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Abstract

In a world where climate change is causing increasingly severe extreme weather events,
the study of such phenomena has become essential for risk management in many
fields. From climate sciences, with heavy rainfall and heatwaves to finance, with
stock market crashes, extremes are omnipresent. Specifically, the Extreme Value Theory
allows for modeling rare, previously unobserved events by extrapolating from the
largest observed data. For instance, the following application is crucial for constructing
appropriate coastal defenses against marine submersion : relying solely on past high
sea levels, without planning even higher levels, would be naive. Here, the "Peaks-over-
Threshold" perspective is adopted, meaning an observation is considered extreme if
it exceeds, in some sense, a high threshold. This thesis aims to enhance statistical
methods related to the prediction and modeling of extreme data using tools from
statistical learning. It is divided into two main parts.

First, motivated by the continuous improvement of measurement devices providing
increasingly precise temporal or spatial data, we study functional extremes, i.e., ex-
tremes of data explicitly dependent on a continuous variable such as time. To develop
a general viewpoint, we work within a separable Hilbert space, focusing on the L2[0,1]
space of square-integrable functions over [0,1]. We establish results concerning reg-
ular variation in this space, a fundamental assumption at the core of extreme value
theory. We propose characterizations involving only finite-dimensional objects and
non-trivial examples of random elements satisfying these assumptions. A second
aspect of this work involves developing probabilistic and statistical guarantees for
optimal finite-dimensional representation of functional extreme data through principal
component analysis. Experiments conducted on simulated and real datasets validate
the effectiveness of our dimensionality reduction procedure.

Second, we focus on the task of prediction in extreme regions. We construct a probabil-
istic framework suitable for regression where the input variable can be extreme but not
the output variable, contrasting with existing works that typically consider extremes
of the variable to be predicted. Specifically, we work within the context of the regular
variation with respect to a component. We outline several properties, usual to this type
of hypothesis, and provide examples through common regression scenarios that satisfy
this hypothesis, thereby demonstrating its relevance. From this established framework,
we derive results concerning risks and regression functions in extremes, leading to
the development of an algorithm for regression in extreme regions. We demonstrate
that an optimal regression function in regions far from the origin enjoys desirable
properties such as radial invarariance. We illustrate the strength of our algorithmic
approach on several simulated and real datasets, comparing it with standard regression
methods. After establishing the effectiveness of this method, we apply it to the study
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of skew surges and sea levels in Brittany. We aim to predict maritime extremes at a
Breton station with a short temporal record using data from stations with long-range
data histories. This procedure aims to augment historical extreme data to reduce
uncertainties in extreme estimations at this station. Alongside our regression method,
another multivariate extreme value modeling method is implemented to, for instance,
generate samples of extreme sea levels or skew surges.



Résumé

Dans un monde où le réchauffement climatique provoque de plus en plus de phénomènes
météorologiques extrêmes d’ampleurs croissantes, l’étude de tels événements devient
indispensable à la gestion des risques dans de nombreuses applications. Des sciences
du climat, avec les fortes précipitations et les vagues de chaleur, à la finance, avec les
krachs boursiers, les extrêmes sont omniprésents. Précisément, la théorie des valeurs
extrêmes permet de modéliser des événements rares, jusqu’alors jamais rencontrés, en
extrapolant à partir des plus grandes données observées par le passé. Par exemple,
l’utilisation de la théorie des valeurs extrêmes est cruciale pour la construction de
défenses littorales adaptées contre la submersion marine : considérer uniquement les
grandes hauteurs de mer passées, sachant qu’il en surviendra de plus en plus élevées,
serait naïf. Ici, le point de vue dit de "Dépassement d’un Seuil" est adopté, c’est-à-dire
qu’une observation est déclarée extrême si elle dépasse, en un certain sens, un seuil
important. Cette thèse vise à enrichir les méthodes statistiques liées à la prédiction et à
la modélisation des données extrêmes à partir d’outils provenant de l’apprentissage
statistique. Elle se divise en deux grandes parties.

Dans un premier temps, motivés par l’amélioration perpétuelle des appareils de mesure
fournissant des données temporelles ou spatiales de plus en plus précises, nous étu-
dions les extrêmes fonctionnels, c’est-à-dire les extrêmes de données dépendant ex-
plicitement d’une variable continue comme le temps. Afin de développer un point
de vue le plus général possible, nous nous plaçons dans un espace de Hilbert sépar-
able, avec en vue l’espace L2[0,1] des fonctions de carrés intégrables sur [0,1]. Nous
développons des résultats portant sur la variation régulière dans cet espace, hypothèse
fondamentale au cœur de la théorie des valeurs extrêmes. Nous proposons des cara-
ctérisations n’impliquant que des objets de dimension finie, ainsi que des exemples
non triviaux d’éléments aléatoires satisfaisant ces hypothèses. Un second pan de ce
travail réside dans l’élaboration de garanties probabilistes et statistiques permettant
une représentation optimale en dimension finie de données fonctionnelles extrêmes,
à travers leurs analyses en composantes principales. Des expériences sur des jeux de
données simulées et réelles témoignent de la légitimité de notre procédure de réduction
de dimension.

Dans un second temps, nous nous intéressons à la tâche de prédiction dans les régions
extrêmes. Nous construisons un cadre probabiliste adapté à la régression dans lequel
la variable d’entrée peut être extrême mais pas la variable de sortie, prenant à contre-
pied les travaux existants qui considèrent communément les extrêmes de la variable à
prédire. Précisément, nous travaillons dans le contexte de la variation régulière par
rapport à une composante. Nous développons les propriétés usuelles liées à ce type
d’hypothèses et proposons des exemples à travers des scénarios classiques de régression
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s’inscrivant dans ce cadre de travail, justifiant ainsi son bien-fondé. À partir de ce cadre
ainsi construit, nous établissons des résultats concernant les risques et les fonctions de
régression dans les extrêmes, permettant l’élaboration d’un algorithme de régression
dans les extrêmes. Nous démontrons qu’une fonction de régression optimale dans des
régions éloignées de l’origine admet certains attributs profitables. Nous illustrons la
puissance de notre approche algorithmique sur plusieurs jeux de données simulées et
réelles en le comparant à des méthodes de régression usuelles. Une fois la pertinence
de cette méthode prouvée, nous l’appliquons à l’étude de la surcote et des hauteurs
d’eau en Bretagne. Nous cherchons à prédire les extrêmes maritimes à une station
bretonne avec une courte profondeur temporelle à partir de stations présentant un
grand historique de données. Cette procédure a pour objectif de compléter les données
extrêmes passées pour réduire les incertitudes liées aux estimations extrêmes à cette
station. En plus de notre méthode de régression, une autre méthode de modélisation
des valeurs extrêmes multivariées est mise en place pour permettre, entre autres,
d’obtenir un générateur de hauteurs d’eau ou de surcotes extrêmes.



Notation

C[0,1] space of real-valued continuous functions over [0,1]

C(M,I) space of continuous functions from M to I

C0(M) set of real-valued continuous functions on M\{0M}

D[0,1] space of real-valued càdlàg functions over [0,1]

ℓ2 space of square summable real-valued sequences

L2[0,1] space of square-integrable real-valued functions over [0,1]

H a separable Hilbert space

S,Sd−1 unit sphere, unit sphere of Rd

B unit ball

B(0, r) ball of radius r

∂A boundary of A

Ac complement space of A

Ā closure of A

tA {ta,a ∈ A}

∥ · ∥,∥ · ∥p norm/Lp-norm in H or Rd

⟨·, ·⟩ scalar product in H

∥ · ∥op,∥ · ∥HS(H),∥ · ∥tr operator/Hilbert-Schmidt/trace-class norm

HS(H) space of Hilbert-Schmidt operators of H

h1 ⊗ h2(h) ⟨h1,h⟩h2

πN (x) (⟨e1,x⟩, ...,⟨eN ,x⟩) for (ei)i≥1 a Hilbert basis

ΠV projection on V

ρ(V ,W ) ∥ΠV −ΠW ∥HS(H)
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L(X) distribution of X

L(Y | X) conditional distribution of Y given X

L(Xn)→L(X)

Xn
d→ X

Xn
w→ X


Xn converges in distribution to X

Θ X/∥X∥

X(k) k-th order statistic

R ∥X∥

X ∼ P X is distributed according to P

P areto(α) Pareto distribution with parameter α

B(M) Borel σ -algebra of M

Gµ,σ ,ξ GEV cdf with parameters (µ,σ ,ξ)

Hµ,σ ,ξ GP cdf with parameters (µ,σ ,ξ)

Fσ,ξ,κ EGP cdf with parameters (σ,ξ,κ)

RVρ Set of regularly varying real-valued functions and random
variables with index ρ

RVρ(M) Set of regularly varying M-valued functions and random vari-
ables with index ρ

µ exponent measure

Φ angular/spectral measure

M0 set of Borel measures on M\{0M}

µn
M0→ µ µn converges to µ in M0

a ≥ b ∀j ∈ {1, ...,d}, aj ≥ bj

a ⩽̸ b ∃j ∈ {1, ...,d}, aj > bj

x+ max(x,0)

⌊x⌋ integer part of x

θ(x),θ(x) x/∥x∥, x/∥x∥

zi:j zi , ..., zj

SA(n) shatter coefficient of A of size n

VA VC-dimension of A



Abbreviation

a.s. almost surely

cdf cumulative distribution function

EGP Extended Generalized Pareto

ERM Empirical Risk Minimization

EVA Extreme Value Analysis

EVT Extreme Value Theory

FDA Functional Data Analysis

GEV Generalized Extreme Value

GP Generalized Pareto

HS Hilbert-Schmidt

MAE Mean Absolute Error

MGP Multivariate Generalized Pareto

MSE Mean Square Error

OLS Ordinary Least Square

PCA Principal Component Analysis or Decomposition

PoT Peaks-over-Threshold

RF Random Forest

RMSE Root Mean Square Error

RV Regular Variation

SL Sea Level

SS Skew Surge

SVR Support Vector Regression

VC Vapnik-Chervonenkis

w.r.t. with respect to
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1.1 Motivations

On February 1st, 1953, a catastrophic storm struck Northern Europe, affecting the
Netherlands and the United Kingdom. The storm overwhelmed most sea defenses,
leading to an unprecedented flood that claimed over 2,000 lives, with more than 1,800
fatalities in the Netherlands alone. Following this tragic event, the Dutch government
faced a crucial question: how high should the new dikes be built to mitigate economic
impact and prevent future disasters of this magnitude? This question hinges on determ-
ining the maximum sea levels that can be expected over the next hundred or thousand
years. Traditional statistical methods fall short in addressing this issue because they
require making inferences over a longer period than the available observational data.

Extreme value theory provides the necessary statistical tools to investigate such rare
events. This theory focuses on understanding events with low probabilities that lie
outside the bulk of the distribution, yet hold significant importance across various
fields. These events, which lie outside the bulk of the distribution, could, however, be
crucially important in a wide range of applications, from risk management in finance
or insurance to extreme event modeling in climate science, such as heavy rainfalls or
heatwaves, by predicting extreme air pollution levels or extreme loads on network
traffic in health sciences or telecommunications.
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14 CHAPTER 1. INTRODUCTION

Figure 1.1: North Sea flood in Netherlands, 1953 (photo from Watersnoodmuseum).

In this thesis, we explore the intersection of extreme value theory and statistical learn-
ing, a branch of statistics aimed at predicting and modeling data patterns. Our focus
is on two main areas of statistical learning: functional data analysis and regression.
Functional data analysis deals with data that are functions, depending on continu-
ous variables like time or space. With advancements in sensor technology, providing
massive and increasingly granular measurements, modeling functional extremes, such
as large energy loads or significant precipitation over time, has become essential. Re-
gression, one of the most fundamental tasks in statistical learning, involves learning
predictive functions from labeled examples to make predictions on new, unlabeled
data. While predictive functions typically target the bulk of the distribution, it is of
vital interest in many applications to develop models that specifically address examples
outside the core distribution, particularly those of an extreme nature.

1.2 State-of-the-art

Extreme value theory (EVT) and statistical learning are two branches of statistics that
have been actively researched for many decades. EVT focuses on modeling rare events,
while statistical learning encompasses methods for learning patterns and features
from data. Recently, there has been growing interest in applying statistical learning
tools to improve the study of extremes, particularly in unsupervised learning contexts.
Examples include dimensionality reduction through multiple subspace clustering
in Goix et al. (2016, 2017); Chiapino et al. (2019); Simpson et al. (2020); Meyer and
Wintenberger (2021, 2023), as well as Principal Component Analysis (PCA) in Cooley
and Thibaud (2019); Drees and Sabourin (2021). Central to Chapter 6, dimension
reduction for extremes are broadly presented in Section 1.2.2. In addition, there has
been notable exploration in clustering methods Janßen and Wan (2020); Vignotto et al.
(2021), graphical models Engelke and Hitz (2020), and applications such as anomaly
detection Chiapino et al. (2020); Vignotto and Engelke (2020) (see Section 1.2.2 for
additional references). In the supervised setting, the predominant focus in the literature
revolves around predicting extreme values of the target variable Y Aghbalou et al.
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(2024a) or tackling extreme quantile regression through methods such as gradient
boosting Velthoen et al. (2023) or random forests Gnecco et al. (2024).

To our knowledge, the only work that addresses predicting a target variable Y based
on extremes values of the input variable X1 is by Jalalzai et al. (2018). This study
develops an Empirical Risk Minimization (ERM) framework for binary classification
with extreme covariates, assuming that the conditional distributions of X given Y = ±1
are regularly varying (see Chapter 2 for more details). The authors construct then a
regression function adapted to the ERM problem ming Lt(g) = P(Y , g(X) | ∥X∥ ≥ t) for
some norm ∥ · ∥. Part III of this thesis aims to extend these results to the regression
problem, establishing sufficient and reasonable conditions for statistical regression
with a continuous target and an appropriate real-valued loss. Specifically, we seek to
extend the non-asymptotic statistical guarantees provided for extreme classifiers to
extreme regression functions.

Recent developments in concentration inequalities within extreme settings are note-
worthy. To our knowledge, the first of this kind is due to Boucheron and Thomas
(2012) (see also Boucheron and Thomas (2015)), which proves concentration bounds
for extreme order statistics. In a different approach, another pioneering work that
has influenced many subsequent studies is Goix et al. (2015), which presents general
concentration inequalities for low-probability events and applies them to classification
settings. These results form the basis for the non-asymptotic work in Jalalzai et al.
(2018). Further, the authors in Clémençon et al. (2023) provide statistical bounds on
using the empirical marginal standardization (see Equation (2.10) and Remark 7.3 for
more details) instead of the true (unknown) marginal standardization in the classi-
fication procedure. Concentrations inequalities are also for extreme cross-validation
problem Aghbalou et al. (2023) (also based on Goix et al. (2015)) and for imbalanced
classification Aghbalou et al. (2024b), where the minority class corresponds to extremes.
General concentration inequalities, part of the Vapnik-Chervonenkis (VC) theory, for
extremes have also been broadly developed in Lhaut et al. (2022) and Lhaut and Segers
(2021). In Chapter 6, concentration inequalities are used extensively to control the
reconstruction error related to the Principal Component Decomposition (PCA) of a
Hilbert extreme random element and to bound the maximal deviation between an
extreme regression risk and its empirical counterpart in Chapter 8. More details on
concentration inequalities can be found in Chapter 4.

In the rest of this section, we delve deeper into two particularly active lines of research
at the intersection of statistical learning and EVT. Section 1.2.1 discusses functional
approaches for EVT, specifically covering the general theory in general metric spaces
and in the space of continuous functions over [0,1]. In Section 1.2.2, dimension
reduction techniques, such as clustering or PCA, for extremes are presented, with a
focus on anomaly detection. In a final section, we review existing research on a critical
applied fields for EVT: the modeling of extreme sea levels and the crucial estimation of
return periods.

1For clarity, throughout this thesis, multivariate quantities are bolded when necessary, such as x ∈Rd ,
to distinguish sample observations from vector coordinates. Univariate or Hilbert quantities are denoted
in the traditional manner, such as x ∈R or h ∈H, as no confusion is likely to arise in these cases.
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1.2.1 Functional extremes

The ubiquity of sensors providing ever more precise massive measurements of time - or
space - dependent quantities has highlighted the importance of understanding continu-
ous data, known as functional data. Functional Data Analysis (FDA) is a specialized
branch of statistical studying infinite-dimensional data which has garnered the interest
of research for many years. The monographs Hsing and Eubank (2015), Horváth and
Kokoszka (2012) and Ramsay and Silverman (2005), offers a comprehensive overview
of this fields from the theoretical foundations to the various applications of FDA. The
increasing availability of data of functional nature opens new roads of research, such
as exploring functional extremes. This area of study is a well-established and active
area of research in spatial statistics, as highlighted by the recent review by Huser and
Wadsworth (2022).

Most existing studies on functional extremes focus on the continuous case, following in
the footsteps of seminal works on Max-stable processes (De Haan (1984); De Haan and
Ferreira (2006)): the random objects under study are random functions in the space
C[0,1], i.e., the space of continuous functions on [0,1] endowed with the supremum
norm. In the Peaks-over-Threshold (PoT) framework, the focus lies on the asymptotic
distribution of rescaled observations, conditioned on their norm exceeding a threshold,
as this threshold tends to infinity. The extremality of an observation is measure using
its supremum norm. The resulting limit process in this context is a Generalized Pareto
process (see, e.g., Ferreira and de Haan (2014)). Unlike finite-dimensional contexts,
defining extremes in infinite-dimensional spaces necessitates selecting a specific norm
due to non-equivalence among norms. This choice holds significant practical relevance;
for example, in flood risk assessment, it might be more pertinent to analyze total daily
precipitation rather than maximum daily precipitation over a short period. This critical
norm selection motivates the research of Dombry and Ribatet (2015), who explore
alternative definitions of extreme events through a homogeneous cost functional,
leading to the development of r-Pareto processes. Additional details and precise
definitions about extremes in C[0,1] are provided in the dedicated Section 2.2.2.

Some exceptions to the continuous case exist, e.g., the functional Skorokhod space
D[0,1] equipped with the J1- topology has been considered in several works (see
Davis and Mikosch (2008); Hult and Lindskog (2005) and the references therein), and
upper-semicontinuous functions equipped with the Fell topology are considered in
Resnick and Roy (1991); Molchanov and Strokorb (2016); Sabourin and Segers (2017);
Samorodnitsky and Wang (2019).

A classic assumption in EVT suited for the PoT framework is to assume that the
observed random variable X is regularly varying, that is that the rescaled distribution
t−1X, conditioned on a excess of its norm above a threshold ∥X∥ ≥ t converges to some
limit random variable X∞, as the threshold grows to infinity, i.e., L(t−1X | ∥X∥ ≥ t)→
L(X∞) as t → +∞ (see the monographs Resnick (1987, 2007) for a comprehensive
presentation of Regular Variation (RV) in the multivariate case). Hult and Lindskog
(2006b) extend the notion of RV, initially defined on a Euclidean space, to measures
on complete and separable metrics spaces. In this context, the authors characterizes
the RV of a random element X through two conditions: the real RV of its norm ∥X∥
and the weak convergence of its angle Θ = ∥X∥−1X given that ∥X∥ exceeds a threshold
∥X∥ ≥ t towards a limit angular random element Θ∞ as the threshold tends to infinity,
L(Θ | ∥X∥ ≥ t)→L(Θ∞) as t→ +∞ (see, e.g., Segers et al. (2017); Davis and Mikosch
(2008)).
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While RV theory has been extensively studied in C[0,1] and has strong theoretical
bases in general metric spaces, it has received far less attention in L2[0,1], the space
of square-integrable real-valued function over [0,1], and more generally, in general
separable Hilbert spaces. We propose in Chapter 5 to formalize this concept, in the
framework of Hult and Lindskog (2006b).

One of the primary interests for working in a separable Hilbert space is to consider
the principal component decomposition of a random element (see Section 3.3 in
Chapter 3 for details). Extreme Value Analysis (EVA) of functional PCA with L2-valued
random functions has already been considered in the literature, from a quite different
perspective however, leaving some questions unanswered. In Kokoszka and Xiong
(2018), the authors assume RV of the scores of a principal component decomposition,
(i.e., the random coordinates of the observations projected onto a L2-orthogonal family)
and they investigate the extremal behavior of their empirical counterparts. In Kokoszka
et al. (2019) and Kokoszka and Kulik (2023), RV is assumed and various convergence
results regarding the empirical covariance operators of the random function X (not
the angular component Θ) are established, under the condition that the RV index
belongs to some restricted interval, respectively 2 < α < 4 and 0 < α < 2. In Kim and
Kokoszka (2022), extremal dependence between the scores of the functional PCA of
X is investigated. They prove on this occasion that RV in L2[0,1] implies multivariate
RV of finite-dimensional projections of X. However, the converse of this conditional
statement is not investigated. Kim and Kokoszka (2024) generalize the notion of
correlation coefficient for functional extremes.

The aforementioned works involve PCA for extremes of L2[0,1]-random function, in
one way or another, but there has been limited exploration of the principal component
decomposition of a regularly varying element. In Chapter 6, under RV of X, we propose
a investigation of the convergence of the PCA associated with Θ towards the PCA of
Θ∞. Herein, the value of the RV index is unimportant as the PCA that we consider is
that of the angular component Θ of the random functions.

1.2.2 Dimension reduction for extremes

The advancement in data acquisition devices has led to an increase in the availability
of massive measurements, which both motivates the development of statistics for
functional data and presents challenges. On one hand, more available data allows
for more precise studies. On the other hand, analyzing high-dimensional data is
challenging due to the difficulty of identifying the informative parts and the heavy
computational demands of processing these data in complex machine learning tasks.
This ambivalence in high-dimensional statistics is often referred to as the "curse of
dimensionality" (Giraud (2021)). In applications such as neuroscience and image
processing, where data dimensions can explode, it becomes crucial to reduce the
dimensionality to retain only essential characteristics.

In recent years, interests in high dimensional EVT problems have surged. Since EVA
focuses on a restricted part of the data, the effective size of the dataset used for infer-
ence can be relatively limited, highlighting the importance of dimension reduction
techniques adapted to extreme settings. An active line of research concerns unsuper-
vised dimension reduction for which a variety of methods have been proposed over
the past few years, some of them assorted with non-asymptotic statistical guarantees
relying on suitable concentration inequalities. Examples of such strategies include
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identification of a sparse support for the limiting distribution of appropriately rescaled
extreme observations (Goix et al. (2017); Simpson et al. (2020); Meyer and Winten-
berger (2021); Drees and Sabourin (2021); Cooley and Thibaud (2019); Medina et al.
(2021)), graphical modeling and causal inference based on the notion of tail conditional
independence (Hitz and Evans (2016); Segers (2020); Gnecco et al. (2021)), clustering
(Chautru (2015); Janßen and Wan (2020); Chiapino et al. (2020)), see also the review
paper Engelke and Ivanovs (2021). In these works, the dimension of the sample space,
although potentially high, is finite, and dimension reduction is a key step, if not the
main purpose, of the analysis.

EVA characterizes the behavior of extreme data, which are far from the center of
the distribution. This makes EVA tools naturally suitable for developing anomaly
detection procedures, as outliers also lie outside the bulk of the distribution. Dimension
reduction for extremes aims to uncover regions that encapsulate the essence of large
data. Algorithms like DAMEX (Goix et al. (2016, 2017)) and CLEF (Chiapino et al.
(2020); Chiapino and Sabourin (2016)) identify subspaces where components of the
observed vector can be large together. An anomaly is thus detected when data points
do not belong to these subspaces despite having a large norm. Another approach
characterizes outliers as observations lying outside extreme MV-sets (which can be
sought among outcome spaces of the CLEF or DAMEX algorithms), that are small
volumes but large masses (Thomas et al. (2017)).

A classic dimension reduction technique in signal processing involves decomposing
data onto a basis selected according to the problem at hand and then retaining the
most important components. Common base families include Fourier (Example 3.4)
and wavelets bases. The reader is invited to consult the non-exhaustive and easy-
to-read book Mallat (1999) for more details about signal processing. The beneficial
properties of those bases are wide and various but choosing a precise base tailored for a
problem sometimes feels like looking for a needle in a haystack. Hence, for tasks where
the data structure is linear, or requires efficient dimensionality reduction without
losing important features, PCA can be particularly advantageous. PCA automatically
determines a set of orthogonal components that capture the maximum variance in the
data, providing a simplified representation that often aligns well with the underlying
structure of the data (refer to Mallat (1999) for comparison of PCA, Fourier and
wavelets bases and Hsing and Eubank (2015) or Section 3.3 for backgrounds on PCA).

Several works have applied PCA to EVT across the years. In infinite-dimensional
settings, studies such as Kokoszka and Xiong (2018); Kokoszka et al. (2019); Kokoszka
and Kulik (2023); Kim and Kokoszka (2022) have explored PCA for functional extremes
but none propose a method to apply PCA specifically to extreme data. These works
have already been mentioned and presented in the previous section. To the best of our
knowledge, only two works involve a PCA for extremes in finite-dimensional settings.
In Cooley and Thibaud (2019), the authors propose a PCA of a matrix composed by
pairwise tail dependency coefficients of a positive-orthant-valued regularly varying
random vector, outcome of a transformation of a regularly varying random vector
valued in the whole ambient space. In Drees and Sabourin (2021), authors investigate
the relationships between the PCA of the random angle Θ, the angular component
of a R

d-valued regularly varying random vector X, and the PCA of its extreme limit
Θ∞, since the RV of X implies L(Θ | ∥X∥ ≥ t)→L(Θ∞) as t→ +∞. A key argument in
their proof is that Θ belongs to the unit sphere of Rd which is a compact set. Following
Riesz’s lemma, their proof techniques cannot be extended to infinite-dimensional space
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while the mathematical objects involved in this article are defined mutatis mutandis
in general separable Hilbert space. The purpose of Chapter 6 aims to extend their
results to non-finite-dimensional spaces by circumventing the compactness argument
by proving that the eigenstructure of Θ converges towards the eigenstructure of Θ∞
under the RV assumption of the random element X in a separable Hilbert space.

1.2.3 Extremes for sea levels

Sea levels can be decomposed into a deterministic tidal component and a stochastic
non-tidal component, which corresponds to storm surges. Storm surges are defined as
the instantaneous differences between astronomically predicted tides and observed sea
levels. Large storm surges are caused by low atmospheric pressure and strong wind
conditions (intensity or direction). When these meteorological conditions coincide with
the high water levels of spring tides, they can lead to devastating floods. A notable
example is the North Sea flood of 1953, known in Dutch as the Watersnoodramp, which
resulted in over 2000 deaths across Northern Europe (McRobie et al. (2005)). Studying
such events to infer their intensity and frequency is therefore a crucial challenge
in coastal risk monitoring, aiming to prevent significant human and material losses
(Genovese and Przyluski (2013); Chadenas et al. (2014); Karamouz et al. (2019)). This
task is even more critical in the context of global warming, which increases both the
frequency and the amplitude of such extreme events (see Seneviratne et al. (2021)).

The study of extreme sea levels has been and continues to be an active research area
for decades. A central concept in this field is the inference of return levels, which
correspond to the maximum levels expected over a specified period ("inverse" of the
return period, as detailed in Coles et al. (2001)). Two pioneering studies in this domain
are Lennon et al. (1963) and Suthons (1963), which utilize annual maxima methods
to infer them. Since relying solely on annual maxima restricts the data available, new
extreme methods have been developed. Smith (1986) and Tawn (1988) introduce the
use of r-annual maxima, while Davison and Smith (1990) are the first to consider
exceedances over a threshold as extremes. These studies employ direct methods, which
involve analyzing the sea levels directly, without accounting for their structure into a
deterministic tidal component and a stochastic surge component.

Indirect methods involve separately analyzing the tidal and surge components. These
methods are often preferred over direct approaches because they require fewer data
to efficiently perform an extreme value study. Convolution methods, for instance,
allow the consideration of extreme sea levels by combining extreme storm surges with
extreme tidal levels. As highlighted in Dixon and Tawn (1999), direct methods can
induce additional estimation errors. Early work in this field includes Pugh and Vassie
(1978) and Pugh and Vassie (1980), which introduced the joint probabilities method to
combine storm surges to sea levels by means of convolution. However, these studies
assumed that hourly surges were independent, a notion deemed unrealistic by Tawn
et al. (1989). To address this, Tawn (1992) proposed the revised joint probabilities
method, incorporating the extremal index (Leadbetter (1982)) to account for temporal
dependence. For a comprehensive comparison between direct and indirect methods,
refer to Haigh et al. (2010).

Modeling the tide-surge dependence in indirect methods can be challenging (Idier et al.
(2012)). Consequently, skew surges, defined as the difference between the maximum
observed sea levels during a tide and the maximum predicted astronomical sea levels
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during the same tide, are often used instead. This approach is advantageous because
high tides generally do not impact skew surges (see Williams et al. (2016)). In this
line of thoughts, Batstone et al. (2013) proposed the skew surge joint probabilities
method to circumvent modeling the tide-surge interaction. Note that the independence
between high tide and skew surge has been empirical proven for most of the French
coast station, with the exception of the Saint-Malo station (see Kergadallan et al. (2014);
Kergadallan (2022)).

All the aforementioned methods are applied individually to each measurement station,
called tide gauge, ignoring the spatial dependence between stations. This can be a signi-
ficant limitation, as the occurrence of an extreme event at one location increases the
likelihood of another extreme event at a nearby station. The extreme value community
has been interested in modeling the multivariate dependence structure for years. The
literature in this domain typically focuses on models for either asymptotically depend-
ent or asymptotically independent data. Asymptotic dependence is evaluated using
the dependence measure (Coles et al. (1999)). Broadly speaking, extremes in asymptot-
ically independent regimes tend to occur separately, while extremes in asymptotically
dependent regimes are likely to occur simultaneously. For asymptotically dependent
data, the seminal work is the celebrated conditional model of Heffernan and Tawn
(2004), which characterizes the distribution of a random vector given that one of its
components is extreme. This work has been refined over the years, leading to numerous
conditional models, such as those proposed by Keef et al. (2013), Tawn et al. (2018),
and Shooter et al. (2021).

While some of the aforementioned models also apply to asymptotically independent
data, other models are better suited to capture strong connections between components,
such as the hierarchical max-stable model of Reich and Shaby (2012), the generalized
Pareto process of Ferreira and de Haan (2014), and the multivariate generalized Pareto
distribution of Rootzén and Tajvidi (2006) (see also Kiriliouk et al. (2019); Rootzén
et al. (2018)). The above list of multivariate extreme value models is not exhaustive,
given the extensive number of existing models. Additional references include Davison
et al. (2012); Huser and Wadsworth (2022) for advances in spatial extremes, Engelke
and Ivanovs (2021) for sparse structures, Hao et al. (2018) for compound extremes, and
de Carvalho and Ramos (2012) for bivariate asymptotically independent data.

1.3 Summary of contributions

This section aims to summarize the main results of the thesis, leaving the motivation
and contextualization to Section 1.2 and the introductory sections at the beginning of
each chapter.

Chapter 5 focuses on characterizing the Regular Variation in a Hilbert space. Chapter 6
relies upon the formalism introduced in Chapter 5 to obtain consistency and statistical
guarantees for the PCA of regularly varying elements in a Hilbert space. The materials
of Chapters 5 and 6 have been published in the peer-reviewed journal Stochastic
Processes and their Applications (see Clémençon et al. (2024)). The main findings of this
research project are summarized in Sections 1.3.1 and 1.3.2.

Chapter 7 proposes a novel regularly varying framework, namely regular variation
with respect to a component, integral to the formalization of a regression setup for
extremes. In Chapter 8, we develop results for regression in extremes, proving the
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optimality of a regression function depending solely on the angle of the input, the
consistency of this estimator, and statistical guarantees on the error associated with
this estimator. The material presented in Chapters 7 and 8 has been the subject of a
pre-publication Huet et al. (2023) which is under review in a peer-reviewed journal. A
summary of the main findings is provided in Sections 1.3.3 and 1.3.4.

Part IV proposes two approaches to predicting extreme sea levels: the first approach is
based on the regression framework developed in Chapter 8, and the second approach
is based on a multivariate generalized Pareto density model. The material of Chapter 9
is the subject of an ongoing journal submission and is summarized in Section 1.3.5.

1.3.1 Regular variation in Hilbert spaces

The main purpose Chapter 5 is to develop a general probabilistic framework for
extremes of regularly varying element in a separable Hilbert space H, as the space
L2[0,1], the Hilbert space of square-integrable, real-valued functions over [0,1], with
immediate possible generalization to other compact domains, e.g., spatial ones.

In the present work we place ourselves in the general RV context defined through
M0-convergence in Hult and Lindskog (2006b), and we focus our analysis on random
functions valued in the Hilbert space L2[0,1], which has received far less attention (at
least in EVT) than the spaces of continuous, semi-continuous or càdlàg functions. One
main advantage of the proposed framework, in addition to allowing for rough function
paths, is to pave the way for dimension reduction of the observations via functional
PCA of the angular component Θ (see Chapter 6).

Several questions arise. First, when dealing with functional observations, the choice
of the norm (thus of a functional space) is not indifferent, since not all norms are
equivalent. In particular, there is no reason why RV in one functional space (say, C[0,1])
would be equivalent to RV in a larger space such as L2[0,1]. Also a recurrent issue in the
context of weak convergence of stochastic processes is to verify tightness conditions in
addition to weak convergence of finite-dimensional projections, in order to ensure weak
convergence of the process as a whole. The case of Hilbert valued random variables
makes no exception (see, e.g., Chapter 1.8 in van der Vaart and Wellner (1996)). A
natural question to ask is then: ’What concrete conditions regarding the angular and
radial components (Θ,∥X∥) in a PoT framework, which may be verified in practice
on specific generative examples or even on real data, are sufficient in order to ensure
tightness and thus RV?’.

First, to address these questions, we present a comprehensive description of the notion
of RV in a separable Hilbert space which fits into the framework of Hult and Lindskog
(2006b). Specifically, we propose characterizations of RV involving finite-dimensional
projections and moments of the angular variable Θ through the following first main
result (Theorem 5.8 in Chapter 5).

Theorem. Let X be a random element in H and let Θt be a random element in H distributed
on the sphere S according to the conditional angular distribution PΘ,t := L(X/∥X∥ | ∥X∥ ≥
t). Let PΘ,∞ denote a probability measure on (S,B(S)) and let Θ∞ be a random element
distributed according to PΘ,∞. The following statements are equivalent.

1. X is regularly varying with index α with limit angular measure PΘ,∞, so that PΘ,t
w−→

PΘ,∞.
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2. ∥X∥ is regularly varying in R with index α, and

∀h ∈H,⟨Θt ,h⟩
w−→ ⟨Θ∞,h⟩ as t→ +∞.

3. ∥X∥ is regularly varying in R with index α, and

∀N ≥ 1,πN (Θt)
w−→ πN (Θ∞) as t→ +∞,

with πN : H→R
N the projection onto the N first elements of a basis (ei)i≥1.

To validate this framework, we provide several examples of regularly varying random
elements in H, such as random sums

∑D
i=1ZiAi where the Zi ’s are real-valued regularly

varying random variables, the Ai ’s are random elements in H and D a constant or a
real-valued random valued with finite first moment (Propositions 5.1 and 5.2). We
emphasize the necessity of tightness conditions for achieving global RV by constructing
a random element in H with regularly varying finite-dimensional projections and
norm, which is not regularly varying in H (Proposition 5.4). In the final Section of
the chapter, we discuss the relationships between RV in C[0,1] and RV in L2[0,1]. We
demonstrate that RV in C[0,1] implies RV in L2[0,1] and we show that the limit random
variables in both settings can be connected through an explicit formula, as per the
results in Dombry and Ribatet (2015) (Proposition 5.9). The converse, however, is not
true, as we illustrate by constructing a regularly varying random function in L2[0,1]
that is not regularly varying in C[0,1] (Proposition 5.10).

1.3.2 PCA for functional extremes

A major feature of the proposed framework in Chapter 5 is the possibility to project
the observations onto a finite-dimensional functional space, via a modification of the
standard functional PCA which is suitable for heavy-tailed observations, for which
second (or first) moments may not exist.

In this respect the dimension reduction strategy that we propose may be seen as
an extension of Drees and Sabourin (2021), who worked in the finite-dimensional
setting and derived finite sample guarantees regarding the eigenspaces of the empirical
covariance operator for Θ. However their techniques of proof cannot be leveraged in
the present context because they crucially rely on the compactness of the unit sphere
in R

d , while the unit sphere in an infinite-dimensional Hilbert space is not compact.

Regarding the PCA of the angular distribution, the natural extension of the finite-
dimensional covariance matrix of extreme angles Ct,Rd = E

[
ΘΘ⊤ | ∥X∥ > t

]
in Drees

and Sabourin (2021) where X ∈Rd , is the covariance operator Ct = E[Θ ⊗Θ | ∥X∥ > t]
when X ∈H, see Sections 3.1 and 3.3 of Chapter 3 for minimal background regard-
ing probability in Hilbert spaces and covariance operators. Under RV of X, so that
PΘ,t := L(Θ | ∥X∥ ≥ t)→L(Θ∞) =: PΘ,∞, one may wonder whether the eigenstructure
of Ct indeed converges as t → +∞ to that of C∞ = E[Θ∞ ⊗Θ∞], where Θ∞ ∼ PΘ,∞,
and whether the results of Drees and Sabourin (2021) regarding concentration of
the empirical eigenspaces indeed extend to the infinite-dimensional Hilbert space
setting. We make a first step to answer these interrogations by proving the following
approximation result (Theorem 6.1 in Chapter 6).

Theorem. The following convergence in the Hilbert-Schmidt norm holds true,

∥Ct −C∞∥HS(H)→ 0,
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as t→ +∞.

Using Theorem 3 in Zwald and Blanchard (2005) (Theorem 3.19) and the Weyl’s
inequality (Theorem 3.11), we prove that, under unequivocal definition, the eigenvalues
and the eigenspaces of Ct converge to those of C∞ (Corollary 6.3).

Secondly, we investigate the convergence of the empirical counterpart of the non-
asymptotic covariance operator associated with distribution the PΘ,t. In the situation
where n ≥ 1 independent realizations X1, ...,Xn of the random function X are observed,
we aim to estimate the sub asymptotic covariance operator associated with a radial
threshold tn,k, that is a quantile of the radial variable ∥X∥ at level 1 − k/n, given by
Ctn,k := E[Θ ⊗Θ | ∥X∥ ≥ tn,k]. To do so, we consider the empirical covariance operator

Ĉk :=
1
k

n∑
i=1

Θi ⊗Θi1{∥Xi∥ ≥ t̂n,k},

where t̂n,k is the k-th larger norm of the ∥Xi∥’s, that is an empirical counterpart of the
quantile tn,k . We provide statistical guarantees in the form of concentration inequalities
regarding the Hilbert-Schmidt norm of the estimation error, which leading terms in-
volve the number k ≤ n of extreme order statistics considered to compute the estimator.
This is given by the following estimation result (Theorem 6.8 in Chapter 6).

Theorem. Let δ ∈ (0,1). With probability larger than 1− δ, we have

∥Ĉk −Ctn,k∥HS(H) ≤ C(δ)/
√
k + +o(1/

√
k),

with C(δ) is a constant depending only on δ.

These bounds, combined with regular variation of the observed random function X
and the results from the preceding section ensure in particular the consistency of the
empirical estimation procedure (Corollary 6.10 in Chapter 6).

In the final section of this chapter, we present experimental results using both real and
simulated data. Specifically, we analyze an electricity demand dataset and simulated
data, as detailed in Chapter 5. These experiments demonstrate the relevance of the
proposed dimension reduction framework by comparing its performance with the
closest alternative, namely, the PCA applied to the full sample (not limited to extreme
observations).

1.3.3 A Regular Variation Framework for Regression on Extremes

In Chapter 7, we introduce a probabilistic framework, specifically regular variation
with respect to a component, to address Regression on Extremes. We also propose a
dedicated algorithmic approach, which is further analyzed in Chapter 8.

To motivate the subsequent analysis, the Regression On eXtreme ANglEs (ROXANE) al-
gorithm is introduced at the beginning of Part III. This method addresses the regression
problem for the input/output pair (X,Y ) ∈Rd×R in extreme regions, specifically where
∥X∥ ≫ 1. The algorithm’s core objective is to minimize an empirical extreme quadratic
risk using only the angle of the input variable X/∥X∥. This is achieved without loss of
information under a specific RV assumption, as justified in Chapter 8. For simplicity,
we assume the output is bounded, i.e., there exists M > 0 such that Y ∈ I := [−M,M].
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Our central hypothesis, which underpins the ROXANE algorithm, is RV with respect
to the first component of (X,Y ). This modified RV assumption, where the extremality
of the random vector is defined solely with respect to the input variable, is detailed in
the following Definition (Assumption 7.2 in Chapter 7). Let E := R

d\{0}.

Definition (Regular variation w.r.t. the first component). A random vector (X,Y ) ∈O :=
E×I is regularly varying w.r.t. the first component with index α > 0, if there exist a regularly
varying function b with index α and a nonzero Borel measure µ on O, on all Borel subsets of
O bounded away from C = {0} × I , such that

lim
t→+∞

b(t)P
(
t−1X ∈ A,Y ∈ C

)
= µ(A×C),

for all A ∈ B(E) bounded away from zero and C ∈ B(I) such that µ(∂(A×C)) = 0.

This assumption is a particular case of the theory developed in Lindskog et al. (2014)
for regularly varying measures on separable metric spaces with a closed set C removed;
in our context, C = {0} × I . We clarify this connection in Section 7.5 with equivalent
statements of RV with respect to the first component. Similar implications as those of
classic RV are demonstrated following Assumption 7.2, such as the homogeneity of
order −α of the limit measure µ with respect to the first component, which leads to a
decomposition of the measure:

µ({X ∈ E : ∥x∥ ≥ r,θ(x) ∈ B} ×C) = r−αΦ(B×C),

with θ(x) := x/∥x∥ and for all C ∈ B(I),B ∈ B(S), r > 0. This entails the existence of a
pair of limit random variables (X∞,Y∞)

L(t−1X,Y | ∥X∥ ≥ t)→L(X∞,Y∞),

as t→ +∞. We further assume the convergence of the Bayes regression function f ∗(X) =
E[Y | X] towards the limit Bayes regression function E[Y∞ | X∞] that is (Assumption 7.5)

E

[
|f ∗(X)− f ∗P∞(X)| | ∥X∥ ≥ t

]
→ 0. (1.1)

Three conditions implying this assumption, such as the uniform convergence of dens-
ities proposed in De Haan and Resnick (1987), are provided to support the validity
of Equation (1.1) (Proposition 7.6 in Chapter 7). Finally, we propose four practical
scenarios that satisfy all the assumptions in Section 7.4, including an example that
reliably predicts a missing extreme component in a regularly varying random vector
(Proposition 7.10 in Chapter 7).

1.3.4 Regression on extremes

Chapter 8 aims to develop a regression framework for extreme covariates, under
the assumptions discussed in Chapter 7, such as RV w.r.t. the first component of
input/output pair (X,Y ). The underlying goal is then to legitimize the ROXANE
algorithm, that is to prove that a regression function can be optimally constructed in
extreme regions, using only the angle of the input variable.

Regression is a crucial predictive problem in statistical learning, encompassing a wide
variety of applications. In the standard setup, the predictive learning problem consists
in building, from a training dataset Dn = {(X1,Y1), . . . , (Xn,Yn)} composed of n ≥ 1
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independent copies of two random variables (X,Y ) ∈Rd ×R, a mapping f : X →R in
order to produce a ‘good’ prediction f (X) for Y , with the quadratic risk

RP (f ) = E

[
(Y − f (X))2

]
(1.2)

as close as possible to that of the Bayes regression function f ∗(X) = E[Y | X], which
minimizes (1.2).

A natural strategy consists in solving the Empirical Risk Minimization problem (ERM
in abbreviated form) minf ∈F RP̂n

(f ), where F is a class of functions sufficiently rich to
include a reasonable approximant of f ∗ and P̂n is an empirical version of P based on
Dn.

This chapter addresses regression in extreme regions, where the input variable is
extreme. Covariates are considered extreme when their norm ∥X∥ exceeds an (asymp-
totically) large threshold t > 0 (see Chapter 7). The choice of the norm is typically
determined by the application context.

The threshold t depends on the observations, as ‘large’ should be understood relative
to the majority of observed data. Consequently, extreme observations are rare and
underrepresented in the training dataset. As a result, prediction errors in extreme
regions generally have a negligible impact on the global regression error of f̂ . Indeed,
the law of total probability yields:

RP (f ) = P(∥X∥ ≥ t)E
[
(Y − f (X))2 | ∥X∥ ≥ t

]
+P(∥X∥ < t)E

[
(Y − f (X))2 | ∥X∥ < t

]
.

The above decomposition involves a conditional error term relative to excesses of ∥X∥
above t, which we term conditional quadratic risk (or simply conditional risk)

Rt(f ) := E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
.

It is the purpose of the subsequent analysis to construct a predictive function f̂ that
(approximately) minimizes Rt(f ) for all t > t0, with t0 being a large threshold. It
is important to note that an approximate minimizer of Rt might not be suitable for
minimizing Rt′ when t′ > t. To ensure robust extrapolation performance for our learned
function, we focus on obtaining a prediction function, f̂ , that minimizes the asymptotic
conditional quadratic risk defined as

R∞(f ) := limsup
t→+∞

Rt(f ) = limsup
t→+∞

E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
.

Thus, the objective is to establish connections between the risks Rt and R∞ and their
respective minimizers, leveraging the advantageous properties of the RV assumption.
The following theorem (part of Theorem 8.2 in Chapter 8) provides initial motivations
for the ROXANE algorithm. Denote θ(x) = x/∥x∥.

