
HAL Id: tel-04808334
https://theses.hal.science/tel-04808334v1

Submitted on 28 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Game-theoretical approach for the study of Blockchain’s
Robustness
Ulysse Pavloff

To cite this version:
Ulysse Pavloff. Game-theoretical approach for the study of Blockchain’s Robustness. Distributed,
Parallel, and Cluster Computing [cs.DC]. Université Paris-Saclay, 2024. English. �NNT : 2024UP-
ASG071�. �tel-04808334�

https://theses.hal.science/tel-04808334v1
https://hal.archives-ouvertes.fr

THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SG0
71

Approche Théorie des jeux pour
l’Étude de la Robustesse des

Blockchains
A Game-Theoretic Approach to the Study

of Blockchain’s Robustness

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 - Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique. Référent : Faculté des sciences d’Orsay.

Thèse préparée dans l’unité de recherche LIST (CEA, Université Paris Saclay),
sous la direction de Sara TUCCI-PIERGIOVANNI, cheffe de laboratoire,

et le co-encadrement de Yackolley AMOUSSOU-GUENOU, maître de conférences

Thèse soutenue à Paris-Saclay, le 5 novembre 2024, par

Ulysse PAVLOFF

Composition du jury
Membres du jury avec voix délibérative
Sylvain CONCHON Président du jury
Professeur des universités, Université Paris-Saclay
Sonia BEN MOKTHAR Rapporteur & Examinatrice
Directrice de recherche, LIRIS CNRS
Sébastien TIXEUIL Rapporteur & Examinateur
Professeur des universités, Sorbonne Université
Daniel AUGOT Examinateur
Directeur de recherche, INRIA
Sophie CHABRIDON Examinatrice
Professeure, Telecom SudParis

Titre: Approche Théorie des jeux pour l’Étude de la Robustesse des Blockchains
Mots clés: Blockchain, Ethereum, Systèmes Distribués, Théorie des Jeux

Résumé
Les blockchains ont suscité un intérêt mondial
ces dernières années, prenant de plus en plus
d’importance à mesure qu’elles influencent les
technologies et la finance. Cette thèse explore
la robustesse des protocoles blockchain, en
se concentrant spécifiquement sur Ethereum
Proof-of-Stake (PoS), un pilier des technologies
blockchain. Nous définissons la robustesse
en termes de deux propriétés essentielles : la
sécurité, qui garantit qu’il n’y aura pas de blocs
conflictuels permanents dans la blockchain, et
la vivacité, qui assure l’ajout continu de nou-
veaux blocs permanents.

Notre recherche aborde l’écart entre les
approches traditionnelles des systèmes dis-
tribués, qui classifient les agents comme étant
soit honnêtes, soit byzantins (i.e., malveillants
ou défaillants), et les modèles de théorie des
jeux qui considèrent les agents rationnels mo-
tivés par des incitations. Nous explorons com-
ment les incitations impactent la robustesse en
utilisant les deux approches.

La thèse est composé de trois analyses dis-
tinctes. Nous commençons par formaliser le
protocole Ethereum PoS, définissant ses pro-
priétés et examinant les vulnérabilités poten-
tielles du point de vue des systèmes distribués.
Nous identifions certaines attaques qui peu-
vent compromettre la robustesse du système.
Ensuite, nous analysons le mécanisme de fuite
d’inactivité, une caractéristique clé d’Ethereum
PoS, en soulignant son rôle dans le maintien de
la vivacité du système lors de perturbations du
réseau, mais au détriment de la sécurité. Enfin,
nous utilisons des modèles de théorie des jeux
pour étudier les stratégies des validateurs ra-
tionnels au sein d’Ethereum PoS, en identifiant
les conditions dans lesquelles ces agents pour-
raient s’écarter du protocole prescrit pourmax-
imiser leurs récompenses.

Nos résultats contribuent à une meilleure
compréhension de l’importance des mécan-
ismes d’incitation pour la robustesse des
blockchains et donnent des pistes pour con-
cevoir des protocoles blockchain plus résilients.

Title: A game-theoretic approach to the study of Blockchain’s Robustness
Keywords: Blockchain, Ethereum, Distributed Systems, Game Theory

Abstract
Blockchains have sparked global interest in
recent years, gaining importance as they in-
creasingly influence technology and finance.
This thesis investigates the robustness of
blockchain protocols, specifically focusing on
Ethereum Proof-of-Stake. We define robust-
ness in terms of two critical properties: Safety,
which ensures that the blockchain will not have
permanent conflicting blocks, and Liveness,
which guarantees the continuous addition of
new reliable blocks.

Our research addresses the gap between
traditional distributed systems approaches,
which classify agents as either honest or Byzan-
tine (i.e., malicious or faulty), and game-
theoretic models that consider rational agents
driven by incentives. We explore how in-
centives impact the robustness with both ap-
proaches.

The thesis comprises three distinct analy-
ses. First, we formalize the Ethereum PoS pro-
tocol, defining its properties and examining po-
tential vulnerabilities through a distributed sys-
tems perspective. We identify that certain at-
tacks can undermine the system’s robustness.
Second, we analyze the inactivity leak mecha-
nism, a critical feature of Ethereum PoS, high-
lighting its role in maintaining system liveness
during network disruptions but at the cost of
safety. Finally, we employ game-theoreticmod-
els to study the strategies of rational validators
within EthereumPoS, identifying conditions un-
der which these agents might deviate from the
prescribed protocol to maximize their rewards.

Our findings contribute to a deeper un-
derstanding of the importance of incentive
mechanisms for blockchain robustness and
provide insights into designing more resilient
blockchain protocols.

“Our time is such that those who feel certainty are stupid, while those with any
imagination and understanding are filled with doubt and indecision."

- Bertrand Russell

i

ii

Acknowledgement

I am deeply grateful to Sara Tucci-Piergiovanni and Yackolley Amoussou-Guenou for
their invaluable support and guidance. Passer ces trois années à vos côtés a été incroy-
ablement enrichissant. Vous avez su orienter mon intérêt et notre recherche pour tou-
jours travailler sur des sujets stimulants. Merci pour tous ces échanges captivants et pour
votre confiance durant toute cette aventure.

Merci aux rapporteurs Sonia BenMokhtar et Sébastien Tixeuil pour leur lecture atten-
tive et aux retours détaillés sur mon travail. Merci aux membres du jury, Sophie Chabri-
don, Daniel Augot et Sylvain Conchon, d’avoir accepté de faire partie demon jury de thèse.

Je tiens également à remercier Jérôme Lang et Tristan Cazenave de m’avoir offert un
aperçu de ce qu’était une thèse, et de m’avoir conforté dans l’idée d’en entreprendre une,
grâce à l’excellente expérience que j’ai eue à vos côtés.

Merci à Ewa Pichon, qui m’a accompagné tout au long dema thèse et a rendu possible
d’aller échanger des connaissances scientifiques sans encombre.

Un spécial merci à mes collègues de bureau pendant la plus grande partie de ma
thèse, Alexandre Rapetti, Hector Roussille et Valentin Pasquale. Merci de m’avoir aidé
dans les moments compliqués, mais surtout de vous être assurés que je ne travaille ja-
mais trop dur trop longtemps.

Comment nepas remerciermon colocataire, Léo Satgé, toujours présent pourm’épauler
au quotidien, tout en me rappelant que faire une thèse ne me donne aucun avantage
quand il s’agit de s’affronter sur des jeux de société ou vidéo.

Enfin, je tiens à remercier ma famille, qui m’a toujours soutenu durant ces trois an-
nées, et tout particulièrement mon père, Nicolas Pavloff. Les explications et questions
qu’on s’est échangées m’ont été d’une aide précieuse. Merci à toi de m’avoir inspiré à
entreprendre cette thèse et de m’avoir encouragé à chaque étape.

i

ii

Reading tips

Throughout the manuscript, every text in purple can be clicked to navigate to the in-
dicated reference. Footnotes function in this manner as well1. Moreover, citations are in
blue and offer the same ability to take you back to the place of the citation in the text by
clicking on the page number at the end of the citation [APM+23].

1 ↑ Clicking on the footnote’s number will return you to the place of the footnote in the text.
iii

iv

Contents

Acknowledgement i

Reading tips iii

I Introduction 1
I.1 Blockchain . 1

I.1.1 Functionalities . 2
I.1.2 Implementation . 2
I.1.3 Purpose . 3

I.2 Bitcoin . 3
I.2.1 Bitcoin’s Solution . 4

I.3 Ethereum . 7
I.4 Terminology . 9
I.5 Contribution . 11
I.6 Related Work on Blockchain Analysis . 12

I.6.1 Blockchain Formalization . 12
I.6.2 Attacks and Vulnerabilities . 13
I.6.3 Rational Agents in Blockchain . 14

II Background 17
II.1 Distributed Computing Model . 17

II.1.1 Fault Model . 17
II.2 Synchronization and Communication . 18

II.2.1 Time . 18
II.2.2 Network . 18

II.3 Game Model . 19
III Ethereum PoS Analysis under the Distributed Computing Model 21

III.1 Safety and Liveness Properties . 21
III.2 Ethereum PoS protocol . 23

III.2.1 Overview . 23
III.2.2 Pseudo Code . 30

III.3 Robustness Analysis . 36
III.3.1 Safety . 36
III.3.2 Probabilistic Liveness . 38
III.3.3 Implemented Patch . 40

III.4 Conclusion . 46
v

IV Ethereum PoS Analysis under the Distributed Computing Model with Penalties 47
IV.1 System Model . 47
IV.2 Protocol and Properties . 48
IV.3 Safety Attack . 48

IV.3.1 Incentives . 49
IV.4 Inactivity Leak . 49

IV.4.1 Inactivity Score . 50
IV.4.2 Inactivity penalties . 50
IV.4.3 Stake’s functions during an inactivity leak . 50

IV.5 Analysis . 52
IV.5.1 GST upper bound for Safety . 53
IV.5.2 Upper bound decrease due to Byzantine validators 55
IV.5.3 Revisiting the Probabilistic Bouncing Attack . 62

IV.6 Discussion & Conclusion . 67
V Ethereum PoS Protocol Analysis under the Game Theoretical Model 69

V.1 Ethereum protocol . 69
V.2 Model & Game . 73

V.2.1 Payoff . 77
V.3 Analysis . 78

V.3.1 Preliminaries . 78
V.3.2 Obedient . 78
V.3.3 Cunning Strategy . 79

V.4 Conclusion . 90
VI Conclusion and Perspectives 91

A Mathematical Elaborations 101
A.1 Discrete case inacivity score during a probabilistic bouncinc attack. 101
A.2 From Gaussian white noise to log-normal distribution 102

vi

Chapter I

Introduction

Contents
I.1 Blockchain . 1

I.1.1 Functionalities . 2
I.1.2 Implementation . 2
I.1.3 Purpose . 3

I.2 Bitcoin . 3

I.2.1 Bitcoin’s Solution . 4
I.3 Ethereum . 7

I.4 Terminology . 9

I.5 Contribution . 11

I.6 Related Work on Blockchain Analysis 12

I.6.1 Blockchain Formalization 12
I.6.2 Attacks and Vulnerabilities 13
I.6.3 Rational Agents in Blockchain 14

T
hefirst block of theBitcoin blockchain, the genesis block, contains amessage taken
from the title of the January 3, 2009 edition of The Times newspaper:"Chancellor
on brink of second bailout for banks". This statement serves as a powerful symbol

of what Bitcoin set out to challenge: a flawed financial system that has proven to be un-
worthy of trust. Since then, blockchain technology has gained significant recognition and
ignited widespread interest. To build a better understanding and start with a clear foun-
dation of blockchains, we begin by outlining the core principles and essential knowledge
for an informed discussion about blockchains.

Before explaining blockchains, let us be clear that blockchain and cryptocurrencies
are different. Cryptocurrency is one application allowed by blockchains, but blockchains
can be much more and this distinction is important.

I.1 . Blockchain

Blockchain technology has revolutionized how we think about data storage, owner-
ship, and decentralized systems. To better understand this technology, we break it down
into three key components: what it achieves, how it functions, and its potential applica-
tions.

1

I.1.1 . Functionalities

We begin with the functionalities brought by blockchains. What new capabilities does
it offer that did not exist before? A simple way to describe blockchains is to say that a
blockchain is a decentralized computer. Like a traditional computer, you can store
data and run programs on it. The difference lies in its decentralized nature: it has no
single owner or operator.

Imagine a global computer that anyone can access and use to store data and run pro-
grams without restriction, this is the promise of blockchain technology. One interesting
feature of blockchain is that, paradoxically, it is possible to create a strong sense of own-
ership over digital data on this public computer. Nakamoto first demonstrated that it was
possible to enforce property rights over digital data with Bitcoin. His solution focused on
digital currency, but this concept can be applied to any type of digital data stored on this
decentralized "computer in the sky."

I.1.2 . Implementation

The implementation refers to how the functionalities are accomplished. What are the
technological building blocks necessary to create this solution? This part is the most fas-
cinating one, as it is where most of the research is conducted, and this manuscript is no
exception.

Similar to how advancements in hardware have improved global communication and
enabled new internet applications, blockchain technology is evolving.

The essential components used to build blockchains are:
• ConsensusMechanism: These are algorithms that enable the distributed network
to agree on the state of the blockchain. Bitcoin uses Proof-of-Work, also called
Nakamoto Consensus. Other mechanisms exist, such as Proof-of-Stake and Byzan-
tine Fault Tolerance.

• Cryptography: This branch of mathematics is essential for permitting ownership
in a public environment through digital signatures. Cryptography is the backbone
of blockchain’s security, ensuring that transactions and data remain private, secure,
and verifiable without a central authority. Numerous cryptographic tools are used
in blockchain. One of these tools is the hashing, which provides a unique fingerprint
for any data. Cryptography is the reason why cryptocurrencies—currencies that use
blockchains—are named this way.

• Distributed Ledger: This is the distributed database that maintains a continu-
ously growing list of records, called blocks, literally the chain of blocks. In practice,
this data is stored by every node, which are the computers working to maintain
the blockchain. The consensus mechanism ensures that nodes agree on the data
stored.

Research on blockchains aims to improve and create new solutions for any of these
components. Our work focuses on the consensus mechanism.

2

I.1.3 . Purpose

Now, the infamous question: “Okay, but what for?” Working in blockchain research,
this might be the question I hear the most, even more than “What are blockchains?”

There are already compelling answers, ranging from traceability and decentralized
money to digital ownership of goods and art. However, this is only the beginning. As of the
writing of this manuscript, blockchain has existed since 2009, about 15 years. What would
the answer to this question have been for the internet 15 years after its development? At
that time, the internet was mostly used for emails, you could send files, albeit very slowly,
and web pages were still in their infancy. Now, the internet’s applications are almost
limitless.

We are 15 years past the first use case of blockchain, it has only just begun. Like the in-
ternet, the reasons for using blockchainwill becomemore numerous as time goes on. Just
as the internet’s potential became clearer over time, so too will blockchain applications
expand and evolve.

The most well-known application of blockchain, cryptocurrency, which can be seen
as decentralized money, is often deemed useless in the Western world. We in Western
countries might not see the immediate need. However, millions of people in countries
where the value of money is decreasing daily, where banks refuse to return what should
be theirmoney, have found value in blockchain. Blockchain provides a solution to actually
own your money and use it without intermediaries.

While these issues may not resonate with everyone now, as more people begin to un-
derstand and experience the benefits of true digital ownership and decentralized finance,
the value of blockchain will become increasingly evident.

Understanding blockchain’s functionalities, implementation, andpotential applications
is crucial as we continue to explore and refine this transformative technology. In the fol-
lowing section, we delve into the history of the first blockchain: Bitcoin.

I.2 . Bitcoin

Bitcoin was described in a 2008 paper [Nak08] and implemented in 2009 by a myste-
rious author known as Satoshi Nakamoto. The technological components necessary to
create Bitcoin had actually existed for about 15 years before its appearance. However,
no solution had been found to make a system both decentralized and resistant to Sybil
attacks and double spending which we detailed below. In this section, we will provide a
historical overview of how Bitcoin came into existence and how it works.

Bitcoin answers the question: "How do you build a trustless system with an unknown
number of participants?". The difficulty lies in the consensus mechanism required to
make participants agree without knowing the number of participants. The problem of
reaching consensus with a known number of participants has been addressed by the dis-

3

tributed systems field, notably through the Byzantine Generals Problem [LSP82].
Several challenges arise when trying to create decentralized digital money. The first

challenge is preventing double spending.
Double spending. A major problem for digital money is that digital information can
be copied effortlessly. Unlike a physical coin, which can only exist in one place at a time,
digital assets can be copied, potentially allowing the same digital coin to be spentmultiple
times.

If you rely on a centralized authority such as a bank, this problem does not exist. The
bank being the sole entity keeping track of your balance and authorizing transactions,
it can prevent you from spending more than you own. This problem led the first digital
money, eCash, to rely on banks for this very reason. David Chaum founded Digicash in
1989, building on the work in [CFN88], which enhanced his earlier work [Cha82].

Tomitigate this issue in a decentralized system, one solution is to have the participants
vote on the state of balances after each transaction. However, this leads to the second
problem:
Sybil attack. A common issue when trying to reach consensus with an unknown set
of participants is that some individuals could create multiple identities to increase their
voting power, thereby gaining an unfair advantage in decision-making. This type of attack
is called a Sybil attack, named after the book Sybil by Schreiber, which tells the story of a
woman with dissociative identity disorder who experienced having 16 different personal-
ities.

Voting is crucial in a decentralized system, and several solutions prior to Bitcoin strug-
gledwith this problem. One such solutionwasWeiDai’sb-money, proposed in 1998 [Dai98].
The ideas behind b-money are similar in many ways to Bitcoin, but to achieve consensus,
Dai proposed using a fixed set of ‘trusted’ servers to keep track of balances. However,
choosing and trusting these servers contradicts the principle of decentralization. We have
an email from Satoshi Nakamoto to Wei Dai, sent in 2008, that reads:
“I was very interested to read your b-money page. I’m getting ready to release a pa-
per that expands on your ideas into a complete working system. Adam Back (hash-
cash.org) noticed the similarities and pointed me to your site.”
Another problemmentioned by Dai in the b-money text is the fairness in the distribu-

tion of newly created money. While Digicash and b-money laid the groundwork for digital
currencies, it was Bitcoin that finally solved the key issues, enabling the creation of a fully
decentralized and secure currency system. The solution found by Nakamoto actually uses
the work of Adam Back: the Proof-of-Work.

I.2.1 . Bitcoin’s Solution

Bitcoin’s solution to the problemsof double spending and Sybil attacks is Proof-of-Work
(PoW). In 1992, a proposal to use a formof proof ofworkwas presentedbyDwork andNaor

4

[DN92] as an anti-spam mechanism. They suggested requiring proof of computational
work to send an email in order to prevent spam. Adam Back proposed a similar idea
in 1997 [Bac97] and further developed it in 2002 [Bac02], this time using cryptographic
hashes. Let us explain PoW and hashes in more detail.

Hash. A hash function is a cryptographic tool that creates a unique fingerprint for data.
It takes any amount of data, scrambles it, and returns a short and unique result for that
data.1 Hash functions possess several desirable properties:

• Deterministic: For a given input, the function will always produce the same hash
output.

• Irreversible: Also known as pre-image resistance, this property ensures that given
a hash value, it should be computationally infeasible to reverse-engineer the origi-
nal input. The hash function is a one-way function.

• Avalanche effect: Slightly different inputs should produce wildly different hash
outputs.

• Collision resistance: This property ensures that two different inputs do not pro-
duce the same hash output.

Now thatweunderstandwhat a hash function is, we can explain the Bitcoin blockchain
and its PoW mechanism.

Bitcoin is a distributed computer focused on saving data about digital money and
transactions. To achieve this, blocks containing transactions are regularly added and
saved by every participant. The order of these blocks is crucial since it serves as a his-
torical record of transactions. It is important to verify that someone has received 10 bit-
coins before they can spend them. Each block has a structure similar to the simplified
representation shown in Figure I.1.

Bitcoin Block. Each block contains a block header that summarizes its information.
The block header includes:

• Previous Block Hash: This links the blocks in order by referring to the hash of the
preceding block, its unique fingerprint.

• Timestamp: The time at which the block was created.
• Merkle Root: The hash of the combined transactions (tx) in the block. This provides
a single fingerprint representing all the transactions included in the block.

1 ↑ To experience hash functions interactively, you can try this instructive website: online-SHA-
256.

5

https://learnmeabitcoin.com/technical/cryptography/hash-function/
https://learnmeabitcoin.com/technical/cryptography/hash-function/

Block Header

Previous Block Hash
Merkle Root

Timestamp
Nonce

TXID: 0x123abc...
TXID: 0x456def...
TXID: 0x789ghi...
TXID: 0xabc123...
TXID: 0xdef456...
TXID: 0xghi789...

Figure I.1: Simplified representation of a Bitcoin block.

• Nonce: A ‘number used once’ that is useful for the Proof-of-Work mechanism, ex-
plained below.

With this information, we can understand how Proof-of-Work operates.

Proof-of-Work (PoW). To add a new block to the blockchain, the hash of its block
header must begin with x zeros. For instance, if x = 3, the hash must start with three
zeros, e.g., 00019... where only the first three digits matter. Since hash functions produce
unpredictable results, the block proposermust generatemany different blocks to find one
whose hash starts with the required number of zeros. The probability of achieving a hash
starting with three zeros is low, approximately 0.001. Therefore, successfully producing
such a block serves as proof that a significant amount of computational work has been
done.

The participants searching for valid blocks are calledminers. They generate numerous
blocks by slightly modifying the nonce field in the block header, hoping to find a hash that
meets the requirements. The value of x, which determines the difficulty of mining a block,
varies such that a valid block is found approximately every 10 minutes. As more people
mine for blocks, the value of x, the difficulty, increases. It is as if, while mining for gold in
your own cave, you would find gold more easily when fewer people are mining for gold
elsewhere and vice-versa.

Miners search for blocks and build on top of previous ones, but what happens if two
miners find valid blocks simultaneously and attempt to add them to the blockchain at the
same time?

Fork choice rule. When several blocks share the same parent—meaning they refer-
ence the same previous block hash—we encounter a fork. When multiple branches exist,

6

the rule prescribed by Nakamoto is to build on the longest branch2, the one with themost
blocks. If the branches are of the same length, you should add blocks to the one you saw
first until, eventually, one becomes the longest.
“Each nodemust be prepared to maintain potentially several ’candidate’ block chains,
each of whichmay eventually turn out to become the longest one, the onewhichwins.
Once a given block chain becomes sufficiently longer than a competitor, the shorter
one can be deleted.” - Hal Finney [Fin08]

PoW solves all the problems of a decentralized computer. As stated in the Bitcoin
white paper—the initial document explaining its functionality:
“The longest chain not only serves as proof of the sequence of events witnessed, but
proof that it came from the largest pool of CPU power. As long as a majority of CPU
power is controlled by nodes that are not cooperating to attack the network, they’ll
generate the longest chain and outpace attackers.”
Thus, double-spending for a transaction becomes less likely as more blocks are built

on top of the block containing the transaction. The current rule of thumb is to wait for six
blocks to be built after a block to trust the transactions in it. This way, it is very unlikely
that a new branch will appear and become the rightful chain while possibly excluding the
transaction. The Sybil attack problem is solved by making one vote equal to one CPU. A
miner cannot mine (or vote) on different chains at the same time. Every unit of energy
used to search for a block on one chain is energy that cannot be used to search for a block
on another chain. By making one CPU equal to one vote, as long as the majority of CPUs
are owned by honest participants, malicious actors cannot control the network3.

This clevermix of PoWand the longest chain rule is known as theNakamoto Consensus.
The chain with the most accumulated proof of work (i.e., the longest chain) is considered
the valid one. As blocks are built upon and become older, they become increasingly less
likely to be reverted. This concept is known as probabilistic finality, where a finalized block
is one that will permanently remain in the chain.

I.3 . Ethereum

After Bitcoin showed the way, more and more blockchains began to emerge. The one
we are interested in, and which is the focus of this manuscript, is Ethereum.

In 2011, a young boy named Vitalik Buterin stumbled upon Bitcoin and found the idea
fascinating. He fell down the rabbit hole and started to learn more about it. Around that

2 ↑ In reality, the rule is to build on the branch of blocks that has consumed the most energy to
build. In practice, this almost always corresponds to the longest chain.

3 ↑ The case in which a majority of CPUs are owned by malicious actors is referred to as the 51%
attack. Similar to democratic systems in general, if the majority agrees, the decision is theirs.

7

time, he co-founded Bitcoin Magazine. After realizing that blockchains could offer more
than just digital money, he tried to convince the community to improve Bitcoin. However,
Bitcoin is very conservative and slow when it comes to changes. He then embarked on
a mission to convince people to help him create a new blockchain—one that wasn’t cen-
tered around a single application, such as cryptocurrency, but rather for any purpose,
leaving the freedom to its users to decide how to use it. After gathering like-minded indi-
viduals interested in his project, they created Ethereum [But14] in 2014.

Unlike Bitcoin, which is designedprimarily for one application—digitalmoney—Ethereum
is a general-purpose blockchain. Ethereum is an open platform that allows people to build
their own applications on top of it. Anything built on Ethereum is protected and secured,
with every transaction checked by the entire network ofmillions of computers around the
world that protect and verify every transaction on the blockchain.

Ethereum started as a PoWblockchain, with a fork choice rule similar to that of Bitcoin.
From the start, the planwas to eventually transition to a different type of consensus called
Proof-of-Stake (PoS).

Proof-of-Stake (PoS). The concept of PoS actually originated from a 2011 post on the
BitcoinTalk forum [Qua11]. The post included the following thought:
“I am wondering if as bitcoins become more widely distributed, whether a transition
fromaproof of work based system to a proof of stake onemight happen. What Imean
by proof of stake is that instead of your "vote" on the accepted transaction history
being weighted by the share of computing resources you bring to the network, it’s
weighted by the number of bitcoins you can prove you own, using your private keys.”
As explained, the idea behind PoS is that voting power is not determined by com-

puting resources (as in PoW), but by the number of digital coins one owns. In PoW, one
CPU equals one vote; in PoS, one digital coin equals one vote. This naturally raises many
questions: How are the coins initially distributed? Does this system simply make the rich
richer? How are blocks proposed? Different blockchains have answered these questions
in various ways, and Ethereum has developed its own unique solution.

One thing to note is that, while Bitcoin is slow and conservative in its goals and de-
velopment, Ethereum’s ethos is to ‘move fast and break things’. Although it took eight
years to transition from PoW to PoS, many of these changes can be questioned. It seems
that the Ethereum community prefers to implement changes quickly and refine them as
needed, rather than engage in prolonged debates over potential risks. This dynamic ap-
proach renders Ethereum an interesting blockchain to study as it fosters the emergence
of new ideas. Plus, the challenge of ideas is welcomed by the community, which can lead
to direct impacts on the blockchain.

We dive into a thorough explanation of the protocol in Chapter III as this is part of our
contribution.

8

I.4 . Terminology

Throughout this manuscript, we will utilize specific blockchain terminology. To ensure
clarity and consistency, this section will serve as a glossary to explain recurring terms.
Additionally, we will address instances where different terms have equivalent meanings.

Protocol. The protocol of a blockchain refers to the set of rules that users must follow
to communicate and act within that blockchain. We may also refer to the specifications of
a protocol, which holds the samemeaning. In practice, the protocol is defined by the code
that blockchain participants use to send messages, propose blocks and transactions, and
perform other necessary actions.

