MCMC 0.03 ± 0.00 0.02 ± 0.00 7.18 ± 0.70 9.57 ± 0.95 9.93 ± 1.00 10.42 ± 1.18
MPSR 0.04 ± 0.00 0.01 ± 0.00 6.69 ± 0.03 7.54 ± 0.05 6.91 ± 0.05 6.70 ± 0.07
CF 0.07 ± 0.00 0.01 ± 0.00 7.58 ± 1.07 11.74 ± 1.20 10.75 ± 1.20 7.37 ± 1.25

(b) Prediction Interval Coverage Probability (the closer to 0.9 the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 2 0.61 ± 0.02 0.94 ± 0.01 0.64 ± 0.02 0.56 ± 0.01 0.64 ± 0.01 0.76 ± 0.03
Pheno-VAE-G, 𝛽 = 2 0.67 ± 0.01 0.99 ± 0.00 0.67 ± 0.05 0.60 ± 0.01 0.66 ± 0.01 0.77 ± 0.02
MCMC 0.89 ± 0.01 0.86 ± 0.01 0.84 ± 0.01 0.85 ± 0.01 0.83 ± 0.01 0.83 ± 0.01
MPSR 0.90 ± 0.01 0.90 ± 0.01 0.89 ± 0.00 0.89 ± 0.00 0.89 ± 0.01 0.88 ± 0.00

(c) Mean Prediction Interval Width (the lower the better).

Exp. M m SoS Mat Sen EoS
Pheno-VAE-S2, 𝛽 = 2 0.11 ± 0.00 0.12 ± 0.00 27.93 ± 1.54 22.81 ± 0.75 28.43 ± 1.53 43.30 ± 3.10
Pheno-VAE-G, 𝛽 = 2 0.14 ± 0.01 0.14 ± 0.00 21.02 ± 0.76 23.25 ± 1.32 27.09 ± 1.16 25.23 ± 0.80
MCMC 0.13 ± 0.01 0.05 ± 0.00 22.13 ± 1.75 25.03 ± 1.94 22.74 ± 1.79 21.50 ± 2.29
MPSR 0.16 ± 0.00 0.06 ± 0.00 27.70 ± 0.30 29.91 ± 0.25 27.81 ± 0.43 26.36 ± 0.40

Best overall performances are obtained by the MCMC, for which the distribution of
absolute errors is the lowest (Figure E.6), despite having a little higher MAE (Table 9.7a)
than MPSR. MCMC also attains PICP that is close to the confidence level 𝛼 (Table 9.7b and
Figure E.9), with prediction intervals significantly narrower than other presented methods.
Phenological distribution inference is not limited by a distribution family prior and directly
samples phenological distributions, contrary to the other methods studied here. It is also not
affected by missing data gaps because MCMC do not require regularly temporal input data.
The results of MCMC could be improved by increasing the number of distribution samples
and steps, at the expense of greater computation costs. Despite the promising MCMC results,
its computing time required is much longer for MCMC than deep learning methods (see Table
9.8). It justifies why such approach can not be applied on operational parameter retrieval
applications.

MPSR, has absolute errors that are a little higher and larger prediction intervals, however
it has the best PICP, that is the closest to the confidence level 𝛼 for all phenological variables.
Those good results are expected, considering that it is a supervised method, with the training
data-set being very similar to the testing data-set. Furthermore its loss doesn’t rely on
reconstruction, and therefore isn’t affected by the irregular temporal sampling of real S2 time
series.

The CF approach predicts phenological parameters with a MAE between that of MCMC
and MPSR, except for Mat and Sen which are on par with the inference of Pheno-VAE.
However this method was observed to be less reliable than the other presented here, as
it didn’t converge to a solution for about 5% of the time series (the results presented in
Table 9.7a excluded those failed predictions).

The results of Pheno-VAE are less good than MCMC and MPSR. It has higher MAE,
and despite similar prediction interval sizes, it underestimates uncertainty with lower PICP.

206



CHAPTER 9. PHENOLOGICAL MODEL INVERSION

Results also show different behaviors for the two Pheno-VAE trained on different data-sets.
As expected, slightly better results are obtained when Pheno-VAE is trained on simulated
data. A greater performance drop is observed for EoS. This is because of a discrepancy
between both data-sets. In the simulated data-set, there is more diversity in the phenological
parameters, because of the uniform sampling to generate it. Even if real validity masks from
the S2 data-set are used, they are not correlated to phenology, as it is the case for real data.
In the S2 data-set, a smaller diversity of combinations of phenological variables is available.
In this data-set, the end of season of real crops can happen when there are clouds, more than
in the simulated data-set.

The drop in performances is much less significant compared to regression and MCMC,
despite training on samples that don’t follow the phenological model. The Pheno-VAE trained
on the synthetic data-set benefits from being evaluated on a similar simulated data-set. This
unfair advantage could be mitigated by evaluating the performances of Pheno-VAE on real S2
NDVI time series data-set, with available ground truth of phenological stages. Unfortunately,
such a data-set was not available at the time of this study.

MCMC and MPSR show similar performances, despite being very different methods.
This hints that given the simulated data-set and the double-logistic model, there is not much
performance improvement to expect from the inference experiment, even with other setups.
The regression yields on phenological dates 7-day MAE, with 90% PICP and 28 days MPIW.
These are good results considering irregularly sampled time series that are interpolated to
a 5-day grid. For Pheno-VAE to get performances closer to this, there is a need to improve
on the ability of the encoder neural network to take temporal structure of time series into
account. To minimize the impact of the gap-filling pre-processing step, different solutions
could be considered. For instance, the reconstruction loss could be modified to only take
valid observations into account. The encoder network architecture could be replaced to allow
to learn from irregularly sampled time series such as with transformers.

Table 9.8: Approximate training and inference time for each setup on computing environment descri-
bed in section A.2.

Method CF MCMC MPSR Pheno-VAE
(Sim)

Pheno-VAE
(S2)

GPU
usage 7 7 ! ! !

Training 7 7 15 min 15 min 15 min
Inference
per time
series

10−4 s 10 s 10−5 s 10−5 s 10−5 s

9.3.6 Ablation study of the latent distribution maximum sampling tech-
niques

An ablation study for the strategy presented to incorporate temporal order in latent variables
is performed with Pheno-VAE. The three sub-tasks proposed for enforcing the maximum
of successive distributions as the distribution of the greater of consecutive variables, are
evaluated: the rectification of the variational parameter 𝜇 (Equation 9.15), latent samples
rectification (Equation 9.13), and the order loss (Equation 9.16). When any of these steps
is removed, convergence of the objective function the validation data-set is observed to be
slower. It also often leads to sub-optimal models that only order distributions by making
them identical. Moreover, simply removing the latent sample rectification leads the Pheno-
VAE to infer latent model parameters that fit the data but no longer have physical meaning
(with for instance a prediction of the SoS date being after the EoS date).
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9.4 Conclusion
In this chapter, the integration of physical models for representation learning in VAE is
applied to perform the inversion of a phenological model from NDVI time series. This appli-
cation has required the incorporation of additional constraints in the latent space, to account
for order relationships between phenological variables. The training of the subsequent Pheno-
VAE is robust to samples which do not correspond to the physical model (pixels without
vegetation).

Despite using a simple neural network architecture, preliminary results are encouraging.
Nonetheless, the inference error and prediction intervals of Pheno-VAE fall behind certain
other methods in the current configuration. It is hypothesized here that it is because of the
reliance of Pheno-VAE on reconstruction errors for training. The simple MLP architecture of
the encoder requires a fixed temporal grid for input time series. The necessary interpolation of
irregular time series disturbs the input to the model, and leads to reconstruct an altered signal.
Performance could be improved by enhancing the encoder architecture with inductive biases
that enable to take into account the temporal structure of the data (attention mechanisms,
recurrent architectures), and that allow to take irregularly sampled time series as input [Bellet
et al., 2024]. Furthermore, the exploitation of the spatial context of satellite data may improve
parameter retrieval on individual pixels, such as with convolutional neural networks, like was
performed in Chapter 8 — although additional inductive biases might be necessary.
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Chapter 10

Conclusion and perspectives

10.1 Conclusion

The purpose of this thesis was to develop methodologies for deriving meaningful, interpretable
representations of vegetation of continental surfaces from remote sensing observations. In
particular, physical variables were identified as ideal representations, since they inform about
the nature of ground surfaces. They are general enough to be useful for various downstream
tasks, and have an intrinsic value by themselves. Such physical variables are typically the
inputs of physical models, and as such, retrieving those variables is an inversion problem. In
particular, there are well-known models that link the state of vegetation through bio-physical
variables with remote sensing observations.

The contributions of this thesis were detailed in Part II, Part III and Part IV. In Part II,
a crucial dependence on simulated data-sets of classical supervised deep learning approa-
ches for vegetation bio-physical variables retrieval has been identified. Part III developed
a methodology based on representation learning and variational autoencoders (VAE) for
performing unsupervised model inversion. Finally, Part IV presented the results of the appli-
cation of the proposed methodology on two well-known remote sensing inversion problems:
PROSAIL and a phenological model.

In Part II, a differentiable and parallelized implementation of the PROSAIL radiative
transfer model (RTM) has been detailed. The computational cost of this model for simulating
Sentinel-2 (S2) reflectances was lowered by using under-sampling, without altering simulation
accuracy beyond the atmospheric correction accuracy. Then, after introducing classical model
inversion methods, the de facto standard neural networks based Simplified Level 2 Product
Prototype Processor (SL2P) has been discussed. This model enables the large scale retrieval of
canopy variables, by preforming the supervised inversion of PROSAIL. As was demonstrated
in this part, the performance of supervised regression depends heavily on the simulations
used in the training data-set. Specifically, it was shown that the version of PROSAIL used,
along with the distribution of the model input variables and even the correlations between
them had an influence on the inversion performance. This was identified as a key limitation,
because the distributions of all the variables and their correlations involved in the simulation
are not well-known.

In Part III, Bayesian inference methods were studied as probabilistic methods for deriving
representations from remote sensing data. In particular, a focus was put on VAE, which
are at the intersection of deep learning and variational inference. Such models learn to
predict generative representations of data in a self-supervised manner. Different methods for
incorporating prior information in VAE were investigated. In particular, it was proposed
to constrain the latent representations to be physical variables by combining VAE with
physical models. By incorporating a physical model into the decoder of a VAE, the latent
variables were semantically bound to the input of the model. Such a physics-integrated VAE
performed the inversion of the model in the decoder as a representation learning technique.
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This methodology can be applied to a wide variety of models, as long as they are differentiable
and that forward passes are not too computationally expensive. Furthermore, the retrieved
variables are described by a probability distribution rather than a simple estimate. Addi-
tionally, a variety of techniques for incorporating a deterministic physical model into the
framework of a Bayesian method were proposed. Crucially, once trained, the decoder of the
VAE is discarded, and the encoder can be used for probabilistic inference at large scale.

Part IV presented the results of the application of the VAE-based inversion methods
with two physical models. In the first application, the differentiable implementation of
PROSAIL was integrated into the decoder of a VAE with the so-called PROSAIL-VAE.
The latent variables of PROSAIL-VAE are the leaf and canopy variables of the PROSAIL
model. As opposed to supervised approaches which must be trained on pre-simulated data-
sets, PROSAIL-VAE was trained directly on S2 data. Using in-situ measurements of leaf
area index (LAI) and canopy chlorophyll content (CCC), the PROSAIL-VAE approach was
compared to SL2P and multiple probabilistic supervised regression (MPSR), which are super-
vised neural network approaches for inverting PROSAIL. PROSAIL-VAE showed superior
performance on the retrieval of these variables on the available data, with both accurate
estimates and meaningful uncertainty quantification. Additionally, the aggregate posterior
distribution of PROSAIL variables was estimated with S2 images with PROSAIL-VAE. This
enabled to estimate correlations between PROSAIL variables. Some variables were likely
better estimated than others, which highlighted the need for more validation using in situ
measurements of vegetation variables. Different configurations of PROSAIL-VAE that incor-
porated prior knowledge differently were also investigated.

In the second application of the proposed methodology, a double-logistic phenological
model was integrated into the decoder of a VAE with the so-called Pheno-VAE. This physical
model related phenological dates of vegetation to normalized difference vegetation index
(NDVI) times series. In Pheno-VAE, the latent variables matched those phenological dates,
which were the target of the inversion problem. Additional inductive biases were incorporated
into the latent space of this model for enforcing order constraints between latent variables.
Pheno-VAE was trained using NDVI time series computed from real S2 data. It was compared
to the MPSR supervised deep learning regression, and to classical Markov Chain Monte
Carlo (MCMC) and curve fitting regression methods. While Pheno-VAE showed interesting
retrieval capabilities, it also showed limitations due to its reliance on interpolation of input
time series. This highlighted that, since VAE methods are based on data reconstruction, it
is necessary that the input data can be accurately reconstructed with little alteration. This
calls for using more elaborate architectures for the encoder to be able to take irregular time
series into account.

10.2 Perspectives

The proposed physics-integrated VAE methodology has shown interesting results and potential.
There are several directions in which future research efforts could be undertaken. In particular,
future work may focus on improving the performance of the approach for PROSAIL-VAE and
Pheno-VAE, and on extending its application to more complex settings while taking more
information into account for inference.