Theorem. Under Assumptions 7.1, 7.2 and 7.5, the two following statements hold true.

1. As t → +∞, the minimum value of Rt converges to that of R∞, i.e., inff Rt(f ) →
inff R∞(f ).

2. the infimum of R∞ over all measurable function is equal to its infimum over all angular
measurable functions, i.e., inff R∞(f ) = infhR∞(h ◦θ).



26 CHAPTER 1. INTRODUCTION

The use of RV w.r.t. the first component is crucial for proving this result. This key
concept enables the connection between the two risks, Rt and R∞ and offers the angular
nature of a minimizer of R∞. Consequently, it is reasonable to restrict the search for
a minimizer in extreme regions to angular functions, as suggested by the ROXANE
algorithm. Our strategy involves solving the ERM optimization problem associated
with minh∈HRtn,k (h ◦θ) with tn,k, a quantile of the radial variable ∥X∥ at level 1− k/n .
To achieve this, we consider its empirical counterpart

R̂k(f ) =
1
k

n∑
i=1

(Yi − f (Xi))
2
1{∥Xi∥ ≥ t̂n,k},

where t̂n,k is the k-th larger norm of the ∥Xi∥’s, serving as an empirical counterpart
of the quantile tn,k. As with traditional ERM, we investigate the minimization of the
empirical risk over a class of functions with controlled complexity. Let H be a class of
continuous, real-valued, angular and uniformly bounded by M functions f ∈ C(S, I).
To fully validate the empirical strategy of the ROXANE algorithm, we provide a non-
asymptotic bound on the maximal deviation between Rtn,k and R̂k over H, as given in
the following theorem (Theorem 8.4 in Chapter 8).

Theorem. Suppose that Assumptions 7.1 and 8.3 are satisfied. Let δ ∈ (0,1). We have with
probability larger than 1− δ

sup
h∈H

∣∣∣∣R̂k(h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣ ≤ C(H,M,δ)/

√
k + o(1/

√
k),

where C(H,M,δ) is a constant depending on H,M and δ.

Additionally, with an extra assumption about the class of functionsH, which is satisfied
in particular by regression functions involved in constrained Ridge and Lasso regression
(Remark 8.6 in Chapter 8), we show that the bias term suph∈H |Rtn,k (h ◦θ)−R∞(h ◦θ)|
converges to zero as n→ +∞ (Proposition 8.5 in Chapter 8). This leads to a maximal
control over the excess of R∞-risk of a regression function produced by the ROXANE
algorithm (Corollary 8.8 in Chapter 8).

1.3.5 Modeling and Prediction of Extreme Sea Levels

Chapter 9 focuses on the task of predicting extreme sea levels and skew surges at
tide gauges along the French Atlantic coast. We propose to learn the extreme spatial
dependence structure among observations from various stations over their common
time range. This learned model is then utilized to reconstruct sea levels and skew
surges at locations with limited historical records, based on extreme observations
from nearby stations with extensive temporal records. Specifically, we aim to predict
values at the Port-Tudy station given extreme values from the Brest and Saint-Nazaire
stations (see Figure 9.1). An observation is declared extreme if at least one of its input
components is extreme, since a single large sea level or skew surge can cause flooding
at the recorded station, regardless of conditions at the other stations. We outline two
different procedures for learning the extreme dependence structure.

In the first method, we fit an appropriate extreme distribution to the data. Given
the clear asymptotic dependence observed in the data (see Figures 9.3 and 9.4), we
model the observations using a Multivariate Generalized Pareto (MGP) distribution H
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Figure 1.2: Predicted sea levels at the Port-Tudy station for the year 1999. The red curve
represents the true values on the test set; the orange curve represents the predicted
values by the ROXANE procedure with OLS algorithm; the blue curve represents the
predicted values by the MGP procedure with bootstrap 0.95 confidence intervals (light
blue).

(Rootzén and Tajvidi (2006); Rootzén et al. (2018)), defined as

H(x) =
logG(x∧ 0)− logG(x)

logG(0)
,

where G is a multivariate extreme value distribution (Definition 2.10). Specifically,
we follow the parametric fitting procedure of Kiriliouk et al. (2019), leveraging the
convenient decomposition of the MGP distribution (2.14). The final predictions are
obtained by averaging Monte Carlo simulations generated from the conditional density
given the two input values.

In the second approach, we use the regression procedure proposed in Part III (Huet
et al. (2023)), which is designed for extreme value prediction problems where the
extremality is measured w.r.t. covariates - values from the long-term stations. We learn
a prediction function using the ROXANE algorithm (Algorithm 7.1) over the common
time range of the data, which predicts values at the output stations based on extreme
values at the input stations.

Both procedures require rescaling of the marginal observations to a common scale:
unit exponential scales for the MGP procedure and unit Pareto distributions for the
ROXANE procedure. Following Legrand et al. (2023), we use an Extended Generalized
Pareto (EGP) distribution as our marginal model to meet the different requirements
described in the introductory part of Chapter 9. Specifically, we consider the model
EGPD3 from Papastathopoulos and Tawn (2013) with cdf

Fσ,ξ,κ(x) =

1−
(
1 +

ξx
σ

)−1/ξκ,
with σ > 0, ξ ∈R, κ ∈R and x ∈ [0,+∞[ if ξ ≥ 0 and x ∈ [0,−σ/ξ] otherwise.

The multivariate prediction procedures are synthesized into two comprehensive al-
gorithms, Algorithm 9.2 and 9.3. In addition to the marginal pre-processing steps,
Algorithm 9.1 introduces a novel method for selecting appropriate thresholds within
the extreme value studies, based on properties of the EGP distribution.
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The proposed methods are applied to the sea level data and their performance is
evaluated in terms of Root Mean Square Error and Mean Absolute Error on a test
set consisting of the earliest extreme observations. Both multivariate prediction pro-
cedures yield valid results of significant importance for practitioners, each offering
distinct advantages: one provides better point estimates, while the other offers a robust
generative model. In particular, Figure 1.2 shows a visual assessment of the prediction
quality of both methods (Table 9.3), and Figure 9.5 presents QQ-plots for further
validation. Finally, similar studies carried out for the Concarneau and Le Crouesty
stations are shown in Appendix 9.A.
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1.4 Outline of the thesis

The thesis manuscript is organized as follow.

Chapter 1 provides a summary of the state-of-the-art and the contributions of
this thesis.

Part I introduces the necessary background for understanding and proving the thesis
results.

Chapter 2 covers basic notions of Extreme Value Theory, ranging from univariate
to infinite-dimensional extremes, including multivariate extremes.

Chapter 3 discusses Functional Data Analysis concepts, encompassing operators
and probability theory on Hilbert spaces.

Chapter 4 outlines the basics of Statistical Learning, with a particular focus on
its applications to extremes.

Part II concerns Hilbertian extremes.

Chapter 5 develops the theory of Regular Variation in separable Hilbert spaces.

Chapter 6 uses the rationale of Chapter 5 to establish consistency and concentra-
tion results for PCA in the context of functional extremes.

Part III studies the task of regression in extreme regions.

Chapter 7 presents a novel regularly varying framework to handle extremes w.r.t.
some component.

Chapter 8 exploits the framework of Chapter 7 to develop a novel framework
suitable for regression in extreme regions.

Part IV is an application to reconstruction of extreme sea levels.

Chapter 9 applies the extreme regression procedure of Chapter 8 and an extreme
modeling procedure to extreme sea level data from tide gauges along the French
Atlantic coast.

The manuscript ends with a discussion on the global conclusions and perspectives
of the results developed in this thesis, followed by an appendix section that includes
technical proofs and an introduction in french.

The materiel of this thesis relies on the following works

Part II: Clémençon, S., Huet, N., and Sabourin, A., (2024) Regular Variation
in Hilbert Spaces and Principal Component Analysis for Functional Extremes,
Stochastic Processes and their Applications, 174, 104375;

Part III: Huet, N., Clémençon, S., and Sabourin, A., (2024) On Regression in
Extreme Regions, arXiv:2303.03084 (submitted).
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Chapter 2

Extreme Value Theory
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Extreme Value Theory (EVT) is a branch of statistics that focuses on the study of rare
events, known as extremes. These extremes are unusual observations that significantly
deviate from the majority of other observations. The normality of an observation
can be measured by any norm, and an observation is considered extreme if its norm
exceeds a large threshold. In practical scenarios, there may be few or no observations
in the extreme region of interest. EVT addresses this issue by developing extrapolation
models, which enable inferences about unseen phenomena. These models are crucial
for risk monitoring and are widely applied in various fields such as finance, insurance,
environmental sciences, and climatology. The findings presented in this chapter draw
primarily from several key books and articles: Resnick (1987), De Haan and Ferreira
(2006), Hult and Lindskog (2006b) and Resnick (2007). For a comprehensive and
accessible introduction to EVT, we particularly recommend the two books by Resnick
(1987, 2007). EVT is central to this thesis and plays a crucial role in all the results
presented in the contributions.

This chapter is structured as follows. Section 2.1 addresses finite-dimensional extremes.
Specifically, Section 2.1.1 presents the Generalized Extreme Value distribution and
the concept of regular variation in R. These concepts are extended to the multivariate
case R

d in Section 2.1.2, where the notions of exponent and angular measures are
introduced. Section 2.2 then explores EVT in infinite dimensions, a less extensively
studied area. Section 2.2.1 examines regular variation in general metric spaces, focusing
on the notion of M0-convergence as developed by Hult and Lindskog (2006b). Finally,
Section 2.2.2 takes a detailed look at extreme random processes with sample paths in
C[0,1], which are the most studied functional extremes.

33
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2.1 Finite-dimensional Extremes

2.1.1 Univariate extremes

The results presented in this section are borrowed from Sections 0.2 and 0.3 in Resnick
(1987). One of the main purpose of univariate EVT is to characterize the limit of the
maxima of a random variable. Let X be a random variable distributed according to F
and let (Xi)i≥1 be independent and identically distributed copies of X. Set Mn =

∨n
i=1Xi .

The distribution of Mn is given by Fn since

P(Mn ≤ x) = P(X1 ≤ x, ...,Xn ≤ x) = Fn(x).

Let x0 = sup{x ∈R,F(x) < 1} be the right-endpoint of F. It is then easy to see that

lim
n→+∞

P(Mn ≤ x) =

0 if x < x0

1 if x ≥ x0.

In view of this equation, an affine normalized version of the maximum of the sample
has to be considered to obtain a non-degenerate limit distribution.

Definition 2.1 (Maximum Domain of Attraction). Suppose there exist sequences (bn)n≥1
and (an)n≥1, with an > 0, and a random variable Z distributed according to G, so that

L
(
Mn − bn

an

)
→L(Z),

or equivalently in terms of distributions,

Fn(anx+ bn) −→
n→+∞

G(x). (2.1)

In this case, X (or F) is said to belong to the maximum domain of attraction of Z (or G).

The Maximum Domain of Attraction is abbreviated as MDA. The elegance of EVT lies
in the fact that if a distribution G fulfills such a condition, its form is determined. This
fundamental result of EVT is known as the Fisher-Tipett-Gnedenko theorem (Fisher
and Tippett (1928) and Gnedenko (1943)).

Theorem 2.2 (Fisher-Tippett-Gnedenko). Suppose there exist sequences (bn)n≥1 and
(an)n≥1, with an > 0, and a non-degenerate distribution G such that

Fn(anx+ bn) −→
n→+∞

G(x),

then G is one of the following three forms (up to a rescaling input factor)

1. Fréchet: G(x) =

0 if x < 0

exp(−x−α) if x ≥ x0
, for some α > 0.

2. Weibull: G(x) =

exp(−(−x)−α) if x < 0

1 if x ≥ 0
, for some α > 0.

3. Gumbel: G(x) = exp(−exp(−x)) for x ∈R.
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These distributions are called the extreme value distributions.

The three extreme value distributions can be encapsulated into one common distribu-
tion which is the only possible distribution at the limit in Equation (2.1), namely the
Generalized Extreme Value (GEV) distribution

Gµ,σ ,ξ(x) = exp
(
−
(
1 + ξ

x −µ
σ

)−1/ξ

+

)
,

for some µ ∈ R,σ > 0,ξ ∈ R, where the case ξ = 0 has be understood as its limit as
ξ → 0. In the light of Theorem 2.2, if ξ = 0, Gµ,σ ,ξ is of Gumbel type, if ξ > 0, Gµ,σ ,ξ

is of Fréchet type, and if ξ < 0, Gµ,σ ,ξ is of Weibull type. µ referred to as a location
parameter; σ referred to as a scale parameter; ξ referred to as a shape parameter.
Figure 2.1 illustrates their forms for fixed parameters µ = 0 and σ = 1.

Figure 2.1: GEV probability density functions for µ = 0 and σ = 1.

There are two possible perspectives in EVT. The first one, aligned the aforementioned
results, which is to consider extremes as maxima over pre-defined blocks, called Block
maxima approach. The second perspective is to consider extremes as observations
exceeding a large threshold, called Peaks-over-Threshold (PoT) approach. The two points
of view are essentially equivalent. This relationship is expressed by the fact that the
MDA-assumption in Equation (2.1) is first equivalent to the following statement

lim
n→+∞

nP

(
X − bn
an

≥ x

)
= − log(G(x)), (2.2)

which is equivalent to the convergence of the conditional distribution of excesses above
a threshold, through the following theorem (see Balkema and De Haan (1974)).

Theorem 2.3. The following statements are equivalent.

1. there exist (bn)n≥1 and (an)n≥1 with an > 0 such that Fn(anx+bn)→ exp(−(1+ξx)−1/ξ
+ ,

as n→ +∞.
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2. there exists a function σ : R>0→R>0 such that

P

(
X − t
σ (t)

≥ x | X ≥ t

)
→ (1 + ξx)−1/ξ

+ ,

as t→ x0, with x0 the upper end-point of the distribution F.

Figure 2.2 illustrates the PoT and the Block Maxima approaches on a dataset, provided
by Météo-France, composed by temperatures at Orly Airport from 2020 to 2022.

Figure 2.2: Block Maxima model vs Peaks-over-Threshold model: red bars represent
the maximum observations within 14-day blocks; blue points indicate observations
exceeding the 30°C threshold.

From this convergence, observe that a new central distribution appears at the limit,
namely the Generalized Pareto (GP) distribution, with cdf

Hµ,σ ,ξ(x) = 1−
(
1 + ξ

x −µ
σ

)−1/ξ

+
, (2.3)

with same parameters than the GEV distribution. Figure 2.3 illustrates their forms for
fixed parameters µ = 0 and σ = 1.

To fully understand the study of right-tail points of a distribution, it is essential to
use tools provided by a theory closely related to EVT, known as the theory of Regular
Variation (RV). For a comprehensive exposition of the notion of RV, the reader is
referred to Bingham et al. (1989).

Definition 2.4 (Regularly varying function). A measurable function f : R+ → R+ is
regularly varying with index ρ ∈R, written f ∈ RVρ, if for all x > 0

lim
t→+∞

f (tx)
f (t)

→ xρ.
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Figure 2.3: GP probability density functions for µ = 0 and σ = 1.

In the case where ρ = 0, the function f is slowly varying. It is easy to see that every
regularly varying function f ∈ RVρ can be represented as f (x) = xρL(x) where L is a
slowly varying function. The most fundamental theorem of this theory is called the
Karamata’s theorem Karamata (1933).

Theorem 2.5 (Theorem 2.1 in Resnick (2007)). (a) Suppose ρ ≥ −1 and f ∈ RVρ. Then∫ t

0 f (s)ds ∈ RVρ+1 and

lim
t→+∞

tf (t)∫ t

0 f (s)ds
= ρ+ 1.

If ρ < −1 (or if ρ = −1 and
∫ +∞
t

f (s)ds < +∞ ), then f ∈ RVρ implies that
∫ +∞
t

f (s)ds is
finite,

∫∞
t

f (s)ds ∈ RVρ+1, and

lim
t→+∞

tf (t)∫ +∞
t

f (s)ds
= −ρ − 1.

(b) If f satisfies

lim
t→∞

tf (t)∫ t

0 f (s)ds
= λ ∈ (0,+∞),

then f ∈ RVλ−1. If
∫ +∞
t

f (s)ds < +∞ and

lim
t→+∞

tf (t)∫ +∞
t

f (s)ds
= λ ∈ (0,+∞)

then f ∈ RV−λ−1.

The theory of RV finds several links and application in the probabilistic theory (see
Chapter VIII in Feller (1991)). This concept extends to random variables through RV
of its survival function.
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Definition 2.6 (Regularly varying univariate random variable). A nonnegative random
variable X distributed according to F is regularly varying with index α ≥ 0, written X ∈
RV−α, if its survival function 1−F is regularly varying with index −α, i.e., for all x > 0

lim
t→+∞

1−F(tx)
1−F(t)

= x−α .

The index α in the above definition is referred to as the tail index of X. The relationship
between the MDA and RV conditions is illustrated, for instance, by the fact that the RV
of a random variable is equivalent to belonging to the MDA of a Fréchet distribution.

Example 2.7 (Pareto distribution). Let X ∼ P areto(α), for some α > 0, i.e., P(X ≥ x) = x−α.
Then, X ∈ RV−α.

Example 2.8 (Fréchet distribution). Let X ∼ Fréchet(σ,ξ), for some σ > 0 and ξ > 0.
Then, X ∈ RV−1/ξ .

Example 2.9 (Generalized Pareto distribution). Let X ∼ GPD(σ,ξ), for some σ > 0 and
ξ > 0, i.e., P(X ≥ x) = (1 + ξx/σ )−1/ξ

+ . Then, X ∈ RV−1/ξ .

A final remark concerning the moments of a regularly varying random variable (see
Proposition 1.3.2 in Mikosch (1999)), is that if X ∈ RV−α, thenE[Xβ] < +∞ if β < α,

E[Xβ] = +∞ if β > α.

There are numerous examples of regularly varying random variables. This simple result
can, for example, be used to prove that a random variable is not regularly varying by
demonstrating that it either all its moments exist or none of them exist. This property
will be utilized in Chapter 5.

2.1.2 Multivariate extremes

Univariate EVT extends to the multivariate case through straightforward generaliza-
tions of the MDA and RV assumptions. However, multivariate extremes exhibit much
deeper structures. The results and definitions in this section are primarily sourced
from Section 5 of Resnick (1987) and Section 6 of Resnick (2007). In what follows,
the classic order relation is adapted to R

d : a ≥ b means for every j ∈ {1, ...,d}, aj ≥ bj
and a ⩽̸ b means there exists j ∈ {1, ...,d}, aj > bj . Univariate operations applied to
multivariate objects should be understood componentwise, , e.g., a/b = (a1/b1, ..., ad/bd).
Let X = (X1, ...,Xd) ∈Rd be a random vector distributed according to F and let (Xi)i≥1
be i.i.d. copies of X. Set Mn =

∨n
i=1 Xi , where the maximum is taken componentwise.

Definition 2.10 (Multivariate Maximum Domain of Attraction). Suppose there exist
sequences (bn)n≥1 ∈ (Rd)N and (an)n≥1 ∈ (Rd)N, with an > 0, and a non-degenerate random
vector Z ∈Rd distributed according to G, so that

L
(

Mn −bn

an

)
→L(Z) as n→ +∞,

or equivalently in terms of distributions,

Fn(anx + bn) −→
n→+∞

G(x). (2.4)
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In this case, X (or F) is said to belong to the multivariate maximum domain of attraction of
Z (or G).

The limit distributions G are referred to as Multivariate Extreme Value distributions.
These distributions are more complex than their univariate counterparts: while the
marginal distributions of G are univariate extreme value distributions, the joint de-
pendence structure is not predefined, even though it is determined by a limit measure
µ. To better understand this measure, similar to the univariate case, the behavior of
the upper points of the distribution must be examined using the theory of RV. The
transition between the two perspectives is assured by the analogue of Equation (2.2):
convergence in Equation (2.4) is equivalent to

lim
n→+∞

nP

(
X−bn

an
⩽̸ x

)
= − log(G(x)).

The multivariate RV theory is mandatory to study right-tail distribution. Let E := R
d\{0}

be the punctured Euclidean space. Denote by ∥ · ∥ a norm on R
d ; by B(0, r) := {x ∈

R
d ,∥x∥ ≤ r} the ball of radius r > 0 and by S := {x ∈ Rd ,∥x∥ = 1} the unit sphere. A set

A ⊂ E is said to be bounded away zero if there exists ε > 0 such that A∩B(0, ε) = ∅.

Definition 2.11 (Multivariate regularly varying random variable). A random vector
X ∈Rd is regularly varying with index α ≥ 0, written X ∈ RV−α(Rd), if there exist a regularly
varying function b with index α and a nonzero Borel measure µ on E, finite on all Borel
subsets of E bounded away from zero, so that

b(t)P(X ∈ tA) −→
t→+∞

µ(A), (2.5)

for any Borel set A ⊂ E bounded away from zero and such that µ(∂A) = 0.

The latter convergence is referred to as vague convergence in [−∞,+∞]d \ {0} (see
Resnick (2007), Section 3.3 and in particular, Theorem 3.2 for a Portmanteau Theorem),
or equivalently as M0-convergence in E exposed in the next section (see Hult and
Lindskog (2006b); Lindskog et al. (2014)). The limit measure µ is called the exponent
measure. In particular, This measure is homogeneous of degree −α, i.e., µ(rA) = r−αµ(A).
This property decomposes the structure of µ into a radial part and a angular part.
Define the angular measure (or the spectral measure) Φ , which is a finite positive measure
on S, given by

Φ(B) = µ({x ∈ E : ∥x∥ ≥ 1,x/∥x∥ ∈ B}), (2.6)

for B ∈ B(S). The angular measure Φ fully characterizes the dependence structure in
extremes. The homogeneity of µ entails the decomposition

µ({x ∈Rd ,x/∥x∥ ∈ B,∥x∥ ≥ r}) = r−αΦ(B),

for r ≥ 1. Equivalent statements of multivariate RV are then given in terms of this polar
decomposition. Denote by θ(x) := x/∥x∥ the angle of any x ∈Rd .

Theorem 2.12 (Regularly varying random variable). Let α > 0. The following statements
are equivalent.

1. X ∈ RV−α(Rd) with exponent measure µ;
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2. There exists a measure Φ on S such that

P(θ(X) ∈ B,∥X∥ ≥ tr)
P(∥X∥ ≥ t)

−→
t→+∞

cr−αΦ(B), (2.7)

for all r > 0 and B ∈ B(S) such that Φ(∂B) = 0, with c = Φ(S)−1;

3. ∥X∥ ∈ RV−α and there exists a measure Φ on S such that

P(θ(X) ∈ B | ∥X∥ ≥ t) −→
t→+∞

cΦ(B),

for all B ∈ B(S) such that Φ(∂B) = 0, with c = Φ(S)−1.

In particular, the measure Φ is same in 2. and 3., that is the angular measure associated
with µ, given in Equation (2.6).

Observe that the limit measure in Equation (2.7) defines a probability measure on
R≥1 ×S. Then, if X ∈ RV−α(Rd), there exists a limit random variable X∞ ∈Rd such that

L(t−1X | ∥X∥ ≥ t) −→
t→+∞

L(X∞). (2.8)

Following Equation (2.7), one can decompose the limit random variable X∞ = ∥X∞∥ ×
θ(X∞) with ∥X∞∥ ∈ P areto(α) and θ(X∞) ∈ S a.s., where ∥X∞∥ and θ(X∞) are independ-
ent.

To simplify the study of the multivariate extremes, without loss of generality, it is
convenient to work with standardized marginals. One possible transformation is given
by the Pareto (or Fréchet) marginal transformation given by

V(X) =
(

1
1−F1(X1)

, ...,
1

1−Fd(Xd)

)
, (2.9)

where Fj is j-th marginal distribution of X, for 1 ≤ j ≤ d. This marginal transformation
is particularly interesting to work with (see Proposition 5.10 in Resnick (1987)) since
the RV of X implies the RV of V(X) with scaling function b(t) = t, and an exponent
measure that is homogeneous of degree −1. Furthermore, all the marginals of V(X) are
on the same scale which is a necessary property for defining the regression framework
in Section 7. Specifically, this transformation set all marginal distributions to unit
Pareto distributions. Because the distribution is unknown in practice, an empirical
marginal transformation is usually performed that is

V̂(x) =
(

1

1− n
n+1 F̂1(x1)

, ...,
1

1− n
n+1 F̂d(xd)

)
, (2.10)

with F̂j(xj ) = (1/n)
∑n

i=11{Xij ≤ xj}, for 1 ≤ j ≤ d (see Remark 7.3 for more details).

Another approach involves standardizing the margins to the exponential scale, which
is particularly suited for a specific type of limit distribution known as the Multivariate
Generalized Pareto (MGP) distribution (see Rootzén and Tajvidi (2006); Rootzén et al.
(2018); Kiriliouk et al. (2019)). To enjoy the advantages of transforming marginal dis-
tributions to an exponential scale, it is essential to first introduce the MGP distribution.
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Denote by η the vector of lower-end point the corresponding GEV distribution. From
the classic MDA assumption (2.10), one can deduce that

L
(

X−bn

an
∨η | X ⩽̸ bn

)
→W, (2.11)

as n→ +∞, where W follows a MGP distribution with cdf H . The limit distributions G
and H are associated, that is

H(x) =
logG(x∧ 0)− logG(x)

logG(0)
.

The positive part of the marginal distributions of the vector W are univariate GP
distributions,

P(Wj ≥ x |Wj ≥ 0) = 1−H0,σj ,ξj (x) =
(
1 +

ξj
σj

x

)−1/ξj

+
(2.12)

where σj and ξj are the GP parameters of Gj and H0,σj ,ξj is a GP cdf (2.3) for 1 ≤
j ≤ d. Regarding marginal scaling, for the purpose of multivariate modeling instead
of using a Pareto scaling, it is more advantageous to set each marginal’s scale and
shape parameters to one and zero, respectively. This involves applying the marginal
transformation to the exponential scale:

eσ,ξ(x) = − log(1−H0,σ ,ξ(x)) =
1
ξ

log
((

1 +
ξ
σ
x

)
+

)
, (2.13)

to each margin with their respective GP parameters. Note that this transformation,
when applied to each margin, results in a unit exponential distribution for their positive
part, i.e.,

P

(
eσj ,ξj (Wj ) ≥ x | eσj ,ξj (Wj ) ≥ 0

)
= exp(−x),

for 1 ≤ j ≤ d.

Similarly to the classic limit distributions with RV and a multiplicative polar structure,
MGP distributions also admit a convenient structure. More precisely, Theorem 7 in
Rootzén et al. (2018) states that, a MGP random variable W̃ with margins on the
exponential scale decomposes as

W̃ = E + T−max(T), (2.14)

where E ∈ R is a unit exponential random variable and T ∈ Rd is a random vector,
independent of E.

Remark 2.13 (Parallel structures). The representations of a MGP vector in Equation (2.13)
and of a limit regularly varying vector in Equation (2.14) are not contradictory; rather, they
describe the same object using different choices of marginal distributions. By applying the
logarithm function in the exponential scale transformation, the classic multiplicative polar
structure is converted into an additive form. Specifically, the common unit exponential
random variable in Equation (2.14) corresponds to the Pareto random variable ∥X∞∥ in
Equation (2.8). The random vector T−max(T), often termed a spectral vector, is the analogue
to the angular random variable θ(X∞), which is sometimes also referred to as a spectral
vector, and thus governs the joint dependence structure of the limit variable.
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A deep investigation of the properties of the density of a MGP vector are performed
in Rootzén et al. (2018). These properties are extensively used in the procedure of
Kiriliouk et al. (2019), which is applied in Chapter 9. The following theorems present
the guidelines for constructing MGP densities.

Theorem 2.14 (Theorem 12 in Rootzén et al. (2018)). Let W̃ and T be as in (2.14).
Suppose that T admits a density fT , then W̃ also admits a density hT given by

hT (x) = 1{max(x) > 0}exp(−max(x))
∫ +∞

0

fT (x + log t)
t

dt. (2.15)

Theorem 2.15 (Theorem 13 in Rootzén et al. (2018)). Let U be random vector in R
d

such that 0 < E[exp(Uj )] < +∞, for 1 ≤ j ≤ d. Suppose that U admits a probability density
function fU , then the density hU given by

hU (x) =
1{max(x) > 0}

E[exp(max(U))]

∫ ∞
0

fU (x + log t)dt, (2.16)

is a density associated with a standard MGP distribution.

Equipped with these two theorems, densities for MGP vectors W̃ can be constructed
from ordinary densities. Additionally, by Equation (2.13), densities for general MGP
vectors W can be deduced as

hσ,ξT (x) = hT (eσ,ξ(x)) and hσ,ξU (x) = hU (eσ,ξ(x)). (2.17)

Remark 2.16 (Extended Generalized Pareto distribution). A recurrent challenge in EVT
is to determine an appropriate threshold above which univariate extreme distributions are
suitably modeled by a GP distribution. To circumvent this difficult threshold selection,
distributions suitable for the entire range of data (not just the extremes) that mimic the
behavior of a GP distribution in the tails have been proposed. In cases where the lower tail of
the observed distribution behaves as a power law, Naveau et al. (2016) propose the Extended
Generalized Pareto (EGP) distribution. The simplest one (used in Part IV of the present
thesis) has a cdf given by

Fσ,ξ,κ(x) =

1−
(
1 +

ξx
σ

)−1/ξκ,
which corresponds to the third family of distributions in Papastathopoulos and Tawn (2013).
The parameter κ controls the lower tail of the distribution, as Fσ,ξ,κ(x) ≈ cst × xκ, as x→ 0.
Notably, data thresholded as in Equation (2.11) are more likely to be well-fitted by an EGP
distribution than by a classic GP distribution, since only the positive parts of the MGP
margins follow a GP distribution. Figure 2.4 illustrates their forms for fixed parameter
σ = 1.

2.2 Infinite-dimensional Extremes

2.2.1 Regular variation in complete separable metric spaces

We recall here the main features of RV in metric spaces, a framework originally intro-
duced by Hult and Lindskog (2006b) as a generalization of the Euclidean case docu-
mented in, e.g., Resnick (1987); Bingham et al. (1989); Meerschaert (1984). This frame-
work may be viewed as an adaptation of the ’weak-hash’ convergence of boundedly
finite measures; one may refer to Section A2.6 in Daley et al. (2003) for further details.



2.2. INFINITE-DIMENSIONAL EXTREMES 43

Figure 2.4: EGP probability density functions for σ = 1.

Let (M,d) be a complete separable metric space, endowed with a multiplication by non-
negative real numbers t > 0, such that the mapping (t,x) ∈R+ ×M 7→ tx is continuous,
1x = x and t1(t2x) = (t1t2)x. One must assume the existence of an origin 0M ∈M, such
that 0x = 0M for all x ∈M. In Part II, we shall take M = H, a separable, real Hilbert
space. Let M0 = M \ {0M}. For any subset A ⊂M, and t > 0, we write tA = {tx : x ∈ A}.
Denote by C0(M) the set of bounded and continuous real-valued functions on M0 which
vanish in some neighborhood of 0M and let M0 be the class of Borel measures on M0,
which are finite on each Borel subset of M0 bounded away from 0M . Then the sequence

νn converges to ν in M0, and we write νn
M0−−−→ µ, if

∫
f dνn→

∫
f dν for any f ∈ C0(M). As

for the vague (or weak) convergence, there exist versions of the Portmanteau theorem
and the mapping theorem for the M0-convergence (Theorems 2.4 and 2.5 in Hult and
Lindskog (2006b)). In particular, to mirror Definition 2.11, it is convenient to note that

νn
M0−−−→ ν is equivalent to lim

n→+∞
νn(A) = ν(A), for all A ∈ B(M) bounded away from zero

with ν(∂A) = 0. A measure ν in M0 is regularly varying if there exist a nonzero measure
µ in M0 and a regularly varying function b such that

b(t)ν(t · )
M0−−−→ µ( · ), as t→ +∞. (2.18)

It follows from (2.18) that the limit measure is necessarily homogeneous, for all t > 0
and Borel subset A of M0, µ(tA) = t−αµ(A) for some α > 0. Then we say that ν is
regularly varying with index −α in M and we write ν ∈ RV−α(M). Hence, RV of M0-
measures extends to random elements valued in M (that is, a Borel measurable map
from some probability space (Ω,A,P) to M). Recall incidentally that the extension of
the concept of RV to (multivariate) probability measures was originally introduced in
Meerschaert (1984).

Definition 2.17 (Regularly varying random element). A random element X ∈ M is
regularly varying with index α ≥ 0, written X ∈ RV−α(M), if there exist a regularly varying
function b with index α and a nonzero measure µ in M0, so that

b(t)P(X ∈ tA) −→
t→+∞

µ(A),
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for any A ∈ B(M) bounded away from zero with µ(∂A).

A convenient characterization of regular variation of a random element X is obtained
through a polar decomposition. Let r(x) = d(x,0M) for x ∈ M. For simplicity, and
because it is true in the Hilbert space framework that is our main concern, we focus
on the case where the distance to 0M is homogeneous, although this assumption can
be relaxed, as in Segers et al. (2017). Notice that in H, r(x) = ∥x∥. Introduce a pseudo-
angular variable, Θ = θ(X) where for x ∈M0, θ(x) = r(x)−1x and let R = r(X). Denote by
S the unit sphere in E relative to r, S = {x ∈M : r(x) = 1}, equipped with the trace Borel
σ -field B(S). The map T : M0→R

∗
+ ×S : x 7→ (r(x),θ(x)) is the polar decomposition. A

key quantity throughout this work is the conditional distribution of the angle given
that R > t for which we introduce the notation

PΘ,t( · ) = P(Θ ∈ · | R > t).

Several equivalent characterizations of regular variation of X have been proposed in
Segers et al. (2017) in terms of the pair of random variable (R,Θ) where R = r(X), thus
extending classical characterizations in the multivariate setting, see Resnick (2007).
In particular the next statement shall prove to be useful in the subsequent analysis
and is the exact analogue of the multivariate characterization 3 in Theorem 2.12 of the
previous section.

Proposition 2.18 (Proposition 3.1 in Segers et al. (2017)). A random element X in
M is regularly varying with index α > 0 if and only if conditions (i) and (ii) below are
simultaneously satisfied:

(i) The radial variable R is regularly varying in R with index α;

(ii) There exists a probability distribution PΘ,∞ on the sphere (S,B(S)) such that PΘ,t
w−→

PΘ,∞ as t→ +∞.

Remark 2.19. An interesting fact to note is that, before the clear formalization of RV of
measures in metric spaces, authors in Kuelbs and Mandrekar (1974) provided an example
of a regularly varying family of measures in a separable Hilbert space. This involves an
H-valued random variable that belongs to the domain of attraction of non-Gaussian stable
measures. Analogous to the concept of MDA previously presented, a random variable X is
said to belong to the domain of attraction of Z, if there exist (bn)n≥1 and (an)n≥1, with an > 0,
such that

L
(∑n

i=1Xi

an
− bn

)
→L(Z),

as n→ +∞, where X1, ...,Xn are i.i.d. copies of X.

A α-stable distribution S with location parameter β and spectral measure Γ , with 0 < α < 2,
is defined by its characteristic functional:

µ̂S(x) := E[exp(i⟨S,x⟩)] = exp

i⟨x,β⟩ −∫
S

|⟨x,s⟩|αΓ (ds) + iC(α,x)

,
with

C(α,x) =

 tan
(
πa
2

)∫
S(H)⟨x,s⟩|⟨x,s⟩|

α−1Γ (ds) if α , 1
2
π

∫
S(H)⟨x,s⟩ log |⟨x,s⟩|Γ (ds) if α = 1
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Then S is regularly varying with index α in H and P(S/∥S∥ ∈ · | ∥S∥ > t)
w−→ Φ(·). The

spectral measure Γ and the angular measure Φ are linked through the relation: Φ(·) = Γ (·)
Γ (S(H)) .

The proof of this result, which is exactly to prove the two points of Proposition 2.18, can be
found in Kuelbs and Mandrekar (1974), where it is derived by combining Lemma 4.1 and
Theorem 4.11. Notice that the tail index is strictly lower than 2; if α = 2, the process would
be Gaussian and therefore not regularly varying.

2.2.2 Extremes of C[0,1]-processes

A particular attention has been devoted to extremes in C[0,1] over the years. Refer to
Part III of De Haan and Ferreira (2006) for more details. Section 5.3 compares C[0,1]-RV
to L2[0,1]-RV through results from Dombry and Ribatet (2015). Let X = (X(s))s∈[0,1] a
stochastic processes with continuous sample-paths and let (Xi)i≥1 be i.i.d. copies of X.
Set Mn(s) :=

∨n
i=1Xi(s).

Definition 2.20 (Continuous Maximum Domain of Attraction). Suppose there exist
sequences of continuous real-valued functions (bn)n≥1 and (an)n≥1, with an(s) > 0 for all
s ∈ [0,1], and a non-degenerate stochastic process Z ∈ C[0,1], so that

L
(
Mn − bn

an

)
→L(Z) as n→ +∞, (2.19)

In this case, X is said to belong to the maximum domain of attraction of Z.

For all s ∈ [0,1], the random variable Z(s) is a univariate extreme value distribution:
one can choose (bn)n≥1 and (an)n≥1 such that

P(Z(s) ≤ x) = exp(−(1 + ξ(s)x)−1/ξ(s)),

with ξ is a continuous function. Similarly to the finite-dimensional case, there exist
equivalent formulations of the continuous MDA in terms of convergence of continuous
stochastic processes exceeding a threshold. Specifically, Equation (2.19) implies (and
is equivalent with additional mild assumptions, see Theorem 3.1 and Theorem 3.2 in
Ferreira and de Haan (2014)) that

L
(
X − bn
an

∣∣∣∣∣ sup
s∈[0,1]

{
X(s)− bn(s)

an(s)

})
→L(H),

as n→ +∞, where H is a generalized Pareto process. The process H can be shown to have
GP marginal distributions (2.3). Once again, similar to the finite-dimensional case,
these statements can be connected to the RV assumption in C[0,1] (Theorem 9.5.1 in
De Haan and Ferreira (2006)).

A key difference from the finite-dimensional scenario lies in the notion of measure
convergence, which is characterized by tightness conditions and convergences of the
finite-dimensional projections. Ensuring the tightness of a sequence of measures in
infinite dimensions is complex and requires careful investigation to identify appropri-
ate conditions. In this context, Hult and Lindskog (2006b) proposes a characterization
of RV in C[0,1] (Theorem 4.4 in Hult and Lindskog (2006b)) using the usual tightness
criterion in this space (see Chapter 2 in Billingsley (2013)).
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Despite the differences in the concepts of convergence, the RV in C[0,1] is defined
similarly to the multivariate RV : the statements of Theorem 2.12 hold by replacing
R
d by C[0,1] and by considering the supremum norm (see Hult and Lindskog (2006b);

Meinguet and Segers (2010)). In particular, if X ∈ RV−α(C[0,1]), there exists an angular
measure Φ on S such that Equation (2.7) holds. A key difference with the finite-
dimensional case is that the norm measuring the exceedances is restricted to the
supremum norm. However, Dombry and Ribatet (2015) shows that the excess function
does not necessarily have to be the supremum norm, as shown in the following theorem.

Theorem 2.21 (Theorem 3 in Dombry and Ribatet (2015)). Suppose X ∈ RV−α(C[0,1])
with angular measure Φ . Let ℓ : C → [0,+∞[ be an homogeneous function, continuous
at the origin and not vanishing Φ-almost everywhere, then there exists a random process
X∞,ℓ ∈ C[0,1] such that

L
(
t−1X | ℓ(X) > t

)
→L(X∞,ℓ),

as t→ +∞.

In addition, they also provide a relationship between the limit extreme distributions
arising under RV conditions w.r.t. the supremum norm or the function ℓ (Proposition 2
in Dombry and Ribatet (2015)).
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Functional Data Analysis (FDA) is a statistical framework designed to analyze data
where each observation is a function, typically a curve or a surface. These measure-
ments depend on a continuous variable such as time or space. Figure 3.1 displays
a functional dataset: the observations represent the evolution of temperature over a
week at Orly Airport for the months of July, August, and September from 2020 to 2022.
With the increasing availability of functional data, enabled by the improvement of
sensors providing ever finer measurements, FDA has become a highly studied field in
statistics: ignoring the continuous structure of the data can lead to a significant loss
of information. FDA thus offers new perspectives for various applications, from IoT
to spectrometry, including predictive maintenance of sophisticated systems (see the
two reviews Gertheiss et al. (2023) and Li et al. (2022)). For comprehensive expositions
of FDA theory and applications, readers are invited to consult Ramsay and Silverman
(2005) and Horváth and Kokoszka (2012). The material in this chapter is mainly drawn
from Hsing and Eubank (2015), which provides a self-contained introduction to the
mathematical foundations of functional data analysis.

FDA aims to generalize multivariate concepts to the infinite-dimensional case. Hilbert
spaces provide a natural generalization of finite-dimensional normed vector spaces,
particularly through the convenient extension of the notion of a basis, which allows for
practical representations. In addition to Hilbert spaces, the study of linear operators,
analogous to matrices in multivariate settings, is essential for building and understand-
ing the theory behind FDA. The results and definitions covered below are crucial for
understanding Part II. This chapter is organized as follows.
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Figure 3.1: Functional dataset comprising temperatures over a week at Orly Airport
during July, August, and September from 2020 to 2022.

Section 3.1 introduces basic notions of operator theory, starting with general con-
cepts and facts related to Hilbert spaces and compact operators in Section 3.1.1 and
Section 3.1.2. A deeper exposition of a specific class of linear operators, namely Hilbert-
Schmidt operators, is provided in Section 3.1.3. Chapter 5 aims to propose characteriz-
ations of RV adapted to Hilbert spaces, which strongly relies on the concept of weak
convergence (see Section 2). The notions of random elements and weak convergence in
Hilbert spaces are presented in Sections 3.2 and 3.2.2, respectively. The last section of
this chapter discusses two widely used eigendecompositions in particular spaces: the
principal components decomposition and the Karhunen-Loève expansion, with a focus
on estimation results for the eigenelements involved in principal components analysis
in Section 3.3.2.

3.1 Operators on Hilbert Spaces

3.1.1 Basics on Hilbert spaces

The results and definitions provided in this section are primarily drawn from Section 2
of Hsing and Eubank (2015). To begin with, defining a real Hilbert space the concepts
of an inner product and completeness within a real vector space V . An inner product
on V is defined as a function ⟨·, ·⟩ on V ×V satisfying ⟨av1 + v2,v⟩ = a⟨v1,v⟩+ ⟨v2,v⟩,
⟨v1,v2⟩ = ⟨v2,v1⟩ and ⟨v,v⟩ ≥ 0, and ⟨v,v⟩ > 0 if v , 0, for v,v1,v2 ∈ V and a ∈ R. An
inner product induces a norm ∥ ·∥ such as ∥v∥ = ⟨v,v⟩1/2 for v ∈ V satisfying the Cauchy-
Schwartz inequality |⟨v1,v2⟩| ≤ ∥v1∥∥v2∥, for v1,v2 ∈ V . A normed vector space (V ,∥ · ∥)
is said to be complete if every Cauchy sequence is convergent, i.e., if every sequence
(xn)n≥1 in V such that supn,m≥N ∥xn − xm∥ → 0 as N → +∞ is convergent. Therefore, a
Hilbert space can be precisely defined as a complete vector space equipped with an
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inner product.

An important advantage of Hilbert spaces over Banach spaces, related to the inner
product, is that orthogonality of two elements can be easily defined: v1,v2 ∈ V are said
orthogonal if ⟨v1,v2⟩ = 0. There exist numerous examples of Hilbert spaces.

Example 3.1. The vector space Rd equipped with the usual scalar product

⟨x,y⟩ =
d∑

j=1

xjyj ,

is a Hilbert space.

Example 3.2. The vector space ℓ2 of square summable real-valued sequences equipped with
the scalar product

⟨(un)n≥1, (vn)n≥1⟩ =
+∞∑
n=1

unvn,

is a Hilbert space.

Example 3.3. The vector space L2[0,1] of square integrable real-valued function f : [0,1]→
R equipped with the scalar product

⟨f ,g⟩ =
∫ 1

0
f (x)g(x)dx,

is a Hilbert space.

We denote by H a real Hilbert space equipped with an inner product ⟨·, ·⟩ and its
derived norm ∥ · ∥. To offer a comfortable framework, the notion of basis from finite-
dimensional vector spaces extends to Hilbert spaces. A sequence (ei)i≥1 is called a basis
of H if it spans H, that is every h ∈H decomposes as

h =
+∞∑
i=1

⟨h,ei⟩ei .

The basis is said orthonormal if its elements are of unit norm and pairwise orthogonal.
The Hilbert space H is said to be separable if it admits an orthonormal basis. An
example of separable Hilbert space is once again given by L2[0,1].

Example 3.4 (Separable Hilbert space). The Hilbert space L2[0,1] equipped with the inner
product ⟨f ,g⟩ =

∫ 1
0 f (x)g(x)dx is separable. An example of an orthonormal basis of L2[0,1]

is given by the well-known Fourier basis

{1} ∪ (
√

2cos(2πnx))n≥1 ∪ (
√

2sin(2πnx))n≥1.

3.1.2 Nonnegative compact operators

The concepts and results related to a particular class of linear operators, namely
compact operators, are introduced in this section, following the lines of Sections 3
and 4 in Hsing and Eubank (2015). These operators are essential for defining Hilbert-
Schmidt operators, central in the framework and findings in Part II. Before discussing
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Hilbert-Schmidt operators, we address general linear operators. A linear operator
of H (i.e., from H to H) is a linear mapping T : H → H. In the following, all the
operators will be assumed bounded (or equivalently, continuous (Theorem 3.1.2 Hsing
and Eubank (2015)): a linear operator T is bounded if its operator norm is finite

∥T ∥op := sup
h∈H

⟨T h,h⟩
∥h∥2

< +∞. (3.1)

While linear operators can be defined from one Hilbert space H1 to another H2, we
will focus on the specific case relevant to our purpose: linear operators from and to the
same Hilbert space H, which is assumed to be separable hereafter.

