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Introduction

Imagerie par Résonance Magnétique Fonctionnelle

Au cours des dernières décennies, le développement de l’imagerie cérébrale a consi-
dérablement enrichi notre compréhension du cerveau et de ses pathologies, ouvrant la
voie à de nouvelles approches diagnostiques et thérapeutiques. En particulier, les tech-
niques d’imagerie cérébrale telles que l’Imagerie par Résonance Magnétique (IRM) ont
permis de mieux comprendre la structure du cerveau avec une grande précision, tout en
restant non invasives. Aujourd’hui, la question de la compréhension des fonctions céré-
brales occupe une place importante dans de nombreux domaines de recherche, allant de
la médecine et de la psychologie à l’intelligence artificielle et à la philosophie. Démêler
la complexité du cerveau et déchiffrer la manière dont les différentes régions cérébrales
interagissent est un défi scientifique qui captive les chercheurs. L’Imagerie par Résonance
Magnétique fonctionnelle (IRMf) est une technique d’imagerie cérébrale qui permet aux
chercheurs d’étudier l’activité cérébrale des individus pendant qu’ils effectuent des tâches
prédéfinies. Le nombre d’études publiées utilisant cette modalité a explosé au cours des
dix dernières années : en 2018, plus d’un millier d’études enregistrées sur le site web
clinicaltrial.gov utilisaient l’IRMf comme mesure de résultat (Sadraee et al., 2021).

Dans les études traditionnelles d’IRMf, un ensemble de participants est choisi sur la base
de différents critères, en fonction de l’objectif de l’expérience (participants sains, stade de
la maladie, etc.). Les études sont conçues pour répondre à une ou plusieurs hypothèses
de recherche, par exemple sur l’activation d’une zone cérébrale au cours d’une tâche ou
sur la présence de différences entre la force d’activation chez deux groupes d’individus.
Les participants sont soumis à une acquisition d’IRMf, qui consiste en une séquence de
tâches constituant le paradigme d’activation. Ce paradigme est composé d’une tâche de
référence, généralement le repos, et d’une tâche d’intérêt dont la seule différence avec
la référence correspond au processus cognitif à explorer. Les chercheurs récupèrent les
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Figure 1 – Cartes statistiques de niveau groupe pour le paradigme main droite, sans
seuillage (en haut) et avec seuillage (en bas) en utilisant un seuil de p < 0, 05, corrigé par
Bonferroni.

données brutes de l’IRMf sous la forme de matrices à 4 dimensions pour tous les par-
ticipants et appliquent une séquence d’étapes de prétraitement et d’analyse statistique,
appelée “chaîne de traitement”. À la fin de cette chaîne de traitement, les résultats sont
présentés sous la forme de cartes statistiques tridimensionnelles montrant l’activation du
cerveau pour chaque participant et chaque question de recherche, et pour l’ensemble des
participants si un deuxième niveau d’analyse a été effectué. Ces cartes sont généralement
seuillées par inférence statistique afin d’identifier les régions du cerveau qui présentent une
activation significative. Ce processus s’appuie sur des tests statistiques pour déterminer
si les différences observées ou les relations entre les variables sont probablement dues au
hasard ou si elles représentent des effets réels.

Les études d’imagerie cérébrale, et en particulier l’IRMf, sont soumises à différentes
sources de variabilité. Par source de variabilité, nous entendons tout facteur dont les
variations entraînent des modifications des résultats finaux. Par exemple, selon l’heure
de la journée ou la présence ou non de médication, le même participant peut avoir des
activations différentes, ce qui représente une source de variabilité, appelée variabilité intra-
individuelle (Chen et al., 2016). De même, si les données sont acquises pour le même
participant, mais avec des paramètres d’acquisition différents, cela pourrait entraîner des
variations dans les résultats (Wittens et al., 2021). Naturellement, il semble logique que
deux participants aient des résultats différents, mais il est difficile pour les études de
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représenter l’ensemble des variations inter-individuelles (Valizadeh et al., 2018). Les études
d’imagerie cérébrale sont généralement de petite taille (∼30 participants en 2015 (Poldrack
et al., 2017)) et composées de données acquises dans un seul centre, ce qui entraîne une
faible généralisabilité des résultats.

Variabilité analytique

Un autre exemple de source de variabilité est liée aux variations des résultats finaux
causées par les différentes implémentations de la chaîne de traitement utilisée pour traiter
et analyser les données brutes. Dans une méta-analyse de plus de 200 articles sur l’IRMf,
Carp, 2012b a montré que ces chaînes de traitements sont très flexibles, laissant aux
chercheurs de nombreux choix à faire pour analyser leurs données. Cette déclaration a
soulevé des questions sur les effets potentiels de ces différentes implémentations sur les
résultats. Récemment, dans le cadre d’une étude multi-analystes (Botvinik-Nezer et al.,
2020), 70 équipes de recherche ont été chargées d’analyser le même ensemble de données
d’IRMf de tâche avec leur méthode habituelle. Dans l’ensemble, il n’y avait pas de chaînes
de traitements identiques et les résultats finaux étaient relativement variables d’une équipe
à l’autre. Ce phénomène, également connu sous le nom de “variabilité analytique”, peut
résulter de différents niveaux de variation dans le processus d’analyse :

— À chaque étape, lorsque l’on change l’algorithme à utiliser ou la valeur d’un para-
mètre.

— Lorsque l’on modifie le logiciel utilisé pour mettre en oeuvre la chaîne de traitement.

— À un niveau inférieur, lors de la modification de l’environnement de calcul.

Aujourd’hui, l’idée que différentes approches analytiques peuvent conduire à des résul-
tats différents est acceptée par la communauté. Les chercheurs recherchent désormais des
solutions pour relever les différents défis liés à la variabilité analytique (Botvinik-Nezer
et al., 2023). La flexibilité des chaînes de traitements est particulièrement difficile à gérer
pour les chercheurs, car il n’y a pas de vérité terrain qui puisse être utilisée pour comparer
et mesurer les performances de chaînes de traitements concurrentes. Ainsi, il n’existe que
peu d’accords sur les bonnes pratiques pour guider le choix d’une chaîne de traitement.
Dans la pratique, les chercheurs explorent couramment de multiples alternatives analy-
tiques valides, mais ne rapportent souvent que les résultats d’une seule d’entre elles (ou
d’un petit nombre de variantes). Cette publication sélective peut entraîner une augmen-
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tation des résultats faux positifs (Ioannidis, 2008a ; Simmons et al., 2011 ; Gelman et al.,
2019). Comme solution potentielle, les chercheurs peuvent utiliser des analyses multiver-
selles (Steegen et al., 2016) pour comparer et rapporter les résultats de plusieurs approches
analytiques. Cependant, une étude systématique de l’espace des chaînes de traitements
n’est pas réaliste en raison du grand nombre de combinaisons possibles. Dans les deux
cas, une meilleure connaissance de l’espace des chaînes de traitements serait utile pour
identifier les principaux facteurs de cette variabilité des résultats et, par exemple, faciliter
la sélection d’un ensemble représentatif de chaînes de traitements.

Une autre question liée à la variabilité en IRMf est la réutilisation des données. Avec
l’émergence des pratiques de partage des données (Niso et al., 2022), il est possible d’aug-
menter la taille des échantillons des études d’imagerie cérébrale en réutilisant les données
disponibles publiquement. L’utilisation d’échantillons plus importants et plus diversifiés
contribuerait à améliorer la reproductibilité et la généralisabilité des résultats et offrirait
une plus grande souplesse quant aux questions de recherche à étudier. Dans la pratique, les
études avec réutilisation de données sont généralement effectuées avec des données brutes
provenant de différentes études, qui sont ensuite réanalysées avec la même chaîne de trai-
tement. Une autre solution consiste à utiliser des données dérivées (déjà traitées). Cette
solution est plus optimale, non seulement parce que le partage des cartes statistiques n’est
pas aussi difficile que le partage des données brutes en raison des contraintes réduites en
matière de protection de la vie privée, mais aussi parce qu’elle évite d’avoir à effectuer de
nouveaux calculs coûteux. Toutefois, il a été démontré que les données dérivées provenant
de différentes sources devraient être combinées avec soin dans les études statistiques pour
éviter d’augmenter le nombre de faux positifs (Rolland et al., 2022). En outre, les données
partagées sur des bases de données publiques telles que NeuroVault manquent générale-
ment d’annotations (Gorgolewski et al., 2015), ce qui rend leur réutilisation difficile. Il
est donc nécessaire de trouver des solutions pour tirer parti de cette grande quantité de
données dérivées partagées sur les bases de données publiques.

Apprentissage de représentations

L’apprentissage statistique, un sous-domaine de l’intelligence artificielle, se concentre
sur le développement d’algorithmes capables d’apprendre à partir de données et de faire
des prédictions ou de prendre des décisions sans qu’on leur indique explicitement la ma-
nière de procéder. En particulier, l’“apprentissage de représentation” désigne le processus
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par lequel des caractéristiques significatives sont extraites des données pour créer des re-
présentations plus faciles à comprendre et à traiter. Grâce à leur capacité à modéliser
des relations complexes, les réseaux de neurones, utilisés dans le cadre de l’apprentissage
profond (LeCun et al., 2015), ont montré des performances prometteuses pour cette tâche
dans de nombreux domaines de recherche. Dans ce contexte, les représentations des don-
nées sont apprises de manière hiérarchique par les réseaux de neurones et contiennent des
caractéristiques significatives pour la tâche sous-jacente à laquelle le réseau a été formé.

Dans le domaine de la vision par ordinateur, les chercheurs utilisent les réseaux de neu-
rones convolutifs en raison de leur capacité à extraire des caractéristiques visuelles à l’aide
d’opérations de convolution. Au fur et à mesure que les données d’entrée passent par des
couches successives, ces réseaux apprennent des caractéristiques de plus en plus abstraites
et complexes. Les couches inférieures capturent des caractéristiques de base telles que
les bords et les textures, tandis que les couches supérieures représentent des caractéris-
tiques plus significatives sur le plan sémantique et pertinentes pour la tâche à accomplir.
Ces représentations sont ensuite utilisées pour produire des résultats pour cette tâche,
mais elles peuvent également être manipulées et transférées entre différents tâches ou
entre différentes données afin d’améliorer les performances des réseaux. L’“apprentissage
par transfert”, un cas d’utilisation de l’apprentissage de représentations, s’appuie sur des
réseaux pré-entraînés dont les connaissances (paramètres des couches entraînées) sont
transférées à un autre réseaux qui sera appliqué à des données provenant d’un autre do-
maine ou à une autre tâche. De même, les représentations peuvent être manipulées pour
transférer des attributs entre les données. Ce cas d’utilisation est également connu sous le
nom de “transfert de style” (Gatys et al., 2016) et utilise des modèles génératifs, dans les-
quels les réseaux apprennent à modéliser la distribution des données, à partir de laquelle
de nouvelles données peuvent être échantillonnées ou des données existantes peuvent être
transférées.

Ces techniques sont prometteuses pour les problèmes décrits précédemment, car elles
permettraient de construire une représentation complète des résultats d’IRMf et de leurs
sources de variabilité. Toutefois, l’apprentissage d’une représentation utile et efficace né-
cessite une grande quantité de données d’entraînement pour représenter la diversité des
données cibles potentielles (Ricci Lara et al., 2022). Ce problème est particulièrement im-
portant dans le domaine de l’imagerie cérébrale, où les études sont généralement réalisées
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Figure 2 – Concept d’apprentissage de représentation dans la vision par ordinateur à
l’aide de réseaux de neurones convolutifs. Les caractéristiques de niveau inférieur sont
extraites dans les premières couches, tandis que les caractéristiques de niveau supérieur
sont apprises par la suite.

sur des échantillons petits et homogènes. Comme indiqué ci-dessus, les plateformes de
partage de données contiennent au contraire un grand nombre de données, provenant de
différentes sources, et présentent donc un bon niveau de variabilité en termes de protocoles
d’acquisition, de machines, de sites et de chaînes de traitements. L’utilisation de ces don-
nées nécessite le recours à des méthodologies particulières, car elles ne sont généralement
pas étiquetées ou ne font pas l’objet d’un processus d’étiquetage standardisé (Poldrack
et al., 2011b). En outre, les cartes statistiques d’IRMf ont des propriétés particulières
qui nécessitent une adaptation des méthodes traditionnelles d’apprentissage de représen-
tations. Elles contiennent des informations quantitatives (valeurs statistiques dans notre
contexte), la localisation spatiale est une information cruciale (la même activation dans
différentes régions du cerveau conduit à une interprétation complètement différente) et
la dimensionnalité des images médicales est beaucoup plus grande (une carte statistique
d’IRMf contient des dizaines de milliers de dimensions).

Contributions

La variabilité analytique des résultats d’IRMf pose des problèmes aux chercheurs qui
conçoivent une nouvelle étude et à ceux qui tentent de réutiliser les données issues d’autres
études. Dans ce contexte, la construction de représentations compréhensibles et significa-
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tives de la diversité des données d’IRMf aiderait à obtenir une meilleure connaissance de
l’espace analytique, mais aussi à fournir des solutions aux chercheurs qui souhaitent bé-
néficier des données dérivées partagées par la communauté sur des plateformes publiques.
Toutefois, cela nécessite l’utilisation de grandes quantités de données et des méthodologies
adaptées pour traiter les spécificités des données d’IRMf.

Dans la première série de contributions de cette thèse, nous proposons deux solutions
concrètes pour apprendre et manipuler des représentations basse dimension des résultats
d’IRMf afin de faciliter la réutilisation de la grande quantité de données dérivées par-
tagées. Premièrement, nous tirons parti de la base de données NeuroVault (Gorgolewski
et al., 2015) - une grande base de données publique de neuro-imagerie qui a été construite
collaborativement - pour apprendre une représentation non supervisée des cartes statis-
tiques d’IRMf, pouvant être transférée dans un cadre d’apprentissage “autodidacte” pour
aider à résoudre de nouvelles tâches (par exemple, décodage du cerveau). Ce travail a
donné lieu à la publication d’un article dans Gigascience, et les modèles pré-entraînés ont
été partagés avec la communauté en vue d’une réutilisation ultérieure. Deuxièmement,
nous avons supposé que les chaînes de traitements pouvaient être considérés comme un
composant de style des cartes statistiques d’IRMf et nous avons proposé d’utiliser des
méthodes de transfert de style pour convertir les cartes statistiques entre les chaînes de
traitements. Dans cette contribution, nous avons développé une méthode basée sur des
modèles de diffusion qui utilise une représentation latente des cartes statistiques dans
laquelle les données sont structurées sur la base des caractéristiques les plus importantes
qui les distinguent à travers les chaînes de traitement. Cette contribution a fait l’objet
d’un article, disponible en préprint et bientôt soumis à Human Brain Mapping.

Dans une deuxième série de contributions, nous explorons les caractéristiques de l’es-
pace des chaînes de traitements en IRMf. Pour ce faire, nous avons d’abord construit un
ensemble de données multi-chaînes de traitements composé d’un grand nombre de parti-
cipants et qui représente une partie non exhaustive mais contrôlée de l’espace analytique.
Nous avons publié un article de présentation des données en tant que préprint (bientôt
soumis à Scientific Data) et nous sommes en train de partager le jeu de données avec
la communauté sur Public-nEUro. Dans cet ensemble de données, nous avons utilisé des
algorithmes de détection de communautés (apprentissage de représentation pour identi-
fier les groupes de données sur les graphes) pour explorer l’espace analytique et évaluer
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la stabilité des relations entre les résultats de différentes chaînes de traitements à travers
différents groupes de participants et de tâches. Ce travail a donné lieu à la rédaction d’un
article, accepté à la conférence ICIP 2024 et disponible sous forme de préprint. Enfin,
nous explorons le potentiel de réutilisation des données et étudions la validité des analyses
statistiques qui combinent des données traitées avec différentes chaînes de traitements (par
exemple avec différents algorithmes, valeurs de paramètres ou logiciels). Un préprint est
disponible pour cette contribution, en co-auteur avec Xavier Rolland, et a été soumis à
Imaging Neuroscience.

Ce manuscrit est composé de trois parties. La première partie est consacrée à l’intro-
duction de l’analyse des données d’IRMf et de la variabilité analytique.

(i) Dans le Chapitre 1, nous présentons le champ d’application de cette thèse, l’IRMf.
Nous introduisons les grands principes des études d’IRMf, en décrivant le parcours
de l’activité cérébrale aux données brutes d’IRMf. Ensuite, nous exposons le pro-
cessus de transformation de ces données brutes en résultats finaux et décrivons les
principales étapes de traitement incluses dans les chaînes d’analyse d’IRMf tradi-
tionnelles.

(ii) Dans le Chapitre 2, nous donnons un aperçu des différentes sources de variabilité
qui peuvent être observées dans les études d’IRMf. Après une brève description
de chaque source, nous nous concentrons sur la variabilité analytique et montrons
que des changements peuvent être apportés à différents niveaux de la chaîne de
traitement, entraînant des variations dans les résultats. Nous décrivons également
les principaux défis liés à la variabilité analytique et les solutions développées pour
les relever.

Dans la deuxième partie du manuscrit, nous exposons notre première série de contribu-
tions dans lesquelles nous avons utilisé l’apprentissage de représentations profondes pour
atténuer la variabilité (analytique) des résultats d’IRMf et faciliter la réutilisation des
données.

(i) Le Chapitre 3 présente le contexte de l’apprentissage de représentations profondes
et son application au domaine de l’imagerie médicale. Nous détaillons les concepts

xxvi



Préambule en français

fondamentaux de l’apprentissage de représentations profondes, les défis liés à l’ima-
gerie médicale et décrivons deux cas particuliers d’apprentissage de représentations,
à savoir l’apprentissage par transfert et le transfert de style, dans lesquels les repré-
sentations sont transférées entre les tâches et/ou les données.

(ii) Dans le Chapitre 4, nous proposons une première solution pour faciliter la réuti-
lisation des données et nous exploitons la base de données NeuroVault dans un
cadre d’apprentissage autodidacte, un type spécifique d’apprentissage par transfert.
Pour ce faire, nous apprenons une représentation agnostique des cartes statistiques
d’IRMf à l’aide d’un autoencodeur convolutif, puis nous l’adaptons à diverses tâches.

(iii) Alors que les représentations ont été construites et transférées entre les tâches dans
le chapitre précédent, nous proposons une autre solution pour réutiliser les données
dérivées partagées et manipuler les représentations pour convertir les données entre
les différentes chaînes de traitements dans le Chapitre 5. Dans ce contexte, nous
proposons aussi une nouvelle méthode qui utilise un réseaux de neurones convolutif
entraîné à distinguer les cartes statistiques entre les chaînes de traitements et à
extraire les caractéristiques de haut niveau des données pour faciliter la transition
entre les chaînes de traitements avec des modèles de diffusion.

L’utilisation concrète de ces solutions repose sur l’identification des principaux facteurs
de variation pour trouver les cas critiques où l’atténuation de la variabilité analytique est
nécessaire et appropriée. Dans la troisième partie, nous explorons l’espace analytique
d’IRMf pour mieux comprendre les relations entre les résultats des chaînes de traitements
et identifier certains défis particuliers liés à la réutilisation des données et à la variabilité
analytique.

(i) Une étude complète de l’espace des chaînes de traitements n’est pas pratique car il
est particulièrement grand, nous proposons en revanche d’explorer une plus petite
partie de cet espace dans différents contextes : un grand nombre de participants et de
groupes, et plusieurs tâches pour 24 chaînes de traitements. Dans le chapitre 6, nous
décrivons l’ensemble de données “HCP multi-pipeline” que nous avons construit et
partagé avec la communauté pour faciliter l’étude de la variabilité analytique dans
différents contextes.
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(ii) Dans le Chapitre 7, nous utilisons l’ensemble de données HCP multi-pipelines pour
explorer l’espace des chaînes de traitements et évaluer la stabilité des relations entre
les résultats des chaînes de traitements au sein de différents groupes de participants
et de tâches. Nous avons utilisé des algorithmes de détection de communautés, i.e.
un type d’apprentissage de représentation qui permet d’identifier des groupes ou
des communautés de noeuds sur des graphes, et de tirer des conclusions quant aux
paramètres des chaînes de traitements qui donnent le plus souvent des résultats
similaires dans différents contextes.

(iii) Les relations entre les chaînes de traitements peuvent être évaluées en termes de
similitudes de leurs résultats, mais aussi en termes de compatibilité de ces résultats.
Au Chapitre 8, nous explorons la validité des méga-analyses d’IRMf (c’est-à-dire
la combinaison de cartes statistiques au niveau du sujet provenant de différentes
études) qui combinent des données traitées différemment au niveau du sujet. Nous
montrons que certains cas sont plus critiques que d’autres, ce qui entraîne un plus
grand nombre de faux positifs.

Enfin, dans une quatrième partie, nous présentons quelques perspectives et travaux
futurs.

En Annexe, nous présentons également d’autres travaux relatifs à l’impact de la variabilité
analytique sur la crise de la reproductibilité. Dans un premier temps (Annexe A), nous
examinons le contexte de la crise de la reproductibilité dans la recherche expérimentale.
Ensuite, nous présentons deux études dans lesquelles nous avons exploré la relation entre
la variabilité analytique et la reproductibilité en IRMf :

(A-i) Dans l’Annexe B, nous explorons l’impact de plusieurs variations dans les chaînes
de traitements sur la performance des biomarqueurs de la maladie de Parkinson
dérivés de l’IRMf de repos.

(A-ii) Dans l’Annexe C, nous présentons notre travail sur le projet NARPS Open Pipelines,
une base de code reproduisant les 70 chaînes de traitements utilisés dans une étude
multi-analystes (Botvinik-Nezer et al., 2020).

Au début de chaque chapitre, afin de reproduire les expériences et les figures, nous
fournissons les différents codes développés pour le chapitre et un lien vers les publications
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ou preprints associés. Pour plus de clarté, les détails de la mise en oeuvre de chaque
expérience (architecture du modèle, hyperparamètres, etc.) sont disponibles dans une
section dédiée de l’annexe.

Contexte de la thèse

Cette thèse a été réalisée au sein des équipes Empenn et LACODAM (LArge COl-
laborative DAta Mining) du laboratoire IRISA (Institut de Recherche en Informatique
et Systèmes Aléatoires), unité mixte de recherche (UMR 6074) issue d’une collaboration
entre neuf établissements pluridisciplinaires : CentraleSupélec, CNRS, ENS Rennes, IMT
Atlantique, Inria, INSA Rennes, Inserm, Université Bretagne Sud, Université de Rennes.
Les équipes de recherche Empenn (ERL U1228) et LACODAM sont conjointement affi-
liées à l’Inria, et Empenn est également affilié à l’Inserm (Institut National de la Santé et
de la Recherche Scientifique).

Ce travail a été partiellement financé par la Région Bretagne (ARED MAPIS) et
l’Agence Nationale pour la Recherche pour le programme de contrats doctoraux en intel-
ligence artificielle (projet ANR-20-THIA-0018).

Ce projet de recherche a également fait l’objet d’une collaboration avec le laboratoire
Big Data for NeuroInformatics du Dr. Tristan Glatard à l’Université Concordia et le
laboratoire ORIGAMI du Dr. Jean-Baptiste Poline à l’Université McGill, toutes deux
basées à Montréal, Canada. Le stage de mobilité internationale réalisé dans ce cadre a
été financé par une bourse de recherche Mitacs Globalink (IT34055) et par une bourse du
Collège Doctoral de Bretagne et de Rennes Métropole.
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Introduction

Functional Magnetic Resonance Imaging

Over the last decades, the development of brain imaging has considerably enriched our
understanding of the brain and its pathologies, paving the way for new diagnostic and
therapeutic approaches. In particular, brain imaging techniques such as Magnetic Reso-
nance Imaging (MRI) provided insights on the brain structure with high precision, while
remaining non invasive. Nowadays, the question of understanding brain functions has an
important place in many research fields ranging from medicine and psychology to artifi-
cial intelligence and philosophy. Unraveling the complexity of the brain and deciphering
how different brain regions interact is a scientific challenge that captivates researchers.
Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique that allows
researchers to study brain activity of individuals while they perform predefined tasks. The
number of published studies making use of this modality exploded in the last ten years:
in 2018, more than one thousand studies registered in the website clinicaltrial.gov
were using fMRI as an outcome measure (Sadraee et al., 2021).

In traditional fMRI studies, a set of participants is chosen based on different criteria,
depending on the purpose of the experiment (e.g. healthy controls, disease stage, etc.).
Studies are built to answer one or multiple research hypotheses, e.g. on the activation of a
brain area during a task or on the presence of differences between activation strength be-
tween two groups of individual. Participants undergo an fMRI acquisition, which consists
in a sequence of tasks constituting the activation paradigm. This paradigm is composed
of a reference task, usually rest, and a task of interest whose only difference with the
reference corresponds to the cognitive process to explore. Investigators recovers the raw
fMRI data in the form of 4-dimensional matrices for all participants and apply a sequence
of preprocessing and statistical analysis steps, called a “pipeline”. At the end of a pipeline,
results are output in the form of 3-dimensional statistic maps showing the activation of
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Figure 3 – Group-level statistic maps for the paradigm right-hand, unthresholded (upper)
and thresholded (lower) using a threshold of p < 0.05, Bonferroni corrected.

the brain for each participant and each research question, and across the set of partic-
ipants if a second-level of analysis was performed. These maps are usually thresholded
with statistical inference to identify the brain regions which display significant activation.
This process rely on statistical testing to determine whether observed differences or re-
lationships between variables are likely due to random chance or if they represent true
effects.

Brain imaging studies, and in particular fMRI, are subject to different sources of vari-
ability. By sources of variability, we refer to any factor whose variations lead to changes
in the final results. For instance, depending on the time of the day, or on the medication
state, the same participant could have different set of activations, representing a source
of variability, called intra-individual variability (Chen et al., 2016). Similarly, if data are
acquired for the same participant, but with different acquisition parameters, this could
lead to variations in the results (Wittens et al., 2021). Naturally, it seems logical that two
participants would have different results, but studies might fail to represent the whole set
of inter-individual variations (Valizadeh et al., 2018). Brain imaging studies are usually
small (∼30 participants in 2015 (Poldrack et al., 2017)) and composed of data acquired
at a single center, leading to a poor generalizability of findings.
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Analytical variability

Another source of variability relates to the variations in the final results caused by dif-
ferent implementations of the pipeline used to process and analyze raw data. In a meta-
analysis of more than 200 papers about fMRI, Carp, 2012b showed that these pipelines
are highly flexible, leaving researchers with many choices to make to analyze their data.
This statement raised questions about the potential effects of these different implemen-
tations on the results. Recently, in a many-analyst study (Botvinik-Nezer et al., 2020),
70 research teams were tasked to analyze the same task-fMRI dataset with their usual
method. Overall, there were no identical pipeline and the final results were relatively
variable across teams. This phenomenon, also known as “analytical variability”, can arise
from different levels of variations in the analysis pipeline:

— At each step, when changing the algorithm to use or a parameter value.

— When varying the software package used to implement the pipeline.

— At a lower level, when varying computing conditions.

Nowadays, the idea that different analytical approaches can lead to different results
is accepted in the community. Researchers now look for solutions to face the different
challenges related to analytical variability (Botvinik-Nezer et al., 2023). The flexibility of
analysis pipelines is particularly challenging for researchers as there is no ground truth
that can be used to compare and measure the performance of competing pipelines. Thus,
there is only few agreements on the good practices to guide the choice of pipeline. In
practice, researchers commonly explore multiple valid analytic alternatives, but often
report their results relative only to a single pipeline (or to a few set of variants). This
selective reporting can result in an increase of false positive findings (Ioannidis, 2008a;
Simmons et al., 2011; Gelman et al., 2019). As a potential solution, researchers can use
multiverse analyses (Steegen et al., 2016) to compare and report the results of multiple
analytical approaches. But, a systematic investigation of the pipeline space is impractical
due to the high number of possible pipelines. In both cases, a better knowledge of the
pipeline space would be useful to identify the main drivers of this variability in the results
and for instance, facilitate the selection of a representative set of pipelines.

Another issue related to the variability in fMRI is the reusability of data. With the
emergence of data sharing practices (Niso et al., 2022), there is an opportunity to increase
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sample sizes of brain imaging studies by re-using shared data. The use of larger and more
diverse samples would help to improve the reproducibility and generalizability of results
and provide more flexibility as to which research question can be investigated. In practice,
data re-use is usually performed with raw data coming from different studies, that are
then re-analyzed with the same pipeline. Another solution is to use derived data (i.e.
already processed). This is more optimal, not only because sharing statistic maps is
not as difficult as sharing raw data due to reduced privacy constraints, but also because
it avoids having to perform costly re-computations. However, there have been some
evidence that derived data coming from different sources should be combined carefully in
statistical studies to avoid increasing the number of false positives (Rolland et al., 2022).
Moreover, there is usually a lack of annotations on data shared on public databases such
as NeuroVault (Gorgolewski et al., 2015), making it challenging to re-use them. Thus,
there is a need for solutions to benefit from this large amount of derived data shared on
public databases.

Representation learning

Machine learning, a subfield of artificial intelligence, consists in providing real world
data to a model, which will learn patterns in these data to answer a problem at hand.
In particular, “representation learning” (Bengio et al., 2013) refer to the process where
meaningful features are extracted from raw data to create representations that are easier
to understand and to process. With their ability to model complex relationships, neu-
ral networks, used in deep learning frameworks (LeCun et al., 2015), showed promising
performance for this task in many research fields. In these frameworks, representations
of data are learned in a hierarchical manner by neural networks and contain meaningful
features for the underlying task for which the network was trained.

In computer vision, researchers make use of Convolutional Neural Network (CNN)
due to their ability to extract visual features with convolution operations. As the input
data passes through successive layers, these networks learn increasingly abstract and
complex features. Lower layers capture basic features like edges and textures, while
higher layers represent more semantically meaningful features relevant to the task at
hand. These representations are then used to output results for this task, but they can
also be manipulated and transferred between models or between data to improve other
models performance. “Transfer learning” (Pan et al., 2010), a use case of representation
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Input image

Low-level features Mid-level features High-level features

“Person”

Figure 4 – Concept of representation learning in computer vision using Convolutional
Neural Network (CNN). Lower-level features are extracted at the first layers, while higher-
level features are are learned after.

learning, leverage pretrained models whose knowledge (i.e. parameters of trained layers)
is transferred to another model that will by applied on data from another domain or for
another task. Similarly, representations can be manipulated to transfer attributes between
data. This use case is also known as “style transfer” (Gatys et al., 2016) and make use
of generative models, in which networks learn to model the distribution of training data,
from which new data can be sampled or existing data can be transferred.

These techniques are promising for the problems outlined earlier, as these would allow
to build a comprehensive representation of fMRI results and of their sources of variability.
However, learning a useful and efficient representation requires a large amount of training
data to represent the diversity of the potential target data (Ricci Lara et al., 2022). This
issue is of main importance in brain imaging, where studies are usually made on small and
homogeneous samples. As stated above, data sharing platforms, on the contrary, contain
a large number of data, coming from different sources, and thus display a good level of
variability in terms of acquisition protocols, machines, sites and analysis pipelines. Using
these data necessitate the use of particular methodologies, as these are usually not labeled
or does not have a standardized labelling process (Poldrack et al., 2011b). Moreover, fMRI
statistic maps have particular properties, which require adaptation of traditional repre-
sentation learning frameworks. They contain quantitative information (i.e. statistical
values in our context), spatial localisation is crucial information (i.e. the same activation
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in different regions of the brain leads to a completely different interpretation) and the
dimensionality of medical images is much larger (i.e. an fMRI statistic map contains tens
of thousands of dimensions).

Contributions

Analytical variability in fMRI results lead to challenges, for researchers that design
a new study, and for researchers who try to re-use data from other studies. In this
context, building comprehensible and meaningful representations of the diversity in fMRI
data would help to get a better knowledge of the analytical space, but also to provide
solutions for researchers that want to benefit from derived data shared by the community
on public platforms. However, this requires the use of large amount of data and adapted
methodologies to deal with the specificities of fMRI data.

In the first series of contributions of this thesis, we propose two concrete solutions to
learn and manipulate lower-dimensional representations of fMRI results to facilitate the
re-use of the large amount of shared derived data. First, we leverage the NeuroVault
database (Gorgolewski et al., 2015) – a large public neuroimaging database that was
built collaboratively – to learn an unsupervised representation of fMRI statistic maps,
that can be transferred in a self-taught learning framework to help solve new tasks (e.g.
brain decoding). This work led to the publication of a journal paper in Gigascience, and
pretrained models were shared with the community for further re-use. Secondly, we made
the assumption that pipelines could be seen as a style component of fMRI statistic maps
and proposed to use style transfer frameworks to convert statistic maps between pipelines.
In this contribution, we adapted several state-of-the-art frameworks for Image-to-image
transition (I2I) to our task and developed a framework based on Denoising Diffusion
Probabilistic Model (DDPM). This framework makes use of a latent representation of
statistic maps in which data are structured based on the most important features that
distinguish them across pipelines. This contribution was the subject of a paper, available
as preprint and soon submitted to Human Brain Mapping.

In a second series of contributions, we explore the characteristics of the fMRI pipeline
space. To do so, we first built a multi-pipeline dataset composed of a large number
of participants and that represents a non-exhaustive but controlled part of the pipeline
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space. We published a data paper as a preprint, we plan to submit it to Scientific Data
and to share the dataset with the community on Public-nEUro. Within this dataset, we
used community detection algorithms (i.e. representation learning to identify clusters on
graphs) to explore the pipeline space and assess the stability of relationships between
pipeline results across different groups of participants and tasks. This work led to a paper
that was accepted to the conference ICIP 2024 and that is also available as preprint.
Finally, we explore the potential of data re-use and study the validity of statistical analyses
that combine data processed differently (e.g. with different algorithms, parameters values
or software packages). A preprint is available for this contribution, in co-authorship with
Xavier Rolland, and was submitted to Imaging Neuroscience.

This manuscript is composed of three parts. The first part is dedicated to the intro-
duction of fMRI data analysis and of analytical variability.

(i) In Chapter 1, we present the field of application of this thesis, fMRI. We introduce
the main principles of fMRI studies, outlining the journey from brain activity to
fMRI raw data. Afterwards, we expose the process of translating these raw data
into final results and describe the main processing steps included in traditional fMRI
analysis pipelines.

(ii) In Chapter 2, we give an overview of the different sources of variability that can
be observed in fMRI studies. After a brief description of each source, we focus on
analytical variability and show that changes can be made at different levels of the
pipeline, leading to variations in the results. We also describe the main challenges
related to analytical variability and the solutions developed to tackle these.

In the second part of the manuscript, we expose our first series of contributions in
which we used deep learning to mitigate (analytical) variability in fMRI results and facil-
itate data re-use.

(i) Chapter 3 poses the context of deep learning and its application to the field of
medical imaging. We detail the fundamental concepts of representation learning
and in particular, deep learning, the challenges related to medical imaging and
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describe two particular cases of deep learning, namely transfer learning and style
transfer, in which representations are transferred between tasks and/or data.

(ii) In Chapter 4, we propose a first solution to facilitate data re-use and we leverage the
NeuroVault database in a self-taught learning framework, a specific type of transfer
learning. To do so, we learn an agnostic representation of fMRI statistic maps
using a Convolutional AutoEncoder (CAE) and then fine-tune it towards a variety
of tasks.

(iii) While representations were built and transferred between tasks in the previous chap-
ter, in Chapter 5, we propose another solution to re-use shared derived data and
manipulate representations to convert data between different pipelines. We propose
a new framework that makes use of a Convolutional Neural Network (CNN) trained
to distinguish statistic maps between pipelines and extract the higher-level features
of data to help transition between pipelines with diffusion models.

The concrete use of these solutions rely on the identification of the main drivers of
variations to find critical cases where mitigation of analytical variability is required and
appropriate. In the third part, we explore the fMRI analytical space to better understand
relationships between pipelines results and identify some particular challenges related to
data re-use and analytical variability.

(i) A full investigation of the pipeline space is impractical as it is particularly large,
we propose in contrast to explore a smaller part of this pipeline space across dif-
ferent contexts: a large number of participants and groups, and several tasks for
24 pipelines. In Chapter 6, we describe the HCP multi-pipeline dataset that we
built and shared with the community to facilitate the study of analytical variability
across different contexts.

(ii) In Chapter 7, we make use of the HCP multi-pipeline dataset to explore the pipeline
space and assess the stability of relationships between pipeline results across different
groups of participants and tasks. We used community detection algorithms, i.e. a
type of representation learning that allows to identify clusters or communities of
nodes on graphs, and derive conclusions as to which pipelines parameters mostly
give similar results across contexts.
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(iii) Relationships between pipelines can be seen in terms of similarities of their results,
but also in terms of compatibility of these results. In Chapter 8, we explore the
validity of fMRI mega-analyses (i.e. combining subject-level statistic maps from
different studies) that combine data processed differently at the subject-level. We
show that some cases are more critical than other, leading to a higher number of
false positives.

Finally, in a fourth part, we present some perspectives and future works.

In Appendix, we also share additional works related to the impact of analytical vari-
ability on the reproducibility crisis. In a first Chapter (A), we discuss the context of the
reproducibility crisis in experimental research. Then, we present two studies in which we
explored the relationship between analytical variability and reproducibility:

(A-i) In Appendix B, we explore the impact of several variations in the workflow on the
performance of resting state fMRI derived Parkinson’s disease biomarkers.

(A-ii) Then, in Appendix C, we present our work on the NARPS Open Pipelines project: a
codebase reproducing the 70 pipelines used in a many-analyst study (Botvinik-Nezer
et al., 2020).

At the beginning of each chapter, in order to reproduce the experiments and the fig-
ures, we provide the different source codes developed for the experiments and link to the
associated publications or preprints.

Context of the thesis

This thesis was carried out in Empenn and LACODAM (LArge COllaborative DAta
Mining) teams at the IRISA (Institut de Recherche en Informatique et Systèmes Aléa-
toires) laboratory, a joint research unit (UMR 6074) resulting from a collaborative effort
between nine multi-disciplinary establishments: CentraleSupélec, CNRS, ENS Rennes,
IMT Atlantique, Inria, INSA Rennes, Inserm, Université Bretagne Sud, Université de
Rennes. Both Empenn (ERL U1228) and LACODAM research teams are jointly affili-
ated with Inria, and Empenn is also affiliated with Inserm (National Institute of Health
and Scientific Research).
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This work was partially funded by Region Bretagne (ARED MAPIS) and Agence Na-
tionale pour la Recherche for the program of doctoral contracts in artificial intelligence
(project ANR-20-THIA-0018).

This research project was also the subject of a collaboration with the Big Data for
NeuroInformatics lab of Dr. Tristan Glatard at Concordia University and ORIGAMI lab
of Dr. Jean-Baptiste Poline at McGill University, Montreal Canada. The mobility intern-
ship realized in this context was funded by a Mitacs Globalink Research Award (IT34055)
and by a scholarship from the College Doctoral de Bretagne and Rennes Metropole.
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OPEN SCIENCE

During my thesis, I had the chance to discover and dive into the Open Science com-
munity. My journey took the form of several principles that I tried to respect throughout
my research and other scientific contributions.

Opening my research

At the beginning of each project, I create a code repository using Git (Chacon et al.,
2014) to version my code and GitHub or GitLab to make it available publicly online. Even
if the project ends or is left in standby, this allows to let an imprint of my work online,
which can be useful to help future researchers who would like to continue this project or
start a new one. For published or finished works, I use Software Heritage (Cosmo et al.,
2017) to archive this code and preserve it in the long term.

My projects are sometimes associated with derived data. These data can take the
form of pretrained models, which was the case for the works described in Chapter 4
and 5. I always share these models with the community, for instance on Zenodo (Euro-
pean Organization For Nuclear Research et al., 2013), to facilitate their re-use by other
researchers.

For several of my works, I use a dataset of statistic maps processed with different
pipelines that I built using publicly available data (see Chapter 6). These data are cur-
rently in the process of being shared with the community, as these might help researchers
to perform their own analyses.

When a project lead to a written paper, I also take care to publish the preliminary
versions as preprint on HAL 1 and arXiv 2.

1. https://inria.hal.science/
2. https://arxiv.org/
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Making my research more reproducible

When I share my work, I try to make my experiments as reproducible as possible. This
starts by writing comprehensive and interactive README files for my code repositories,
to help users that would like to re-run the project. In these repositories, I also use
Jupyter Notebooks to facilitate reproducibility and comprehension of my code. As a
further step towards reproducibility, during some of my projects, I developed several
Docker (Merkel, 2014) and Singularity (Kurtzer et al., 2017) containers that I also shared
with the community and that could be directly used to re-launch my experiments.

In all my projects, I use open datasets (e.g. Human Connectome Project (Van Essen et
al., 2013), NeuroVault (Gorgolewski et al., 2015), etc.), which first allows me to make my
work easily reproducible. These datasets are very useful as initial ‘pilot’ data for methods
development and experimentations, as they reduce the time and cost of acquiring new
data. Due to their large size (more than 1TB for Human Connectome Project (HCP)), I
had to find solutions to store these data and analyze them easily.

Using such data also allows me to work with common data representations, in my case
the Brain Imaging Data Structure (BIDS) (Gorgolewski et al., 2016). Some of the datasets
that I used were not initially in BIDS format (e.g. raw data from the Human Connectome
Project (HCP)) and I used conversion software, such as HeudiConv (Halchenko et al.,
2024), to convert the dataset in BIDS and facilitate the re-launching of my code on other
datasets in BIDS format.

Collaborating with other researchers

These previously detailed efforts are also to me a solution to facilitate collaborations
with other researchers. During the first year of my thesis, I attended the OHBM Brainhack
(in Glasgow, 2022) and realized that collaborating was leading to new knowledges, new
ideas and thus, a better research. During the three days of this Brainhack, I had the
chance to present the Narps Open Pipelines project (detailed in Appendix C) that I
started during my master’s internship, and that is now at a far higher level thanks to
the collaborations initiated at this event. We recently published the Proceedings of this
Brainhack in Aperture Neuro (see ). I also participated to the OHBM Brainhack in
Montreal, 2023 and to local hackathons which I organized in the ORIGAMI team during
my mobility internship, and in the Empenn team. This project led to several fundings
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which allowed to hire a research engineer for 18 months to continue the project (Boris
Clenet, research engineer in the Empenn team).

During my thesis, I also had the opportunity to collaborate with international re-
searchers through an international mobility in Montreal, Canada. I spent four months
in Tristan Glatard’s and JB Poline’s labs to work on the LivingPark project, co-hosted
by their labs. This project showed me the importance of international collaborations and
allowed me to discover new techniques to facilitate open science and reproducibility.

Communicating to the general public

To my opinion, opening science also means opening our research to the general public
through scientific popularization. During my thesis, I participated to several actions to
transmit knowledge to the public. In particular, as part of the L Codent, L Créent action,
I animated educational sessions (8 × 45min) of creative programming for middle school
girls (12-13yo) during the Editions 2021-2022 and 2022-2023. The goal was to promote
computer science and demystify coding.

I also took part in the organization of an event for the Brain Awareness Week 3 (Edi-
tions 2022 and 2024) and was volunteer for the organization of the festival Pint of Science
2024 4. In order to improve my skills, I also followed the training to scientific populariza-
tion as part of the TISSAGE project (TrIptyque Science Société pour AGir Ensemble) 5

led by the Ministry of Higher Education, Research and Innovation.

3. https://www.semaineducerveau.fr/
4. https://www.pintofscience.fr
5. https://www.univ-rennes.fr/saps-tissage
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Chapter 1

FUNCTIONAL MAGNETIC RESONANCE

IMAGING (FMRI)

Functional Magnetic Resonance Imaging (fMRI) is a brain imaging technique used to
explore brain activity and the functional connections between different brain regions. The
first section of this chapter outlines the journey from brain activity to the acquisition of
fMRI raw data, we provide: an overview of the objectives of brain imaging and the primary
techniques employed in this field, with a specific focus on fMRI (1.1.1), explanations about
the main physiological process behind fMRI (1.1.2) and descriptions of the fundamental
concepts involved in traditional fMRI acquisition (1.1.3). In a second section, we delve into
the process of translating fMRI raw data to fMRI results, with a description of the multiple
processing steps that can be used to analyze fMRI data, starting from preprocessing (1.2.1)
to statistical analysis (1.2.2 and 1.2.3) and inference (1.2.4).

1.1 From brain activity to fMRI raw data

1.1.1 Brain imaging and fMRI

Brain imaging - also known as neuroimaging - provides the opportunity to capture rich
and descriptive information about the structure and functional architecture of the brain
non-invasively. Nowadays, brain imaging techniques are commonly used to acquire raw
data that are processed to answer questions about the healthy and pathological brain, in
medicine and in psychology. Depending on the research question, different brain imaging
techniques can be used, involving different physical and biological processes: radiation
(X-ray emission, detection of injected radioactive products), measurement of electrical
activity or magnetic fields. We mainly distinguish two types of brain imaging techniques:

• Structural imaging that explores the anatomy of the brain, for instance with
Computed Tomography (CT) scan (based on X-rays) and Magnetic Resonance
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1.1. From brain activity to fMRI raw data

Imaging (MRI) (based on magnetic fields).

• Functional imaging in which the activity of brain areas is studied during different
tasks, using for instance Positon Emission Tomography (PET) scan (based on the in-
jection of a radioactive tracer), Electroencephalography (EEG) and Magnetoencephalography
(MEG) (respectively measuring the activity of neurones using electrodes that mea-
sure the electrical potential and the magnetic fields at the surface of the brain) and
Functional Magnetic Resonance Imaging (fMRI) (which measures variations in the
local oxygenation of blood, which in turn reflects the amount of local brain activity.).

For the remainder of the manuscript, we will focus on fMRI, and particularly on
task-fMRI. There are two main types of fMRI: resting-state and task-fMRI. In resting-
state fMRI, brain activity is recorded when participants are at rest, i.e. when they are
not performing any task supposedly underlying any cognitive process. This allows to
investigate the synchronicity of activations between different brain regions and thus, to
identify resting-state networks. In task-fMRI , participants are asked to perform specific
tasks during the acquisition, e.g. movement, speaking, etc. This allows to measure
variations in the recorded signal at the time of the expected response and thus, to detect
activations in specific areas of the brain related to the task. The physiological processes
involved for the acquisition of resting-state and task-fMRI are the same, and relates to
haemodynamic changes in the brain. However, the preprocessing and statistical analysis
used to analyse the data acquired varies between the two, with common preprocessing
steps.

1.1.2 Principle of BOLD fMRI

The most common method used for fMRI takes advantage of the Bold Oxygen Level
Dependent (BOLD) signal, which rely on the fact that increased neuronal activity in a re-
gion of the brain correlates with increased blood flow to that specific region. This amount
of blood sent to the active neurons is larger than what is needed to oxygenate neurons,
leading to a relative surplus in oxygenated blood. These changes in levels of oxygenated
or deoxygenated blood can be detected on the basis of their differential magnetic suscep-
tibility, and can be compared to the expected haemodynamic response for each task to
estimate brain activity (Poldrack et al., 2011a).
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1.1.3 Experimental design and protocols

In research settings, to explore brain activity under different conditions, task-fMRI
studies usually involve multiple participants for which a temporal sequence of brain vol-
umes is acquired while they perform a set of tasks. During the acquisition, images are
acquired with a regular time interval between two consecutive images (called repetition
time or TR) during a specific time. A protocol is developed to explore a cognitive process
and participants are asked to perform a set of tasks (e.g. raising hands and raising foots)
with predefined onsets, durations and sometimes, intensities. This set of task and the
associated stimuli are called a paradigm (e.g. motor paradigm). Paradigms are designed
to manipulate specific mental processes, in order to better understand how they relate
to brain activity. Two main experimental designs exists: block designs and event-related
designs. Block designs involve long-lasting stimuli, while event-related designs involve
brief stimuli leading to short neural responses. Event-related designs usually offer greater
flexibility, but may have lower signal-to-noise ratios compared to block designs (Liu, 2012;
Petersen et al., 2012).

1.2 From fMRI raw data to fMRI results

Action Rest Action Rest Action Rest

…

Time

3-dimensional 
volume

Figure 1.1 – Illustration of common fMRI protocols

For each participant, several data are acquired during a session: functional data cor-
responding to 4-dimensional matrices containing a time-series of concatenated brain vol-
umes and additional files used to process them, for instance structural data (i.e. with
more precise anatomical information) or field maps (i.e. measuring field inhomogene-
ity). Stimulus time-series, which give information about the set of tasks performed by
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the participant, is also recorded for further analysis. Brain imaging data are composed
of voxels (3-dimensional version of a pixel, i.e. a value on a regular grid in 3-dimensional
space) that represent the intensity of the signal in the corresponding part of the brain.
In functional data, there is a supplementary time dimension, meaning that each voxel is
associated with a time course (see Figure 1.1). A session of functional acquisition is also
called a “run”. Depending on the study protocol, multiple runs can be acquired, resulting
in multiple functional data for a participant for the same paradigm. The data obtained
after acquisition are called the “raw data”.

The sequence of steps applied to the raw data to obtain the final results is called a
“pipeline”. In fMRI data analysis, a pipeline is traditionally split into three main steps,
itself composed of multiple sub-steps:

1. Preprocessing: cleaning and preparation of data for further analyses, usually involv-
ing additional 3-dimensional files such as structural data or field maps.

2. First-level analysis: at the run or at the subject-level, to analyze each voxel’s time
course to identify changes in the BOLD signal in response to some manipulation.

3. Second-level analysis: referring to the combination of run-level results in a subject-
level analysis or to the combination of subject-level results at the group-level.

To facilitate comprehension, in the following, we will refer to subject-level analysis for
both run-level and subject-level analyses.

1.2.1 Preprocessing

An fMRI pipeline usually starts by the preprocessing of the raw data. This step is
fundamental to perform further analyses, due to the high number of artifacts in the data
and due to the variations in the shape of the brain across participants. Using a sequence
of several image and signal processings, the goal is to increase signal-to-noise ratio and to
prepare data for group-level analyses with standardization steps that aligns data between
participants so that a voxel’s coordinate in the brain of participant A corresponds to the
same location in the brain of participant B.

The preprocessing part of the pipeline is composed of several steps, that have an effect
at the temporal level (i.e. involving operations that filter or affect the properties of data
across the time dimension) or at the spatial-level (i.e. involving operations that filter or
affect the spatial properties of data, such as spatial orientation, resolution, and shape).
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correction

Motion 
correction
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Figure 1.2 – Example of a standard fMRI pipeline: pre-processing, first and second-level
statistical analyses.

Example of a standard preprocessing workflow is presented in Figure 1.2, with an example
of functional raw data before and after preprocessing.

In the following subsections, we describe several preprocessing steps that can be used
to clean and align raw data between participants. These steps can be performed on both
resting-state and task-fMRI data, but some of these are more commonly used during
resting-state fMRI data analysis, as signal-to-noise ratio in the data is usually lower.

1.2.1.1 Distortion correction

Echo Planar Imaging (EPI), the technique used to acquire fMRI BOLD data, is very
sensitive to magnetic field inhomogeneity, causing geometric distortion in the images.
This phenomenon particularly affects regions where there is an air-tissue interface, i.e.
where the magnetic field varies, causing dropouts and distortions. Different techniques
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1.2. From fMRI raw data to fMRI results

have been developed to correct for image distortions. We will refer to “unwarping” for
the non field map based technique and to “undistortion” for the one that involves the use
of field maps representing the field inhomogeneities (Hutton et al., 2002).

Unwarping is based on the susceptibility-by-movement assumption (Andersson et
al., 2001). After realignment (motion correction, explained in 1.2.1.2), there is resid-
ual movement-related artefacts caused by the object having different shape at different
time points. The unwarping technique uses these remaining artefacts and the movements
parameters computed during realignment to estimate how the distortions change with
participant movement. However, this corrects images to some “average” distortion and
does not actually remove the “static” distortions.

Undistortion, the field map based technique, attempt to correct for the “static" com-
ponent of the geometric distortion, i.e. not related to motion. This technique can be used
in complement to unwarping to improve anatomical fidelity but it requires the acquisition
of supplementary images to build the field map.

1.2.1.2 Motion correction

The movement of a participant during the acquisition can impact the analysis of the
resulting images. Indeed, if we look at the signal at a specific voxel coordinate, the same
signal may changes coordinates across time due to movement. Moreover, the brain signal
may vary because of the movement and not because of the paradigm of interest.

The first step to correct for movement is to perform a rigid-body transformation to
realign data to a reference scan: often, the first or mean volume of functional raw data.
Translations and rotations of the brain on the x, y and z axes are compared to the
reference and differences are computed to obtain 6 movement regressors. In some cases,
in addition to the computation of the movement regressors, the image is also “realigned”,
i.e. modified to permanently apply the computed transformations to the image.

However, realignment does not solve all movement-related issues, in particular due
to the interaction of movement with the inhomogeneity of the field. This can cause
distortions of voxels and thus, non-rigid movements. The remaining motion in the image
can be mitigated at two other steps: 1) movement regressors computed at this step can be
regressed out from the signal to further remove movement-related artifacts (Friston et al.,
1996) (see 1.2.2.3) and 2) unwarping, which tries to estimate the effects of interactions
between field inhomogeneity and movement and correct for them (see 1.2.1.1).
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1.2.1.3 Slice-timing correction

During acquisition in two dimensions, each 2-dimensional slice of a volume is acquired
at a distinct time point, since images are collected in discrete slices. However, when
we model the data at each voxel for statistical analysis, we assume that all of the slices
were acquired simultaneously, which can be a problem when modelling rapid events. To
correct for this, the time series of each slice can be adjusted to make it appears like all
slices were acquired at the same time. This step may not be beneficial for all acquisitions,
this depends on the acquisition parameters and on the experimental protocol. Slice-timing
correction might also interact with other processing steps (Parker et al., 2019), for instance
more accurate motion estimate can be obtained if motion correction is performed before
slice-timing.