10.2.1 Improvements of the physics-integrated VAE methodology

Enhancing the encoder architecture Both PROSAIL-VAE in and Pheno-VAE have
highlighted the interest in possible improvements over the encoder architecture. In the former
case, although a convolutional neural network (CNN) spatial encoder has been proposed, it
didn’t show better inference capabilities (subsubsection 8.3.3.2). Using an encoder with
increased spatial context, along with introducing a spatial penalization of reconstruction,

212



CHAPTER 10. CONCLUSION AND PERSPECTIVES

and a spatial structure to the latent variables could help improve performances. In the case
of Pheno-VAE taking irregular time series as input rather than requiring an interpolation on
a regular grid could significantly improve the model. For instance, recurrent neural networks
[Metzger et al., 2021], or attention-based [Bellet et al., 2024; Shukla and Marlin, 2021] encoder
architectures could enable taking irregular time series as input.

Using more training data Pheno-VAE and PROSAIL-VAE were respectively trained
with 106 time series and 2.4 × 107 pixels, which is a relatively high number considering that
both encoder neural networks are not very complex. However, even if this data was produced
with a concern for class diversity and variety, it is a very low amount of data compared to
the available S2 data. For Pheno-VAE, only data from the T31TCJ S2 tile were used, with
a total covered surface of 1 km2 spread across a 100 × 100 km2 area. For PROSAIL-VAE,
even if data from various tiles were used, patches were extracted from only small regions of
interest (ROIs) within those tiles. Therefore, there is a lot more data that can be used for
training those models. The data-sets used in this Ph.D. were sufficient to design the presented
applications, but improving performance will require using more training data, more spatial
and temporal variability. Besides, recent experiments not presented in this manuscript have
shown that PROSAIL-VAE can be trained without difficulty with larger data-sets produced
by other L2A processors achieving equivalent performances.

Validating the approach using more in-situ data The PROSAIL-VAE application
showed accurate LAI and CCC retrieval when compared to in-situ data. However, this data
was rather limited in quantity, with less than 300 total data points for each variable, and in
diversity, since only few areas with few vegetation types were involved. Besides, the retrieval
of other predicted PROSAIL variables were not validated with in-situ data. For Pheno-VAE,
only simulated data were used to assess performances.

It is therefore necessary to collect in situ-data in greater quantity, and of biophysical
variables that weren’t evaluated, to extend the accuracy assessment of the developed approach.

Finding proxy performance metrics Experiments with PROSAIL-VAE highlighted in
subsection 8.2.1 that the validation loss cannot be used as a reliable metric for assessing
variable estimation performance. As a consequence, for now, validation with in-situ data is
unavoidable for estimating the performance of models and for comparing them with others.
An important perspective is therefore the development of a metric that enables assessing the
performance of the models without relying on evaluation with in-situ data. Ideally, a robust
metric would enable selecting the best model while only using available S2 images, and no
in-situ measurements.

Improving the correlation between predicted variables As observed in the inversion
of PROSAIL with PROSAIL-VAE, the ability of the proposed method to perform full model
inversions allows to estimate a joint distribution between all inferred model variables. However,
the correlations between variables are simply estimated, and in the case of PROSAIL-VAE,
pairs of predicted variables displayed an unrealistic correlation. This specific problem is ill-
posed, and could probably be alleviated by reducing the number of variables to predict by
the encoder. In the general case, another solution may be to promote known correlations (or
absence of correlation) by using learning biases, e.g. an additional loss term that penalizes the
correlations between predicted variables in the encoder. This could be enforced, for instance,
by adapting disentanglement techniques for regularizing latent variables.

Improving the computational efficiency The Monte Carlo reconstruction loss (MCRL)
developed for the physics-integrated VAE approach has shown good performance, but it
relied on sampling the latent variables many times and generating many reconstructions. For
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Pheno-VAE the phenological model is a simple mathematical formula, so this didn’t lead
to particular computational issues. However for PROSAIL-VAE, multiple simulations with
the more complex PROSAIL generated a memory bottleneck. This was mitigated by down-
sampling the resolution of the model. Yet, when using sampling 70 latent samples for the
Monte Carlo reconstruction loss (MCRL) the model couldn’t handle training with more than
one patch of size 32 × 32 at a time. This limits the ability of the model to train on more
data.

To enable training VAE using the MCRL with relatively complex physical models in
the decoder, it is necessary to improve the computational efficiency of the approach. First,
reliable heuristics for selecting an optimal number of latent samples must be found. Second,
if possible, the physical model performing simulation should be computationally optimized.
A potential approach would be the use of emulators of the physical models, such as neural
networks. Emulators could be used to replicate the model behavior, for parts of the model
(e.g. the exponential integral function), or in its entirety.

Perfecting the semi-supervised cyclical training technique The semi-supervised
cyclical training strategy was proposed in subsection 8.3.4, and was about directly comparing
PROSAIL variable estimates with reference data that is auto-generated by PROSAIL-VAE.
For now, experiments with this strategy have not been conclusive, and further investigation
is required to assess its potential. Nonetheless, it could enable better estimation of all PRO-
SAIL variables. In particular, the variables whose influence in the reconstructions is lower
than others (e.g. the carotenoid content) could be better inferred since the supervised loss
term in the cyclical training doesn’t involve reconstructions. Also, with a supervised loss
term, the estimation of each variable doesn’t compete with the others, contrary to the recon-
struction loss for which the variables with a greater influence may conceal variables with a
lower influence.

10.2.2 Extension of the range of application of the methodology
Using contextual data sources Besides optical measurements, there are additional data
sources that could be taken into account by the encoder. Such new inputs could include
for instance surface elevation, meteorological data, or other remote measurements such as
synthetic aperture radar (SAR). Similarly to the spectral bands used as input to PROSAIL-
VAE, these inputs would not be penalized by training (i.e. not taken into account by the
loss), but their incorporation could help the model learn to infer better physical variables.
Such additional incorporation could help the model inference in the case where multiple sets
of variables are likely solutions, since the inversion problem may be ill-posed.

Applying the proposed method to different inversion problems The proposed
physics integrated VAE could be applied to more inversion problems than just PROSAIL
or the double logistic phenological model. More complex phenological models could be used
for modeling vegetation that is not well described by the double logistic model. Different RTM
models may be used instead of PROSAIL to model vegetation differently. For instance, the
popular Invertible Forest Reflectance Model (INFORM) [Atzberger, 2000] could be used in a
model similarly to PROSAIL-VAE. In fact, the PROSAIL-VAE approach has garnered some
attention in the community, since the very application of this approach with the INFORM
model has been proposed in She et al. [2024].

The interest of such a method may even be found beyond Earth observation in remote
sensing, in applications with an abundance of data but with little reference, and some physical
model.

Combining multiple physical models As discussed above, it is possible to incorporate
different physical models with the approach developed in this thesis. A potential application

214



CHAPTER 10. CONCLUSION AND PERSPECTIVES

for this is to use several models jointly in the decoder of a VAE. Two settings can be proposed.
In a first approach, multiple physical simulators that model differently the same remote

sensing observations could be used simultaneously. For instance, PROSAIL is well suited
to certain types of vegetation (e.g. crops), whereas other models such as INFORM are
specialized on other types of vegetation (i.e. forests). Using jointly both of those models could
enable to estimate the variables of the vegetation by using the model that is best suited. One
possible implementation could be to estimate the variables, and to predict reconstructions of
both models at the same time, and to use the reconstruction likelihood to select which set of
variables to save. Alternatively, categorical variables could be added to the latent space for
predicting which model is better suited for a given input data.

A second approach could consider performing the fusion of models that involve different
dimensions of the input data. For instance PROSAIL and the phenological model both
relate S2 remote sensing measurements to vegetation bio-physical variables. However, those
variables are about different aspects of the vegetation: the chemical content and structure
of vegetation for PROSAIL and the temporal evolution for the phenological model. Both
the phenological model and PROSAIL could be used simultaneously with a VAE to predict
canopy biophysical variables while constraining them to have a certain temporal behavior
imposed by the phenological model. Another possible evolution of the proposed approach
could be to use it in data assimilation problems rather than inversion problems.

Multi-modal representations Since a variety of different models may be accommodated
by the proposed approach, there could be an opportunity to use it to estimate physical
variables from multiple sources. Specifically, physical models that simulate observations of
different sensors could be used jointly within the decoder of a VAE. For instance, S2 optical
measurements used within PROSAIL-VAE could be complemented by SAR measurements
(e.g. Sentinel-1 data). This could be achieved by incorporating a model that relates ground
properties to SAR measurements. In the case those different models share common variables,
the estimation of those variable could be improved by benefitting from the joint input of their
associated sensors.

Residual latent variables Finally, in this Ph.D. physical models have been used as the
sole generative component in the decoders of VAE. However, models are never perfect, there
are some effects that are not modeled accurately, and some that are not taken into account.
A possible future improvement of the approach developed in this thesis could be the incorpo-
ration of a non-physical, non-interpretable component to the latent space and to the decoder,
as discussed in subsection 7.2.1. Specifically, the physical models in the decoder could be
supplemented by auxiliary neural networks, that would be responsible for modeling residuals,
and mitigating effects not taken into account in the reconstructions. In such a VAE, the latent
variables would be distinguished into an interpretable part that is semantically bound to
physical parameters, and a non-interpretable part. Disentanglement approaches, introduced
in section 6.5 could be applied to these variables to enforce specific properties and inductive
biases.
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Conclusion en français

Le but de cette thèse a été de de développer des méthodologies pour calculer des repré-
sentations interprétables et pertinentes de la végétation des surfaces continentales, à partir
d’observations de télédétection. En particulier, les variables physiques ont été identifiées en
tant que représentations idéales, puisqu’elles caractérisent la nature des surfaces observées.
Ces variables sont en général suffisantes pour diverses applications en aval, et ont une valeur
en-soi. De telles variables sont typiquement les entrées de modèles physiques, ce qui fait
de l’estimation de ces variables un problème d’inversion. Il existe notamment des modèles
bien connus qui établissent un lien entre l’état de la végétation, en utilisant des variables des
variables bio-physiques, et des observations de télédétection.

Les contributions de cette thèse sont détaillées en Partie II, Partie III et Partie IV.
En Partie II, une dépendence cruciale des approches d’apprentissage profond1 supervisé à
la distribution des jeux de données d’entraînement simulées a été identifiée. La Partie III a
développé une méthodologie basée sur l’apprentissage de représentations2 et les autoencodeurs
variationels3, qui réalise une inversion de modèle non supervisée. Enfin, la Partie IV a
présenté les résultats de l’application de la méthode proposée dans cette thèse, à deux
problèmes d’inversion de modèle classiques en télédétection : PROSAIL et un modèle phéno-
logique.

Dans la Partie II, une implémentation différentiable et parallélisable du modèle de transfert
radiatif PROSAIL a été détaillée. Afin de diminuer le coût en calculs de la simulation de
réflectances Sentinel-2 (S2) avec ce modèle, un sous-échantillonnage a été appliqué, et ce,
sans dégrader l’erreur de simulation au delà des erreurs dues aux corrections atmosphériques.
Ensuite, après avoir introduit les méthodes classiques d’inversion de modèle, la méthode de
facto standard Simplified Level 2 Product Prototype Processor (SL2P) basée sur des réseaux
de neurones a été présentée. Cette méthode permet l’estimation à grande échelle de variables
de canopée, en réalisant l’inversion supervisée de PROSAIL. Ainsi que démontré dans cette
partie, la performance des méthodes de régression supervisée dépend fortement des simula-
tions utilisées dans le jeu de données d’entraînement. Plus spécifiquement, il a été montré que
la version de PROSAIL utilisée, ainsi que la distribution des variables d’entrée du modèle,
et les corrélations entres elles avaient une influence sur la performance d’inversion. Cela
a été identifié comme une limitation clé, puisque les distributions de ces variables et leurs
corrélations ne sont pas bien connues.

Dans la Partie III, les méthodes d’inférence Bayésiennes ont été étudiées en tant que
méthodes probabilistes pour calculer des représentations à partir de données de télédétections.
Une attention particulière a été apportée aux VAE, qui sont à l’intersection entre l’apprentis-
sage profond et l’inférence variationelle. Ces modèles apprennent à inférer des représentations
générative de données d’une manière auto-supervisée. Différentes méthodes d’incorporation
d’informations a priori dans les VAE ont été examinées. Il a notamment été proposé de
contraindre les représentations latentes pour qu’elles correspondent à des variables physi-
ques, en combinant les VAE avec des modèles physiques. En incorporant un modèle physique
dans le décodeur d’un VAE, les variables latentes sont sémantiquement liées à l’entrée d’un

1Deep learning.
2Representation learning.
3Variational autoencoders (VAE).
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modèle. Un tel VAE intégrant des contraintes physiques effectue alors une inversion de modèle
dans un cadre d’apprentissage de représentations. Cette méthodologie peut être appliquée à
une large variété de modèles physiques, pourvu qu’ils soient différentiables et que les simu-
lations ne soient pas trop coûteuses en calcul. D’autre part, les variables estimées sont
décrites par une distribution de probabilité, plûtot qu’une estimation ponctuelle. En outre,
plusieurs techniques permettant d’incorporer un modèle physique déterministe dans le cadre
d’une méthode Bayésienne ont été proposées. Crucialement, une fois entraîné, le décodeur
du VAE est écarté, et l’encodeur peut être utilisé pour réaliser une inférence probabiliste à
large échelle.

