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PREAMBULE EN FRANCAIS

Introduction

Imagerie par Résonance Magnétique Fonctionnelle

Au cours des derniéres décennies, le développement de l'imagerie cérébrale a consi-
dérablement enrichi notre compréhension du cerveau et de ses pathologies, ouvrant la
voie a de nouvelles approches diagnostiques et thérapeutiques. En particulier, les tech-
niques d’imagerie cérébrale telles que I'Imagerie par Résonance Magnétique (IRM) ont
permis de mieux comprendre la structure du cerveau avec une grande précision, tout en
restant non invasives. Aujourd’hui, la question de la compréhension des fonctions céré-
brales occupe une place importante dans de nombreux domaines de recherche, allant de
la médecine et de la psychologie a l'intelligence artificielle et a la philosophie. Déméler
la complexité du cerveau et déchiffrer la maniere dont les différentes régions cérébrales
interagissent est un défi scientifique qui captive les chercheurs. L’Imagerie par Résonance
Magnétique fonctionnelle (IRMf) est une technique d’imagerie cérébrale qui permet aux
chercheurs d’étudier 'activité cérébrale des individus pendant qu’ils effectuent des taches
prédéfinies. Le nombre d’études publiées utilisant cette modalité a explosé au cours des
dix dernieres années : en 2018, plus d'un millier d’études enregistrées sur le site web

clinicaltrial.gov utilisaient 'TIRMf comme mesure de résultat (Sadraee et al., 2021).

Dans les études traditionnelles d’IRMf, un ensemble de participants est choisi sur la base
de différents criteres, en fonction de 'objectif de I'expérience (participants sains, stade de
la maladie, etc.). Les études sont congues pour répondre a une ou plusieurs hypotheses
de recherche, par exemple sur l'activation d’'une zone cérébrale au cours d’une tache ou
sur la présence de différences entre la force d’activation chez deux groupes d’individus.
Les participants sont soumis a une acquisition d’TRMf, qui consiste en une séquence de
taches constituant le paradigme d’activation. Ce paradigme est composé d’une tache de
référence, généralement le repos, et d’'une tache d’intérét dont la seule différence avec

la référence correspond au processus cognitif a explorer. Les chercheurs récuperent les
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FIGURE 1 — Cartes statistiques de niveau groupe pour le paradigme main droite, sans
seuillage (en haut) et avec seuillage (en bas) en utilisant un seuil de p < 0,05, corrigé par
Bonferroni.

données brutes de I'TRMf sous la forme de matrices a 4 dimensions pour tous les par-
ticipants et appliquent une séquence d’étapes de prétraitement et d’analyse statistique,
appelée “chaine de traitement”. A la fin de cette chaine de traitement, les résultats sont
présentés sous la forme de cartes statistiques tridimensionnelles montrant 'activation du
cerveau pour chaque participant et chaque question de recherche, et pour I’ensemble des
participants si un deuxieme niveau d’analyse a été effectué. Ces cartes sont généralement
seuillées par inférence statistique afin d’identifier les régions du cerveau qui présentent une
activation significative. Ce processus s’appuie sur des tests statistiques pour déterminer
si les différences observées ou les relations entre les variables sont probablement dues au

hasard ou si elles représentent des effets réels.

Les études d’imagerie cérébrale, et en particulier I'TRMf, sont soumises a différentes
sources de variabilité. Par source de variabilité, nous entendons tout facteur dont les
variations entrainent des modifications des résultats finaux. Par exemple, selon 1’heure
de la journée ou la présence ou non de médication, le méme participant peut avoir des
activations différentes, ce qui représente une source de variabilité, appelée variabilité intra-
individuelle (Chen et al., 2016). De méme, si les données sont acquises pour le méme
participant, mais avec des parametres d’acquisition différents, cela pourrait entrainer des
variations dans les résultats (Wittens et al., 2021). Naturellement, il semble logique que

deux participants aient des résultats différents, mais il est difficile pour les études de
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représenter ’ensemble des variations inter-individuelles (Valizadeh et al., 2018). Les études
d’imagerie cérébrale sont généralement de petite taille (~30 participants en 2015 (Poldrack
et al., 2017)) et composées de données acquises dans un seul centre, ce qui entraine une

faible généralisabilité des résultats.

Variabilité analytique

Un autre exemple de source de variabilité est liée aux variations des résultats finaux
causées par les différentes implémentations de la chaine de traitement utilisée pour traiter
et analyser les données brutes. Dans une méta-analyse de plus de 200 articles sur 'TRMI,
Carp, 2012b a montré que ces chaines de traitements sont tres flexibles, laissant aux
chercheurs de nombreux choix a faire pour analyser leurs données. Cette déclaration a
soulevé des questions sur les effets potentiels de ces différentes implémentations sur les
résultats. Récemment, dans le cadre d’une étude multi-analystes (Botvinik-Nezer et al.,
2020), 70 équipes de recherche ont été chargées d’analyser le méme ensemble de données
d’TRMTf de tache avec leur méthode habituelle. Dans ’ensemble, il n’y avait pas de chaines
de traitements identiques et les résultats finaux étaient relativement variables d'une équipe
a l'autre. Ce phénomene, également connu sous le nom de “variabilité analytique”, peut

résulter de différents niveaux de variation dans le processus d’analyse :

— A chaque étape, lorsque 1'on change Palgorithme & utiliser ou la valeur d’un para-

metre.
— Lorsque I'on modifie le logiciel utilisé pour mettre en oeuvre la chaine de traitement.

— A un niveau inférieur, lors de la modification de ’environnement de calcul.

Aujourd’hui, I'idée que différentes approches analytiques peuvent conduire a des résul-
tats différents est acceptée par la communauté. Les chercheurs recherchent désormais des
solutions pour relever les différents défis liés a la variabilité analytique (Botvinik-Nezer
et al., 2023). La flexibilité des chaines de traitements est particulierement difficile a gérer
pour les chercheurs, car il n’y a pas de vérité terrain qui puisse étre utilisée pour comparer
et mesurer les performances de chaines de traitements concurrentes. Ainsi, il n’existe que
peu d’accords sur les bonnes pratiques pour guider le choix d’une chaine de traitement.
Dans la pratique, les chercheurs explorent couramment de multiples alternatives analy-
tiques valides, mais ne rapportent souvent que les résultats d’une seule d’entre elles (ou

d’un petit nombre de variantes). Cette publication sélective peut entrainer une augmen-
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tation des résultats faux positifs (Ioannidis, 2008a ; Simmons et al., 2011 ; Gelman et al.,
2019). Comme solution potentielle, les chercheurs peuvent utiliser des analyses multiver-
selles (Steegen et al., 2016) pour comparer et rapporter les résultats de plusieurs approches
analytiques. Cependant, une étude systématique de 'espace des chaines de traitements
n’est pas réaliste en raison du grand nombre de combinaisons possibles. Dans les deux
cas, une meilleure connaissance de 1’espace des chaines de traitements serait utile pour
identifier les principaux facteurs de cette variabilité des résultats et, par exemple, faciliter

la sélection d’un ensemble représentatif de chaines de traitements.

Une autre question liée a la variabilité en IRMf est la réutilisation des données. Avec
I’émergence des pratiques de partage des données (Niso et al., 2022), il est possible d’aug-
menter la taille des échantillons des études d’imagerie cérébrale en réutilisant les données
disponibles publiquement. L’utilisation d’échantillons plus importants et plus diversifiés
contribuerait a améliorer la reproductibilité et la généralisabilité des résultats et offrirait
une plus grande souplesse quant aux questions de recherche a étudier. Dans la pratique, les
études avec réutilisation de données sont généralement effectuées avec des données brutes
provenant de différentes études, qui sont ensuite réanalysées avec la méme chaine de trai-
tement. Une autre solution consiste a utiliser des données dérivées (déja traitées). Cette
solution est plus optimale, non seulement parce que le partage des cartes statistiques n’est
pas aussi difficile que le partage des données brutes en raison des contraintes réduites en
matiere de protection de la vie privée, mais aussi parce qu’elle évite d’avoir a effectuer de
nouveaux calculs cotiteux. Toutefois, il a été démontré que les données dérivées provenant
de différentes sources devraient étre combinées avec soin dans les études statistiques pour
éviter d’augmenter le nombre de faux positifs (Rolland et al., 2022). En outre, les données
partagées sur des bases de données publiques telles que NeuroVault manquent générale-
ment d’annotations (Gorgolewski et al., 2015), ce qui rend leur réutilisation difficile. 11
est donc nécessaire de trouver des solutions pour tirer parti de cette grande quantité de

données dérivées partagées sur les bases de données publiques.

Apprentissage de représentations

L’apprentissage statistique, un sous-domaine de l'intelligence artificielle, se concentre
sur le développement d’algorithmes capables d’apprendre a partir de données et de faire
des prédictions ou de prendre des décisions sans qu’on leur indique explicitement la ma-

niere de procéder. En particulier, I’“apprentissage de représentation” désigne le processus
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par lequel des caractéristiques significatives sont extraites des données pour créer des re-
présentations plus faciles a comprendre et a traiter. Grace a leur capacité a modéliser
des relations complexes, les réseaux de neurones, utilisés dans le cadre de 'apprentissage
profond (LeCun et al., 2015), ont montré des performances prometteuses pour cette tache
dans de nombreux domaines de recherche. Dans ce contexte, les représentations des don-
nées sont apprises de maniere hiérarchique par les réseaux de neurones et contiennent des

caractéristiques significatives pour la tache sous-jacente a laquelle le réseau a été formé.

Dans le domaine de la vision par ordinateur, les chercheurs utilisent les réseaux de neu-
rones convolutifs en raison de leur capacité a extraire des caractéristiques visuelles a ’aide
d’opérations de convolution. Au fur et & mesure que les données d’entrée passent par des
couches successives, ces réseaux apprennent des caractéristiques de plus en plus abstraites
et complexes. Les couches inférieures capturent des caractéristiques de base telles que
les bords et les textures, tandis que les couches supérieures représentent des caractéris-
tiques plus significatives sur le plan sémantique et pertinentes pour la tache a accomplir.
Ces représentations sont ensuite utilisées pour produire des résultats pour cette tache,
mais elles peuvent également étre manipulées et transférées entre différents taches ou
entre différentes données afin d’améliorer les performances des réseaux. L’“apprentissage
par transfert”, un cas d’utilisation de 'apprentissage de représentations, s’appuie sur des
réseaux pré-entrainés dont les connaissances (parameétres des couches entrainées) sont
transférées a un autre réseaux qui sera appliqué a des données provenant d’un autre do-
maine ou a une autre tache. De méme, les représentations peuvent étre manipulées pour
transférer des attributs entre les données. Ce cas d’utilisation est également connu sous le
nom de “transfert de style” (Gatys et al., 2016) et utilise des modeles génératifs, dans les-
quels les réseaux apprennent a modéliser la distribution des données, a partir de laquelle
de nouvelles données peuvent étre échantillonnées ou des données existantes peuvent étre

transférées.

Ces techniques sont prometteuses pour les problemes décrits précédemment, car elles
permettraient de construire une représentation complete des résultats d’IRMf et de leurs
sources de variabilité. Toutefois, 'apprentissage d’une représentation utile et efficace né-
cessite une grande quantité de données d’entrainement pour représenter la diversité des
données cibles potentielles (Ricci Lara et al., 2022). Ce probléme est particulierement im-

portant dans le domaine de I'imagerie cérébrale, ou les études sont généralement réalisées
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FiGURE 2 — Concept d’apprentissage de représentation dans la vision par ordinateur a
I’aide de réseaux de neurones convolutifs. Les caractéristiques de niveau inférieur sont
extraites dans les premieres couches, tandis que les caractéristiques de niveau supérieur
sont apprises par la suite.

sur des échantillons petits et homogenes. Comme indiqué ci-dessus, les plateformes de
partage de données contiennent au contraire un grand nombre de données, provenant de
différentes sources, et présentent donc un bon niveau de variabilité en termes de protocoles
d’acquisition, de machines, de sites et de chaines de traitements. L’utilisation de ces don-
nées nécessite le recours a des méthodologies particuliéres, car elles ne sont généralement
pas étiquetées ou ne font pas I'objet d'un processus d’étiquetage standardisé (Poldrack
et al.; 2011b). En outre, les cartes statistiques d’'IRMf ont des propriétés particulieres
qui nécessitent une adaptation des méthodes traditionnelles d’apprentissage de représen-
tations. Elles contiennent des informations quantitatives (valeurs statistiques dans notre
contexte), la localisation spatiale est une information cruciale (la méme activation dans
différentes régions du cerveau conduit a une interprétation complétement différente) et
la dimensionnalité des images médicales est beaucoup plus grande (une carte statistique

d’IRMf contient des dizaines de milliers de dimensions).

Contributions

La variabilité analytique des résultats d’IRMf pose des problemes aux chercheurs qui
congoivent une nouvelle étude et a ceux qui tentent de réutiliser les données issues d’autres

études. Dans ce contexte, la construction de représentations compréhensibles et significa-
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tives de la diversité des données d’IRMf aiderait a obtenir une meilleure connaissance de
I’espace analytique, mais aussi a fournir des solutions aux chercheurs qui souhaitent bé-
néficier des données dérivées partagées par la communauté sur des plateformes publiques.
Toutefois, cela nécessite 'utilisation de grandes quantités de données et des méthodologies

adaptées pour traiter les spécificités des données d’IRMT.

Dans la premiere série de contributions de cette these, nous proposons deux solutions
concretes pour apprendre et manipuler des représentations basse dimension des résultats
d’IRMf afin de faciliter la réutilisation de la grande quantité de données dérivées par-
tagées. Premieérement, nous tirons parti de la base de données NeuroVault (Gorgolewski
et al., 2015) - une grande base de données publique de neuro-imagerie qui a été construite
collaborativement - pour apprendre une représentation non supervisée des cartes statis-
tiques d’'TRMf, pouvant étre transférée dans un cadre d’apprentissage “autodidacte” pour
aider a résoudre de nouvelles taches (par exemple, décodage du cerveau). Ce travail a
donné lieu a la publication d'un article dans Gigascience, et les modeles pré-entrainés ont
été partagés avec la communauté en vue d’une réutilisation ultérieure. Deuxiemement,
nous avons supposé que les chaines de traitements pouvaient étre considérés comme un
composant de style des cartes statistiques d’TRMf et nous avons proposé d’utiliser des
méthodes de transfert de style pour convertir les cartes statistiques entre les chaines de
traitements. Dans cette contribution, nous avons développé une méthode basée sur des
modeles de diffusion qui utilise une représentation latente des cartes statistiques dans
laquelle les données sont structurées sur la base des caractéristiques les plus importantes
qui les distinguent a travers les chaines de traitement. Cette contribution a fait 1’objet

d’un article, disponible en préprint et bientot soumis a Human Brain Mapping.

Dans une deuxieme série de contributions, nous explorons les caractéristiques de 1'es-
pace des chaines de traitements en IRMf. Pour ce faire, nous avons d’abord construit un
ensemble de données multi-chaines de traitements composé d’un grand nombre de parti-
cipants et qui représente une partie non exhaustive mais controlée de I’espace analytique.
Nous avons publié un article de présentation des données en tant que préprint (bientdt
soumis a Scientific Data) et nous sommes en train de partager le jeu de données avec
la communauté sur Public-nEUro. Dans cet ensemble de données, nous avons utilisé des
algorithmes de détection de communautés (apprentissage de représentation pour identi-

fier les groupes de données sur les graphes) pour explorer I’espace analytique et évaluer
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la stabilité des relations entre les résultats de différentes chaines de traitements & travers

différents groupes de participants et de taches. Ce travail a donné lieu a la rédaction d’'un

article, accepté a la conférence ICIP 202 et disponible sous forme de préprint. Enfin,

nous explorons le potentiel de réutilisation des données et étudions la validité des analyses

statistiques qui combinent des données traitées avec différentes chaines de traitements (par

exemple avec différents algorithmes, valeurs de parameétres ou logiciels). Un préprint est

disponible pour cette contribution, en co-auteur avec Xavier Rolland, et a été soumis a

Imaging Neuroscience.

Ce manuscrit est composé de trois parties. La premiere partie est consacrée a l'intro-

duction de I'analyse des données d’'IRMf et de la variabilité analytique.

(i)

(ii)

Dans le Chapitre 1, nous présentons le champ d’application de cette these, 'TRMTf.
Nous introduisons les grands principes des études d’'TRMf, en décrivant le parcours
de l'activité cérébrale aux données brutes d’IRMf. Ensuite, nous exposons le pro-
cessus de transformation de ces données brutes en résultats finaux et décrivons les
principales étapes de traitement incluses dans les chaines d’analyse d’IRMf tradi-

tionnelles.

Dans le Chapitre 2, nous donnons un apergu des différentes sources de variabilité
qui peuvent étre observées dans les études d’IRMf. Apres une breve description
de chaque source, nous nous concentrons sur la variabilité analytique et montrons
que des changements peuvent étre apportés a différents niveaux de la chaine de
traitement, entrainant des variations dans les résultats. Nous décrivons également
les principaux défis liés a la variabilité analytique et les solutions développées pour

les relever.

Dans la deuxieme partie du manuscrit, nous exposons notre premiere série de contribu-

tions dans lesquelles nous avons utilisé 'apprentissage de représentations profondes pour

atténuer la variabilité (analytique) des résultats d’IRMf et faciliter la réutilisation des

données.

(i)

Le Chapitre 3 présente le contexte de 'apprentissage de représentations profondes

et son application au domaine de I'imagerie médicale. Nous détaillons les concepts
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fondamentaux de 'apprentissage de représentations profondes, les défis liés a 'ima-
gerie médicale et décrivons deux cas particuliers d’apprentissage de représentations,
a savoir l'apprentissage par transfert et le transfert de style, dans lesquels les repré-

sentations sont transférées entre les taches et/ou les données.

(7i) Dans le Chapitre 4, nous proposons une premiere solution pour faciliter la réuti-
lisation des données et nous exploitons la base de données NeuroVault dans un
cadre d’apprentissage autodidacte, un type spécifique d’apprentissage par transfert.
Pour ce faire, nous apprenons une représentation agnostique des cartes statistiques

d’TRMTf a I’aide d’un autoencodeur convolutif, puis nous 'adaptons a diverses taches.

(7ii) Alors que les représentations ont été construites et transférées entre les taches dans
le chapitre précédent, nous proposons une autre solution pour réutiliser les données
dérivées partagées et manipuler les représentations pour convertir les données entre
les différentes chaines de traitements dans le Chapitre 5. Dans ce contexte, nous
proposons aussi une nouvelle méthode qui utilise un réseaux de neurones convolutif
entrainé a distinguer les cartes statistiques entre les chailnes de traitements et a
extraire les caractéristiques de haut niveau des données pour faciliter la transition

entre les chalnes de traitements avec des modeles de diffusion.

L’utilisation concrete de ces solutions repose sur l'identification des principaux facteurs
de variation pour trouver les cas critiques ou 'atténuation de la variabilité analytique est
nécessaire et appropriée. Dans la troisieme partie, nous explorons l’espace analytique
d’IRMf pour mieux comprendre les relations entre les résultats des chaines de traitements
et identifier certains défis particuliers liés a la réutilisation des données et a la variabilité

analytique.

(i) Une étude compléte de l'espace des chaines de traitements n’est pas pratique car il
est particulierement grand, nous proposons en revanche d’explorer une plus petite
partie de cet espace dans différents contextes : un grand nombre de participants et de
groupes, et plusieurs taches pour 24 chaines de traitements. Dans le chapitre 6, nous
décrivons I’ensemble de données “HCP multi-pipeline” que nous avons construit et
partagé avec la communauté pour faciliter ’étude de la variabilité analytique dans

différents contextes.
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(7i) Dans le Chapitre 7, nous utilisons I’ensemble de données HCP multi-pipelines pour
explorer 'espace des chaines de traitements et évaluer la stabilité des relations entre
les résultats des chaines de traitements au sein de différents groupes de participants
et de taches. Nous avons utilisé des algorithmes de détection de communautés, i.e.
un type d’apprentissage de représentation qui permet d’identifier des groupes ou
des communautés de noeuds sur des graphes, et de tirer des conclusions quant aux
parametres des chaines de traitements qui donnent le plus souvent des résultats

similaires dans différents contextes.

(7ii) Les relations entre les chaines de traitements peuvent étre évaluées en termes de
similitudes de leurs résultats, mais aussi en termes de compatibilité de ces résultats.
Au Chapitre 8, nous explorons la validité des méga-analyses d’IRMf (c’est-a-dire
la combinaison de cartes statistiques au niveau du sujet provenant de différentes
études) qui combinent des données traitées différemment au niveau du sujet. Nous
montrons que certains cas sont plus critiques que d’autres, ce qui entraine un plus

grand nombre de faux positifs.

Enfin, dans une quatriéme partie, nous présentons quelques perspectives et travaux

futurs.

En Annexe, nous présentons également d’autres travaux relatifs a 'impact de la variabilité
analytique sur la crise de la reproductibilité. Dans un premier temps (Annexe A), nous
examinons le contexte de la crise de la reproductibilité dans la recherche expérimentale.
Ensuite, nous présentons deux études dans lesquelles nous avons exploré la relation entre

la variabilité analytique et la reproductibilité en IRMf :

(A-i) Dans I’Annexe B, nous explorons I'impact de plusieurs variations dans les chaines
de traitements sur la performance des biomarqueurs de la maladie de Parkinson
dérivés de 'TRMT de repos.

(A-ii) Dans ’Annexe C, nous présentons notre travail sur le projet NARPS Open Pipelines,
une base de code reproduisant les 70 chalnes de traitements utilisés dans une étude
multi-analystes (Botvinik-Nezer et al., 2020).

Au début de chaque chapitre, afin de reproduire les expériences et les figures, nous

fournissons les différents codes développés pour le chapitre et un lien vers les publications
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ou preprints associés. Pour plus de clarté, les détails de la mise en oeuvre de chaque
expérience (architecture du modele, hyperparameétres, etc.) sont disponibles dans une

section dédiée de 'annexe.

Contexte de la these

Cette these a été réalisée au sein des équipes Empenn et LACODAM (LArge COIl-
laborative DAta Mining) du laboratoire IRISA (Institut de Recherche en Informatique
et Systemes Aléatoires), unité mixte de recherche (UMR 6074) issue d’une collaboration
entre neuf établissements pluridisciplinaires : CentraleSupélec, CNRS, ENS Rennes, IMT
Atlantique, Inria, INSA Rennes, Inserm, Université Bretagne Sud, Université de Rennes.
Les équipes de recherche Empenn (ERL U1228) et LACODAM sont conjointement affi-
liées a I'Inria, et Empenn est également affilié a I'Inserm (Institut National de la Santé et

de la Recherche Scientifique).

Ce travail a été partiellement financé par la Région Bretagne (ARED MAPIS) et
I’Agence Nationale pour la Recherche pour le programme de contrats doctoraux en intel-
ligence artificielle (projet ANR-20-THIA-0018).

Ce projet de recherche a également fait 'objet d’une collaboration avec le laboratoire
Big Data for Neurolnformatics du Dr. Tristan Glatard a 1’Université Concordia et le
laboratoire ORIGAMI du Dr. Jean-Baptiste Poline a I’Université McGill, toutes deux
basées a Montréal, Canada. Le stage de mobilité internationale réalisé dans ce cadre a
été financé par une bourse de recherche Mitacs Globalink (IT34055) et par une bourse du
College Doctoral de Bretagne et de Rennes Métropole.
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Introduction

Functional Magnetic Resonance Imaging

Over the last decades, the development of brain imaging has considerably enriched our
understanding of the brain and its pathologies, paving the way for new diagnostic and
therapeutic approaches. In particular, brain imaging techniques such as Magnetic Reso-
nance Imaging (MRI) provided insights on the brain structure with high precision, while
remaining non invasive. Nowadays, the question of understanding brain functions has an
important place in many research fields ranging from medicine and psychology to artifi-
cial intelligence and philosophy. Unraveling the complexity of the brain and deciphering
how different brain regions interact is a scientific challenge that captivates researchers.
Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique that allows
researchers to study brain activity of individuals while they perform predefined tasks. The
number of published studies making use of this modality exploded in the last ten years:
in 2018, more than one thousand studies registered in the website clinicaltrial.gov

were using fMRI as an outcome measure (Sadraee et al., 2021).

In traditional fMRI studies, a set of participants is chosen based on different criteria,
depending on the purpose of the experiment (e.g. healthy controls, disease stage, etc.).
Studies are built to answer one or multiple research hypotheses, e.g. on the activation of a
brain area during a task or on the presence of differences between activation strength be-
tween two groups of individual. Participants undergo an fMRI acquisition, which consists
in a sequence of tasks constituting the activation paradigm. This paradigm is composed
of a reference task, usually rest, and a task of interest whose only difference with the
reference corresponds to the cognitive process to explore. Investigators recovers the raw
fMRI data in the form of 4-dimensional matrices for all participants and apply a sequence
of preprocessing and statistical analysis steps, called a “pipeline”. At the end of a pipeline,

results are output in the form of 3-dimensional statistic maps showing the activation of
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Figure 3 — Group-level statistic maps for the paradigm right-hand, unthresholded (upper)
and thresholded (lower) using a threshold of p < 0.05, Bonferroni corrected.

the brain for each participant and each research question, and across the set of partic-
ipants if a second-level of analysis was performed. These maps are usually thresholded
with statistical inference to identify the brain regions which display significant activation.
This process rely on statistical testing to determine whether observed differences or re-
lationships between variables are likely due to random chance or if they represent true

effects.

Brain imaging studies, and in particular fMRI, are subject to different sources of vari-
ability. By sources of variability, we refer to any factor whose variations lead to changes
in the final results. For instance, depending on the time of the day, or on the medication
state, the same participant could have different set of activations, representing a source
of variability, called intra-individual variability (Chen et al., 2016). Similarly, if data are
acquired for the same participant, but with different acquisition parameters, this could
lead to variations in the results (Wittens et al., 2021). Naturally, it seems logical that two
participants would have different results, but studies might fail to represent the whole set
of inter-individual variations (Valizadeh et al., 2018). Brain imaging studies are usually
small (~30 participants in 2015 (Poldrack et al., 2017)) and composed of data acquired

at a single center, leading to a poor generalizability of findings.
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Analytical variability

Another source of variability relates to the variations in the final results caused by dif-
ferent implementations of the pipeline used to process and analyze raw data. In a meta-
analysis of more than 200 papers about fMRI, Carp, 2012b showed that these pipelines
are highly flexible, leaving researchers with many choices to make to analyze their data.
This statement raised questions about the potential effects of these different implemen-
tations on the results. Recently, in a many-analyst study (Botvinik-Nezer et al., 2020),
70 research teams were tasked to analyze the same task-fMRI dataset with their usual
method. Overall, there were no identical pipeline and the final results were relatively
variable across teams. This phenomenon, also known as “analytical variability”, can arise

from different levels of variations in the analysis pipeline:
— At each step, when changing the algorithm to use or a parameter value.
— When varying the software package used to implement the pipeline.

— At a lower level, when varying computing conditions.

Nowadays, the idea that different analytical approaches can lead to different results
is accepted in the community. Researchers now look for solutions to face the different
challenges related to analytical variability (Botvinik-Nezer et al., 2023). The flexibility of
analysis pipelines is particularly challenging for researchers as there is no ground truth
that can be used to compare and measure the performance of competing pipelines. Thus,
there is only few agreements on the good practices to guide the choice of pipeline. In
practice, researchers commonly explore multiple valid analytic alternatives, but often
report their results relative only to a single pipeline (or to a few set of variants). This
selective reporting can result in an increase of false positive findings (Ioannidis, 2008a;
Simmons et al., 2011; Gelman et al., 2019). As a potential solution, researchers can use
multiverse analyses (Steegen et al., 2016) to compare and report the results of multiple
analytical approaches. But, a systematic investigation of the pipeline space is impractical
due to the high number of possible pipelines. In both cases, a better knowledge of the
pipeline space would be useful to identify the main drivers of this variability in the results

and for instance, facilitate the selection of a representative set of pipelines.

Another issue related to the variability in fMRI is the reusability of data. With the

emergence of data sharing practices (Niso et al., 2022), there is an opportunity to increase
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sample sizes of brain imaging studies by re-using shared data. The use of larger and more
diverse samples would help to improve the reproducibility and generalizability of results
and provide more flexibility as to which research question can be investigated. In practice,
data re-use is usually performed with raw data coming from different studies, that are
then re-analyzed with the same pipeline. Another solution is to use derived data (i.e.
already processed). This is more optimal, not only because sharing statistic maps is
not as difficult as sharing raw data due to reduced privacy constraints, but also because
it avoids having to perform costly re-computations. However, there have been some
evidence that derived data coming from different sources should be combined carefully in
statistical studies to avoid increasing the number of false positives (Rolland et al., 2022).
Moreover, there is usually a lack of annotations on data shared on public databases such
as NeuroVault (Gorgolewski et al., 2015), making it challenging to re-use them. Thus,
there is a need for solutions to benefit from this large amount of derived data shared on

public databases.

Representation learning

Machine learning, a subfield of artificial intelligence, consists in providing real world
data to a model, which will learn patterns in these data to answer a problem at hand.
In particular, “representation learning” (Bengio et al., 2013) refer to the process where
meaningful features are extracted from raw data to create representations that are easier
to understand and to process. With their ability to model complex relationships, neu-
ral networks, used in deep learning frameworks (LeCun et al., 2015), showed promising
performance for this task in many research fields. In these frameworks, representations
of data are learned in a hierarchical manner by neural networks and contain meaningful

features for the underlying task for which the network was trained.

In computer vision, researchers make use of Convolutional Neural Network (CNN)
due to their ability to extract visual features with convolution operations. As the input
data passes through successive layers, these networks learn increasingly abstract and
complex features. Lower layers capture basic features like edges and textures, while
higher layers represent more semantically meaningful features relevant to the task at
hand. These representations are then used to output results for this task, but they can
also be manipulated and transferred between models or between data to improve other

models performance. “Transfer learning” (Pan et al., 2010), a use case of representation
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Figure 4 — Concept of representation learning in computer vision using Convolutional
Neural Network (CNN). Lower-level features are extracted at the first layers, while higher-
level features are are learned after.

learning, leverage pretrained models whose knowledge (i.e. parameters of trained layers)
is transferred to another model that will by applied on data from another domain or for
another task. Similarly, representations can be manipulated to transfer attributes between
data. This use case is also known as “style transfer” (Gatys et al., 2016) and make use
of generative models, in which networks learn to model the distribution of training data,

from which new data can be sampled or existing data can be transferred.

These techniques are promising for the problems outlined earlier, as these would allow
to build a comprehensive representation of fMRI results and of their sources of variability.
However, learning a useful and efficient representation requires a large amount of training
data to represent the diversity of the potential target data (Ricci Lara et al., 2022). This
issue is of main importance in brain imaging, where studies are usually made on small and
homogeneous samples. As stated above, data sharing platforms, on the contrary, contain
a large number of data, coming from different sources, and thus display a good level of
variability in terms of acquisition protocols, machines, sites and analysis pipelines. Using
these data necessitate the use of particular methodologies, as these are usually not labeled
or does not have a standardized labelling process (Poldrack et al., 2011b). Moreover, fMRI
statistic maps have particular properties, which require adaptation of traditional repre-
sentation learning frameworks. They contain quantitative information (i.e. statistical

values in our context), spatial localisation is crucial information (i.e. the same activation
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in different regions of the brain leads to a completely different interpretation) and the
dimensionality of medical images is much larger (i.e. an fMRI statistic map contains tens

of thousands of dimensions).

Contributions

Analytical variability in fMRI results lead to challenges, for researchers that design
a new study, and for researchers who try to re-use data from other studies. In this
context, building comprehensible and meaningful representations of the diversity in fMRI
data would help to get a better knowledge of the analytical space, but also to provide
solutions for researchers that want to benefit from derived data shared by the community
on public platforms. However, this requires the use of large amount of data and adapted
methodologies to deal with the specificities of fMRI data.

In the first series of contributions of this thesis, we propose two concrete solutions to
learn and manipulate lower-dimensional representations of fMRI results to facilitate the
re-use of the large amount of shared derived data. First, we leverage the NeuroVault
database (Gorgolewski et al., 2015) — a large public neuroimaging database that was
built collaboratively — to learn an unsupervised representation of fMRI statistic maps,
that can be transferred in a self-taught learning framework to help solve new tasks (e.g.
brain decoding). This work led to the publication of a journal paper in Gigascience, and
pretrained models were shared with the community for further re-use. Secondly, we made
the assumption that pipelines could be seen as a style component of fMRI statistic maps
and proposed to use style transfer frameworks to convert statistic maps between pipelines.
In this contribution, we adapted several state-of-the-art frameworks for Image-to-image
transition (I2I) to our task and developed a framework based on Denoising Diffusion
Probabilistic Model (DDPM). This framework makes use of a latent representation of
statistic maps in which data are structured based on the most important features that
distinguish them across pipelines. This contribution was the subject of a paper, available

as preprint and soon submitted to Human Brain Mapping.