1.2.1.4 Co-registration and standardization

To further correct for head movement and obtain comparable images between partic-
ipants, two steps are usually performed: co-registration and standardization (also known
as normalization).

Co-registration Co-registration corresponds to the alignment between two acquisi-
tions: a structural image and the functional images. Usually, the structural image is
realigned to the functional ones, using the same method as for realignment (rigid-body
transformations, see 1.2.1.2). This step is performed before normalization and allows to
compute normalization parameters on the structural image, which has higher spatial res-
olution and fewer artefacts, and after, apply these parameters to the functional images
afterwards. This step can also be bypassed in favor of direct transformation into the
standard template coordinate system (Calhoun et al., 2017).

Normalization / Standardization Normalization also corresponds to the alignment
between images, but, contrary to co-registration, it aligns functional data of different
participants into a common standard template. Indeed, participants have different brain
shapes and to allow for group-level analyses, it is important that each voxel of the brain
is located at the same coordinate between different participants. Similarly to realignment
and co-registration, linear transformations are applied in a first step: translations and
rotations, plus zooms and shears. These transforms are often complemented by non-linear
registration using deformation fields to further reduce distortions. It can also incorporate
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regularization (i.e., imposing penalties for excessive distance between the parameters and
their expected values) or segmentation(Ashburner et al., 2005) (i.e., separating gray and
white matter) to obtain more robust results.

The most widely used standard template is the one of the Montreal Neurological
Institute: MNI152 (Fonov et al., 2009), but this template is specific to a certain category
of the population and may not fit some specific studies. For instance, studies on infants
or on a specific demographic category of the population might require specific templates.

1.2.1.5 Spatial smoothing

Spatial smoothing consists in averaging the signals of neighboring brain voxels, which
can be justified by the correlation of their function and blood supply. This step helps
improving signal-to-noise ratio but decreases spatial resolution and blurs the image. De-
pending on the features that need to be extracted from the raw data, in particular for
resting-state fMRI, this step can be deprecated. However, it is commonly performed for
task-fMRI. The standard method implies convolution of the raw data with a Gaussian
kernel that multiply the signals of close neighboring voxels with a high weight and from
more distant voxels with a lower weight. The optimal kernel size is variable, but in prac-
tice, Full-width at Half-Maximum (FWHM) value of the Gaussian kernel is typically set
to 4 to 6 mm for participant-level studies and to 6 to 8 mm for group-level analyses.

1.2.1.6 Temporal filtering

Functional data suffer from temporal noise, which refers to changes in signal over time
due to factors that are not related to brain activity. It can arise from the scanner (physical
noise) but also from the participant (physiological noise, such as motion, breathing and
cardiac pulsation). This temporal noise can be corrected with different steps during
preprocessing. Smoothing, which is known to reduce spatial noise, is also beneficial for
temporal noise as it cleans time courses by reinforcing signals and cancelling noise.

Detrending The origin of the linear trend of fMRI signal is still discussed in the com-
munity. Two hypotheses are discussed: some believe that it arises from scanner instabil-
ity (Huettel et al., 2004), while others believe that it may have other meaning, at least
in resting-state fMRI (Wang et al., 2014). However, the linear trend may be problematic
when trying to estimate brain activity. Linear detrending consists of modelling the voxel’s
time-series using a General Linear Model (GLM) and subtracting the linear component
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from the original signal (Bandettini et al., 1993). If the data does have a trend, detrending
forces its mean to zero and reduces overall signal variations.

High-pass filtering To further remove temporal noise and in particular linear trend
and scanner drifts, high-pass filtering can also be performed. It also filters out linear
trends, so adding linear trend removal is redundant but often described as two different
steps in studies. Noise is particularly expressed in the low-frequencies in fMRI signal, so
high-pass filtering can help to remove this low-frequency noise.

Low-pass filtering Highest temporal frequencies can also be filtered, allowing only the
low frequencies to pass and limit the impact of physiological noise such as respiratory or
cardiac noise, which are associated with high signal frequencies. One way to do this is to
smooth the time-series with a Gaussian kernel over time, similarly to spatial smoothing
but instead of computing the weighted average of neighboring voxel intensities at the
same time, temporal smoothing computes those averages over time, using neighboring
time points. This step is used in resting-state fMRI preprocessing pipelines, but usually
not applied in task-fMRI.

1.2.1.7 Regression of nuisance signals

To further remove any non-neural activity-related process, several nuisance signals
are often regressed out from data using multiple linear regression. Indeed, even if some
of the noise can be remove by high-pass and low-pass temporal filtering, high-frequency
confounds from breathing, heart beat and movement may still remain in the signal. Time
series of physiological noise can be included as noise regressors into a GLM to remove the
part of the signal explained by the nuisance regressor from the residuals. Confounds such
as motion regressors, CerebroSpinal Fluid (CSF) or White Matter (WM) signals can also
be regressed out, with few consensus on which ones to use. Indeed, while it might sound
interesting to remove as much noise as possible from the signal, a high number of regressors
in a GLM might lead to a more conservative significance testing of the model due to a
lower number of degrees of freedom. This is of particular importance in task-fMRI, but
less taken into account for resting-state which is especially vulnerable to physiological
artifacts. The use of such regressors in statistical analysis for task-fMRI is described in
Section 1.2.2.3.

There are multiple ways to compute these confounds. Motion-related regressors are
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1.2. From fMRI raw data to fMRI results

often computed during the realignment step of the preprocessing, sometimes enriched with
the squares, derivatives, and squares of derivatives of the six original parameters to obtain
24 movement regressors (Yan et al., 2013a). Regarding breathing and cardiac noise, it is
possible to record these values during the acquisition, but this requires a specific setup and
the recording can contain artifacts too. A common procedure is to extract physiological
noise using the time series of voxels located in white matter (WM) or ventricles (CSF)
since these signals are of no interest (Weissenbacher et al., 2009).

Other techniques make use of dimensionality reduction to identify specific parts of
the signal that correspond to noise. Component Based Noise Correction Method (Comp-
Cor) (Behzadi et al., 2007) derives significant principal components of noise from regions-
of-interest in which the signal is unlikely to be modulated by brain activity. These compo-
nent can then be included as confounds in the GLM, similarly to other nuisance regressors.
Independant Component Analysis (ICA) techniques decompose the data in a set of spa-
tial components and their associated time-course, with the intention of regressing out
the components representing noise. However, to identify these components, one need to
manually annotate them or train a model to identify these components, which might be
delicate and very specific depending on the study.

Regression of global signal is a debated topic. It might be beneficial as it reduces
the impact of motion but it also removes some signal of interest (Yan et al., 2013a;
Satterthwaite et al., 2013). Studies also showed that regression of global signal can add
anti-correlation and alter connectivity structure (Yan et al., 2013b; Weissenbacher et al.,
2009).

1.2.1.8 Data cleaning: scrubbing, despiking

Even after all these preprocessing steps, it may remain some large intensity increase in
the signal, called “spikes”, which are caused by scanner instability or high level movements
(coughing for instance). These spikes cannot be properly removed with temporal filtering
and require a specific processing.

To deal with these spikes, several methods can be used. The first one is despiking, in
which the signal of abnormally high voxels will be made lower artificially. This method
allows to modify the signal while keeping all volumes and time points. The second method
consists in identifying the time points where large movements occur and adding this
information as a nuisance regressor or removing the identified volumes from the data.
This technique is called “scrubbing” and the identification of outlier volumes rely on
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metrics such as framewise displacement (FD) or the DVARS, representing the spatial root
mean square of the data after temporal differentiation (Power et al., 2012; Power et al.,
2013; Afyouni et al., 2018). However, this technique mostly relies on motion parameters
computed during realignment, which may not be perfect and requires to choose a threshold
for the different metrics to identify outliers. This outlier identification can also lead to
the elimination of participants due to a large number of outlier volumes.

1.2.2 First-level analysis

After preprocessing, functional data are cleaned and ready for further feature extrac-
tion using different analyses. In task-fMRI, the goal is to explore brain activity and to
measure which part of the signal recorded during acquisition is related to the task per-
formed by the participant. Since we have access to the time-series of the stimuli and since
we approximately know how the signal should vary in response to a stimuli, we can model
the expected brain response in case of brain activation for each task and compare this
to the real signal in the raw data. To do so, we use a General Linear Model (GLM) to
fit the fMRI signal present in functional data at each position of the brain to regressors
computed to represent the different tasks of interest. This step can be performed at the
run-level (each run analyzed separately) or at the subject-level (concatenation of runs).
Example of a standard first-level statistical analysis workflow is presented in Figure 1.2,
with an example of first-level statistic maps.

In the following section, we explain how GLM works and in particular, multiple lin-
ear regression, which is used for statistical analysis at the first and second-level. This
corresponds to a summary of the description provided in Appendix A of Poldrack et al.,
2011a. Then, we explain how the haemodynamic response is modeled to estimate the
parameters of the GLM and present several options that can be used to build the design
matrix. Finally, we briefly describe the principles of hypothesis testing and how it can be
used at the first-level of fMRI data analyses.

1.2.2.1 General Linear Model

The purpose of GLM is to explain a vector Y with a sum of weighted vectors X and
an error term ϵ. The model is the following:

Y = Xβ + ϵ (1.1)
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with:

• Y , a matrix of the data we want to fit to the model.

• X, a design matrix with p + 1 columns with p independant explanatory variables
and one constant term. The columns of X are called “regressors”.

• β, a vector of parameter values associated to each regressor, these parameters are
what we want to estimate. Each βi associated to a variable Xi is interpreted as the
effect of Xi controlling for all other variables in the model.

• ϵ, a vector of random variables that constitute noise in the data.

To explain this vector Y and thus, fit the data to the design matrix, we must estimate
β̂, the set of parameter values β that best explains the data Y in function of the regressors
in X, while minimizing the residual noise. Since X is not a square matrix, we cannot
directly solve the model equation, but we can multiply both sides by X ′: X ′Y = X ′Xβ.
This leads to the following equation β̂ = X ′Y × (X ′X)−1, for which any β that satisfies
the equation minimize the sum of squares of the residuals. This equation assumes that
X ′X is invertible: i.e. X must have full column rank, and thus regressors must not be
linear combinations of other regressors in the design matrix. If this is not the case, β̂

could take multiple possible values to minimize the sum of squares of residuals and the
estimation would be highly unstable.

In the first-level of task-fMRI data analysis, multiple linear regression is used on each
voxel of the preprocessed functional data to estimate parameter values that explain the
regressors that are modeled to correspond to the tasks performed. If we go back to
Equation 1.1, Y represents the time-serie of the voxels after preprocessing and X the
design matrix modeling the expected response depending on the tasks performed, with
potentially other regressors included to represent noise (see Nuisance regressors).

1.2.2.2 Modelling the expected response

To build the design matrix X, we must model the expected response of the brain
depending on the task. The BOLD signal measures variations of the haemodynamic
response (see Section 1.1.2), whose time course is a low-pass-filtered expression of the
total neural activity (Logothetis et al., 2001). This response starts by an increase shortly
after the neuronal activity (1-2 seconds), called the initial dip. It reaches a peak 4 to
6 seconds after the stimulus and then starts decreasing until 12 to 20 seconds. We observe
a post-stimulus undershoot, which is relatively small compared to the positive amplitude.
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Figure 1.3 – Characteristics of the Haemodynamic Response Function (HRF). ID cor-
responds to the initial dip (which is sometimes not represented), TP corresponds to the
time from the stimulus until peak, H to the height of response, W to the width of the
HRF at half of the height and PSU to the post stimulus undershoot. Figure extracted
from Poldrack et al., 2011a.

This haemodynamic response can be modeled using a function called the Haemodynamic
Response Function (HRF). Figure 1.3 shows the characteristics of the HRF.

To model the specific haemodynamic response of the brain to the tasks performed, the
HRF is convolved with the stimulus time-series (Cohen, 1997). This can be done thanks
to two properties of the haemodynamic response in function of the neuronal activation:
linearity and time invariance. These two properties state that:

• Same scaling factor: the amplitude of the haemodynamic response is proportional
to the amplitude of the neuronal response,

• Additivity: the haemodynamic response for a sum of activations is equal to the sum
of the response for each independant activation,

• Time invariance: if a stimulus is shifted by t seconds, the haemodynamic response
will also be shifted by t seconds.

Canonical HRF In Handwerker et al., 2004, a study of the haemodynamic response
shape showed that both time until peak and width of the haemodynamic response varied
within-subjects (across regions of the brain) and between-subjects, with a larger inter-
subject variability. Choosing an appropriate HRF to model the haemodynamic response
is important to capture the shape as best as possible and to ensure a good fit during the
GLM. Multiple possibilities exist in terms of modeling with differences in assumptions and
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Figure 1.4 – The stimulus convolved with the Haemodynamic Response Function (HRF)
(blue), its derivative (red), and the sum of the two (green), illustrating that including
a derivative term in your linear model can adjust for small shifts in the timing of the
stimulus. Figure extracted from Poldrack et al., 2011a.

model complexity (Lindquist et al., 2009). The optimal shape of the HRF was estimated
by Friston et al., 1994; Lange et al., 2002 using deconvolution and found that in general,
it could be approximately described by a gamma function. However, a single gamma
function does not model the post-stimulus undershoot. Thus, a double-gamma HRF was
adopted as the canonical HRF (Friston et al., 1998) (i.e. the default one) by multiple
researchers, based on the combination of two gamma functions, one modelling the shape
of the initial stimulus response and the second the undershoot.

Beyond the canonical HRF When using the canonical HRF to model the response,
we are biased to only find responses that are similar to that function. Researchers tried to
use more complicated models, that allows more flexibility in the shape of the HRF with
more parameters, but this lead to more variability in the estimate. The goal is to find a
tradeoff between bias and variance.

To build more flexible HRF, a popular approach is to use a set of HRF basis functions,
that will be convolved to the stimulus onset to fit the signal instead of just convolving
a single HRF. The most commonly used basis set is the canonical HRF + derivatives
(temporal +/- dispersion) (Handwerker et al., 2004). Adding the temporal derivative
allows for small offsets in the time to peak of the HRF and the dispersion allows for
variations in the width of the HRF. Figure 1.4 shows a standard regressor (stimulus
convolved with the canonical HRF), its temporal derivative and the sum of the two. We
can see that the addition of the two leads to slight shift to the left and a small increase
in peak height.

Another option is to use a Finite Impulse Response model (FIR), in which we do not
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give any indication on the shape of the expected HRF. We only make a supposition of the
signal length and we decide on a number of points to estimate, which allows for a subject-
specific modeling of the HRF and thus, a high variability (Goutte et al., 2000). Between
high bias with canonical HRF and high variability with the FIR, researchers built what is
known as the “constrained basis sets” (Woolrich et al., 2004). This set of basis functions
can be built by first generating a set of reasonable HRF shapes with varying parameters,
and then by applying a principal components analysis (PCA) to extract a set of the most
representative basis functions. It leads to a more flexible and less biased estimation, but
also to more variability when using a high number of representative functions.

1.2.2.3 Building the design matrix

The stimulus time series is convolved with the modeled HRF to obtain the regressors
of the design matrix. The choice of these regressors and their position in the design matrix
can impact the parameters estimate:

• Depending on the study protocol, one might want to add a parametric modulation
to a regressor (see Parametric modulation) or to add the response time as a regressor
(see Modelling response time),

• In specific cases, to remove correlation between regressors, one might want to apply
orthogonalization (see Orthogonalization),

• To correct for remaining artifacts, one might also want to add nuisance regressors
to the model (see Nuisance regressors).

Parametric modulation In complex and specific studies, stimuli can be parametrically
varied (e.g. contrast of a visual stimulus, volume of an auditory stimulus, etc.) and
we can expect that the strength of the neuronal response will reflect these variations.
We can thus add an additional parametric regressor to the design matrix, which will
model these variations. To create a parametric regressor, the onsets of each stimulus are
modified to have a height that reflect the variations. Adding this parametric regressor
does not prevent from including an unmodulated regressor, but the height values of the
parametric one must be demeaned to avoid any correlation between the modulated and
the unmodulated regressor.

Modelling response time During acquisition, participant’s response times might be
different across participants and trials, causing variations in the neuronal response. In-

34



1.2. From fMRI raw data to fMRI results

deed, longer stimuli lead to a higher haemodynamic response and thus, participants might
exhibit a greater activation simply due to the duration of the task, rather than to any
difference in neuronal response. To include this response time in the model, two options
are possible. First, the regressors of the models can be created using the exact trial dura-
tion and not a fixed duration across trials and participants. However, this decreases the
sensitivity for responses that are constant across trials. Thus, the second option is prefer-
able and consists in creating a primary regressor with constant duration across trials and
including an additional parametric regressor that varies with response time. Effects of
response time are thus removed from the model and we can separate the constant effects
and the effects that vary with response time.

In practice, incorporating response time regressors in fMRI analysis is strongly rec-
ommended to accurately model the relationship between neural activity and the BOLD
signal. This approach helps mitigate the response time paradox by accounting for the
temporal overlap in hemodynamic responses that can arise for tasks with long time re-
sponse (Mumford et al., 2024).

Orthogonalization The regressors included in the design matrix are usually correlated
to each other, for instance, the time response regressor will be correlated to the primary
regressor (see 1.2.2.3). The variability described by two regressors X1 and X2 has three
components: the one that is unique to X1, the one that is unique to X2 and the one who is
shared by X1 and X2. When regressors are highly correlated, this shared variability is high
and the portion of variability explained by each regressor independantly is small. This
leads to instabilities of the parameters estimates for these regressors, since the variability
of the signal explained by one regressor can easily shift to the other.

A solution to remove the correlation between regressors is called “orthogonalization”.
It consists in removing the shared variability from one of the two regressor. However,
the remaining regressor does not represent the same portion of explained variability any-
more and should be interpreted carefully. Moreover, one must choose which regressor to
orthogonalize to which, as the portion of variability common to both can be attributed
either to the first or to the second regressor. Thus, orthogonalization should be applied
only in specific cases where variables are clearly having a supplementary role only (e.g.
derivatives of the HRF, time response, etc.).
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Nuisance regressors Nuisance signals like motion can cause artifacts in the data even
after applying correction with realignment (see 1.2.1.2). These signals, including motion
estimates, can be added as regressors to the model to reduce error variance and improve
detection power. While adding nuisance regressors is strongly recommended in practice,
this step should also be taken carefully as these nuisance signals can be correlated with
the stimuli and thus, including them in the model might decrease sensitivity. A detailed
explanation of the different nuisance signals that can be added and the methods used to
compute them was done in Section 1.2.1.7.

1.2.2.4 Hypothesis testing at the first-level

Now that we modeled the signal and estimated the parameters β of the GLM, the
brain activity related to each task can be estimated using hypothesis tests. To perform
hypothesis testing, we must define a hypothesis H0, called null hypothesis, and we will
try to see if the information contained in our data give us enough confidence to reject this
hypothesis. Usually, this null hypothesis is about the absence of effect or no difference
between two elements. The opposite hypothesis of H0, is called alternative hypothesis, H1

and consists in the presence of an effect or the presence of a difference.
In our case, we have to define our hypothesis as a contrast that will be tested, this

contrast is a vector with length equal to the number of regressors of the GLM and consist
in a linear combination of parameters estimates. For instance, if our model was composed
of four regressors with associated parameters [β0, β1, β2, β3], the contrast that tests the
effect of the first regressor (i.e. that tests if the first parameter β0 is different from 0,
H0 : β0 = 0) would be c = [1, 0, 0, 0] since cβ = β0. To test whether two parameters
are different from each other or if one is superior to another, the contrast would be for
instance c = [0, −1, 1, 0] for H0 : β2 = β3. Since each regressor Xi correspond to a specific
task or stimulus, testing if its corresponding estimated parameter βi is different from 0 is
like testing if the task lead to a significant neural response.

For instance, to test a single contrast, we can use a t-statistic, which under the null
hypothesis, is distributed as a Student distribution. To test for multiple contrasts at a
time, F -tests can also be performed, for instance to test for H0 : β1 = β2 = β3 = β4.
After computing the statistic of the test, we can estimate the p-value, corresponding to
the probability under the null hypothesis of having a test statistic larger than the one
actually observed. The analysis of these p-values is described after in Section 1.2.4.

The main outputs of first-level analyses are the following:
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— A matrix with the different parameters estimates for each regressor at each voxel,

— 3-dimensional statistic maps corresponding to the results of the hypothesis tests:
for each contrast tested, a 3-dimensional volume of the brain is output with each
voxels value corresponding to the statistic of the test performed,

— 3-dimensional contrast maps corresponding to the results of the hypothesis tests in
terms of percent BOLD change: for each contrast tested, a 3-dimensional volume
of the brain is output with each voxels value corresponding to the combination of
estimated parameters in the tested contrast.

— 3-dimensional variance contrast maps corresponding to the expected variance of the
estimated contrast maps.

Hypothesis testing is also performed at the second-level to test for mean activations
inside a group of participants or to compare activations between groups of participants.
We will describe this in the following section.

1.2.3 Second-level analysis

During the first-level analysis, estimates of contrasts and variance have been obtained
for each voxel for several participants. If the first-level was performed at the run-level,
the second-level analysis consist in a single-subject analysis that combines the different
run-level contrasts of a participant to obtain subject-level statistic and contrast maps.
Typically, when mentioning second-level analyses, we refer to group-level analyses, in
which subject-level contrast maps can be combined to test for the mean effect of a regressor
within a group or to compare this effect between groups.

1.2.3.1 Hypothesis testing at the second-level

In both cases, as in the first-level, we use a GLM (see 1.2.2.1), with Y corresponding
to the list of contrasts maps for the participants of the group (or runs of a participants).
At the group-level, additional regressors can be added with informations regarding the
participants, these can be quantitative (e.g. age) or qualitative (e.g. sex or gender). Sim-
ilarly to the first-level, once the parameters are estimated, we define a contrast, consisting
in a linear combination of parameters, and perform hypothesis test. For instance, if we
have two groups of participants and want to test for any difference between the two, the
contrast would be c = [−1, 1].
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1.2.3.2 Modelling variance

At the group level, we must take into account multiple sources of variance: the con-
trast variance estimated at the first-level (i.e. within-subject) and the between-subject
variance, that needs to be estimated (Mumford et al., 2006). Two main models exist to
model variance: mixed-effects and fixed-effects. In the fixed-effects models, typically used
when the second-level analysis combines the different runs for a single participant, only
the within-subject variance is taken into account. In such case, a mixed-effects model
is impractical due to the limited number of runs per participant, making it difficult to
properly estimate the between-run variance. For group-level analyses, the mixed-effects
models is used. It assumes that the total variance is composed of both between-subject
and within-subject variance. The goal here is to estimate the between-subject variance,
while taking into account within-subject variance. This is usually done iteratively by
successively computing the between-subject mean and variance while incorporating par-
ticipants to the model (Worsley et al., 2002). In a simpler case, we can assume that
within-subject variance is equal for all participants of the group or that it is negligible
compared to between-subject variance (random effect).

1.2.4 Statistical inference

After estimating the contrasts and performing hypothesis testing, the goal is to deter-
mine whether or not the detected effect is significant. This is done by applying statistical
inference on statistic maps, resulting in 3D thresholded statistic maps. Multiple thresh-
olding methods can be applied on statistic maps to identify significantly activated voxels:
at the voxel-level and at the cluster-level.

1.2.4.1 Voxel-wise inference

Statistic maps resulting from the hypothesis tests are composed of voxels with as-
sociated statistic values. Thus, it might seems logical that one should test each voxel
individually, by comparing their associated value to a threshold, to test if the effect is
significant or not. Such method allows to make very specific inferences, in particular on
small areas of the brain. At this level, voxels are all analyzed independently and spatial
information is not taken into account. This “naive” approach is also known as uncorrected
voxel-wise inference, note that in practice a correction for multiple comparison should be
applied (see 1.2.4.3).
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Figure 1.5 – Modelling variance at the second-level. Top panel: fixed effects analysis where
all subject’s data are combined into a single model with only one source of variability.
Bottom panel: two-stage summary statistics mixed model, each subject’s time series is
first analyzed individually, supplying within-subject parameter estimates and variances,
and the second stage uses the first stage parameter estimates and variances and estimates
the between-subject variance and group parameter estimate. Extracted from Mumford
et al., 2006.

1.2.4.2 Cluster-wise inference

At the cluster-level, we use spatial information in the image, such as the fact that
significantly activated voxels might be located in close areas of the brain. Indeed, brain
regions activated during the tasks are usually larger than the size of a single voxel (around
2mm3) and data are often spatially smoothed during preprocessing, leading to a spreading
of the signal across many voxels of the image. Cluster-wise inference is usually done in
two steps: first, a cluster-forming threshold is applied to the statistic map, and groups of
contiguous voxels above the threshold are defined as clusters. Neighboring voxels must
be defined before the thresholding step to decide if 6 (voxels sharing a face), 18 (voxels
sharing face + edge) or 26 (voxels sharing face + edge + corner) are taken into account.
Then, the size of each cluster is used to determine its significance, by comparing it to a
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critical cluster size that must also be defined a priori.

1.2.4.3 Correction for multiple testing

In standard hypothesis tests, we have a control on the level of false positive risk with
the appropriate selection of α, usually set to 0.05. However, this is only valid if a single
test is performed. In the hypothesis testings performed in fMRI, we test all the voxels of
the image simultaneously, which mean that if we set α = 0.05, 5% of the voxels of the
image will be false positives. This problem is also known as multiple testing problem and
must be corrected. Two main measures of false positive risk were defined: Family-Wise
Error (FWE) and False Discovery Rate (FDR). FWE corresponds to the chance that
across all voxels, one or more is a false positive, meaning that if we set αF W E = 0.05, on
average there will be one or more false positive voxels in the thresholded map 5% of the
time. To control for FWE, multiple methods are available:

• Bonferroni correction, which consists in defining a threshold α = αF W E/V with
V being the number of tests (here, voxels of the image). This correction usually
shows highly conservative results as it is optimal when voxels values are independent,
which is not the case for fMRI statistic maps. In practice, this correction technique
is not commonly used.

• Random Field Theory, which takes into account the intrinsic smoothness of
the data, i.e. the one present in all imaging data and the one applied during
preprocessing.

• Non parametric approaches, in which no assumption is made about the indepen-
dence of the data. These approaches make use of the data themselves to estimate
the appropriate threshold to use. The most widely used methods are permutation
tests and bootstrap.

FWE methods were the first available for researchers, but were criticized due to the
few number of results that were left after correction. A more lenient alternative to FWE
is the control of the false discovery portion, the fraction of detected voxels that are false
positives, through FDR procedures. The FDR corresponds to the chance that voxels
identified as significant are false positives, i.e. an FDR of 5% means that, among all
voxels detected as significant, on average 5% of these are false positives.
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C Take-home Message

• Functional Magnetic Resonance Imaging is a brain imaging technique in which
brain activity is studied during the realisation of predefined tasks. This tech-
nique is based on the Bold Oxygen Level Dependent (BOLD) signal.

• After acquisition, raw data are processed and analyzed using a sequence of
steps called a “pipeline”.

• These pipelines are composed of multiple steps that aim to clean and pre-
pare data for further analysis, and to identify changes in the BOLD signal in
response to the task.

• At each step of a pipeline, multiple options are available and researchers have
to make choices to build their pipeline.
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Chapter 2

ANALYTICAL VARIABILITY

In the previous chapter, we presented the main steps of an fMRI analysis pipeline,
from raw data to final results. In fMRI data analysis, pipelines are highly flexible (Carp,
2012b), leaving researchers with many choices to make (e.g. software package, algorithm,
parameters value, etc.), also known as researchers degrees of freedom. In the past few
years, multiple studies have shown that different choices could have a large impact on the
results. This analytical variability, induced by different protocols and methods applied on
the data, lead to a multiplicity of possible results for a given study, called a vibration of
effects (Ioannidis, 2005).

Other sources of variability exist in neuroimaging studies, for instance across partic-
ipants (inter-individual variability) or acquisition parameters (technical variability). In
the following chapter, we will first describe the different sources of variability that can be
observed in neuroimaging studies. Then, we will focus on analytical variability with a de-
scription of the variations in the analytical protocol that can lead to different results, the
main studies that explored this topic and the challenges related to analytical variability.

2.1 Different sources of variability

To build a neuroimaging study and in particular, an fMRI study, researchers have
many choices to make, from the definition of the study to the analysis of the results. At
each step, different sources of variability must be taken into account. Figure 2.1 illustrates
these different sources of variability: inter-individual variability (between participants),
intra-individual variability (longitudinal comparison or test-retest variability), technical
variability (relative to differences during acquisition) and analytical variability (relative
to data processing and analysis).
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Figure 2.1 – Different sources of variability in neuroimaging studies

2.1.1 Intra-individual variability

For a single participant, variability in the results can arise when repeating the analysis
with the exact same protocol (same acquisition and instrument, same method) (Chen et
al., 2016). This type of variability, also know as intra-individual variability, relates to
changes within a participant across time. Researchers usually assess the effect of this
type of variability by measuring intra-class correlations (Weir, 2005) between measures
obtained from a single participant at different time points. This is of particular importance
for disease biomarkers identification as it might be difficult to detect true longitudinal
experimental effects if intra-individual variability is large. This variability can also put
into question the reliability of fMRI studies due to the amount of uncertainty between
two supposedly similar measurements (Noble et al., 2019; Elliott et al., 2020). Aron et al.,
2006 explored the long-term test-retest reliability of fMRI-based measurements, showing
their potential as biomarkers for brain development and neurodegenerative diseases.

2.1.2 Inter-individual variability

Like with fingerprints, each brain is different (Valizadeh et al., 2018). In particular,
environmental and genetic factors shape the brain structures and functions. Thus, the
results obtained when analyzing the data from two participants using the same methods
in an fMRI study can be really different. This phenomenon is known as inter-individual
variability and was widely studied in the literature. In 1.2.1, we saw that several prepro-
cessing and analysis steps applied to fMRI raw data are used to mitigate and take into
account inter-individual variability. First, participants have differences regarding brain
morphology (Rademacher et al., 1993; Thompson et al., 1996). A standardization step
(see 1.2.1.4) is included in most neuroimaging pipelines to be able to compare participants
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and to combine them in group-level analyses. Participants can also be different in terms
of functional activation (Lebreton et al., 2019). This variability is taken into account at
the second-level using mixed-effect modelling (see 1.2.3.2).

2.1.3 Technical variability

In neuroimaging studies, finding a sufficient number of participants might be difficult,
in particular for rare pathologies. To tackle this issue and increase sample sizes, multi-
center studies started to develop. However, these studies are subject to another type of
variability due to the use of several (and different) acquisition sites. Multiple studies have
shown that differences in MRI intensities (i.e. voxel values in raw data) between scanning
parameters can be larger than the biological differences observed in these images (Wit-
tens et al., 2021; Mackin et al., 2015). This led researchers to explore the role of various
factors to explain the impact of this variability in the results, for instance, how differ-
ent acquisition could change the smoothness of the image (Friedman et al., 2006). They
also developed new methods to reduce these differences, and thus enhance multicenter
reproducibility (Fortin et al., 2016).

2.1.4 Analytical variability

As stated at the beginning of this chapter, the exact choice of protocols and methods
applied on the data can have a non-neglectable impact on the results. This phenomenon,
also known as analytical variability, can be induced by different levels of variations in-
cluding: different software environments, different software packages, different sets of
parameters, different algorithms, etc. Compared to other sources of variability, this one
is less understood and there is no established method to correct for it.

2.2 Focus: Analytical variability

In the following section, we will focus on analytical variability. We will show how
specific choices in pipeline definition can lead to variations in the results. Then, we explain
why analytical variability is of particular importance in neuroimaging and we present the
main studies that tried to assess and mitigate it. Finally, we describe the remaining
challenges regarding analytical variability and the ones we tackle in this manuscript.
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Figure 2.2 – Overview of possible choices to make during a standard fMRI preprocessing
pipeline.

2.2.1 A large analytical space

In the previous chapter (see 1.2), we detailed the different steps that may - or must - be
included in a standard fMRI pipeline. Analytical variability includes the variations in the
results that arise when deciding to perform or not a processing step, when changing the
order of operation, or even when modifying the value of a parameter. It also includes the
variability in the results induced by different computing conditions such as the operating
system and its version. Figure 2.2 illustrates several options, from which the researcher
has to choose, during a standard preprocessing.

We distinguish three main types of variations:

— Parameters variations, which arise from changes in the choice of algorithm to
use, the values of parameters or the order of operations.

— Software variations, which arise from the different implementations of a pipeline
between different software packages.

— Variations in computing conditions, which arise from changes in computing
environment.

During the analysis, researchers can modify their pipeline in different ways. The first
possible choice is whether to include or not some processing steps in the pipeline. For
instance, the use or not of slice-timing correction in fMRI pipelines is still a debated
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topic, and depends on other characteristics of the study (Parker et al., 2019), such as the
repetition time (see 1.2.1.3). Researchers can also choose to change the type of algorithm
to use. As an example, if they want to perform distortion correction, they have the
choice between using field-map based or non field-map based techniques, depending on its
preferences, but also on the presence of field map in the dataset. Parameters can also be
modified inside an algorithm. For instance, smoothing is usually applied by convolving
images with a Gaussian kernel, but it can be applied with different intensity levels, defined
by the FWHM of the kernel. There is no best practice regarding the right smoothing
kernel to use, studies have shown that the decision of using a large or a small kernel size
should be taken based on other study parameters (in particular due to its interaction with
statistical inference (Hayasaka et al., 2003)). Here, we provided examples on variations
of preprocessing steps but choices also have to be made during statistical analysis. These
include the choice of HRF (see 1.2.2.2) between classical or double gamma functions, as
well as Finite Impulse Response Models or Constrained Basis Sets. The design matrix
can also be customized (see 1.2.2.3) to add nuisance regressors or to use HRF derivatives.

In practice, researchers usually do not make all these choices. They use software
packages that implement a default pipeline, with only minimal user input required. Mul-
tiple software packages were developed to analyze fMRI data, the three most used being
SPM (Penny et al., 2011), FSL (Jenkinson et al., 2012) and AFNI (Cox, 1996), which
represented 80% of the published studies in 2012 (Carp, 2012b). Note that other software
packages were developed since, and are now widely used in the community, for instance
fMRIprep (Esteban et al., 2019). In these software packages, the default pipelines usually
implement similar steps, but are built differently from one software to another. The main
difference between SPM and FSL default pipelines is the order of operation, in particular
for the registration. In FSL, registration parameters are computed during preprocessing,
but only applied after first-level statistical analysis, on contrast and statistic maps di-
rectly. In SPM, these parameters are computed and applied during preprocessing, and
statistical analysis is thus performed on standardized data. Some pipeline steps can be
modified to align standard pipelines between software packages, but some remain very
specific to a software (e.g. percent BOLD change estimation). Software packages can also
be implemented in different programming language (e.g. Matlab for SPM, Python, C and
other programming languages for FSL). Each programming language comes with a set of
predefined functions, with differences that can impact the results.

Inside each software package, a well-known issue also relates to changes in software
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version. During the development process of a software package, new versions are issued
regularly, fixing known bugs and improving existing tools and/or adding new ones. These
changes are usually reported, but can lead to modifications of a pipeline implementation,
and thus to variations in the results obtained between two software versions. Another
related question is whether differences in the results may arise due to different releases
of the operating system (OS). This phenomenon can be related to differences in the way
different systems handle floating point values (Glatard et al., 2015). This usually induces
variability in the results of each step, accumulating towards the whole pipeline.

2.2.2 Effect of analytical variability at different levels

We showed that variations in the pipeline can arise at different levels: inside a pipeline,
between pipeline implementations and at a lower-level with variability between computing
environments. Here, we present the main studies that have shown the impact of such vari-
ations in neuroimaging results and their conclusions. These studies explore different types
of neuroimaging data and analyses, not only task-based fMRI, and differences induces by
analytical variability are observed across modalities.

2.2.2.1 Exploring analytical variability

In task-based fMRI, there is usually no ground-truth to evaluate the behavior of a
pipeline (i.e. if the pipeline behaves correctly or not). This is also known as the “oracle
problem” in software engineering and several approaches were developed to test it (Barr
et al., 2015). Often, multiple comparable pipelines are run and results are compared to
identify the most impacting parameters and potential discrepancies.

Assessing the impact of pipeline variations in neuroimaging results allows researchers
to better visualize the effect of different choices, and guide them to build their pipeline.
In practice, the main goal is usually to optimize the pipeline with metrics closely linked
to the research and diagnostic questions addressed at the end of the pipeline (Strother
et al., 2004). In several studies, ground-truth values were used to benchmark pipeline
results and select the most suited one for the study at hand (Klein et al., 2009; Dafflon
et al., 2022). In other cases, reproducibility metrics were used to assess the performance
of the pipeline (LaConte et al., 2003), with for instance the NPAIRS framework developed
by Strother et al., 2002.
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2.2.2.2 Variations in pipeline parameters

Several studies investigated the impact of changes at a specific step by comparing the
outputs of this step. For instance, Klein et al., 2009 evaluated the performance of four-
teen nonlinear deformation algorithms for brain MRI registration and found substantial
variations in the outputs of this step, but also on the accuracy (i.e. the final performance)
of the methods. In particular, they found a correlation between the number of degrees of
freedom of the deformation and registration accuracy.

Usually, these studies were also exploring how a single change could impact the final
results of the analysis (Oakes et al., 2005; Nørgaard et al., 2020; Bhagwat et al., 2021;
Carp, 2012a). In Oakes et al., 2005, different motion correction algorithms were compared
in the context of task-fMRI. The goal was to see if performance of algorithms, quantifiable
using chosen metrics, were different and if these could be related to differences in the final
results. In the end, they found that the performance of the different methods could not
predict any difference in final results. Bhagwat et al., 2021 explored variations in cortical
surface analyses using different parcellation methods and showed that these variations
had a large impact on the results of several tasks, such as age prediction or statistical
analysis using a GLM.

The multiplicity of options at each step result in a very important number of potential
pipelines, with multiple variations from one to another. Nørgaard et al., 2020 explored
preprocessing in general and computed different pipeline variations to process PET-scan
data. One of the largest study exploring the variability in the results obtained from dif-
ferent pipelines is the one by Carp, 2012a. In this study, authors estimated the variability
of fMRI methods across ten preprocessing and model estimation steps. For each step, he
proposed two or more variations, yielding 6,912 individual combination of parameters. He
showed that there were large method-related variations in the results regarding activation
strength, location and extent. Some results were shown to be stable across different ana-
lytical conditions, mostly the quantitative ones, but others like the size and localization
of the activation peak were highly unstable.

2.2.2.3 Variations in software packages

Each software package implement different algorithms or have different default param-
eters values. In Bowring et al., 2019, authors explored the results of the three main fMRI
software packages: SPM, FSL and AFNI. Across the three studies analyzed, variations
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were found in the results obtained with the different software packages in terms of size
and shape of detected clusters. In a follow-up study, Bowring et al., 2022 tried to identify
which stage of the pipelines were producing the greater variations. They found that vari-
ations were mostly related to changes during the first-level statistical analysis, but the
exact largest source of variation was different between studies. Other studies explored
the impact of software package during specific steps such as MRI segmentation (Palumbo
et al., 2019), parcellation (Bhagwat et al., 2021) or for a full preprocessing (Li et al., 2021;
Kharabian Masouleh et al., 2020).

These studies usually use a fixed set of pipelines with predefined variations, leading
to a constrained pipeline space. To explore the pipeline space from which researchers
actually chose their pipeline from, Botvinik-Nezer et al., 2020 built a many-analyst study.
They provided the same fMRI dataset to 70 research teams and tasked them to analyze
it using their usual processing pipeline. Research teams had to answer to 9 binary hy-
potheses and they had provide the corresponded unthresholded and thresholded statistic
maps. In the end, there were no identical pipelines across the different teams and results
showed substantial variations. Distances between statistic maps revealed some clusters of
pipelines that were giving similar results, but others were highly different, even leading
to contradictory answers to binary hypotheses.

Figure 2.3 – Fraction of teams reporting a significant result during the many-analyst study
for each binary hypothesis. Extracted from Botvinik-Nezer et al., 2020. Consortium was
reach for H7, H8, H9 and H5.
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2.2.2.4 Variations in technical conditions

Several studies explored the impact of computing variability, related to changes in
software package versions or in operating systems and their versions. Gronenschild et al.,
2012 showed the effect of using different versions of FreeSurfer (Fischl, 2012), different
workstation types and operating system versions. They found significant differences in the
results between different versions of the software package, in particular between version
5.0 and earlier versions. This suppose that a major change happened between this version,
leading to large variations in the results. In another study, Glatard et al., 2015 quantified
the differences between results of pipelines computed on different computing platforms.
Differences were found to be related to single-precision floating point arithmetic used in
certain algorithms and whose implementation evolve between different operating systems
and their versions. At a single step, these variations have a small impact on the results,
but their accumulation across the high number of steps of a pipeline lead to sometimes
large changes in the results.

2.2.3 Challenges related to analytical variability

We showed that 1) to build neuroimaging pipelines, and in particular fMRI pipelines,
researchers have access to a broad range of experimental design and data analytic strate-
gies, and 2) these different strategies yield different results. At first, researchers explored
and measured the flexibility of research outcomes across analytical conditions. In a second
time, they tried to find some solutions to the challenges related to analytical variability.
In this section, we will explore these challenges: what to do with analytical variability,
how to deal with it when building a pipeline and how it impacts the validity of research
findings. In the end, we will expose some open questions and drive towards some of my
contributions to these questions.

2.2.3.1 How to interprete this variability?

As shown in 2.2.2.4, variations in low-level features like floating point arithmetic can
change the results of a pipeline. While the impact of these variations seem small compared
to those induced by different software packages or parameters, it actually points the lack
of robustness of the original results. To test the robustness of a pipeline, Kiar et al., 2021
proposed a method in which small variations are added in the input data, and at different
steps of the analysis. If these small perturbations lead to large variations in the results,
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then one could consider that the pipeline is not robust.
In other circumstances, observing variations (or not) in the results due to changes

in analytical conditions can inform on the research question. In Botvinik-Nezer et al.,
2020; Carp, 2012a, while there were some strong variations regarding certain aspects of
the results, others showed relative consistency, providing confidence that these conclusions
are not tied to a specific analytic approach. Such consensus can be obtained using specific
analyses, called multiverse analyses (Steegen et al., 2016). These allow to systematically
explore and integrate pipeline variation on the results. Researchers (and readers of the
study) can thus have an idea of how much the conclusions change because of arbitrary
choices and which choices have the largest impact on the results.

2.2.3.2 How to take this variability into account when choosing a pipeline?

To limit the impact of analytical variability, researchers tried to optimize their pipelines
to improve the quality of the results. While this was supposed to limit the number of
options and to reduce the effect of analytical variability, it also led to new processing
possibilities. Multiple challenges appear when considering the optimization of pipelines
as a way to reduce analytical variability. As described in 1.2 and in 2.2.1, it is not yet
clear whether some choices for an analytical step would be better than others. There is
no ground-truth to benchmark pipeline results and to assess the superiority of a method
compared to another. Moreover, the optimal processing choices may vary depending on
the dataset and the analysis, e.g. slice-timing correction is more useful for studies with
large TR acquisitions. Some studies still proposed solutions to identify optimal pipelines
with respect to a predefined criterion (e.g. predicting brain age (Dafflon et al., 2022),
segmentation tasks (Vanderbecq et al., 2020)).

A large number of possible choices can also be necessary when building a pipeline.
Each step of an analytic pipeline is the implementation of a method that comes with
some assumptions. For example, during statistical analysis, the GLM comes with the
assumption that regressors are independant, which might not be the case when using an
additional regressor for trial response time (Mumford et al., 2024). Sometimes, there are
no consequences to these assumption violations, but these can sometimes lead to failure
of the method, and thus invalidity of the results (Eklund et al., 2016). Pipelines are
composed of multiple steps, each characterized by their own assumptions, leading to a
pyramid of assumptions. Assessing all of these might be very difficult, but can also help
researchers to make appropriate choices between methods for which the does not break
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the assumptions and methods that are robust to assumption violations (Mumford et al.,
2009).

Usually, large neuroimaging consortia like the Human Connectome Project (Van Essen
et al., 2013) or the UK Biobank (Sudlow et al., 2015) develop their own preprocessing
pipelines. This allows researchers that want to use these datasets to apply these pipelines
and to minimize the potential analytical variability related to studies involving these
datasets. However, since these pipelines are optimized for particular data acquisition
protocols, they might not be applicable to other datasets. As a proposition to solve
this issue, Esteban et al., 2019 developed fMRIprep, a preprocessing pipeline for task-
based and resting-state fMRI data that is robust to idiosyncracies in the dataset and that
requires minimal inputs from the user.

2.2.3.3 How does it impact the validity of research findings?

A direct consequence of analytical variability is the risk of analytical flexibility. Ioan-
nidis, 2005 showed with a mathematical model of bias in scientific studies that the number
of false positives in published research findings rises with the flexibility of research results.
In practice, when performing their analysis, researchers commonly explore multiple valid
analytic alternatives, but often report their results relative only to a single pipeline (or
to a few set of variants). This selective reporting can result in an increase of false posi-
tive findings (Ioannidis, 2008a; Simmons et al., 2011; Gelman et al., 2019). Some of the
solutions exposed in the above sections, such as the use of multiverse analyses or of a
standard pipeline can help to reduce this effect.

2.2.3.4 Open questions

While some solutions were proposed to tackle and mitigate the effect of analytical
variability, some questions remain open.

Reusing data Over the past few years, concerns have been raised regarding the lack
of reproducibility of neuroimaging findings (Button et al., 2013; Poldrack et al., 2017;
Botvinik-Nezer et al., 2023). In particular, the low statistical power of studies was criti-
cised, as effectively leading to low probabilities of identifying true effects but also to high
probabilities of reporting false positive findings in the literature (Button et al., 2013).
Researchers proposed different approaches to increase sample sizes, and thus statistical
power, for instance with the development of large-scale studies (Sudlow et al., 2015; Van
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Essen et al., 2013). However, acquiring such amount of data is costly and due to the
challenge of finding participants, these studies often contain a few number of data per
participant. In fMRI, these datasets usually cover a limited subset of brain functions,
limiting the flexibility of research questions to explore. A potential solution to increase
sample size while avoiding these challenges, is to re-use the data already acquired in other
studies into meta- or mega-analyses (Salimi-Khorshidi et al., 2009; Costafreda, 2009).

With the emergence of the FAIR principles (Wilkinson et al., 2016), and the devel-
opment of standards for sharing brain imaging data, the process of sharing data be-
came easier and now, more and more established in the community. Data sharing plat-
forms (Markiewicz et al., 2021; Gorgolewski et al., 2015) were developed to facilitate the
re-use of raw data but also of derived data. These can be used to increase sample sizes
of studies, in meta- and mega-analyses (Costafreda, 2009), or to train more powerful
machine learning models. In neuroimaging, derived data coming from different studies
can be impacted by the many sources of variability arising during the experiment. This
put into question the validity of experiments performed with data coming from different
sources (e.g. derived data obtained with different pipelines in mega-analyses (Rolland
et al., 2022)), but also the generalizability of the results obtained from one study to
another (Sun et al., 2022).

While it has been shown that adding more variability to the data would lead to
more reproducible and generalizable results (Tang et al., 2021; Raviv et al., 2022), the
practical application of this paradigm is not always straightforward. In a recent thesis,
Rolland, 2022 proposed a method to correct for differences in processing pipelines to
perform more valid mega-analyses. However, this method was limited to situations where
the proportions of data processed with each pipeline within each group was reasonable
(limited to 70/30% or 80/20%). Moreover, labeled databases are not always available in
neuroimaging, and if they are, the unconstrained annotations and the heterogeneity of
tasks and studies make them difficult to use to train supervised machine learning models.

In the second part of this manuscript, we will present two practical solutions that can
be used to facilitate data re-use in two cases: to increase sample sizes and build larger
and valid mega-analyses while using shared derived data from different pipelines and to
leverage large unlabeled databases in an agnostic manner and then fine-tune towards a
variety of problems. Both methods make use of deep learning for their ability to model
complex nonlinear relationships in the data.
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Exploring the analytical space The neuroimaging community has now realized dif-
ferent pipelines lead to different results, and that a better understanding of the variabil-
ity induced by alternative analytical paths is crucial. A systematic investigation of the
pipeline space is impractical due to the high number of possible pipelines. To improve
our knowledge of the pipeline space, it is necessary to find a way to measure distances
between different analysis methods. Such relationship measurements can facilitate the
selection of a set of pipeline parameters that are the main drivers of variability in the
result space. The definition of this pre-defined set of pipelines to test would improve the
quality of the results of a multiverse analysis (Steegen et al., 2016), but also decrease the
computational time required for such experiment.

Investigating the pipeline space can also help in understanding the homogeneity (i.e.,
pipelines that give similar results) but also the heterogeneity (i.e. pipelines that have a
different behavior) of the pipeline space. Rolland et al., 2022 recently showed the problems
arising when combining subject-level results obtained from different pipelines for group-
level analyses. As we can suppose that such issue is exacerbated for pipelines presenting
more distant results, their identification using dedicated measurements would be a first
step to help improving generalizability by increasing sample sizes through data reuse.

Due to the high computational cost of storing and analyzing task-fMRI data, recent
studies investigating analytical variability in neuroimaging focused on a restricted number
of participants and cognitive tasks. One open question is whether patterns observed
across pipelines are stable across different contexts: group of subjects, cognitive paradigm,
acquisition parameters, etc. In Chapter 5, we propose a method to combine results
from different pipelines by converting them between pipelines using style transfer. Style
transfer frameworks aim at learning a mapping between two domains and at applying this
mapping to data. If the mapping is different between contexts (e.g. different cognitive
tasks), a framework trained to transfer statistic maps of a particular paradigm would not
be applicable to other statistic maps. Exploring the stability of the relationships between
pipeline results is thus of particular importance to assess the potential of our solution, and
beyond of any solution that aims at being generalizable across different set of participants
or fMRI cognitive tasks.

In the third part of this manuscript, we focus on the exploration of the fMRI analytical
space. Our contributions are three-fold, 1/ we propose a new dataset called “HCP multi-
pipelines” to explore analytical variability and present two use cases: 2/ a study of pipeline
relationships, and whether patterns observed across pipelines are stable across different
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contexts (group of subjects, cognitive paradigm, acquisition parameters, etc) and 3/ a
study of the validity of analysis combining data from different pipelines as a follow-up of
the work of Rolland, 2022.

C Take-home Message

• fMRI studies are subject to numerous sources of variability, at the participant-
level, or at the study-level.

• In particular, analytical variability is the phenomenon by which variations in
the results arise due to changes in pipelines.

• These variations can be induced at different levels: software environment,
software packages, parameters-level, etc.

• This analytical variability comes with challenges as it leads to difficulties to
interpret these variations, but also when building a pipeline. This also puts
into question the validity of research findings.

• While some solutions were developed to limit these challenges, some questions
remain open regarding data re-use and relationships between pipelines in the
analytical space.
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How to facilitate data re-use with
deep representation learning?
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Chapter 3

DEEP LEARNING FOR MEDICAL IMAGING

Since the emergence of computer vision in the 1950s, researchers tried to build more
and more performing systems for automated medical image analysis. At first, image pro-
cessing was done with the sequential application of mathematical transforms. Then, re-
searchers started to gather large amounts of data and developed techniques, using pattern
recognition or machine learning approaches (Fradkov, 2020). These techniques required
to design a feature extractor that would convert the raw data (such as the pixel values of
an image) into an appropriate representation (also known as feature vector), that would
be given as input to an algorithm for a learning task.

More recently, researchers developed new systems in which computers learn the fea-
tures that optimally represent the data for the problem at hand, solving the issue of com-
plex and time-consuming feature extraction. This particular machine learning process,
also known as “representation learning” (Bengio et al., 2013), consists in the extraction of
features that capture the underlying structure or characteristics of the data. Deep learn-
ing is a particular type of representation learning, which focuses on learning hierarchical
representations of data through the use of deep neural networks with multiple layers.
These techniques gained prominence due to their ability to automatically learn complex
features from raw data, leading to state-of-the-art performance in various domains such
as computer vision (LeCun et al., 2015).

In this chapter, we will first position the concepts of representation learning, machine
learning and deep learning in the field of artificial intelligence. We will then explain the
main learning techniques and models used in deep learning. We further focus on our main
application cases and on the challenges that researchers face when using deep learning
techniques in the field of medical imaging. Finally, we explore two applications of deep
representation learning, namely transfer learning and style transfer, which contribute to
the extraction, adaptation, and manipulation of meaningful representations from data.
In Chapters 4 and 5, we will present two studies in which we used these techniques to
mitigate the variability of fMRI results, and in particular analytical variability.
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3.1 Foundations of deep learning

3.1.1 From artificial intelligence to deep learning

Artificial intelligence is a field of computer science in which machines, i.e. computers,
simulate human intelligence and use their capabilities to answer complex tasks. These can
consist in tasks that are intellectually difficult for human beings but relatively straightfor-
ward for computers (i.e. easily converted to a list of formal rules) or in tasks that are easy
for human being to perform, but complex to describe formally (for instance recognizing
elements in an image).

The former category of tasks is usually solved by techniques known as knowledge-base
approaches, which consist in the encoding of statements in formal language, from which
the computer can reason using logical inference rules. For instance, Lenat et al., 1990
developed Cyc, an inference engine based on a database of statements and formal rules
that were supposed to accurately describe the world.

The later category of tasks makes use of machine learning algorithms, which consist in
providing real world data to the model, which will learn patterns in these data to answer
a problem at hand. For instance, logistic regression (Berkson, 1944), a simple machine
learning algorithm, makes use of logistic functions to predict the probability of a binary
outcome.