La Partie IV présente les résultats de l’application de la méthode basée sur les VAE
à l’inversion de deux modèles physiques. Dans la première application, l’implémentation
différentiable de PROSAIL est intégrée dans le décodeur d’un VAE, dans le modèle PROSAIL-
VAE. Les variables latentes de PROSAIL-VAE sont les variables de feuille et de canopée
du modèle PROSAIL. Contrairement aux approches supervisées qui doivent être entraînées
sur des jeux de données pré-simulés, PROSAIL-VAE a été entraîné directement avec des
données S2. En utilisant des données terrain d’indice de surface foliaire4 et du contenu
en chlorophylle de la canopée5, PROSAIL-VAE a été comparé a SL2P et à une régression
supervisée probabiliste multiple6, qui sont des approches supervisées d’inversion de PROSAIL
basées sur des réseaux de neurones. PROSAIL-VAE a montré une performance d’estimation
supérieure de ces variables sur les données terrain disponibles, à la fois des estimations précises
et une quantification d’incertitudes cohérente. De plus, la distribution postérieure agrégée
des variables de PROSAIL a été estimée avec des images S2, avec PROSAIL-VAE. Cela a
permis d’estimer les corrélations entre les variables de PROSAIL. Certaines variables sont
vraisemblablement mieux estimées que d’autres, ce qui souligne le besoin de validations
supplémentaires avec des mesures terrain de variables de végétation. Des configurations
différentes de PROSAIL-VAE qui incorporent de la connaissance a priori on aussi été étudiées

Dans la seconde application de la méthodologie proposée, un modèle phénologique double-
logistique a été intégré dans le décodeur d’un VAE, créant le modèle Pheno-VAE. Ce modèle
physique met en lien des dates phénologiques de la végétation avec des séries temporelles
d’indice de végétation par différence normalisée7. Les variables latentes de Pheno-VAE
correspondent à ces dates phénologiques, qui sont les variables cible du problème d’inversion
associé. Des biais inductifs additionnels ont été incorporés dans l’espace latent de Pheno-
VAE, afin d’imposer des contraintes d’ordre entre les variables latentes. Pheno-VAE a été
entraîné à partir de séries temporelles de NDVI produites à parties de données S2. Pheno-
VAE a été comparé à l’approche MPSR, à une inversion bayésienne classique de Markov
Chain Monte Carlo (MCMC), et à une régression par ajustement de courbe8. Alors que
Pheno-VAE a montré des capacités d’estimation intéressantes, cette approche possède aussi
des limitations dues à sa dépendance à l’interpolation de séries temporelles en entrée. Cela a
souligné qu’il était nécessaire que les données d’entrée soient reconstruites le plus précisément
possible, puisque VAE sont basées sur la reconstruction de données. Cela suggère l’utilisation
d’architectures d’encodeur plus élaborées, afin de pouvoir utiliser directement des séries
temporelles irrégulièrement échantillonnées.

4Leaf area index (LAI).
5Canopy chlorophyll content (CCC).
6Multiple probabilistic supervised regression (MPSR).
7Normalized difference vegetation index (NDVI).
8Curve fitting.
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Appendix A

Data and implementations

This appendix gives pointers to data and code used in this work and briefly describes the
computing environment used.

A.1 Repositories
A.1.1 S2 NDVI time series for Pheno-VAE
The real Sentinel-2 (S2) reflectance time series (bands B4 and B8) used for Pheno-VAE
experiments presented in chapter Chapter 9 are available at the following repository.
Y. Zérah, S. Valero, and J. Inglada. Sentinel-2 time series for Pheno-VAE, Nov. 2022. URL
https://doi.org/10.5281/zenodo.7273500

A.1.2 Pheno-VAE
The Python implementation of the Pheno-VAE models, their training procedure and the
generation of simulated normalized difference vegetation index (NDVI) time series, presented
in chapter Chapter 9, are available at the following repository:
https://src.koda.cnrs.fr/smrxmlbw/pheno-vae.git.

A.1.3 PROSAIL
The differentiable and refactored Python implementation of PROSAIL developed in this
Ph.D. (see Chapter 4), and used in the experiments of Chapter 5 and Chapter 8 is provided
in the following repository (branch downsampled_tensor):
https://src.koda.cnrs.fr/mmdc/prosailpython.git.

A.1.4 PROSAIL-VAE
The Python implementation of the PROSAIL-VAE models and their training procedure,
presented in Chapter 8, is provided in the following repository:
https://src.koda.cnrs.fr/smrxmlbw/prosailvae.git.

A.2 Computing environment
The computational resources of the HPC platform of CNES’s Data Processing Centre were
used for the experiments in Chapter 5, Chapter 8 and Chapter 9. The description of the
graphical processing unit (GPU) nodes of this cluster that were used is given in the following:

• CPU: Intel® Xeon® CPU E5-2698 v4,

• GPU model: NVIDIA® Tesla® V100-SXM2-32GB,
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• Allocated RAM: 64 GB.
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APPENDIX B. LINEAR ALGEBRA

This appendix presents a details of linear algebra for the different methodologies presented
in this manuscript. In particular, these different mathematical aspects aim at providing
context around matrix inversion methods. section B.1, section B.2 and section B.3 present
techniques involved in matrix inversion. section B.4 investigates the case of the inversion of
covariance matrices with a focus on covariance matrices estimated using with Monte Carlo
(MC) sampling, as a complement to the Monte Carlo reconstruction loss (MCRL) method
discussed in subsection 7.2.3.

B.1 Cholesky decomposition
Let 𝐴 ∈ ℳ𝑛,𝑛 (C) be a Hermitian matrix1. If 𝐴 is positive-definite, then there is a unique
factorization with lower triangular matrices 𝐿, called Cholesky factorization (or decomposi-
tion):

𝐴 = 𝐿𝐿∗. (B.1)

𝐿 is invertible, and has positive diagonal entries (its eigenvalues).
If 𝐴 is positive semi-definite with rank 𝑟 < 𝑛, then there are non-unique decompositions

into lower triangular matrices 𝐿. There is a unique such decomposition with 𝑟 diagonal
positive entries, and 𝑛 − 𝑟 zeros columns. Neither 𝐴 nor 𝐿 are invertible.

There are several algorithms that compute the Cholesky factorization of a matrix, with
a computational complexity proportional to that of matrix multiplication (generally 𝒪 (𝑛3),
sometimes a little lower for more efficient algorithms).

B.2 LU decomposition
Let 𝐴 ∈ ℳ𝑛,𝑛 (C). A lower-upper factorization (or LU factorization) of 𝐴 is the factorization
with a lower triangular matrix 𝐿 and upper triangular matrix 𝑈 :

𝐴 = 𝐿𝑈 (B.2)

The LU factorization is usually not unique. A variant is a LDU (lower-diagonal-upper)
decomposition, which introduces a diagonal matrix 𝐷, and forces the diagonal entries of 𝐿
and 𝑈 to 1:

𝐴 = 𝐿𝐷𝑈. (B.3)

The LDU factorization of an invertible matrix is unique. Not all square matrices admit a LU
decomposition, however a reordering of the rows of a matrix with a permutation matrix 𝑃
can enable the decomposition.

∀𝐴 ∈ ℳ𝑛,𝑛 (C) , ∃𝑃 ∈ 𝒮𝑛, 𝐿 ∈ ℳ𝑛,𝑛 (C) , 𝑈 ∈ ℳ𝑛,𝑛 (C) s.t. 𝑃𝐴 = 𝐿𝑈 (B.4)

The LU decomposition is the matrix form of the Gaussian elimination algorithm, i.e., they
represent the sequence of elementary operations used to solve a linear system of equations.

There are several algorithms that compute the LU factorization. It should be noted that
LU factorization is less efficient and stable than Cholesky factorization (see section B.1).

B.3 Singular value decomposition
Let 𝐴 ∈ ℳ𝑚,𝑛 (C). The singular value decomposition (SVD) of 𝐴 is a factorization in the
form:

𝐴 = 𝑈𝛴𝑉 ∗, (B.5)

1A Hemitian matrix 𝐴 is a square matrix that is equal to its own transpose conjugate 𝐴∗ = (𝐴)⊤
.
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s.t. 𝑈 ∈ ℳ𝑚,𝑚 (C) and 𝑉 ∈ ℳ𝑛,𝑛 (C) are unitary matrices2, and 𝛴 ∈ ℳ𝑚,𝑛 (C) is a
rectangular matrix with non-negative diagonal entries. The diagonal elements 𝜎𝑖 of 𝛴 are
the singular values of 𝐴, and are a unique set. The number of non-zero singular values is
equal to the rank of 𝐴. If 𝐴 ∈ ℳ𝑚,𝑛 (R), then 𝑈 and 𝑉 are real orthogonal matrices. The
singular value decomposition (SVD) is not unique. SVD is a generalization of eigenvalue
decomposition3 to all matrices — in particular, non-invertible, defective4 and non-square
matrices.

B.3.1 Moore-Penrose inverse
The SVD also extends the notion of inverse to any matrix. For a matrix 𝐴 ∈ ℳ𝑚,𝑛 (C) with
SVD 𝐴 = 𝑈𝛴𝑉 ∗, the matrix

𝐴† = 𝑈𝛴†𝑉 ∗ (B.6)

is its unique Moore-Penrose inverse, or pseudoinverse. The matrix 𝛴† is the pseudoinverse
of 𝛴, formed by replacing the non-zero singular values in the diagonal by their reciprocal,
and transposing. If 𝐴 is invertible, its pseudoinverse and inverse are the same.

The pseudoinverse is a weak inverse:

𝐴𝐴†𝐴 = 𝐴 (B.7)

𝐴†𝐴𝐴† = 𝐴† (B.8)

and is hermitian
(𝐴𝐴†)∗ = 𝐴𝐴† (B.9)

(𝐴†𝐴)∗ = 𝐴†𝐴. (B.10)

B.3.2 Covariance matrix
Performing SVD on a covariance matrix 𝚺 is the basis of principal components analysis
(PCA). Indeed, the covariance matrix captures the total variation of some data, and the
SVD derives the singular values, which are the magnitude of the variances along orthogonal
directions.

B.4 Inversion of covariance matrix Monte-Carlo estimate
B.4.1 Ill-conditionned estimate covariance matrices
A covariance matrix estimated from samples of a multi-variate random variable (such as the
reconstruction vectors 𝐱̂ = ℱ (𝐳), see subsection 7.2.3) can be singular5 or ill-conditionned6,
in particular because:

1. the matrix is computed from a limited number of samples, and the matrix estimate is
not accurate,

2. realizations of the random vector has co-linear or nearly co-linear components.

2Unitary matrices are invertible and their inverse is their conjugate transpose: 𝑈−1 = (𝑈)⊤
.

3The eigenvalue decomposition of a square, diagonalizable matrix 𝐴 ∈ ℳ𝑛,𝑛 (C) is a factorization 𝐴 =
𝑄𝛬𝑄−1, with 𝑄 the matrix whose columns are the eigenvectors of 𝐴, and 𝛬 is a diagonal matrix of the
eigenvectors of 𝐴

4non-diagonalizable.
5A singular matrix, involved in an ill-posed problem, has no inverse and its determinant is 0.
6An ill-conditionned or badly-conditionned matrix, is a non-singular matrix for which the inversion is subject

to numerical instability. The conditioning of matrices can be described with a condition number, that quantifies
the change in the matrix inversion for a small change in coefficients. The ratio of the largest over the smallest
singular values is a condition number. The determinant is not affected by ill-conditioning
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The rank of a covariance matrix estimate can be limited by the number of available
samples. In particular, for 𝐾 number of samples, 𝐾 − 1 is an upper bound on the rank of
the covariance matrix estimate:

rank (𝚺̂) ≤ 𝐾 − 1 (B.11)

This means that for an 𝑚-dimensional reconstruction space, there is a minimal number of
MC samples to draw in the latent space and propagate through the decoder, so that the
covariance matrix estimate of the reconstructed vector is full-rank.

rank (𝚺̂) = dim (𝒙) = 𝑚 ⇒ 𝐾 ≥ 𝑚 + 1 (B.12)

It must be noted that the case of a full-rank 𝚺̂ with 𝐾 = dim (𝒙) + 1 only occurs if the
components of 𝒙 are linearly independent. Therefore in the general case, a larger MC sample
number must be used.