Participants. "Participants" is a term with many synonyms. Participants can also be
called agents, nodes or processes interchangeably. There are different types of partici-
pants: those who take part in the blockchain consensus, and those who do not. A par-
ticipant who only sends transactions is considered a user of the blockchain; they use the
blockchain but do not have a role in its consensus. In Ethereum, participants involved in
the consensus process are known as validators, while in Bitcoin, they are called miners.
The terminology varies depending on their role, which is defined by the protocol. In prac-
tice, consensus participants are machines running programs to follow and engage in the
blockchain protocol.

Byzantine. A Byzantine participant can deviate arbitrarily from the prescribed proto-
col. This appellation stems from the Byzantine General Problem introduced by Lamport,
Shostak, and Pease [LSP82]. This problem is an analogy to simulate how reliable com-
puter systems must handle malfunctioning components that give conflicting information
to different parts of the system. The problem is stated as follow:
“A group of generals of the Byzantine army camped with their troops around an en-
emy city. Communicating only by messenger, the generals must agree upon a com-
monbattle plan. However, one ormore of themmaybe traitorswhowill try to confuse
the others. The problem is to find an algorithm to ensure that the loyal generals will
reach agreement.”
This thought experiment outlines the challenges of reaching consensus if somemem-

bers of the group are compromised. One of the solution proposed involves making the
assumption that, among the n participants there are only f traitors4, such that f < n/3.

This threshold stems from the two constraints we have in order to reach consensus:
(a) the honest participants n− f should be able to make a decision even if the traitors do
not respond, and (b) the traitors should not be able to cause honest participants to make
two different decisions. For (a), this means that n− f must constitute a majority. For (b),

4 ↑ f stands for faulty, we use this term interchangeably to talk about Byzantine participants.
9

this means that half of the honest participants n−f
2 plus the traitors f must not constitute

a majority. This translates in:
n− f >

n− f

2
+ f

⇔ 2n− 4f > n− f

⇔ n

3
> f.

This solution is fundamental in proving that reaching consensus is possible even in
adversarial settings. The requirement for two-thirds of participants to agree in order to
reach consensus is often called a supermajority. A protocol that tolerates the presence of
a Byzantine adversary whilemaintaining its guarantees is deemed Byzantine Fault Tolerant
(BFT).

Finalization. In blockchains, we say that a block is finalized if it permanently belongs
to the chain. Non-finalized blocks are not guaranteed to always belong to the chain.

Consensus. The consensus holds the same meaning as in everyday life, this is an
agreement among a set of agents. The only difference is that in blockchain systems,
agreements concern blocks, and consensus is repeatedly achieved to agree on increas-
ingly larger sets of blocks. In this context, our formalization of consensus in blockchain,
partly based on Dolev et al. [DDS87], is the following.
Definition I.1 (Consensus). A blockchain protocol achieves consensus if it satisfies the follow-
ing three properties:

• Safety: No concurrent blocks can be finalized.

• Liveness: The set of finalized blocks continuously grows.

• Validity: The blocks agreed upon must have been proposed by one of the participants.

The validity property is often taken for granted in blockchain and what we are really
interested in are the Safety and Liveness properties. This was part of our work to define
them adequately before beginning our analysis, the formal definitions are presented in
Chapter III.

The consensus in blockchain can be summarized aswewant tomake surewe agree on
the same thing and there should never be a point after which we cannot agree anymore.
The protocol must not reach a point where finalization stops, preventing any new blocks
from being finalized. In this case, the protocol is considered live.

These two properties aremore thoroughly described in Chapter III and constitute part
of our contribution.

10

I.5 . Contribution

Our research focuses on the analysis of blockchain robustness. By robustness, we
mean the blockchain’s ability to avoid unsolvable forks (ensuring Safety) while always
maintaining the possibility to add new blocks (ensuring Liveness). Our work ranges from
distributed systems to game theoretic analysis. Distributed systems consider two types of
agents: honest and Byzantine. Honest participants follow the prescribed protocol while
Byzantine participants deviate from it arbitrarily. This binary classification overlooks the
nuances introduced by rational players of game theoretic models, who act based on in-
centives rather than strict adherence to the protocol or malicious intent. The lack of re-
search in distributed systems regarding blockchains’ incentives that are yet paramount
for participants motivated our work.

In particular, we focused our analysis on one blockchain: Ethereum. Ethereum is the
second biggest blockchain in terms of market capitalization and changed from a PoW
consensus to a PoS one at the beginning of our work (2021). This transition called The
Mergebrought a lot of changeswith it andmotivated ourwork. Weoften refer to Ethereum
protocol as EthereumPoS protocol to emphasize this change of paradigm. This resulted in
an involved protocol lacking study and explanation. By focusing on Ethereum, we saw an
opportunity to contribute meaningfully to the field while closely observing the transition
and its impacts on the properties of the blockchain.

The organization of this manuscript follows the chronological progression of our re-
search. After establishing the necessary properties and definitions, we first analyze the
protocol froma distributed systems perspective, initially without considering rewards and
penalties. We then extend this analysis by incorporating penalties. Finally, the last techni-
cal chapter before the conclusion examines the protocol from a game-theoretic perspec-
tive. Here is a more detailed overview of each chapter:

• Chapter II presents the remaining terms useful throughout the manuscript and
gives the essential properties and model we use for our analysis.

• Chapter III is the first part of ourwork, focusing on understanding the EthereumPoS
protocol. We started from scratch by reviewing the code to extract its properties.
This led to the publication of our first paper [PAT23] that we extended for a ACM
DLT journal recently accepted.

• Chapter IV pushes the protocol analysis further by taking into account penalties
present in the protocol. This is uncommon in distributed system analysis. This work
led to another publication [PAT24a]

• Chapter V is the last technical chapter and contains elements of our last paper
[PAT24b]. We model the interactions between block proposers and attesters as
a game. We investigate the most profitable behaviors for the players.

11

• Chapter VI summarizes our results and opens on possible future research linked to
our work.

I.6 . Related Work on Blockchain Analysis

Asmentioned, our work during this thesis revolves around the case study of Ethereum
Proof-of-Stake. We contribute to the field by formalizing the protocol, defining properties,
presenting attacks against these properties, and then analyzing the strategies of rational
validators. In this chapter, we present related works corresponding to each of these ef-
forts.

I.6.1 . Blockchain Formalization

The category of papers that aim to formalize blockchains includes all the white pa-
pers. These are articles explaining the main features of a protocol, often written by the
team behind the blockchain. This trend started in 2008 with the first blockchain, Bitcoin
[Nak08], and has been followed almost religiously by subsequent protocols. Ethereum
is no exception, having released its first white paper in 2014 [But14] when the Ethereum
blockchain operated with a PoW consensus.

Following the release of awhite paper by aprotocol’s team, other papers have emerged
to challenge or complement the blockchain’s description. For Bitcoin, this is exemplified
by the work of Garay et al. [GKL15], who analyzed the protocol’s pseudo-code and de-
duced some of its properties. Similarly, Amoussou-Guenou et al. [APPT19] proved the
correctness of the Tendermint protocol, thereby complementing the initial white paper
[BKM18]. Alturki et al. [ACL+19] used a proof assistant to prove the safety of the Algorand’s
blockchain [CM19]. Similarly, García-Pérez and Schett [GS19] provided a formal correct-
ness proof of the Stellar Consensus Protocol (SCP). Amores-Sesar et al. [ACM20] study
revealed that the Ripple protocol might violate both safety and liveness, challenging the
initial claims of Ripple’s Byzantine fault tolerance.

The first section of our work has a similar aim. We extract the pseudo-code from
the Ethereum specifications [Fou24], which is the description of how to implement the
protocol, to formalize its properties. Themost recent Ethereumwhite paper was released
to explain the new protocol following the transition from PoW to PoS [BHK+20].

Outside of this line of work focusing on specific protocols, other efforts have aimed
to provide formal foundations for blockchains. Anceaume et al. [ADL+19] proposed a
formalization of blockchains and their evolutions as Block Trees. Thework of Anceaumeet
al. [ADRT21] described the different ways blockchains can ensure that blocks permanently
belong to the chain, finalizing them. We rely on the definitions of Block Tree and finality
to express the properties of the Ethereum protocol.

12

I.6.2 . Attacks and Vulnerabilities

A considerable amount of work has been focused on identifying protocol vulnerabil-
ities. The most famous example is probably the seminal work of Eyal and Sirer [ES18],
which presents the selfish mining attack on Bitcoin. Eyal and Sirer show that in Bitcoin
(and proof-of-work in general), miners can benefit from deviating from the prescribed
protocol by withholding blocks for a while, to the detriment of honest miners. Many other
examples exist: for instance, Amoussou-Guenou et al. [ADPT18] pointed out a liveness vul-
nerability in the Tendermint protocol, and Neuder et al. [NMRP20] presented an attack
where nodes can reorganize Tezos’ Emmy+ chain and then perform a double-spend at-
tack. The protocol has been updated since then for a more robust solution proposed by
Astefanoaei et al. [ACP+21].

Our work focuses on Ethereum, which is no stranger to protocol attacks. Neu et al.
[NTT21] exhibited a balancing attack, highlighting the shortcomings of a consensus mech-
anism divided into two layers (finality gadget and fork choice rule). Mitigation against this
attack was proposed, but Neu et al. [NTT22] overcame this mitigation with a new balanc-
ing attack. Schwarz-Schilling et al. [SNM+22] presented reorg attacks, attacks where the
chain is reorganized leaving previous blocks orphaned, revealing that proposers could
gain from disturbing the protocol by releasing their blocks late.

Nakamura [Nak19b] presented an attack called splitting attack, in which the adversary
sends messages to split the set of validators. However, Nakamura assumes that the ad-
versary needs to control andmanipulate network delays, which is a strong and potentially
unrealistic assumption. More recently, Schwarz-Schilling et al. [SNM+22] demonstrated
through experiments that attackers can predict the proportion of validators receiving a
givenmessagewithin a specific timeframewith sufficient accuracy. This contradicts Naka-
mura’s claim that the attack necessitates the adversary to control network delay.

We contribute to this line of work by identifying flaws on the Ethereum PoS protocol.
First, we outline a flaw regarding the liveness of the current Ethereum Proof-of-Stake pro-
tocol, emphasizing the importance of reconciling availability and finality. Our approach
differs fromGalletta et al. [GLMV23], who aim to formally verify theHybrid Casper protocol
[BG17], focusing on an outdated version. We formalize the current implementation of the
protocol through pseudo-code and expose a liveness attack on the protocol. Our work
presents a form of the splitting attack where a message received by honest validators at
different times is differently perceived to be on time or too late, splitting the validators
into two ’views’. This different perception greatly influences which chain they consider
canonical. This attack is based on the assumption that the adversary knows the network
delay (in line with Schwarz-Schilling et al. [SNM+22]) but does not control it.
I.6.2A Incentives

Very few efforts in the literature have taken the incentive mechanism of protocols into
account to evaluate how Byzantine validators could exploit it. Initial efforts were made to
intertwine the study of incentives with considerations of liveness and safety properties of

13

the Ethereum protocol [BRLP20]. However, this early exploration discussed a preliminary
version of the protocol [BG17] and did not include an analysis of the inactivity leak. The
inactivity leak is the mechanism that penalizes inactive validators by reducing their stake.
The most recent version of the protocol by its founder [BHK+20] does not mention this
mechanism. The inactivity leak still lacks a detailed examination, and our work aims to fill
this gap.

While mechanisms similar to Ethereum’s inactivity leak exist elsewhere (e.g., [Woo16,
Goo14]), to the best of our knowledge, there has very few analysis of the risk associated
with potentially draining honest stake in a Byzantine-prone environment. An investiga-
tion linking penalties with the actions of Byzantine validators is presented by Zhang et al.
[ZLD23]. This work demonstrates how Byzantine validators can maliciously cause attes-
tation penalties for honest validators.

Our work is similar to Zhang et al. in scope, however we focus on more substantial
penalties, i.e., the inactivity penalties and slashing. During the inactivity period, attestation
penalties tend to be less significant. We found that the penalties could be detrimental for
the protocol’s safety if exploited by Byzantine participants.

I.6.3 . Rational Agents in Blockchain

Incentives are not often considered in the distributed systems field. Game theory
precisely addresses this gap.

Following the influential work of Eyal and Sirer [ES14, ES18], subsequent works (e.g.,
[GP20, NKMS16, SSZ16, ZET20]) use game-theoretic tools to analyze the maximum gain a
rational miner can achieve by selfish mining, i.e., deviating from the proof-of-work proto-
cols by withholding found blocks to gain an advantage in mining subsequent blocks. Also
considering only rational participants, the work of Biais et al. [BBBC19] proves that while
playing the proof-of-work game and following the longest chain’s rule is an equilibrium
-where no participant can improve their outcome by changing their strategy-, multiple
other equilibria exist where forks may persist.

At the intersection of distributed systems, which model agents as either honest or
Byzantine, and game theory, which models agents as rational, a mixed model was pro-
posed: BAR (Byzantine, Altruistic, and Rational) [AAH11]. However, the complexity of the
analysis rises quickly with somany types of agents. The work of Halpern and Vilaça [HV16]
considers rational participants who can fail by crashing. They prove that in such a setting,
there is no ex-post Nash equilibrium solving the fair consensus problem. Amoussou et
al. [ABPT20] consider agents being either rational or Byzantine, exhibiting different equi-
librium depending on the proportion of each.

These works do not apply to Ethereum since its PoS mechanism is too different from
classic PoWor classic BFT. Regarding PoS in general, Saleh [Sal20] showed that the nothing-
at-stake, problem in which PoS participant can extend simultaneously different fork with-
out cost was prevented due to the value of the blockchain and thus their stake being de-
creased by such actions. For the Algorand blockchain Fooladgar et al. [FMJR20] showed

14

that the cost and rewards of the protocol did not create an equilibrium in which par-
ticipants followed the protocol. They proposed an adjustment of the rewards to entice
selfish participants to cooperate. Comparing our work to the game theory literature on
the Ethereum PoS consensus, Roughgarden [Rou20] conducted a game-theoretic analysis
of an Ethereum Improvement Proposal (EIP) to evaluate its impact on transaction and
proposer rewards considering rational agents. Many works focus on MEV (Maximal Ex-
tractable Value), which involves taking advantage of the transaction ordering in a block. In
contrast, we focus on game-theoretic analyses affecting the consensus directly. We differ
fromworks like [BCC+23], which consider the possibility ofmaking ransomdemandswith-
out being detected. Schwarz-Schilling [SNM+22] studies the optimal timing for proposers
to propose their blocks.

Our endeavor is closest to the work of Carlsten et al. [CKWN16] and Tsabary and Eyal
[TE18] that study selfish behavior in Bitcoin using game theory when the only source of
rewards is transaction fees (no more coinbase transactions). Tsabary and Eyal show that
the Bitcoin blockchain becomes unstable since blockminers fork the Bitcoin blockchain to
obtain the most lucrative transactions. Ethereum PoS does not reward block proposers
with coinbase transactions; however, the presence of attesters and a different fork choice
rule than Bitcoin’s makes the analysis more complex. We focus on analyzing the behavior
of block proposers and attesters in Ethereum PoS using game theory and demonstrate
that the protocol tends to stabilize, even though a proposer might gain more by devi-
ating from the prescribed strategy due to the initial asynchronous setting. Moreover,
transaction fees do not play a crucial role in our analysis due to rewards stemming from
attestations.

15

16

Chapter II

Background

Contents
II.1 Distributed Computing Model 17

II.1.1 Fault Model . 17
II.2 Synchronization and Communication 18

II.2.1 Time . 18
II.2.2 Network . 18

II.3 Game Model . 19

C
onducting science primarily involves two approaches: empirical and theoretical. Em-
pirical science observes systems and studies the data and results from experiments,
inferring general laws and their functioning. Theoretical science usesmodels to rep-

resent problems and employs these models to derive theorems and rules about the sub-
ject of study. When creating a model, you must make assumptions and hypotheses that
define the constrained reality you aim to understand. In this chapter, we outline models
relevant to blockchain protocols and consensus.

II.1 . Distributed Computing Model

Analyzing the Ethereum PoS, we consider participants to be validators, forming a finite
set Π. There are a total of n validators. Being in PoS system, each validator owns a stake,
which refers to the amount of cryptocurrency (ETH) they possess. This stake serves as
a metric of their investment and influence in the consensus protocol. Throughout this
manuscript, the term "proportion" is used concerning a validator set to denote the ratio
of their combined stake to the total staked. A validator is interested in owning a stake as
it comes with responsibilities that are rewarded. Initially capped at 32 ETH, a validator’s
stake has the potential to decrease.

II.1.1 . Fault Model

In distributed systems, the goal of a protocol is to guarantee certain properties de-
spite the presence of faulty participants. In our analysis, faulty participants will always be
Byzantine ones [LSP82].

Following the well-known work of Castro and Liskov [CL99], we consider the worst-
case scenario in which all faulty nodes are controlled by a single adversary. This assump-

17

tion of a strong adversary is crucial for ensuring the reliability of critical distributed sys-
tems, where certain guarantees are expected even in the event of unexpected failures.
However, during our analyses the adversary does not manipulate message delays be-
tween honest validators.

Unlike the dynamic adversarymodel considered by Chen andMicali [CM19], where the
adversary can change the set of faulty nodes during execution, the works presented in
this manuscript consider a static adversary. This means that the set of faulty participants
is determined at the start of the analysis and does not change throughout. We denote
the proportion of Byzantine validators, which is the ratio of the sum of the stake of all
Byzantine validators over the stake of all validators, by β with β < 1/3. When analyzing
changes in the Byzantine proportion over time, we define the initial proportion as β0 <

1/3.
The Ethereum PoS protocol aims to achieve Byzantine Fault Tolerance (BFT), ensuring

the preservation of both Safety and Liveness properties as long as the initial proportion
of Byzantine validators (β0) remains strictly below 1/3.

II.2 . Synchronization and Communication

II.2.1 . Time

Each participant maintains its own clock to keep track of time. We assume that all
clocks are synchronized and run at the same pace. Any discrepancies in clock synchro-
nization are considered as part of the message delay.

In the Ethereum PoS protocol, time is measured in periods of 12 seconds, called slots,
with a period of 32 slots making up an epoch, which serves as the largest time unit in the
protocol. These timeframes are used to assign specific roles to validators at particular
moments.

II.2.2 . Network

We assume a partially synchronous model [DLS88], which consists of an asynchronous
period of unknown length followed by a synchronous period:

• During the asynchronous period, there is no bound on message delay. A message
sent during this period has no guarantee of reaching its recipient before the asyn-
chronous period ends.

• Conversely, in the synchronous period, there is a known bound ∆, ensuring that
any message sent at time t is received by time t+∆ at the latest.

The partially synchronous model begins with an asynchronous period that lasts until a
global stabilization time (GST), after which the synchronous period begins.

Studying protocols under this model is common to ensure resilience under both good
and bad network conditions. It is important to note that even with synchronized clocks,

18

the presence of an asynchronous network before GST still qualifies the system as partially
synchronous.

Validators communicate through message passing. We assume the existence of an
underlying broadcast primitive, which operates as a best-effort broadcast. This means
that when an honest validator broadcasts a value, all honest validators eventually receive
it. Messages are signed with a digital signature, providing a mechanism for cryptographic
identification and validation within the protocol.

II.3 . Game Model

This manuscript presents three distinct analyses: the first two from a distributed sys-
tems perspective, and the last one from a game-theoretic perspective. The shift in focus
necessitates a corresponding change in the modeling approach.

In Chapter V, we model the Ethereum PoS consensus protocol as a game where each
player1 acts either as a proposer or an attester. In the ideal scenario, proposers propose
blocks, and attesters broadcast attestations. The game unfolds over s sequential slots.
There is one proposer and a ∈ N attesters per slot, leading to a total of s proposers and
as attesters. The total number of slots s is unknown to the players.

Similar to the approach in [CKWN16], our game is based on the following assumptions:
(i) The game occurs during a synchronous period where the network is fully synchronous,
meaning there is no latency. This implies that once information (such as a block, attes-
tation, or transaction) is broadcast, all players immediately become aware of it. (ii) The
synchronous period follows an asynchronous period, during which there may have been
delays in information transmission. This assumption aligns with the Ethereum protocol’s
network behavior hypothesis [BHK+20].

Wemodel the interactions betweenproposers and attesters duringn slots in Ethereum
PoS as a dynamic game in which actions occur sequentially. In each slot, the sequence of
events is as follows: (i) a block is proposed at the beginning of the slot, (ii) new transactions
are proposed, and (iii) all attesters for the slot simultaneously send their attestations. The
actions, rewards, and strategies of validators will be thoroughly described and analyzed
in Chapter V.

1 ↑ The players are the participants of the Ethereum PoS that we also consider as a game for
our analysis.

19

20

Chapter III

Ethereum PoS Analysis under the
Distributed Computing Model

Contents
III.1 Safety and Liveness Properties 21

III.2 Ethereum PoS protocol . 23

III.2.1 Overview . 23
III.2.2 Pseudo Code . 30

III.3 Robustness Analysis . 36

III.3.1 Safety . 36
III.3.2 Probabilistic Liveness . 38
III.3.3 Implemented Patch . 40

III.4 Conclusion . 46

A
ll of our work revolves around the Ethereum protocol. We intend to study this
blockchain, which was once a PoW blockchain and is now a PoS blockchain, to
develop a general understanding using a famous case study. To do so, we start

with the roots of any protocol: its code. The Ethereum Foundation and the inventor of
Ethereum, Vitalik Buterin, have produced a paper [BHK+20] to explain the protocol and
prove its properties. The issue is threefold: the paper discusses an outdated version of
the protocol, not the entirety of the protocol is taken into account, and their results seem
to contradict the crucial CAP theorem [Bre00]. For all these reasons combined, we begin
our analysis from scratch, starting from the code. We begin our contribution by defining
crucial properties for blockchains. We then use pseudo-code that reflects the protocol
and the properties newly defined to evaluate the guarantees provided by the protocol.
This first analysis does not consider the incentives part of the protocol.

III.1 . Safety and Liveness Properties

Once the protocol has been laid out, we can investigate its properties. Despite their
names, blockchains are closer to block trees. Forks can occur and cause the blockchain
to have several branches rather than a unique chain. We adopt the formalization of An-
ceaumeet al. [ADL+19] of blockchain data structure as a block tree. Indeed, the blockchain
takes the form of a tree in which every node is a block pointing to its unique parent, and

21

the tree’s root is the genesis block. Among the different branches of the block tree, the
protocol indicates a unique branch, or chain, to build upon with a so-called fork choice
rule (e.g., the longest chain rule in Bitcoin). The selected chain is called the canonical chain.
Definition III.1 (Canonical chain). We call canonical chain the chain designated as the one
to build upon by the fork choice rule. Considering the view of the chain of an honest validator
i, i’s associated canonical chain is noted Ci.

The blocks in the canonical chain can be finalized or not.
Definition III.2 (Finalized block). A block is finalized for a validator i if and only if the block
cannot be revoked, i.e., it permanently belongs to the canonical chain Ci.

Note: It stems from the definition that all the predecessors of a finalized block are
finalized.
Definition III.3 (Finalized chain). The finalized chain is the chain constituted of all the final-
ized blocks.

Note: The finalized chain Cfi is always a prefix of any canonical chain Ci.
To analyze the protocol, one needs to examine the capability of the Ethereum Proof-

of-Stake protocol to construct a consistent blockchain (safety), to allow validators to add
blocks despite network partitions and failures (availability), and tomakeprogress on the fi-
nalization of newblocks (liveness). These are paramount properties characterizing blockchains.
Safety, availability, and liveness are expressed as follows:
Property III.1 (Safety). A blockchain is consistent or safe if, for any two honest validators
with a finalized chain, one chain is necessarily the prefix of the other. More formally, for two
validators i and j with respective finalized chains Cfi and Cfj , Cfi is the prefix of Cfj or vice
versa.

Property III.2 (Liveness). A blockchain is live if the finalized chain is ever growing.
Property III.3 (Availability). A blockchain is available if the following two conditions hold:
(1) any honest validator is able to append a block to its canonical chain in bounded time, re-
gardless of the failures of other validators and the network partitions; (2) the canonical chains
of all honest validators are eventually growing, i.e., given a block bk added to a canonical chain
at a distance d from the genesis block b0, where the distance is the number of blocks separating
bk from b0, eventually a block bl will be added to the canonical chain at a distance d′ > d.

The key difference between the finalized chain and the canonical chain is that blocks in
the finalized chain are permanent and cannot be revoked. In contrast, the canonical chain
can switch branches, meaning blocks in the previously chosen branch can potentially be
revoked. Availability, on the other hand, guarantees that adding blocks to the canonical

22

chain is a wait-free operation whose time to complete does not depend on network fail-
ures or Byzantine behaviors. Availability also implies that blocks are constantly added in
such a way that the height of the canonical chain eventually grows. This property avoids
the pathological scenario in which all the blocks are added to the genesis block to form a
star.

As in any distributed system, blockchains are faced with the dilemma brought by the
CAP Theorem. This theorem states that no distributed system can satisfy these three
properties at the same time: consistency, availability, and partition tolerance. Indeed, if
network partitions occur, either the system remains available at the expense of consis-
tency, or it stops making progress until the network partition is resolved to guarantee
consistency. This means that no blockchain can simultaneously be available and con-
sistent. However, by maintaining the canonical and the finalized chain simultaneously,
Ethereum Proof-of-Stake aims to offer both safety and availability. The canonical chain
aims to be available but without guaranteeing consistency all the time, while the finalized
chain falls on the other side of the spectrum, guaranteeing consistency without availabil-
ity. Therefore, the finalized chain will finalize blocks only when it is safe to do so, whereas
the canonical chain will still be available during network partitions (caused by network fail-
ures or attacks). The only caveat here is that the finalized chain grows by finalizing blocks
of the canonical chain, which means that the properties of the two chains are interde-
pendent. In particular, to assure liveness, it is necessary that the canonical chain steadily
grows. This interdependence is a source of vulnerability as we show in the remainder of
our analysis.

III.2 . Ethereum PoS protocol

III.2.1 . Overview

The Ethereum Proof-of-Stake (PoS) protocol design is quite involved. We identify, sim-
ilarly to [NTT21], the objectives underlying its design as follows: (i) finalizing blocks and (ii)
having an available canonical chain that does not rely on block finality to grow. To this end,
the Ethereum PoS protocol combines two blockchain designs: a Nakamoto-style protocol
to build the tree of blocks containing the transactions and a BFT finalization protocol to
progressively finalize blocks in the tree. The objective is to keep the blockchain creation
process always available while guaranteeing the finalization of blocks through Byzantine-
tolerant voting mechanisms. The finalization mechanism is a Finality Gadget called Casper
FFG, and the fork choice rule to select canonical chains is LMD GHOST.

Before introducing how the fork choice rule and the finality gadget work together,
we will introduce the following basic concepts: (i) slots, epochs, and checkpoints, which
set the pace of the protocol allowing validators to synchronize together on the different
steps, (ii) committees formation and assignment of roles to validators as proposers and
voters for each slot, and (iii) the different types of votes the validators must send in order
to grow and maintain the canonical chain as well as the finalized chain.

23

Slot 0

Epoch e

Slot 1 Slot 2 Slot 30 Slot 31

Figure III.1: Ethereum protocol Structure

In this section, we focus on providing a formalized version of the protocol through
pseudo-code, following the specification given by the Ethereum Foundation [Fou24]. Note
that a description of an initial plan of the protocol was proposed by Buterin et al. in
[BHK+20]. We describe and formalize the current implementation of the protocol [Fou24].