In a second series of contributions, we explore the characteristics of the fMRI pipeline
space. To do so, we first built a multi-pipeline dataset composed of a large number

of participants and that represents a non-exhaustive but controlled part of the pipeline
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space. We published a data paper as a preprint, we plan to submit it to Scientific Data
and to share the dataset with the community on Public-nFEUro. Within this dataset, we
used community detection algorithms (7.e. representation learning to identify clusters on
graphs) to explore the pipeline space and assess the stability of relationships between
pipeline results across different groups of participants and tasks. This work led to a paper
that was accepted to the conference ICIP 2024 and that is also available as preprint.
Finally, we explore the potential of data re-use and study the validity of statistical analyses
that combine data processed differently (e.g. with different algorithms, parameters values
or software packages). A preprint is available for this contribution, in co-authorship with

Xavier Rolland, and was submitted to Imaging Neuroscience.

This manuscript is composed of three parts. The first part is dedicated to the intro-

duction of fMRI data analysis and of analytical variability.

(i) In Chapter 1, we present the field of application of this thesis, fMRI. We introduce
the main principles of fMRI studies, outlining the journey from brain activity to
fMRI raw data. Afterwards, we expose the process of translating these raw data
into final results and describe the main processing steps included in traditional {MRI

analysis pipelines.

(7i) In Chapter 2, we give an overview of the different sources of variability that can
be observed in fMRI studies. After a brief description of each source, we focus on
analytical variability and show that changes can be made at different levels of the
pipeline, leading to variations in the results. We also describe the main challenges

related to analytical variability and the solutions developed to tackle these.

In the second part of the manuscript, we expose our first series of contributions in
which we used deep learning to mitigate (analytical) variability in fMRI results and facil-

itate data re-use.

(i) Chapter 3 poses the context of deep learning and its application to the field of
medical imaging. We detail the fundamental concepts of representation learning

and in particular, deep learning, the challenges related to medical imaging and
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(i)

(ii)

describe two particular cases of deep learning, namely transfer learning and style

transfer, in which representations are transferred between tasks and/or data.

In Chapter 4, we propose a first solution to facilitate data re-use and we leverage the
NeuroVault database in a self-taught learning framework, a specific type of transfer
learning. To do so, we learn an agnostic representation of fMRI statistic maps
using a Convolutional AutoEncoder (CAE) and then fine-tune it towards a variety
of tasks.

While representations were built and transferred between tasks in the previous chap-
ter, in Chapter 5, we propose another solution to re-use shared derived data and
manipulate representations to convert data between different pipelines. We propose
a new framework that makes use of a Convolutional Neural Network (CNN) trained
to distinguish statistic maps between pipelines and extract the higher-level features

of data to help transition between pipelines with diffusion models.

The concrete use of these solutions rely on the identification of the main drivers of

variations to find critical cases where mitigation of analytical variability is required and

appropriate. In the third part, we explore the fMRI analytical space to better understand

relationships between pipelines results and identify some particular challenges related to

data re-use and analytical variability.

()

(i)

A full investigation of the pipeline space is impractical as it is particularly large,
we propose in contrast to explore a smaller part of this pipeline space across dif-
ferent contexts: a large number of participants and groups, and several tasks for
24 pipelines. In Chapter 6, we describe the HCP multi-pipeline dataset that we
built and shared with the community to facilitate the study of analytical variability

across different contexts.

In Chapter 7, we make use of the HCP multi-pipeline dataset to explore the pipeline
space and assess the stability of relationships between pipeline results across different
groups of participants and tasks. We used community detection algorithms, i.e. a
type of representation learning that allows to identify clusters or communities of
nodes on graphs, and derive conclusions as to which pipelines parameters mostly

give similar results across contexts.



Preamble

(7ii) Relationships between pipelines can be seen in terms of similarities of their results,
but also in terms of compatibility of these results. In Chapter 8, we explore the
validity of fMRI mega-analyses (i.e. combining subject-level statistic maps from
different studies) that combine data processed differently at the subject-level. We
show that some cases are more critical than other, leading to a higher number of

false positives.

Finally, in a fourth part, we present some perspectives and future works.

In Appendix, we also share additional works related to the impact of analytical vari-
ability on the reproducibility crisis. In a first Chapter (A), we discuss the context of the
reproducibility crisis in experimental research. Then, we present two studies in which we

explored the relationship between analytical variability and reproducibility:

(A-i) In Appendix B, we explore the impact of several variations in the workflow on the

performance of resting state fMRI derived Parkinson’s disease biomarkers.

(A-ii) Then, in Appendix C, we present our work on the NARPS Open Pipelines project: a
codebase reproducing the 70 pipelines used in a many-analyst study (Botvinik-Nezer
et al., 2020).

At the beginning of each chapter, in order to reproduce the experiments and the fig-
ures, we provide the different source codes developed for the experiments and link to the

associated publications or preprints.

Context of the thesis

This thesis was carried out in Empenn and LACODAM (LArge COllaborative DAta
Mining) teams at the IRISA (Institut de Recherche en Informatique et Systemes Aléa-
toires) laboratory, a joint research unit (UMR 6074) resulting from a collaborative effort
between nine multi-disciplinary establishments: CentraleSupélec, CNRS, ENS Rennes,
IMT Atlantique, Inria, INSA Rennes, Inserm, Université Bretagne Sud, Université de
Rennes. Both Empenn (ERL U1228) and LACODAM research teams are jointly affili-
ated with Inria, and Empenn is also affiliated with Inserm (National Institute of Health

and Scientific Research).
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This work was partially funded by Region Bretagne (ARED MAPIS) and Agence Na-
tionale pour la Recherche for the program of doctoral contracts in artificial intelligence

(project ANR-20-THIA-0018).

This research project was also the subject of a collaboration with the Big Data for
Neurolnformatics lab of Dr. Tristan Glatard at Concordia University and ORIGAMI lab
of Dr. Jean-Baptiste Poline at McGill University, Montreal Canada. The mobility intern-
ship realized in this context was funded by a Mitacs Globalink Research Award (IT34055)
and by a scholarship from the College Doctoral de Bretagne and Rennes Metropole.
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OPEN SCIENCE

During my thesis, I had the chance to discover and dive into the Open Science com-
munity. My journey took the form of several principles that I tried to respect throughout

my research and other scientific contributions.

Opening my research

At the beginning of each project, I create a code repository using Git (Chacon et al.,
2014) to version my code and GitHub or GitLab to make it available publicly online. Even
if the project ends or is left in standby, this allows to let an imprint of my work online,
which can be useful to help future researchers who would like to continue this project or
start a new one. For published or finished works, I use Software Heritage (Cosmo et al.,
2017) to archive this code and preserve it in the long term.

My projects are sometimes associated with derived data. These data can take the
form of pretrained models, which was the case for the works described in Chapter 4
and 5. I always share these models with the community, for instance on Zenodo (Euro-
pean Organization For Nuclear Research et al., 2013), to facilitate their re-use by other
researchers.

For several of my works, I use a dataset of statistic maps processed with different
pipelines that I built using publicly available data (see Chapter 6). These data are cur-
rently in the process of being shared with the community, as these might help researchers
to perform their own analyses.

When a project lead to a written paper, I also take care to publish the preliminary

versions as preprint on HAL ! and arXiv 2.

1. https://inria.hal.science/
2. https://arxiv.org/
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Making my research more reproducible

When I share my work, I try to make my experiments as reproducible as possible. This
starts by writing comprehensive and interactive README files for my code repositories,
to help users that would like to re-run the project. In these repositories, I also use
Jupyter Notebooks to facilitate reproducibility and comprehension of my code. As a
further step towards reproducibility, during some of my projects, I developed several
Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) containers that I also shared
with the community and that could be directly used to re-launch my experiments.

In all my projects, I use open datasets (e.g. Human Connectome Project (Van Essen et
al., 2013), NeuroVault (Gorgolewski et al., 2015), etc.), which first allows me to make my
work easily reproducible. These datasets are very useful as initial ‘pilot” data for methods
development and experimentations, as they reduce the time and cost of acquiring new
data. Due to their large size (more than 1TB for Human Connectome Project (HCP)), I
had to find solutions to store these data and analyze them easily.

Using such data also allows me to work with common data representations, in my case
the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016). Some of the datasets
that T used were not initially in BIDS format (e.g. raw data from the Human Connectome
Project (HCP)) and I used conversion software, such as HeudiConv (Halchenko et al.,
2024), to convert the dataset in BIDS and facilitate the re-launching of my code on other
datasets in BIDS format.

Collaborating with other researchers

These previously detailed efforts are also to me a solution to facilitate collaborations
with other researchers. During the first year of my thesis, I attended the OHBM Brainhack
(in Glasgow, 2022) and realized that collaborating was leading to new knowledges, new
ideas and thus, a better research. During the three days of this Brainhack, I had the
chance to present the Narps Open Pipelines project (detailed in Appendix C) that I
started during my master’s internship, and that is now at a far higher level thanks to
the collaborations initiated at this event. We recently published the Proceedings of this
Brainhack in Aperture Neuro (see ). 1 also participated to the OHBM Brainhack in
Montreal, 2023 and to local hackathons which I organized in the ORIGAMI team during

my mobility internship, and in the Empenn team. This project led to several fundings
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which allowed to hire a research engineer for 18 months to continue the project (Boris
Clenet, research engineer in the Empenn team).

During my thesis, I also had the opportunity to collaborate with international re-
searchers through an international mobility in Montreal, Canada. I spent four months
in Tristan Glatard’s and JB Poline’s labs to work on the LivingPark project, co-hosted
by their labs. This project showed me the importance of international collaborations and

allowed me to discover new techniques to facilitate open science and reproducibility.

Communicating to the general public

To my opinion, opening science also means opening our research to the general public
through scientific popularization. During my thesis, I participated to several actions to
transmit knowledge to the public. In particular, as part of the L Codent, L Créent action,
I animated educational sessions (8 x 45min) of creative programming for middle school
girls (12-13yo) during the Editions 2021-2022 and 2022-2023. The goal was to promote
computer science and demystify coding.

I also took part in the organization of an event for the Brain Awareness Week 3 (Edi-
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CHAPTER 1

FUNCTIONAL MAGNETIC RESONANCE
IMAGING (FMRI)

Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique used to
explore brain activity and the functional connections between different brain regions. The
first section of this chapter outlines the journey from brain activity to the acquisition of
fMRI raw data, we provide: an overview of the objectives of brain imaging and the primary
techniques employed in this field, with a specific focus on fMRI (1.1.1), explanations about
the main physiological process behind fMRI (1.1.2) and descriptions of the fundamental
concepts involved in traditional fMRI acquisition (1.1.3). In a second section, we delve into
the process of translating fMRI raw data to fMRI results, with a description of the multiple
processing steps that can be used to analyze fMRI data, starting from preprocessing (1.2.1)
to statistical analysis (1.2.2 and 1.2.3) and inference (1.2.4).

1.1 From brain activity to fMRI raw data

1.1.1 Brain imaging and fMRI

Brain imaging - also known as neuroimaging - provides the opportunity to capture rich
and descriptive information about the structure and functional architecture of the brain
non-invasively. Nowadays, brain imaging techniques are commonly used to acquire raw
data that are processed to answer questions about the healthy and pathological brain, in
medicine and in psychology. Depending on the research question, different brain imaging
techniques can be used, involving different physical and biological processes: radiation
(X-ray emission, detection of injected radioactive products), measurement of electrical

activity or magnetic fields. We mainly distinguish two types of brain imaging techniques:

e Structural imaging that explores the anatomy of the brain, for instance with

Computed Tomography (CT) scan (based on X-rays) and Magnetic Resonance
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1.1. From brain activity to fMRI raw data

Imaging (MRI) (based on magnetic fields).

o Functional imaging in which the activity of brain areas is studied during different
tasks, using for instance Positon Emission Tomography (PET) scan (based on the in-
jection of a radioactive tracer), Electroencephalography (EEG) and Magnetoencephalography
(MEG) (respectively measuring the activity of neurones using electrodes that mea-
sure the electrical potential and the magnetic fields at the surface of the brain) and
Functional Magnetic Resonance Imaging (fMRI) (which measures variations in the

local oxygenation of blood, which in turn reflects the amount of local brain activity.).

For the remainder of the manuscript, we will focus on fMRI, and particularly on
task-fMRI. There are two main types of fMRI: resting-state and task-fMRI. In resting-
state fMRI, brain activity is recorded when participants are at rest, i.e. when they are
not performing any task supposedly underlying any cognitive process. This allows to
investigate the synchronicity of activations between different brain regions and thus, to
identify resting-state networks. In task-fMRI , participants are asked to perform specific
tasks during the acquisition, e.g. movement, speaking, etc. This allows to measure
variations in the recorded signal at the time of the expected response and thus, to detect
activations in specific areas of the brain related to the task. The physiological processes
involved for the acquisition of resting-state and task-fMRI are the same, and relates to
haemodynamic changes in the brain. However, the preprocessing and statistical analysis
used to analyse the data acquired varies between the two, with common preprocessing

steps.

1.1.2 Principle of BOLD fMRI

The most common method used for fMRI takes advantage of the Bold Oxygen Level
Dependent (BOLD) signal, which rely on the fact that increased neuronal activity in a re-
gion of the brain correlates with increased blood flow to that specific region. This amount
of blood sent to the active neurons is larger than what is needed to oxygenate neurons,
leading to a relative surplus in oxygenated blood. These changes in levels of oxygenated
or deoxygenated blood can be detected on the basis of their differential magnetic suscep-
tibility, and can be compared to the expected haemodynamic response for each task to

estimate brain activity (Poldrack et al., 2011a).
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1.1.3 Experimental design and protocols

In research settings, to explore brain activity under different conditions, task-fMRI
studies usually involve multiple participants for which a temporal sequence of brain vol-
umes is acquired while they perform a set of tasks. During the acquisition, images are
acquired with a regular time interval between two consecutive images (called repetition
time or TR) during a specific time. A protocol is developed to explore a cognitive process
and participants are asked to perform a set of tasks (e.g. raising hands and raising foots)
with predefined onsets, durations and sometimes, intensities. This set of task and the
associated stimuli are called a paradigm (e.g. motor paradigm). Paradigms are designed
to manipulate specific mental processes, in order to better understand how they relate
to brain activity. Two main experimental designs exists: block designs and event-related
designs. Block designs involve long-lasting stimuli, while event-related designs involve
brief stimuli leading to short neural responses. Event-related designs usually offer greater
flexibility, but may have lower signal-to-noise ratios compared to block designs (Liu, 2012;
Petersen et al., 2012).

1.2 From fMRI raw data to fMRI results

Time

3-dimensional
volume

Figure 1.1 — Ilustration of common fMRI protocols

For each participant, several data are acquired during a session: functional data cor-
responding to 4-dimensional matrices containing a time-series of concatenated brain vol-
umes and additional files used to process them, for instance structural data (i.e. with
more precise anatomical information) or field maps (i.e. measuring field inhomogene-

ity). Stimulus time-series, which give information about the set of tasks performed by
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1.2. From fMRI raw data to fMRI results

the participant, is also recorded for further analysis. Brain imaging data are composed
of voxels (3-dimensional version of a pixel, i.e. a value on a regular grid in 3-dimensional
space) that represent the intensity of the signal in the corresponding part of the brain.
In functional data, there is a supplementary time dimension, meaning that each voxel is
associated with a time course (see Figure 1.1). A session of functional acquisition is also
called a “run”. Depending on the study protocol, multiple runs can be acquired, resulting
in multiple functional data for a participant for the same paradigm. The data obtained
after acquisition are called the “raw data”.

The sequence of steps applied to the raw data to obtain the final results is called a
“pipeline”. In fMRI data analysis, a pipeline is traditionally split into three main steps,

itself composed of multiple sub-steps:

1. Preprocessing: cleaning and preparation of data for further analyses, usually involv-

ing additional 3-dimensional files such as structural data or field maps.

2. First-level analysis: at the run or at the subject-level, to analyze each voxel’s time

course to identify changes in the BOLD signal in response to some manipulation.

3. Second-level analysis: referring to the combination of run-level results in a subject-

level analysis or to the combination of subject-level results at the group-level.

To facilitate comprehension, in the following, we will refer to subject-level analysis for

both run-level and subject-level analyses.

1.2.1 Preprocessing

An fMRI pipeline usually starts by the preprocessing of the raw data. This step is
fundamental to perform further analyses, due to the high number of artifacts in the data
and due to the variations in the shape of the brain across participants. Using a sequence
of several image and signal processings, the goal is to increase signal-to-noise ratio and to
prepare data for group-level analyses with standardization steps that aligns data between
participants so that a voxel’s coordinate in the brain of participant A corresponds to the
same location in the brain of participant B.

The preprocessing part of the pipeline is composed of several steps, that have an effect
at the temporal level (i.e. involving operations that filter or affect the properties of data
across the time dimension) or at the spatial-level (i.e. involving operations that filter or

affect the spatial properties of data, such as spatial orientation, resolution, and shape).
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Figure 1.2 — Example of a standard fMRI pipeline: pre-processing, first and second-level
statistical analyses.

Example of a standard preprocessing workflow is presented in Figure 1.2, with an example
of functional raw data before and after preprocessing.

In the following subsections, we describe several preprocessing steps that can be used
to clean and align raw data between participants. These steps can be performed on both
resting-state and task-fMRI data, but some of these are more commonly used during

resting-state fMRI data analysis, as signal-to-noise ratio in the data is usually lower.

1.2.1.1 Distortion correction

Echo Planar Imaging (EPI), the technique used to acquire fMRI BOLD data, is very
sensitive to magnetic field inhomogeneity, causing geometric distortion in the images.
This phenomenon particularly affects regions where there is an air-tissue interface, i.e.

where the magnetic field varies, causing dropouts and distortions. Different techniques
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1.2. From fMRI raw data to fMRI results

have been developed to correct for image distortions. We will refer to “unwarping” for
the non field map based technique and to “undistortion” for the one that involves the use
of field maps representing the field inhomogeneities (Hutton et al., 2002).

Unwarping is based on the susceptibility-by-movement assumption (Andersson et
al.; 2001). After realignment (motion correction, explained in 1.2.1.2), there is resid-
ual movement-related artefacts caused by the object having different shape at different
time points. The unwarping technique uses these remaining artefacts and the movements
parameters computed during realignment to estimate how the distortions change with
participant movement. However, this corrects images to some “average” distortion and
does not actually remove the “static” distortions.

Undistortion, the field map based technique, attempt to correct for the “static" com-
ponent of the geometric distortion, 7.e. not related to motion. This technique can be used
in complement to unwarping to improve anatomical fidelity but it requires the acquisition

of supplementary images to build the field map.

1.2.1.2 Motion correction

The movement of a participant during the acquisition can impact the analysis of the
resulting images. Indeed, if we look at the signal at a specific voxel coordinate, the same
signal may changes coordinates across time due to movement. Moreover, the brain signal
may vary because of the movement and not because of the paradigm of interest.

The first step to correct for movement is to perform a rigid-body transformation to
realign data to a reference scan: often, the first or mean volume of functional raw data.
Translations and rotations of the brain on the x, y and z axes are compared to the
reference and differences are computed to obtain 6 movement regressors. In some cases,
in addition to the computation of the movement regressors, the image is also “realigned”,
i.e. modified to permanently apply the computed transformations to the image.

However, realignment does not solve all movement-related issues, in particular due
to the interaction of movement with the inhomogeneity of the field. This can cause
distortions of voxels and thus, non-rigid movements. The remaining motion in the image
can be mitigated at two other steps: 1) movement regressors computed at this step can be
regressed out from the signal to further remove movement-related artifacts (Friston et al.,
1996) (see 1.2.2.3) and 2) unwarping, which tries to estimate the effects of interactions

between field inhomogeneity and movement and correct for them (see 1.2.1.1).
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1.2.1.3 Slice-timing correction

During acquisition in two dimensions, each 2-dimensional slice of a volume is acquired
at a distinct time point, since images are collected in discrete slices. However, when
we model the data at each voxel for statistical analysis, we assume that all of the slices
were acquired simultaneously, which can be a problem when modelling rapid events. To
correct for this, the time series of each slice can be adjusted to make it appears like all
slices were acquired at the same time. This step may not be beneficial for all acquisitions,
this depends on the acquisition parameters and on the experimental protocol. Slice-timing
correction might also interact with other processing steps (Parker et al., 2019), for instance
more accurate motion estimate can be obtained if motion correction is performed before

slice-timing.

1.2.1.4 Co-registration and standardization

To further correct for head movement and obtain comparable images between partic-
ipants, two steps are usually performed: co-registration and standardization (also known

as normalization).

Co-registration Co-registration corresponds to the alignment between two acquisi-
tions: a structural image and the functional images. Usually, the structural image is
realigned to the functional ones, using the same method as for realignment (rigid-body
transformations, see 1.2.1.2). This step is performed before normalization and allows to
compute normalization parameters on the structural image, which has higher spatial res-
olution and fewer artefacts, and after, apply these parameters to the functional images
afterwards. This step can also be bypassed in favor of direct transformation into the

standard template coordinate system (Calhoun et al., 2017).

Normalization / Standardization Normalization also corresponds to the alignment
between images, but, contrary to co-registration, it aligns functional data of different
participants into a common standard template. Indeed, participants have different brain
shapes and to allow for group-level analyses, it is important that each voxel of the brain
is located at the same coordinate between different participants. Similarly to realignment
and co-registration, linear transformations are applied in a first step: translations and
rotations, plus zooms and shears. These transforms are often complemented by non-linear

registration using deformation fields to further reduce distortions. It can also incorporate
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regularization (i.e., imposing penalties for excessive distance between the parameters and
their expected values) or segmentation(Ashburner et al., 2005) (i.e., separating gray and
white matter) to obtain more robust results.

The most widely used standard template is the one of the Montreal Neurological
Institute: MNI152 (Fonov et al., 2009), but this template is specific to a certain category
of the population and may not fit some specific studies. For instance, studies on infants

or on a specific demographic category of the population might require specific templates.

1.2.1.5 Spatial smoothing

Spatial smoothing consists in averaging the signals of neighboring brain voxels, which
can be justified by the correlation of their function and blood supply. This step helps
improving signal-to-noise ratio but decreases spatial resolution and blurs the image. De-
pending on the features that need to be extracted from the raw data, in particular for
resting-state fMRI, this step can be deprecated. However, it is commonly performed for
task-fMRI. The standard method implies convolution of the raw data with a Gaussian
kernel that multiply the signals of close neighboring voxels with a high weight and from
more distant voxels with a lower weight. The optimal kernel size is variable, but in prac-
tice, Full-width at Half-Maximum (FWHM) value of the Gaussian kernel is typically set

to 4 to 6 mm for participant-level studies and to 6 to 8 mm for group-level analyses.

1.2.1.6 Temporal filtering

Functional data suffer from temporal noise, which refers to changes in signal over time
due to factors that are not related to brain activity. It can arise from the scanner (physical
noise) but also from the participant (physiological noise, such as motion, breathing and
cardiac pulsation). This temporal noise can be corrected with different steps during
preprocessing. Smoothing, which is known to reduce spatial noise, is also beneficial for

temporal noise as it cleans time courses by reinforcing signals and cancelling noise.

Detrending The origin of the linear trend of fMRI signal is still discussed in the com-
munity. Two hypotheses are discussed: some believe that it arises from scanner instabil-
ity (Huettel et al., 2004), while others believe that it may have other meaning, at least
in resting-state fMRI (Wang et al., 2014). However, the linear trend may be problematic
when trying to estimate brain activity. Linear detrending consists of modelling the voxel’s

time-series using a General Linear Model (GLM) and subtracting the linear component
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from the original signal (Bandettini et al., 1993). If the data does have a trend, detrending

forces its mean to zero and reduces overall signal variations.

High-pass filtering To further remove temporal noise and in particular linear trend
and scanner drifts, high-pass filtering can also be performed. It also filters out linear
trends, so adding linear trend removal is redundant but often described as two different
steps in studies. Noise is particularly expressed in the low-frequencies in fMRI signal, so

high-pass filtering can help to remove this low-frequency noise.

Low-pass filtering Highest temporal frequencies can also be filtered, allowing only the
low frequencies to pass and limit the impact of physiological noise such as respiratory or
cardiac noise, which are associated with high signal frequencies. One way to do this is to
smooth the time-series with a Gaussian kernel over time, similarly to spatial smoothing
but instead of computing the weighted average of neighboring voxel intensities at the
same time, temporal smoothing computes those averages over time, using neighboring
time points. This step is used in resting-state fMRI preprocessing pipelines, but usually
not applied in task-fMRI.

1.2.1.7 Regression of nuisance signals

To further remove any non-neural activity-related process, several nuisance signals
are often regressed out from data using multiple linear regression. Indeed, even if some
of the noise can be remove by high-pass and low-pass temporal filtering, high-frequency
confounds from breathing, heart beat and movement may still remain in the signal. Time
series of physiological noise can be included as noise regressors into a GLM to remove the
part of the signal explained by the nuisance regressor from the residuals. Confounds such
as motion regressors, CerebroSpinal Fluid (CSF) or White Matter (WM) signals can also
be regressed out, with few consensus on which ones to use. Indeed, while it might sound
interesting to remove as much noise as possible from the signal, a high number of regressors
in a GLM might lead to a more conservative significance testing of the model due to a
lower number of degrees of freedom. This is of particular importance in task-fMRI, but
less taken into account for resting-state which is especially vulnerable to physiological
artifacts. The use of such regressors in statistical analysis for task-fMRI is described in
Section 1.2.2.3.

There are multiple ways to compute these confounds. Motion-related regressors are
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often computed during the realignment step of the preprocessing, sometimes enriched with
the squares, derivatives, and squares of derivatives of the six original parameters to obtain
24 movement regressors (Yan et al., 2013a). Regarding breathing and cardiac noise, it is
possible to record these values during the acquisition, but this requires a specific setup and
the recording can contain artifacts too. A common procedure is to extract physiological
noise using the time series of voxels located in white matter (WM) or ventricles (CSF)
since these signals are of no interest (Weissenbacher et al., 2009).

Other techniques make use of dimensionality reduction to identify specific parts of
the signal that correspond to noise. Component Based Noise Correction Method (Comp-
Cor) (Behzadi et al., 2007) derives significant principal components of noise from regions-
of-interest in which the signal is unlikely to be modulated by brain activity. These compo-
nent can then be included as confounds in the GLM, similarly to other nuisance regressors.
Independant Component Analysis (ICA) techniques decompose the data in a set of spa-
tial components and their associated time-course, with the intention of regressing out
the components representing noise. However, to identify these components, one need to
manually annotate them or train a model to identify these components, which might be
delicate and very specific depending on the study.

Regression of global signal is a debated topic. It might be beneficial as it reduces
the impact of motion but it also removes some signal of interest (Yan et al., 2013a;
Satterthwaite et al., 2013). Studies also showed that regression of global signal can add
anti-correlation and alter connectivity structure (Yan et al., 2013b; Weissenbacher et al.,
2009).

1.2.1.8 Data cleaning: scrubbing, despiking

Even after all these preprocessing steps, it may remain some large intensity increase in
the signal, called “spikes”, which are caused by scanner instability or high level movements
(coughing for instance). These spikes cannot be properly removed with temporal filtering
and require a specific processing.

To deal with these spikes, several methods can be used. The first one is despiking, in
which the signal of abnormally high voxels will be made lower artificially. This method
allows to modify the signal while keeping all volumes and time points. The second method
consists in identifying the time points where large movements occur and adding this
information as a nuisance regressor or removing the identified volumes from the data.

This technique is called “scrubbing” and the identification of outlier volumes rely on
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metrics such as framewise displacement (FD) or the DVARS, representing the spatial root
mean square of the data after temporal differentiation (Power et al., 2012; Power et al.,
2013; Afyouni et al., 2018). However, this technique mostly relies on motion parameters
computed during realignment, which may not be perfect and requires to choose a threshold
for the different metrics to identify outliers. This outlier identification can also lead to

the elimination of participants due to a large number of outlier volumes.

1.2.2 First-level analysis

After preprocessing, functional data are cleaned and ready for further feature extrac-
tion using different analyses. In task-fMRI, the goal is to explore brain activity and to
measure which part of the signal recorded during acquisition is related to the task per-
formed by the participant. Since we have access to the time-series of the stimuli and since
we approximately know how the signal should vary in response to a stimuli, we can model
the expected brain response in case of brain activation for each task and compare this
to the real signal in the raw data. To do so, we use a General Linear Model (GLM) to
fit the fMRI signal present in functional data at each position of the brain to regressors
computed to represent the different tasks of interest. This step can be performed at the
run-level (each run analyzed separately) or at the subject-level (concatenation of runs).
Example of a standard first-level statistical analysis workflow is presented in Figure 1.2,
with an example of first-level statistic maps.

In the following section, we explain how GLM works and in particular, multiple lin-
ear regression, which is used for statistical analysis at the first and second-level. This
corresponds to a summary of the description provided in Appendix A of Poldrack et al.,
2011a. Then, we explain how the haemodynamic response is modeled to estimate the
parameters of the GLM and present several options that can be used to build the design
matrix. Finally, we briefly describe the principles of hypothesis testing and how it can be
used at the first-level of fMRI data analyses.

1.2.2.1 General Linear Model

The purpose of GLM is to explain a vector Y with a sum of weighted vectors X and

an error term €. The model is the following:

Y=X5+¢ (1.1)
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with:
e Y, a matrix of the data we want to fit to the model.

e X, a design matrix with p + 1 columns with p independant explanatory variables

and one constant term. The columns of X are called “regressors”.

e [, a vector of parameter values associated to each regressor, these parameters are
what we want to estimate. Each f; associated to a variable X; is interpreted as the

effect of X; controlling for all other variables in the model.
e ¢, a vector of random variables that constitute noise in the data.

To explain this vector Y and thus, fit the data to the design matrix, we must estimate
B, the set of parameter values 3 that best explains the data Y in function of the regressors
in X, while minimizing the residual noise. Since X is not a square matrix, we cannot
directly solve the model equation, but we can multiply both sides by X’: X'Y = X' X}.
This leads to the following equation B=XY x (X'X)~1 for which any 3 that satisfies
the equation minimize the sum of squares of the residuals. This equation assumes that
X'X is invertible: i.e. X must have full column rank, and thus regressors must not be
linear combinations of other regressors in the design matrix. If this is not the case, B
could take multiple possible values to minimize the sum of squares of residuals and the
estimation would be highly unstable.

In the first-level of task-fMRI data analysis, multiple linear regression is used on each
voxel of the preprocessed functional data to estimate parameter values that explain the
regressors that are modeled to correspond to the tasks performed. If we go back to
Equation 1.1, Y represents the time-serie of the voxels after preprocessing and X the
design matrix modeling the expected response depending on the tasks performed, with

potentially other regressors included to represent noise (see Nuisance regressors).

1.2.2.2 Modelling the expected response

To build the design matrix X, we must model the expected response of the brain
depending on the task. The BOLD signal measures variations of the haemodynamic
response (see Section 1.1.2), whose time course is a low-pass-filtered expression of the
total neural activity (Logothetis et al., 2001). This response starts by an increase shortly
after the neuronal activity (1-2 seconds), called the initial dip. It reaches a peak 4 to
6 seconds after the stimulus and then starts decreasing until 12 to 20 seconds. We observe

a post-stimulus undershoot, which is relatively small compared to the positive amplitude.
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Figure 1.3 — Characteristics of the Haemodynamic Response Function (HRF). ID cor-
responds to the initial dip (which is sometimes not represented), TP corresponds to the
time from the stimulus until peak, H to the height of response, W to the width of the
HRF at half of the height and PSU to the post stimulus undershoot. Figure extracted
from Poldrack et al., 2011a.

This haemodynamic response can be modeled using a function called the Haemodynamic
Response Function (HRF). Figure 1.3 shows the characteristics of the HRF.

To model the specific haemodynamic response of the brain to the tasks performed, the
HRF is convolved with the stimulus time-series (Cohen, 1997). This can be done thanks
to two properties of the haemodynamic response in function of the neuronal activation:

linearity and time invariance. These two properties state that:

o Same scaling factor: the amplitude of the haemodynamic response is proportional

to the amplitude of the neuronal response,

o Additivity: the haemodynamic response for a sum of activations is equal to the sum

of the response for each independant activation,

o Time invariance: if a stimulus is shifted by ¢ seconds, the haemodynamic response

will also be shifted by t seconds.