Remark 3.5. To highlight the importance of linear operators, it should be noted that these
entities are to Hilbert spaces what matrices are to finite-dimensional vector spaces. In fact,
real matrices of size d1 × d2 are example of linear operators from R

d1 to R
d2 .

For the sake of brevity, the study is restricted to nonnegative compact operator. A
linear operator T on H is said to be compact if for every bounded sequence (hn)n≥1 in
H, the sequence (T hn)n≥1 contains a convergent subsequence in H.

The set of nonzero eigenvalues of a compact operator form a countable set, where an
eigenvalue λ associated with eigenvector ϕ (or eigenfunction in the case of function
spaces such as L2[0,1]) of the operator T satisfies Tϕ = λϕ. A compact operator is
said to be nonnegative if all its eigenvalues are nonnegative. These eigenvalues can be
expressed as the min-max values of optimization problems involving the operator T ,
where the solutions to these problems are the eigenvectors. This important result is
known as the Courant-Fischer theorem.

Theorem 3.6 (Theorem 4.2.7 in Hsing and Eubank (2015)). Let T be a nonnegative,
compact operator on H with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0. Then,

λk = max
h1,...,hk∈H

min
v∈span

{
h1,...,hk

} ⟨T h,h⟩∥h∥2

and

λk = min
h1,...,hk−1∈H

max
h∈span(h1,...,hk−1)

⊥

⟨T h,h⟩
∥h∥2

,

where the maximum and minimum are attained when h is the eigenvector ek that corresponds
to λk .

By examining the Courant-Fischer Theorem and the definition of the operator norm
(3.1), it becomes evident that the operator norm of a compact nonnegative operator
is given by its largest eigenvalue. The cornerstone of the theory of compact operat-
ors is found in the following result. If in addition to nonnegative compactness, an
operator T is assumed self-adjoint, that is ⟨T h1,h2⟩ = ⟨h1,T h2⟩ for all h1,h2 ∈ H, a
eigendecomposition of this operator exists.

Theorem 3.7 (Theorem 4.2.4 in Hsing and Eubank (2015)). Let T be a nonnegative
compact, self-adjoint operator on H. The set of nonzero eigenvalues for T is either finite or
consists of a sequence which tends to zero. Each nonzero eigenvalue has finite multiplicity
and eigenvectors corresponding to different eigenvalues are orthogonal. Let λ1 ≥ λ2 ≥ . . . be
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the ordered eigenvalues and let ϕ1,ϕ2, . . . be the corresponding orthonormal eigenvectors.
Then, for all h ∈H

T h =
+∞∑
i=1

λi⟨h,ϕi⟩ϕi .

3.1.3 Hilbert-Schmidt operators

The results and definitions of the presentation are taken from Section 4 in Hsing and
Eubank (2015) and Section VIII in Gohberg et al. (2013). We present results from the
theory of Hilbert-Schmidt (HS) operators, which are a specific class of compact linear
operators (Theorem 4.4.3 in Hsing and Eubank (2015)).

Definition 3.8 (Hilbert-Schmidt operator). Let (ei)i≥1 be a orthonormal basis of H. A
Hilbert-Schmidt operator on H is defined as a linear operator T on H satisfying

+∞∑
i=1

∥T ei∥2 < +∞.

The family of Hilbert-Schmidt operators on H is denoted by HS(H).

Note that Definition 3.8 does not depend on the choice of norm (Theorem 4.4.1 in Hsing
and Eubank (2015)). A remarkable property of the set of HS operators HS(H) is that it is
itself a Hilbert space equipped with the inner product ⟨T1,T2⟩HS(H) :=

∑+∞
i=1⟨T1ei ,T2ei⟩

and the norm ∥T ∥2HS(H) =
∑+∞

i=1 ∥T ei∥2. In addition, if H is separable with orthonormal
basis (ei)i≥1 then, HS(H) is also separable with orthonormal basis (ei⊗ej )i,j≥1, where for
all h1,h2 ∈H, h1 ⊗ h2 is a rank one operator defined by h1 ⊗ h2(h) = ⟨h1,h⟩h2, for h ∈H.
It can be shown that h1 ⊗ h2 are HS operators with HS norm ∥h1 ⊗ h2∥HS(H) = ∥h1∥∥h2∥.
If T ∈HS(H) is in addition self-adjoint and nonnegative, then it can be established that

∥T ∥HS(H) =
( +∞∑
i=1

λ2
i

)1/2

,

where (λi)i≥1 are the eigenvalues of T . Notice that the Hilbert-Schmidt norm a self-
adjoint nonnegative operator T dominates its operator norm, i.e., ∥T ∥op ≤ ∥T ∥HS(H).

The class of integral operators in L2[0,1] is an important subset of Hilbert-Schmidt
operators, as only this type of operator will be considered in Chapter 6.

Example 3.9 (Integral operator). Let k : [0,1]×[0,1]→R be a kernel function in L2([0,1]×
[0,1]). Define the operator on K : L2[0,1]→ L2[0,1] given for all f ∈ L2[0,1] by

Kf (t) =
∫ 1

0
k(s, t)f (s)ds,

for all t ∈ [0,1]. Then, K is a HS operator on L2[0,1] with ∥K∥HS(L2[0,1]) = ∥k∥L2([0,1]×[0,1]). In
addition, if k is symmetric, i.e., k(s, t) = k(t, s), then K is self-adjoint and if k is nonnegative,
i.e., ∀(a1, ..., an) ∈Rn, (t1, ..., tn) ∈ [0,1]n,

∑n
i,j=1 aiajk(ti , tj ) ≥ 0, then K is nonnegative.

In this manuscript, integral operators are presented as examples of Hilbert-Schmidt
operators. However, this class of operators has been widely studied independently in
the literature (see the numerous sections dedicated to them in Gohberg et al. (2013)).
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An important result of HS operator theory is a particular case of the Eckart-Young
theorem (Theorem 4.4.7 in Hsing and Eubank (2015)), which is the first step towards
the principal components analysis presented in Section 3.3: the best approximation of
a self-adjoint nonnegative compact operator T with eigensystem (λi , ei)i≥1 by a sum of
rank one operators is given by a sum of the first λiei ⊗ ei ’s, that is∥∥∥∥∥T − n∑

i=1

fi ⊗ gi
∥∥∥∥∥
HS(H)

≥
∥∥∥∥∥T − n∑

i=1

λiei ⊗ ei
∥∥∥∥∥
HS(H)

, (3.2)

with f1, ..., fn, g1, ..., gn ∈H.

Remark 3.10 (Trace-class operator). Trace-class operators form an important subset of
Hilbert-Schmidt operators. In particular a self-adjoint nonnegative HS operator T with
eigenvalues (λi)i≥1 is called trace-class if

∥T ∥tr =
+∞∑
i=1

λi < +∞.

In this case, it is easy to see that trace-class operators are HS operators since ∥T ∥HS(H) ≤
∥T ∥tr by convexity of the square function x 7→ x2. If k is continuous and nonnegative in
Example 3.9 then the integral operator K is trace-class with

∥K∥tr =
∫ 1

0
k(t, t)dt.

Finally, a corollary of the Courant-Fischer theorem (Theorem 3.6) is given by Weyl’s in-
equality. This essential inequality in perturbation theory of Hilbert-Schmidt operators
controls the maximum deviation between the eigenvalues of two nonnegative compact
operators by the HS norm of their difference, which will be useful to our purpose in
Chapter 6.

Theorem 3.11 (Theorem 4.2.8 in Hsing and Eubank (2015)). Let T , T̃ be nonnegative
compact operators with eigenvalue sequences (λi)i≥1 and (λ̃i)i≥1, respectively. Then

sup
i≥1
|λi − λ̃i | ≤ ∥T − T̃ ∥HS(H).

3.2 Probability Theory in Hilbert Spaces

Most of the background gathered in this section may be found with detailed proofs,
references and discussions in Sections 7 and 8 of the monograph Hsing and Eubank
(2015), which provides a self-contained introduction to mathematical foundations of
functional data analysis. Other helpful resources regarding probability and measure
theory in Banach spaces and Bochner integrals include Vakhania et al. (2012) or
Mikusiński (1978).

3.2.1 Random elements in a Hilbert space

Consider a real separable Hilbert space (H,⟨·, ·⟩) and denote by ∥ · ∥ the associated norm.
Let (ei)i≥1 be any orthonormal basis of H. Since a separable Hilbert space is a particular
instance of a Polish space it follows from basic measure theory in (see, e.g., Vakhania
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et al. (2012), Theorem 1.2) that the Borel σ -field B(H) is generated by the family of
mappings {h∗ : x 7→ ⟨x,h⟩, h ∈H}, or in other words, by the class of cylinders

C = {(h∗)−1(B), h ∈H, B ∈ B(R)}.

In addition, since the countable family (e∗i )i≥1 separates points in H, it also generates
the Borel σ -field, see Proposition 1.4 and its corollary in Vakhania et al. (2012). In
other words, if we denote by πN the projection from H to R

N onto the first N ≥ 1 basis
vectors, πN (x) = (⟨x,e1⟩, . . . ,⟨x,eN ⟩), the family of cylinder sets

C̃ =
{
π−1
N (A1 × · · · ×AN ),Aj ∈ B(R), j ≤N,N ≥ 1

}
also generatesB(H). We call H-valued random element (or variable) any Borel-measurable
mapping X from a probability space (Ω,A,P) to H. The distribution and measurability
of X are entirely characterized by the measurabilities and the distributions of these
univariate projections, as assessed by the following result (see also Lemma 1.8.3. in
van der Vaart and Wellner (1996)).

Theorem 3.12 (Theorem 7.1.2 in Hsing and Eubank (2015)). Let X be a mapping from
some probability space (Ω,A,P) into (H,B(H)). Then,

1. X is measurable if ⟨X,h⟩ is measurable for all h ∈H and

2. if X is measurable, its distribution is uniquely determined by the (marginal) distribu-
tions of ⟨X,h⟩ over h ∈H.

Since the family C̃ of cylinder sets is a π-system generating B(H), it follows that the
distributions of all finite-dimensional projections (πN (X))N≥1 onto a specified basis
determine the distribution of X.

Integrability conditions for random elements in H are understood here in the Bochner
sense. Similarly to the construction of the Lebesgue integral, the first step is to define
simple functions. A function X : (Ω,A,P)→H is called simple if there exist A1, ...,An ∈
A and h1, ...,hn ∈H such that for all w ∈ Ω,X(w) =

∑n
i=11{w ∈ Ai}hi , for some n ≥ 1.

Then, such a simple function is said to be Bochner-integrable if P(Ai) < +∞ for 1 ≤ i ≤ n,
and if so, its Bochner integral if defined as

∫
Ω
XdP =

∑n
i=1P(Ai)hi . Consequently, a

random element X : (Ω,A,P)→ H is Bochner integrable if there exists a sequence
of simple functions (Xn)n≥1 such that limn→+∞

∫
Ω
∥X −Xn∥dP = 0 (see Section 2.6 in

Hsing and Eubank (2015) for further details) and the Bochner integral of X is defined
by

∫
Ω
XdP = limn→+∞

∫
Ω
XndP. In our specific case of a separable Hilbert space H,

a random element X is Bochner integral if E[∥X∥] <∞ (Theorem 2.6.5 in Hsing and
Eubank (2015)). Then, if E[∥X∥] <∞, the expectation of X is defined as the Bochner
integral E[X] =

∫
Ω
XdP.

A key property of the classic expectation is linearity, and it is also satisfied by the ex-
pectation defined in the Bochner sense. Namely if T is a bounded, linear operator from
H1 to H2, two Hilbert spaces, and if X is a Bochner-integrable random element in H1
then T (X) is also Bochner-integrable in H2 and T (E[X]) = E[T (X)], see Theorem 3.1.7
in Hsing and Eubank (2015). Many other properties of the classic expectation of a
real-valued random variables are preserved, e.g., the dominated convergence theorem.
In particular, a version of Jensen’s inequality can be formulated for H-valued random
variables, see, e.g., pp. 42-43 in Ledoux and Talagrand (1991).
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In addition, if E[∥X∥2] < +∞, the (centered) covariance operator of X can be defined as

Cc := E[(X −E[X])⊗ (X −E[X])],

where the expectations are understood in the Bochner sense. If so, X is said of second-
order. The covariance operator is a self-adjoint trace-class operator (Theorem 7.2.5 in
Hsing and Eubank (2015)), and in particular, a HS operator. This operator satisfies a
Hilbert extension of the König-Huygens formula, given by Cc = E[X ⊗X]−E[X]⊗E[X].

3.2.2 Weak convergence

As our main concern in Chapter 5 is to characterize regular variation in Hilbert spaces
in terms of weak convergence of appropriately rescaled variables, some basic facts
regarding weak convergence in Hilbert spaces are recalled. Most of the material of this
section can be found in Chapter 1.8 of van der Vaart and Wellner (1996) and Chapter 7
of Hsing and Eubank (2015).

By definition a sequence (Xn)n≥1 of H-valued random variables weakly converges (or
converges in distribution) to a H-valued random variable X, and we write Xn

w−→ X (or
equivalently, µn

w−→ µ if µn denotes the probability distribution of Xn and µ, that of X)
if for every bounded, continuous function f : H→ R, we have E[f (Xn)]→ E[f (X)].
This abstract definition may be difficult to handle for verifying weak convergence in
specific examples. However, weak convergence in H may equivalently be characterized
via weak convergence of one-dimensional projections and an asymptotic tightness
condition, as described next. Notice that, because H is separable and complete, the
Prokhorov theorem applies, i.e., uniform tightness and relative compactness of a family
of probability measures are equivalent. Recall that a sequence of probability measures
(µn)n≥1 is uniformly tight if for every ε > 0, there exists a compact set K ⊂ H such
that infn≥1µn(K) ≥ 1− ε. Notice that, because H is separable and complete, any single
random element valued in H is tight (as a consequence of Ulam’s Theorem, see Theorem
3.1 in Vakhania et al. (2012)).

Remark 3.13 (On measurability and tightness). Before proceeding any further, in order to
clear out any potential confusion, we emphasize that measurability of the considered maps
Xn : Ω→H is not required in van der Vaart and Wellner (1996), while it is assumed in
the present work, in which we follow common practice in functional data analysis focusing
on Hilbert-valued observations (as, e.g., in Hsing and Eubank (2015)). Notice also that the
notion of tightness employed in van der Vaart and Wellner (1996) as a criterion for relative
compactness of a family of random variables (Xn)n≥1, is asymptotic tightness, that is: for
all ε > 0, there exists a compact subset K of H, such that for every δ > 0, liminfnP(Xn ∈
Kδ) > 1 − ε. Here, Kδ denotes the δ-enlargement of the compact set K , that is, {x ∈ H :
infy∈K ∥x − y∥ < δ}. This is seemingly at odds with other presentations (Prokhorov (1956);
Hsing and Eubank (2015)) where the argument is organized around the standard notion
of uniform tightness, recalled above. However in a Polish space such as H, the two notions
of tightness (asymptotic or uniform) are equivalent (van der Vaart and Wellner (1996),
Problem 1.3.9), so that the presentations in van der Vaart and Wellner (1996) and Hsing
and Eubank (2015) are actually closer to each other than they might appear at first glance.

A convenient criterion which is the main ingredient to ensure tightness (hence relative
compactness) of a family of random H-valued random variables is termed asymptotic-
ally finite-dimensionality in van der Vaart and Wellner (1996) and seems to originate
from Prokhorov (1956).
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Definition 3.14. A sequence of H-valued random variables (Xn)n≥1 is asymptotically finite-
dimensional if, given a Hilbert basis (ei)i≥1, for all ε, δ > 0, there exists a finite subset
I ⊂N≥1 such that

limsup
n

P

(∑
i<I

⟨Xn, ei⟩2 > δ

)
< ε.

Asymptotic finite-dimensionality combined with uniform tightness of all univariate
projections of the kind ⟨Xn,h⟩,h ∈ H, is sufficient conditions for uniform tightness
of the family of random variables (Xn)n≥1 (see Hsing and Eubank (2015), Theorem
7.7.4). A sufficient condition for the asymptotic finite-dimension of a sequence of
H-valued random variables (Xn)n≥1 involving solely univariate convergences is given
in Tsukuda (2017) as the existence of limit H-valued random variable X such that
E[∥Xn∥2] → E[∥X∥2] < +∞ and E[⟨Xn, ei⟩2] → E[⟨X,ei⟩2] for all i ≥ 1. It should be
noticed that the above property is independent from the specific choice of a Hil-
bert basis. Also, since knowledge of the distributions of all univariate projections
characterizes the distribution of a random Hilbert-valued variable X, asymptotic finite-
dimensionality combined with weak convergence of univariate projections (or of finite
dimensional ones on a fixed basis) are sufficient to prove weak convergence of a
family of random elements in H, as summarized in the next statement. Recall that
πN (x) = (⟨x,e1⟩, . . . ,⟨x,eN ⟩) for x ∈H and N ≥ 1.

Theorem 3.15 (Characterization of weak convergence in H). A family of H-valued
random variables (Xt)t≥0 converges in distribution to a random variable X if and only if,
for any sequence (tn)n≥1 such that tn→ +∞ as n→ +∞, the sequence of random variables
(Xtn)n≥1 is asymptotically finite-dimensional and either one of the two conditions below
holds:

1. the sequence (⟨Xtn ,h⟩)n≥1 converges in distribution to ⟨X,h⟩ for any h ∈H;

2. the sequence (πN (Xtn))n≥1 converges in distribution to πN (X) for all N ≥ 1.

Proof. The fact that asymptotic finite-dimensionality together with Condition 1. in the
statement imply weak convergence, results from Theorem 1.8.4 in van der Vaart and
Wellner (1996), in the case where all mappings are measurable. To see that Condition
1. may be replaced with Condition 2. in order to prove weak convergence, note that
asymptotic finite-dimensionality implies uniform tightness in the case of a Hilbert
space (see Remark 3.13 above). Hence, weak convergence occurs if every subsequential
limits coincide. It is so because the family of cylinder sets C̃ is a measure-determining
class. The result is thus proved since convergence in distribution of sequences (Xtn)n≥1
towards X for any sequence (tn)n≥1 such that tn → +∞ as n→ +∞, is equivalent to
convergence in distribution of (Xt)t≥0 towards X as t→ +∞. ■

3.3 Principal Component Analysis

First, the necessary definitions and mathematical background underlying principal
component decomposition of H-valued random elements are presented in Section 3.3.1.
A self-contained exposition of the topic may be found in Hsing and Eubank (2015),
Chapter 7. Additionally, a presentation of the Karhunen-Loève decomposition, which
is an adapted version of the principal component decomposition for mean-square
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continuous processes, is given at the end of Section 3.3.1, along with a discussion
relating the two decompositions. Secondly, perturbation theory notions, which are
particularly useful for developing results in Chapter 6, are detailed in Section 3.3.2.

3.3.1 Eigendecomposition of a random element in a Hilbert space

In the sequel we interchangeably use the terminology principal component decomposition
or principal component analysis (PCA). Because of its optimality properties in terms
of L2-error when H = L2[0,1], functional PCA is widely used for a great variety of
statistical purposes in functional data analysis. Standard references on this topic are
the monographs Ramsay and Silverman (2005) and Horváth and Kokoszka (2012).

Let X be a H-valued random element and assume that E[∥X∥2] <∞. Then one may
consider the (non-centered) covariance operator

C = E[X ⊗X].

The motivation for considering the non-centered version of the covariance is discussed
in Remark 6.12 (see also Cadima and Jolliffe (2009) for a comparison between centered
and uncentered PCA). The properties stated at the end of Section 3.2.1 for the centered
covariance operator hold true also for the uncentered covariance operator, i.e., C is self-
adjoint and C ∈HS(H), thus C is compact. Also by linearity of the Bochner integration,
for any (h,g) ∈H2, we have:

Ch = E[⟨h,X⟩X] and ⟨Ch,g⟩ = E[⟨h,X⟩⟨X,g⟩].

A key result in functional PCA is the eigen decomposition of the covariance operator
(see Theorem 7.2.6 from Hsing and Eubank (2015) regarding the centered covariance
operator, which is also valid for the non-centered one):

C =
+∞∑
i=1

λiϕi ⊗ϕi , (3.3)

where λ1 ≥ λ2 ≥ . . . are the eigenvalues sorted by decreasing order and the ϕi ’s are
orthonormal eigenvectors. The set of nonzero eigenvalues λi is either finite or else
form a sequence of nonnegative numbers converging to zero such that

∑
i≥1λi < +∞.

The nonzero eigenvalues have finite multiplicity. The eigen functions ϕi form a Hilbert
basis of Im(C). As it is the case for the centered version of C, the decomposition (3.3)
immediately derives from the spectral theorem for compact nonnegative self-adjoint
operators (Theorem 3.7).

A useful property of the eigen functions (ϕi)i≥1 is that they allow perfect signal recon-
struction through the well-known principal component decomposition.

Theorem 3.16 (Theorem 7.2.7 in Hsing and Eubank (2015)). Let X be a H-valued
random element, with E[∥X∥2] < +∞. Suppose that X’s covariance operator C has the
eigendecomposition (3.3). Then, with probability one,

X =
+∞∑
i=1

⟨X,ϕi⟩ϕi . (3.4)
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Figure 3.2: Left: Five observations from the Orly temperatures dataset. Right: The five
observations decomposed into the first principal component (top) and the first three
principal components (bottom).

The scores Zi = ⟨X,ϕi⟩ satisfy E[Z2
i ] = λi and E[ZiZj ] = 0 for all i , j, so that the expan-

sion (3.4) is called bi-orthogonal. For all N ≥ 1, the truncated expansion
∑

i≤N ⟨X, ϕi⟩ϕi

is optimal in the sense that it minimizes the integrated mean-squared error

E

[∥∥∥∥X − N∑
i=1

⟨X, ui⟩ui
∥∥∥∥2

]
over all orthonormal collections (u1, . . . ,uN ) of H. This is the counterpart of the Eckart-
Young theorem for nonnegative self-adjoint Hilbert–Schmidt operator (3.2). The tail
behavior of the (summable) eigenvalue sequence (λi)i≥1 describes the optimal N -term
approximation error, insofar as

∑
i>N

λi = E

[∥∥∥∥X − N∑
i=1

⟨X, ϕi⟩ϕi

∥∥∥∥2
]
.

Figure 3.2 illustrates PCA on five observations from the Orly temperature dataset and
shows the reconstruction of the signals using three principal components.

Another result similar to PCA holds for stochastic processes X = (Xt)t∈K indexed by a
compact space K , say t = [0,1] for simplicity, under a specific continuity assumption.
A stochastic process X is said mean-square continuous if lim

n→+∞
E

[
(X(tn)−X(t))2

]
= 0 for

tn→ t as n→ +∞. Such mean-square continuous processes are in particular of second-
order. Let m(t) = E[X(t)] denote the mean function of X and c(t, s) = Cov(X(t),X(s))
denote the covariance kernel function of X, one can show that X is mean-square
continuous iff m and c are continuous (Theorem 7.3.2 in Hsing and Eubank (2015)). By
Mercer’s theorem (Theorem 4.6.5 in Hsing and Eubank (2015)), the covariance function
of X admits the decomposition (3.3)

c(s, t) =
+∞∑
i=1

λiϕi(s)ϕi(t), (3.5)

with the (λi ,ϕi)’s are the eigenvalues and the continuous eigenfunctions of the associ-
ated covariance operator and where the convergence is uniform. In this context, we
state the Kosambi-Karhunen-Loève Theorem and one can consider the well-known
Karhunen-Loève expansion of a stochastic process X.
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Theorem 3.17 (Theorem 7.3.5 in Hsing and Eubank (2015)). Let X be a mean-square
continuous stochastic process with mean zero. Suppose that its covariance function has the
eigendecomposition (3.5). Then,

lim
n→+∞

sup
t∈[0,1]

E

[(
X(t)−

n∑
i=1

⟨X,ϕi⟩ϕi(t)
)2]

= 0.

The functional PCA framework is closely related to the celebrated Karhunen-Loève
expansion in the case where H = L2[0,1], however both terms refer to subtly different
frameworks, which deserves an explanation. The former framework (which is the one
preferred in Part II) relies on a H-valued random element X, with standard results
concerning convergence of the expansions of X and its covariance operator in the
Hilbert norm and Hilbert-Schmidt norm, respectively, recalled in Section 3.2. Then
X’s trajectories are in fact equivalence classes of square-integrable functions and the
specific value Xt(ω) of a realization X(ω) at t ∈ [0,1] is only defined almost everywhere.
In contrast, the latter (Karhunen-Loève) framework relies on a second order stochastic
process X = (Xt)t∈[0,1], that is, a collection of random variables, which is continuous is
quadratic mean with respect to the index t. Then one must impose additional joint
measurability conditions of the mapping (ω,t) 7→ Xt(ω) in order to ensure that the
process X is indeed a H-valued random element. In such a case the mean and the
covariance operators defined both ways coincide. Also, the Karhunen-Loève Theorem
(Loève (1978)) ensures convergence in quadratic mean of the expansion of Xt, uniformly
over t ∈ [0,1]. In order to avoid another layer of technicality, and because our main
interest indeed lies in the eigenspaces of covariance operators rather than in pointwise
reconstruction of the functions, we adopt hereafter the view where X is a H-valued
random element, although additional joint measurability assumptions may be imposed
in order to fit into the Karhunen-Loève framework.

3.3.2 Perturbation theory related to PCA

Let X be a H-valued random element and assume that E
[
∥X∥2

]
< +∞. Let C be its

covariance operator with decomposition as in Equation (3.3). Let X1, ...,Xn i.i.d. copies
of X. Define the empirical (centered) covariance operator

Ĉ :=
1
n

n∑
i=1

Xi ⊗Xi . (3.6)

Like the true covariance operator, the empirical covariance operator Ĉ is a nonnegative
self-adjoint Hilbert-Schmidt operator. Consider its eigenelements (λ̂i , ϕ̂i)i≥1. Perturb-
ation theory for PCA addresses how closely C and its empirical counterpart Ĉ align,
particularly examining the proximity of the eigenelements (λi ,ϕi)i≥1 to (λ̂i , ϕ̂i)i≥1. For
these comparisons to be meaningful, the eigenelements of C must be identifiable,
which occurs if the eigenvalues in question are nonzero and have multiplicity one.
Significant insights under these conditions, along with the additional assumption of
finite fourth moments, are introduced in Dauxois et al. (1982).

Theorem 3.18 (Theorem 2.7 in Horváth and Kokoszka (2012)). Let X be a H-valued
random element and assume that E

[
∥X∥4

]
< +∞. Suppose that its covariance operator C has

the eigendecomposition (3.3) so that

λ1 > λ2 > ... > λp > 0.
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Let X1, ...,Xn i.i.d. copies of X, with empirical covariance operator Ĉ (3.6), with order
eigenelements (λ̂i , ϕ̂i)i≥1. Then, for each 1 ≤ j ≤ p,

limsup
n

nE
[
∥ϕj − ĉjϕ̂j∥2

]
< +∞, limsup

n
nE

[
|λj − λ̂j |2

]
< +∞,

with ĉj = sign(⟨ϕ̂j ,ϕj⟩).

Beyond optimal rates of convergence, the asymptotic normality of
√
n(λj − λ̂j) and√

n(ϕj−ĉjϕ̂j ) hold (see Sections 2.1 and 2.2 in Dauxois et al. (1982)). More generally, one
can consider cases where the eigenvalues have multiplicity greater than one (though
still finite, by Theorem 3.7). To infer well-defined quantities, it remains necessary to
impose conditions such as λp > λp+1 for some p ≥ 1. In such scenarios, rather than
examining the difference between an eigenfunction and its empirical counterpart indi-
vidually, one must analyze the difference between the projector onto the p-dimensional
eigenspace and its empirical counterpart, with respect to the Hilbert-Schmidt norm,
for instance. In this context, Zwald and Blanchard (2005) prove an important result.

Theorem 3.19 (Modified Theorem 3 in Zwald and Blanchard (2005)). Let A ∈HS(H) be
a self-adjoint nonnegative Hilbert-Schmidt operator with eigenvalues λ1 > λ2 > . . .. Assume
that λp > λp+1 for some p ≥ 1. Let δp = (λp−λp+1)/2. Let B ∈HS(H) be another self-adjoint
nonnegative operator such that ∥B∥ < δp/2 and (A+B) is still a nonnegative operator. Let
Πp(A) (resp. Πp(A+B)) denote the orthogonal projector onto the p first eigenspaces of A
(resp. (A+B)). Then,

∥Πp(A)−Πp(A+B)∥ ≤ ∥B∥
δp

.

Under appropriate assumptions, this result applies to A = C and B = Ĉ −C (or to a
thresholded covariance operator and its difference with a limit covariance operator,
see Corollary 6.3), to obtain ∥Πp(C)−Πp(Ĉ)∥ ≤ ∥Ĉ −C∥/δp. Regarding this inequality
and the Weyl’s inequality (Theorem 3.11), it should be noted that the HS norm of the
difference between two HS operators fully controls their difference in eigenstructure.
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Statistical learning is a field within statistics and machine learning that focuses on
developing methods for making predictions and uncovering patterns from data. It
involves building and evaluating models that learn from data, for a given task. Key
techniques include regression, classification, or clustering, all aimed at minimizing
risks measuring errors of a model. These methods are widely used in applications
ranging from meteorological forecasting and medical diagnosis to image recognition
and natural language processing. For a precise exposition of statistical learning theory,
the reader may be interested in several resources: for a global overview, see Hastie et al.
(2009) or James et al. (2013); for classification, see Devroye et al. (2013); for regression,
see Györfi et al. (2002); and for concentration inequalities, see Boucheron et al. (2013).

Statistical learning usually focuses on the bulk of the data distribution to obtain
models with good average performance. However, some statistical tasks, such as
anomaly detection or risk monitoring, which are particularly useful in fields like
climatology, finance, and insurance, require a deeper investigation into the behavior of
non-normal data, particularly extreme values. Over the last decade, several studies at
the intersection of Extreme Value Theory (EVT) and statistical learning have explored
dimension reduction (see Engelke and Ivanovs (2021) for a review), anomaly detection
and clustering (Goix et al. (2017); Chiapino et al. (2020)), classification (Jalalzai et al.
(2018); Clémençon et al. (2023)), cross-validation (Aghbalou et al. (2023)), and principal
component analysis (Drees and Sabourin (2021)), among others.

The chapter is structured as follows. Section 4.1 introduces the fundamental task of
statistical learning, specifically the prediction problem, through the empirical risk
minimization framework. Section 4.2 discusses the use of concentration inequalities to
provide statistical guarantees for empirical procedures, extensively used throughout
this thesis. In Section 4.3, more advanced concentration results are presented, particu-
larly those related to the theory of Vapnik-Chervonenkis classes. Finally, we focus in
Section 4.4 on specific concentration inequalities tailored for extreme values.
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4.1 Empirical risk minimization

This section follows the framework of the course Arlot (2018), where proofs and
additional discussions (in French) can be found regarding the results presented here.

Consider an input space X and an output space Y . Let (X,Y ) ∈ X ×Y represent a pair
of random variables with an unknown distribution P . The objective is to construct a
function g : X →Y which predicts Y from X. To measure the accuracy of predictions,
consider a cost function c : Y × Y → R+ is used, which decreases as the prediction
quality improves. The goal is to achieve a prediction that minimizes this cost on
average, leading to the definition of the risk of a predictive function g

R(g) := E[c(g(X),Y )].

The aim is to minimize the risk across all measurable functions. The minimum risk,
denoted as R∗ := infg R(g), is referred to as the Bayes risk. If an optimal predictive
function exists, it is denoted as g∗ ∈ argming R(g) .

We will further examine two classical settings: binary classification with 0− 1-cost and
regression with quadratic cost.

Example 4.1 (Binary classification with 0−1-cost). Let Y = {0,1} be the output space and
consider the 0−1-cost function defined as c : (y,y′) ∈ Y2 7→ 1{y , y′} ∈ {0,1}. Then the asso-
ciated risk is defined as R(g) = P(g(X) , Y ) and its minimizer, namely the Bayes classifier,
is given by g∗(X) = 1{E[Y | X] > 1/2} a.s., with E[Y | X] the conditional expectation of Y
given X.

Example 4.2 (Regression with quadratic cost). Consider the quadratic cost function
defined as c : (y,y′) ∈ Y2 7→ (y − y′)2 ∈ R. Then the associated risk is defined as R(g) =
E[(g(X)−Y )2] and its minimizer is given by g∗(X) = E[Y | X] a.s..

In practice, since the distribution P is unknown, the risk of a predictive function cannot
be directly determined. Instead, we observe independent pairs (X1,Y1), ..., (Xn,Yn)
identically distributed as (X,Y ). The purpose of supervised learning is to infer a
predictive function from these observations to accurately predict an output variable
Yn+1 given a new input observation Xn+1. To achieve this, one must minimize the
empirical counterpart of the risk

R̂n(g) =
1
n

n∑
i=1

c(g(Xi),Yi).

It is convenient to choose a model, i.e., a class of function G over which the minimization
of the empirical risk is performed

ĝn ∈ argmin
g∈G

R̂n(g).

Example 4.3 (Linear regression). Assume that X ⊂ R
d and consider the quadratic cost.

Consider the linear model, as the class of function Glin = {f : Rd → R,∃β ∈ R
d , f (x) =

⟨β,x⟩}. If the matrix X with rows Xi = (Xi)T for every 1 ≤ i ≤ n is of full rank, then the
minimizer of R̂n over G is given by

ĝn(x) = ⟨β̂,x⟩,
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where β̂ = (XT
X)−1

X
T Y and with Y = (Y1, ...,Yn)T . The coefficient β̂ is the well-known

Ordinary Least Square (OLS) estimator.

Choosing a model simplifies the computation of predictive functions but introduces a
model bias, referred to as the approximation error, defined as infg∈GR(g)−R∗. Combined
with the estimation error R(ĝn)− infg∈GR(g), the excess of risk of ĝn is expressed as

R(ĝn)−R∗ = R(ĝn)− inf
g∈G

R(g) + inf
g∈G

R(g)−R∗.

While the approximation error generally cannot be controlled, the estimation error can
often be managed using the inequality (Proposition 7 in Arlot (2018))

R(ĝn)− inf
g∈G

R(g) ≤ 2sup
g∈G
|R̂n(g)−R(g)|. (4.1)

Obtaining explicit bounds for these quantities lies at the core of concentration inequal-
ity theory, which is discussed in the next sections.

4.2 Non-asymptotic analysis

The primary objective of concentration theory is to bound the probability that a func-
tion deviates from its expectation. This theory is crucial for obtaining statistical
guarantees in ERM, as the right term of inequality (4.1) can be rewritten as

|R̂n(g)−R(g)| =
∣∣∣∣∣1n

n∑
i=1

cg(Xi ,Yi)−E[cg(X,Y )]
∣∣∣∣∣, (4.2)

with cg(x,y) = c(g(x), y). It is clear from this formulation that concentration theory
is encompassed within the theory of empirical processes, since the risk deviation
in Equation (4.2) is minimized when the empirical measure P̂n =

∑n
i=1 δ(Xi ,Yi ) closely

approximates the true measure P . Several classic inequalities in concentration theory
are discussed in Boucheron et al. (2013). Among these, Hoeffding’s inequality holds
for bounding the deviation of bounded random variables.

Theorem 4.4 (Theorem 2.8 in Boucheron et al. (2013)). Let Z1, ...,Zn be independent
real-valued random variables such that Zi takes its values in [ai ,bi] a.s. for all 1 ≤ i ≤ n.
Then

P

( n∑
i=1

(Zi −E[Zi]) ≥ ε

)
≤ exp

(
− 2ε2∑n

i=1(bi − ai)2

)
,

for ε > 0.

Hoeffding’s inequality involves a coarse bound of the variance of
∑n

i=1Zi by
∑n

i=1(bi −
ai)2/4. In contrast, Bernstein’s inequality, or a direct corollary of it, offers a more refined
bound for the same quantities through a finer control of the variance term. For the sake
of simplicity, we present Bernstein’s inequality only for the case of bounded random
variables, although a weaker condition on the boundedness of the moments could also
be assumed (see Theorem 2.10 in Boucheron et al. (2013)).
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Theorem 4.5 (Corollary 2.11 in Boucheron et al. (2013)). Let Z1, ...,Zn be independent
real-valued random variables. Assume that there exists positive numbers b and v such that
Zi ≤ b a.s. for all 1 ≤ i ≤ n and

∑n
i=1E[Z2

i ] ≤ v. Then

P

( n∑
i=1

(Zi −E[Zi]) ≥ ε

)
≤ exp

(
− ε2

2(v + bε/3)

)
,

for ε > 0.

A final, non-standard inequality will be used to derive statistical guarantees in Chapter 8
and will be referenced hereafter. This inequality can be regarded as a Bernstein-type
inequality since its upper bound is identical to that in Theorem 4.5. The difference lies
in the finer assumptions, notably the absence of independence between the random
variables.

Here and throughout we adopt the shorthand notation zi:j = zi , . . . , zj for i ≤ j.

Lemma 4.6 (Theorem 3.8 in McDiarmid (1998)). Let Z1:n with Zi taking their values in
a set Z and let f be a real-valued function defined on Zn. Let X = f (Z1:n). Consider the
positive deviation functions, defined for 1 ≤ i ≤ n and for z1:i ∈ Zi

gi(x1:i) = E[X |Z1:i = z1:i]−E[X |Z1:i−1 = z1:i−1].

Denote by b the maximum deviation

b = max
1≤i≤n

sup
z1:i∈Zi

gi(z1:i).

Let v be the supremum of the sum of conditional variances,

v := sup
(z1,...,zn)∈Zn

n∑
i=1

σ2
i (f (z1, ..., zn)),

where σ2
i (f (z1:n)) := V ar[gi(z1:i−1,Zi)]. If b and v are both finite, then

P

(
f (X)−E[f (X)] ≥ ε

)
≤ exp

(
−ε2

2(v + bε/3)

)
,

for ε ≥ 0.

Observe that, the classic Bernstein’s inequality derives from Lemma 4.6 by considering
independent Z1, ..,Zn and f (z1:n) =

∑n
i=1 zi .

4.3 A Vapnik-Chervonenkis inequality

As noted in the previous section, a critical quantity to control is the estimation error,
specifically to bound the term |R̂n(g)−R(g)| over a class of functions G. This function
class must be sufficiently complex to yield a good predictive function (thereby reducing
approximation error) but not overly broad to prevent overfitting (thereby controlling
the estimation term), aiming for a concentration bound of supg∈G |R̂n(g) − R(g)|. A
suitable class with these properties is described by the well-known Vapnik-Chervonenkis
classes. We give two equivalent definitions for different classes: one for a class of
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subsets and one for a class real-valued functions (which is the one useful in Part III). To
facilitate the exposition of the following results, we stick to the first definition, which
is the most common one, except for Proposition 4.11 which is stated in terms of a class
of regression functions, as it will be utilized in this form in Part III.

As mentioned earlier, following the remark below Equation (4.2), it is customary to
consider the VC-class of Borel subsets.

Definition 4.7 (Vapnik-Chervonenkis dimension of a class of Borel subsets). Let A be a
class of subsets of X . Define the shatter coefficient of size n ≥ 1

SA(n) := sup
x1,...,xn∈X

|{{x1, ..,xn} ∩A,A ∈ A}|.

The class A is called a VC-class if

VA := sup{n ≥ 1,SA(n) = 2n} < +∞.

If so, VA is called the VC-dimension of A.

Following the lines of Section 3.6 in Vapnik (1999), the definition of a VC-class of
Borel subsets extends to classes of real-valued functions by considering the family of
subgraphs.

Definition 4.8 (Vapnik-Chervonenkis dimension of a class of real functions). Let Y ⊂R.
Let G be a class of real functions g : X →Y . Define the family of subgraphs of G by

IG =
{
{(x,y) ∈ X ×Y , y ≤ g(x)}, g ∈ G

}
.

The class G is called VC-class if IG is a VC-class, in the sense of a class of Borel subsets. If so,
the VC-dimension of G is the VC-dimension of IG.

A basic, but useful example of a VC-class is given by the class of half-spaces of Rd

Example 4.9 (VC-class). The class of half-spaces H of Rd , defined as subsets of the form
{(x1, ...,xd) ∈ R

d ,β0 + β1x1 + ... + βdxd ≥ b, (β0,β1, ...,βd) ∈ R
d+1,b ∈ R}, is a VC-class of

VC-dimension d + 1. First, it is easy to construct half-spaces such that SH(d) = 2d+1 (left
graph of Figure 4.1). Second, in the case of d + 2 points, either all points lie on the boundary
of their convex hull (middle graph of Figure 4.1), in which case two "opposite" points cannot
be separated from the others, or at least one point lies in the interior of the convex hull (right
graph of Figure 4.1) and cannot be separated from the others. These scenarios are illustrated
for d = 2 in Figure 4.1.

Similarly, it can be shown mutatis mutandis the class of linear regression functions (in the
sense of Definition 4.8) are VC-classes with VC-dimension d + 1.

Once again, classes of functions can be replaced by classes of subsets since bounding
the deviation term supg∈G |R̂n(g) − R(g)| is similar to bounding the deviation term
supA∈A |νn(A) − ν(A)|, where νn is an empirical version of the measure ν. In the
remainder of the section, we denote by ν the distribution of X on X and we set
νn = (1/n)

∑
1≤i≤n δXi

the associated empirical measure. We can now state the well-
known Vapnik-Chervonenkis inequality for class of subsets.
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Figure 4.1: Illustration VC-dimension of half-spaces in R
2.

Theorem 4.10 (Theorem 2 in Vapnik and Chervonenkis (2015)). Let A be a class of
subsets of X and δ > 0. Then, with probability at least 1− δ

sup
A∈A
|νn(A)− ν(A)| ≤ 2

√
2
n

(
logSA(2n) + log(4/δ)

)
.

This inequality demonstrates its effectiveness when A is a VC-class of function, so that,
with probability at least 1− δ,

sup
A∈A
|νn(A)− ν(A)| ≤ 2

√
2
n

(
VA log(2n+ 1) + log(4/δ)

)
,

with VA the VC-dimension ofA. This result follows from the well-known Sauer’s
lemma (Lemma 1 in Arlot (2018)). This inequality enables thus to bound in expectation
the maximal deviation over a possible infinite class. A refinement of this inequality
removes the log(2n+ 1) term in the inequality (see, e.g., Theorem 3.4 in Boucheron et al.
(2005)).

This theorem (as well as Theorem 4.12) relies on a symmetrization argument (see
Section 3.7.1 in Arlot (2018)). In the case of class of regression functions, this argument
involves bounding the expectation of the maximal deviation as follows

E

[
sup
g∈G
|R̂n(g)−R(g)|

]
≤ 2E

[
sup
g∈G

{
1
n

n∑
i=1

εic(g(Xi),Yi)
}]

,

with ε1, ..., εn are i.i.d. Rademacher random variables, independent of {(X1,Y1), . . . ,
(Xn,Yn)}. The sum on the right side of the inequality is called a Rademacher average,
which plays a crucial role in the theory of concentration. The following inequality
concerning a specific Rademacher average will be a key component in the proof of
Theorem 8.4.

Proposition 4.11 (Proposition 2.1 in Giné and Guillou (2001)). Let Z1:n be i.i.d. random
variable of distribution P . Let ε1:n independent Rademacher random variables, independent
of Z1:n. Let G be a measurable uniformly bounded VC class of functions with VC-dimension
VG. Let σ2 ≥ supg∈GEP [g] and U ≥ supg∈G ∥g∥∞ be such that 0 < σ ≤U . Then

E

[
sup
g∈G

∣∣∣∣∣ n∑
i=1

εig(Zi)
∣∣∣∣∣] ≤ C

(
VGU log(U/σ ) + σ

√
VGn log(U/σ )

)
,

where C is a universal constant.
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4.4 Concentration inequalities for rare events

Statistical learning in extreme value theory has only recently become an active area
of research. For a more detailed discussion, refer to Section 1.2 in the introduction
chapter. This section focuses on concentration inequalities for extremes, central to the
results in Sections 6.3 of Part II and 8.2 of Part III. This section draws on findings from
Lhaut et al. (2022).

The classic VC inequality is not well-suited for rare events, defined as events A ∈ A
with ν(A)≪ 1. This is because the inequality does not differentiate between normal and
rare events, even though the maximal deviation term supA∈A |νn(A)−ν(A)| is intuitively
smaller for rare events. Therefore, an alternative VC-type inequality is presented,
which is particularly useful in extreme settings.

Theorem 4.12 (Theorem 2.1 in Anthony and Shawe-Taylor (1993)). Let A be a class of
subsets of X . Then, with probability at least 1− δ

sup
A∈A

νn(A)− ν(A)√
ν(A)

≤ 2

√
1
n

(
logSA(2n) + log(4/δ)

)
.

For a class A of rare subsets, that is for every A ∈ A, ν(A) ≤ p where p is a "small"
probability, Theorem 4.12 reformulates as

sup
A∈A
|νn(A)− ν(A)| ≤ 2

√
p

n

(
logSA(2n) + log(4/δ)

)
,

which is a notable improvement over the classic VC-inequality. However, considering
that the effective sample size is proportional to np, it is reasonable to achieve a bound
involving SA(2np) instead of SA(2n). This is addressed in the inequalities from Lhaut
et al. (2022), with the two principal results presented in the following theorem.

Theorem 4.13 (Theorem 3.1 and Corollary 4.4 in Lhaut et al. (2022)). Let A be a class of
subsets of X , such that ν(A) ≤ p for every A ∈ A and 0 < δ < 1.