III.2.1A Slots, Epochs & Checkpoints

In proof-of-work protocols, such as originally described in [Nak08], the average frequency
of block creation is predetermined in the protocol, and the mining difficulty changes to
maintain that pace. In contrast, in Ethereum PoS, it is assumed that validators have syn-
chronized clocks to propose blocks at regular intervals. More specifically, the protocol
uses time frames called slots (12 seconds) and epochs (6 minutes and 24 seconds). Each
epoch is comprised of 32 slots. Epoch 0 contains slot 0 to slot 31, then epoch 1 slot 32 to
slot 63, and so on. These slots and epochs allow associating the validators’ roles to the
corresponding time frame.

An essential feature of epochs is the checkpoint. A checkpoint is a pair (block, epoch)
(b, e) where b is the block of the first slot1 of epoch e. Figure III.1 represents the structure
of an epoch in Ethereum PoS, with the checkpoint being represented by the hexagonal
blue shape.

III.2.1B Validators & Committees

Validators have two main roles: proposer and attester. The proposer’s role consists of
proposing a block during a specific slot2. This role is pseudo-randomly3 assigned to 32
validators per epoch (one for each slot). The attester’s role consists of producing an at-
testation sharing the validator’s view of the chain. This role is assigned once per epoch to
each validator.

In each epoch, a validator is assigned to exactly one committee (of attesters). A com-
mittee Cj is a subset of the whole set of validators. Each validator belongs to exactly one

1 ↑ In the event of an epoch without a block for the first slot, the block used for the checkpoint
is the last block in the canonical chain, belonging to a previous epoch. On the contrary, if the
proposer of the first slot proposes multiple blocks, this will create multiple checkpoints for the
other validators to choose from using the fork choice rule.

2 ↑ The current protocol specifications [Fou24] indicate that honest validators should send their
block proposition during the first third of their designated slot.

3 ↑ Detailed explanation in subsubsection III.2.1F.
24

committee, i.e., ∀j ̸= k, Cj
⋂
Ck = ∅ and for each epoch ⋃i Ci = Π. Each committee is

associated with a slot. During this slot, each member of the committee will have to cast
an attestation to indicate its view of the chain.

In short, during an epoch, validators are all attesters once and have a small probability
of being proposers (32/n). The roles of proposer and attester are entirely distinct, i.e., the
proposer of a slot is not necessarily an attester of that slot.

III.2.1C Vote & Attestation

There are two types of votes in Ethereum PoS: the block vote4 and the checkpoint vote5.
The message containing these two votes is called an attestation. During an epoch, each
validatormustmake one attestation. The attestation should be sent during a specific time
slot, which is determined by the validator’s committee. The two types of votes, checkpoint
vote and block vote, have very distinct purposes. The checkpoint vote is used to finalize
blocks and grow the finalized chain, while the block vote is used to determine the canoni-
cal chain. Although validators cast their two types of votes in one attestation, an important
distinction must be made between the two. Indeed, the two types of votes do not require
the same conditions to be taken into account. The checkpoint vote of an attestation is
only considered when the attestation is included in a block. In contrast, the block vote is
considered one slot after its emission, whether it is included in a block or not.

The code associated with the production of attestations is described in Algorithm 3
at subsection III.2.2. We then describe in Algorithm 6 how the reception of attestations is
handled.

III.2.1D Finality Gadget

The finality gadget is the mechanism that aims at finalizing blocks. The finality gadget
grows the finalized chain independently of block production. This decoupling of the final-
ity mechanism from block production permits block availability even when the finalizing
process is slowed down. This differs from protocols like Tendermint [BKM18], where a
new block can be added to the chain only after being finalized.

The finality gadget works at the level of epochs. Instead of finalizing blocks one by
one, the protocol uses checkpoint votes to finalize entire epochs. We now present in
more detail how the finality gadget of Ethereum PoS grows the finalized chain.

Recall that to be taken into account, a checkpoint vote needs to be included in a block.
The vote will then influence the behavior of validators regarding this particular branch.
Thus, in Algorithm9of subsection III.2.2, the function countMatchingCheckpointVoteonly
counts the matching checkpoint votes of attestations included in a block.

4 ↑ Also called GHOST vote in [BHK+20] and in the specifications [Fou24].
5 ↑ Also called FFG vote in [BHK+20] and in the specifications [Fou24].

25

Justification The justification process is a step towards achieving finalization6. It oper-
ates on checkpoints at the level of epochs. Justification occurs thanks to checkpoint votes.
The checkpoint vote contains a pair of checkpoints: the checkpoint source and the check-
point target. We can count with countMatchingCheckpointVote the sum of balances of
the validators’ checkpoint votes with the same source and target. If validators controlling
more than two-thirds of the stake make the same checkpoint vote, then we say there is
a supermajority link from the checkpoint source to the checkpoint target. The checkpoint
target of a supermajority link is said to be justified.

More formally, a checkpoint vote is in the formof a pair of checkpoints: ((a, ea), (b, eb)),
also noted (a, ea) −→ (b, eb). For the checkpoint vote (a, ea) −→ (b, eb), we call (a, ea) the
checkpoint source and (b, eb) the checkpoint target. The checkpoint source is necessar-
ily from an earlier epoch than the checkpoint target, i.e., ea < eb. In line with [BHK+20],
we say there is a supermajority link from checkpoint (a, ea) to checkpoint (b, eb) if valida-
tors controlling more than two-thirds of the stake cast an attestation with the checkpoint
vote (a, ea) −→ (b, eb). In this case, we write (a, ea)

J−→ (b, eb), and the checkpoint (b, eb) is
justified.

Finalization The finalization process aims at finalizing checkpoints, thus growing the
finalized chain. Checkpoints need to be justified before being finalized. Let us illustrate
the finalization process with the two scenarios that can lead to finalization. The first case
presents the main scenario in the synchronous setting. It shows how a checkpoint can be
finalized in two epochs, the minimum number of epochs needed for finalization.

Case 1: The scenario is depicted in Figure III.2.
1. Let A = (a, e) and B = (b, e + 1) be checkpoints of two consecutive epochs such
that A = (a, e) is justified.

2. A supermajority link occurs between checkpoints A and B where A is the source
andB the target. This justifies checkpointB. Hence, we can write: (a, e) J−→ (b, e+1)

or equivalently A J−→ B.
3. This leads to A being finalized.
The second case illustrates the scenario in which two consecutive checkpoints are jus-

tified but not finalized. This means that the current highest justified checkpoint (e.g.,B in
Figure III.3) was not justified with a supermajority link having the previous checkpoint A
as its source. Then, a new justification occurs with the source and target being at themax-
imum distance (2 epochs) for the source to become finalized. It is important to note that
there is no limit on the distance between two checkpoints for justification to be possible.
This limit only exists for finalization.

6 ↑ The genesis checkpoint (i.e., the checkpoint of the first epoch) is the exception to this rule: it
is justified and finalized by definition.

26

· · · A B · · ·

· · · A B · · ·

· · · A B · · ·

Figure III.2: The figure depicts the finalization scenario of Case 1with the 3 steps from top
to bottom. We represent a checkpoint with a hexagon, a justified checkpoint with a double
hexagon, and a finalized checkpoint with a colored double hexagon. The arrow between
two checkpoints indicates a supermajority link.

· · · A B C · · ·

· · · A B C · · ·

· · · A B C · · ·

Figure III.3: The figure depicts the finalization scenario of Case 2with the 3 steps from top
to bottom. We represent a checkpoint with a hexagon, a justified checkpoint with a double
hexagon, and a finalized checkpoint with double hexagon coloured. The arrow between
two checkpoints indicates a supermajority link.

Case 2: The scenario is depicted in Figure III.3.
1. LetA = (a, e),B = (b, e+1), andC = (c, e+2) be checkpoints of consecutive epochs
such thatA andB are justified. Since there is no supermajority link betweenA and
B, A cannot be finalized as in Case 1.

2. Now, a supermajority link occurs between checkpoints A and C where A is the
source and C the target. This justifies checkpoint C , i.e., A J−→ C.

3. This leads to A being finalized.
These two cases illustrate the fact that for a checkpoint to become finalized, it needs

to be the source of a supermajority link between justified checkpoints. Once a checkpoint
is finalized, all the blocks leading to it (including the block in the pair constituting the
checkpoint) become finalized. We now describe the conditions for a checkpoint to be
finalized more formally. Let (a, ea) and (b, eb) be two checkpoints such that ea < eb. The
checkpoint (a, ea) is finalized if the following conditions are respected:

• Source justified: The checkpoint (a, ea) is justified.
27

· · · A B C · · ·

· · · A B C · · ·

Figure III.4: This figure illustrates the case of two checkpoints A and C respecting all the
conditions for finalization but the one that stipulates that a checkpointB in-between must
be justified for A to be finalized.

• Supermajority link: There exists a supermajority link (a, ea) J−→ (b, eb).
• Maximal gap: eb−ea ≤ 2.7 Moreover, if eb−ea = 2, then the checkpoint in between
at epoch ea + 1 (= eb − 1) must be justified.

The importance of the last condition is illustrated by Figure III.4. In practice, these three
conditions are only applied to the last four epochs. As mentioned in [BHK+20], at the im-
plementation level, checkpoints more than 4 epochs old are not considered for finaliza-
tion. All the conditions for finalization are illustrated by the last 4 conditions of Algorithm9
in subsection III.2.2.
III.2.1E Fork choice rule & Block proposition

The fork choice rule is the mechanism that allows each validator to determine the canon-
ical chain depending on their view of the BlockTree and the state of checkpoints. The
Ethereum PoS fork choice rule is LMD GHOST. The LMD GHOST fork choice rule stems
from the Greedy Heaviest-Observed Sub-Tree (GHOST) rule [SZ15], which considers only
each participant’s most recent vote (Latest Message Driven). During an epoch, each val-
idator must make one block vote on the block considered as the head of the canonical
chain according to its view.

To determine the head of the canonical chain, the fork choice rule does the following:
1. Go through the list of validators and check the last block vote of each.
2. For each block vote, add a weight to each block of the chain that has the block voted

as a descendant. The weight added is proportional to the stake of the correspond-
ing validator.

3. Start from the block of the justified checkpoint with the highest epoch and continue
the chain by following the block with the highest weight at each connection. Return
the block without any child block. This block is the head of the canonical chain.

The actual implementation is presented in Algorithm 7 in subsection III.2.2. This algo-
rithm is similar to the one already presented in [BHK+20]. Albeit each block vote being for

7 ↑ This last condition necessitating the two checkpoints to be at most 2 epochs away from each
other is also called 2-finality [BHK+20].

28

1

0

2

5

Slot
12

4

3

4

10

2

5

2

1

0

2

5

Slot
10

2

3

4

8

2

3

Figure III.5: Fork choice rule example observed from a validator i’s point of view. We
represent block votes with blue circles. Block votes point to specific blocks indicating the
block considered as the headblock of the candidate chain at the moment of the vote. Each
block has a number representing the value attributed by the fork choice rule algorithm
(cf. Algorithm 7) to determine the candidate chain - we assume for this example that each
validator has the same stake of 1. On the left we represent the chain at the end of slot 4,
and on the right at the end of slot 5. On the left, i’s fork choice rule gives the block of slot
4 as Ci ’s head. On the right, the fork choice rule designates the block of slot 5 as the head
of the candidate chain.

a specific block, the fork choice rule considers all the chains leading to that block. This
reflects the fact that a vote for a block is a vote for the chain leading to that block. Fig-
ure III.5 offers an explanation with a visualization of how attestations influence the fork
choice rule. At each chain intersection, the fork choice rule favors the chain with the most
attestations.

III.2.1F Pseudo-Randomness

Ethereum’s solution to incorporate randomness in the consensus is called RANDAO. RAN-
DAO is a mechanism that creates pseudo-random numbers in a decentralized fashion. It
works by aggregating different pseudo-random sources and mixing them.

Seed creation. Each epoch produces a seed. This seed is created with the help of the
block proposers of the said epoch. Each valid block contains a field called randao_reveal8.
The seed is the hash of an XOR of all the randao_reveal values of an epoch plus the epoch
number.

Each block’s randao_revealmust be the signature of specific data to prevent manip-
ulation in the seed creation. The data to sign is the current epoch number. Anyone can
then check that this signature is from the block proposer and for the correct data.

Seed utilization. The algorithm using the seed is called compute_shuffled_index (cf.
Algorithm 12). This algorithmstems from the swap-or-not algorithm introducedby [HMR12].

8 ↑ See subsection III.2.2 for a detailed explanation of its use.
29

compute_shuffled_index shuffles the validators list and assigns new roles depending on
their shuffled index. This pseudo-random shuffling function is used two times in the
Ethereum PoS consensus algorithm: for the proposer selection and the committee se-
lection. The proposer selection is described in Algorithm 13 and the committee selection
in Algorithm 14.

III.2.2 . Pseudo Code

This subsection can be skipped if the reader does not value the understanding on how
we dissected the protocol. This step is as crucial as tedious, we outline the protocol based
on the code that we formalized to be readable in the form of a pseudo-code.

In this section, we dive into a practical understanding of the mechanism behind the
Ethereum PoS protocol. According to the specifications [Fou24] and various implemen-
tations (such as Prysm [Pry22] and Teku [Con22]), we formalize the main functions of the
protocol through pseudo-code for better understanding and analysis purposes.

Each validator p runs an instance of this particular pseudo-code. For instance, when a
validator p proposes a block, they broadcast the following message: ⟨PROPOSE, (slot,

hash(headBlockp), content)⟩, where slot is the slot at which the proposer proposes the
block, the hash of the headBlockp is the hash of the block considered to be the head of the
canonical chain according to the fork choice rule (see Algorithm 7), and content contains
data used for pseudo-randomness, among other things that we will not detail here. We
instead focus on the consensus protocol.

Wedescribe in the following paragraphs the variables and functions used in the pseudo-
code and the goal of these functions.

Variables. During the computation, each variable takes a value that is subjective and
may depend on the validator. We indicate with p that the value of variables depends on
each process. The variable treep is considered to be a graph of blocks with each block
linked to its predecessor, representing the view of the blockchain (more precisely, treep
represents the view of all blocks received by the validator since the genesis of the sys-
tem). Each treep starts with the genesis block. rolep corresponds to the different roles a
validator can have, which can be none (i.e., for each slot, the validator can be proposer,
attester, or have no role). rolep is a list containing the role(s) of the validator for the cur-
rent slot. The slotp is a measure of time. In particular, a slot corresponds to 12 seconds.
slotp ∈ N. Slot 0 begins at the time of the genesis block and is incremented every 12 sec-
onds. headBlockp is the head of the canonical chain according to p’s local view and the
fork choice rule.

A checkpointC is a pair block-epoch that is used for finalization. C has two attributes,
justified and finalized, which canbe true or false (e.g., ifC is only justified, thenC.justified =

true and C.finalized = false). lastJustifiedCheckpointp is the justified checkpoint with
the highest epoch. currentCheckpointp is the checkpoint of the current epoch. The list
attestationp is a list of size n (i.e., the total number of validators). This list is updated only

30

to contain the latest messages of validators (of at most one epoch old). CheckpointV otep

is a pair of checkpoints, so a pair of pairs, used to make a checkpoint vote. Let us stress
the fact that all these variables are local, and at any time, two different validators may
have different valuations of those variables.
Functions. We describe themain functions of the protocol succinctly before providing
the associated pseudo-code and a more detailed explanation:

• validatorMain is the primary function of the validator, which launches the execu-
tion of all subsidiary functions.

• sync is a function that runs in parallel with the validatorMain function and ensures
the synchronization of the validator. It updates the slot, the role(s), and processes
justification and finalization at the end of the epoch and when a new validator joins
the system.

• getHeadBlock applies the fork choice rule. This function indicates the head block
of the canonical chain.

• justificationFinalization is the function that handles the justification and final-
ization of checkpoints.

We depict in Algorithm 1 themain procedure of the validator. This procedure initializes
all the values necessary to run a validator. We consider the selection of validators already
made to focus on the description of the consensus algorithm itself. The main procedure
starts a routine called sync to run in parallel. Then there is an infinite loop that handles
the call to an appropriate function when a validator needs to take action for its role(s).

The roles performed by the validator when acting as proposer or attester are defined
in Algorithm 2 and Algorithm 3, respectively. The proposer of a block performs the fol-
lowing three tasks:

1. Get the head of its canonical chain to have a block to build upon.
2. Sign a predefined pair to participate in the process of pseudo-randomness.
3. Broadcast a new block built on top of the head of the canonical chain.
The attestation is composed of three parts: the slot, the block vote, and the check-

point vote. The validator uses the fork choice rule presented in Algorithm 7 to obtain
the block chosen for the block vote. Algorithm 7 and the one stemming from it, Algo-
rithm 8, have already been defined in [BHK+20]. We restate them here for the sake of
completeness. For the checkpoint vote, an honest validator should always vote for the
current epoch as the target and take the justified checkpoint with the highest epoch (i.e.,
lastJustifiedCheckpoint) as the source.

In order to broadcast this attestation, the attester must wait for one of two things: ei-
ther a block has been proposed for this slot, or 1/3 of the slot (i.e., 4 seconds) has elapsed.
This is ensured by the function waitForBlockOrOneThird.

31

Algorithm 1Main code for a validator p
1: procedure validatorMain()
2: treep ← nil ▷ The tree represents the linked received blocks
3: rolep ← [] ▷ rolep can be ROLE_PROPOSER and/or ROLE_ATTESTER when it is not

empty
4: slotp ← 0 ▷ slotp ∈ N
5: lastJustifiedCheckpointp ← (0, genesisBlock) ▷ A checkpoint is a tuple (epoch,

block)
6: attestationp ← [] ▷ List of latest attestations received for each validator
7: validatorIndexp ← index of the validator ▷ Each validator has a unique index
8: listV alidator ← [p0, p1, . . . , pN−1] ▷ A list of the validators index
9: balances← [] ▷ A list of the balances of the validators, their stake
10:
11: start sync(treep, slotp, attestationp, lastJustifiedCheckpointp, rolep, balances)
12:
13: while true do
14: if rolep ̸= ∅ then
15: if ROLE_PROPOSER ∈ rolep then
16: prepareBlock()

17: if ROLE_ATTESTER ∈ rolep then
18: prepareAttestation()

19: rolep ← []

20: else
21: no role assigned ▷ No action required

Algorithm 2 broadcast block
1: procedure prepareBlock()
2: headBlockp ← getHeadBlock()
3: randaoReveal← sign(epochOf(slot))
4: broadcast ⟨PROPOSE, (slot, hash(headBlockp), randaoRevealp, content)⟩

The synchronization of the validator p is handled by the function sync described in
Algorithm 4. This algorithm allows the validator to update its view of the blockchain, par-
ticularly the current slot, the list of attestations, the last justified checkpoint, the validator’s
role, and the balances of all validators. To determine its role(s), the validator verifies the
index of the designated validator for the current slot and the set of indexes forming the
committee of the current slot.

In more detail, two conditions assign a role to a validator for the current slot. The first
condition calls Algorithm 13 and assigns the validator p the role of proposer if its index
matches that of the current proposer. The second condition checks whether p belongs to
the committee of the current slot (see Algorithm 14). The roles of proposer and attester
are entirely distinct, i.e., the proposer of a slot is not necessarily an attester.

The synchronization function also starts twoother routines, syncBlock and syncAttestation,
corresponding to Algorithm 5 and Algorithm 6, respectively. These routines are used to
handle the broadcasts from proposers and attesters. In both functions, upon receiving

32

Algorithm 3 Broadcast Attestation
1: procedure prepareAttestation()
2: waitForBlockOrOneThird() ▷ wait for a new block in this slot or 1

3 of the slot3: headBlockp ← getHeadBlock()
4: currentCheckpointp ← (first block of the epoch, epochOf(slot))
5: CheckpointV otep ←

(
lastJustifiedCheckpointp, currentCheckpointp

)
6: broadcast ⟨ATTEST, (slotp, hash(headBlockp)︸ ︷︷ ︸

block vote

, CheckpointV otep︸ ︷︷ ︸
checkpoint vote

)⟩

a block or an attestation, the validator p verifies its validity using the isValid function.
It is important to note that upon receiving a block, a validator can update the last jus-
tified checkpoint only if the current epoch has not started more than 8 slots ago. This
particular condition is what the patch has introduced to prevent a liveness attack (see
subsection III.3.2).
Algorithm 4 Sync
1: procedure sync(tree, slot, attestation, role, lastJustifiedCheckpoint,)
2: start syncBlock(slot, tree)
3: start syncAttestation(attestation)
4: repeat
5: previousSlot← slot

6: slot← ⌊ time in seconds since genesis block / 12 ⌋
7: if previousSlot ̸= slot then ▷ If we start a new slot
8: roleSlotDone← false
9: if validatorIndexp = getProposerIndex(getSeed(current epoch), slot) then
10: append ROLE_PROPOSER to rolep

11: if validatorIndexp ∈ computeCommittee(getSeed(current epoch), slot) then
12: append ROLE_ATTESTER to rolep

13: if slot (mod 32) = 0 then ▷ First slot of an epoch
14: jutificationFinalization(tree, lastJustifiedCheckpoint)
15: until validator exit

Algorithm 5 Sync Block
1: procedure syncBlock(slot, tree)
2: upon ⟨PROPOSE, (sloti, hash(headBlocki), randaoReveali, contenti)⟩ from validator i

do
3: block ← ⟨PROPOSE, (sloti, hash(headBlocki), randaoReveali, contenti)⟩
4: if isValid(block) then
5: if slot (mod 32) ≤ 8 then
6: update justified checkpoint if necessary

Algorithm 9 can be considered the most intricate. This algorithm is responsible for
justifying or finalizing the checkpoints at the end of each epoch. To do so, it counts the
number of checkpoint votes with the same source and target. If this number corresponds
tomore than 2/3 of the stake of all validators, then the target is considered justified for the

33

Algorithm 6 Sync Attestation
1: procedure syncAttestation(attestation)
2: upon ⟨ATTEST, (sloti, headBlocki, checkpointEdgei)⟩ from validator i do
3: attestationi ← ⟨ATTEST, (sloti, headBlocki, checkpointEdgei)⟩
4: if isValid(attestationi) then
5: attestation[i]← attestationi

Algorithm 7 Get Head Block
1: procedure getHeadBlock()
2: block ← block of the justified checkpoint with the highest epoch
3: while block has at least one child do
4: block ← argmax

b′ child of block weight(tree,Attestation, b′)
5: (ties are broken by hash of the block header)
6: return block

validator running this algorithm. The last four conditions concern finalization. They verify
among the last four checkpoints which one fulfills the conditions to become finalized.
The conditions to become finalized are formally described in subsection III.2.1 and can be
summarized as follows: the checkpoint must be the source of a supermajority link, and
all the checkpoints between the source and target, inclusive, must be justified.

The pseudo-randomness requires a different seed for each epoch to yield different
results. This is ensured by hashing the RANDAO mix and the epoch number, as shown in
Algorithm 11. Adding the epoch number is helpful if no block is proposed during an entire
epoch. This corner case would always result in the same seed if it were not for the epoch
number.

The RANDAO mix is computed in Algorithm 10. The computation of the RANDAO mix
for a given epoch consists of XORing all the randaoReveal values of the blocks in that par-
ticular epoch. We consider only the blocks of that particular epoch that belong to the
canonical chain.

The RANDAO mix of epoch e− 2 determines the role of validators in epoch e. Hence,
with Algorithm 14, as soon as epoch e−2 is over, validators can know to which committee
they belong at epoch e. computeCommittee (Algorithm 14) is the function that, given a
seed and an epoch, returns the list of validator indices corresponding to the committee
for the specified slot. The number of validators in each committee9 is computed to be less
than N/32 (with n being the total number of validators). Then, using the shuffled index
computed with Algorithm 12, a committee of the given size is drawn according to the slot
in question. All committee validators will have to perform the role of attester during this
slot.

Since the balance can change until the previous epoch, block proposers are known at
the end of epoch e − 1 for epoch e. Algorithm 13 handles the selection of a proposer for
a designated slot. It starts by creating a seed specifically for the slot in question. Then,

9 ↑ In the actual implementation, committees have a maximum size of 2048 [Fou24].
34

Algorithm 8Weight
1: procedure weight(tree,Attestation, block)
2: w ← 0

3: for every validator vi do
4: if ∃a ∈ Attestation an attestation of vi for block or a descendant of block then
5: w ← w+ stake of vi
6: return w

Algorithm 9 Justification and Finalization
1: procedure jutificationFinalization(tree, lastJustifiedCheckpoint)
2: source← lastJustifiedCheckpoint

3: target← the current checkpoint
4: nbCheckpointV ote← countMatchingCheckpointVote(source, target)
5: ▷ justification process:
6: if nbCheckpointV ote ≥ 2

3∗ total balance of validators then
7: target.justified← true
8: lastJustifiedCheckpoint← target

9: ▷ finalization process:
10: A,B,C,D ← the last 4 checkpoints ▷WithD being the current checkpoint.
11: if A.justified ∧ B.justified ∧ (A J−→ C) then
12: A.finalized← true ▷ Finalization of A
13: if B.justified ∧ (B J−→ C) then
14: B.finalized← true ▷ Finalization of B
15: if B.justified ∧ C.justified ∧ (B J−→ D) then
16: B.finalized← true ▷ Finalization of B
17: if C.justified ∧ (C J−→ D) then
18: C.finalized← true ▷ Finalization of C

a loop starts with a pseudo-random selection of the validator’s index. The loop stops
only when a validator meets the condition criteria. This condition is equivalent to being
selected with a probability depending on the balance. Thus, the validator with index pro-
poserIndex is selected with probability effectiveBalance

32 , with effectiveBalance being the stake
of proposerIndex capped at 32, i.e.,min(balance, 32).

Both Algorithm 13 and 14 use Algorithm 12 to imbue randomness in the proposer and
committee selection. As mentioned in section III.2, Algorithm 12 stems from the algorithm
swap-or-not [HMR12]. Its name helps us understand the principle behind the algorithm:
select a validator and its opposite (based on a pivot) and swap them or not. The selection

Algorithm 10 Get randao mix
1: procedure getRandaoMix(epoch)
2: mix← 0

3: headBlock ← getHeadBlock()
4: for each block parent of headBlock and belonging to epoch do
5: mix← mix⊕ hash(block.randaoReveal) ▷ ⊕ is a bit-wise XOR operator
6: returnmix

35

Algorithm 11 Get seed
1: procedure getSeed(epoch)
2: mix← getRandaoMix(epoch− 2) ▷ The seed of an epoch i is based on the randao

mix of epoch i− 2

3: return hash(epoch+mix)

of the validator and the swap depend on the value of a hash. An essential aspect of this
algorithm is that it can get the index of validators in the shuffled list without having to
compute the shuffling of the whole list of validators. This reduces unnecessary computa-
tion.
Algorithm 12 Compute shuffled index
1: procedure computeShuffledIndex(index, seed, nbV alidators)
2: for i = 0 to 90 do
3: pivot← hash(seed+ i) (mod nbValidators)
4: flip← pivot+ nbV alidators− index (mod nbValidators)
5: position← max(index, flip)

6: bit← hash(seed+ i+ position) (mod 2)

7: if bit = 0 (mod nbValidators) then
8: index← flip

9: return index

Algorithm 13 Get proposer index
1: procedure getProposerIndex(seed, slot)
2: MAX_RANDOM_BYTE← 28 − 1

3: i← 0

4: proposerSeed← hash(seed+slot)
5: nbV alidators← length(listV alidator)
6: while true do
7: proposerIndex← listV alidator[computeShuffledIndex(i, seed, nbV alidators)]
8: randomByte← first byte of hash(proposerSeed+ i (mod nbV alidators))
9: effectiveBalance← listV alidators[proposerIndex].effectiveBalance
10: if effectiveBalance ∗ MAX_RANDOM_BYTE ≥ MAX_EFFECTIVE_BALANCE ∗randomByte

then
11: return proposerIndex

12: i← i+ 1

III.3 . Robustness Analysis

Wenow have formalized the protocol and the blockchain properties necessary for our
analysis. We will start by analyzing if the protocol is safe, and then if is live.