The reconstructed vector components can be co-linear and make the covariance matrix
singular. Let’s consider a simple situation with a linear model as decoder, i.e. 𝐳 = 𝐴𝐱, 𝐱 ∈
R𝑚, 𝐴 ∈ ℳ𝑚,𝑛 (R) , 𝐳 ∈ R𝑛. In the common case 𝑚 > 𝑛, the reconstructed vector has
linearly dependent components, and

𝚺̂ = Cov (𝐱) = 𝐴 Cov (𝐳) 𝐴⊤ (B.13)

and it follows that

rank (Cov (𝐱)) ≤ min (rank (𝐴) , rank (Cov (𝐳))) ≤ 𝑛 < 𝑚. (B.14)

Therefore, in the linear case, when the dimension of the reconstruction is larger than the
dimension of the latent space, the covariance matrix of the reconstruction is singular. In the
broader case of a non-linear deterministic model in the decoder, Cov (𝐱) cannot simply be
expressed as a function of Cov (𝐳), and a relationship between their ranks is usually out of
reach. Nonetheless, Cov (𝐱) may, again, not be full rank. For instance, the double-logistic
phenological model Ω (see section 9.1) as decoder in Chapter 9 produces reconstructions 𝒙𝑖
that are time series, and that can have nearly co-linear components 𝑥𝑖,𝑗. The reconstruction
components are

𝑥𝑖,𝑗 = 𝒙𝑖 (𝑡𝑗) = Ω (𝒛𝑖, 𝑡𝑗) , (B.15)

with 𝒛𝑖 = (𝑚𝑖, 𝑀 𝑖, 𝑆𝑜𝑆𝑖, 𝑀𝑎𝑡𝑖, 𝑆𝑒𝑛𝑖, 𝐸𝑜𝑆𝑖). For 𝑡𝑗 < 𝑡𝑘 ≪ 𝑆𝑜𝑆𝑖, 𝑥𝑖,𝑗 ≈ 𝑥𝑖,𝑘 ≈ 𝑚𝑖, i.e. 𝒙𝑖
components corresponding to instants far enough from the 𝑆𝑜𝑆 are co-linear.

When a covariance matrix or its estimate is singular, no amount of matrix pre-constraining
or regularization can enable to compute an accurate inverse, as there is none. In those
cases, a pseudo-inverse (see subsection B.3.1), can be computed instead. Also, as a singular
covariance matrix will yield a zero determinant, the loss term ln (∣𝚺̂∣) is undetermined. A
possible mitigation is the computation of a ”pseudo-determinant” as the product of non zero
singular values, obtained with SVD. Finally, the influence of approximating a (non-existent)
𝚺̂−1 with 𝚺̂† on the loss during training remains to be assessed. Regardless of singularity,
using SVD to compute an 𝚺̂−1 can also help alleviate the ill-conditioning.

Improving the conditioning of 𝚺̂ can also be performed by using an altered surrogate,
such as 𝚺̂ + 𝛼In, with 𝛼 > 0 a hyper-parameter. This alteration is called ridge regulariza-
tion7, and it changes the eigenvalues of 𝚺̂, and improves the matrix conditioning [Hoerl and
Kennard, 1970]. The larger 𝛼 is, the closer to a diagonal matrix 𝚺̂ becomes and the more
stability increases. Conversely, the parameter 𝛼 is an offset to the variance of reconstruction
components, and must not set too large so that it is still meaningful.

7This matrix regularization is also employed in the so-called ridge regression, in particular for solving linear
least squares problems (see subsubsection 3.2.1.1).
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B.4.2 Computational cost
Matrix multiplication for matrices with size 𝑁 have an asymptotic computational cost of
𝒪 (𝑛𝜔), with 𝜔 ranging between 2.237 for the newest methods [Duan et al., 2023; Williams,
2012]8 and 3 for the traditional method. The computational complexity of matrix inversion,
determinant computing and SVD is proportional to that of matrix multiplication [Strassen
et al., 1969]. This becomes expensive for any large size matrix, which occurs when the decoder
output vector is high dimensional, such as with images. Furthermore, a large number of
matrices, proportional to the batch size and number of MC samples, have to be inverted at
training time.

Finally, the matrix inversion must be performed as a differentiable operation so that
the gradient of the loss can be back-propagated. Gauss pivot inversion associated with
matrix decomposition with LU decomposition (see section B.2) or Cholesky decomposition
(see section B.1), is one such method, although matrix decomposition still requires non-
singularity and a good conditioning. Besides, these decompositions provide a straight-forward
and efficient computation of the determinant, as the determinant of a triangular matrix is
simply the product of diagonal elements.

Using a covariance matrix in the reconstruction loss could improve reconstruction quality,
and add structure to residuals Dorta et al. [2018]. However, covariance matrix estimation,
inversion and determinant computation can be impractical, and can become prohibitively
expensive for any large dimensional data.

B.4.3 Practical use
In the applications considered here, Pheno-VAE (Chapter 9) and PROSAIL-VAE (Chapter 8),
using a full covariance matrix of the reconstruction components instead of their individual
variance hasn’t been found to improve the results. The negative log-likelihood (NLL) recon-
struction loss was less stable, and the optimization had trouble converging. Furthermore,
the training had to be stopped and re-started often, because the covariance estimate was
often singular and inverse and determinant computing through Cholesky decomposition (see
subsection B.4.2 and section B.1) failed. As discussed above, in the case of Pheno-VAE the
reconstruction dimension with respect to (w.r.t.) the latent space dimension almost always
guaranteed the singularity. For PROSAIL-VAE, covariance matrix singularity was much
less frequent, however ill-conditionning still hampered training. When the loss did converge,
performances were subpar compared to using individual variances.

Using a full covariance matrix in the loss isn’t a bad approach altogether. However, the
experiments conducted here seem to point that it cannot be paired with the MCRL (see sub-
section 7.2.2). Instead of computing a covariance estimate from reconstructed samples like
we do, using more classical approaches, of predicting the covariance matrix (with a neural
network for instance) may be a better approach. Furthermore, instead of considering the
covariance matrix 𝚺̂, such approaches could predict the lower triangular Cholesky decompo-
sition 𝐿 of this matrix. Advantages would be twofold:

• the relatively costly Cholesky decomposition can be avoided, and the inverse 𝚺̂−1 is
straightforwardly obtained,

• the matrix 𝐿 is easier to constrain than 𝚺̂ to ensure non-singularity, and training
stability.

8The algorithms achieving the lower bound on asymptotic complexity are in practice unused, as their gain
in performance is only perceptible for matrices so large they are never encountered in practical applications.
Such algorithms are called galactic algorithms.
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C.1 Density of maximum of continuous distributions
Let 𝑌 be the maximum of 𝑛 independent continuous random variables 𝑋𝑖. The cumulative
distribution function (CDF) of 𝑌 is:

𝐹𝑌 (𝑦) = 𝑃(𝑌 < 𝑦)

= 𝑃 ( max
𝑖∈[[1,𝑛]]

𝑋𝑖 < 𝑦)

= 𝑃 (
𝑛

⋂
𝑖=1

(𝑋𝑖 < 𝑦))

=
𝑛

∏
𝑖=1

𝑃 (𝑋𝑖 < 𝑦)

=
𝑛

∏
𝑖=1

𝐹𝑋𝑖
(𝑦)

(C.1)

The log-derivative of the CDF of 𝑌 yields:

𝑑 ln 𝐹𝑌
𝑑𝑦 (𝑦) = 𝑑

𝑑𝑦 ln (
𝑛

∏
𝑖=1

𝐹𝑋𝑖
(𝑦))

= 𝑑
𝑑𝑦

𝑛
∑
𝑖=1

ln (𝐹𝑋𝑖
(𝑦))

=
𝑛

∑
𝑖=1

𝑑
𝑑𝑦 ln (𝐹𝑋𝑖

(𝑦))

=
𝑛

∑
𝑖=1

𝑑𝐹𝑋𝑖
(𝑦)

𝑑𝑦
1

𝐹𝑋𝑖
(𝑦)

=
𝑛

∑
𝑖=1

𝑓𝑋𝑖
(𝑦) 1

𝐹𝑋𝑖
(𝑦)

(C.2)

Finally, using the log-derivative of the CDF of 𝑌 enables deriving its probability distribution
function (PDF) as a function of the PDFs and CDFs of 𝑋𝑖:

𝑓𝑌 (𝑦) = 𝑑𝐹𝑌
𝑑𝑦 (𝑦)

= 𝐹𝑌 (𝑦)𝑑 ln 𝐹𝑌
𝑑𝑦 (𝑦)

=
𝑛

∏
𝑖=1

𝐹𝑋𝑖
(𝑦)

𝑛
∑
𝑖=1

𝑓𝑋𝑖
(𝑦) 1

𝐹𝑋𝑖
(𝑦)

(C.3)
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C.2 Kumaraswamy distribution
C.2.1 Probability distribution function
C.2.2 Definition

Definition 1 (Kumaraswamy distribution). The Kumaraswamy distribution is bounded
distribution over the interval [0, 1]. A random variable 𝑋 that follows a Kumaraswamy
distribution with parameters 𝑎, 𝑏 ∈ R∗

+
2, denoted 𝑋 ∼ 𝒦 (𝑎, 𝑏) has the following PDF:

𝑓𝑋 (𝑥) = 𝑎𝑏𝑥𝑎−1 (1 − 𝑥𝑎)𝑏−1

over the interval [0, 1].
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Figure C.1: PDF of Kumaraswamy distributions for 5 different sets of parameters 𝑎, 𝑏 (displayed next
to each corresponding curve).

Remark.

• A Kumaraswamy distribution with parameters 𝑎 = 𝑏 = 1 is a uniform distribution over
the interval [0, 1].

• A Kumaraswamy distribution with both 𝑎 < 1 and 𝑏 < 1 is bimodal with modes at
𝑥 = 0 and 𝑥 = 1.

• A Kumaraswamy distribution with either 𝑎 = 1 or 𝑏 = 1 has a single mode respectively
in 𝑥 = 0 and 𝑥 = 1.

C.2.3 Cumulative distribution function

Definition 2 (CDF of the Kumaraswamy distribution). If 𝑋 ∼ 𝒦 (𝑎, 𝑏), then :

𝐹𝑋 (𝑥) = 1 − (1 − 𝑥𝑎)𝑏

over the interval [0, 1].
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Figure C.2: CDF of Kumaraswamy distributions for 5 different sets of parameters 𝑎, 𝑏 (displayed next
to each corresponding curve).

C.2.4 Inverse cumulative distribution function

Definition 3 (ICDF of the Kumaraswamy distribution). If 𝑋 ∼ 𝒦 (𝑎, 𝑏), then :

𝐹 −1
𝑋 (𝑥) = (1 − (1 − 𝑥)

1
𝑏 )

1
𝑎 .

over the interval [0, 1].
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Figure C.3: inverse cumulative distribution function (ICDF) of Kumaraswamy distributions for 5
different sets of parameters 𝑎, 𝑏 (displayed next to each corresponding curve).

C.2.4.1 Derivatives of the ICDF of Kumaraswamy distributions

Definition 4 (Partial derivatives of the ICDF of Kumaraswamy distributions). Let 𝑋 ∼
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𝒦 (𝑎, 𝑏). Then:
𝜕𝐹 −1

𝑋
𝜕𝑥 (𝑥) = 1

𝑎𝑏(1 − 𝑥) 1
𝑏 −1 (1 − (1 − 𝑥) 1

𝑏 )
1
𝑎 −1

𝜕𝐹 −1
𝑋

𝜕𝑎 (𝑥) = 1
𝑎2 log [1 − (1 − 𝑥) 1

𝑏 ] (1 − (1 − 𝑥) 1
𝑏 )

1
𝑎

𝜕𝐹 −1
𝑋

𝜕𝑏 (𝑥) = 1
𝑎𝑏2 log [1 − 𝑥] (1 − 𝑥) 1

𝑎 (1 − (1 − 𝑥) 1
𝑏 )

1
𝑎 −1

C.2.4.2 Diverging limits of Kumaraswamy ICDF derivatives

(1 − 𝑥) 1
𝑏 −1 −−→

𝑥→1
+∞ ⇒

𝜕𝐹 −1
𝑎,𝑏

𝜕𝑥 (𝑥)+ −−→
𝑥→1

+∞ (C.4)

(1 − (1 − 𝑥) 1
𝑏 )

1
𝑎 −1 −−→

𝑥→0
+∞ ⇒

⎧{
⎨{⎩

𝜕𝐹 −1
𝑎,𝑏

𝜕𝑥 (𝑥)+ −−→
𝑥→0

+∞
𝜕𝐹 −1

𝑎,𝑏
𝜕𝑥 (𝑏)+ −−→

𝑥→0
+∞

(C.5)

log [1 − (1 − 𝑥) 1
𝑏 ] −−→

𝑥→0
−∞ ⇒

𝜕𝐹 −1
𝑎,𝑏

𝜕𝑎 (𝑥)+ −−→
𝑥→0

−∞ (C.6)

log [1 − 𝑥] −−→
𝑥→1

−∞ ⇒
𝜕𝐹 −1

𝑎,𝑏
𝜕𝑏 (𝑥)+ −−→

𝑥→1
−∞ (C.7)

C.3 Normal distribution
C.3.1 Probability distribution function

Definition 5 (Normal distribution). A random variable 𝑋 that follows a normal (or
Gaussian) distribution with parameters 𝜇, 𝜎 ∈ R × R∗

+, denoted 𝑋 ∼ 𝒩 (𝜇, 𝜎), has the
PDF:

𝑓𝑋 (𝑥) = 𝑒− 1
2 ( 𝑥−𝜇

𝜎 )2

𝜎
√

2π

Definition 6 (Standard normal distribution). The standard normal distribution is the
normal distribution with parameters 𝜇 = 0 and 𝜎 = 1. Its PDF is denoted φ (𝑥) = 𝑒− 𝑥2

2√
2π .