1. If np ≥ 4log(4/δ), then with probability at least 1− δ,

sup
A∈A
|νn(A)−ν(A)| ≤ 2

3n
log(4/δ)+

√
p

n

(√
2log(4/δ)+2

√
log(8/δ) + logSA(4np)+1

)
.

2. If A is a VC-class, then with probability at least 1− δ,

sup
A∈A
|νn(A)−ν(A)| ≤ 2

3n
log(1/δ)+

√
2p
n

(√
2log(1/δ)+

√
log(2) +VA log(2np+ 1)+

√
2

2

)
.

Additional concentration inequalities for extremes, along with detailed discussions can
be find in Lhaut et al. (2022).

Remark 4.14 (Rare events?). In accordance with the subsequent sections, a "small" p could,
for instance, be defined as p = 1− kn/n, where kn→ +∞ and kn/n→ 0 as n→ +∞. Here, n
represents the sample size, and kn denotes the number of extremes in the sample. Thus, in
this context, a rare event corresponds to an observation exceeding the kn-th order statistic of
the sample.



Part II

Functional Extremes





Introduction

The surge in data availability of functional nature has spurred the development of
various applications related, e.g., to IoT, spectrometry, predictive maintenance of
sophisticated systems (energy networks, aircraft fleets, . . . ), see, e.g., the review Wang
et al. (2016) or Gertheiss et al. (2023), Li et al. (2022) and references therein. This opens
new perspectives for Extreme Value Analysis in applications where extremes play a
significant role, such as generation of synthetic extreme examples, anomaly detection,
or environmental risk assessment.

The main purpose of this part is to develop a general probabilistic and statistical
framework for the analysis of extremes of regularly varying random functions in the
space L2[0,1], the Hilbert space of square-integrable, real-valued functions over [0,1],
with immediate possible generalization to other compact domains, e.g., spatial ones. A
major feature of the proposed framework is the possibility to project the observations
onto a finite-dimensional functional space, via a modification of the standard functional
Principal Component Analysis (PCA) which is suitable for heavy-tailed observations,
for which second (or first) moments may not exist.

Recent years have seen a growing interest in the field of Extreme Value Theory (EVT)
towards high dimensional problems. On one hand, a particularly active line of research
concerns unsupervised dimension reduction for which a variety of of methods have
been proposed over the past few years (refer to Section 1.2.2 for more details about
dimension reduction suited for extremes). On the other hand, functional approaches
in EVT have a long history and are still the subject of recent development in spatial
statistics, see, e.g., the recent review Huser and Wadsworth (2022). For statistical ap-
plications, typically for spatial extremes, strong parametric assumptions must be made
to make up for the infinite-dimensional nature of the problem. Dimension reduction is
then limited to choosing a parametric model of appropriate complexity and it is not
clear how to leverage dimension reduction tools recently developed for multivariate
extremes in this setting. The vast majority of existing works in functional extremes
consider the continuous case (see Section 1.2.1 for more details about functional ex-
tremes), where it is in particular not clear how to perform dimension reduction on
these extremes.

Hereafter, we place ourselves in the Peaks-over-Threshold (PoT) framework: the focus is
on the limit distribution of rescaled observations, conditioned upon the event that their
norm exceeds a threshold, as this threshold tends to infinity. With continuous stochastic
processes, an extreme observation is declared so whenever its supremum norm is large,
i.e., above a high quantile. The limiting process arising in this context is a Generalized
Pareto process. In the functional PoT framework, the definition of an extreme event
depends on the choice of a norm which may be of crucial importance in applications. As
an example, in air quality monitoring, it may be more relevant to characterize extreme
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Figure 4.2: Functional extremes on the Orly temperatures dataset w.r.t. the 2-norm
(left) and w.r.t. the supremum norm (right).

concentration of pollutants through an integrated criterion over a full 24-hours period,
rather than through the maximum hourly record. Figure 4.2 illustrates the different
extremes according to the 2-norm and the supremum norm on the Orly temperatures
dataset described in Chapter 3. This line of thoughts is the main motivation behind the
work of Dombry and Ribatet (2015), where alternative definitions of extreme events
are considered by means of a homogeneous cost functional, which gives rise to r-Pareto
processes. However the observations are still assumed to be continuous stochastic
processes and the framework is not better suited for dimension reduction than those
developed in the previously cited works. A standard hypothesis underlying the PoT
approach is Regular Variation (RV), which, roughly, may be seen as an assumption
of approximate radial homogeneity regarding the distribution of the random object
X under study, conditionally on an excess of the norm ∥X∥ of this object above a
high radial threshold. An excellent account of RV of multivariate random vectors is
given in the monographs Resnick (1987, 2007). In Hult and Lindskog (2006b) RV is
extended to measures on arbitrary complete, separable metric spaces and involves
M0-convergence of measures associated to the distribution of rescaled random objects.
One characterization of RV in this context is via weak convergence of the pseudo angle
Θ = ∥X∥−1X and RV of the (real-valued) norm ∥X∥. Namely, the law of Θ given that
∥X∥ > t, L(Θ | ∥X∥ > t), which we denote by PΘ,t, must converge weakly as t → +∞,
towards a limit probability distribution PΘ,∞ on the unit sphere (see, e.g., Segers et al.
(2017); Davis and Mikosch (2008)). In the present work we place ourselves in the
general RV context defined through M0-convergence in Hult and Lindskog (2006b),
and we focus our analysis on random functions valued in the Hilbert space L2[0,1],
which has received far less attention (at least in EVT) than the spaces of continuous,
semi-continuous or càdlàg functions. One main advantage of the proposed framework,
in addition to allowing for rough function paths, is to pave the way for dimension
reduction of the observations via functional PCA of the angular component Θ. In this
respect the dimension reduction strategy that we propose may be seen as an extension
of Drees and Sabourin (2021), who worked in the finite-dimensional setting and derived
finite sample guarantees regarding the eigenspaces of the empirical covariance operator
for Θ. However their techniques of proof cannot be leveraged in the present context
because they crucially rely on the compactness of the unit sphere in R

d , while the unit
sphere in an infinite-dimensional Hilbert space is not compact.
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Several questions arise. First, when dealing with functional observations, the choice
of the norm (thus of a functional space) is not indifferent, since not all norms are
equivalent. In particular, there is no reason why RV in one functional space (say,
C[0,1]) would be equivalent to RV in a larger space such as L2[0,1]. Also a recurrent
issue in the context of weak convergence of stochastic processes is to verify tightness
conditions in addition to weak convergence of finite-dimensional projections, in order
to ensure weak convergence of the process as a whole. The case of Hilbert valued
random variables makes no exception (see, e.g., Chapter 1.8 in van der Vaart and
Wellner (1996)). A natural question to ask is then: ’What concrete conditions regarding
the angular and radial components (Θ,∥X∥) in a POT framework, which may be verified
in practice on specific generative examples or even on real data, are sufficient in order
to ensure tightness and thus RV?’. Regarding the PCA of the angular distribution, the
natural extension of the finite-dimensional covariance matrix of extreme angles Ct,Rd =
E[ΘΘ⊤ | ∥X∥ > t] in Drees and Sabourin (2021) where X ∈Rd , is the covariance operator
Ct = E[Θ ⊗ Θ | ∥X∥ > t] when X ∈ L2[0,1], see Chapter 3 for minimal background
regarding probability in Hilbert spaces and covariance operators. One may wonder
whether the eigenspaces of Ct indeed converge as t→ +∞ to those of C∞ = E[Θ∞⊗Θ∞],
where Θ∞ ∼ PΘ,∞, under the RV conditions alone, and whether the results of Drees and
Sabourin (2021) regarding concentration of the empirical eigenspaces indeed extend
to the infinite-dimensional Hilbert space setting. Although existing studies in the
literature have explored functional PCA in L2[0,1] within the context of EVT, none
have addressed the aforementioned questions. For further details on these existing
studies, see Section 1.2.1.

Our contribution is twofold. In Chapter 5, we provide a comprehensive description
of the notion of RV in a separable Hilbert space which fits into the framework of Hult
and Lindskog (2006b). In Chapter 6, we make a first step towards bridging the gap
between dimension reduction approaches an functional extremes by considering the
functional PCA of the angular variable Θ. Certain technical details are deferred to the
Appendices 5.A and 6.A.
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We start Chapter 5 by presenting basic examples of regularly varying random element
in a Hilbert space H relying on weak convergence characterizations provided in van
der Vaart and Wellner (1996) (see Proposition 3.15), as sums of simple Hilbert ran-
dom elements, in Section 5.1. In Section 5.2, we formulate specific characterizations
involving finite-dimensional projections and moments of the angular variable Θ, along
with several examples and counter-examples illustrating our statements. Section 5.3
discusses the relationships between Regular Variation (RV) in C[0,1] and in L2[0,1].
The chapter concludes with some perspectives of this work.

5.1 Regularly Varying Random Elements in H

As a warm up we discuss a classic example in EVT, a multivariate multiplicative model
within the framework of the multiplicative Breiman’s lemma (Basrak et al. (2002b),
Proposition A.1). In this setting we show in Proposition 5.1 below that regular variation
holds. The proof relies on existing general characterizations such as Equation (2.18).
This example will serve as a basis for our simulated data example in Section 6.4.

Proposition 5.1. Let Z = (Z1, . . . ,Zd) ∈ R
d be regularly varying with index α > 0 and

limit measure µ, and let A = (A1, . . . ,Ad) be a random vector of H-valued variables Ai ,

independent of Z, such that E
[(∑d

j=1 ∥Aj∥2H
)γ/2]

< +∞ for some γ > α. Then,

X =
d∑

j=1

ZjAj

is regularly varying in H with limit measure µ̃( · ) = E

[
µ
{
x ∈Rd :

∑d
j=1Ajx ∈ ( · )

}]
.

73
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Proof. In their Proposition A.1, Basrak et al. (2002b) consider the case where Aj ∈Rq

and A = (A1, . . . ,Ad) is a q × d matrix. In the proof, they use the operator norm for A,
but because all norms are equivalent in that case, their argument remains valid with
the finite-dimensional Hilbert-Schmidt norm. In this finite-dimensional context, ∥A∥
is equal to (

∑d
j=1 ∥Aj∥22)1/2, where ∥ · ∥2 is the Euclidean norm. An inspection of the

arguments in their proof shows that they also apply to the case where Aj ∈H, up to
replacing ∥Aj∥2 with ∥Aj∥H and ∥A∥ with (

∑d
j=1 ∥Aj∥2H)1/2. In particular, Pratt’s lemma

is applicable because Fatou’s Lemma is valid for nonnegative Hilbert space-valued
functions. ■

The latter example can be adapted to random sums of regularly varying H-valued
random elements, under additional assumptions, by using a conditioning argument.

Proposition 5.2. Let Z = (Zi)i≥1 be a sequence of i.i.d. real-valued regularly varying with
index α > 0 and with limit measure µ, let A = (Ai)i≥1 be a sequence of i.i.d. H-valued
random variables, independent of Z, such that E

[
(
∑∞

j=1 ∥Aj∥2H)γ/2
]
< +∞ for some γ > α,

and let D be an integer-valued nonnegative random variable, independent of A and Z, such
that E[D] < +∞ and P(D > x) = o(P(Z1 > x)). Then,

X =
D∑
j=1

ZjAj

is regularly varying in H with limit measure E[D]µ̃( · ), where µ̃(·) = E[µ{x ∈R : A1x ∈ ·}].

Proof. Let B ∈ B(H) be a continuity-set of µ̃ bounded away from zero, set bn =
P(∥Z1A1∥ ≥ n)−1 a regularly varying normalizing sequence, and let k0 ∈N be a non-zero
integer.

bnP

(
n−1

D∑
i=1

ZiAi ∈ B
)

=
∞∑
d=1

P(D = d)bnP
(
n−1

d∑
i=1

ZiAi ∈ B
)

=
( k0∑
d=1

+
∞∑

d=k0+1

)
P(D = d)bnP

(
n−1

d∑
i=1

ZiAi ∈ B
)

= I1 + I2.

The first term is controlled by Proposition 5.1,

I1 −→n→+∞

k0∑
d=1

P(D = d)E
[ d∑
i=1

µ({x ∈R : Aix ∈ B})
]

= µ̃(B)
k0∑
d=1

dP
(
D = d

)
→

k0→+∞
µ̃(B)E[D].

Turning to the second term, since B is bounded away zero, there exists ε > 0 such that
B ⊂ Bc(0, ε) and then, notice that

I2 ≤
∞∑

d=k0+1

P(D = d)
P

(
∥
∑d

i=1ZiAi∥ ≥ nε
)

P(∥Z1A1∥ ≥ n)
≤

∞∑
d=k0+1

P(D = d)
P

(∑d
i=1 ∥ZiAi∥ ≥ nε

)
P(∥Z1A1∥ ≥ n)

.

The arguments of Faÿ et al. (2006) in their Proposition 4.1 apply and ensure that

limsup
n→∞

∞∑
d=k0+1

P(D = d)
P

(∑d
i=1 ∥ZiAi∥ ≥ nε

)
P(∥Z1A1∥ ≥ n)

k0→+∞
= o(1),
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which concludes the proof. ■

The remainder of this section aims at providing some insight on specific properties of
regular variation in H, as compared with regular variation in general separable metric
spaces as introduced by Hult and Lindskog (2006b) or, at the other end of the spectrum,
regular variation in a Euclidean space. On the one hand, we focus on possible finite-
dimensional characterizations of regular variation in H, with a view towards statistical
applications in which abstract convergence conditions in an infinite-dimensional space
cannot be verified on real data, while finite-dimensional conditions may serve as a
basis for statistical tests. Although we do not go as far as proposing such rigorous
statistical procedures, we do suggest in the experimental section some convergence
diagnostics relying on the results gathered in this section. On the other hand we discuss
the relationships existing between regular variation in C[0,1] and regular variation in
H = L2[0,1].

5.2 Finite-dimensional Characterizations

regularly varying random elements in H have been present in the literature for a long
time, due to strong connections between regular variation and domains of attraction
of stable laws in general and in separable Hilbert spaces in particular. As an example,
Kuelbs and Mendrekar Kuelbs and Mandrekar (1974) show (through their Lemma 4.1
and their Theorem 4.11) that a random element in H which is in the domain of
attraction of a stable law with index 0 < α < 2 is regularly varying. However this
connection does not yield any finite-dimensional characterization which are our main
focus here.

We first recall Proposition 2.1 from Kim and Kokoszka (2022), making a first connection
between RV in H and regular variation of finite-dimensional projections. Let (ei)i≥1
be a complete orthonormal system in H. For I = (i1, . . . iN ) a finite set of indices with
cardinality N ≥ 1, denote by πI the ‘coordinate projection’ on the associated finite
family, πI (x) = (⟨x,ei1⟩, . . . ,⟨x,eiN ⟩),x ∈H. In particular we denote by πN : H→R

N the
projection onto the N first elements of the basis (ei)i≥1.

Proposition 5.3 (regular variation in H implies multivariate regular variation of fi-
nite-dimensional projections). Let X be a random element of H that is regularly varying
with index α > 0. Then, for all finite index set I of size N ≥ 1, the multivariate random
variable πIX is also regularly varying in R

N .

One natural question to ask is whether the converse of Proposition 5.3 is true. We
answer in the negative in Proposition 5.4 below.

Proposition 5.4 (Multivariate regular variation of finite-dimensional projections does
not imply regular variation in H). The converse of Proposition 5.4 is not true in general.
In particular there exists a random element X in H which is not regularly varying, while,
for any α > 0,

1. for all N ≥ 1, πNX is regularly varying in R
N with same index α ;

2. the norm of X is regularly varying in R with index α.
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Sketch of Proof. We construct a random element X in H in such a way that the
probability mass of its angular component Θ, given the radial component R, escapes
at infinity as R grows. Here, at infinity must be understood as span(ei , i ≥ M) as
M→ +∞. Namely, let X := RΘ with radial component R = ∥X∥ ∼ P areto(α) on [1,+∞[
(i.e., ∀t ≥ 1,P

(
R0 ≥ t

)
= t−α) and define the conditional distribution of Θ given R as the

mixture of Dirac masses:

L(Θ|R) =
1∑⌊R⌋

l=1 1/l

⌊R⌋∑
i=1

1
i
δei .

In other words, for i ≤ R, we have Θ = ei with probability proportional to 1/i. The
remainder of the proof, deferred to Appendix 5.A, consists in verifying that (i) all finite-
dimensional projections of X are regularly varying; (ii) asymptotic finite-dimensionality
(see Definition 3.14) of the family of conditional distributions PΘ,t does not hold, hence
it may not converge to any limit distribution, so that Condition (ii) from Proposi-
tion 2.18 does not hold and X may not be regularly varying.

■

The counter-example above suggests that the missing assumption to obtain regular
variation in H is some relative compactness criterion. This is partly confirmed in the
next example where the angular variables Θt is again a mixture model supported by
the ei ’s but where the probability mass for the conditional distribution of Θ given ∥X∥
concentrates around finite-dimensional spaces. The proof, postponed to the Appendix,
proceeds by verifying both conditions from Proposition 2.18.

Proposition 5.5. Let R ∼ P areto(α) on [1,∞[ and define Θ through its conditional distri-
bution given R = r, for r ≥ 1,

L(Θ|R = r) =
1∑⌊r⌋

l=1 1/l2

⌊r⌋∑
i=1

1
i2
δei .

In words, Θ ∈ {e1, e2, ...} and ∀r ≥ 1,∀1 ≤ j ≤ r, we have P(Θ = ej | R = r) = 1/j2∑⌊r⌋
l=1 1/l2

.

Then, the random element X = RΘ is regularly varying in H with index α with limit angular
random variable Θ∞ given by

P(Θ∞ = ej ) =
6

(πj)2 ,

for j ≥ 1.

The next proposition confirms the intuition given by the preceding examples that
asymptotic finite-dimensionality is a necessary additional assumption to regular vari-
ation of finite-dimensional projections and of the norm.

Proposition 5.6. Let X be a H-valued random element. The two conditions below are
equivalent.

1. X is regularly varying in H with index α > 0, limit measure µ and positive normalizing

sequence (bn)n≥1, i.e., µn = bnP(X ∈ n · )
M0−−−→ µ( · ).

2. The family of measures (µn)n≥1 is relatively compact w.r.t. the M0(H)-topology, and
for all N ≥ 1, πNX is regularly varying in R

N with index α > 0, limit measure µN
and positive normalizing sequence (bn)n≥1.
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In particular, both the index α and the normalizing sequence (bn)n≥1 are the same in
assertions 1. and 2. and, for all N ≥ 1, µN = µ ◦πN .

Proof. 1.⇒ 2. If X is regularly varying as in the statement 1., then (µn)n≥1 converges
in the M0(H) topology and the family is of course relatively compact. Also fix N ≥ 1
and notice that πN is a continuous mapping from (H,∥ · ∥) to R

N endowed with the
Euclidean norm. The continuous mapping theorem in M0 (see Hult and Lindskog

(2006b), Theorem 2.5) ensures that µn ◦π−1
N

M0−−−→ µ ◦π−1
N in R

N .

2. ⇒ 1. If µn is relatively compact, the sequence µn converges in M0(H) if and only
if any two subsequential limits µ1,µ2 coincide. However it follows form the previous
implication that in such a case, the finite-dimensional projections of µ1 and µ2 coincide,
namely µ1 ◦π−1

N = µ2 ◦π−1
N = µ ◦π−1

N , for all N ≥ 1. Consider the family of cylinder sets
of H with measurable base, C = {π−1

N (A),A ∈ B(RN ),N ≥ 1}. On C the measures µ, µ1

and µ2 coincide. The cylinder sets family C is a π-system which generates the Borel
σ -field, because it is associated to the family of bounded linear functional (e∗i )i≥1 which
separates points. Hence, µ, µ1 and µ2 coincide on every Borelian set and the proof is
complete.

■

Remark 5.7 (Cramér-Wold device for regular variation.). One may naturally wonder
whether a Cramér-Wold device could hold for RV. More precisely, a natural question to ask
is whether the condition ‘For some fixed α > 0, for all h ∈H, the random variable ⟨h,X⟩ is
regularly varying in R with index α,’ would be sufficient to prove RV in H of the random
element X. The answer is no, at least unless additional assumptions are made regarding
α. Indeed, this question has been investigated already in the finite-dimensional setting
by Basrak et al. (2002a); Hult and Lindskog (2006a). It is shown in Basrak et al. (2002a)
that for X valued in R

d , if α > 0 is non-integer, then the latter condition indeed implies RV
in R

d . Conversely, Hult and Lindskog (2006a) have shown through a counter-example, that
such an implication does not hold true when α is an integer, unless additional assumptions
are made. As a consequence it cannot hold in a general Hilbert space H either. Whether or
not the technical argument leading to the positive results of Basrak et al. (2002a) may be
extended to the Hilbert space setting is left to further research, as this question is not central
to our application to functional PCA in Section 6.

The line of thought of Proposition 5.6 may be pursued further by characterizing the
property of relative compactness of a family (νn)n≥1 ∈ M0(H) through asymptotic
finite-dimensionality (see Definition 3.14), following the lines of the proof of Theorem
4.3 in Hult and Lindskog (2006b), relying in particular on Theorem 2.6 of the cited
reference. However it is also possible to rely on known characterizations of relative
compactness for probability measures, coupled with the polar characterization of
regular variation (Proposition 2.18). We propose in this spirit the following simple
characterization solely based on weak convergence of univariate and finite-dimensional
projections, together with RV of the norm, without additional requirements regarding
asymptotic finite-dimensionality. Recall that the distribution L(Θ | ∥X∥ ≥ t) is denoted
PΘ,t.

Theorem 5.8. Let X be a random element in H and let Θt be a random element in H

distributed on the sphere S according to the conditional angular distribution PΘ,t. Let PΘ,∞
denote a probability measure on (S,B(S)) and let Θ∞ be a random element distributed
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according to PΘ,∞. The following statements are equivalent.

1. X is regularly varying with index α with limit angular measure PΘ,∞, so that PΘ,t
w−→

PΘ,∞.

2. ∥X∥ is regularly varying in R with index α, and

∀h ∈H,⟨Θt ,h⟩
w−→ ⟨Θ∞,h⟩ as t→ +∞.

3. ∥X∥ is regularly varying in R with index α, and

∀N ≥ 1,πN (Θt)
w−→ πN (Θ∞) as t→ +∞.

Proof. The fact that 1 implies 2 and 3 is a direct consequence of the polar characteriza-
tion of regular variation (Proposition 2.18) and of the continuous mapping theorem
applied to the bounded linear mappings h∗, h ∈H and πN , N ≥ 1.

For the reverse implications (3⇒ 1) and (2⇒ 1), in view of Proposition 2.18, we only
need to verify that for any sequence tn > 0 such that tn→ +∞, Θtn

w−→Θ∞ in H. From
Theorem 3.15, if either Condition 2 or Condition 3 holds true, then it will be so if and
only if the family (PΘ,tn)n≥1 is asymptotically finite-dimensional.

We use the fact, stated and proved in Tsukuda (2017), that if (Zn)n≥1 and Z are H-valued
random elements such that, as n→ +∞,

E

[
∥Zn∥2

]
→ E

[
∥Z∥2

]
, (5.1)

and, for all j ≥ 1,
E

[
⟨Zn, ej⟩2

]
→ E

[
⟨Z,ej⟩2

]
, (5.2)

then the sequence (Zn)n≥1 is asymptotically finite-dimensional.

With Zn = Θtn and Z = Θ∞, Condition (5.1) above is immediately satisfied since
∥Θtn∥ = ∥Θ∞∥ = 1 almost surely. For the same reason E

[
⟨Θtn , ej⟩

2
]

= E

[
ϕ(⟨Θtn , ej⟩)

]
,

where ϕ is the bounded, continuous function ϕ(z) = min(z2,1). Thus, weak convergence
of the projections ⟨Θtn , ej⟩ (Condition 2 or 3 from the statement) together with the
continuous mapping theorem imply (5.2), which concludes the proof. ■

5.3 Regular Variation in L2[0,1] vs Regular Variation in C[0,1]

Turning to the case where H = L2[0,1], we discuss the relationships between the notions
of RV in L2[0,1] and in C[0,1], the space of continuous functions on [0,1]. Indeed, any
continuous stochastic process (Xt , t ∈ [0,1]) is also a random element in H = L2[0,1], as
proved in Hsing and Eubank (2015), Theorem 7.4.1, or 7.4.2. It is thus legitimate to
ask whether regular variation with respect to one norm implies regular variation for
the other norm for such stochastic processes.

Proposition 5.9. Let X be a continuous process over [0,1]. Assume that X ∈ RV−α(C[0,1]),
with L(X/∥X∥∞|∥X∥∞ > t)→L(Θ∞,∞), as t→ +∞, where Θ∞,∞ is the angular limit process
w.r.t. the sup-norm ∥ · ∥∞. Then, X ∈ RV−α(L2[0,1]) and the angular limit process Θ∞,2
(w.r.t. the L2 norm ∥ · ∥) has distribution given by

P(Θ∞,2 ∈ B) =
E

[
∥Θ∞,∞∥α1{Θ∞,∞/∥Θ∞,∞∥ ∈ B}

]
E

[
∥Θ∞,∞∥α

] , (5.3)
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where B ∈ B({x ∈ L2[0,1] : ∥x∥ = 1}).

Proof. Since ∥ · ∥ is homogeneous and continuous w.r.t. ∥ · ∥∞ in C[0,1], Theorem 3 in
Dombry and Ribatet (2015) applies (upon choosing ℓ(X) = ∥X∥ with the notations of
the cited reference), which yields regular variation of X in L2[0,1], together with the
expression given in (5.3) for the angular measure associated with the L2 norm ∥ · ∥. ■

One may wonder whether the converse is also true, i.e., if X ∈ C[0,1]∩RV−α(L2[0,1]), is
it necessarily the case that X ∈ RV−α(C[0,1])? A counter-example is given in the next
proposition.

Proposition 5.10. The converse statement of Proposition 5.9 is not true in general. There
exists a sample-continuous stochastic process indexed by t ∈ [0,1] which is regularly varying
in L2[0,1] but not in C[0,1].

Proof. We construct a ‘spiked’ continuous process with controlled L2-norm, while
its sup-norm is super-heavy tailed. Let Z be drawn from a Pareto distribution with
parameter αZ > 0, i.e., P(Z ≥ t) = t−αZ for t ≥ 1, and define the sample-continuous
stochastic process

Y (t) =
(
1− t

3Z2 exp(−2Z)

)
exp(Z)1{[0,3Z2 exp(−2Z)[}.

Straightforward computations yield ∥Y ∥∞ = exp(Z) and ∥Y ∥2 = Z. Let ρ be another
independent Pareto-distributed variable with index 0 < αρ < αZ . Finally, define X = ρY .
Then X is a sample-continuous stochastic process over [0,1]. We have ∥X∥∞ = ρexp(Z),
which is clearly not regularly varying because (see, e.g., Mikosch (1999), Proposition
1.3.2) E[∥X∥δ∞] = +∞ for all δ > 0. Thus, X is not regularly varying in (C[0,1],∥ · ∥∞). On
the other hand, the pair (ρ,Y ) satisfies the assumptions of Proposition 5.1 with d = 1.
Hence, X = ρY is regularly varying in H = L2[0,1].

■

Proposition 5.10 and Proposition 5.9 together show that the framework of L2[0,1]-
regular variation encompasses a wider classes of continuous processes than standard
C[0,1] regular variation. This opens a road towards applications of EVT in situations
where the relevant definition of an extreme event has to be understood in terms of
‘energy’ of the (continuous) trajectory, as measured by the L2-norm, rather than in
terms of sup-norm.

5.4 Conclusion

In this chapter, we have conducted an extensive exploration of the concept of RV
within Hilbert spaces and established finite-dimensional characterizations. Numerous
examples to illustrate these characterizations and counterexamples to underscore the
necessity of the various assumptions are provided. A comparison between the RV in
L2[0,1] and the more extensively studied RV in C[0,1] is also presented. These results
can be useful to develop applications at the edge of EVT and signal processing, such as
the Principal Component Analysis framework for functional extremes introduced in
the next chapter.
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5.A Proofs

Proof of Proposition 5.4. Consider as in the sketch of the proof the random element
X := RΘ valued in H, with radial component R = ∥X∥ ∼ P areto(α) on [1,+∞[, i.e.,
∀t ≥ 1,P

(
R ≥ t

)
= t−α and with angular component Θ = X/∥X∥ defined through its

conditional distribution

L(Θ|R) =
1∑⌊R⌋

k=1 1/k

⌊R⌋∑
j=1

1
j
δej .

Notice that r 7→
∑⌊r⌋

i=1
1
i is slowly varying since we have

∑⌊r⌋
i=1 1/i ∼ logr as r→ +∞. We

now check that X satisfies the properties listed in the statement. That ∥X∥ = R ∈ RV−α
(Condition 1) is obvious. Fix N ≥ 1, recall that πN (X) is the R

N -valued projection
onto the first N elements of the basis (ei)i≥1 and denote by ΘN = πN (X)/∥πN (X)∥ the
associated angular component in R

N . Denote also by RN = ∥ΠN (X)∥
R

N the radial
components of πN (X) in R

N . First, we show that RN ∈ RV−α. Observe that for all t ≥N ,

P(RN ≥ t) = P(RN ≥ t,R ≥ t)

= P(Θ ∈ {e1, ..., eN },R ≥ t) = E[1{R ≥ t}P{Θ ∈ {e1, ..., eN } | R}]

= E

1{R ≥ t}
∑N

i=1 1/i∑⌊R⌋
l=1 1/l

 =
N∑
i=1

1
i

∫ ∞
t

αr−(α+1)∑⌊r⌋
l=1 1/l

dr.

Since r 7→ αr−(α+1)/(
∑⌊r⌋

l=1 1/l) ∈ RV−(α+1), we have RN ∈ RV−α by virtue of Karamata’s
theorem, see Theorem 2.5.

We next prove that L(ΘN |RN ≥ t) weakly converges as t → +∞. First, since for all t,
the measure P(ΘN ∈ · | Rn > t) is supported by the finite set {e1, ..., eN }. It is sufficient
to show convergence of each P(ΘN = ej | RN ≥ t) towards some pj ≥ 0 for all j, with∑

j≤N pj = 1. For fixed j ≤N and for t ≥N ,

P(ΘN = ej | RN ≥ t) =
P(Θ = ej ,RN ≥ t)

P(RN ≥ t)
=
P(Θ = ej ,R ≥ t)

P(RN ≥ t)

=
P(Θ = ej ,R ≥ t)

P(Θ ∈ {e1, . . . , eN },R ≥ t)
=

E

1{R ≥ t} 1/j∑⌊R⌋
l=1 1/l


E

1{R ≥ t}
∑N

i=1 1/i∑⌊R⌋
l=1 1/l

 =
1/j∑N
l=1 1/l

.

Hence, when t is large enough, L(ΘN |RN ≥ t) =
∑N

i=1(1/i)δei /
∑N

l=1(1/l). We have shown
that for all N ≥ 1, πN (X) is regularly varying in R

N with tail index −α.

We now show that X < RV(H). Since ∥X∥ ∈ RV−α(R), according to Proposition 2.18,
we have to prove that L(Θ | R ≥ t) does not converge when t tends to infinity. From
Theorem 1.8.4. in van der Vaart and Wellner (1996), it is enough to show that the
sequence of measures PΘ,n = P(Θ ∈ · | R > n) is not asymptotically finite-dimensional.
i.e., that

∃δ,ε > 0,∀d ∈N∗, limsup
n

P

(∑
i>d

⟨Θ, ei⟩2 ≥ δ | R ≥ n

)
≥ ε.
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Let δ > 0, ε ∈]0,1[ and n > d.

P

(∑
i>d

⟨Θ, ei⟩2 ≥ δ | R ≥ n

)
=
P(Θ < {e1, ..., ed},R ≥ n)

P(R ≥ n)

=

E

1{R ≥ n}P(Θ < {e1, ..., ed} | R)


P(R ≥ n)

=

E

1{R ≥ n}
(
1−

∑d
i=1 1/i∑⌊R⌋
l=1 1/l

)
P

(
R ≥ n

)
= E

1− ∑d
i=1 1/i∑⌊R⌋
l=1 1/l

| R ≥ n

 ≥ 1−
∑d

i=1 1/i∑n
l=1 1/l

−−−−−−→
n→+∞

1 ≥ ε. (5.4)

Hence, the asymptotic finite-dimensional condition does not hold and X is not regularly
varying in H. ■

Proof of the claim in Proposition 5.5. We show that X is regularly varying in H.
Following the lines of the proof of Proposition 5.4, it is enough to verify that PΘ,t

w−→Θ∞.
Since the common support of PΘ,t and PΘ,∞ is discrete we only need to show that
P(Θ = ej | R > t)→ 6/(πj)2 for fixed j ≥ 1.

For such j, following the steps leading to (5.4), we find

P(Θ = ej | R ≥ t) =
E

[
1{R ≥ t}P(Θ = ej | R)

]
P(R ≥ t)

=
E

[
1{R ≥ t}j−2/

∑⌊R⌋
l=1 l

−2
]

P(R ≥ t)

= j−2
E

[
1/
⌊R⌋∑
l=1

l−2
∣∣∣∣∣R ≥ t

]
= j−2

∫ ∞
t

( ⌊r⌋∑
l=1

l−2
)−1

αtα

rα+1 dr.

The integrand in the latter display is a regularly varying function of r with exponent
−α−1, and an application of Karamata’s theorem yields that P(Θ = ej | R ≥ t)→ 6/(πj2),
as t→ +∞. ■
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In Section 6.1, we introduce the key elements of our analysis, such as the pre-asymptotic
covariance operator Ct, the limit covariance operator C∞, and a distance ρ to measure
the similarity between the eigenspaces of the involved covariance operators. Sec-
tion 6.2 gathers results about the convergence the eigenstructure of Ct towards the
eigenstructure of C∞. In the situation where n ≥ 1 independent realizations of the
random function X are observed, in Section 6.3, we additionally provide statistical
guarantees regarding empirical estimation of the pre-asymptotic covariance operator
associated in the form of concentration inequalities regarding the Hilbert-Schmidt
(HS) norm of the estimation error. These bounds, combined with Regular Variation
(RV) of the observed random function X and the results from the preceding section
ensure in particular the consistency of the empirical estimation procedure. In Section
6.4 we present experimental results involving real and simulated data illustrating the
relevance of the proposed dimension reduction framework.

6.1 Characteristics of the Problem

This section revisits the problem of Principal Component Analysis (PCA) for the specific
purpose of Extreme Value Analysis. Motivated by dimension reduction purposes, our
goal is to construct a finite-dimensional representation of extreme functions. In other
words our primary purpose is to learn a finite-dimensional subspace V of H = L2[0,1]
such that the orthogonal projections of extreme functions onto V are optimal in terms
of angular reconstruction error. Throughout this section we place ourselves in the

82
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setting of regular variation introduced in Section 5 and consider a regularly varying
random element X in H as in Theorem 5.8, with the same notations. Our focus is thus
on building a low-dimensional representation of the angular distribution of extremes
PΘ,∞ introduced in the introduction of Part II. We consider the eigendecomposition of
the associated covariance operator

C∞ = E[Θ∞ ⊗Θ∞] =
∑
j≥1

λ
j
∞ϕ
∞
j ⊗ϕ

∞
j ,

where Θ∞ ∼ PΘ,∞, and the ϕ∞j ’s and λ
j
∞’s are eigenfunctions and eigenvalues of C∞

following the notations of Section 3.3. If PΘ,∞ is sufficiently concentrated around a
finite-dimensional subspace of moderate dimension p, a reasonable approximation of
PΘ,∞ is provided by its image measure via the projection onto V

p
∞ = span(ϕ∞j , j ≤ p).

Independently from such sparsity assumptions, the space V
p
∞ minimizes the recon-

struction error (3.3.1) of the orthogonal projection relative to Θ∞. It is also the unique
minimizer as long as λp

∞ > λ
p+1
∞ , as discussed in the background Section 3.3.

Our main results bring finite sample guarantees regarding an empirical version of V p
∞

constructed using the k≪ n observations with largest norm. In this respect our work
may be seen as an extension of Drees and Sabourin (2021), where finite-dimensional ob-
servations X ∈Rd are considered, to an infinite-dimensional ambient space. However,
our proof techniques are fundamentally different from those involved in the aforemen-
tioned reference. Indeed their analysis relies on Empirical Risk Minimization argu-
ments relative to the reconstruction risk at infinity, R∞(V ) = limt→+∞E[∥Θ −ΠVΘ∥2 |
R > t], where ΠV denotes the orthogonal projection onto V . The main ingredients of
their analysis are (i) the fact that V p

∞ minimizes the risk at infinity (ii) compactness of
the unit sphere (or of any bounded, closed subset of Rd). In the present setting such
compactness properties do not hold, and we follow an entirely different path, as we
investigate the convergence of an empirical version of C∞ in the Hilbert-Schmidt norm,
and then rely on perturbation theory for covariance operators in order to control the
deviations of its eigenspaces. We thus consider the pre-asymptotic covariance operator

Ct = E[Θ ⊗Θ | R > t] = E[Θt ⊗Θt]. (6.1)

In the sequel, the discrepancy between finite-dimensional linear subspaces of H is
measured in terms of the HS norm of the difference between orthogonal projections,
namely we define a distance ρ between finite-dimensional subspaces V ,W of H, by

ρ(V ,W ) = ∥ΠV −ΠW ∥HS(H).

Incidentally, it should be noticed that Drees and Sabourin (2021) denote by ρ the
operator norm of the difference between the projections and that their results regarding
convergence of eigenspaces are stated relative to the operator norm. Since the HS norm
dominates the operator norm, our results are indeed stronger in nature than those of
the cited references as claimed in the Introduction, even in the finite-dimensional case.

The problem is now fully outlined, allowing us to refine the initial plan provided at
the beginning of the chapter by specifying the nature of the forthcoming results. We
show in Section 6.2 that the first p eigenfunctions of the pre-asymptotic operator Ct

generate a vector space V
p
t converging to V

p
∞ whenever λp

∞ > λ
p+1
∞ . Second, we establish

in Section 6.3 the consistency of the empirical subspace V̂
p
t (the one generated by the
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first p eigenfunctions of an empirical version of Ct) and we derive nonasymptotic guar-
antees for its deviations, based on concentration inequalities regarding the empirical
covariance operator.

6.2 The Pre-asymptotic Covariance Operator and its
Eigenspaces

Since perturbation theory allows to control the deviations of eigenvectors and eigen-
values of a perturbed covariance operator, a natural first step in our analysis is to
ensure that the pre-asymptotic operator Ct introduced in (6.1) may indeed be seen as a
perturbed version of the asymptotic operator C∞, as shown next.

Theorem 6.1 (Convergence of the pre-asymptotic covariance operator). In the setting of
Theorem 5.8, as t→ +∞, the following convergence in the Hilbert-Schmidt norm holds true,

∥Ct −C∞∥HS(H)→ 0 .

Proof. Let (tn)n≥1 be a nondecreasing sequence of reals converging to infinity. Recall
from Theorem 2.18 that regular variation of X implies weak convergence of the se-
quence Θtn towards Θ∞. Using the fact that the mapping h ∈H 7→ h⊗ h ∈ HS(H) is
continuous, also Θtn ⊗Θtn converges weakly towards Θ∞ ⊗Θ∞.

Since the separability of (H,⟨·, ·⟩) implies the separability of (HS(H),⟨·, ·⟩HS(H)) (see
Blanchard et al. (2007), Section 2.1), we may apply the Skorokhod’s Representation
theorem to the weakly converging sequence Θtn ⊗Θtn . Thus there is a probability space
(Ω′ ,F ,P′), and random elements Yn, n ≥ 1 and Y∞ in HS(H) defined on the probability

space (Ω′ ,F ,P′), such that Θtn⊗Θtn
d= Yn, Θ∞⊗Θ∞

d= Y∞ and Yn converges to Y∞ almost
surely with respect to P

′.

A Jensen’s type inequality in Hilbert spaces (see pp. 42-43 in Ledoux and Talagrand
(1991)) yields ∥Ctn −C∞∥HS(H) ≤ E[∥Yn −Y∞∥HS(H)]. The dominated convergence the-
orem applied to the vanishing sequence of random variables ∥Yn −Y∞∥HS(H) (which are
bounded by the constant 2) completes the proof.

■

Remark 6.2. An alternative way to obtain the weak convergence of Θt ⊗Θt, which is key
in the proof of Theorem 6.1, is to leverage Proposition 3.2 in Kokoszka et al. (2019), which
ensures that the operator X ⊗X is regularly varying in HS(H). Since Θ ⊗Θ is indeed the
angular component of X ⊗X, the result follows by an application of Proposition 2.18.

The next result concerns the convergence of eigenspaces and is obtained by combining
tools from operator perturbation theory with the result from Theorem 6.1. In order
to avoid additional technicalities we consider in the next statement an integer p such
that λp

∞ > λ
p+1
∞ ≥ 0, that is, a positive the spectral gap. Notice that such a p necessarily

exists since ∥C∞∥2HS(H) =
∑∞

j=1(λj
∞)2 <∞.

Corollary 6.3 (Convergence of pre-asymptotic eigenspaces). Let p ∈N∗ be such that
λ
p
∞ > λ

p+1
∞ . Then, as t tends to infinity,

ρ(V p
t ,V

p
∞)→ 0.
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Proof. According to Theorem 3 in Zwald and Blanchard (2005), for A and B two
Hilbert-Schmidt operators on a separable Hilbert space, and an integer p such that

the ordered eigenvalues of A satisfy λp(A) > λp+1(A), if ∥B∥HS(H) < γp := λp(A)−λp+1(A)
2 is

such that A+B is still a positive operator, then following inequality holds

ρ(V p,W p) ≤
∥B∥HS(H)

γp ,

where V p and W p are respectively the eigenspaces spanned by the first p eigenvectors
of A and A+B. From Theorem 6.1, the operators A = C∞ and B = C∞ −Ct satisfy the
required assumptions stated above for t sufficiently large, and ∥B∥HS(H) may be chosen
arbitrarily small, which concludes the proof. ■

Remark 6.4 (Convergence of eigenvalues and choice of p). Even though the eigenvalues
of C∞ are not the main focus of our work, they are involved in the conditions of Corollary 6.3
through the requirement of a positive spectral gap. Of course these eigenvalues are unknown,
however Weyl’s inequality (see Theorem 3.11) ensures that supj≥1 |λ

j
t−λ

j
∞| ≤ ∥Ct−C∞∥HS(H).

Identification of an integer p for which the eigengap is positive may thus be achieved using
consistent estimates of the λj

t ’s for t large enough.

6.3 Empirical Estimation: Consistency and Concentration
Results

We now turn to statistical properties of empirical estimates of Ct and its eigendecom-
position based on an independent sample X1, ...,Xn distributed as X. For simplicity
we shall assume in the sequel that the radial variable has no atoms (P(R = r) = 0 for
all r > 0) in order to avoid ambiguities in the definition of order statistics of the norm.
This (mild) assumption could be relaxed at the price of additional minor technicalities,
e.g., by assuming that it holds only above a certain high quantile, and assuming that
k/n is small enough.

Let tn,k denote the generalized quantile of the norm of order 1 − k/n, namely tn,k =
inf{t > 0 : P(∥X∥ ≤ t) ≥ 1 − k/n}. Then tn,k is uniquely defined and by the above
assumption it holds that P(∥X∥ ≥ tn,k) = k/n. Denote by X(1), . . .X(n) the permutation
of the sample such that ∥X(1)∥ ≥ ∥X(2)∥ ≥ ... ≥ ∥X(n)∥. Also by the above assumption,
there are no ties among the ∥Xi∥’s and this permutation is again uniquely defined, with
probability one. Accordingly, let Θ(i),R(i) denote the angular and radial components of
X(i). Then ∥X(k)∥ = R(k) is an empirical version of tn,k , which we shall sometimes denote
by t̂n,k. Following standard practice in Peaks-Over-Threshold analysis, we consider
a fixed number of excesses k above the latter random radial threshold. Even though
our main results are of non-asymptotic nature, letting k,n→∞ with k/n→ 0 yields
consistency guarantees such as Corollary 6.11 below. Equipped with these notations
the pre-asymptotic covariance operator at threshold tn,k is

Ctn,k := E[Θtn,k ⊗Θtn,k ] =
n
k
E[Θ ⊗Θ1{R ≥ tn,k}],

and its empirical counterpart is given by

Ĉk :=
1
k

k∑
i=1

Θ(i) ⊗Θ(i).
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Remark 6.5 (Choice of k). Choosing the number k of observations considered as extreme
is key in practice and corresponds to a difficult and recurrent topic in EVT. A wide variety
of methods have been proposed in univariate problems (Caeiro and Gomes (2016); Scarrott
and MacDonald (2012)), some rules of thumb exist in multivariate settings, based on visual
inspection of angular histograms (Coles and Tawn (1994) or stability under rescaling of
the radial distribution (Stărică (1999)) with little theoretical foundations. We leave this
question outside the scope of the paper. However, visual diagnostics are proposed in our
numerical study based on Hill plots and convergence checking based on the finite-dimensional
characterizations of RV stated in Theorem 5.8.

Our analysis of the statistical error ∥Ĉk −Ctn,k∥HS(H) involves the intermediate pseudo
empirical covariance

Ct :=
1

P(∥X1∥ ≥ t)
1
n

n∑
i=1

Θi ⊗Θi1{Ri ≥ t}.

evaluated at t = tn,k. Since tn,k is unknown, Ctn,k = k−1 ∑n
i=1Θi ⊗Θi1{Ri ≥ tn,k} is not

observable, although its deviation from Ĉk may be controlled by the classical Bernstein
inequality (Proposition 6.7). Our point of departure is the following decomposition of
the statistical error,

∥Ĉk −Ctn,k∥HS(H) ≤ ∥Ctn,k −Ctn,k∥HS(H) + ∥Ĉk −Ctn,k∥HS(H). (6.2)

We analyze separately the two terms in the right-hand side of (6.2) in the next two
propositions.