III.3.1 . Safety

In order to prove the safety of the protocol, we begin by presenting lemmas concern-
ing the justification of checkpoints. The first lemma rules out the possibility of two differ-

36

Algorithm 14 Compute Committee
1: procedure computeCommittee(seed, slot)
2: committee← []

3: nbValidatorByCommittee← ⌈lenght(listV alidator)/32⌉
4: for i = (slot (mod 32))∗nbValidatorByCommittee to (slot + 1

(mod 32))∗nbValidatorByCommittee −1 do
5: committee.append(listV alidator[computeShuffledIndex(i, seed, nbV alidators)])
6: return committee

ent justified checkpoints having the same epoch. New validators that want to join the set
of validators must send the amount they wish to stake to a specific smart contract10. This
transaction triggers the process for a validator to join the set of validators. The last step
required for the activation of a validator (allowing it to send attestations and propose
blocks) requires that the block adding the validator to the validator set gets finalized11.
This means that the set of validators is fixed between two finalized checkpoints.
Lemma III.1. If checkpoints C and C ′ of the same epoch e are justified, it must necessarily be
that C = C ′.

Proof. By hypothesis, we know that Byzantine validators are at most f < n/3. For the
sake of contradiction, let us assume that C and C ′ are different checkpoints. Let V be the
set of at least 2n/3 − f honest validators that cast a checkpoint vote for checkpoint C in
epoch e, and V ′ be the set of at least 2n/3 − f honest validators that cast a checkpoint
vote for checkpoint C ′ in epoch e. The intersection of the two sets of honest validators is
|V ∩ V ′| ≥ (2n/3− f) + (2n/3− f)− (n− f) = (n/3− f) > 0. |V ∩ V ′| > 0 implies that
at least one honest validator voted for both checkpoint C and checkpoint C ′ in epoch e.
This is a contradiction since, according to the protocol specification12, an honest process
signs at most one unique block per epoch. Therefore, C = C ′. This proves there cannot
be more than one justified checkpoint per epoch.

The following lemma explains why the finalization of a checkpoint necessarily means
that a checkpoint cannot be justified on a different chain afterward.
Lemma III.2. If a checkpointC of epoch e is finalized on chain c, and a checkpointC ′ of epoch
e′ is justified on chain c′ with e′ > e, it necessarily means that c and c′ have a common prefix
until epoch e.

10 ↑ Currently, 32 ETH is needed to become a validator.
11 ↑ The exact process involves placing the validator in the activation queue to be finalized.

See more at https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-
chain.md.

12 ↑ This is specified in the specs https://github.com/ethereum/consensus-specs/
blob/dev/specs/phase0/validator.md#attester-slashing, and implemented
in the actual client Prysm https://github.com/prysmaticlabs/prysm/blob/
0fd52539153e32cfbd0a27ee51f253f8f6bb71c4/validator/client/attest.go#L140. This
corresponds to the only attestation done by an honest validator during an epoch, see Algo-
rithm 4.

37

https://github.com/ethereum/consensus-specs/blob/80ba16283c9447db8aa04eeaf4a3940b56480758/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/80ba16283c9447db8aa04eeaf4a3940b56480758/specs/phase0/beacon-chain.md
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attester-slashing
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/validator.md#attester-slashing
https://github.com/prysmaticlabs/prysm/blob/0fd52539153e32cfbd0a27ee51f253f8f6bb71c4/validator/client/attest.go#L140
https://github.com/prysmaticlabs/prysm/blob/0fd52539153e32cfbd0a27ee51f253f8f6bb71c4/validator/client/attest.go#L140

Proof. C ′ being justified on chain c′ means that at least 2n/3− f honest validators must
have cast a checkpoint vote with C ′ as the checkpoint target for epoch e′.

For the sake of contradiction, let us say that c and c′ have a common prefix until epoch
e−1 at most. For a checkpoint to be justified on chain c′ at an epoch strictly superior to e,
it implies that a set V ′ of at least 2n/3− f honest validators must have cast a checkpoint
vote with a checkpoint target on chain c′ and a checkpoint source with an epoch less than
e− 1.

Checkpoint C of epoch e being finalized on chain c, we have two possibilities. Either
the checkpoint at epoch e+1 on chain c has been justifiedwith checkpointC as the source,
or the checkpoint at epoch e + 2 on chain c has been justified with checkpoint C as the
source, and the checkpoint at epoch e+ 1 is justified. Either way, a justification occurred
on chain c with checkpoint C as the source, and no justification occurred on a different
chain before its finalization.

Hence, we know that a set V of at least 2n/3− f honest validators have cast a check-
point vote with C as the checkpoint source before a justification on any other chain.

Seeing that |V ∩ V ′| > 0, at least one honest validator has cast a checkpoint vote with
C as the checkpoint source and then a checkpoint vote with a checkpoint source of at
most epoch e− 1 and a target on chain c′.

Therefore, at least one honest validator has cast a checkpoint vote with a checkpoint
source from an epoch less than e− 1 after seeing checkpoint C at epoch e justified. How-
ever, the fork choice rule of the protocol (cf. Algorithm 7) requires honest validators to
vote on the chain with the highest justified checkpoint. This contradiction proves the
lemma.

We sawwith Lemma III.1 that two checkpoints of the same epoch could not be justified,
hence finalized. We then showedwith Lemma III.2 that after a finalization on one chain, no
checkpoints could become justified on any other chain. These are the conditions required
to have safety, as we prove now.
Theorem III.1 (Safety). There cannot be two finalized checkpoints on different chains in Ethereum
PoS.

Proof. Thanks to Lemma III.1, we know that two different checkpoints C and C ′ of the
same epoch cannot be justified, hence finalized.

For the sake of contradiction, let us assume that two checkpoints C and C ′ are final-
ized on different chains c and c′ at epochs e and e′, respectively. We assume without loss
of generality that e < e′. C being finalized, we know thanks to Lemma III.2 that C ′ cannot
be justified on a different chain c′, let alone be finalized.

The blockchain preserves the property of safety at all times. The EthereumPoS is safe.
III.3.2 . Probabilistic Liveness

Spoiler alert: the protocol is not guaranteed to be live; rather, it is probabilistically live.
This means that as time goes on, the probability of it being live approaches 1. However,

38

checkpoint
justified checkpoint
finalizied checkpoint

attestation from honest validateur
attestation from Byantine validateur
designate which checkpoint is the
target checkpoint for an attestation

Figure III.6: This figure serves as a summary of the signification of the main diagrams of
other figures.

the probability that it is not live is not zero, although it remains very small. To prove this
point, we will explain an attack that targets the protocol’s liveness.

In order to explain this attackwhich is by nomeans simplewe start by describing a sim-
pler liveness attack called the bouncing attack. This attack delays finality in a partially syn-
chronous network after GST. Previous works also exhibit liveness attacks against the pro-
tocol using the intertwining of the fork choice rule and the finality gadget [Nak19a, NTT21].
To prevent this attack, the protocol now contains a "patch" [Req19] suggested on the
Ethereum research forum [Nak19b]. We show that the implemented patch is insufficient,
and this attack is still possible if certain conditions are met. This is a probabilistic liveness
attack against the Ethereum Proof-of-Stake protocol. Our attack can happen with less
than 1/3 of Byzantine validators, as discussed in subsubsection III.3.3A. We also consider
the adversary to be static because Byzantine validators are chosen before the computa-
tion.

III.3.2A Bouncing Attack

The Bouncing Attack [Nak19a] describes a liveness attack where the suffix of the chain
changes repetitively between two canonical chains, thus preventing the chain from fi-
nalizing any checkpoint. The Bouncing Attack exploits the fact that the canonical chains
should start from the justified checkpoint with the highest epoch. It is possible for Byzan-
tine validators to divide honest validators’ opinions by justifying a new checkpoint once
somehonest validators have already cast their vote (made an attestation) during the asyn-
chronous period before GST.

The bouncing attack becomes possible once there is a justifiable checkpoint in a dif-
ferent branch from the one designated by the fork choice rule with a higher epoch than
the current highest justified checkpoint. A justifiable checkpoint is a checkpoint that can
become justified only by adding the checkpoint votes of Byzantine validators. If this setup
occurs, the Byzantine validators could make honest validators start voting for a different
checkpoint on a different chain, leaving a justifiable checkpoint again for them to repeat
their attack and thus making validators bounce between two different chains and not fi-
nalizing any checkpoint. Hence the name Bouncing attack.

Let us illustrate the attack with a concrete case. In Figure III.7, we show an oversimpli-
fied case with only 10 validators, among which 3 are Byzantine. To occur, the attack needs

39

7

4 3

7

3 7

4 3

7

3

4

7

7 3

7

3

4

step 1 step 2 step 3

Figure III.7: A bouncing attack presented in 3 steps. We have 10 validators, of which 3 are
Byzantines. The number inside each hexagon corresponds to the number of validators
who made a checkpoint vote with this checkpoint as target. 1st step: We start in a situa-
tion where there is a fork. A checkpoint is justified on one of the chains and a checkpoint
of a higher epoch is justifiable on the other. We are at the end of the third epoch in which
honest validators have divided their vote on each side. 2nd step: We have reached GST
at the beginning of the fourth epoch and 4 honest validators have already voted (rightfully
so). 3rd step: Here is themoment Byzantine validators take action and release their check-
point vote for the concurrent chain, thus justifying the previously forsaken checkpoint and
thereby changing the highest justifying checkpoint. By repeating this process, the bounc-
ing attack can continue indefinitely.

to have a justifiable checkpoint with a higher epoch than the last justified checkpoint. We
reach this situation before GST, which is presented in the left part of the figure. After
reaching GST, Byzantine validators wait for honest validators to make a new checkpoint
justifiable. When a new checkpoint is justifiable, the Byzantine validators cast their votes
to justify another checkpoint, as shown in the right part of the figure. This will lead hon-
est validators to vote for the left branch, thus reaching a situation similar to the first step,
allowing the bouncing attack to continue. The repetition of this behavior is the bouncing
attack. We emphasize this example in more detail in Figure III.8 by detailing the sequence
of votes allowing a "bounce" to occur and leaving a justifiable checkpoint on the other
branch.

III.3.3 . Implemented Patch

The explanation of the patch is described for the first time on the Ethereum research
forum [Nak19b]. The solution found to mitigate the bouncing attack is to engrave in the
protocol the fact that validators cannot change theirminds regarding justified checkpoints
after a part of the epoch has passed.

The goal of the proposed solution is to prevent the possibility of justifiable checkpoints
being left out by honest validators. To prevent honest validators from leaving a justifiable
checkpoint, the patch must stop validators from changing their view of checkpoints be-
fore more than 1/3 of validators have cast their checkpoint vote. This condition stems
from the fact that we reckon the proportion of Byzantine validators to be at most 1/3− ϵ.
To apply this condition, the patch designates a number of slots after which honest val-
idators cannot change their view of checkpoints. Since validators are scattered equally

40

1

0

2

18E
p
o
ch

e

Slot

E
p
o
ch

e
−
1

E
p
o
ch

e
−
2

77

6733

3367

44

×20 ×38

19

32

×30

33

Slot

E
p
o
ch

e
−

1

E
p
o
ch

e
−

2

77

6733

3344

AB

checkpoint vote

chain Achain B

AB

Figure III.8: This figure presents a detailed version of the bouncing attack. In this example,
we have a total of 100 validators, of which 23 are Byzantines. A block in a checkpoint cor-
responds to the block associated with that checkpoint. The number inside each hexagon
(hovering a block) corresponds to the number of validators who made a checkpoint vote
with this checkpoint as target. We distinguish between two sorts of checkpoint votes, the
Byzantine ones, which are bi-color rectangles, and the honest ones, which are uni-color
rectangles. We compile the 3 steps of Figure III.7 in 2 with more information on how jus-
tification’s turning point is accomplished because of the Byzantine agents. First step: We
begin from a situation where epoch e−1 just ended and we now reach GST. Notice that the
canonical chain is chainA because the checkpoint with the highest epoch is on chainA but
not chain B. Second step: In this step, the checkpoint vote released during epoch e can
change the last justified checkpoint to change the canonical chain for chain A to chain B.
Byzantine validators released their checkpoint vote from the previous epoch during epoch
e. They send their last checkpoint vote at slot 23 once the checkpoint of epoch e on chain
A has reached 44, thus becoming justifiable (i.e., not yet justified but with enough votes
so that Byzantine validators can justify it). This triggers the canonical chain to change from
chain A to chain B starting the bounce.

41

among the different slots to cast their vote (in attestations) within a specific time frame,
stopping validators from changing their view after a certain number of slots is equivalent
to stopping them from changing their view after a certain proportion of validators have
voted. This does appear to be a solution to prevent Byzantine validators from influencing
honest validators into forsaking a checkpoint that is now justifiable for them.

To enforce this behavior, called the "fixation of view," the protocol has a constant j
called SAFE_SLOTS_TO_UPDATE_JUSTIFIED in the code (cf. Algorithm5 in subsection III.2.2).
This constant is the number of slots13 during which validators can change their view of the
justified checkpoints. The patch introducing this constant j mentions a possible attack
called the splitting attack. As they point out, the splitting attack relies on a "last minute
delivery" strategy whereby releasing a message late enough causes some validators to
consider it too late while others do not. This could split the validators into two different
chains, unable to reconcile their views before the end of the epoch. After the beginning
of the next epoch views can be reconciled during j slots however the split can occur once
again by another last minute delivery. They consider the assumption that attackers can
send a message at the right time to split honest validators too strong. In subsubsec-
tion III.3.3A, we present a new attack inspired by the splitting attack with more realistic
assumptions.

III.3.3A Probabilistic Bouncing attack - why the patch is not enough

In this part, we present our novel attack against the protocol of Ethereum Proof-of-Stake.
The attack is visually explained in Figure III.9.

Attack Condition. Our attack takes place during the synchronous period and uses
the power of equivocation by Byzantine processes. Equivocation is caused by a Byzantine
process that sends a message only to a subset of validators at a given point in time and
potentially another message or none to another subset of validators. The effect is that
only a part of the validators will receive themessage on time. More in detail, the bounded
network delay is usedby aByzantine validator to convey amessage to be readon a specific
slot by some validators and read on the next slot by the other validators. Note that if a
protocol is not tolerant to equivocation, then it is not BFT (Byzantine Fault Tolerant), since
equivocation is the typical action possible for Byzantine validators.

Attack Description and Analysis Let β ≤ f/n be the fraction of Byzantine valida-
tors in the system. The attack setup is the following. First, as in the traditional bouncing
attack, we start in a situation where the network is still partially synchronous. A fork oc-
curs and results in the highest justified checkpoint being on chain A at epoch e, and a
justifiable checkpoint at epoch e + 1 on chain B. Assume now that GST is reached. The

13 ↑ At the time of writing this manuscript, j = 8 [Fou24].
42

1

0

2

6E
p
o
ch

e

Slot

E
p
o
ch

e
−

1

E
p
o
ch

e
−
2

77

6733

3367

16

×10

×10

7

{{

0

vote

chainB

vote

chainA

1

0

2

6E
p
o
ch

e

Slot

E
p
o
ch

e
−

1

E
p
o
ch

e
−

2

77

6733

3367

57

×10

×10

7

{{

33

vote

chainB

vote

chainA

31
×31 ×39

AB AB

1

0

2

6E
p
o
ch

e

Slot

E
p
o
ch

e
−

1

E
p
o
ch

e
−

2

77

6733

3357

16

×10

{{

0

vote

chainB

vote

chainA

AB

step 1 step 2 step 3

Figure III.9: This figure presents the probabilistic bouncing attack. In this example, we
consider 100 validators, of which 10 are Byzantine. A block in a checkpoint corresponds
to the block associated with that checkpoint. The number inside each hexagon (hovering
a block) corresponds to the number of validators who made a checkpoint vote with this
checkpoint as the target. The example starts at the slot before the attack in step 1. GST
has been reached in epoch e and honest validators have started to vote on chainA. This is
the correct action because the justified checkpoint with the highest epoch is on chainA (at
epoch e−2). During the next slot in step 2, before reaching limitSlot, a Byzantine validator
sends a blockwith withheld votes for the checkpoint at epoch e−1 on chainB. It is released
just in time for a set of honest validators to consider it and too late for the remaining
validators. The honest validators that see the block in time will update their view of the
justified checkpointwith the highest epoch and consider chainB as the canonical chain. We
now showhow the epoch continues with step 3. The block produced by a Byzantine, having
been released just in time, causes (1/3) of honest validators to change their view. This
results in a situation where Byzantine validators can perform the same attack during the
next epoch provided that at least one Byzantine validator is selected to be block proposer
on chain A for one of the first 8 slots.

43

attack can proceed14 as follows:
1. Since GST is reached, the network is fully synchronous. Chain A is the canonical
chain for all validators.

2. Just before validators must stop updating their view concerning the justified check-
point (i.e., before reaching the limit of j slots15 in the epoch corresponding to the
condition in line 6 of Algorithm 5), a Byzantine proposer proposes a block (cf. Al-
gorithm 2) on chain B. This block contains attestations with enough checkpoint
votes to justify the justifiable checkpoint left by honest validators. The attestations
included in the block are those of Byzantine validators that were not issued in the
previous epoch when they were supposed to be. The block must be released just in
time, that is, right before the end of slot j, so that (1/3−β) of the validators change
their view of the canonical chain to be active on chain B while the rest of the hon-
est validators continue on chain A. This is possible due to the patch preventing
validators from changing their mind after j slots.

3. Repeat the process.
An important aspect to consider in the attack is the probability of Byzantine validators

becoming proposers. This is crucial because, without the role of proposer, validators can-
not propose blocks and add new attestations containing checkpoint votes on the concur-
rent chain.16 The probability of being selected to be a proposer directly impacts how long
the probabilistic bouncing attack can continue. In the following theorem, we establish the
probability of a probabilistic bouncing attack lasting for a specific number of epochs.
Theorem III.2. The probabilistic bouncing attack occurs during k epochs after GST and a
favorable setting with probability:

P (bouncing k times) = (1− αj)k, (III.1)
with α ∈ [0, 1] being the proportion of honest validators and j the number of slots before

locking a choice for justification.

Proof. We denote by α the proportion of honest validators and j the number of slots be-
fore locking the choice for justification. We want to know the probability of delaying the
finality for k epochs. Once we assume a setup condition sufficient to start a probabilistic
bouncing attack, the attack continues until it becomes impossible for Byzantine validators

14 ↑ Note that before GST, no algorithm can ensure liveness since communication delaysmay not
be bounded.

15 ↑ At the time of writing, 8 slots.
16 ↑ Note that Byzantine validators cannot use their role as proposer during the previous epoch

to release a block with the right attestations because it might not be the last block of the epoch.
Indeed, because some honest validators are on the concurrent chain, they add blocks. The check-
point votes contained in the Byzantine attestations must be on the same chain as the attestation
to justify the justifiable checkpoint, making the checkpoint justifiable in the first place.

44

0 20 40 60 80 100 120 140
Epoch (k)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

= 0.333
= 0.25
= 0.2
= 0.15

Probability 0

Figure III.10: The figure presents the probability of the bouncing attack depending on the
proportion of Byzantine validators β and the number k of epochs during which the bounc-
ing attack lasts. The probability is computed based on Equation III.1, knowing thatα = 1−β.

to cast a vote to justify the justifiable checkpoint. To cast their vote, Byzantine validators
need one of the j first slots of the concurrent chain to have a Byzantine validator as pro-
poser. Considering the probability of choosing between each validator, the chance for a
Byzantine validator to be a proposer for one of the first j slots is (1−αj), with α being the
proportion of honest validators. For k epochs, we take this result to the power of k.

We depict the probability of the bouncing attack over time with several proportions
of Byzantine validators β in Figure III.10. The closer the proportion of Byzantine validators
is to 1/3, the higher the probability of the attack lasting for k epochs (for any k).

The probability of the bouncing attack continuing for k epochs depends on two factors:
α (= 1 − β), the proportion of honest validators that cannot be controlled, and j, the
number of slots before which validators are allowed to switch branches. Reducing j to 0
would prevent the bouncing attack fromhappening (the probability falls to 0), but it would
mean that validators are never allowed to change their view of the canonical chain. This
naive solutionwould create irreconcilable choices among the set of validators andprevent
any new checkpoint from being justified, which is a more severe threat to the liveness of
Ethereum PoS.

Reducing the number of slots during which validators can change their view of the
blockchain implies that different views cannot reconcile quickly. At the very least, the win-
dow of opportunity for doing so gets smaller. Theoretically, the proportion of Byzantine
validators necessary to perform this attack is 1/n. This is because we assume a favorable
setup and that Byzantine validators can send messages so that only a desired portion of
honest validators receive them on time. Our analysis focuses on the course of action of
the attackers during the attack rather than the conditions necessary for it to occur.

This analysis highlights the delicate balance between fixing the view of validators and
45

letting them change their view too much. There is a non-zero probability for the attack to
last k epochs for any k. However, the probability starts to plummet rapidly. With a pro-
portion of β = 0.3, the probability of the attack lasting 100 epochs17 is 0.02. Nonetheless,
there is a non-negligible probability of delaying the finalization for several hours evenwith
β ≈ 0.25.

We conjecture that with the current design of Ethereum PoS, it is impossible to com-
pletely avoid such issues. Attempts to patch this probabilistic bouncing attack may not
ensure a safe or live protocol; i.e., mitigating one attackmight give rise to other vulnerabil-
ities. For example, committee-based blockchains with single-shot finality employ complex
systems to prevent conflicting and irreconcilable views [ADPT18, APPT19, YMR+19]. These
mechanisms typically require the exchange of messages from a quorum of validators to
update one’s perspective. However, such mechanisms are not feasible in Ethereum PoS
since halting the blockchain’s availability is not an option. More broadly, this issue aligns
with existing literature [NTT21, LPR20] and their connections to the CAP theorem [Bre00].
Consequently, a possible straightforward solution could be to transition to a classical BFT
consensus protocol with single-slot finality. Yet, such a change would fundamentally alter
the protocol and should not be considered a mere mitigation.

III.4 . Conclusion

In this study, we propose a novel distinction between the definitions of blockchain
liveness and availability properties. This distinction is crucial for pinpointing differences
between Nakamoto-style consensus and BFT (Byzantine Fault Tolerance) consensus, en-
abling a comparison between the two. We describe a framework for a high-level descrip-
tion of how the Ethereum PoS (Proof of Stake) protocol functions—a committee-based
BFT protocol strongly inspired by Nakamoto-style consensus. Through this formalization,
we demonstrate that the Ethereum PoS protocol satisfies the safety property and that no
conflicting blocks can be finalized on different branches. We also present patches imple-
mented to mitigate some attacks demonstrated on previous and preliminary versions of
the protocol. However, we exhibit an attack on finalization, showing that the Ethereum
PoS protocol exhibits probabilistic liveness.

We supplement our analysis with an examination of the protocol’s rewards and in-
centives, which were not considered here, in Chapter IV. We are interested in how the
incentivemechanism can impact the safety of the protocol as well as the behavior of ratio-
nal validators. We intend to implement the probabilistic attack and simulate its outcome
while considering penalties.

Such analyses could be conducted empirically to closely monitor the actual behavior
of the validators, especially in scenarios where an attack occurs.

17 ↑ 100 epochs is about 10 hours.
46

Chapter IV

Ethereum PoS Analysis under the
Distributed Computing Model with

Penalties

Contents
IV.1 System Model . 47

IV.2 Protocol and Properties . 48

IV.3 Safety Attack . 48

IV.3.1 Incentives . 49
IV.4 Inactivity Leak . 49

IV.4.1 Inactivity Score . 50
IV.4.2 Inactivity penalties . 50
IV.4.3 Stake’s functions during an inactivity leak 50

IV.5 Analysis . 52

IV.5.1 GST upper bound for Safety 53
IV.5.2 Upper bound decrease due to Byzantine validators 55
IV.5.3 Revisiting the Probabilistic Bouncing Attack 62

IV.6 Discussion & Conclusion . 67

B
eginning with the consensus part of the protocol without the incentives, it now re-
mains to consider them. We knew from the beginning that taking into account the
incentives would yield different results. However the complexity of the protocol

was such that a first analysis focusing solely on the consensus part was necessary. We
start this chapter by precising the network model for this analysis. It is very similar to the
previous one but note that we define an initial Byzantine proportion because it will vary
during our analysis. We also redefine some properties and explain the protocol succinctly
as a remainder. Then comes the analysis of the incentive mechanism called inactivity leak.

IV.1 . System Model

The model for our analysis is defined in Chapter II. For more clarity, there is a point of
clarification regarding the network conditions.

47

During our analysis, we assume a network configuration where, during asynchronous
periods, honest validators are split into two distinct partitions. Communication between
these partitions is restricted, simulating a scenario where two regions are temporarily
isolated from each other but maintain internal communication within each region. This
setup emulates a situation where two regions of the world are temporarily unreachable
from one another while maintaining unaffected communication within each region.

IV.2 . Protocol and Properties

In this section, we briefly remind the reader of the essential properties and definitions,
as well as the necessary elements of the protocol previously described.

Ethereum PoS Properties Validators keep a local data structure in the form of a
tree containing all the blocks perceived, and then a consensus protocol helps to choose a
unique chain in the tree. Ethereum has a particular trait that consists of having a finalized
chain as the prefix of a chain vulnerable to forks. A metaphor for this is that the finalized
chain is the trunk that possibly supports various branches, and as time passes, the trunk
grows and branches are trimmed1.

Intuitively, the Safety property of Ethereum states that the finalized chain is not fork-
able, while the Liveness property states that the finalized chain always grows. The nuance
with respect to classical consensus protocols is the existence of an Availability property
on the entire chain that guarantees constant growth of the chain despite failures and
network partitions. The complete definition can be found in section III.1.

Based on the definition of safety, we consider forks within the finalized chain as a loss
of Safety. As explained in the subsequent section, forks occurring within the candidate
chain suffix, which has not yet been finalized, are resolved by the fork choice rule of the
protocol. This rule determines the chain upon which validators vote and build. However,
this rule has not been explicitly designed to handle forks impacting the finalized chain.

The protocol is not intended to fork the finalized chain, as the finalization process
depends on a super-majority vote, ensuring Safety when the Byzantine stake is less than
one-third, i.e., β0 < 1/3. We look at two types of Safety loss: (1) the finalization of two
conflicting chains, and (2) the break of the Safety threshold, meaning the Byzantine stake
proportion is more than one-third.

IV.3 . Safety Attack

The attestation contains two votes, a block vote and a checkpoint vote. The block vote
is used in the fork choice rule, which determines the chain to vote and build upon for
validators. As its name suggests, the checkpoint vote points to checkpoints constituting
the chain. It is used to justify and finalize blocks to grow the finalized chain. Justification

1 ↑ We use the terms “chain” and “branch” interchangeably.
48

is the step prior to finalization. If validators controlling over two-thirds of the stake make
the same checkpoint vote, then the checkpoint target is justified. Finalization occurs when
there are two consecutive justified checkpoints (one in epoch e and the following one in
epoch e+ 1).

Let us note that if justification occurs only every other epoch, finalization is not possi-
ble.

IV.3.1 . Incentives

The Ethereum PoS protocol provides validators with rewards and penalties to incen-
tivize timely responses for reaching consensus. There are three different types of penal-
ties: slashing, attestation penalties, and inactivity penalties.