A normal distribution with parameters 𝜇, 𝜎 can be obtained via an affine transformation
from a standard normal distribution:

𝑋 ∼ 𝒩 (0, 1) ⇒ 𝜇 + 𝜎𝑋 ∼ 𝒩 (𝜇, 𝜎)

The PDF of a normal distribution 𝑋 with parameters 𝜇, 𝜎 can be derived from the PDF
of a standard normal distribution:

𝑓𝑋 (𝑥) = 1
𝜎φ (𝑥 − 𝜇

𝜎 )

C.3.2 Negative Log-Likelihood
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Definition 7 (NLL of a normal distribution). Let 𝑋 ∼ 𝒩 (𝜇, 𝜎). Then, its NLL is

NLL(𝑥, 𝜇, 𝜎) = 1
2 [(𝑥 − 𝜇

𝜎 )
2

+ log 𝜎2 + log 2π] .

C.3.3 Cumulative distribution function

Definition 8 (Error function). The error function (erf) is defined as the probability of
𝑋 ∼ 𝒩 (0, 1

2) falling in the interval [−𝑥, 𝑥]:

erf (𝑥) = 𝑃 (−𝑥 < 𝑋 < 𝑥) = ∫
𝑥

−𝑥
𝑓𝑋 (𝑡) d𝑡 = 2√π ∫

𝑥

0
𝑒−𝑡2 d𝑡

Remark. There is no closed-form of the error function, it is commonly interpolated from
pre-tabulated values, or approximated with logistic functions.

Definition 9 (CDF of the standard normal distribution). The CDF of the standard
normal distribution 𝑋 ∼ 𝒩 (0, 1), denoted Φ, is related to the erf function:

Φ (𝑥) = 𝐹𝑋 (𝑥) = ∫
𝑥

−∞
𝑓𝑋 (𝑡) d𝑡 = 1

2 [1 + erf ( 𝑥√
2

)]

Definition 10 (CDF of a normal distribution). The CDF of a normal distribution
𝑋 ∼ 𝒩 (𝜇, 𝜎), is derived from the CDF of the standard normal distribution, and related
to the error function:

𝐹𝑋 (𝑥) = Φ (𝑥 − 𝜇
𝜎 ) = ∫

𝑥

−∞
𝑓𝑋 (𝑡) d𝑡 = 1

2 [1 + erf (𝑥 − 𝜇
𝜎

√
2

)]

Definition 11 (Gaussian CDF, confidence intervals and 𝜎 rule). Let 𝑋 ∼ 𝒩 (𝜇, 𝜎).
Then

𝑃 (𝜇 − 𝑛𝜎 < 𝑋 < 𝜇 + 𝑛𝜎) = 𝐹𝑋 (𝜇 + 𝑛𝜎) − 𝐹𝑋 (𝜇 + 𝑛𝜎) = erf ( 𝑛√
2

) .

The interval [𝜇 − 𝑛𝜎, 𝜇 + 𝑛𝜎] is a 𝑛-𝜎 confidence interval, for which the probability of
X samples falling into it (or confidence level) is 𝑛√

2 . The confidence level at 𝑛-𝜎 is the
probability of samples deviating less than 𝑛 × 𝜎 from the mean 𝜇. For 𝑛 = 1, 2, 3, the
confidence level is respectively approximately 0.68, 0.95 and 0.997, and are commonly
used values for confidence levels.

C.3.4 Inverse cumulative distribution function

Definition 12 (ICDF of the standard normal distribution). The CDF of the standard
normal distribution 𝑋 ∼ 𝒩 (0, 1), denoted Φ, is related to the inverse error function
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(inverf) function:

∀𝑥 ∈ ]0, 1[ , Φ−1 (𝑥) = 𝐹 −1
𝑋 (𝑥) =

√
2erf-1 (2𝑥 − 1)

Remark. The inverf is tabulated by using its definition: erf-1 (erf (𝑥)) = 𝑥.

Definition 13 (ICDF of a normal distribution). The CDF of a normal distribution
𝑋 ∼ 𝒩 (𝜇, 𝜎), is derived from the ICDF of the standard normal distribution, and related
to the inverf:

∀𝑥 ∈ ]0, 1[ , 𝐹 −1
𝑋 (𝑥) = 𝜇 + 𝜎Φ (𝑥) = 𝜇 + 𝜎

√
2erf-1 (2𝑥 − 1)

C.3.5 Kullback-Leibler divergence

Definition 14 (KLD between two normal distributions). Let 𝑓1 and 𝑓2 denote the PDF
of 𝑋1 and 𝑋2, two normal distributions, such that:
𝑋1 ∼ 𝒩 (𝜇1, 𝜎1) and 𝑋2 ∼ 𝒩 (𝜇2, 𝜎2). Then

DKL (𝑋1‖𝑋2) = −1
2 [(𝜎1

𝜎2
)

2
+ (𝜇2 − 𝜇1)2

𝜎2
1

− 1 + ln (𝜎2
2

𝜎2
1

)]

C.4 Two-sided truncated normal distribution
C.4.1 Definition

Definition 15 (Two-sided truncated normal distribution). Let 𝑋 ∼ 𝒩 (𝜇, 𝜎), with
(𝜇, 𝜎) ∈ R × R∗. Then 𝑋|𝑥 ∈ [𝑎, 𝑏], with (𝑎, 𝑏) ∈ R2

+ and 𝑎 < 𝑏, follows a truncated
normal truncated normal (TN) distribution, denoted 𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏).

Remark. If either 𝑎 = −∞ or 𝑏 = +∞, then the distribution is one-sided.

C.4.2 Probability distribution function

Definition 16 (PDF of a two-sided truncated normal distribution). The PDF of 𝑋 ∼
𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) is:

𝑓𝑋(𝑥) = φ (𝑥−𝜇
𝜎 )

𝜎𝜂 ,

with 𝜂 = Φ (𝛽) − Φ (𝛼), 𝛼 = 𝑎−𝜇
𝜎 , 𝛽 = 𝑏−𝜇

𝜎 .
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Figure C.4: PDF of TN distributions for 5 different sets of parameters 𝜇, 𝜎 (displayed next to each
corresponding curve).

C.4.3 Negative Log-Likelihood

Definition 17 (NLL of a two-sided truncated normal distribution). The NLL of 𝑋 ∼
𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) is:

NLL(𝑥, 𝜇, 𝜎) = 1
2 [(𝑥 − 𝜇

𝜎 )
2

+ log 𝜎2 + log 𝜂2 + log 2π]

with 𝜂 = Φ (𝛽) − Φ (𝛼), 𝛼 = 𝑎−𝜇
𝜎 , 𝛽 = 𝑏−𝜇

𝜎 .

C.4.4 Cumulative distribution function

Definition 18 (CDF of a two-sided truncated normal distribution). The CDF of 𝑋 ∼
𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) is:

𝐹𝑋(𝑥) = Φ (𝑥−𝜇
𝜎 ) − Φ (𝛼)

𝜂 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1 0.5, 0.1

0.2, 0.5
0.5, 1.4 0.7, 0.05

1, 0.1

𝑥

𝐹 𝑋
(𝑥

)

Figure C.5: CDF of TN distributions for 5 different sets of parameters 𝜇, 𝜎 (displayed next to each
corresponding curve).
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C.4.5 Inverse cumulative distribution function

Definition 19 (ICDF of a two-sided truncated normal distribution). The ICDF of 𝑋 ∼
𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) is:

∀𝑥 ∈ ]0, 1[ , 𝐹 −1
𝑋 (𝑥) = 𝜇 + 𝜎Φ−1 (Φ (𝛼) + 𝜂𝑥)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.5, 0.1

0.2, 0.5

0.5, 1.4
0.7, 0.05

1, 0.1

𝑥

𝐹−1 𝑋
(𝑥

)

Figure C.6: ICDF of TN distributions for 5 different sets of parameters 𝜇, 𝜎 (displayed next to each
corresponding curve).

C.4.6 Kullback-Leibler divergence
C.4.6.1 Between two truncated normal distributions

Formula 1 (KLD between two TN distributions). Let 𝑓1 and 𝑓2 denote the PDF of 𝑋1
and 𝑋2, two TN distributions, such that:
𝑋1 ∼ 𝒯𝒩 (𝜇1, 𝜎1, 𝑎, 𝑏) and 𝑋2 ∼ 𝒯𝒩 (𝜇2, 𝜎2, 𝑎, 𝑏). Then:

DKL (𝑋1‖𝑋2) = −1
2 − ln (𝜎1𝜂1

𝜎2𝜂2
) − 𝐾1

2𝜂1
(1 − 𝜎2

1
𝜎2

2
) + (𝜇1 − 𝜇2)2

2𝜎2
2

+ 𝜎2
1

2𝜎2
2

+ (𝜇1 − 𝜇2) 𝜎1
𝜎2

2𝜂1
𝑁1

(C.8)

with: 𝜂𝑖 = Φ(𝛽𝑖) − Φ(𝛼𝑖), 𝛼𝑖 = 𝑎−𝜇𝑖
𝜎𝑖

, 𝛽𝑖 = 𝑏−𝜇𝑖
𝜎𝑖

, 𝐾1 = 𝛼1φ(𝛼1) − 𝛽1φ(𝛽1) and 𝑁1 =
φ(𝛼1) − φ(𝛽1).

Remark. The derivation of this formula is provided in subsection D.1.1.

C.4.6.2 Between a truncated normal distribution and uniform distribution

Formula 2 (KLD of a TN distribution from a uniform distribution). Let 𝑓1 and 𝑓2
denote the PDF of 𝑋1 and 𝑋2, a TN and a uniform distributions, such that:
𝑋1 ∼ 𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) and 𝑋2 ∼ 𝒰 (𝑎, 𝑏). Then

DKL (𝑋1‖𝑋2) = −1
2 − 1

2 ln (2π) − ln (𝜎𝜂) − 𝐾
2𝜂 + ln(𝑏 − 𝑎) (C.9)

Remark. The derivation of this formula is provided in subsection D.1.2.
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C.4.6.3 Derivatives of the KLD between TN and uniform distributions

The derivation of the derivatives of the Kullback-Leibler divergence (KLD) between a TN
distribution and a uniform distribution enables to assess the influence of the associated loss
term in the variational autoencoder (VAE) objective function (see subsection 7.3.4). These
derivatives are depicted in Figure C.7. During training, low values of the KLD loss term are
promoted, and the derivatives of this term indicate the influence over this loss term of the 𝜇
and 𝜎 parameters of the TN, and how it is preferentially minimized during optimization. In
this case, the derivative w.r.t. 𝜎 is always negative, i.e. increasing always decreases the KLD.
The derivative w.r.t. 𝜇 is positive for 𝜇 > 0.5 and negative otherwise, therefore promoting
the value 𝜇 = 0.5. Comparing the magnitude of the derivative w.r.t. 𝜎 is overall greater than
the derivative w.r.t. 𝜇, highlighting that 𝜎 has a stronger influence on the KLD loss term
than 𝜇.

Formula 3 (Partial derivative w.r.t. 𝜎 of the KLD of a TN distribution from a uniform
distribution). Let 𝑓1 and 𝑓2 denote the PDF of 𝑋1 and 𝑋2, a TN and a uniform distribu-
tions, such that:
𝑋1 ∼ 𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) and 𝑋2 ∼ 𝒰 (𝑎, 𝑏). Then

𝜕
𝜕𝜎DKL (𝑋1‖𝑋2) = − 1

2𝜎𝜂 (−𝐾 − 𝛼2φ̇ (𝛼) + 𝛽2φ̇ (𝛽) − 𝐾2

𝜂 ) − 𝐾 + 𝜂
𝜎𝜂 (C.10)

Formula 4 (Partial derivative w.r.t. 𝜇 of the KLD of a TN distribution from a uniform
distribution). Let 𝑓1 and 𝑓2 denote the PDF of 𝑋1 and 𝑋2, a TN and a uniform distribu-
tions, such that:
𝑋1 ∼ 𝒯𝒩 (𝜇, 𝜎, 𝑎, 𝑏) and 𝑋2 ∼ 𝒰 (𝑎, 𝑏). Then

𝜕
𝜕𝜇DKL (𝑋1‖𝑋2) = − 1

2𝜎𝜂 (−𝐾𝑁
𝜂 − 𝑁 − 𝛼φ̇ (𝛼) + 𝛽φ̇ (𝛽)) − 𝑁

𝜎𝜂 (C.11)
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Figure C.7: KLD of a TN from a uniform distribution over the definition interval [0, 1], its derivatives
w.r.t. 𝜇 and 𝜎, the ratio of these derivatives and the norm of the gradient.
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Appendix D

Proofs

Contents
D.1 Kullback-Leibler divergences with the truncated Normal distribu-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XXI
D.1.1 Truncated normal distribution and truncated normal distribution . . XXI
D.1.2 Truncated normal distribution and uniform distribution . . . . . . . XXII

D.2 Permutation of gradient and expectation operators . . . . . . . . . XXIII

D.1 Kullback-Leibler divergences with the truncated Normal
distribution

To derive the KLD of a TN distribution from a TN or uniform distribution, the original
integral is split:

DKL (𝑋1‖𝑋2) = ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓1(𝑥)

𝑓2(𝑥) d𝑥 = ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓1(𝑥) d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼1

− ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓2(𝑥) d𝑥

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐼2

(D.1)

and the terms 𝐼1 and 𝐼2 are calculated separately. The computation of these terms involve
the two first moments1 of the TN distribution. For 𝑋𝑖 ∼ 𝒯𝒩 (𝜇𝑖, 𝜎𝑖, 𝑎, 𝑏), the first-order
moment is:

⟨𝑋𝑖⟩ = 𝜇 + 𝜎
𝜂 𝑁,

and the second-order moment is:

⟨𝑋2
𝑖 ⟩ = 𝜎2

𝑖 + 𝜎2
𝑖

𝜂𝑖
𝐾𝑖 + 𝜇2

𝑖 + 2𝜇𝑖𝜎𝑖
𝜂𝑖

𝑁𝑖,

with 𝜂𝑖 = Φ(𝛽𝑖)−Φ(𝛼𝑖), 𝛼𝑖 = 𝑎−𝜇𝑖
𝜎𝑖

, 𝛽𝑖 = 𝑏−𝜇𝑖
𝜎𝑖

, 𝐾𝑖 = 𝛼𝑖φ(𝛼𝑖)−𝛽𝑖φ(𝛽𝑖) and 𝑁𝑖 = φ(𝛼𝑖)−φ(𝛽𝑖).