Proposition 6.6. Let δ ∈ (0,1). With probability larger than 1− δ/2, we have

∥Ctn,k −Ctn,k∥HS(H) ≤
1 + 4

√
log(2/δ)
√
k

+
8log(2/δ)

3k
.

Sketch of Proof. A Bernstein-type concentration inequality from McDiarmid (1998)
which is applicable to arbitrary functions of n variables with controlled conditional
variance and conditional range (Theorem 3.8 of the reference, recalled in Lemma 4.6
from Chapter 4) ensures that

P

(
∥Ctn,k −Ctn,k∥HS(H) −E

[
∥Ctn,k −Ctn,k∥HS(H)

]
≥ ε

)
≤ exp

(
−kε2

4(1 + ε/3)

)
.

In order to control the expected deviation E

[
∥Ctn,k −Ctn,k∥HS(H)

]
in the left-hand side,

we first use the bound

E

[
∥Ctn,k −Ctn,k∥HS(H)

]
≤ E

[
∥Ctn,k −Ctn,k∥

2
HS(H)

]1/2
and then the fact that, if A1, ...,An are independent centered H-valued random elements,
E

[
∥
∑n

i=1Ai∥2
]

=
∑n

i=1E
[
∥Ai∥2

]
(Lemma 6.14 in Appendix 6.A). We apply this result

to Ai chosen as the deviation of the operator Θi ⊗Θi1{Ri ≥ tn,k} from its expectation,
which yields

E

[
∥Ctn,k −Ctn,k∥HS(H)

]
≤ 1/
√
k.

Lemma 6.15 finishes the proof, as detailed in Appendix 6.A. ■

We now turn to the second term ∥Ĉk −Ctn,k∥HS(H) in the error decomposition (6.2).
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Proposition 6.7. Let δ ∈ (0,1). With probability larger than 1− δ/2, we have

∥Ĉk −Ctn,k∥HS(H) ≤
√

8log(4/δ)
k

+
4log(4/δ)

3k
.

Proof. Because the Θi ⊗Θi ’s have HS norm equal to one, we may write

∥Ĉk −Ctn,k∥HS(H) =
1
k

∥∥∥∥∥ n∑
i=1

Θi ⊗Θi(1{tn,k ≤ Ri} −1{R(k) ≤ Ri})
∥∥∥∥∥
HS(H)

≤ 1
k

n∑
i=1

| 1{tn,k ≤ Ri} −1{R(k) ≤ Ri} |

=
1{tn,k ≤ R(k)}

k

n∑
i=1

(1{tn,k ≤ Ri} −1{R(k) ≤ Ri}) + · · ·

1{tn,k > R(k)}
k

n∑
i=1

(1{R(k) ≤ Ri} −1{tn,k ≤ Ri}).

Also, since we have assumed that the distribution of R has no atoms we have with
probability one, R(1) > R(2) > . . .R(k) > R(k+1). Thus the number of Ri ’s such that Ri ≥ R(k)
is exactly k, so that

∥Ĉk −Ctn,k∥HS(H) ≤
1{tn,k ≤ R(k)}

k

[( n∑
i=1

1{tn,k ≤ Ri}
)
− k

]
+ · · ·

1{tn,k > R(k)}
k

(
k −

n∑
i=1

1{tn,k ≤ Ri}
)

=
1
k

∣∣∣∣∣k − n∑
i=1

1{Ri ≥ tn,k}
∣∣∣∣∣,

where the last line follows from the fact that on the event {tn,k ≤ R(k)} it holds that∑n
i=11{tn,k ≤ Ri} ≥ k, while on the complementary set, the inequality is reversed.

Notice that
∑n

i=11{Ri ≥ tn,k} follows a Binomial distribution with parameters (n,k/n).
The (classic) Bernstein’s inequality as stated, e.g., in McDiarmid (1998), Theorem 2.7,
yields

P

(
∥Ĉk −Ctn,k∥HS(H) ≥ ε

)
≤ P

( ∣∣∣∣∣ n∑
i=1

1{Ri ≥ tn,k} − k
∣∣∣∣∣ ≥ kε

)
≤ 2exp

(
−kε2

2(1 + ε/3)

)
.

Solving for ε and using the fact that
√
a+ b ≤

√
a+
√
b for any nonnegative numbers a,b,

we obtain the upper bound in the statement. ■

We are now ready to state a non-asymptotic guarantee regarding the deviations (in the
Hilbert-Schmidt norm) of the empirical covariance operator.

Theorem 6.8. Let δ ∈ (0,1). With probability larger than 1− δ, we have

∥Ĉk −Ctn,k∥HS(H) ≤
1 + 4

√
log(2/δ) +

√
8log(4/δ)

√
k

+
8log(2/δ) + 4log(4/δ)

3k
.
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Proof. Observe that the following inclusion between adverse events holds true because
of (6.2),{
∥Ĉk −Ctn,k∥HS(H) ≥ ε1 + ε2

}
⊂

{
∥Ĉk −Ctn,k∥HS(H) ≥ ε1

}
∪

{
∥Ctn,k −Ctn,k∥HS(H) ≥ ε2

}
,

for all ε > 0. A union bound, Proposition 6.6 and Proposition 6.7 conclude the proof. ■

Remark 6.9 (Tightness of the upper bound, asymptotics). The bound obtained in The-
orem 6.8 constitutes a minimal guarantee regarding covariance estimation of the extremes.
By no means do we claim optimality regarding the multiplicative constants, which we have
not tried to optimize, as revealed by an inspection fo the proof where the decomposition of the
adverse event into two events of same probability may be sub-optimal. However the leading
term of the error as k→ +∞ is an explicit, moderate constant and the rate of convergence is
1/
√
k, which matches known asymptotic rates in the literature of tail empirical processes in

the univariate or multivariate case (see, e.g., Einmahl and Mason (1988) or Aghbalou et al.
(2024a), Theorem 3). We leave to further research the question of the asymptotic behavior of
Ĉk −Ctn,k as k,n→ +∞, k/n→ 0, a problem which could be attacked by means of Lindeberg
central limit theorems in Hilbert spaces (Kundu et al. (2000)).

Combining Theorem 6.1 and Theorem 6.8, the following consistency result is immedi-
ate.

Corollary 6.10 (Consistency). The empirical covariance of extreme angles Ĉk is consistent,
i.e., as n, k→ +∞ such that k/n→ 0, we have

∥Ĉk −C∞∥HS(H)→ 0 in probability.

Theorem 6.8 also provides a control of the deviations of the empirical eigenspaces, with
a proof paralleling the one of Corollary 6.3. In the following statement we denote by
V̂

p
k such an eigenspace, that is, the linear space generated by the first p eigenfunctions

of Ĉk .

Corollary 6.11 (Deviations of empirical eigenspaces). Let p ≥ 1 satisfying the same
positive eigengap assumption as in Corollary 6.3, that is γp

∞ := (λp
∞ −λ

p+1
∞ )/2 > 0. Denote

the pre-asymptotic eigengap by

γ
p
t =

λ
p
t −λ

p+1
t

2
.

Let n,k be large enough so that γp
tn,k

> 0 (see Remark 6.4 for the fact that γp
tn,k
→ γ

p
∞ > 0).

For δ ∈ (0,1), with probability larger than 1− δ, we have

ρ(V̂ p
k ,V

p
tn,k

) ≤ B(n,k,δ)

γ
p
tn,k

,

where B(n,k,δ) is the upper bound on the deviations of Ĉk stated in Theorem 6.8. In
particular, we have the following consistency result: as n, k→ +∞ s.t. k/n→ 0,

ρ(V̂ p
k ,V

p
∞)→ 0 in probability.

Remark 6.12 (Uncentered vs centered covariance operators). Throughout this article,
we only consider uncentered covariance operators, which leads to uncentered PCA. We have
chosen to consider uncentered PCA for the sake of notational simplicity mainly. Also the
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mathematical expressions do not involves first moment terms, which shortens the proofs of
our main statistical and probabilistic results.

Whereas centered PCA aims at finding directions of highest variability around the mean,
uncentered PCA exhibits directions of highest absolute variability (around 0). An in-
depth comparison between the two is presented in Cadima and Jolliffe (2009) in the finite-
dimensional case.

Considering the feasibility of an extension of our results to centered PCA, notice first that
since Θt is bounded, the continuous mapping theorem applies and entails that in the setting
of Theorem 6.1, E[Θt]→ E[Θ∞]. Consequently, we have Θt −E[Θt]

w→Θ∞ −E[Θ∞], thus
the arguments of the proof remain valid when considering centered covariance operators.
Concerning extending our concentration results of Section 8.2, It is worth noting that such
extensions have been obtained for kernel PCA, outside the extreme value setting, by Blanchard
et al. (2007), with ‘slow’ rates of convergence of order O(1/

√
n). However fast convergence

rates of order O(1/n) are obtained in the latter reference in the uncentered case only,
based on localized risk-minimization arguments which are significantly different from our
techniques of proof. The authors leave as an open question the possibility to obtain fast
rates for centered PCA, as empirical centering induces additional slow rate terms of order
O(1/

√
n) in their analysis. Because our statistical results in this paper consist of slow rates

only (of order O(1/
√
k)) it is reasonable to conjecture that accounting for the error attached

to first moment estimation would merely bring additional terms of order O(1/
√
k) in the

upper bound, which would not change the nature of our results.

6.4 Illustrative Numerical Experiments

Two possible applications of PCA for functional extremes are considered here. In both
contexts, our goal is to assess the usefulness of the proposed functional PCA method
for extremes by comparing it with the closest alternative, namely functional PCA of
the full sample (not only extremes). On the one hand, a typical objective is to identify
likely profiles of extreme events, by which we mean a finite-dimensional subspace of
H with basis given by the eigenfunctions of C∞ with the highest eigenvalue. In this
context, extreme functional PCA serves as a pattern identification tool for a qualitative
interpretation. This line of thought is illustrated in Section 6.4.1 on a toy simulated
dataset in the multiplicative model of Proposition 5.1.

On the other hand, functional PCA of extremes may be viewed as a data compression
tool allowing to represent functional extremes in a finite-dimensional manner, with
optimal reconstruction properties which would not be achieved by standard functional
PCA. The relevance of this approach is demonstrated in Section 6.4.2 with an electricity
demand dataset which is publicly available on the CRAN network. On this occasion
we also propose visual diagnostics for functional regular variation according to finite-
dimensional characterizations proposed in Section 5.

The electricity demand dataset sundaydemand considered in Section 6.4.2 is available in
the R package fds. It contains half-hourly electricity demands on Sundays in Adelaide
between 6/7/1997 and 31/3/2007. It is made of n = 508 observations Xi , each of them
being represented as a vector of size 48, indicating the recorded half-hour demand on
day i. Here an ‘angle’ is in practice the profile of the half-hour records over one day,
i.e., the original curve rescaled by its L2-norm.
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In our toy example (Section 6.4.1) we generate a functional regularly varying dataset of
same dimension d = 48 with larger sample size n = 10e3, according to Proposition 5.1.
With the notations of the latter example, we choose Z ∈ R6 with independent com-
ponents, with Z1 ∼ Pareto(0.5), Z2 ∼ 0.8 ∗ Pareto(0.5), Z3 ∼ N (m = 0,

√
σ2 = 20), Z4 ∼

N (m = 0,
√
σ2 = 0.8 ∗ 20), Z5 ∼N (m = 0,

√
σ2 = 0.6 ∗ 20), Z6 ∼N (m = 0,

√
σ2 = 0.4 ∗ 20),

where N (m,
√
σ2) is the normal distribution with mean m and variance σ2. The first

two components have a heavier tail than the last four, which may be considered at noise
above sufficiently high level. The angular measure on the sphere of R4 is concentrated
on the canonical basis vectors (e1, e2).

The L2[0,1] functions Aj ’s are chosen deterministically for simplicity, namely Aj(x) =
sin(2πωjx), j ∈ {1,3,5} and Aj(x) = cos(2πωjx), j ∈ {2,4,5}, with (ω1, . . . ,ω6) = (2,3,1,4,
5,6). In this setting the angular measure of extremes in L2[0,1] is concentrated on a
two-dimensional subspace, namely the one generated by (A1,A2). In particular, the
extreme covariance operator is given by C∞ = (A1 ⊗A1 +A2 ⊗A2)/2.

From a numerical perspective, all scalar products in L2[0,1] are approximated in this
work by the Euclidean scalar product in R

48, which corresponds to a Riemann midpoint
rule. For simplicity, and because the choice of the unit scale is also arbitrary, we
dispense with standardizing by the half-hour width between records. Several numerical
solutions exist to perform the eigendecomposition of the empirical covariance operator.
However the considered datasets are moderately high dimensional and because all
observations are regularly sampled in time we may use the simplest strategy, which
is to perform the eigendecomposition of second moment matrix X

⊤
X ∈R48×48 where

Xi,j is the jth time record on the ith day. In practice we rely on the svd function in
R issuing the singular value decomposition of X based on a LAPACK routine. This
boils down to choosing as a basis for L2[0,1] a family of indicator functions centered
at the observation times. Alternative orthonormal families in L2[0,1] (typically, the
Fourier basis or wavelet basis) may be preferred in higher dimensional contexts or with
irregularly sampled observations.

6.4.1 Pattern identification of functional extremes

With the synthetic dataset described above, we compare the output of functional
PCA applied to extreme angular data, to the one obtained using all possible angles,
i.e., we compare the eigendecomposition of Ĉk with that of Ĉn. First, the number
k of observations considered as extreme k must be chosen. In this simulated case,
calibration is possible and we use the Hilbert-Schmidt norm of the error ∥Ĉk−C∞∥HS(H)
as a calibration criterion. For each candidate value k ∈ {100,200, ...,2900,3000}, we
generate 500 datasets of size n = 10e3 in the above described model, resulting in
500 independent replicates of Ĉk. The average Hilbert-Schmidt norm of the error is
displayed in Figure 6.1 and suggests choosing k = 500, which we do in the remainder of
this section. The scree-plot (i.e., the graph of ordered eigenvalues, normalized by their
sum) for both operators Ĉk and Ĉn is displayed in the upper panel of Figure 6.2. The
gap between the first two eigenvalues and the remaining ones is more pronounced with
Ĉk than with Ĉn, indicating that the method we promote is able to uncover a sparsity
pattern at extreme levels which would not be as relevant for the bulk behavior. The
limit measure of extremes (µ) is indeed concentrated on a two-dimensional subspace,
as opposed to the distribution of the full dataset which support has dimension four. In
addition, the ‘true’ extreme angular pattern, which is a superposition of two periodic
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signals with frequencies (1,7), is easily recognized by inspecting the shape of the first
two eigenfunctions of the extreme covariance Ĉk (solid lines, first two panels of the
second row in Figure 6.2) while these frequencies are perturbed by shorter tailed
‘noise’ with the full covariance Ĉn (dotted lines). The discrepancy between extreme
and non-extreme eigenfunctions vanishes for the third eigenfunction, which may be
considered as ‘noise’ as far as extremes are concerned.

0 500 1000 1500 2000 2500 30000.
04

0.
08

0.
12

0.
16

k

Figure 6.1: Simulated data: Errors ∥Ĉk − C∞∥HS(H) as a function of k. Solid line:
averaged errors over 500 experiments. Dotted lines: 90% bootstrap confidence interval.

6.4.2 Optimal reconstruction of functional extremes on the electricity
demand dataset

Here we investigate the L2 reconstruction error when projecting new (test) angular
observations on the eigenspaces issued from the spectral decomposition of the empirical
covariance operator Ĉk . Another important goal of this section is to provide guidelines
and graphical diagnostic tools allowing to check whether functional regular variation
in L2 may reasonably be assumed for a given functional dataset. For simplicity, we
ignore in this illustrative study any temporal dependence from week to week.

First, regular variation must be checked and an appropriate number k of extreme
observations should be selected for estimating C∞ with Ĉk. A Gaussian QQ-plot
(not shown) suggests that the radial quantile is potentially heavy-tailed. In view of
Proposition 5.6, 2., one should check RV of the radial variable and weak convergence
of univariate projections ⟨Θt ,h⟩. Regarding the radial variable R = ∥X∥, we propose to
inspect a Hill plot and a Pareto quantile plot (Beirlant et al. (2006), Chapter 2). Visual
inspection (Figure 6.3) suggests a stability region for the Hill estimator of γ = 1/α
(left panel) between k = 100 and k = 200. We recall that if ∥X∥ can be assumed to be
regularly varying, α is the positive index such that P(∥X∥ > t) = t−αL(t) where L is a
slowly varying function. Choosing k = 150 corresponds to an empirical quantile level
1− k/n ≈ 0.7, for which the Pareto quantile plot (right panel) is reasonably linear. For
k = 150 the estimated regular variation index with the Hill estimator γ̂ is α̂ = 1/γ̂ = 12.4
(0.95 CI: [10.7− 14.8]). The obtained value of α̂ is high relative to other settings, which
may be considered as only weak evidence of RV. To rule out the hypothesis that ∥X∥
could be in the domain of attraction of some Extreme Value Distribution with γ ≤ 0
(Weibull and Gumbel domains), we consider a profile likelihood approach in the
Generalized Pareto model (see, e.g., Coles et al. (2001)). Negative values of γ fall
outside the profile likelihood 95% confidence interval. The likelihood ratio test based
on the deviance statistic issues a p-value of 0.01, which is in fact strong evidence for
RV, despite the large value of α̂.
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Figure 6.2: Simulated data: Scree plots and first three eigenfunctions. Diamond shaped
dots and dashed lines: angular functional PCA of extremes (Ĉk). Round dots and solid
lines: angular functional PCA of the full dataset (Ĉn). Dotted lines on the first two
plots, bottom left: (normalized) functions A1, A2, i.e., support of the angular measure
for extremes.

The condition of weak convergence of projections ⟨Θt ,h⟩ is obviously difficult to check
in practice, in particular because it must hold for any h. As a default strategy we
propose to check convergence of the (absolute value of) the first moment, namely
convergence of E|⟨Θt ,h⟩| as t → +∞, for a finite number of ‘appropriate’ functions
hj , j ∈ {1, . . . , J}. The context of daily records suggests a periodic family, namely we
choose hj(x) = sin(2πjx), for j ∈ {1,2,3,4,6,8}. Figure 6.4 displays the six plots of the
empirical conditional moment 1

k

∑k
i=1 |⟨Θ(i),hj⟩|, as a function of k. The plots confirm

the existence of a relative stability region around k = 150.

Turning to performance assessment, our interest lies in the mean squared angular
reconstruction error of an orthogonal projector π,

R(π,t) = E

[
∥Θ −π(Θ)∥2 | ∥X∥ > t

]
.

Our goal is to assess the performance of π̂k, the orthogonal projector onto the first
p-dimensional eigenspace of Ĉk . We fix p = 2 throughout. We compare π̂k with natural
alternatives, namely the orthogonal projectors onto the principal eigenspaces of the
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air quality dataset. Dotted vertical lines on the Hill plot: stability region.

j = 1

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
63

1.
10

j = 2

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
18

0.
29

j = 3

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
09

0.
14

j = 4

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
03

3
0.

04
8

j = 5

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
05

2
0.

09
8

j = 6

k

E
 | 

<
 T

he
ta

_t
, h

_j
 >

 | 

5 75 150 225 300 450 508

0.
01

3
0.

02
6

Figure 6.4: Electricity demand data: first moment of |⟨Θ,hj⟩| conditioned upon R ≥ R(k),
as a function of k, for hj(x) = sin(2πjx), x ∈ [0,1].

empirical covariance operator of respectively, all angular data, Ĉn = n−1 ∑
i≤nΘi ⊗Θi ,

and a random subsample of size k, C̃σ,k = k−1 ∑
i≤kΘσ (i) ⊗Θσ (i), where σ is a random

permutation of {1, . . . ,n}. We denote respectively by π̂n and π̃σ,k the projectors onto the
principal eigenspaces of the latter two operators.

We perform two experiments, the results of which are displayed in Table 6.1 and
Table 6.2. In the first experiment (Table 6.1) we report cross-validation estimates of
the risks R(π̂k , tn,k), R(π̂n, tn,k) and Eσ [R(π̃σ,n, tn,k)]. Namely the following procedure
is repeated N = 1000 times. First, a validation index set V of size 30 is randomly
chosen among {1, . . . , k}, where we recall k = 150. Then, three covariance operators
are constructed: Ĉ(k,V ) is an average of the Θ(i) ⊗Θ(i)’s over i ∈ {1, . . . , k} \ V ; Ĉ(n,V )
is an average over the full index set {1, . . . ,n} \ V ; and C̃(σ,k,V ) is an average over a
random subset of size k − |V | among {1, . . . ,n} \ V . Denoting by π̂k(V ), π̂n(V ) and π̃σ,k(V )



94
CHAPTER 6. PRINCIPAL COMPONENT ANALYSIS FOR FUNCTIONAL

EXTREMES

the associated projectors, three hold-out risks are obtained,

R̂(π,V ) = |V |−1
∑
i∈V
∥Θ(i) −π(Θ(i))∥2,

for π ∈ {π̂k(V ), π̂n(V ), π̃σ,k(V )}.

The cross-validation estimates R̂CV (π̂k), R̂CV (π̂n), R̂CV (π̃σ,k) reported in Table 6.1 are
the averages of the three hold-out risks R̂(π̂k(V ),V ), R̂(π̂n(V ),V ), R̂(π̃σ,k(V ),V ) over the
N = 1000 replications resulting in different random choices of V and σ .

R̂CV (π̂k) R̂CV (π̂n) R̂CV (π̃σ,k)
6.2 (1.6) 8.8 (1.8) 9.1 (2.2 )

Table 6.1: Angular reconstruction error (∗102) when projecting on principal eigen-
spaces of Ĉk (first column), Ĉn (second column) and C̃σ,k (third column). The reported
numbers are the cross-validation estimates obtained by averaging N = 1000 hold-out
estimates R̂(π,V ). The numbers in parentheses are the standard deviation of the hold-
out risks over the N replications.

In the second experiment, extrapolation risks are compared, these are risks of the
kind R(π,t) where t is even larger than the largest observation of the training set. To
this end, we consider a single validation set V = {1, . . . ,50}. For this single (extreme)
validation set, we report in Table 6.2 the hold-out risks R̂(π,V ) described in the latter
experiment. For simplicity, a single random permutation σ of the remaining indices
{51, . . . ,n} is considered for the third column. The numbers in parentheses are the
estimated standard deviations of the hold-out risks viewed as averages of independent
observations.

R̂(π̂k(V ),V ) R̂(π̂n(V ),V ) R̂(π̃σ,k(V ),V )
3.8 (0.6) 7.1 (0.9) 6.7 (0.8)

Table 6.2: Extrapolation errors (∗103): hold-out risks with validation set V chosen as the
most extreme fraction of the observations, X(1), . . . ,X(50). The numbers in parentheses
are the estimated standard deviations.

The conclusion is the same for both experiments reported in Table 6.1 and Table 6.2:
performing functional PCA on the fraction of the angular data corresponding to the
most extreme angles significantly reduces the reconstruction error, despite the reduced
size of the training set. Comparison between the second and the third columns of
each panel illustrates the negative impact of reducing the training sample size, while
comparing the first and the third columns shows the bias reduction achieved by
localizing on the tail region. Comparing the first and second columns shows the overall
benefit of the proposed approach compared with a standard PCA of all angles. On this
particular example the bias-variance trade-off favors our approach.

6.5 Conclusion

In this chapter, we have established non-asymptotic guarantees for a dimension re-
duction technique applied in extreme regions. These guarantees were derived using
concentration inequalities for the ρ-distance between extreme Hilbert eigenspaces
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associated with a PCA procedure and its empirical counterpart. While our contribution
is essentially of theoretical nature, basic experiments, both on synthetic and real-world
datasets, have also been carried out, with promising results. These findings not only
validate the viability of our theoretical framework but also open avenues for practical
applications. In particular, the present part gathers the theoretical guarantees for
potential dimension reduction steps performed in machine learning tasks for extremes,
such as the regression task developed in the subsequent part.
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6.A Proofs

Proof of Proposition 6.6. Our main tool to derive a concentration bound on ∥Ctn,k −
Ctn,k∥HS(H) is a Bernstein-type inequality, Theorem 3.8 in McDiarmid (1998) which
is recalled in Section 4.2, Lemma 4.6. Here and throughout we adopt the shorthand
notation xi:j = xi , . . . ,xj for i ≤ j.

In order to apply this inequality to our purposes we need to write the empirical pre-
asymptotic operator (or its surrogate Ctn,k ) as a function ft of the sample X1:n. With this
in mind, we introduce a thresholded angular functional

θt : H −→ S

x 7−→ θt(x) = 1{∥x∥ ≥ t}∥x∥−1x .

Observe that with this notation, Θi1{Ri > t} = θt(Xi). Consider now the function

ft : H
n −→ R

x1:n 7−→ ftn,k (x1:n) = 1
k ∥

∑n
i=1(θt(xi)⊗θt(xi)−E[θt(X)⊗θt(X)]∥HS(H) .

Notice that ftn,k (X1:n) = ∥Ctn,k −Ctn,k∥HS(H) which is the focus of Proposition 6.6.

Lemma 6.13 (Deviations of ftn,k (X1:n)). With the above notations, we have

P

(
ftn,k (X1:n)−E

[
ftn,k (X1:n)

]
≥ ε

)
≤ exp

(
−kε2

4(1 + ε
3 )

)
.

Proof. We apply Lemma 4.6 to the function f = ftn,k . To do so we derive upper bounds
on the maximum deviation term b and on the maximum sum of variances σ2 from
the statement. Let x1:n ∈Hn. The maximum deviation b is bounded by 2/k since by
independence among Xi ’s, with the notations of Lemma 4.6,

gi(x1:i) = E

[
ftn,k (x1, ...,xi−1,xi ,Xi+1, ...,Xn)− ftn,k (x1, ...,xi−1,Xi ,Xi+1, ...,Xn)

]
≤ 1

k
E

[
∥θtn,k (xi)⊗θtn,k (xi)−θtn,k (Xi)⊗θtn,k (Xi)∥HS(H)

]
≤ 1

k

(
1{∥xi∥ ≥ tn,k}+P(∥X∥ ≥ tn,k)

)
≤ 1 + k/n

k
≤ 2

k
,

where the first inequality comes from the triangle inequality |∥a∥ − ∥b∥| ≤ ∥a− b∥, and
the second one from the fact that ∥s⊗ s∥HS(H) = 1 if ∥s∥ = 1.

There remains to bound the variance term. Since for every 1 ≤ i ≤ n, by the tower rule
for conditional expectations, E

[
gi(x1:i−1,Xi)

]
= 0, we may write, for Yi and independent

copy of Xi ,

σ2
i (ftn,k (x1,...,xn)) = E

[
(ftn,k (x1,...,xi−1,Yi ,Xi+1,...,Xn)− ftn,k (x1,...,xi−1,Xi ,Xi+1,...,Xn))2

]
≤ 1

k2E
[
∥θtn,k (Yi)⊗θtn,k (Yi)−θtn,k (Xi)⊗θtn,k (Xi)∥2HS(H)

]
≤ 2

k2E
[
∥θtn,k (X)⊗θtn,k (X)∥2HS(H)

]
=

2P(∥X∥ ≥ tn,k)
k2 =

2
nk

.

Hence, v̂ is bounded from above by 2/k. Injecting the upper bounds on v̂ and b in
Lemma 4.6 concludes the proof. ■

The following intermediate lemma proves useful for bounding the expected deviation
in the left-hand side of Lemma 6.13.
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Lemma 6.14. Let A1, ...,An be independent centered random elements in H. Then

E


∥∥∥∥∥∥ n∑
i=1

Ai

∥∥∥∥∥∥2
 =

n∑
i=1

E

[
∥Ai∥2

]
.

Proof. The left-hand side equals
∑n

i=1E
[
∥Ai∥2

]
+ 2

∑
1≤i<l≤nE[⟨Ai ,Al⟩]. Since the Ai ’s

are independent with mean 0, for all 1 ≤ i < l ≤ n,

0 = ⟨E[Ai],E[Al]⟩ = E

[
⟨Ai ,E[Al]⟩

]
= E

[
⟨Ai ,E[Al |Ai]⟩

]
= E

[
E[⟨Ai ,Al⟩|Ai]

]
= E[⟨Ai ,Al⟩],

which concludes the proof. ■

We are now ready to obtain a bound on E

[
∥Ctn,k −Ctn,k∥HS(H)

]
.

Lemma 6.15.
E

[
∥Ctn,k −Ctn,k∥HS(H)

]
≤ 1
√
k
. (6.3)

Proof.

E

[
∥Ctn,k −Ctn,k∥HS(H)

]
=
n
k
E

[ ∥∥∥∥∥1
n

n∑
i=1

θtn,k (Xi)⊗θtn,k (Xi)−E
[
θtn,k (X)⊗θtn,k (X)

]∥∥∥∥∥
HS(H)

]

≤ n
k
E

[ ∥∥∥∥∥1
n

n∑
i=1

θtn,k (Xi)⊗θtn,k (Xi)−E
[
θtn,k (Xi)⊗θtn,k (Xi)

]∥∥∥∥∥2

HS(H)

]1/2

=
n
k

1
√
n
E

[ ∥∥∥∥θtn,k (X)⊗θtn,k (X)−E
[
θtn,k (X)⊗θtn,k (X)

]∥∥∥∥2

HS(H)

]1/2

=
√
n
k

(
E

[
∥θtn,k (X)⊗θtn,k (X)∥2HS(H)

]
−
∥∥∥∥E[

θtn,k (X)⊗θtn,k (X)
]∥∥∥∥2

HS(H)

)1/2

≤
√
n
k

E

[
∥θtn,k (X)⊗θtn,k (X)∥2HS(H)

]1/2
≤
√
n
k

P(∥X∥ ≥ tn,k)1/2 =
1
√
k
,

where the second identity derives from Lemma 6.14, The last inequality follows from
∥θ(x)⊗θ(x)∥HS(H) = 1. ■

Combining Lemma 6.13 and Lemma 6.15, together with the definition of ftn,k , we obtain
that with probability at least 1−γ/2,

∥Ctn,k −Ctn,k∥HS(H) ≤
1
√
k

+
4

3k
log(2/γ) + 4

((
log(2/γ)

3k

)2

+
log(2/γ)

k

)1/2

.

Simplifying the above display with
√
a+ b ≤

√
a+
√
b yields the statement of Proposi-

tion 6.6.



Part III

On Regression in Extreme Regions





Introduction

Regression is a predictive problem of crucial importance in statistical learning, covering
a wide variety of applications. In the standard setup, (X,Y ) is a pair of random variables
defined on the same probability space (Ω, A, P) with distribution P , where the target
Y is a square integrable real-valued random variable (the output) and the predictor
(or covariable) X is a random vector with marginal distribution ρ taking its values
in some measurable space X modeling some input information hopefully useful to
predict Y . The predictive learning problem consists in building, from a training dataset
Dn = {(X1,Y1), . . . , (Xn,Yn)} composed of n ≥ 1 independent copies of (X,Y ), a mapping
f : X →R in order to compute a ‘good’ prediction f (X) for Y , with the quadratic risk

RP (f ) = E

[
(Y − f (X))2

]
(6.4)

as close as possible to that of f ∗(X) = E[Y | X], which obviously minimizes (6.4) over
the space L2(ρ) of square integrable functions of X: R∗P := minf ∈L2(ρ)RP (f ) = RP (f ∗). A
natural strategy consists in solving the Empirical Risk Minimization problem (ERM
in abbreviated form) minf ∈F RP̂n

(f ), where F ⊂ L2

(
ρ
)

is a closed and convex class

of functions sufficiently rich to include a reasonable approximant of f ∗ and P̂n is an
empirical version of P based on Dn.

The performance of predictive functions f̂ obtained by least square regression, has been
extensively investigated in the statistical learning literature Györfi et al. (2002); Massart
(2007). Under the assumption that the tails of the random pairs (f (X),Y ) are subgaus-
sian and appropriate complexity conditions are satisfied by the class F , confidence
upper bounds for the excess of quadratic risk RP (f̂ )−R∗P = E[(Y − f̂ (X))2 | Dn]−R∗P have
been established in Lecué and Mendelson (2013) by means of concentration inequalities
for empirical processes Boucheron et al. (2013).

Here we consider the problem of building prediction functions which would be reliable
in a ‘crisis scenario’ where the covariates vector takes unusually large values and thus
belongs to regions where few or even no such large examples have been observed in
the past. Notice incidentally that it could be thus viewed as a specific, never tackled
yet, few shot learning problem, see, e.g., Wang et al. (2020). We place ourselves in a
finite-dimensional setting, X ⊂ R

d . The distribution of X is not subgaussian and in
particular its support is unbounded. Covariates are considered as extreme when their
norm ∥X∥ exceeds some (asymptotically) large threshold t > 0. The choice of the norm
is unimportant in theory, and is typically determined by the application context.

The threshold t depends on the observations, since ‘large’ should be naturally under-
stood as large relative to the vast majority of data observed. Hence, extreme observa-
tions are rare by nature and severely underrepresented in the training dataset with
overwhelming probability. Consequently, the impact of prediction errors in extreme

100
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regions of the input space on the global regression error of f̂ is generally negligible.
Indeed, the law of total probability yields

RP (f ) = P(∥X∥ ≥ t)E
[
(Y − f (X))2 | ∥X∥ ≥ t

]
+P(∥X∥ < t)E

[
(Y − f (X))2 | ∥X∥ < t

]
. (6.5)

The above decomposition involves a conditional error term relative to excesses of ∥X∥
above t, which we term conditional quadratic risk (or simply conditional risk)

Rt(f ) := E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
.

It is the purpose of the subsequent analysis to construct a predictive function f̂ that
(approximately) minimizes Rt(f ) for all t > t0, with t0 being a large threshold. It
is important to note that an approximate minimizer of Rt might not be suitable for
minimizing Rt′ when t′ > t. To ensure robust extrapolation performance for our learned
function, we focus on obtaining a prediction function, f̂ , that minimizes the asymptotic
conditional quadratic risk defined as

R∞(f ) := limsup
t→+∞

Rt(f ) = limsup
t→+∞

E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
. (6.6)

It is immediate to see that any function that coincides with the regression function
f ∗(x) = E[Y | X = x] on the region {x ∈ X ,∥x∥ ≥ t}minimizes the risk functional Rt, for
all t > 0, and thus also R∞. In other words R∗∞ := inff R∞(f ) = R∞(f ∗). However, even
though f ∗ provides a straightforward theoretical solution, f ∗ is of course unknown.

In view of Equation (6.5) it is evident that an estimate f̂ of f ∗ produced by an ERM
strategy with good overall empirical performances, may not necessarily enjoy good per-
formances when restricted to extreme regions. Put another way, there is no guarantee
that the conditional risk Rt(f̂ ) (or R∞(f̂ )) would be small. However, accurate prediction
in extreme regions turns out to be crucial in certain practical (safety) applications, in
environmental sciences, dietary risk analysis or finance/insurance for instance.

To summarize, the Regression Problem on Extremes refers here to the the task of con-
structing a prediction function f̂ based on Dn which approximately minimizes R∞.
Notice that our choice of the squared error is motivated by simplicity and for illus-
trative purpose, extensions to other losses may be achieved at the price of additional
(minor) technicalities.

In order to develop a specific ERM framework relative to R∞ with provable guarantees,
regularity assumptions are required regarding the tail behavior of the pair (X,Y ), with
respect to the first component. Multivariate Regular Variation (RV) hypotheses are very
flexible in the sense that they correspond to a large nonparametric class of heavy-tailed
distributions. These assumptions, or slightly weaker ones such as Maximum Domain of
Attraction conditions are at the heart of Extreme Value Analysis (EVA) (see, e.g., the
monographs Beirlant et al. (2006); De Haan and Ferreira (2006); Resnick (1987)). They
are frequently used in applications where the impact of extreme observations should
be enhanced, or not neglected at the minimum.

In the past few decades, numerous papers have combined Extreme Value Theory
(EVT) with statistical learning techniques, covering areas such as clustering, dimension
reduction, and anomaly detection (see Section 1.2). One of the primary objectives
of this paper is to establish sufficient and reasonable conditions for extending the
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results of Jalalzai et al. (2018), which develop a framework for binary classification in
extreme regions (see Section 1.2 for more details), to a broader context encompassing
statistical regression with a continuous target and an appropriate real-valued loss.
It must be noted that the above risk functionals defined above are the same for the
classification replacing the quadratic loss by the 0−1-loss. The continuous nature of
the target in the regression problem considered here requires fundamentally different
assumptions and proof techniques compared with the binary classification setting. In
particular one natural generalization of the assumptions made in the cited reference
would be to assume RV of the conditional distributions L(X|Y = y), almost everywhere.
This somewhat intricate generalization leads to measure theoretic complications and
is difficult to verify in practice and also on theoretical examples. We propose to
bypass this issue by requiring instead a joint form of RV of the pair (X,Y ), see our
Assumption 7.2. We show that this condition is satisfied in various examples worked
out in Section 7.2. Another major improvement of the present work upon Jalalzai et al.
(2018), with implications for applications related to climate extremes, is to offer a novel
perspective upon extreme value prediction within regularly varying random vectors,
see Example 7.10.

It should also be pointed out that the problem of regression in extreme regions can
be assimilated to a specific transfer learning problem, see, e.g., Pan and Yang (2010).
Indeed, the objective pursued is to learn a regression function that is nearly optimal in
the target (limit) extremal domain, based on source training data in a pre-asymptotic
regime. Unlike pre-existing transfer learning and domain adaptation approaches, the
methodology we develop does not rely on inverse probability weighting Clémençon
et al. (2016), estimating/learning propensity score functions Bertail et al. (2021) or the
use of Markov kernels Pfister and Bühlmann (2024), but exploits a multivariate RV
assumption to estimate the target loss with guarantees.

This part is divided into two chapters. Chapter 7 details the algorithmic approach
we propose for regression on extremes and elaborates on the probability framework
considered for regression in extreme regions. Chapter 8 presents the probabilistic and
statistical results that justify the algorithmic procedure. The soundness of the proposed
approach is demonstrated through various numerical experiments. Certain technical
details are deferred to the Appendices 7.A and 8.A.
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In this chapter, we propose a probabilistic framework in which regression on extremes
may be addressed, together with a dedicated algorithmic approach in Section 7.1, the
latter being analyzed next in the subsequent chapter. The foundational assumption of
this part, namely Regular Variation w.r.t. the first component, is detailed Section 7.2.
Section 7.3 introduces the limit regression function central in the analysis of Chapter 8,
along with a necessary technical condition and scenarios where these conditions are
met. Section 7.4 demonstrates the reliability of the developed framework through
various concrete examples based on classical Extreme Value Theory (EVT) assumptions.
Finally, Section 7.5 connects the proposed Regular Variation (RV) assumption with
the framework developed in Lindskog et al. (2014). The chapter concludes with final
remarks.

Here and throughout, (X,Y ) is a pair of random variables defined on a probability
space (Ω, A, P) with distribution P , where Y is real-valued with marginal distribution
G and X = (X1, . . . , Xd) takes its values in R

d , d ≥ 1. We sometimes denote by L(Z) the
distribution of a random variable Z. Recall from the Introduction section that ∥·∥ is any
norm on R

d . We denote by S the unit sphere for this norm and by B := {x ∈Rd ,∥x∥ ≤ 1}
the unit ball. Let E = R

d \ {0} be the punctured Euclidean space. For any measurable
subset A of Rd we denote by B(A) the Borel σ -algebra on A. The boundary and the
closure of A are respectively denoted by ∂A and Ā, and we set tA = {tx : x ∈ A} for
all t ∈ R. By 1{E} is meant the indicator function of any event E and the integer part
of any u ∈ R is denoted by ⌊u⌋. For any x ∈ E, we denote by θ(x) = x/∥x∥ the angular
component of x for conciseness.
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7.1 ROXANE Algorithm

In order to help the reader understand the general workflow of the part, we begin by
introducing the algorithm ROXANE (Regression On eXtreme ANglEs) that we promote
to solve the Regression Problem on Extremes stated in the Introduction, formulated
as the minimization of the risk functional R∞ defined in (6.6). The remainder of this
work aims at developing a framework that fully justifies Algorithm 7.1 below.

Algorithm 7.1 Regression On eXtreme ANglEs (ROXANE)

INPUT: Training dataset Dn = {(X1,Y1), . . . , (Xn,Yn)} with (Xi ,Yi) ∈Rd ×R ; class H
of predictive functions h : S→ R; number k ≤ n of ‘extreme’ observations among
training data.
Truncation: Sort the training data by decreasing order of magnitude of the input
information ∥X(1)∥ ≥ . . . ≥ ∥X(n)∥ and form a set of k extreme training observations{

(X(1),Y(1)), . . . , (X(k),Y(k))
}
.

Empirical quadratic risk minimization: based on the extreme training dataset,
solve the optimization problem

min
h∈H

1
k

k∑
i=1

(
Y(i) − h

(
θ(X(i))

))2

, (7.1)

where θ(x) = x/∥x∥ for any x ∈Rd \ {0}.
OUTPUT: Solution ĥ to problem (7.1) and predictive function f̂ (x) = (ĥ ◦θ)(x) to be
used for predictions of Y based on new examples X such that ∥X∥ ≥ ∥X(k)∥.

Notice that the ROXANE algorithm can be implemented with any optimization heur-
istic solving the quadratic risk minimization problem (7.1), refer to, e.g., Györfi et al.
(2002). The study of dedicated numerical techniques is beyond the scope of the present
paper.

A key feature of the ROXANE Algorithm is that its training step involves the angular
component of extremes solely. It returns a prediction function f̂ which only depends on
the angular component θ(X) of a new input X. This apparently arbitrary choice turns
out to be fully justified under RV assumptions, which are introduced and discussed in
the following subsections. To wit, the main theoretical advantage of considering angular
prediction function is to ensure the convergence of the conditional risk Rt, as t→ +∞.
In practice, rescaling all extremes (in the training set and in new examples) onto a
bounded set allows a drastic increase in the density of available training examples and
a clear extrapolation method beyond the envelope of observed examples.

Based on the background on multivariate RV recalled in Section 2.1.2, we introduce a
modified version of the standard framework (regular variation with respect to the first
component) in Section 7.2 which is suitable for the regression problem considered here,
in the sense that the ROXANE Algorithm turns out to enjoy probabilistic and statistical
guarantees in this context. We thoroughly discuss the relevance of our assumptions by
working out several sufficient conditions and examples. We state our main probabil-
istic results in Section 8.1, establishing connections between different risks and their
corresponding minimizers, thus bringing a first (probabilistic) justification regarding
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the angular nature of the prediction function in Algorithm 7.1. Statistical guarantees
are deferred to Section 8.2.

7.2 Regular Variation with respect to the First Component

We now describe rigorously the framework we consider for regression in extreme
regions, which may be seen as a natural, ‘one-component’ extension of standard
multivariate RV assumptions recalled in Section 2.1.2.

For simplicity, we suppose that Y is bounded through this paper. This assumption can
be naturally relaxed at the price of additional technicalities (i.e., tail decay hypotheses).

Assumption 7.1. The random variable Y is bounded: there exists M ∈ (0,+∞) such that
with probability one, Y ∈ I = [−M,M].

The following hypothesis concerns the asymptotics, as t → +∞, of the conditional
distribution of the pair (X,Y ) given that ∥X∥ > t. It may be viewed as one-component
extension of (2.5).

Assumption 7.2. There exists a nonzero Borel measure µ on O = E × I , which is finite on
sets bounded away from C = {0} × I , and a regularly varying function b(t) with index α > 0
such that

lim
t→+∞

b(t)P
(
t−1X ∈ A,Y ∈ C

)
= µ(A×C), (7.2)

for all A ∈ B(E) bounded away from zero and C ∈ B(I) such that µ(∂(A×C)) = 0.

Assumption 7.2 could be understood as a multivariate extension of the One-Compo-nent
Regular Variation framework developed in Hitz and Evans (2016). It should be noticed
that Assumption 7.2 fits into the framework of RV in M

O
developed in Lindskog et al.

(2014) as an extension of Hult and Lindskog (2006b), where O = E×I = (Rd×I)\({0}×I)
and where the scalar multiplication is defined as λ(x, y) = (λx, y). More details regarding
the connections between Assumption 7.2 and Lindskog et al. (2014) are provided in
Section 7.5.

Remark 7.3 (Pre-Processing). Because the goal of this paper is to explain main ideas to
tackle the problem of regression on extremes, the input are assumed to be regularly varying
with same marginal index while in practice, this condition may be satisfied only after some
marginal standardization. This is a recurrent theme in multivariate extreme value theory. For
binary-valued Y , in the classification setting, Clémençon et al. (2023) consider a marginal
standardization based on ranks, following Einmahl and Segers (2009); Einmahl et al. (2001).
They prove an upper bound on the statistical error term induced by this transformation
which is of the same order of magnitude as the error when marginal distributions are known,
a simplified case considered in Jalalzai et al. (2018). In our experiments with real data, this
pre-processing step is not necessary. We leave this technical question outside the scope of this
paper.