(i) Slashing penalties. Validators face slashing if they provably violate specific protocol
rules, resulting in a partial loss of their stake and expulsion from the validator set.

(ii) Attestation penalties. To incentivize timely and correct attestations (votes), the pro-
tocol rewards validators for adhering to the protocol and penalizes those who do not. If
an attestation is missing or belatedly incorporated into the chain, its validator gets penal-
ized.

(iii) Inactivity penalties. Each epoch a validator is deemed inactive, its inactivity score
increments. However, if the protocol is not in an inactivity leak, all inactivity scores are
reduced.

When finalization occurs regularly, a validator that is deemed inactive only receives
attestation penalties. This changes when there is no finalization for four consecutive
epochs: the inactivity leak begins. During the inactivity leak, which starts when there
is no finalization for four consecutive epochs, all validators will receive inactivity penal-
ties directly linked to their stake and inactivity score. The inactivity score varies with the
validator’s activity.

In addition to penalties, rewards are attributed for timely and correct attestations but
not during the inactivity leak. Our analysis of the impact of the inactivity leak on the pro-
tocol takes into consideration the slashing and inactivity penalties across five different
scenarios (cf. section IV.5).

Having provided a comprehensive overview of the Ethereum PoS consensus mecha-
nism, we are now well-positioned to delve into the specifics of the inactivity leak.

IV.4 . Inactivity Leak

The Ethereum PoS blockchain strives for the continuous growth of the finalized chain.
Consequently, the protocol incentivizes validators to actively finalize blocks. In the ab-
sence of finalization, validators incur penalties.

The inactivity leak, introduced in [BG17], serves as a mechanism to regain finality.
Specifically, if a chain has not undergone finalization for four consecutive epochs, the
inactivity leak is initiated. During the inactivity leak, the stakes of inactive validators are
drained until active validators amount to two-thirds of the stake. A validator is labeled as

49

inactive for a particular epoch if it fails to send an attestation or sends one with a wrong
target checkpoint.

During the inactivity leak, there are no more rewards given to attesters2, and addi-
tional penalties are imposed on inactive validators.

IV.4.1 . Inactivity Score

The inactivity score is a dynamic variable that adjusts based on a validator’s activity.
The inactivity score of a validator is determined based on the attestations contained in
the chain. It is important to note that if there are multiple branches, a validator’s inactiv-
ity score depends on the selected branch. Within an epoch, being active on one branch
implies3 inactivity on another (for honest validators).

More precisely, the inactivity score is updated every epoch: if validator i is active, then
its inactivity score is reduced by 1; otherwise, 4 is added to it. When the inactivity leak is
not in place, the inactivity scores are decreased by 16 every epoch, which often nullifies
low inactivity scores.

During an inactivity leak, at epoch t, the inactivity score, Ii(t), of validator i is:Ii(t) = Ii(t− 1) + 4, if i is inactive at epoch t

Ii(t) = max(Ii(t− 1)− 1, 0), otherwise. (IV.1)
Each attester thus has an inactivity score that fluctuates depending on its (in)activity.

In the protocol, the inactivity score is always greater than zero. A validator’s inactivity
for epoch t is determined by whether it sent an attestation for this epoch and if the sent
attestation contains a correct checkpoint vote. Here "correct" implies that the target of
the checkpoint vote belongs to the considered chain.

IV.4.2 . Inactivity penalties

Validators that are deemed inactive incur penalties. Let si(t) represent the stake of
validator i at epoch t, and let Ii(t) denote its inactivity score. The penalty at each epoch t

is Ii(t− 1) · si(t− 1)/226. Therefore, the evolution of the stake is expressed by:
si(t) = si(t− 1)− Ii(t− 1) · si(t− 1)

226
. (IV.2)

IV.4.3 . Stake’s functions during an inactivity leak

In this work, we model the stake function s (see Equation IV.2) as a continuous and
differentiable function, yielding the following differential equation:

s′(t) = −I(t) · s(t)
226

. (IV.3)
We then explore three distinct validator behaviors during an inactivity leak, each in-

fluencing their inactivity score and, consequently, their stake.
(a) Active validators: they are always active.
2 ↑ Actually, the only rewards that remain are for the block producers and the sync committees.
3 ↑ This is true as long as the chains differ for at least one epoch.

50

0 1000 2000 3000 4000 5000 6000 7000 8000
Epoch

0

5

10

15

20

25

30

ET
H

×109

Active Validator's stake
Semi-active Validator's stake
Inactive Validator's stake
Expulsion Limit

Figure IV.1: This figure shows three different stake trajectories in the event of an inactivity
leak: the stake of a validator active every epoch, the stake of a validator active every other
epoch (semi-active), and an inactive validator. The inactive validators get ejected at epoch
t = 4685. The semi-active validators get ejected at epoch t = 7652. For reference, 5000
epochs is about 3 weeks.

(b) Semi-active validators: they are active every two epochs.
(c) Inactive validators: they are always inactive.
Note that, in the case of a fork, this categorization depends on the specific branch un-

der consideration as different branchesmay yield different evaluations of each validator’s
behavior.

This categorization is orthogonal to theByzantine-Honest categorization. For instance,
an honest validator can appear inactive in one branch due to poor connectivity or an asyn-
chronous period (due to network partition or congestion). On the other hand, a Byzantine
validator intentionally chooses one of these behaviors (e.g., being semi-active) to execute
the attacks.

We illustrate in Figure IV.1 the evolution of the validators’ stake depending on their
behaviors. We also account for the ejection of validators with a stake lower than or equal
to 16.75.

Using these newly defined stake functions, we explore five scenarios in section IV.5.
The first scenario, with only honest validators, serves as a baseline to assess the im-

pact of Byzantine validators. Even in this seemingly straightforward setting, Safety is com-
promised.

In the second scenario, Byzantine validators come into play and aim to expedite the
finalization of conflicting branches. They do so by performing slashable actions. Thus,
they will get ejected from the set of validators once communication is restored among

51

Scenario Outcomes
IV.5.1 All honest 2 finalized branches

IV.5.2A Slashable Byzantine 2 finalized branches
IV.5.2B Non slashable Byzantine 2 finalized branches
IV.5.2C Non slashable Byzantine β > 1/3

IV.5.3 Probabilistic Bouncing attack β > 1/3 probably

Table IV.1: Analyzed scenarios associated with their outcomes. Initially the pro-
portion of Byzantine’s stake is smaller than 1/3 and is zero for the first scenario.
honest validators and evidence of their slashable offense is included in a block. We outline
their impact based on their initial stake proportion. With an initial stake proportion of
β0 = 0.2, the finalization on conflicting chains occurs after 3107 epochs. With β0 = 0.33,
the conflicting finalization occurs only after 503 epochs.

In the third and fourth scenarios, Byzantine validators exhibit non-slashable behav-
iors. Specifically, Byzantine validators are semi-active, meaning they are active on both
chains but in a non-slashable manner. In the third scenario, they aim to finalize conflict-
ing branches as soon as possible, achieving conflicting finalization in 556 epochs with an
initial stake proportion of β0 = 0.33. In the fourth scenario, their goal is to increase their
stake proportion to exceed the 1/3 threshold.

The last scenario delves into the effect of the probabilistic bouncing attack regard-
ing the Byzantine stake proportion, considering the inactivity leak. In this attack, Byzan-
tine validators initially aim to delay finality by being alternately active (bouncing) on both
chains of a fork. This confuses honest validators, causing them to also bounce from one
chain to the other. We detail how to find the distribution of honest validators’ stakes in this
setting, considering the inactivity penalties. We also cover how the Byzantine validators’
stake proportion can exceed 1/3 if their initial proportion is close to 1/3.

The scenarios unfoldwithin the context of a partially synchronous networkwhile offer-
ing ameticulous examination of the property of Safety and the evolution of the proportion
of Byzantine validators. Each scenario’s initial conditions and outcomes are summarized
in Table IV.1.

IV.5 . Analysis

In this section, we study the robustness of the Safety propertywithin the context of the
inactivity leak. By construction, in the case of a prolonged partition, two different chains
can potentially be finalized, leading to conflicting finalized blocks. We delineate scenarios
that can produce such a predicament.

Considering the presence of Byzantine validators, we study how the proportion of
Byzantine validators’ stake evolves during an inactivity leak. Furthermore, we are inter-
ested in scenarios where the inactivity leak mechanism becomes the backbone of an at-

52

tack strategy, potentially causing the proportion of Byzantine stakes to exceed the 1/3

security threshold (cf. subsubsection IV.5.2C and subsection IV.5.3).
IV.5.1 . GST upper bound for Safety

In this first subsection, we look for an upper bound on GST beforewhich no finalization
on conflicting chains can happen in case of a partition. We study the case of an inactivity
leak with these conditions: (i) only honest validators, no Byzantine validators, and (ii) the
network is asynchronous (before GST).

In case of catastrophic events, during an instance of a particularly disrupted network,
an arbitrarily large set of honest validators might be unreachable before GST. During this
asynchronous period, the subset of validators still communicating with each other will
continue to try to finalize new blocks. We assume that, within each partition, the mes-
sage delay is bounded as in the synchronous period; however, communication between
partitions is not restored before GST. As the system model mentions, Byzantine valida-
tors can communicate between partitions without restriction but cannot manipulate the
message delay between honest validators. The active validators must represent more
than two-thirds of the stake to be able to finalize. After 4 epochs without finalization, the
inactivity leak starts.

All the validators deemed inactive will have their stake progressively reduced. This
will continue until the active validators constitute at least two-thirds of the stake and can
finalize anew.

Twofinalized chains Anoteworthy scenario arises during asynchronous periods that
can lead to a network partition and the creation of two distinct finalized chains. If this par-
tition persists for an extended period, both chains independently drain the stakes of val-
idators they consider inactive until they finalize again. Although the protocol permits this
behavior by design, it results in finalizing two conflicting chains, thereby compromising
the Safety property.

This outcome aligns with Ethereum PoS prioritizing Liveness over Safety. However, to
the best of our knowledge, this corner case has not been discussed in detail.

We can theoretically assess the time required to finalize both branches of the fork.
Suppose honest validators remain in their respective branches due to the partition. In
this case, by understanding the distribution of these validators across the partitions, we
can compute the time it takes for the proportion of active validators’ stake to return to
2/3 of the stake on each branch, permitting new finalization.

Let nH and nB denote the initial number of honest validators and Byzantine validators
at the beginning of the inactivity leak (nH + nB = n). Additionally, nH1 and nH2 represent
the number of honest validators active on branch 1 and on branch 2, respectively (nH1 +

nH2 = nH).
We denote by p0 = nH1/nH the initial proportion of honest validators remaining active

on branch 1, and 1−p0 = nH2/nH represents the proportion of honest validators active on
53

branch 2 (hence inactive on branch 1). In this first scenario, with only honest validators and
no Byzantine validators, p0 represents the proportion of all validators active on branch 1.
Indeed, since nH/n = 1, we have that nH1/nH × nH/n = p0.

We have assessed how validators’ stakes vary based on their level of activity. Conse-
quently, we can express the ratio of active validators on branch 1 at time t as:

nH1sH1(t)

nH1sH1(t) + nH2sH2(t)
, (IV.4)

with sH1 and sH2 being the stake of honest active and inactive validators, respectively. We
know the function of their stake according to time, and by dividing the numerator and the
denominator by the total number of validators (n = nH), we can rewrite Equation IV.4 as:

p0

p0 + (1− p0)e−t2/225
. (IV.5)

The initial stake value s0 is factored out of the equation. This function is critical as the
moment it reaches 2/3 or more, finalization can occur4 on the branch.

To establish the upper bound on GST under which two conflicting branches finalize,
we must find when finalization occurs on each branch for each initial proportion of active
validators p0 and inactive validators 1−p0. We simulate the evolution of the ratio of active
validators (Equation IV.5) during an inactivity leak with different values of p0 in Figure IV.2.
The simulation starts with both active and inactive validators at 32 ETH. At epoch 0, the
inactivity leak begins.

For p0 = 0.5or less, the ratio jumps to 1 at t = 4685; this is due to the fact that validators
with a stake below 16.75 ETH are ejected from the set of validators. Conversely, for p0 =

0.6, the proportion of active validators does not jump drastically as 2/3 of active validators
is regained before the ejection of inactive validators, permitting the active validators to
finalize, hence ending the inactivity leak. Interestingly, with p0 = 0.6 we can see that the
ratio still increases several epochs after the proportion of 2/3 of active validators’ stake is
reached. This is because the penalties for inactive validators take some time to return to
zero.

As expected and shown by Figure IV.2, a chain with more active validators will regain
finality faster. To ascertain how quickly, we seek when the ratio is equal to 2/3. Taking
into account the expulsion5 of inactive validators at t = 4685, we can find the value t at
which the 2/3 threshold is reached:

t = min
(√

225[log(2(1− p0))− log(p0)], 4685
)
. (IV.6)

This calculation pertains to 0 < p0 < 2/3 (when there are less than 2/3 of active
validators), ensuring that the epoch t can be computed.

Conflicting finalization occurs once the slowest branch to finalize has regained finality.
Our observation highlights that the lower the proportion of active validators, the slower

4 ↑ With a proportion of two-thirds of validators’ stake active, justification and then finalization
can occur in 2 epochs.

5 ↑ We drew inspiration for this initial work from the insights presented in [Edg3].
54

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs since inactivity leak

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ra
tio

 o
f a

ct
iv

e
va

lid
at

or
s

p0=0.6
p0=0.5
p0=0.4
p0=0.3
p0=0.2
2/3 threshold

Figure IV.2: Evolution of the ratio of active validators depending on the proportion p0 of
active validators on the branch. This follows the ratio given in Equation IV.5 before regain-
ing 2/3 of active validators or the expulsion of inactive validators at epoch t = 4685.

the branchwill regain finality. Hence, the fastestway to reach finality onboth chainswould
be for honest validators to be evenly proportioned, with half of the validators active on
one chain and the other half on the other chain (p0 = 1− p0 = 0.5). In this case, the ratio
of active validators amounts to 2/3 on both chains at t = 4685 epochs (about 3 weeks).
We can note here that even with the best configuration to finalize quickly on conflicting
branches, it is impossible to be faster than 4685 epochs. Thus, with only honest validators,
whatever their proportion on each branch, the last chain to finalize will always finalize at
t = 4685.

Finality on both chains is achieved precisely at 4686 epochs after the beginning of the
inactivity leak. Adding an epoch is necessary after gaining 2/3 of active stake to finalize the
preceding justified checkpoint. This finalization ends the inactivity leak, which has lasted
approximately 3 weeks. Any network partition lasting longer than 4686 epochs will result in
a loss of Safety because of conflicting finalization. This is an upper bound for Safety on the
duration of the inactivity leak with only honest validators.

IV.5.2 . Upper bound decrease due to Byzantine validators

In a trivial setup with only honest validators, Safety does not hold if the inactivity leak
is not resolved quickly. This prompts us to study the scenario in the presence of Byzantine
validators to evaluate howmuch they will be able to hasten the conflicting finalization. We
describe two possible outcomes: the first one violates Safety, but Byzantine validators get
slashed; the second one violates Safety as well, but no validators get slashed. A slashing
penalty entails an ejection from the validator set as well as a loss of part of the valida-

55

t1 t2 t3 t4t0

Figure IV.3: Byzantine validators are active on both chains of a fork simultaneously during
asynchronous times.

tor’s stake. Both scenarios expedite the time t at which Safety is breached, with different
velocities depending on the chosen method.

We study the inactivity leak under these conditions: (i) at the beginning, less than one-
third of the stake is held by Byzantine validators (β0 = nB/n < 1/3), with the rest held by
honest validators (1 − β0 = nH/n); (ii) the network is asynchronous (before GST); and (iii)
Byzantine validators are not affected by network partitions.6

The situation is as follows:
• Honest validators are divided into branches 1 and 2; a proportion p0 = nH1/nH of
the honest validators are active on branch 1, while a proportion 1 − p0 = nH2/nH

are active on branch 2. This means that on branch 1, a proportion nH1/nH×nH/n =

p0(1−β0) are honest and active, and a proportion nH2/nH×nH/n = (1−p0)(1−β0)

are honest and inactive.
• Byzantine validators are not restricted to either partition; they are connected to
both.

IV.5.2A With slashing

In the event of a fork during asynchronous times, Byzantine validators can be active on
both branches (Figure IV.3). Being active on two branches means sending correct attes-
tations on both every epoch. Such behavior is considered a slashable offense, incur-
ring penalties, but only if detected by honest validators. The slashable offense is pun-
ished once proof of conflicting attestations during the same epoch has been included in
a block. Thus, before GST, Byzantine validators could operate on both branches without
facing punishment as long as honest validators are unaware of the conflicting attesta-
tions. Byzantine validators have control over the message delay before GST, making this
behavior possible. They can thereby expedite the finalization on different branches.

We study here the time needed for finalization to occur on conflicting branches de-
pending on the proportion of Byzantine validators. The ratio of active validators at epoch

6 ↑ In amodel without partitions, one needs to give Byzantine validatorsmore power to recreate
our scenario. They must be able to control the network delay to allow them to be active on both
branches while preventing honest validators from even observing the branch on which they are
not active. They can manipulate message delays between groups of honest validators to simulate
a partition between them.

56

t is:
nH1sH1(t) + nBsB(t)

nH1sH1(t) + nBsB(t) + nH2sH2(t)
, (IV.7)

with sH1 , sB, and sH2 being the stake of honest active, Byzantine active, and honest inactive
validators, respectively. This can be rewritten as:

p0(1− β0) + β0

p0(1− β0) + β0 + (1− p0)(1− β0)e−t2/225
. (IV.8)

where β0 represents the initial proportion of Byzantine validators, and p0 denotes the
initial proportion of honest active validators. In contrast to the analysis with only honest
validators (cf. Equation IV.5), here, Byzantine validators are present and active on both
chains. Nonetheless, as before, we can obtain the ratio of active validators on the other
branch just by interchanging p0 and 1 − p0. Finality on conflicting branches occurs when
the last of the two branches finalizes. Similarly to the previous example, the branch with
the fewer initial honest active validators (p0) will finalize the latest. This happens t epochs
after the beginning of the inactivity leak, with

t = min

(√
225
[
log(2(1− p0))− log(p0 +

β0
1− β0

)

]
, 4685

)
. (IV.9)

Finality on conflicting branches is achieved the quickest when honest validators are
evenly split between the branches of the fork, at p0 = 0.5.

β0 t

0 4685

0.1 4066

0.15 3622

0.2 3107

0.33 502

Table IV.2: Time before finalization on conflicting branches depending on the ini-
tial proportion of Byzantine validators β0 for p0 = 0.5 with slashing behaviour
based on Equation IV.9

Table IV.2 gives the epoch at which concurrent finalization occurs for p0 = 0.5. This
outlines the rapidity at which finality can be regained depending on the initial propor-
tion β0 of Byzantine validators’ stake. The table shows that 503 epochs (approximately 2
days) could suffice to finalize blocks on two different chains, but hypothetically it could be
quicker than that. In fact, as β0 gets closer to 1/3, the number of epochs required before
concurrent finalization occurs (Equation IV.9) approaches 0.

The explanation is that if β0 were to start at exactly 1/3, then with p0 = 0.5, it would
mean that on each branch we would start with p0(1− β0) + β0 = 2/3 of active validators,
hence finalizing immediately. This explains why if β0 is very close to 1/3, the proportion
of active validators reaches 2/3 rapidly. Hence, Byzantine validators can expedite the loss of

57

t1 t2 t3 t4t0 tn tn+1 tn+2tn+3. . .

Figure IV.4: Byzantine validators active on both branches of a fork alternatively during
asynchronous times.

Safety. If their initial proportion is 0.33, they can make conflicting finalizations occur approxi-
mately ten times faster than scenarios involving only honest participants.

One can notice that if Byzantine validators act in a slashable manner, they will be
penalized after the asynchronous period ends. However, the harm is already done. Once
the finalization on two branches has occurred, the branches are irreconcilable with the
current protocol. Next, we demonstrate that Byzantine validators can employmore subtle
strategies to break Safety without slashable actions.
IV.5.2B Without Slashing

Byzantine validators can hasten the violation of the Safety property without incurring a
slashable offense. While not as rapid as being active on both branches simultaneously,
they can be semi-active on both branches alternatively. Being semi-active on each branch
means they are only active every other epoch. This approach diminishes their stake on
each branch due to inactivity penalties. Nevertheless, at some point, they can finalize on
two conflicting branches by being active two epochs in a row on one branch and then on
the other (see Figure IV.4). Byzantine validatorswill be able to finalizewhen the proportion
of their stake plus the proportion of the stake of honest active validators is above 2/3 on
the branch (cf. Equation IV.10).

At that point, Byzantine validators must remain active for two consecutive epochs on
each branch to finalize them both. If they are only semi-active, they can alternate jus-
tifications for checkpoints on each branch but will not achieve finalization. However, by
maintaining activity for two consecutive epochs, first on onebranch and thenon the other,
they ensure two sequential justifications, leading to the finalization of a checkpoint.

We gave the different evolution of stakes depending on the activity of validators (sub-
section IV.4.3). Now that Byzantine validators are semi-active, their stake follows the curve
s0e

−3t2/228 . We simplify the ratio as previously and we get that finalization occurs on the
branch when the ratio

p0(1− β0) + β0e
−3t2/228

p0(1− β0) + β0e−3t2/228 + (1− p0)(1− β0)e−t2/225
(IV.10)

goes over 2/3, with β0 and p0 being the initial proportion of Byzantine validators and the
proportion of honest active validators on the branch, respectively.

58

In contrast to the previous scenario, obtaining an analytic solution for t to determine
the epoch when the ratio hits 2/3 is not straightforward. Therefore, we apply numerical
methods on Equation IV.10 with initial parameters p0 = 0.5 and β0 = 0.33, resulting in a
calculated t value of 555.65. This means it will take 556 epochs to finalize, about 2 days
and a half.

As previously, the proximity of β0 to 1/3 significantly influences the speed of final-
ization, as outlined in Table IV.3 and Figure IV.5. Figure IV.5 shows how the proportion
of Byzantine validators affects the time of conflicting finalization. Notice that although
the acceleration is not as pronounced as in the previous scenario, it remains noteworthy
that Byzantine validators still exert a substantial impact on breaching Safety, while not
committing any slashable offense.

Hence, Byzantine validators can expedite the loss of Safety without committing any slash-
able action. If their initial proportion is 0.33, they can make conflicting finalizations occur
approximately eight times faster than scenarios involving only honest participants.

β0 t

0 4685

0.1 4221

0.15 3819

0.2 3328

0.33 556

Table IV.3: Time before finalization on conflicting branches depending on the ini-
tial proportion of Byzantine validators β0 for p0 = 0.5 without slashing behavior
based on Equation IV.10.

Another consequence of being "semi-active" on both branches is that Byzantine val-
idators can decide when to finalize on each branch. Indeed, even when the proportion
of their stake plus the proportion of honest active validators’ stake is above 2/3, finaliza-
tion only occurs when the Byzantine validators stay active for two consecutive epochs on
the same chain. Being active for two epochs will justify the two consecutive epochs, thus
finalizing an epoch.

There exists a scenario inwhich the Byzantine validatorsmight delay finalization inten-
tionally, aiming to increase their stake’s proportion beyond the threshold of 1/3 without
incurring slashing afterward.
IV.5.2C More than one third of Byzantine validators

One may ask, why would Byzantine validators aim at going over the 1/3 threshold? In-
deed, we have just shown that Safety can be broken regardless of β0; is it not the ultimate
goal of Byzantine validators? It is not obvious to determine what behavior will harm the
blockchain the most. We briefly discuss the impact Byzantine validators can have when

59

0 1000 2000 3000 4000
Epoch t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0

Byzantine with slashing behavior
Byzantine without slashing behavior

Figure IV.5: Time before finalization on conflicting branches, depending on the initial pro-
portion of Byzantine validators β0 and whether they engage in slashable actions.

they go over the 1/3 threshold in subsection IV.5.3. We now examine the necessary con-
ditions on β0 and p0 that permit the Byzantine validators’ stake to go over the one-third
threshold.

The key ratio that translates intowhatwe are looking for is the proportion of Byzantine
validators’ stake β(t, p0, β0) over time:

β0e
−3t2/228

p0(1− β0) + (1− p0)(1− β0)e−t2/225 + β0e−3t2/228
(IV.11)

As expected, at time t = 0, β(0, p0, β0) = β0. Now, let us investigate when this ratio is
above the threshold of 1/3, i.e.:

β(t, p0, β0) ≥ 1/3 (IV.12)
The main difference with the previous scenario is that Byzantine validators seek to go

over the 1/3 threshold, not to finalize quickly. This means that even after the proportion
of honest active validators’ stake and semi-active Byzantine validators’ stake represents
more than two-thirds of the stake on the branch, they do not finalize. Byzantine validators
could finalize by staying active for two epochs in a row, yet they do not do so in order to
reach a higher stake proportion.

We construct a set containing the pairs (p0, β0) that can lead β to go over 1/3 (Equa-
tion IV.12). To do so, we take the point reached by the ratio when the validators deemed
inactive are ejected. This point gives the highest value reachable7 for a particular (p0, β0).

7 ↑ There exist more values that can lead to going over one-third when considering a special
corner case. If the Byzantine validators strategically finalize just before the expulsion of honest

60

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

0.0

0.2

0.4

0.6

0.8

1.0

p 0

max(p0, 0) 1/3
max(1 p0, 0) 1/3

(p0, 0) = (0.5, 0.24)

Figure IV.6: Pairs (p0, β0) such that βmax(p0, β0) ≥ 1/3. This figure gives a lower bound for
which (p0, β0) can result in the proportion of Byzantine validators exceeding 1/3 on both
branches.

For an intuition as to why this is the case, Figure IV.1 allows us to visualize that the biggest
gapbetween semi-active Byzantine stake andhonest inactive stake is at themoment of ex-
pulsion of the honest inactive validators. We have seen that inactive validators are ejected
from the chain after 4685 epochs. We can thus evaluate the maximum ratio reachable
βmax at time t = 4685 when the inactive validators are ejected:

βmax(p0, β0) =
β0e

−3×(4685)2/228

p0(1− β0) + β0e−3×(4685)2/228
. (IV.13)

When this ratio is greater than 1/3, Byzantine validators have reached their goal. We
show with Figure IV.6 that Byzantine validators can actually go beyond the threshold of
1/3 on both branches simultaneously. The lower bound β0 before this becomes possible
is for p0 = 0.5 when β0 = 1/1 + 4e−3×(4685)2/228 = 0.2421.

When the initial proportion of Byzantine validators is at least 0.2421, their proportion can
eventually increase to more than 1/3 of validators on both branches, exceeding the critical
Safety threshold of voting power in each branch.

Having explored scenarios in which protocol vulnerabilities manifest exclusively be-
fore GST, we now focus on potential threats posed by Byzantine validators after GST. Given
the acknowledged impact of the Probabilistic Bouncing Attack on Liveness (cf. subsubsec-
tion III.3.3A), our study extends to take the inactivity leak into account.
inactive validators, the decrease in inactivity penalties might not occur quickly enough to prevent
the ejection of honest inactive validators. In this particular scenario, Byzantine validators could
potentially eject honest inactive participants while incurring fewer penalties themselves. This sub-
tlety underscores the intricate dynamics at play during the inactivity leak.