D.1.1 Truncated normal distribution and truncated normal distribution
Proof. The KLD is split into two terms as shown in equation (D.1): DKL = 𝐼1 − 𝐼2. The first
term 𝐼1 is:

𝐼1 = ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓1(𝑥)𝑑𝑥 = − ln (𝜎1𝜂1) − 1

2 ln (2𝜋) − 𝜇2
1

2𝜎2
1

− 1
2𝜎2

1
⟨𝑋2

1⟩ + 𝜇1
𝜎2

1
⟨𝑋1⟩ . (D.2)

1If it exists, the 𝑛th order moment of a random variable 𝑋 is defined as ⟨𝑋𝑛⟩ = ∫ 𝑥𝑛𝑓𝑋 (𝑥) d𝑥.
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Then:

− 1
2𝜎2

1
⟨𝑋2

1⟩ + 𝜇1
𝜎2

1
⟨𝑋1⟩ = − 1

2𝜎2
1

(𝜎2
1 + 𝜎2

1
𝜂1

𝐾1 + 𝜇2
1 + 2𝜇1𝜎1

𝜂1
𝑁1) + 𝜇1

𝜎2
1

(𝜇1 + 𝜎1
𝜂1

𝑁1)

= −1
2 − 𝐾1

2𝜂1
− 𝜇2

1
2𝜎2

1
− 𝜇1

𝜎1𝜂1
𝑁1 + 𝜇2

1
𝜎2

1
+ 𝜇1

𝜎1𝜂1
𝑁1

= −1
2 − 𝐾1

2𝜂1
+ 𝜇2

1
2𝜎2

1
,

(D.3)

therefore:
𝐼1 = −1

2 ln (2π) − 1
2 − ln (𝜎1𝜂1) − 𝐾1

2𝜂1
. (D.4)

The second term 𝐼2 is:

𝐼2 = ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓2(𝑥)𝑑𝑥 = − ln (𝜎2𝜂2) − 1

2 ln (2π) − 𝜇2
2

2𝜎2
2

− 1
2𝜎2

2
⟨𝑓2

1 ⟩ + 𝜇2
𝜎2

2
⟨𝑓1⟩

Then, developing and refactoring yields:

− 1
2𝜎2

2
⟨𝑓2

1 ⟩ + 𝜇2
𝜎2

2
⟨𝑓1⟩ = − 1

2𝜎2
2

(𝜎2
1 + 𝜎2

1
𝜂1

𝐾1 + 𝜇2
1 + 2𝜇1𝜎1

𝜂1
𝑁1) + 𝜇2

𝜎2
2

(𝜇1 + 𝜎1
𝜂1

𝑁1)

= − 𝜎2
1

2𝜎2
2

− 𝜎2
1𝐾1

2𝜎2
2𝜂1

− 𝜇2
1

2𝜎2
2

− 𝜇1𝜎1
𝜎2

2𝜂1
𝑁1 + 𝜇1𝜇2

𝜎2
2

+ 𝜇2𝜎1
𝜎2

2𝜂1
𝑁1

= − 𝜎2
1

2𝜎2
2

− 𝜎2
1𝐾1

2𝜎2
2𝜂1

− 𝜇2
1

2𝜎2
2

− (𝜇1 − 𝜇2) 𝜎1
𝜎2

2𝜂1
𝑁1 + 𝜇1𝜇2

𝜎2
2

,

and:

𝐼2 = − ln (𝜎2𝜂2) − 1
2 ln (2π) − 𝜇2

2
2𝜎2

2
− 𝜎2

1
2𝜎2

2
− 𝜎2

1𝐾1
2𝜎2

2𝜂1
− 𝜇2

1
2𝜎2

2
− (𝜇1 − 𝜇2) 𝜎1

𝜎2
2𝜂1

𝑁1 + 𝜇1𝜇2
𝜎2

2

= − ln (𝜎2𝜂2) − 1
2 ln (2π) − 𝜇2

1 + 𝜇2
2

2𝜎2
2

− 𝜎2
1

2𝜎2
2

− 𝜎2
1𝐾1

2𝜎2
2𝜂1

− (𝜇1 − 𝜇2) 𝜎1
𝜎2

2𝜂1
𝑁1 + 𝜇1𝜇2

𝜎2
2

.

Finally:

DKL (𝑋1‖𝑋2) = 𝐼1 − 𝐼2

= −1
2 ln (2π) − 1

2 − ln (𝜎1𝜂1) − 𝐾1
2𝜂1

+ ln (𝜎2𝜂2) + 1
2 ln (2π) + 𝜇2

1 + 𝜇2
2

2𝜎2
2

+ 𝜎2
1

2𝜎2
2

+ 𝜎2
1𝐾1

2𝜎2
2𝜂1

+ (𝜇1 − 𝜇2) 𝜎1
𝜎2

2𝜂1
𝑁1 − 𝜇1𝜇2

𝜎2
2

= −1
2 − ln (𝜎1𝜂1

𝜎2𝜂2
) − 𝐾1

2𝜂1
(1 − 𝜎2

1
𝜎2

2
) + (𝜇1 − 𝜇2)2

2𝜎2
2

+ 𝜎2
1

2𝜎2
2

+ (𝜇1 − 𝜇2) 𝜎1
𝜎2

2𝜂1
𝑁1.

D.1.2 Truncated normal distribution and uniform distribution

Proof. The KLD is split into two terms as shown in equation (D.1): DKL = 𝐼1 − 𝐼2. The first
term is (see equations (D.2), (D.3), (D.4)):

𝐼1 = −1
2 − 1

2 ln (2π) − ln (𝜎𝜂) − 𝐾
2𝜂 .
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The second term is:

𝐼2 = ∫
𝑏

𝑎
𝑓1(𝑥) ln 𝑓2(𝑥)𝑑𝑥 = ∫

𝑏

𝑎
𝑓1(𝑥) ln

1[𝑎,𝑏]
𝑏 − 𝑎𝑑𝑥

= − ln (𝑏 − 𝑎) ∫
𝑏

𝑎
𝑓1(𝑥)𝑑𝑥

= − ln (𝑏 − 𝑎) .

Therefore:
DKL (𝑋1‖𝑋2) = −1

2 − 1
2 ln (2π) − ln (𝜎𝜂) − 𝐾

2𝜂 + ln(𝑏 − 𝑎).

D.2 Permutation of gradient and expectation operators
Let there be a continuous random variable 𝐱 with a 𝜽-parameterized density 𝑝𝜽 (𝒙). Let there
be 𝑓 ∶ 𝕏 ↦ R with sufficient regularity. Then

∇𝜽E𝐱∼𝑝𝜽(𝒙) [𝑓 (𝐱)] = ∇𝜽 ∫
𝒙∈𝕏

𝑓 (𝒙) 𝑝𝜽 (𝒙) d𝒙

=
(1)

∫
𝒙∈𝕏

𝑓 (𝒙) ∇𝜽𝑝𝜽 (𝒙) d𝒙

=
(2)

∫
𝒙∈𝕏

𝑓 (𝒙) 𝑝𝜽 (𝒙) ∇𝜽 ln 𝑝𝜽 (𝒙) d𝒙

(D.5)

Proof. The permutation of gradient and integral sign in the vectorial setting in step (1) is
derived from the application of the theorem of interchange of integration and differentiation on
with scalar random variable and parameter. This theorem requires that for a given function
ℎ ∶ 𝕏 × 𝚯:

1. ∀𝜃 ∈ 𝚯, the function 𝑥 ↦ ℎ(𝑥, 𝜃) is Lebesgue-integrable over 𝑥.

2. ∀𝑥 ∈ 𝕏 the function 𝜃 ↦ ℎ(𝑥, 𝜃) is differentiable. The derivative is 𝜕
𝜕𝜃 (ℎ(𝑥, 𝜃))

3. ∃𝑔 ∶ 𝕏 ↦ R+ measurable and Lebesgue integrable that uniformly dominates this
derivative:

∀𝑥 ∈ 𝕏, ∀𝜃 ∈ 𝚯, ∣ 𝜕
𝜕𝜃 (ℎ(𝑥, 𝜃))∣ ≤ 𝑔(𝑥)

Then, 𝑥 ↦ 𝜕
𝜕𝜃 (ℎ(𝑥, 𝜃)) is Lebesgues-integrable and

∀𝑥 ∈ 𝕏, ∀𝜃 ∈ 𝚯, 𝜕
𝜕𝜃 ∫

𝑥∈𝕏
(ℎ(𝑥, 𝜃)) d𝑥 = ∫

𝑥∈𝕏

𝜕
𝜕𝜃 (ℎ(𝑥, 𝜃)) d𝑥

In the current setting, with ℎ (𝑥, 𝜃) = 𝑝𝜃 (𝑥) 𝑓 (𝑥), the condition 1 is equivalent to 𝑓 (x)
having a finite expectation (this excludes some pathological cases such as x ∼ 𝒰 (0, 1)
with 𝑓 (𝑥) = 1

𝑥 , or Cauchy distributions). Condition 2 only depends on the density of x.
Most parametric distributions are differentiable with respect to their parameters. Condition
number 3 is case specific.

Although proving the applicability of this theorem in the general case is challenging, it is
considered that all conditions are met for the purposes of this work.

In step (2) the identity ∇𝜽𝑝𝜽 (𝒙) = 𝑝𝜽 (𝒙) ∇𝜽 ln 𝑝𝜽 (𝒙) is the generalization of the logarithmic
derivative to the multi-dimensional case.
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E.1 PROSAIL variable joint distributions
E.1.1 Sampling observation angles
In Figure E.1 are shown the histograms and correlations of the observation and solar angular
configuration samples obtained by simulating the orbital motion of S2, by uniformly drawing
dates and locations within S2 operational range Weiss and Baret [2016]. These samples
are used along with PROSAIL input parameters to simulate canopy reflectance spectra (see
section 5.1).
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Figure E.1: Distribution of S2 observation angles for simulating a training data-set with PROSAIL.
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E.1.2 PROSAIL variable sampling with co-distributions
The Figure E.2 and Figure E.3 show the histograms and correlations of the PROSAIL
variables samples that are respectively drawn using the co-distribution functions type 1 and
2 (see subsection 5.1.2). These co-distribution functions introduce a correlation between the
PROSAIL variables and the leaf area index (LAI).
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Figure E.2: Pair plot of PROSAIL input variables sampled with co-distribution type 1
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Figure E.3: Pair plot of PROSAIL input variables sampled with co-distribution type 2
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E.2 Gradient-based sensitivity analysis of PROSAIL
In Figure E.4 are shown the box-plots of the gradients of S2 bands w.r.t. the input parameters
of PROSAIL, computed from simulations. The use of the differentiable implementation of
PROSAIL (see section 4.5) enabled to compute these gradients by using automatic differen-
tiation. These results highlight several properties of the input parameters of PROSAIL. The
chlorophyll content 𝐶𝑎𝑏 has no influence (zero gradient) over low frequency bands, beyond the
red-edge bands (B5, B6, B7). The carotenoid content 𝐶𝑐𝑎𝑟 only influences weakly the B2 and
B3, highlighting why this parameter is difficult to estimate. The equivalent water thickness
𝐶𝑤 has greater gradient magnitude in short wavelength infra-red (SWIR) bands (B11 and
B12), which is expected since water strongly absorbs radiation in this part of the spectrum.
Also, the soil wetness factor 𝑠𝑤 and brightness factor 𝑠𝑏 show the highest range of gradient
values. This accounts for different situations in which the soil is either bare and visible, or
occulted (partially or fully) by vegetation.
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Figure E.4: Box-plots of the absolute value of the gradients of simulated S2 bands w.r.t. PROSAIL
parameters (104 simulations).
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E.3 Inversion of the double-logistic phenological model
E.3.1 Reconstruction of S2 time series with Pheno-VAE
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Figure E.5: Examples of reconstructions of Sentinel-2 NDVI time series with Pheno-VAE trained on S2
data-set. Blue: 5-days interpolated S2 time series. Red: Reconstruction of the mode of phenological
distribution. Orange: 5th-95th percentile interval.
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E.3.2 Box-plots of the absolute error
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Figure E.6: Box-plot of the absolute error of inference of the 6 phenological parameters for Pheno-VAE
trained on S2 Data-set, with various settings of the coefficient 𝛽 of the KLD loss term. Box-plots
are drawn from the results of the best fold of each method, in terms of the end of season (EoS)
mean absolute error (MAE). The white square for each box plot is the MAE. Absolute errors are
comparable, except with 𝛽 = 5, with a higher error.
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Figure E.7: Box-plot of the absolute error of inference of the 6 phenological parameters for Markov
Chain Monte Carlo (MCMC), multiple probabilistic supervised regression (MPSR), curve fitting (CF)
and Pheno-VAE (with 𝛽 = 2, trained on the S2 or simulated data-set). Box-plots are drawn from
the results of the best fold of each method, in terms of the EoS MAE. The white square for each
box plot is the MAE. Absolute errors are the lowest for MCMC and MPSR, and comparable for both
Pheno-VAE.
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E.3.3 PICP as a function of the confidence level
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Figure E.8: prediction interval coverage probability (PICP) vs 1 − 𝛼 for Pheno-VAE trained on S2
Data-set, with various settings of the coefficient 𝛽 of the KLD loss term. The more 𝛽 increases, the
more the PICP increases at constant confidence level 1 − 𝛼.