Canonical HRF In Handwerker et al., 2004, a study of the haemodynamic response
shape showed that both time until peak and width of the haemodynamic response varied
within-subjects (across regions of the brain) and between-subjects, with a larger inter-
subject variability. Choosing an appropriate HRF to model the haemodynamic response
is important to capture the shape as best as possible and to ensure a good fit during the

GLM. Multiple possibilities exist in terms of modeling with differences in assumptions and
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Figure 1.4 — The stimulus convolved with the Haemodynamic Response Function (HRF)
(blue), its derivative (red), and the sum of the two (green), illustrating that including
a derivative term in your linear model can adjust for small shifts in the timing of the
stimulus. Figure extracted from Poldrack et al., 2011a.

model complexity (Lindquist et al., 2009). The optimal shape of the HRF was estimated
by Friston et al.; 1994; Lange et al., 2002 using deconvolution and found that in general,
it could be approximately described by a gamma function. However, a single gamma
function does not model the post-stimulus undershoot. Thus, a double-gamma HRF was
adopted as the canonical HRF (Friston et al., 1998) (i.e. the default one) by multiple
researchers, based on the combination of two gamma functions, one modelling the shape

of the initial stimulus response and the second the undershoot.

Beyond the canonical HRF When using the canonical HRF to model the response,
we are biased to only find responses that are similar to that function. Researchers tried to
use more complicated models, that allows more flexibility in the shape of the HRF with
more parameters, but this lead to more variability in the estimate. The goal is to find a
tradeoff between bias and variance.

To build more flexible HRF', a popular approach is to use a set of HRF basis functions,
that will be convolved to the stimulus onset to fit the signal instead of just convolving
a single HRF. The most commonly used basis set is the canonical HRF + derivatives
(temporal +/- dispersion) (Handwerker et al., 2004). Adding the temporal derivative
allows for small offsets in the time to peak of the HRF and the dispersion allows for
variations in the width of the HRF. Figure 1.4 shows a standard regressor (stimulus
convolved with the canonical HRF), its temporal derivative and the sum of the two. We
can see that the addition of the two leads to slight shift to the left and a small increase
in peak height.

Another option is to use a Finite Impulse Response model (FIR), in which we do not
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give any indication on the shape of the expected HRF. We only make a supposition of the
signal length and we decide on a number of points to estimate, which allows for a subject-
specific modeling of the HRF and thus, a high variability (Goutte et al., 2000). Between
high bias with canonical HRF and high variability with the FIR, researchers built what is
known as the “constrained basis sets” (Woolrich et al., 2004). This set of basis functions
can be built by first generating a set of reasonable HRF shapes with varying parameters,
and then by applying a principal components analysis (PCA) to extract a set of the most
representative basis functions. It leads to a more flexible and less biased estimation, but

also to more variability when using a high number of representative functions.

1.2.2.3 Building the design matrix

The stimulus time series is convolved with the modeled HRF to obtain the regressors
of the design matrix. The choice of these regressors and their position in the design matrix

can impact the parameters estimate:

e Depending on the study protocol, one might want to add a parametric modulation
to a regressor (see Parametric modulation) or to add the response time as a regressor

(see Modelling response time),

o In specific cases, to remove correlation between regressors, one might want to apply

orthogonalization (see Orthogonalization),

e To correct for remaining artifacts, one might also want to add nuisance regressors

to the model (see Nuisance regressors).

Parametric modulation In complex and specific studies, stimuli can be parametrically
varied (e.g. contrast of a visual stimulus, volume of an auditory stimulus, etc.) and
we can expect that the strength of the neuronal response will reflect these variations.
We can thus add an additional parametric regressor to the design matrix, which will
model these variations. To create a parametric regressor, the onsets of each stimulus are
modified to have a height that reflect the variations. Adding this parametric regressor
does not prevent from including an unmodulated regressor, but the height values of the
parametric one must be demeaned to avoid any correlation between the modulated and

the unmodulated regressor.

Modelling response time During acquisition, participant’s response times might be

different across participants and trials, causing variations in the neuronal response. In-
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deed, longer stimuli lead to a higher haemodynamic response and thus, participants might
exhibit a greater activation simply due to the duration of the task, rather than to any
difference in neuronal response. To include this response time in the model, two options
are possible. First, the regressors of the models can be created using the exact trial dura-
tion and not a fixed duration across trials and participants. However, this decreases the
sensitivity for responses that are constant across trials. Thus, the second option is prefer-
able and consists in creating a primary regressor with constant duration across trials and
including an additional parametric regressor that varies with response time. Effects of
response time are thus removed from the model and we can separate the constant effects
and the effects that vary with response time.

In practice, incorporating response time regressors in fMRI analysis is strongly rec-
ommended to accurately model the relationship between neural activity and the BOLD
signal. This approach helps mitigate the response time paradox by accounting for the
temporal overlap in hemodynamic responses that can arise for tasks with long time re-
sponse (Mumford et al., 2024).

Orthogonalization The regressors included in the design matrix are usually correlated
to each other, for instance, the time response regressor will be correlated to the primary
regressor (see 1.2.2.3). The variability described by two regressors X; and X, has three
components: the one that is unique to X, the one that is unique to X, and the one who is
shared by X; and X5. When regressors are highly correlated, this shared variability is high
and the portion of variability explained by each regressor independantly is small. This
leads to instabilities of the parameters estimates for these regressors, since the variability
of the signal explained by one regressor can easily shift to the other.

A solution to remove the correlation between regressors is called “orthogonalization”.
It comsists in removing the shared variability from one of the two regressor. However,
the remaining regressor does not represent the same portion of explained variability any-
more and should be interpreted carefully. Moreover, one must choose which regressor to
orthogonalize to which, as the portion of variability common to both can be attributed
either to the first or to the second regressor. Thus, orthogonalization should be applied
only in specific cases where variables are clearly having a supplementary role only (e.g.

derivatives of the HRF, time response, etc.).
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Nuisance regressors Nuisance signals like motion can cause artifacts in the data even
after applying correction with realignment (see 1.2.1.2). These signals, including motion
estimates, can be added as regressors to the model to reduce error variance and improve
detection power. While adding nuisance regressors is strongly recommended in practice,
this step should also be taken carefully as these nuisance signals can be correlated with
the stimuli and thus, including them in the model might decrease sensitivity. A detailed
explanation of the different nuisance signals that can be added and the methods used to

compute them was done in Section 1.2.1.7.

1.2.2.4 Hypothesis testing at the first-level

Now that we modeled the signal and estimated the parameters 5 of the GLM, the
brain activity related to each task can be estimated using hypothesis tests. To perform
hypothesis testing, we must define a hypothesis Hy, called null hypothesis, and we will
try to see if the information contained in our data give us enough confidence to reject this
hypothesis. Usually, this null hypothesis is about the absence of effect or no difference
between two elements. The opposite hypothesis of Hy, is called alternative hypothesis, Hy
and consists in the presence of an effect or the presence of a difference.

In our case, we have to define our hypothesis as a contrast that will be tested, this
contrast is a vector with length equal to the number of regressors of the GLM and consist
in a linear combination of parameters estimates. For instance, if our model was composed
of four regressors with associated parameters [Sy, 51, fa, O3], the contrast that tests the
effect of the first regressor (i.e. that tests if the first parameter [, is different from 0,
Hy : B = 0) would be ¢ = [1,0,0,0] since ¢ = [y. To test whether two parameters
are different from each other or if one is superior to another, the contrast would be for
instance ¢ = [0, —1,1,0] for Hy : B2 = 3. Since each regressor X; correspond to a specific
task or stimulus, testing if its corresponding estimated parameter [3; is different from 0 is
like testing if the task lead to a significant neural response.

For instance, to test a single contrast, we can use a t-statistic, which under the null
hypothesis, is distributed as a Student distribution. To test for multiple contrasts at a
time, F-tests can also be performed, for instance to test for Hy : 51 = [y = Pz = [a.
After computing the statistic of the test, we can estimate the p-value, corresponding to
the probability under the null hypothesis of having a test statistic larger than the one
actually observed. The analysis of these p-values is described after in Section 1.2.4.

The main outputs of first-level analyses are the following:
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— A matrix with the different parameters estimates for each regressor at each voxel,

— 3-dimensional statistic maps corresponding to the results of the hypothesis tests:
for each contrast tested, a 3-dimensional volume of the brain is output with each

voxels value corresponding to the statistic of the test performed,

— 3-dimensional contrast maps corresponding to the results of the hypothesis tests in
terms of percent BOLD change: for each contrast tested, a 3-dimensional volume
of the brain is output with each voxels value corresponding to the combination of

estimated parameters in the tested contrast.

— 3-dimensional variance contrast maps corresponding to the expected variance of the

estimated contrast maps.

Hypothesis testing is also performed at the second-level to test for mean activations
inside a group of participants or to compare activations between groups of participants.

We will describe this in the following section.

1.2.3 Second-level analysis

During the first-level analysis, estimates of contrasts and variance have been obtained
for each voxel for several participants. If the first-level was performed at the run-level,
the second-level analysis consist in a single-subject analysis that combines the different
run-level contrasts of a participant to obtain subject-level statistic and contrast maps.
Typically, when mentioning second-level analyses, we refer to group-level analyses, in
which subject-level contrast maps can be combined to test for the mean effect of a regressor

within a group or to compare this effect between groups.

1.2.3.1 Hypothesis testing at the second-level

In both cases, as in the first-level, we use a GLM (see 1.2.2.1), with Y corresponding
to the list of contrasts maps for the participants of the group (or runs of a participants).
At the group-level, additional regressors can be added with informations regarding the
participants, these can be quantitative (e.g. age) or qualitative (e.g. sex or gender). Sim-
ilarly to the first-level, once the parameters are estimated, we define a contrast, consisting
in a linear combination of parameters, and perform hypothesis test. For instance, if we
have two groups of participants and want to test for any difference between the two, the

contrast would be ¢ = [—1, 1].
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1.2.3.2 Modelling variance

At the group level, we must take into account multiple sources of variance: the con-
trast variance estimated at the first-level (i.e. within-subject) and the between-subject
variance, that needs to be estimated (Mumford et al., 2006). Two main models exist to
model variance: mixed-effects and fixed-effects. In the fixed-effects models, typically used
when the second-level analysis combines the different runs for a single participant, only
the within-subject variance is taken into account. In such case, a mixed-effects model
is impractical due to the limited number of runs per participant, making it difficult to
properly estimate the between-run variance. For group-level analyses, the mixed-effects
models is used. It assumes that the total variance is composed of both between-subject
and within-subject variance. The goal here is to estimate the between-subject variance,
while taking into account within-subject variance. This is usually done iteratively by
successively computing the between-subject mean and variance while incorporating par-
ticipants to the model (Worsley et al., 2002). In a simpler case, we can assume that
within-subject variance is equal for all participants of the group or that it is negligible

compared to between-subject variance (random effect).

1.2.4 Statistical inference

After estimating the contrasts and performing hypothesis testing, the goal is to deter-
mine whether or not the detected effect is significant. This is done by applying statistical
inference on statistic maps, resulting in 3D thresholded statistic maps. Multiple thresh-
olding methods can be applied on statistic maps to identify significantly activated voxels:

at the voxel-level and at the cluster-level.

1.2.4.1 Voxel-wise inference

Statistic maps resulting from the hypothesis tests are composed of voxels with as-
sociated statistic values. Thus, it might seems logical that one should test each voxel
individually, by comparing their associated value to a threshold, to test if the effect is
significant or not. Such method allows to make very specific inferences, in particular on
small areas of the brain. At this level, voxels are all analyzed independently and spatial
information is not taken into account. This “naive” approach is also known as uncorrected
voxel-wise inference, note that in practice a correction for multiple comparison should be
applied (see 1.2.4.3).
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Figure 1.5 — Modelling variance at the second-level. Top panel: fixed effects analysis where
all subject’s data are combined into a single model with only one source of variability.
Bottom panel: two-stage summary statistics mixed model, each subject’s time series is
first analyzed individually, supplying within-subject parameter estimates and variances,
and the second stage uses the first stage parameter estimates and variances and estimates
the between-subject variance and group parameter estimate. Extracted from Mumford
et al., 2006.

1.2.4.2 Cluster-wise inference

At the cluster-level, we use spatial information in the image, such as the fact that
significantly activated voxels might be located in close areas of the brain. Indeed, brain
regions activated during the tasks are usually larger than the size of a single voxel (around
2mm?) and data are often spatially smoothed during preprocessing, leading to a spreading
of the signal across many voxels of the image. Cluster-wise inference is usually done in
two steps: first, a cluster-forming threshold is applied to the statistic map, and groups of
contiguous voxels above the threshold are defined as clusters. Neighboring voxels must
be defined before the thresholding step to decide if 6 (voxels sharing a face), 18 (voxels
sharing face + edge) or 26 (voxels sharing face 4+ edge + corner) are taken into account.

Then, the size of each cluster is used to determine its significance, by comparing it to a
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critical cluster size that must also be defined a priori.

1.2.4.3 Correction for multiple testing

In standard hypothesis tests, we have a control on the level of false positive risk with
the appropriate selection of «, usually set to 0.05. However, this is only valid if a single
test is performed. In the hypothesis testings performed in fMRI, we test all the voxels of
the image simultaneously, which mean that if we set @ = 0.05, 5% of the voxels of the
image will be false positives. This problem is also known as multiple testing problem and
must be corrected. Two main measures of false positive risk were defined: Family-Wise
Error (FWE) and False Discovery Rate (FDR). FWE corresponds to the chance that
across all voxels, one or more is a false positive, meaning that if we set apy g = 0.05, on
average there will be one or more false positive voxels in the thresholded map 5% of the

time. To control for FWE, multiple methods are available:

« Bonferroni correction, which consists in defining a threshold o« = apy p/V with
V being the number of tests (here, voxels of the image). This correction usually
shows highly conservative results as it is optimal when voxels values are independent,
which is not the case for fMRI statistic maps. In practice, this correction technique

is not commonly used.

« Random Field Theory, which takes into account the intrinsic smoothness of
the data, i.e. the one present in all imaging data and the one applied during

preprocessing.

« Non parametric approaches, in which no assumption is made about the indepen-
dence of the data. These approaches make use of the data themselves to estimate
the appropriate threshold to use. The most widely used methods are permutation

tests and bootstrap.

FWE methods were the first available for researchers, but were criticized due to the
few number of results that were left after correction. A more lenient alternative to FWE
is the control of the false discovery portion, the fraction of detected voxels that are false
positives, through FDR procedures. The FDR corresponds to the chance that voxels
identified as significant are false positives, i.e. an FDR of 5% means that, among all

voxels detected as significant, on average 5% of these are false positives.
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il Take-home Message

« Functional Magnetic Resonance Imaging is a brain imaging technique in which
brain activity is studied during the realisation of predefined tasks. This tech-

nique is based on the Bold Oxygen Level Dependent (BOLD) signal.

o After acquisition, raw data are processed and analyzed using a sequence of

steps called a “pipeline”.

e These pipelines are composed of multiple steps that aim to clean and pre-
pare data for further analysis, and to identify changes in the BOLD signal in

response to the task.

o At each step of a pipeline, multiple options are available and researchers have

to make choices to build their pipeline.
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CHAPTER 2

ANALYTICAL VARIABILITY

In the previous chapter, we presented the main steps of an fMRI analysis pipeline,
from raw data to final results. In fMRI data analysis, pipelines are highly flexible (Carp,
2012b), leaving researchers with many choices to make (e.g. software package, algorithm,
parameters value, etc.), also known as researchers degrees of freedom. In the past few
years, multiple studies have shown that different choices could have a large impact on the
results. This analytical variability, induced by different protocols and methods applied on
the data, lead to a multiplicity of possible results for a given study, called a vibration of
effects (Ioannidis, 2005).

Other sources of variability exist in neuroimaging studies, for instance across partic-
ipants (inter-individual variability) or acquisition parameters (technical variability). In
the following chapter, we will first describe the different sources of variability that can be
observed in neuroimaging studies. Then, we will focus on analytical variability with a de-
scription of the variations in the analytical protocol that can lead to different results, the

main studies that explored this topic and the challenges related to analytical variability.

2.1 Different sources of variability

To build a neuroimaging study and in particular, an fMRI study, researchers have
many choices to make, from the definition of the study to the analysis of the results. At
each step, different sources of variability must be taken into account. Figure 2.1 illustrates
these different sources of variability: inter-individual variability (between participants),
intra-individual variability (longitudinal comparison or test-retest variability), technical
variability (relative to differences during acquisition) and analytical variability (relative

to data processing and analysis).
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Figure 2.1 — Different sources of variability in neuroimaging studies

2.1.1 Intra-individual variability

For a single participant, variability in the results can arise when repeating the analysis
with the exact same protocol (same acquisition and instrument, same method) (Chen et
al., 2016). This type of variability, also know as intra-individual variability, relates to
changes within a participant across time. Researchers usually assess the effect of this
type of variability by measuring intra-class correlations (Weir, 2005) between measures
obtained from a single participant at different time points. This is of particular importance
for disease biomarkers identification as it might be difficult to detect true longitudinal
experimental effects if intra-individual variability is large. This variability can also put
into question the reliability of fMRI studies due to the amount of uncertainty between
two supposedly similar measurements (Noble et al., 2019; Elliott et al., 2020). Aron et al.,
2006 explored the long-term test-retest reliability of fMRI-based measurements, showing

their potential as biomarkers for brain development and neurodegenerative diseases.

2.1.2 Inter-individual variability

Like with fingerprints, each brain is different (Valizadeh et al., 2018). In particular,
environmental and genetic factors shape the brain structures and functions. Thus, the
results obtained when analyzing the data from two participants using the same methods
in an fMRI study can be really different. This phenomenon is known as inter-individual
variability and was widely studied in the literature. In 1.2.1, we saw that several prepro-
cessing and analysis steps applied to fMRI raw data are used to mitigate and take into
account inter-individual variability. First, participants have differences regarding brain
morphology (Rademacher et al., 1993; Thompson et al., 1996). A standardization step

(see 1.2.1.4) is included in most neuroimaging pipelines to be able to compare participants
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and to combine them in group-level analyses. Participants can also be different in terms
of functional activation (Lebreton et al., 2019). This variability is taken into account at

the second-level using mixed-effect modelling (see 1.2.3.2).

2.1.3 Technical variability

In neuroimaging studies, finding a sufficient number of participants might be difficult,
in particular for rare pathologies. To tackle this issue and increase sample sizes, multi-
center studies started to develop. However, these studies are subject to another type of
variability due to the use of several (and different) acquisition sites. Multiple studies have
shown that differences in MRI intensities (i.e. voxel values in raw data) between scanning
parameters can be larger than the biological differences observed in these images (Wit-
tens et al., 2021; Mackin et al., 2015). This led researchers to explore the role of various
factors to explain the impact of this variability in the results, for instance, how differ-
ent acquisition could change the smoothness of the image (Friedman et al., 2006). They
also developed new methods to reduce these differences, and thus enhance multicenter
reproducibility (Fortin et al., 2016).

2.1.4 Analytical variability

As stated at the beginning of this chapter, the exact choice of protocols and methods
applied on the data can have a non-neglectable impact on the results. This phenomenon,
also known as analytical variability, can be induced by different levels of variations in-
cluding: different software environments, different software packages, different sets of
parameters, different algorithms, etc. Compared to other sources of variability, this one

is less understood and there is no established method to correct for it.

2.2 Focus: Analytical variability

In the following section, we will focus on analytical variability. We will show how
specific choices in pipeline definition can lead to variations in the results. Then, we explain
why analytical variability is of particular importance in neuroimaging and we present the
main studies that tried to assess and mitigate it. Finally, we describe the remaining

challenges regarding analytical variability and the ones we tackle in this manuscript.
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Figure 2.2 — Overview of possible choices to make during a standard fMRI preprocessing
pipeline.

2.2.1 A large analytical space

In the previous chapter (see 1.2), we detailed the different steps that may - or must - be
included in a standard fMRI pipeline. Analytical variability includes the variations in the
results that arise when deciding to perform or not a processing step, when changing the
order of operation, or even when modifying the value of a parameter. It also includes the
variability in the results induced by different computing conditions such as the operating
system and its version. Figure 2.2 illustrates several options, from which the researcher
has to choose, during a standard preprocessing.

We distinguish three main types of variations:

— Parameters variations, which arise from changes in the choice of algorithm to

use, the values of parameters or the order of operations.

— Software variations, which arise from the different implementations of a pipeline

between different software packages.

— Variations in computing conditions, which arise from changes in computing

environment.

During the analysis, researchers can modify their pipeline in different ways. The first
possible choice is whether to include or not some processing steps in the pipeline. For

instance, the use or not of slice-timing correction in fMRI pipelines is still a debated
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topic, and depends on other characteristics of the study (Parker et al., 2019), such as the
repetition time (see 1.2.1.3). Researchers can also choose to change the type of algorithm
to use. As an example, if they want to perform distortion correction, they have the
choice between using field-map based or non field-map based techniques, depending on its
preferences, but also on the presence of field map in the dataset. Parameters can also be
modified inside an algorithm. For instance, smoothing is usually applied by convolving
images with a Gaussian kernel, but it can be applied with different intensity levels, defined
by the FWHM of the kernel. There is no best practice regarding the right smoothing
kernel to use, studies have shown that the decision of using a large or a small kernel size
should be taken based on other study parameters (in particular due to its interaction with
statistical inference (Hayasaka et al., 2003)). Here, we provided examples on variations
of preprocessing steps but choices also have to be made during statistical analysis. These
include the choice of HRF (see 1.2.2.2) between classical or double gamma functions, as
well as Finite Impulse Response Models or Constrained Basis Sets. The design matrix
can also be customized (see 1.2.2.3) to add nuisance regressors or to use HRF derivatives.

In practice, researchers usually do not make all these choices. They use software
packages that implement a default pipeline, with only minimal user input required. Mul-
tiple software packages were developed to analyze fMRI data, the three most used being
SPM (Penny et al., 2011), FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996), which
represented 80% of the published studies in 2012 (Carp, 2012b). Note that other software
packages were developed since, and are now widely used in the community, for instance
fMRIprep (Esteban et al., 2019). In these software packages, the default pipelines usually
implement similar steps, but are built differently from one software to another. The main
difference between SPM and FSL default pipelines is the order of operation, in particular
for the registration. In FSL, registration parameters are computed during preprocessing,
but only applied after first-level statistical analysis, on contrast and statistic maps di-
rectly. In SPM, these parameters are computed and applied during preprocessing, and
statistical analysis is thus performed on standardized data. Some pipeline steps can be
modified to align standard pipelines between software packages, but some remain very
specific to a software (e.g. percent BOLD change estimation). Software packages can also
be implemented in different programming language (e.g. Matlab for SPM, Python, C and
other programming languages for FSL). Each programming language comes with a set of
predefined functions, with differences that can impact the results.

Inside each software package, a well-known issue also relates to changes in software
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version. During the development process of a software package, new versions are issued
regularly, fixing known bugs and improving existing tools and/or adding new ones. These
changes are usually reported, but can lead to modifications of a pipeline implementation,
and thus to variations in the results obtained between two software versions. Another
related question is whether differences in the results may arise due to different releases
of the operating system (OS). This phenomenon can be related to differences in the way
different systems handle floating point values (Glatard et al., 2015). This usually induces

variability in the results of each step, accumulating towards the whole pipeline.

2.2.2 Effect of analytical variability at different levels

We showed that variations in the pipeline can arise at different levels: inside a pipeline,
between pipeline implementations and at a lower-level with variability between computing
environments. Here, we present the main studies that have shown the impact of such vari-
ations in neuroimaging results and their conclusions. These studies explore different types
of neuroimaging data and analyses, not only task-based fMRI, and differences induces by

analytical variability are observed across modalities.

2.2.2.1 Exploring analytical variability

In task-based fMRI, there is usually no ground-truth to evaluate the behavior of a
pipeline (i.e. if the pipeline behaves correctly or not). This is also known as the “oracle
problem” in software engineering and several approaches were developed to test it (Barr
et al., 2015). Often, multiple comparable pipelines are run and results are compared to
identify the most impacting parameters and potential discrepancies.

Assessing the impact of pipeline variations in neuroimaging results allows researchers
to better visualize the effect of different choices, and guide them to build their pipeline.
In practice, the main goal is usually to optimize the pipeline with metrics closely linked
to the research and diagnostic questions addressed at the end of the pipeline (Strother
et al., 2004). In several studies, ground-truth values were used to benchmark pipeline
results and select the most suited one for the study at hand (Klein et al., 2009; Dafflon
et al., 2022). In other cases, reproducibility metrics were used to assess the performance
of the pipeline (LaConte et al., 2003), with for instance the NPAIRS framework developed
by Strother et al., 2002.
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2.2.2.2 Variations in pipeline parameters

Several studies investigated the impact of changes at a specific step by comparing the
outputs of this step. For instance, Klein et al., 2009 evaluated the performance of four-
teen nonlinear deformation algorithms for brain MRI registration and found substantial
variations in the outputs of this step, but also on the accuracy (i.e. the final performance)
of the methods. In particular, they found a correlation between the number of degrees of
freedom of the deformation and registration accuracy.

Usually, these studies were also exploring how a single change could impact the final
results of the analysis (Oakes et al., 2005; Ngrgaard et al., 2020; Bhagwat et al., 2021;
Carp, 2012a). In Oakes et al., 2005, different motion correction algorithms were compared
in the context of task-fMRI. The goal was to see if performance of algorithms, quantifiable
using chosen metrics, were different and if these could be related to differences in the final
results. In the end, they found that the performance of the different methods could not
predict any difference in final results. Bhagwat et al., 2021 explored variations in cortical
surface analyses using different parcellation methods and showed that these variations
had a large impact on the results of several tasks, such as age prediction or statistical
analysis using a GLM.

The multiplicity of options at each step result in a very important number of potential
pipelines, with multiple variations from one to another. Ngrgaard et al., 2020 explored
preprocessing in general and computed different pipeline variations to process PET-scan
data. One of the largest study exploring the variability in the results obtained from dif-
ferent pipelines is the one by Carp, 2012a. In this study, authors estimated the variability
of fMRI methods across ten preprocessing and model estimation steps. For each step, he
proposed two or more variations, yielding 6,912 individual combination of parameters. He
showed that there were large method-related variations in the results regarding activation
strength, location and extent. Some results were shown to be stable across different ana-
lytical conditions, mostly the quantitative ones, but others like the size and localization

of the activation peak were highly unstable.

2.2.2.3 Variations in software packages

Each software package implement different algorithms or have different default param-
eters values. In Bowring et al., 2019, authors explored the results of the three main fMRI

software packages: SPM, FSL and AFNI. Across the three studies analyzed, variations
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were found in the results obtained with the different software packages in terms of size
and shape of detected clusters. In a follow-up study, Bowring et al., 2022 tried to identify
which stage of the pipelines were producing the greater variations. They found that vari-
ations were mostly related to changes during the first-level statistical analysis, but the
exact largest source of variation was different between studies. Other studies explored
the impact of software package during specific steps such as MRI segmentation (Palumbo
et al., 2019), parcellation (Bhagwat et al., 2021) or for a full preprocessing (Li et al., 2021;
Kharabian Masouleh et al., 2020).

These studies usually use a fixed set of pipelines with predefined variations, leading
to a constrained pipeline space. To explore the pipeline space from which researchers
actually chose their pipeline from, Botvinik-Nezer et al., 2020 built a many-analyst study.
They provided the same fMRI dataset to 70 research teams and tasked them to analyze
it using their usual processing pipeline. Research teams had to answer to 9 binary hy-
potheses and they had provide the corresponded unthresholded and thresholded statistic
maps. In the end, there were no identical pipelines across the different teams and results
showed substantial variations. Distances between statistic maps revealed some clusters of
pipelines that were giving similar results, but others were highly different, even leading

to contradictory answers to binary hypotheses.
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Figure 2.3 — Fraction of teams reporting a significant result during the many-analyst study
for each binary hypothesis. Extracted from Botvinik-Nezer et al., 2020. Consortium was
reach for H7, H8, H9 and H5.
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2.2.2.4 Variations in technical conditions

Several studies explored the impact of computing variability, related to changes in
software package versions or in operating systems and their versions. Gronenschild et al.,
2012 showed the effect of using different versions of FreeSurfer (Fischl, 2012), different
workstation types and operating system versions. They found significant differences in the
results between different versions of the software package, in particular between version
5.0 and earlier versions. This suppose that a major change happened between this version,
leading to large variations in the results. In another study, Glatard et al., 2015 quantified
the differences between results of pipelines computed on different computing platforms.
Differences were found to be related to single-precision floating point arithmetic used in
certain algorithms and whose implementation evolve between different operating systems
and their versions. At a single step, these variations have a small impact on the results,
but their accumulation across the high number of steps of a pipeline lead to sometimes

large changes in the results.

2.2.3 Challenges related to analytical variability

We showed that 1) to build neuroimaging pipelines, and in particular fMRI pipelines,
researchers have access to a broad range of experimental design and data analytic strate-
gies, and 2) these different strategies yield different results. At first, researchers explored
and measured the flexibility of research outcomes across analytical conditions. In a second
time, they tried to find some solutions to the challenges related to analytical variability.
In this section, we will explore these challenges: what to do with analytical variability,
how to deal with it when building a pipeline and how it impacts the validity of research
findings. In the end, we will expose some open questions and drive towards some of my

contributions to these questions.

2.2.3.1 How to interprete this variability?

As shown in 2.2.2.4, variations in low-level features like floating point arithmetic can
change the results of a pipeline. While the impact of these variations seem small compared
to those induced by different software packages or parameters, it actually points the lack
of robustness of the original results. To test the robustness of a pipeline, Kiar et al., 2021
proposed a method in which small variations are added in the input data, and at different

steps of the analysis. If these small perturbations lead to large variations in the results,
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then one could consider that the pipeline is not robust.

In other circumstances, observing variations (or not) in the results due to changes
in analytical conditions can inform on the research question. In Botvinik-Nezer et al.,
2020; Carp, 2012a, while there were some strong variations regarding certain aspects of
the results, others showed relative consistency, providing confidence that these conclusions
are not tied to a specific analytic approach. Such consensus can be obtained using specific
analyses, called multiverse analyses (Steegen et al., 2016). These allow to systematically
explore and integrate pipeline variation on the results. Researchers (and readers of the
study) can thus have an idea of how much the conclusions change because of arbitrary

choices and which choices have the largest impact on the results.

2.2.3.2 How to take this variability into account when choosing a pipeline?

To limit the impact of analytical variability, researchers tried to optimize their pipelines
to improve the quality of the results. While this was supposed to limit the number of
options and to reduce the effect of analytical variability, it also led to new processing
possibilities. Multiple challenges appear when considering the optimization of pipelines
as a way to reduce analytical variability. As described in 1.2 and in 2.2.1, it is not yet
clear whether some choices for an analytical step would be better than others. There is
no ground-truth to benchmark pipeline results and to assess the superiority of a method
compared to another. Moreover, the optimal processing choices may vary depending on
the dataset and the analysis, e.g. slice-timing correction is more useful for studies with
large TR acquisitions. Some studies still proposed solutions to identify optimal pipelines
with respect to a predefined criterion (e.g. predicting brain age (Dafflon et al., 2022),
segmentation tasks (Vanderbecq et al., 2020)).

A large number of possible choices can also be necessary when building a pipeline.
Each step of an analytic pipeline is the implementation of a method that comes with
some assumptions. For example, during statistical analysis, the GLM comes with the
assumption that regressors are independant, which might not be the case when using an
additional regressor for trial response time (Mumford et al., 2024). Sometimes, there are
no consequences to these assumption violations, but these can sometimes lead to failure
of the method, and thus invalidity of the results (Eklund et al., 2016). Pipelines are
composed of multiple steps, each characterized by their own assumptions, leading to a
pyramid of assumptions. Assessing all of these might be very difficult, but can also help

researchers to make appropriate choices between methods for which the does not break
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the assumptions and methods that are robust to assumption violations (Mumford et al.,
2009).

Usually, large neuroimaging consortia like the Human Connectome Project (Van Essen
et al., 2013) or the UK Biobank (Sudlow et al., 2015) develop their own preprocessing
pipelines. This allows researchers that want to use these datasets to apply these pipelines
and to minimize the potential analytical variability related to studies involving these
datasets. However, since these pipelines are optimized for particular data acquisition
protocols, they might not be applicable to other datasets. As a proposition to solve
this issue, Esteban et al., 2019 developed fMRIprep, a preprocessing pipeline for task-
based and resting-state fMRI data that is robust to idiosyncracies in the dataset and that

requires minimal inputs from the user.

2.2.3.3 How does it impact the validity of research findings?

A direct consequence of analytical variability is the risk of analytical flexibility. Ioan-
nidis, 2005 showed with a mathematical model of bias in scientific studies that the number
of false positives in published research findings rises with the flexibility of research results.
In practice, when performing their analysis, researchers commonly explore multiple valid
analytic alternatives, but often report their results relative only to a single pipeline (or
to a few set of variants). This selective reporting can result in an increase of false posi-
tive findings (Ioannidis, 2008a; Simmons et al., 2011; Gelman et al., 2019). Some of the
solutions exposed in the above sections, such as the use of multiverse analyses or of a

standard pipeline can help to reduce this effect.