61

IV.5.3 . Revisiting the Probabilistic Bouncing Attack

This subsection revisits the Probabilistic Bouncing Attack subsubsection III.3.3A, show-
ing that Byzantine validators could exceed the Safety threshold evenduring the synchronous
period. Contrary to the previous scenarios, this one starts in the asynchronous period but
unfolds in the synchronous period. This demonstrates that the inactivity leak poses sig-
nificant challenges even within the synchronous period, revealing its broader implication
for blockchain security.

As mentioned, while analyzing the probabilistic bouncing attack, we did not consider
the penalties. Here, we fill this gap.

Let us note that there is no problem with conflicting finalization as the attack is pro-
gressing after GST in the synchronous period. In synchronous time, there is not enough
delay for honest validators to miss a finalization on another branch. There would need
to be more than two-thirds of the active stakes owned by Byzantine validators to break
Safety in the synchronous period.

Webriefly discussed the differences in gravity between conflicting finalization andhav-
ing more than 1/3 of the stake owned by Byzantine validators. We left the actual compar-
ison and the in-depth analysis of the gravity of going beyond the infamous threshold as
future work.

We primarily focus on identifying specific scenarios that would disrupt the network.
Thus, we give a detailed explanation of a scenario that could lead to Byzantine validators
breaking the 1/3 threshold even during synchronous period (after GST).

Let us remind how the attack takes place for self-containment.

Probabilistic Bouncing Attack Summary The attack can be summarized as fol-
lows: (1) A favorable setup that partitions honest validators into two different views of the
blockchain occurs. (2) At each epoch, Byzantine validators withhold their messages from
honest validators, releasing them at the opportune time to make some honest validators
change their view. (3) This attack continues as long as at least one Byzantine validator is
proposer in the jth first slots of the epoch, where j is a parameter of the protocol. The
probability of the attack continuing for k epochs with a proportion of (1 − β0) honest
validators is (1− (1− β0)

j)k.
We start by analyzing the outcome of a fork where a proportion p0 of the honest val-

idators start on chain A and 1− p0 of the honest validators start on chain B.
We consider how a Probabilistic Bouncing Attackwould unfold, taking the inactivity leak

into account. A probabilistic bouncing attack lasting more than 4 epochs will necessarily
cause an inactivity leak. Knowing this, we analyze the stakes of honest and Byzantine
validators in this setting.

For this attack to continue, at each epoch, Byzantine validators cast their vote with a
different chain as their candidate chain. They are active on each chain alternatively. Due
to their inactivity every 2 epochs, they will get ejected from the chain after a total of 7653
epochs (4 weeks and 6 days). Byzantine validators are active on each chain to ensure that

62

A

B

B′

C

C ′

D

D′

p 0

1−
p
0

1− p0

p0

p
0 1

−
p 0

p0

1− p0

1−
p
0 p 0

Figure IV.7: This figure represents, using a Markov chain, the probability of an honest
validator changing branches or not every epoch. During the attack, the Byzantine validators
ensure that a proportion p0 of honest validators remains on one branch so they can justify
this branch later with their withheld votes (Equation IV.14).

justification only happens every two epochs, preventing finalization from occurring.
For this attack to continue indefinitely, Byzantine validators must ensure honest val-

idators are split into two branches according to two conditions: (a) the honest validators
are not enough to justify a chain on their own, and (b) the Byzantine validators can justify
it afterwards with their withheld votes. This means that (a) p0 must not represent more
than 2/3 of the stake, and (b) the proportions p0 of honest validators and β0 of Byzan-
tine validators must represent more than two-thirds of the total stake. The two necessary
conditions are that (a) p0(1 − β0) < 2/3 and (b) p0(1 − β0) + β0 > 2/3. For the attack to
function, we get that:

2− 3β0
3(1− β0)

< p0 <
2

3(1− β0)
. (IV.14)

We can see that the closer β0 is to 0, the closer p0 has to be from 2/3. This is to be ex-
pected as otherwise the Byzantine validators would be unable to justify the checkpoint
with withheld votes.

An illustration of an ongoing attack with the probability for honest validators to be on
one chain or the other is depicted in Figure IV.7. At each epoch, a proportion p0 of honest
validators is on one branch, whereas a proportion 1− p0 is on the other.
Analytical Evaluation We are interested in the evolution of the proportion of Byzan-
tine validators’ stake β during the attack. To examine this, we analyze the evolution of the
inactivity score over time for an honest validator randomly placed at each epoch. Refer-
ring to Figure IV.7, we observe that after two epochs, there is a probability p0(1 − p0) of
having been on branchB for both epochs or on branchA for both epochs. The probability
of being on both branches, regardless of the order, is p20+(1−p0)

2. From the perspective
of a chain, validators will be deemed inactive if they are active on the other chain. The
probability of the inactivity score evolution after two epochs is the following:

+8 : p0(1− p0)

+3 : p20 + (1− p0)
2

−2 : p0(1− p0)

(IV.15)

63

We can notice that the time-dependent probability of the inactivity score is the con-
volution of two random walks. The first random walk moves +4 with probability p0 and -1
with probability (1− p0). The second is the opposite, moving +4 with probability (1− p0)

and -1 with probability p0. We place ourselves in the continuous case to be able to continue
our analysis and find the stake of validators with the inactivity score distribution over time
(see section A.1 for details on the discrete and continuous case). To do so, we use the fact
that a random walk follows a Gaussian distribution when time is large, using the central
limit theorem. The expectation of the two random walks are (5p0 − 4)t and (1 − 5p0)t,
respectively, with both having a standard deviation of 25p0(1−p0). We disregard here the
fact that the actual inactivity score is bounded by zero for analytical tractability. Allowing
for negative values in the inactivity score can result in a reward instead of a penalty, which
leads to a scenario conservatively estimating the loss of stake. The convolution of these
two random walks is the probability of the inactivity score I :

ϕ(I, t) =
1√
4πDt

exp

(
−(I − V t)2

4Dt

)
, (IV.16)

withD = 25p0(1−p0) and V = 3/2. It now remains to find the distribution function of the
stake s. We rewrite here the differential equation of the stake depending on I previously
described in Equation IV.17:

ds

dt
= −I(t)s

226
. (IV.17)

Using this (details in section A.2) we find the distribution function of the stake s to be:
P (s, t) =

226

s
√

4
3πDt3

exp

(
−(226 ln(s/32) + V t2/2)2

4
3Dt3

)
, (IV.18)

with D and V , the diffusion and the velocity. In our case V = 3/2 and D = 25p0(1 − p0).
The stake follows a log normal distribution for which the cumulative function is:

F (s, t) =
1

2
+

1

2
erf

226 ln(s/32) + V t2/2√
4
3Dt3

 . (IV.19)

Currently, the probability P does not reflect the actual stake according to time since
validators get ejected at 16.75 ETH and are stuck at 32 ETH. To emulate this mechanism,
since we know the cumulative distribution function, we can compute the new probability
law P :

P(x, t) =

F (a, t) if x = 0,

P (x, t) if a < x < b,

1− F (b, t) if x = b,

(IV.20)

with a = 16.75 and b = 32. This new probability law takes into account the fact that if
the stake is lower than 16.75 ETH, it becomes 0, and it is capped at 32 ETH. The explicit
expression of P reads:

P(x, t) =δ(x) · F (a, t) + δ(x− b) · (1− F (b, t))

+ [H(x− a)×H(b− x)] · P (x, t),
(IV.21)

64

Figure IV.8: This is a representation of the distribution P at t = 4024 with an exaggerated
standard deviation to provide a better intuition of the distribution behavior.

where δ is the Dirac distribution, and H is the Heaviside function. Figure IV.8 shows a
visual representation of the function P .

The associated cumulative distribution function F of P is:
F(x, t) =

∫ x

0
P(s, t) ds

= F (a, t) +H(x− a)[F (x, t)− F (a, t)]

+H(x− b)[1− F (x, t)].

(IV.22)

With this, we can evaluate the ratio of Byzantine validators and determine with what
probability it will go beyond 1/3. We denote by sB(t) the stake of Byzantine validators and
sH(t) the stake of an honest validator. We are looking for the probability such that

β(t) =
β0sB(t)

β0sB(t) + (1− β0)sH(t)
>

1

3
, (IV.23)

depending on the probability of sH that we now know. This translates into:
F
(

2β0
1− β0

sB(t), t

)
, (IV.24)

where sB(t), the stake of a Byzantine validator, follows the stake of a semi-active validator.
We provide a representation of Equation IV.24 for several values of β0 with p = 0.5

(note that p0 has a minimal impact on the curve as it only slightly changes the variance)
in Figure IV.9.

The figure illustrates how the proximity of β0 to 1/3 can be detrimental. This phe-
nomenon occurs because themean of the log-normal distribution approximates sB when
t is not too large. Referring to Equation IV.24, we observe that if β0 = 1/3, we are exam-
ining F(sB(t), t), which explains why the probability is 0.5.

65

0 1000 2000 3000 4000 5000 6000 7000 8000
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

Eq
ua

tio
n

24
0=1/3
0=0.3333
0=0.333
0=0.33
0=0.329
0=0.3

Ejection of Byzantine

Figure IV.9: We represent Equation IV.24 according to time with various β0.

The probability increases sharply just before the expulsion of Byzantine validators;
however, it is unlikely that the probabilistic bouncing attack would persist for that long. As
an estimate, we can use the probability mentioned in the previous chapter (Equation III.1)
to provide an upper bound on the probability of reaching epoch 7000: (1− (1− β0)

8)7000

is equal to 1.01× 10−121 for β0 = 1/3. This essentially negates any strategy by Byzantine
validators that would require the probabilistic bouncing attack to last that long.

However, as Figure IV.9 shows, with β0 nearing 1/3, Byzantine validators realistically
have a high probability of quickly exceeding 1/3 of the stake, especially considering the
significant factor of the attack occurring on two branches. This means that if a validator
is active during an epoch on one branch, it is inactive on the other. Hence, the probability
can be doubled for each curve.

We can comprehend this by considering the case of β0 = 1/3: after two epochs, the
Byzantine validators have been active on each branch once. If one branch has more val-
idators that have been active on it for two epochs, the other branch will have honest
validators incurring, on average, more penalties than the Byzantine validators. On this
latter branch, the Byzantine stake will represent more than one-third of the total stake.

These results imply that, theoretically, within the synchronous period and with a proportion
of Byzantine stake sufficiently close to 1/3 as well as a favorable initial setup, the probabilistic
bouncing attack can pose a threat to the blockchain by allowing Byzantine validators to exceed
the safety threshold of 1/3.

66

IV.6 . Discussion & Conclusion

Our work presents the first theoretical analysis of the inactivity leak, designed to re-
store finalizationduring catastrophic network failure. Wehighlight situationswhereByzan-
tine actions expedite the loss of Safety, either through conflicting finalization or by increasing
the Byzantine proportion over the one-third Safety threshold. Notably, we demonstrate the
possibility of Byzantine validators exceeding the one-third Safety threshold even during
synchronous periods.

Our findings underscore the critical role of penalty mechanisms in BFT analysis. By
illuminating potential issues in the protocol design, we offer insights for future improve-
ment and provide tools to investigate them.

67

68

Chapter V

Ethereum PoS Protocol Analysis under the
Game Theoretical Model

Contents
V.1 Ethereum protocol . 69

V.2 Model & Game . 73

V.2.1 Payoff . 77
V.3 Analysis . 78

V.3.1 Preliminaries . 78
V.3.2 Obedient . 78
V.3.3 Cunning Strategy . 79

V.4 Conclusion . 90

S
o far, we have analyzed the protocol through the lens of distributed systems,
where agents were either honest or Byzantine. Although the second analysis did
take into account an important part of the incentives, the model did not consider

rational agents actually driven by incentives. In this final analysis, our goal is to study the
strategies and equilibrium that can arise if all agents are rational. We aim tomodel agents
with utility functions directly linked to the protocol rewards.

We start by presenting the necessary elements of the protocol required for our study.
We then proceed with the definition of our game and its analysis.

V.1 . Ethereum protocol

We have simplified the complex functioning of the Ethereum Proof of Stake (PoS) pro-
tocol into the essential components for our analysis. At a high level, the set of participants,
called validators, locally maintain a tree of blocks, denoted as T . At any given moment,
validators can evaluate the block tree to determine the branch that constitutes the cur-
rent canonical chain, using a function known as the fork choice rule. The protocol requires
validators to add new blocks to their local tree of blocks and broadcast these blocks to
other validators.

Upon receiving a newblock, validators assesswhether it extends their canonical chain;
if it does, a portion of them vote for it (attest to the block).

Thanks to a finalization protocol, a growing prefix of the canonical chain ismaintained.
This growing prefix cannot be forked, while the part of the chain beyond this prefix is fork-

69

able. In this study, we are interested in the protocol responsible for building the forkable
part of the chain before finalization.

For our analysis, the elements of the protocol that we need are the following:
• Slot. Slots are the time frames dictated by the protocol for proposers and attesters
to perform certain actions.

• Proposer. There is one proposer per slot. The proposer’s role is to propose a block
during a specific slot.

• Attester. There are a attesters per slot. The attester’s role is to produce an attesta-
tion, which is a vote for a specific block. Attestations determine the weights of the
blocks, which are used by the fork choice rule.

• Fork choice rule. The fork choice rule is the protocol’s rule that determines, in case
of a fork, which block is the head of the chain.

• Canonical chain. The canonical chain is the chain designated by the fork choice
rule.

Proposers and attesters are assigned to slots in a deterministic and verifiable manner
using a pseudo-random function included in the Ethereum protocol.
Fork Choice Rule As mentioned, despite their name, blockchains are closer to block
trees. Forks can occur, causing the blockchain to have several branches rather than a
single chain. To address this, the protocol defines a function called the fork choice rule,
F , which indicates, at each slot k, on which block to build or attest based on the tree of all
blocks, Tk, and the set of attestations, Ak. This block is called the head of the canonical
chain. To determine the head of the canonical chain, the fork choice rule follows these
steps:

1. Traverse the set of all attestations Ak = ∪ki=0ai, where ai is the set of attestations
sent during slot i. Keep only the last attestation from each attester.

2. For each attestation, add a weight1 to each block attested to, as well as to all of
its parents. This process gives an attestation weight to each block using the tree of
blocks Tk and the set of attestations Ak at slot k.

3. Start from the genesis block and continue along the chain by following the block
with the highest attestation weight at each fork. Return the block that has no chil-
dren. This block is the head of the candidate chain.2

1 ↑ In the protocol, the weight added is proportional to the stake of the corresponding validator.
For simplicity, each validator is assumed to have the same stake in our analysis. Thus, without loss
of generality, we choose the stake to be one, so that counting the attestation weight is equivalent
to counting the number of attestations for this block or its descendants.

2 ↑ We assume that the block with the highest attestation weight always starts from the genesis
block. In practice, the fork choice rule begins from the justified checkpoint with the highest epoch,
but we have simplified the protocol for our analysis.

70

During the execution of the protocol, it is prescribed that the block proposer of slot k
executes the fork choice rule F(Tk−1,Ak−1) to determine the parent of its block. During
the same slot, the attester should use the fork choice rule F(Tk,Ak−1 + ρa) to determine
which block to vote for. The notation As−1 + ρa indicates that an additional attestation
weight of ρa is added on the block of the current round. The addition of the attestation
with ρa is called the proposer boost and is explained below.

It is important to note that during periods of good network conditions, all validators
are likely to be aware of every block and attestation within the corresponding slot. There-
fore, all validators will have the same view of the attestation weights, implying that F will
consistently return the same head when executed by different validators. In our model,
we assume ’perfect’ network conditions, meaning that any message sent is assumed to
be received immediately.

AttestationWeight Wepreviously introduced the concept of attestationweight, which
is crucial throughout our analysis. Let us now briefly expand on it. The attestation weight
of a block is the sumof all attestations sent for this block, as well as all attestations sent for
the descendants of this block. This means that an attestation not only supports a single
block but also the entire chain of blocks leading to it.

We refer to the total attestation weight of a branch of blocks as the sum of all attes-
tations for that branch. It should be clear that the total attestation weight of a branch is
equivalent to the attestation weight of the first block in the branch.

Proposer Boost Tomitigate the balancing attack [NTT21], inwhichmalicious validators
withhold votes and release them at an opportune time to maintain a fork indefinitely, the
proposer boost was created3. However, this modification of the protocol was found to be
susceptible to new attacks involving equivocation [NTT22], leading to an update where
the fork choice rule no longer considers conflicting attestations from the same attester.

The proposer boost, denoted as ρ ∈ [0, 1), temporarily assigns ρa artificial attestations
to a timely block, where a represents the total attestation weight per slot. This mechanism
adds additional attestation weight to a block exclusively during the slot in which it is pro-
posed. Specifically, if a block is received early in slot k (within the first four seconds), ρa
artificial attestations are temporarily added to it. Currently, the proposer boost is set at
0.4, effectively adding 0.4 × a attestations to the block’s current weight. This adjustment
influences the attestation weights so that during slot k, the timely block Bk carries addi-
tional weight, thereby affecting the fork choice rule.

An example of the fork choice rule with the proposer boost in action is illustrated in
Figure V.1. The figure captures the chain at two different times during slot k: right after
the timely block proposal and at the end of the slot. Each time, we show the weight of the
blocks as computed by the fork choice rule. In our study, we remain agnostic about the
value of ρ to examine its effects across different values.

3 ↑ See ethereum/consensus-specs/pull/2730
71

https://github.com/ethereum/consensus-specs/pull/2730

8.8 6.8 1.8 1 0.8

slot k − 4 slot k − 3 slot k − 2 slot k − 1 slot k

ρa

10 8 3 1 2

slot k − 4 slot k − 3 slot k − 2 slot k − 1 slot k

Figure V.1: This figure illustrates an evaluation of the fork choice rule executed after a
timely block proposal in slot k. In this simplified representation, there are 2 attesters per
slot, so two attestations are sent per slot, each represented by a circle pointing to the block
being attested. Artificial attestations are created in the current slot k and add a weight of
ρa for the fork choice rule. At the beginning of slot k, a timely block is proposed, and the
proposer boost of ρa = 0.8(= 0.4 × 2) is applied. When slot k ends, the proposer boost
is cleared, and we observe the two attestations sent during the slot that followed the fork
choice rule.

Rewards The rewards for proposers and attesters are computed in a verifiable man-
ner. Based on the content of a block in the canonical chain, which includes attestations
and transactions, we can determine the rewards for the attesters responsible for these
attestations and for the proposer who included them. The proposer also earns rewards
from transaction fees.

Validators are incentivized to participate in the process of adding new blocks and at-
testing them through endogenous rewards inscribed in the protocol. A crucial factor in
determining rewards is identifying the canonical chain. For instance, a block proposed
but not included in the canonical chain will result in zero rewards for the proposer. All
rewards for block proposers and attesters can be determined by examining the content
of the blocks that form the canonical chain.

Because the proposer’s rewards depend on the attesters’ rewards, we first introduce
the rewards for attesters.

Attester Rewards. An attester is rewarded for its attestation based on two factors:
the timeliness and the correctness of its vote. Table V.1 indicates the reward for an attester
depending on these two factors.

Timeliness refers to the number of slots between the expected time for sending an at-
testation and its actual inclusion in a block. The fastest possible inclusion is 1 slot, meaning
the attestation is included in the block of the subsequent slot. An attestation is consid-

72

Timeliness 1 slot ≤ 5 slots ≤ 64 slots
Incorrect attestation vote 20x/27 20x/27 6x/27

Correct attestation vote x 20x/27 6x/27

Table V.1: Attester’s rewards based on the inclusion of the attestation in the chain
and its blockvote.
ered correct if its vote points to the most recent block at the time of its slot that belongs
to the canonical chain. Thus, both timeliness and correctness depend on the actions and
votes of other validators. Timeliness depends on whether subsequent blocks include the
attestation and eventually belong to the canonical chain. Correctness is affected by the
possibility that an attester might vote for a block that is initially in the canonical chain but
is later not.

As the finalized chain grows, it will eventually determine which blocks belong to the
canonical chain. However, as shown in Table V.1, correctness only significantly impacts the
attester’s reward if the attestation is included in the following slot. This may incentivize
attesters to align their votes with the proposer of the next slot, regardless of whether the
block ultimately becomes part of the canonical chain.

Proposer Rewards. For the proposer, there are two types of rewards: rewards based
on attestations and rewards based on transactions.4 Importantly, unlike in Bitcoin, there
is no coinbase transaction in each block guaranteeing a minimum reward for proposing
a block. The proposer receives a proportion of the reward generated for each attestation
it includes. Additionally, the proposer receives a reward for each transaction included in
its block in the form of transaction fees. These rewards are formalized in subsection V.2.1,
where the utility functions are defined.

V.2 . Model & Game

We model the Ethereum PoS consensus protocol as a game where each player5 is
either a proposer or an attester. Ideally, in the prescribed behavior, proposers propose
blocks, and attesters broadcast attestations. The game evolves over s sequential slots.
There is one proposer and a ∈ N attesters per slot, resulting in a total of s proposers and
as attesters. The value of s is unknown to the players.

As described in section II.3 we have two main assumptions: (i) The game occurs dur-
ing a synchronous period, where the network is considered fully synchronous with no
latency, and (ii) The synchronous period follows an asynchronous period, during which
there may have been delays in information transmission. Therefore, our game is set in
the synchronous period, but the initial state is influenced by events that occurred during

4 ↑ These rewards differ in that attestation rewards are received on the consensus layer, while
transaction fees are received on the execution layer, but this distinction does not impact our anal-
ysis.

5 ↑ We use the terms players and validators interchangeably.
73

the preceding asynchronous period. In this initial asynchronous period, blocks may have
an uneven distribution of attestations across slots, unlike in a permanently synchronous
scenario.

Under these assumptions, the broadcast of the block proposal and attestations in our
game are treated as atomic events. Thus, in each slot, there are three distinct events:

1. Block proposal. The designated proposer for the slot proposes a new block, se-
lecting a previously existing block in the observed blockchain as its parent. When
a proposer prepares a block, they add all available transactions and attestations
to the block—i.e., all the transactions and attestations that are not yet part of the
blockchain. Once the transactions and attestations are included, the block is pro-
posed, meaning it is sent to the network.

2. Generation of transactions. Transactions are sent by users and observed by pro-
posers and attesters.

3. Attestations. After the block proposal for the slot, all attesters of the slot choose
which previously proposed block to attest and send their attestations simultane-
ously.

As detailed in section V.1, the protocol prescribes that proposers (and attesters) should
select as the parent (or as the block to attest) the block identified by the fork choice rule,
i.e., the head of the canonical chain.

These three events occur in sequence and are depicted in Figure V.2. Proposers and
attesters are financially motivated to participate in the protocol. It remains to be seen
whether the protocol is incentive compatible; it is the case if following the protocol maxi-
mize their gains.

Tx Tx

Block
proposition

Block
proposition

Attestations Attestations

Slot k Slot k + 1

Figure V.2: This schema represents the atomicity of the block proposal and the attestation
broadcast. In each slot, three phases occur in order: first, the block proposal; then, the
generation of transactions (which will be available for the proposer of the next slot); and
finally, all attestations are sent simultaneously.

74

Bk−3 Bk−2 Bk−1 Bk

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk

= 2
ϕk =

1

ϕk = 0

attk, i
ν(i,k) = 0

ν(i,k) = 1

ν(i,k) = 2
ν(i,k) = 3

Figure V.3: The actions available to an attester (blue) and a proposer (orange). The attester
i selects which block to attest with ν(i,k). The proposer selects the parent of its block with
ϕk. An example is shown where ϕk = ϕk−1 = ϕk−2 = 0.

The game

We denote the set of players (the validators) as V = {P,A}, consisting of a set of
proposers P and a set of attesters A. Per slot, following the Ethereum protocol, there is
exactly one proposer and a ∈ N attesters. Hence, the number of proposers is |P | = s,
and the number of attesters is |A| = as, with a, s ∈ N.

Wemodel the interactions betweenproposers and attesters during s slots in Ethereum
PoS as a game. In each slot, the timeline of events is as follows: (i) a block is proposed at
the beginning of the slot,6 (ii) new transactions are proposed, and (iii) all the attesters of
the slot send their attestations simultaneously. Therefore, the game is dynamic, with each
stage corresponding to a slot. In each slot, the attesters play a simultaneous game follow-
ing the proposal by the slot’s proposer. Our interest lies in the actions that the proposers
and attesters have, which we now describe.

Actions.
When it is their turn (recall that each proposer/attester is uniquely assigned to a slot,

and this information is verifiable, allowing players to take action only in their correspond-
ing slot), a proposermust choosewhich block to extend, and an attestermust select which
block to attest. The action will take the form of a variable that indicates how many slots
prior a proposer attaches its block to, or an attester attests. More formally, the action
of the proposer in slot k is to assign a value to its variable ϕk ∈ N, corresponding to the
difference between the current slot and the slot of the block selected as the parent. Sim-
ilarly, after the block proposal in slot k, each attester i of slot k must assign a value to its
variable νi,k ∈ N that represents the difference between the current slot and the slot of
the block being attested. We depict a subset of the action space in Figure V.3. In more
detail:

• At the beginning of slot k, a proposer p chooses the parent of its block Bk. We
denote this action by ϕk ∈ N. ϕk = lmeans that Bk ’s parent is Bk−1−l. Thus, if Bk ’s
parent is the block from the previous slot k − 1, then ϕk = 0.

6 ↑ Every block thus receives the proposer boost in our model.
75

The blocks contain two types of data: attestations and transactions. There is no
limitation on the number of transactions and attestations a block can contain.7
A proposer always includes all available transactions and attestations. A transac-
tion/attestation is considered available if it is not included in any of the predeces-
sors of Bk.

• After the block proposal in slot k, all attesters of slot k simultaneously choose which
block to attest. The attestation of attester i in slot k points to a specific block de-
termined by ν(i,k) ∈ N, i.e., the age of the block attested. ν(i,k) = l means that the
block Bk−l is the one attested by attester i in slot k. Thus, if validator i attests for
the block in the current slot k, then ν(i,k) = 0.

These actions are repeated in each slot. Note that not proposing or attesting to a block is
not an available action.

The last piece of data needed for our study is to determine whether a block Bk even-
tually belongs to the canonical chain. In our model, this information is represented by
χk ∈ {0, 1}, where χk = 1 if the block from slot k eventually belongs to the canonical
chain, and χk = 0 otherwise. This information becomes known at the end of slot s, which
marks the conclusion of our game.

It is important to note that for any slot k, always assigning a value of 0 to ϕk as a pro-
poser (or a value of 0 to ν(i,k) as an attester) is not the prescribed action. The prescribed
action is to follow the fork choice rule, as illustrated in Figure V.1.

Strategies. A strategy of a player i is a function σi, which takes as input the entire
tree of blocks in the blockchain, as well as the attestations sent so far, and produces as
output a number, say s ∈ N. Since the only information available are the tree of blocks
and the attestations, the signature of a player’s strategy is T ×A → N, where T is the set
of blocks and A is the set of available attestations.

For the proposer of slot k, the prescribed strategy is σ(0,k)(Tk−1,Ak−1) = l, where
F(Tk−1,Ak−1) = Bk−1−l. The prescribed strategy for an attester i at slot k isσ(i,k)(Tk,Ak−1) =

l, where F(Tk,Ak−1+ ρa) = Bk−l. We say that a player deviates from the prescribed pro-
tocol when their strategy produces a number different from the slot of the block resulting
from the fork choice rule.