In machine learning, the data given as input to the algorithms are chosen to best
represent the observations of the real world, while being understandable by a machine.
For instance, if a model is taught to predict the weather for the next day, the real world
data could be represented by measures of the temperature, air pressure or precipitation
rates. We refer to such measures as a representation of the data, each piece of information
included in this representation being known as a feature.

While many tasks can be solved by manually designing and extracting the right fea-
tures from data for a task, then giving these as input to a simple algorithm, for many
tasks, the feature extraction strategy to adopt is not straightforward. For such case, an
approach called representation learning can be used, and consist in using machine learning
to discover the most important patterns for the task at hand, but also to find the best
representation of the data for this task.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) is a particular type of
representation learning, which focuses on learning hierarchical representations of data
through the use of deep neural networks, i.e. networks with multiple layers. Figure 3.1
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Figure 3.1 – Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all approaches
to AI. Extracted from Goodfellow et al., 2016.

illustrates the relationships between these different disciplines from artificial intelligence.
In the following, we will focus on deep learning, and in particular on the deep repre-

sentations of data that are learned, also known as deep representation learning. We will
refer to deep learning for the process of learning a deep representation of data. We will
describe the main foundations of deep learning and show its potential to extract mean-
ingful representations of data for different applications. We detail the different learning
concepts (3.1.2) and the models used to learn deep representations of the data (3.1.3).
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3.1.2 Different learning processes

The idea behind machine learning is that algorithms can learn by observing data. This
stems from the observation that humans and animals learn from experience, exposure to
stimuli, and feedback from the environment. Machine learning algorithms can be divided
in several categories depending on the type of experience and feedback they have during
the learning process.

Learn the decision 
boundaries bw. 

classes

Group data based 
on input data only

Gives pseudo-labels to 
unlabeled data based on a 

few set of labeled data

Fine-tune a model 
pretrained on unlabeled 
data for a pretext task

Fine-tune a model 
pretrained on a large 

dataset of labeled data

Supervised learning

Unsupervised learning

Semi-supervised learning

Self-supervised learning

Transfer learning

Tries to model the 
data distribution to 

generate new 
samples

Generative models

Figure 3.2 – Main learning processes in deep learning

Supervised learning involves training a model on a labeled dataset, where each
input data point is associated with a corresponding target output. Representations are
learned to answer tasks like classification (assigning input data to predefined categories)
or regression (predicting continuous values). Unsupervised learning involves training
a model on an unlabeled dataset, i.e. the model aims to discover patterns, structures,
or representations within the data without explicit human guidance. Common tasks
include clustering (grouping similar data points together) and dimensionality reduction
(reducing the number of features while preserving important information). In both cases,
a representation of data is built to answer the task at hand, i.e. a representation in which
the features associated with the data are the most relevant for the task.

With the difficulty of gathering labeled data and the challenges related to unsupervised
learning, methods like semi-supervised learning emerged by combining elements of
both supervised and unsupervised learning. The model learns from the labeled examples
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while also leveraging the additional information present in the unlabeled data to improve
performance.

As an attempt to reach supervised learning performance without any labeled data, re-
searchers also proposed self-supervised learning (Doersch et al., 2017). In this specific
form of representation learning, the model is trained to produce meaningful representa-
tions using labeled data whose data have been derived from the data itself without human
intervention. For instance, the model can be trained to predict missing parts of an im-
age (image inpainting) or predicting the next word in a sentence given previous words
(language modeling). The resulting learned representations can then be transferred to
downstream tasks, usually in supervised settings with few labeled data.

Similarly, transfer learning (Pan et al., 2010) leverages knowledge learned by pre-
training a model on a large-scale dataset and fine-tunes it to a target task with limited
data. We will explore this technique in more details in section 3.4.1, and Chapter 4.

To tackle this issue of lack of data, researchers also proposed techniques for data
augmentation and in particular, using generative models. Generative models learn to
generate realistic data samples by capturing the underlying structure and distribution of
the training data, enabling them to generate new samples that resemble the original data.

3.1.3 Neural Networks

Perceptrons In deep learning, the extraction of meaningful and hierarchical represen-
tations from data is performed by deep neural networks. Introduced by Frank Rosenblatt
in the late 1950s, perceptrons (Rosenblatt, 1958) were the initial type of neural networks.
However, their inability to process data that are not linearly separable caused a reduction
in their use for several years (Minsky et al., 1969). A perceptron consists in a single
neuron characterized by parameters W, B, with W indicating the neurons weights and B

its biases and a non linear activation function a. Neuron inputs xi and parameters are
linearly combined as a weighted sum and then passed through the activation function
(e.g. sigmoid, hyperbolic tangent, or softmax functions) to produce the output y.

yi = a(W · xi + B) (3.1)

Multi-Layer Perceptrons Multi-Layer Perceptrons (MLP) (Haykin, 1999) or feedfor-
ward neural network is a stack of multiple layers with different numbers of neurons, which
are perceptrons. These are composed of at least three layers: an input layer, one or more
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hidden layer, and an output layer. Every neuron uses a non-linear activation function, and
each neuron in one layer connects with a certain weight Wij to every neuron in the follow-
ing layer. We call these layers fully-connected layers. The learning process of perceptrons
works by changing the weights of neurons after having seen a batch of data. Indeed,
these parameters decide on how the values of the input vector affect the output. The
training process updates these weights and biases so that they can transform the input
data to their corresponding target values. Thus, the network learns how to distinguish
certain similarities and patterns among the features of the input data. The process used
to update the weights is known as backpropagation (Lecun, 1985; LeCun et al., 1989).

Convolutional Neural Networks From the basis of MLP, multiple architectures of
neural networks emerged, the most widely used in (medical) image analysis being the
Convolutional Neural Network (CNN) (Lecun et al., 1998). A CNN is defined as any neu-
ral network that includes at least one convolutional layer. In contrast to fully-connected
layers, convolutional layers makes use of a kernel (matrix, smaller than input data) which
slides across the input data, performing a dot product with the corresponding part of
the data and producing a feature map that highlights specific patterns or features in the
input. At each position, a feature map is output and the final output of a convolutional
layer is the concatenation of the feature maps at the different positions. The first con-
volutional layers (i.e. lower layers) typically learn basic features like edges or textures
(called low-level features), while the highest layers learn more semantic features relevant
to the task at hand (called higher-level features). In traditional neural network, the size
of the feature maps extracted from the data is descending, meaning that layers are com-
posed of descending numbers of neurons. In CNN, downsampling can be performed by
using strided convolution or by incorporing pooling layers, where pixel values of neighbor-
hoods are aggregated using a permutation invariant function, typically the max or mean
operation.

The first notable CNN architectures were proposed by Lecun et al., 1998 with LeNet,
and by Krizhevsky et al., 2012 with AlexNet. These two are very similar in terms of
architecture, with two to five convolutional layers associated with fully-connected layers
at the end for classification. After 2012, the trend was to build far deeper models, with the
emergence of VGG (Visual Geometry Group) models (Simonyan et al., 2015), like VGG-
19 with 19 layers. Nowadays, neural networks are usually composed of a sequence of
complex blocks of neurons, called building blocks. These blocks improve the efficiency of
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the training procedure and reduce the amount of parameters, with for instance Inception
blocks (Inception models) (Szegedy et al., 2015) or Residual blocks (ResNet models) (He
et al., 2016).

AutoEncoders In a particular type of neural network, this sequence of downsampling
layers is followed by the opposite sequence of upsampling layers, leading to an architecture
called AutoEncoder (AE) (see Figure 3.3). These models consists of an encoder network
that maps input data to a latent representation and a decoder network that upsample this
representation to output data with the same size as the input. These architectures are
widely used to learn a lower-dimensional representation of data in unsupervised settings.
In traditional AE, the output is a reconstruction of the input and the loss function is
the error between the original input and its reconstruction. By doing so, AE learn to
capture the most relevant and informative features of the input data in the latent space.
This process encourages AE to discover meaningful representations that are useful for
reconstructing the input data accurately. To avoid learning identity functions, the la-
tent representation is usually much smaller than the original data dimension and can be
learned with other constraints. The loss to minimize can be changed to adapt to other
tasks, for instance Variational AutoEncoder (VAE) (Kingma et al., 2022) also minimize
a regularization term that encourages the latent space to follow a predefined distribution
(typically Gaussian) and then, allows to generate new data by sampling from this latent
space.

Convolutional Neural Network (CNN)

Convolutional AutoEncoder (CAE)

“Cat”

Figure 3.3 – Comparison of architectures between traditional Convolutional Neural Net-
work (CNN) and AutoEncoder (AE).

Variational AutoEncoder (VAE) are representatives of a specific type of models called
generative models. These models aim to learn and approximate the distribution of the
samples of a dataset to generate new samples. We distinguish multiple categories of
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generative models, namely function-based, energy-based and score-based models. Repre-
sentatives of function-based models are VAE (Kingma et al., 2022) and Generative Ad-
versarial Network (GAN) (Goodfellow et al., 2014). Boltzmann Machines (Hinton et al.,
1983), Restricted Boltzmann Machines (Smolensky, 1986) and Deep Belief Networks (Hin-
ton, 2009) are examples of energy-based models, and Denoising Diffusion Probabilistic
Model (DDPM) (Ho et al., 2020) are score-based models. Here, we will describe the main
principles of GAN, which were the state-of-the-art models for medical image synthesis for
years, and DDPM, that are their main competitors since their appearance in 2020.

Generative Adversarial Networks GAN (Goodfellow et al., 2014) are composed of
two networks that play a two-player minimax game: a generator G that learns to model
the data distribution and a discriminator D that learns to distinguish between samples
coming from the training data rather than from G. In their original design, generators
learn to generate new samples from a random noise variable z, the mapping from z to the
data space is then represented by G(z; θg), θg being the learnable parameters of G. The
distriminator D sees samples generated by G and samples from the training data and is
trained to distinguish between the two. Thus, the job of the generator G is to fool the
discriminator, for which it will be increasingly difficult to distinguish false images from
real ones. Both D and G can be any type of neural networks, and are trained to minimize
the following adversarial loss:

min
G

max
D

V (D, G) = Ex∼pdata
(x)[logD(x)] + Ez∼pz(z)[log(1 − D(G(z)))]. (3.2)

Denoising Diffusion Probabilistic Models More recently, diffusion models (Ho et
al., 2020) appeared as new competitors to GAN for image generation. These models work
by successively adding noise to the training data, and then learn to reverse the process to
construct desired data samples from the noise. In the forward diffusion process, the source
image X0 is subjected to t steps of gradual noise ϵ addition to generate intermediate noisy
versions of the image {X0, X1, ..., Xt}. In Ho et al., 2020, the t − th version of the image
is expressed as:

Xt =
√

ᾱt ∗ X0 +
√

1 − ᾱt · ϵ with ϵ ∼ N(0, I) (3.3)

where αt corresponds to fixed hyper-parameters between 0 and 1 related to the variance
and ᾱt = ∏t

i=1 αt.
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Figure 3.4 – Summary of the papers included in Litjens et al., 2017 in terms of task,
modality and organs. Extracted from Litjens et al., 2017.

The reverse diffusion process uses a neural network trained to predict the noise added
to the image ϵ̂t = ϵθ(Xt, t, C) at each time step t given Xt the noisy version of X0 and t

the corresponding time step. Starting from Xt and using the predicted noise, the image
Xt−1 from the previous step can be reconstructed using the following equation and we
can reconstruct X0 by repeating this process for t times:

X̂t−1 = 1
√

αt

· (Xt − 1 − αt√
1 − ᾱt

· ϵ̂t) +
√

1 − ᾱt−1 · z where z ∼ N(0, I) (3.4)

The equation is extracted from Ho et al., 2020. The network ϵθ(Xt, t, C) is trained
using a Mean Squared Error loss, LMSE := EX,C,t,ϵ∼N(0,1)[∥ ϵt − ϵ̂t ∥2

2].
Note that other methods have been proposed since 2020, for example Nichol et al.,

2021; Song et al., 2021. In Chapter 5, we use DDPM as described in Ho et al., 2020.

3.2 Deep learning in medical imaging

Deep learning is used to extract meaningful features in medical images in a wide range
of applications types and areas. In a survey, Litjens et al., 2017 analyzed 300 papers
about deep learning in medical imaging and showed the diversity of medical contexts
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where these methods have been integrated successfully (see 3.4).

Ventricle, 0.95

Healthy control 
vs. 

pathology
Classification

Detection

Segmentation

Registration

Denoising

Figure 3.5 – Main applications of deep learning in medical imaging

Classification was one of the first task for which deep learning made a major contri-
bution in medical imaging. This task consist in predicting a categorical variable from
features extracted from one or multiple image per individual. These can be used for dif-
ferent purposes, such as disease diagnosis or prediction (Yin et al., 2022). For fMRI data,
classification algorithms can also be used for brain decoding (i.e. identifying stimuli and
cognitive states from brain activities) (Firat et al., 2014). Close to this task, regression
tasks consist in predicting a quantitative variable from images, for instance predicting a
clinical score (Hou et al., 2016) or a physiological age (e.g. brain age models (Baecker
et al., 2021) which measures the effects of ageing on the brain).

Another task in which deep learning can be used in medical imaging is object clas-
sification, which usually focuses on the classification of a small (previously identified)
part of the medical image into two or more classes (e.g. nodule classification in chest
CT (Shen et al., 2015)). In such task, accurate classification necessitates that the learned
representation contains both information on the appearance and localization of lesions.
Generic deep learning frameworks often do not support this integration, necessitating the
adoption of approaches like multi-stream architectures (Tu et al., 2018).

In image and object classification, objects are identified based on all the pixels of the
image. Object detection and segmentation (Wang et al., 2022; Yang et al., 2021) consist,
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on the other hand, of the individual classification of each pixel of the image, where the
objects in the image are located. In other words, while an object classification will only
give an output based on the presence or not of the object, an object detection task will
give the position of the object in the input image. In medical imaging, these objects can
correspond to anatomical structures (e.g. organs) or anomalies (e.g. pulmonary nodules).

Image registration (Chen et al., 2023) (also known as spatial alignment) is the process
of aligning two or more images based on image appearances. In the medical imaging field,
this process seeks to find an optimal spatial transformation that best aligns the underlying
anatomical structures of two images. There are two strategies in the literature: using
neural networks to estimate a similarity measure for two images to drive an iterative
optimization strategy (Yang et al., 2016), and direct prediction of the transformation
parameters using deep regression networks (Miao et al., 2016).

Medical images are acquired with several imaging techniques and are thus susceptible
to noise and artifacts (Mohd Sagheer et al., 2020). Several types of noise can occur in the
image: random noise, white noise characterized by a uniform frequency distribution, or
noise that depends on the frequency, usually coming from the acquisition or from image
processing techniques. This noise can blur the image, or add artifacts that may lead to
difficulties for image analysis. Some types of models, such as denoising AE (Vincent et al.,
2010) or GAN (Wang et al., 2023), were built on purpose to learn to reconstruct an image
with higher resolution, and with reduced noise.

3.3 Challenges related to medical imaging

Learning efficient deep representations of medical images comes with difficulties due to
the particular properties of the data. We refer to challenge to describe these difficulties,
which limit the performance of deep learning models in medical imaging. Although the
lack of available training data is frequently cited as the primary barrier, it is not the only
challenge that may arise in this context. In this section, we describe the main challenges
related to deep learning for medical imaging in two categories: the challenges related to
the data (3.3.1) and the challenges related to the models (3.3.2).
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3.3.1 Challenges related to data

In most medical image analysis competitions, CNN and their derivatives are almost
always the top performers, with few differences in performance between different CNN
architectures. Today, the most determining factor to achieve the best performance is
rather related to the way data are treated and handled (Bengio et al., 2013).

The hope of large datasets One of the major breakthrough in deep learning for natu-
ral image processing was the appearance of large labeled datasets, such as ImageNet (Deng
et al., 2009) or MNIST (Lecun et al., 1998). These datasets are composed of respectively
3 millions and 70,000 images, with a diversity of classes and images inside each class.
Such datasets were built under the paradigm that we must present as many examples
as possible during training to instill robustness by learning what is unnecessary, or what
represents noise. In opposite, medical imaging datasets are usually smaller (around hun-
dreds or thousands of participants), with few classes and few variations inside each class.
These low sample sizes of medical imaging datasets can be related to ethical and privacy
constraints, but also to issues related to the cost and difficulties of annotation.

Contrary to natural images, sample size of medical imaging datasets is expressed in
number of participants, with sometimes multiple images per participants (e.g. different
modalities, or time points). These data are usually high-dimensional with sometimes
hundreds of thousands of values for 3D data. In relation with the large number of trainable
parameters in deep learning models (Cho et al., 2016), this makes it particularly difficult
to build fair and generalizable deep learning models for medical imaging (Ricci Lara et al.,
2022).

In Willemink et al., 2020, a list of sixteen large medical imaging datasets was shared
and sizes were ranging from 267 to 65,000 participants. Even with larger datasets, evi-
dence showed that the increase in dataset sample sizes did not come with better perfor-
mance of models. Varoquaux et al., 2022 performed a meta-analysis of 478 studies from
six reviews on Alzheimer’s disease diagnosis or subtypes identification. Figure 3.6 shows
the results of this meta-analysis, with a downward trend in performance as sample sizes
increase.

A lack of annotations This stagnation of performance with increasing sample size is
mostly related to the lack of labeled samples for these large datasets, in particular for
complex tasks such as segmentation. Labeling a medical imaging dataset requires some
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Figure 3.6 – Evolution of reported accuracy for Alzheimer’s disease diagnosis and subtype
identification in a meta-analysis of 478 studies. Extracted from Varoquaux et al., 2022.

domain expertise, usually from radiologists or pathologists, and is highly time consuming.
For example, for segmentation tasks, datasets are often composed of 3D data and require
slice-by-slice annotations. Even when datasets are annotated by experts, these experts
might disagree on some annotations, leading to label noise. This inter-observer variability
among experts necessitates to define consensus labels or proper methods of aggregating
the labels from multiple experts (Nir et al., 2018; Bridge et al., 2016; Karimi et al., 2020).
Another solution is the use of unsupervised or self-supervised methods to limit the need
of annotated data (Cheplygina et al., 2019).

Dataset bias and heterogeneity The low diversity of medical imaging datasets,
caused by opportunistic data collection, leads to biases and thus, poor generalizability
of models (Chekroud et al., 2024). Biases in datasets arise when the distribution of the
training data, which is used to build the decision model, differs from the distribution of
the test data, where the model is actually employed (Dockès et al., 2021). For instance,
such bias has been demonstrated in medical imaging for chest X-ray analysis (Larrazabal
et al., 2020), where researchers showed that models trained on data from men partici-
pants had a large performance drop when applied on women data. Such issue has also
been showed for brain imaging by Wachinger et al., 2021 who showed that simply pooling
scans from distinct studies can introduce substantial biases due to differences in sampling
strategies, data acquisition, etc. While we usually discuss biases related to population
sampling, it must be noted that machine or method related artifacts can also produce
biases (Moskal et al., 2022; Li et al., 2023; Korbmacher et al., 2024). Oakden-Rayner et
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al., 2020 showed that deep learning models for pneumothorax diagnosis could be biased
against images with a chest drain, which is a treatment for pneumothorax. A checklist
for bias evaluation on computer vision datasets is presented in Zendel et al., 2017.

3.3.2 Challenges related to models

While most challenges in deep learning for medical imaging are related to data scarcity,
the exact model choice and the particular properties of these models are also an issue to
the development of deep learning in clinical practice.

Beyond biased data For years, a prevalent belief was that bias in deep learning models
reflected unfairness of the dataset, and that the algorithm itself did not contribute to
harm. In many cases, these biases are dealt with data augmentation or resampling, while
in fact, the overall bias is a caused by interactions between the data and model design
choices. We define algorithm bias as the way the model learns underrepresented features
in data (Hooker, 2021). For instance, Jiang et al., 2021 showed that underrepresented
features, usually more challenging to learn, are learned later in the training process and
that the choice of the learning rate and of the training length has an impact on model bias.
In another work, Bagdasaryan et al., 2019 showed that differential privacy techniques such
as gradient clipping and noise injection could lead to a decrease in performance on certain
subsamples of the test population, here, dark-skinned faces.

A need for more robust models Another well-known topic in deep learning is the
issue of adversarial attacks. These attacks highlight the vulnerabilities of models by
showing how a small change in the inputs can completely alter the outputs, causing the
model to confidently answer a problem with wrong conclusions. This issue has been
demonstrated for almost all application fields and all types of algorithms, from logistic
regression to deep neural network (Biggio et al., 2018). However, such issue is even more
complex in medical settings due to the often-competing interests within healthcare, but
also the dramatic consequences that a wrong diagnosis or wrong treatment planning made
by deep learning models could have. In Finlayson et al., 2019, adversarial attacks were
executed against three highly accurate medical image classifiers and were found successful,
showing the need for solutions to fight against these attacks.
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A lack of interpretability In order to build trustworthy models according to the
current guidelines in medical settings, it is essential that models be fair, robust against
attacks, but also transparent (Lekadir et al., 2023). This latter is probably one of the
biggest criticism that is made to deep learning models, in particular for medical imag-
ing. Deep learning models frequently earn the label of “black-boxes”, because their inner
workings are not as easily interpreted as those of conventional models such as nearest
neighbors algorithms or decision trees. Usually, deep learning models provide an output
(e.g. “Healthy control”) with a probability or confidence strength, whereas information
on why and how this decision was make are hidden (Durán et al., 2021). Legally speaking,
the European’s General Data Protection Regulation (GDPR) law requires that any algo-
rithm utilized for patient care should provides a clear explanation of its decision making
process (Temme, 2017). Additionally, the usefulness of a black-box model in healthcare is
constrained because it fails to reveal its reasoning, limitations, and biases. Making deep
learning models interpretable not only exposes potential errors in the algorithms, but also
facilitates the identification of significant details in imaging data that might otherwise
remain hidden (Salahuddin et al., 2022).

3.4 Solutions using deep learning

The challenges exposed in the previous section are well-known in the community,
and researchers have already proposed some solutions to tackle them. Lots of these
solutions try to work around the requirement of large datasets for training, using deep
learning techniques that do not necessitate labeled data (e.g. unsupervised learning, or
self-supervised learning) or that allows to make use of more diverse datasets without
privacy constraints (Rehman et al., 2023). Other solutions were proposed to tackle the
issues of model related challenges, such as the lack of interpretability or to defend from
adversarial attacks, but these will not be discussed here. In this section, we will outline two
solutions making use of representation learning that researchers use to overpass the lack of
diverse training data: transfer learning and data augmentation using generative models,
in particular for image-to-image transition and style transfer. In these two concepts,
learned representations are manipulated and used to transfer from one context to another:
respectively, to transfer knowledge from one task or domain to another, and to transfer
the style of data from one domain to another while preserving the content.
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3.4.1 Transfer learning

Transfer learning came as a solution for researchers to overcome data scarcity is-
sues (see 3.3.1). The fundamental motivation for transfer learning was first evoked at
NeurIPS-95, at a workshop on Learning to Learn, leading researchers to put more and
more attention to this field. In 2005, the Broad Agency Announcement (BAA) 05-29 of
Defense Advanced Research Projects Agency (DARPA)’s Information Processing Tech-
nology Office (IPTO) proposed a new definition for transfer learning: “transfer learning
aims to extract the knowledge from one or more source tasks and applies the knowledge
to a target task”. In this chapter, we use the definitions from Pan et al., 2010.

[ Definitions
A domain D consists of two components: a feature space X and a marginal prob-
ability distribution P (X) with X = {x1, x2...} ∈ X .

A task T consists of two components: a label space Y and an objective predictive
function f(·), which can be learned from the training data. Training data consists
of pairs {xi, yi} where xi ∈ X and yi ∈ Y .

Given a source domain DS and learning task TS, a target domain DT and learning
task TT , transfer learning aims to help improve the learning of the target pre-
dictive function ft(·) in DT using the knowledge in DS and TS, with DS ̸= DT or
TS ̸= TT .

These definitions suggest that two domains can be different because feature spaces are
different, or because marginal distributions of the feature spaces are different. Two tasks
can also be different if their label spaces are different or if the conditional probability
distributions are different. Such variations lead to several types of transfer learning,
explained in the next section (3.4.1.1). Transfer learning can also be performed using
diverse approaches, described in 3.4.1.2. The particularities of transfer learning with
neural networks are explained in 3.4.1.3. Finally, in 3.4.1.4, we will expose some studies
that made use of transfer learning for deep learning in medical imaging, in particular with
fMRI data.
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3.4.1.1 Types of transfer learning

Figure 3.7 represents the different types of transfer learning. These are defined based
on the presence of labeled data in the source and target domains, but also on the context,
i.e. whether domains are different, tasks are different or both are different.

Transfer learning

Self-taught learning Transductive 
transfer learning

Unsupervised
transfer learningLabeled data ? 

In which domain ?

Inductive transfer 
learning

No

Yes

Only in source 
domain

Only in target 
domain In both

Different domains, 
Same or different tasks

Same or different domains, 
Same or different tasks

Different domains, 
Same tasks

Figure 3.7 – Different types of transfer learning based on the context

Inductive transfer learning In this setting, we should have access to labeled data
in both source and target domains. There are multiple cases in which inductive transfer
learning could be used.

• First, we could have access to a large source dataset with specific labels (e.g.
anatomical segmentations) and a smaller target dataset with different labels (e.g.
lesion segmentations), thus DS = DT and TS ̸= TT . The knowledge learned by
training on the source domain for anatomical segmentations could then be trans-
ferred to the task of lesion segmentations in the target domain. The supposition is
that representations of data learned to segment organs would help for the task of
segmenting lesions.
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• We could also have the same labels in both domains, but differences between do-
mains (e.g. lesion segmentation in T1 MRI and in CT Scan), in such case DS ̸= DT

and TS = TT .

• Lastly, both domains and tasks could be different (e.g. anatomical segmentation in
T1 MRI and lesion segmentation in CT Scan), DS ̸= DT and TS ̸= TT . In each case,
both datasets have access to labels, whatever the type of labels.

Self-taught learning A subtype of inductive transfer learning concerns the situation
where no labels are available in the source dataset. In self-taught learning (Raina et al.,
2007), domains can be different or similar. The main point is that we have access to a
large unlabeled source dataset (e.g. T1 MRI) and a smaller labeled target dataset (e.g.
lesion segmentation in CT Scan). The knowledge learned on an unsupervised task with
T1 MRI could thus be transferred to improve training of the lesion segmentation model
in CT Scan.

Transductive transfer learning In the opposite case, we could have access to a large
labeled source dataset and a smaller unlabeled target dataset. In this setting, the source
and target tasks are the same, while the source and target domains are different. For
instance, we could learn a feature mapping from T1 to CT images while optimizing to
segment lesion in CT.

Unsupervised transfer learning Finally, when we have no labeled data in both
datasets, we could use unsupervised transfer learning. In this setting, the target task
can be different from but must be related to the source task, however, it is only possible
to solve unsupervised learning tasks in the target domain, such as clustering, dimension-
ality reduction, and density estimation (Wang et al., 2008).

3.4.1.2 Common approaches to transfer

In Pan et al., 2010, authors define four types of approaches for transfer, at different
levels: instance-level, feature-level, parameter-level and relationship-level. In the former,
we assume that some parts of the source data can be reused to learn in the target dataset
using re-weighting. At the feature-level, the goal is to find a feature representations that
would minimize domain divergence and model error. This feature representation can be
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built using supervised or unsupervised methods. In the parameter-level approach, we as-
sume that models trained for related tasks share some parameters or prior distributions of
hyperparameters. The target task could thus benefit from the parameters learned by the
model on the source task. Finally, in some cases where data have a specific representation,
such as network data, relationships between data can be used to transfer knowledge be-
tween source and target domain. In this context, statistical relational learning techniques
are proposed to solve these problems.

3.4.1.3 Particularities of deep learning

The principles of deep learning and the architecture of networks make them highly
suitable for two approaches in particular: at the feature-level and at the parameter-level.
At the feature-level, neural networks are first trained on the source domain for a source
task. The convolutional layers are then extracted and weights and biases are frozen. These
layers are then used to extract features of the target dataset and directly input them to
another model for the target task. At this level, the lower-level representation of data
learned for the source task on the source domain is used for the target tasks, implying
that both tasks and domains should be close.

At the parameter-level, models are also trained on the source domain for a source
task, layers are also extracted, but not frozen. The weights and biases of these layers are
used to initialize another model that will be trained on the target task. This technique
is also known as “fine-tuning” and suggests that representations learned during the first
training phase are useful for the target task or domain, but remain too different to be
used directly.

3.4.1.4 Applications in medical imaging

The potential of transfer learning to deal with data challenges in medical imaging led
researchers to a massive use of these techniques. A search on PubMed for transfer learning
on medical imaging led to more than 20,000 papers, with an ascending tendency since
2015 1. The lack of large public datasets has led to the widespread adoption of transfer
learning from ImageNet (Deng et al., 2009), a famous natural images dataset, to improve
performance on medical imaging tasks (Bengio, 2012). It might seems surprising that
such transfer from natural images to the medical domain gives good performance, due to

1. PubMed was queried on May, 7th 2024.
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the large difference between the two domains (Raghu et al., 2019), and thus potentially
on data representations learned by neural networks. In a recent paper, Matsoukas et al.,
2022 showed that such transfer was more beneficial when the target dataset had a small
size and was close to the source dataset (i.e. to natural images). These benefits are
mostly related to the feature extraction that is similar between the two domains, as also
demonstrated in Kim et al., 2022.

In some cases, medical imaging data might be too far from natural images, or might
have different properties, making it difficult to take advantage of large natural image
datasets. This is the case for fMRI data, which are usually 4-dimensional for raw data,
or 3-dimensional when using statistic maps, contrary to natural image datasets which
are composed of 2-dimensional images. Moreover, statistic maps are composed of voxels,
whose value does not represent pixel intensities between 0 and 255, but statistical values
that can take a wider range of value (positive or negative). Transfer learning in this
setting might require the use of another dataset, closer to the target data, or some data
adaptation to remain close to natural images properties. For instance, Thomas et al.,
2023 pretrained two deep learning classifiers on a large, public fMRI dataset of raw data,
fine-tuned them and evaluated their performance on another task on the same dataset
and on a fully independent dataset. In another study, Y. Gao et al., 2019 used the
ImageNet dataset (Deng et al., 2009) to pretrain a model and fine-tuned it to classify 2-
dimensional fMRI data. This database was also used in Malik et al., 2022 for pretraining
a 2-dimensional structural MRI classifier. In the same paper, the Kinetics dataset (Kay
et al., 2017) was also used to evaluate the transfer learning process with 3-dimensional
images. In a recent work, Thomas et al., 2022 used self-supervised learning frameworks to
pretrain brain decoding models across a broad fMRI dataset, comprising many individuals,
experimental domains, and acquisition sites. These studies showed improved classification
accuracies as well as quicker learning and less training data required.

3.4.2 Image-to-image transition and style transfer

The term neural style transfer was first employed by Gatys et al., 2016 to define the
separation and recombination of the image content and style using neural networks. In the
algorithm, features of content and style of images are matched in the convolutional layers
of a CNN. Despite the results showed in the paper, the principle of neural style transfer
remained unclear. Li et al., 2017 thus theoretically showed that neural style transfer could
be seen from a domain adaptation point of view and that matching the Gram matrices
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of the features was equivalent to minimizing the Maximum Mean Discrepancy between
the features. Such findings were promising, and lead researchers to apply neural style
transfer for a wide range of tasks, including domain adaptation (Li et al., 2017) and data
augmentation (Zheng et al., 2019). In this section, we will focus on neural style transfer
with Image-to-image transition (I2I), as opposed to text-to-image or other forms of style
transfer. This technique was found particularly successful in medical imaging to overcome
the data scarcity issues, and we will present some examples at the end of the section.

3.4.2.1 Foundations of image-to-image transition

Following the definitions exposed in 3.4.1, the goal of I2I is to convert an input image
xA from a source domain A to a target domain B with the intrinsic source content pre-
served and the extrinsic target style transferred. This means that we need to learn the
mapping GA→B that would generate xAB ∈ B, with the content of xA ∈ A and the style
of xB ∈ B.

I2I frameworks can be categorized using several criteria. First, we distinguish su-
pervised and unsupervised I2I. In supervised settings, we have access to paired datasets,
meaning that we have a dataset XA = {xA1 , xA2 , ...} ∈ A and a dataset XB = {xB1 , xB2 , ...} ∈
B, with XBi

= GA→B(XAi
). In other words, we should have access to the ground-truth,

i.e. the exact version of each image of the domain A in the domain B. In unsuper-
vised settings, we only have access to unpaired datasets, meaning that we have a dataset
XA = {xA1 , xA2 , ...} ∈ A and a dataset XB = {xB1 , xB2 , ...} ∈ B, but this time, we do not
have any ground-truth, i.e. data are not matched and supposedly, there is no equivalent
of xAB ∈ B in the dataset XB. Figure 3.8 illustrates the notion of paired and unpaired
datasets. Other types of I2I exists, for instance semi-supervised I2I or few-shot I2I, that
will not be detailed here.

We also distinguish I2I frameworks according to the fact that only two domains are
involved, or multiple ones, i.e. two-domains and multi-domains frameworks. In the
former, only one transfer is learned at a time, and datasets are only composed of data
from two different domains. If we take the example of facial attributes modification, an
application of style transfer, this means that each framework will learn to transfer a single
facial attribute (e.g. hair color, age, etc.).

If datasets are composed of n models, such frameworks would require to learn n ·
(n − 1) models to learn all possible mappings. Such training is highly time consuming
and limited since models cannot use the global information available in the whole dataset
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Figure 3.8 – Paired training data (left) consists of training examples xi, yi, where the
correspondence between xi and yi exists (Isola et al., 2017). Unpaired training data
(right) consists of a source set xi and a target set yj, with no information provided as to
which xi matches which yj. Figure extracted from Zhu et al., 2017.

and the mappings between other domains. Thus, researchers studied the multi-domains
I2I problem. These frameworks are composed of single unified model in which different
outputs might contain different style modifications. For the facial attributes, this means
that a single model would be able to learn to transfer both hair color and age. This is
done in practice by encoding a precise query in the model, for instance using conditioning.

3.4.2.2 Models and architectures

In computer vision, recent advances gave rise to performing deep generative models
such as GAN (Goodfellow et al., 2014) and DDPM (Ho et al., 2020). These models
produce high quality results for generating new images from a known distribution, and
in the task of I2I using their conditional versions (Isola et al., 2017; Saharia et al., 2022).
Architectures and learning strategies of GAN and DDPM were described in 3.1.3. Here,
we present their conditional versions and expose several frameworks developed for I2I.

Conditional Generative Adversarial Networks. Conditional versions of GAN (Mirza
et al., 2014) - conditional Generative Adversarial Network (cGAN) - can be constructed
by inputting the data, y, we wish to condition the generation on, to both the generator
G and the discriminator D. The condition y can be any kind of information, from class
labels to images, and is usually set as input to the networks by concatenation with the
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data. In such case, the adversarial loss remain similar to Equation 3.2, with both D and
G conditioned on y:

min
G

max
D

V (D, G) = Ex∼pdata
(x)[logD(x|y)] + Ez∼pz(z)[log(1 − D(G(z|y)))]. (3.5)

In Odena et al., 2017, conditioning is further improved by training the discriminator
to differentiate between real and fake images, but also to correctly classify real and fake
image in the target class label. The adversarial loss is thus combined with another non-
adversarial losses, dedicated to classification.

These models were first developed to generate new samples that follow the training
distribution, in particular for data augmentation. The sampling process (i.e. the genera-
tion of new images after training) starts with the initialization of a random vector z from
which images are sampled. The cGAN provided an opportunity to perform conditional
image generation, but the absence of conditioning of the (noise) input variable z prevent
them to directly perform style transfer. In I2I, one starts from a source image xA that
is given as input to the framework and modified using conditioning. In the following, we
will describe several frameworks developed for I2I:

Age-cGAN Antipov et al., 2017 created Age-cGAN, a conditional GAN coupled
with an encoder to approximate an initial latent vector that would preserve the person’s
identity. This allows to conditionally generate images by constraining on a target age
ytarget and to perform face aging on a specific image using the approximate latent vector.

Pix2Pix Isola et al., 2017 introduced Pix2Pix, a framework to tackle supervised
two-domains I2I problems. The generator receives as input an image from the input
domain A and learns to convert it to the target domain B by minimizing a reconstruction
error (Mean Squared Error - MSE or Mean Absolute Error - MAE loss) in addition to the
adversarial loss. The discriminator learns to differentiate between the fake output G(xA)
and the desired ground truth output image xB.

CycleGAN Due to the difficulty of building paired datasets for training, researchers
developed methods to perform I2I using unpaired datasets for training. The state-of-the-
art for unsupervised image-to-image transition is CycleGAN (Zhu et al., 2017). In this
framework, two generators and two discriminators are trained:

• GA→B learns to map data from A to B
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Figure 3.9 – Schematic representation of the learning process of Pix2Pix (Isola et al.,
2017). One generator and one discriminator are trained to convert data between two
domains, loss functions are adversarial and mean squared error (MSE).

• GB→A from B to A

• DA aims to distinguish between images xA and translated images GB→A(yB)

• DB aims to discriminate between yB and GA→B(xA)

The full objective loss consists in two adversarial losses, one between GA→B and DB

and one between GB→A and DA, and one cycle-concistency loss. This cycle-concistency
loss is based on the principle that for each image xA from domain A, the image trans-
lation cycle should be able to bring xA back to the original image: xA → GA→B(xA) →
GB→A(GA→B(xA)) ≈ xA, and similarly for yB:

Lcyc(GA→B, GB→A) = Ex∼pdata(x)[∥ GB→A(GA→B(x)) − x ∥1]
+Ey∼pdata(y)[∥ GA→B(GB→A(y)) − y ∥1]

(3.6)

StarGAN StarGAN is a generative model architecture designed for multi-domains
I2I, its goal is to perform image translation across multiple domains using a single unified
model. StarGAN is composed of a single generator and a single discriminator, with some
particularities. During training, the generator G takes as input the source image xA, but
also a condition yB corresponding to a target domain, supposedly leading to image xAB.
Then, xAB is set as input to G, this time with a condition yA to generate xABA. This
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Figure 3.10 – Schematic representation of the learning process of CycleGAN (Zhu et al.,
2017). Two generators and two discriminators are trained to convert data between two
domains, loss functions are adversarial and cyclic loss.

allows the use of a cyclic-loss that compares xA and xABA. The discriminator D tries to
distinguish real xAB images from generated G(xA, yB) images, as well as determining the
domain of the image xAB.

This model is trained with a loss composed of three components:

• Adversarial loss: to make the generated images indistinguishable from real im-
ages. See Equation 3.5.

• Cyclic loss: to guarantee that translated images preserve the content of its input
images.

Lrec = ExA,yA,yB
[||xA − G(G(xA, yB), yA)||1] (3.7)

• Domain classification loss: to ensure that generated image are properly clas-
sified to the target domain B. To achieve this condition, an auxiliary classifier is
added on top of D and an objective loss is decomposed into two terms: a domain
classification loss of real images used to optimize D, and a domain classification loss
of fake images used to optimize G.

Lr
cls = ExA,yA

[−log(Dcls(yA|xA))] (3.8)

By minimizing Lr
cls, D learns to classify a real image xA to its corresponding original

domain yA.
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Figure 3.11 – Schematic representation of the learning process of StarGAN (Choi et al.,
2018). One generator and one discriminator are trained to convert between multiple
domains, loss functions are adversarial, cyclic loss and classification loss.

Lf
cls = ExA,yB

[−log(Dcls(yB|G(xA, yB)))] (3.9)

By minimizing Lf
cls, the generator G learns to generate images that are classified in

the target domain.

Conditional Denoising Diffusion Probabilistic Models Similarly to GAN, DDPM
were rapidly enhanced by adding conditional guidance to the diffusion process. Dhariwal
et al., 2021 propose to add conditioning using classifier guidance, i.e. use of the gradients
of a classifier to guide the diffusion during sampling. The proposed method consists in an
unconditional model, and a pretrained a classifier that distinguishes the different labels
or domains in the dataset. During sampling, an image from the target domain is passed
through the classifier and classifier gradients are injected to the neural network.

In Ho et al., 2021, authors proposed a new framework to dispense with the need for a
classifier. In this framework, timestep and conditioning are embedded using 2 MLP and
infused with the neural network activations at a certain layer via aL+1 = cemb·aL+temb. An
unconditional DDPM is trained along with the conditional one by setting a contrast mask
m. This mask changes the conditioning vector to a null token ∅ with some probability
puncond., set as an hyper-parameter. During sampling, the framework computes both
conditional and unconditional noise prediction and performs a linear combination of the
two with a weight w to represent the strength of the conditional guidance using the
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Figure 3.12 – Schematic representation of the learning process of conditional Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2021). During training, a neural net-
work learns to predict the noise added to the image, while knowing its origin domain. At
inference, the neural networks predict the noise added to the image, while conditioning
on another target domain.

equation from Ho et al., 2021:

ϵ̂θ(Xt, t, C) = (1 + w) · ϵ̂θ(Xt, t, C) − w · ϵ̂θ(Xt, t) (3.10)

Preechakul et al., 2022 introduce diffusion autoencoders, which consist of a semantic
encoder that maps the input image to a latent representation with high-level semantics,
and a conditional diffusion model composed of a stochastic encoder to extract a mean-
ingful and decodable representation of an input image and of a decoder for modeling the
remaining stochastic variations.

Such frameworks are designed to perform conditional generation, but are not suited for
I2I, as the sampling process starts from a random noise. To keep the intrinsic properties of
the source image, Saharia et al., 2022 concatenated the source image along with random
Gaussian noise to initialize the diffusion. In this paper, a supervised I2I framework is
proposed, and conditioning is performed by employing a L2 regularization between the
generated image and the ground truth, similarly to Pix2Pix in GAN (Isola et al., 2017).
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For unsupervised settings, i.e. with unpaired datasets, Sasaki et al., 2021 developed
a framework with two jointly trained DDPM, each one learning the opposite transition
A → B and B → A. During the reverse process, each model is conditioned on the outputs
of its counterpart, and a cyclic-concistency loss is added to regularize the training process.

3.4.2.3 Applications in medical imaging

In medical imaging, I2I frameworks are used for multiple tasks (Kaji et al., 2019),
including modality transition (Armanious et al., 2020; Denck et al., 2021; Jin et al., 2019;
Kong et al., 2021; Lyu et al., 2022; Nie et al., 2018; Ozbey et al., 2023; Qin et al., 2022;
Wolterink et al., 2017a; Yang et al., 2020), image denoising (Yang et al., 2018; Wolterink
et al., 2017b; Armanious et al., 2020), or data harmonization (Bashyam et al., 2022; Liu
et al., 2021). Overall, these frameworks allow researchers to gather more data, and in
particular to build multimodal datasets. Observing from multiple modalities offers more
comprehensive information, and can reveal more subtle changes in brain tissues, which
can be difficult to appreciate with single modality datasets. However, some MR images
may become unusable during data acquisition and storage due to various factors such as
artifacts or improper scanning parameters. Moreover, rescanning subjects to obtain miss-
ing modalities is impractical and costly, as abnormalities in brain structures can change
over time, rendering new data incompatible with the original (see 2.1.1). Consequently,
cross-modality synthesis of MR images has been explored to address modality absence and
inconsistency. Multicentric datasets also offers an opportunity to gather larger datasets,
but this can be challenging since different acquisition centers may have different scanning
equipment and imaging protocols, leading to unwanted variability in the data (see 2.1.3).

Using a conditional GAN coupled with a perceptual loss and a style transfer loss,
MedGAN (Armanious et al., 2020) showed its performance in PET to CT translation,
PET denoising and correction of MRI artifacts. In supervised settings, Nie et al., 2018
used a variant of Pix2Pix (Isola et al., 2017) with a gradient-based loss function for MRI to
CT translation. Another variant of this model was also used in 3-dimensional for cardiac
left ventricle segmentation on echography (Dong et al., 2018). Yang et al., 2018 also used
a cGAN for low-dose to high-dose CT translation, with pixelwise loss associated with a
minimization of the Wasserstein distance and a perceptual similarity loss. For the same
application, Wolterink et al., 2017b proposed to get rid of paired datasets and showed the
potential of CycleGAN. This model also showed its potential for stain normalization in
histological images (Shaban et al., 2019).
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Since their emergence, I2I frameworks focused more and more on the use of diffusion
models (Lyu et al., 2022; Ozbey et al., 2023; Pan et al., 2023; Dorjsembe et al., 2024;
Jiang et al., 2023). Lyu et al., 2022 showed the superiority of diffusion models compared
to GAN in this task for the conversion between MRI and CT using a supervised framework
(i.e., with pairs of data from both modalities). In unsupervised settings, Pan et al., 2023
developed a cycle-guided framework composed of two DDPM that condition each other
to generate synthetic images from two different MRI pulse sequences. Similarly, Ozbey
et al., 2023 proposed SynDiff with a source-conditional adversarial projector that denoises
the target image sample with guidance from the source image.

C Take-home Message

• Deep representation learning is the process of learning a representation from
input data towards a specific task, leading to the identification of meaningful
features for the task at hand.

• In computer vision and thus, in medical imaging, the main representatives
of deep representation learning models are Convolutional Neural Network
(CNN). These are used in many tasks ranging from classification to image
registration and denoising.

• The use of medical imaging data comes with challenges, in particular due to
the low sample size, low diversity and lack of annotations of datasets.

• To learn better representations of data in such settings, researchers developed
several solutions, in particular with transfer learning and generative models.
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Chapter 4

LEVERAGING VARIABILITY IN FMRI
RESULTS WITH SELF-TAUGHT LEARNING

This chapter was the subject of an article published in GigaScience:

• Title: On the benefits of self-taught learning for brain decoding

• Authors: Elodie Germani, Elisa Fromont*, Camille Maumet*

• DOI: 10.1093/gigascience/giad029

• Code: swh:1:snp:289ee6f81cd88d26fa3f332eecfb86d3df1f114f

• Derived data: Available on Zenodo at 10.5281/zenodo.7566172.

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

4.1 Introduction

In the past few years, deep learning approaches have achieved outstanding performance
in the field of neuroimaging (Abrol et al., 2021) due to their ability to model complex
non-linear relationships in the data. fMRI data are often used as input data to these
models for different tasks, such as disease diagnosis (Yin et al., 2022) or brain decoding
(i.e. identifying stimuli and cognitive states from brain activities) (Firat et al., 2014), with
a common goal: linking a target with highly variable patterns in the data and ignoring
aspects of the data that are unrelated to the learning task. Researchers took advantage
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of the specific properties of fMRI data to build more and more sophisticated models (Vu
et al., 2018; Hu et al., 2019; Koyamada et al., 2015; Wang et al., 2020; Huang et al., 2021;
Vu et al., 2020; Oh et al., 2019).

As seen in the previous chapter (see Section 3.3), training effective deep learning mod-
els using neuroimaging data comes with many challenges due to the particular properties
of data (Thomas et al., 2021; Thijs Kooi, 2018). The field also suffers from a large number
of sources of variability in the data (see Chapter 2) at the subject level (brain activity
patterns differ across participants), the acquisition level (fMRI scanners and protocols
often vary between centers and studies) and the analysis level (different analysis pipelines
lead to different brain patterns). In our case, brain decoding models should be robust to
all these sources of variability, but this remain difficult due to the low sample size and
low variability of datasets (Ricci Lara et al., 2022).

To prevent overfitting and allow for generalizable statistical inference, neuroimaging
researchers proposed methods to tackle this lack of training data (Bontonou et al., 2021;
Yotsutsuji et al., 2021; Zhuang et al., 2019). For instance, Mensch et al., 2014 built a
decoding model using data gathered from 35 studies and thousands of individuals that
cover various cognitive domains. Despite the good performance of the models, these can
only be applied on restricted sets of studies, discriminating between few cognitive con-
cepts. More annotated training data (e.g. using large public databases) would be required
to map a wider set of cognitive processes. Lots of studies were also made on inductive
transfer learning with labeled source data as defined in Pan et al., 2010 (e.g. source task
and target task are different, as well as source domain and target domain) (Thomas et al.,
2023; Y. Gao et al., 2019; Svanera et al., 2019) (see 3.4.1.4).

However, labeled databases are not always available in neuroimaging, despite the
growing effort in data sharing to build public databases (Poldrack et al., 2014), such
as OpenNeuro for raw data (Markiewicz et al., 2021) and NeuroVault for fMRI statistic
maps (Gorgolewski et al., 2015). The unconstrained annotations and the heterogeneity of
tasks and studies make them difficult to use to pretrain a supervised deep learning model.
To compensate this, weakly supervised learning techniques such as automatic labelling
of data has proven its worth. For instance, Menuet et al., 2022 enriched NeuroVault
annotations using the Cognitive Atlas ontology (Poldrack et al., 2011b) and used these
labeled data to train a multi-task decoding model that successfully decoded more than
50 classes of mental processes on a large test set.

A specific type of inductive transfer learning named self-taught learning (Raina et al.,
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2007; Wang et al., 2013) showed strong empirical success in the field of machine learning.
It does not require any labels as it consists in training models to autonomously learn
latent representations of the data and using these to improve learning in a supervised
setting. This approach is motivated by the observation that data from similar domains
contain patterns that are similar to those of the target domain. By initializing the weights
of a supervised classifier with the pretrained weights of an unsupervised model trained
on many images, the aim is to improve the model performance by placing the parameters
close to a local minimum of the loss function and by acting as a regularizer (Erhan et al.,
2010).

In the field of neuroimaging, latent representations have recently been used in a task-
relevant autoencoding framework. Orouji et al., 2023 used an autoencoder with a classifier
attached to the bottleneck layer on a small fMRI dataset. This model outperformed the
classifier trained on raw input data by focusing on cleaner, task-relevant representations.
This suggests that a low-level representation of fMRI data, learned for a reconstruction
task, can be helpful in a classification task, as in a self-taught learning framework.

In this chapter, we propose to take advantage of NeuroVault – a large public neu-
roimaging database that was built collaboratively and therefore displays a good level of
variability in terms of fMRI acquisition protocols, machines, sites and analysis pipelines
– in a self-taught learning framework. We pretrain an unsupervised deep learning model
to learn a latent representation of fMRI statistic maps and we fine-tune this model to
decode tasks or mental processes involved in several studies. In a first part, we leverage
the NeuroVault database to select the most relevant statistic maps and train a Convolu-
tional AutoEncoder (CAE) to reconstruct these maps. In a second part, we use the final
weights of the encoder to initialize a supervised Convolutional Neural Network (CNN) to
classify the cognitive processes, tasks or constrasts of unseen statistic maps from large
collections of the NeuroVault database (an homogeneous collection of more than 18,000
statistic maps and an heterogeneous one with 6,500 maps). Our goal is to investigate
how the use of a large and diverse database in a self-taught learning framework can be
beneficial in the field of brain imaging for deep learning models.

4.2 Materials and Methods

Figure 4.1 illustrates the overall process used to implement our self-taught learning
framework: a CAE was first trained to reconstruct the maps of a large dataset extracted
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Figure 4.1 – Flow diagram of the self-taught learning methodology. NeuroVault dataset
is used to train a Convolutional AutoEncoder (CAE). The encoder of this CAE is used to
initialize a Convolutional Neural Network (CNN) and to train it to classify other datasets.
These classification datasets are split in two disjoints datasets: a “validation” one used
to optimize hyperparameters and a “test” one to evaluate performance. In each one, a
5-fold cross-validation is performed.
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from NeuroVault. Then, the encoder part of the CAE was fine-tuned to answer a classi-
fication problem on another dataset (with labels). After hyperparameters optimisation,
performance of the pretrained classifier was compared to those of a classifier initialized
with a default algorithm. Details regarding the datasets (NeuroVault dataset and classi-
fication datasets) can be found in the next subsection. The models of the CAE and the
CNN are presented in Appendix D. Further explanations on the workflow used to train
the CAE and the CNN and to evaluate their performance are available in Sections 4.2.4
and 4.2.5 respectively.

4.2.1 Overview of the datasets

A summary of the different datasets can be found in Table 4.1. Details are given
below.

Table 4.1 – Overview of the datasets. For each dataset, number of statistic maps are
presented, as well as the number of participants, number of studies and the type of labels
(if available).

Dataset Maps Participants Studies Labels
NeuroVault 28,532 - - -

HCP 18,070 787 1 Tasks (7 )
Contrasts (23 )

BrainPedia 6,448 826 29 Cognitive
processes (36 )

4.2.1.1 NeuroVault dataset

NeuroVault (Gorgolewski et al., 2015) (RRID:SCR_003806) is a web-based repository
for statistic maps, parcellations and atlases produced by MRI and PET studies. This is
currently the largest public database of fMRI statistic maps. NeuroVault has its own
public Application Programming Interface (API) that provides a full access to all im-
ages (grouped by collections) and enables filtering of images or collections with associated
metadata. At the time of experiment (19/01/2022), a total of 461,461 images in 6,782 col-
lections were available. Among the available metadata, some are mandatory and specified
for all maps such as the modality (e.g. “fMRI-BOLD” for Blood-Oxygen Level Dependent
Functional MRI; “dMRI” for Diffusion MRI, etc.), the type of statistic (e.g. “T map”
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or “Z map”) or the cognitive paradigm (e.g. “Working memory” or “Motor fMRI task
paradigm”), and others are optional and only available if additionally entered at the time
of the upload.

From this large database, relevant maps were selected based on multiple criteria. First,
we chose maps for which the modality was “fMRI-BOLD” to exclude other modalities
such as structural or diffusion MRI. To get comparable maps, we set three additional
inclusion criteria and selected maps: 1/ for which all required metadata were provided
(“is_valid” to True) 2/ that were registered in MNI space (“not_mni” to False) – to
ensure that anatomical structures were located at the same coordinates in each map –
and 3/ referenced as “T map” or “Z map” – to exclude maps in which voxel values did
not have the same meaning (e.g. P value maps, Chi-squared maps, etc.) –. Among these,
thresholded statistic maps were excluded.