2.2.3.4 Open questions

While some solutions were proposed to tackle and mitigate the effect of analytical

variability, some questions remain open.

Reusing data Over the past few years, concerns have been raised regarding the lack
of reproducibility of neuroimaging findings (Button et al., 2013; Poldrack et al., 2017;
Botvinik-Nezer et al., 2023). In particular, the low statistical power of studies was criti-
cised, as effectively leading to low probabilities of identifying true effects but also to high
probabilities of reporting false positive findings in the literature (Button et al., 2013).
Researchers proposed different approaches to increase sample sizes, and thus statistical

power, for instance with the development of large-scale studies (Sudlow et al., 2015; Van
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Essen et al., 2013). However, acquiring such amount of data is costly and due to the
challenge of finding participants, these studies often contain a few number of data per
participant. In fMRI, these datasets usually cover a limited subset of brain functions,
limiting the flexibility of research questions to explore. A potential solution to increase
sample size while avoiding these challenges, is to re-use the data already acquired in other
studies into meta- or mega-analyses (Salimi-Khorshidi et al., 2009; Costafreda, 2009).

With the emergence of the FAIR principles (Wilkinson et al., 2016), and the devel-
opment of standards for sharing brain imaging data, the process of sharing data be-
came easier and now, more and more established in the community. Data sharing plat-
forms (Markiewicz et al., 2021; Gorgolewski et al., 2015) were developed to facilitate the
re-use of raw data but also of derived data. These can be used to increase sample sizes
of studies, in meta- and mega-analyses (Costafreda, 2009), or to train more powerful
machine learning models. In neuroimaging, derived data coming from different studies
can be impacted by the many sources of variability arising during the experiment. This
put into question the validity of experiments performed with data coming from different
sources (e.g. derived data obtained with different pipelines in mega-analyses (Rolland
et al., 2022)), but also the generalizability of the results obtained from one study to
another (Sun et al., 2022).

While it has been shown that adding more variability to the data would lead to
more reproducible and generalizable results (Tang et al., 2021; Raviv et al., 2022), the
practical application of this paradigm is not always straightforward. In a recent thesis,
Rolland, 2022 proposed a method to correct for differences in processing pipelines to
perform more valid mega-analyses. However, this method was limited to situations where
the proportions of data processed with each pipeline within each group was reasonable
(limited to 70/30% or 80/20%). Moreover, labeled databases are not always available in
neuroimaging, and if they are, the unconstrained annotations and the heterogeneity of
tasks and studies make them difficult to use to train supervised machine learning models.

In the second part of this manuscript, we will present two practical solutions that can
be used to facilitate data re-use in two cases: to increase sample sizes and build larger
and valid mega-analyses while using shared derived data from different pipelines and to
leverage large unlabeled databases in an agnostic manner and then fine-tune towards a
variety of problems. Both methods make use of deep learning for their ability to model

complex nonlinear relationships in the data.
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Exploring the analytical space The neuroimaging community has now realized dif-
ferent pipelines lead to different results, and that a better understanding of the variabil-
ity induced by alternative analytical paths is crucial. A systematic investigation of the
pipeline space is impractical due to the high number of possible pipelines. To improve
our knowledge of the pipeline space, it is necessary to find a way to measure distances
between different analysis methods. Such relationship measurements can facilitate the
selection of a set of pipeline parameters that are the main drivers of variability in the
result space. The definition of this pre-defined set of pipelines to test would improve the
quality of the results of a multiverse analysis (Steegen et al., 2016), but also decrease the
computational time required for such experiment.

Investigating the pipeline space can also help in understanding the homogeneity (i.e.,
pipelines that give similar results) but also the heterogeneity (i.e. pipelines that have a
different behavior) of the pipeline space. Rolland et al., 2022 recently showed the problems
arising when combining subject-level results obtained from different pipelines for group-
level analyses. As we can suppose that such issue is exacerbated for pipelines presenting
more distant results, their identification using dedicated measurements would be a first
step to help improving generalizability by increasing sample sizes through data reuse.

Due to the high computational cost of storing and analyzing task-fMRI data, recent
studies investigating analytical variability in neuroimaging focused on a restricted number
of participants and cognitive tasks. One open question is whether patterns observed
across pipelines are stable across different contexts: group of subjects, cognitive paradigm,
acquisition parameters, etc. In Chapter 5, we propose a method to combine results
from different pipelines by converting them between pipelines using style transfer. Style
transfer frameworks aim at learning a mapping between two domains and at applying this
mapping to data. If the mapping is different between contexts (e.g. different cognitive
tasks), a framework trained to transfer statistic maps of a particular paradigm would not
be applicable to other statistic maps. Exploring the stability of the relationships between
pipeline results is thus of particular importance to assess the potential of our solution, and
beyond of any solution that aims at being generalizable across different set of participants
or fMRI cognitive tasks.

In the third part of this manuscript, we focus on the exploration of the fMRI analytical
space. Our contributions are three-fold, 1/ we propose a new dataset called “HCP multi-
pipelines” to explore analytical variability and present two use cases: 2/ a study of pipeline

relationships, and whether patterns observed across pipelines are stable across different
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contexts (group of subjects, cognitive paradigm, acquisition parameters, etc) and 3/ a
study of the validity of analysis combining data from different pipelines as a follow-up of

the work of Rolland, 2022.

7

il Take-home Message

fMRI studies are subject to numerous sources of variability, at the participant-

level, or at the study-level.

o In particular, analytical variability is the phenomenon by which variations in

the results arise due to changes in pipelines.

e These variations can be induced at different levels: software environment,

software packages, parameters-level, etc.

o This analytical variability comes with challenges as it leads to difficulties to
interpret these variations, but also when building a pipeline. This also puts

into question the validity of research findings.

o While some solutions were developed to limit these challenges, some questions
remain open regarding data re-use and relationships between pipelines in the

analytical space.
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CHAPTER 3

DEEP LEARNING FOR MEDICAL IMAGING

Since the emergence of computer vision in the 1950s, researchers tried to build more
and more performing systems for automated medical image analysis. At first, image pro-
cessing was done with the sequential application of mathematical transforms. Then, re-
searchers started to gather large amounts of data and developed techniques, using pattern
recognition or machine learning approaches (Fradkov, 2020). These techniques required
to design a feature extractor that would convert the raw data (such as the pixel values of
an image) into an appropriate representation (also known as feature vector), that would
be given as input to an algorithm for a learning task.

More recently, researchers developed new systems in which computers learn the fea-
tures that optimally represent the data for the problem at hand, solving the issue of com-
plex and time-consuming feature extraction. This particular machine learning process,
also known as “representation learning” (Bengio et al., 2013), consists in the extraction of
features that capture the underlying structure or characteristics of the data. Deep learn-
ing is a particular type of representation learning, which focuses on learning hierarchical
representations of data through the use of deep neural networks with multiple layers.
These techniques gained prominence due to their ability to automatically learn complex
features from raw data, leading to state-of-the-art performance in various domains such
as computer vision (LeCun et al., 2015).

In this chapter, we will first position the concepts of representation learning, machine
learning and deep learning in the field of artificial intelligence. We will then explain the
main learning techniques and models used in deep learning. We further focus on our main
application cases and on the challenges that researchers face when using deep learning
techniques in the field of medical imaging. Finally, we explore two applications of deep
representation learning, namely transfer learning and style transfer, which contribute to
the extraction, adaptation, and manipulation of meaningful representations from data.
In Chapters 4 and 5, we will present two studies in which we used these techniques to

mitigate the variability of fMRI results, and in particular analytical variability.
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Part II, Chapter 3 — Deep learning for medical imaging

3.1 Foundations of deep learning

3.1.1 From artificial intelligence to deep learning

Artificial intelligence is a field of computer science in which machines, i.e. computers,
simulate human intelligence and use their capabilities to answer complex tasks. These can
consist in tasks that are intellectually difficult for human beings but relatively straightfor-
ward for computers (i.e. easily converted to a list of formal rules) or in tasks that are easy
for human being to perform, but complex to describe formally (for instance recognizing
elements in an image).

The former category of tasks is usually solved by techniques known as knowledge-base
approaches, which consist in the encoding of statements in formal language, from which
the computer can reason using logical inference rules. For instance, Lenat et al., 1990
developed Cyc, an inference engine based on a database of statements and formal rules
that were supposed to accurately describe the world.

The later category of tasks makes use of machine learning algorithms, which consist in
providing real world data to the model, which will learn patterns in these data to answer
a problem at hand. For instance, logistic regression (Berkson, 1944), a simple machine
learning algorithm, makes use of logistic functions to predict the probability of a binary
outcome.

In machine learning, the data given as input to the algorithms are chosen to best
represent the observations of the real world, while being understandable by a machine.
For instance, if a model is taught to predict the weather for the next day, the real world
data could be represented by measures of the temperature, air pressure or precipitation
rates. We refer to such measures as a representation of the data, each piece of information
included in this representation being known as a feature.

While many tasks can be solved by manually designing and extracting the right fea-
tures from data for a task, then giving these as input to a simple algorithm, for many
tasks, the feature extraction strategy to adopt is not straightforward. For such case, an
approach called representation learning can be used, and consist in using machine learning
to discover the most important patterns for the task at hand, but also to find the best
representation of the data for this task.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) is a particular type of
representation learning, which focuses on learning hierarchical representations of data

through the use of deep neural networks, i.e. networks with multiple layers. Figure 3.1
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Figure 3.1 — Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to Al Extracted from Goodfellow et al., 2016.

illustrates the relationships between these different disciplines from artificial intelligence.

In the following, we will focus on deep learning, and in particular on the deep repre-
sentations of data that are learned, also known as deep representation learning. We will
refer to deep learning for the process of learning a deep representation of data. We will
describe the main foundations of deep learning and show its potential to extract mean-
ingful representations of data for different applications. We detail the different learning

concepts (3.1.2) and the models used to learn deep representations of the data (3.1.3).
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3.1.2 Different learning processes

The idea behind machine learning is that algorithms can learn by observing data. This
stems from the observation that humans and animals learn from experience, exposure to
stimuli, and feedback from the environment. Machine learning algorithms can be divided
in several categories depending on the type of experience and feedback they have during

the learning process.
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Figure 3.2 — Main learning processes in deep learning

Supervised learning involves training a model on a labeled dataset, where each
input data point is associated with a corresponding target output. Representations are
learned to answer tasks like classification (assigning input data to predefined categories)
or regression (predicting continuous values). Unsupervised learning involves training
a model on an unlabeled dataset, i.e. the model aims to discover patterns, structures,
or representations within the data without explicit human guidance. Common tasks
include clustering (grouping similar data points together) and dimensionality reduction
(reducing the number of features while preserving important information). In both cases,
a representation of data is built to answer the task at hand, i.e. a representation in which
the features associated with the data are the most relevant for the task.

With the difficulty of gathering labeled data and the challenges related to unsupervised
learning, methods like semi-supervised learning emerged by combining elements of

both supervised and unsupervised learning. The model learns from the labeled examples

60



3.1. Foundations of deep learning

while also leveraging the additional information present in the unlabeled data to improve
performance.

As an attempt to reach supervised learning performance without any labeled data, re-
searchers also proposed self-supervised learning (Doersch et al., 2017). In this specific
form of representation learning, the model is trained to produce meaningful representa-
tions using labeled data whose data have been derived from the data itself without human
intervention. For instance, the model can be trained to predict missing parts of an im-
age (image inpainting) or predicting the next word in a sentence given previous words
(language modeling). The resulting learned representations can then be transferred to
downstream tasks, usually in supervised settings with few labeled data.

Similarly, transfer learning (Pan et al., 2010) leverages knowledge learned by pre-
training a model on a large-scale dataset and fine-tunes it to a target task with limited
data. We will explore this technique in more details in section 3.4.1, and Chapter 4.

To tackle this issue of lack of data, researchers also proposed techniques for data
augmentation and in particular, using generative models. Generative models learn to
generate realistic data samples by capturing the underlying structure and distribution of

the training data, enabling them to generate new samples that resemble the original data.

3.1.3 Neural Networks

Perceptrons In deep learning, the extraction of meaningful and hierarchical represen-
tations from data is performed by deep neural networks. Introduced by Frank Rosenblatt
in the late 1950s, perceptrons (Rosenblatt, 1958) were the initial type of neural networks.
However, their inability to process data that are not linearly separable caused a reduction
in their use for several years (Minsky et al., 1969). A perceptron consists in a single
neuron characterized by parameters W, B, with W indicating the neurons weights and B
its biases and a non linear activation function a. Neuron inputs z; and parameters are
linearly combined as a weighted sum and then passed through the activation function

(e.g. sigmoid, hyperbolic tangent, or softmax functions) to produce the output y.

yi = a(W - x; + B) (3.1)

Multi-Layer Perceptrons Multi-Layer Perceptrons (MLP) (Haykin, 1999) or feedfor-
ward neural network is a stack of multiple layers with different numbers of neurons, which

are perceptrons. These are composed of at least three layers: an input layer, one or more
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hidden layer, and an output layer. Every neuron uses a non-linear activation function, and
cach neuron in one layer connects with a certain weight W;; to every neuron in the follow-
ing layer. We call these layers fully-connected layers. The learning process of perceptrons
works by changing the weights of neurons after having seen a batch of data. Indeed,
these parameters decide on how the values of the input vector affect the output. The
training process updates these weights and biases so that they can transform the input
data to their corresponding target values. Thus, the network learns how to distinguish
certain similarities and patterns among the features of the input data. The process used

to update the weights is known as backpropagation (Lecun, 1985; LeCun et al., 1989).

Convolutional Neural Networks From the basis of MLP, multiple architectures of
neural networks emerged, the most widely used in (medical) image analysis being the
Convolutional Neural Network (CNN) (Lecun et al., 1998). A CNN is defined as any neu-
ral network that includes at least one convolutional layer. In contrast to fully-connected
layers, convolutional layers makes use of a kernel (matrix, smaller than input data) which
slides across the input data, performing a dot product with the corresponding part of
the data and producing a feature map that highlights specific patterns or features in the
input. At each position, a feature map is output and the final output of a convolutional
layer is the concatenation of the feature maps at the different positions. The first con-
volutional layers (i.e. lower layers) typically learn basic features like edges or textures
(called low-level features), while the highest layers learn more semantic features relevant
to the task at hand (called higher-level features). In traditional neural network, the size
of the feature maps extracted from the data is descending, meaning that layers are com-
posed of descending numbers of neurons. In CNN, downsampling can be performed by
using strided convolution or by incorporing pooling layers, where pixel values of neighbor-
hoods are aggregated using a permutation invariant function, typically the max or mean
operation.

The first notable CNN architectures were proposed by Lecun et al., 1998 with LeNet,
and by Krizhevsky et al., 2012 with AlexNet. These two are very similar in terms of
architecture, with two to five convolutional layers associated with fully-connected layers
at the end for classification. After 2012, the trend was to build far deeper models, with the
emergence of VGG (Visual Geometry Group) models (Simonyan et al., 2015), like VGG-
19 with 19 layers. Nowadays, neural networks are usually composed of a sequence of

complex blocks of neurons, called building blocks. These blocks improve the efficiency of
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the training procedure and reduce the amount of parameters, with for instance Inception
blocks (Inception models) (Szegedy et al., 2015) or Residual blocks (ResNet models) (He
et al., 2016).

AutoEncoders In a particular type of neural network, this sequence of downsampling
layers is followed by the opposite sequence of upsampling layers, leading to an architecture
called AutoEncoder (AE) (see Figure 3.3). These models consists of an encoder network
that maps input data to a latent representation and a decoder network that upsample this
representation to output data with the same size as the input. These architectures are
widely used to learn a lower-dimensional representation of data in unsupervised settings.
In traditional AE, the output is a reconstruction of the input and the loss function is
the error between the original input and its reconstruction. By doing so, AE learn to
capture the most relevant and informative features of the input data in the latent space.
This process encourages AE to discover meaningful representations that are useful for
reconstructing the input data accurately. To avoid learning identity functions, the la-
tent representation is usually much smaller than the original data dimension and can be
learned with other constraints. The loss to minimize can be changed to adapt to other
tasks, for instance Variational AutoEncoder (VAE) (Kingma et al., 2022) also minimize
a regularization term that encourages the latent space to follow a predefined distribution
(typically Gaussian) and then, allows to generate new data by sampling from this latent

space.

Convolutional Neural Network (CNN)
Gl

Figure 3.3 — Comparison of architectures between traditional Convolutional Neural Net-
work (CNN) and AutoEncoder (AE).

Variational AutoEncoder (VAE) are representatives of a specific type of models called
generative models. These models aim to learn and approximate the distribution of the

samples of a dataset to generate new samples. We distinguish multiple categories of
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generative models, namely function-based, energy-based and score-based models. Repre-
sentatives of function-based models are VAE (Kingma et al., 2022) and Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014). Boltzmann Machines (Hinton et al.,
1983), Restricted Boltzmann Machines (Smolensky, 1986) and Deep Belief Networks (Hin-
ton, 2009) are examples of energy-based models, and Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020) are score-based models. Here, we will describe the main
principles of GAN, which were the state-of-the-art models for medical image synthesis for

years, and DDPM, that are their main competitors since their appearance in 2020.

Generative Adversarial Networks GAN (Goodfellow et al., 2014) are composed of
two networks that play a two-player minimax game: a generator GG that learns to model
the data distribution and a discriminator D that learns to distinguish between samples
coming from the training data rather than from G. In their original design, generators
learn to generate new samples from a random noise variable z, the mapping from z to the
data space is then represented by G(z;0,), 6, being the learnable parameters of G. The
distriminator D sees samples generated by G and samples from the training data and is
trained to distinguish between the two. Thus, the job of the generator G is to fool the
discriminator, for which it will be increasingly difficult to distinguish false images from
real ones. Both D and GG can be any type of neural networks, and are trained to minimize

the following adversarial loss:

minmaxV'(D, G) = Eonpg,,, (2)[l0g D (2)] 4 Eanp. (2)[log(1 = D(G(2)))]. (3.2)

Denoising Diffusion Probabilistic Models More recently, diffusion models (Ho et
al., 2020) appeared as new competitors to GAN for image generation. These models work
by successively adding noise to the training data, and then learn to reverse the process to
construct desired data samples from the noise. In the forward diffusion process, the source
image X is subjected to t steps of gradual noise € addition to generate intermediate noisy
versions of the image { Xy, X1, ..., X;}. In Ho et al., 2020, the ¢ — th version of the image

is expressed as:
X;=Va*Xo+V1—a,-¢ with e~ N(0,I) (3.3)

where «; corresponds to fixed hyper-parameters between 0 and 1 related to the variance

and a; = H§:1 ;.
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Figure 3.4 — Summary of the papers included in Litjens et al., 2017 in terms of task,
modality and organs. Extracted from Litjens et al., 2017.

The reverse diffusion process uses a neural network trained to predict the noise added
to the image & = ey(Xy,t,C) at each time step ¢ given X, the noisy version of Xy and ¢
the corresponding time step. Starting from X; and using the predicted noise, the image
X;_1 from the previous step can be reconstructed using the following equation and we

can reconstruct Xy by repeating this process for ¢ times:

—_ ]_ 1—Oét —
Xig1=— (X4 ——- ¢ 91—y - h ~ N(0,1 3.4
t—1 ,—at ( t m 6t)+ Qi1 -2 where =z (7) ( )

The equation is extracted from Ho et al., 2020. The network es(X;,t,C) is trained
using a Mean Squared Error loss, Lysi := Ex creononll] € — € [3)-

Note that other methods have been proposed since 2020, for example Nichol et al.,
2021; Song et al., 2021. In Chapter 5, we use DDPM as described in Ho et al., 2020.

3.2 Deep learning in medical imaging

Deep learning is used to extract meaningful features in medical images in a wide range
of applications types and areas. In a survey, Litjens et al., 2017 analyzed 300 papers

about deep learning in medical imaging and showed the diversity of medical contexts
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where these methods have been integrated successfully (see 3.4).

Healthy control
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Figure 3.5 — Main applications of deep learning in medical imaging

Classification was one of the first task for which deep learning made a major contri-
bution in medical imaging. This task consist in predicting a categorical variable from
features extracted from one or multiple image per individual. These can be used for dif-
ferent purposes, such as disease diagnosis or prediction (Yin et al., 2022). For fMRI data,
classification algorithms can also be used for brain decoding (i.e. identifying stimuli and
cognitive states from brain activities) (Firat et al., 2014). Close to this task, regression
tasks consist in predicting a quantitative variable from images, for instance predicting a
clinical score (Hou et al., 2016) or a physiological age (e.g. brain age models (Baecker
et al., 2021) which measures the effects of ageing on the brain).

Another task in which deep learning can be used in medical imaging is object clas-
sification, which usually focuses on the classification of a small (previously identified)
part of the medical image into two or more classes (e.g. nodule classification in chest
CT (Shen et al., 2015)). In such task, accurate classification necessitates that the learned
representation contains both information on the appearance and localization of lesions.
Generic deep learning frameworks often do not support this integration, necessitating the
adoption of approaches like multi-stream architectures (Tu et al., 2018).

In image and object classification, objects are identified based on all the pixels of the

image. Object detection and segmentation (Wang et al., 2022; Yang et al., 2021) consist,
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on the other hand, of the individual classification of each pixel of the image, where the
objects in the image are located. In other words, while an object classification will only
give an output based on the presence or not of the object, an object detection task will
give the position of the object in the input image. In medical imaging, these objects can
correspond to anatomical structures (e.g. organs) or anomalies (e.g. pulmonary nodules).

Image registration (Chen et al., 2023) (also known as spatial alignment) is the process
of aligning two or more images based on image appearances. In the medical imaging field,
this process seeks to find an optimal spatial transformation that best aligns the underlying
anatomical structures of two images. There are two strategies in the literature: using
neural networks to estimate a similarity measure for two images to drive an iterative
optimization strategy (Yang et al., 2016), and direct prediction of the transformation
parameters using deep regression networks (Miao et al., 2016).

Medical images are acquired with several imaging techniques and are thus susceptible
to noise and artifacts (Mohd Sagheer et al., 2020). Several types of noise can occur in the
image: random noise, white noise characterized by a uniform frequency distribution, or
noise that depends on the frequency, usually coming from the acquisition or from image
processing techniques. This noise can blur the image, or add artifacts that may lead to
difficulties for image analysis. Some types of models, such as denoising AE (Vincent et al.,
2010) or GAN (Wang et al., 2023), were built on purpose to learn to reconstruct an image

with higher resolution, and with reduced noise.

3.3 Challenges related to medical imaging

Learning efficient deep representations of medical images comes with difficulties due to
the particular properties of the data. We refer to challenge to describe these difficulties,
which limit the performance of deep learning models in medical imaging. Although the
lack of available training data is frequently cited as the primary barrier, it is not the only
challenge that may arise in this context. In this section, we describe the main challenges
related to deep learning for medical imaging in two categories: the challenges related to
the data (3.3.1) and the challenges related to the models (3.3.2).
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3.3.1 Challenges related to data

In most medical image analysis competitions, CNN and their derivatives are almost
always the top performers, with few differences in performance between different CNN
architectures. Today, the most determining factor to achieve the best performance is
rather related to the way data are treated and handled (Bengio et al., 2013).

The hope of large datasets One of the major breakthrough in deep learning for natu-
ral image processing was the appearance of large labeled datasets, such as ImageNet (Deng
et al., 2009) or MNIST (Lecun et al., 1998). These datasets are composed of respectively
3 millions and 70,000 images, with a diversity of classes and images inside each class.
Such datasets were built under the paradigm that we must present as many examples
as possible during training to instill robustness by learning what is unnecessary, or what
represents noise. In opposite, medical imaging datasets are usually smaller (around hun-
dreds or thousands of participants), with few classes and few variations inside each class.
These low sample sizes of medical imaging datasets can be related to ethical and privacy
constraints, but also to issues related to the cost and difficulties of annotation.

Contrary to natural images, sample size of medical imaging datasets is expressed in
number of participants, with sometimes multiple images per participants (e.g. different
modalities, or time points). These data are usually high-dimensional with sometimes
hundreds of thousands of values for 3D data. In relation with the large number of trainable
parameters in deep learning models (Cho et al., 2016), this makes it particularly difficult
to build fair and generalizable deep learning models for medical imaging (Ricci Lara et al.,
2022).

In Willemink et al., 2020, a list of sixteen large medical imaging datasets was shared
and sizes were ranging from 267 to 65,000 participants. Even with larger datasets, evi-
dence showed that the increase in dataset sample sizes did not come with better perfor-
mance of models. Varoquaux et al., 2022 performed a meta-analysis of 478 studies from
six reviews on Alzheimer’s disease diagnosis or subtypes identification. Figure 3.6 shows
the results of this meta-analysis, with a downward trend in performance as sample sizes

increase.

A lack of annotations This stagnation of performance with increasing sample size is
mostly related to the lack of labeled samples for these large datasets, in particular for

complex tasks such as segmentation. Labeling a medical imaging dataset requires some
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Figure 3.6 — Evolution of reported accuracy for Alzheimer’s disease diagnosis and subtype
identification in a meta-analysis of 478 studies. Extracted from Varoquaux et al., 2022.

domain expertise, usually from radiologists or pathologists, and is highly time consuming.
For example, for segmentation tasks, datasets are often composed of 3D data and require
slice-by-slice annotations. Even when datasets are annotated by experts, these experts
might disagree on some annotations, leading to label noise. This inter-observer variability
among experts necessitates to define consensus labels or proper methods of aggregating
the labels from multiple experts (Nir et al., 2018; Bridge et al., 2016; Karimi et al., 2020).
Another solution is the use of unsupervised or self-supervised methods to limit the need
of annotated data (Cheplygina et al., 2019).

Dataset bias and heterogeneity The low diversity of medical imaging datasets,
caused by opportunistic data collection, leads to biases and thus, poor generalizability
of models (Chekroud et al., 2024). Biases in datasets arise when the distribution of the
training data, which is used to build the decision model, differs from the distribution of
the test data, where the model is actually employed (Dockes et al., 2021). For instance,
such bias has been demonstrated in medical imaging for chest X-ray analysis (Larrazabal
et al., 2020), where researchers showed that models trained on data from men partici-
pants had a large performance drop when applied on women data. Such issue has also
been showed for brain imaging by Wachinger et al., 2021 who showed that simply pooling
scans from distinct studies can introduce substantial biases due to differences in sampling
strategies, data acquisition, etc. While we usually discuss biases related to population
sampling, it must be noted that machine or method related artifacts can also produce
biases (Moskal et al., 2022; Li et al., 2023; Korbmacher et al., 2024). Oakden-Rayner et
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al., 2020 showed that deep learning models for pneumothorax diagnosis could be biased
against images with a chest drain, which is a treatment for pneumothorax. A checklist

for bias evaluation on computer vision datasets is presented in Zendel et al., 2017.

3.3.2 Challenges related to models

While most challenges in deep learning for medical imaging are related to data scarcity,
the exact model choice and the particular properties of these models are also an issue to

the development of deep learning in clinical practice.

Beyond biased data For years, a prevalent belief was that bias in deep learning models
reflected unfairness of the dataset, and that the algorithm itself did not contribute to
harm. In many cases, these biases are dealt with data augmentation or resampling, while
in fact, the overall bias is a caused by interactions between the data and model design
choices. We define algorithm bias as the way the model learns underrepresented features
in data (Hooker, 2021). For instance, Jiang et al., 2021 showed that underrepresented
features, usually more challenging to learn, are learned later in the training process and
that the choice of the learning rate and of the training length has an impact on model bias.
In another work, Bagdasaryan et al., 2019 showed that differential privacy techniques such
as gradient clipping and noise injection could lead to a decrease in performance on certain

subsamples of the test population, here, dark-skinned faces.

A need for more robust models Another well-known topic in deep learning is the
issue of adversarial attacks. These attacks highlight the vulnerabilities of models by
showing how a small change in the inputs can completely alter the outputs, causing the
model to confidently answer a problem with wrong conclusions. This issue has been
demonstrated for almost all application fields and all types of algorithms, from logistic
regression to deep neural network (Biggio et al., 2018). However, such issue is even more
complex in medical settings due to the often-competing interests within healthcare, but
also the dramatic consequences that a wrong diagnosis or wrong treatment planning made
by deep learning models could have. In Finlayson et al., 2019, adversarial attacks were
executed against three highly accurate medical image classifiers and were found successful,

showing the need for solutions to fight against these attacks.
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A lack of interpretability In order to build trustworthy models according to the
current guidelines in medical settings, it is essential that models be fair, robust against
attacks, but also transparent (Lekadir et al., 2023). This latter is probably one of the
biggest criticism that is made to deep learning models, in particular for medical imag-
ing. Deep learning models frequently earn the label of “black-boxes”, because their inner
workings are not as easily interpreted as those of conventional models such as nearest
neighbors algorithms or decision trees. Usually, deep learning models provide an output
(e.g. “Healthy control”) with a probability or confidence strength, whereas information
on why and how this decision was make are hidden (Duran et al., 2021). Legally speaking,
the European’s General Data Protection Regulation (GDPR) law requires that any algo-
rithm utilized for patient care should provides a clear explanation of its decision making
process (Temme, 2017). Additionally, the usefulness of a black-box model in healthcare is
constrained because it fails to reveal its reasoning, limitations, and biases. Making deep
learning models interpretable not only exposes potential errors in the algorithms, but also
facilitates the identification of significant details in imaging data that might otherwise
remain hidden (Salahuddin et al., 2022).

3.4 Solutions using deep learning

The challenges exposed in the previous section are well-known in the community,
and researchers have already proposed some solutions to tackle them. Lots of these
solutions try to work around the requirement of large datasets for training, using deep
learning techniques that do not necessitate labeled data (e.g. unsupervised learning, or
self-supervised learning) or that allows to make use of more diverse datasets without
privacy constraints (Rehman et al., 2023). Other solutions were proposed to tackle the
issues of model related challenges, such as the lack of interpretability or to defend from
adversarial attacks, but these will not be discussed here. In this section, we will outline two
solutions making use of representation learning that researchers use to overpass the lack of
diverse training data: transfer learning and data augmentation using generative models,
in particular for image-to-image transition and style transfer. In these two concepts,
learned representations are manipulated and used to transfer from one context to another:
respectively, to transfer knowledge from one task or domain to another, and to transfer

the style of data from one domain to another while preserving the content.
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3.4.1 Transfer learning

Transfer learning came as a solution for researchers to overcome data scarcity is-
sues (see 3.3.1). The fundamental motivation for transfer learning was first evoked at
NeurIPS-95, at a workshop on Learning to Learn, leading researchers to put more and
more attention to this field. In 2005, the Broad Agency Announcement (BAA) 05-29 of
Defense Advanced Research Projects Agency (DARPA)’s Information Processing Tech-
nology Office (IPTO) proposed a new definition for transfer learning: “transfer learning
aims to extract the knowledge from one or more source tasks and applies the knowledge

to a target task” In this chapter, we use the definitions from Pan et al., 2010.

E Definitions
A domain D consists of two components: a feature space X and a marginal prob-
ability distribution P(X) with X = {z1,2,...} € X.

A task 7T consists of two components: a label space ) and an objective predictive
function f(-), which can be learned from the training data. Training data consists

of pairs {z;,y;} where z; € X and y; € ).

Given a source domain Dg and learning task 7g, a target domain Dy and learning
task Tr, transfer learning aims to help improve the learning of the target pre-
dictive function f;(-) in Dr using the knowledge in Dg and Tg, with Dg # Dy or
Ts # Tr.

These definitions suggest that two domains can be different because feature spaces are
different, or because marginal distributions of the feature spaces are different. Two tasks
can also be different if their label spaces are different or if the conditional probability
distributions are different. Such variations lead to several types of transfer learning,
explained in the next section (3.4.1.1). Transfer learning can also be performed using
diverse approaches, described in 3.4.1.2. The particularities of transfer learning with
neural networks are explained in 3.4.1.3. Finally, in 3.4.1.4, we will expose some studies

that made use of transfer learning for deep learning in medical imaging, in particular with
fMRI data.
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3.4.1.1 Types of transfer learning

Figure 3.7 represents the different types of transfer learning. These are defined based

on the presence of labeled data in the source and target domains, but also on the context,

i.e. whether domains are different, tasks are different or both are different.

Transfer learning

Unsupervised

Labeled data ? .
transfer learning

Different domains,
Same or different tasks

Yes

In which domain ?

Only in target
domain

Only in source
domain

In both

. Inductive transfer Transductive
Self-taught learning . :
learning transfer learning
Same or different domains, Different domains,
Same or different tasks Same tasks

Figure 3.7 — Different types of transfer learning based on the context

Inductive transfer learning In this setting, we should have access to labeled data
in both source and target domains. There are multiple cases in which inductive transfer

learning could be used.