In the sequel we refer to the limit measure µ as the joint limit measure of (X,Y ). Under
Assumption 7.2, X’s marginal distribution is regularly varying with marginal limit
measure

µX(A) = lim
t→+∞

b(t)P(X ∈ tA) = lim
t→+∞

b(t)P(X ∈ tA,Y ∈ I) = µ(A× I),
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with A ∈ B(E) bounded away from zero and such that µ(∂(A× I)) = 0. We also naturally
introduce the joint angular measure of (X,Y ) denoted by Φ , which is a finite measure on
S× I given by

Φ(B×C) = µ{(x, y) ∈ E × I : ∥x∥ ≥ 1,θ(x) ∈ B,y ∈ C}. (7.3)

With this notation, under Assumption 7.2 it holds that

P(θ(X) ∈ B, Y ∈ C, ∥X∥ ≥ tr)
P(∥X∥ ≥ t)

−→
t→+∞

c r−αΦ(B×C), (7.4)

where c = Φ(S×I)−1 = µ((E\B)×I)−1, for all C ∈ B(I), B ∈ B(S), such that Φ(∂(B×A)) = 0
and r ≥ 1. The latter statement is proved in Appendix 7.A, Theorem 7.11. To lighten the
notation, we assume without loss of generality that b is chosen so that µ((E \B)× I) = 1
and thus c = 1 and Φ is a probability measure on S× I . In particular, the joint limit
measure µ and the joint angular measure Φ are linked through the relation

µ({x ∈ E : ∥x∥ ≥ r,θ(x) ∈ B} ×C) = r−αΦ(B×C),

for all C ∈ B(I),B ∈ B(S) and r > 0. Observe that

lim
t→+∞

P(θ(X) ∈ B,Y ∈ C,∥X∥ ≥ t)
P(∥X∥ ≥ t)

= Φ(B×C),

for all B ∈ B(S),C ∈ B(I), such that Φ(∂(B×C)) = 0. In words, Φ is the asymptotic joint
probability distribution of (θ(X),Y ) given that ∥X∥ ≥ t as t→ +∞. Notice also that X’s
angular (probability) measure writes ΦX(B) = Φ(B× I).

Let P∞ denote the limit conditional distribution on E \B× I of the pair (X/t,Y ) given
that ∥X∥ ≥ t, i.e.,

P∞(A×C) = lim
t→+∞

P(X/t ∈ A,Y ∈ C | ∥X∥ ≥ t) (7.5)

for all A ∈ B(E \B) and C ∈ B(I) such that µ(∂(A×C)) = 0, and let (X∞,Y∞) denote a
random pair with distribution P∞. It follows immediately from (7.4) and from our
choice c = 1, that P∞ indeed exists and is determined by (Φ ,α), namely

P∞((x, y) : ∥x∥ > r,θ(x) ∈ B,y ∈ C)

= lim
t→+∞

P(∥X∥/t ≥ r,θ(X) ∈ B,Y ∈ C | ∥X∥ ≥ t) = r−αΦ(B×C),

where B,C,r are as in Equation (7.4). In other words, if T denotes the pseudo-polar
transformation with respect to the first component T (x, y) = (∥x∥,θ(x), y) on E \B× I ,
and if να is the Pareto measure να([r,∞)) = r−α, then the following tensor product
decomposition holds true in polar coordinates,

P∞ ◦ T −1 = να ⊗Φ .

Observe that, under Assumptions 7.1 and 7.2, the random variable Y∞ is almost-surely
bounded in amplitude by M < +∞.
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7.3 The Extreme Bayes Regression Function

Equipped with these notations, it is natural to consider the squared error loss of a
prediction function f , under the distribution P∞. We call this key quantity the extreme
quadratic risk, denoted by RP∞ , defined as

RP∞(f ) := E

[
(Y∞ − f (X∞))2

]
,

for f ∈ F a class of real-valued bounded Borel-measurable functions defined on E \B.
As will become clear in the subsequent analysis, although our objective R∞ and the
extreme risk RP∞ are two different functionals, they turn out to be connected through
their minimizers under an additional technical assumption stated below. In the sequel
we let f ∗P∞ denote the minimizer of RP∞ among all measurable functions. Standard
arguments from statistical learning theory show immediately that f ∗P∞ is defined (up to
a negligible set) by a conditional expectation, f ∗P∞(X∞) = E[Y∞ | X∞].

Remark 7.4 (Heavy-tailed input vs heavy-tailed output). Attention should be paid to
the fact that the heavy-tail assumption is here on the distribution of the input/explanatory
random variable X, in contrast to other works devoted to regression such as Brownlees et al.
(2015), Mendelson (2017) or Lugosi and Mendelson (2019) where it is the loss/response
that is supposedly heavy-tailed. In the EVT literature, similarly, the vast majority of existing
works in a regression context are concerned with extreme values of the target, in particular
for extreme quantiles regression (El Methni et al. (2012); Daouia et al. (2013); Chavez-
Demoulin et al. (2014); Daouia et al. (2023))

Assumption 7.5. The extreme regression function f ∗P∞ is continuous on R
d \ {0} and as t

tends to infinity,
E

[
|f ∗(X)− f ∗P∞(X)| | ∥X∥ ≥ t

]
→ 0.

The next proposition highlights the weakness of Assumption 7.5, as long as Assump-
tions 7.1 and 7.2 are satisfied.

Proposition 7.6 (Sufficient conditions for Assumption 7.5). Let (X,Y ) satisfy Assump-
tions 7.1 and 7.2. Then Assumption 7.5 also holds if one of the three conditions (i), (ii), (iii)
below holds

(i) The regression function f ∗ is continuous on {x ∈Rd : ∥x∥ ≥ 1} and as t→ +∞,

sup
∥x∥≥t
|f ∗(x)− f ∗P∞(x)| → 0; (7.6)

(ii) The conditional distributions of Y given X = x (resp. Y∞ given X∞ = x) admit
densities pY |x(y) (resp. p∞Y |x(y)) w.r.t. the Lebesgue measure on I , for all x , 0. In
addition for all y ∈ I , the mapping x 7→ pY |x(y) (resp. x 7→ pY |x(y)) is continuous, and
sup∥x∥≥1,y∈I pY |x(y) < +∞. Finally the following uniform convergence holds true,

sup
∥x∥≥t,y∈I

|pY |x(y)− p∞Y |x(y)| −→
t→+∞

0; (7.7)

(iii) The random pair (X,Y ) (resp. (X∞,Y∞)) has a continuous density p (resp. q) w.r.t. the
Lebesgue measure, and the densities converge uniformly, in the sense that

sup
(ω,y)∈S×I

∣∣∣∣b(t)tdp(tω, y)− q(ω, y)
∣∣∣∣ −→
t→+∞

0, (7.8)
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where b(t) = P(∥X∥ ≥ t)−1. In addition, q is uniformly lower bounded on the unit
sphere by a positive constant,

inf
ω∈S,y∈I

q(ω, y) > 0. (7.9)

It should be noticed that Condition (iii) in Proposition 7.6 is a ‘one-component variant’
of standard assumptions regarding RVs of densities (De Haan and Resnick (1987); Cai
et al. (2011)), further discussed in Example 7.10 below. We refer to Appendix 7.A for a
proof of Proposition 7.6.

7.4 Examples of Valid Regression Models

We now work out several examples of regression settings in which our Assumptions 7.1,
7.2 and 7.5 are satisfied.

Proposition 7.7 (Noise model with heavy-tailed random design). Suppose that X is a
regularly varying random vector in R

d , independent from a real-valued random variable ε
modeling some noise and consider a target

Y = g(X, ε),

where g : Rd ×R→ R is a bounded, continuous mapping. Assume also that there exists a
function gθ : S×R→R such that, for all z ∈R

sup
∥x∥≥t
|g(x, z)− gθ(x/∥x∥, z)| → 0, (7.10)

as t→ +∞. Then, the random pair (X,Y ) fulfills Assumptions 7.1, 7.2 and 7.5. In particular,
the limit distribution P∞ in Equation (7.5) is given by

P∞ = L(X∞, gθ(X∞/∥X∞∥, ε)),

where X∞ follows the limit distribution

Q∞ = lim
t→+∞

L(t−1X | ∥X∥ ≥ t).

The proof of the claim made in Proposition 7.7 is deferred to Appendix 7.A. Concrete
examples arise within the broader context of this generic example, such as the additive
noise model Y = g̃(X) + ε and the multiplicative noise model Y = εg̃(X). In both cases,
Condition (7.10) holds true whenever g̃ satisfies the similar condition

sup
∥x∥≥t
|g̃(x)− g̃θ(θ(x))| → 0,

for some angular function g̃θ, with minor additional regularity assumptions.

Corollary 7.8 (Additive noise model with heavy-tailed random design). Consider the
additive noise model

Y = g̃(X) + ε,

where X is a regularly varying random vector in R
d such that

L
(
t−1X | ∥X∥ ≥ t

)
→L(X∞),



7.4. EXAMPLES OF VALID REGRESSION MODELS 109

as t → +∞, ε is a bounded real-valued random variable defined on the same probability
space independent from X and g̃θ is a bounded, continuous function on R

d which converges
uniformly to some angular mapping g̃θ : S→R, in the sense that

sup
∥x∥≥t
|g̃(x)− g̃θ(θ(x))| → 0 as t→ +∞.

Then, the random pair (X,Y ) satisfies the requirements of Proposition 7.7 with M =
supx∈Rd |g̃(x)|+ ∥ε∥∞. The limit distribution P∞ in Equation (7.5) is

P∞ = L
(
X∞, g̃θ(θ(X∞)) + ε

)
.

Corollary 7.9 (Multiplicative noise model with heavy-tailed random design). Consider
the multiplicative noise model

Y = εg̃(X),

where (X, ε) and g̃ are as in Corollary 7.8. Then, the random pair (X,Y ) satisfies the
requirements of Proposition 7.7 with M = supx∈Rd |g̃(x)| × ∥ε∥∞ and the limit distribution
P∞ in (7.5) is given by P∞ = L(X∞, εg̃θ(θ(X∞))), where g̃θ and X∞ are as in Corollary 7.8.

The next example establishes a strong connection between the considered regression
setting and typical situations considered in Extreme Value Analysis where the goal is
to predict the occurrence and/or the intensity of unusually large events. The technical
proofs of the main claims are gathered in Appendix 7.A.

Proposition 7.10 (Predicting a missing component in a regularly varying random
vector)). In this example we show that our assumptions are met when considering a random
vector X̃ with a regularly varying density, where the target Y is one missing component
from the vector, or more precisely a normalized version of that missing component. The
normalization allows to satisfy our boundedness constraint Assumption 7.1. We believe this
example could be particularly useful in applications, for imputation of missing data with
heavy tails.

Let X̃ ∈Rd+1 have continuous density p, and b(t) = P(∥X̃∥ ≥ t)−1, where ∥ · ∥ is the Lp norm
on R

d+1 for some p ∈ [1,+∞) . Assume that b is regularly varying with index α for some
α > 0, and that there exists a positive function q on R

d+1 such that for all x̃ , 0,

td+1b(t)p(tx̃)− q(x̃) −→
t→+∞

0. (7.11)

Assume in addition that the convergence is uniform on the sphere,

sup
ω∈Sd+1

|td+1b(t)p(tω)− q(ω)| −→
t→+∞

0, (7.12)

where Sd+1 denotes the unit sphere of Rd+1. This assumption is used in De Haan and Resnick
(1987); Cai et al. (2011). It is shown in these references that (7.11) and (7.12) imply that X̃
is regularly varying with index α. More precisely with µ(A) =

∫
A
q(x̃)dx̃ for any measurable

set A ⊂ E, we have b(t)P(X̃/t ∈ · )→ µ( · ) in the sense of vague convergence. Necessarily q is
homogeneous of order −α − d − 1. Also the continuity of p implies that of q. Assume finally
that

min
ω∈Sd+1

q(ω) > 0.
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Another useful feature of this setting is that, if (7.11) and (7.12) hold, then also

sup
∥x̃∥≥1

|p(tx̃)td+1b(t)− q(x̃)| −→
t→+∞

0. (7.13)

Let X = (X̃1, . . . , X̃d) and Y = X̃d+1/∥X̃∥. The norm ∥x∥ also denotes the Lp-norm in R
d when

it is clear from the context that x ∈Rd . Then

(i) The pair (X,Y ) satisfies Assumptions 7.1, 7.2 and 7.5;

(ii) The limit pair (X∞,Y∞) for (X,Y ) defined in (7.5) has distribution

L
((

X̃∞,1:d ,
X̃∞,d+1

∥X̃∞∥

)
| ∥X̃∞,1:d∥ ≥ 1

)
,

where X̃∞,1:d denotes the d-dimensional vector (X̃∞,1, . . . , X̃∞,d).

It is important to observe that predicting Y allows to predict X̃d+1, as

Y =
X̃d+1

∥X̃∥p
⇐⇒ X̃d+1 =

Y ∥X∥p
(1− |Y |p)1/p

. (7.14)

In our experiments with real data we consider this prediction example on a financial dataset.

As will be shown in the forthcoming sections, Assumptions 7.1, 7.2 and 7.5 provide suf-
ficient regularity and stability conditions allowing to justify the angular ERM approach
taken in Algorithm 7.1.

7.5 Regular Variation w.r.t. the First Component: Parallel
with Lindskog et al. (2014)

This section makes explicit the connection between Assumption 7.2 and the RV frame-
work on a metric space developed in Lindskog et al. (2014). We also provide alternative
formulations of Assumption 7.2. Following whenever possible the notations of Lind-
skog et al. (2014), let Z = R

d × I where we recall I = [−M,M] (in Lindskog et al. (2014)
the ambient space Z is denoted by S which interferes with our notation for the unit
sphere). The ambient space Z is endowed with the Euclidean product metric,

d((x1, y1), (x2, y2)) =
√
∥x1 − x2∥2 + (y1 − y2)2,

so that (Z,d) is a complete separable metric space. Define a scalar ‘multiplication’ on
Z as λ.(x, y) = (λx, y), λ > 0, which is continuous and satisfies the associativity property
λ1.(λ2.z) = (λ1λ2).z, and 1.z = z. This scalar multiplication induces a scaling operation
on sets, λA = {λ.z,z ∈ A} for A ⊂ Z. Consider the set C = {0} × I ⊂ Z. Then C is a
closed set which is preserved by the above scaling operation, i.e., it is a closed cone. For
z = (x, y) we have d(z,C) = ∥x∥, whence d(x,C) < d(λx,C) for λ > 1. Thus Assumptions
A1, A2, A3 in Lindskog et al. (2014), Section 3, are satisfied. Let O = Z\C and introduce
C
r = {z ∈O : d(z,C) > r}, r ≥ 0. In Lindskog et al. (2014), the class of Borel measures on

O whose restriction to Z\Cr is finite for any r > 0 is denoted by M
O

. Then convergence
of a sequence of measures µn ∈ M

O
towards µ ∈ M

O
is defined as convergence of
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functional evaluations µn(f )→ µ(f ) for f ∈ C
O

, the class of continuous functions on Z
which vanish on a neighborhood of C, i.e., whose support is a subset of Cr for some
r > 0. A measure ν ∈M

O
is called regularly varying with limit measure µ ∈M

O
and

scaling sequence bn ∈R, if bn is increasing, regularly varying in R and if the sequence
of measures bnν(n · ) converges in M

O
towards µ (see Definitions 3.1, 3.2 in Lindskog

et al. (2014)). From the Portmanteau Theorem 2.1 in Lindskog et al. (2014) and the
series of equivalences in Theorem 3.1 of the same reference, our Assumption 7.2 is
equivalent to assuming that the distribution P of the random pair (X,Y ) is regularly
varying in M

O
with scaling sequence bn and limit measure µ, with the notations of

Section 7.2.

Theorem 7.11. Let O,C be defined as above the statement, let µ ∈M
O

be a nonzero measure
and let b(t) be a regularly varying function on R

+ with index α > 0. Let (X,Y ) ∼ P be a
random pair valued in R

d × I . The following assertions are equivalent.

(i) The random pair (X,Y ) satisfies Assumption 7.2 from the main paper with limit
measure µ and normalizing function b.

(ii) For any bounded and continuous function h : O→R that vanishes in a neighborhood
of C, i.e., whose support is included in C

r for some r > 0,

lim
t→+∞

b(t)E
[
h(t−1X,Y )

]
=

∫
O

hdµ.

(iii) There exists a finite measure Φ on S× I such that

P(θ(X) ∈ B,Y ∈ A,∥X∥ ≥ tr)
P(∥X∥ ≥ t)

−→
t→+∞

cr−αΦ(B×A)

for all r > 0 and A ∈ B(I), B ∈ B(S) such that Φ(∂(B×A)) = 0, with c = Φ(S× I)−1.

Proof. (i)⇔ (ii). Condition (ii) in the statement is precisely Definition 3.2 of RV in M
O

of Lindskog et al. (2014), regarding the measure P restricted to O. The equivalence with
our Assumption 7.2 is a direct application of the Portmanteau Theorem 2.1 in Lindskog
et al. (2014).

(iii) ⇔ (ii). We generalize the argument of Lindskog et al. (2014), Example 3.4
and we verify that we fit into the context of Example 3.5 of the same reference. The
argument in Example 3.5 (see also Example 3.4) in Lindskog et al. (2014) relies on
a continuous mapping argument (Theorem 2.3 in the same reference). Introduce
the ‘polar coordinate transform’ T (x, y) = (∥x∥,θ(x), y), for (x, y) ∈ O, where we recall
θ(x) = x/∥x∥. Then T is a homeomorphism from O onto O

′ = (R+ \ {0})×S× I = Z′ \C′
with Z′ = R+ ×S× I , C′ = {0} ×S× I . The space Z′ is endowed with a continuous scalar
multiplication λ.(r,ω, y) = (λr,ω, y) for λ ≥ 0, which is compatible with the mapping
T in the sense that λ.T (z) = T (λ.z). The scalar multiplication on Z′ satisfies the same
associativity and monotonicity properties as the one on Z. The mapping T has the
property that if A′ ⊂ O

′ is bounded away from C
′ then also T −1(A′) ⊂ O is bounded

away from C. The conditions of Example 3.5 in Lindskog et al. (2014) are thus satisfied,
so that regular variation of the joint distribution P (restricted to O) in M

O
is equivalent

to RV of the image measure T⋆P (restricted to O
′), with limit measure µ′ = T⋆µ, and

with the same scaling function b(t). In other words Condition (ii) is equivalent to
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the fact that for any measurable sets B ⊂ S,C ∈ I such that µ(∂(CB ×C)) = 0, where
CB = {tω, t ≥ 1,ω ∈ B}, we have

b(t)P(∥X∥ > tr,θ(X) ∈ B,Y ∈ C) −→
t→+∞

µ({(x, y) : ∥x∥ ≥ r,θ(x) ∈ B,y ∈ C})

=µ(r.{(x, y) : ∥x∥ ≥ 1,θ(x) ∈ B,y ∈ C})
=r−αµ({(x, y) : ∥x∥ ≥ 1,θ(x) ∈ B,y ∈ C}),

where the last identity follows from the homogeneity of µ (Theorem 3.1 in Lindskog
et al. (2014)). Define the angular measure Φ on S× I as in (7.3) from the main paper,
Φ(B×C) = µ({(x, y) ∈ O : ∥x∥ ≥ 1,θ(x) ∈ B,y ∈ C}). Then Φ is a finite measure and the
latter display writes equivalently

b(t)P(∥X∥ > tr,θ(X) ∈ B,Y ∈ C) −→
t→+∞

r−αΦ(B×C), (7.15)

for all measurable sets B ⊂ S,C ∈ I such that Φ(∂(B×C)) = 0. If (7.15) holds then also,
taking B = S,C = I, r = 1 we have

b(t)P(∥X∥ > t) −→
t→+∞

Φ(S× I),

and taking the ratio of (7.15) with the latter displays yields Condition (iii) of the state-
ment. Conversely if (iii) holds, then letting b(t) = Φ(S× I)/P(∥X∥ > t), we obtain (7.15),
which is equivalent to Condition (ii). ■

7.6 Conclusion

In this chapter, we introduce an algorithmic procedure named ROXANE, designed to
handle regression tasks in extreme regions. To support the soundness of this algorithm,
we develop a framework for extreme problems where extremality is measured with
respect to a specific component. We propose the novel assumption of regular variation
with respect to the first component and extend this to establish the classical properties
of regular variation under this hypothesis. Finally, we present typical regression
scenarios where these working assumptions are satisfied. These regression situations
are the subject of experimental studies in the next section, where probabilistic and
statistical guarantees regarding the ROXANE algorithm are proved.
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7.A Proofs

Proofs for Section 7.3

Proof of Proposition 7.6. We show that if Assumptions 7.1 and 7.2 both hold true,
then each condition (i), (ii), or (iii) of the statement imply Assumption 7.5. In fact we
show that (iii)⇒ (ii)⇒ (i)⇒ Assumption 7.5.

Condition (i)⇒ Assumption 7.5. The continuity of f ∗P∞ follows from the continuity of
f ∗ and the uniform convergence (7.6). Also, the convergence in Assumption 7.5 is a
direct consequence of convergence (7.6).

Condition (ii)⇒ Condition (i). For x ∈Rd such that ∥x∥ ≥ t ≥ 1, we have

|f ∗(x)− f ∗P∞(x)| =
∣∣∣∣∣∫

y∈I
ypY |x(y)dy −

∫
y∈I

yp∞Y |x(y)dy
∣∣∣∣∣

≤M2 sup
∥x∥≥t,y∈I

|pY |x(y)− p∞Y |x(y)|.

Thus, uniform convergence in (7.6) follows from (7.7). The continuity of f ∗ is ensured
by an application of the dominated convergence theorem to the parametric integral
f ∗(x) =

∫
I
ypY |x(y)dy, using the fact that for all y ∈ I , x 7→ pY |x(y) is continuous and that

sup∥x∥≥1,y∈I pY |x(y) < +∞.

Condition (iii)⇒ Condition (ii). We first show that uniform convergence (7.7) holds
true. Notice first that the density q of µ is necessarily homogeneous in its first com-
ponent, q(tx, y) = t−α−dq(x, y) for x , 0 (This follows from the homogeneity of µ and a
change of variable in the first component when integrating over a region tA×B where
A ⊂R

d \ {0} and B ⊂ I). Thus for x ∈Rd with ∥x∥ ≥ 1 and y ∈ I , we have

pY |x(y) =
p(x, y)
pX(x)

and p∞Y |x(y) =
q(x, y)
qX(x)

=
q(x/∥x∥, y)
qX(x/∥x∥)

,

where we denote by pX (resp. qX) the marginal density of X (resp. X∞) given by
pX(x) =

∫
I
p(x, y)dy (resp. qX(x) =

∫
I
q(x, y)dy). Then, for x ∈Rd \ {0}, y ∈ I , introducing

the function h(t) = tdb(t), the left-hand side in Equation (7.7) writes as∣∣∣∣∣p(x, y)
pX(x)

−
q(x/∥x∥, y)
qX(x/∥x∥)

∣∣∣∣∣ =

∣∣∣∣∣∣h(∥x∥)p(x, y)
h(∥x∥)pX(x)

−
q(x/∥x∥, y)
qX(x/∥x∥)

∣∣∣∣∣∣
≤ h(∥x∥)p(x, y)

∣∣∣∣∣∣ 1
h(∥x∥)pX(x)

− 1
qX(x/∥x∥)

∣∣∣∣∣∣︸                                            ︷︷                                            ︸
A(x,y)

+ . . .

∣∣∣∣∣h(∥x∥)p(x, y)− q(x/∥x∥, y)
∣∣∣∣∣

qX(x/∥x∥)︸                            ︷︷                            ︸
B(x,y)

. (7.16)

Regarding the numerator of the term B(x, y) above, notice that for ∥x∥ ≥ t,

|h(∥x∥)p(x, y)− q(x/∥x∥, y)| = |h(t(∥x∥/t))p(t(∥x∥/t)(x/∥x∥), y)− q(x/∥x∥, y)|
≤ sup

s≥t,(ω,y)∈S×I
|h(s)p(sω, y)− q(ω, y)| → 0,
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as t tends to infinity, by uniform convergence (7.8). This, together with the lower
bound (7.9) on q, implies that as t→ +∞,

sup
∥x∥>t,y∈I

B(x, y)→ 0.

Turning to the term A(x, y) in (7.16), observe first that

A(x, y) = h(∥x∥)p(x, y)

∣∣∣∣∣∣h(∥x∥)pX(x)− qX(x/∥x∥)
h(∥x∥)pX(x)qX(x/∥x∥)

∣∣∣∣∣∣.
Notice that for ∥x∥ > t,

|h(∥x∥)pX(x)− qX(x/∥x∥)| =
∣∣∣∣∣∫

I
(h(∥x∥)p(x, y)− q(x/∥x∥, y))dy

∣∣∣∣∣
≤ 2M sup

s≥t,(ω,y)∈S×I
|h(s)p(sω, y)− q(ω, y)| := U (t), (7.17)

where the upper bound U (t) vanishes as t→ +∞ because of (7.8). Now, for ∥x∥ > t and
y ∈ I ,

A(x, y) ≤
sup∥x∥≥t,y∈I h(∥x∥)p(x, y)

inf∥x∥>t h(∥x∥)pX(x) infω∈S qX(ω)
U (t).

Regarding the numerator of the above display, recall that the density function q is
continuous on the compact set S, whence it is upper bounded. Because of uniform
convergence (7.8), it is also true that sup∥x∥≥t,y∈I h(∥x∥)p(x, y) is upper bounded by a
finite constant for t large enough. In addition, our lower bound assumption (7.9) on
q together with uniform convergence (7.17) show that the denominator is ultimately
(as t→ +∞) lower bounded by a positive constant. Summarizing, we have shown that
sup∥x∥>t,y∈SA(x, y)→ 0 as t→ +∞, finishing the proof of (7.7).

It remains to prove that for all y ∈ I , x 7→ p(x, y)/pX(x) is continuous and that p(x, y)/pX(x)
is uniformly bounded. For all y ∈ I , the continuity of x 7→ p(x, y)/pX(x) follows from
the continuity of p. Notice again that for x ∈Rd and y ∈ I

p(x, y)
pX(x)

=
h(∥x∥)p(x, y)
h(∥x∥)pX(x)

.

The numerator uniformly converges to q, which is uniformly bounded. The denomin-
ator uniformly converges to qX , which is uniformly lower bounded by Equation (7.9).
Then sup∥x∥≥1,y∈I (p(x, y)/pX(x)) is finite, which concludes the proof. ■

Proofs for Section 7.4

In this section, we show that a generic heavy-tailed regression model (Example 7.7)
satisfies the requirements of our assumptions. Subsequently, we establish that two
widely used models, the additive and multiplicative noise models, constitute particular
instances of that generic model.
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Proof of Proposition 7.7. Assumption 7.1 is fulfilled with M = supx,z∈Rd×R |g(x, z)|.
Regarding Assumption 7.2 and the limit distribution, we consider a bounded and
Lipschitz function l : Rd ×R→R. For all t > 0, writing Θ = ∥X∥−1X, we have

E

[
l(t−1X,Y ) | ∥X∥ ≥ t

]
= E

[
l(t−1X, g(X, ε)) | ∥X∥ ≥ t

]
= E

[
l(t−1X, gθ(Θ, ε)) | ∥X∥ ≥ t

]
+ . . .

E

[
l(t−1X, g(X, ε))− l(t−1X, gθ(Θ, ε)) | ∥X∥ ≥ t

]
.

Since ε is independent from X, writing Θ∞ = ∥X∞∥−1X∞, the RV of X and continuity of
l and gθ imply that

E

[
l(t−1X, gθ(Θ, ε)) | ∥X∥ ≥ t

]
→ E[l(X∞, gθ(Θ∞, ε))]. (7.18)

Because l is Lipschitz continuous (for some Lipschitz constant C) and X and ε are
independent, we have∣∣∣∣∣E[

l(t−1X, g(X, ε))− l(t−1X, gθ(Θ, ε))
∣∣∣∣∥X∥ ≥ t

]∣∣∣∣∣
≤ CE

[
|g(X, ε)− gθ(Θ, ε)| | ∥X∥ ≥ t

]
≤ CE

[
sup
∥x∥≥t
|g(x, ε)− gθ(θ(x), ε)|

]
.

The right-hand side tends to zero as t→ +∞, from the dominated convergence theorem
which applies because sup∥x∥≥t |g(x, ε) − gθ(x/∥x∥, ε)| ≤ M and because of our model
assumption (7.10). Thus Assumption 7.2 is satisfied and P∞ = L(X∞, gθ(Θ∞, ε)).

We now show that Assumption 7.5 also holds true by proving the stronger condition (i)
from Proposition 7.6. For x ∈Rd with ∥x∥ ≥ t, we have by independence of X and ε,

|f ∗(x)− f ∗P∞(θ(x))| =
∣∣∣∣∣E[g(x, ε)]−E[gθ(θ(x), ε)]

∣∣∣∣∣
≤ E

[
sup
∥x∥≥t

∣∣∣∣∣g(x, ε)− gθ(θ(x), ε)
∣∣∣∣∣],

which entails as in (7.18) that sup∥x∥≥t |f ∗(x) − f ∗P∞(x/∥x∥)| → 0, as t → +∞. Since g is
assumed continuous and bounded, f ∗ is continuous. Thus, the sufficient condition (i)
from Proposition 7.6 is satisfied, which shows that Assumption 7.5 holds true. ■

Proof of Corollary 7.8. Because ε is almost surely bounded, there exists mε ∈ R+ a

nonnegative real-number such that ε
a.s.
∈ [−mε,+mε]. Consider the mapping g : (x, z) ∈

R
d × [−mε,+mε] 7→ g(x) + z and gθ : (ω, z) ∈ S × [−mε,+mε] 7→ g̃θ(ω) + z. The function

g is continuous and bounded by M = supx∈Rd |g̃(x)|+mε and the pair (g,gθ) satisfies
Equation (7.10). Indeed for all z ∈ [−mε,+mε],

sup
∥x∥≥t
|g(x, z)− gθ(θ(x), z)| = sup

∥x∥≥t
|g̃(x)− g̃θ(θ(x))| → 0,

as t→ +∞, which concludes the proof. ■
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Proof of Corollary 7.9. Consider the mapping g(x, z) = zg̃(x) and gθ(ω, z) = zg̃θ(ω). Let
mε be as in the proof of Proposition 7.8. On the domain R

d × [−mε,mε], the function
g is continuous and bounded by M = mε supx∈Rd |g̃(x)|. The pair (g,gθ) satisfies (7.10)
since for all z ∈ [−mε,+mε]

sup
∥x∥≥t
|g(x, z)− gθ(x/∥x∥, z)| ≤mε sup

∥x∥≥t
|g̃(x)− g̃θ(θ(x))| −−−−→

t→∞
0,

which concludes the proof. ■

Proof of Proposition 7.10. Let Ẽ = R
d+1 \ {0

R
d+1}, E = R

d \ {0
R

d }. and for simplicity de-
note both by Bd the d-dimensional unit ball and its image by the canonical embedding
R
d → R

d+1, i.e., Bd = {x̃ ∈ Rd+1 : ∥(x̃1, . . . , x̃d)∥ ≤ 1, x̃d+1 ∈ R}. For x̃ ∈ Rd+1 we denote
by x the first d coordinates of x̃, x = (x̃1, . . . , x̃d). Denote by ϕ the continuous mapping
sending X̃ to (X,Y ), i.e.,

ϕ : E ×R→ E × (−1,1)

x̃ = (x, z) 7→ (x, y) = (x, z/∥(x, z)∥).

Equipped with these notations, we may proceed with the proof.

(a) Assumption 7.1 is trivially satisfied because |Y | ≤ 1.

(b) We now show that Assumption 7.2 holds with limit pair (X∞,Y∞) as in the second
part of the statement. Equipped with the notations introduced above, the pair defined
in the statement may be written as (X∞,Y∞) = ϕ(X̃∞), where X̃∞ is well defined by RV
of the full vector X̃. We need to show that for any bounded, continuous function g,

E

[
g(X/t,Y ) | ∥X̃∥ ≥ t

]
→ E

[
g ◦ϕ(X̃∞) | ∥X̃∞,1:d∥ ≥ 1

]
.

However (X/t,Y ) = ϕ(X̃/t) and ∥X∥ ≥ t⇒ ∥X̃∥ ≥ t. Thus

E[g(X/t,Y ) | ∥X∥ ≥ t]

=
E

[
g ◦ϕ(X̃/t)1{∥X/t∥ ≥ 1}1{∥X̃/t∥ ≥ 1}

]
P(∥X̃/t∥ ≥ 1)

P(∥X̃/t∥ ≥ 1)
P(∥X/t∥ ≥ 1)

= E

[
g ◦ϕ(X̃/t)1{∥X/t∥ ≥ 1} | ∥X̃∥ ≥ t

]
P(∥X̃/t∥ ≥ 1)
P(∥X/t∥ ≥ 1)

→ E

[
g ◦ϕ(X̃∞)1{∥X̃∞,1:d∥ ≥ 1}

] 1
P(∥X̃∞,1:d∥ ≥ 1)

,

where the convergence of the first term in the latter expression is obtained by approach-
ing the (discontinuous) function 1{∥x∥ ≥ 1} by continuous ones and using the fact that
the boundary of Bd in R

d+1 is not a cone, whence it cannot carry any positive µ-mass
(a standard feature of radially homogeneous measures).

(c) We now prove that Assumption 7.5 holds true by proving the stronger condi-
tion (7.6) which rephrase in our setting as

sup
∥x∥=1

|f ∗(tx)− f ∗P∞(tx)| −→
t→+∞

0. (7.19)

Indeed if (7.19) holds, then sups≥t sup∥x∥=1 |f ∗(sx)− f ∗P∞(sx)| −→
t→+∞

0, so that

sup
∥x∥≥t
|f ∗(x)− f ∗P∞(x)| = sup

∥x∥≥1
|f ∗(tx)− f ∗P∞(tx)|

= sup
s≥t

sup
∥x∥=1

|f ∗(sx)− f ∗P∞(sx)| −→
t→+∞

0.
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Notice first that for x ∈Rd such that ∥x∥ ≥ 1, f ∗(x) and f ∗P∞(x) may be written in terms
of integrals

f ∗(x) =
∫
z∈R

z
∥(x, z)∥

p(x, z)
p(x)

dz,

where for simplicity we denote by p(x) the marginal density of the first d components
of X̃ at x, and also p(x, z) the joint density at x̃ = (x, z).

In the present setting, f ∗P∞ is defined as f ∗P∞(X∞) = E[Y∞ | X∞]. Introduce a random
vector Z̃ = (Z̃1, . . . , Z̃d+1) distributed as L(X̃∞ | ∥X̃∞,1:d∥ ≥ 1). Then Z̃ has density Cq(x, z)
on B

c
d ×R, and marginal density for its first d components, Cq(x) :=

∫
R
Cq(x, z)dz. With

these notations we have (X∞,Y∞) d= (Z̃1:d , Z̃d+1/∥Z̃1:d∥), whence
f ∗P∞(Z̃1:d) = E

[
Z̃d+1/∥Z̃∥ | Z̃1:d

]
almost surely. We obtain, for ∥x∥ ≥ 1,

f ∗P∞(x) =
∫
R

z
∥(x, z)∥

Cq(x, z)
Cq(x)

dz =
∫
R

z
∥(x, z)∥

q(x, z)
q(x)

dz.

Combining the latter two displays we obtain

|f ∗(x)− f ∗P∞(x)| ≤
∫
z∈R

∣∣∣∣∣∣p(x, z)
p(x)

−
q(x, z)
q(x)

∣∣∣∣∣∣ dz. (7.20)

Introduce as in Lemma 7.12 the function h(t) = td+1/P
(
∥X̃∥ ≥ t

)
. For ∥x∥ = 1, by a

change of variable r = z/t in (7.20), we obtain

|f ∗(tx)− f ∗P∞(tx)| ≤
∫
r∈R

∣∣∣∣∣∣p(tx, tr)
p(tx)

−
q(tx, tr)
q(tx)

∣∣∣∣∣∣ tdr

=
∫
r∈R

∣∣∣∣∣∣∣ h(t)p(tx, tr)
t−1h(t)p(tx)

−
q(x, r)
q(x)

∣∣∣∣∣∣∣ dr,

since by homogeneity of q, it holds that q(tx, tr) = t−d−1−αq(x, r) while q(tx) = t−d−αq(x).
Thus

sup
∥x∥=1

|f ∗(tx)− f ∗P∞(tx)| ≤
∫
r∈R

sup
∥x∥=1

∣∣∣∣∣∣∣ h(t)p(tx, tr)
t−1h(t)p(tx)

−
q(x, r)
q(x)

∣∣∣∣∣∣∣︸                             ︷︷                             ︸
J(t,r)

dr. (7.21)

We have the following controls over the quantities in the latter integrand:

1. q(x) is lower bounded by a positive constant (Lemma 7.13)

2. sup∥x∥=1 |h(t)t−1p(tx)− q(x)| −→
t→+∞

0 (Lemma 7.12),

3. For all fixed r, because of (7.13), and since ∥(x, r)∥ ≥ ∥x∥,

sup
∥x∥=1

|h(t)p(tx, tr)− q(x, r)| ≤ sup
∥ũ∥≥1

|h(t)p(tũ)− q(ũ)|

−→
t→+∞

0.
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Thus, combining 1., 2., 3. above, for fixed r, the integrand J(t, r) in (7.21) con-
verges to 0 as t→ +∞. In order to apply the dominated convergence theorem, we
verify that J(t, r) is upper bounded by an integrable function of r. The argument
is somewhat similar to the one in the proof of Lemma 7.12. We decompose the
integrand as

J(t, r) ≤ sup
∥x∥=1

h(t)
h(t∥(x, r)∥)︸             ︷︷             ︸
A(t,r)

sup
∥x∥=1

h(t∥(x, r)∥)p
(
t∥(x, r)∥θ(x, r)

)
t−1h(t)p(tx)︸                                    ︷︷                                    ︸
B(t,r)

+ . . .

. . . sup
∥x∥=1

q(x, r)
q(x)︸       ︷︷       ︸

C(t,r)

= A(t, r)B(t, r) +C(t, r).

From the proof of Lemma 7.12 (see Equation (7.22)) we have that for t ≥ t0 large
enough, and for all r ∈R,

A(t, r) ≤ 2∥(x, r)∥−d−α/2−1 ≤ 2(1 + rp)
−d−α/2−1

p ,

an integrable function of r.

The numerator and the denominator in the definition of B(t, r) converge as t→
+∞, uniformly over ∥x∥ ≥ 1 and r ∈R, respectively to q(x, r) and q(x). The latter
quantity is lower bounded (Lemma 7.13) and q(x, r) is uniformly bounded for
∥x∥ = 1 (by homogeneity). Thus, for some constant C > 0, for all t ≥ t1 with some
large enough t1 ≥ t0, we have

B(t, r) ≤ C.

By homogeneity of q and Lemma 7.13 again, we have

C(t, r) ≤ sup
∥x∥=1
∥(x, r)∥−α−d−1 maxω∈Sd+1

q(ω)
c

= (1 + rp)
−α−d−1

p
maxω∈Sd+1

q(ω)
c

,

which is an integrable function of r.

Combining the bounds regarding A(t, r),B(t, r),C(t, r), we have shown that A(t, r)×
B(t, r) +C(t, r) is upper bounded by an integrable function of r. The proof of the
condition (7.6) is complete. It remains to show that f ∗P∞ is continuous on ∥x∥ ≥ 1.

Recall that for x ∈Rd \ {0
R

d },

f ∗P∞(x) =
1

q(x)

∫
R

z
∥(x, z)∥

q(x, z)dz.

The continuity of p implies that of q by Equation (7.12). By homogeneity of q, we
have

z
∥(x, z)∥

q(x, z) ≤ q(x, z) = ∥(x, z)∥−d−α−1q(θ(x, z))

≤ (1 + zp)
−d−α−1

p max
ω∈Sd+1

q(ω).
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Since z 7→ (1 + zp)
−d−α−1

p is integrable over R, the dominated convergence theorem
for continuity applies twice and entails that x 7→

∫
R

z
∥(x,z)∥q(x, z)dz and x 7→ 1

q(x)
are continuous and then f ∗P∞ is continuous. The proof is complete. ■

Lemma 7.12 (Uniform Convergence of marginals of p.). Under the assumptions of
Example 7.10, we have

sup
∥x∥=1

∣∣∣∣∣∣
∫
R

t−1h(t)p(tx, z)dz − q(x)

∣∣∣∣∣∣ −→t→+∞
0, where

q(x) =
∫
z
q(x, z)dz, and h(t) = td+1/P(∥X̃∥ ≥ t).

Proof. We adapt the arguments of the proof of Theorem 2.1 of De Haan and Resnick
(1987) to our context. With the notation h from our statement, our uniform convergence
assumption (7.12) becomes

sup
ω∈Sd+1

|h(t)p(tω)− q(ω)| −→
t→+∞

0.

Now ∫
R

t−1h(t)p(tx, z)dz =
∫
R

h(t)p(tx, tr)dr,

so that

sup
∥x∥=1

∣∣∣∣∣∣
∫
R

t−1h(t)p(tx, z)dz − q(x)

∣∣∣∣∣∣ ≤
∫
R

sup
∥x∥=1

∣∣∣h(t)p(tx, tr)− q(x, r)
∣∣∣ dr.

For fixed r ∈ R, because ∥(x, r)∥ ≥ ∥x∥ ≥ 1, the integrand in the right-hand side is less
than

sup
∥ũ∥≥1

∣∣∣h(t)p(tũ)− q(ũ)
∣∣∣ .

The latter display tends to zero as t→ +∞ because of (7.13). To conclude, we need to
upper bound the integrand by an integrable function of r, in order to apply dominated
convergence. We thus write

sup
∥x∥=1

∣∣∣h(t)p(tx, tr)− q(x, r)
∣∣∣

≤ sup
∥x∥=1

h(t)p(tx, tr) + sup
∥x∥=1

q(x, r).

= sup
∥x∥=1

h(t)
h(t ∥(x, r)∥)︸              ︷︷              ︸
A(t,r)

sup
∥x∥=1

h(t ∥(x, r)∥)p(t ∥(x, r)∥ θ(x, r))︸                                     ︷︷                                     ︸
B(t,r)

+ sup
∥x∥=1

q(x, r)︸      ︷︷      ︸
C(t,r)

,

where θ(x, r) ∈ Sd+1.
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• The function h is regularly varying with positive index d + 1 +α. By Karamata
representation (Proposition 0.5 of Resnick (1987)), for t large enough (say t ≥ t0),
for any s ≥ 1, we have

h(t)
h(ts)

≤ 2s−d−
α
2 +1.

Thus for t ≥ t0, for all r ∈R,

A(t, r) ≤ 2∥(x, r)∥−d−α/2−1 ≤ 2(1 + rp)
−d−α/2−1

p , (7.22)

which is an integrable function of r for any d ≥ 1,α > 0.

• because ∥(x, r)∥ ≥ ∥x∥ ≥ 1 we have for all t ≥ t0 large enough, uniformly over x
such that ∥x∥ = 1 and r ∈R,∣∣∣∣h(t ∥(x, r)∥)p(t ∥(x, r)∥ θ(x,r))− q(θ(x, r))

∣∣∣∣ ≤ 1,

thus for t ≥ t0, for all r,

B(t, r) ≤ sup
ω∈Sd+1

q(ω) + 1,

which is a finite constant.

• We may also upper bound C(t, r) by an integrable function of r, since by homo-
geneity of q,

C(t, r) = sup
∥x∥=1
∥(x, r)∥−d−α−1q

(
θ(x, r)

)
≤ max

ω∈Sd+1

(q(ω))(1 + rp)
−d−α−1

p

which is integrable for d ≥ 1 and α > 0.

As a consequence of the above three points, the quantity A(t, r)B(t, r) +C(t, r) is upper
bounded by an integrable function of r. The result follows by dominated convergence.

■

Lemma 7.13 (Upper and lower bounds for the marginals of q). Under the conditions
of Example 7.10, there exists positive constants c,C > 0 such that for all x ∈ Rd such that
∥x∥ = 1,

c ≤
∫

q(x, z)dz ≤ C.

Proof. For x ∈Rd such that ∥x∥ = 1, and z ∈R we have

q(x, z) = (1 + zp)
−α−d−1

p q(θ(x, z)).

The results follows with c = (minω∈Sd+1
q(ω))

∫
(1 + zp)

−α−d−1
p dz and

C = ( max
ω∈Sd+1

q(ω))
∫

(1 + zp)
−α−d−1

p dz.

■

In this section, we show that a generic heavy-tailed regression model (Example 7.7)
satisfies the requirements of our assumptions. Subsequently, we establish that two
widely used models, the additive and multiplicative noise models, constitute particular
instances of that generic model.
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In Section 8.1, we show that a predictive rule using the angular information only i.e.,
of the form f (X) = h(X/∥X∥), where h is a real-valued function defined the hypersphere
S = {x ∈ Rd : ∥x∥ = 1} reaches the best possible performances w.r.t. the asymptotic
risk. Subsequently, we study the performance of a predictive rule based on a train-
ing sample {(X1,Y1), . . . , (Xn,Yn)} composed of n ≥ 1 independent copies of the pair
(X,Y ). Non-asymptotic bounds for the excess of asymptotic risk of such an empirical
(preasymptotic) risk minimizer are established in Section 8.2, demonstrating its near
optimality. Beyond these theoretical guarantees, the performance of empirical risk
minimization on extreme covariates is supported by various numerical experiments,
on real and simulated datasets, displayed in Section 8.3. Some concluding remarks are
collected in Section 8.4.

For the sake of clarity, we recall the main objects introduced in Chapter 7 to which the
results in this chapter apply. Under Assumption 7.2, there exists two random variables
(X∞,Y∞) ∈ E\B× I with distribution P∞ such that L(t−1X,Y | ∥X∥ ≥ t)→L(X∞,Y∞), as
t→ +∞. The extreme risk is defined as RP∞(f ) = E

[
(f (X∞)−Y∞)2

]
and the asymptotic

risk is defined as R∞(f ) = limsupt→+∞E

[
(f (X)−Y )2 | ∥X∥ ≥ t

]
8.1 Structural Analysis of Minimizers: Conditional,

Asymptotic and Extreme Risks

The main purposes of this subsection are to show that under the assumptions previ-
ously listed in Chapter 7, (i) the extreme quadratic risk RP∞ is minimized by angular
prediction functions, that is functions depending on the input through the angle only ;

121
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(ii) Although R∞ and RP∞ are different risk functionals, they are connected through
their respective minimizers and minimum values.