We found that some maps in our initial dataset, were wrongly referenced as T map or
Z map. These misclassified maps were removed by filtering the “filename” column of the
dataframe to exclude SetA_mean SetB_mean (AFNI contrast maps), con (SPM contrast
maps), cope (FSL contrast maps).

Using these criteria, a total of 28,532 statistic maps were selected from the NeuroVault
database and constituted our “NeuroVault dataset”. Most of these maps were unlabeled
(i.e. cognitive processes or tasks performed described as “None / Other”) or not labeled
in a standardized way (i.e. use of terms that are specific for a study instead of generic
terms, such as those defined in Poldrack et al., 2011b: e.g. some maps were labeled as
‘word-picture matching task’ for the cognitive paradigm whereas others in which a similar
task was performed were referenced as ‘working memory fMRI task paradigm’ which is a
label that includes other specific tasks).

4.2.1.2 HCP dataset (NeuroVault Collection 4337)

NeuroVault collection 4337 (Collection nº4337, n.d.) includes 18,070 z-statistic maps,
for base contrasts (task vs baseline), corresponding to 787 participants of the Human
Connectome Project (HCP) Young Adult S900 release (Van Essen et al., 2013). This
collection was excluded from our pretraining dataset (see section 4.2.1.1) due to missing
metadata (i.e. ‘is_valid’ is False).

All maps in this collection were grouped together and referred to as the “HCP dataset”
in the following. Multiple labels were entered for each map including: mental concepts
(“cognitive_paradigm_cogatlas”), tasks (“task”) and contrasts (“contrast_definition”)
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(as defined in Poldrack et al., 2011b). For each participant, 23 contrasts distributed in 7
tasks were available:

• Working memory: ‘0-back body’, ‘0-back face’, ‘0-back places’, ‘0-back tools’, ‘2-
back body’, ‘2-back face’, ‘2-back places’, ‘2-back tools’

• Motors: ‘cue’, ‘left foot’, ‘left hand’, ‘right foot’, ‘right hand’

• Relational: ‘relational’, ‘match’

• Gambling: ‘punish’, ‘reward’

• Emotion: ‘faces’, ‘shapes’

• Language: ‘math’, ‘story’

• Social: ‘tom’

For more details on contrasts, tasks and mental concepts of this study, see Van Essen
et al., 2013.

4.2.1.3 BrainPedia dataset (NeuroVault collection 1952)

NeuroVault collection 1952 (Collection nº1952, 2016), known as BrainPedia (Varo-
quaux et al., 2018), contains fMRI statistic maps of about 30 fMRI studies from Open-
Neuro (Markiewicz et al., 2021), the Human Connectome Project (Van Essen et al., 2013)
and from data acquired at Neurospin research center, together they were chosen to map
a wide set of cognitive functions.

This collection contains 6,573 statistic maps corresponding to 45 unique mental con-
cepts derived from 19 sub-terms (e.g. ‘visual, right hand, faces’ for maps associated with
the task of watching an image of a face and responding to a working memory task).
These images were previously used to build a multi-class decoding model (Varoquaux
et al., 2018) and labels corresponded to the mental concepts associated with the statistic
map, e.g., ‘visual’, ‘language’ or ‘objects’. Here we excluded the nine classes that had
less than 30 samples each, leaving 6,448 images corresponding to 36 classes. These 6,448
images were grouped together and referred to as the ‘BrainPedia’ dataset in the following.

4.2.2 Preprocessing

All statistic maps included in this study were downloaded from different collections of
NeuroVault and therefore were processed using different pipelines (see the original studies
for more details (Varoquaux et al., 2018; Van Essen et al., 2013)). We resampled all maps
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to dimensions (48, 56, 48) using the MNI152 template available in Nilearn (Abraham
et al., 2014a) (RRID: SCR_001362) as target image. A min-max normalization was also
performed on all resampled maps to get statistical values between -1 and 1. Finally,
the brain mask of the MNI152 template in Nilearn was used to exclude statistical values
outside the brain in all statistic maps.

4.2.3 Model architectures

Description of model architectures and corresponding Figures are described in Ap-
pendix D.

4.2.4 Convolutional AutoEncoder (CAE) training

To train our CAE to reconstruct the statistic maps of the NeuroVault dataset, we used
an Adam optimizer (Kingma et al., 2017) with a learning rate of 1e − 04 and all other
parameters with default values. The loss function was the Mean Squared Error (MSE:
the squared L2 norm) which is the standard reconstruction loss.

4.2.4.1 Dataset split

NeuroVault dataset was randomly split in two subsets: training and test with respec-
tively 80% and 20% of the maps. The training set (N=22,772 maps) was used to train
the CAE with the different architectures and the test set (N=5,760 maps) to assess the
performance of the different models (with different hyperparameters).

4.2.4.2 Architecture comparison

To limit the computational cost of our experiments, we fixed some of the hyperparam-
eters of the CAE and only compared those who were of interest for the later experiments.
Here, we use the term model “hyperparameters”, to distinguish with model “parameters”,
to represent the values that cannot be learned during training, but are set beforehand
e.g., the batch size or the number of hidden layers. Thus, a batch size of 32 and a learning
rate of 1e − 04 were chosen to train the CAE for a number of 200 epochs (i.e. values that
are often used in experiments). The only hyperparameter for which different values were
compared were the number of hidden layers of the model: 4 layers vs 5 layers for each
part (encoder/decoder) of the model.
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4.2.4.3 Performance evaluation

To assess the performance of the CAE, we estimated Pearson’s correlation coefficient
between the reconstructed statistic map and the original statistic map. The correlation
coefficient was computed using numpy version 1.21.2 (RRID: SCR_008633) (Harris et al.,
2020). The closer to 1 the correlation coefficient was, the stronger the relationship between
the maps and the more accurate the reconstruction. Note that we did not use MSE in
this context as its individual values (for each data point) were not easily interpreted.

4.2.5 Convolutional Neural Network (CNN) training

We trained two types of classifiers for all the experiments:

— the classifier with default algorithm initialized with the original algorithm from He
et al., 2015 (i.e. Kaiming Uniform algorithm for convolutional and fully-connected
layers with a parameter of

√
5) and

— the classifier with pretrained CAE initialized using the weights and bias of the con-
volutional layers of the CAE pretrained on NeuroVault dataset.

The CNN were trained using the Adam optimizer with a learning rate of 1e − 04. We
used the cross-entropy loss function for training the classifier. Both were implemented in
PyTorch.

4.2.5.1 Dataset split

As described in Fig. 4.1 (on the right), the classification datasets were split in two
disjoint subsets: the ‘validation dataset’ used to optimize the hyperparameters, and the
‘test dataset’ used to test the performance. Each subset contained 50% of the participants
of the overall dataset with no overlap to avoid any data leakage (see Varoquaux et al.,
2022; Kapoor et al., 2023).

For each experiment, the validation and test datasets were then split into 5 folds
for cross-validation. participants were randomly sampled in each fold in order to ensure
that there was no overlap of participants across folds. The identifiers of the participants
included in the different folds were saved for reproducibility. More details on the methods
used to perform the 5-folds split for each dataset are specified in subsection 4.2.6.
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4.2.5.2 Evaluation of performance

The performance of each model was measured using several metrics: accuracy (Acc),
precision (P), recall (R) and F1-macro score (F1). All metrics were implemented using
scikit-learn (Abraham et al., 2014a) with default parameters, except for F1-score for which
the “average” parameter was specified with “macro” to deal with multi-class classification.

To evaluate the performance of a model, all metrics were averaged among the 5 folds
of cross-validation and standard error of the mean was computed.

To compare the final performance of models with default initialization versus fine-
tuned weights, we used paired one-tailed two-sample t-tests between the performance
values (accuracy or F1-score) of the 5 models trained during cross-validation. T-statistic
and p-value were provided and value of 0.05 was used for the p-value significance threshold.

4.2.5.3 Hyperparameters optimisation

To select the best hyperparameters for each dataset and each type of initialization, we
evaluated the performance of each model by performing a 5-fold cross-validation on the
validation dataset.

For each type of classifier (i.e. initialized with default algorithm versus pretrained), we
refined and optimised the hyperparameters using the largest datasets (Large BrainPedia
and HCP). However, the large amount of training data made it computationally extremely
costly to perform a full grid-search. We therefore limited our research to predefined values
of batch sizes (32 or 64), number of epochs (200 or 500) and model architectures (4 layers
or 5 layers). All batch sizes, number of epochs and architectures were tested for each
type of classifier and each dataset. We did not perform any optimization on the learning
rate to limit the computational cost of our experiments. Every model was trained using
a learning rate of 1e − 04.

We selected the best set of hyperparameters based on the performance of the corre-
sponding model in terms of accuracy and F1-score, averaged across folds.

4.2.6 Benefits of self-taught learning and impact of different fac-
tors

To investigate the benefits of self-taught learning for neuroimaging data, different
brain decoding experiments were studied. For all, after optimizing the hyperparameters
of the two models (i.e. the model with default initialization -or- with pretrained CAE
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and fine-tuned weights) we assessed the performance of these optimized models on the
test dataset using a 5-fold cross-validation.

4.2.6.1 Homogeneous dataset (single study)

The HCP dataset was used to compare the performance of the models for the task of
decoding on a homogeneous dataset (i.e. from a single study). We studied the impact of
two factors on the classification: sample size and number of target classes. For sample
size, subsets of the global HCP dataset were created with different number of participants:
N=50, 100 and 200. Each smaller subset being a subset of the immediately larger one.
To create these subsets, we first split the global HCP test dataset into 5 folds, with
different participants in each fold. In each of these 5 folds, we randomly sampled 200/5 =
40 participants and obtained 5 sub-folds that together composed the smaller subset of
200 participants. This process was repeated for subsamples N=100 and 50 by sampling
from their superset. This insured that the 5 models trained on different combinations of
the 4 folds of a smaller subset could be tested on the remaining fold of the global test
dataset with no overlap between the training and test data. The process is illustrated in
Fig. 4.2(a).

In the end, we obtained 4 datasets with respectively N=50, 100 and 200 participants
in addition to the global dataset with all participants (N=393). These datasets respec-
tively contained 1150, 2300, 4590 and 9017 statistic maps in the test subset and 1150,
2300, 4591 and 9053 in the validation subset (note: some contrasts were missing for part
of participants). Since we use a 5-fold validation scheme, the models were trained on
approximately 80% of the statistic maps in the corresponding subset (i.e. validation for
hyperparameter optimization and test for performance evaluation).

Three types of classification were investigated. First, the ‘contrast classification’ which
consisted in identifying the contrast associated with a statistic map (23 different con-
trasts). Second, the ‘task classification’ which consisted in identifying the task associated
with a statistic map (7 different tasks, with multiple contrasts per task). Third, the ‘one
contrast task classification’. This time, we selected a single contrast per task and classified
the tasks (7 different tasks, with one contrast per task). The selected contrasts were ‘2-
back places’, ‘faces’, ‘punish’, ‘relational’, ‘right hand’, ‘story’ and ‘tom’ respectively for
the tasks ‘Working Memory’, ‘Emotion’, ‘Gambling’, ‘Relational’, ‘Motor’, ‘Language’,
’Social’. We selected these contrasts similarly to what was done in Wang et al., 2020
in which the HCP dataset was used in a decoding model. For each task, the contrast
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Figure 4.2 – Overview of the process used to split the datasets for cross-validation. (a)
shows the method performed for HCP dataset and its subsamples and the one used
for BrainPedia and Small BrainPedia datasets is presented in part (b). In both cases,
the global dataset is first split into two subdatasets ‘validation’ and ‘test’ with respec-
tively 50% of the participants and then each subdataset is divided into 5 folds for cross-
validation.
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that showed a greater association with the task had priority over the other (for instance,
‘punish’ for the ‘Gambling’ task). For ‘Working Memory’ and ‘Motor’ tasks, which con-
tained more than one task condition, they randomly chose one (‘2-back body’ for Working
Memory and ‘right hand’ for Motor). The dataset used for this third type of classifica-
tion was thus smaller than the others (only one map per task per participant). For this
classification task, the number of statistic maps was respectively 300, 598, 1198 and 2355
for N=50, 100, 200 and for the global dataset.

4.2.6.2 Heterogeneous dataset (multiple studies)

To study the benefits of self-taught learning on a heterogeneous dataset (i.e. from
multiple studies), we used BrainPedia. For these experiments, we focused on the classifi-
cation of mental concepts (as available in NeuroVault metadata). Fig. 4.2(b) illustrates
the process used to split this dataset. To perform the split while maintaining the het-
erogeneity in each fold, we randomly sampled 50% of the participants of each study to
form the ‘validation’ and ‘test’ datasets of BrainPedia. Then, each dataset, each study
was split into 5-folds and the n-th folds of the different studies were combined to form
the n-th fold of the dataset. Validation and test datasets included N = 428 participants
and were respectively composed of 3179 and 3269 statistic maps.

We also studied the impact of sample size in the presence of heterogeneity by ex-
tracting smaller datasets. Among the 29 studies of the BrainPedia dataset, we only kept
those which were composed of more than 20 participants. In these remaining studies,
already split into 5 folds in BrainPedia validation and test subdatasets, 2 participants
were randomly drawn per fold per study per subdataset to obtain 10 participants per
study per subdataset. Like above, the n-th folds of the different studies were combined to
form the n-th fold of each subdataset of the ‘Small BrainPedia’ dataset. In the end, this
smaller dataset was composed of 1,844 maps, divided in 30 classes, from 11 studies and
220 participants. This dataset was also split into test and validation subsets with 50% of
the participants in each (N=110). The test and validation subsets were thus composed
respectively of 917 and 927 maps.
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4.2.7 Explainability

4.2.7.1 Exploring feature maps to understand the generalizability across par-
ticipants

To investigate the reasons for the difference in performance between the pretrained and
default models, we visualized and analyzed the feature maps of the different convolutional
layers of the model. Visualizing these features was useful to better understand how each
model made its predictions.

With a generalizable classifier, we hypothesized that features of different participants
from the same class should be similar (and therefore not be impacted by individual dif-
ferences). To study this, we computed for each classifier, each layer and each class, the
correlations between the feature maps for all pairs of participants. A high mean correla-
tion highlighted a higher similarity between the feature maps extracted by this layer for
a classifier and thus a higher generalizability.

4.2.7.2 Investigating the contribution of each layer to the overall performance

We explored which pretrained layer had the strongest impact on the classification
performance. This could be made at two stages: before and during training.

Before training, we only transferred the weights of some parts of the CAE. In par-
ticular, we kept the weights of the last convolutional layers with a default initialization
and initialized the first layers with the weights of the pretrained CAE. Multiple config-
urations were explored: transferring only the weights of the first one up to the first four
convolutional layers.

During training, we froze some layers of the model initialized with the weights of the
pretrained CAE, i.e. some layers (the first ones) were not fine-tuned. Multiple types of
freezing were tested: freezing of the first two to the first five convolutional layers.

4.3 Results

4.3.1 Convolutional AutoEncoder (CAE) performance

Reconstruction performance of the CAE is presented in Table 4.2. When comparing
the two CAE architectures (4-layers vs 5-layers) trained on NeuroVault dataset, the mean
correlations between original and reconstructed maps were better for the 4-layers archi-
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tecture (86.9% vs 77.8%). These results suggest that the reconstruction capabilities of
the CAE are dependant on the model architecture and the size of the latent space. Figure
4.3 shows the reconstruction of a statistic map randomly drawn from the NeuroVault test
dataset with the two CAE architectures. With the 4-layers architecture, details of the
map were better reconstructed than with the 5-layers architecture (see the green square
on the map). This was due to the level of compression of the data that was higher in
the 5-layers CAE and that learned only the most useful features with less emphasis in
learning specific details. Both models were used as pretrained model for classification to
see if the benefits of the CAE were related to their reconstruction performance.

Table 4.2 – Reconstruction performance of the Convolutional AutoEncoder (CAE) de-
pending on model architecture and training set. Values are the mean Pearson’s correla-
tion coefficients (standard error of the mean).

Model 4-layers 5-layers
Latent space 18,432 Latent space 4,096

Correlation 86.9 77.8
(std error) (0.18 ) (0.23 )

4.3.2 Hyperparameters optimisation for Convolutional Neural
Network (CNN)

The best hyperparameters and corresponding performance can be found on Table 4.3.

Table 4.3 – Hyperparameters chosen for each dataset and corresponding performance of
the classifier on the validation set of the dataset.

Dataset Initialization Model Epochs Batch Accuracy (%) F1-Score (%)

(std. err.) (std. err.)

HCP Default algorithm 4-layers 500 32 90.8 (1.5 ) 90.8 (1.6 )

Pretrained CAE 5-layers 200 64 91.8 (0.9 ) 91.8 (0.9 )

BrainPedia Default algorithm 5-layers 500 64 67.1 (1.7 ) 61.0 (1.6 )

Pretrained CAE 5-layers 200 64 73.8 (2.7 ) 70.0 (2.3 )

4.3.2.1 Choice of hyperparameters for HCP dataset

Performance of the different models trained with the different hyperparameters can
be found in Supplementary Table S1, available at Germani et al., 2023. For the default
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Figure 4.3 – Original version and reconstruction of a randomly drawn statistic map of
NeuroVault test dataset (image ID: 109) with the two Convolutional AutoEncoder (CAE)
(4-layers and 5-layers). The green square corresponds to a highlighted part of the map
for which reconstruction performance are better using the 5-layers architecture.

algorithm initialization, the best model had 4 layers and was trained with a batch size of
32 for 500 epochs. This model achieved an accuracy of 90.8% on average of the 5-folds of
cross-validation. For the pretrained CAE initialization, the best model had 5 layers and
was trained with a batch size of 64 for 200 epochs (average accuracy of 91.8%). The best
hyperparameters for each type of initialization (default and pretrained) were used in all
subsequent experiments.

4.3.2.2 Choice of hyperparameters for BrainPedia dataset

Results for all sets of hyperparameters are available in Supplementary Table S2, avail-
able at Germani et al., 2023. For the default algorithm initialization, the model who
achieved the best performance had 5 layers and a batch size of 64 for 500 epochs. This
model classified the BrainPedia dataset with an average accuracy of 67.1% and an average
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F1-score of 61%. The performance of the pretrained CAE was the best using a 5-layer
architecture, a batch size of 64 and a training time of 200 epochs.

4.3.3 Benefits of self-taught learning on a homogeneous dataset

Table 4.4 summarizes the results for the different classification experiments on the
HCP datasets.

Table 4.4 – Classification performance on HCP datasets of models initialized with default
algorithm vs with the weights of the pretrained CAE. Mean accuracies and standard
errors of the means among the 5-folds of cross-validation are shown. Paired two samples t-
tests are performed between the accuracies of the 5 models obtained with cross-validation
for each type of initialization. DA: Default Algorithm initialization ; PT: pretraining
initialization.

Participants 50 100 200 Global (393)

Maps 1150 2300 4590 9017

Init. DA PT DA PT DA PT DA PT

Contrast classification (23 classes)

Mean Acc. (%) 83.6 87.0 86.8 89.9 88.6 90.2 90.9 92.4

(std. err.) (0.61) (0.51) (0.69) (0.34) (0.84) (1.46) (0.38) (0.44)

Paired T-test (4 dof ) -11.52 -4.77 -1.42 -4.74

p-value 0.0003 0.009 0.23 0.009

Task classification (7 classes, multiple contrasts per class)

Mean Acc. (%) 96.6 97.3 95.4 98.0 97.9 98.5 98.4 99.0

(std. err.) (0.47) (0.43) (1.49) (0.25) (0.44) (0.16) (0.17) (0.13)

Paired T-test (4 dof ) -3.57 -1.4 -1.5 -5.65

p-value 0.02 0.2 0.2 0.005

One constrast task classification (7 classes, one contrast per class)

Mean Acc. (%) 97.9 99.1 98.9 99.4 99.3 99.6 99.4 99.6

(std. err.) (0.3) (0.3) (0.17) (0.25) (0.2) (0.2) (0.2) (0.14)

Paired T-test (4 dof ) -4.17 -3.32 -2.33 -2.06

p-value 0.01 0.03 0.08 0.1
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Figure 4.4 – Mean accuracies and standard errors of the mean on contrast classification
with the HCP dataset for the models initialized with default algorithm (blue) and pre-
trained CAE (orange). Pretraining improves contrast classification performance for small
sample sizes and at a lower level of improvement, also for large sample sizes.

4.3.3.1 Impact of the sample size

For all classification experiments, the size of the training set (in terms of number
of participants) had a strong impact on the benefits of self-taught learning. With 50
participants, the performance of the pretrained CAE outperformed the performance of
the classifier initialized with the default algorithm in all our experiments (improvements
of 0.7% to 3.4% in mean accuracies). These improvements were always significant (p <

0.05). When sample size increased, this improvement reduced and was sometimes not
significant. If we focus on contrast classification (Figure 4.4), which was the hardest
classification task between the three presented here due to the higher number of classes,
the difference between the performance of the two classifiers decreased with sample size
(mean accuracies of 88.6% and 90.2% respectively for default initialization and pretrained
model respectively for N=200 which corresponded to an improvement of 1.6% compared
to almost 3% for N=100). For N=200, the difference of performance was not significant,
probably due to the presence of an outlier value in the accuracies of the pretrained CAE.
Indeed, accuracies of the pretrained CAE model were superior to the ones of the default
model, except for the pretrained model tested on the 3rd fold of cross-validation which
was lower. This value was also significantly lower than those of models tested on other
folds of cross-validation (see Supplementary Table S3, available at Germani et al., 2023).
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Figure 4.5 – Mean accuracies and standard errors of the mean on task classification with
the HCP dataset for the models initialized with default algorithm (blue) and pretrained
CAE (orange). Pretraining improves task classification performance for all sample sizes
but sample sizes did not have a huge influence on the level of improvement.

Figure 4.6 – Mean accuracies and standard errors of the mean on
one contrast task classification with the HCP dataset for the models initialized
with default algorithm (blue) and pretrained CAE (orange). Pretraining does not always
improve one-contrast task classification performance: for large sample sizes, pretraining
and default initialization give very similar results.
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4.3.3.2 Impact of the target classification task

For simpler classification experiments (i.e. with less classes to separate), pretraining
was not always useful. In these experiments, performance was already nearly perfect
(accuracies close to 1) and therefore difficult to improve. For large sample sizes (N > 100),
performance was close (difference between mean accuracies lower than 0.6%) between
models initialized with default algorithm and pretrained models (see Figures 4.5 and 4.6).
However, for smaller sample sizes (N=50), pretraining improved classification – similarly
to what had been shown for more complex tasks – with accuracies of the pretrained models
higher than default models of 0.7% and 1.2% for task classification and one contrast
task classification respectively. These results suggest that pretraining can be beneficial
when studying difficult classification problems such as those with few training samples or
complex classification tasks.

4.3.4 Benefits of self-taught learning on a heterogeneous dataset

Table 4.5 summarizes the results for the classification of mental concepts on the small
and the large BrainPedia datasets. These results are illustrated in Figure 4.7.

Table 4.5 – Classification performance on BrainPedia datasets of models initialized with
default algorithm vs with the weights of a pretrained CAE. DA: Default Algorithm
initialization ; PT: pretraining initialization

Dataset Small BrainPedia BrainPedia

Init. DA PT DA PT

Mean acc. (%) 56.8 64.5 67.1 74.2

(std. err.) (1.5) (2.1) (0.9) (2.3)

Paired T-test (4 dof ) -8.72 -3.43

p-value 0.001 0.02

Mean F1-score (%) 50.5 62.0 64.9 73.6

(std. err.) (3.5) (2.1) (0.8) (2.2)

Paired T-test (4 dof ) -4.89 -2.89

p-value 0.008 0.04

On a the small BrainPedia dataset, pretraining improved the performance of the classi-
fier. When looking at the mean accuracies, respectively 56.8% and 64.5% for the classifier
initialized with the default algorithm and the pretrained classifier, the difference was high
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Figure 4.7 – Mean F1-scores and standard errors of the mean of the classification of
mental concepts on BrainPedia datasets (Small and Large) for the models initialized with
default algorithm (blue) and pretrained CAE (orange). Pretraining improves classification
performance, in particular for the small dataset.

(almost 8% of improvement). But in this case, the F1-score was a better metric to assess
the performance. Indeed, this metric focuses more on classification errors and is a better
indicator of performance when classes are imbalanced, which was the case in this dataset
in which some classes were more represented than others (e.g. in the small BrainPedia
training set, 205 maps corresponded to the class "visual words, language, visual" whereas
only 19 are in the class "left foot, visual"). When focusing on this metric, the pretrained
classifier performance was markedly higher than the ones of the classifier with default
initialization (11.5% of improvement in mean F1-score). Performance (accuracies and
F1-scores) was both significantly improved with the pretrained model compared to the
default one (p < 0.05).

On the global BrainPedia dataset, performance also increased with pretraining. Mean
accuracy and F1-score were higher for the the pretrained model (F1-score of 73.6% against
64.9% for the model with default initialization) even if the sample size of the dataset was
higher and more classes were represented. Indeed, the classification task was also more
complex for this dataset since data were separated into 36 classes instead of 30 for Small
BrainPedia due to the presence of maps from other studies in the dataset.

4.3.5 How do we explain these benefits?

4.3.5.1 Features

To better understand the behaviour of each model – in particular on what features
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Figure 4.8 – Original mean statistic maps (column 1) and mean feature maps across
participants of the fold 1 of the test dataset of HCP 50 for the first four convolutional
layers of each model (columns 2-5): CNN with default algorithm initialization (DA),
pretrained CNN (PT) and CAE, for two of the eight selected contrasts (WM: 0-back
body and Gambling: Punish).
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Contrast Per-class accuracy

DA PT

WM: 0BK BODY 57.7 60.3

WM: 0BK PLACE 70.5 79.5

WM: 0BK TOOL 57.8 66.7

WM: 2BK BODY 74.3 73.1

WM: 2BK TOOL 47.4 60.3

GAMBLING: PUNISH 55.1 67.9

RELATIONAL 58.9 75.6

GAMBLING: REWARD 57.7 66.7

Table 4.6 – Per-class accuracies for classification of contrasts with HCP dataset sample
N=50 for DA (Default Algorithm) and PT (pretrained CAE). Only lowest per-class
accuracy (< 80%) are shown in the Figure. For other per-class accuracy, please refer to
Supplementary Table S7, available at Germani et al., 2023

they based their predictions on – we visualized the mean features across participants of
each layer of the pretrained, default models and baseline CAE for each class label (i.e.
contrast). Specifically, we studied the mean feature maps obtained across participants in
the test set (fold 1) of the N=50 sample of the HCP dataset for different contrasts. This
configuration was chosen due to the large difference between performance of default and
pretrained models on this classification task. Our main interest was to see if the model
would focus on general patterns of activation or more individual features. We focused
on the contrasts that led to the most difficult classification tasks (i.e. had the lowest
per-class accuracy (less than 80%)). Per-class accuracy for selected contrasts are shown
in Table 4.6 and for all contrasts in Supplementary Table S7, available at Germani et al.,
2023. Eight contrasts were selected: ‘Working Memory’: ‘0-back body’, ‘0-back places’,
‘0-back tools’, ‘2-back body’, ‘2-back tools’ , ‘Gambling: punish’, ‘Gambling: reward’ and
‘Relational: relational’ and among these 8 contrasts, 7 (all except ‘2-back body’) had a
better per-class accuracy with the pretrained CAE, see 4.3.3.

Figure 4.8 shows the mean feature maps for two of the selected contrasts and for the
first four convolutional layers of the models: CNN with default initialization, pretrained
CNN and CAE. The first convolutional layer features (column two of Figure 4.8) were
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similar across models but different between the contrasts: see, for instance, the activation
patterns of contrasts WM: ‘0-back body’ and ‘Gambling: Punish’, which were localised
in the same areas, had different shapes. These were high level features: brain shape
and main activation patterns. However, the second convolutional layer (third column)
seemed to learn more important features for classification. The shape of the brain was
still visible but patterns of activation were more blurry, as if they were lower resolution
representations of the original statistic maps. However, features started to be different
between models at this layer with some modifications of the shape of the main activation
patterns between the default model (first row of each contrast) vs. the pretrained model
and the CAE (second and third lines). The same observation was made for the third
convolutional layer (fourth column), which began to learn deeper representations. Due
to the size of the features (6 * 7 * 6), the brain shape and activation patterns were not
visible, these features were thus less interpretable and required a quantitative analysis.

Figure 4.9 – Boxplots of mean correlations between the feature maps of different partici-
pants for the eight selected contrasts (‘Working Memory’: ‘0-back body’, ‘0-back places’,
‘0-back tools’, ‘2-back body’, ‘2-back tools’ , ‘Gambling: punish’, ‘Gambling: reward’ and
‘Relational: relational’) for different models at layer 1, 2, 3 and 4. DA: Default Algorithm
initialization ; PT: pretraining initialization ; AE: Baseline AutoEncoder. For Layers 3
and 4, pretrained CNN and baseline CAE show larger correlation between participants
than default CNN, meaning a lower attention to individual variabilities.

Mean correlations between the feature maps of the same contrast were computed for
each pair of participants. A high mean correlation indicates a higher similarity between
the feature maps produced in a given layer of a neural network, and thus potentially, a
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higher generalisation power since the feature maps are less different between participants
and thus less sensitive to individual variations. Figure 4.9 shows the mean correlations for
the 8 selected contrasts and for the first four convolutional layers of the models (different
values represent different contrasts). For layers 1 and 2, mean correlations were low
(<60%) and not very different between the models even if the pretrained CNN seemed
to account more about individual differences than the default model and baseline CAE.
The main change was visible at layer 3 where there was an important difference (more
than 30% for every contrast) between the mean correlation between the features learned
by the default CNN and the pretrained one. The features of this layer seemed more
similar between different participants and more generalizable across participants for the
pretrained model (mean correlations>80% for all contrasts) than for the default model
for which the mean correlations were lower than 50% for every contrast. Correlations
started to converge for the fourth layer, but were still lower for the default model.

4.3.5.2 What layers benefit the most from weight transfer from the CAE?

N. of transferred layers Mean classification accuracy (standard error) (%)

0 (Default initialization) 83.6 (0.61)

1 82.67 (0.45)

2 84.79 (0.52)

3 85.51 (0.8)

4 86.6 (0.4)

Full pretrained model 87.0 (0.51)

Table 4.7 – Classification performance (mean accuracy and standard error, in %) of pre-
trained models with different numbers of transferred layers on classification of contrasts
for HCP dataset sample n=50.

To explore the impact of each layer and the benefits of the baseline weights of the CAE,
we tried several experiments with different numbers of frozen layers and several weight
transfer configurations: transferring only the weights of the first convolutional layer to
transferring the weights of the first four convolutional layers. Performance of the different
models with different numbers of transferred layers is shown in Table 4.7. When only
the weights of the first layer were transferred, classification performance was lower than
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N. of frozen layers Mean classification accuracy(standard error) (%)

2 86.7 (0.54)

3 86.82 (0.66)

4 86.1 (0.64)

5 80.42 (0.99)

Table 4.8 – Classification performance (mean accuracy and standard error, in %) of pre-
trained models with different numbers of frozen layers on classification of contrasts for
HCP dataset sample n=50.

with other configurations (82.7% of accuracy compared to more than 84% for at least 2
transferred layers). This suggests that features learned by the CAE at this layer were less
important for classification. However, when increasing the number of transferred layers,
performance started to grow and became closer to the accuracy obtained when transferring
all layers (87%). This growth was quite constant and there was no large improvement of
performance when transferring the weights of a layer in particular, except when moving
from transferring the first layer to the first two layers. Thus, pretraining the deeper layers
of the model was beneficial to improve classification performance, probably because of
the ability of these layers to extract more general features, less sensitive to individual
variations, as we saw above. Transferring the weights of the last convolutional layer (5th)
was however not very impactful, performance of model with four transferred layers was
very close to the ones of fully pretrained model (86.6% vs 87.0%). We suppose that this
layer was important to extract task-related features that were different from the ones
learned by the CAE, explaining the limited impacts of transferring the CAE weights.

4.3.5.3 Faster fine-tuning: what happens if we freeze some layers?

Table 4.8 shows the results of the different experiments with different numbers of
frozen layers. When we froze the first convolutional layers (from 2 to 4 frozen layers) on
the pretrained model, the performance did not decrease. This suggests that the features
extracted by the baseline autoencoder for these layers were general enough to perform a
classification task with only one fine-tuned convolutional layer in addition to the dense
layer. However, when freezing all convolutional layers of the model (5 layers), there was a
large drop in terms of performance (86 to 80% of accuracy between freezing 2-4 layers vs 5
layers), this confirmed the observation made before on the difference between the features
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extracted by the fifth layer for reconstruction (CAE) and for classification (CNN). In
conclusion, the first four convolutional layers of our model extracted more general features
whereas the last one extracted deeper and more specific features for classification.

4.4 Discussion

4.4.1 Summary

In this work, we showed the benefits of self-taught learning with a large and variable
database on the classification of two large public datasets with different sample sizes and
classification tasks. In all cases, pretraining a classifier with an unsupervised task (in our
case: reconstruction) was beneficial but the level of improvement varied depending on the
classification task and the size of the training dataset.

When sample sizes were small, pretraining always improved the classification perfor-
mance, regardless of whether the dataset was homogeneous or heterogeneous and of the
complexity of the classification task. In medical imaging, where the dimensions of the
data are often very large and few samples are typically available due to high financial and
human costs, learning a good representation of the data can be very difficult (Thomas
et al., 2021). Unsupervised pretraining can thus be helpful by initializing the weights
of the CNN to preserve the (brain) structure learned by the autoencoder, and facilitate
the learning process. However, when the sample size increases, benefits are less remark-
able since the amount of available training data is probably sufficient to learn a good
representation.

This observation can also be made for classification tasks. When trying to classify
the data in a small number of classes, performance of the pretrained classifier was better
but not with a high improvement of performance, even for small sample sizes (e.g. 100
participants for task classification). But when trying to separate data into more classes,
for a more fine-grained classification, the representation learned during the pretraining
was beneficial.

Another benefit of self-taught learning we found was the reduction of the training
time. Performance of the pretrained classifier was better even with less training epochs.
This was the case for both datasets results which were computed for 500 epochs for the
default algorithm and 200 epochs for the pretrained model. This is in line with Neyshabur
et al., 2020 in which researchers showed that the pretrained models remain in the same
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basin of the loss function when trained on new data and since the weights are already
initialized close to a good representation of data, less epochs are necessary to adapt this
representation for classification.

Architectures of the models also had an impact on the benefits of self-taught learning.
With both datasets, pretrained models performed better using the 5-layers architecture.
This effect was studied by Erhan et al., 2010 who showed that, while unsupervised pre-
training helps for deep networks with more layers, it appears to hurt for too small net-
works. The size of the latent space of the CAE with 5-layers being almost 5 times smaller
that the 4-layers one, it suggests that only a small subset of features of the input are
relevant for predicting the class label.

However, the classification accuracies of the pretrained models were not related to the
reconstruction performance of the CAE since the 4-layers CAE reconstructs maps with
better precision than the 5-layers CAE. This confirms that the features learned by the
4-layers CAE for reconstruction were not all useful for classification and focusing on a
smaller number of features (with 5-layers) facilitates the learning process.

This observation was confirmed by the large drop in performance when freezing the first
fifth convolutional layers of the pretrained model and when transferring only part of the
layers. Deeper pretrained layers had more impact on classification performance, meaning
that the features extracted by these layers were different from those learned by layers
initialized with the default algorithm. In particular, the third and fourth convolutional
layers showed the best benefits when being transferred, due to the generalizability of the
extracted features. This was not the case for the fifth layer, for which features need to be
specific to the classification task.

The pretrained model improved the performance in terms of classification due its
ability to focus on more generalizable features. By pretraining a model on a large variable
dataset such as NeuroVault, we built a model that is less sensitive to the training data
and less sensitive to individual differences, thus more generalizable and applicable to new
participants.

4.4.2 Limitations

Due to the high computational time required to train a model, we only compared two
model architectures (4 and 5-layers). Indeed, training a CAE model can be very time
consuming, particularly in our case since we use a large training dataset (N=22,772) and
high dimensional data (k=48 * 56 * 48). With the 4-layers model, for 200 epochs it took
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approximately 48h to train on 1 GPU. With parallel computing (use of 2 GPUs in parallel),
we could hope to shorten this time to 24h, with the cost of using more computing resources.
Other types of architectures with different number of fully-connected or convolutional
layers could have been tested to see the effect of other latent space sizes as it was done
in Erhan et al., 2010.

The main limitation of our work is the classification experiments and datasets we
chose. In fMRI, the number of possible labels and thus, classification tasks is very high
due to a lack of consensus in the field with respect to standardizing tasks, contrasts and
mental concepts (Poldrack et al., 2011b). In our experiments, we used the labels provided
by NeuroVault as specified in the original studies (Van Essen et al., 2013; Varoquaux
et al., 2018). We chose to compare multiple types of classification on the HCP dataset to
illustrate different approaches used in the field or that were used by other studies (Y. Gao
et al., 2019; Thomas et al., 2023). For BrainPedia, a multi-label decoding was performed
in the original study since multiple concepts are associated with most maps. Labels we
had access to were then the list of labels associated with each map. To be able to compare
our results with those of the homogeneous dataset (HCP), we chose to classify these as
unique labels, which was less complex and less precise in practice. This type of issue is
due to the lack of harmonization in the way tasks and cognitive processes are defined.
Using ontologies such as Cognitive Atlas (Poldrack et al., 2011b), NeuroVault annotations
could be harmonized and enriched, as it was done by Menuet et al., 2022 by mapping
the original labels to target ones from Cognitive Atlas or Walters et al., 2022 in which
cognitive conditions were annotated by a group of expert using the same atlas.

In neuroimaging, many sources of variability can impact the results of an experiment
and the generalizability of the results. Here, we investigated the generalizability of our
model by assessing the benefits of pretraining on a heterogeneous dataset (BrainPedia).
While this dataset was heterogeneous in terms of the studies that were included, all maps
were obtained using the same processing pipeline. Multiple studies have shown that the
exact pipeline used to obtain an fMRI result can have a non-negligeable impact on fMRI
statistic maps (Carp, 2012a; Botvinik-Nezer et al., 2020). In the future, investigating
performance of classification on a more variable target dataset with statistic maps from
different studies but also processed using different pipelines would be of great interest. In
a recent study (Vu et al., 2020), the authors tried to compare the performance of different
classifiers trained on fMRI 3D volumes series obtained with various scenarios of minimal
preprocessing pipelines. A similar experiment was recently made by Li et al., 2023 who
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found that preprocessing pipeline selection can impact the performance of a supervised
classifier. Comparing the adaptation capacities of models on volumes preprocessed with
different pipelines could be also interesting to evaluate the impact of analytical variability
on deep learning with fMRI and to see if the generalizability of our pretrained models
also works for inter-pipeline differences.

Note that self-supervised (instead of self-taught) learning could have also been used
to pretrain our model, as it was done by Thomas et al., 2022 who designed self-supervised
learning frameworks, inspired by the field of natural language processing, to pretrain
mental state decoding models. Self-supervised learning is a supervised machine learning
setting where the supervision is generated directly from the data and the model is pre-
trained using a supervised surrogate task. Self-supervised is particularly relevant if the
surrogate task is close to the final one targeted by the user, e.g. if they can share the
same feature representation. It is possible that, by designing a relevant supervised sur-
rogate task that could be relevant for all very diverse usage of our model, the pretrained
model would have performed better than the one presented in this article. Designing and
experimenting with such a surrogate supervised task could be interesting for future work.

In our self-taught context, using unsupervised models could allow us to build a space
capturing the similarities and differences of statistic maps, i.e. to learn a robust latent
representation of the important features of statistic maps in a specific context. By adding
other constraints to this latent space and/or choosing an adapted pretraining dataset,
we could use this for other purposes than brain decoding. For instance, building a space
that captures the analytical variability in statistic maps could help us understand the
difference between the pipelines but also identify the more robust pipelines. Future works
will focus on building such a space with specific constraints to evaluate distance between
different pipelines.
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C Take-home Message

• Transfer learning, and in particular self-taught learning, is a solution to make
use of the unlabeled statistic maps shared on public databases.

• By re-using these data in such framework, we obtained better performance
than standard supervised models in classification experiments.

• Representations learned by the pretrained model were more generalizable and
less sensitive to the sources of variations in the target data (here, different
participants, different studies and potentially acquisition parameters).

• This framework could be adapted to other target tasks (e.g. disease classifi-
cation, other decoding tasks, etc.). We shared the pretrained CAE with the
community on Zenodo (see Germani et al., 2023) to facilitate re-use.

116



Chapter 5

MITIGATING ANALYTICAL VARIABILITY IN

FMRI RESULTS WITH STYLE TRANSFER

This chapter was the subject of a paper that will soon be submitted to Human Brain
Mapping.

• Title: Mitigating analytical variability in fMRI results with style transfer

• Authors: Elodie Germani, Camille Maumet*, Elisa Fromont*

• HAL: inserm-04531405

• Code: swh:1:dir:75ffda70e008d7efe57b21db93e61007d77330f5

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

5.1 Introduction

In the previous chapter, we showed that large databases can be leveraged to build
more generalizable representations of fMRI statistic maps and to improve performance of
brain decoding models. This study was an example of data re-use for deep learning tasks,
in which the presence of variability in the training data is beneficial as it allows the model
to learn more generic features, and thus prevent over-fitting and increase generalizability.
In other data re-use settings, for instance meta- or mega-analyses (Costafreda, 2009), the
goal is to perform a larger statistical analysis by re-using data from multiple previous
studies. These analyses would provide more flexibility as to which research question can
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be investigated, and increase the sample sizes, leading to higher statistical power and
more robust results.

Usually, mega-analyses are performed using raw data coming from different sources,
which are then processed and analysed using the same pipeline. As data sharing becomes
more prevalent, in particular for derived data, i.e. after preprocessing and statistical anal-
ysis, these analyses could also be built by combining subject-level or group-level statistic
maps shared from different studies. In fMRI, due to the high flexibility of the analyt-
ical pipelines (Carp, 2012a), derived data shared on public databases often come from
different pipelines. However, different pipelines lead to different results (see Chapter 2)
and combining results from different pipelines in mega-analyses can lead to a higher risk
of false positive findings (Rolland et al., 2022). To benefit from these large amount of
derived data available, it is necessary to find a way to mitigate the effect of analytical
variability.

In Chapter 3, we showed that Image-to-image transition (I2I) frameworks, based on
neural style transfer, were giving promising results in many conversion tasks in medical
imaging, e.g. converting data between imaging modalities, image denoising or data har-
monization. Considering the achievements of these models in modality transition, which
involves transitioning between distinct acquisition modalities, there is reason to anticipate
their success in transitioning between other image types, such as statistic maps coming
from different analysis pipelines. In this work, we propose to use I2I frameworks to convert
statistic maps between pipelines and build more valid mega-analyses.

To be useful in real practice, the proposed method should rely on unpaired data (i.e.
could be trained without access to the ground-truth target images) and perform multi-
domain transitions (i.e. learn multiple transfers using a single model). However, to the
best of our knowledge, this application of I2I to conversion of data between different
analysis pipelines is new and off the shelf I2I methods do not directly apply as these were
not designed on the same type of data and were not evaluated with the same metrics.
Thus, we test and compare other frameworks than multi-domain unsupervised ones, for
instance using supervised datasets or one-to-one transitions. In particular, we study
frameworks based on GAN (Goodfellow et al., 2014), namely Pix2Pix (Isola et al., 2017),
CycleGAN (Zhu et al., 2017), StarGAN (Choi et al., 2018), and also design a DDPM (Ho
et al., 2020) framework to tackle our task.

DDPM models have achieved state-of-the-art performance in synthesizing natural im-
ages, overpassing GAN by producing complex and diverse images (Nichol et al., 2021),
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while reducing the risk of modality collapse (Li et al., 2022). But, these models are chal-
lenging to control when the objective is to generate images that maintain the intrinsic
properties of the source images while transferring the extrinsic properties to the target
domain, i.e. in I2I frameworks. DDPM are iterative generative models, i.e. they learn
to model the transition from a Gaussian distribution to a target data distribution. Thus,
data generated by the DDPM depend on the initial samples drawn from the Gaussian
distribution, usually done at random. In this context, we adapt an existing conditional
DDPM, initially built for conditional generation, to perform I2I. We compare the perfor-
mance of such model with GAN and explore the impact of several modifications of the
framework on the conversion performance.

In the following section, we describe the dataset used for our experiments and the
different frameworks implemented. We also detail the different variations of DDPM-based
I2I frameworks that we explored and the evaluation metrics that we used. In section 5.3,
we compare the results of GAN-based frameworks and those of DDPM-based frameworks.
Finally, in section 5.4, we discuss these results and conclude on the success of style transfer
in the context of pipeline transition.

5.2 Materials and Methods

5.2.1 Dataset

In this work, we used group-level statistic maps from the HCP multi-pipeline dataset,
that we will present in greater details in Chapter 6. We explored in particular the data
from four different pipelines that differed in terms of software package (SPM (Penny et
al., 2011) or FSL (Jenkinson et al., 2012)) and presence or absence of the derivatives
of the Haemodynamic Response Function (HRF) for the first-level analysis. We used
all the available group-level statistic maps (N = 1, 000) for each pipeline for the task
“right-hand”. In the following, these pipelines will be denoted as “software-derivatives”,
for instance “fsl-1” means use of FSL software package and HRF derivatives.

The selected group-level statistic maps were resampled to a size of 48 x 56 x 48 and
masked using the intersection mask of all groups. The voxel values were normalized
between -1 and 1 for each statistic maps using a min-max operation. The 1,000 groups
were split into train, valid and test with a 90/8/2 ratio and all models were trained and
evaluated on the same sets. Further investigation about possible data leakage across
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groups is provided in Appendix E (Figure E.1).

5.2.2 Generative Adversarial Network (GAN) frameworks

First, we assessed the potential of GAN-based frameworks to convert statistic maps
between pipelines. In particular, we evaluated the performance of Pix2Pix (Isola et al.,
2017), CycleGAN (Zhu et al., 2017) and StarGAN (Choi et al., 2018). These frameworks
are described in larger details in Chapter 3, Section 3.4.2.2. We provide a quick description
of the main properties of these models in Table 5.1.

Framework Learning Transition Loss
Pix2Pix (Isola et al., 2017) Supervised One-to-one Adversarial

Reconstruction
CycleGAN (Zhu et al., 2017) Unsupervised One-to-one Adversarial

Cyclic
StarGAN (Choi et al., 2018) Unsupervised Multi-domain Adversarial

Cyclic
Classification

Table 5.1 – Description of Generative Adversarial Network (GAN)-based frameworks

We used the default architecture of these models, as described in their respective
papers, and we only modified the 2-dimensional convolutions and batch normalization
layers to 3-dimensional, to cope with our 3-dimensional statistic maps.

5.2.3 Denoising Diffusion Probabilistic Model (DDPM) frame-
works

Due to the promising performance of DDPM in natural images and medical imaging
(see Chapter 3, Section 3.4.2.3), we also assessed the potential of DDPM-based frame-
works. However, there is only few frameworks developed for this application, and most
of them rely on paired datasets (Saharia et al., 2022) or one-to-one transitions (Pan
et al., 2023). Thus, to perform multi-domain transitions, we used traditional conditional
DDPM that we adapted to answer I2I tasks. In particular, we used the conditional DDPM
from Ho et al., 2021, which generates images conditioned using a one-hot encoding of the
class. We also extended this model to a conditioning based on the latent space of the clas-
sifier, inspired from Preechakul et al., 2022. Both are unsupervised frameworks, learning
multi-domains transitions. A more detailed description of the original frameworks from
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Ho et al., 2021 and Preechakul et al., 2022 is available in Chapter 3, Section 3.4.2.2, and
we summarize their main properties in Table 5.2.

Framework Conditioning Target images
Ho et al., 2021 One-hot None
Preechakul et al., 2022 Classifier-conditional N=1

Table 5.2 – Description of Denoising Diffusion Probabilistic Model (DDPM)-based frame-
works

In Figure 5.1, we illustrate the design of DDPM-based frameworks, with the main
modifications applied to the basis of Ho et al., 2021. Figure 5.1 (A), (C) and (D) represent
the conditional diffusion used in Ho et al., 2021, that we enhanced using source content
preservation and classifier conditioning (Figure 5.1 (B)).

Neural 
Network 
(UNet) 

…

A. Forward diffusion

…
Repeat 

t-1 times

Class vector C

Time vector T

D. Reverse diffusion

Time and class 
embeddings 

Contrast mask

C. Embeddings

Class 
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 C

Classifier

B. Class conditioning

Target
images 

Embedding

Average

K-means 
clustering with N 

clusters

Clusters centroïds

Source
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Generated 
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Figure 5.1 – Diagram of the workflow. During the forward diffusion (A), original maps
X0 are turned into Xt after t steps of noise addition ϵ. (B) Class conditioning uses
latent vectors extracted from a classifier. These are averaged across N images, which are
the centroids of N clusters identified using a K-Means algorithm. (C) Time and class
are embedded using two Multi-Layers Perceptrons (MLP). A mask is applied to the class
conditioning vector to jointly train an unconditional model with a pre-defined probability.
(D) During the reverse diffusion, the neural network ϵθ(Xt, t, c) learns to predict the noise
added to the image and reconstructs Xt−1 iteratively until t = 0.
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Source content preservation. To adapt these models to I2I, we made several mod-
ifications. First, our main objective was to find a solution to generate images that still
contained the intrinsic properties of the source image. In Saharia et al., 2022, authors con-
catenated the source image along with random Gaussian noise to initialize the diffusion.
Here, we fixed the initial state of the DDPM by directly using the forward diffusion pro-
cess to generate a noisy version of the source image Xt (Equation 3.3). Then, the noisy
source image is iteratively denoised using the predicted noise and the reverse diffusion
process (Equation 3.4) with an additional conditioning on the target domain.

Classifier conditioning. We also developed an extension of the model from Ho et al.,
2021 to condition the generation based on the latent space of a classifier (see Figure 5.1
(B)). Indeed, in Ho et al., 2021, the diffusion is conditioned using a one-hot encoding of the
domain, which decreases the diversity of samples. In Preechakul et al., 2022, a semantic
encoder is used to guide sampling. Thus, we extended this idea by using a pretrained
CNN that identifies the pipeline used to obtain the statistic maps (i.e. their domain)
to condition the model. The features are extracted just before the fully connected layer,
to get a latent vector with the most important features that distinguish images across
pipelines.

Multi-target images. To condition on the latent space of this classifier during sam-
pling, target images must be selected. In Choi et al., 2021, authors showed that condition-
ing on multiple images generates images that share coarse or fine features with the target
ones depending on the number of selected images. Selecting multiple target images to
convert images between domains can help to generate images that represent the diversity
of the target domain. In practice, the whole set of images available in the target domain
could be used. This is impractical for large datasets and might lead the model to focus on
specific patterns of the target domain if these are over-represented in the dataset. Here,
we implemented several variations to explore the impact of the choice of target images.

• Number of target images: N=5, 10 or 20.

• Target images selection: random (∞), using a K-means algorithm, or using a
K-Nearest Neighbors algorithm.

For the target image selection, we proposed several algorithms. We used K-Means
algorithm (MacQueen, 1967) to identify N clusters of images in the target domain (see
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Figure 5.1 (B)). Then, we extract the centroïd of these clusters and average their latent
vector for conditioning. We also compared the selection process with a random sampling
of target images and with a sampling based on the identification of images that are close
to the source image using a K-Nearest Neighbors algorithm (Mucherino et al., 2009).

Details regarding architecture and training of the models are available in Appendix E.

5.2.4 Evaluation of performance

We evaluated the performance of the frameworks using different metrics. In the fol-
lowing equations, we use XA, XB and XAB to respectively define the source image, target
image and translated image.

• Pearson’s correlation (Corr.) in percent

r =
∑n

i=1(XABi
− XAB)(XBi

− XB)√∑n
i=1(XABi

− XAB)2
√∑n

i=1(XBi
− XB)2

(5.1)

• Mean Squared Error (MSE)

MSE = 1
n

∗
n∑

i=1
(XABi

− XBi
)2 (5.2)

• Inception Score (IS) (Salimans et al., 2016) computed using the pipeline classifier.
In the following equation, X refer to any generated image, and Y the corresponding
target label.

IS(G) = exp(Ex∼pgDKL(p(Y |X) ∥ p(Y ))) (5.3)

The first two metrics were used to study the adequacy of generated images to the
ground truth target, whereas IS was used to explore the confidence of the conditional
class predictions (quality) and the integral of the marginal probability of the predicted
classes (diversity).
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fsl-1 → spm-0 spm-0 → fsl-1 fsl-1 → spm-1 fsl-1 → fsl-0
IS Corr. MSE Corr. MSE Corr. MSE Corr. MSE

Initial 3.69 76.2 0.008 76.2 0.008 82.6 0.004 91.0 0.0022
Pix2Pix - 91.4 0.0029 89.2 0.0015 90.3 0.0026 97.4 0.0006
CycleGAN - 86.0 0.0046 66.6 0.0052 71.0 0.0069 71.8 0.0047
StarGAN 3.63 90.6 0.0034 87.1 0.0021 87.7 0.0036 91.8 0.0016

Table 5.3 – Performance associated with four transfers for Generative Adversarial Network
(GAN)-based frameworks. IS means "Inception Score" across all transfers. Pearson’s
correlation (%) and Mean Squared Error (MSE) computed between generated and ground-
truth target image for 20 images per transfer. Initial represents the metrics between the
source image (before transfer) and the ground-truth target image. Boldface marks the
top model. Note: Inception score was not computed for Pix2Pix and CycleGAN as
different transfers are learnt by different models.