» First, we could have access to a large source dataset with specific labels (e.g.
anatomical segmentations) and a smaller target dataset with different labels (e.g.
lesion segmentations), thus Ds = Dy and Ts # Tr. The knowledge learned by
training on the source domain for anatomical segmentations could then be trans-
ferred to the task of lesion segmentations in the target domain. The supposition is
that representations of data learned to segment organs would help for the task of

segmenting lesions.
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o We could also have the same labels in both domains, but differences between do-

mains (e.g. lesion segmentation in T1 MRI and in CT Scan), in such case Dg # Dy

and Tg = Tr.

« Lastly, both domains and tasks could be different (e.g. anatomical segmentation in
T1 MRI and lesion segmentation in CT Scan), Ds # Dr and Tg # Tr. In each case,
both datasets have access to labels, whatever the type of labels.

Self-taught learning A subtype of inductive transfer learning concerns the situation
where no labels are available in the source dataset. In self-taught learning (Raina et al.,
2007), domains can be different or similar. The main point is that we have access to a
large unlabeled source dataset (e.g. T1 MRI) and a smaller labeled target dataset (e.g.
lesion segmentation in CT Scan). The knowledge learned on an unsupervised task with
T1 MRI could thus be transferred to improve training of the lesion segmentation model
in CT Scan.

Transductive transfer learning In the opposite case, we could have access to a large
labeled source dataset and a smaller unlabeled target dataset. In this setting, the source
and target tasks are the same, while the source and target domains are different. For
instance, we could learn a feature mapping from T1 to CT images while optimizing to

segment lesion in CT.

Unsupervised transfer learning Finally, when we have no labeled data in both
datasets, we could use unsupervised transfer learning. In this setting, the target task
can be different from but must be related to the source task, however, it is only possible
to solve unsupervised learning tasks in the target domain, such as clustering, dimension-

ality reduction, and density estimation (Wang et al., 2008).

3.4.1.2 Common approaches to transfer

In Pan et al., 2010, authors define four types of approaches for transfer, at different
levels: instance-level, feature-level, parameter-level and relationship-level. In the former,
we assume that some parts of the source data can be reused to learn in the target dataset
using re-weighting. At the feature-level, the goal is to find a feature representations that

would minimize domain divergence and model error. This feature representation can be
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built using supervised or unsupervised methods. In the parameter-level approach, we as-
sume that models trained for related tasks share some parameters or prior distributions of
hyperparameters. The target task could thus benefit from the parameters learned by the
model on the source task. Finally, in some cases where data have a specific representation,
such as network data, relationships between data can be used to transfer knowledge be-
tween source and target domain. In this context, statistical relational learning techniques

are proposed to solve these problems.

3.4.1.3 Particularities of deep learning

The principles of deep learning and the architecture of networks make them highly
suitable for two approaches in particular: at the feature-level and at the parameter-level.
At the feature-level, neural networks are first trained on the source domain for a source
task. The convolutional layers are then extracted and weights and biases are frozen. These
layers are then used to extract features of the target dataset and directly input them to
another model for the target task. At this level, the lower-level representation of data
learned for the source task on the source domain is used for the target tasks, implying
that both tasks and domains should be close.

At the parameter-level, models are also trained on the source domain for a source
task, layers are also extracted, but not frozen. The weights and biases of these layers are
used to initialize another model that will be trained on the target task. This technique
is also known as “fine-tuning” and suggests that representations learned during the first
training phase are useful for the target task or domain, but remain too different to be

used directly.

3.4.1.4 Applications in medical imaging

The potential of transfer learning to deal with data challenges in medical imaging led
researchers to a massive use of these techniques. A search on PubMed for transfer learning
on medical imaging led to more than 20,000 papers, with an ascending tendency since
2015, The lack of large public datasets has led to the widespread adoption of transfer
learning from ImageNet (Deng et al., 2009), a famous natural images dataset, to improve
performance on medical imaging tasks (Bengio, 2012). It might seems surprising that

such transfer from natural images to the medical domain gives good performance, due to

1. PubMed was queried on May, 7th 2024.

75



Part II, Chapter 3 — Deep learning for medical imaging

the large difference between the two domains (Raghu et al., 2019), and thus potentially
on data representations learned by neural networks. In a recent paper, Matsoukas et al.,
2022 showed that such transfer was more beneficial when the target dataset had a small
size and was close to the source dataset (i.e. to natural images). These benefits are
mostly related to the feature extraction that is similar between the two domains, as also
demonstrated in Kim et al., 2022.

In some cases, medical imaging data might be too far from natural images, or might
have different properties, making it difficult to take advantage of large natural image
datasets. This is the case for fMRI data, which are usually 4-dimensional for raw data,
or 3-dimensional when using statistic maps, contrary to natural image datasets which
are composed of 2-dimensional images. Moreover, statistic maps are composed of voxels,
whose value does not represent pixel intensities between 0 and 255, but statistical values
that can take a wider range of value (positive or negative). Transfer learning in this
setting might require the use of another dataset, closer to the target data, or some data
adaptation to remain close to natural images properties. For instance, Thomas et al.,
2023 pretrained two deep learning classifiers on a large, public fMRI dataset of raw data,
fine-tuned them and evaluated their performance on another task on the same dataset
and on a fully independent dataset. In another study, Y. Gao et al., 2019 used the
ImageNet dataset (Deng et al., 2009) to pretrain a model and fine-tuned it to classify 2-
dimensional fMRI data. This database was also used in Malik et al., 2022 for pretraining
a 2-dimensional structural MRI classifier. In the same paper, the Kinetics dataset (Kay
et al., 2017) was also used to evaluate the transfer learning process with 3-dimensional
images. In a recent work, Thomas et al., 2022 used self-supervised learning frameworks to
pretrain brain decoding models across a broad fMRI dataset, comprising many individuals,
experimental domains, and acquisition sites. These studies showed improved classification

accuracies as well as quicker learning and less training data required.

3.4.2 Image-to-image transition and style transfer

The term neural style transfer was first employed by Gatys et al., 2016 to define the
separation and recombination of the image content and style using neural networks. In the
algorithm, features of content and style of images are matched in the convolutional layers
of a CNN. Despite the results showed in the paper, the principle of neural style transfer
remained unclear. Li et al., 2017 thus theoretically showed that neural style transfer could

be seen from a domain adaptation point of view and that matching the Gram matrices
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of the features was equivalent to minimizing the Maximum Mean Discrepancy between
the features. Such findings were promising, and lead researchers to apply neural style
transfer for a wide range of tasks, including domain adaptation (Li et al., 2017) and data
augmentation (Zheng et al., 2019). In this section, we will focus on neural style transfer
with Image-to-image transition (I2I), as opposed to text-to-image or other forms of style
transfer. This technique was found particularly successful in medical imaging to overcome

the data scarcity issues, and we will present some examples at the end of the section.

3.4.2.1 Foundations of image-to-image transition

Following the definitions exposed in 3.4.1, the goal of 12] is to convert an input image
x4 from a source domain A to a target domain B with the intrinsic source content pre-
served and the extrinsic target style transferred. This means that we need to learn the
mapping G 4_,p that would generate x5 € B, with the content of 4, € A and the style
of x5 € B.

121 frameworks can be categorized using several criteria. First, we distinguish su-
pervised and unsupervised 12I. In supervised settings, we have access to paired datasets,
meaning that we have a dataset X4 = {x4,,24,,...} € Aand adataset Xp = {zp,,rp,,...} €
B, with X, = G4_5(X4,). In other words, we should have access to the ground-truth,
i.e. the exact version of each image of the domain A in the domain B. In unsuper-
vised settings, we only have access to unpaired datasets, meaning that we have a dataset
Xa={za,,a,,...} € Aand a dataset Xp = {xp,,rp,,...} € B, but this time, we do not
have any ground-truth, i.e. data are not matched and supposedly, there is no equivalent
of x4p € B in the dataset Xpg. Figure 3.8 illustrates the notion of paired and unpaired
datasets. Other types of I12I exists, for instance semi-supervised 121 or few-shot 121, that
will not be detailed here.

We also distinguish 2] frameworks according to the fact that only two domains are
involved, or multiple ones, i.e. two-domains and multi-domains frameworks. In the
former, only one transfer is learned at a time, and datasets are only composed of data
from two different domains. If we take the example of facial attributes modification, an
application of style transfer, this means that each framework will learn to transfer a single
facial attribute (e.g. hair color, age, etc.).

If datasets are composed of n models, such frameworks would require to learn n -
(n — 1) models to learn all possible mappings. Such training is highly time consuming

and limited since models cannot use the global information available in the whole dataset
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Figure 3.8 — Paired training data (left) consists of training examples x;,y;, where the
correspondence between x; and y; exists (Isola et al., 2017). Unpaired training data
(right) consists of a source set z; and a target set y;, with no information provided as to
which x; matches which y;. Figure extracted from Zhu et al., 2017.

and the mappings between other domains. Thus, researchers studied the multi-domains
121 problem. These frameworks are composed of single unified model in which different
outputs might contain different style modifications. For the facial attributes, this means
that a single model would be able to learn to transfer both hair color and age. This is

done in practice by encoding a precise query in the model, for instance using conditioning.

3.4.2.2 Models and architectures

In computer vision, recent advances gave rise to performing deep generative models
such as GAN (Goodfellow et al., 2014) and DDPM (Ho et al., 2020). These models
produce high quality results for generating new images from a known distribution, and
in the task of 121 using their conditional versions (Isola et al., 2017; Saharia et al., 2022).
Architectures and learning strategies of GAN and DDPM were described in 3.1.3. Here,

we present their conditional versions and expose several frameworks developed for 121I.

Conditional Generative Adversarial Networks. Conditional versions of GAN (Mirza
et al., 2014) - conditional Generative Adversarial Network (¢cGAN) - can be constructed
by inputting the data, y, we wish to condition the generation on, to both the generator
G and the discriminator D. The condition y can be any kind of information, from class

labels to images, and is usually set as input to the networks by concatenation with the
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data. In such case, the adversarial loss remain similar to Equation 3.2, with both D and

G conditioned on y:
minmaxV'(D, G) = Eonpy,,, (2)[logD(2|y)] + Bznp. (2)[log(1 = D(G(2]y)))].  (3:5)

In Odena et al., 2017, conditioning is further improved by training the discriminator
to differentiate between real and fake images, but also to correctly classify real and fake
image in the target class label. The adversarial loss is thus combined with another non-
adversarial losses, dedicated to classification.

These models were first developed to generate new samples that follow the training
distribution, in particular for data augmentation. The sampling process (i.e. the genera-
tion of new images after training) starts with the initialization of a random vector z from
which images are sampled. The cGAN provided an opportunity to perform conditional
image generation, but the absence of conditioning of the (noise) input variable z prevent
them to directly perform style transfer. In 121, one starts from a source image x4 that
is given as input to the framework and modified using conditioning. In the following, we

will describe several frameworks developed for 12I:

Age-cGAN Antipov et al., 2017 created Age-cGAN, a conditional GAN coupled
with an encoder to approximate an initial latent vector that would preserve the person’s
identity. This allows to conditionally generate images by constraining on a target age

Yarger a0d to perform face aging on a specific image using the approximate latent vector.

Pix2Pix Isola et al., 2017 introduced Pix2Pix, a framework to tackle supervised
two-domains 121 problems. The generator receives as input an image from the input
domain A and learns to convert it to the target domain B by minimizing a reconstruction
error (Mean Squared Error - MSE or Mean Absolute Error - MAE loss) in addition to the
adversarial loss. The discriminator learns to differentiate between the fake output G(z4)

and the desired ground truth output image zp.

CycleGAN Due to the difficulty of building paired datasets for training, researchers
developed methods to perform 121 using unpaired datasets for training. The state-of-the-
art for unsupervised image-to-image transition is CycleGAN (Zhu et al., 2017). In this

framework, two generators and two discriminators are trained:

e (G a_p learns to map data from A to B
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Figure 3.9 — Schematic representation of the learning process of Pix2Pix (Isola et al.,
2017). One generator and one discriminator are trained to convert data between two
domains, loss functions are adversarial and mean squared error (MSE).

e Gp_yfrom Bto A
e D, aims to distinguish between images x4 and translated images Gp_4(yp)
e Dp aims to discriminate between yp and G4, p(x4)

The full objective loss consists in two adversarial losses, one between G4_,5 and Dp
and one between Gp_, 4 and D4, and one cycle-concistency loss. This cycle-concistency
loss is based on the principle that for each image x4 from domain A, the image trans-
lation cycle should be able to bring x4 back to the original image: x4 — Ga_p(za) —

Gp-a(Gap(ra)) = x4, and similarly for yp:

‘Ccyc(GA%Ba GB—)A) - ]Eacwpdata(m)[n GB—)A(GA—>B(5L‘)) — T ||1]

(3.6)
FEypuara) | Gasp(Gr=a(y)) — v 1]

StarGAN StarGAN is a generative model architecture designed for multi-domains
121, its goal is to perform image translation across multiple domains using a single unified
model. StarGAN is composed of a single generator and a single discriminator, with some
particularities. During training, the generator G takes as input the source image x4, but
also a condition yp corresponding to a target domain, supposedly leading to image x4p3.

Then, x4p is set as input to G, this time with a condition y4 to generate x p4. This
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Figure 3.10 — Schematic representation of the learning process of CycleGAN (Zhu et al.,
2017). Two generators and two discriminators are trained to convert data between two
domains, loss functions are adversarial and cyclic loss.

allows the use of a cyclic-loss that compares x4 and x2p54. The discriminator D tries to
distinguish real x4 B images from generated G(z 4, yp) images, as well as determining the
domain of the image x4p.

This model is trained with a loss composed of three components:

o Adversarial loss: to make the generated images indistinguishable from real im-

ages. See Equation 3.5.

o Clyclic loss: to guarantee that translated images preserve the content of its input

images.

Lree = Bayyavslllta = G(G(xa,yp), ya)ll] (3.7)

e Domain classification loss: to ensure that generated image are properly clas-
sified to the target domain B. To achieve this condition, an auxiliary classifier is
added on top of D and an objective loss is decomposed into two terms: a domain
classification loss of real images used to optimize D, and a domain classification loss

of fake images used to optimize G.

T

s = By ya[—10g(Dats(yalza))] (3.8)

T

s, D learns to classify a real image x4 to its corresponding original

By minimizing £

domain y4.
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Figure 3.11 — Schematic representation of the learning process of StarGAN (Choi et al.,
2018). Ome generator and one discriminator are trained to convert between multiple
domains, loss functions are adversarial, cyclic loss and classification loss.

Ll = Eays [~109(Das (|G (2.4, y5)))] (3.9)
!

'1s» the generator G learns to generate images that are classified in

By minimizing £

the target domain.

Conditional Denoising Diffusion Probabilistic Models Similarly to GAN, DDPM
were rapidly enhanced by adding conditional guidance to the diffusion process. Dhariwal
et al., 2021 propose to add conditioning using classifier guidance, i.e. use of the gradients
of a classifier to guide the diffusion during sampling. The proposed method consists in an
unconditional model, and a pretrained a classifier that distinguishes the different labels
or domains in the dataset. During sampling, an image from the target domain is passed
through the classifier and classifier gradients are injected to the neural network.

In Ho et al., 2021, authors proposed a new framework to dispense with the need for a
classifier. In this framework, timestep and conditioning are embedded using 2 MLP and
infused with the neural network activations at a certain layer via a1 = Cemp-ar+temp. An
unconditional DDPM is trained along with the conditional one by setting a contrast mask
m. This mask changes the conditioning vector to a null token () with some probability
Puncond., Se€t as an hyper-parameter. During sampling, the framework computes both
conditional and unconditional noise prediction and performs a linear combination of the

two with a weight w to represent the strength of the conditional guidance using the
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Figure 3.12 — Schematic representation of the learning process of conditional Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2021). During training, a neural net-
work learns to predict the noise added to the image, while knowing its origin domain. At
inference, the neural networks predict the noise added to the image, while conditioning
on another target domain.

equation from Ho et al., 2021:
(X, t,C) = (1 +w) - (X, t,C) —w - (X4, t) (3.10)

Preechakul et al., 2022 introduce diffusion autoencoders, which consist of a semantic
encoder that maps the input image to a latent representation with high-level semantics,
and a conditional diffusion model composed of a stochastic encoder to extract a mean-
ingful and decodable representation of an input image and of a decoder for modeling the
remaining stochastic variations.

Such frameworks are designed to perform conditional generation, but are not suited for
121, as the sampling process starts from a random noise. To keep the intrinsic properties of
the source image, Saharia et al., 2022 concatenated the source image along with random
Gaussian noise to initialize the diffusion. In this paper, a supervised 121 framework is
proposed, and conditioning is performed by employing a L, regularization between the

generated image and the ground truth, similarly to Pix2Pix in GAN (Isola et al., 2017).
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For unsupervised settings, i.e. with unpaired datasets, Sasaki et al., 2021 developed
a framework with two jointly trained DDPM, each one learning the opposite transition
A — Band B — A. During the reverse process, each model is conditioned on the outputs

of its counterpart, and a cyclic-concistency loss is added to regularize the training process.

3.4.2.3 Applications in medical imaging

In medical imaging, 121 frameworks are used for multiple tasks (Kaji et al., 2019),
including modality transition (Armanious et al., 2020; Denck et al., 2021; Jin et al., 2019;
Kong et al., 2021; Lyu et al., 2022; Nie et al., 2018; Ozbey et al., 2023; Qin et al., 2022;
Wolterink et al., 2017a; Yang et al., 2020), image denoising (Yang et al., 2018; Wolterink
et al., 2017b; Armanious et al., 2020), or data harmonization (Bashyam et al., 2022; Liu
et al.,, 2021). Overall, these frameworks allow researchers to gather more data, and in
particular to build multimodal datasets. Observing from multiple modalities offers more
comprehensive information, and can reveal more subtle changes in brain tissues, which
can be difficult to appreciate with single modality datasets. However, some MR images
may become unusable during data acquisition and storage due to various factors such as
artifacts or improper scanning parameters. Moreover, rescanning subjects to obtain miss-
ing modalities is impractical and costly, as abnormalities in brain structures can change
over time, rendering new data incompatible with the original (see 2.1.1). Consequently,
cross-modality synthesis of MR images has been explored to address modality absence and
inconsistency. Multicentric datasets also offers an opportunity to gather larger datasets,
but this can be challenging since different acquisition centers may have different scanning
equipment and imaging protocols, leading to unwanted variability in the data (see 2.1.3).

Using a conditional GAN coupled with a perceptual loss and a style transfer loss,
MedGAN (Armanious et al., 2020) showed its performance in PET to CT translation,
PET denoising and correction of MRI artifacts. In supervised settings, Nie et al., 2018
used a variant of Pix2Pix (Isola et al., 2017) with a gradient-based loss function for MRI to
CT translation. Another variant of this model was also used in 3-dimensional for cardiac
left ventricle segmentation on echography (Dong et al., 2018). Yang et al., 2018 also used
a ¢cGAN for low-dose to high-dose CT translation, with pixelwise loss associated with a
minimization of the Wasserstein distance and a perceptual similarity loss. For the same
application, Wolterink et al., 2017b proposed to get rid of paired datasets and showed the
potential of CycleGAN. This model also showed its potential for stain normalization in

histological images (Shaban et al., 2019).
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Since their emergence, 121 frameworks focused more and more on the use of diffusion
models (Lyu et al., 2022; Ozbey et al., 2023; Pan et al., 2023; Dorjsembe et al., 2024;
Jiang et al., 2023). Lyu et al., 2022 showed the superiority of diffusion models compared
to GAN in this task for the conversion between MRI and CT using a supervised framework
(i.e., with pairs of data from both modalities). In unsupervised settings, Pan et al., 2023
developed a cycle-guided framework composed of two DDPM that condition each other
to generate synthetic images from two different MRI pulse sequences. Similarly, Ozbey
et al., 2023 proposed SynDiff with a source-conditional adversarial projector that denoises

the target image sample with guidance from the source image.

7

(i Take-home Message

o Deep representation learning is the process of learning a representation from
input data towards a specific task, leading to the identification of meaningful

features for the task at hand.

e In computer vision and thus, in medical imaging, the main representatives
of deep representation learning models are Convolutional Neural Network
(CNN). These are used in many tasks ranging from classification to image

registration and denoising.

e The use of medical imaging data comes with challenges, in particular due to

the low sample size, low diversity and lack of annotations of datasets.

o To learn better representations of data in such settings, researchers developed

several solutions, in particular with transfer learning and generative models.
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CHAPTER 4

LEVERAGING VARIABILITY IN FMRI
RESULTS WITH SELF-TAUGHT LEARNING

This chapter was the subject of an article published in GigaScience:

o Title: On the benefits of self-taught learning for brain decoding
« Authors: Elodie Germani, Elisa Fromont”, Camille Maumet”

o DOI: 10.1093/gigascience/giad029

e Code: swh:1:snp:289ee6f81cd88d26fa3f332eectb86d3df1f114f

« Derived data: Available on Zenodo at 10.5281/zenodo.7566172.

« Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-

tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

4.1 Introduction

In the past few years, deep learning approaches have achieved outstanding performance
in the field of neuroimaging (Abrol et al., 2021) due to their ability to model complex
non-linear relationships in the data. fMRI data are often used as input data to these
models for different tasks, such as disease diagnosis (Yin et al., 2022) or brain decoding
(i.e. identifying stimuli and cognitive states from brain activities) (Firat et al., 2014), with
a common goal: linking a target with highly variable patterns in the data and ignoring

aspects of the data that are unrelated to the learning task. Researchers took advantage
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4.1. Introduction

of the specific properties of fMRI data to build more and more sophisticated models (Vu
et al., 2018; Hu et al., 2019; Koyamada et al., 2015; Wang et al., 2020; Huang et al., 2021;
Vu et al., 2020; Oh et al., 2019).

As seen in the previous chapter (see Section 3.3), training effective deep learning mod-
els using neuroimaging data comes with many challenges due to the particular properties
of data (Thomas et al., 2021; Thijs Kooi, 2018). The field also suffers from a large number
of sources of variability in the data (see Chapter 2) at the subject level (brain activity
patterns differ across participants), the acquisition level (fMRI scanners and protocols
often vary between centers and studies) and the analysis level (different analysis pipelines
lead to different brain patterns). In our case, brain decoding models should be robust to
all these sources of variability, but this remain difficult due to the low sample size and
low variability of datasets (Ricci Lara et al., 2022).

To prevent overfitting and allow for generalizable statistical inference, neuroimaging
researchers proposed methods to tackle this lack of training data (Bontonou et al., 2021;
Yotsutsuji et al., 2021; Zhuang et al., 2019). For instance, Mensch et al., 2014 built a
decoding model using data gathered from 35 studies and thousands of individuals that
cover various cognitive domains. Despite the good performance of the models, these can
only be applied on restricted sets of studies, discriminating between few cognitive con-
cepts. More annotated training data (e.g. using large public databases) would be required
to map a wider set of cognitive processes. Lots of studies were also made on inductive
transfer learning with labeled source data as defined in Pan et al., 2010 (e.g. source task
and target task are different, as well as source domain and target domain) (Thomas et al.,
2023; Y. Gao et al., 2019; Svanera et al., 2019) (see 3.4.1.4).

However, labeled databases are not always available in neuroimaging, despite the
growing effort in data sharing to build public databases (Poldrack et al., 2014), such
as OpenNeuro for raw data (Markiewicz et al., 2021) and NeuroVault for fMRI statistic
maps (Gorgolewski et al., 2015). The unconstrained annotations and the heterogeneity of
tasks and studies make them difficult to use to pretrain a supervised deep learning model.
To compensate this, weakly supervised learning techniques such as automatic labelling
of data has proven its worth. For instance, Menuet et al., 2022 enriched NeuroVault
annotations using the Cognitive Atlas ontology (Poldrack et al., 2011b) and used these
labeled data to train a multi-task decoding model that successfully decoded more than
50 classes of mental processes on a large test set.

A specific type of inductive transfer learning named self-taught learning (Raina et al.,
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2007; Wang et al., 2013) showed strong empirical success in the field of machine learning.
It does not require any labels as it consists in training models to autonomously learn
latent representations of the data and using these to improve learning in a supervised
setting. This approach is motivated by the observation that data from similar domains
contain patterns that are similar to those of the target domain. By initializing the weights
of a supervised classifier with the pretrained weights of an unsupervised model trained
on many images, the aim is to improve the model performance by placing the parameters
close to a local minimum of the loss function and by acting as a regularizer (Erhan et al.,
2010).

In the field of neuroimaging, latent representations have recently been used in a task-
relevant autoencoding framework. Orouji et al., 2023 used an autoencoder with a classifier
attached to the bottleneck layer on a small fMRI dataset. This model outperformed the
classifier trained on raw input data by focusing on cleaner, task-relevant representations.
This suggests that a low-level representation of fMRI data, learned for a reconstruction
task, can be helpful in a classification task, as in a self-taught learning framework.

In this chapter, we propose to take advantage of NeuroVault — a large public neu-
roimaging database that was built collaboratively and therefore displays a good level of
variability in terms of fMRI acquisition protocols, machines, sites and analysis pipelines
— in a self-taught learning framework. We pretrain an unsupervised deep learning model
to learn a latent representation of fMRI statistic maps and we fine-tune this model to
decode tasks or mental processes involved in several studies. In a first part, we leverage
the NeuroVault database to select the most relevant statistic maps and train a Convolu-
tional AutoEncoder (CAE) to reconstruct these maps. In a second part, we use the final
weights of the encoder to initialize a supervised Convolutional Neural Network (CNN) to
classify the cognitive processes, tasks or constrasts of unseen statistic maps from large
collections of the NeuroVault database (an homogeneous collection of more than 18,000
statistic maps and an heterogeneous one with 6,500 maps). Our goal is to investigate
how the use of a large and diverse database in a self-taught learning framework can be

beneficial in the field of brain imaging for deep learning models.

4.2 Materials and Methods

Figure 4.1 illustrates the overall process used to implement our self-taught learning

framework: a CAE was first trained to reconstruct the maps of a large dataset extracted
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Figure 4.1 — Flow diagram of the self-taught learning methodology. NeuroVault dataset
is used to train a Convolutional AutoEncoder (CAE). The encoder of this CAE is used to
initialize a Convolutional Neural Network (CNN) and to train it to classify other datasets.
These classification datasets are split in two disjoints datasets: a “validation” one used
to optimize hyperparameters and a “test” one to evaluate performance. In each one, a
5-fold cross-validation is performed.
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from NeuroVault. Then, the encoder part of the CAE was fine-tuned to answer a classi-
fication problem on another dataset (with labels). After hyperparameters optimisation,
performance of the pretrained classifier was compared to those of a classifier initialized
with a default algorithm. Details regarding the datasets (NeuroVault dataset and classi-
fication datasets) can be found in the next subsection. The models of the CAE and the
CNN are presented in Appendix D. Further explanations on the workflow used to train
the CAE and the CNN and to evaluate their performance are available in Sections 4.2.4
and 4.2.5 respectively.

4.2.1 Overview of the datasets

A summary of the different datasets can be found in Table 4.1. Details are given

below.

Table 4.1 — Overview of the datasets. For each dataset, number of statistic maps are
presented, as well as the number of participants, number of studies and the type of labels
(if available).

Dataset Maps Participants Studies Labels
NeuroVault 28,532 - - -

HCP 18,070 787 1 Tasks (7)
Contrasts (23)

BrainPedia 6,448 826 29 Cognitive
processes (36)

4.2.1.1 NeuroVault dataset

NeuroVault (Gorgolewski et al., 2015) (RRID:SCR_ 003806) is a web-based repository
for statistic maps, parcellations and atlases produced by MRI and PET studies. This is
currently the largest public database of fMRI statistic maps. NeuroVault has its own
public Application Programming Interface (API) that provides a full access to all im-
ages (grouped by collections) and enables filtering of images or collections with associated
metadata. At the time of experiment (19/01/2022), a total of 461,461 images in 6,782 col-
lections were available. Among the available metadata, some are mandatory and specified
for all maps such as the modality (e.g. “tMRI-BOLD” for Blood-Oxygen Level Dependent
Functional MRI; “dMRI” for Diffusion MRI, etc.), the type of statistic (e.g. “T map”
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or “Z map”) or the cognitive paradigm (e.g. “Working memory” or “Motor fMRI task
paradigm”), and others are optional and only available if additionally entered at the time
of the upload.

From this large database, relevant maps were selected based on multiple criteria. First,
we chose maps for which the modality was “/MRI-BOLD” to exclude other modalities
such as structural or diffusion MRI. To get comparable maps, we set three additional
inclusion criteria and selected maps: 1/ for which all required metadata were provided
(“is_valid” to True) 2/ that were registered in MNI space (“not_mni” to False) — to
ensure that anatomical structures were located at the same coordinates in each map —
and 3/ referenced as “T map” or “Z map” — to exclude maps in which voxel values did
not have the same meaning (e.g. P value maps, Chi-squared maps, etc.) —. Among these,
thresholded statistic maps were excluded.

We found that some maps in our initial dataset, were wrongly referenced as T map or
Z map. These misclassified maps were removed by filtering the “filename” column of the
dataframe to exclude SetA__mean SetB_mean (AFNI contrast maps), con (SPM contrast
maps), cope (FSL contrast maps).

Using these criteria, a total of 28,532 statistic maps were selected from the NeuroVault
database and constituted our “NeuroVault dataset”. Most of these maps were unlabeled
(i.e. cognitive processes or tasks performed described as “None / Other”) or not labeled
in a standardized way (i.e. use of terms that are specific for a study instead of generic
terms, such as those defined in Poldrack et al., 2011b: e.g. some maps were labeled as
‘word-picture matching task’ for the cognitive paradigm whereas others in which a similar
task was performed were referenced as ‘working memory fMRI task paradigm’ which is a

label that includes other specific tasks).

4.2.1.2 HCP dataset (NeuroVault Collection 4337)

NeuroVault collection 4337 (Collection n°4337, n.d.) includes 18,070 z-statistic maps,
for base contrasts (task vs baseline), corresponding to 787 participants of the Human
Connectome Project (HCP) Young Adult S900 release (Van Essen et al., 2013). This
collection was excluded from our pretraining dataset (see section 4.2.1.1) due to missing
metadata (i.e. ‘is_valid’ is False).

All maps in this collection were grouped together and referred to as the “HCP dataset”
in the following. Multiple labels were entered for each map including: mental concepts

(“cognitive_paradigm_ cogatlas”), tasks (“task”) and contrasts (“contrast_ definition”)
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(as defined in Poldrack et al., 2011b). For each participant, 23 contrasts distributed in 7

tasks were available:

o Working memory: ‘O-back body’, ‘O-back face’, ‘O-back places’, ‘O-back tools’, ‘2-
back body’, ‘2-back face’, ‘2-back places’, ‘2-back tools’

e Motors: ‘cue’, ‘left foot’, ‘left hand’, ‘right foot’, ‘right hand’
o Relational: ‘relational’, ‘match’

e Gambling: ‘punish’, ‘reward’

o Emotion: ‘faces’, ‘shapes’

o Language: ‘math’, ‘story’

e Social: ‘tom’

For more details on contrasts, tasks and mental concepts of this study, see Van Essen
et al., 2013.

4.2.1.3 BrainPedia dataset (NeuroVault collection 1952)

NeuroVault collection 1952 (Collection n®1952, 2016), known as BrainPedia (Varo-
quaux et al., 2018), contains fMRI statistic maps of about 30 fMRI studies from Open-
Neuro (Markiewicz et al., 2021), the Human Connectome Project (Van Essen et al., 2013)
and from data acquired at Neurospin research center, together they were chosen to map
a wide set of cognitive functions.

This collection contains 6,573 statistic maps corresponding to 45 unique mental con-
cepts derived from 19 sub-terms (e.g. ‘visual, right hand, faces’ for maps associated with
the task of watching an image of a face and responding to a working memory task).
These images were previously used to build a multi-class decoding model (Varoquaux
et al., 2018) and labels corresponded to the mental concepts associated with the statistic
map, e.g., ‘visual’, ‘language’ or ‘objects’. Here we excluded the nine classes that had
less than 30 samples each, leaving 6,448 images corresponding to 36 classes. These 6,448

images were grouped together and referred to as the ‘BrainPedia’ dataset in the following.

4.2.2 Preprocessing

All statistic maps included in this study were downloaded from different collections of
NeuroVault and therefore were processed using different pipelines (see the original studies

for more details (Varoquaux et al., 2018; Van Essen et al., 2013)). We resampled all maps
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to dimensions (48, 56, 48) using the MNI152 template available in Nilearn (Abraham
et al., 2014a) (RRID: SCR_001362) as target image. A min-max normalization was also
performed on all resampled maps to get statistical values between -1 and 1. Finally,
the brain mask of the MNI152 template in Nilearn was used to exclude statistical values

outside the brain in all statistic maps.

4.2.3 Model architectures

Description of model architectures and corresponding Figures are described in Ap-

pendix D.