A strategy profile σ = (σ0,1, . . . , σa,1, σ0,2, . . . , σa,2, . . . , σ0,s, . . . , σa,s) is a vector where
each component is a strategy of the corresponding player. We denote by S the set of
all strategy profiles and by S(i,k) the set of strategies for the player of component (i, k).
In this notation, players with indices (i, k) where i = 0 are proposers, while players with
indices (i, k)where 1 ≤ i ≤ a are attesters. For clarity, we denote by (σ−i, σ

′
i) the strategy

profile σ where, instead of playing with strategy σi, player i deviates and uses strategy σ′
i

instead. This applies to both attesters and proposers.
It remains to define the reward of the players at the end of the game. At the end of

slot s, the payoff of all players is computed and given by the function u : S → Rn+an

7 ↑ This simplification is similar to the one made in [CKWN16].
76

(defined in subsection V.2.1). The payoff of each player is given by its component in the
reward vector, which depends on its type and is determined by a reward function. In the
remainder of the chapter, for clarity, for any strategy profile σ, we write ui,j(σ) instead
of u(σ)(i,k), where ui,j(σ) represents the payoff of player (i, j), and player (0, j) is the
proposer of slot j.

V.2.1 . Payoff

Attesters’ rewards vary depending on when their attestations are included in a block
and which block they attest to. This can incentivize them to align their attestations with
the behavior of future block proposers. Block proposers have a clear incentive to accumu-
late the maximum transaction fees and lucrative attestations to maximize their rewards.
One strategy to achieve this is to fork the chain and include in the new block all the attes-
tations and transactions that do not belong to the new chain. However, if the block does
not end up in the canonical chain, the block proposer will not receive any rewards. This
incentivizes the proposer to consider other behaviors, as we will see.

Given a strategy profile σ, the reward of attester i in slot k, player (i, k), depends on
a variable x > 0 set by the protocol and the slot in which the attestation is subsequently
included in a block:

u(i,k)(σ) =

x if σ(i,k) sets ν(i,k) = ϕk+1 and χk+1 = 1,

20x/27 if χk+2≥···≥k+5 = 1, included in 2 to 5 slots following the attestation,
6x/27 = 2x/9 otherwise (if χ≥k+6 = 1).

(V.1)
Here, x > 0 andχn+1 denote the fact that the block of slot s+1belongs to the canonical

chain. The rewards for the attester can be understood as follows: they are maximized
when the attestation votes for the parent of the block in the subsequent slot, and this
block in the subsequent slot ends up in the canonical chain.

The actual rewards for an attester are detailed in Table V.1. Note that the reward is
influenced by the correctness of the attestation only if it is included in the block of the
next slot. Additionally, if the block of slot k+1 does not end up in the canonical chain, the
attesters of slot k can never receive the maximum reward.

For the proposer of slot k, the reward function is given by:

u(0,k)(σ) = χk

n∑
j=n−ϕk

(
1

7

a∑
i=1

u(i,j)(σ) + fj−1

)
, (V.2)

The reward is the sum of attestation rewards and transaction fees over the slots sepa-
rating the block from its parent, multiplied by the factor that indicates the block belongs to
the canonical chain. Here, fn−1 > 0 represents the random value of transaction fees gen-
erated during slot s− 1. The transaction fees are the incentives that motivate proposers
to include transactions in their block. The proposer receives 1/7 of what the attesters
receive for their attestations being included in a block. The factor χs, indicating whether
the block ends up in the canonical chain, applies to the entire reward since, if the block is

77

not included in the finalized chain, it does not yield any rewards.

V.3 . Analysis

In this section, we explore a set of possible strategies for proposers and attesters.
Each can either follow the obedient strategy or adopt a cunning strategy. The obedient
strategy is the one prescribed by the protocol. In contrast, the cunning strategy may de-
viate from the protocol while exploiting the proposer boost as a means to remain part of
the canonical chain. We begin by introducing the game-theoretic preliminaries necessary
for our analysis.

V.3.1 . Preliminaries

To ensure clarity and self-containment, we redefine well-known game-theoretic con-
cepts. These concepts are useful for categorizing strategy equilibria and exploring possi-
ble states of the game.
Definition V.1 (Best response). A strategy σ∗

i is a best response for player i to the strategy
profile σ−i of the other players if:

ui(σ−i, σ
∗
i) ≥ ui(σ−i, σi), ∀σi ∈ Si, (V.3)

where ui is the payoff function for player i, σ−i is the strategy profile of all other players, and
Si is the set of all possible strategies for player i.

Definition V.2 (Nash equilibrium). A strategy profile σ∗ = (σ∗
1, σ

∗
2, . . . , σ

∗
n) is a Nash equi-

librium if each player’s strategy σ∗
i is a best response to the strategies σ∗

−i of the other players.
Formally,

ui(σ
∗
−i, σ

∗
i) ≥ ui(σ

∗
−i, σi), ∀σi ∈ Si and for all players i, (V.4)

where ui is the payoff function for player i, σ∗
−i is the strategy profile of all other players in

the equilibrium, and Si is the set of all possible strategies for player i.

In summary, the concept of a best response helps identify the optimal strategy for a
player given the strategies of the other players. Nash equilibrium defines a state where
each player’s strategy is a best response to the strategies of the other players, ensuring
no player can benefit from unilaterally changing their strategy.

V.3.2 . Obedient

As Carlsten et al. [CKWN16], we first describe the strategy of proposers and attesters
that act as prescribed by the protocol, we refer to them as obedient. However in the case
of Ethereum, the actions prescribed by the fork choice rule are more complex compared
to those described by Carlsten et al.

78

Obedient Proposer (σO
(0,k)):

Action: ϕk = l, where F(Tk−1,Ak−1)→ Bk−1−l.
The strategy of an obedient proposer at slot k is to propose a block Bk linked to
the block designated by the fork choice rule F(Tk−1,Ak−1)→ Bk−1−l.

Obedient Attester (σO
(i,k)):

Action: ν(i,k) = l (Block attested is Bk−l.)
The obedient attester strategy of attester i is to attest to the block designated by
the fork choice rule F(Tk,Ak−1 + ρa)→ Bk−l.
We denote by σO

(i,j) the obedient strategy of player (i, j) and by σO the strategy profile
where all players act obediently.

When proposers and attesters follow the obedient strategy, we can evaluate the re-
wards each of themwill receive. Since they will all follow the fork choice rule and there are
no delays, no forks will occur, and attesters will attest to the block of their slot. Moreover,
each attestation will be included in the following slot and will be correct. For proposers
and attesters following the actions prescribed by the protocol, the rewards are as follows:

• For each attester i following the obedient strategy, the reward is: u(i,k)(σO) = x,
where σO is the strategy profile in which all proposers and attesters are obedient.

• For the proposer of slot k, the reward is: u(0,k)(σO) = ax
7 + fk−1.

With this strategy profile, attesters obtain the maximum reward attainable (Equation V.1).
However, there is no maximum reward for a block proposer, as their rewards increase
the more ancient their block’s parent is.

V.3.3 . Cunning Strategy

We now examine a strategy that could yield more rewards for validators than simply
following the protocol. In some situations, deviating from the protocol can allow valida-
tors to accumulate more rewards without incurring penalties. We refer to this as the
cunning behavior. For a proposer, the strategy involves choosing a block parent for its
proposal that maximizes its rewards.

As the block parent’s slot is further away from the new block, the proposer can include
more transactions and attestations to increase its rewards. The ideal block parent, in
theory, would be the genesis block. However, for the block to actually yield rewards, it
must become part of the canonical chain. The cunning proposer will always propose a
block that is considered the head of the canonical chain during its slot.

For instance, a cunning proposer will not strictly follow the fork choice rule to deter-
mine its block’s parent. Instead, it will subtly test whether it can choose an older block as
the parent while still having its block become the head of the canonical chain. The block

79

that maximizes rewards—typically the oldest possible block—will be selected as the par-
ent by the cunning proposer.

Cunning Proposer (σC
(0,k)):

Action: ϕk = max{x ∈ N : F(Tx,Ax−1 + ρa) = Bk}

The cunning proposer’s block extends the block that leaves the most available
transactions and attestations while still being selected as the head of the canonical
chain by the fork choice rule (for attesters in the same slot) due to the proposer
boost ρa.
We denote by σC

(0,k) the cunning strategy of the proposer in slot k.
Remark V.1. The obedient and the cunning strategy can result in the same action.

It is important to note that while the cunning and obedient strategies are distinct, the
actions resulting from them can sometimes be identical. Indeed, the action taken by a
cunning proposer is to propose a block with the oldest possible parent while still ensuring
the block is designated by the fork choice rule for the attesters of the slot. However, if the
oldest possible parent is the same block initially designated by the fork choice rule, the
action will align with the protocol, just as it would under the obedient strategy. In this
sense, we say that a cunning player acts obediently if their action is the one prescribed by
the protocol. Conversely, we say they act cunningly if the action taken differs fromwhat is
prescribed by the protocol, making the cunning strategy truly distinct from the obedient
strategy.
Observation V.1 (Cunning condition). The divergence between cunning and obedient pro-
poser behavior occurs when the branch containing the block designated by the fork choice rule,
with a total attestation weight wf , has a concurrent branch with a total attestation weight wg

such that:
wf − wg ≤ ρa. (V.5)

We call this inequality the cunning condition.

First, it is clear that wf is always greater than wg , as the block designated by the fork
choice rule is on the branch with a total attestation weight of wf . To understand the
cunning condition, we consider two illustrations:

1. The first, and less intuitive, case is presented in Figure V.4. This showcases the
scenario where wg = 0. A branch can consist of many blocks, a single block, or, in
this case, no block at all.
The newly proposed block can become the head of the canonical chain by attaching
itself to the first block with more than ρa attestation weight. If the block designated
by the fork choice rule is on a branch with a total attestation weight less than ρa,
the cunning behavior differs from the obedient behavior.

80

2. Another representation of the cunning condition is shown in Figure V.5. Here, there
are two distinct branches, each with one block. The branch of the block designated
by the fork choice rule has an attestation weight of wf = 3, while the concurrent
branch has wg = 2. In this case, where ρa = 1.2, the condition is met, allowing the
proposer to act cunningly.

9 5 1

slot k − 3 slot k − 2 slot k − 1 slot k

10.2 6.2 1 1.2

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk =

1

ρa

Figure V.4: Cunning proposer (0, k) deviating from the prescribed protocol with ρa =

1.2(= 0.4× 3) when the block designated by the fork choice rule has an attestation weight
less than ρa.

It should be noted that without the proposer boost, the cunning proposer strategy
would never differ from the obedient proposer strategy. This strategy relies on the advan-
tage provided by the proposer boost to ensure that its block becomes the head according
to the fork choice rule.

Conversely, and intuitively, as the proposer boost increases, the opportunity for the
cunning block proposer to act cunningly arises more frequently in the case all attesters
are obedient.

Best response of a proposer among s−1 obedient proposers and as obedient
attesters. We first study the behavior of one proposer when all others are obedient
with respect to their designated slot. In the case in which the proposer is associated to
the first slot of the game, for this proposer the cunning strategy is the best response
and the proposer deviates from the protocol if the cunning condition holds (Lemma V.1).
In the case the proposer is associated to a subsequent slot of the game, then the two
strategies obedient and cunning are equivalent; this means that the proposer will follow
the protocol (Lemma V.2).

81

9 2 3

slot k − 3 slot k − 2 slot k − 1 slot k

10.2 3.2 3 1.2

slot k − 3 slot k − 2 slot k − 1 slot k
ϕk = 1

ρa

Figure V.5: Cunning proposer (0, k) deviating from the prescribed protocol with ρa =

1.2(= 0.4 × 3) when two blocks have an attestation weight difference of less than ρa, and
one of them is designated by the canonical chain.

Lemma V.1. When all other validators are obedient, the cunning proposer strategy is a best
response.

Proof. Let us denote by ϕC
k and ϕO

k the actions taken by proposer (0, 0) under the cunning
strategy and the obedient strategy, respectively. The cunning proposer strategy differs
from the obedient strategy when ϕC

k > ϕO
k . Considering that the rest of the validators

follow the obedient strategy, a proposed block that becomes the head of the chain at slot
k will end up in the canonical chain (χk = 1). By construction, ϕC

k ≥ ϕO
k , and in both cases,

the proposed block will be the head of the canonical chain and thus belong to the canoni-
cal chain (χk = 1). Based on the definition of u(0,k) (cf. Equation V.2), the reward increases
as the sum increases. This implies that u(0,k)(σO

−(0,k), σ
C
(0,k)) ≥ u(0,k)(σ

O
−(0,k), σ

O
(0,k)).

Let us note that when everyone else is obedient, the cunning strategy can only differ
from the obedient strategy for the first proposer. All subsequent proposers will follow
the protocol regardless of whether they follow the cunning or obedient strategy because
the cunning condition is never satisfied. We formalize this in the following observation:
Lemma V.2. For the strategy profile σO

−(0,i) where all other validators follow the obedient
strategy, ϕC

i ̸= ϕO
i only if i = 0, where ϕi is the action of proposer (0, i).

Proof. This can be explained because our model makes strong assumptions about syn-
chronous network conditions. When considering that all attesters are obedient, this im-
plies that in each slot, all attesters will send the same attestation. As a result, every new
blockwill have an attestationweight that is amultiple of a. If the first proposer is obedient,

82

it attaches its block to the branch with the highest attestation weight wf . The obedient
attesters will attest to it, adding a weight of a. This makes the cunning condition (Ob-
servation V.1) impossible for subsequent proposers, as wf + a − wg ≥ a. Nevertheless,
the first proposer can act cunningly since the network’s state before the first slot is not
predetermined, leaving any arrangement of blocks and attestation weights possible.

Best response of a proposer among s − 1 cunning proposers and as obedi-
ent attesters. We study the behavior of one proposer when all other proposers are
cunning and attesters are obedient. We have two cases:

• ρ < 1/2. If the proposer is associated with the first slot of the game, the cunning
strategy is the best response, and the proposer will deviate from the protocol if the
cunning condition holds (Lemma V.3).
If the proposer is associatedwith any subsequent slot in the game, the cunning con-
dition will never hold. In this case, the obedient and cunning strategies are equiva-
lent, leading the proposer to act as prescribed by the protocol (Lemma V.11).

• ρ ≥ 1/2. In this case, the cunning condition can apply to multiple consecutive pro-
posers. If the cunning condition does not hold for the second proposer, then the
cunning strategy is the best response for the first proposer (Lemma V.4), causing
the first proposer to deviate from the protocol.
If the cunning condition holds for more than just the first proposer, the cunning
strategy becomes the best response if, and only if, the expected rewards gained
from acting cunningly and hoarding the rewards over the two previous slots exceed
the rewards from the most recent slot alone. (Lemma V.5). In this scenario, each
proposer deviates from the prescribed protocol.

Lemma V.3. The cunning proposer strategy is a best response for a proposer when all other
proposers are cunning and attesters are obedient, provided ρ < 1/2. If the cunning condition
holds, it will only do so for the first proposer, causing this proposer to deviate from the protocol.

Proof. With ρ < 1/2, only the first proposer can act cunningly. Let’s assume the first
proposer acts cunningly, meaning that the cunning condition is satisfied. The maximum
gapbetweenwf andwg for the first proposer to act cunningly is ρa, such thatwf = wg+ρa.
After the attestations sent by the obedient attesters in the first slot, the attestation weight
of the branch designated by the fork choice rule becomeswg+a. For the second proposer
to act cunningly, it must hold that wg + a − wf ≤ ρa (cunning condition for the second
proposer). Substitutingwf with themaximumpossible gap fromwg , this condition implies
that the second proposer can act cunningly if and only if:

wg + a− (wg + ρa) ≤ ρa

1

2
≤ ρ.

(V.6)

83

Thus, with cunning proposers and obedient attesters, only the first proposer can act cun-
ningly, deviating from the obedient action. For the first proposer, acting cunningly will
yield the maximum rewards.

In fact, since only the first proposer can act cunningly when ρ < 1/2, the obedient
strategy remains a best response for the rest of the proposers, even when all other pro-
posers are cunning and attesters are obedient.
Lemma V.4. The cunning proposer strategy is a best response for a proposer when all other
proposers are cunning and attesters are obedient, if ρ ≥ 1/2 and the cunning condition does
not hold for the second proposer. If the cunning condition holds, it will only do so for the first
proposer, causing this proposer to deviate from the protocol.

Proof. If the attestation weight of the branch f designated by the fork choice rule,wf , and
the attestation weight wg of a concurrent branch g are such that wg + a − wf > ρa, the
second proposer cannot act cunningly with obedient attesters (cunning condition false
for the second proposer). We previously showed that if the first proposer is cunning and
attaches its block to the concurrent chain g, the obedient attesters will follow, increasing
the weight of g to wg + a. By ensuring that wg + a − wf > ρa, we prevent the second
proposer from changing the canonical chain with the proposer boost. Thus, this condition
ensures that the first proposer can be the only one to act cunningly, and in this case, the
best response is the cunning strategy.
LemmaV.5. When all proposers are cunning, attesters are obedient, and ρ ≥ 1/2, the cunning
strategy is a best response if the cunning condition holds for the second proposer and:

fk−2 − fk−1

2
≥ ax

27
, (V.7)

where fk denotes the transaction fees emitted at slot k.

Proof. If the cunning condition is true for the second proposer (wg + a− wf ≤ ρa) it can
attach its block to the branch with attestation weightwf since the gap with the concurrent
chain of weight wg + a is less than the proposer boost ρa. The obedient attesters of the
second slot will add an attestation weight of a to wf . Following this, the gap between
the attestation weights of the two concurrent branches will always remain less than ρa,
leading all cunning proposers to attach their blocks two slots prior.

We illustrate in Figure V.6 the "bouncing" that will unfold due to cunning proposers.
Their resulting reward will be affected, as the repeated bouncing of the canonical chain
between the two branches will cause the blocks from each chain to become canonical
with a probability of 1/2. No attesters will receive the maximum reward since they would
never attest in accordance with the following proposer. The reward of the proposer (0, k)
following the cunning strategy will thus be:

u(0,k)(σ−(0,k), σ
C
(0,k)) =

1

2

(
a

7
· 20x
27

+ fk−2 +
a

7
· 20x
27

+ fk−1

)
=

a

7
· 20x
27

+
fk−2 + fk−1

2
,

(V.8)

84

with σ−(0,k) being the strategy profile in which every proposer is cunning and every at-
tester is obedient.

Being cunning is a best response when wf + ρa ≥ a, if and only if:
u(0,k)(σ−(0,k), σ

C
(0,k)) ≥ u(0,k)(σ−(0,k), σ

O
(0,k))

⇔ a

7
· 20x
27

+
fk−2 + fk−1

2
≥ ax

7
+ fk−1

⇔ fk−2 − fk−1

2
≥ ax

27
,

(V.9)

where σ−(0,k) is the strategy profile in which every proposer is cunning and every attester
is obedient, and σO

(0,k) is the obedient strategy. Therefore, if fk−2 is not sufficiently greater
than fk−1, the best response is the obedient strategy; otherwise, the best response is the
cunning strategy.

Since transaction fees are positive, they cannot continue to decrease indefinitely with
each slot. This implies that when the cunning condition holds for the second proposer,
eventually one proposer will follow the obedient strategy, thereby stopping the fork.

X ρa ρa

slot k − 2 slot k − 1 slot k

X ρa+ ρa a ρa

slot k − 2 slot k − 1 slot k slot k + 1

Figure V.6: X indicates that the value of the block is irrelevant. As a reminder, the pro-
poser boost is equivalent to an attestation weight of ρa for a new block (in orange). In
this scenario, the proposer of slot k is cunning and all the attesters are obedient. The pro-
poser of slot k takes advantage of the proposer boost to become the head of the canonical
chain. The proposer of slot k + 1 can cunningly become the head of the canonical chain
by attaching its block to the block from slot k − 1 and can become the head of the chain
only if 2ρa ≥ a, which means ρ ≥ 1/2. In conclusion, a proposer boost greater than 1/2

can create a situation in which multiple forks occur in the presence of cunning proposers
and obedient attesters.

Best response of an attester among s cunning proposers and an − 1 obedi-
ent attesters. Until now, we have described a scenario where all proposers follow the

85

cunning strategy, and attesters follow the obedient strategy, leading to a potentially long
fork in which attesters pay the price for the cunning behavior of proposers and do not
receive the maximum reward. Let us now introduce the cunning attester strategy, which
takes advantage of knowing when the cunning proposer strategy is the best response to
act accordingly and secure a higher reward.

Cunning Attester (σC
(i,k)):

Action: ν(i,k) = σC
0,k+1(Tk,Ak−1 ∪AO

k).
The cunning attester (i, k) attests to the parent of the block in slot k+1, assuming
that all other attesters in slot k will act obediently (AO

k) and that the proposer of slot
k+1will act cunningly. The action is the same as the following cunning proposer’s,
i.e., ν(i,k) = ϕC

k+1.
We found that when ρ < 1/2, the obedient attester strategy and the cunning attester

strategy are equivalent. This implies that attesters will follow the protocol (Lemma V.6)
when ρ < 1/2. Moreover, if ρ ≥ 1/2, when all proposers are cunning and attesters are
obedient, the best response is the cunning attester strategy. When the cunning condition
holds for the second proposer the cunning attester strategywill deviate from the protocol.
Otherwise, all attesters will follow the protocol (Lemma V.7).
Lemma V.6. When ρ < 1/2, the obedient attester strategy and the cunning attester strategy
are equivalent.

Proof. This result stems from the fact that when ρ < 1/2, only the first proposer can act
conspicuously cunningly,meaning they deviate from theprotocol (cf. proof of LemmaV.3).
Therefore, if all subsequent proposers act similarly to obedient proposers and follow the
protocol, attesters will never have the opportunity to act cunningly and will follow the
protocol as well.
Lemma V.7. When ρ ≥ 1/2 and all proposers are cunning while all other attesters are obe-
dient, the cunning attester strategy is a best response. If the cunning condition holds for the
second proposer, the cunning attester strategy will lead the attester to deviate from the proto-
col. Otherwise, all attesters will follow the protocol.

Proof. For attesters to exhibit cunning behavior, more than just the first proposer must
act cunningly. This occurs if and only if the cunning condition holds for the second at-
tester.

The reward for attester (i, k) following the cunning attester strategy σC
(i,k), while all

other attesters are obedient and proposers are cunning σ−(i,k), is:
u(i,k)(σ−(i,k), σ

C
(i,k)) =

47x

54
. (V.10)

Since the attester’s reward depends on when their attestation is included in a block, it
also depends on whether the blocks belong to the canonical chain. Each attestation is in-
cluded in the next two blocks, which are on different chains, each having a 1/2 probability

86

of being in the canonical chain. This gives the cunning attester a reward of 1
2(x+

20x
27). Fol-lowing the obedient attester strategy leads to a reward of 20x

27 , as in both blocks, the attes-tationwill either attest to thewrongblock or be included too late. Thus, u(i,k)(σ−(i,k), σ
C
(i,k)) ≥

u(i,k)(σ−(i,k), σ
O
(i,k)).

Best response of an attester among s cunning proposers and an− 1 cunning
attesters. We study the behavior of an attester when all proposers are cunning and
other attesters cunning. In this case the best response is the cunning attester strategy.
This strategy only deviates from the protocol for the attesters of the first slot if the cunning
condition holds for the second proposer. However this deviation will prevent the cunning
condition to hold for the third proposer, effectively making all subsequent validators to
follow the protocol.
LemmaV.8. The cunning attester strategy is a best response for an attester when all validators
are cunning. If the cunning condition holds for the second proposer, the cunning attester strat-
egy will lead the attesters of the first slot to deviate from the protocol. Otherwise, all attesters
will follow the protocol.

Proof. For attesters to exhibit cunning behavior, more than just the first proposer (0, 0)
must act cunningly. This occurs if the cunning condition holds for the second proposer
(0, 1).

In this case, all attesters of the first slot will expect proposer (0, 1) to act cunningly
and attach itself to the block designated by the fork choice rule at the beginning of the
game (F(T0,A−1)), leading them to attest to the head of the branch with total attestation
weight wf . This scenario is represented in Figure V.7. As a result, the block proposed
by the first proposer (0, 0) will not be attested by the attesters. The block proposed by
(0, 1) will belong to the canonical chain since no other fork is possible for the subsequent
proposers. The gap between wf + a and wg is too large for the proposer boost to enable
further cunning actions, the cunning condition cannot hold anymore. The attesters (i, 0)
of the first slot, who act in accordance with proposer (0, 1), receive the maximum reward.
Proposers (0, 2) and beyond will not have the opportunity to act cunningly, nor will the
remaining attesters, resulting in all attesters receiving the maximum reward.

Best response of a proposer among s− 1 cunning proposers and as cunning
attesters. Now that the attester can also act cunningly, let us evaluate the best re-
sponse of proposers. We found that for ρ < 1/2, as usual, only the first proposers can
deviate from the prescribed protocol. Doing so will yield more reward hence the cunning
strategy is the best response for the first proposer.

When ρ ≥ 1/2, there are two cases. If the cunning condition does not hold for the
second proposer, the best response is the cunning proposer strategy and only the first
proposer has the opportunity to deviate from the protocol. On the other hand, if the
cunning condition holds for the second proposer, all attesters of the first slot will deviate

87

X ρa ρa

slot k − 2 slot k − 1 slot k

X ρa+ a +ρa 0 ρa

slot k − 2 slot k − 1 slot k slot k + 1

Figure V.7: X indicates that the value of the block is irrelevant. In this scenario, all val-
idators act cunningly. The proposer of slot k attaches its block to the block from two slots
prior. The cunning attesters in slot k attest to the block from slot k − 1 to align with the
following proposer’s strategy. The proposer of slot k + 1 is then compelled to attach its
block to the block from slot k − 1. As a reminder, the proposer boost is equivalent to an
attestation weight of ρa for a new block (in orange). This results in the proposer of slot k
forking alone and receiving no rewards.

from the protocol and not attest the block of the first proposer. This makes the obedient
proposer strategy the best response for the first proposer as well as all other proposers
that will follow the protocol regardless of the first proposer strategy when attesters are
cunning.
Lemma V.9. If ρ < 1/2 and all validators are cunning, the best response for the first proposer
is the cunning strategy. If the cunning condition holds, it will only do so for the first proposer,
causing this proposer to deviate from the protocol.

Proof. This follows directly from Lemma V.6 and Lemma V.3.
Lemma V.10. If ρ ≥ 1/2 and all validators are cunning, the best response for a proposer
is cunning, if the cunning condition does not hold for the second proposer. Otherwise, the
obedient proposer strategy is the best response.

Proof. If the cunning condition holds for the second proposer, Lemma V.8 describes how
the scenario would unfold. A possible outcome is represented in Figure V.7. The result is
that, for the first proposer, the best response is the cunning strategy only if the second
proposer cannot act cunningly.

Otherwise, as described in the proof of Lemma V.8, if the first proposer remains cun-
ning, they will receive zero reward. All other proposers follow the protocol regardless of
the strategy of the first proposer.

88

A counterintuitive finding is that with a higher proposer boost ρ > 1/2, the obedient
proposer strategy can be favored. One reason is that the transaction fees gainedmay not
be enough to compensate for the probability of not belonging to the canonical chain. An-
other reason is that being cunning can backfire if the attesters are also cunning, leading
to the cunning block not being attested at all. The assurance of belonging to the canon-
ical chain and the available rewards can be sufficient to make the obedient strategy the
favored response.
Eventual Incentive compatibility We have seen that the strategy profile in which
all validators are obedient and follow the prescribed protocol is not a Nash equilibria,
participants can gain from changing strategy. In this sense the consensus protocol and
more precisely the fork choice rule is not incentive compatible.

Nonetheless, we now show that in all equilibria, there exists a slot after which all val-
idators follow the prescribed protocol (Theorem V.1).
Lemma V.11. Once a proposer follows the protocol, all subsequent validators do so.