Figure 5.2 – Generated images for two transfer and different competitors: Pix2Pix (Isola
et al., 2017), CycleGAN (Zhu et al., 2017) and starGAN (Choi et al., 2018). Correlation
with target ground-truth are indicated below generated and source images.

5.3 Results

5.3.1 Generative Adversarial Network (GAN) frameworks

In Table 5.3, we show the performance of GAN-based frameworks for four transfers,
between pipelines with: different HRF and different software (columns 1-4), same HRF
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and different software (columns 4-6) and, different HRF and same software (columns 6-8).
Overall, using Pix2Pix (Isola et al., 2017) and StarGAN (Choi et al., 2018), the conver-
sion of statistic maps between pipelines seem to be sucessful, with increased correlations
between target and generated maps compared to correlations between source and target
(similar observations can be done with decreased MSE), e.g. 91.4% for target-generated
compared to 76.2% for source-target with Pix2Pix for conversion “fsl-1 to spm-0”.

We can point out the large superiority of the supervised framework (Pix2Pix (Isola et
al., 2017)) compared to the other, which are all unsupervised. By benefiting from paired
data, this model outpass the performance of all the other frameworks, and even the initial
metrics obtained when comparing with the source image. Correlations between target
and generated images are close to 0.9, which is nearly perfect. On the other hand, the
CycleGAN (Zhu et al., 2017) framework gives surprising results, relatively low compared
to the other GAN-based frameworks. While it makes use of a cyclic-loss in unsupervised
settings, similarly to StarGAN, this framework only learn transfers between two domains.
We can suppose that StarGAN benefit from learning from other transfers and from the
additional classification loss, leading to higher performance in similar settings.

In Figure 5.2, we illustrate two transfers: (first row) between pipelines with different
HRF and different software packages (spm-0 to fsl-1) and (second row) between pipelines
with different HRF (fsl-1 to fsl-0). Maps generated using Pix2Pix (Isola et al., 2017)
remain closer to the target ground-truth, with more similar patterns, as stated by the
similarity metrics.

5.3.2 Denoising Diffusion Probabilistic Model (DDPM) frame-
works

In Table 5.4, we show the performance of DDPM-based frameworks for the same
four transfers as in Table 5.3. Performance of different frameworks are compared: one-
hot encoding conditioning from Ho et al., 2021, classifier-conditioning with N = 1 target
image selected randomly, inspired from Preechakul et al., 2022, and classifier-conditioning
with N = 10 target images selected randomly (named N = 10, ∞ in the Table).

Using such frameworks, the conversion between pipelines seems more difficult. While
all models succeed in changing the class identified by a pipeline classifier to the target
domain, the success of the conversion in terms of similarity to the target ground-truth
image is variable across transfers. For instance, all DDPM-based frameworks succeed in
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fsl-1 → spm-0 spm-0 → fsl-1 fsl-1 → spm-1 fsl-1 → fsl-0
IS Corr. MSE Corr. MSE Corr. MSE Corr. MSE

Initial 3.69 76.2 0.008 76.2 0.008 82.6 0.004 91.0 0.0022
One-hot 3.66 83.8 0.0096 75.0 0.0048 78.7 0.0087 81.1 0.0044
N=1 3.70 85.5 0.0053 77.8 0.0035 79.9 0.0072 82.8 0.0033
N=10, ∞ 3.86 86.5 0.0047 79.0 0.0032 81.8 0.0049 84.3 0.0028

Table 5.4 – Performance associated with four transfers for Denoising Diffusion Probabilis-
tic Model (DDPM)-based frameworks. IS means "Inception Score" across all transfers.
Pearson’s correlation (%) and Mean Squared Error (MSE) computed between generated
and ground-truth target image for 20 images per transfer. Initial represents the metrics
between the source image (before transfer) and the ground-truth target image. Boldface
marks the top model.

Figure 5.3 – Generated images for two transfer and different competitors: conditioning
with one-hot encoding (Ho et al., 2021), with a classifier and N=1 (Preechakul et al., 2022)
and N=20 with random selection. Correlation with target ground-truth are indicated
below generated and source images.

converting statistic maps for the transfer “fsl-1 to spm-0”, while none is successful for the
transfer “fsl-1 to fsl-0”. These low performance could be explained by the difficulty of
the models to learn differences between close pipelines. In Table 5.5 and Figure 5.4, we
show the performance of the pipeline classifier and compare the similarity of features, as
done in Chapter 4, Figure 4.9. In particular, we observe that features learned at Layer 4
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(i.e. the features used for conditioning) are close for pipelines sharing the same software,
which might explain the difficulty to rely on these features to perform transfer.

Pipelines Layer 1 Layer 2 Layer 3 Layer 4
Same software, different parameters

fsl-5-0-0 / fsl-5-0-1 86.5 91.4 95.4 99.2
spm-5-0-0 / spm-5-0-1 86.5 90.9 94.2 98.4

Same parameters, different software
fsl-5-0-0 spm-5-0-0 88.8 88.2 93.6 98.2
fsl-5-0-1 spm-5-0-1 84.8 85.8 92.4 98.0

Different software, different parameters
fsl-5-0-0 spm-5-0-1 74.5 81.0 88.7 97.1
fsl-5-0-1 spm-5-0-0 74.8 77.7 88.2 97.3

Table 5.5 – Mean correlations between features maps learned at each layers for each pair
of pipelines

The use of a DDPM with classifier-conditioning and multiple target images (N =
10, ∞) seems to improve performance compared to other DDPM models. Both quality
and diversity of images is increased (IS = 3.86), and in terms of similarity to the ground-
truth target image, this frameworks outperforms the other DDPM models by up to 4%
in correlations between target ground-truth and generated image compared to Ho et al.,
2021 for transfer “spm-0 to fsl-1” and up to 3% for “fsl-1 to spm-0”.

The first row of Figure 5.3 illustrates a transfer between pipelines with different HRF
and different software packages (“spm-0 to fsl-1”). The second row shows a transfer
between pipelines with different HRF (“fsl-1 to fsl-0”). The DDPM with multiple target
images generates statistic maps close to the ground-truth for both transfer, representing
the intrinsic properties of the map while modifying its extrinsic properties to the target
domain. Using the one-hot encoding conditioning, the generated statistic maps seem far
from the target image, failing to represent the whole characteristics of the target domain.
When using only one target image, statistic maps are more similar to the target in terms
of activation area.

The performance of such frameworks remain highly inferior to the ones obtained with
Pix2Pix (Isola et al., 2017) or StarGAN (Choi et al., 2018). This superiority can be
explained by the differences between frameworks: GAN-based methods use adversarial
training and StarGAN improves this by using a classifier loss and a cyclic-reconstruction
loss. Moreover, GAN sampling rely on the source image directly and do not require to
set an initial state, which might facilitate the source content preservation.
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Figure 5.4 – Original mean statistic maps (column 1) and mean feature maps across groups
learned by the pipeline classifier for the first 4 convolutional layers for the different classes.
Pipelines with the same software show similar feature maps at Layer 2 and 3.
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5.3.3 Impact of multi-target images

fsl-1 → spm-0 spm-0 → fsl-1 fsl-1 → spm-1 fsl-1 → fsl-0
IS Corr. MSE Corr. MSE Corr. MSE Corr. MSE

N=5, ∞ 3.89 86.5 0.0046 79.1 0.003 82.0 0.0051 84.2 0.0031
N=10, ∞ 3.86 86.5 0.0047 79.0 0.0032 81.8 0.0049 84.3 0.0028
N=20, ∞ 3.85 86.7 0.0048 79.3 0.003 81.5 0.0051 84.4 0.0028
N=5, Kmeans 3.86 86.4 0.0046 78.7 0.003 81.2 0.0051 84.5 0.0031
N=10, Kmeans 3.86 86.1 0.0047 79.0 0.0032 81.2 0.0049 84.1 0.0028
N=20, Kmeans 3.87 86.1 0.0048 79.2 0.003 81.3 0.0051 83.9 0.0028
N=10, KNN 3.75 84.9 0.0047 78.7 0.0032 81.6 0.0049 83.6 0.0028

Table 5.6 – Performance associated with four transfers with DDPM-based frameworks
with different implementation. IS means "Inception Score" across all transfers. Pearson’s
correlation (%) and Mean Squared Error (MSE) computed between generated and ground-
truth target image for 20 images per transfer. Initial represents the metrics between the
source image (before transfer) and the ground-truth target image. ∞ means random
sampling.

In Table 5.6, we show the influence of the number of target images and of the selection
methods. The number of images does not seem to impact the performance, correlations
are very similar between N = 5, N = 10 and N = 20. Performing selection using K-
Means algorithm does not seem to improve performance compared to a random selection,
for any N values, probably due to the low diversity in our dataset. However, selection
using a K-Nearest Neighbors (KNN) algorithm decreases the performance from 1.6%,
meaning that the diversity of target images is beneficial for a good transfer.

5.4 Discussion

In this work, we made the assumption that statistic maps could be converted between
pipelines to facilitate re-use of derived data in mega-analyses (Costafreda, 2009). We
explored different frameworks based on GAN and DDPM with the aim to develop an
unsupervised multi-domain framework that researchers could use to convert the derived
data available in public databases such as NeuroVault (Gorgolewski et al., 2015). Our
results are promising, with satisfying performance in transferring statistic maps between
pipelines with distant results (e.g. from different software packages). In these cases,
generated statistic maps were closer to the target image than the original ones, and
generated statistic maps were all classified in the target domain by the pipeline classifier.
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In Chapter 8, in a follow-up work of Rolland et al., 2022, we will see that combining
data from different pipelines in mega-analyses leads to invalid results with different levels
of false positive rates, and that studies combining data from different software packages
are the ones that led to the largest false positive rates, and thus largest invalidity. This
possibility to transfer statistic maps between software packages using I2I frameworks is
thus highly hopeful for the future of data re-use.

We compared several frameworks and found that, in our case, GAN-based frameworks
always overpass DDPM-based ones in terms of adequation with target ground-truth image.
While the largest performance of DDPM was demonstrated in many papers (Dhariwal
et al., 2021; Müller-Franzes et al., 2023), we believe that our particular results are related
to the specific properties of the task and data. These two studies showed the superiority
of DDPM compared to GAN for the task of image synthesis, in both natural and medical
images, but not for I2I. The traditional sampling strategy of DDPM is not suited for such
task, as it relies on random noise, which makes it difficult to maintain intrinsic properties
of the source images while changing the style. On the contrary, GAN sampling relies on
the source images directly and do not require to set an initial state, which might facilitate
the source content preservation. In addition, DDPM are trained to minimize a MSE
loss between the predicted noise and the actual noise added to the image, without any
component related to style transfer, whereas in the GAN frameworks, and in particular
StarGAN (Choi et al., 2018), the classifier loss seems to greatly improve performance.
Another issue related to DDPM is the high dimensionality of images, here 3-dimensional
images with hundreds of thousands of values, which, associated with the large number of
trainable parameters of the model, makes it difficult to train performing models. Recently,
the potential of latent diffusion models was shown, these frameworks act in the latent space
of a Variational AutoEncoder to reduce the size of data and facilitate training (Rombach
et al., 2022).

Across GAN-based frameworks, we obtained better performance with the supervised
framework compared to the unsupervised ones, in particular for conversion between
pipelines giving already close results (e.g. same software package, different parameters).
However, gathering paired data is impractical and far from real life practice. In large
databases, for instance NeuroVault, we have no information about the pipeline used to
obtain statistic maps and potentially no access to raw data to build paired datasets. The
goal is to build a model that could be applied on two or more datasets with different statis-
tic maps of the same task, but obtained with different pipelines. In such unsupervised
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settings, performance of StarGAN remain statisfying, the model succeeds in generating
data that are close to the target image for all transfers, and closer than the source image
in long-distance transfer. We believe that this model could be a good candidate for further
development in real-life practice.

In this study, we showed the ability of the frameworks to convert unseen statistic
maps of the same task (here, right-hand). We started to test the generalizability of the
frameworks to other tasks, for instance right-foot. Ideally, researchers would be able to
re-use a framework trained to convert statistic maps of a task for another one. For now,
our results show that the StarGAN framework could not be applied to another task, as
it leads to generated statistic maps with low correlation with their corresponding target
maps (see Supplementary Table E.1). These results makes us suppose that the mapping
from a pipeline to another is different between tasks. Future works would be needed to
explore these relationships between pipelines, in order to develop a more generalizable
framework. This exploration of the stability of relationships between pipelines will be
treated in Chapter 7.

C Take-home Message

• We explore the ability to convert fMRI maps between pipelines using gener-
ative models (GAN-based and DDPM-based frameworks, in supervised and
unsupervised settings).

• To enhance DDPM conversion performance, we explore several modifications
of traditional DDPM frameworks by conditioning on multiple target images
in the latent space of a classifier.

• Our results show that images can be converted successfully using DDPMs,
but with lower similarity with the ground-truth target compared to GANs, in
particular in supervised settings.
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How to explore the fMRI analytical
space?
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Chapter 6

THE HCP MULTI-PIPELINE DATASET: AN

OPPORTUNITY TO INVESTIGATE

ANALYTICAL VARIABILITY IN FMRI DATA

ANALYSIS

This chapter was the subject of a paper that will soon be submitted to Scientific Data:

• Title: The HCP multi-pipeline dataset: an opportunity to investigate analytical
variability in fMRI data analysis

• Authors: Elodie Germani, Elisa Fromont, Pierre Maurel*, Camille Maumet*

• HAL: inserm-04356768.

• Code: swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b

• Data: currently working with our DPO for sharing on Public nEUro

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

6.1 Introduction

As we saw in the previous chapters (see Chapters 1 and 2), neuroimaging data, such
as functional Magnetic Resonance Imaging (fMRI) data, can be used for a wide range
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of application, including diagnosis (Yin et al., 2022) or brain decoding (i.e. identifying
stimuli and cognitive states from brain activities) (Firat et al., 2014). But the workflows
used to analyze these data are highly complex and flexible. Different tools and algorithms
were developed over the years, leaving researchers with many possible choices at each step
of an analysis (Carp, 2012a) (see Chapter 1). This flexibility of analyses pipelines induces
a phenomenon called “analytical variability”, which describe the variations of the results
obtained when varying the pipeline used to process and analyze data (see Chapter 2).
As there is usually no ground-truth that can be used to benchmark pipeline results, this
phenomenon calls for a better understanding of the pipeline-space to try to identify the
cause of the observed differences amongst the final results.

The pipeline-space is especially large (Carp, 2012b) and challenging to explore due
to its interaction with other properties of a dataset: for instance, with sample size and
sampling uncertainty (Klau et al., 2020) or even with the research question (Botvinik-
Nezer et al., 2020). However, due to the high computational cost of storing and analyzing
task-fMRI data, recent studies investigating analytical variability in neuroimaging focused
on a restricted number of participants (N=108, N=30, N=15, and N=10 respectively
for Botvinik-Nezer et al., 2020; Li et al., 2021; Carp, 2012a; Xu et al., 2023) and cognitive
tasks (one paradigm for Botvinik-Nezer et al., 2020; Carp, 2012a with respectively k=9
and k=1 contrasts and use of resting-state fMRI for Li et al., 2021; Xu et al., 2023).

Multiple efforts for collecting datasets with larger number of participants have arisen
in the field of neuroimaging in the past 10 years with for instance the Human Connectome
Project (HCP) (Van Essen et al., 2013) or the UK Biobank (Sudlow et al., 2015; Miller
et al., 2016). In particular, the HCP Young Adult most recent releases provide task-fMRI
data for more than 1,000 participants and for different tasks and cognitive processes.
These data are also available as minimally processed versions, i.e. preprocessed using a
common pipeline chosen by the HCP collaborators (Glasser et al., 2016). In brief, this
pipeline consists in the following steps: removal of spatial distortions, volumes realignment
to correct for participant motion, registration of the functional volumes to the structural
one, bias field reduction, normalization to a global mean and masking using a structural
brain mask computed in parallel.

A set of group-level statistic maps of the HCP-Young Adult have also been made pub-
licly available (see NeuroVault Collection 457 (Collection nº457, 2015) and corresponding
publication (Van Essen et al., 2013)). These were obtained using data from a subset of the
participants (68 subjects scanned during the first quarter (Q1) of Phase II data collection.
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Z-scored statistic maps are available for all base contrasts (23 different contrasts) using
a single analysis pipeline. This is beneficial for studying individual differences and con-
trasts but it does not allow for analytical variability studies for which multiple pipelines
are needed, or to perform other analyses such as group-level analyses that could be used
to explore interaction with sampling uncertainty or sample size.

Statistic maps published during the Neuroimaging Analysis Replication and Predic-
tion Study (NARPS) study (Botvinik-Nezer et al., 2020) are also publicly available on
NeuroVault (Gorgolewski et al., 2015) with one collection per team. For each of the 70
teams, 9 group-level statistic maps are shared (one per research hypothesis) based on
two groups of N=54 participants. Additionally, for a limited number of teams (K=4),
subject-level contrast maps are also available. The pipeline space studied in this dataset
is unconstrained since teams were instructed to use their usual pipelines to analyze the
data.

In this Chapter, we describe the HCP multi-pipeline dataset, composed of a large
number of subject and group-level statistic maps and representing a non-exhaustive but
controlled part of the pipeline space. Contrast and statistic maps were obtained for the
5 contrasts of the motor task of the HCP for the 1,080 participants of the S1200 release,
with 24 analysis pipelines that differ on a predefined set of parameters as typically used
in the literature. We also computed group-level contrast and statistic maps for 1,000
randomly sampled groups of 50 participants for each pipeline and contrast.

While solutions have been proposed to standardize fMRI preprocessing (e.g. fM-
RIprep (Esteban et al., 2019)), practitioners still face multiple choices regarding first-
level statistical analyses. Here, we focus on a set of parameters that often varies across
pipelines and this even when standardized preprocessing are used: smoothing kernels,
HRF modelling and the inclusion/exclusion of motion regressors as nuisance covariates.
Group-level statistical analyses were performed uniformly for all pipelines.

6.2 Methods

6.2.1 Raw Data: the Human Connectome Project

This work was performed using data from the Human Connectome Project Young
Adult (Van Essen et al., 2013). Written informed consent was obtained from participants
and the original study was approved by the Washington University Institutional Review
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Board. We agreed to the Open Access Data Use Terms available at Human Connectome
Project: Data Usage Agreement 2013.

The HCP Young Adult aimed to study and share data from young adults (ages 22-35)
from families with twins and non-twin siblings, using a protocol that included structural
and functional magnetic resonance imaging (MRI, fMRI), diffusion tensor imaging at
3 Tesla (3T) and behavioral and genetic testing. The S1200 release includes behavioral
and 3T MR imaging data from 1206 healthy young adult participants (1113 with structural
MR scans) collected in 2012-2015.

Unprocessed anatomical T1-weighted (T1w) and task-fMRI data (Moeller et al., 2010;
Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2012) were used in this work.
The task-fMRI data includes seven tasks, each performed in two separate runs. Among
these tasks, we selected data from the motor task in which participants were presented
with visual cues asking them to tap their fingers (left or right), squeeze their toes (left or
right) or move their tongue. This task is the simplest one of the tasks performed in the
study, and the protocol associated with this task is very standard and robust. We used
unprocessed data for the N = 1080 participants who completed this task.

6.2.2 Analyses pipelines

Multiple preprocessing and first-level analyses were performed on the task-fMRI data,
giving rise to 24 different analysis pipelines. These pipelines differ in 4 parameters:

— Software package: SPM (Statistical Parametric Mapping, RRID: SCR_007037) (Penny
et al., 2011) or FSL (FMRIB Software Library, RRID: SCR_002823) (Jenkinson et
al., 2012).

— Smoothing kernel: FWHM was equal to either 5mm or 8mm.

— Number of motion regressors included in the GLM for the first-level analysis: 0, 6
(3 rotations, 3 translations) or 24 (the 6 previous regressors + 6 derivatives and the
12 corresponding squares of regressors).

— Presence (1) or absence (0) of the derivatives of the HRF in the GLM for the first-
level analysis. Only the temporal derivatives were added in FSL pipelines and both
the temporal and dispersion derivatives in SPM.

For more details on the meaning of such parameters, the reader may refer to Chap-
ter 1.2. In the following, we will denote the pipelines by ‘software-FWHM-number of
motion regressors-presence of HRF derivatives’. For instance, pipeline with FSL software,
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smoothing with a kernel FWHM of 8mm, no motion regressors and no HRF derivatives
will be denoted by ‘fsl-8-0-0’.

All pipelines were implemented using Nipype version 1.6.0 (RRID: SCR_002502) (Gor-
golewski, 2017), a Python project that provides a uniform interface to neuroimaging soft-
ware packages and facilitates interaction between these packages within a single workflow.

6.2.2.1 Computing environment

To limit the variability induced by different computer environments and versions of the
software packages, we used NeuroDocker (RRID: SCR_017426) (Kaczmarzyk et al., 2018)
to generate a custom Dockerfile. To build this image, we chose NeuroDebian (Halchenko
et al., 2012) and installed the following software packages: FSL version 6.0.3 and SPM12
release r7771. To install Python and Nipype, commands were added to the Dockerfile to
create a Miniconda3 environment with Python version 3.8 and multiple packages, such
as Nilearn (Abraham et al., 2014a) (RRID: SCR_001362), Nipype and NiBabel (RRID:
SCR_002498) (Brett et al., 2020). This docker image is available on DockerHub (Ger-
mani, 2021) and the command to generate the DockerFile can be found in the README
of the software heritage archive (see 6.2.2).

6.2.2.2 Preprocessing

Preprocessing consisted of the following steps for all pipelines: spatial realignment
of the functional data to correct for motion, coregistration of realigned data towards
the structural data, segmentation of the structural data, non-linear registration of the
structural and functional data towards a common space and smoothing of the functional
data. Depending on the software package used, these steps were performed in a different
order, following the default behavior of each software package.

In SPM, for each participant, functional data were first spatially realigned to the mean
volume using the ‘Realign: Estimate and Reslice’ function with default parameters (qual-
ity of 0.9, sampling distance of 4 and a smoothing kernel, 2nd degree B-spline interpolation
and no wrapping). Realigned functional data were then coregistered, with the ‘Coregis-
ter: Estimate’ function, to the anatomical T1w volume acquired for the participant using
Normalized Mutual Information. In parallel, we segmented the different tissue classes of
the same anatomical T1w volume using the ‘Segment’ function. The forward deformation
field provided by the segmentation step was used to normalize the functional data to
a standard space (Montreal Neurological Institute (MNI))(‘Normalize: Write’ function)
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with a voxel size of 2mm and a 4th degree B-spline interpolation. Normalized functional
data were then smoothed with different FWHM values depending on the pipeline (5 or
8mm).

In FSL, we reproduced the preprocessing steps used in FEAT (Woolrich et al., 2001)
within Nipype. Functional data were realigned to the middle functional volume using
MCFLIRT. Brain extraction was applied with BET and we masked the functional data
using the extracted mask. We smoothed each run using SUSAN with the brightness
threshold set to 75% of the median value (default value in FSL) for each run and a mask
constituting the mean functional. Different values were used for the FWHM of the smooth-
ing kernel depending on the pipeline. We also performed temporal highpass filtering on
the functional data with a value of 100s. In parallel, we computed the transformation
matrix to register functional data to anatomical and standard space (MNI) using linear
(FLIRT function) and non-linear registration (FNIRT function). Contrary to SPM, the
first-level statistical analysis is performed on the smoothed data in subject-space. Only
the transformation matrix was computed at this stage, using boundary-based registration
and applied on the contrast maps output after the statistical analysis.

6.2.2.3 First level statistical analyses

To obtain the contrast maps of the different participants and contrasts, we modeled
the data using a GLM. Each event was modelled using the onsets and durations provided
in the event files of the HCP dataset. Six events, corresponding to the six contrasts
studied, were modeled: cue (which represent any visual cue), right hand, right foot, left
hand, left foot and tongue. Each condition was convolved with the canonical HRF. For
both SPM and FSL pipelines, we used the Double Gamma HRF (default in SPM).

Different numbers of motion regressors (0, 6 or 24) were included in the design matrix
to regress out motion-related fluctuations in the BOLD signal. The modelling of the HRF
also varied: Double Gamma HRF with or without derivatives (time+dispersion for SPM
and time for FSL).

In SPM, temporal autocorrelations in the BOLD signal timeseries were accounted for
by highpass filtering with a 128s filter cutoff and modelling of serial correlation using an
autoregressive model of the first order (AR(1)). In FSL, highpass filtering was already
performed during preprocessing with a 100s filter cutoff, modelling of serial correlation
was also performed using an AR(1) model. Model parameters were estimated using a
Restricted Maximum Likelihood approach for both SPM and FSL software packages.
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Subject-level contrast maps were computed and saved for 5 contrasts (right hand, right
foot, left hand, left foot and tongue) and each participant. In the end, for each of the
24 pipelines, we had 5,400 contrast and statistic maps (5 contrasts for each of the 1,080
participants). These maps constituted the subject-level dataset. Figure 6.1(A) presents
the statistic maps for the contrast right-hand obtained with the different pipelines for a
representative subject.

6.2.2.4 Second-level statistical analyses

Group-level statistical analyses were performed using the contrast maps obtained with
the different analyses pipelines. 1,000 groups of 50 participants were randomly sampled
among the 1,080 participants.

For each analysis pipeline, we performed one sample t-tests for each group and each
contrast in SPM (default parameters). We purposely used the same second-level analysis
method and software for all pipelines in order to focus on first-level analysis differences.

For each of the 24 pipelines, the group-level dataset was thus composed of 5,000
contrast maps and statistic maps (5 contrasts for each on the 1,000 groups). Figure 6.1(B)
presents the statistic maps obtained with the different pipelines for one group for the
contrast right-hand.

6.3 Data Records

The contrast and statistic maps will be accessible on Public nEUro (Public nEUro
2020), the preprint will be updated to include the link as soon as possible. We now have
the agreement of our Data Protection Officers to share data, the contract with Public
nEUro has been validated by both sides, and is currently in signature phase.

The dataset will be organized in BIDS format (Gorgolewski et al., 2016). Discussions
are underway with BIDS maintainers to find the best way to rename and reorganize our
data.

6.4 Technical Validation

To assess the quality of the statistic maps, we checked that all contrasts led to an
activation of the primary motor area.
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Figure 6.1 – Example of subject (A) and group-level (B) statistic maps obtained for
subject 100206 and group 953 for each pipeline for the contrast right-hand. Pipelines are
denoted by ‘software-FWHM-motion regressors-HRF derivatives’.
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Figure 6.2 – Workflow of technical validation of statistic maps. We thresholded each
statistic map of each group, each pipeline and each contrast using a FDR-corrected vox-
elwise p<0.05 and masked the thresholded map using the ROI of Juelich atlas of the
Primary Motor Cortex. We then computed the percentage of activated voxels in the ROI
of the Primary Motor Cortex.

As described in Figure 6.2, we looked at the significant activations inside the Primary
Motor Cortex (M1) of the brain for each statistic map of each group, each contrast and
each pipeline. Our group-level statistic maps were thresholded using an FDR-corrected
voxelwise p-value of p < 0.05 and masked using the probabilistic Juelich Atlas (Amunts et
al., 2020) available from Nilearn. We selected the Region of Interest (ROI) corresponding
to the Primary Motor Cortex, Brodmann Area 4. Depending on the contrast, both left and
right hemisfer’s ROI (‘tongue’), only the left hemisfer (‘right hand’ or ‘right foot’) or only
the right hemisfer (‘left hand’ or ‘left foot’) ROI were selected, to focus on controlateral
activations in the motor cortex.

For each map, we computed the percentage of activation inside the Primary Motor
Cortex, which is the percentage of voxels of the ROI that are activated, i.e.:

PercentageOfActivation = Nactivated voxels

Ntotal voxels

× 100 (6.1)

where Nactivated voxels is the number of activated voxels in the ROI and Ntotal voxels is the
total number of voxels in the ROI.

Figure 6.3 represents the distribution of mean percentage of activation inside the Pri-
mary Motor Cortex per contrast for all studied pipelines. Results were different depending
on the contrast: for all contrasts, mean percentages of activation were between 20% and
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40% but those of contrasts left foot and right foot were lower than for right hand, left hand
and tongue. When looking at the activations of different contrasts in the ROI for one of
our group-level statistic maps (see Figure 6.4), we could see that the activations of the
foot contrast seemed widespread with a small area of high activation. For a hand contrast,
the high activation area was larger and covered nearly the entire ROI. This observation
was consistent with the literature (Schott, 1993) and with statistic maps obtained from
NeuroSynth (Yarkoni et al., 2011) (RRID:SCR_006798) in which the identified area of
activation inside the motor cortex for the foot was smaller than the hand one. In the
Primary Motor Area, the statistic maps of the foot contrasts thus have less activated
voxels. Overall, the technical validation was successful. The goal of this quality check
was to have a low-level estimation of the accuracy of the statistic maps to represent the
task performed, thus we chose to define a single ROI covering the entire motor area. The
definition of a specific ROI of the foot activation area could help having better metrics.

We observed consistent metrics across pipelines, with high percentages of activation
for hand and tongue contrasts and lower ones for foot contrasts. An example of the
distribution of percentage of activations for all group maps of each contrast is shown in
Figure 6.5 for the pipeline spm-5-0-0.

Figure 6.3 – Distribution of mean Percentage of Activation inside the Primary Motor
Cortex for all groups and pipelines in the different contrast maps.
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Figure 6.4 – Thresholded statistic maps for contrasts right foot (right) and right hand
(left) for group-level analysis of group 3 with pipeline spm-5-0-0 (upper). Percentage
of Activation inside the Primary Motor Cortex were respectively 0.34 and 0.41 for the
contrasts right foot and right hand. NeuroSynth activation maps corresponding to the
forward inference of the "hand" and "foot" paradigms (lower). Green borders correspond
to the motor area ROI.

Figure 6.5 – Distribution of Percentage of Activation inside the Primary Motor Cortex
for all group-level statistic maps for pipeline spm-5-0-0 in the different contrast maps.
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6.5 Discussion

The HCP multi-pipeline dataset provides researchers with a re-usable dataset of fMRI
contrast maps. The data will be accessible on Public nEUro (Public nEUro 2020), the
preprint will be updated to include the link as soon as possible. We now have the agree-
ment of our Data Protection Officers to share data, the contract with Public nEUro has
been validated by both sides, and is currently in signature phase.

This dataset brings together a wide range of analysis conditions, covering many aspects
of inter-subject, inter-groups, inter-contrasts and inter-pipelines variability. Data from
1,080 participants were used to form 1,000 different groups of 50 participants, 5 contrasts
were analyzed with 24 different pipelines.

While many aspects of variability have been studied in the field of neuroimaging,
changes in analytical choices are still hardly understood. Due to the computational cost
in time and storage capacity of analysing fMRI data, datasets dedicated to the exploration
of analytical variability (i.e. in which multiple pipelines are applied to the same data)
are rare. Recently, the results of the NARPS study (Botvinik-Nezer et al., 2020) were
made publicly available on NeuroVault, but even if 70 different analytic conditions were
described, it only gives access to one group level statistic maps for 9 different contrasts.

Analytical variability is not limited to neuroimaging and has been studied in many
other disciplines (Hoffmann et al., 2021), such as psychology (Simmons et al., 2011) or
software engineering (Alférez et al., 2019). These different fields have brought solutions
to explore and handle analytical variability. These techniques have begun to be used in
neuroimaging, with, for instance, the implementation of continuous integration, a software
engineering technique, to facilitate the reproducibility of neuroimaging computational
experiments (Sanz-Robinson et al., 2022) or multiverse analyses that help to find the
most efficient pipelines depending on the data and the goal of the study (Dafflon et al.,
2022).

By sharing directly the results obtained from different analysis strategies, we hope to
facilitate the use of these data by researchers from other fields, that could apply their own
methods to help explore the neuroimaging analytical space. Using the code provided to
create the pipelines, other researchers could be able to enhance this dataset with other
combinations of parameters, giving rise to other pipelines, or apply these pipelines to
other participants, groups or contrasts.
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C Take-home Message

• We developed and (soon) publicly shared a multi-pipeline dataset, with 24
different pipelines varying in terms of 4 criteria including software package,
smoothing kernel FWHM, number of motion regressors and use of HRF deriva-
tives.

• This dataset contain statistic maps for a wide range of context (5 cognitive
paradigm, 1,080 participants, 1,000 groups). This is to our knowledge the
largest dataset available to explore analytical variability.

• The goal is to provide other researchers with a set of 24 pipelines to transpose
methods to explore analytical variability from other fields to neuroimaging.
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Chapter 7

UNCOVERING COMMUNITIES OF

PIPELINES IN THE TASK-FMRI
ANALYTICAL SPACE

This chapter is the subject of a paper accepted at the 2024 IEEE International Con-
ference on Image Processing (ICIP).

• Title: Uncovering communities of pipelines in the task-fMRI analytical space

• Authors: Elodie Germani, Elisa Fromont*, Camille Maumet*

• HAL: hal-04331232.

• Code: swh:1:snp:8286215df8022543630bbbb20c5b0bd78eced45e.

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Manuscript writing.

* Joint senior authorship.

7.1 Introduction

In the previous chapters (1 and 2), we saw that a large number of software packages and
methods are available to analyze fMRI data, making the choice of pipeline a challenging
process for practitioners. These choices can have a large impact on the results, and a
single change can lead to variations in the final statistic maps. Yet, there is no ground
truth that can be used to measure and compare the performance of competing fMRI
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7.1. Introduction

pipelines. Also, there are only limited best practices to guide the pipeline choice. In an
effort to guide practitioners into the pipeline space, Dafflon et al., 2022 proposed a new
method to identify the pipeline that are best suited to answer a problem for which ground
truths are available, such as predicting the age of participants.

In our case, a potential solution to take into account analytical variability in results is
the use of multiverse analyses (Steegen et al., 2016). In these analyses, a set of pipelines
is selected and used to provide a consensus results across different analytical conditions.
But, the pipeline space is very large, and there is still little understanding as to which
factor in the fMRI pipelines are the main drivers of analytical variability. Thus, choosing
a subset of pipelines can be challenging. Here, we propose to investigate the relationships
between pipeline results to help in understanding the homogeneity (i.e., pipelines that give
similar results) but also the heterogeneity (i.e. pipelines that have a different behavior)
of the pipelines.

In Chapter 5, we discussed the work of Rolland et al., 2022 who recently showed the
invalidity of studies combining subject-level results obtained from different pipelines for
group-level analyses. We proposed a method to combine such data by converting data
between pipelines using style transfer. An open question is whether patterns observed
across pipelines remain stable in different contexts (e.g. for different groups of partici-
pants, cognitive paradigms, acquisition parameters, etc.). Style transfer frameworks aim
at learning a mapping between two domains (see 3.4.2) and apply this mapping to data.
If the mapping is different between contexts (e.g. different cognitive paradigm), a frame-
work trained to transfer statistic maps of a particular paradigm would not be applicable
to other statistic maps. To verify the potential of generalizability of our method, we also
propose to explore the stability of the relationships between pipeline results. This is of
particular importance to assess the potential of our solution and beyond of any solution
that aims at being generalizable across different set of participants or fMRI cognitive
tasks.

To measure distances between pipelines, clustering algorithms can be applied to statis-
tic maps. However, because the data are high-dimensional and suffer from large number
of sources of variability at different level (at the subject and group-level as brain activity
patterns differ across participants, at the acquisition level since fMRI scanners and pro-
tocols often vary between centers and studies, etc.), distance measures between statistic
maps are often meaningless and unrelated dimensions might mask existing clusters. In
such case, subspace clustering algorithms (Parsons et al., 2004) are typically used to find
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clusters in different subspaces within a dataset.
Here, we used community detection algorithms (i.e. clustering on graphs) to explore

the pipeline space and assess the stability of relationships between pipeline results across
different groups and cognitive paradigm. Using a clustering in two steps, we first look for
clusters of pipelines and then, we explore how these clusters are similar across different
groups. We explore the factors that impact the relationships between pipeline results,
i.e. which parameters lead to more distant pipeline results and how do these parameters
impact the statistic maps of the pipeline. We also aim at identifying groups of pipelines
that give similar results whatever the contexts (i.e. different contrasts or group of partici-
pants). If two pipelines are located in the same community (i.e. the two pipelines present
similar results) in different contexts, we can consider that their relationship is relatively
stable.

7.2 Materials and Methods

To study the relationships between pipeline results and the stability of these relation-
ships across different contexts, we computed graphs of similarity between the statistic
maps of different pipelines for each group and used the Louvain community detection
algorithm (Blondel et al., 2008) to partition each graph. Stability was measured for
each pair of pipelines as the number of groups (out of 1,000) for which the two pipelines
were located in the same community. Graphs and communities were computed using
NumPy (Harris et al., 2020) (RRID:SCR_008633) and Networkx (Hagberg et al., 2008)
(RRID:SCR_016864).

7.2.1 Dataset

Data used in this work are part of the HCP multi-pipeline dataset presented in the
previous chapter (see Chapter 6). We used the 1,000 group-level statistic maps available
for each cognitive paradigm.

7.2.2 Data processing

Group-level statistic maps obtained with different software packages did not have the
same dimension, as default MNI templates used for spatial normalization are different
across software packages. To be able to compute correlation between maps obtained with
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Figure 7.1 – Workflow of community detection in the pipeline space across different groups
of participants and contrasts

the two software packages, we had to resample group-level statistic maps maps onto a
common grid. We used Nilearn (Abraham et al., 2014a) (RRID: SCR_001362) to resample
all statistic maps from all pipelines to the MNI152Asym2009 brain template with a 2mm
resolution using continuous interpolation. We computed a brain mask as the intersection
of all group-level brain masks from all pipelines. This mask was also resampled to the
MNI brain template using nearest-neighbors interpolation and applied to the resampled
group-level data. In the end, group-level statistic maps from all pipelines were resampled
to the same dimensions and masked using the same brain mask.

7.2.3 Graph computation and community detection

We computed the similarity for each pair of pipelines in terms of Pearson’s correlation
coefficient between their statistic maps (Figure 7.1 - Step 1). This correlation matrix
was used as an adjacency matrix to build an undirected weighted multi-graph for each
group, with nodes representing the statistic maps of the different pipelines (V = ‘fsl,0,0,0’,
‘fsl,0,0,1’, etc.) and edges weighted by the correlation coefficient between each pipeline
and labeled E={(‘fsl,0,0,0’,‘fsl,0,0,1’), etc.} (Figure 7.1 - Step 2). After computation, each
graph was partitioned using the Louvain algorithm (Blondel et al., 2008) to detect the best
partitions based on modularity optimization (Figure 7.1 - Step 3), which represents the
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density of links inside communities as compared to links between communities. Therefore,
the communities detected in each graph represent the pipelines that give similar results
for the corresponding group.

To explore the stability of the communities across different groups of participants,
we counted, for each pair of pipelines, the number of groups for which the two pipelines
were located in the same community (Figure 7.1 - Step 4). The higher the value the
higher the similarity and stability across groups. This matrix was used to build a second
graph, global across groups, in which nodes represent the different pipelines and edges
represent the stability measure mentioned above. Louvain community detection algorithm
was again applied to this second graph to detect communities in which pipeline provided
similar statistic maps across different groups. These global graphs were computed for
each contrast.

7.2.4 Communities statistic maps

Within each pipeline, the statistic map was obtained by averaging statistic maps across
groups. For display purposes, we selected one pipeline in each community (see Figure 7.3
and 7.6). All other pipeline average statistic maps are available in supplementary (see
Supplementary Figures F.4 and F.5).

These were thresholded assuming a Standard Normal distribution (and effectively
leading to conservative estimates since we did not take into account the dependency
of the different groups of participants on which these maps were averaged) and using
a voxelwise False Discovery Rate (FDR) of p < 0.05. For each community map, we
computed the number of activated voxels in the thresholded maps, but also within the
ROI of the Primary Motor Cortex (M1), extracted from the probabilistic Jülich Atlas,
available in Nilearn (Abraham et al., 2014a) (RRID: SCR_001362). This ROI is usually
used to extract regional statistic values inside a whole-brain statistic brain of the motor
task. The goal was to identify the specific patterns of each community, to understand
why a pipeline was located inside a community, and to explore the potential impact on
the results of the pipelines.

150



7.3. Results

SP
M,

5,0
,0_

c1
SP

M,
5,2

4,0
_c

1
SP

M,
5,6

,0_
c1

SP
M,

8,0
,0_

c1
SP

M,
8,2

4,0
_c

1
SP

M,
8,6

,0_
c1

SP
M,

5,0
,1_

c2
SP

M,
5,2

4,1
_c

2
SP

M,
5,6

,1_
c2

SP
M,

8,0
,1_

c2
SP

M,
8,2

4,1
_c

2
SP

M,
8,6

,1_
c2

FS
L,5

,0,
0_

c3
FS

L,5
,24

,0_
c3

FS
L,5

,24
,1_

c3
FS

L,5
,6,

0_
c3

FS
L,8

,0,
0_

c3
FS

L,8
,24

,0_
c3

FS
L,8

,24
,1_

c3
FS

L,8
,6,

0_
c3

FS
L,5

,0,
1_

c4
FS

L,5
,6,

1_
c4

FS
L,8

,0,
1_

c4
FS

L,8
,6,

1_
c4

0 100 19 16 100 19 16 40 1 1 1 40 1 1 2 1 0 1 0

0 18 106 85 18 106 85 1 0 0 0 1 0 0 0 0 0 0 0

0 17 98 80 17 98 80 1 0 0 0 1 0 0 0 0 0 0 0

0 100 19 16 100 19 16 40 1 1 1 40 1 1 2 1 0 1 0

0 18 106 85 18 106 85 1 0 0 0 1 0 0 0 0 0 0 0

0 18 97 79 18 97 79 1 0 0 0 1 0 0 0 0 0 0 0

100 18 17 100 18 18 0 1 0 0 0 1 0 0 0 84 84 84 84

19 106 98 19 106 97 0 0 0 0 0 0 0 0 0 23 23 23 23

16 85 80 16 85 79 0 0 0 0 0 0 0 0 0 29 29 29 29

100 18 17 100 18 18 0 1 0 0 0 1 0 0 0 84 84 84 84

19 106 98 19 106 97 0 0 0 0 0 0 0 0 0 23 23 23 23

16 85 80 16 85 79 0 0 0 0 0 0 0 0 0 29 29 29 29

40 1 1 40 1 1 1 0 0 1 0 0 0 54 38 54 37

1 0 0 1 0 0 0 0 0 0 0 0 0 5 12 5 11

1 0 0 1 0 0 0 0 0 0 0 0 0 12 19 12 18

1 0 0 1 0 0 0 0 0 0 0 0 0 5 12 5 11

40 1 1 40 1 1 1 0 0 1 0 0 0 54 38 54 37

1 0 0 1 0 0 0 0 0 0 0 0 0 4 11 4 11

1 0 0 1 0 0 0 0 0 0 0 0 0 11 18 11 18

2 0 0 2 0 0 0 0 0 0 0 0 0 4 11 4 11

1 0 0 1 0 0 84 23 29 84 23 29 54 5 12 5 54 4 11 4 0

0 0 0 0 0 0 84 23 29 84 23 29 38 12 19 12 38 11 18 11 0

1 0 0 1 0 0 84 23 29 84 23 29 54 5 12 5 54 4 11 4 0

0 0 0 0 0 0 84 23 29 84 23 29 37 11 18 11 37 11 18 11 0

735 746 1000 735 747

735 987 735 1000 986

746 987 746 987 999

1000 735 746 735 747

735 1000 987 735 986

747 986 999 747 986

801 835 1000 801 835

801 966 801 1000 966

835 966 835 966 1000

1000 801 835 801 835

801 1000 966 801 966

835 966 1000 835 966

790 781 796 973 789 776 799

790 991 994 763 999 986 980

781 991 985 754 990 995 971

796 994 985 769 993 980 986

973 763 754 769 762 749 777

789 999 990 993 762 987 981

776 986 995 980 749 987 968

799 980 971 986 777 981 968

984 1000 983

984 984 999

1000 984 983

983 999 983

0

200

400

600

800

1000

Figure 7.2 – Adjacency matrix representing the number of times each pair of pipelines
belong to the same community across different group-level statistic maps of the contrast
right-hand

7.3 Results

7.3.1 Communities for the contrast right-hand

The adjacency matrix representing the number of times each pair of pipelines be-
longed to the same community across different group-level statistic maps of the contrast
right-hand is shown in Figure 7.2. The graph corresponding to this adjacency matrix was
partitioned using the Louvain community algorithm and 4 communities were identified.
These communities correspond to groups of pipelines that are frequently located in the
same community across groups of participants (i.e., that give similar results for a high
number of groups). The partitioning of this graph achieves a modularity of 0.64 (modu-
larity (Blondel et al., 2008) takes values between −0.5 and 1 and considered high above
0.3).

We can see that pipelines inside each partition share specific parameters, these pa-
rameters are the main factors that distinguish pipelines between communities, i.e. that
drives the variability of the pipeline space. Here, in each community, we can find pipelines
with the same software package and the same use of HRF derivatives. This means that
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for this contrasts, pipelines sharing these parameters provide closer results.
Inside communities, pairs of pipelines show a large number of co-occurrence in the same

community across groups (more than 700 for all pairs of pipelines in each community).
This means that the relationships observed between pipelines results are stable across
different groups of participants. In particular, pairs of pipelines sharing all parameters
except smoothing kernel FWHM are more than 99% of the time identified in the same
community (see green highlight in Figure 7.2). For instance, pipelines ‘spm-5-0-0’ and
‘spm-8-0-0’ are located in community 1 for all groups of participants.

Figure 7.3 – Mean statistic map for the contrast right-hand across groups (of partici-
pants) for a representative pipeline in each community. Unthresholded maps (upper) and
thresholded maps (lower) with voxelwise FDR-corrected p < 0.05.

Mean unthresholded (upper) and thresholded (lower) statistic maps of a representa-
tive pipeline in each community identified for the contrast right-hand are displayed in
Fig.7.3. Mean maps of other pipelines per communities are available in Appendix F. This
representative pipeline was arbitrarily selected, by construction all pipelines in each com-
munity show similar activation patterns. The global activation patterns are similar across
communities, but the activation area is larger for the pipeline of communities 1 and 3.
These communities are composed of pipelines that do not include HRF derivatives. We
can suppose that this parameter has an impact on the number of significant voxels de-
tected in the analysis. This observation is confirmed by the number of activated voxels in
the thresholded maps of the pipelines inside each community (Table 7.1). Statistic maps
of the representative pipeline of communities 1 and 3 show a high number of activated
voxels (N = 2, 786 and 2, 539) compared to communities 2 and 4 (N = 796 and 727).
The numbers of activated voxels inside the ROI of the Primary Motor Cortex are similar
between communities but remain more elevated in communities 1 and 3.

These maps also show that pairs of communities can have similar activation area. We
can suppose that the pipelines of these pairs of communities are closer to each other than
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to the ones from other communities. This suppose that there are distant & close pipelines
(inside vs outside a community), but also distant & close communities. In this case,
pipelines sharing the same use of HRF derivatives (community 1 and 3) seem closer than
those having different use of HRF derivatives but the same software package (community
1 and 2).

Table 7.1 – Mean number of activated voxels in the thresholded mean statistic maps of the
representative pipeline of each community (1st row) and inside the ROI of the Primary
Motor Cortex (2nd row) for the contrast right-hand.

Community 1 2 3 4
Whole maps 2,786 796 2,539 727

ROI 382 252 337 215

7.3.2 Communities for the contrast right-foot

Figure 7.4 shows the adjacency matrix for the contrast right-foot. For this contrast,
only 3 communities are identified and the distribution of pipelines inside the communities
differ compared to the one observed for the contrast right-hand. In Figure 7.2, for con-
trast right-hand, communities are composed of pipelines with different software packages
(communities 1 vs 3) and different use of HRF derivatives (communities 2 vs 4). For the
contrast right-foot, the main factors that drive the clustering of pipelines into communities
do not seem to be related to the software package: communities 1 and 2 contain pipelines
from different software packages, but community 3 is composed of both SPM and FSL
pipelines. In this case, the use of different numbers of motion regressors seems to have a
larger impact on community identification (pipelines with 6 or 24 motion regressors are
located in communities 1 and 2 vs. 0 or 6 motion regressors in community 3).

This demonstrates that the relationships between pipeline results can vary across dif-
ferent contexts, here cognitive paradigm. In Appendix F, we also show the adjacency
matrices obtained for the contrasts left-hand (Figure F.1) and left-foot (Figure F.2), i.e.
same cognitive paradigm as those presented in Figure 7.2 and 7.3 but located in the con-
trolateral brain hemisphere. Communities identified for these left paradigms are similar
to those observed for the counterpart right contrasts. This shows that pipeline behaviors,
and thus relationships between different pipelines, are related to the effect under study
(here, activation of the brain when performing a motor action with the hand or the foot).

We can also observe that the detected communities are slightly less stable across
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Figure 7.4 – Adjacency matrix representing the number of times each pair of pipelines
belong to the same community across different group-level statistic maps of the contrast
right-foot.

groups of participants for contrast right-foot, in particular for community 3 some pairs of
pipelines show a number of co-occurence in the same community of less than 500 out of
1,000.

To explore this findings, we looked at the matrix of pipeline-to-pipeline correlations
(averaged across groups) (see Figure 7.5). Pipelines of community 3 for which the number
of co-occurrence in the communities with other pipelines is low are highlighted in blue.
We can see that correlations between these pipelines are lower than other correlations
inside the community, for instance: pipelines ‘fsl,5,6,1’ and ‘spm,8,0,1’ are both located
in community 3 for only 55 groups out of 1,000 and the mean correlation between their
statistic maps is of 0.75. In comparison, pipelines ‘spm,8,0,0’ and ‘spm,8,0,1’ are co-
located in community 3 for 972 groups and the correlation between their maps is of 0.93.
These observations might explains the low stability observed in this community.

This matrix also shows that results of pipelines inside a community can be close to
those of a community but distant from those of another. Here, statistic maps of pipelines
in community 1 seem closer to the ones of community 2 than to those of community 3.
However, this does not impact the stability of relationships since between-communities
correlations (around 0.8) are still lower than intra-communities correlations (0.9).
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Figure 7.5 – Mean correlations (across groups) between statistic maps for each pair of
pipelines with the contrast right-foot. Correlations between statistic maps of pipelines
located in community 1 and community 2 are shown in a yellow box. Correlations
between statistic maps of pairs pipelines located in community 3 that have a low number
of co-occurence in the same community are shown in a blue box.

Figure 7.6 – Mean statistic map for the contrast right-foot across groups (of participants)
for a representative pipeline in each community. Unthresholded maps (upper) and thresh-
olded maps (lower) with voxelwise FDR-corrected p < 0.05.

Mean unthresholded (upper) and thresholded (lower) statistic maps of a representative
pipeline of each community identified for the contrast right-foot are displayed in Figure 7.6.
Observations are similar as those made for maps of the contrast right-hand (Figure 7.3),
but the differences between statistic maps of communities in terms of size of activation
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is larger than for the right-hand contrast. The size of activation areas seems to be an
important criteria to group pipelines in communities and seems to be related to different
pipeline parameters depending on the context, here on the cognitive paradigm.

7.4 Discussion

In this work, we used community detection algorithms to explore the relationships
between statistic maps obtained with different pipelines in task-fMRI. Our goal was to
gain a better understanding of the relationships between the results of different pipelines
and of the stability of these relationships in different contexts (i.e. across groups of par-
ticipants and cognitive paradigms). We were able to identify communities of pipelines
that were giving close results across different groups of participants, but not across cog-
nitive paradigm. Pipelines inside each community shared specific parameters values: for
instance, same software package and use of HRF derivative for the communities identified
in contrast right-hand and same use of motion regressors for contrast right-foot. Identifi-
cation of these parameters that drives the relationships between pipeline results, is crucial
to select the pipelines to explore in multiverse analyses.

Pipelines statistic maps in communities shared similar activation patterns. In partic-
ular, we found that the main distinguishing factor between communities seemed to be
related to the size of the activation area, in particular for communities 1-3 and 2-4 for the
contrast right-hand. In this context, regarding the composition of communities, we could
suppose that the use of HRF derivatives in the pipelines led to a more restricted activation
area in the resultant statistic maps. However, statistic maps of representative pipelines
of communities with different software packages (communities 1-3 and 2-4) showed very
similar activation patterns but differed in terms of the scale of statistic values. This can be
explained by differences in terms of method implementation between software packages,
e.g. pre-whitening methods which have been shown to impact the number of significant
voxels (Olszowy et al., 2019). FSL analyses tend to lead to higher statistical values, which
might explain the lower correlations between the maps of pipelines coming from different
software packages. Thus, we could conclude that these pipelines parameters had an im-
pact on the size of the activation area and on the scale of statistical values, which were
sufficiently different in pipelines results to group them into different communities.

One of the main findings of this work is that the relationships between pipelines is not
stable and depend on the contrast and on the group of participants studied. In particular,
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for specific pairs of pipelines, the relationship between their results can vary across groups
of participants with a number of co-occurence in the same community less than 500/1,000.
This means that two pipelines can give very close results for a group of participants and
more distant ones for another group. Relationships between pipeline results are even more
variable when comparing different cognitive paradigm, as two pipelines can be identified
in different communities (i.e. giving distant results) for a paradigm and located in the
same one (i.e. giving close results) for another paradigm. Here, the communities of
pipelines identified for the contrast right-hand were different from those identified for
right-foot, but these were similar to those identified for the contrast left-hand. As we may
suppose that controlateral paradigms are similar, this suggests that pipeline behaviors,
and thus relationships between pipelines results, might depend on specific characteristics
of the paradigm, for instance of the size of the activated area, as previous findings in the
literature showed a larger number of activated voxels detected by functional MRI during
the execution of finger movements than toe or tongue movements (Ehrsson et al., 2003).