4.2.4 Convolutional AutoEncoder (CAE) training

To train our CAE to reconstruct the statistic maps of the NeuroVault dataset, we used
an Adam optimizer (Kingma et al., 2017) with a learning rate of le — 04 and all other
parameters with default values. The loss function was the Mean Squared Error (MSE:

the squared L2 norm) which is the standard reconstruction loss.

4.2.4.1 Dataset split

NeuroVault dataset was randomly split in two subsets: training and test with respec-
tively 80% and 20% of the maps. The training set (N=22,772 maps) was used to train
the CAE with the different architectures and the test set (N=5,760 maps) to assess the

performance of the different models (with different hyperparameters).

4.2.4.2 Architecture comparison

To limit the computational cost of our experiments, we fixed some of the hyperparam-
eters of the CAE and only compared those who were of interest for the later experiments.
Here, we use the term model “hyperparameters”; to distinguish with model “parameters”,
to represent the values that cannot be learned during training, but are set beforehand
e.g., the batch size or the number of hidden layers. Thus, a batch size of 32 and a learning
rate of le — 04 were chosen to train the CAE for a number of 200 epochs (i.e. values that
are often used in experiments). The only hyperparameter for which different values were
compared were the number of hidden layers of the model: 4 layers vs 5 layers for each

part (encoder/decoder) of the model.
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4.2.4.3 Performance evaluation

To assess the performance of the CAE, we estimated Pearson’s correlation coefficient
between the reconstructed statistic map and the original statistic map. The correlation
coefficient was computed using numpy version 1.21.2 (RRID: SCR,_008633) (Harris et al.,
2020). The closer to 1 the correlation coefficient was, the stronger the relationship between
the maps and the more accurate the reconstruction. Note that we did not use MSE in

this context as its individual values (for each data point) were not easily interpreted.

4.2.5 Convolutional Neural Network (CNN) training

We trained two types of classifiers for all the experiments:

— the classifier with default algorithm initialized with the original algorithm from He
et al., 2015 (i.e. Kaiming Uniform algorithm for convolutional and fully-connected

layers with a parameter of \/3) and

— the classifier with pretrained CAFE initialized using the weights and bias of the con-
volutional layers of the CAE pretrained on NeuroVault dataset.

The CNN were trained using the Adam optimizer with a learning rate of le — 04. We
used the cross-entropy loss function for training the classifier. Both were implemented in
PyTorch.

4.2.5.1 Dataset split

As described in Fig. 4.1 (on the right), the classification datasets were split in two
disjoint subsets: the ‘walidation dataset’ used to optimize the hyperparameters, and the
‘test dataset’ used to test the performance. Each subset contained 50% of the participants
of the overall dataset with no overlap to avoid any data leakage (see Varoquaux et al.,
2022; Kapoor et al., 2023).

For each experiment, the validation and test datasets were then split into 5 folds
for cross-validation. participants were randomly sampled in each fold in order to ensure
that there was no overlap of participants across folds. The identifiers of the participants
included in the different folds were saved for reproducibility. More details on the methods

used to perform the 5-folds split for each dataset are specified in subsection 4.2.6.
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4.2.5.2 Evaluation of performance

The performance of each model was measured using several metrics: accuracy (Acc),
precision (P), recall (R) and Fl-macro score (F1). All metrics were implemented using
scikit-learn (Abraham et al., 2014a) with default parameters, except for F1-score for which
the “average” parameter was specified with “macro” to deal with multi-class classification.

To evaluate the performance of a model, all metrics were averaged among the 5 folds
of cross-validation and standard error of the mean was computed.

To compare the final performance of models with default initialization versus fine-
tuned weights, we used paired one-tailed two-sample t-tests between the performance
values (accuracy or Fl-score) of the 5 models trained during cross-validation. T-statistic

and p-value were provided and value of 0.05 was used for the p-value significance threshold.

4.2.5.3 Hyperparameters optimisation

To select the best hyperparameters for each dataset and each type of initialization, we
evaluated the performance of each model by performing a 5-fold cross-validation on the
validation dataset.

For each type of classifier (i.e. initialized with default algorithm versus pretrained), we
refined and optimised the hyperparameters using the largest datasets (Large BrainPedia
and HCP). However, the large amount of training data made it computationally extremely
costly to perform a full grid-search. We therefore limited our research to predefined values
of batch sizes (32 or 64), number of epochs (200 or 500) and model architectures (4 layers
or 5 layers). All batch sizes, number of epochs and architectures were tested for each
type of classifier and each dataset. We did not perform any optimization on the learning
rate to limit the computational cost of our experiments. Every model was trained using
a learning rate of 1le — 04.

We selected the best set of hyperparameters based on the performance of the corre-

sponding model in terms of accuracy and F1l-score, averaged across folds.

4.2.6 Benefits of self-taught learning and impact of different fac-

tors

To investigate the benefits of self-taught learning for neuroimaging data, different
brain decoding experiments were studied. For all, after optimizing the hyperparameters

of the two models (i.e. the model with default initialization -or- with pretrained CAE
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and fine-tuned weights) we assessed the performance of these optimized models on the

test dataset using a 5-fold cross-validation.

4.2.6.1 Homogeneous dataset (single study)

The HCP dataset was used to compare the performance of the models for the task of
decoding on a homogeneous dataset (i.e. from a single study). We studied the impact of
two factors on the classification: sample size and number of target classes. For sample
size, subsets of the global HCP dataset were created with different number of participants:
N=50, 100 and 200. Each smaller subset being a subset of the immediately larger one.
To create these subsets, we first split the global HCP test dataset into 5 folds, with
different participants in each fold. In each of these 5 folds, we randomly sampled 200/5 =
40 participants and obtained 5 sub-folds that together composed the smaller subset of
200 participants. This process was repeated for subsamples N=100 and 50 by sampling
from their superset. This insured that the 5 models trained on different combinations of
the 4 folds of a smaller subset could be tested on the remaining fold of the global test
dataset with no overlap between the training and test data. The process is illustrated in
Fig. 4.2(a).

In the end, we obtained 4 datasets with respectively N=50, 100 and 200 participants
in addition to the global dataset with all participants (N=393). These datasets respec-
tively contained 1150, 2300, 4590 and 9017 statistic maps in the test subset and 1150,
2300, 4591 and 9053 in the validation subset (note: some contrasts were missing for part
of participants). Since we use a 5-fold validation scheme, the models were trained on
approximately 80% of the statistic maps in the corresponding subset (i.e. validation for
hyperparameter optimization and test for performance evaluation).

Three types of classification were investigated. First, the ‘contrast classification” which
consisted in identifying the contrast associated with a statistic map (23 different con-
trasts). Second, the ‘task classification” which consisted in identifying the task associated
with a statistic map (7 different tasks, with multiple contrasts per task). Third, the ‘one
contrast task classification’ This time, we selected a single contrast per task and classified
the tasks (7 different tasks, with one contrast per task). The selected contrasts were ‘2-
back places’, ‘faces’, ‘punish’; ‘relational’, ‘right hand’, ‘story’ and ‘tom’ respectively for
the tasks ‘Working Memory’, ‘Emotion’, ‘Gambling’, ‘Relational’, ‘Motor’, ‘Language’,
‘Social. We selected these contrasts similarly to what was done in Wang et al., 2020

in which the HCP dataset was used in a decoding model. For each task, the contrast
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Figure 4.2 — Overview of the process used to split the datasets for cross-validation. (a)
shows the method performed for HCP dataset and its subsamples and the one used
for BrainPedia and Small BrainPedia datasets is presented in part (b). In both cases,
the global dataset is first split into two subdatasets ‘validation” and ‘test’ with respec-
tively 50% of the participants and then each subdataset is divided into 5 folds for cross-
validation.
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that showed a greater association with the task had priority over the other (for instance,
‘punish’ for the ‘Gambling’ task). For ‘Working Memory’ and ‘Motor’ tasks, which con-
tained more than one task condition, they randomly chose one (‘2-back body’ for Working
Memory and ‘right hand’ for Motor). The dataset used for this third type of classifica-
tion was thus smaller than the others (only one map per task per participant). For this
classification task, the number of statistic maps was respectively 300, 598, 1198 and 2355
for N=50, 100, 200 and for the global dataset.

4.2.6.2 Heterogeneous dataset (multiple studies)

To study the benefits of self-taught learning on a heterogeneous dataset (i.e. from
multiple studies), we used BrainPedia. For these experiments, we focused on the classifi-
cation of mental concepts (as available in NeuroVault metadata). Fig. 4.2(b) illustrates
the process used to split this dataset. To perform the split while maintaining the het-
erogeneity in each fold, we randomly sampled 50% of the participants of each study to
form the ‘validation’ and ‘test’ datasets of BrainPedia. Then, each dataset, each study
was split into 5-folds and the n-th folds of the different studies were combined to form
the n-th fold of the dataset. Validation and test datasets included N = 428 participants
and were respectively composed of 3179 and 3269 statistic maps.

We also studied the impact of sample size in the presence of heterogeneity by ex-
tracting smaller datasets. Among the 29 studies of the BrainPedia dataset, we only kept
those which were composed of more than 20 participants. In these remaining studies,
already split into 5 folds in BrainPedia validation and test subdatasets, 2 participants
were randomly drawn per fold per study per subdataset to obtain 10 participants per
study per subdataset. Like above, the n-th folds of the different studies were combined to
form the n-th fold of each subdataset of the ‘Small BrainPedia’ dataset. In the end, this
smaller dataset was composed of 1,844 maps, divided in 30 classes, from 11 studies and
220 participants. This dataset was also split into test and validation subsets with 50% of
the participants in each (N=110). The test and validation subsets were thus composed

respectively of 917 and 927 maps.
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4.2.7 Explainability

4.2.7.1 Exploring feature maps to understand the generalizability across par-

ticipants

To investigate the reasons for the difference in performance between the pretrained and
default models, we visualized and analyzed the feature maps of the different convolutional
layers of the model. Visualizing these features was useful to better understand how each
model made its predictions.

With a generalizable classifier, we hypothesized that features of different participants
from the same class should be similar (and therefore not be impacted by individual dif-
ferences). To study this, we computed for each classifier, each layer and each class, the
correlations between the feature maps for all pairs of participants. A high mean correla-
tion highlighted a higher similarity between the feature maps extracted by this layer for

a classifier and thus a higher generalizability.

4.2.7.2 Investigating the contribution of each layer to the overall performance

We explored which pretrained layer had the strongest impact on the classification
performance. This could be made at two stages: before and during training.

Before training, we only transferred the weights of some parts of the CAE. In par-
ticular, we kept the weights of the last convolutional layers with a default initialization
and initialized the first layers with the weights of the pretrained CAE. Multiple config-
urations were explored: transferring only the weights of the first one up to the first four
convolutional layers.

During training, we froze some layers of the model initialized with the weights of the
pretrained CAE, 7.e. some layers (the first ones) were not fine-tuned. Multiple types of

freezing were tested: freezing of the first two to the first five convolutional layers.

4.3 Results

4.3.1 Convolutional AutoEncoder (CAE) performance

Reconstruction performance of the CAE is presented in Table 4.2. When comparing
the two CAE architectures (4-layers vs 5-layers) trained on NeuroVault dataset, the mean

correlations between original and reconstructed maps were better for the 4-layers archi-

99



Part II, Chapter 4 — Leveraging variability in fMRI results with self-taught learning

tecture (86.9% vs 77.8%). These results suggest that the reconstruction capabilities of
the CAE are dependant on the model architecture and the size of the latent space. Figure
4.3 shows the reconstruction of a statistic map randomly drawn from the NeuroVault test
dataset with the two CAE architectures. With the 4-layers architecture, details of the
map were better reconstructed than with the 5-layers architecture (see the green square
on the map). This was due to the level of compression of the data that was higher in
the 5-layers CAE and that learned only the most useful features with less emphasis in
learning specific details. Both models were used as pretrained model for classification to

see if the benefits of the CAE were related to their reconstruction performance.

Table 4.2 — Reconstruction performance of the Convolutional AutoEncoder (CAE) de-
pending on model architecture and training set. Values are the mean Pearson’s correla-
tion coefficients (standard error of the mean).

Model 4-layers 5-layers
Latent space 18,432 | Latent space 4,096
Correlation 86.9 77.8
(std error) (0.18) (0.23)

4.3.2 Hyperparameters optimisation for Convolutional Neural
Network (CNN)

The best hyperparameters and corresponding performance can be found on Table 4.3.

Table 4.3 — Hyperparameters chosen for each dataset and corresponding performance of
the classifier on the validation set of the dataset

Dataset Initialization | Model | Epochs | Batch | Accuracy (%) | F1-Score (%)
(std. err.) (std. err.)
HCP Default algorithm | 4-layers 500 32 90.8 (1.5) 90.8 (1.6)
Pretrained CAE | 5-layers 200 64 91.8 (0.9) 91.8 (0.9)
BrainPedia | Default algorithm | 5-layers 500 64 67.1 (1.7) 61.0 (1.0)
Pretrained CAE | 5-layers 200 64 73.8 (2.7) 70.0 (2.9)

4.3.2.1 Choice of hyperparameters for HCP dataset

Performance of the different models trained with the different hyperparameters can

be found in Supplementary Table S1, available at Germani et al., 2023. For the default
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Figure 4.3 — Original version and reconstruction of a randomly drawn statistic map of
NeuroVault test dataset (image ID: 109) with the two Convolutional AutoEncoder (CAE)
(4-layers and 5-layers). The green square corresponds to a highlighted part of the map
for which reconstruction performance are better using the 5-layers architecture.

algorithm initialization, the best model had 4 layers and was trained with a batch size of
32 for 500 epochs. This model achieved an accuracy of 90.8% on average of the 5-folds of
cross-validation. For the pretrained CAE initialization, the best model had 5 layers and
was trained with a batch size of 64 for 200 epochs (average accuracy of 91.8%). The best
hyperparameters for each type of initialization (default and pretrained) were used in all

subsequent experiments.

4.3.2.2 Choice of hyperparameters for BrainPedia dataset

Results for all sets of hyperparameters are available in Supplementary Table S2, avail-
able at Germani et al., 2023. For the default algorithm initialization, the model who
achieved the best performance had 5 layers and a batch size of 64 for 500 epochs. This

model classified the BrainPedia dataset with an average accuracy of 67.1% and an average
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Fl-score of 61%. The performance of the pretrained CAE was the best using a 5-layer

architecture, a batch size of 64 and a training time of 200 epochs.

4.3.3 Benefits of self-taught learning on a homogeneous dataset

Table 4.4 summarizes the results for the different classification experiments on the
HCP datasets.

Table 4.4 — Classification performance on HCP datasets of models initialized with default
algorithm vs with the weights of the pretrained CAE. Mean accuracies and standard
errors of the means among the 5-folds of cross-validation are shown. Paired two samples t-
tests are performed between the accuracies of the 5 models obtained with cross-validation
for each type of initialization. DA: Default Algorithm initialization ; PT: pretraining
initialization.

Participants 50 100 200 Global (393)
Maps 1150 2300 4590 9017
Init. DA PT DA PT DA PT DA PT

Contrast classification (23 classes)

Mean Acc. (%) 83.6 87.0 86.8 89.9 88.6  90.2 90.9 92.4
(std. err.) (0.61)  (0.51) | (0.69) (0.34) | (0.84) (1.46) | (0.38) (0.44)
Paired T-test (4 dof) -11.52 -4.77 -1.42 -4.74
p-value 0.0003 0.009 0.23 0.009

Task classification (7 classes, multiple contrasts per class)

Mean Acc. (%) 96.6 97.3 95.4 98.0 97.9 98.5 98.4 99.0
(std. err.) (0.47)  (0.43) | (1.49) (0.25) | (0.44) (0.16) | (0.17) (0.13)
Paired T-test (4 dof) -3.57 -14 -1.5 -5.65
p-value 0.02 0.2 0.2 0.005
One constrast task classification (7 classes, one contrast per class)

Mean Acc. (%) 97.9 99.1 98.9 99.4 99.3 99.6 99.4 99.6
(std. err.) (0.3) (0.3) (0.17)  (0.25) | (0.2)  (0.2) | (0.2) (0.14)
Paired T-test (4 dof) -4.17 -3.32 -2.33 -2.06

p-value 0.01 0.03 0.08 0.1
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Figure 4.4 — Mean accuracies and standard errors of the mean on contrast classification
with the HCP dataset for the models initialized with default algorithm (blue) and pre-
trained CAE (orange). Pretraining improves contrast classification performance for small
sample sizes and at a lower level of improvement, also for large sample sizes.

4.3.3.1 Impact of the sample size

For all classification experiments, the size of the training set (in terms of number
of participants) had a strong impact on the benefits of self-taught learning. With 50
participants, the performance of the pretrained CAE outperformed the performance of
the classifier initialized with the default algorithm in all our experiments (improvements
of 0.7% to 3.4% in mean accuracies). These improvements were always significant (p <
0.05). When sample size increased, this improvement reduced and was sometimes not
significant. If we focus on contrast classification (Figure 4.4), which was the hardest
classification task between the three presented here due to the higher number of classes,
the difference between the performance of the two classifiers decreased with sample size
(mean accuracies of 88.6% and 90.2% respectively for default initialization and pretrained
model respectively for N=200 which corresponded to an improvement of 1.6% compared
to almost 3% for N=100). For N=200, the difference of performance was not significant,
probably due to the presence of an outlier value in the accuracies of the pretrained CAE.
Indeed, accuracies of the pretrained CAE model were superior to the ones of the default
model, except for the pretrained model tested on the 3rd fold of cross-validation which
was lower. This value was also significantly lower than those of models tested on other

folds of cross-validation (see Supplementary Table S3, available at Germani et al., 2023).
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Figure 4.5 — Mean accuracies and standard errors of the mean on task classification with
the HCP dataset for the models initialized with default algorithm (blue) and pretrained
CAE (orange). Pretraining improves task classification performance for all sample sizes
but sample sizes did not have a huge influence on the level of improvement.
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Figure 4.6 — Mean accuracies and standard errors of the mean on

one contrast task classification with the HCP dataset for the models initialized
with default algorithm (blue) and pretrained CAE (orange). Pretraining does not always
improve one-contrast task classification performance: for large sample sizes, pretraining
and default initialization give very similar results.
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4.3.3.2 Impact of the target classification task

For simpler classification experiments (i.e. with less classes to separate), pretraining
was not always useful. In these experiments, performance was already nearly perfect
(accuracies close to 1) and therefore difficult to improve. For large sample sizes (N > 100),
performance was close (difference between mean accuracies lower than 0.6%) between
models initialized with default algorithm and pretrained models (see Figures 4.5 and 4.6).
However, for smaller sample sizes (N=50), pretraining improved classification — similarly
to what had been shown for more complex tasks — with accuracies of the pretrained models
higher than default models of 0.7% and 1.2% for task classification and one contrast
task classification respectively. These results suggest that pretraining can be beneficial
when studying difficult classification problems such as those with few training samples or

complex classification tasks.

4.3.4 Benefits of self-taught learning on a heterogeneous dataset

Table 4.5 summarizes the results for the classification of mental concepts on the small

and the large BrainPedia datasets. These results are illustrated in Figure 4.7.

Table 4.5 — Classification performance on BrainPedia datasets of models initialized with
default algorithm vs with the weights of a pretrained CAE. DA: Default Algorithm
initialization ; PT: pretraining initialization

Dataset Small BrainPedia | BrainPedia

Init. DA PT DA PT

Mean acc. (%) 56.8 64.5 67.1 74.2
(std. err.) (1.5) (2.1) (0.9) (2.3)
Paired T-test (4 dof) -8.72 -3.43
p-value 0.001 0.02
Mean F1-score (%) | 50.5 62.0 64.9 73.6
(std. err.) (3.5) (2.1) (0.8) (2.2
Paired T-test (4 dof) -4.89 -2.89
p-value 0.008 0.04

On a the small BrainPedia dataset, pretraining improved the performance of the classi-
fier. When looking at the mean accuracies, respectively 56.8% and 64.5% for the classifier

initialized with the default algorithm and the pretrained classifier, the difference was high
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Figure 4.7 — Mean Fl-scores and standard errors of the mean of the classification of
mental concepts on BrainPedia datasets (Small and Large) for the models initialized with
default algorithm (blue) and pretrained CAE (orange). Pretraining improves classification
performance, in particular for the small dataset.

(almost 8% of improvement). But in this case, the F1-score was a better metric to assess
the performance. Indeed, this metric focuses more on classification errors and is a better
indicator of performance when classes are imbalanced, which was the case in this dataset
in which some classes were more represented than others (e.g. in the small BrainPedia
training set, 205 maps corresponded to the class "visual words, language, visual" whereas
only 19 are in the class "left foot, visual"). When focusing on this metric, the pretrained
classifier performance was markedly higher than the ones of the classifier with default
initialization (11.5% of improvement in mean Fl-score). Performance (accuracies and
Fl-scores) was both significantly improved with the pretrained model compared to the
default one (p < 0.05).

On the global BrainPedia dataset, performance also increased with pretraining. Mean
accuracy and F1-score were higher for the the pretrained model (F1-score of 73.6% against
64.9% for the model with default initialization) even if the sample size of the dataset was
higher and more classes were represented. Indeed, the classification task was also more
complex for this dataset since data were separated into 36 classes instead of 30 for Small

BrainPedia due to the presence of maps from other studies in the dataset.

4.3.5 How do we explain these benefits?
4.3.5.1 Features

To better understand the behaviour of each model — in particular on what features
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Figure 4.8 — Original mean statistic maps (column 1) and mean feature maps across
participants of the fold 1 of the test dataset of HCP 50 for the first four convolutional
layers of each model (columns 2-5): CNN with default algorithm initialization (DA),
pretrained CNN (PT) and CAE, for two of the eight selected contrasts (WM: 0-back
body and Gambling: Punish).
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Contrast Per-class accuracy
DA PT
WM: 0BK BODY D7.7 60.3
WM: 0BK PLACE 70.5 79.5
WM: 0BK TOOL 57.8 66.7
WM: 2BK BODY 74.3 73.1
WM: 2BK TOOL 47.4 60.3
GAMBLING: PUNISH | 55.1 67.9
RELATIONAL 58.9 75.6
GAMBLING: REWARD | 57.7 66.7

Table 4.6 — Per-class accuracies for classification of contrasts with HCP dataset sample
N=50 for DA (Default Algorithm) and PT (pretrained CAE). Only lowest per-class
accuracy (< 80%) are shown in the Figure. For other per-class accuracy, please refer to
Supplementary Table S7, available at Germani et al., 2023

they based their predictions on — we visualized the mean features across participants of
each layer of the pretrained, default models and baseline CAE for each class label (i.e.
contrast). Specifically, we studied the mean feature maps obtained across participants in
the test set (fold 1) of the N=50 sample of the HCP dataset for different contrasts. This
configuration was chosen due to the large difference between performance of default and
pretrained models on this classification task. Our main interest was to see if the model
would focus on general patterns of activation or more individual features. We focused
on the contrasts that led to the most difficult classification tasks (i.e. had the lowest
per-class accuracy (less than 80%)). Per-class accuracy for selected contrasts are shown
in Table 4.6 and for all contrasts in Supplementary Table S7, available at Germani et al.,
2023. Eight contrasts were selected: ‘Working Memory’: ‘0-back body’, ‘0-back places’,
‘0-back tools’, ‘2-back body’, ‘2-back tools’ , ‘Gambling: punish’, ‘Gambling: reward’ and
‘Relational: relational’ and among these 8 contrasts, 7 (all except ‘2-back body’) had a
better per-class accuracy with the pretrained CAE, see 4.3.3.

Figure 4.8 shows the mean feature maps for two of the selected contrasts and for the
first four convolutional layers of the models: CNN with default initialization, pretrained

CNN and CAE. The first convolutional layer features (column two of Figure 4.8) were
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similar across models but different between the contrasts: see, for instance, the activation
patterns of contrasts WM: ‘0-back body” and ‘Gambling: Punish’, which were localised
in the same areas, had different shapes. These were high level features: brain shape
and main activation patterns. However, the second convolutional layer (third column)
seemed to learn more important features for classification. The shape of the brain was
still visible but patterns of activation were more blurry, as if they were lower resolution
representations of the original statistic maps. However, features started to be different
between models at this layer with some modifications of the shape of the main activation
patterns between the default model (first row of each contrast) vs. the pretrained model
and the CAE (second and third lines). The same observation was made for the third
convolutional layer (fourth column), which began to learn deeper representations. Due
to the size of the features (6 * 7 * 6), the brain shape and activation patterns were not

visible, these features were thus less interpretable and required a quantitative analysis.
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Figure 4.9 — Boxplots of mean correlations between the feature maps of different partici-
pants for the eight selected contrasts (‘Working Memory’: ‘0-back body’, ‘O-back places’,
‘0O-back tools’, ‘2-back body’, ‘2-back tools’ , ‘Gambling: punish’, ‘Gambling: reward’” and
‘Relational: relational’) for different models at layer 1, 2, 3 and 4. DA: Default Algorithm
initialization ; PT: pretraining initialization ; AE: Baseline AutoEncoder. For Layers 3
and 4, pretrained CNN and baseline CAE show larger correlation between participants
than default CNN, meaning a lower attention to individual variabilities.

Mean correlations between the feature maps of the same contrast were computed for
each pair of participants. A high mean correlation indicates a higher similarity between

the feature maps produced in a given layer of a neural network, and thus potentially, a
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higher generalisation power since the feature maps are less different between participants
and thus less sensitive to individual variations. Figure 4.9 shows the mean correlations for
the 8 selected contrasts and for the first four convolutional layers of the models (different
values represent different contrasts). For layers 1 and 2, mean correlations were low
(<60%) and not very different between the models even if the pretrained CNN seemed
to account more about individual differences than the default model and baseline CAE.
The main change was visible at layer 3 where there was an important difference (more
than 30% for every contrast) between the mean correlation between the features learned
by the default CNN and the pretrained one. The features of this layer seemed more
similar between different participants and more generalizable across participants for the
pretrained model (mean correlations>80% for all contrasts) than for the default model
for which the mean correlations were lower than 50% for every contrast. Correlations

started to converge for the fourth layer, but were still lower for the default model.

4.3.5.2 What layers benefit the most from weight transfer from the CAE?

N. of transferred layers | Mean classification accuracy (standard error) (%)
0 (Default initialization) 83.6 (0.61)
1 82.67 (0.45)
2 84.79 (0.52)
3 85.51 (0.8)
4 86.6 (0.4)
Full pretrained model 87.0 (0.51)

Table 4.7 — Classification performance (mean accuracy and standard error, in %) of pre-
trained models with different numbers of transferred layers on classification of contrasts
for HCP dataset sample n=>50.

To explore the impact of each layer and the benefits of the baseline weights of the CAE,
we tried several experiments with different numbers of frozen layers and several weight
transfer configurations: transferring only the weights of the first convolutional layer to
transferring the weights of the first four convolutional layers. Performance of the different
models with different numbers of transferred layers is shown in Table 4.7. When only

the weights of the first layer were transferred, classification performance was lower than
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N. of frozen layers | Mean classification accuracy(standard error) (%)
2 86.7 (0.54)
3 86.82 (0.66)
4 86.1 (0.64)
5 80.42 (0.99)

Table 4.8 — Classification performance (mean accuracy and standard error, in %) of pre-
trained models with different numbers of frozen layers on classification of contrasts for
HCP dataset sample n=50.

with other configurations (82.7% of accuracy compared to more than 84% for at least 2
transferred layers). This suggests that features learned by the CAE at this layer were less
important for classification. However, when increasing the number of transferred layers,
performance started to grow and became closer to the accuracy obtained when transferring
all layers (87%). This growth was quite constant and there was no large improvement of
performance when transferring the weights of a layer in particular, except when moving
from transferring the first layer to the first two layers. Thus, pretraining the deeper layers
of the model was beneficial to improve classification performance, probably because of
the ability of these layers to extract more general features, less sensitive to individual
variations, as we saw above. Transferring the weights of the last convolutional layer (5th)
was however not very impactful, performance of model with four transferred layers was
very close to the ones of fully pretrained model (86.6% vs 87.0%). We suppose that this
layer was important to extract task-related features that were different from the ones

learned by the CAE, explaining the limited impacts of transferring the CAE weights.

4.3.5.3 Faster fine-tuning: what happens if we freeze some layers?

Table 4.8 shows the results of the different experiments with different numbers of
frozen layers. When we froze the first convolutional layers (from 2 to 4 frozen layers) on
the pretrained model, the performance did not decrease. This suggests that the features
extracted by the baseline autoencoder for these layers were general enough to perform a
classification task with only one fine-tuned convolutional layer in addition to the dense
layer. However, when freezing all convolutional layers of the model (5 layers), there was a
large drop in terms of performance (86 to 80% of accuracy between freezing 2-4 layers vs 5

layers), this confirmed the observation made before on the difference between the features

111



Part II, Chapter 4 — Leveraging variability in fMRI results with self-taught learning

extracted by the fifth layer for reconstruction (CAE) and for classification (CNN). In
conclusion, the first four convolutional layers of our model extracted more general features

whereas the last one extracted deeper and more specific features for classification.

4.4 Discussion

4.4.1 Summary

In this work, we showed the benefits of self-taught learning with a large and variable
database on the classification of two large public datasets with different sample sizes and
classification tasks. In all cases, pretraining a classifier with an unsupervised task (in our
case: reconstruction) was beneficial but the level of improvement varied depending on the
classification task and the size of the training dataset.

When sample sizes were small, pretraining always improved the classification perfor-
mance, regardless of whether the dataset was homogeneous or heterogeneous and of the
complexity of the classification task. In medical imaging, where the dimensions of the
data are often very large and few samples are typically available due to high financial and
human costs, learning a good representation of the data can be very difficult (Thomas
et al., 2021). Unsupervised pretraining can thus be helpful by initializing the weights
of the CNN to preserve the (brain) structure learned by the autoencoder, and facilitate
the learning process. However, when the sample size increases, benefits are less remark-
able since the amount of available training data is probably sufficient to learn a good
representation.

This observation can also be made for classification tasks. When trying to classify
the data in a small number of classes, performance of the pretrained classifier was better
but not with a high improvement of performance, even for small sample sizes (e.g. 100
participants for task classification). But when trying to separate data into more classes,
for a more fine-grained classification, the representation learned during the pretraining
was beneficial.

Another benefit of self-taught learning we found was the reduction of the training
time. Performance of the pretrained classifier was better even with less training epochs.
This was the case for both datasets results which were computed for 500 epochs for the
default algorithm and 200 epochs for the pretrained model. This is in line with Neyshabur

et al., 2020 in which researchers showed that the pretrained models remain in the same
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basin of the loss function when trained on new data and since the weights are already
initialized close to a good representation of data, less epochs are necessary to adapt this
representation for classification.

Architectures of the models also had an impact on the benefits of self-taught learning.
With both datasets, pretrained models performed better using the 5-layers architecture.
This effect was studied by Erhan et al., 2010 who showed that, while unsupervised pre-
training helps for deep networks with more layers, it appears to hurt for too small net-
works. The size of the latent space of the CAE with 5-layers being almost 5 times smaller
that the 4-layers one, it suggests that only a small subset of features of the input are
relevant for predicting the class label.

However, the classification accuracies of the pretrained models were not related to the
reconstruction performance of the CAE since the 4-layers CAE reconstructs maps with
better precision than the 5-layers CAE. This confirms that the features learned by the
4-layers CAE for reconstruction were not all useful for classification and focusing on a
smaller number of features (with 5-layers) facilitates the learning process.

This observation was confirmed by the large drop in performance when freezing the first
fiftth convolutional layers of the pretrained model and when transferring only part of the
layers. Deeper pretrained layers had more impact on classification performance, meaning
that the features extracted by these layers were different from those learned by layers
initialized with the default algorithm. In particular, the third and fourth convolutional
layers showed the best benefits when being transferred, due to the generalizability of the
extracted features. This was not the case for the fifth layer, for which features need to be
specific to the classification task.

The pretrained model improved the performance in terms of classification due its
ability to focus on more generalizable features. By pretraining a model on a large variable
dataset such as NeuroVault, we built a model that is less sensitive to the training data
and less sensitive to individual differences, thus more generalizable and applicable to new

participants.

4.4.2 Limitations

Due to the high computational time required to train a model, we only compared two
model architectures (4 and 5-layers). Indeed, training a CAE model can be very time
consuming, particularly in our case since we use a large training dataset (N=22,772) and
high dimensional data (k=48 * 56 * 48). With the 4-layers model, for 200 epochs it took
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approximately 48h to train on 1 GPU. With parallel computing (use of 2 GPUs in parallel),
we could hope to shorten this time to 24h, with the cost of using more computing resources.
Other types of architectures with different number of fully-connected or convolutional
layers could have been tested to see the effect of other latent space sizes as it was done
in Erhan et al., 2010.