0
0.2
0.4
0.6
0.8

1

PI
C

P

𝑚 𝑆𝑜𝑆 𝑆𝑒𝑛

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

1-𝛼

PI
C

P

𝑀

0 0.2 0.4 0.6 0.8 1
1-𝛼

𝑀𝑎𝑡

0 0.2 0.4 0.6 0.8 1
1-𝛼

𝐸𝑜𝑆

MCMC
MPSR
Pheno-VAE
G, 𝛽 = 2
Pheno-VAE
S2, 𝛽 = 2

Figure E.9: PICP vs 1 − 𝛼 for MCMC, MPSR and Pheno-VAE (with 𝛽 = 2, trained on the S2 or
simulated data-set). The PICP curves of MPSR and MCMC are very close to PICP=𝛼 for all 𝛼,
while Pheno-VAE underestimates uncertainty for all confidence levels, for all phenological variables,
except for minimum NDVI level (m) where uncertainty is overestimated.
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E.3.4 MPIW as a function of the confidence level
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Figure E.10: mean prediction interval width (MPIW) vs 1−𝛼 for Pheno-VAE trained on S2 Data-set,
with various settings of the coefficient 𝛽 of the KLD loss term. The more 𝛽 increases, the more the
MPIW increases at constant confidence level 1 − 𝛼.
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Figure E.11: MPIW vs 1 − 𝛼 for MCMC, MPSR and Pheno-VAE (with 𝛽 = 2, trained on the S2 or
simulated data-set). prediction interval sizes are similar for all methods, except for m, where prediction
intervals are larger for Pheno-VAE, and for the EoS of Pheno-VAE trained on the S2 data-set, that
also has larger prediction intervals.
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E.3.5 Box-plots of the prediction interval width
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Figure E.12: Box-plot of the prediction interval width (PIW) with a confidence level 1 − 𝛼 = 0.90 for
Pheno-VAE trained on S2 Data-set, with various settings of the coefficient 𝛽 of the KLD loss term.
Box-plots are drawn fro the results of the best fold of each method, in terms of the EoS MAE. The
white square for each box plot is the MPIW. For phenological dates the PIW increases with 𝛽.
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Figure E.13: Box-plot of the PIW with a confidence level 1−𝛼 = 0.90 for the 6 phenological parameters
for MCMC, MPSR and Pheno-VAE (with 𝛽 = 2, trained on the S2 or simulated data-set). Box-plots
are drawn from the results of the best fold of each method, in terms of the EoS MAE. The white
square for each box plot is the MPIW. MCMC infers significantly smaller PIW than the other methods
that are comparable
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Appendix F

Glossary

absorbance Decimal logarithm of the ratio between incident and transmitted radiative
energy, i.e. of the transmittance.

absorbtance Ratio of incident radiation flux absorbed by a body.

allometry The study of the relationship of body size to shape, anatomy, physiology and
finally behaviour in living organisms.

azimuth angle The azimuth angle of an object as seen from the a given point-of-view is the
horizontal angle between the object and a cardinal direction, usually the North.

𝛽-VAE A variational autoencoder for which the evidence lower bound (ELBO) objective
function has been modified by introducing a coefficient 𝛽 for the KLD regularization
term, so as to improve disentanglement (see subsubsection 6.5.2.1).

bijection A bijection, bijective function, or one-to-one correspondence between two math-
ematical sets 𝕏1 and 𝕏2 is a function such that each element of the second set 𝕏2 is
mapped to from exactly one element of the first set 𝕏1.

canopy clumping effect Non randomness of foliage distribution within the canopy, due to
the leaves tending to being grouped (clumped) together. This effect tends to reduce the
apparent vegetation elements area, and vegetation indices tend to be underestimated.

dicotyledon Angiosperm plants that have two cotyledons (embryonic leaf). Their leaf veins
usually banch from a central vein and interlace. Their flower parts are ususally by
multiples of 4 or 5. Also called dicots, they include oak, legumes, peas.

gap fraction Fraction of sky visible not obstructed by the canopy.

gradient descent Optimization approach using the gradients of a differentiable objective
function to update a target parameter such that (s.t.) this function is minimized w.r.t.
this parameter.

heteroscedastic A set of random variables is heteroscedastic if all the random variables do
not have the same finite variance.

homoscedastic A set of random variables is homoscedastic if all the random variables have
the same finite variance.
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Lambertian Qualifies an isotropic light reflection, for which there is no dependance on
incident light or observation direction.

monocotyledon Angiosperm plants that have a single cotyledon (embryonic leaf). Their
flower petals are in multiples of 3. Their leaves are long and thin with parallel veins.
Also called monocots, they include wheat, maize, garlic, palm trees.

Pheno-VAE VAE with a phenological model as a deterministic, physics-based decoder,
which is trained to infer the posterior distribution of phenological parameter from NDVI
time series.

phenology Response of biological organisms to seasonal variations in environmental factors
like light, temperature and precipitation.

PROSAIL-VAE VAE with the PROSAIL radiative transfer model (RTM) as a determi-
nistic, physics-based decoder, which is trained to infer the posterior distribution of
bio-physical parameters leaf and canopy from S2 pixels and images.

PV⋆ Trained PROSAIL-VAE model selected for its good overall performance in in LAI and
canopy chlorophyll content (CCC) estimation and in prediction interval inference.

red-edge The red-edge is a region of the near infra-red in which the reflectance of vegetation
changes abruptly. Chlorophyll absorbs most of the light in the frontier between visible
and near infra-red (NIR) (low reflectance), but becomes transparent around 700 nm,
enabling leaves to reflect more light (higher reflectance).

reflectance Ratio of reflected over incident radiation flux by a body.

residual The difference 𝒚−ℱ (𝒙) between an observed value 𝒚 and the fitted value provided
by a model ℱ (𝒙).

scattering Deflection of light in a propagation medium due to small particules.

transmittance Tatio of transmitted over incident radiation flux by a body.

zenith angle The zenith angle of an object as seen from the a given point-of-view is the
angle between the object and the local vertical.
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Appendix G

Acronyms

AE autoencoder

AEVB auto-encoding variational Bayes

AI artificial intelligence

ANITI Artificial and Natural Intelligence Toulouse Institute

ANN artificial neural network

ANR Agence Nationale de la Recherche

AOT atmosphere optical thickness

BAI branch area index

BDGP bidirectional gap probability

BLAI brown LAI

BOA bottom-of-atmosphere

BOC bottom-of-canopy

BON biodiversity observation network

BP Biophysical Processor

BRDF bidirectional reflectance distribution function

BV bio-physical variables

BVNET biophysical variable neural network

CAP common agriculture policy

CAVI coordinate ascent variational inference

CCC canopy chlorophyll content

CCCeff effective CCC

CDF cumulative distribution function

CES OSO Centre d’expertise scientifique sur l’occupation des sols
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ACRONYMS

CESBIO Centre d’études spatiales de la biosphère

CF curve fitting

CNES Centre national d’études spatiales

CNN convolutional neural network

CNRS Centre national de la recherche scientifique

CPR cyclical plateau reduction

CPU central processing unit

CWC canopy water content

DCP digital cover photography

DHP digital hemispheric photography

DL deep learning

DLR Deutsches Zentrum für Luft und Raumfahrt (German Aerospace Center)

DOY day of year

e.g. exempli gratia, for instance

EBV essential biodiversity variable

ECV essential climate variable

ELBO evidence lower bound

EO Earth observation

EoS end of season

EOV essential ocean variable

ER epistemic representation

erf error function

inverf inverse error function

ESA European Space Agency

ESU elementary sampling unit

EU European Union

F-COVER fraction of vegetation cover

FAPAR fraction of absorbed photosynthetically active radiation

FIR finite impulse response

FRM4Veg fiducial reference measurements for vegetation

GAI green area index
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ACRONYMS

GCOS Global Climate Observing System

GEO group on Earth observation

GLAI green LAI

GP Gaussian process

GPU graphical processing unit

GZD grid zone designator

HDI highest density interval

HPC high performance computing

i.e. id est, to say

i.i.d. independent and identically distributed

ICDF inverse cumulative distribution function

IIR infinite impulse response

INRAe Institut national de recherche pour l’agriculture, l’alimentation et l’environnement

IR infra-red

IRD Institut de recherche pour le développement

ISO International Standards Organization

ITS inverse transform sampling

KLD Kullback-Leibler divergence

KNN 𝑘-nearest-neighbors

LAISAVI leaf area index soil adjusted vegetation index

LAI leaf area index

LAIeff effective LAI

laser light amplification by stimulated emission of radiation

LCC leaf chlorophyll content

LiDaR laser imaging detection and ranging

LIDF leaf inclination distribution function

LIDFA leaf inclination distribution function average

LLS linear least squares

lr learning rate

LULC land use and land cover

LUT lookup table
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ACRONYMS

LWIR long wavelength infra-red

MAE mean absolute error

MAJA MACCS-ATCOR joint algorithm

MAP maximum a posteriori

Mat maturity

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MCRL Monte Carlo reconstruction loss

MGRS Military Grid Reference System

MIBIT multiple initialization and best instance training

ML Machine Learning

MLE maximum likelihood estimation

MLP multi-layer perceptron

M maximum NDVI level

m minimum NDVI level

MPIW mean prediction interval width

MPSR multiple probabilistic supervised regression

MSE mean squared error

MSI multi spectral instrument

NATO North Atlantic Treaty Organazation

NDII normalized difference infrared index

NDLMA normalized difference leaf mass area

NDVI normalized difference vegetation index

NIR near infra-red

NLL negative log-likelihood

NLLS non-linear least squares

OLS ordinary least squares

OMP Observatoire Midi Pyrénées

PAI plant area index

PCA principal components analysis

PDE partial differential equation
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ACRONYMS

PDF probability distribution function

PICP prediction interval coverage probability

PINC prediction interval nominal coverage

PINN physics-informed neural network

PIW prediction interval width

radar radio detection and ranging

RAM random access memory

ReLU rectified linear unit

RF random forest

RGB red green blue

RMSE root mean squared error

ROI region of interest

𝑅2 coefficient of determination

RTM radiative transfer model

s.t. such that

S2 Sentinel-2

SAI stem area index

SAIL Scattering by Arbitrary Inclined Leaves

SAR synthetic aperture radar

SDU2E Sciences de l’Univers, de l’Environnement et de l’Espace

Sen senescence

SGVB stochastic gradient variational Bayes

SITS Satellite image time series

SL2P Simplified Level 2 Product Prototype Processor

SNAP Sentinel Application Platform

SNNR supervised neural network regression

SoS start of season

std standard deviation

SVD singular value decomposition

SVI stochastic variational inference

SVM support vector machine
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ACRONYMS

SVR support vector regression

SWIR short wavelength infra-red

TN truncated normal

TOA top-of-atmosphere

TOC top-of-canopy

TRRA trust region reflective algorithm

UDD user-defined decoder

UT3 Université Toulouse III

UTM universal transverse Mercator

UV ultra-violet

VAE variational autoencoder

VNIR visible and near infra-red

w.r.t. with respect to

WAI woody area index

WGS84 World Geodetic System 1984

WLS weighted least squares
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Appendix H

Notations

H.1 Notations of variables
H.1.1 Typesetting
Notations of variables is based on ISO standard 80000-2:2019. All variables are in italic by
default. Scalar values have normal thickness and are written with lowercase letters. Vectors
are written as lowercase bold letters. Matrices are uppercase. Tensors are uppercase sans-serif
bold italic. Operators are typeset in roman (upright), and usually uppercase (exceptions are
the differential operator d and the Gaussian density φ). Mathematical constants are written
upright lowercase (e, π, γ). To distinguish a random variable from a sample, a random
variable is written upright. This is the single deviation taken from the ISO standard. In
the referenced chapters, all random variables are either scalars or vectors (i.e. there is no
random matrix), and thus are all lowercase (contrary to a common practice of using uppercase
random variables). Thus italic uppercase matrices are not confounded with upright uppercase
operators. Finally, named variables from a given literature are exempted from this typesetting
e.g. acronyms such as CCC, 𝑆𝑜𝑆, or variables identified by indexes such as 𝐶𝑎𝑏, 𝜃𝑆.