The first objective (i) above is easily tackled. Indeed, the discussion below Equa-
tion (7.5) shows that, under Assumption 7.2, letting Θ∞ = θ(X∞) denote the angular
component of X∞, the random pair (Θ∞,Y∞) is independent from the norm ∥X∞∥, and
in particular Y∞ and ∥X∞∥ are independent. Hence, the only useful piece of information
carried by X∞ to predict Y∞ is its angular component Θ∞. As a consequence the Bayes
regression function satisfies f ∗P∞(X∞) = E[Y∞ | X∞] = E[Y∞ | Θ∞] almost-surely. As a
consequence we may write f ∗P∞ = h∞ ◦θ for some function h∞ defined on the sphere S.
Finally, Assumption 7.5 ensures that h∞ may be chosen as a continuous function. We
summarize the discussion in the following lemma.

Lemma 8.1. Under Assumptions 7.1, 7.2, 7.5, the extreme risk RP∞ has a minimizer (among
all measurable functions) which may be written as f ∗P∞(x) = h∞ ◦θ(x) where h∞ : S→ I is a
bounded, continuous function.

The next result brings answers regarding the objective (ii) outlined above, by estab-
lishing a key connection between the (seemingly) different problems of minimizing
R∞ on the one hand, and minimizing RP∞ on the other hand. The extreme risk RP∞ and
the asymptotic risk R∞ are two different functionals, so that the regression function
f ∗P∞ is only defined as a minimizer of the extreme risk RP∞ and not the asymptotic
risk R∞. In the sequel we denote by R∗P∞ the minimum value of the extreme risk, i.e.,
R∗P∞ := inff measurableRP∞(f ) = RP∞(f ∗P∞).

Theorem 8.2. Under Assumptions 7.1 and 7.2, we have

(i) For any angular function of the kind f (x) = h ◦θ(x), where h is a continuous function
defined on S, the conditional risk converges to the extreme risk, i.e.,

Rt(f ) −−−−−−→
t→+∞

RP∞(f ).

Thus for such prediction functions, R∞(f ) = limt→+∞Rt(f ) = RP∞(f ).

If in addition Assumption 7.5 is satisfied, then the following assertions hold true.

(ii) As t→ +∞, the minimum value of Rt converges to that of RP∞ , i.e., R∗t −→t→+∞
R∗P∞ .

(iii) The minimum values of R∞ and RP∞ coincide, i.e., R∗∞ = R∗P∞ .

(iv) The regression function f ∗P∞ minimizes the asymptotic conditional quadratic risk:

R∗∞ = R∞(f ∗P∞).

The proof is deferred to Appendix 8.A. Observe that Theorem 8.2 does not assert
that Rt(f ) converges to RP∞(f ) for all f , but the convergence holds true for angular
predictors f = h ◦ θ (Property (i) in the statement). Property (iv) discloses that the
solution f ∗P∞ of the extreme risk minimization problem, which is of angular type,
is also a minimizer of the asymptotic conditional quadratic risk R∞ (and that the
minima coincide). Because f ∗P∞ = h∞ ◦ θ is of angular type, we thus obtain, under
Assumptions 7.1, 7.2 and 7.5,

inf
f measurable

R∞(f ) = inf
h measurable

R∞(h ◦θ). (8.1)
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In other words, the search for minimizers of R∞ may indeed be restricted to angular
prediction functions, which provides a first heuristic justification for the ROXANE

algorithm. However in order to provide rigorous guarantees for the predictive perform-
ance of minimizers of the empirical criterion (7.1) computed by means of the ROXANE

algorithm, further assumptions regarding the class H of angular predictors are needed.
In particular these additional assumptions ensure uniformity of the convergence result
(i) from Theorem 8.2. This is the focus of the next section.

8.2 Statistical Guarantees

This section provides a non-asymptotic analysis of the approach proposed for regression
on extremes. An upper confidence bound for the excess of R∞-risk of a solution of (7.1)
is established, when the class H over which empirical minimization is performed is of
controlled complexity, see Assumption 8.3 below.

The rationale behind the ROXANE algorithm is to find an angular predictive func-
tion that nearly minimizes the asymptotic conditional quadratic risk R∞ (6.6). Our
ERM strategy thus consists in solving an empirical version of the non-asymptotic
optimization problem

min
h∈H

Rt(h ◦θ).

Recall that a heuristic justification for considering angular classifiers is provided by
Equation (8.1), which is itself a consequence of Theorem 8.2. The radial threshold t
is chosen as a relatively high quantile of the empirical distribution of the radii ∥Xi∥.
In particular, let tn,k denote the 1− k/n quantile of the norm ∥X∥, where k≪ n is large
enough so that a statistical analysis remains realistic, but small enough so that the
distribution of (X,Y ) given that ∥X∥ > tn,k is close to the limit P∞, see (7.5). Then an
empirical version of tn,k is t̂n,k = ∥X(k)∥, the kth largest order statistic of the norm already
introduced in Algorithm 7.1. In practice the number k of retained extreme statistics
in a recurrent issue in Extreme Value Analysis, for which no definite theoretical
answer exists, but which is a standard bias/variance compromise. In our experiments,
following standard practice we choose k by inspection of stability regions in Hill plots.
In addition, in a regression setting we consider feature importance summaries relative
to the radial variable, see Section 8.3 for details.

Summarizing, the objective minimized in Algorithm 7.1 may be viewed as an empirical
version of the conditional risk Rtn,k for a predictive mapping of the form h ◦θ. In the
sequel we denote by R̂k this empirical objective

R̂k(f ) =
1
k

k∑
i=1

(Y(i) − f (X(i)))
2. (8.2)

We point out that the statistic above is not an average of independent random variables,
as it involves extreme order statistics of the norm. Thus investigating its concentra-
tion properties is far from straightforward. The minimum is taken over a class H
of continuous bounded functions on S of controlled complexity but hopefully rich
enough to contain a reasonable approximant of h∞ introduced in Lemma 8.1. The
following assumption regardingH will turn out to be sufficient to obtain a control of
the deviations of the empirical risk. In order to avoid measurability issues regarding
supremum deviations over the class H, it is assumed throughout that H is pointwise
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measurable (see van der Vaart and Wellner (1996), Example 2.3.4), i.e., that there exists
a countable family H0 ⊂ H, such that for all ω ∈ S and all h ∈ H, there is a sequence
(hi)i≥1 ∈ H0 such that hi(ω)→ h(ω). This mild condition is satisfied in most practical
cases, in particular by parametric classes H, i.e., classes indexed by a finite dimen-
sional parameter β ∈Rp, which depend continously on the parameter, i.e., such that
∥hβ − hβn∥∞,S→ 0 as βn→ β.

Assumption 8.3. The pointwise measurable classH is a family of continuous, real-valued
functions defined on S; of VC dimension VH < +∞, and uniformly bounded by the same
constant as the target Y (see Assumption 7.1), ∀h ∈ H,∀ω ∈ S, |h(ω)| ≤M.

Under the complexity hypothesis above, the following result provides an upper con-
fidence bound for the maximal deviations between the conditional quadratic risk Rtn,k

and its empirical version R̂k , uniformly over the class H.

Notice that a similar result is obtained in Aghbalou et al. (2023) (Lemma A.3) in the
more complex setting of cross validation. For the sake of completeness, we provide a
detailed proof in Appendix 8.A.

Theorem 8.4. Suppose that Assumptions 7.1 and 8.3 are satisfied. Let δ ∈ (0,1). We have
with probability larger than 1− δ

sup
h∈H

∣∣∣∣R̂k(h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣ ≤ 8M2

√
2log(3/δ) +C

√
VH√

k
+

16M2 log(3/δ)/3 + 4M2VH
k

,

where C is a universal constant.

Notice that Theorem 8.4 controls only the statistical deviations between the sub-
asymptotic risk Rtn,k and its empirical version R̂k . A control of the bias term Rtn,k −R∞
is given next, under appropriate complexity assumptions controlling the complexity
of class H. In particular Assumption 8.3 can be traded against a total boundedness
assumption (Case 1. in Proposition 8.5 below) which is further discussed below
(Remark 8.6). Regarding the second set of assumption (Case 2.), notice that for t ≥
1, the conditional distribution Φθ,t = L(θ(X) | ∥X∥ ≥ t) is absolutely continuous w.r.t.
Φθ,1 = L(θ(X) | ∥X∥ ≥ 1). Indeed for any measurable set A ⊂ S, if P(Θ ∈ A | ∥X∥ ≥ 1) = 0
then also for any t ≥ 1, P(Θ ∈ A | ∥X∥ ≥ t) = 0. Denote by φθ,t the probability density of
the former angular distribution with respect to the latter.

Proposition 8.5. Suppose that Assumptions 7.1 and 7.2 are satisfied. Let H be a class of
real-valued, continuous functions on S. Assume that one of the two following conditions is
satisfied.

1. H is totally bounded in the space (C(S),∥·∥∞) of continuous functions on S endowed
with the supremum norm, or

2. H fulfills Assumption 8.3 and in addition, suppose that the conditional densities φθ,t

introduced above the statement satisfy

sup
t≥1, ω∈S

φθ,t(ω) = D,

for some 0 < D < +∞.
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Then, as t tends to infinity, we have

sup
h∈H

∣∣∣Rt(h ◦θ)−R∞(h ◦θ)
∣∣∣→ 0.

The proof of Proposition 8.5 is deferred to Appendix 8.A.

Remark 8.6 (Totally bounded family of regression functions). Relying on a topological
assumption on a set of regression functions such as total boundedness (i.e.,H may be covered
by finitely many balls of radius ε, for any ε > 0) is rather uncommon in statistical learning.
However it turns out that this condition encompasses several standard algorithms. Namely,
if H is a parametric family indexed by a bounded parameter set, i.e., H = {hβ ,β ∈ B} for
some B ⊂R

d of finite diameter, and if hβ is Lipschitz-continuous with respect to β, i.e., for
some C > 0, ∥hβ − hγ∥∞ ≤ C∥β − γ∥ for all β,γ ∈ B, then H satisfies Condition 1. from
Proposition 8.5. As an example consider set of functions hβ(ω) = ⟨β,ω⟩ for ω ∈ S with a
bounded parameter set B = {β ∈ Rd : ∥β∥q ≤ λ} for some fixed λ > 0, where ∥ ·∥q is the Lq

norm on R
d , q ≥ 1. The case q = 2 (resp. q = 1) corresponds to a constrained Ridge (resp.

Lasso) regression.

Remark 8.7 (Bounded angular densities). The second condition in Proposition 8.5 implies
that the angular measure Φθ,t for large t may not concentrate around sets that are negligible
with respect to the ‘bulk’ angular measure Φθ,1. This excludes situations where the limit
angular measure Φθ concentrates on lower dimensional subcones of Rd , whereas Φθ,1 does
not necessarily do so. This concentration phenomenon as t→ +∞ is precisely the framework
considered in recent works on unsupervised dimension reduction for extremes where the
goal is to uncover sparsity patterns in the limit angular measure Φθ which may not be
representative of the bulk behavior (Goix et al. (2016, 2017); Meyer and Wintenberger
(2021); Chiapino et al. (2019); Drees and Sabourin (2021); Cooley and Thibaud (2019)).
How to relax Condition 2. in order to encompass such frameworks even though the family H
does not satisfy Condition 1. is left to future research.

The corollary below summarizes the main results of Section 8 in the form of an upper
confidence bound for the excess of R∞-risk for any solution f̂k of the problem

min
h∈H

R̂k(h ◦θ).

Corollary 8.8 (Summary). Let f̂k = ĥk◦θ be the prediction function issued by Algorithm 7.1.
Let Assumptions 7.1, 7.2, 7.5 and 8.3 be satisfied. Recall h∞ from Lemma 8.1 and that, from
Theorem 8.2, R∞(h∞ ◦θ) = infh measurableR∞(h ◦θ) = R∗∞.

For any δ > 0, with probability at least 1− δ, the excess R∞-risk of f̂k satisfies

R∞(f̂k)−R∗∞ ≤Dk +B1(tn,k) +B2(H), (8.3)

where Dk ,B1,B2 are respectively a deviation term and two bias terms,
Dk =

(
16M2

√
2log(3/δ) + 2C

√
VH

)
/
√
k + . . .(

32M2 log(3/δ)/3 + 8M2VH
)
/k (deviations)

B1(t) = 2suph∈H |R∞(h ◦θ)−Rt(h ◦θ)| (threshold bias)
B2(H) = infh∈HR∞(h ◦θ) − R∞(h∞ ◦θ) (class bias).

The first bias term B1(tn,k) in the above bound converges to zero as n → +∞, k → +∞,
k/n→ 0 whenever the conditions of Proposition 8.5 are met.
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Proof. Assume for simplicity that the infimum of the R∞-risk over the class H is
reached, i.e., ∃hH ∈ H : R∞(hH◦θ) = inf{R∞(h◦θ),h ∈ H} (if this is not the case, consider
an ε-minimizer hε for arbitrarily small ε, and proceed). Thus

R∞(f̂k)−R∗∞ ≤ R∞(ĥk ◦θ)−Rtn,k (ĥk ◦θ) +Rtn,k (ĥk ◦θ)− R̂k(ĥk ◦θ) + . . .

R̂k(ĥk ◦θ)− R̂k(hH ◦θ) + R̂k(hH ◦θ)−Rtn,k (hH ◦θ) + . . .

Rtn,k (hH ◦θ)−R∞(hH ◦θ) +R∞(hH ◦θ)− inf
h measurable

R∞(h ◦θ)

+ inf
h measurable

R∞(h ◦θ)− inf
f measurable

R∞(f ).

Because ĥk ◦ θ minimizes R̂k and considering identity (8.1) (which holds because of
Assumptions 7.1, 7.2, 7.5), the above decomposition simplifies into

R∞(f̂k)−R∗∞ ≤ 2sup
h∈H
|R∞ −Rtn,k |(h ◦θ) + 2sup

h∈H
|Rtn,k − R̂k |(h ◦θ) + . . .

R∞(hH ◦θ)− inf
h measurable

R∞(h ◦θ).

The result follows by plugging in the deviation bound from Theorem 8.4. ■

As it is generally the case in statistics of extremes, two types of bias terms are involved
in the upper bound (8.3) of Corollary 8.8. The first bias term B1(t) results from the
substitution of the conditional quadratic risk Rtn,k for its asymptotic limit R∞. While
the weak additional assumptions of Proposition 8.5 ensure that this bias term vanishes
as k/n→ 0, a quantification of its decay rate would require second-order conditions,
e.g., by extending the second order regular variation setting of Resnick and de Haan
(1996) to our context of joint regular variation.

The second bias term is a model bias, induced by restricting the family of all measurable
functions on S to the classH of controlled combinatorial complexity. It should be noted
that under the conditions of the statement, Identity (8.1) ensures that restricting to
angular predictors does not induce any additional bias term compared with considering
a standard class for predictors taking the full covariate (including the radius) as input.

Remark 8.9 (Rate of convergence). To establish the concentration bound stated in The-
orem 8.4, we employ general concentration results that are not ideally tailored for a regression
context. A more detailed investigation might yield a bound on the stochastic error term
of order O(log(k)/k), as suggested by standard concentration results (refer to Györfi et al.
(2002), Section 11). This refined study is left to future work.

Remark 8.10 (Extensions). This article presents a rigorous formulation and investigation
of the regression problem involving an output variable confronted to a heavy-tailed input
variable, a so far unexplored topic in academic research. Subsequently, we anticipate that
the straightforward adaptation of the proposed methodology to incorporate regularized
risk formulations or diverse cost functions holds the potential for practical utility and
improvements. These extensions lie outside the scope of this paper and are deferred to further
works.

Remark 8.11 (Alternative to ERM). In the case where the output/response variable Y is
heavy-tailed (or possibly contaminated by a heavy-tailed noise), robust alternatives to the
ERM approach exist and are preferable (see Lugosi and Mendelson (2019)). Extension of
these robust alternatives to the present context of heavy-tailed input is beyond the scope of
this paper but will be the subject of further research.
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8.3 Numerical Experiments

We now investigate the performance of the approach previously described and theoret-
ically analyzed for regression on extremes from an empirical perspective on several
simulated and real datasets. The code used to run our experiments is available at
https://bitbucket.org/nathanhuet/extremeregression. The Mean Square Error
(MSE) in extreme regions of angular regression functions output by specific imple-
mentations of the ROXANE algorithm are compared to those of the classic regres-
sion functions, learned in a standard fashion. On this occasion we propose a simple
graphical diagnostic procedure allowing to check visually whether the data meet our
assumptions, in particular Assumption 7.2 which is central in our work. More pre-
cisely we inspect the relative importance of the radial variable ∥X∥ for predicting Y
above increasing radial thresholds. We consider in Section 8.3.1 simulated data in the
additive and multiplicative models which are particular instances of Example 7.7. In
Section 8.3.2 we consider a real-life financial dataset which has already been studied in
an EVA context Meyer and Wintenberger (2023).

8.3.1 Simulated data

As a first go, we focus on predictive performance of the ROXANE algorithm in terms
of MSE, with simulated data respectively from an additive noise model and from a
multiplicative noise model with heavy-tailed design, Y = g̃0(X) + ε0, and Y = ε1g̃1(X),
where ∥·∥ = ∥·∥2, g̃0(x) = βT θ(x)(1+1/∥x∥), and g̃1(x) = cos(1/∥x∥)

∑d/2
i=1(θ(x)2i−1−1/∥x∥2)×

sin((θ(x)2i − 1/∥x∥2)π), for x ∈ E.

Both models satisfy our assumptions (see Corollaries 7.8 and 7.9 in Chapter 7). In the
additive model (resp. in the multiplicative model) the design X is generated according
to a multivariate extreme value distribution from the logistic family Stephenson (2003)
with dependence parameter ξ = 1, which means that extreme observations occur very
close to the axes (resp. ξ = 0.7, meaning that the angular component of extreme
observations is relatively spread-out in the positive orthant of the unit sphere). The
input 1-d marginals are standard Pareto with shape parameter α = 1 (resp. α = 3)
and the noise ε0 is defined as a truncated Gaussian variable on [−1,1] with zero mean
and standard deviation σ0 = 0.1, i.e., ε0 admits the probability density fε0

(x) = 1{|x| ≤
1}exp(−x2/(2σ2

0 ))/
∫ 1
−1 exp(−z2/(2σ2

0 ))dz. For the multiplicative model, ε1 is again a
truncated Gaussian variable on [0,2] with mean µ = 1 and standard deviation σ1 = 0.1,

i.e., ε1 has density fε1
(x) = 1{0 ≤ x ≤ 2}exp(−(x −µ)2/(2σ2

1 ))/
∫ 2

0 exp(−(z −µ)2/(2σ2
1 ))dz.

The simulated data is of dimension d = 7 (resp. d = 14). For both models, the size of
the training dataset is ntrain = 10000, and the number of extreme observations retained
for training the ROXANE algorithm is set to ktrain = 1000 (= ntrain/10). The size of
the test dataset is ntest = 100000 and the ktest = 10000 (= ntest/10) largest instances
are used to evaluate predictive performance on extreme covariates. We consider three
different regression algorithms implemented in the scikit-learn library Pedregosa et al.
(2011) with the default parameters, namely Ordinary Least Squares (OLS), Support
Vector Regression (SVR), and Random Forest (RF). Predictive functions are learned
using respectively (i) the full training dataset, (ii) a reduced dataset composed of the
ktrain largest observations X(1), . . .X(ktrain), and (iii) an angular dataset Θ(1), . . .Θ(ktrain)
consisting of the angles of the ktrain largest observations. These three options corres-
pond respectively to (i) the default strategy (using the full dataset), (ii) a ‘reasonable’

https://bitbucket.org/nathanhuet/extremeregression
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Methods/Models Train on X Train on X | ∥X∥ large Train on Θ | ∥X∥ large

Add.: OLS 23±29 3±6 0.003±0.001

SVR 0.13±0.01 0.05±0.02 0.003±0.001

RF 0.012±0.004 0.007±0.002 0.004±0.001

Mult.: OLS 0.006±0.001 0.003±0.001 0.001±0.001

SVR 0.0041±0.0002 0.0038±0.0004 0.0034±0.0003

RF 0.0020±0.0001 0.0013±0.0001 0.0004±0.0001

Table 8.1: Average MSE (and standard deviation) for regression functions trained using
all observations, extreme observations and angles of extreme observations, over 10
independent replications of the dataset generated in the additive and the multiplicative
noise models.

naive strategy (training on extreme covariates for the purpose of predicting from ex-
treme covariates), (iii) the strategy that we promote in this paper, corresponding to
Algorithm 7.1. We evaluate the performance of the outputs using the MSE computed
on the test set. Table 8.1 shows the average MSE’s when repeating this experiment
across E = 10 independent replications of the dataset. For the additive model the
regression parameter β is randomly chosen for each replication, namely each entry of
β is drawn uniformly at random over the interval [0,1].

With both models, the approach we promote for regression on extremes clearly out-
performs its competitors, no matter the algorithm (i.e., the model bias) considered.
This paper being the first to consider regression on extremes (see Remark 8.11 for a
description of regression problems of different nature with heavy-tailed data), no other
alternative approach is documented in the literature.

Besides prediction performance, we propose to assess the validity of our main modeling
assumption (Assumption 7.2) by inspecting the variable importance (a.k.a. feature
importance, see, e.g., Grömping (2015) and the references therein) of the radial variable
∥X∥ compared with the angular variables Θj ,1 ≤ j ≤ d, for the purpose of predicting
the target Y . Indeed, under Assumption 7.2, the variables Y and ∥X∥ are asymptotically
independent conditional on {∥X∥ > t} as t→ +∞, so that the variable importance of ∥X∥,
when restricting the training set to regions above increasingly large radial thresholds,
should in principle vanish.

We consider here two widely used measures of feature importance, Gini importance
(or Mean Decrease of Impurity, Breiman (2017); Wei et al. (2015)) and Permutation
feature importance Breiman (2001); Wei et al. (2015) in the context of Random Forest
prediction, as implemented in the scikit-learn library. Gini importance measures a mean
decrease of impurity in a forest of trees, between parent nodes involving a split on the
considered variables, and their child nodes. Gini score is normalized so that the sum of
all importance scores across variables equals 1. Permutation importance compares the
prediction performance of the original input dataset with the same dataset where the
values of the considered variable have been randomly shuffled. A large score indicates
a high predictive value of the variable for both measures.

The aim of this second experiment is to illustrate the decrease of the radial feature
importance for reduced datasets involving increasingly (relatively) large inputs. To
cancel out the perturbation effect of reduced sample sizes, we fix a training size
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kimp = 1000 and we simulate increasingly large datasets of size

nimp ∈ {kimp,2kimp, . . . ,10kimp}

in the additive and multiplicative models described above. Then for j ∈ {1, . . . ,10} the
kimp largest observations in terms of ∥X∥ among nimp = jkimp are retained, a random
forest is fitted with input variables (∥X∥,Θ1, . . . ,Θd), and the Gini and Permutation
scores are computed. Figure 8.1 shows the average scores obtained over 10 independent
experiments, together with interquantile ranges, as a function of the full sample size
nimp. In both models, the decrease of both scores is obvious. In particular in terms of
Gini measure, the relative importance of the radius decreases from 38% to 1% for the
additive model and from 6% to < 1% for the multiplicative model.

Additive model Multiplicative model

Figure 8.1: Average permutation and Gini importance measures of the radial variable
using the RF algorithm in the additive noise model (left) and the multiplicative noise
model (right) over 10 replications, as a function of the total sample size nimp for fixed
extreme training size kimp. Solid black line: average Gini importance. Solid grey line:
average Permutation importance. Dashed lines: empirical 0.8-interquantile ranges.

8.3.2 Real data

Encouraged by this first agreement between theoretical and numerical results, experi-
ments on real data are conducted. We place ourselves in the setting of Example 7.10
where the target is one particular variable in a multivariate regularly varying random
vector. We consider a financial dataset, namely 49 Industry Portfolios [Daily] from Ken-
neth R. French - Data Library (https://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html). A study of extremal clustering properties within
this dataset has already been carried out by Meyer and Wintenberger (2023). This
dataset comprises daily returns of 49 industry portfolios, within the time span from
January 5th, 1970 to October 31st, 2023. Rows containing any NA values are removed,
resulting in a dataset of dimension d = 49 and size n = 13577. Figure 8.2 displays a
Hill plot of the radial variable (w.r.t. ∥·∥2), with a rather wide stability region, roughly
between k = 500 and k = 2000, which suggests that RV is indeed present, with RV index
α ≈ 3.2. We consider separately the first three variables as output (target) variables,
namely Agric (i.e., "Agriculture"), Food (i.e., "Food Products"), and Soda (i.e., "Candy
and Soda"). Each choice of a target variable yields a regression problem consisting of
predicting the target based on a covariate vector of dimension d = 10 composed of the
10 variables (X̃1, . . . , X̃d) which are the most correlated with the target X̃d+1. Following
the workflow of Proposition 7.10, as an intermediate step, Algorithm 7.1 is used to
predict Y = Xd+1/∥X̃∥ where˜̃X = (X̃1, . . . , X̃d+1). The output Ŷ of Algorithm 7.1 is then
plugged in the formula X̃d+1 = Y ∥X∥/

√
1−Y 2 where X = (X1, . . . ,Xd), which yields an

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 8.2: Hill plot for the radial variable of the 49 Industry Portfolio Daily dataset:
estimation of the extreme value index γ = 1/α with the Hill estimator using the k
largest order statistics of ∥X∥, as a function of k.

estimate X̂d+1 for the target variable. The dataset is randomly split into a test set
of size ntest = 4073 (30% of the data), and a train set of size ntrain = 9504 = n − ntest.
As suggested by the Hill plot (Figure 8.2), the number ktrain of extreme observations
used at the training step is set to ktrain = ⌊ntrain/5⌋ = 1900. On the other hand, at the
testing step, to evaluate the extrapolation performance of our method, we fix ktest to a
smaller fraction of the test set, ktest = ⌊ntest/10⌋ = 407. In this setting, paralleling our
experiments with simulated data, we compare the performance of regression functions
learned using the full training dataset, the truncated version composed of the the
ktrain largest observations and the angles of the truncated version. For the sake of
realism, we report the MSE regarding prediction of the original target variable X̃d+1,
i.e., (X̃d+1 − X̂d+1)2, which would be of greater interest in applications than the error in
the transformed variable (Y − Ŷ )2. Notice that our theory provides guarantees for the
latter, not the former. The results gathered in Table 8.2 are the average MSE’s obtained
when repeating 10 times the procedure described above with random splits of the
dataset into a train and a test set. These results provide evidence that conditionally on
the other (covariate) variables being large, our method ensures, in most cases, better
reconstruction of the target variable than the default strategy (first column) and the
intermediate strategy (second column). For predicting the Soda variable however, the
default strategy with OLS obtains the best scores. This suggests that convergence of
the conditional distribution of excesses towards its limit as in (2.5) is somewhat slower
for the subvector (X̃1, . . . , X̃d+1) where X̃d+1 is Soda and X̃1, . . . , X̃d are the 10 selected
variables based on their correlation with Soda. This intuition is confirmed by the graphs
of variable importance displayed in Figure 8.3, again paralleling the ones of Figure 8.1
and fully described in Section 8.3.1. In Figure 8.3, for simplicity, the importance
scores are computed in a prediction task where the covariate vector includes all the
available variables, except from the target (48 of them). Also the target variable for the
RF algorithm is the rescaled variable Y = X̃d+1/∥X̃∥. Whereas the radial importances
decreases monotonically when the target variable in Agric and Food, the third panel
dedicated to the target variable Soda displays a local maximum in radial importance
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Methods/Models Train on X Train on X | ∥X∥ large Train on Θ | ∥X∥ large

Agric : OLS 3.30±0.47 3.26±0.47 3.25±0.44

SVR 4.76±0.56 3.98±0.51 3.74±0.50

RF 3.47±0.47 3.48±0.47 3.28±0.52

Food : OLS 0.69±0.087 0.678±0.082 0.680±0.085

SVR 1.8±0.4 1.3±0.4 0.87±0.08

RF 0.70±0.13 0.72±0.12 0.63±0.08

Soda : OLS 2.35±0.21 2.37±0.21 2.42±0.21

SVR 4.0±0.5 3.1±0.5 2.8±0.2

RF 2.46±0.28 2.46±0.25 2.34±0.18

Table 8.2: Average MSE (and standard deviation) for predictive functions learned using
all observations, extremes (20%) and angles of the extreme observations with output
variables Agric over 10 random splits of each dataset.

around n = 11000. This value corresponds to a ratio k/n ≈ 0.12 which is near the ratio
1/10 considered for the testing step in our experimental results reported in Table 8.2.
This may explain our comparatively poor results for this particular variable. However
for all three target variables, overall, both Gini and Permutation importance score
decrease significantly, as the ratio k/n decreases. In particular for Gini importance, the
relative radial importances are approximately 2% ≈ 1/48 when n = k, which is to be
expected when all variables have equal importance. On the other hand when n = 10k,
all three Gini importances are less than 1%.

8.4 Conclusion

We have provided a sound ERM approach to the generic problem of statistical regres-
sion on extreme values. The asymptotic framework we have developed crucially relies
on the (novel) notion of joint regular variation w.r.t. some multivariate component.
When the distribution of the couple (X,Y ) is regularly varying w.r.t. X’s component,
the problem can be stated and analyzed in a rigorous manner. We have described
the optimal solution and proved that it can be nearly recovered with non-asymptotic
guarantees by implementing a variant of the ERM principle, based on the angular
information carried by a fraction of the largest observations only. We have also carried
out numerical experiments to support the approach promoted, highlighting the neces-
sity of using a dedicated methodology to perform regression on extreme samples with
guarantees. Once validated, the ROXANE procedure is used in the next chapter in a
detailed applied study to obtain predictions of extreme sea levels at a site given nearby
extreme values.
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Agric Food

Soda
Figure 8.3: Average permutation and Gini importance measures of the radial variable
for predicting Agric (top left), Food (top right) and Soda (bottom) variables using
the RF over 10 randomly shuffled datasets. At each measurement, 1357 extreme
observations are selected from a dataset whose total size increases from 1357 to 13570
with increments of 1357. Solid black line: average Gini importance. Solid grey line:
average Permutation importance. Dashed lines: empirical 0.8-interquantile ranges.
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8.A Proofs

Proof of Theorem 8.2.

(i) In view of Characterization (iii) from Theorem 7.11 (see also (7.4) in the main
paper), Assumption 7.2 implies that the conditional distribution

L(Θ,Y ,∥X∥/t | ∥X∥ > t)

converges weakly to the distribution of (Θ∞,Y∞,∥X∞∥). Now if f = h ◦ θ is a
prediction function on R

d , where h is a continuous function defined on S, then
by compactness of S the function (ω, y) 7→ (h(ω)− y)2 is automatically bounded
and continuous on the domain S× [−M,M]. Thus by weak convergence we obtain
as t→ +∞,

Rt(f ) = E

[
(h(Θ)−Y )2 | ∥X∥ > t

]
→ E

[
(h(Θ∞)−Y∞)2

]
= RP∞(f ).

(ii) Recall that R∗t = Rt(f ∗) where f ∗ is the regression function for the pair (X,Y ) and
R∗P∞ = RP∞(f ∗P∞) where f ∗P∞ is the regression function for the pair (X∞,Y∞) defined
in Lemma 8.1. Now we decompose R∗t as

R∗t = E

[
(Y − f ∗(X))2 | ∥X∥ ≥ t

]
= E

[
(Y − f ∗P∞(X))2 | ∥X∥ ≥ t

]
︸                         ︷︷                         ︸

At

+E

[
(f ∗P∞(X)− f ∗(X))2 | ∥X∥ ≥ t

]
︸                              ︷︷                              ︸

Bt

+ . . .

. . .2E
[
(Y − f ∗P∞(X))(f ∗P∞(X)− f ∗(X)) | ∥X∥ ≥ t

]
︸                                               ︷︷                                               ︸

Ct

.

The first term At is simply Rt(f ∗P∞). From Lemma 8.1, f ∗P∞ is an angular function,
thus Property (i) of the statement implies that At→ RP∞(f ∗P∞), which is R∗P∞ .

We now show that the second and third terms Bt ,Ct vanish. We use that, as a
consequence of Assumption 7.1, ∀x ∈Rd , |f ∗P∞(x)| ≤M and, |f ∗(x)| ≤M. Thus

Bt ≤ 4M2
E

[
|f ∗P∞(X)− f ∗(X)| | ∥X∥ ≥ t

]
.

Assumption 7.5 ensures that the latter display converges to 0 as t→∞. Similarly,
using Assumptions 7.1 and 7.5 again, we obtain

|Ct | ≤ 4M2
E

[
|f ∗P∞(X)− f ∗(X)| | ∥X∥ ≥ t

]
−→

t→+∞
0.

We have proved that R∗t −→t→+∞
R∗P∞ .

(iii) Recall from the introduction that R∗∞ = R∞(f ∗) = limsuptRt(f ∗). Because of (ii),
in fact Rt(f ∗) converges to R∗P∞ . Thus

limsup
t

Rt(f
∗) = lim

t
Rt(f

∗) = R∗P∞ ,

and the result follows.
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(iv) From Property (iii) of the statement, we have R∗∞ = RP∞(f ∗P∞). Now, Property (i) of
the statement and the angular nature of f ∗P∞ (Lemma 8.1) imply that RP∞(f ∗P∞) =
R∞(f ∗P∞). ■

Proof of Theorem 8.4. The key ingredient of the proof of Theorem 8.4 is a Bernstein-
type inequality due to McDiarmid (1998) which is recalled in Section 4.2, Lemma 4.6.

Introduce an intermediate risk functional

R̃tn,k (h ◦θ) =
1
k

n∑
i=1

(h(θ(Xi))−Yi)2
1{∥Xi∥ ≥ tn,k},

and notice that E[R̃tn,k (h ◦ θ)] = Rtn,k (h ◦ θ). Our proof is based on the following risk
decomposition,

sup
h∈H

∣∣∣∣∣R̂k(h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣ ≤ sup

h∈H

∣∣∣∣∣R̂k(h ◦θ)− R̃tn,k (h ◦θ)
∣∣∣∣∣+ . . .

sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣. (8.4)

Regarding the first term on the right-hand side of Inequality (8.4),

sup
h∈H

∣∣∣∣∣R̂k(h ◦θ)− R̃tn,k (h ◦θ)
∣∣∣∣∣

= sup
h∈H

1
k

∣∣∣∣∣ n∑
i=1

(
h ◦θ(Xi)−Yi

)2(
1{∥Xi∥ ≥ tn,k} −1{∥Xi∥ ≥ ∥X(k)∥}

)∣∣∣∣∣
≤ 4M2

k

n∑
i=1

∣∣∣∣1{∥Xi∥ ≥ tn,k} −1{∥Xi∥ ≥ ∥X(k)∥}
∣∣∣∣.

The number of nonzero terms inside the sum in the above display is the number of
indices i such that ‘ ∥Xi∥ < ∥X(k)∥ and ∥Xi∥ ≥ tn,k’, or the other way around. In other
words {∣∣∣∣1{∥Xi∥ ≥ tn,k} −1{∥Xi∥ ≥ ∥X(k)}

∣∣∣∣ , 0
}
⊂({

tn,k ≤ ∥Xi∥ < ∥X(k)∥
}
∪

{
∥X(k)∥ ≤ ∥Xi∥ < tn,k

})
.

Considering separately the cases where ∥X(k)∥ ≤ tn,k and ∥X(k)∥ > tn,k we obtain

sup
h∈H

∣∣∣∣∣R̂k(h ◦θ)− R̃tn,k (h ◦θ)
∣∣∣∣∣ ≤ 4M2

k

∣∣∣∣∣ n∑
i=1

1{∥Xi∥ ≥ tn,k} − k
∣∣∣∣∣.

Notice that
∑n

i=11{∥Xi∥ ≥ tn,k} follows a Binomial distribution with parameters (n, kn ).
The (classical) Bernstein inequality as stated, e.g., in McDiarmid (1998), Theorem 2.7,
yields

P

(
sup
h∈H

∣∣∣∣∣R̂k(h ◦θ)− R̃tn,k (h ◦θ)
∣∣∣∣∣ ≥ ε

)
≤ P

(∣∣∣∣∣ n∑
i=1

1{∥Xi∥ ≥ tn,k} − k
∣∣∣∣∣ ≥ kε/(4M2)

)
≤ 2exp

(
−kε2

32M4 + 8M2ε/3

)
. (8.5)
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We now turn to the second term of Inequality (8.4), and we apply Lemma 4.6 to the
function

f ((x1, y1), ..., (xn, yn)) = sup
h∈H

∣∣∣∣∣1k
n∑
i=1

(
h ◦θ(xi)− yi

)2

1{∥xi∥ ≥ tn,k} −Rtn,k (h ◦θ)
∣∣∣∣∣,

so that f ((X1,Y1), ..., (Xn,Yn)) = suph∈H

∣∣∣∣R̃tn,k (h ◦ θ) − Rtn,k (h ◦ θ)
∣∣∣∣. With the notations

of Lemma 4.6, the maximum of the positive deviations and the maximum sum of
variances satisfy respectively b ≤ 4M2/k and v̂ ≤ 16M4/k. Thus

P

(
sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣−E

sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣
 ≥ ε

)
≤ exp

(
−kε2

32M4 + 8M2ε/3

)
.

(8.6)

The last step consists in bounding from above the expected deviations in the above
display, that is

E

sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣
 .

Let ε1, ..., εn be n independent, {0,1}-valued Rademacher random variables and intro-
duce the Rademacher average

Rε
k = sup

h∈H

1
k

∣∣∣∣∣ n∑
i=1

εi(h ◦θ(Xi)−Yi)2
1{∥Xi∥ ≥ tn,k}

∣∣∣∣∣.
Following a standard symmetrization argument as, e.g., in the proof of Lemma 13 in
Goix et al. (2015), we obtain

E

sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣
 ≤ 2E

[
Rε

k

]
. (8.7)

Let (Xk
1,Y

k
1 ), ..., (Xk

n,Y
k
n ) be independent replicates, also independent from the Xi ,Yi ’s,

such that L(Xk
i ,Y

k
i ) = L

(
(X,Y ) | ∥X∥ ≥ tn,k

)
. By Lemma 2.1 of Lhaut et al. (2022), we have

n∑
i=1

εi(h ◦θ(Xi)−Yi)2
1{∥Xi∥ ≥ tn,k}

d=
K∑
i=1

εi(h ◦θ(Xk
i )−Y k

i )2,

where K ∼ Bin(n,k/n) is independent from the εi ,Xi ,Yi ’s. Then, write

E

[
Rϵ

k

]
=

1
k
E

E[
sup
h∈H

∣∣∣∣ K∑
i=1

εi(h ◦θ(Xk
i )−Y k

i )2
∣∣∣∣ ∣∣∣∣∣K]

. (8.8)

We first control the conditional expectation in the above display for any fixed value
K = m ≤ n. For this purpose, we apply Proposition 2.1 of Giné and Guillou (2001) to
the class of functions G = {g(x, y) = (h ◦θ(x)− y)2,h ∈ H}.
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Notice first that for gi(x, y) = (hi ◦θ(x)− y)2, i = 1,2 and Q any probability measure on
R
d × [−M,M] we have

∥g1 − g2∥L2(Q) =
√
EQ[(h1 ◦θ(X)− h2 ◦θ(X))(h1 ◦θ(X) + h2 ◦θ(X)− 2Y )]2

≤ 4M∥h1 − h2∥L2(QX◦θ−1),

where QX is the marginal distribution of Q regarding the first component X ∈Rd . Thus
the covering number N (G,L2(Q), τ) for the class G, relative to any L2(Q) radius τ is
always less than than N (H,L2(Q̃), τ/(4M)) for the class H, where Q̃ = QX ◦θ−1. Now
the class H has envelope function H = M1

S
( · ) and has VC-dimension VH < +∞, thus

Theorem 2.6.7 in van der Vaart and Wellner (1996) yields a control of its covering
number,

N (H,L2(Q̃), τM) ≤ (A/τ)2VH

for some universal constant A > 0 not depending on Q̃ nor H. We obtain

N (G,L2(Q), τ) ≤ (4AM2/τ)2VH .

Now G has envelope function G = 4M2
1
R

d×S. The previous display writes equivalently

N (G,L2(Q), τ∥G∥L2(Q)) ≤ (A/τ)2VH . (8.9)

Inequality (8.9) is precisely the first step of the proof of Proposition 2.1 in Giné and
Guillou (2001) (see Inequality 2.2 in the cited references), so that their upper bound on
the Rademacher process applies with VC constant v = 2VH. The upper bound of their
statement involves σ2 = supgEg

2 ≤ 16M4 and U = supg∥g∥∞ ≤ 4M2, thus we may take
σ = U = 4M2. We obtain

E

sup
h∈H

∣∣∣∣∣ m∑
i=1

εi(h ◦θ(Xk
i )−Y k

i )2
∣∣∣∣∣
 ≤ C′(4M2VH +

√
mVH),

for some other universal constant C′. Injecting the latter control into (8.8) yields, using
the concavity of the squared root function and E[K] = k,

E

[
Rε

k

]
≤ 1

k
C′(4M2VH +E [

√
K]

√
VH)

≤ 1
k
C′(4M2VH +

√
k
√
VH). (8.10)

Combining (8.7) and (8.10) we obtain

E

sup
h∈H

∣∣∣∣∣R̃tn,k (h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣
 ≤ 2E

[
Rϵ

k

]
≤ C

(
4M2VH

k
+

√
VH
k

)
, (8.11)

with C = 2C′. Finally, combining Equations (8.5), (8.6) and (8.11) yields

P

(
sup
h∈H

∣∣∣∣∣R̂k(h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣∣ ≥ ε+C

(
4M2VH

k
+

√
VH
k

))
≤ 3exp

(
−kε2

16(8M4 +M2ε/3)

)
,

which concludes the proof after solving for 3exp
(

−kε2

16(8M4+M2ε/3)

)
= δ. ■
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Proof of Proposition 8.5.

1. For t ≥ 1 and h ∈ H, write rt(h) = Rt(h ◦θ). For all h1,h2 ∈ H, and t ≥ 1, we have

|rt(h1)− rt(h2)| = |Rt(h1 ◦θ)−Rt(h2 ◦θ)|

=
∣∣∣∣∣ E[

h1(X)2 − h2(X)2 + 2Y (h1(X)− h2(X)) | ∥X∥ ≥ t
] ∣∣∣∣∣

≤ E

[
|(h1(X) + h2(X))(h1(X)− h2(X))| | ∥X∥ ≥ t

]
+ · · ·

· · ·2E
[
|Y (h1(X)− h2(X))| | ∥X∥ ≥ t

]
≤ 4M∥h1 − h2∥∞, (8.12)

where we have used Assumption 7.1 to obtain the last inequality. Similarly,

RP∞(h1 ◦θ)−RP∞(h2 ◦θ)

≤ E|(h1(Θ∞) + h2(Θ∞))(h1(Θ∞)− h2(Θ∞))|+ . . .

. . .2E|Y∞(h1(Θ∞)− h2(Θ∞))|
≤ 4M∥h1 − h2∥∞, (8.13)

Let ε > 0. By total boundedness ∃h1, . . . ,hL ∈ H such that∪i=1,...,LB(hi , ε) ⊃H. Here
B(h,ε) denotes the ball of radius ε in (C(S),∥·∥). Now because of Assumption 7.2
(see Theorem 8.2, (i)) we have rt(hi)→ RP∞(hi ◦θ) as t→∞, for all fixed i. Thus
there exists some T > 0 such that for all i ∈ {1, . . . ,L} |rt(hi)−RP∞(hi ◦θ)| ≤ ε. Now
for any h ∈ H and t ≥ T , using (8.12) and (8.13) there exists i ≤ L such that

max(|rt(h)− rt(hi)|, |RP∞(h ◦θ)−RP∞(hi ◦θ)| ≤ 4Mε,

so that

|rt(h)−RP∞(h ◦θ)|
≤ |rt(h)− rt(hi)|+ |rt(hi)−RP∞(hi ◦θ)|+ [RP∞(hi ◦θ)−RP∞(h ◦θ)|
≤ 8Mε+ ε.

Because RP∞(h ◦θ) = R∞(h ◦θ) (Theorem 8.2-(i)), the proof is complete.

2. The VC-class property of H (Assumption 8.3) ensures that for any probability
measure Q on S, and any ε > 0, the covering number N (ε, H, L1(Q)) is finite
(see, e.g., van der Vaart and Wellner (1996), Section 2.6.2). Our first step is to
build such a probability measure Q which dominates both the Φθ,t’s and Φθ, in
such a way that E

[
|h1 − h2|(Θ) | ∥X∥ > t

]
and E

[
|h1 − h2|(Θ∞)

]
are both controlled

by
∫
S
|h1 − h2|dQ = ∥h1 − h2∥L1(Q). Let Q = 1

2 (Φθ,1 + Φθ). Then Φθ is absolutely
continuous with respect to Q, and so is each φt , t ≥ 1, in view of the discussion
above the statement in the main paper.

In addition we have supω∈S |dΦθ/ dQ(ω)| ≤ 2 and from Condition 2. also

sup
ω∈S,t≥1

|dΦθ,t/ dQ(ω)| ≤ 2D.