This relative instability of the relationships between pipeline results puts into question
the ability to learn a mapping between pipelines. Indeed, to facilitate data re-use with
maps coming from different pipelines, a possible solution would be to learn a mapping
between pairs of pipelines to convert statistic maps. This can be done through style
transfer, as we did in Chapter 5. However, this requires a stable relationship between the
data from the two pipelines to train the style transfer model and for inference, for instance
if we want to apply a model trained on data from a cognitive paradigm on another one.
Our findings suggest that such models might be hard to generalize to different datasets, in
particular if the data explore other cognitive paradigms than the ones seen during training.
This is also in line with our findings on the poor generalizability of StarGAN (Choi et al.,
2018) observed in Chapter 5 and Appendix E.

The main limitation of our work is the use of a constrained set of pipelines. The
HCP multi-pipeline dataset contains statistic maps output from 24 different pipelines
that varies across 4 parameters (software packages, smoothing kernel FWHM, number of
motion regressors, and use of HRF derivatives). These pipelines were chosen to represent
typical pipelines found in the literature (Carp, 2012a). We also selected these pipelines to
represent parameters that have been shown to impact the results when using a different
value (Cignetti et al., 2016; Carp, 2012a). As we wanted to explore the stability of
the pipeline space across different contexts, the 1,000 groups and the 5 contrasts of the
motor task present in this dataset were a major advantage. In future work, it would be
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interesting to explore other datasets, such as the statistic maps resulting from the NARPS
many-analyst study (Botvinik-Nezer et al., 2020) (one group-level statistic maps for 70
pipelines and 9 research hypotheses), which would allow to explore a less constrained set
of pipelines and a different cognitive paradigm for which the effect size is lower (mixed
gamble task).

C Take-home Message

• We used community-detection algorithm to explore relationships between
pipelines and the stability of these relationships in different contexts (e.g.
groups of participants, cognitive paradigms).

• We showed that relationships are relatively stable across groups of partici-
pants, but not across different paradigms.

• The different communities of pipelines identified vary in terms of extent of ac-
tivation area, showing that some pipelines parameters influence the sensitivity
to the signal.

• This work is also in line with our findings in Chapter 5 where we found poor
generalizability of style transfer frameworks to unseen tasks.
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Chapter 8

VALIDITY OF FMRI MEGA-ANALYSES

WITH DATA PROCESSED WITH DIFFERENT

PIPELINES

This chapter was the subject of a paper under review at Imaging Neuroscience.

• Title: On the validity of fMRI mega-analyses using data processed with different
pipelines.

• Authors: Elodie Germani*, Xavier Rolland*, Pierre Maurel, Camille Maumet

• HAL: inserm-04466478.

• Code: swh:1:snp:585d3a0a3388a928ab3c6211c1826702aa618190.

• Contributions (Credit taxonomy): Formal analysis (reproduction of the analy-
ses performed by X. Rolland), Investigation, Methodology (Between-software anal-
ysis), Software, Visualisation, Manuscript writing.

* Co-first authors.

8.1 Introduction

As discussed in Chapter 2.2.3, small sample sizes undermine the reliability of neu-
roimaging research findings. With the increased adoption of open science practices (Po-
line et al., 2012; Poldrack et al., 2014; Niso et al., 2022) and the development of dedicated
research infrastructures (Gorgolewski et al., 2015; Markiewicz et al., 2021; Barillot et al.,
2016), such as NeuroVault (Gorgolewski et al., 2015), OpenNeuro (Markiewicz et al.,

159

https://inserm.hal.science/inserm-04466478
https://archive.softwareheritage.org/swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8


Part III, Chapter 8 – Mega-analyses using data processed with different pipelines

2021), more and more neuroimaging data from various studies have been made available
to the scientific community. In this context, re-using data from previous studies seems a
promising solution to increase sample sizes using meta- (Salimi-Khorshidi et al., 2009) or
mega-analyses.

In fMRI, shared data often include raw data at the subject-level, that can be re-
analyzed using the same processing steps and combined in a mega-analysis, but also
derived data (i.e. already processed) at the subject or group-level. At the group-level,
derived data can be used in meta-analyses to build consensus results across multiple stud-
ies (Salimi-Khorshidi et al., 2009). At the subject-level, individual contrast maps (after
the subject-level processing) from different studies can be combined using mega-analyses.
But, there are several limitations to these method due to publication bias (Ioannidis et al.,
2014).

The re-use of subject-level data is more optimal compared to raw data, not only
because sharing of statistic maps is easier due to reduced privacy constraints, but also
because it avoids having to perform costly re-computations. As explained in Chapter 1,
fMRI studies require multiple processing steps on the data, called a “pipeline”, both at the
subject-level (preprocessing of the raw fMRI data to prepare them for statistical analysis,
and first-level analysis for each participant) and at the group-level (second-level statistical
analysis using the subject-level contrast maps resulting from first-level analysis).

However, we showed in Chapter 2 that researchers have multiple choices to make to
build their pipeline due to their high flexibility. Thus, it is likely that derived data shared
on public databases come from different pipelines. In Rolland et al., 2022, the validity
of mega-analyses combining data processed differently at the subject-level was explored
within the SPM software package, and results showed that these studies were invalid for
almost all combinations.

Here, in a follow-up work, we further explore the validity of these mega-analyses that
combine data processed differently at the subject-level. We extend the work from Rolland
et al., 2022 by adding subject-level data processed using FSL, and explore the validity of
mega-analyses combining data processed within SPM, within FSL and between software
packages. Similarly to Rolland et al., 2022, we carry out a series of between-groups
analyses, with each group corresponding to subject-level contrast maps processed with
different pipelines and randomly sampled from the Human Connectome Project (HCP)
Young Adult dataset (Van Essen et al., 2013). Since participants in each groups are
sampled from the same population, all differences detected are therefore false positives
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offering an empirical estimation of the false positive rate.

8.2 Materials and Methods

Subject-level 
data

pipeline 1

… Subject-level 
data

pipeline N

PROCESSED SUBJECT DATA
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Figure 8.1 – Overview of the method: 1) sampling of n=50 subject-level contrast maps
for each group (i.e. one group = one pipeline) from the HCP multi-pipeline dataset
(Chapitre 6), 2) between-group analysis “Group 1 ̸= Group 2”, 3) running 1,000 iterations
of 1) and 2), and 4) estimation of the false positive rate.

The goal of this study is to test the validity of between-group analyses using subject-
level contrast maps processed with different pipelines. In the following sections, the term
“pipeline” is used to refer to the subject-level pipelines only.

The steps performed in order to estimate this validity are presented in Figure 8.1.
First, we randomly sampled subject-level contrast maps processed through different pipelines
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from the HCP multi-pipeline dataset (see section 8.2.1 and Chapter 6). Then, for each
pair of pipelines, we performed a between-group analysis (see section 8.2.2). This group
comparison was repeated 1,000 times in order to estimate the empirical false positive rate
(see section 8.2.3).

8.2.1 Dataset

In this work, we used subject-level contrast maps from the HCP multi-pipeline dataset,
that we presented in greater details in Chapter 6. We used contrast maps for the paradigm
right-hand for the 24 pipelines implemented for this dataset.

In brief, the pipelines implemented in the dataset varied on the following set of pa-
rameters:

— Software package: SPM (Statistical Parametric Mapping, RRID: SCR_007037) (Penny
et al., 2011) or FSL (FMRIB Software Library, RRID: SCR_002823) (Jenkinson et
al., 2012).

— Smoothing kernel: FWHM of 5 mm or 8 mm.

— Number of motion regressors included in the GLM for the first-level analysis: 0, 6
(3 rotations, 3 translations) or 24 (3 rotations, 3 translations + 6 derivatives and
the 12 corresponding squares).

— Presence (1) or absence (0) of the derivatives of the HRF in the first-level GLM.
The temporal derivative was added in FSL and both the temporal and dispersion
derivatives in SPM.

In total, this led to 24 different subject-level pipelines (2 software packages × 2 smooth-
ing kernels × 3 numbers of motion regressors × 2 HRF).

8.2.2 Between-group analyses

In this work, we explored the validity of between-group studies with subject-level con-
trast maps from different pipelines in three settings: within-pipeline (baseline), within-
software (i.e. pipeline implemented in the same software package with different parame-
ters) and between-software (i.e. pipeline implemented in different software packages with
similar parameters).
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8.2.2.1 Contrast post-processing

As FSL and SPM use different MNI templates (Evans et al., 2012), subject-level
contrast maps from different software packages had different dimensions. To compute
between-software comparisons, we therefore had to post-process the contrast maps to
put them in the same target space and on the same grid. We used Nilearn (Abraham
et al., 2014a) (RRID: SCR_001362) to resample all subject-level contrast maps to the
MNI152Asym2009 brain template with a 2 mm resolution using continuous interpolation.
We masked the contrast maps using the intersection of all subject-level brain masks (all
pipelines).

FSL and SPM contrast maps are also scaled differently (see Nichols, 2012). In both
software packages, contrast maps are theoretically expressed in percent BOLD change
but there are important differences in how this percent BOLD change is computed that
effectively lead to scaling differences. Hence, in SPM, contrast maps units are closer
to 2.5 times percent BOLD change due to the mask used to compute the global in-brain
mean intensity. On the other hand, FSL contrast maps are scaled to 10,000 (i.e. 100 times
percent BOLD change). We applied a factor to each contrast map to make them closer
to percent BOLD change. Contrast maps in SPM and FSL were therefore rescaled by
multiplying by 100/250 = 0.4 and 100/10, 000 = 0.01 respectively.

All between-group analyses were performed on resampled, masked and re-scaled subject-
level contrast maps. As a sanity check, we also ran the between-group same-pipeline anal-
yses on the original (i.e. not resampled, masked nor unit-re-scaled) subject-level contrast
maps. As expected, no differences were identified in the estimated false positive rate (see
Supplementary Table G.1).

8.2.2.2 Analysis setup

For each between-group analysis, we randomly sampled 100 participants without re-
placement among the full set of 1,080 participants and splitted them into two groups
(N = 50 in each group). In each group, subject-level contrast maps were obtained with a
different pipeline. This process was repeated for different groups and pairs of pipelines.
We performed a one-tailed two-sample t-test with unequal variance and computed the
statistic maps associated to H0: “no mean difference of activation between groups”. We
used a voxelwise p < 0.05 FWE-corrected threshold. All between-group analyses were
performed in SPM in order to keep consistent second-level analysis conditions.
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8.2.3 False Positive Rates Estimation

For a given pair of pipelines, the between-group analysis was repeated 1,000 times
with different sets of participants. Since participants in each group were sampled from
the same population, H0 is true by construction. All differences detected were therefore
false positives and the empirical false positive rate was estimated as the proportion of
between-group analyses, across the repetitions, with at least one significant detection (see
Figure 8.1).

Since the null hypothesis is true, we expect the p values associated with the between-
group statistic maps to be uniformly distributed, and in particular, the empirical false
positive rate is expected to be equal to the α-level (here 0.05). A higher rate highlights
invalidity (i.e. an inflated rate of false positive) and a lower rate conservativeness (i.e.
reduced sensitivity).

8.2.4 Statistical distributions and P-P plots

P-P plots are usually used to observe how a given set of statistical values diverge from
an expected distribution by plotting, for each kth ordered statistical value, the expected
associated p value on the x-axis and the obtained p value on the y-axis. Here, under the
null hypothesis, p values were expected to follow a uniform distribution U(0, 1). Thus, for
a set of N statistical values, the kth ordered p value was expected to be equal to k/(N +1).

We used a Bland-Altman (Giavarina, 2015) variant of P-P plots by replacing the
p values by the following:

— on the x-axis: the expected p value in −log10

— on the y-axis: the difference between the −log10 obtained and the −log10 expected
p values.

This update made it easier to observe the behaviour in the tails of the p value distri-
bution (which is of interest here). High statistical values (right tail of our sample) are
associated to low p values, i.e. to high −log10 p values. We also looked at the distribu-
tions of the statistical values for multiple between-group analyses, and compared with a
Student distribution T98.
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8.3 Results

8.3.1 Analyses using the same pipeline (baseline)

Table 8.1 shows the false positive rates obtained for all analyses with the same pipeline
in both groups, separately for SPM and FSL. For all combinations, the false positive rates
were below the expected value of 0.05, ranging between 0.012 and 0.028 for SPM and
between 0.013 and 0.024 for FSL.

SPM
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.012 0.013 0.016 0.023
6 motion regressors 0.015 0.006 0.024 0.013
24 motion regressors 0.023 0.016 0.025 0.028

FSL
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.014 0.013 0.015 0.023
6 motion regressors 0.018 0.014 0.018 0.018
24 motion regressors 0.015 0.013 0.016 0.024

Table 8.1 – False positive rates for between-groups analyses with the same pipeline in
both groups, with SPM and FSL and for all possible sets of parameters (number of
motion regressors, smoothing kernel FWHM and presence or absence of HRF temporal
derivatives). The false positive rates were always under 0.05.

These results, obtained with the same pipeline in both groups, are used as a baseline in
the following. False positive rates obtained with original contrast maps (non resampled,
masked and corrected) were similar (see Appendix G - Supplementary Table G.1).

8.3.2 Analyses using pipelines with different parameters

The following subsections present the results obtained with pipelines using different
set of parameters (within software). In each case, we looked at the false positive rates
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(Figure 8.2), the statistical distributions (Figures 8.7 and 8.8) and the associated P-P
plots (Figure 8.3, 8.4, 8.5 and 8.6). To present the results, we chose a default value for
each studied parameter – smoothing 5 mm FWHM, HRF with derivatives and 24 motion
regressors – and compared our results to those obtained with the default.

SPM
A. B.

FSL
C. D.

Figure 8.2 – False positive rates for pipelines with different parameters within SPM (A,
B) and FSL (C, D). For each studied parameter (HRF derivatives, smoothing and motion
regressors), we provide the false positive rates obtained for: 1/ both tails, i.e. pipeline 1 >
pipeline 2 and reverse (crosses) and 2/ for the corresponding analysis in which pipeline
1 and 2 are identical, i.e. the baseline (circles). Panels B and D, provides the false
positive rates when two parameters vary. The grey dashed line corresponds to the expected
theoretical value (0.05).
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Figure 8.3 – Bland-Altman P-P plots for pipelines with different (right column) parameters
and with the same (left column) parameters within SPM. The grey shade corresponds to
the 0.95 confidence interval. A curve above (respectively below) the confidence interval
indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing,
24 motion regressors and no HRF derivatives.
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Figure 8.4 – Bland-Altman P-P plots for pipelines with two different (right column)
parameters and with the same (left column) parameters within SPM. The grey shade
corresponds to the 0.95 confidence interval. A curve above (respectively below) the con-
fidence interval indicates invalidity (respectively conservativeness). Default parameters:
5 mm smoothing, 24 motion regressors and no HRF derivatives.
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Figure 8.5 – Bland-Altman P-P plots for pipelines with different (right column) parameters
and with the same (left column) parameters within FSL. The grey shade corresponds to
the 0.95 confidence interval. A curve above (respectively below) the confidence interval
indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing,
24 motion regressors and no HRF derivatives.
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Figure 8.6 – Bland-Altman P-P plots for pipelines with two different (right column) pa-
rameters and with the same (left column) parameters within FSL. The grey shade corre-
sponds to the 0.95 confidence interval. A curve above (respectively below) the confidence
interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm
smoothing, 24 motion regressors and no HRF derivatives.
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Figure 8.7 – Distribution of statistical values for multiple between-group analyses under
SPM, compared to the expected distribution. Default parameters: 5 mm smoothing,
24 motion regressors and no HRF derivatives. Pipelines which differ from the default
pipeline are put in bold. The orange curve represents the Student distribution with 98
degrees of freedom, which is the expected distribution in our case under null hypothesis.
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Figure 8.8 – Distribution of statistical values for multiple between-group analyses under
FSL, compared to the expected distribution. Default parameters: 5 mm smoothing,
24 motion regressors and no HRF derivatives. Pipelines which differ from the default
pipeline are put in bold. The orange curve represents the Student distribution with 98
degrees of freedom, which is the expected distribution in our case under null hypothesis.
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8.3.2.1 Different HRF

Adding derivatives to model the HRF was the most impacting of all three varying
factors in both software packages. The false positive rates obtained with different HRF
(canonical HRF versus HRF with derivatives) in the pipelines are presented in Figure 8.2
A and C (red curves) for the six analyses performed (i.e. with varying levels of smoothing
and number of motion regressors – with the same setting in both pipelines).

In SPM, the comparison canonical HRF > HRF with derivatives (Figure 8.2 A, red
curve on the left) showed invalid false positive rates (above the 0.05 threshold) for all
pipeline combinations. Similarly, in FSL, all combinations gave invalid results for this
same comparison except two combinations: 5 mm or 8 mm smoothing FWHM and 24 mo-
tion regressors. These two analyses led to values close to the 0.05 threshold (0.032 and
0.061 respectively). For the opposite comparison (i.e. canonical HRF < HRF with deriva-
tives) all combinations resulted in valid results with false positive rates under 0.05.

Figures 8.3 and Figure 8.5 show the corresponding Bland-Altman P-P plots for com-
parisons with different HRF and otherwise default parameters. In both software packages,
consistently with what we observed for the false positive rates, the comparison canonical
HRF > HRF with derivatives led to values that were outside of the 95% confidence inter-
val (grey area). In SPM, values were further away from the 95% confidence interval than
in FSL.

The same observations could be made on the statistical distributions for both SPM and
FSL (Figures 8.7 and 8.8): both showed a shift in mean and variance, but this was smaller
for FSL. The combination of pipelines parameters used in this Figure (i.e. pipelines with
5 mm FWHM and 24 motion regressors, with different HRF derivatives) showed nearly
valid false positive rates, as stated in the previous paragraph (see Figure 8.2), which could
explain why the shift seemed smaller in FSL compared to SPM. We also observed the P-P
plots for a different combination of FSL pipelines with other parameters (5 mm, 0 motion
regressors) in Supplementary Figure G.1 and found a similar shift as the one observed for
SPM.

8.3.2.2 Different smoothing

The false positive rates obtained with different levels of smoothing (5 mm or 8 mm)
in the pipelines are presented in Figure 8.2 A and C (blue curves) for the six analyses
performed (i.e. with varying HRF models and number of motion regressors – with the
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same setting in both pipelines).
The false positive rates obtained with different levels of smoothing (5 mm versus

8 mm) in the pipelines were above the 0.05 theoretical false positive rate in FSL (ranging
from 0.07 to 0.16) and below or close to the theoretical rate in SPM (ranging from 0.03
to 0.05). Compared to the baseline analyses using the same pipelines, the false positive
rates were always inflated and were slightly higher for the tail 5 mm > 8 mm.

The Bland-Altman P-P plots (Figure 8.3 and 8.5) are consistent with the observations
made on the false positive rates. Between-group analyses using pipelines with different
smoothing gave invalid results in FSL and values within the 95% confidence interval in
SPM, with only a small positive difference in the direction 5 mm > 8 mm.

The behaviors observed on the P-P plots can be explained by the positive shift in
mean values and standard deviations observed on the statistical distribution for 5 mm >

8 mm for FSL (Figure 8.8), which is less pronounced for SPM (Figure 8.7).

8.3.2.3 Different number of motion regressors

The false positive rates obtained with different number of motion regressors (0, 6 and
24) in the pipelines are presented in Figure 8.2 A and C (yellow and green curves) for the
six analyses performed (i.e. with varying levels of smoothing and different HRF – with the
same setting in both pipelines). We studied the combinations 24 motion regressors versus
6 motion regressors (yellow curves) and 24 motion regressors versus 0 motion regressors
(green curves).

In SPM, false positive rates were below the 0.05 theoretical rate for all comparisons
of 24 motion regressors versus 6 motion regressors. For the comparison with no motion
regressors, the false positive rates were higher and above 0.05 for 24 motion regressors >

0 motion regressors and slightly below for the opposite. In FSL, the validity of the results
was dependant on the other pipeline parameters. All combinations led to invalid results
(i.e. above the theoretical 0.05 threshold) except for 24 motion regressors > 0/6 motion
regressors when using the canonical HRF (i.e. no HRF derivatives) in both pipelines.

In Section 8.3.2.1, we showed that all combinations of pipelines with varying HRF
models led to invalid results except those with 5 mm or 8 mm smoothing and 24 motion
regressors. Here, we also observe invalid results for all combinations of pipelines with
24 motion regressors versus 0/6 motion regressors, except those with 5 mm or 8 mm
smoothing and no HRF derivatives. We can suppose that in FSL, when using 24 motion
regressors, the use of HRF derivatives in the GLM has a low impact on the results and

174



8.3. Results

similarly, when using the canonical HRF, using 0, 6 or 24 motion regressors does not
change the results much, and thus has a low impact on the validity of the mega-analyses
combining subject-level data obtained from pipelines with different parameters.

In the Bland-Altman P-P plot for SPM (Figure 8.3), we observed more extreme values
in the P-P plots for the comparisons “24 motions regressors versus 0 motion regressors”
than for those of “24 motions regressors versus 6 motion regressors”, which is consistent
with our observations on false positive rates. The Bland-Altman P-P plot (Figure 8.5)
for FSL with 5 mm smoothing and an HRF with derivatives, the comparison 24 motion
regressors versus 0 motion regressors were consistent with the invalid false positive rates
found with such parameters: we found conservative results for the comparison 24 motion
regressors > 0 motion regressors (plain line) and invalid results in the opposite direction
(dashed line).

Statistical distributions (Figures 8.7 and 8.8) also show a shift in mean and variance
for the comparison “24 motion regressors versus 0 motion regressors”, for both SPM
and FSL. This shift is not as important for the comparison “24 motion regressors versus
6 motion regressors”. The comparison “6 motion regressors versus 0 motion regressors”
was also showed for comparison, and showed similar results as the “24 motion regressors
versus 0 motion regressors” comparison.

8.3.2.4 Combined effects of parameters

We observed the combined effects of:

— differences in smoothing and in HRF model

— differences in smoothing and in motion regressors

The false positive rates obtained with different smoothing and different HRF model
or different motion regressors in the pipelines are presented in Figure 8.2 (B and D) for
the different analyses performed.

In both SPM and FSL, the first set of between-group analyses (5 mm smoothing,
canonical HRF) > (8 mm smoothing, HRF with derivatives) led to invalid results, with
false positive rates largely above the 0.05 theoretical threshold (around 0.60). The oppo-
site test provided valid results.

In SPM, the results for (5 mm smoothing, canonical HRF) > (8 mm smoothing, HRF
with derivatives) were close to those obtained for the analyses with a single varying pa-
rameter canonical HRF > HRF with derivatives (from 0.46 to 0.63 in the combined effect
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analysis and from 0.32 to 0.52 in the exploration of HRF derivatives effect only, see Fig-
ure 8.2). In the isolated analyses, the effect of changing the smoothing kernel FWHM
was not very important in SPM (“5mm vs 8mm smoothing kernel FWHM”), which might
explain why the false positive rates did not increase much in the combined effect analyses.

Under FSL, the previous analyses on the effect of each of these parameters separately
(changing smoothing kernel FWHM and changing HRF model separately) both gave
inflated false positive rates, and their combined effect largely increased the false positive
rates (up to 0.77) compared to the effect of changing the use HRF derivatives alone (up
to 0.49).

Similar observations can be made on the P-P plots on Figure 8.4 and 8.6.
In both SPM and FSL, the second set of analyses (5 mm smoothing, 24 motion regres-

sors) versus (8 mm smoothing, 0 motion regressors), we found invalid results for nearly
all combinations. In SPM, false positive rates were only slightly above the theoretical
threshold of 0.05 (0.081 and 0.11), which is consistent with our previous observation: ini-
tially, changing smoothing kernel FWHM and number of motion regressors separately led
to false positive rates close to 0.05, consistently, their combination led to rates that were
only slightly invalid.

For both SPM and FSL, we observed shifts in the distributions of statistical values
(Figures 8.7 and 8.8). These shifts were similar to those obtained for changes in motion
regressors only.

8.3.3 Analyses using pipelines with different software packages

We also explored the ability to use in a same between-group analysis subject-level
data obtained with different software packages (here FSL and SPM). We performed the
analyses for all possible combinations SPM versus FSL: 2 smoothing kernels × 3 numbers
of motion regressors × 2 HRF models, corresponding to 12 between-software comparisons
– with the same setting for both SPM and FSL pipelines. The false positive rates are
displayed in Figure 8.9. For all between-software analyses, the false positive rates were
above 0.05. We obtained lower values for SPM > FSL (between 0.10 to 0.32), than for the
opposite test (between 0.56 to 0.95). In all cases, false positive rates were largely increased
compared to the reference analyses (i.e. using the same software in both groups). This
observation was consistent with the P-P plot, which showed a large deviation from the
95% confidence interval for the direction SPM < FSL (Figure 8.10). Figure 8.11 shows
the distribution of statistical values for the between-software comparison with all other
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Figure 8.9 – False positive rates for pipelines with different software packages. For each
pipeline combination, we provide the false positive rates obtained for: 1/ both tails, i.e.
pipeline 1 > pipeline 2 and reverse (crosses) and 2/ for the corresponding analysis in
which pipeline 1 and 2 are identical, i.e. the baseline (circles). The grey dashed line
corresponds to the expected theoretical value (0.05).

parameters set with default values (i.e. 5mm smoothing kernel, 24 motion regressors and
no HRF derivatives). We can see a shift in terms of mean and standard deviation of
values. This shift was larger than those observed, for instance, for the effect of HRF
derivatives, which was the most impacting factor on within-software comparisons.

8.4 Discussions

In this work, we showed that between-group analyses that use data generated by
different pipelines can lead to invalidity (i.e. inflated false positive rates). In almost all
cases, combining data processed with different pipelines led to false positive rates above
the theoretical 0.05 threshold. These invalid results, obtained when combining subject-
level contrast maps processed differently, suggest that it is necessary to consider how
analytical variability may affect the results when combining data.

When performing analyses using the same pipeline on all participant data (as tradi-
tionally done in the literature), results were valid for all analyses. Although the false
positive rates obtained in this situation were lower than the expected 5% rate, the results
were similar to those obtained for a similar framework in Eklund et al., 2016.

Our results for different pipeline analyses suggest that some factors have a larger im-
pact than others. We saw that for differences regarding the size of the smoothing kernel
and number of motion regressors (6 versus 24 motion regressors) within SPM software
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Figure 8.10 – Bland-Altman P-P plots for pipelines with different software packages.
The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively
below) the confidence interval indicates invalidity (respectively conservativeness). Default
parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.

Figure 8.11 – Distribution of statistical values for between-software analyses, compared
to the expected distribution.

package, results were similar to those obtained with identical pipeline analyses, suggest-
ing that participant data can be combined without having to consider the differences in
pipelines, if this is the only difference. This is not the case for differences in the use of
HRF derivatives and use of motion regressors (0 motion regressors versus 6 or 24 motion
regressors), which gave invalid results.

We also saw that combining multiple differences in parameters could result in bigger
effects, depending on the effect of each parameter alone. The combination of two param-
eters that both have a high effect on compatibility led in our case to inflated false positive
rates, while the combination of parameters that had a limited effect on validity did not
lead to higher false positive rates (e.g. smoothing and motion regressors in SPM). This
suggests that it may be possible to model the effect caused by specific variations in the
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subject-level pipelines. To enable this in the future, it is essential that the pipelines used
is shared with enough details to allow a reproduction of the exact processing applied on
the data.

However, the ability to model the effect of parameters is limited to specific variations.
For example, for each variation of parameter, we saw different effects across the two
software packages under study (SPM and FSL). Overall, observations were similar, but
false positive rates were often increased in FSL compared to SPM for the same comparison.
This suggests that some parameters values are more robust to changes when combined
together, here, in FSL, when using 24 motion regressors, combining data with different
use of HRF derivatives led to false positive rates closed to the baseline analysis (i.e. same
pipeline in both groups).

The most important source of invalidity was found when studying the effect of dif-
ferences in software packages. SPM and FSL both implement similar pipeline steps with
different settings. While we tried to align parameters between the two software packages
by changing the software package default values (e.g. smoothing kernel, type of HRF,
etc.), some steps are specific to each software and cannot be changed by the user, causing
potential differences between the results. We tried to correct some of these differences,
in particular for the unit scale of subject-level contrast maps. But, even with these cor-
rections, we still found highly inflated false positive rates when comparing pipelines with
the same values for the parameters under study and different software packages. We sup-
pose that differences in how software packages scale the data were not compensated by
our simple rescaling approach and that more work will be needed to be able to combine
subject-level data from two different software packages in the same analysis.

In this work, we focused on between-group analyses in which each group of participants
was processed with a different pipeline. In practice, other combinations may be observed,
for example with multiple pipelines used within a group. The setup that we used here – in
which processing pipelines varied depending on the group – was justified by the use-case
in which data from various public datasets are used in the same analysis. For example,
specific datasets have been created to study various neurological disorders, usually asso-
ciated with a minimal processing pipeline dedicated to the study, and the corresponding
minimally processed data (Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack Jr
et al., 2008) for Alzheimer’s disease, Autism Brain Imaging Data Exchange (ABIDE) (Di
Martino et al., 2014) for autism, etc). Researchers may want to use these minimally
processed data and compare groups of participants where each group corresponds to a
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specific disease.
We chose to study variations induced by 4 types of parameters (software package, HRF,

smoothing and number of motion regressors), within each software package based on their
widespread use in the neuroimaging community (Carp, 2012a). Yet, in practice, there are
many more variations: researchers might use different software versions, perform or not
specific sub-steps in the analysis (for example, the use or not of slice-timing correction),
use different HRF models etc. Therefore, in real conditions, the differences observed
between pipelines will likely be more important. In future works, other analyses may be
done for other varying parameters using the same framework.

Here, we showed that the effects of analytical variability often prevent doing a direct
analysis without considering the differences in processing pipelines. For other sources of
variability, methods have been proposed to remove unwanted variance: for example, cor-
recting the variability resulting from imaging site and scanner effect (technical variability)
in neuroimaging (Beer et al., 2020; Fortin et al., 2016). Recently, deep learning frame-
works, and in particular generative models used for style transfer (Gatys et al., 2016),
showed their potential for such task in converting data between different domains (e.g.
acquisition site) (Liu et al., 2021). Considering the achievements of these models, there
is reason to anticipate their success in transitioning between other domains, such different
analysis pipelines. We explored the ability to convert data between pipelines using style
transfer frameworks in Chapter 5.

C Take-home Message

• We explored the validity of mega-analyses using subject-level data processed
with different pipelines by performing between-group analyses under the null
hypothesis.

• We extend the work from Rolland et al., 2022 by integrating within-software
combinations with FSL and between-software combinations.

• We showed that the combination of data processed with different software
packages lead to the higher level of inflation of the false positive rates.

• Our results suggest that it is impossible to combine processed fMRI data
without taking into account differences in subject-level processing.
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CONCLUSION

Summary

Building fMRI studies is challenging, in particular with the high flexibility of analyses
methods and the limited generalizability of findings, to different populations and/or to
different pipelines. The aim of our work was to embrace two main challenges related to
analytical variability in fMRI results: (i) facilitating the re-use of derived data shared on
public databases, and (ii) exploring and understanding relationships between pipelines to
guide researchers.

In our first set of contributions, we derived practical solutions to facilitate data re-use
for researchers and thus, increase sample sizes to help solve the issue of low statistical
power identified as one of the main obstacle to the robustness of brain imaging studies.
To do so, we learned meaningful lower-dimensional representations of fMRI statistic maps
with deep representation learning, and applied two techniques to transfer and manipulate
these representations.

First, in Chapter 4, we used self-taught learning to improve the performance of deep
learning models on fMRI statistic maps for supervised tasks such as brain decoding. We
showed that pretraining with an unsupervised task on a large and diverse database (Neu-
roVault (Gorgolewski et al., 2015)) was beneficial, in particular for small sample sizes and
complex classification tasks. This benefit was associated with a better generalizability
of pretrained models, as these learned more general features and less individual charac-
teristics. By sharing our pretrained unsupervised model to the community, we give the
opportunity for researchers to re-use it for other tasks and thus, improve the robustness
of future studies on classification tasks with fMRI.

We also proposed to apply specific representation learning frameworks to facilitate the
re-use of derived data shared on public databases for statistical studies. In Chapter 5, we
made the assumption that the pipeline used to compute statistic maps could be seen as a
style component of images. We adapted several state-of-the-art I2I frameworks, as well as
a newly developed framework based on DDPM. Our results are promising, in particular
with GAN frameworks and complex transfer (i.e. from pipelines with distant results),
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and give hope for the future of data re-use.
In the second set of contributions, we focused on the exploration of the fMRI analyt-

ical space. Our goal was to better understand the contexts in which the solutions that
we proposed in the first part could be or must be used. We developed and shared a
multi-pipeline dataset that can be re-used by other researchers (potentially outside neu-
roimaging) to explore analytical variability in fMRI results. We described this dataset in
Chapter 6. Using this dataset, we derived two studies in which we aimed to gain a better
understanding of the relationships between pipelines results. By exploring the stability
of these relationships (Chapter 7), our goal was to better understand the lack of gener-
alizability of the style transfer frameworks that we developed in Chapter 5. While these
relationships seemed stable across different groups of participants, the communities of
similar pipelines identified were different between paradigms. This confirmed our obser-
vations, but also provided some knowledge for future works on building more generalizable
style transfer frameworks that could be applied to statistic maps from any paradigm.

Our study on the validity of mega-analyses with data processed from different pipelines
in Chapter 8 allowed us to identify the critical cases were combining such data would lead
to high false positive rates, and thus invalid studies. The most critical case was identified
as the studies combining data from different software packages. We tested the ability
of our style transfer frameworks on this context and found satisfying results in terms
of similarity to the ground-truth statistic maps of the target pipeline. While we found
substantially lower performance for other transfers, the identification of these critical
cases, combined with the performance of the frameworks, give hope for the future of data
re-use.

In Appendix, we describe a third set of contributions in which we explored the impact
of analytical variability on the reproducibility of fMRI studies. In collaboration with Prof.
Tristan Glatard and Prof. Jean-Baptiste Poline (see Appendix B), we studied the repli-
cability of resting-state fMRI derived biomarkers of Parkinson’s disease. We showed that
variations in cohort selection, image processing pipelines and machine learning frameworks
could have a large impact on the performance of prediction models, making challenging
their application in clinical practice. In Appendix C, we present the project NARPS Open
Pipelines led by our lab. The goal is to reproduce the pipelines used in a many-analyst
study and share these as a resource for the community. We describe the main challenges
of pipeline reproduction using textual description and provide an example of application
of the codebase to explore the impact of sample size on analytical variability.
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Perspectives

Short-term perspectives

Future works would be needed to strengthen our contributions, in particular to validate
the solutions that we developed for researchers to more easily re-use shared data.

Exploring other benefits of self-taught learning. In Chapter 4, we showed the
benefits of using data shared on NeuroVault (Gorgolewski et al., 2015), a public database
composed of a large number of statistic maps coming from different studies, to pretrain
an unsupervised deep learning models that can be fine-tuned for other purposes. Here, we
limited our experiments to supervised tasks with the labels provided by the database (e.g.
paradigm, task) and we applied the frameworks to two datasets (e.g. homogeneous, with
data from a single study and heterogeneous, with data from several studies but analyzed
with the same pipeline). Further work would be needed to investigate the performance
of classification on other target datasets with other sources of variability, for instance
with statistic maps from different studies but also processed using different pipelines.
Several studies (Vu et al., 2020; Li et al., 2023) showed that deep learning models might
fail to generalize to new data analyzed with a different pipeline than the one used on the
training set. Comparing the adaptation capacities of models on volumes preprocessed with
different pipelines could be interesting to evaluate the impact of analytical variability on
deep learning with fMRI statistic maps and to see if the generalizability of our pretrained
models also works for inter-pipeline differences.

Optimizing DDPM-based frameworks for style transfer In another attempt to
facilitate data re-use for statistical studies (Chapter 5), we explored the potential of image-
to-image transition frameworks to convert statistic maps between pipelines. Our results
were promising and showed that GAN-based frameworks, even in unsupervised settings
with StarGAN (Choi et al., 2018), were able to transfer statistic maps in a target domain
with high similarity to the ground-truth target. We obtained lower performance using
DDPM-based models, probably due to the specific functioning of such models, which
is not initially suited for image-to-image transition (Ho et al., 2020). Training DDPM-
based frameworks was relatively time consuming, and we did not perform any hyper-
parameter optimization, on the number of denoising steps for instance. Moreover, recent
studies showed the benefits of using latent diffusion models, that act in the latent space
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of a Variational AutoEncoder (VAE) to reduce the size of data and facilitate training of
DDPM-based frameworks (Rombach et al., 2022). In future works, we would like to focus
on these frameworks to better understand their lower performance compared to GAN-
based frameworks. This was the topic of a Master’s degree intern that we co-supervised
since October 2024 with Pr. Elisa Fromont.

Re-using data converted with style transfer The practical usability of the proposed
frameworks remain questionable. Further work would be needed to assess the potential of
these newly transferred statistic maps for statistical studies. In Chapter 8, we computed
false positive rates of mega-analyses combining subject-level data obtained from different
pipelines. This method could be applied with between-group analyses composed of 1) a
group with data from the target pipeline and 2) a group with data originally obtained
with another pipeline and that have been converted to the target pipeline.

However, for now, due to the standardization of the data used as input to deep learning
models and the architecture of the models, voxel values in generated maps are constrained
between -1 and 1. First attempts have been made to de-normalize data using a scale factor
derived from the source map. Further work would be needed to deal with the case of maps
coming from different software packages. For instance for a transfer from FSL to SPM,
differences in percent BOLD change (i.e. unit of fMRI contrast maps (see 8.2.2.1) would
have to be taken into account.

Towards a better understanding of the relationships between pipeline results
In Chapter 7 and Appendix E, we showed that relationships between pipeline results were
stable across groups of participants, but not across paradigms, which explained the lack
of generalizability of style transfer frameworks to data from unseen paradigm.

In the context of mega-analyses, researchers would have access to data from two (or
more) pipelines A and B in the same paradigm. Thus, a single framework could be trained
to transfer data from A to B, or the inverse. However, researchers could also have access
to data from a pipeline A with the paradigms 1 and 2 and to data from a pipeline B

with only the paradigm 2. In this context, they might want to apply our frameworks to
convert data from A in paradigm 1 to pipeline B to visualize the differences between the
results obtained from the two pipelines without having to recompute the whole pipeline
(or if they do not have access to raw data, or to information about the pipeline B).
Transductive transfer learning (Arnold et al., 2007) aims to improve the learning of a
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target task in a target domain using knowledge from a similar task in a source domain. In
particular, in unsupervised transductive transfer learning, there is no labeled data from
the target domain. Further experiments would be needed to investigate whether transfer
learning frameworks could be helpful to obtain more generalizable results in our context.

Long-term perspectives

In this work, we proposed several solutions to leverage publicly available data (e.g.
NeuroVault (Gorgolewski et al., 2015), Human Connectome Project (Van Essen et al.,
2013), etc.). In practice, even if these data provide an easy and accessible solution for
researchers to build larger and more generalizable studies, re-using more sensitive data
from hospitals or clinical trials comes with more challenges. First, hospitals may be
reluctant to share sensitive patient data, in particular due to data privacy regulations
like GDPR. Moreover, real-life data are usually noisy: they often contain inconsistencies
and missing values, they are imbalanced and have inherent biases that can lead to unfair
model prediction (Ricci Lara et al., 2022). Finally, even if hospitals were sharing re-usable
models and not the data themselves, as done with our self-taught learning framework,
the models could be sensitive to privacy attacks such as membership inference or data
retrieval (Aguiar et al., 2023).

Federated learning: benefiting from data without sharing data Federated learn-
ing (Rieke et al., 2020) has shown promises in the field of machine learning for healthcare,
by enabling the training of several models across multiple clients on their local data, with-
out exchanging the data itself. As stated by data protection regulations such as GDPR,
since individual characteristics can be used to retrieve the identity of a participant, data
are usually not considered as anonymized. With federated learning, each client defines its
own data governance system, allowing the model to benefit from numerous and diverse
data without directly hosting the data. This also makes the process of data storage eas-
ier, as healthcare data can be high-dimensional and thus, very costly in terms of storage
space.

By leveraging diverse, decentralized datasets across different clients, this technique
protects sensitive information while improving the fairness of models by using larger
and more diverse data. This is crucial to capture subtle relationships between patterns
and outcomes. However, for federated learning frameworks to perform accurately, data
from different clients still need to be independent and identically distributed, which is

186



sometimes not the case. Research addressing this issue includes, for instance, works
on federated learning coupled with domain adaptation (Li et al., 2020). Moreover, this
technique does not prevent privacy attacks (Lyu et al., 2024), as described in Chapter 3.

The development of federated learning in healthcare centers is thus a promising so-
lution to re-use sensitive data in accordance to data protection regulations, but also to
build more generalizable models with diverse sets of data.

Synthetic datasets: a solution for unbiased and privacy-preserving datasets
Another solution to avoid sharing sensitive data while building large and diverse datasets
is to make use of synthetic data. With generative models such as GAN (Goodfellow et al.,
2014) (described in Chapter 3), it is possible to generate synthetic data that mimic the
distribution of an original dataset while not being associated to a particular participant.
This allows to encompass the data protection regulation rules and to share healthcare
data with the community to build more robust models. In machine learning for natural
images, the release of ImageNet (Deng et al., 2009) was the major breakthrough and led
to a large increase in terms of performance. The goal of using large datasets of synthetic
data would be to reach the same level of performance.

However, synthetic data are not real data, and we might wonder if the use of synthetic
data would not lead to a decrease in terms of performance compared to real-life data.
Indeed, generative models might fail to represent some characteristics of the data, or
overfit to some others. For now, there is no standard method to evaluate the quality
of synthetic data in medical imaging and metrics used for natural images might fail in
this context (Thijs Kooi, 2018). Finally, similarly to federated learning, the question of
the privacy of synthetic data remains an issue, as generative models can also suffer from
privacy attacks. Techniques based on differential privacy started to emerge to build more
privacy-preserving generated models (Yoon et al., 2020).

Such large synthetic datasets of healthcare data would facilitate the development of
machine learning model since they would allow researchers to work with data that mimic
the real-world, with minimized privacy issues.

Differential privacy: towards more robust models As stated in the previous para-
graphs, the lack of privacy of machine learning models gives rise to concerns, in particular
in healthcare settings with sensitive data. Differential privacy can be defined as the ab-
sence of changes in the outcome of any computation done on the model when including
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or removing an individual record from the dataset (Abadi et al., 2016). This is usually
done by adding noise to the model to mask the contribution of any individual while pre-
serving accuracy (Dwork et al., 2014). However, there are no guidelines to tell researchers
what differential privacy entails and which guarantees to aim for. Moreover, it is usually
difficult to achieve a good benefit-risk tradeoff (i.e. increasing privacy without decreasing
performance). Recent works focused on the implementation of privacy losses in different
machine learning frameworks, by focusing on iterative models (such as DDPM (Ho et al.,
2020)) and better privacy-utility trade-offs (Das et al., 2024).

Incorporating differential privacy constraints would be helpful to facilitate the sharing
of machine learning models while taking into account privacy concerns. This would lead
to an increase confidence when sharing models in the context of federated learning, but
also to build synthetic data that are different enough from the original data so that these
could not be re-identified.

Overall, these are promising techniques for leveraging healthcare data while adhering
to privacy regulations. Federated learning enables to use decentralized data without di-
rect sharing, and synthetic data generation creates privacy-preserving datasets that mimic
real-world data. Additionally, incorporating differential privacy enhances model robust-
ness by protecting individual data contributions. These approaches are poised to drive
future advancements in building generalizable and privacy-compliant machine learning
models in healthcare.
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Appendix A

STATE-OF-THE-ART ON

REPRODUCIBILITY

In the contributions of this thesis exposed in the previous chapters, we explored the
fMRI analytical space and proposed solutions to facilitate the re-use of data from public
databases. Here, we extend this work and describe the challenges related to the method-
ological flexibility of studies in the reproducibility of results. In this chapter, we give an
overview of the state-of-the-art on the reproducibility crisis that arised in the last decade.
In the next chapters, we propose two contributions that explore the reproducibility of
fMRI studies: in clinical settings in Appendix B, and in the context of a many-analyst
study in Appendix C.

In experimental research, researchers follow the scientific method to make new contri-
butions. This typically start by the formulation of a research question and the exploration
of the state of the art of this topic. Then, researchers establish an hypothesis and design
one or more experiments to test it. This process usually begin by the reproduction of a
published claim, to investigate the method in more details and to build new advances.
After analyzing the results, researchers draw a conclusion and determine if we can trust
this finding. At this stage, researchers usually try to reproduce their results with the
same settings and evaluate the impact of variations to improve their confidence in their
results and to identify any bug or error. At each stage of a project, the notion of repro-
ducibility is present. Robust and reproducible research is thus the foundation on which
new findings are developed (Begley et al., 2015). During the last ten years, experimental
research faced a “reproducibility crisis”, in which the validity of published results was put
into question (Ioannidis, 2005). Researchers attempted to reproduce or replicate several
research findings, with low rates of success (see for example (Open Science Collabora-
tion, 2015)). This crisis encouraged researchers to question their practices and to develop
solutions to build a more trustworthy research.

In this chapter, we first give an overview of the issues and concerns that led to the
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“reproducibility crisis” (A.1). In (A.2), we explore the different aspects of reproducibility.
We then describe the causes that have been identified for this lack of reproducibility in
experimental research (A.3) and expose the solutions proposed by researchers to adress
these issues (A.4). For each cause and solution, we first describe the general case and
then we detail the specificities related to neuroimaging research.

A.1 The reproducibility crisis

The first concerns regarding the validity of research findings appeared in 2005 with
a theoretical analysis made by Ioannidis, 2005. In this paper, Ioannidis, 2005 stated
that due to publishing and analysis practices, in particular the low statistical power of
studies, it was likely that more than half of the published results were false, and therefore
irreproducible.

Numerous studies emphasized this issue by attempting to reproduce the results of
published research findings. In the “Reproducibility Project”, led by Open Science Col-
laboration, 2015, several researchers tried to reproduce the methods and results of 100
psychological studies published in three renowned journals. They used different criteria to
assess reproducibility and obtained relatively low agreement between original and repro-
duced results. In the end, only 39 reproductions were concluded as successful. In another
study on drug development, an industrial laboratory reported having successfully repli-
cated the original results of landmark findings in only 25% of the attempted cases (Prinz
et al., 2011). Such studies led researchers to consider more seriously the concept of repro-
ducibility and to question their research practices, as it might undermine the reliability
of research results.

In Baker, 2016, the Nature journal took a survey on 1,500 researchers about their
opinion on the crisis. Most scientists (more than 70% of the respondents) have experienced
failure in trying to reproduce the results of an experiments and 52% agreed that there
was a significant “reproducibility crisis”. However, 31% were still trusting the published
literature and believed that the lack of success of reproduction studies was not related to
the validity of the original results, but more likely to errors in the reproduction process.

Such errors can arise due to the complexity of reproduction experiments, and these are
mostly due to missing information about the protocol and data used in the original study.
The question of the ability to reproduce a study with sufficient materials also takes part
of the crisis. Multiple reproduction studies concluded that reproduction was impossible
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due to missing informations (Begley et al., 2015). Without transparency, it is impossible
to assess the validity of a protocol, or to detect any error or fraud, which emphasizes the
lack of reliability of published results and the importance of reproducibility.

A.2 Evaluating reproducibility

The term “reproducible research” can be understood differently across fields (Barba,
2018). The Turing way – a collaborative open science handbook and community (Com-
munity et al., 2019) – divides reproducibility into four different aspects.

— Reproducible: same data, same analysis

— Replicable: different data, same analysis

— Robust: same data, different analysis

— Generalisable: different data, different analysis

Figure A.1 – Reproducible research defined by The Turing way.
Credits: CC-BY reproducible matrix ©The Turing Way Community.

The first one is also known as computational reproducibility (Claerbout et al., 1992) and
requires the exact same code and data as in the original study. In practice, the difficulties
encountered to ensure long-term availability of such materials makes the evaluation of
reproducibility a challenging process (Perkel, 2020). Moreover, as stated in the Nature
survey (Baker, 2016), researchers who tries to reproduce an experiment rarely contact the
authors of the original publication when they fail or if they need additional materials. In
the following, we will use reproducibility as a general term englobing the four aspects.

Researchers can also evaluate the replicability, the robustness and the generalisability of
a study. Experimental protocols are subject to several sources of variability including those
related to the choice of dataset (intra-subject variability, i.e. differences in data acquired
at different moments for the same participant, inter-subject variability, i.e. differences
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between samples of the population or between different populations) or to the choice of
analysis (different data acquisition or analysis protocol). Variations that might appear in
the results under different conditions informs the researchers on the finding: Is the finding
specific to the data and analysis setup of the study? Or is it generalizable under different
conditions?

Reproducibility can be explored under different conditions but the success of the repro-
duction can also be assessed using different criteria. In the Reproducibility Project (Open
Science Collaboration, 2015), conclusions of the studies were presented with the results
of statistical inference tests and effect sizes. The first criteria was the comparison of
the final conclusions of the original study with the reproduced results, i.e. the finding
is significant (or not) in both studies (success), or the finding is significant in one and
not significant in the other (failure). They also compared the effect sizes detected in
the original study and the one of the reproduction: Is the original effect size in the 95%
confidence interval of the reproduced effect? Are the original and reproduced effected in
the same order of magnitude? Original and reproduced studies were also combined in
meta-analyses to obtain a mean estimates of the effect size, which can help to evaluate
the reliability of the results. Finally, researchers also gave a subjective opinion on the
success of the replication. All these criteria evaluate reproducibility at different levels
and can lead to different conclusions on the success of the reproduction. For instance,
in Open Science Collaboration, 2015, 36% of the reproductions were found successful with
the significance criteria, whereas 47% were successful when comparing effect sizes with
the 95% confidence interval.

A.3 Causes of irreproducibility

This “reproducibility crisis” encouraged researchers to re-think the way they were
doing research, and in particular to identify the practices that were leading to the low
reproducibility of findings.

A.3.1 Lack of information on datasets

As mentioned in (A.1), missing information about the analysis protocol and the data
used can make it challenging to reproduce a study. Data used in published studies are
particularly useful for reproducibility. Although the importance of data sharing is ac-
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knowledged today in many fields of research, it was not always the case and their avail-
ability differs across scientific domains. Tedersoo et al., 2021 evaluated data availability
in different disciplines and found percentages of 54% and 72% respectively for full and
at least partial data availability, with a lower availability rate for fields like ecology or
psychology. After contacting the authors, these percentages increased but some authors
remained reluctant to share their data. The perceived barriers to data sharing are nu-
merous (Gomes et al., 2022), and can be related to lacks of knowledge of the process,
concerns about data re-use and lack of dedicated infrastructures. Sharing data requires
to use appropriate tools, or databases, to make them available to the public. Such process
can be time consuming for researchers who need to learn to master the tools but also think
about the best ways to share their data in a way that is easily accessible for the public
while respecting legal constraints.

Specificities in neuroimaging. Neuroimaging data are specific and data sharing re-
quires a dedicated methodology (Poline et al., 2012). Indeed, datasets are usually com-
posed of high dimensional data that take up a large amount of storage space. The plat-
forms used to store the data must be adapted to facilitate the access for future reuse.
Moreover, sharing neuroimaging data can be difficult due to specific regulations, such as
the General Data Protection Regulation (GDPR) in Europe which puts protection on
shared data that could be individualized. In the US, anonymisation solely means that
any primary identifiable information (i.e. name, date of birth, address and face) should
be removed, while in Europe this includes any kind of correlation, individualization and
inference. Despite this issue, even when reusing data from public databases in the US,
researchers usually signs a Data Usage Agreement (DUA) that sometimes stipulate that
any derived data must be shared under the same DUA. Moreover, many levels of de-
rived data can be shared by researchers, including preprocessed data, statistical maps at
the subject-level and at the group-level. All these data requires large storage space, but
also a specific organization with formatting and addition of metadata for example. Such
formats would make data easily reusable, notably for the reproduction of experiments,
but requires specific tools for data conversion for instance and to re-organize the data (Li
et al., 2016), and researchers might lack knowledge for such tools, preventing them from
sharing data. In neuroimaging, the BIDS (Gorgolewski et al., 2017) format is now widely
used in the community to standardize the organisation of datasets.
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A.3.2 Lack of information on the analysis protocol

With advances in research, workflows became more and more complex with many
steps and parameters. Detailed informations are necessary to reproduce the experiments
but also to evaluate the quality and validity of the results by detecting misconducts or
errors. In many fields, researchers rely on software packages that implement an analysis
workflow with default parameters and thus, they do not share the details of the workflow
when default values are used. However, these values can vary from a software package
to another and between versions of a same software package, which can prevent from
reproducing the same results. Even when there is enough information, the way information
is delivered can impact the success of the reproduction and the difficulties encountered
to reproduce. For instance, a recent study (Laurinavichyute et al., 2022) showed that
reproducibility increased by almost 40% when the analysis code was provided. When
manual steps are performed in the workflow, sharing the process in a fully reproducible
way can be difficult. While the best practice is to use reproducible code, some workflows
might require manual inputs and some steps might be hardly translated to code. In
such cases, researchers should provide detailed explanations on their workflows and the
potential manual steps involved.