H.1.2 Variable indexing
For a matrix, indexing is straightforward. The element on row 𝑖 and column 𝑗 of a matrix
𝑋 is denoted 𝑥𝑖,𝑗. For vectors and random variables, there are multiple reasons a variable 𝑥
may need indexing and associated notations:

• being a vector 𝒙 component 𝑖: 𝑥𝑖,

• being a batch or a set element 𝑖: 𝑥𝑖,

• being a random variable x sample 𝑥(𝑖).

• time 𝑡 indexing 𝑥𝑡,

• spatial (planar) 𝑛, 𝑚 indexing 𝑥𝑛,𝑚.

This means that some quantities might need several indexes. When indexing a variable, the
textual context usually specifies the associated meaning.

Overall, indexing indicates the context of a variable and doesn’t change the typesetting
related to the nature of a variable, e.g. a matrix 𝑋 column 𝑗 is a vector thus written 𝒙𝑗. A
vector 𝒙 component 𝑖 is a scalar denoted 𝑥𝑖. If the variable being indexed is to be highlighted
instead of the particular component, parenthesis can be used. For instance the row 𝑖 column
𝑗 element of a matrix 𝑋 is equivalently written 𝑥𝑖,𝑗 or (𝑋)𝑖,𝑗. Another example is a batched
tensor 𝙓 of latent vector samples. The batch element 𝑖, vector component 𝑗 sample 𝑘 is
denoted 𝑥(𝑘)

𝑖,𝑗 = (𝙓)(𝑘)
𝑖,𝑗
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APPENDIX H. NOTATIONS

H.1.3 Usual notations
In the following Table H.1, the notations and meaning of notable quantities are detailed.

Table H.1: Special variables and their typesetting.

Description Random variable Sample / deterministic variable
scalar vector scalar vector

Observed data x 𝐱 𝑥 𝒙
Label, encoding or
reference data - - 𝑦 𝒚
Latent variable z 𝐳 𝑧 𝒛
Variational parameter - - 𝜆 𝝀
Frequentist or model
(decoder) parameters - - 𝜃 𝜽
Encoder parameters - - - 𝝓
VAE likelihood parameters - - - 𝝍
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MATHEMATICS

H.2 Physical variables

Sign Description Unit

BAI branch area index
BLAI brown LAI
𝐶𝑎𝑏 Chlorophyll a+b concentration µg cm−2

𝐶𝑐𝑎𝑟 Carotenoid concentration µg cm−2

𝐶𝑏𝑟𝑜𝑤𝑛 Brown pigments content µg cm−2

CCC canopy chlorophyll content µg cm−2

CCCeff effective CCC µg cm−2

𝐶𝑚 Dry matter content g cm−2

𝐶𝑤 Water equivalent thickness g cm−3 / cm
CWC canopy water content g cm−3 / cm
𝐶𝑤,rel relative water content
𝐸𝑜𝑆 end of season DOY
GAI green area index
GLAI green LAI
ℎ Hotspot parameter
LAI leaf area index
LAIeff effective LAI
LCC leaf chlorophyll content µg cm−2

𝛼 leaf inclination distribution function average
𝑀𝑎𝑡 maturity DOY
𝑀 maximum NDVI level
𝑚 minimum NDVI level
𝑁 Leaf structure parameter -
NDVI normalized difference vegetation index
𝜃𝑂 Observer zenith angle deg
PAI plant area index
𝑠𝑤 Soil brightness factor
𝜓𝑆𝑂 Relative azimuth angle deg
𝜌 reflectance
𝑠𝑏 Soil brightness factor
SAI stem area index
𝑆𝑒𝑛 senescence DOY
𝑆𝑜𝑆 start of season DOY
𝜓𝑂 Observer azimuth angle deg
𝜓𝑆 Solar azimuth angle deg
𝜃𝑆 Solar zenith angle deg
WAI woody area index

H.3 Mathematics
ℬ Bernoulli distribution

𝛽 beta distribution

B beta function

δ Dirac function
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⊙ element-wise product between equal-sized vector or matrices.

H entropy

erf error function

erf-1 inverse error function

E expectation

ℰ exponential distribution

Ei exponential integral

𝛾 gamma function

∇ Gradient operator

I Identity matrix

1 indicator function

J Jacobian matrix

DKL Kullback-Leibler divergence

𝒮𝑛 Group of permutation matrices of size 𝑛.

ℳ ℳ𝑛,𝑚 (R) denotes the set of 𝑛 × 𝑚 real-valued matrices.

I mutual information

N set natural numbers

NLL negative log-likelihood

𝒦 Kumaraswamy distribution

𝒩 normal distribution

Φ CDF of the standard normal distribution

Φ−1 ICDF of the standard normal distribution

φ PDF of the standard normal distribution

R set of real numbers

ReLU rectified linear unit

𝑅2 coefficient of determination

𝒯𝒩 truncated normal

𝒰 uniform distribution

0 Zero matrix
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H.4 Machine Learning
𝒟 data-set

ELBO evidence lower bound

ℒ loss

lr learning rate

𝒟IS Data-set of in-situ measurements and associated Sentinel-2 images

𝒟S2 Sentinel-2 images data-set for PROSAIL-VAE.

𝐱 observed (input) data, regressor

𝒙 generated, reconstructed (output) data

𝒚 label, regressand

𝐳 latent variable

H.5 Metrics
MAE mean absolute error
MPIW mean prediction interval width
MSE mean squared error

PICP prediction interval coverage probability
PICP prediction interval nominal coverage
PIW prediction interval width

RMSE root mean squared error

std standard deviation
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Titre : apprentissage de representations physiques de la végétations à partir de données de télédétection optique.
Mots clés : Apprentissage Profond, Autoencodeurs variationnels, Images Satellite, Modélisation Physique, Séries Temporelles
Résumé : Le changement climatique initié par les activités humaines provoque des transformations drastiques et sans précédent des écosystèmes et
des zones habitées dans le monde entier. La télédétection s'impose comme un outil essentiel pour observer la Terre, pour comprendre le
fonctionnement de la biosphère ainsi que son altération par les pressions anthropiques. Les capacités d'observation par télédétection spatiale ainsi
que les techniques de traitement du signal ont rapidement évolué lors des dernières décennies. L'émergence des techniques d'apprentissage
statistique modernes et l'augmentation exponentielle de la puissance de calcul disponible sont cruciaux dans l'exploitation de l'immense volume de
données produits par les capteurs de télédétection. En particulier, la mission Sentinel-2 produit des images multi-spectrales à haute résolution
spatiale et temporelle depuis une dizaine d'années à une échelle globale, diffusées gratuitement avec une politique d'accès libre. Les produits
Sentinel-2 ont permis le développement de diverses applications, telles que l'amélioration des techniques agricoles, la gestion du territoire et la
réponse aux catastrophes naturelles. Les données de télédétections sont des mesures de radiations électromagnétiques dont les caractéristiques
sont reliées à la nature des élements et aux processus à la surface de la Terre.
L'extraction de représentations contenant des informations pertinentes
sur ces éléments est fondamental pour les applications de télédétection.
L'objectif de cette thèse est de proposer une méthode d'inférence de telles
representations à partir de données de télédétection. Plusieurs défis se présentent pour estimer ces représentations.
D'abord, ces représentations
doivent êtres générales et interprétables, afin d'être utilisables par plusieurs applications. Cela peut être réalisé avec des variables bio-physiques qui
caractérisent les systèmes observés, par exemple le contenu minéral et en eau des sols ou la concentration en pigments et la structure de la canopée
pour la végétation. Par ailleurs, les representations doivent êtres associés à une incertitudes d’estimation. Le manque de données de référence pose
aussi un défi. Contrairement aux acquisitions de télédétection, il est difficile d'obtenir des vérités terrain. Les bases de données qui associent des
variables bio-physiques de la végétation et des données de télédétection sont rares. Les approches qui estiment ces variables utilisent donc la
modélisation physique et l'inversion. Cette thèse est divisée en trois parties principales qui détaillent ses quatre contributions. La première
contribution est la démonstration de la dépendance des modèles de régression supervisée au choix de la distribution d'échantillonnage pour leur jeu
de données d'entraînement. La seconde contribution est le développement d'une méthodologie d'estimation de variable physiques non supervisée à
partir de données de télédétection, basée sur les Autoencodeurs Variationnels (VAE). Cela consiste en l'incorporation de modèles et de
connaissances physiques à priori dans un modèle d'apprentissage profond.
Cette approche utilise la reconstruction comme tâche intermédiaire pour
estimer une variable physique, plutôt que la comparaison avec une verité terrain indisponible ou une référence simulée.
Dans une troisième partie, ce
manuscript détaille les deux autres contributions de cette thèse: l'application de la méthodologie proposée à l'estimation de variables physiques dans
deux applications. Dans la première le modèle de transfert radiatif PROSAIL est utilisé dans le modèle PROSAIL-VAE afin d’estimer les caractéristiques
de feuilles et de canopées à partir d’images Sentinel-2. La validation avec des données in-situ a permit de confirmer les performances de cette
approche. Dans la seconde application, des variables phénologiques caractérisant le comportement temporel de la végétation sont estimées à partir
de séries temporelles de NDVI, avec le modèle Phéno-VAE.

Title: physics-based representation learning for vegetation from optical remote sensing
Key words: Deep Learning, Variational Autoencoders, Satellites Images, Physical modeling, Time series
Abstract: Human-driven climate change is triggering unprecedented and dire transformations of ecosystems and habitats worldwide. Remote
sensing offers precious tools for monitoring the state of the Earth, and for understanding how the biosphere functions and is affected by human
activities. Satellite remote sensing capabilities and data processing techniques have rapidly improved over the last decades, and have considerably
advanced the study of life processes on land masses. The advent of modern machine learning and exponential development of computational
power are crucial for the exploitation of the vast amount of data produced by remote sensors. In particular, the Sentinel-2 mission has been
providing for a decade high spatial and temporal resolution multi-spectral images at a global scale. Sentinel-2 products are released with an open-
data policy that supports research efforts and various applications, such as the enhancement of agricultural practices, land management and disaster
response. Remote sensing data is a measurement of incoming radiation and its properties are related to the nature of elements and processes on the
surface of the Earth. Extracting useful representations that contain relevant information is fundamental for applications of remote sensing. The
objective of this thesis is to find useful representations from remote sensing data for use in subsequent applications. There are several challenges in
the retrieval of such representations. First, in order to be useful to different tasks, the representations need to be general and interpretable. This can
be achieved with bio-physical variables that characterize the target system, for instance the water and mineral content in the soil, the pigment
concentrations and canopy structure for vegetation. Also, remote sensing data has an intrinsic uncertainty, and representations of this data should
be associated with a measure of uncertainty. Another challenge lies in the scarcity of reference data in remote sensing. Although remote sensing
measurements are a big data, it is difficult to obtain ground truth data, for instance databases of vegetation bio-physical parameters that can be
related to remote sensing measurements are rare. Methods that attempt to retrieve such parameters therefore commonly resort to physical
modeling and inversion.
This Ph.D. is divided into three main parts, which are associated with its main contributions. Its first contribution is the
identification of a key issue of supervised regression models that perform model inversion.
Their performance is shown to be very dependent on the
choice of the sampling distribution for simulating their training data-sets. The second contribution of this Ph.D. is the development of a self-
supervised approach for retrieving physical representations of remote sensing data. This approach is based on the framework of Variational
Autoencoders. The proposed methodology is based on the incorporation of a physical model and physical knowledge for a end-to-end deep learning
framework. Instead of attempting to optimize the physical variable retrieval from an unavailable ground truth or a biased simulated reference, this
method uses input data reconstruction as a proxy task. Finally, in a third part, this thesis reports the results of the application of the proposed
approach on the retrieval of physical variables in two settings. In a first experiment, it is used with the PROSAIL radiative transfer model for retrieving
leaf contents and canopy structure variables. The resulting PROSAIL-VAE model is trained directly using Sentinel-2 multi-spectral images. Validation
with some in-situ data have corroborated the performance of the approach. In a second application, the proposed approach is used to retrieve
phenological variables that characterize the temporal behavior of vegetation. The so-called Pheno-VAE is trained on annual NDVI time series
extracted from Sentinel-2 data.