The main limitation of our work is the classification experiments and datasets we
chose. In fMRI, the number of possible labels and thus, classification tasks is very high
due to a lack of consensus in the field with respect to standardizing tasks, contrasts and
mental concepts (Poldrack et al., 2011b). In our experiments, we used the labels provided
by NeuroVault as specified in the original studies (Van Essen et al., 2013; Varoquaux
et al., 2018). We chose to compare multiple types of classification on the HCP dataset to
illustrate different approaches used in the field or that were used by other studies (Y. Gao
et al., 2019; Thomas et al., 2023). For BrainPedia, a multi-label decoding was performed
in the original study since multiple concepts are associated with most maps. Labels we
had access to were then the list of labels associated with each map. To be able to compare
our results with those of the homogeneous dataset (HCP), we chose to classify these as
unique labels, which was less complex and less precise in practice. This type of issue is
due to the lack of harmonization in the way tasks and cognitive processes are defined.
Using ontologies such as Cognitive Atlas (Poldrack et al., 2011b), NeuroVault annotations
could be harmonized and enriched, as it was done by Menuet et al., 2022 by mapping
the original labels to target ones from Cognitive Atlas or Walters et al., 2022 in which
cognitive conditions were annotated by a group of expert using the same atlas.

In neuroimaging, many sources of variability can impact the results of an experiment
and the generalizability of the results. Here, we investigated the generalizability of our
model by assessing the benefits of pretraining on a heterogeneous dataset (BrainPedia).
While this dataset was heterogeneous in terms of the studies that were included, all maps
were obtained using the same processing pipeline. Multiple studies have shown that the
exact pipeline used to obtain an fMRI result can have a non-negligeable impact on fMRI
statistic maps (Carp, 2012a; Botvinik-Nezer et al., 2020). In the future, investigating
performance of classification on a more variable target dataset with statistic maps from
different studies but also processed using different pipelines would be of great interest. In
a recent study (Vu et al., 2020), the authors tried to compare the performance of different
classifiers trained on fMRI 3D volumes series obtained with various scenarios of minimal

preprocessing pipelines. A similar experiment was recently made by Li et al., 2023 who
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found that preprocessing pipeline selection can impact the performance of a supervised
classifier. Comparing the adaptation capacities of models on volumes preprocessed with
different pipelines could be also interesting to evaluate the impact of analytical variability
on deep learning with fMRI and to see if the generalizability of our pretrained models
also works for inter-pipeline differences.

Note that self-supervised (instead of self-taught) learning could have also been used
to pretrain our model, as it was done by Thomas et al., 2022 who designed self-supervised
learning frameworks, inspired by the field of natural language processing, to pretrain
mental state decoding models. Self-supervised learning is a supervised machine learning
setting where the supervision is generated directly from the data and the model is pre-
trained using a supervised surrogate task. Self-supervised is particularly relevant if the
surrogate task is close to the final one targeted by the user, e.g. if they can share the
same feature representation. It is possible that, by designing a relevant supervised sur-
rogate task that could be relevant for all very diverse usage of our model, the pretrained
model would have performed better than the one presented in this article. Designing and
experimenting with such a surrogate supervised task could be interesting for future work.

In our self-taught context, using unsupervised models could allow us to build a space
capturing the similarities and differences of statistic maps, i.e. to learn a robust latent
representation of the important features of statistic maps in a specific context. By adding
other constraints to this latent space and/or choosing an adapted pretraining dataset,
we could use this for other purposes than brain decoding. For instance, building a space
that captures the analytical variability in statistic maps could help us understand the
difference between the pipelines but also identify the more robust pipelines. Future works
will focus on building such a space with specific constraints to evaluate distance between

different pipelines.
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il Take-home Message

o Transfer learning, and in particular self-taught learning, is a solution to make

use of the unlabeled statistic maps shared on public databases.

o By re-using these data in such framework, we obtained better performance

than standard supervised models in classification experiments.

o Representations learned by the pretrained model were more generalizable and
less sensitive to the sources of variations in the target data (here, different

participants, different studies and potentially acquisition parameters).

o This framework could be adapted to other target tasks (e.g. disease classifi-
cation, other decoding tasks, etc.). We shared the pretrained CAE with the

community on Zenodo (see Germani et al., 2023) to facilitate re-use.
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CHAPTER 5

MITIGATING ANALYTICAL VARIABILITY IN
FMRI RESULTS WITH STYLE TRANSFER

This chapter was the subject of a paper that will soon be submitted to Human Brain
Mapping.

o Title: Mitigating analytical variability in fMRI results with style transfer

« Authors: Elodie Germani, Camille Maumet”, Elisa Fromont"

« HAL: inserm-04531405

o Code: swh:1:dir:75ffda70e008d7ete57b21db93e61007d77330£5

o Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-

tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

5.1 Introduction

In the previous chapter, we showed that large databases can be leveraged to build
more generalizable representations of fMRI statistic maps and to improve performance of
brain decoding models. This study was an example of data re-use for deep learning tasks,
in which the presence of variability in the training data is beneficial as it allows the model
to learn more generic features, and thus prevent over-fitting and increase generalizability.
In other data re-use settings, for instance meta- or mega-analyses (Costafreda, 2009), the
goal is to perform a larger statistical analysis by re-using data from multiple previous

studies. These analyses would provide more flexibility as to which research question can
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be investigated, and increase the sample sizes, leading to higher statistical power and
more robust results.

Usually, mega-analyses are performed using raw data coming from different sources,
which are then processed and analysed using the same pipeline. As data sharing becomes
more prevalent, in particular for derived data, i.e. after preprocessing and statistical anal-
ysis, these analyses could also be built by combining subject-level or group-level statistic
maps shared from different studies. In fMRI, due to the high flexibility of the analyt-
ical pipelines (Carp, 2012a), derived data shared on public databases often come from
different pipelines. However, different pipelines lead to different results (see Chapter 2)
and combining results from different pipelines in mega-analyses can lead to a higher risk
of false positive findings (Rolland et al., 2022). To benefit from these large amount of
derived data available, it is necessary to find a way to mitigate the effect of analytical
variability.

In Chapter 3, we showed that Image-to-image transition (I2I) frameworks, based on
neural style transfer, were giving promising results in many conversion tasks in medical
imaging, e.g. converting data between imaging modalities, image denoising or data har-
monization. Considering the achievements of these models in modality transition, which
involves transitioning between distinct acquisition modalities, there is reason to anticipate
their success in transitioning between other image types, such as statistic maps coming
from different analysis pipelines. In this work, we propose to use I12I frameworks to convert
statistic maps between pipelines and build more valid mega-analyses.

To be useful in real practice, the proposed method should rely on unpaired data (i.e.
could be trained without access to the ground-truth target images) and perform multi-
domain transitions (i.e. learn multiple transfers using a single model). However, to the
best of our knowledge, this application of 121 to conversion of data between different
analysis pipelines is new and off the shelf I2I methods do not directly apply as these were
not designed on the same type of data and were not evaluated with the same metrics.
Thus, we test and compare other frameworks than multi-domain unsupervised ones, for
instance using supervised datasets or one-to-one transitions. In particular, we study
frameworks based on GAN (Goodfellow et al., 2014), namely Pix2Pix (Isola et al., 2017),
CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018), and also design a DDPM (Ho
et al., 2020) framework to tackle our task.

DDPM models have achieved state-of-the-art performance in synthesizing natural im-

ages, overpassing GAN by producing complex and diverse images (Nichol et al., 2021),
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while reducing the risk of modality collapse (Li et al., 2022). But, these models are chal-
lenging to control when the objective is to generate images that maintain the intrinsic
properties of the source images while transferring the extrinsic properties to the target
domain, i.e. in I2I frameworks. DDPM are iterative generative models, i.e. they learn
to model the transition from a Gaussian distribution to a target data distribution. Thus,
data generated by the DDPM depend on the initial samples drawn from the Gaussian
distribution, usually done at random. In this context, we adapt an existing conditional
DDPM, initially built for conditional generation, to perform 12I. We compare the perfor-
mance of such model with GAN and explore the impact of several modifications of the
framework on the conversion performance.

In the following section, we describe the dataset used for our experiments and the
different frameworks implemented. We also detail the different variations of DDPM-based
I2I frameworks that we explored and the evaluation metrics that we used. In section 5.3,
we compare the results of GAN-based frameworks and those of DDPM-based frameworks.
Finally, in section 5.4, we discuss these results and conclude on the success of style transfer

in the context of pipeline transition.

5.2 Materials and Methods

5.2.1 Dataset

In this work, we used group-level statistic maps from the HCP multi-pipeline dataset,
that we will present in greater details in Chapter 6. We explored in particular the data
from four different pipelines that differed in terms of software package (SPM (Penny et
al., 2011) or FSL (Jenkinson et al., 2012)) and presence or absence of the derivatives
of the Haemodynamic Response Function (HRF) for the first-level analysis. We used
all the available group-level statistic maps (N = 1,000) for each pipeline for the task
“right-hand”. In the following, these pipelines will be denoted as “software-derivatives”,
for instance “fsl-1” means use of FSL software package and HRF derivatives.

The selected group-level statistic maps were resampled to a size of 48 x 56 x 48 and
masked using the intersection mask of all groups. The voxel values were normalized
between -1 and 1 for each statistic maps using a min-max operation. The 1,000 groups
were split into train, valid and test with a 90/8/2 ratio and all models were trained and

evaluated on the same sets. Further investigation about possible data leakage across
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groups is provided in Appendix E (Figure E.1).

5.2.2 Generative Adversarial Network (GAN) frameworks

First, we assessed the potential of GAN-based frameworks to convert statistic maps
between pipelines. In particular, we evaluated the performance of Pix2Pix (Isola et al.,
2017), CycleGAN (Zhu et al., 2017) and StarGAN (Choi et al., 2018). These frameworks
are described in larger details in Chapter 3, Section 3.4.2.2. We provide a quick description

of the main properties of these models in Table 5.1.

Framework Learning Transition Loss

Pix2Pix (Isola et al., 2017) Supervised One-to-one Adversarial
Reconstruction

CycleGAN (Zhu et al., 2017) | Unsupervised | One-to-one Adversarial
Cyclic

StarGAN (Choi et al., 2018) Unsupervised | Multi-domain | Adversarial
Cyclic
Classification

Table 5.1 — Description of Generative Adversarial Network (GAN)-based frameworks

We used the default architecture of these models, as described in their respective
papers, and we only modified the 2-dimensional convolutions and batch normalization

layers to 3-dimensional, to cope with our 3-dimensional statistic maps.

5.2.3 Denoising Diffusion Probabilistic Model (DDPM) frame-

works

Due to the promising performance of DDPM in natural images and medical imaging
(see Chapter 3, Section 3.4.2.3), we also assessed the potential of DDPM-based frame-
works. However, there is only few frameworks developed for this application, and most
of them rely on paired datasets (Saharia et al., 2022) or one-to-one transitions (Pan
et al., 2023). Thus, to perform multi-domain transitions, we used traditional conditional
DDPM that we adapted to answer 121 tasks. In particular, we used the conditional DDPM
from Ho et al., 2021, which generates images conditioned using a one-hot encoding of the
class. We also extended this model to a conditioning based on the latent space of the clas-
sifier, inspired from Preechakul et al., 2022. Both are unsupervised frameworks, learning

multi-domains transitions. A more detailed description of the original frameworks from
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Ho et al., 2021 and Preechakul et al., 2022 is available in Chapter 3, Section 3.4.2.2, and

we summarize their main properties in Table 5.2.

Framework ‘ Conditioning ‘ Target images
Ho et al., 2021 One-hot None
Preechakul et al., 2022 | Classifier-conditional | N=1

Table 5.2 — Description of Denoising Diffusion Probabilistic Model (DDPM)-based frame-
works

In Figure 5.1, we illustrate the design of DDPM-based frameworks, with the main
modifications applied to the basis of Ho et al., 2021. Figure 5.1 (A), (C) and (D) represent
the conditional diffusion used in Ho et al., 2021, that we enhanced using source content

preservation and classifier conditioning (Figure 5.1 (B)).

A. Forward diffusion C. Embeddings
X; Time vector T
Contrast mask
Time and class /1
embeddings
Class vector C
Source é x mask - Comp + Temp
image CXo+V1—a e
// \177
B. Class conditioning \/ D. Reverse diffusion X, - L. (Xt B 1fai ) €z)
K-means \/Et 1-a
Target clustering with N Classifier 1— @12
images clusters
PaEEN X Xt 1
ode O v
o0 \
AN
N Repeat
Clusters centroids \“\\{‘:\ vector Eo(Xt, t, C) t-1 times Generated
(o3 image

Figure 5.1 — Diagram of the workflow. During the forward diffusion (A), original maps
X are turned into X after ¢ steps of noise addition e. (B) Class conditioning uses
latent vectors extracted from a classifier. These are averaged across N images, which are
the centroids of N clusters identified using a K-Means algorithm. (C) Time and class
are embedded using two Multi-Layers Perceptrons (MLP). A mask is applied to the class
conditioning vector to jointly train an unconditional model with a pre-defined probability.
(D) During the reverse diffusion, the neural network €,( X4, t, ¢) learns to predict the noise
added to the image and reconstructs X;_; iteratively until ¢ = 0.
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Source content preservation. To adapt these models to 12, we made several mod-
ifications. First, our main objective was to find a solution to generate images that still
contained the intrinsic properties of the source image. In Saharia et al., 2022, authors con-
catenated the source image along with random Gaussian noise to initialize the diffusion.
Here, we fixed the initial state of the DDPM by directly using the forward diffusion pro-
cess to generate a noisy version of the source image X; (Equation 3.3). Then, the noisy
source image is iteratively denoised using the predicted noise and the reverse diffusion

process (Equation 3.4) with an additional conditioning on the target domain.

Classifier conditioning. We also developed an extension of the model from Ho et al.,
2021 to condition the generation based on the latent space of a classifier (see Figure 5.1
(B)). Indeed, in Ho et al., 2021, the diffusion is conditioned using a one-hot encoding of the
domain, which decreases the diversity of samples. In Preechakul et al., 2022, a semantic
encoder is used to guide sampling. Thus, we extended this idea by using a pretrained
CNN that identifies the pipeline used to obtain the statistic maps (i.e. their domain)
to condition the model. The features are extracted just before the fully connected layer,
to get a latent vector with the most important features that distinguish images across

pipelines.

Multi-target images. To condition on the latent space of this classifier during sam-
pling, target images must be selected. In Choi et al., 2021, authors showed that condition-
ing on multiple images generates images that share coarse or fine features with the target
ones depending on the number of selected images. Selecting multiple target images to
convert images between domains can help to generate images that represent the diversity
of the target domain. In practice, the whole set of images available in the target domain
could be used. This is impractical for large datasets and might lead the model to focus on
specific patterns of the target domain if these are over-represented in the dataset. Here,

we implemented several variations to explore the impact of the choice of target images.

e« Number of target images: N=5, 10 or 20.

o Target images selection: random (00), using a K-means algorithm, or using a

K-Nearest Neighbors algorithm.

For the target image selection, we proposed several algorithms. We used K-Means

algorithm (MacQueen, 1967) to identify N clusters of images in the target domain (see
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Figure 5.1 (B)). Then, we extract the centroid of these clusters and average their latent
vector for conditioning. We also compared the selection process with a random sampling
of target images and with a sampling based on the identification of images that are close
to the source image using a K-Nearest Neighbors algorithm (Mucherino et al., 2009).

Details regarding architecture and training of the models are available in Appendix E.

5.2.4 Evaluation of performance

We evaluated the performance of the frameworks using different metrics. In the fol-
lowing equations, we use X4, Xp and X 45 to respectively define the source image, target

image and translated image.

« Pearson’s correlation (Corr.) in percent

Sy (Xap, — Xap)(Xp, — Xb)

"= — — (5.1)
\/Z?ZI(XABi - XAB)Q\/Z?:1(XB1- - XB)2
e Mean Squared Error (MSE)
1 n
MSE = — Y (Xap, — X5,)? (5.2)

noG4

o Inception Score (IS) (Salimans et al., 2016) computed using the pipeline classifier.
In the following equation, X refer to any generated image, and Y the corresponding
target label.

1S(G) = exp(Bump, Drr(p(Y]X) || p(Y))) (5.3)

The first two metrics were used to study the adequacy of generated images to the
ground truth target, whereas IS was used to explore the confidence of the conditional
class predictions (quality) and the integral of the marginal probability of the predicted

classes (diversity).
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fsl-1 — spm-0 | spm-0 — fsl-1 | fsl-1 — spm-1 | fsl-1 — fsl-0
IS | Corr. MSE Corr. MSE Corr. MSE Corr. MSE

Initial 3.69 | 76.2 0.008 | 76.2 0.008 | 82.6 0.004 |91.0 0.0022
Pix2Pix - 91.4 0.0029| 89.2 0.0015| 90.3 0.0026| 97.4 0.0006
CycleGAN - 86.0 0.0046 | 66.6 0.0052 | 71.0  0.0069 | 71.8  0.0047
StarGAN 3.63 |1 90.6 0.0034 | 87.1 0.0021 | 87.7 0.0036 | 91.8  0.0016

Table 5.3 — Performance associated with four transfers for Generative Adversarial Network
(GAN)-based frameworks. IS means "Inception Score" across all transfers. Pearson’s
correlation (%) and Mean Squared Error (MSE) computed between generated and ground-
truth target image for 20 images per transfer. Initial represents the metrics between the
source image (before transfer) and the ground-truth target image. Boldface marks the
top model. Note: Inception score was not computed for Pix2Pix and CycleGAN as
different transfers are learnt by different models.

Target
Source Pix2Pix CycleGAN StarGAN (ground-truth)

Figure 5.2 — Generated images for two transfer and different competitors: Pix2Pix (Isola
et al., 2017), CycleGAN (Zhu et al., 2017) and starGAN (Choi et al., 2018). Correlation
with target ground-truth are indicated below generated and source images.

5.3 Results

5.3.1 Generative Adversarial Network (GAN) frameworks

In Table 5.3, we show the performance of GAN-based frameworks for four transfers,

between pipelines with: different HRF and different software (columns 1-4), same HRF
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and different software (columns 4-6) and, different HRF and same software (columns 6-8).
Overall, using Pix2Pix (Isola et al., 2017) and StarGAN (Choi et al., 2018), the conver-
sion of statistic maps between pipelines seem to be sucessful, with increased correlations
between target and generated maps compared to correlations between source and target
(similar observations can be done with decreased MSE), e.g. 91.4% for target-generated
compared to 76.2% for source-target with Pix2Pix for conversion “fsl-1 to spm-0”.

We can point out the large superiority of the supervised framework (Pix2Pix (Isola et
al., 2017)) compared to the other, which are all unsupervised. By benefiting from paired
data, this model outpass the performance of all the other frameworks, and even the initial
metrics obtained when comparing with the source image. Correlations between target
and generated images are close to 0.9, which is nearly perfect. On the other hand, the
CycleGAN (Zhu et al., 2017) framework gives surprising results, relatively low compared
to the other GAN-based frameworks. While it makes use of a cyclic-loss in unsupervised
settings, similarly to StarGAN, this framework only learn transfers between two domains.
We can suppose that StarGAN benefit from learning from other transfers and from the
additional classification loss, leading to higher performance in similar settings.

In Figure 5.2, we illustrate two transfers: (first row) between pipelines with different
HRF and different software packages (spm-0 to fsl-1) and (second row) between pipelines
with different HRF (fsl-1 to fsl-0). Maps generated using Pix2Pix (Isola et al., 2017)
remain closer to the target ground-truth, with more similar patterns, as stated by the

similarity metrics.

5.3.2 Denoising Diffusion Probabilistic Model (DDPM) frame-

works

In Table 5.4, we show the performance of DDPM-based frameworks for the same
four transfers as in Table 5.3. Performance of different frameworks are compared: one-
hot encoding conditioning from Ho et al., 2021, classifier-conditioning with N = 1 target
image selected randomly, inspired from Preechakul et al., 2022, and classifier-conditioning
with NV = 10 target images selected randomly (named N = 10, 0o in the Table).

Using such frameworks, the conversion between pipelines seems more difficult. While
all models succeed in changing the class identified by a pipeline classifier to the target
domain, the success of the conversion in terms of similarity to the target ground-truth

image is variable across transfers. For instance, all DDPM-based frameworks succeed in
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fsl-1 — spm-0 | spm-0 — fsl-1 | fsl-1 — spm-1 | fsl-1 — fsl-0
IS | Corr. MSE Corr. MSE Corr. MSE Corr. MSE

Initial 3.69 | 76.2  0.008 | 76.2 0.008 | 82.6 0.004 | 91.0 0.0022
One-hot 3.66 | 83.8 0.0096 | 75.0 0.0048 | 78.7 0.0087 | 81.1  0.0044
N=1 3.70 | 85.5 0.0053 | 77.8 0.0035 | 79.9 0.0072 | 82.8  0.0033

N=10, oo 3.86 | 86.5 0.0047| 79.0 0.0032| 81.8 0.0049| 84.3 0.0028

Table 5.4 — Performance associated with four transfers for Denoising Diffusion Probabilis-
tic Model (DDPM)-based frameworks. IS means "Inception Score" across all transfers.
Pearson’s correlation (%) and Mean Squared Error (MSE) computed between generated
and ground-truth target image for 20 images per transfer. Initial represents the metrics
between the source image (before transfer) and the ground-truth target image. Boldface
marks the top model.

Target
Source One-hot (ground-truth)

Figure 5.3 — Generated images for two transfer and different competitors: conditioning
with one-hot encoding (Ho et al., 2021), with a classifier and N=1 (Preechakul et al., 2022)
and N=20 with random selection. Correlation with target ground-truth are indicated
below generated and source images.

converting statistic maps for the transfer “fsl-1 to spm-0”, while none is successful for the
transfer “fsl-1 to fsl-0”. These low performance could be explained by the difficulty of
the models to learn differences between close pipelines. In Table 5.5 and Figure 5.4, we
show the performance of the pipeline classifier and compare the similarity of features, as

done in Chapter 4, Figure 4.9. In particular, we observe that features learned at Layer 4
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(i.e. the features used for conditioning) are close for pipelines sharing the same software,

which might explain the difficulty to rely on these features to perform transfer.

Pipelines

‘ Layer 1 ‘ Layer 2 ‘ Layer 3 ‘ Layer 4

Same software, different parameters

fsl-5-0-0 / fsl-5-0-1 86.5 91.4 95.4 99.2
spm-5-0-0 / spm-5-0-1 | 86.5 90.9 94.2 98.4
Same parameters, different software

fs1-5-0-0 spm-5-0-0 88.8 88.2 93.6 98.2
fsl-5-0-1 spm-5-0-1 84.8 85.8 92.4 98.0
Different software, different parameters
fs1-5-0-0 spm-5-0-1 74.5 81.0 88.7 97.1
fs1-5-0-1 spm-5-0-0 74.8 7.7 88.2 97.3

Table 5.5 — Mean correlations between features maps learned at each layers for each pair
of pipelines

The use of a DDPM with classifier-conditioning and multiple target images (N =
10, 00) seems to improve performance compared to other DDPM models. Both quality
and diversity of images is increased (1.5 = 3.86), and in terms of similarity to the ground-
truth target image, this frameworks outperforms the other DDPM models by up to 4%
in correlations between target ground-truth and generated image compared to Ho et al.,
2021 for transfer “spm-0 to fsl-1” and up to 3% for “fsl-1 to spm-0”.

The first row of Figure 5.3 illustrates a transfer between pipelines with different HRF
and different software packages (“spm-0 to fsl-17). The second row shows a transfer
between pipelines with different HRF (“fsl-1 to fsl-0”). The DDPM with multiple target
images generates statistic maps close to the ground-truth for both transfer, representing
the intrinsic properties of the map while modifying its extrinsic properties to the target
domain. Using the one-hot encoding conditioning, the generated statistic maps seem far
from the target image, failing to represent the whole characteristics of the target domain.
When using only one target image, statistic maps are more similar to the target in terms
of activation area.

The performance of such frameworks remain highly inferior to the ones obtained with
Pix2Pix (Isola et al., 2017) or StarGAN (Choi et al., 2018). This superiority can be
explained by the differences between frameworks: GAN-based methods use adversarial
training and StarGAN improves this by using a classifier loss and a cyclic-reconstruction
loss. Moreover, GAN sampling rely on the source image directly and do not require to

set an initial state, which might facilitate the source content preservation.
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fsl-5-0-0
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Figure 5.4 — Original mean statistic maps (column 1) and mean feature maps across groups
learned by the pipeline classifier for the first 4 convolutional layers for the different classes.
Pipelines with the same software show similar feature maps at Layer 2 and 3.
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5.3.3 Impact of multi-target images

fsl-1 — spm-0 | spm-0 — fsl-1 | fsl-1 — spm-1 | fsl-1 — £sl-0

IS | Corr. MSE Corr. MSE Corr. MSE Corr. MSE

N=5, 00 3.89 | 86.5 0.0046 | 79.1  0.003 | 82.0 0.0051 | 84.2  0.0031
N=10, oo 3.86 | 86.5 0.0047 | 79.0 0.0032 | 81.8  0.0049 | 84.3  0.0028
N=20, oo 3.85 | 86.7 0.0048 | 79.3 0.003 | 815 0.0051 | 84.4  0.0028

N=5, Kmeans | 3.86 | 86.4 0.0046 | 78.7 0.003 |&81.2 0.0051 | 84.5 0.0031
N=10, Kmeans | 3.86 | 86.1  0.0047 | 79.0  0.0032 | 81.2  0.0049 | 84.1  0.0028
N=20, Kmeans | 3.87 | 86.1  0.0048 | 79.2  0.003 | 81.3 0.0051 | 83.9  0.0028
N=10, KNN 3.75 849 0.0047 | 78.7 0.0032 | 81.6  0.0049 | 83.6  0.0028

Table 5.6 — Performance associated with four transfers with DDPM-based frameworks
with different implementation. IS means "Inception Score" across all transfers. Pearson’s
correlation (%) and Mean Squared Error (MSE) computed between generated and ground-
truth target image for 20 images per transfer. Initial represents the metrics between the
source image (before transfer) and the ground-truth target image. oo means random
sampling.

In Table 5.6, we show the influence of the number of target images and of the selection
methods. The number of images does not seem to impact the performance, correlations
are very similar between N =5, N =10 and N = 20. Performing selection using K-
Means algorithm does not seem to improve performance compared to a random selection,
for any N values, probably due to the low diversity in our dataset. However, selection
using a K-Nearest Neighbors (KNN) algorithm decreases the performance from 1.6%,

meaning that the diversity of target images is beneficial for a good transfer.

5.4 Discussion

In this work, we made the assumption that statistic maps could be converted between
pipelines to facilitate re-use of derived data in mega-analyses (Costafreda, 2009). We
explored different frameworks based on GAN and DDPM with the aim to develop an
unsupervised multi-domain framework that researchers could use to convert the derived
data available in public databases such as NeuroVault (Gorgolewski et al., 2015). Our
results are promising, with satisfying performance in transferring statistic maps between
pipelines with distant results (e.g. from different software packages). In these cases,
generated statistic maps were closer to the target image than the original ones, and

generated statistic maps were all classified in the target domain by the pipeline classifier.
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In Chapter 8, in a follow-up work of Rolland et al., 2022, we will see that combining
data from different pipelines in mega-analyses leads to invalid results with different levels
of false positive rates, and that studies combining data from different software packages
are the ones that led to the largest false positive rates, and thus largest invalidity. This
possibility to transfer statistic maps between software packages using 121 frameworks is
thus highly hopeful for the future of data re-use.

We compared several frameworks and found that, in our case, GAN-based frameworks
always overpass DDPM-based ones in terms of adequation with target ground-truth image.
While the largest performance of DDPM was demonstrated in many papers (Dhariwal
et al., 2021; Miiller-Franzes et al., 2023), we believe that our particular results are related
to the specific properties of the task and data. These two studies showed the superiority
of DDPM compared to GAN for the task of image synthesis, in both natural and medical
images, but not for I2I. The traditional sampling strategy of DDPM is not suited for such
task, as it relies on random noise, which makes it difficult to maintain intrinsic properties
of the source images while changing the style. On the contrary, GAN sampling relies on
the source images directly and do not require to set an initial state, which might facilitate
the source content preservation. In addition, DDPM are trained to minimize a MSE
loss between the predicted noise and the actual noise added to the image, without any
component related to style transfer, whereas in the GAN frameworks, and in particular
StarGAN (Choi et al., 2018), the classifier loss seems to greatly improve performance.
Another issue related to DDPM is the high dimensionality of images, here 3-dimensional
images with hundreds of thousands of values, which, associated with the large number of
trainable parameters of the model, makes it difficult to train performing models. Recently,
the potential of latent diffusion models was shown, these frameworks act in the latent space
of a Variational AutoEncoder to reduce the size of data and facilitate training (Rombach
et al., 2022).

Across GAN-based frameworks, we obtained better performance with the supervised
framework compared to the unsupervised ones, in particular for conversion between
pipelines giving already close results (e.g. same software package, different parameters).
However, gathering paired data is impractical and far from real life practice. In large
databases, for instance NeuroVault, we have no information about the pipeline used to
obtain statistic maps and potentially no access to raw data to build paired datasets. The
goal is to build a model that could be applied on two or more datasets with different statis-

tic maps of the same task, but obtained with different pipelines. In such unsupervised
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settings, performance of StarGAN remain statisfying, the model succeeds in generating
data that are close to the target image for all transfers, and closer than the source image
in long-distance transfer. We believe that this model could be a good candidate for further
development in real-life practice.

In this study, we showed the ability of the frameworks to convert unseen statistic
maps of the same task (here, right-hand). We started to test the generalizability of the
frameworks to other tasks, for instance right-foot. Ideally, researchers would be able to
re-use a framework trained to convert statistic maps of a task for another one. For now,
our results show that the StarGAN framework could not be applied to another task, as
it leads to generated statistic maps with low correlation with their corresponding target
maps (see Supplementary Table E.1). These results makes us suppose that the mapping
from a pipeline to another is different between tasks. Future works would be needed to
explore these relationships between pipelines, in order to develop a more generalizable
framework. This exploration of the stability of relationships between pipelines will be
treated in Chapter 7.

(i Take-home Message

o We explore the ability to convert fMRI maps between pipelines using gener-
ative models (GAN-based and DDPM-based frameworks, in supervised and

unsupervised settings).

e To enhance DDPM conversion performance, we explore several modifications
of traditional DDPM frameworks by conditioning on multiple target images

in the latent space of a classifier.

e Our results show that images can be converted successfully using DDPMs,
but with lower similarity with the ground-truth target compared to GANs, in

particular in supervised settings.
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CHAPTER 6

THE HCP MULTI-PIPELINE DATASET: AN
OPPORTUNITY TO INVESTIGATE
ANALYTICAL VARIABILITY IN FMRI DATA
ANALYSIS

This chapter was the subject of a paper that will soon be submitted to Scientific Data:

o Title: The HCP multi-pipeline dataset: an opportunity to investigate analytical
variability in fMRI data analysis

+ Authors: Elodie Germani, Elisa Fromont, Pierre Maurel”, Camille Maumet”

« HAL: inserm-04356768.

e Code: swh:1:snp:17870c3d782aa25a7tfdd6165fe27cebeac6¢c90b

o Data: currently working with our DPO for sharing on Public nEUro

o Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-

tigation, Methodology, Software, Visualisation, Manuscript writing.

" Joint senior authorship.

6.1 Introduction

As we saw in the previous chapters (see Chapters 1 and 2), neuroimaging data, such

as functional Magnetic Resonance Imaging (fMRI) data, can be used for a wide range
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of application, including diagnosis (Yin et al., 2022) or brain decoding (i.e. identifying
stimuli and cognitive states from brain activities) (Firat et al., 2014). But the workflows
used to analyze these data are highly complex and flexible. Different tools and algorithms
were developed over the years, leaving researchers with many possible choices at each step
of an analysis (Carp, 2012a) (see Chapter 1). This flexibility of analyses pipelines induces
a phenomenon called “analytical variability”, which describe the variations of the results
obtained when varying the pipeline used to process and analyze data (see Chapter 2).
As there is usually no ground-truth that can be used to benchmark pipeline results, this
phenomenon calls for a better understanding of the pipeline-space to try to identify the
cause of the observed differences amongst the final results.

The pipeline-space is especially large (Carp, 2012b) and challenging to explore due
to its interaction with other properties of a dataset: for instance, with sample size and
sampling uncertainty (Klau et al., 2020) or even with the research question (Botvinik-
Nezer et al., 2020). However, due to the high computational cost of storing and analyzing
task-fMRI data, recent studies investigating analytical variability in neuroimaging focused
on a restricted number of participants (N=108, N=30, N=15, and N=10 respectively
for Botvinik-Nezer et al., 2020; Li et al., 2021; Carp, 2012a; Xu et al., 2023) and cognitive
tasks (one paradigm for Botvinik-Nezer et al., 2020; Carp, 2012a with respectively k=9
and k=1 contrasts and use of resting-state fMRI for Li et al., 2021; Xu et al., 2023).