Specificities in neuroimaging. Neuroimaging studies requires multiple processing
steps for which multiple options are available. Reporting the full detailed analysis in
a paper is impractical, even with the development of standard ways to describe the neu-
roimaging workflows (e.g. COBIDAS (Nichols et al., 2017)). In Carp, 2012b, 241 fMRI
studies were analyzed and authors showed that detailed information regarding certain
crucial steps such as data acquisition, processing and statistical analysis was missing in
a large number of studies. Moreover, the neuroimaging fields is composed of researchers
from different domains, which might not be familiar with programming and code sharing
platforms. Also, even if the code is shared, software packages used in neuroimaging can
evolve to different versions, which can lead to changes in algorithm used to perform cer-
tain operations (Gronenschild et al., 2012). Other studies showed the impact of Operating
System (OS) and versions in the way calculations are done (Vila et al., 2024; Glatard et
al., 2015), which may lead to important changes in the results when applied on successive
operations.
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A.3.3 Lack of generalizability and fairness

The sucessful reproduction of a finding with same data and analysis protocol does not
guarantee similar results in another experiment addressing the same research question
with different conditions, in particular with other data. Research experiments are ideally
performed by randomly sampling from the target population. This process can lead to
sampling variability, which refers to the fact that the statistical information of a sample
varies as the random sampling is repeated. In machine learning for instance, models are
trained on a set of data and may “overfit” on these data by fitting the random noise rather
than a true signal likely to generalize across samples. This leads to good predictions in the
training data that do not generalize to the testing data. In a recent study on treatment
outcome prediction for schizophrenia, Chekroud et al., 2024 showed that models that
performed well in terms of accuracy in their tranining sample or in a test set sampled
from the same population routinely failed to generalize to unseen patients, in particular
when those are sampled from a different context (e.g. age, disease type, etc.).

Indeed, samples can be biased against some specific criteria depending on how they
were recruited, e.g. same neighborhood or place of work. Such samples are not represen-
tative of the whole population, and thus, an experiment might give different results when
applied to a different sample. A recent study in medical imaging (Larrazabal et al., 2020)
showed the importance of representative samples in machine learning. They trained a
classifier to detect lung opacity using data from males participants only and found a large
drop in performance when applying it to women (and vice-versa). This issue is present in
multiple fields, in particular when using artificial intelligence related tools that are usually
trained on biased datasets (Buolamwini, Joy, 2019).

Specificities in neuroimaging. Inter-individual differences are particularly important
in neuroimaging, where the inter-scan variability within an imaging session is very small
in comparison to the variability of responses from subject to subject (Holmes et al., 1998).
Thus, sampling variability can lead to poor generalizability of studies, in particular when
using small sample sizes. Moreover, due to the complexity and the cost of acquiring data
and the difficulty to gather participants for specific studies, participants often come from
the same location (e.g. in a close neighborhood around the MRI facility), leading to
unrepresentative samples.
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A.3.4 Publication bias

Publication bias is often identified as one of the main cause of the “reproducibility
crisis”. This term refers to the fact that negative results (non significant) are usually
withholded from publication, leading to the presence in scientific litterature of a large
proportion of papers with significant results. At first, the beliefs were that non-significant
results were associated with poorly formulated and tested experiments, which would be re-
jected by the competition for publishing and fundings. However, due to the low statistical
power of studies, numerous published significant results are actually false positives (Ioan-
nidis, 2005). Studies showed that this competition for fundings and the pressure of pub-
lication that led researchers to submit mostly significant results for publication (Munafò
et al., 2008; Munafò et al., 2009). Such results are more likely to be considered favorably
by editors, receive more favorable peer reviews, and subsequently, to be cited more often
once published.

Such publication practices can have devastating consequences on research. For in-
stance, more than a thousand published papers showing the effectiveness of antidepres-
sant treatment on depression were put into question by meta-analyses of FDA (Food and
Drugs Administration) data showing potential biases such as selective publication of pos-
itive results (Ioannidis, 2008b). This overestimation of the effect of antidepressant had
a large impact on treatment decisions for patients suffering from depression, but also on
pharmaceutical laboratories and researchers that put some time, money and efforts on
research built on nonexistent foundations.

A.3.5 Low statistical power

In experimental research, findings are often tested using statistical tests in which
the research hypothesis - named HA for alternative hypothesis - is compared to a null
hypothesis - H0 - set as the opposite of the alternative hypothesis, e.g. absence of effect.
The likelihood of rejecting H0 when it is actually false (and thus, HA is actually true) is
called the statistical power of the test (see Table A.1). The power of a study depends on
the sample size used and of the true effect size. Studies with small sample sizes and low
effect sizes will have a low statistical power, which thus reduces the chance of detecting
a true effect in these studies. In many research fields, such studies are quite common as
data acquisition can be complex and costly, and modern studies increasingly target small
sample sizes (Vesterinen et al., 2011). However, this also impacts the probability of a
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detected effect to be effectively true, i.e. the Predictive Positive Value, which depends
on the statistical power of the study and the level of statistical significance α (Ioannidis,
2008a). Button et al., 2013 demonstrated that both small sample sizes and low effect
sizes in neuroscience led to reduced statistical power and thus, small positive predictive
values, leading to high proportion of false positive findings in the literature. The α-level
controls for false positives in situations where no effect exists, but does not prevent from
the overestimation of the effect. Moreover, positive results are favored for publication,
leading to a biased scientific literature.

State of the world
H0 True H0 False

Accept H0 True accept
(1 − α)

False accept
Type II error (β)

Reject H0 False reject
Type I error (α)

True reject
Power (1 − β)

Table A.1 – Principles of statistical testing.

Specificities in neuroimaging. As stated in A.3.3, gathering participants for neu-
roimaging studies can be difficult, leading to small datasets. A study evaluated the evo-
lution of sample sizes in neuroimaging studies until 2015, and pointed out that statistical
power was too low to find reasonable effect sizes, in particular in a field with low effect
sizes. In 2015, the median sample size of fMRI studies was estimated at approximately
30, corresponding to a median effect size associated to a standard 80% statistical power
equal to 0.75, which is very high for such studies.

A.3.6 Analytical flexibility

With the advances in analysis methods, researchers often have the possibility to select
the method to use amongst a collection of possible analytical choices (Simmons et al.,
2011). This phenomenon is also known as analytical flexibility or as the researcher’s
degree of freedom. While it is common to explore different analytic conditions, results
can be biased if these conditions are not set beforehand and if researchers only report the
results of one analysis. In theory, when multiple conditions are explored, a correction for
multiple comparisons should be applied in order to keep the guarantee provided by the
α-level across the family of tests.
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Moreover, a study can obtain different estimates of the effect depending on the an-
alytical options it implements, defined as vibration of effects (Ioannidis, 2008a). This
phenomenon is exacerbated in small studies in which the results are more prone to un-
certainties and variations (Loken et al., 2017). In addition to the multiple testing, this
can lead to an increase of false positive findings in the literature. In particular, when
the different analytical conditions are tested in order to obtain the desired (usually more
significant) results, this selective reporting can be seen as a case of malpractice (referred
to as p-hacking or data dredging). Such practice usually arise due to the complexity
of analysis workflows, a lack of statistical knowledge and the absence of consensus for
analysis methodologies.

Specificities in neuroimaging. As stated in Chapter 2, vibration of effects is particu-
larly present in neuroimaging studies due to the large number of steps required to analyze
data. Minimal processing workflows were developed to reduce the number of decision
to make for authors (Esteban et al., 2019), but these are still not fully deployed in the
community and researchers still have to make decision for other steps of the analysis.
These choices can greatly impact the results. In a many-analyst study (Botvinik-Nezer
et al., 2020), 70 research teams analyzed the same fMRI dataset and overall, there were
no identical pipeline. Variations were present in the results in terms of final statistical
maps but also answer to binary research hypothesis, showing the large impact of analyt-
ical flexibility on the possibility of finding false positive results in neuroimaging studies
due to the vibration of effects.

A.4 Proposed solutions

A.4.1 Sharing data

Making data available to researchers allows them to reproduce the exact results of a
study. This might also help them to detect any potential fraud or error in the analysis
and thus, increase the reliability of the results. To address this, several journals have
implemented ’open data’ policies to encourage or require data sharing. Some editorial
boards or reviewers also aknowledge the efforts that are made by authors to make their
studies reproducible. Initial findings suggest that these policies have led to a significant
rise in articles reporting publicly available data (Hardwicke et al., 2018b; Laurinavichyute
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et al., 2022). For instance, Hardwicke et al., 2018b examined the impact of this policy
on the journal Cognition and found an increase of shared data. However, a considerable
portion of supposedly available data still remain missing, incomplete, incorrect, or poorly
documented, making it unusefull for reproduction.

To face these issues, data sharing platforms were also developed and enhanced: some
are non-specific to a field such as Zenodo European Organization For Nuclear Research
et al., 2013, while others are specifically used by researchers from a domain. For instance,
in neuroimaging, data can be shared on OpenNeuro (Markiewicz et al., 2021) (for raw
data) or NeuroVault (Gorgolewski et al., 2015) (for derived data) following the US regle-
mentations and on Public nEUro (Public nEUro 2020) following European regulations. To
facilitate data sharing and reuse, the Brain Imaging Data Structure (BIDS) (Gorgolewski
et al., 2016) - a standard organization of files and directories for neuroimaging datasets -
is often applied to the shared datasets.

These solutions are valid for future publications, but other initiatives try to retrieve
the data used in passed publications. Hardwicke et al., 2018a report the outcome of our
efforts to retrieve, preserve, and liberate data from 111 of the most highly-cited articles
published in psychology and psychiatry between 2006 and 2016. Even if some authors
were reluctant to share their data, such initiative can help surface barriers to data sharing,
and advance community discussions on data management.

A.4.2 Sharing analysis protocol and code

The first step to make the protocol easily available for the community is to share the
analysis code on version control platforms like GitHub or Gitlab. Only sharing the repos-
itories URLs on these platforms may not be sufficient to ensure long-term accessibility of
the code. The Software Heritage initiative (Cosmo et al., 2017), which aims to collect,
preserve, and share the entire corpus of publicly accessible software source code, provides
a good opportunity to tackle this issue.

The second step is to provide researchers a good documentation and a high-quality
code to facilitate the reproduction. In most neuroimaging software packages, researchers
usually have the possibility to save pipelines in batch or script formats. This can fa-
cilitate reproducibility of processing steps, but does not take into account for pipelines
implemented on several software packages and scripts are often very specific to the soft-
ware package, which can make their comprehension difficult for new users. Nipype is
a Python project that provides a uniform interface to existing neuroimaging software
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packages and facilitates interaction between these packages within a single workflow.
Combining such frameworks with "literate programming" tools like Jupyter Notebook or
reproducible preprints like NeuroLibre (DuPre et al., 2022) enables researchers to present
detailed analysis alongside executable code, enhancing comprehension of each step in the
workflow.

Finally, the exact reproduction of experiments through execution of code requires
access to the environment in which the code was executed when it is possible to limit the
impact of variations in code or OS. Containerization of the workflow using Docker (Merkel,
2014) or Singularity (Kurtzer et al., 2017) may be used to allow the reproduction of
results with the exact software versions, and Virtual Machines can be used to adapt the
computing environment.

A.4.3 Increased results validation

An important issue with the generalizability and replicability of findings is the over-
estimated effect size detected in the original study. To face this issue, guidelines and best
practices were developed to improve validation procedures. For instance, for machine
learning studies (Varoquaux et al., 2023; Ricci Lara et al., 2022), solutions have been
derived to deal with imbalanced datasets, to mitigate model biases through data augmen-
tation or adversarial training and to evaluate performance objectively with no leakage
(e.g. using cross-validation).

A.4.4 Sample sizes and data re-use

The low statistical power of studies can be counterbalanced by increasing sample sizes.
To this end, large scale studies emerged with the Human Connectome Project (N =
1, 000 participants) or the UK Biobank (Miller et al. 2016), (N = 100, 000 participants.
However, these studies provide data for a limited number of cognitive tasks and thus,
cannot be used to answer all research questions.

Another advantage of data sharing is the possibility to reuse shared data in new
studies. Such combined datasets would increase the sample sizes of neuroimaging studies,
but also would provide a larger variability in datasets, making the studies theoretically
more generalizable. In practice, re-using data is not easy: one must first search for the
different data to combine and process them while taking into account the differences
in data acquisition or pre-processing if using derived data. For the first issue, tools
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like NeuroBagel (Jahanpour et al., 2023) were created to query databases depending on
specific criteria to build a new cohort composed of data from different datasets.

A.4.5 Practices in data analysis

To facilitate the choice of analysis workflow for researchers and limit the impact of
analytical flexibility, metrics were developed to optimize pipelines based on various factors
including reproducibility (Strother et al., 2004). Standard workflows were also developed,
to minimize the number of input to make by researchers (Esteban et al., 2019). These
solutions limit the number of workflows tested by researchers during their experiment and
thus, limit the potential false positive findings.

Another solution to avoid these is to pre-register the analysis (Chambers et al., 2015).
Researchers first design their experiment, send a first version of the paper, without any
results. The review process is thus made on based on the methodology and on the research
question, but the results are not taken into account. If the paper is accepted after the
review process, the researcher can begin the experiments and add the results to the paper.
The paper can thus be published, whatever the significance of the results.
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Appendix B

REPRODUCTION AND REPLICATION OF A

STUDY: PREDICTING PARKINSON’S
DISEASE TRAJECTORY USING CLINICAL

AND FUNCTIONAL MRI FEATURES

This chapter was the subject of an article in revision at PLOS ONE :

• Title: Predicting Parkinson’s disease trajectory using clinical and functional MRI
features: a reproduction and replication study

• Authors: Elodie Germani, Nikhil Baghwat, Mathieu Dugré, Rémi Gau, Albert A.
Montillo, Kevin P. Nguyen, Andrzej Sokołowski, Madeleine Sharp, Jean-Baptiste
Poline, Tristan Glatard

• HAL: inserm-04465765

• Code: swh:1:snp:ac39cd7495afa754e5d0d298a502cda8684c7eca

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Manuscript writing.

B.1 Introduction

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder with
more than 10 million people affected in the world. Disease manifestations are heteroge-
neous and their evolution varies between patients, dividing them in different subtypes and
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stages (Bloem et al., 2021). Identification of these stages or subtypes is essential for clini-
cal trials as well as for clinical practice to track the disease progression. However, there is
currently no established biomarker of disease severity or progression (Gwinn et al., 2017;
Mitchell et al., 2021).

Neuroimaging techniques are able to capture rich and descriptive information about
brain structure and functional architecture non-invasively. In conjunction with computa-
tional algorithms based on pattern recognition and machine learning, neuroimaging mea-
sures began to emerge as candidate PD biomarkers in the past few years. Among other
imaging modalities, Functional Magnetic Resonance Imaging (fMRI), which estimates the
Bold Oxygen Level Dependent (BOLD) effect to represent neural activity, showed a high
potential in identifying specific biomarkers related to PD and its progression (Hou et al.,
2022). While disease phenotypes are heterogeneous, neuronal dysfunction patterns were
shown to be highly replicable between patients (Warren et al., 2013).

resting-state functional Magnetic Resonance Imaging (rs-fMRI) features are particu-
larly promising. Region-wise measurements such as Regional Homogeneity (ReHo) and
Amplitude at Low Frequency Fluctuation (ALFF) were used in multiple studies to predict
PD trajectory or motor subtypes (Hou et al., 2016; Hu et al., 2015; Pang et al., 2021;
Nguyen et al., 2021; Wu et al., 2009; Yue et al., 2020). ReHo quantifies the connectivity
between a voxel and its nearest neighboring voxels and was shown to be affected by neu-
rodegenerative diseases (Zang et al., 2004). ALFF and its normalized form, Fractional
Amplitude at Low Frequency Fluctuation (fALFF), measure the power of the low fre-
quency signals at rest, which mostly consists in spontaneous neuronal activity (Zou et al.,
2008).

However, despite their potential, neuroimaging measures are sensitive to multiple
sources of variability that impact their replicability and may explain why the derived
biomarkers are not well established in clinical and research practice. In particular, neu-
roimaging analyses require specific methodological choices at various computational steps,
related to the software tools, the method, and the parameters to use. These choices, also
known as “researchers degrees of freedom” (Simmons et al., 2011), might have a large
impact on the results of an experiment as they can impact the predictiveness of the sig-
nal extracted and can lead to a lack of agreement when analyzing the same neuroimaging
dataset with different analysis pipelines (Bowring et al., 2019; Botvinik-Nezer et al., 2020).
For instance, in task-based fMRI, 70 research teams were asked to analyze the same fMRI
dataset using their usual analysis pipeline and results were substantially variable across
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teams (Botvinik-Nezer et al., 2020).
Furthermore, neuroimaging results have been shown to be impacted by differences in

hardware architectures or software package versions (Glatard et al., 2015; Gronenschild
et al., 2012), questioning the robustness of the results. This suggests that a single pipeline
evaluation is not sufficient to obtain robust results, though the reliability of results may
be increased when studying their distributions across perturbations.

There are also concerns about the reproducibility of machine learning studies. Indeed,
in a recent study, Kapoor et al., 2023 attempted to reproduce several machine learning
experiments, revealing multiple issues which could lead to the non-reproducibility of find-
ings. These issues can be split in three categories (Varoquaux et al., 2023): data leakage,
computational reproducibility, and choice of evaluation metrics. In particular, Wen et al.,
2020 performed a review of CNN-based classification of Alzheimer’s subtypes and found
a potential data leakage in half of the 32 surveyed studies due to a wrong data split at
the subject-level, a data split after data augmentation or dimension reduction, transfer
learning with models pre-trained on parts of the test set or the absence of an independent
test set. Such a data leakage, which we did not notice in our study, might cause an
over-optimistic performance assessment of models and thus, a lack of reproducibility and
replicability of the findings. Evaluation procedures can also cause the non-reproducibility
of findings, due to unsuitable metric choices when using unbalanced datasets for instance
or questionable cross-validation procedures, in particular with low sample sizes. Random
choices in a training procedure, for instance initial weights or hyper-parameters random
selection, which all impact computational reproducibility, might also lead to uncontrolled
fluctuations in results when using different random initialization states.

Conflicting terminologies exist for the terms reproducibility and replicability (Barba,
2018). Here, we define reproducibility as attempts made with the same methods and ma-
terials. Replicability, on the other hand, is tested with different but comparable materials
or methods, assuming that the tested pipelines are all suitable to extract signal from the
data. Note that comparable is ambiguous, but defined further in this case in Method
Section.

Replicability experiments have shown different degrees of variability between find-
ings obtained with different analytic conditions. These studies are usually done using
healthy populations and in general research practice (as opposed to clinical research),
as in Botvinik-Nezer et al., 2020. For clinically-oriented research, however, the topic
remains understudied. Such studies requires a specific attention as they are useful to
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develop new biomarkers that can influence treatment development and clinical trial ap-
plications. These studies also often target specific populations of patients with unique
characteristics, in particular for PD for which inter-individual variability is high (Wüllner
et al., 2023). Such studies often use small sample sizes, which has been shown to lead to a
lower reproducibility of findings (Klau et al., 2020; Poldrack et al., 2017). Reproducibil-
ity and replicability of studies in clinical settings is of higher importance to improve the
trustworthiness of new biomarkers and to facilitate their development.

In this paper, we evaluate the reproducibility and replicability of the study in Nguyen
et al., 2021, a clinically-oriented research on a PD population. The study in Nguyen et
al., 2021 is of particular interest as it uses the Parkinson’s Progression Markers Initiative
(PPMI) dataset (Marek et al., 2018), a large open access dataset to study Parkinson’s
disease. Moreover, it investigates the clinically relevant problem of trying to predict an
individual’s current and future disease severity over up to 4 years and it uses two different
rs-fMRI-derived biomarkers: ReHo and fALFF. In Nguyen et al., 2021, the authors,
including current co-authors KPN and AAM, trained several machine learning models
using regional measurements of ReHo or fALFF along with clinical and demographic
features to predict Movement Disorder Society-Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) total score at acquisition time and up to 4 years after. They selected
n=82 PD patients by searching for all patients available at that time with rs-fMRI and
MDS-UPDRS score at the same visit from the PPMI database and preprocessed the
functional images to extract whole-brain maps of fALFF and ReHo. They compared three
atlases, splitting the brains in different numbers of regions to extract mean region-wise
features which are fed to the machine learning models. They achieved better than chance
performance for prediction at each time point with both fALFF and ReHo, e.g. r-squared
of 0.304 and 0.242 for prediction of current severity with ReHo and fALFF respectively.
Finally, the authors discussed the most important brain regions for prediction. Although
most studies do not perform external validation, authors of Nguyen et al., 2021 confirmed
the predictiveness of their models on an external dataset, the next largest dataset available
at the time: the Parkinson’s Disease Biomarkers Program (PDBP) from NIH. On this
dataset, they found reproducible model performance.

Different criteria could be used to conclude on success of the reproduction and repli-
cation of this study: 1) if the models trained on fALFF and ReHo at each time points
showed better than chance performance in terms of R-Squared (R2) (R-squared - coef-
ficient of determination (R2) >0 and R2 >chance-model R2) when tested on the PPMI
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dataset using the evaluation procedure proposed in Nguyen et al., 2021 and 2) if these
models showed similar performance (R2 greater than 0 and absolute difference between
original and reproduction R2 less than 0.2) to those proposed in the original study. Our
main interests were to assess the difficulties and challenges of reproducing fMRI research
experiments, but also to further evaluate the impact of different analytical choices (e.g.
processing pipeline, choice of feature set, etc.) on the results of these experiments. In
this paper, we explore how these choices affect different parts of the analysis:

— Cohort selection and sample size,

— fMRI pre-processing pipeline,

— fMRI feature quantification,

— Choice of input features for machine learning models,

— Machine learning models choice and results reporting.

A primary purpose of this investigation is also to learn about the difficulties encountered to
reproduce neuroimaging studies, in particular in clinical research settings, and to provide
some recommendations on best practices to facilitate the reproducibility of such studies
in the future.

B.2 Materials and Methods

Our study consisted of two steps: a first replication attempt without contacting the
authors, using only publicly-shared resources available with the original paper, and a sec-
ond replication attempt after contacting the authors, to obtain more accurate information
on the original study. This two-step reproduction was meant to assess the challenges of re-
producing a study using only publicly available materials and to evaluate the contribution
of data and code sharing platforms to results reproducibility.

B.2.1 Dataset

As in the original study, we used data available from the PPMI dataset (Marek et
al., 2018), a robust open-access database providing a large variety of clinical, imaging
data and biologic samples to identify biomarkers of PD progression. The PPMI study
was conducted in accordance with the Declaration of Helsinki and the Good Clinical
Practice (GCP) guidelines after approval of the local ethics committees of the participating
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sites. We signed the Data User Agreement and submitted an online application to access
the data. More information about study design, participant recruitment and assessment
methods can be found in Marek et al., 2018. We note that access to such data does not
permit us to share such data on our own. Moreover, unlike code repositories with version
control numbering, most data repositories are not version controlled, making re-retrieval
of data years later thorny.

B.2.2 Summary of experiments

Reproducing an analysis can be challenging due to (1) the lack of specific information
on analysis pipelines, software versions, or specific parameter values, (2) the presence
of confusing terms in the available information, (3) the evolution of the software and
data materials used in the original study. Our reproduction study consisted of 5 global
steps: cohort selection, image pre-processing, imaging features computation, choice of
input features and model choice and reporting. We used the information available in the
original paper and for some parts of the analysis, we also had access to the code shared
by the authors on GitHub (e.g. for feature computation and machine learning models).
Though the authors also made their contact information plainly available, in our first
experiment we wished to work independently of any author contact. Under this scenario,
we had to make informed guesses due to the 3 types of challenges stated above, which
resulted in a high number of possible workflows. To evaluate the effect of each variation
at each step, we defined a default workflow to which each variation was compared to. At
each step, if a variation of the workflow was tested, the other steps were implemented
as in the default one. This default workflow was the most likely according to the code
shared along with the paper. Figure B.1 summarizes the different variations tested and
the default workflow.

B.2.3 Cohort selection

The cohort reported in Nguyen et al., 2021 was composed of the largest set of PPMI
available at the time, and consisted in 82 PD participants with rs-fMRI and MDS-UPDRS
scores obtained during the same visit. MDS-UPDRS Part III (motor examination) was
conducted when patients were under the effect of PD medication. Of these 82 participants,
53 participants also had MDS-UPDRS scores available at Year 1 after imaging, 45 at Year
2, and 33 at Year 4.

208



B.2. Materials and Methods
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Figure B.1 – Summary of the different workflows implemented to reproduce the results
of Nguyen et al., 2021 and explore their robustness to different analytic conditions. Bold
and bordered cells represent the implementation of the default workflow at each step, this
whole workflow is labeled Default workflow and is represented using a plain bold line.
The different variation workflows are represented in dashed lines: all steps different from
the variation follow the default workflow and each workflow corresponds to one variation
from the default one.
- Workflow 0 - reproduction using authors derivatives.
Variations of cohort selection (A):
- Workflow A.1 - default workflow with replication cohort.
Variations of pre-processing pipeline (B):
- Workflow B.1 - default workflow with FSL segmentation,
- Workflow B.2 - default workflow without structural priors,
- Workflow B.3 - fMRIprep pipeline.
Variations of feature computation (C):
- Workflow C.1 - default workflow with no Z-scoring,
- Workflow C.2 - default workflow with ALFF.
Variations of input features (D):
- Workflow D.1 - default workflow with no dominant disease side,
- Workflow D.2 - default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - default workflow with no imaging features,
- Workflow D.4 - default workflow with only imaging features.
Variations in model choice and reporting (E):
- Workflow E.1 - default workflow with paper’s nested cross-validation,
- Workflow E.2 - default workflow with only paper’s best model reporting.209
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B.2.3.1 Replication cohort

We first attempted to reproduce the cohort of Nguyen et al., 2021 using only the infor-
mation available in the code shared on GitHub and the paper. Based on this information,
we filtered the PPMI database using 4 criteria:

— Participants belong to the “Parkinson’s disease” cohort, as defined in PPMI.

— Participants have an fMRI acquisition and a MDS-UPDRS score, with MDS-UPDRS
Part III conducted ON-medication (“PAG_NAME" different from “NUPDRS3" in
the PPMI score file) computed at the same visit (same visit code in PPMI database).
Thus, only participants with valid values for MDS-UPDRS Part III score were in-
cluded in the cohort.

— Participants and visits were also filtered depending on the type of fMRI acquisition.
We queried the database with the exact same information as in the S1 Table of
the original paper (field strength = 3T, scanner manufacturer = Siemens, pulse
sequence = 2D EPI, TR = 2400ms, TE = 25ms).

— We also filtered the database to keep only participants for which the visit date
and archive date of the image was set before January 1st, 2020 (more than a year
before the original study publication) since without contacting the authors we had
somewhat imprecise information about the date the authors accessed the database.

This query involved both fMRI metadata obtained using a utility functions from the
Python packages livingpark-utils v0.9.3 and ppmi_downloader v0.7.4 and the MDS-UPDRS-
III file from the PPMI database.

Since the PPMI database does not permit querying the database at any prior time
point, we queried the database at the then current time. Specifically, we queried the PPMI
database on August 21st, 2023 and we included the participants selected using these filters
in the Baseline time point of our replication cohort. To find the participants who also
had a score available at Year 1, Year 2, or Year 4 follow-up, we looked for the visit date
associated with the MDS-UPDRS score at Baseline and searched for participants that
also had a score at 365 days (1 year) +/- 60 days (2 months), 2 × 365 days (2 years) +/-
60 days (2 months) and 4 × 365 days (4 years) +/- 60 days (2 months). This method was
also used by the original authors to search for their cohort at Year 1, Year 2, and Year 4
follow-up.
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B.2.3.2 Closest-to-original cohort

After contacting the authors (KPN and AAM), the exact participant and visit list
used at Baseline was provided to us. We queried the PPMI database using this list and
compared with our replication cohort.

The 82 participants of the original Baseline cohort were all included in our replication
cohort. For 4 of them, the visit used in our replication cohort was different from the one
used in the original cohort. For two participants, we used an earlier visit than the authors:
V06 (2 years) instead of V10 (4 years) and BL (baseline) instead of V04 (1 year). For the
last two participants that had different visits selected in the replication cohort, images of
the visits used by the original authors were not available in the PPMI database when we
queried it. We assumed that this issue resulted from the update of the PPMI database
in September 2021, and that there is no way to query prior versions of the database, and
that the original authors are not allowed to share the original images they obtained when
they accessed the database.

The 82 participants of the original cohort that were also included in our replication
cohort were used to build a “closest-to-original" cohort to compare with our original
cohort. The authors also provided the participant identifiers included at Year 1, Year
2 and Year 4, but we did not have the exact visit used at these time points. Thus,
for each time point, we searched for the participants involved in our replication cohort
for this time point that were in the list provided by the authors. Several participants
from the list provided by the authors were not found in our cohorts. When checking the
MDS-UPDRS-III files for these missing participants, we found the potential visit used by
the authors, but these did not meet the criteria set to select the valid MDS-UPDRS-III
scores (i.e. “PAG_NAME" was equal to “NUPDRS3" for these visits, but these were
discarded when selecting only ON medication scores). For one participant missing in the
Year 2 time point, we have not found any visit 2 years +/- 2 months after the Baseline
visit. The visit selected for this participant was different in our cohort compared to the
original authors cohort due to missing images, which could explain the reason for not
finding back this participant for the Year 2 time point. Table B.1 summarizes the cohort
selection process.
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B.2.4 Image pre-processing

We downloaded functional images from the PPMI database manually for all partic-
ipants selected in the replication cohort by using the image identifiers corresponding to
the participants and visits selected. We also downloaded T1w images corresponding to
the participants and visits selected in the replication cohort. If multiple T1w images
were available for a participant at a given visit, we selected the one with the smallest
identifier number (1st one in the meta-data table). Imaging data from the PPMI online
database were available in DICOM format. We converted them into the NIfTI format
and we reorganized the dataset to follow the Brain Imaging Data Structure (BIDS) (Gor-
golewski et al., 2016) (RRID:SCR_016124) using HeuDiConv v0.13.1 (Halchenko et al.,
2024) (RRID:SCR_017427) on Docker v20.10.16.

B.2.4.1 Default reproduction pipeline

To pre-process the data, we built a pipeline reproducing the one described by the
authors in Nguyen et al., 2021 without contacting them for any additional informa-
tion or code (which has since been provided). The paper mentions that fMRI im-
ages were first realigned to the mean volume with affine transformations to correct for
inter-volume head motion, using the MCFLIRT tool in the FSL toolbox (Jenkinson et
al., 2012) (RRID:SCR_002823). Then, images were brain-masked using AFNI 3dAu-
tomask (Cox, 1996) (RRID:SCR_005927). Non-linear registration was performed directly
to a common EPI template in MNI space using the Symmetric Normalization algorithm
in ANTS (Avants et al., 2011) (RRID:SCR_004757). For denoising, motion-related re-
gressors computed using ICA-AROMA (Pruim et al., 2015) were concatenated with the
nuisance regressors from affine head motion parameters computed with MCFLIRT and
mean timeseries of white matter and cerebrospinal fluid. These nuisance signals were
regressed out of the fMRI data in one step (i.e. all confounds concatenated in a single
matrix and regressed from voxels timeseries).

Using this information, we reproduced the closest-possible pipeline to this description.
We implemented this pipeline — referred to as the default workflow — using Nipype v1.8.6
(RRID:SCR_002502) (Gorgolewski, 2017), FSL v6.0.6.1, AFNI v23.3.01 and ANTs v2.3.4.
We executed the pipeline with a custom-built Docker image available on Dockerhub
https://hub.docker.com/repository/docker/elodiegermani/nguyen-etal-2021/general
and built using NeuroDocker (Kaczmarzyk et al., 2018) with base image fedora:36 and
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a miniconda v23.5.2-0 (Anaconda Software Distribution 2020) environment with Python
v3.10. All pre-processing, feature computation and model training were run using home-
made Boutiques descriptors using Docker v20.10.16 and Boutiques v0.5.25 (Glatard et
al., 2017). Boutiques descriptors for image processing and model training are available in
Zenodo (Germani, 2023a; Germani, 2023b).

In this default reproduction workflow, functional images were first realigned to the
middle volume using FSL MCFLIRT, using affine registration (6 degrees of freedom),
b-spline interpolation and mutual information cost function. The motion-corrected im-
ages were then skull-stripped using AFNI 3dAutomask with default parameters (clip level
fraction of 0.5). Following this, ANTs symmetric normalization algorithm was used to
normalize images to the MNI template. First, rigid, affine, and symmetric normalization
transformations from native to MNI space were computed using the first volume of the
brain-extracted functional images as source image and the MNI152NLin6Asym template,
with a 2mm resolution as reference. The exact MNI template used for registration was not
mentioned in the original paper. The choice of this particular template for our reproduc-
tion was due to the use of ICA-AROMA after registration. Indeed, to run ICA-AROMA in
the MNI space or without FSL registration transform matrices, images must be in FSL’s
default MNI space, which is the MNI152NLin6Asym (ICA-AROMA & fmriprep using
child template - fmriprep - Neurostars 2019). We downloaded this EPI template from C-
PAC: https://github.com/FCP-INDI/C-PAC/blob/main/CPAC/resources/templates.
We applied the computed transformations to functional images using ANTs also with
B-Spline non linear registration.

For denoising, we regressed out several nuisance signals from the fMRI data, as in
the original study. The 6 affine motion parameters computed using MCFLIRT were used
as regressors. In addition, we ran ICA-AROMA v0.4.3-beta on data already registered
in MNI space to extract motion-related components. All the components classified as
motion-related were added as regressors to each participants.

For White Matter (WM) and CerebroSpinal Fluid (CSF) signals, there was no infor-
mation about the method used by the authors to compute these signals in the original
paper. Thus, we implemented three different methods to reproduce the original workflow
but also to compare the impact of pre-processing pipelines on the results of the study.
In the default workflow, we chose to use AFNI to compute these regressors. We used
the structural T1w images downloaded from PPMI and ran several analysis steps: brain
extraction using 3dSkullstrip, segmentation using 3dSeg with defaults parameters, 3dCalc
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to extract the mask for WM and CSF, 3dResample to resample the masks to the func-
tional image using nearest-neighbors interpolation and 3dMaskave to extract timeseries
of voxels inside the WM and CSF masks. Then, we computed the mean timeseries across
these voxels for WM and CSF and added these signals as nuisance regressors.

B.2.4.2 Variations of the reproduction pipeline

We also compared this workflow with two other methods to extract WM and CSF
signals. The first method (pipeline B.1 - default workflow with FSL segmentation) used
tools from FSL instead of AFNI to extract structural-derived masks. In this pipeline,
BET was used to remove non-brain tissues from structural images, then the images were
segmented using FAST to extract WM and CSF masks. The masks were resampled to
functional images using affine registration implemented in FLIRT, and mean timeseries
inside each mask were extracted using FSL’s ImageMeants function in Nipype.

The second method (pipeline B.2 - default workflow without structural priors) did
not involve image segmentation. We used mask templates available in FSL and Nilearn:
MNI152_T1_2mm_VentricleMask from FSL for CSF, and WM brain-mask in MNI152
template resolution 2mm in Nilearn v0.10.2 (Abraham et al., 2014b) (RRID:SCR_001362)
for WM. The masks were resampled to the functional images using a nearest neighbors
interpolation in Nilearn, and mean timeseries inside each mask were also computed using
Nilearn.

In all reproduction pipelines, the nuisance signals were regressed from the functional
images in MNI space using FSL RegFilt. The denoised images were then used to compute
the imaging features passed as input to the machine learning models.

B.2.4.3 Other pipelines variations

To explore the robustness of the original results to variations in the workflow, we also
analyzed the functional and structural images using fMRIprep v23.0.2 (Esteban et al.,
2019) (RRID:SCR_016216), a robust pre-processing pipeline that requires minimal user
input. We used default parameters for fMRIprep, except for the reference template that
we set to MNI152NLin6Asym with a resolution of 2mm to be able to run ICA-AROMA
afterwards (ICA-AROMA & fmriprep using child template - fmriprep - Neurostars 2019).

Final preprocessed functional images in MNI space were then passed as input to ICA-
AROMA to obtain motion-related components. The 6 motion regressors, WM and CSF
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mean timeseries extracted by fMRIprep were concatenated to the timeseries of the motion-
related components identified by ICA-AROMA and regressed out from the pre-processed
images using FSL RegFilt, as in the reproduction pipeline. This pipeline is referred to as
B.3 - fmriprep pipeline.

B.2.4.4 Quality control

We implemented quality control checks at different steps of the pipelines. The purpose
of these controls was to explore quality of data, but we did not exclude any participant
due to data low quality, as this step was not performed in the original paper.

For each participant, we controlled the quality of functional pre-processing (motion
correction, brain masking, and registration to MNI space) by superposing the pre-processed
functional volume at each time point to an MNI-space brain mask, and visually inspecting
a pre-defined image slice for incorrect registration or masking. We also visually inspected
the 6 motion parameters identified during motion correction (rotation and translation in
the x, y and z directions). We also computed the frame-wise displacement (FD) of head
position as done in Power et al., 2014, calculated as the sum of the absolute volume-
to-volume values of the 6 translational and rotational motion parameters converted to
displacements on a 50 mm sphere (multiplied by 2 × π × 50). We explored these values
using the threshold used in Parkes et al., 2018 for the lenient strategy: identification of
participants with mean FD > 0.55mm. Segmentations masks for WM and CSF obtained
with the 2 different workflow variations were also visually inspected for failed segmenta-
tions. For the fMRIprep pipeline, we validated the quality of the processing using the
log files produced by the pipeline, since these produce the same outputs as the quality
control steps mentioned above.

B.2.5 Imaging features computation

In the original study, mean regional values of z-scored fALFF and ReHo maps were
used as input features to the machine learning models, in addition to several clinical and
demographic features. fALFF and ReHo were computed on the denoised fMRI data using
C-PAC (Cameron et al., 2013) (RRID:SCR_000862). Voxel-wise ReHo was computed
using Kendall’s coefficient of concordance between each voxel and its 27-voxel neighbor-
hood. For ALFF and fALFF, linear de-trending and band-pass filtering were first applied
to each voxel at 0.01–0.1 Hz, then the standard deviation of the signal was computed to
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obtain ALFF whole-brain maps. These maps were divided by the standard deviation of
the unfiltered signal to obtain whole-brain fALFF maps. Z-scores maps for ReHo and
fALFF were calculated at the participant-level.

For our reproduction, we used the original code used by the authors (see authors code).
We followed the exact same steps as in the original paper to compute the raw ReHo and
fALFF maps. However, a mask file was needed in the authors’ code to compute the
features. We thus applied AFNI 3dAutomask on the denoised fMRI data to obtain a
brain mask for each participant.

The initial code shared by the authors did not include any z-scoring of the whole-brain
maps for fALFF and ReHo, thus we used FSL’s ImageMaths function to compute the z-
score maps. Non z-scored maps (C.1 - default workflow with no Z-scoring) were also saved
and set as input to the models for comparison. We also considered ALFF instead of fALFF
as input measure (C.2 - default workflow with ALFF) as the authors also mentioned having
tested this feature. We note that for the second step of the reproduction experiment, the
authors of Nguyen et al., 2021 have supplied us with all derived maps.

In the original paper, regional features were extracted from the ReHo and fALFF
whole-brain maps using three different parcellations. These included the 100-ROI Schae-
fer (Schaefer et al., 2018) functional brain parcellation, modified with an additional 35
striatal and cerebellar ROI, and the 197-ROI and 444-ROI versions of the Bootstrap Anal-
ysis of Stable Clusters (BASC) atlas (Bellec et al., 2010). These parcellations were used to
compute the mean regional ReHo or fALFF values for each participant and performance
of the machine learning models were compared between the parcellations. For the first
step of the reproduction, we did not have access to the modified version of the Schaefer
atlas used by the original authors. Thus, we derived a similar custom atlas by using
the 100-ROI Schaefer atlas available in Nilearn, the probabilistic cerebellar atlas avail-
able in FSL, from Diedrichsen et al., 2009, and the Oxford-GSK-Imanova connectivity
striatal atlas from Tziortzi et al., 2014, also available in FSL. The cerebellar and striatal
atlases were respectively composed of 28 and 7 ROI, which was consistent with the 35
ROI mentioned in the original paper. We merged the ROI from the Schaefer, cerebellar
and striatal atlas in this order to build a custom 135-ROI atlas which we used to extract
regional features.

The three atlases were resampled to the whole-brain ReHo and fALFF maps using
Nilearn and a nearest-neighbor interpolation, as done by the authors. Mean regional
values for each imaging feature and parcellation were also extracted using Nilearn.
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We obtained from the authors the custom atlas used in the original analyses. We found
some slight differences between the cerebellar and striatal regions in the two atlases, e.g.
in terms of size of the regions or division in subregions. We compared the mean regional
values for the corresponding regions in the two atlases using paired two-sample t-tests.
Among the 82 participants at baseline, 19 had significantly different values at p < 0.05 for
fALFF and none at p < 0.01. Considering these small differences, we decided to report
the results only using our reproduction atlas.

B.2.6 Input features

B.2.6.1 Clinical and demographic features

In addition to imaging features, to better mirror clinical practices, the authors en-
deavored to integrated several clinical and demographic features as additional inputs to
the machine-learning models. Clinical features included disease duration, symptom du-
ration, dominant symptom side, Geriatric Depression Scale (GDS), Montreal Cognitive
Assessment (MoCA), and presence of tremor, rigidity, or postural instability at Baseline.
Baseline MDS-UPDRS score was also included as a feature when training models to pre-
dict outcomes at Year 1, Year 2, and Year 4. Demographic features included age, sex,
ethnicity, race, handedness, and years of education.

We searched for the mentioned input features using the study files in the PPMI
database, as done by the authors (see authors code). For each feature, we searched
for the corresponding columns in the study files and used the same character encoding
method as the authors.

To evaluate the robustness of the findings to different analytical conditions, we also
compared the results obtained with different sets of features. In pipeline D.4 - default
workflow with only imaging features, we trained models using only imaging features (re-
gional measures of fALFF and ReHo), i.e., without clinical or demographic features. In
pipeline D.3 - default workflow with no imaging features, we removed imaging features
and trained models only on clinical and demographic features. Following an update of the
PPMI database, the feature for dominant disease side was deprecated and only available
as an archive file in the version of the database we had access to. We included the feature
in the default workflow and removed it in another variation workflow, to assess the impact
of this feature (D.1 - default workflow with no dominant disease side). We did not contact
the authors for the values of these features that they had downloaded, through they did
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factor prominently into their results, in order to understand better the relevance of the
database update.

For models trained to predict MDS-UPDRS scores at Year 1, Year 2, and Year 4,
Baseline MDS-UPDRS score was included as feature. However, due to the potential large
effect of including this variable on the results, we trained a model with all features except
this one and compared the performance of prediction models with and without the feature
(D.2 - default workflow with no Baseline MDS-UPDRS).

B.2.6.2 Outcome measurement

In Nguyen et al., 2021, the authors used the above-mentioned imaging, clinical, and
demographic features to predict MDS-UPDRS total scores. The MDS-UPDRS score
consists of 4 parts with 51 items, each item values from 0 to 5. To compute the total
scores, we summed the values of the 4 different parts available in PPMI study files.
We used: MDS-UPDRS part Ia entered by a rater (PPMI column “NP1RTOT”), part
Ib for the patient questionnaire (column “NP1PTOT”), part II (“NP2TOT”), part III
(“NP3TOT”) and part IV (“NP4TOT”). Missing values in “NP4TOT” columns were
replaced with zeros, as done by the authors. There were no participants with missing
values for the other parts of the score.

B.2.7 Model selection and performance evaluation

We trained and optimized separate machine learning models to predict MDS-UPDRS
scores from either ReHo or fALFF features, along with clinical and demographic features.
Four machine learning models architectures were implemented using the latest version of
scikit-learn at the time of this experiment, v1.3.0 (Abraham et al., 2014b), and were tested
for each target-imaging feature (fALFF or ReHo) combination: ElasticNet regression,
Support Vector Machine (SVM) with a linear kernel, Random Forest with a decision tree
kernel, and Gradient Boosting with a decision tree kernel. We recognize that this version
of scikit-learn is likely newer than that used by the authors in 2022 and that we could
download a prior version of scikit-learn, but did not because we wish to evaluate the
relevancy of ML source code update. Each parcellation was also implemented, which
resulted in 12 different combinations of model and parcellation per imaging feature and
time point. All models were trained using our newer version of scikit-learn, we used the
set of hyperparameters available in the authors code to train and optimize the models.
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For hyperparameter optimization (1) and performance estimation (2), the authors used
a nested cross-validation scheme, i.e., each model architecture × hyperparameter × par-
cellation combination was evaluated using (1) a 10-fold cross-validation inner-loop applied
to the n-1 participants in the cohort and from which the combination with the lowest Root
Mean Squared Error (RMSE) was selected, (2) a leave-one-out (LOO) cross-validation
outer-loop where each iteration trained the selected model on all the participants in the
cohort except one, and tested the model on the remaining held-out participant. To evalu-
ate the impact of the evaluation pipeline on the results, we implemented a different nested
cross-validation loop for model selection and evaluation for the default workflow. Fig B.2
illustrates the different methods implemented. We evaluated the performance of each
combination of model × parcellation separately: the 10-fold cross-validation inner-loop
was used to select the set of hyperparameters (e.g. maximum tree depth for Random
Forests) with the lowest RMSE, this set was used to train a model on all except one
participants in the outer-loop and we tested the model on the held-out participant. Thus,
we obtained performance estimates for each model × parcellation combination.

We also reported results obtained using the exact nested cross-validation scheme ex-
plained in the paper (E.1 - Workflow with paper’s nested cross-validation), i.e., the perfor-
mance on each outer-fold is assessed with the best model × hyperparameter × parcellation
combination found on the 10-fold cross-validation of the inner-loop and averaged across
outer-folds. Finally, as authors reported only the best performing model and parcellation
for each imaging feature type and time point, we also reported the results we would have
obtained had we only used the best model and parcellation reported in the paper (E.2 -
Workflow with only paper’s best model reporting).

B.2.7.1 Evaluation metrics

As in the original paper, performance metrics included the R2, which represents the
percentage of variance explained by the model, and the RMSE, as implemented in scikit-
learn.

We defined a null performance to compare our R2 values to using permutation test.
We fixed the model and parcellation scheme with ElasticNet and Schaefer atlas. We ran
1000 permutations on the target labels and obtained performance for each feature and
timepoint. At each permutation, we performed a nested cross-validation with 5-folds
cross-validation as inner-loop and outer-loop. We optimized the hyper-parameter set of
the model as done with the “real" models in the inner-loop and evaluated performance on
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Figure B.2 – Workflow of model selection and performance evaluation. This workflow
represents one iteration of the outer-loop with Leave-One-Out cross-validation and is
iterated over all the dataset to estimate mean performance.

the outer-loop. R2 values obtained using the different workflows were compared to this
null performance to check if the models did not learn to predict only the average value.

To evaluate the models’ ability to classify high versus low severity participants, a
threshold was set to separate the participants and each model’s predictions were thresh-
olded post-hoc. This threshold was computed by using the average of the median MDS-UPDRS
score at each of the four time points. In Nguyen et al., 2021, the threshold was 35. We
computed this threshold the same way for the replication cohort and for the closest-to-
original cohort. We obtained a value of 36 for the replication cohort and 35 for the
closest-to-original one. Authors also mentioned having found no significant difference (p
>0.05) between the high and low-severity groups in motor predominance (Part III score
as a percentage of total score) at each time point. With our thresholds, we ran two
sample t-tests between high and low severity groups in the two cohort and did not find
any significant difference with α = 0.05 either in any cohort or time point. Performance
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metrics for this secondary classification outcome included area under the receiver operat-
ing characteristic curve (AUC), positive predictive value (PPV), negative predictive value
(NPV), specificity, and sensitivity.

B.2.7.2 Authors derivatives

Authors shared with us the derived data used in the original study (i.e. whole-brain
fALFF and ReHo maps for the original cohort). We applied our input features selection
(clinical and demographics) and machine learning model training and selection to these
data and computed the results for the Workflow 0. This allowed us to verify the repro-
duction of these steps and to get more information on the potential factors of variations in
the results (e.g., suppressing differences in the imaging processing, while retaining some
potential differences in the version of scikit-learn).

B.2.8 Feature importance

As in Nguyen et al., 2021, we measured feature importance in the models trained for
each time point and imaging feature (fALFF or ReHo). For the ElasticNet and SVM mod-
els, we used the coefficients of the trained models to determine feature importance, since
coefficients of higher magnitude indicate more important features in these two models.
The sign of the coefficient was indicative of whether the feature was positively or nega-
tively associated with the prediction target. For Random Forest and Gradient Boosting
models, we used impurity-based feature importance coupled with univariate linear corre-
lation to determine the direction of the association. Feature importance was computed on
each iteration of the outer-loop and the median importance was reported for each feature.

To name the imaging features, we used the same method as the authors of Nguyen
et al., 2021: the centroid of each feature’s ROI was computed, if the feature was located
in a ROI of the Automated Anatomical Labeling (AAL) atlas (Rolls et al., 2020), this
label was allocated to the ROI. If not, we searched for the nearest ROI of the AAL atlas.
Authors also sent us their ROI labels. However, since we decided to use the reproduced
Schaefer atlas, we used the reproduced labels in the figures for consistency.
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B.3 Results

B.3.1 Cohort selection

Using the method described above, we built two cohorts from the PPMI database: the
replication cohort and the closest-to-original cohort.

Table B.2 shows the demographics and Baseline clinical characteristics of the replica-
tion and closest-to-original cohorts compared to the original cohort reported in Nguyen et
al., 2021. The replication cohort was composed of respectively 102, 67, 61 and 46 partici-
pants for time points Baseline, Year 1, Year 2, and Year 4. The closest-to-original cohorts
at the same time points were composed of respectively 82, 51, 41 and 30 participants.

Compared to the original cohort, our replication cohort showed similar demographics
characteristics at each time point, except at Year 4 where our replication cohort showed
a significantly higher age on average than in the original cohort (p < 0.01). Regarding
clinical variables, mean MoCA score, GDS total score and Hoehn-Yahr stage were similar
between the two cohorts at all time points. However, we found higher mean disease
durations in the replication cohort than in the original one at all time points, for instance
at Baseline with (866.9 days ± 598.7 days) in replication vs (770 days ± 565 days) in
original. This difference was not significant at threshold p < 0.05. We also observed
lower mean MDS-UPDRS scores at Baseline in the replication cohort for all time points
except Baseline, with significant difference at Year 2 (p < 0.05) only. For these two time
points, even if mean Baseline scores in the replication cohort significantly differed from
the original ones, mean MDS-UPDRS scores at prediction time point were more similar
to the original one. At Year 4, however, we also found a higher mean MDS-UPDRS score
at prediction time point than in the original cohort, but this difference was not significant
at p < 0.05.

The closest-to-original cohort exhibited almost the same characteristics as the original
one at Baseline. For subsequent time points, we found some differences, in particular at
Year 2 and at Year 4: participants were older in the closest-to-original cohort than in
the original study at Year 4 (p < 0.05), Baseline mean MDS-UPDRS score was lower
(significant for Year 2 and Year 4 at p < 0.05 and p < 0.01 respectively) and mean
MDS-UPDRS score at prediction time point was similar to the original cohort except at
Year 4.

These differences for the Year 1, Year 2, and Year 4 cohorts could be related to the
evolution of the PPMI database in which sessions were added and removed since the
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authors queried it for the original study. For these time points, we were not able to find
all the participants that were included in the original cohort: the patients included in
our closest-to-original cohorts represented respectively 96% (Year 1), 91% (Year 2) and
91% (Year 4) of the patients included in the original cohort. However, only represented
76% (Year 1), 67% (Year 2), and 65% (Year 4) of the replication cohort was composed of
patients of the original cohort.
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Criterions N

PPMI global query - Baseline 102

Participants belonging to the list provided by the authors at
Baseline

82

Participants not belonging to the corresponding session list 4
Original session after the one obtained with PPMI query 2
Image of original session not available anymore in PPMI 2

PPMI global query - Year 1 67

Participants belonging to the list provided by the authors at
Year 1

51

Participants not belonging to original list 2
PAG_NAME was NUPDRS3 2

PPMI global query - Year 2 61

Participants belonging to the list provided by the authors at
Year 2

41

Participants not belonging to original list 4
PAG_NAME was NUPDRS3 3
Absence of corresponding score at follow-up time point 1

PPMI global query - Year 4 46

Participants belonging to the list provided by the authors at
Year 4

30

Participants not belonging to original list 3
PAG_NAME was NUPDRS3 3

Table B.1 – Summary of cohort selection procedure. PPMI global query corresponds to
the replication cohort, highlighted in blue. Participants belonging to the list provided by
the authors composed the closest-to-original cohort, highlighted in green.
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Part III, Chapter B – Reproduction and replication of a study: Predicting Parkinson’s disease
trajectory using clinical and functional MRI features

Fig B.3 compares the distribution of MDS-UPDRS scores in our cohorts with the
one in the original cohort reported in Fig S1 in Nguyen et al., 2021. Distributions of
MDS-UPDRS scores at Baseline were similar between our two cohorts but seemed different
from the original cohort one. The observed difference between the original and closest-
to-original distributions might result from differences in MDS-UPDRS score calculations,
or from the fact that different sessions were used for 4 of the participants in the closest-
to-original cohort compared to the original one. At Year 1, however, the closest-to-
original cohort presented a MDS-UPDRS score distribution more similar to the original
one than the replication one, suggesting that the differences at Baseline did not originate in
differences in MDS-UPDRS score calculations. We found no significant difference between
the distribution of MDS-UPDRS scores in the replication and closest-to-original cohort
neither at Baseline nor at Year 1 using Kolmogorov-Smirnov distribution testing.

B.3.2 Image quality control

After running the pre-processing pipelines, we checked the resulting images and looked
for potential pipeline failures. Regarding registration, all participants brains were cor-
rectly registered to the MNI space after visual inspection. Brain masking was also suc-
cessful for most of the participants, except for 2 in which we found a small artifact in
the inter-hemispheric area. Given the low magnitude of this artefact and its location, we
decided to keep these two participants in the study.