Proof. A proposer (0, j) following the protocol implies that if all attesters of its slot also
follow the protocol, the next proposer cannot deviate. This is because all obedient at-
testers in that slot would give an attestation weight of a to the block proposed by (0, j).
Since it extends the branch designated by the fork choice rule, with an attestation weight
wf ≥ wg , where wg is the attestation weight of any concurrent branch, adding a to wf

ensures that no proposer deviate from the protocol (cf. Observation V.1).
Knowing this, the attesters (i, j) of slot j will follow the protocol as well. No validators

can deviate from the protocol after a block is attached to the head of the canonical chain.

Theorem V.1. In all Nash equilibria, there is a slot after which all validators follow the proto-
col.

Proof. Weknow that once aproposer acts obediently, all subsequent validators do (LemmaV.11).
If there is an equilibrium in which one proposer follows the obedient strategy and

extends the head of the canonical chain, the theorem is valid. We now look at proposers
all following the cunning strategy. When all proposers follow the cunning strategy, to have
more than the first to effectively act cunningly we need to havewg+a−wf ≤ ρa otherwise
the second proposer will extend the head of the canonical chain, validating the theorem.
Then in the case of the fork continuing with each proposer thus attaching their block two
slots prior, this makes each of their blocks have an expectation of 1/2 to belong to the
canonical chain (χ = 1/2). As computed in Lemma V.4, their reward will thus be in the
form of: fk−2 − fk−1 ≥ α, where α is a positive number that depends on the attestation
included and their reward associated. No matter the value of α, even taking α = 0, a
proposer will have as best response to be cunning only if the transaction fees gained with
a probability 1/2 by being cunning are at least superior to the transaction fees obtained
with certainty otherwise.

89

This condition cannot be true for all proposers as the transaction fees are positive and
discrete. Eventually, a proposer (0, k) will see previous transaction fees where fk−2 <

fk−1. The best response of proposer (0, k) is to act obediently.
We can conclude that under perfect network conditions, regardless of the proposer

boost, the obedient strategy will eventually prevail.

V.4 . Conclusion

In this chapter, wehave analyzed the EthereumPoSprotocol through a game-theoretic
lens, particularly focusing on the incentivemechanisms that influence the behavior of pro-
posers and attesters. Our findings reveal that the current design leads rational validators
to all eventually adhere to the protocol. Specifically the proposer boost mechanism does
not permit prolonged forks while having good network conditions. Surprisingly, a high
proposer boost (superior to 1/2) can even prevent cunning behavior.

This initial analysis focused on two strategies: cunning and obedient. Future research
will expand to include a broader range of strategies. Additionally, exploring different as-
sumptions about network conditions, such as communication with more realistic delays,
is expected to significantly impact the results.

90

Chapter VI

Conclusion and Perspectives

D
riven by the need to evaluate the impact of incentive mechanisms on blockchain
robustness, we embarkedon this thesis. Traditional distributed systems approaches,
which consider honest andByzantine participants, often overlook incentives, while

game theory focuses on incentives but typically disregards blockchain robustness. Our
work aims to bridge this gap by examining the case study of Ethereum PoS.

Ethereum PoS is unique for two reasons: it has a very active research community,
and its protocol is a hybrid of Nakamoto-style and BFT-like consensus. These features
make it an ideal subject for studying complex ideas that apply broadly to other blockchain
systems, asmost blockchains incorporate at least one of these fundamental components.

Our analysis began with a detailed examination of the Ethereum PoS protocol. The
complexities of this protocol necessitated a dedicated paper [PAT23] focused on its de-
scription. In this work, we redefined the crucial properties of safety and liveness, which
are fundamental to blockchain robustness and serve as the foundation for our entire
study. We formalized the protocol based on its code which we transcribed in pseudo-
code. We then revealed that the protocol was safe and the liveness was probabilistic due
to a possible attack we identified.

We then shifted our focus to the incentive mechanisms within the Ethereum PoS pro-
tocol. While our first analysis was in line with traditional distributed systems approaches
and did not consider incentives, the second part of our work [PAT24a] explored the inac-
tivity leak, an incentive mechanism that directly impacts the protocol’s robustness. Our
results show that the mechanism penalizing seemingly inactive validators to restore live-
ness in times of partitions could be subverted by Byzantine validators to break the safety.

The final part of our work addresses the behavior of rational participants within the
protocol, bridging the gap between distributed system and game theoretic analysis. We
investigated whether proposers and attesters could financially benefit from deviating
from the protocol, specifically by exploiting the fork choice rule to their advantage. The
strategy exploiting the fork choice rule is called cunning while the strategy that adheres
to the protocol is called obedient. Our findings state that for any equilibrium, eventually
all validators will behave obediently. There are two reasons for this. First we assume per-
fect network conditions during which messages sent are instantaneously received by all
participants. Secondly, not following the obedient strategy can be less rewarding as it can
imply that blocks do not eventually end up in the canonical chain, which would yield zero
rewards in this case.

Our contributions highlight the critical role of incentive mechanisms in blockchains.
91

Rewards and penalties can either prevent misbehavior, as shown in our game-theoretic
analysis, or be detrimental if exploited by Byzantine participants, as illustrated in our anal-
ysis of the inactivity leak. This work contributes to the effort of making blockchain proto-
cols more comprehensible. The complexity of the Ethereum protocol is undeniable, and
we hope to serve as a resource for a detailed, formalized explanation of the protocol.
While we have striven to provide an accurate description of the consensus mechanisms,
the examination of how transactions are processed and executed remains. This consti-
tutes an entire work on its own.

Although our work focuses on a single blockchain, the insights gained offer valuable
guidance for the design of future protocols. Addressing the intersection of distributed
systems and game theory is both recent and challenging. While Abraham et al. [AAH11]
introduced the idea of combining these fields in 2011, the complexity involved has led to
limited research in this area. One of our goals was to study the protocol with three types
of agents: honest, Byzantine, and rational. However, the complexity of the protocol made
adding this refinement to the participant model too daunting and, we believe, unfeasible.

Future work should aim to develop simpler protocols that remain robust in the pres-
ence of honest, Byzantine, and rational players. Our work provides a framework for eval-
uating protocols. However, a limitation of this thesis is the absence of a proposed solution
to the problems identified.

Blockchain technology is still in its early stages, and we hope that our contribution will
aid its continued development.

92

Bibliography

[AAH11] Ittai Abraham, Lorenzo Alvisi, and Joseph Y. Halpern. Distributed computing
meets game theory: combining insights from two fields. SIGACT News, 42(2):69–
76, 2011. (Cited on pages ↑ 14 and ↑ 92)

[ABPT20] Yackolley Amoussou-Guenou, Bruno Biais, Maria Potop-Butucaru, and Sara
Tucci Piergiovanni. Rational vs byzantine players in consensus-based
blockchains. In Proceedings of the 19th International Conference on Autonomous
Agents andMultiagent Systems, AAMAS ’20, Auckland, New Zealand, May 9-13, 2020,
pages 43–51. International Foundation for Autonomous Agents andMultiagent
Systems, 2020. (Cited on page ↑ 14)

[ACL+19] Musab A. Alturki, Jing Chen, Victor Luchangco, Brandon M. Moore, Karl Palm-
skog, Lucas Peña, and Grigore Rosu. Towards a verified model of the algorand
consensus protocol in coq. In Formal Methods. FM 2019 International Workshops
- Porto, Portugal, October 7-11, 2019, Revised Selected Papers, Part I, volume 12232
of Lecture Notes in Computer Science, pages 362–367. Springer, 2019. (Cited on
page ↑ 12)

[ACM20] Ignacio Amores-Sesar, Christian Cachin, and Jovana Micic. Security analysis of
ripple consensus. In 24th International Conference on Principles of Distributed
Systems, OPODIS 2020, December 14-16, 2020, Strasbourg, France (Virtual Confer-
ence), volume 184 of LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. (Cited on page ↑ 12)

[ACP+21] Lacramioara Astefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieu-
tord, Sara Tucci Piergiovanni, and Eugen Zalinescu. Tenderbake - A solution to
dynamic repeated consensus for blockchains. In 4th International Symposium
on Foundations and Applications of Blockchain 2021, FAB 2021, May 7, 2021, Univer-
sity of California, Davis, California, USA (Virtual Conference), volume 92 of OASIcs,
pages 1:1–1:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. (Cited
on page ↑ 13)

[ADL+19] Emmanuelle Anceaume, Antonella Del Pozzo, Romaric Ludinard, Maria Potop-
Butucaru, and Sara Tucci-Piergiovanni. Blockchain abstract data type. In The
31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019,
Phoenix, AZ, USA, June 22-24, 2019, pages 349–358. ACM, 2019. (Cited onpages ↑ 12
and ↑ 21)

93

[ADPT18] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni. Correctness of tendermint-core blockchains. In 22nd
International Conference on Principles of Distributed Systems, OPODIS 2018, De-
cember 17-19, 2018, Hong Kong, China, pages 16:1–16:16, 2018. (Cited on pages ↑ 13
and ↑ 46)

[ADRT21] Emmanuelle Anceaume, Antonella Del Pozzo, Thibault Rieutord, and Sara
Tucci-Piergiovanni. On finality in blockchains. In 25th International Conference
on Principles of Distributed Systems, OPODIS 2021, December 13-15, 2021, Stras-
bourg, France, pages 6:1–6:19, 2021. (Cited on page ↑ 12)

[APM+23] Hagit Attiya, Antonella Del Pozzo, Alessia Milani, Ulysse Pavloff, and Alexandre
Rapetti. The synchronization power of auditable registers. In 27th International
Conference on Principles of Distributed Systems, OPODIS 2023, December 6-8, 2023,
Tokyo, Japan, volume 286 of LIPIcs, pages 4:1–4:23. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2023. (Cited on page ↑ iii)

[APPT19] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and
Sara Tucci-Piergiovanni. Dissecting tendermint. In Networked Systems - 7th In-
ternational Conference, NETYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised
Selected Papers, volume 11704 of Lecture Notes in Computer Science, pages 166–
182. Springer, 2019. (Cited on pages ↑ 12 and ↑ 46)

[Bac97] Adam Back. A partial hash collision based postage scheme, 1997. (Cited on
page ↑ 5)

[Bac02] Adam Back. Hashcash - a denial of service counter-measure, 2002. (Cited on
page ↑ 5)

[BBBC19] Bruno Biais, Christophe Bisière, Matthieu Bouvard, and Catherine Casamatta.
The blockchain folk theorem. Review of Financial Studies, 32:1662–1715, 05 2019.
(Cited on page ↑ 14)

[BCC+23] Alpesh Bhudia, Anna Cartwright, Edward J. Cartwright, Darren Hurley-Smith,
and Julio C. Hernandez-Castro. Game theoretic modelling of a ransom and
extortion attack on ethereum validators. In Proceedings of the 18th International
Conference on Availability, Reliability and Security, ARES 2023, Benevento, Italy, 29
August 2023- 1 September 2023, pages 105:1–105:11. ACM, 2023. (Cited onpage ↑ 15)

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017. (Cited on pages ↑ 13, ↑ 14, and ↑ 49)

[BHK+20] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,
Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang. Combining GHOST
and casper. CoRR, abs/2003.03052, 2020. (Cited on pages ↑ 12, ↑ 14, ↑ 19, ↑ 21,
↑ 24, ↑ 25, ↑ 25, ↑ 26, ↑ 28, ↑ 28, ↑ 28, and ↑ 31)

94

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT con-
sensus. CoRR, abs/1807.04938, 2018. (Cited on pages ↑ 12 and ↑ 25)

[Bre00] Eric A. Brewer. Towards robust distributed systems (abstract). In Gil Neiger,
editor, Proceedings of the Nineteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, July 16-19, 2000, Portland, Oregon, USA, page 7. ACM, 2000.
(Cited on pages ↑ 21 and ↑ 46)

[BRLP20] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Pil-
iouras. Incentives in ethereum’s hybrid casper protocol. Int. J. Netw. Manag.,
30(5), 2020. (Cited on page ↑ 14)

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decentralized
application platform, 2014. (Cited on pages ↑ 8 and ↑ 12)

[CFN88] David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Ad-
vances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 21-25, 1988, Proceedings, volume 403 of
Lecture Notes in Computer Science, pages 319–327. Springer, 1988. (Cited on
page ↑ 4)

[Cha82] David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology: Pro-
ceedings of CRYPTO ’82, Santa Barbara, California, USA, August 23-25, 1982, pages
199–203. Plenum Press, New York, 1982. (Cited on page ↑ 4)

[CKWN16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind
Narayanan. On the instability of bitcoin without the block reward. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 154–167. ACM, 2016. (Cited
on pages ↑ 15, ↑ 19, ↑ 76, and ↑ 78)

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Pro-
ceedings of the Third USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), New Orleans, Louisiana, USA, February 22-25, 1999, pages 173–
186. USENIX Association, 1999. (Cited on page ↑ 17)

[CM19] Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theor. Comput. Sci., 777:155–183, 2019. (Cited on pages ↑ 12 and ↑ 18)

[Con22] Consensys. Teku consensus client, 2022. (Cited on page ↑ 30)
[Dai98] Wei Dai. B-money, 1998. (Cited on page ↑ 4)
[DDS87] Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. On the minimal syn-

chronism needed for distributed consensus. J. ACM, 34(1):77–97, 1987. (Cited
on page ↑ 10)

95

[DLS88] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, pages 288–323, 1988. (Cited on page ↑ 18)

[DN92] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume
740 of Lecture Notes in Computer Science, pages 139–147. Springer, 1992. (Cited
on page ↑ 5)

[Edg3] Ben Edgington. A technical handbook on Ethereum’s move to proof of stake and
beyond. ETH2 Book, 2023-. (Cited on page ↑ 54)

[ES14] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In Financial Cryptography and Data Security - 18th International Conference,
FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised Selected Papers, vol-
ume 8437 of Lecture Notes in Computer Science, pages 436–454. Springer, 2014.
(Cited on page ↑ 14)

[ES18] Ittay Eyal and Emin Gün Sirer. Majority is not enough: bitcoin mining is vulner-
able. Commun. ACM, 61(7):95–102, 2018. (Cited on pages ↑ 13 and ↑ 14)

[Fin08] Hal Finney. Mail from finney to, 2008. (Cited on page ↑ 7)
[FMJR20] Mehdi Fooladgar, Mohammad Hossein Manshaei, Murtuza Jadliwala, and Mo-

hammad Ashiqur Rahman. On incentive compatible role-based reward distri-
bution in algorand. In 50th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020, pages
452–463. IEEE, 2020. (Cited on page ↑ 14)

[Fou24] Ethereum Foundation. Consensus specifications github.
https://github.com/ethereum/consensus-specs/tree/

a42d6706d89c414764eda7e2d0103e19f1e23761/specs, 2024. (Cited on
pages ↑ 12, ↑ 24, ↑ 24, ↑ 24, ↑ 25, ↑ 25, ↑ 30, ↑ 34, and ↑ 42)

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Advances in Cryptology - EUROCRYPT 2015
- 34th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II, volume
9057 of Lecture Notes in Computer Science, pages 281–310. Springer, 2015. (Cited
on page ↑ 12)

[GLMV23] Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and Adele Veschetti. Re-
silience of hybrid casper under varying values of parameters. Distributed Ledger
Technol. Res. Pract., 2(1):5:1–5:25, 2023. (Cited on page ↑ 13)

[Goo14] L.M. Goodman. Tezos — a self-amending crypto-ledger, 2014. (Cited on
page ↑ 14)

96

https://github.com/ethereum/consensus-specs/tree/a42d6706d89c414764eda7e2d0103e19f1e23761/specs
https://github.com/ethereum/consensus-specs/tree/a42d6706d89c414764eda7e2d0103e19f1e23761/specs

[GP20] Cyril Grunspan and Ricardo Pérez-Marco. Selfish mining in ethereum. In 2nd
International Conference onMathematical Research for Blockchain Economy, MAR-
BLE 2020, online, August 24, 2020, Springer Proceedings in Business and Eco-
nomics, pages 65–90. Springer, 2020. (Cited on page ↑ 14)

[GS19] Álvaro García-Pérez and Maria Anna Schett. Deconstructing stellar consensus.
In 23rd International Conference on Principles of Distributed Systems, OPODIS 2019,
December 17-19, 2019, Neuchâtel, Switzerland, volume 153 of LIPIcs, pages 5:1–5:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. (Cited on page ↑ 12)

[HMR12] Viet Tung Hoang, Ben Morris, and Phillip Rogaway. An enciphering scheme
based on a card shuffle. In Advances in Cryptology – CRYPTO 2012. Springer Berlin
Heidelberg, 2012. (Cited on pages ↑ 29 and ↑ 35)

[HV16] Joseph Y. Halpern and Xavier Vilaça. Rational consensus: Extended abstract. In
Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
PODC 2016, Chicago, IL, USA, July 25-28, 2016, pages 137–146. ACM, 2016. (Cited on
page ↑ 14)

[LPR20] Andrew Lewis-Pye and Tim Roughgarden. Resource pools and the cap theo-
rem, 2020. (Cited on page ↑ 46)

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine gen-
erals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. (Cited on
pages ↑ 4, ↑ 9, and ↑ 17)

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. (Cited
on pages ↑ 3, ↑ 12, and ↑ 24)

[Nak19a] Ryuya Nakamura. Analysis of bouncing attack on ffg, 2019. (Cited on pages ↑ 39
and ↑ 39)

[Nak19b] Ryuya Nakamura. Prevention of bouncing attack on ffg, 2019. (Cited on
pages ↑ 13, ↑ 39, and ↑ 40)

[NKMS16] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack. In IEEE Euro-
pean Symposium on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany,
March 21-24, 2016, pages 305–320. IEEE, 2016. (Cited on page ↑ 14)

[NMRP20] Michael Neuder, Daniel J. Moroz, Rithvik Rao, and David C. Parkes. Defending
against malicious reorgs in tezos proof-of-stake. In AFT ’20: 2nd ACM Conference
on Advances in Financial Technologies, New York, NY, USA, October 21-23, 2020,
pages 46–58, 2020. (Cited on page ↑ 13)

[NTT21] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A res-
olution of the availability-finality dilemma. In 42nd IEEE Symposium on Security

97

and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 446–465. IEEE,
2021. (Cited on pages ↑ 13, ↑ 23, ↑ 39, ↑ 46, and ↑ 71)

[NTT22] Joachim Neu, Ertem Nusret Tas, and David Tse. Two more attacks on proof-
of-stake ghost/ethereum. In Proceedings of the 2022 ACM Workshop on Develop-
ments in Consensus, ConsensusDay 2022, Los Angeles, CA, USA, 7 November 2022,
pages 43–52. ACM, 2022. (Cited on pages ↑ 13 and ↑ 71)

[PAT23] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni.
Ethereum proof-of-stake under scrutiny. In Proceedings of the 38th ACM/SIGAPP
Symposium on Applied Computing, SAC 2023, Tallinn, Estonia, March 27-31, 2023,
pages 212–221. ACM, 2023. (Cited on pages ↑ 11 and ↑ 91)

[PAT24a] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni.
Byzantine attacks exploiting penalties in ethereum pos. In 54th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2024, Bris-
bane, Australia, June 24-27, 2024, pages 53–65. IEEE, 2024. (Cited on pages ↑ 11
and ↑ 91)

[PAT24b] Ulysse Pavloff, Yackolley Amoussou-Guenou, and Sara Tucci-Piergiovanni. In-
centive compatibility of ethereum’s pos consensus protocol. In 28th Interna-
tional Conference on Principles of Distributed Systems, OPODIS 2024, December 11-
13, 2024, Lucca, Italy, volume 287 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2024. (Cited on page ↑ 11)

[Pry22] Prysm. Code consensus client, 2022. (Cited on page ↑ 30)
[Qua11] QuantumMechanic. Proof of stake instead of proof of work, 2011. (Cited on

page ↑ 8)
[Req19] Specification Pull Request. Bouncing attack patch, 2019. (Cited on page ↑ 39)
[Rou20] Tim Roughgarden. Transaction fee mechanism design for the ethereum

blockchain: An economic analysis of EIP-1559. CoRR, abs/2012.00854, 2020.
(Cited on page ↑ 15)

[Sal20] Fahad Saleh. Blockchain without Waste: Proof-of-Stake. The Review of Financial
Studies, 34(3):1156–1190, 2020. (Cited on page ↑ 14)

[SNM+22] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three attacks on proof-of-stake ethereum.
In Financial Cryptography and Data Security - 26th International Conference, FC
2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of Lecture
Notes in Computer Science, pages 560–576. Springer, 2022. (Cited on pages ↑ 13,
↑ 13, ↑ 13, and ↑ 15)

98

[SSZ16] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfishmin-
ing strategies in bitcoin. In Financial Cryptography and Data Security - 20th Inter-
national Conference, FC 2016, Christ Church, Barbados, February 22-26, 2016, Re-
vised Selected Papers, volume 9603 of Lecture Notes in Computer Science, pages
515–532. Springer, 2016. (Cited on page ↑ 14)

[SZ15] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing
in bitcoin. In Financial Cryptography and Data Security - 19th International Confer-
ence, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers,
2015. (Cited on page ↑ 28)

[TE18] Itay Tsabary and Ittay Eyal. The gap game. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 713–728. ACM, 2018. (Cited on page ↑ 15)

[Woo16] Gavin Wood. Polkadot: Vision for a heterogeneous multi-chain framework.
White paper, 21(2327):4662, 2016. (Cited on page ↑ 14)

[YMR+19] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-
ham. Hotstuff: BFT consensus with linearity and responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 347–356. ACM, 2019.
(Cited on page ↑ 46)

[ZET20] Roi Bar Zur, Ittay Eyal, and Aviv Tamar. EfficientMDP analysis for selfish-mining
in blockchains. In AFT ’20: 2nd ACM Conference on Advances in Financial Technolo-
gies, New York, NY, USA, October 21-23, 2020, pages 113–131. ACM, 2020. (Cited on
page ↑ 14)

[ZLD23] Mingfei Zhang, Rujia Li, and Sisi Duan. Max attestationmatters: Making honest
parties lose their incentives in ethereum pos. IACR Cryptol. ePrint Arch., page
1622, 2023. (Cited on page ↑ 14)

99

100

Appendix A

Mathematical Elaborations

A.1 . Discrete case inacivity score during a probabilistic bouncinc attack.

This gives two Bernoulli laws where the probability to have kmoves to the left at time
n are respectively:

PX(k, n) =

(
n

k

)
pk0(1− p0)

n−k (A.1)

PY (k, n) =

(
n

k

)
(1− p0)

kpn−k
0 (A.2)

We can then compute the convolution that will give us the probability law to be:

PX+Y (s, 2n) = [PX + PY](s) =

n∑
k=0

PX(k) ∗ PY (s− k) (A.3)

=

n∑
k=0

(
n

k

)
pk(1− p0)

n−k

(
n

s− k

)
(1− p0)

k−spn−s+k
0 (A.4)

=

n∑
k=0

(
n

k

)(
n

s− k

)
pn+2k−s
0 (1− p0)

n+s−2k (A.5)

We are interested in the inactivity score in an attempt to study the evolution of stake
of honest validators. To determine the stake we have to give a continuous function for
the probability of the inactivity score.

Continuous case There are several ways to approach the continuous case. We use
the same technique as before using a convolution. Starting by saying that a random walk
follows a Gaussian’s distribution when time is big using the Central limit theorem. Know-
ing that the expectation of the two laws PX and PY are (5p0− 4)t and (1− 5p0)t and their
standard deviation is both 25p0(1− p0)t, we have:

PX(x, t) =
1√

π50p0(1− p0)t
e
− (x−(5p0−4)t)2

50p0(1−p0)t (A.6)

PY (x, t) =
1√

π50p0(1− p0)t
e
− (x−(1−5p0)t)

2

50p0(1−p)t (A.7)

PX+Y (s, t) =

∫
PX(x, t)PY (s− x, t)dx (A.8)

Which gives:
PX+Y (x, t) =

1√
π100p(1− p0)t

e
− (x−3t/2)2

100p0(1−p0)t (A.9)

101

A.2 . From Gaussian white noise to log-normal distribution

In order to be able to find the probability of s, we need to change referential to stop
I from drifting with time. To do so we start by noticing that with the change of variables
u = −226 ln |s| this implies du

dt = −226

s
ds
dt = I . We now simplify what we looking for by

introducing ũ and Ĩ the functions resolving these equations:{
I = Ĩ + V t

u = ũ+ 1
2V t2 − 226 ln(s0)

(A.10)
Where s0 = 32, for the initial stake. We can write the probability of Ĩ as:

ϕ(Ĩ , t) =
1√
4πDt

e−
Ĩ2

4Dt (A.11)
Looking at the derivative of ũ we get:

dũ

dt
=

du

dt
− V t = I − V t = Ĩ . (A.12)

Hence we find dũ/dt = Ĩ . Ĩ being a Brownian motion, ũ is called an integrated Brownian
motion. It is a well-known problem and this leads to :

P (ũ, t) =
1√

4
3πDt3

exp

(
− ũ2

4
3Dt3

)
. (A.13)

Where :
ũ = u− V t2

2
+ 226 ln(s0) (A.14)

We have that dũ = −226 dss , then the only remaining step is using the fact P (s) =

P (ũ)|dũds |, hence:
P (s) =

226

s
P (ũ = −226ln(s/s0)− V t2). (A.15)

Thus, the probability of finding a stake s at time t for an honest validator during the
probabilistic bouncing attack is:

P (s, t) =
226

s
√

4
3πDt3

exp

(
−(226 ln(s/32) + V t2/2)2

4
3Dt3

)
(A.16)

With D and V , the diffusion and the velocity. In our case V = 3/2 and D = 25p0(1− p0).
The stake follows a log normal distribution.

The density of log normal distribution is:
fX(x;µ, σ) =

1

xσ
√
2π

exp

(
−(lnx− µ)2

2σ2

)
. (A.17)

The cumulative distribution function of the log-normal distribution is the following:
FX(x;µ, σ) =

1

2
+

1

2
erf

[
ln(x)− µ

σ
√
2

]
. (A.18)

102

103

	Acknowledgement
	Reading tips
	Introduction
	Blockchain
	Functionalities
	Implementation
	Purpose

	Bitcoin
	Bitcoin's Solution

	Ethereum
	Terminology
	Contribution
	Related Work on Blockchain Analysis
	Blockchain Formalization
	Attacks and Vulnerabilities
	Rational Agents in Blockchain

	Background
	Distributed Computing Model
	Fault Model

	Synchronization and Communication
	Time
	Network

	Game Model

	Ethereum PoS Analysis under the Distributed Computing Model
	Safety and Liveness Properties
	Ethereum PoS protocol
	Overview
	Pseudo Code

	Robustness Analysis
	Safety
	Probabilistic Liveness
	Implemented Patch

	Conclusion

	Ethereum PoS Analysis under the Distributed Computing Model with Penalties
	System Model
	Protocol and Properties
	Safety Attack
	Incentives

	Inactivity Leak
	Inactivity Score
	Inactivity penalties
	Stake's functions during an inactivity leak

	Analysis
	GST upper bound for Safety
	Upper bound decrease due to Byzantine validators
	Revisiting the Probabilistic Bouncing Attack

	Discussion & Conclusion

	Ethereum PoS Protocol Analysis under the Game Theoretical Model
	Ethereum protocol
	Model & Game
	Payoff

	Analysis
	Preliminaries
	Obedient
	Cunning Strategy

	Conclusion

	Conclusion and Perspectives
	Mathematical Elaborations
	Discrete case inacivity score during a probabilistic bouncinc attack.
	From Gaussian white noise to log-normal distribution