Multiple efforts for collecting datasets with larger number of participants have arisen
in the field of neuroimaging in the past 10 years with for instance the Human Connectome
Project (HCP) (Van Essen et al., 2013) or the UK Biobank (Sudlow et al., 2015; Miller
et al., 2016). In particular, the HCP Young Adult most recent releases provide task-fMRI
data for more than 1,000 participants and for different tasks and cognitive processes.
These data are also available as minimally processed versions, 7.e. preprocessed using a
common pipeline chosen by the HCP collaborators (Glasser et al., 2016). In brief, this
pipeline consists in the following steps: removal of spatial distortions, volumes realignment
to correct for participant motion, registration of the functional volumes to the structural
one, bias field reduction, normalization to a global mean and masking using a structural
brain mask computed in parallel.

A set of group-level statistic maps of the HCP-Young Adult have also been made pub-
licly available (see NeuroVault Collection 457 (Collection n°457, 2015) and corresponding
publication (Van Essen et al., 2013)). These were obtained using data from a subset of the

participants (68 subjects scanned during the first quarter (Q1) of Phase II data collection.

134



6.2. Methods

Z-scored statistic maps are available for all base contrasts (23 different contrasts) using
a single analysis pipeline. This is beneficial for studying individual differences and con-
trasts but it does not allow for analytical variability studies for which multiple pipelines
are needed, or to perform other analyses such as group-level analyses that could be used
to explore interaction with sampling uncertainty or sample size.

Statistic maps published during the Neuroimaging Analysis Replication and Predic-
tion Study (NARPS) study (Botvinik-Nezer et al., 2020) are also publicly available on
NeuroVault (Gorgolewski et al., 2015) with one collection per team. For each of the 70
teams, 9 group-level statistic maps are shared (one per research hypothesis) based on
two groups of N=54 participants. Additionally, for a limited number of teams (K=4),
subject-level contrast maps are also available. The pipeline space studied in this dataset
is unconstrained since teams were instructed to use their usual pipelines to analyze the
data.

In this Chapter, we describe the HCP multi-pipeline dataset, composed of a large
number of subject and group-level statistic maps and representing a non-exhaustive but
controlled part of the pipeline space. Contrast and statistic maps were obtained for the
5 contrasts of the motor task of the HCP for the 1,080 participants of the S1200 release,
with 24 analysis pipelines that differ on a predefined set of parameters as typically used
in the literature. We also computed group-level contrast and statistic maps for 1,000
randomly sampled groups of 50 participants for each pipeline and contrast.

While solutions have been proposed to standardize fMRI preprocessing (e.g. M-
Rlprep (Esteban et al., 2019)), practitioners still face multiple choices regarding first-
level statistical analyses. Here, we focus on a set of parameters that often varies across
pipelines and this even when standardized preprocessing are used: smoothing kernels,
HRF modelling and the inclusion/exclusion of motion regressors as nuisance covariates.

Group-level statistical analyses were performed uniformly for all pipelines.

6.2 Methods

6.2.1 Raw Data: the Human Connectome Project

This work was performed using data from the Human Connectome Project Young
Adult (Van Essen et al., 2013). Written informed consent was obtained from participants

and the original study was approved by the Washington University Institutional Review
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Board. We agreed to the Open Access Data Use Terms available at Human Connectome
Project: Data Usage Agreement 2013.

The HCP Young Adult aimed to study and share data from young adults (ages 22-35)
from families with twins and non-twin siblings, using a protocol that included structural
and functional magnetic resonance imaging (MRI, fMRI), diffusion tensor imaging at
3 Tesla (3T) and behavioral and genetic testing. The S1200 release includes behavioral
and 3T MR imaging data from 1206 healthy young adult participants (1113 with structural
MR scans) collected in 2012-2015.

Unprocessed anatomical T1-weighted (T1w) and task-fMRI data (Moeller et al., 2010;
Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2012) were used in this work.
The task-fMRI data includes seven tasks, each performed in two separate runs. Among
these tasks, we selected data from the motor task in which participants were presented
with visual cues asking them to tap their fingers (left or right), squeeze their toes (left or
right) or move their tongue. This task is the simplest one of the tasks performed in the
study, and the protocol associated with this task is very standard and robust. We used

unprocessed data for the N = 1080 participants who completed this task.

6.2.2 Analyses pipelines

Multiple preprocessing and first-level analyses were performed on the task-fMRI data,

giving rise to 24 different analysis pipelines. These pipelines differ in 4 parameters:

— Software package: SPM (Statistical Parametric Mapping, RRID: SCR_ 007037) (Penny
et al., 2011) or FSL (FMRIB Software Library, RRID: SCR_002823) (Jenkinson et
al., 2012).

— Smoothing kernel: FWHM was equal to either 5mm or 8mm.

— Number of motion regressors included in the GLM for the first-level analysis: 0, 6
(3 rotations, 3 translations) or 24 (the 6 previous regressors + 6 derivatives and the

12 corresponding squares of regressors).

— Presence (1) or absence (0) of the derivatives of the HRF in the GLM for the first-
level analysis. Only the temporal derivatives were added in FSL pipelines and both
the temporal and dispersion derivatives in SPM.

For more details on the meaning of such parameters, the reader may refer to Chap-
ter 1.2. In the following, we will denote the pipelines by ‘software-FWHM-number of

motion regressors-presence of HRF derivatives’. For instance, pipeline with FSL software,
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smoothing with a kernel FWHM of 8mm, no motion regressors and no HRF derivatives
will be denoted by ‘fsl-8-0-0".

All pipelines were implemented using Nipype version 1.6.0 (RRID: SCR._002502) (Gor-
golewski, 2017), a Python project that provides a uniform interface to neuroimaging soft-

ware packages and facilitates interaction between these packages within a single workflow.

6.2.2.1 Computing environment

To limit the variability induced by different computer environments and versions of the
software packages, we used NeuroDocker (RRID: SCR_017426) (Kaczmarzyk et al., 2018)
to generate a custom Dockerfile. To build this image, we chose NeuroDebian (Halchenko
et al., 2012) and installed the following software packages: FSL version 6.0.3 and SPM12
release r7771. To install Python and Nipype, commands were added to the Dockerfile to
create a Miniconda3 environment with Python version 3.8 and multiple packages, such
as Nilearn (Abraham et al., 2014a) (RRID: SCR_001362), Nipype and NiBabel (RRID:
SCR_002498) (Brett et al., 2020). This docker image is available on DockerHub (Ger-
mani, 2021) and the command to generate the DockerFile can be found in the README

of the software heritage archive (see 6.2.2).

6.2.2.2 Preprocessing

Preprocessing consisted of the following steps for all pipelines: spatial realignment
of the functional data to correct for motion, coregistration of realigned data towards
the structural data, segmentation of the structural data, non-linear registration of the
structural and functional data towards a common space and smoothing of the functional
data. Depending on the software package used, these steps were performed in a different
order, following the default behavior of each software package.

In SPM, for each participant, functional data were first spatially realigned to the mean
volume using the ‘Realign: Estimate and Reslice’ function with default parameters (qual-
ity of 0.9, sampling distance of 4 and a smoothing kernel, 2nd degree B-spline interpolation
and no wrapping). Realigned functional data were then coregistered, with the ‘Coregis-
ter: Estimate’ function, to the anatomical T1w volume acquired for the participant using
Normalized Mutual Information. In parallel, we segmented the different tissue classes of
the same anatomical T1w volume using the ‘Segment’ function. The forward deformation
field provided by the segmentation step was used to normalize the functional data to

a standard space (Montreal Neurological Institute (MNI))(‘Normalize: Write’ function)
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with a voxel size of 2mm and a 4th degree B-spline interpolation. Normalized functional
data were then smoothed with different FWHM values depending on the pipeline (5 or
8mm).

In FSL, we reproduced the preprocessing steps used in FEAT (Woolrich et al., 2001)
within Nipype. Functional data were realigned to the middle functional volume using
MCFLIRT. Brain extraction was applied with BET and we masked the functional data
using the extracted mask. We smoothed each run using SUSAN with the brightness
threshold set to 75% of the median value (default value in FSL) for each run and a mask
constituting the mean functional. Different values were used for the FWHM of the smooth-
ing kernel depending on the pipeline. We also performed temporal highpass filtering on
the functional data with a value of 100s. In parallel, we computed the transformation
matrix to register functional data to anatomical and standard space (MNI) using linear
(FLIRT function) and non-linear registration (FNIRT function). Contrary to SPM, the
first-level statistical analysis is performed on the smoothed data in subject-space. Only
the transformation matrix was computed at this stage, using boundary-based registration

and applied on the contrast maps output after the statistical analysis.

6.2.2.3 First level statistical analyses

To obtain the contrast maps of the different participants and contrasts, we modeled
the data using a GLM. Each event was modelled using the onsets and durations provided
in the event files of the HCP dataset. Six events, corresponding to the six contrasts
studied, were modeled: cue (which represent any visual cue), right hand, right foot, left
hand, left foot and tongue. Each condition was convolved with the canonical HRF. For
both SPM and FSL pipelines, we used the Double Gamma HRF (default in SPM).

Different numbers of motion regressors (0, 6 or 24) were included in the design matrix
to regress out motion-related fluctuations in the BOLD signal. The modelling of the HRF
also varied: Double Gamma HRF with or without derivatives (time+dispersion for SPM
and time for FSL).

In SPM, temporal autocorrelations in the BOLD signal timeseries were accounted for
by highpass filtering with a 128s filter cutoff and modelling of serial correlation using an
autoregressive model of the first order (AR(1)). In FSL, highpass filtering was already
performed during preprocessing with a 100s filter cutoff, modelling of serial correlation
was also performed using an AR(1) model. Model parameters were estimated using a

Restricted Maximum Likelihood approach for both SPM and FSL software packages.
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Subject-level contrast maps were computed and saved for 5 contrasts (right hand, right
foot, left hand, left foot and tongue) and each participant. In the end, for each of the
24 pipelines, we had 5,400 contrast and statistic maps (5 contrasts for each of the 1,080
participants). These maps constituted the subject-level dataset. Figure 6.1(A) presents
the statistic maps for the contrast right-hand obtained with the different pipelines for a

representative subject.

6.2.2.4 Second-level statistical analyses

Group-level statistical analyses were performed using the contrast maps obtained with
the different analyses pipelines. 1,000 groups of 50 participants were randomly sampled
among the 1,080 participants.

For each analysis pipeline, we performed one sample t-tests for each group and each
contrast in SPM (default parameters). We purposely used the same second-level analysis
method and software for all pipelines in order to focus on first-level analysis differences.

For each of the 24 pipelines, the group-level dataset was thus composed of 5,000
contrast maps and statistic maps (5 contrasts for each on the 1,000 groups). Figure 6.1(B)
presents the statistic maps obtained with the different pipelines for one group for the

contrast right-hand.

6.3 Data Records

The contrast and statistic maps will be accessible on Public nEUro (Public nEUro
2020), the preprint will be updated to include the link as soon as possible. We now have
the agreement of our Data Protection Officers to share data, the contract with Public
nEUro has been validated by both sides, and is currently in signature phase.

The dataset will be organized in BIDS format (Gorgolewski et al., 2016). Discussions
are underway with BIDS maintainers to find the best way to rename and reorganize our
data.

6.4 Technical Validation

To assess the quality of the statistic maps, we checked that all contrasts led to an

activation of the primary motor area.
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A)

SPM,5,24,1

SPM,8,24,0
-

Figure 6.1 — Example of subject (A) and group-level (B) statistic maps obtained for
subject 100206 and group 953 for each pipeline for the contrast right-hand. Pipelines are
denoted by ‘software-FWHM-motion regressors-HRF' derivatives’.
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Figure 6.2 — Workflow of technical validation of statistic maps. We thresholded each
statistic map of each group, each pipeline and each contrast using a FDR-corrected vox-
elwise p<0.05 and masked the thresholded map using the ROI of Juelich atlas of the
Primary Motor Cortex. We then computed the percentage of activated voxels in the ROI
of the Primary Motor Cortex.

As described in Figure 6.2, we looked at the significant activations inside the Primary
Motor Cortex (M1) of the brain for each statistic map of each group, each contrast and
each pipeline. Our group-level statistic maps were thresholded using an FDR-corrected
voxelwise p-value of p < 0.05 and masked using the probabilistic Juelich Atlas (Amunts et
al., 2020) available from Nilearn. We selected the Region of Interest (ROI) corresponding
to the Primary Motor Cortex, Brodmann Area 4. Depending on the contrast, both left and
right hemisfer’s ROI (‘tongue’), only the left hemisfer (‘right hand’ or ‘right foot’) or only
the right hemisfer (‘left hand’ or ‘left foot”) ROI were selected, to focus on controlateral
activations in the motor cortex.

For each map, we computed the percentage of activation inside the Primary Motor

Cortex, which is the percentage of voxels of the ROI that are activated, i.e.:

Nac wated voxels
PercentageO f Activation = Nt ted vorels w100 (6.1)
total voxels

where Nyctivated vozels 1S the number of activated voxels in the ROI and N;ota voels 1S the
total number of voxels in the ROI.

Figure 6.3 represents the distribution of mean percentage of activation inside the Pri-
mary Motor Cortex per contrast for all studied pipelines. Results were different depending

on the contrast: for all contrasts, mean percentages of activation were between 20% and
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40% but those of contrasts left foot and right foot were lower than for right hand, left hand
and tongue. When looking at the activations of different contrasts in the ROI for one of
our group-level statistic maps (see Figure 6.4), we could see that the activations of the
foot contrast seemed widespread with a small area of high activation. For a hand contrast,
the high activation area was larger and covered nearly the entire ROI. This observation
was consistent with the literature (Schott, 1993) and with statistic maps obtained from
NeuroSynth (Yarkoni et al., 2011) (RRID:SCR_006798) in which the identified area of
activation inside the motor cortex for the foot was smaller than the hand one. In the
Primary Motor Area, the statistic maps of the foot contrasts thus have less activated
voxels. Overall, the technical validation was successful. The goal of this quality check
was to have a low-level estimation of the accuracy of the statistic maps to represent the
task performed, thus we chose to define a single ROI covering the entire motor area. The
definition of a specific ROI of the foot activation area could help having better metrics.
We observed consistent metrics across pipelines, with high percentages of activation
for hand and tongue contrasts and lower ones for foot contrasts. An example of the
distribution of percentage of activations for all group maps of each contrast is shown in

Figure 6.5 for the pipeline spm-5-0-0.
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Figure 6.3 — Distribution of mean Percentage of Activation inside the Primary Motor
Cortex for all groups and pipelines in the different contrast maps.
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Group 3 map,
thresholded FDR<0.05
right-foot

Figure 6.4 — Thresholded statistic maps for contrasts right foot (right) and right hand
(left) for group-level analysis of group 3 with pipeline spm-5-0-0 (upper). Percentage
of Activation inside the Primary Motor Cortex were respectively 0.34 and 0.41 for the
contrasts right foot and right hand. NeuroSynth activation maps corresponding to the
forward inference of the "hand" and "foot" paradigms (lower). Green borders correspond
to the motor area ROI.
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Figure 6.5 — Distribution of Percentage of Activation inside the Primary Motor Cortex
for all group-level statistic maps for pipeline spm-5-0-0 in the different contrast maps.
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6.5 Discussion

The HCP multi-pipeline dataset provides researchers with a re-usable dataset of fMRI
contrast maps. The data will be accessible on Public nEUro (Public nEUro 2020), the
preprint will be updated to include the link as soon as possible. We now have the agree-
ment of our Data Protection Officers to share data, the contract with Public nEUro has
been validated by both sides, and is currently in signature phase.

This dataset brings together a wide range of analysis conditions, covering many aspects
of inter-subject, inter-groups, inter-contrasts and inter-pipelines variability. Data from
1,080 participants were used to form 1,000 different groups of 50 participants, 5 contrasts
were analyzed with 24 different pipelines.

While many aspects of variability have been studied in the field of neuroimaging,
changes in analytical choices are still hardly understood. Due to the computational cost
in time and storage capacity of analysing fMRI data, datasets dedicated to the exploration
of analytical variability (i.e. in which multiple pipelines are applied to the same data)
are rare. Recently, the results of the NARPS study (Botvinik-Nezer et al., 2020) were
made publicly available on NeuroVault, but even if 70 different analytic conditions were
described, it only gives access to one group level statistic maps for 9 different contrasts.

Analytical variability is not limited to neuroimaging and has been studied in many
other disciplines (Hoffmann et al., 2021), such as psychology (Simmons et al., 2011) or
software engineering (Alférez et al., 2019). These different fields have brought solutions
to explore and handle analytical variability. These techniques have begun to be used in
neuroimaging, with, for instance, the implementation of continuous integration, a software
engineering technique, to facilitate the reproducibility of neuroimaging computational
experiments (Sanz-Robinson et al., 2022) or multiverse analyses that help to find the
most efficient pipelines depending on the data and the goal of the study (Dafflon et al.,
2022).

By sharing directly the results obtained from different analysis strategies, we hope to
facilitate the use of these data by researchers from other fields, that could apply their own
methods to help explore the neuroimaging analytical space. Using the code provided to
create the pipelines, other researchers could be able to enhance this dataset with other
combinations of parameters, giving rise to other pipelines, or apply these pipelines to

other participants, groups or contrasts.
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6.5. Discussion

il Take-home Message
o We developed and (soon) publicly shared a multi-pipeline dataset, with 24

different pipelines varying in terms of 4 criteria including software package,
smoothing kernel FWHM, number of motion regressors and use of HRF deriva-

tives.

« This dataset contain statistic maps for a wide range of context (5 cognitive
paradigm, 1,080 participants, 1,000 groups). This is to our knowledge the

largest dataset available to explore analytical variability.

o The goal is to provide other researchers with a set of 24 pipelines to transpose

methods to explore analytical variability from other fields to neuroimaging.
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CHAPTER 7

UNCOVERING COMMUNITIES OF
PIPELINES IN THE TASK-FMRI
ANALYTICAL SPACE

This chapter is the subject of a paper accepted at the 2024 IEEE International Con-
ference on Image Processing (ICIP).

o Title: Uncovering communities of pipelines in the task-fMRI analytical space

+ Authors: Elodie Germani, Elisa Fromont”, Camille Maumet”

« HAL: hal-04331232.

o Code: swh:1:3np:8286215df8022543630bbbb20c5b0bd78eced45e.

o Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-

tigation, Methodology, Software, Visualisation, Manuscript writing.

" Joint senior authorship.

7.1 Introduction

In the previous chapters (1 and 2), we saw that a large number of software packages and
methods are available to analyze fMRI data, making the choice of pipeline a challenging
process for practitioners. These choices can have a large impact on the results, and a
single change can lead to variations in the final statistic maps. Yet, there is no ground

truth that can be used to measure and compare the performance of competing fMRI
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7.1. Introduction

pipelines. Also, there are only limited best practices to guide the pipeline choice. In an
effort to guide practitioners into the pipeline space, Dafflon et al., 2022 proposed a new
method to identify the pipeline that are best suited to answer a problem for which ground
truths are available, such as predicting the age of participants.

In our case, a potential solution to take into account analytical variability in results is
the use of multiverse analyses (Steegen et al., 2016). In these analyses, a set of pipelines
is selected and used to provide a consensus results across different analytical conditions.
But, the pipeline space is very large, and there is still little understanding as to which
factor in the fMRI pipelines are the main drivers of analytical variability. Thus, choosing
a subset of pipelines can be challenging. Here, we propose to investigate the relationships
between pipeline results to help in understanding the homogeneity (i.e., pipelines that give
similar results) but also the heterogeneity (i.e. pipelines that have a different behavior)
of the pipelines.

In Chapter 5, we discussed the work of Rolland et al., 2022 who recently showed the
invalidity of studies combining subject-level results obtained from different pipelines for
group-level analyses. We proposed a method to combine such data by converting data
between pipelines using style transfer. An open question is whether patterns observed
across pipelines remain stable in different contexts (e.g. for different groups of partici-
pants, cognitive paradigms, acquisition parameters, etc.). Style transfer frameworks aim
at learning a mapping between two domains (see 3.4.2) and apply this mapping to data.
If the mapping is different between contexts (e.g. different cognitive paradigm), a frame-
work trained to transfer statistic maps of a particular paradigm would not be applicable
to other statistic maps. To verify the potential of generalizability of our method, we also
propose to explore the stability of the relationships between pipeline results. This is of
particular importance to assess the potential of our solution and beyond of any solution
that aims at being generalizable across different set of participants or fMRI cognitive
tasks.

To measure distances between pipelines, clustering algorithms can be applied to statis-
tic maps. However, because the data are high-dimensional and suffer from large number
of sources of variability at different level (at the subject and group-level as brain activity
patterns differ across participants, at the acquisition level since fMRI scanners and pro-
tocols often vary between centers and studies, etc.), distance measures between statistic
maps are often meaningless and unrelated dimensions might mask existing clusters. In

such case, subspace clustering algorithms (Parsons et al., 2004) are typically used to find
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clusters in different subspaces within a dataset.

Here, we used community detection algorithms (i.e. clustering on graphs) to explore
the pipeline space and assess the stability of relationships between pipeline results across
different groups and cognitive paradigm. Using a clustering in two steps, we first look for
clusters of pipelines and then, we explore how these clusters are similar across different
groups. We explore the factors that impact the relationships between pipeline results,
i.e. which parameters lead to more distant pipeline results and how do these parameters
impact the statistic maps of the pipeline. We also aim at identifying groups of pipelines
that give similar results whatever the contexts (i.e. different contrasts or group of partici-
pants). If two pipelines are located in the same community (7.e. the two pipelines present
similar results) in different contexts, we can consider that their relationship is relatively
stable.

7.2 Materials and Methods

To study the relationships between pipeline results and the stability of these relation-
ships across different contexts, we computed graphs of similarity between the statistic
maps of different pipelines for each group and used the Lowvain community detection
algorithm (Blondel et al., 2008) to partition each graph. Stability was measured for
each pair of pipelines as the number of groups (out of 1,000) for which the two pipelines
were located in the same community. Graphs and communities were computed using
NumPy (Harris et al., 2020) (RRID:SCR._008633) and Networkx (Hagberg et al., 2008)
(RRID:SCR__016864).

7.2.1 Dataset

Data used in this work are part of the HCP multi-pipeline dataset presented in the
previous chapter (see Chapter 6). We used the 1,000 group-level statistic maps available

for each cognitive paradigm.

7.2.2 Data processing

Group-level statistic maps obtained with different software packages did not have the
same dimension, as default MNI templates used for spatial normalization are different

across software packages. To be able to compute correlation between maps obtained with
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Figure 7.1 — Workflow of community detection in the pipeline space across different groups
of participants and contrasts

the two software packages, we had to resample group-level statistic maps maps onto a
common grid. We used Nilearn (Abraham et al., 2014a) (RRID: SCR,_001362) to resample
all statistic maps from all pipelines to the MNI152Asym2009 brain template with a 2mm
resolution using continuous interpolation. We computed a brain mask as the intersection
of all group-level brain masks from all pipelines. This mask was also resampled to the
MNTI brain template using nearest-neighbors interpolation and applied to the resampled
group-level data. In the end, group-level statistic maps from all pipelines were resampled

to the same dimensions and masked using the same brain mask.

7.2.3 Graph computation and community detection

We computed the similarity for each pair of pipelines in terms of Pearson’s correlation
coefficient between their statistic maps (Figure 7.1 - Step 1). This correlation matrix
was used as an adjacency matrix to build an undirected weighted multi-graph for each
group, with nodes representing the statistic maps of the different pipelines (V = ‘s1,0,0,0”,
‘fs1,0,0,1’, etc.) and edges weighted by the correlation coefficient between each pipeline
and labeled E={(‘fs1,0,0,0’,fs1,0,0,1°), etc.} (Figure 7.1 - Step 2). After computation, each
graph was partitioned using the Louvain algorithm (Blondel et al., 2008) to detect the best

partitions based on modularity optimization (Figure 7.1 - Step 3), which represents the
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density of links inside communities as compared to links between communities. Therefore,
the communities detected in each graph represent the pipelines that give similar results
for the corresponding group.

To explore the stability of the communities across different groups of participants,
we counted, for each pair of pipelines, the number of groups for which the two pipelines
were located in the same community (Figure 7.1 - Step 4). The higher the value the
higher the similarity and stability across groups. This matrix was used to build a second
graph, global across groups, in which nodes represent the different pipelines and edges
represent the stability measure mentioned above. Louvain community detection algorithm
was again applied to this second graph to detect communities in which pipeline provided
similar statistic maps across different groups. These global graphs were computed for

each contrast.

7.2.4 Communities statistic maps

Within each pipeline, the statistic map was obtained by averaging statistic maps across
groups. For display purposes, we selected one pipeline in each community (see Figure 7.3
and 7.6). All other pipeline average statistic maps are available in supplementary (see
Supplementary Figures F.4 and F.5).

These were thresholded assuming a Standard Normal distribution (and effectively
leading to conservative estimates since we did not take into account the dependency
of the different groups of participants on which these maps were averaged) and using
a voxelwise False Discovery Rate (FDR) of p < 0.05. For each community map, we
computed the number of activated voxels in the thresholded maps, but also within the
ROI of the Primary Motor Cortex (M1), extracted from the probabilistic Jilich Atlas,
available in Nilearn (Abraham et al., 2014a) (RRID: SCR_001362). This ROI is usually
used to extract regional statistic values inside a whole-brain statistic brain of the motor
task. The goal was to identify the specific patterns of each community, to understand
why a pipeline was located inside a community, and to explore the potential impact on

the results of the pipelines.
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Figure 7.2 — Adjacency matrix representing the number of times each pair of pipelines
belong to the same community across different group-level statistic maps of the contrast
right-hand

7.3 Results

7.3.1 Communities for the contrast right-hand

The adjacency matrix representing the number of times each pair of pipelines be-
longed to the same community across different group-level statistic maps of the contrast
right-hand is shown in Figure 7.2. The graph corresponding to this adjacency matrix was
partitioned using the Louvain community algorithm and 4 communities were identified.
These communities correspond to groups of pipelines that are frequently located in the
same community across groups of participants (i.e., that give similar results for a high
number of groups). The partitioning of this graph achieves a modularity of 0.64 (modu-
larity (Blondel et al., 2008) takes values between —0.5 and 1 and considered high above
0.3).

We can see that pipelines inside each partition share specific parameters, these pa-
rameters are the main factors that distinguish pipelines between communities, .e. that
drives the variability of the pipeline space. Here, in each community, we can find pipelines

with the same software package and the same use of HRF derivatives. This means that
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Part III, Chapter 7 — Uncovering communities of pipelines

for this contrasts, pipelines sharing these parameters provide closer results.

Inside communities, pairs of pipelines show a large number of co-occurrence in the same
community across groups (more than 700 for all pairs of pipelines in each community).
This means that the relationships observed between pipelines results are stable across
different groups of participants. In particular, pairs of pipelines sharing all parameters
except smoothing kernel FWHM are more than 99% of the time identified in the same
community (see green highlight in Figure 7.2). For instance, pipelines ‘spm-5-0-0" and

‘spm-8-0-0" are located in community 1 for all groups of participants.

Community 1 Community 2 Community 3 Community 4
2 2 B

Pipeline fsl-5-0-1 [

Figure 7.3 — Mean statistic map for the contrast right-hand across groups (of partici-
pants) for a representative pipeline in each community. Unthresholded maps (upper) and
thresholded maps (lower) with voxelwise FDR~corrected p < 0.05.

Mean unthresholded (upper) and thresholded (lower) statistic maps of a representa-
tive pipeline in each community identified for the contrast right-hand are displayed in
Fig.7.3. Mean maps of other pipelines per communities are available in Appendix F. This
representative pipeline was arbitrarily selected, by construction all pipelines in each com-
munity show similar activation patterns. The global activation patterns are similar across
communities, but the activation area is larger for the pipeline of communities 1 and 3.
These communities are composed of pipelines that do not include HRF derivatives. We
can suppose that this parameter has an impact on the number of significant voxels de-
tected in the analysis. This observation is confirmed by the number of activated voxels in
the thresholded maps of the pipelines inside each community (Table 7.1). Statistic maps
of the representative pipeline of communities 1 and 3 show a high number of activated
voxels (N = 2,786 and 2,539) compared to communities 2 and 4 (N = 796 and 727).
The numbers of activated voxels inside the ROI of the Primary Motor Cortex are similar
between communities but remain more elevated in communities 1 and 3.

These maps also show that pairs of communities can have similar activation area. We

can suppose that the pipelines of these pairs of communities are closer to each other than
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to the ones from other communities. This suppose that there are distant & close pipelines
(inside vs outside a community), but also distant & close communities. In this case,
pipelines sharing the same use of HRF derivatives (community 1 and 3) seem closer than

those having different use of HRF derivatives but the same software package (community
1 and 2).

Table 7.1 — Mean number of activated voxels in the thresholded mean statistic maps of the
representative pipeline of each community (1st row) and inside the ROI of the Primary
Motor Cortex (2nd row) for the contrast right-hand.
Community 1 2 3 4
Whole maps | 2,786 | 796 | 2,539 | 727
ROI 382 | 252 | 337 | 215

7.3.2 Communities for the contrast right-foot

Figure 7.4 shows the adjacency matrix for the contrast right-foot. For this contrast,
only 3 communities are identified and the distribution of pipelines inside the communities
differ compared to the one observed for the contrast right-hand. In Figure 7.2, for con-
trast right-hand, communities are composed of pipelines with different software packages
(communities 1 vs 3) and different use of HRF derivatives (communities 2 vs 4). For the
contrast right-foot, the main factors that drive the clustering of pipelines into communities
do not seem to be related to the software package: communities 1 and 2 contain pipelines
from different software packages, but community 3 is composed of both SPM and FSL
pipelines. In this case, the use of different numbers of motion regressors seems to have a
larger impact on community identification (pipelines with 6 or 24 motion regressors are
located in communities 1 and 2 vs. 0 or 6 motion regressors in community 3).

This demonstrates that the relationships between pipeline results can vary across dif-
ferent contexts, here cognitive paradigm. In Appendix F, we also show the adjacency
matrices obtained for the contrasts left-hand (Figure F.1) and left-foot (Figure F.2), i.e.
same cognitive paradigm as those presented in Figure 7.2 and 7.3 but located in the con-
trolateral brain hemisphere. Communities identified for these left paradigms are similar
to those observed for the counterpart right contrasts. This shows that pipeline behaviors,
and thus relationships between different pipelines, are related to the effect under study
(here, activation of the brain when performing a motor action with the hand or the foot).

We can also observe that the detected communities are slightly less stable across
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Figure 7.4 — Adjacency matrix representing the number of times each pair of pipelines
belong to the same community across different group-level statistic maps of the contrast
right-foot.

groups of participants for contrast right-foot, in particular for community 3 some pairs of
pipelines show a number of co-occurence in the same community of less than 500 out of
1,000.

To explore this findings, we looked at the matrix of pipeline-to-pipeline correlations
(averaged across groups) (see Figure 7.5). Pipelines of community 3 for which the number
of co-occurrence in the communities with other pipelines is low are highlighted in blue.
We can see that correlations between these pipelines are lower than other correlations
inside the community, for instance: pipelines ‘fsl,5,6,1” and ‘spm,8,0,1" are both located
in community 3 for only 55 groups out of 1,000 and the mean correlation between their
statistic maps is of 0.75. In comparison, pipelines ‘spm,8,0,0’ and ‘spm,8,0,1” are co-
located in community 3 for 972 groups and the correlation between their maps is of 0.93.
These observations might explains the low stability observed in this community.

This matrix also shows that results of pipelines inside a community can be close to
those of a community but distant from those of another. Here, statistic maps of pipelines
in community 1 seem closer to the ones of community 2 than to those of community 3.
However, this does not impact the stability of relationships since between-communities

correlations (around 0.8) are still lower than intra-communities correlations (0.9).
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Figure 7.5 — Mean correlations (across groups) between statistic maps for each pair of
pipelines with the contrast right-foot. Correlations between statistic maps of pipelines
located in community 1 and community 2 are shown in a yellow box. Correlations
between statistic maps of pairs pipelines located in community 3 that have a low number
of co-occurence in the same community are shown in a blue box.
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Pipeline spm-5-24-0 8

Community 2

Pipeline fsl-5-24-0 it

Community 3

Figure 7.6 — Mean statistic map for the contrast right-foot across groups (of participants)
for a representative pipeline in each community. Unthresholded maps (upper) and thresh-
olded maps (lower) with voxelwise FDR-corrected p < 0.05.

Mean unthresholded (upper) and thresholded (lower) statistic maps of a representative
pipeline of each community identified for the contrast right-foot are displayed in Figure 7.6.
Observations are similar as those made for map