Most participants of the study showed high movement parameters. Indeed, out of 102,
80 showed at least one time point with a frame-wise displacement superior to 0.5mm.
However, since the authors in Nguyen et al., 2021 did not remove high-motion volumes
within participants, that removing volumes entirely can disrupt some derived values, and
that completely removing participants with high-motion volumes would highly decrease
our cohort’s sample size, we chose to keep all participants and all volumes.

Regarding segmentation masks, after visual inspection no significant artifact was found
for any participants using AFNI segmentation in default workflow. For some participants,
small distortions were found in particular close to brain extremities (inter-hemispheric area
or close to the skull in occipital and parietal regions). Using FSL segmentation however,
we found brain masking issues that had impacts on segmentation quality. We used BET
using default parameters to skullstrip images before segmentation and since we chose to
explore the impact of different default implementations of pipelines, we did not exclude
the segmentations for any participant nor segmentation workflow.
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B.3. Results

Figure B.3 – Distribution of MDS-UPDRS scores reported in the original paper’s cohort
(top: Fig S1 extracted from Nguyen et al., 2021), the replication cohort (middle) and the
closest-to-original cohort (bottom).

With the fMRIprep pipeline, observations were similar regarding movement parame-
ters and registration. There was no large artefact in the segmentation masks.

B.3.3 Performance of the default workflow

The first objective of this study was to reproduce the models described in Nguyen
et al., 2021 and to compare their performance with the one in the original study. In
our default workflow, we implemented the default choices described in Fig B.1: closest-
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Part III, Chapter B – Reproduction and replication of a study: Predicting Parkinson’s disease
trajectory using clinical and functional MRI features

to-original cohort, image pre-processing pipeline with AFNI segmentation, z-scoring of
whole-brain fALFF and ReHo maps, use of all demographic, clinical and imaging features
described in the original paper, and the model selection method derived from the authors’
code.

We trained 12 models per time point (Baseline, Year 1, Year 2, Year 4) and imaging
feature (fALFF or ReHo), corresponding to 4 machine learning models × 3 brain parcel-
lations. We reported for each imaging feature and time point the performance of the 12
models in Table B.3.

Chance levels were computed using permutation tests as described in the Evaluation
metrics section. We obtained R2 values that represented the chance prediction perfor-
mance at different time point for fALFF and ReHo. These values are also presented in
Table B.3.

Using the default workflow, we obtained prediction scores different but relatively con-
sistent with the results of Nguyen et al., 2021, for all models × parcellation combination.
At Baseline, our best model performed better than chance and we obtained a R2 value
close to the one reported in the original paper with the best model. However, the best-
performing models were different from those reported in the original study: instead of
Schaefer atlas and Gradient Boosting for both fALFF and ReHo features, we found for
fALFF the Gradient Boosting Regressor with BASC197 atlas, with R2=0.205 (original
R2=0.242) and ElasticNet and Schaefer for ReHo with R2=0.124 (original R2=0.304).

At Year 1, the performance of our models was better than reported in the original
study, with an increase of the R2 of 28% and 18% for fALFF and ReHo respectively. For
other time points (Year 2 and Year 4), results were slightly different from those reported
in Nguyen et al., 2021 but overall consistent. These differences were not constant between
ReHo and fALFF at Year 2, but were similar at Year 4: for fALFF, we obtained higher
R2 scores than in the original study at Year 2 and at Year 4 (0.529 and 0.397 compared to
0.463 and 0.152 in the original paper); for ReHo, we obtained lower R2 scores than in the
original ones at Year 2 (0.344 instead of 0.471) and higher R2 scores at Year 4 (0.312 com-
pared to 0.255 in the original study). For these two time points, the mean MDS-UPDRS
scores at Baseline were significantly different between the original cohort and our closest-
to-original cohort, which might explain these differences in performance. In this context,
the results observed remained similar in terms of effect size and reproduction remained
satisfactory.

At each time point, the best model x parcellation combination performed better than
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B.3. Results

chance-level. Some of the combinations led to very low performance, for instance SVM
with Schaefer atlas at Year 2. At every time point and with every feature (except at Year
1 with fALFF), at least one combination gave a performance lower than chance. This
highlight the importance of model selection and performance reporting, which were also
featured prominently in Nguyen et al., 2021. Some models may have not been optimally
tuned, and all models do not have equal capability due to their different functioning,
leading to lower performance. These low performance obtained with some models do not
put into question the other results, as these have been validated on an external dataset
by Nguyen et al., 2021.
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B.3. Results

B.3.4 Authors derivatives

In Fig B.4, we can see that using authors derivatives and thus, the original cohort,
we achieve performance that are very close to the original ones, except at Year 4. This
informs us on the quality of the reproduction of the clinical and demographic features
selection, but also on the machine learning models training and selection. We can also
suppose that the variations observed between the performance of the default reproduction
workflow and the original results are related to imaging features (pre-processing or feature
computation) or differences between cohorts.

B.3.5 Robustness to workflow variations

We assessed the performance of the different models for each time point and feature
for different variations of the analysis workflow (Fig B.4).

Workflow A.2, in which we trained the different models on the replication cohort
instead of the closest-to-original one, showed only small differences in R2 values with the
default workflow, except for fALFF at Year 1 and ReHo at Year 4. Indeed, performance
was slightly lower at Year 1 for fALFF and higher at Year 4 for ReHo, with raw effect
size above 0.15. At Year 1, the replication cohort was composed of 16 more participants
than the closest-to-original cohort and exhibited a lower mean MDS-UPDRS score at
Baseline compared to the original cohort. At Year 4, we also found differences in term of
sample size, age of participants and Baseline MDS-UPDRS score between the replication
cohort, the original one and the closest-to-original one. These differences might explain the
variations between models performance, even if R2 values remained better-than-chance
for Year 1 and close to other performance obtained with different variations. Best model
performance of workflow A.2 remained better than chance-level.

Performance of models trained with variations in pre-processing pipeline (workflows
B.1, B.2 and B.3 ) was similar to those of the default workflow, with R2 absolute dif-
ference with the default workflow below 0.15 except at Year 4 with fALFF in which the
B.2 workflow (no structural segmentation) led to lower R2 values and at baseline with
fMRIprep pipeline (B.3 workflow). For these, the best performance achieved was better
than chance.

Regarding the impact of feature computation variations (workflows C.1 and C.2 ), we
found better performance at Baseline for workflows C.2 - default workflow with ALFF in
which the best model × parcellation combination led to a better R2 value than the one
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reported in the original study (0.325 vs 0.242 in the original paper). We also observed
this phenomenon with the C.1 workflow in which we used non z-scored ReHo maps: we
found a higher performance than the one obtained with the default workflow and reported
in the original study (R2 = 0.374). For these two variations, R2 differences with default
remained lower than 0.1. At Year 1 and Year 4 with fALFF however, the use of ALFF
instead of fALFF (workflow C.2 ) led to lower performance (R2 mean absolute difference
above 0.15). This observation was not found at Year 2.

For Year 1 and Year 2 predictions, the set of input features (workflows D.) had a
large impact on the performance of these models. In particular, models trained without
Baseline MDS-UPDRS score (D.2) and with only imaging features (D.4) showed lower R2
values with for fALFF and for ReHo at Year 1 and Year 2 (R2 absolute difference above
0.2), which suggests that Baseline MDS-UPDRS played a central role in the prediction
of MDS-UPDRS at follow-up visits compared to imaging features. It also explains why
variations in the extraction of imaging features (pre-processing or computation) only had
a lower impact on the performance for these two time points.

Overall, at Year 1 and Year 2, performance seemed to be driven mostly by clinical and
demographic features, in particular by MDS-UPDRS Baseline scores. At Baseline and
Year 4, other variations related to image features (pre-processing and feature computa-
tion) were associated with larger changes in performance. For all workflows, time points
and feature, best performing model x parcellation combination always exhibited better
than chance performance.

B.3.6 Model choice and performance reporting

Table B.4 compares the results obtained using different model selection and evaluation
methods. Using the nested cross-validation described in the paper (Workflow E.1 ), we
obtained lower results than the original ones and than the ones obtained with our best
models for all time points (for instance, R2 = 0.049vs0.205 with our best model for
prediction with fALFF at Baseline). Using this method, the models at Year 1 and Year 2
were still well performing compared to other time point, for both ReHo and fALFF, with
particularly high R2 values (between around 0.4 and 0.6) obtained using any reporting
method.

Results computed using the same model and parcellation as the best performing com-
binations in the original paper (Table 2 from Nguyen et al., 2021) (Workflow E.2 ) also
had lower performance than in the original study, for all time points (e.g. R = −0.102 for
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Figure B.4 – Performance of models trained for prediction at each time point, using
fALFF or ReHo, with variations in the workflow. Boxes represent the performance (R2
values) of the 12 models (4 models × 3 parcellations). Green horizontal dashed lines show
the R2 value reported in the original study for the corresponding time point and feature.
Red horizontal dashed lines show the chance-level computed using permutation test. Raw
effect sizes (d) are computed as absolute difference between the mean R2 performance with
default workflow and mean R2 performance with other variations. Only large differences
(above threshold d = 0.15) are reported.
- Workflow 0 - reproduction using authors derivatives.
- Workflow A.1 - default workflow with replication cohort.
- Workflow B.1 - default workflow with FSL segmentation,
- Workflow B.2 - default workflow without structural priors,
- Workflow B.3 - fMRIprep pipeline.
- Workflow C.1 - default workflow with no Z-scoring,
- Workflow C.2 - default workflow with ALFF.
- Workflow D.1 - default workflow with no dominant disease side,
- Workflow D.2 - default workflow with no Baseline MDS-UPDRS,
- Workflow D.3 - default workflow with no imaging features,
- Workflow D.4 - default workflow with only imaging features.
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prediction with ReHo at Baseline). However, as observed for nested cross-validation, the
performance obtained with these models at Year 1 and Year 2 was still high and close to
the ones obtained with our best models. We speculate that the effect size detected with
models at these time points was large and thus, tended to be more reproducible across
optimization schemes.

In Nguyen et al., 2021, authors also report the model’s ability to classify high- versus
low-future severity subjects. The performance obtained for this task was consistent with
the observation made on R2 values: models with high performance in terms of R2 were
usually good at distinguishing high and low severity patients (e.g., AUC of 0.805 and 0.767
for prediction at Year 1 with respectively fALFF and ReHo using the default workflow).

B.3.7 Feature importance

To further explore the reproducibility and replicability of findings in Nguyen et al.,
2021, we measured feature importance for the ReHo and fALFF imaging features and the
default reproduction workflow, across all time points. Fig B.5 and B.6 compare the feature
importances obtained with the default workflow to the ones reported in the original study.

Feature importance showed relatively few overlap between the ones obtained using
our models and those reported in the original study, especially for imaging features, at all
time points. Note that the same mask Schaefer atlas that was used by Nguyen et al., 2021
was not used here. For instance, for fALFF at Baseline, the left postcentral region was
identified as the most important feature for prediction in our study and was not identified
in the original study. For ReHo, we found no important imaging feature that was similar
to the ones detected in the original study. However, for some brain regions for which an
imaging feature was identified as an important feature, hemispheric opposites or sub-parts
of the same global regions were identified in our models compared to the original detected
features. For instance, the middle cingulum was identified in our Baseline model with
ReHo but in the left hemisphere instead of the right one in the original paper. For this
model, regions of the frontal cortex were also detected as important in the original paper,
but those we found were very close or were part of the same lobe/region (e.g. frontal
supero-orbital and middle in original, frontal inferior in ours). Regions identified for
fALFF and ReHo were also different at Baseline, consistently with the findings of Nguyen
et al., 2021.

For other time points, the main feature of importance was the Baseline MDS-UPDRS
score for both fALFF and ReHo and other features had a lower importance value, in par-
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Time point Feature Type R2 RMSE AUC PPV NPV Spec. Sens.
Baseline fALFF Original 0.242 14.006 0.668 60.0% 74.0% 75.5% 58.1%

Default 0.205 14.26 0.584 51.7% 66.0% 71.4% 45.5%
Workflow E.1 0.049 15.6 0.514 42.3% 60.7% 69.4% 33.3%
Workflow E.2 -0.039 16.31 0.493 39.4% 59.2% 59.2% 39.4%

ReHo Original 0.304 13.415 0.674 59.4% 75.0% 73.5% 61.3%
Default 0.124 14.98 0.716 63.9% 78.3% 73.5% 69.7%
Workflow E.1 -0.164 17.26 0.528 43.8% 62.0% 63.3% 42.4%
Workflow E.2 -0.102 16.8 0.493 39.3% 59.3% 65.3% 33.3%

Year 1 fALFF Original 0.558 14.256 0.753 70.4% 80.0% 71.4% 79.2%
Default 0.717 11.6 0.805 75.9% 86.4% 73.1% 88.0%
Workflow E.1 0.569 14.3 0.786 73.3% 85.7% 69.2% 88.0%
Workflow E.2 0.453 16.11 0.69 62.9% 81.2% 50.0% 88.0%

ReHo Original 0.453 15.861 0.753 70.4% 80.0% 71.4% 79.2%
Default 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%
Workflow E.1 0.483 15.67 0.726 70.4% 75.0% 69.2% 76.0%
Workflow E.2 0.535 14.85 0.767 71.0% 85.0% 65.4% 88.0%

Year 2 fALFF Original 0.463 13.426 0.765 78.6% 76.5% 68.4% 84.6%
Default 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%
Workflow E.1 0.478 13.35 0.669 69.2% 66.7% 55.6% 78.3%
Workflow E.2 0.529 12.68 0.669 69.2% 66.7% 55.6% 78.3%

ReHo Original 0.471 13.322 0.739 75.9% 75.0% 63.2% 84.6%
Default 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%
Workflow E.1 0.272 15.76 0.607 63.3% 63.6% 38.9% 82.6%
Workflow E.2 0.344 14.95 0.635 65.5% 66.7% 44.4% 82.6%

Year 4 fALFF Original 0.152 14.957 0.636 64.7% 62.5% 62.5% 64.7%
Default 0.411 12.19 0.833 91.7% 77.8% 93.3% 73.3%
Workflow E.1 0.242 13.83 0.733 73.3% 73.3% 73.3% 73.3%
Workflow E.2 -0.134 16.92 0.633 66.7% 61.1% 73.3% 53.3%

ReHo Original 0.255 14.015 0.699 73.3% 66.7% 75.0% 64.7%
Default 0.312 13.18 0.667 72.7% 63.2% 80.0% 53.3%
Workflow E.1 -0.044 16.23 0.567 60.0% 55.0% 73.3% 40.0%
Workflow E.2 -0.23 17.62 0.6 63.6% 57.9% 73.3% 46.7%

Table B.4 – Performance reported using different model selection and evaluation meth-
ods. “Original" is the performance reported in the Original study (Nguyen et al., 2021).
“Default" is the performance obtained with the model × parcellation that obtained the
best performance during reproduction. “Workflow E.1" is the performance obtained when
using the nested cross-validation scheme described in the paper (i.e. optimizing model
× parcellation in the inner fold). “Workflow E.2" is the performance obtained with the
model and parcellation reported in the paper.
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Figure B.5 – Predictive features learned by the best performing models to predict
MDS-UPDRS score at each time point for the original study (left - extracted from Nguyen
et al., 2021) and the default workflow (right) using ReHo. Features with low importance
were not shown. Red bars indicate a positive association and blue bars indicate a negative
association. Stars (*) represent the presence of this feature in the original study and the
reproduction.
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Figure B.6 – Predictive features learned by the best performing models to predict
MDS-UPDRS score at each time point for the original study (left - extracted from Nguyen
et al., 2021) and the default workflow (right) using fALFF. Features with low importance
were not shown. Red bars indicate a positive association and blue bars indicate a negative
association. Stars (*) represent the presence of this feature in the original study and the
reproduction.
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ticular at Year 1 and at Year 2. This observation was also supported by the performance
of models that did not include the Baseline MDS-UPDRS score in their feature set: these
models showed lower performance at these two time points compared to the default mod-
els (p < 0.01). Note that, as shown in Fig B.6 and B.5, similar R2 is attained, though
through different sets of features. This is entirely plausible for multivariate machine learn-
ing models, and does not preclude the other set of features from not also being useful (e.g.
if default gets 0.717, it could be that the features from Original are still informative of
outcome).

B.4 Discussion

B.4.1 Summary

We investigated the reproducibility and replicability of the predictive models of PD
progression described in Nguyen et al., 2021. Using the default reproduction workflow,
i.e., with methods and cohorts closest to the ones described in Nguyen et al., 2021, the
performance of our best models was better than chance (R2 > 0). For both ReHo and
fALFF, we found slightly lower performance than the one reported in the original study
at Baseline with our default workflow. The performance were higher than in the original
study at Year 1, Year 2 and Year 4. These values remained close to those reported in
the original study and performance were better than chance, supporting the predicting
capability of the model reported in the original paper. Thus, using a cohort and methods
adapted from Nguyen et al., 2021, we were able to train several machine learning models
that predicted Parkinson’s disease progression (MDS-UPDRS scores at Baseline, Year 1,
Year 2, and Year 4) with a performance higher than chance and with values comparable to
those reported in the original study for most models. On these criteria, we could conclude
that the replication experiment was successful.

When training the models using the derived data computed by the authors at the
time of the original study (fALFF and ReHo whole-brain maps), we found very close
performance to the original ones, except at Year 4 with fALFF, where the default worklow
found even higher predictability. This confirms the quality of the reproduction for the
clinical and demographics feature selection and for the machine learning part. Thus,
differences in performance with our reproduction workflow could be explained by the pre-
processing pipelines and imaging features computation but also by differences between
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cohorts since our reproduction cohort contains, at baseline, 4 participants with different
sessions than the original ones. This also impacts follow-up time points cohorts, and
potentially the performance of the models. In addition, we found feature importance
values that differed —for some predictions— from the ones found by the authors. This
step was complex to reproduce since our best performing model x parcellation combination
did not match the ones reported in the original paper at several time points, which
questions the comparability of the features. When fitting a machine learning model,
similar performance can be achieved by different sets of features, which explains why
feature importance values might be inconsistent across models.

When introducing specific variations in the workflow, we managed to obtain results
that were more similar to the original ones than our reproduction ones, in particular
when changing the feature computation method at Baseline. Some changes in the default
workflow also led to lower performance, for instance at Year 1 and at Year 2 when removing
Baseline MDS-UPDRS score or when using only imaging features. For these time points in
particular, variations of the pre-processing pipeline (workflows B.), feature computation
(workflows C.) and model choice and reporting (workflows E.) had little impact on the
performance of the models compared to other time points. We speculate that imaging
features were of low importance in the models prediction for these time points compared
to other time points (Baseline and Year 4) for which variations on image computation
(pre-processing or feature) had a larger impact. Without variations (i.e. with the default
workflow), performance of models at Baseline and Year 4 time points was already low,
which also suggests that effect sizes detected by models were small and that these models
were underpowered (Button et al., 2013; Ioannidis, 2008a), making them more sensitive
to variations.

In the original study, authors also reported performance of the models evaluated on
an external dataset (Table 2 of Nguyen et al., 2021) and with Leave-One-Site-Out cross-
validation (LOSO CV) in the outer-loop compared to Leave-One-Out (LOO CV) in the
main study. They found similar performance at Year 1 (R2 over 0.5) with these variations,
comparable to the main results in Nguyen et al., 2021 which reported R2 up to 0.558.
Performance at other time points was not available for the external validation, but for
LOSO CV, models trained for prediction at Year 2 also performed very well and those of
time point Baseline and Year 4 exhibited lower prediction ability compared to the ones
tuned using the LOO CV scheme (main original workflow). These two comparisons are
consistent with our observations on the robustness to image features variations and of
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model selection at Year 1 and Year 2 and the higher sensitivity of models at Baseline and
Year 4.

When using a different cohort with distinctions in the distribution of the most impor-
tant feature (MDS-UPDRS score at Baseline) of the Year 1 model, a lower performance
was found using fALFF (p < 0.05) and ReHo. This performance remained high and close
to the one reported in the original study. Moreover, when removing specific clinical fea-
tures such as MDS-UPDRS Baseline scores, the performance models at Year 1 and Year
2 significantly dropped. This suggests that the robustness mentioned above was probably
dependant on the distribution of these measures. It would be interesting to assess the
interaction of variations in both cohorts, imaging features and input features sets to see if
the robustness to analytical variations was also present using the replication cohorts and
when increasing the importance of image features in the prediction.

B.4.2 Challenges of reproducibility studies

In our reproducibility study, several challenges were encountered, in particular related
to cohort selection, fMRI feature pre-processing, and results reporting. To extract the
same Baseline cohort as used in Nguyen et al., 2021, we first attempted to query the PPMI
database using the information available in the paper and the code shared by the authors.
This step was unsuccessful since we could not get the same sample size at Baseline (102
instead of 82 in Nguyen et al., 2021), and we decided to contact the authors who provided
us the exact subject and visit list used in the original study. With this list, we were able
to build a cohort with the same participants at Baseline. A potential solution to avoid
similar difficulties in future reproducibility studies would be to register cohorts obtained
from public databases under the same data usage agreements as the original data. In
the case of PPMI, a specific section of the online portal could be created to store cohort
definitions and associate them with published manuscripts.

Even with the original participant identifiers and visit list at Baseline, we could not
retrieve the same Baseline cohort in the PPMI database. Our closest-to-original cohort
included the 82 original participants, but for 5 of them, a different visit than the original
one was used. For 3 of these visits, we intentionally chose to keep the visits selected by
our first query to better fit with the description of the cohort in the paper. For the 2
other visits, the functional images corresponding to these participants and visits were not
available anymore in the PPMI database. Since the PPMI database continuously adds
new participant visits, we chose to keep only the visits that were added more than a year
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before the original study publication, since the original authors did not report the date at
which they queried the database. With this filter, the Baseline participants list and the
exact same code used to search for follow-up visits, the cohorts obtained for follow-up visits
were still dissimilar to the original ones, with more participants and several noteworthy
differences in clinical and demographic variables. A first step to solve this particular issue
would be to systematically report the date when databases are queried. However, the
issues faced when attempting to reproduce the original cohort in fact highlight the need
for version control in public databases, using tools such as DataLad (Halchenko et al.,
2021) that is for instance adopted in the OpenNeuro database (Markiewicz et al., 2021).
With version control, we would be able to retrieve the data from the database as it existed
on the date of the original query. In addition, authors would be able to cite the exact
version of the database used, which would importantly facilitate cohort reproductions.

Reproducing the fMRI pre-processing and feature computation pipelines described
in Nguyen et al., 2021 also raised challenges. First, although authors provided a descrip-
tion of the different pre-processing steps performed and tools used, exact reproductions
of neuroimaging pipelines require more detailed information — including specific param-
eters values, name and version of the standard template used, software versions — given
the overall complexity and flexibility of image analysis methods (Carp, 2012a). To re-
produce the pipeline used in Nguyen et al., 2021 without contacting the authors, we had
to make informed guesses about important parameters of the analysis. Some of these
choices were conditioned by the nature of the neuroimaging pipelines (e.g., the choice
of standard template to register functional images was constrained by the use of ICA-
AROMA) while other decisions were more arbitrary and led to multiple valid variations
(e.g., the computation of WM and CSF mean time-series for which we applied three dif-
ferent variations with different software packages and methods). Reporting guidelines,
such as COBIDAS (Nichols et al., 2017), were developed to help document analyses and
facilitate reproduction studies. However, to reproduce complete analyses, sharing the en-
tirety of the code used in the original experiment remains the most valuable information,
as it contains a both human and machine-readable description of the exact method em-
ployed. In our case the authors did provide all code and their custom atlas when asked.
Code-sharing platforms such as GitHub and GitLab are now widely available for this
purpose and long-term preservation of these code is supported by archive systems such
as Software Heritage (Cosmo et al., 2017; Abramatic et al., 2018) or Zenodo. We also
note that different journals have different requirements regarding what is to be submitted
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beyond the manuscript. The original paper (Nguyen et al., 2021) was published in P&RD
which at the time of publication of Nguyen et al., 2021 had minimal expectations beyond
the manuscript. The authors met these requirements and beyond, providing a public code
repository. Harmonization of such practice across journal would be highly beneficial to
help reproduction of studies.

The use of a custom-based atlas to parcellate the brain in the original study also
created challenges. Future reproducibility studies would benefit from comprehensive de-
scriptions of the methods used to create such custom data, access to the code to create
the data, and sharing of the data itself through platforms such as Zenodo, the Open-
Science Framework, Figshare, or NeuroVault (Gorgolewski et al., 2015). Such platforms
could also be used for sharing derived data, for instance whole-brain fALFF and ReHo
maps. However, Data Usage Agreements often requires that derived data have to be
shared under the same conditions. We emphasize again the need for specific platforms in
public databases to host data associated with a published manuscript, including cohort
descriptions and derived imaging data.

The authors of Nguyen et al., 2021 shared code used in the original study, in particular
for feature computation (fALFF and ReHo after pre-processing and clinical/demographic
features search in PPMI study files) and machine-learning models training. The avail-
ability of this code was extremely useful for our reproducibility study, and we warmly
acknowledge the authors for taking the time to share reusable code with their analysis.
Despite the availability of the code, we still faced some difficulties to reproduce the re-
sults presented in the original study, due to discrepancies between the methods reported
in the paper and the code shared, especially for the imaging feature computation, the
cross-validation procedure and the results reports. For instance, we were not able to
retrieve the Z-scoring of whole-brain fALFF and ReHo maps mentioned in the paper.
This discrepancy was likely due to the update of the C-PAC pipeline used by the authors
for pre-processing, in which the documentation still mentioned the possibility to output
Z-scored maps even if this option was not implemented anymore in the pipeline. This
reiterate the importance of code versioning and reporting software versions. The use of
software container engines such as Docker and Singularity in combination with frame-
works such as Boutiques (Glatard et al., 2017) or BIDS-Apps (Gorgolewski et al., 2017)
facilitates reproduction and reduces the technical work required to find and install the
software versions used in the original study. The authors in Nguyen et al., 2021report that
they have begun using both Singularity/Apptainer and Podman for this exact purpose.
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Regarding model selection and optimization, we highlight the complexity of nested
cross-validation schemes and the on-going debate on the choice of rigorous cross-validation
procedures (Wainer et al., 2018; Varoquaux et al., 2023). Here again, code sharing is
required to describe the exact evaluation method used in the original study. At this level
in the analysis, Jupyter notebooks (Kluyver et al., 2016) are an interesting option to
document code and mix it with data, natural text and figures. Initiatives were recently
launched to share reproducible Jupyter notebooks, such as NeuroLibre (DuPre et al.,
2022), a platform for sharing re-executable preprints. We created a Jupyter notebook
for our study, that we made publicly available at https://github.com/elodiegermani/
nguyen-etal-2021.

To conclude, we highlighted the challenges associated with the reproduction of neu-
roimaging studies. We discussed some of the specific difficulties encountered in our study,
as well as numerous success in reproduction, and provided some potential solutions to
further facilitate this process in the future, in terms of time cost and adequacy of the
reproduction. Nevertheless, given the complexity of the data, software and analyses re-
quired in current neuroimaging studies, reproducing existing papers remains extremely
challenging.
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Appendix C

REPRODUCTION OF ANALYSIS

PIPELINES: THE NARPS OPEN

PIPELINES PROJECT

In this supplementary chapter, we present the NARPS Open Pipelines Project, that
was presented at several hackathons (see C.1.4) and a use case of the codebase was the
subject of an abstract and a poster presentation at the 28th Annual Meeting of the
Organization for Human Brain Mapping (OHBM) in 2022:

• Title: fMRI data analysis: how does analytical variability vary with sample size?

• Authors: Elodie Germani, Camille Maumet

• HAL: inserm-03642535.

• Code: swh:1:snp:2e1634838081d6fd46177b674d9d891720f60752.

• Contributions (Credit taxonomy): Conceptualization, Formal analysis, Inves-
tigation, Methodology, Software, Visualisation, Writing.

C.1 The NARPS Open Pipelines project

A description of the project was published in the Proceedings of the OHBM BrainHack
2022 (Moia et al., 2024).

The goal of the NARPS Open Pipelines Project is to provide a public codebase that
reproduces the 70 pipelines chosen by the 70 teams of the Neuroimaging Analysis Repli-
cation and Prediction Study (NARPS) study (Botvinik-Nezer et al., 2020). The project is

244

https://inserm.hal.science/inserm-03642535
https://archive.softwareheritage.org/swh:1:snp:2e1634838081d6fd46177b674d9d891720f60752;origin=https://gitlab.inria.fr/egermani/analytic_variability_fmri


C.1. The NARPS Open Pipelines project

public and the code hosted on GitHub at https://github.com/Inria-Empenn/narps_
open_pipelines.

C.1.1 Description of the project

This project initially emerged from the idea of creating an open repository of fMRI
data analysis pipelines (as used by researchers in the field) with the broader goal to
study and better understand the impact of analytical variability. NARPS (Botvinik-
Nezer et al., 2020) – a many-analyst study in which 70 research teams were asked to
analyze the same fMRI dataset with their favorite pipeline – was identified as an ideal
usecase as it provides a large array of pipelines created by different labs. In addition,
all teams in NARPS provided extensive (textual) description of their pipelines using the
COBIDAS (Nichols et al., 2017) guidelines. All resulting statistic maps were shared
on NeuroVault (Gorgolewski et al., 2015) and can be used to assess the success of the
reproductions.

C.1.2 Reproduction of the pipelines

C.1.2.1 NARPS dataset

The dataset given to all teams participating in NARPS was designed to study the
neural basis of decision-making under risk (Botvinik-Nezer et al., 2019). During fMRI
acquisition, participants had to make a choice between options that yield different known
outcomes with known probabilities (e.g. 50% chance of either gaining 40 or to lose 20);
this type of trial is called a “mixed gamble task”. On each trial, participants were asked
to accept or reject a proposal in which they had an equal 50% chance of either gaining
or losing money. Based on previous literature, two groups of participants were defined in
which the only difference was the amount of money they could win or lose:

— in the equal indifference group, potential losses were half of the potential gains ;

— in the equal range group, the range of gains was equal to the range of losses.

The dataset was composed of raw data and preprocessed data. The raw data included
anatomical and functional images for each of the 108 subjects, organized using the BIDS
standard. The dataset also contained files concerning the tasks: repartition of participants
in the two groups and event files. For the preprocessed data, raw data included in this
dataset were preprocessed using fMRIprep (Esteban et al., 2019) (RRID: SCR_016216)
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version 1.1.4, an fMRI data preprocessing workflow that is robust to variations in acqui-
sition protocols and that does not require a lot of user input. Each participating team
could choose to use raw data or preprocessed ones.

C.1.2.2 Pipelines description

In the NARPS study, each participating team was requested to use their favorite
analysis pipeline and were asked to describe the pipeline they choose according to the
COBIDAS guidelines (Nichols et al., 2017). We used these descriptions to reproduce their
pipelines. Among the information they had to provide, there was for instance a description
of each preprocessing step, details about the statistical model used and parameters used
for the inference.

C.1.2.3 Implementation

To reproduce the pipelines, we used Nipype version 1.6.0 (RRID: SCR_002502) (Gor-
golewski, 2017), a Python project that provides a uniform interface to existing neuroimag-
ing software packages and facilitates interaction between these packages within a single
workflow. One of the main advantages of Nipype is that it allows efficient and optimized
computation through parallel execution plugins. Another one is that users can create
workflows using functions from different software packages without the need to switch
between scripts in different programming languages with a lot of manual intervention.

This choice of implementation cames with challenges. Indeed, even if the interface
with most neuroimaging software packages is easy to understand, it is sometimes not
straightforward to convert a pipeline described in the original software package in a Nipype
workflow (Chen et al., 2022). Moreover, some functions used in the pipelines to reproduce
might not be implemented in Nipype and in this case we have to choose between excluding
this pipeline or trying to find a similar function in another neuroimaging software.

C.1.2.4 Evalution of the reproduction

To assess the quality of a reproduction, each pipeline is tested by running on increasing
numbers of participants (from 20 to 108) and computing the Pearson’s correlation coef-
ficient between the reproduced statistic maps and the original ones shared by the teams
on NeuroVault (Gorgolewski et al., 2015).
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N. of participants 20 40 60 80 108
Min. correlation for validation 0.30 0.70 0.80 0.85 0.93

Table C.1 – Criteria for validating the reproduction of pipelines in the NARPS Open
Pipelines project

C.1.3 Current status of the project

This project was started during my Master 2 internship, and continued during the first
year of my thesis. This project obtained fundings from Région Bretagne (Boost MIND)
and by Inria (Exploratory action GRASP), which allowed the recruitment of a research
engineer (Boris Clenet) for 18 months and of a postdoctoral researcher for 5 months to
improve the project.

The work of Boris Clenet has greatly improved the accessibility and the quality of
the database. A good and exhaustive documentation was written for potential users and
for contributors. Today, thanks to his work, all the pipelines using SPM and FSL using
fMRIprep preprocessed data are now implemented in the database, most of them have
been validated and only a few remain to be tested (≈ 10). GitHub Actions workflows
have also been implemented enabling continuous integration, i.e. testing existing pipelines
everytime there are changes on them, and to detect typos errors in code comments and
documentations.

C.1.4 Outreach

This project was presented and received contributions during the following events:

— Empenn team hackathon (February 2024)

— Brainhack Marseille 2023 (December 2023)

— ORIGAMI lab hackathon (September 2023)

— OHBM Brainhack 2023 (July 2023)

— e-ReproNim FENS NENS Cluster Brainhack (June 2023)

— OHBM Brainhack 2022 (June 2022)

The project will soon be presented at the OHBM BrainHack 2024 in June 2024 at
Seoul, South Korea.
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C.2 Use case: Evolution of analytical variability with
sample size

C.2.1 Context

In Appendix Chapter A, we showed that low sample sizes were one of the cause for
the lack of reproducibility of research findings. First, low sample sizes are associated
with low statistical power, which decrease the probability of rejecting H0 when it is
actually false. Button et al., 2013 estimated the median statistical power of studies in
neurosciences between 8% and 31%, which is particularly low. Poldrack et al., 2017
computed the median sample size used in fMRI studies as 28.5 in 2015 and estimated
that the standardized effect sizes that would have been required to detect an effect with
80% power was 0.75 with this size of sample. Knowing that this size of effect is considered
as large - and given that most modern neuroimaging studies are built to probe effects that
are likely to be small such as variations that occur early in the development of a pathology
- this suggests that most studies use insufficient sample sizes.

If the use of small sample sizes could lead to incorrect findings due to a lack of statistical
power, it also increases the impact of instabilities on results. This has been studied
by Loken et al., 2017 who showed the effect of sample sizes on results obtained with
different levels of measurement errors. In a recent study, Klau et al., 2020 explored
the impact of multiple types of uncertainty for varying sample sizes for two associations
in personality psychology. An augmentation of sample size was shown to decrease the
vibration of effect caused by sampling uncertainty and other sources of uncertainties,
and, even if they remained non negligible, these vibrations stabilized above a certain
sample size.

Recently, the many analyst approach was used in many fields (Silberzahn et al.,
2018) to assess the impact of the flexibility of analytical approaches on the results. In
NARPS(Botvinik-Nezer et al., 2020), 70 teams used the same fMRI dataset to answer
the same research questions. The 9 hypotheses to answer were about the activation or
not of a specific area of the brain during a specific task. Each team was requested to
use their favourite pipeline. The 70 teams used 70 different pipelines and contradictory
results were found. For some hypotheses, there was a mutual agreement but for others,
there was no consensus with a percentage of teams giving a positive answer between 20
to 30%. Statistic maps corresponding to the result of a statistical test used to determine
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the significance of an activation on each point of the brain (or voxel of the image) were
also compared and few overlap was measured.

However, in NARPS, this instability on the results (which is an illustration of vibra-
tion of effects) was observed for analyses made with a dataset containing 108 partici-
pants (Botvinik-Nezer et al., 2019), which is nearly 4 times the median sample size of
fMRI studies in 2015 (Poldrack et al., 2017). Regarding the observations made by Klau
et al., 2020 on the evolution of vibration of effects with sample size, we can then ask how
it behaves when analyses are made with a smaller number of subjects in the context of
fMRI.

The goal of this project is to investigate the evolution of analytical variability with
sample size in the context of fMRI studies. We use the NARPS Open Pipelines codebase
to reproduce the statistic maps obtained by several teams of NARPS (Botvinik-Nezer
et al., 2020) and modify the number of subjects used to obtain these results to replicate
these statistic maps with smaller sample sizes. We use several metrics to measure the
evolution of vibration of effects with different sample sizes and try to find a sample size
for which vibrations stabilize.

C.2.2 Methods

C.2.2.1 Comparison with NARPS results

In NARPS, the rates of reported significant findings varied across hypotheses and for
some, the majority of the teams agreed (see Figure 1 in Botvinik-Nezer et al., 2020). We
considered that when the proportion of teams giving a positive answer to a hypothesis was
higher than 0.9 or lower than 0.1, it was a converging hypothesis. Using this threshold, a
total of 3 hypotheses were considered as converging: H7, H8 and H9.

However, since the proportion of teams giving a positive answer to these three hy-
pothesis was close to 0, we also wanted to study the evolution of vibration of effects for
a hypothesis for which a high proportion of teams reported an activation in the studied
area. Thus, we also added the hypothesis 5 for which 84% of teams gave a positive an-
swer. The 4 converging hypothesis were then: H5, H7, H8 and H9. To investigate how
the vibration of effects would behave with a smaller sample size, we used these converging
hypotheses and studied the evolution of this convergence with sample size.

We selected 3 sample sizes: N=20, 40, 60 participants as well as the complete dataset
comprising data from 108 participants to verify that the convergence of the hypotheses
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was replicated. An illustration of the workflow is presented in Figure C.1. For each sample
size, participants were randomly drawn to constitute a group of the wanted sample size.
Each sub-dataset of each sample size was analyzed with each pipeline yielding to a result
that consisted of 9 sub-results (i.e. 1 per hypothesis) each with one unthresholded statistic
map, one thresholded statistic map and an answer Yes/No to answer the corresponding
hypothesis.

One big fMRI dataset (108 subjects)

Many sub-datasets Many possible pipelines

...

Datasets of 
size N=20

Datasets of 
size N=40

OF SIZE NDATASETS 
OF SIZE N
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Figure C.1 – Workflow used to study the impact of sample size on vibration of effects

C.2.2.2 Measuring analytical variability

To explore the evolution of analytical variability with sample size, we compared the
thresholded and unthresholded statistic maps obtained with different sample sizes quali-
tatively and quantitatively.

For the quantitative measurements, we first extracted the statistic values of voxels
included in the ROI associated with each hypothesis in NARPS using Harvard/Oxford
atlas (Desikan et al., 2006). We explored the evolution with sample size of the maximum
statistic values inside the ROI for each hypothesis and computed the ratio largest/smallest
statistic value inside the ROI.
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C.2.3 Results

At the time of the study, 8 pipelines were fully reproduced in the NARPS Open
Pipelines Project: 6 using SPM (4 using fMRIprep preprocessed data, 2 using raw data)
and 2 using FSL (both using fMRIprep preprocessed data). For each hypothesis, we made
a visual between-pipeline comparison of thresholded and unthresholded statistic maps
obtained with the different sample sizes. Figure C.2 shows the comparison of statistic
maps obtained for H5 with the different pipelines and sample sizes. Looking at these
maps, we can see that for N = 20, few voxels were found activated for all pipelines. A
possible cause might be that, using a small sample size, the power of the statistic test
used in the group-level of the analysis was not sufficient to detect an activation, even if
there possibly was one. For higher sample sizes, maps answering the same hypothesis
showed differences in the number and location of activated voxels. For instance, with
N = 40, Q6O0’s map presented no activation whereas C88N and 2T6S’s ones showed
some areas of activation within the brain. For N = 108, Q6O0’s thresholded map also
contained less activated voxels than the two others. This observation was probably due
to the implementation of Q6O0’s pipeline that used age and sex as covariates for the
group-level analysis, whereas 2T6S and C88N did not, leading to a reduction of detected
effects that were considered as due to one of the covariates.

Figure C.3 shows the evolution of the maximum statistical value inside the ROI de-
pending on sample size for H5. With growing sample sizes, maximum statistical values
seems to converge, which is consistent with previous observations from Klau et al., 2020
that the vibration of effects reduces and stabilizes with larger sample sizes. In Figure C.4,
we can see the evolution of the ratio largest/smallest statistical value across all teams
inside the ROI for H5. We can observe a stabilization and convergence to 1.3 of the ratio
between the largest and the smallest maximum statistical values among all teams with
sample size, meaning that results across teams are getting closer.

C.2.4 Conclusion

With this work, our objective was to show the impact of sample size on analytical
variability. Our findings show that, in fMRI data analysis, the vibration of effects de-
creases with sample size. Our results also suggest that some variability remains even
for large sample sizes. Further work will be needed in order to include more pipelines
and investigate which part of the pipelines are the most impactful. The NARPS Open
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Figure C.2 – Thresholded and unthresholded statistic maps obtained with the different
pipelines and sample sizes for H5 “Negative effect in the Ventromedial Prefrontal Cortex
- for the equal indifference group”.
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Figure C.3 – Maximum statistical value inside the ROI of the ventromedial prefrontal
cortex depending on sample size for the 8 reproduced pipelines from the NARPS Open
Pipelines Project

Figure C.4 – Ratio largest/smallest maximum statistical value inside ROI of the ventrome-
dial prefrontal cortex across the 8 reproduced pipelines from the NARPS Open Pipelines
Project depending on sample size.
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Pipeline project is still ongoing, with more and more pipelines reproduced everyday. We
plan to submit a paper to describe the codebase as soon as possible.
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Appendix D

SUPPLEMENTARY MATERIALS FOR

CHAPTER 4

D.1 Model architecture

All models were implemented using PyTorch (Paszke et al., 2019) v1.12.0 (RRID:SCR_018536)
with CUDA (Cook, 2012) v10.2. For our model architectures, we chose to use 3-dimensional
convolutional feature extractors that take into account the three spatial dimensions of
fMRI statistic maps. Schematic representations of the architectures are available in Fig-
ure D.1 and Figure D.2.

D.1.0.1 Convolutional AutoEncoder

The base architecture of our CAE was inspired from Zhuang et al., 2019. Two archi-
tectures were derived from this base: a 4 layers and a 5 layers architecture, respectively
corresponding to the number of convolutional layers in each part of the CAE (encoder
and decoder). In the 4-layer model, the encoder part consisted in four 3-dimensional con-
volutional layers with respectively 64, 128, 256 and 512 channels. Each layer had a kernel
size of 3 x 3 x 3, a stride of 2 x 2 x 2 and a padding of 1 x 1 x 1. 3-dimensional batch nor-
malization layers (Ioffe et al., 2015) followed each convolutional layers with respectively
64, 128, 256 and 512 channels and a leaky rectified linear unit (ReLU) activation function
was used for all layers. The decoding part of the CAE was symmetric to the encoder,
except that 3-dimensional transposed convolutional layers were used instead of classic
convolutional layers. Transposing convolutions is a method to upsample an output using
learnable parameters. It can be seen as an opposite process to classical convolutions. To
keep the number of features symmetric at each layers output, the kernel size of the first
layer was set to 4 x 3 x 4 and to 4 x 4 x 4 for all other transposed convolutional layers.
Leaky ReLU activation function was also used for all layers except for the last one, i.e.
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Figure D.1 – Schematic visualisation of the architectures of the CAE (a) and CNN (b)
with 4 layers. The CAE is composed of an encoder and a decoder with respectively 4
convolutional and transposed convolutional layers. The size of the latent space is 512 *
3 * 4 * 3. The CNN has the same architecture as the encoder of the CAE with a fully-
connected layer added at the end of the network with different numbers of output node
depending on the dataset and the classification performed.

257



Part III, Chapter D – Supplementary materials for Chapter 4

1@48 x 56 x 48

64@12 x 14 x 12

128@6 x  7 x 6

256@3 x 4 x 3
512@2 x 2 x 2

256@3 x 4 x 3

128@6 x 7 x 6

64@12 x 14 x 12

1@48 x 56 x 48

Convolution 3D 
P: 1 x 1 x 1 ; 
S: 2 x 2 x 2
Batch Normalization
Leaky ReLu

Transposed 
Convolution 3D 
P: 1 x 1 x 1 ; 
S: 2 x 2 x 2
Batch Normalization
Leaky ReLu

3 x 3 x 3 kernels

4 x 3 x 4 kernels

4 x 4 x 4 kernels

3 x 4 x 3 kernels

32@24 x 28 x 2432@24 x 28 x 24

1@48 x 56 x 48

64@12 x 14 x 12

128@6 x  7 x 6

256@3 x 4 x 3
512@2 x 2 x 2

32@24 x 28 x 24

Number of 
classes

Output

...
...

...

...

...

...
...

...

...

...
...

...

...

...

...

...

...
...

...

...

...

...
...

...

...

...

...
...

...

...

...

...
...

...

...

...
...

...

...

...

...

...

Encoder Decoder

Encoder of 
pre-trained CAE

Fully connected 
layer 

Convolution 3D 
P: 1 x 1 x 1 ; 
S: 2 x 2 x 2
Batch Normalization
Leaky ReLu

(a)

(b)

Figure D.2 – Schematic visualisation of the architectures of the CAE (a) and CNN (b)
with 5 layers. The CAE is composed of an encoder and a decoder with respectively 5
convolutional and transposed convolutional layers. The size of the latent space is 512 *
2 * 2 * 2. The CNN has the same architecture as the encoder of the CAE with a fully-
connected layer added at the end of the network with different numbers of output node
depending on the dataset and the classification performed.
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the output one, for which a sigmoid function was used in order to obtain output values
between -1 and 1. The latent space for this model was of size 512 x 3 x 4 x 3. A schematic
representation of this architecture can be found in Figure D.1(a).

In the 5-layer model, one convolutional layer was added at the beginning of the encoder
with 32 channels and similar parameters as the other layers of the encoder. A transposed
convolutional layer was also added at the end of the decoder with 32 channels. The kernel
sizes in the decoder were also modified to maintain the feature map sizes: the first and
second layers of the decoder had kernel sizes of 3 x 4 x 3 and 4 x 3 x 4 respectively.
All other parameters, batch normalization layers and activation functions were the same.
The latent space for this model was of size 512 x 2 x 2 x 2. A schematic representation
of this architecture can be found in Figure D.2.

D.1.0.2 Convolutional Neural Network

The 3-dimensional CNN used for classification followed the architecture of the encoder
part of the CAE. In the same way as for the CAE, two CNN architectures were derived.
For each one, we took the corresponding architecture of the encoder (4 or 5 layers) and
added a fully connected layer at the end. The number of nodes in this layer varied de-
pending on the number of classes. A softmax activation function was used for this output
layer. Visual representation of the CNN are available in Figure D.1(b) and Figure D.2.
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E.1 Implementation settings

The neural network used in CCDPM to predict the noise follows a simple U-Net
architecture (Ronneberger et al., 2015) with two downsampling and upsampling blocks
with 3D convolutions layers and skip connections. The hyperparameters of the DDPM
are the following: t = 500 diffusion steps; linear noise schedule with variances in the
range of β1 = 104 and βt = 0.02; batch size of 8 and learning rate of 1e-4. The weight w

used to control the conditional guidance is optimized on the validation set by comparing
w = 0, w = 0.5 and w = 2 and a value of 0.5 was found to give the best results in terms of
Pearson’s correlation coefficient between the target ground-truth and the generated image
on this set. The model is implemented using PyTorch Paszke et al., 2019 and trained for
200 epochs on 1 GPU NVIDIA Tesla V100.

The CNN used to extract class conditional features is composed of five 3-dimensional
convolution layers with 3-dimensional batch normalization and leaky rectified linear units
(ReLU) activation functions, followed by a fully connected layer. The latent space cor-
responds to a 4, 096 flatten vector which is injected as conditioning to the U-Net. It is
trained for 150 epochs using a learning rate of 1e-4 and a batch size of 64 on 1 GPU
NVIDIA Tesla V100.

E.2 Supplementary Materials
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Mean = 2.32 
Standard deviation = 1.45
Minimum value = 0
Maximum value = 12

Figure E.1 – Histogram of the number of shared participants between two groups for each
pair of groups across the whole dataset. While shared participants between groups can
impact our results by slightly over-estimating our performance, the impact is likely to be
low due to the small number of shared participants (2.3 on average). In addition, this
has no impact the conclusions of our study on the comparison of performance between
different models as all models are trained and evaluated on the same sets of groups.

fsl-1 → spm-0 spm-0 → fsl-1 fsl-1 → spm-1 fsl-1 → fsl-0
Right-hand (included in training set)

Initial 76.2 76.2 82.6 91.0
StarGAN
(Choi et al., 2018)

90.6 87.1 87.7 91.8

Right-foot (NOT included in training set)
Initial 86.5 86.5 85.7 96.2
StarGAN
(Choi et al., 2018)

71.5 71.5 63.4 82.6

Table E.1 – Performance associated with four transfers for StarGAN applied on statistic
maps of a task seen during training (right-hand), versus a task non-seen during training
(right-foot). Initial represents the metrics between the source image (before transfer) and
the ground-truth target image.
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Figure F.1 – Adjacency matrix representing the number of times each pair pipelines belong
to the same community across different group-level statistic maps of the contrast left-hand
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Figure F.2 – Adjacency matrix representing the number of times each pair pipelines belong
to the same community across different group-level statistic maps of the contrast left-foot
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Figure F.3 – Adjacency matrix representing the number of times each pair pipelines belong
to the same community across different group-level statistic maps of the contrast tongue
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Figure F.4 – Mean statistic map for the contrast right-hand across groups (of participants)
for a representative pipeline of each community.

Figure F.5 – Mean statistic map for the contrast right-foot across groups (of participants)
for a representative pipeline of each community.
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Figure F.6 – Mean statistic map for the contrast right-hand across groups (of partici-
pants) for a representative pipeline of each community. Unthresholded maps (upper) and
thresholded maps (lower) with voxelwise FDR-corrected p < 0.05

Figure F.7 – Mean statistic map for the contrast right-foot across groups (of participants)
for a representative pipeline of each community. Unthresholded maps (upper) and thresh-
olded maps (lower) with voxelwise FDR-corrected p < 0.05

266



Appendix G

SUPPLEMENTARY MATERIALS FOR

CHAPTER 8

Figure G.1 – Bland-Altman P-P plots for pipelines with two different (right column)
parameters and with the same (left column) parameters within SPM. The grey shade
corresponds to the 0.95 confidence interval. A curve above (respectively below) the con-
fidence interval indicates invalidity (respectively conservativeness). Default parameters
values were modified to 5 mm smoothing, 0 motion regressors and no HRF derivatives to
explore the distribution of p-values with different fixed parameters.
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SPM
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

0 motion regressors 0.014 0.019 0.025 0.019
6 motion regressors 0.013 0.015 0.021 0.025
24 motion regressors 0.021 0.015 0.018 0.019

FSL
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

No motion regressors 0.01 0.013 0.014 0.014
6 motion regressors 0.015 0.017 0.017 0.022
24 motion regressors 0.017 0.02 0.014 0.012

Table G.1 – False positive rates for between-groups analyses using contrast maps without
post-processing with the same pipeline in both groups, with SPM and FSL and for all
possible sets of parameters (number of motion regressors, smoothing kernel FWHM and
presence or absence of HRF temporal derivatives).
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Titre : Exploration et atténuation de la variabilité analytique en IRM fonctionnelle par appren-
tissage de représentations
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Résumé : Les études d’imagerie cérébrale
sont soumises à un grand nombre de sources
de variabilité, à différents niveaux. Dans
cette thèse, nous nous intéressons aux va-
riations induites par différentes méthodes
d’analyse, également appelé variabilité ana-
lytique. Ce phénomène est désormais connu
dans la communauté, l’objectif est mainte-
nant de mieux comprendre les facteurs me-
nant à cette variabilité et de trouver des so-
lutions pour mieux la prendre en compte. Ici,
nous apprenons des représentations des ré-
sultats d’IRMf, une technique d’imagerie qui
permet d’étudier l’activité cérébrale, pour ré-
pondre aux défis liés à la variabilité analytique.
Tout d’abord, nous proposons deux solutions

pour faciliter la ré-utilisation des nombreuses
cartes statistiques disponibles dans les bases
de données publiques. Ensuite, nous explo-
rons l’espace analytique et présentons un en-
semble de données multi-pipeline que nous
avons utilisé pour explorer la stabilité des re-
lations entre les méthodes d’analyse et la
validité des études combinant des données
traitées avec différentes méthodes. Nos ré-
sultats montrent que nos solutions utilisant
l’apprentissage non supervisé, associées à
une meilleure connaissance de l’espace ana-
lytique, permettent le développement d’études
robustes avec des données plus nombreuses
et diversifiées provenant des données pu-
bliques.

Title: Exploring and mitigating analytical variability in fMRI results using representation learn-
ing

Keywords: Brain imaging, analytical variability, representation learning

Abstract: Brain imaging studies are sub-
jected to a large number of sources of vari-
ability, arising at different levels. In this the-
sis, we focus on the variations in the results
induced by different pipeline implementations,
also known as analytical variability. While this
phenomenon is now well known in the commu-
nity, there is a need for a better understanding
of the factors leading to this variability and for
solutions to take it into account when building
studies. Here, we aim at building comprehen-
sible and meaningful representations of fMRI
results, a brain imaging technique that ex-
plores brain activity under different contexts,
to answer different challenges related to ana-

lytical variability. In a first set of contributions,
we propose two solutions to facilitate the re-
use of the large amount of statistic maps avail-
able in public databases. In a second set of
contributions, we dive into the fMRI analytical
space and start by presenting a multi-pipeline
dataset that we used to explore the stability of
pipelines relationships and the validity of stud-
ies combining data processed with different
pipelines. Our results show that our methods
based on unsupervised learning, coupled with
a better knowledge of the analytical space,
could facilitate the development of studies with
larger and more diverse data by re-using pub-
lic data.
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