For any h1,h2 in H, following the argument leading to (8.12) we obtain∣∣∣rt(h1)− rt(h2)
∣∣∣ ≤ 4M

∫
S

∣∣∣h1 − h2

∣∣∣ dΦt

≤ 8MD

∫
S

∣∣∣h1 − h2

∣∣∣ dQ = 8MD ∥h1 − h2∥L1(Q).
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Also,

|RP∞(h1 ◦θ)−RP∞(h2 ◦θ)|
≤ E|(h1g(Θ∞) + h2(Θ∞))(h1(Θ∞)− h2(Θ∞))|+ . . .

. . .2E|Y∞(h1(Θ∞)− h2(Θ∞))|

≤ 4ME

[
|h1 − h2|(Θ∞)

]
≤ 8M∥h1 − h2∥L1(Q).

Let ε > 0. Since the covering number of the class H for the L1(Q)-norm is finite,
for some L ≤ N (ε, H, L1(Q)), there exists h1, . . . , hL ∈ H such that each h ∈ H is
at L1(Q)-distance at most ε from one of the hi ’s. The rest of the proof follows the
same lines as the argument following (8.13), up to replacing the infinity norm
with the L1(Q)-norm on H. ■





Part IV

Application: Extreme Sea Levels





Introduction

With the rise of sea levels due to global warming, it becomes increasingly important to
model and predict extreme sea levels that can lead to flooding, such as the North Sea
flood of 1953 (Figure 1.1, McRobie et al. (2005)). This study of extremes is particularly
valuable for computing precise estimates of extreme return periods, which correspond
to the average time between extreme events (Coles et al. (2001)). To infer these return
periods, researchers may conduct direct studies on sea level modeling (Lennon et al.
(1963); Suthons (1963)). However, a more common approach in the literature involves
using the decomposition of sea levels into a deterministic tidal component and a
stochastic surge component, then focusing on the study of extreme surges (Pugh and
Vassie (1978, 1980); Tawn (1992)). Indirect methods based on this decomposition often
face the challenge of modeling the tide-surge dependence structure (Idier et al. (2012)).
To bypass this step, skew surges — the difference between the maximum observed
sea level during a tide and the maximum predicted sea level for the same tide — are
considered, as they are shown to be independent of the tidal component (Williams
et al. (2016)). Additional details about modeling extreme sea levels are discussed in
Section 1.2.3 and the references therein.

Figure 8.4: Photos taken during a visit of the SHOM, Brest, March 2024. Left: former
Port-Tudy tide gauge. Right: current Brest tide house, with tide staff on the wall.
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To avoid modeling the tide-surge interaction, this study focuses solely on sea levels and
skew surges, and aims to capture the dependence of these quantities across different
tide gauges. Modeling the multivariate extremal dependence structure is an important
part of extreme value literature, particularly for spatial extremes (see Huser and
Wadsworth (2022)). We propose to learn the extreme spatial dependence structure
among observations from various stations over their common time range. This learned
model is then utilized to reconstruct sea levels and skew surges at a site based on
extreme values at nearby sites. Our primary objective is to provide practitioners in
the field with statistical learning tools based on the latest advancements in the area of
multivariate extremes. Moreover, this study serves as an opportunity to implement
the ROXANE method (Part III) to solve a real-world problem and to compare its
performance on this example with a method that is more akin to traditional parametric
statistics than to nonparametric statistical learning.

In the first method, consistent with traditional extreme value analysis for sea levels,
we fit an appropriate extreme distribution to the data. The sea level and skew surge
data clearly exhibit asymptotic dependence. Additionally, an observation is declared
extreme if at least one of its input components is extreme, since a single large sea level
or skew surge can cause flooding at the recorded station, regardless of conditions at the
other stations. Therefore, we model these extremes using a multivariate generalized
Pareto distribution, which is particularly suited to this type of data (see Theorem 2.1
in Rootzén and Tajvidi (2006)). Specifically, we follow the parametric procedure of
Kiriliouk et al. (2019) to fit a density to the data at low computational cost.

In the second approach, to avoid restrictive assumptions about the distribution of the
observations, we use a predictive method based on a regression algorithm. Develop-
ing statistical learning methods in extreme settings is an important research subject
nowadays (see Section 1.2). We use the regression procedure proposed in Part III
(Huet et al. (2023)), which is designed for extreme value predictive problems where
the extremality is measured w.r.t. covariates, which are the values at the long-term
stations. Our goal is to learn a predictive function over the common time range of the
data that predicts values at the time-limited stations based on extreme values at the
output stations with a large number of records.
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Modeling and Prediction of Extreme
Sea Levels
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In this chapter, we present the results of two prediction procedures for extreme sea
levels and skew surges. In the first approach, the multivariate data are modeled using
a Multivariate Generalized Pareto (MGP) distribution, which is discussed at the end
of Section 2.1.2. In a second time, we choose to explore the method proposed in
Part III, namely the ROXANE algorithm. Specifically, we work within the framework
of Proposition 7.10 "Predicting a missing component in a regularly varying random
vector". It is important to note that, following the lines of Section 2.1.2, both models
are valid in the same extreme framework, i.e., under the classic multivariate maximum
domain of attraction assumption (2.4).

Both procedures require rescaling of the marginal observations to a common scale:
unit exponential scales for the MGP procedure and unit Pareto distributions for the
ROXANE procedure.

For the MGP modeling, recall from Section 2.1.2 that if W is a MGP vector in R
d with

parameters (σ,ξ), then the positive part of the margins of W are GP distribution

P(Wj ≥ x |Wj ≥ 0) = H0,σj ,ξj (x) =
(
1 +

ξj
σj

x

)−1/ξj

+
,
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for 1 ≤ j ≤ d. Consequently, an appropriate marginal transformation involves setting
(σj ,ξj) = (1,0), for all 1 ≤ j ≤ d, which transforms the positive part of the MGP vector
into a unit exponential distribution (2.14). The parameters (σj ,ξj ) must be estimated,
for 1 ≤ j ≤ d, which requires modeling the right tail of the observations with a GP
distribution.

Conversely, in the ROXANE routine, the entire marginal distribution needs to be
modeled, since we want to apply to each margin the Pareto transformation given by

p(x) =
1

1−F(x)
,

where F is the cdf of the considered margin (2.9). Marginal observations from mul-
tivariate extremes may include non-extreme observations (e.g., a storm affecting one
input but not another). These residual non-extreme marginal observations belong to
the left tail of the marginal distribution at each station (see, e.g., Figure 9.2). Therefore,
the GP distribution is not appropriate to model these data.

In this context, as in Legrand et al. (2023), we use an Extended Generalized Pareto
(EGP) distribution as our marginal model to meet the requirement of modeling the
whole distribution with GP behavior in the right-tail of the observations. Specifically,
we consider the model EGPD3 from Papastathopoulos and Tawn (2013), whose cdf we
recall from Section 2.1.2

Fσ,ξ,κ(x) =

1−
(
1 +

ξx
σ

)−1/ξκ, (9.1)

with σ > 0, ξ ∈R, κ ∈R and x ∈ [0,+∞[ if ξ ≥ 0 and x ∈ [0,−σ/ξ] otherwise.

The chapter is structured as follows. Section 9.1 introduces the sea level and skew surge
datasets. In Section 9.2, we describe the marginal preprocessing and the threshold
selection, along with the two prediction schemes detailed in two algorithms. We
describe the results of these procedures applied on the sea level and skew surge dataset
in Section 9.3. Two additional studies conducted on two other output stations are
deferred to Appendix 9.A.

9.1 Sea Level Data

Our study focuses on the Atlantic French coast, utilizing data from tide gauges provided
by the sea level observations network RONIM (Réseau d’Observation du Niveau de
la Mer) SHOM, managed by the ‘Service hydrographique et océanographique de la
Marine’ (SHOM). We specifically analyze two key variables: maximal observed sea
levels and skew surges, defined as the differences between the maximal predicted sea
levels and the maximal observed sea levels during a full tide. The dataset consists
of hourly validated data, each associated with a timestamp. Our inference targets
both sea levels and skew surges, with a particular focus on large sea levels, which
are crucial for flood risk monitoring. Notably, large sea levels can be derived using
convolution methods between maximal predicted sea levels and skew surges (see Haigh
et al. (2010)).

Intuitively, predicting missing observations at a given station ideally requires at least
two stations with long-range observations on each side of the target station. Indeed,
it seems reasonable to suppose in this setting that most of the extreme values at the
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Figure 9.1: Map showing the locations and the temporal depths of each station. Red
dots indicate input stations, while blue dots indicate output stations.

output station will be associated with at least one extreme value at a input station,
while, if only one input station is considered, some extremes at the output station
could be missed. Consequently, our study utilizes Brest and Saint-Nazaire as the two
long-range input stations. Our objective is to predict and generate values at three
stations with limited historical records, referred to as the output stations: Port-Tudy,
Concarneau, and Le Crouesty. Consequently, three separate studies are conducted,
each focusing on either maximum sea levels or skew surges. The locations and temporal
depths of the five stations are showed in Figure 9.1.

Remark 9.1 (a bit of history). The dates displayed in Figure 9.1 represent the first available
data on data.shom.fr. Systematic measurements of sea levels at Brest date back to the 17th
century. January 4, 1846 marks the deployment of the first tide-gauge in France (and one of
the first of the world). The tide gauge in Saint-Nazaire was deployed in 1863; measurements
between 1821 and 1863 were not conducted regularly (see refmar.shom.fr for details).

In the subsequent analysis, XB and XN represent sea levels or skew surges at the Brest
and Saint-Nazaire stations, while Y represents sea levels or skew surges at an output
station. Whenever necessary, we specify by an upper index sl a quantity related to sea
levels and by an upper index ss a quantity related to skew surges.

To evaluate the performance of our method, each of the three datasets is divided into
two subsets. The training set, comprising the most recent observations, is used to fit the
marginal and joint models, while the test set, consisting of the earliest observations, is

data.shom.fr
refmar.shom.fr
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used to assess the performance of the fitted model. The dates for splitting into training
and test sets are 31 December 1999 for Port-Tudy, 2010 for Concarneau, and 2014 for
Le Crouesty, ensuring that each set contains approximately the same amount of data.

In practice, the marginal observations of the output station are unknown and thus
are not used to determine the extremality of an observation. Instead, an observation
is considered extreme if at least one of the two input station values exceeds a large
threshold. A first pre-selection is performed such that we retain only triplets (XB,XN ,Y )
satisfying

XB ≥ q0.5
B or XN ≥ q0.5

N , (9.2)

where q
ρ
B (resp. q

ρ
N ) is the empirical ρ-quantile at Brest (resp. at Saint-Nazaire). This

initial thresholding is distinct from the common extreme value theory problem of
selecting an extreme threshold above which observations are considered extreme
(addressed in Section 9.2.1). This pre-processing step aims solely to reduce the dataset
size by considering only relevant observations, thereby avoiding computational burden.
Note that the initial thresholding is set low enough to retain all observations of interest
in the study (see the left columns of Figures 9.3 and 9.4). In the following discussions,
when we mention the "data" we are referring to the data that remains after this first
thresholding step, unless stated otherwise. In applying the three algorithms described
below, we use only the data remaining after this thresholding step. Specifically, when
we mention modeling "the entire marginal distributions" in the previous section, we
are referring to modeling the marginal distributions of the retained data.

9.2 Methods

In this section, we outline the full details of the methodologies used in both approaches.
Each aims to achieve accurate predictions with respect to a least-square criterion,
specifically, to obtain values as close as possible to the expectation of Y given X. In
Section 9.2.1, we present the marginal modeling procedure and the method to choose
a multivariate threshold above which a GP distribution is deemed an appropriate
model for the marginal distributions, central in the MGP procedure. These two steps
are common to both methods. In Section 9.2.2, we consider a plug-in method: we
seek to model (X,Y ) by fitting a density, selected from multiple candidates, to the
data. An estimate of E[Y | X] is then obtained by averaging generated data according
to the associated conditional density given X. In the second approach, detailed in
Section 9.2.3, no modeling step is required; instead, the goal is to derive a predictive
function ĥ by minimizing an empirical risk of the form

∑
(Yi − h(Xi))2.

9.2.1 Univariate study and threshold selection

As previously discussed, we model the marginal distributions using EGP distributions
(9.1). Given that the left-end point of the support of an EGP distribution is zero, it
is necessary to relocate our data to set their minimum to zero before performing the
marginal fittings. Regarding the selection of thresholds above which each margin is
considered plausible for a Generalized Pareto (GP) distribution, it is important to note
that the threshold is not necessarily constant and may vary from station to station.
In this study, the threshold is determined independently for each margin based on
fundamental observations concerning EGP and GP distributions. As stated in Naveau
et al. (2016), the EGP distribution behaves similarly to a GP distribution for large
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Algorithm 9.1 Marginal modeling and threshold selection.

INPUT: Training dataset Dn = {Z1, . . . , Zn} with Zi = (Xi ,Yi) ∈ Rd ×R input/target
pair.
Relocalisation: Shift the data in order to obtain nonnegative entries. Define

Zi,m = Zi −m

with m = (m1, ...,md+1), with mj = min1≤i≤nZij , for 1 ≤ j ≤ d + 1.
Marginal Fitting: Fit an EGP distribution to the respective margins of the Zi,m’s to
obtain triplets of estimated parameters (σ,ξ,κ) := ((σX ,ξX ,κX), (σY ,ξY ,κY )) ∈R3d+3.

Thresholds selection: Select the largest cX,j ∈ supp(FσX,j ,ξX,j ,κX,j
) for 1 ≤ j ≤ d and

cY ∈ supp(FσY ,ξY ,κY
) such that

d2FσX,j ,ξX,j ,κX,j
(cX,j )

dx2 = 0,

d2FσY ,ξY ,κY
(cY )

dx2 = 0

OUTPUT: estimated marginal EGP parameters (σ,ξ,κ) = ((σX ,ξX ,κX), (σY ,ξY ,κY )) ∈
R

3d+3 and a multivariate threshold t = (tX , tY ) = ((m1 + cX,1, ...,md + cX,d),md+1 + cY ).

values. Since the GP density is a strictly convex function for ξ > −1/2 (a condition that
is always met in this study), the EGP density is also strictly convex for sufficiently large
values. Consequently, each marginal threshold is defined as the lowest point above

which the fitted EGP density is convex. This point is among the zeros of d2Fσ,ξ,κ(x)
dx2 : if

κ < 2, it corresponds to the unique zero; if κ ≥ 2 it corresponds to the largest zero.

Remark 9.2 (Selection of thresholds and marginal models). In this paper, we propose
modeling the margins using a specific type of EGP distribution, as it effectively fits our data.
However, any marginal model that accurately fits the data can be employed. Thus, alternative
marginal modeling approaches can be utilized without altering the multivariate procedures.
For example, one could use any EGP family introduced in Naveau et al. (2016), or the
conventional approach of modeling with a GP distribution above a preselected threshold and
the empirical cdf below the threshold (as in, e.g., Heffernan and Tawn (2004)). Similarly,
the threshold selection method can vary. It can be determined using stability plot diagnostics,
as discussed in Kiriliouk et al. (2019); Legrand et al. (2023); Huet et al. (2023).

9.2.2 Multivariate generalized Pareto procedure

In this section, we propose a method to model the extremal dependence of sea levels
and skew surges between stations. The goal of this procedure is to predict values at
the output stations based on the values at the Brest and Saint-Nazaire stations. To
achieve this, we fit a density to the data and obtain predictions by averaging values
generated from the corresponding conditional fitted density given the input values.
This approach allows us to estimate the conditional expectation E[Y | X]. Additionally,
an underlying outcome of this procedure is the ability to sample new observations
from the joint fitted density for data augmentation purposes.
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Algorithm 9.2 MGP predictive algorithm.

INPUT: Training dataset Dn = {Z1, . . . , Zn} with Zi = (Xi ,Yi) ∈ Rd ×R input/target
pair; fitted GP parameters (σ,ξ) = ((σX ,ξX), (σY ,ξY )) ∈ R

2d+2; a multivariate
threshold t = (tX , tY ); H = {H1, ...,HN } set of N classes of density functions.
Truncation: Form a set of extreme observations with shifted Zi,t’s

Zi,t = Zi − t, for all i ∈ Iext :=
{
i ∈ {1, ...,n},Xi ⩽̸ tX

}
.

Marginal Exponential Transformation: Apply the exponential transformation (9.3)
to each margin of the extreme observations

Z̃i = (X̃i , Ỹi) = eσ,ξ(Zi,t), for all i ∈ Iext .

Density selection: Fit each density model to the data and select the density ĥ ∈ H
with the smallest AIC.
OUTPUT: Near-optimal density function ĥ in H and a procedure to be used for
predictions of Yn+1 based on new observations Xn+1 such that Xn+1 ⩽̸ tX so that

• Generate a sample ( ˆ̃Y 1
n+1, ...,

ˆ̃Y L
n+1) via rejection sampling from the conditional

density

ĥ|X̃n+1
(ỹ) :=

ĥ(X̃n+1, ỹ)∫
R
ĥ(X̃n+1, s)ds

.

• Backtransform the sample via

(Ŷ 1
n+1, ..., Ŷ

L
n+1) = (e−1

σY ,ξY
( ˆ̃Y 1

n+1) + tY , ..., e
−1
σY ,ξY

( ˆ̃Y L
n+1) + tY ).

• Obtain a prediction of Yn+1 by the Monte Carlo average Ŷn+1 = (1/L)
∑L

l=1 Ŷ
l
n+1.

We outline the procedure in Algorithm 9.2, which produces an ‘optimal’ density that
fits the data. This approach shares similarities with the one proposed in Kiriliouk et al.
(2019), with some changes dictated by the nature of the considered data, summarized
in the next paragraph. Marginal distribution study and threshold selection have to
be performed beforehand via Algorithm 9.1 to obtain the GP parameters and the
multivariate threshold. Note that, because an EGP distribution behaves as a GP
distribution in the right tail, we choose as GP parameters, the parameters (σ,ξ) obtained
from the fitted EGP in Algorithm 9.1. From Equation (2.13), recall that the marginal
transformation to exponential scale is given by

eσ,ξ(x) =
(
− log(1−H0,σX,1,ξX,1

(x)), ...,− log(1−H0,σX,d ,ξX,d
(x)),− log(1−H0,σY ,ξY (x))

)
, (9.3)

where (σ,ξ) = ((σX ,ξX), (σY ,ξY )) and H0,σ ,ξ(x) = (1 + ξx/σ )−1/ξ
+ is the cdf of a GP distri-

bution with parameters µ = 0,σ and ξ (2.3).

The advantage of this procedure lies in the availability of a wide range of suitable
density models to fit standard MGP observations, i.e., observations after applying the
transformation eσ,ξ . Indeed, as outlined at the end of Section 2.1.2, a standard MGP
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vector W̃ decomposes as W̃ = E + T−max(T) (2.14). Hence, for any density fT : Rd →R

of T, Theorem 2.14 allows one to deduce a density hT for W̃ given by

hT (x) = 1{max(x) > 0}exp(−max(x))
∫ +∞

0

fT (x + log t)
t

dt.

In other words, for any density fT : Rd →R, there exists a candidate density to fit the
transformed data. Additionally, Theorem 2.15 provides another method to construct
densities for standard MGP vectors.

As in Kiriliouk et al. (2019), a censored likelihood approach is employed in Al-
gorithm 9.2 rather than the classical likelihood approach: only triplets with three
positive observations are considered when fitting the density. Up to the estimation of
a density ĥ ∈ H, our procedure mirrors that in Kiriliouk et al. (2019). However, after
this step, no further fitting is conducted in our procedure. In contrast, Kiriliouk et al.
(2019) computes an appropriate density in the original scale by simultaneously fitting
the parameters of the retained density model and the GP marginal parameters. The
latter step is computationally intensive: in our case, it involves fitting between 7 to 11
parameters on over 3000 observations and results in inferior performance compared
with the procedure described in Algorithm 9.2.

9.2.3 Angular regression procedure

In this section, we discuss the ROXANE procedure and summarize it in Algorithm 9.3.
Recall that the distribution of Z is modeled by an EGP distribution with cdf Fσ,ξ,κ
given in Equation (9.1). As suggested in Section 2.1.2, it is convenient in this settings
to work with Pareto marginal distributions. In the general case, the marginal Pareto
transformation is given in Equation (2.9). Here, because the marginal distributions are
modeled by EGP distributions, this marginal transformation corresponds to

pσ,ξ,κ(x) =
1

1−Fσ,ξ,κ(x)
. (9.4)

The complex form of the prediction function ĝ in Equation (9.6) arises from the
various pre-processing steps performed in the procedure. These steps are: shifting
the input variable subtracting mX ; applying the marginal Pareto transformation by
pσX ,ξX ,κX

; applying the angular input transformation x 7→ x/∥x∥r ; making predictions
in angular Pareto scale ĥ; backtransforming from angular Pareto scale to Pareto scale
via y 7→ y∥x∥r /(1− yr)1/r ; and finally, backtransforming from Pareto scale to original
scale by p−1

σY ,ξY ,κY
(·) +mY .

Remark 9.3 (Role of the EGP distribution). This remark provides a summary of the roles
played by Algorithm 9.1 and the EGP distribution in the prediction procedures discussed.

For the MGP approach, Algorithm 9.1 is utilized to determine a multivariate threshold
t = (tX , tY ) above which the GP distribution is deemed an appropriate model for the marginal
distributions. In other words, the MGP distribution serves as a suitable joint model for
observations X conditional on the event X ⩽̸ tX. Additionally, because the EGP distribution
behave as a GP distribution in the right tail, the parameters σ and ξ from the fitted EGP
model are also used as the GP parameters for the marginal distributions above the threshold
t. Thus, each margin of the data is transformed to an exponential scale using

eσ,ξ(x) = − log(1−H0,σ ,ξ(x)),
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Algorithm 9.3 ROXANE regression algorithm.

INPUT: Training dataset Dn = {Z1, ...,Zn} with Zi = (Xi ,Yi) ∈Rd ×R input/target pair;
fitted EGP parameters (σ,ξ,κ) = ((σX ,ξX ,κX), (σY ,ξY ,κY )) ∈ R3d+3; a multivariate
threshold t = (tX , tY ); a Lr-norm ∥ · ∥r for r ∈ [1,+∞[; a class Γ of angular predictive
function γ : Sd−1→ [0,1].
Truncation: Form a set of extreme observations with shifted Zi ’s

Zi,m = Zi −m,

with m = (mX ,mY ) = min1≤i≤n{Zi} and for all i ∈ Iext =
{
i ∈ {1, ...,n},Xi ⩽̸ tX

}
.

Marginal Pareto Transformation: Apply the Pareto transformation (9.4) to each
margin of the extreme observations

Z̃i = (X̃i , Ỹi) = pσ,ξ,κ(Zi,m), for all i ∈ Iext .

Angular rescaling: Form the angular components of the Pareto scale observations,

ΘX,i = X̃i/∥X̃i∥r ,

ΘY ,i = Ỹi/∥Z̃i∥r .

Empirical quadratic risk minimization: based on the extreme transform dataset,
solve the optimization problem

min
h∈H

∑
(ΘY ,i − h(ΘX,i))

2. (9.5)

OUTPUT: Solution ĥ to problem (9.5) and a predictive function ĝ given by

ĝ : x ∈Rd 7→

p−1
σY ,ξY ,κY

((
ĥ(pσX ,ξX ,κX

(x−mX)/∥pσX ,ξX ,κX
(x−mX)∥r )∥pσX ,ξX ,κX

(x−mX)∥r
1− ĥ(pσX ,ξX ,κX

(x−mX)/∥pσX ,ξX ,κX
(x−mX)∥r )r

)1/r)
+mY ,

(9.6)

to be used for predictions of Yn+1 based on new observation Xn+1 such that Xn+1 ⩽̸ tX .

to set the part above the threshold for each margin to unit exponential distribution and
where we read that H0,σ ,ξ is a GP distribution (2.3). The conditional distribution below the
threshold is also transformed using the same transformation, but with no underlying precise
distribution. Note that in this procedure, the parameter κ resulting from Algorithm 9.1 is
not utilized.

For the ROXANE approach, Algorithm 9.1 is utilized to determine a multivariate threshold
t = (tX , tY ) such that the observations X satisfying X ⩽̸ tX follow the limit distribution
displayed in Section 7.2 - specifically, the independence between the radius and the angle of
X - is valid. Additionally, Algorithm 9.1 is employed to model the entire distribution of the
data - referring here to the retained thresholded dataset (9.2) - using an EGP distribution.
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This modeling is mandatory for transforming all the data to Pareto margins via

pσ,ξ,κ(x) =
1

1−Fσ,ξ,κ(x)
,

where Fσ,ξ,κ is the EGP cdf (9.1).

9.3 Results

The two algorithmic procedures presented in Section 9.2 are applied separately to the
sea level and skew surge datasets. Recall that we have pre-selected approximately half
of the observations, ensuring that XB ≥ q0.5

B or XN ≥ q0.5
N . For sea levels, the training

set comprises 8271 observations for sea levels and 9213 observations for skew surges
ranging from 10-08-1966 to 31-12-1999 and the test set comprises by 7483 observations
for sea levels and 6024 observations for skew surges ranging from 01-01-2000 to 31-
12-2023.

Two additional similar studies for Concarneau and Le Crouesty stations as output
station are deferred to the appendix.

9.3.1 Marginal fitting and threshold selection

The initial step common to both procedures involves modeling the marginal dis-
tributions using the EGP distribution and selecting the threshold as described in
Algorithm 9.1. The marginal fitting of the training data is carried out using the R

package gamlss R. A. Rigby and D. M. Stasinopoulos (2005), employing the EGP family
le Carrer (2022). The estimated parameters are presented in Table 9.1. The histogram
plots with the corresponding fitted densities are illustrated in Figure 9.2. As outlined
in Section 9.2.1, we determine the final threshold, above which observations are con-
sidered extreme, as the lowest point above which the fitted EGP density is convex.
These thresholds are indicated by the red dotted vertical lines in Figure 9.2. The chosen
thresholds range from quantiles of order 0.86 to 0.88, as summarized in Table 9.1.
This thresholding results in final training sets composed of 2,436 sea levels and 3,154
skew surges, and test sets consisting of 1,963 sea levels and 1,883 skew surges. We
denote by t̂ := (t̂B, t̂N , t̂Y ) = (q0.88

B ,q0.87
N ,q0.87

T ) the multivariate selected threshold and
by σ̂ = (σ̂B, σ̂N , σ̂Y ), ξ̂ = (ξ̂B, ξ̂N , ξ̂Y ) and κ̂ = (κ̂B, κ̂N , κ̂Y ) the estimated EGP parameters.
Extreme training and test sets are then formed with observations Xi such that

XB,i ≥ tB or XN,i ≥ tN .

Figures 9.3 and 9.4 are bivariate scatterplots of observations at each station. These
plots illustrate the strong correlation between stations, although this dependence is
weaker for the most extreme observations which correspond in Figures 9.3 and 9.4 to
the observations Xi such that XB ≥ q0.98

B or XN ≥ q0.98
N .

9.3.2 Joint procedures

The multivariate procedure presented in Sections 9.2.2 and 9.2.3 are now applied to
the extreme sea level and skew surge observations. Recall that the selected thresholds
and EGP parameters for each margin, computed on the training set are summarized in
Table 9.1.
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Figure 9.2: Histograms of sea level exceedances (left column) and skew surge ex-
ceedances (right column) of the training set at the three stations. The blue curves
represent the fitted EGP densities, with parameters specified in Table 9.1. The dotted
vertical red lines represent the smallest point above which each fitted density is convex,
which correspond to the chosen marginal thresholds.

9.3.2.1 Plug-in method: MGP procedure

We describe first the MGP procedure for sea levels; the analysis for skew surges applies
mutatis mutandis.

Modeling of the data. As described in Algorithm 9.2, the extreme observations are
shifted by subtracting t̂, and then transformed to an exponential scale as follows,

Z̃i := (X̃B,i , X̃N,i , Ỹi) = eσ̂,ξ̂(Zi − t̂).
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Parameters/Stations Brest Saint-Nazaire Port-Tudy

SL: σ̂ 0.52 0.40 0.36

ξ̂ -0.18 -0.18 -0.17

κ̂ 7.76 3.90 4.44

t q0.88
B ≈ 7.11 q0.87

N ≈ 5.91 q0.87
T ≈ 5.19

SS: σ̂ 0.13 0.10 0.09

ξ̂ -0.092 0.004 -0.010

κ̂ 15.12 13.05 38.68

t q0.88
B ≈ 0.19 q0.86

N ≈ 0.15 q0.86
T ≈ 0.12

Table 9.1: Point estimates of EGP parameters for sea levels and skew surges at the
three stations. The chosen thresholds, determined using the procedure described in
Algorithm 9.1, are shown in the fourth row in each sub-table.

Following the lines of Equations (2.15) and (2.16), we propose potential densities for T
or U to deduce a suitable density for Z̃ via Equations (2.15) and (2.16). The proposed
density families for T and U are those described in Kiriliouk et al. (2019), specifically
multivariate distribution with independent components where the marginals distribu-
tions are either all reverse exponential distributions or all Gumbel distributions. For
detailed formulations of the resulting candidate densities for Z̃ refer to Section 7 in
Kiriliouk et al. (2019). To facilitate generation from these distributions and to avoid
numerous approximations, we restrict our study to densities with explicit forms. As in
Kiriliouk et al. (2019), we use a censored likelihood criterion to select the density. This
involves maximizing the classical product likelihood function using only uncensored
observations, where an observation is censored if any of its components are negative.
This approach excludes the smallest observations, thereby enhancing performance for
the most extreme observations, which are of primary interest. Finally, the retained
density fT for T is associated with independent Gumbel components with a common
dependence parameter α > 0 and varying locations parameters β = (βB,βN ,βY ) ∈ R3,
i.e.,

fT (x) = α3
∏

j∈{B,N,Y }
exp(−α(xj − βj ))exp(−exp(−α(xj − βj ))),

for x = (xB,xN ,xY ). Following Equation (2.16), the corresponding density for Z̃ is given
by

hT (x) = 1{max(x) > 0}α2Γ (3)exp(−max(x))

∏
j∈{B,N,Y } exp(α(xj − βj ))∑
j∈{B,N,Y } exp(α(xj − βj ))

, (9.7)

for x = (xB,xN ,xY ). The computed parameters for the Gumbel density are summarized
in Table 9.2. For identifiability purpose, βY is set to zero.

Predictions on the test set. To obtain predictive values for the extreme Port-Tudy
observations of the test set, we generate 100 values via rejection sampling of the
conditional density

hσ,ξ
T |(X̃B,X̃N )

(ỹ) =
hσ,ξT (X̃B, X̃N , ỹ)∫

R
hσ,ξT (X̃B, X̃N , s)ds

.

These generated values in exponential scale are then backtransformed to original scale
using the inverse function e−1

σ̂Y ,ξ̂Y
(·) + tY . Point estimates are derived as the Monte Carlo

averages of these 100 samples. For visual assessment of the goodness-of-fit, the bottom
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Figure 9.3: Left: Bivariate scatterplots of sea levels in the training set for each station.
Light blue points represent the observations that were removed before the analysis.
Dark blue and red points represent the remaining observations used for inference,
with red points representing the extreme observations above the threshold specified
in Table 9.1. Right: Bivariate scatterplots focusing on the extreme sea levels at each
station (red points from the left plots). Orange points represent sea level observations
where XB ≥ q0.98

B or XN ≥ q0.98
N .

row of Figure 9.5 depicts QQ-plots comparing the estimated quantiles of sea levels
and skew surges with the observed quantiles. Figure 9.6 shows the predicted curves,
along with 0.95-bootstrap confidence intervals computed on the generated sample on
the years 1999, 1989 and 1979. The 0.95-coverage probability associated with those
confidence intervals is 0.91, which is the proportion of test observations falling within
the computed 0.95-confidence intervals.
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Figure 9.4: Left: Bivariate scatterplots of skew surges in the training set for each station.
Light blue points represent the observations that were removed before the analysis.
Dark blue and red points represent the remaining observations used for inference,
with red points representing the extreme observations above the threshold specified in
Table 9.1. Right: Bivariate scatterplots focusing on the extreme skew surges at each
station (red points from the left plots). Orange points represent sea level observations
where XB ≥ q0.98

B or XN ≥ q0.98
N .

9.3.2.2 Regression method: ROXANE procedure

We now describe the ROXANE procedure for the sea levels, the analysis for skew surges
applied mutatis mutandis. As described in Algorithm 9.3, the extreme observations are
shifted by subtracting m, and then transformed to a Pareto scale as follows,

Z̃i := (X̃B,i , X̃N,i , Ỹi) = pσ,ξ,κ(Zi −m),
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Estimated parameters α βB βN βY

6.63 -0.17 -0.06 0.00

Table 9.2: Point estimates of the dependence and location parameters of Gumbel
density model given in (9.7).

with m = (mX ,mY ) = min1≤i≤n{Zi}, where the Zi ’s refer to the retained observations
after initial thresholding (9.2). We then consider the angular parts of the input and the
output variables w.r.t. the L2-norm that are

ΘXi
:= (ΘB,i ,ΘN,i) :=

(X̃B,i , X̃N,i)√
X̃2
B,i + X̃2

N,i

,

ΘY ,i :=
Ỹi√

X̃2
B,i + X̃2

N,i + Ỹ 2
i

.

Two regression algorithms are used to predict the angular output observations ΘY ,i

based on the angular input observations ΘX,i: Ordinary Least Squares (OLS) from the
stats package and Random Forest (RF) from the randomForest package. Following
Equation (7.14) of Proposition 7.10, the predicted angular values Θ̂Y ,i on the test set
are then backtransformed to the Pareto scale via

ˆ̃Yi =

√√√√√
Θ̂Y ,i

√
X2
B,i +X2

N,i

1− Θ̂2
Y ,i

,

and then to the original scale via the inverse function p−1
σY ,ξY ,κY

(·) + mY . For visual
assessment of the goodness-of-fit, the top and middle rows of Figure 9.5 depict QQ-
plots comparing the estimated quantiles of sea levels and skew surges with the observed
quantiles for both the OLS and RF algorithms. Figure 9.6 shows the predicted curves,
along with 0.95-bootstrap confidence intervals computed on the generated sample on
the years 1999, 1989 and 1979.

9.3.3 Discussion and comparison of the methods

In this section, we analyze the results obtained from the various models applied to
our data. First, the EGP marginal model demonstrates a satisfactory fit, especially
in the right tail of the distribution for data exceeding the selected thresholds, as
illustrated in Figure 9.2. Regarding the joint models, all models exhibit reasonably good
performance, as evidenced by Figure 9.6. The QQ-plots indicate that the generated
distributions closely mimic the behavior of the observed distribution in the extreme
regions. However, there is one notable exception: the prediction of the largest skew
surge using the ROXANE OLS procedure. This surge, recorded on November 7, 1969,
was the highest ever at Brest. Meteorological records suggest that a severe storm
impacted northern and western France, heavily affecting Brest while leaving Port-Tudy
and Saint-Nazaire relatively unaffected.

Meteorological archives indicate that a storm impacted northern and western France,
heavily affecting Brest while leaving Port-Tudy and Saint-Nazaire relatively unaffected.
This discrepancy likely led to an overestimation by the model. For the lower tail of
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the extreme observations, the QQ-plots reveal poor model performance due to several
factors:

• for the MGP procedure, a censored likelihood is used to obtain accurate pre-
dictions for the most extreme observations, which results in the neglect of less
extreme observations;

• for ROXANE procedure, the estimation of the κ parameter lacks robustness and
can be significantly overestimated. While this parameter does not influence the
prediction of the largest observations, it has a substantial effect on the smallest
ones. This is because the backtransformation p−1

σY ,ξY ,κY
behaves as x1/κ near zero.

Consequently, a small estimation error in Pareto scale can lead to a large estima-
tion error in original scale. For instance, with κ = 39 (as for the skew surges), a
minor error of 0.01 in Pareto scale results in a substantial error of 0.89 meters in
the original scale;

• common to both procedures, an extreme observation might be extreme only at one
station, such as Brest or Saint-Nazaire, and not at the other two stations. Hence,
the models cannot distinguish these observations from typical observations where
values are large at Port-Tudy and another station. This issue could be addressed
by including wind-related data into the models, as wind conditions significantly
influence skew surges (see Pugh and Woodworth (2014)).

Given the challenges associated with the lower tail of the extreme distributions, it is
crucial to evaluate the performance of both models primarily in relation to the largest
observations, which aligns with the objectives of EVT. Figure 9.6 clearly illustrates that
the most significant misestimations occur for the smallest values. Additionally, the
models demonstrate reduced precision for earlier years. One possible reason is the
failure to account for the time trend due to global warming (Seneviratne et al. (2021)).
Although we assume in our study that this trend is present for all three stations and
can be ignored, if the trend behavior differs across stations, it must be considered.

To compare the performance of the two procedures, we use Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) as evaluation metrics. Table 9.3 contains the
errors computed for both the entire test set and the most extreme subset of the test set,
consisting of observations such that Yi ≥ q0.5

Y , where q0.5
Y is calculated on the test set

only. Overall, the MGP procedure performs better, correctly modeling the smallest
values despite using a censored likelihood criterion. However, the ROXANE procedure
when paired with the OLS algorithm, performs better in the most extreme regions.
This is more evident in the studies for Concarneau and Le Crouesty (refer to Tables 9.5
and 9.7 in Appendix 9.A).
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Training models/Errors RMSE(80%) MAE(80%) RMSE(90%) MAE(90%)

SL: ROX RF 0.087 0.065 0.081 0.059

ROX OLS 0.081 0.059 0.077 0.055
MGP 0.080 0.059 0.079 0.056

SS: ROX RF 0.084 0.062 0.083 0.061

ROX OLS 0.083 0.059 0.079 0.056
MGP 0.078 0.057 0.077 0.056

Table 9.3: RMSE and MAE of predicted sea levels and skew surges at Port-Tudy station
from the ROXANE procedure with RF regression (ROX RF), ROXANE procedure with
OLS regression (ROX OLS) and MGP procedure (MGP). Errors are computed for the
entire test set (first two columns) and for the subset of the test set comprising the most
extreme observations with respect to the Port-Tudy value (last two columns).
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Figure 9.5: QQ-plots comparing observed sea level quantile (left column, x-axis) and
skew surge quantiles (right column, x-axis) to estimated quantile (y-axis) from the
predictions given by algorithms of Sections 9.2.3 and 9.2.2. The plots show results from
the ROXANE procedure with RF regression (top row), ROXANE procedure with OLS
regression (middle row), and MGP procedure (bottom row). The red line represents
the identity line x = y.
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Figure 9.6: Predicted sea levels (left column) and skew surges (right column) at Port-
Tudy station for the years 1999 (top row), 1989 (middle row), 1979 (bottom row). Red
curves represent the true values on the test set; orange curves represent the predicted
values by the ROXANE procedure with OLS algorithm; blue curves represent the
predicted values by the MGP procedure with bootstrap 0.95 confidence intervals (light
blue).
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9.4 Conclusion

An in-depth experimental investigation into extremal joint dependence structure
between sea levels and skew surges across various sites along the French Atlantic coast
has been conducted. The study demonstrates that an EGP distribution fitted to the
marginal observations at each site shows satisfactory performances. We introduce two
novel methodologies that have not previously been applied to sea level or skew surge
modeling: a procedure for deriving an optimal MGP density and a regression algorithm
tailored for extreme value. Both are employed in prediction tasks for missing values at
a site, given nearby extreme values, with the underlying goal of reconstructing past
extreme values at sites with limited historical records. The methods are extensively
compared and discussed, revealing that both approaches yield valid results of signific-
ant importance for practitioners, each offering distinct advantages: one provides better
point estimates, while the other offers a robust generative model.
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9.A Additional Studies at Le Crouesty and Concarneau

Two similar analyses to the one in Section 9.3 are conducted with the sea levels and
skew surges at Concarneau and Le Crouesty as output stations.

9.A.1 Concarneau study

Table 9.4 presents the EGP parameters and the selected thresholds provided by Al-
gorithm 9.1. The fitted EGP densities and the selected thresholds are illustrated in
Figure 9.7. Figure 9.8 displays the QQ-plots comparing the true quantiles against the
quantiles estimated with the OLS ROXANE, RF ROXANE and the MGP procedures.
The RMSE and MAE associated with the three procedure are summarized in Table 9.5.

Parameters/Stations Brest Saint-Nazaire Concarneau

SL: σ̂ 0.52 0.40 0.33

ξ̂ -0.19 -0.19 -0.14

κ̂ 5.90 3.76 5.29

t q0.87
B ≈ 7.14 q0.87

N ≈ 5.94 q0.87
T ≈ 5.06

SS: σ̂ 0.11 0.10 0.12

ξ̂ -0.08 -0.003 -0.06

κ̂ 20.78 10.67 15.23

t q0.88
B ≈ 0.44 q0.86

N ≈ 0.35 q0.87
T ≈ 0.40

Table 9.4: Point estimates of EGP parameters for sea levels and skew surges at the
three stations. The chosen thresholds, determined using the procedure described in
Algorithm 9.1, are shown in the fourth row of each sub-table.

Training models/Errors RMSE(80%) MAE(80%) RMSE(90%) MAE(90%)

SL: ROX RF 0.069 0.053 0.070 0.055

ROX OLS 0.062 0.046 0.064 0.048
MGP 0.066 0.050 0.071 0.053

SS: ROX RF 0.072 0.056 0.070 0.056

ROX OLS 0.063 0.049 0.063 0.051
MGP 0.064 0.050 0.071 0.058

Table 9.5: RMSE and MAE of predicted sea levels and skew surges at Concarneau station
from the ROXANE procedure with RF regression (ROX RF), ROXANE procedure with
OLS regression (ROX OLS) and MGP procedure (MGP). Errors are computed for the
entire test set (first two columns) and for the subset of the test set comprising the most
extreme observations with respect to the Concarneau value (last two columns).
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Figure 9.7: Histograms of sea level exceedances (left column) and skew surge ex-
ceedances (right column) of the training set at the three stations. The blue curves
represent the fitted EGP densities, with parameters specified in Table 9.4. The dotted
vertical red lines represent the first convexity point of each fitted density, which corres-
pond to the chosen marginal threshold.
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Figure 9.8: QQ-plots comparing observed sea level quantile (left column, x-axis)
and skew surge quantile (right column, x-axis) to estimated quantile (y-axis) from
the predictions given by the algorithms of Sections 9.2.3 and 9.2.2. The plots show
results from the ROXANE procedure with RF regression (top row), ROXANE procedure
with OLS regression (middle row), and MGP procedure (bottom row). The red line
represents the identity line x = y.
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9.A.2 Le Crouesty study

Table 9.6 presents the EGP parameters and the selected thresholds provided by Al-
gorithm 9.1. The fitted EGP densities and the selected thresholds are illustrated in
Figure 9.9. Figure 9.10 displays the QQ-plots comparing the true quantiles against the
quantiles estimated with the OLS ROXANE, RF ROXANE and the MGP procedures.
The RMSE and MAE associated with the three procedure are summarized in Table 9.7.

Parameters/Stations Brest Saint-Nazaire Le Crouesty

SL: σ̂ 0.54 0.41 0.39

ξ̂ -0.21 -0.21 -0.21

κ̂ 5.66 3.06 2.88

t q0.88
B ≈ 7.12 q0.87

N ≈ 5.94 q0.87
T ≈ 5.48

SS: σ̂ 0.12 0.11 0.09

ξ̂ -0.073 -0.01 0.01

κ̂ 24.56 6.78 9.76

t q0.88
B ≈ 0.20 q0.85

N ≈ 0.15 q0.85
T ≈ 0.12

Table 9.6: Point estimates of EGP parameters for sea levels and skew surges at the
three stations. The chosen thresholds, determined using the procedure described in
Algorithm 9.1, are shown in the fourth row of each sub-table.

Training models/Errors RMSE(80%) MAE(80%) RMSE(90%) MAE(90%)

SL: ROX RF 0.066 0.051 0.061 0.048

ROX OLS 0.059 0.044 0.056 0.043
MGP 0.065 0.048 0.067 0.048

SS: ROX RF 0.065 0.050 0.062 0.046

ROX OLS 0.058 0.044 0.055 0.040
MGP 0.060 0.046 0.060 0.045

Table 9.7: RMSE and MAE of predicted sea levels and skew surges at Le Crouesty
station from the ROXANE procedure with RF regression (ROX RF), ROXANE procedure
with OLS regression (ROX OLS) and MGP procedure (MGP). Errors are computed for
the entire test set (first two columns) and for the subset of the test set comprising the
most extreme observations with respect to the Le Crouesty value (last two columns).
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Figure 9.9: Histograms of sea level exceedances (left column) and skew surge ex-
ceedances (right column) of the training set at the three stations. The blue curves
represent the fitted EGP densities, with parameters specified in Table 9.6. The dotted
vertical red lines represent the first convexity point of each fitted density, which corres-
pond to the chosen marginal threshold.
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Figure 9.10: QQ-plots comparing observed sea level quantiles (left column, x-axis)
and skew surge quantiles (right column, x-axis) to estimated quantile (y-axis) from
the predictions given by the algorithms of Sections 9.2.3 and 9.2.2. The plots show
results from the ROXANE procedure with RF regression (top row), ROXANE procedure
with OLS regression (middle row), and MGP procedure (bottom row). The red line
represents the identity line x = y.



Conclusions and Perspectives

This dissertation focuses on the development of probabilistic frameworks and practical
tools for statistical learning tasks involving extremes. It revolves around two main
aspects: dimension reduction of extremes and regression on extremes.

The concept of Regular Variation (RV) in Hilbert spaces has been studied extensively.
Several characterisations have been developed, including some that rely only on finite-
dimensional convergences, while manipulating possible infinite-dimensional objects.
A wide range of examples are provided to illustrate these requirements. Dimension
reduction techniques for a regularly varying random element in a Hilbert space are
then investigated. The convergence of the eigenstructure of its covariance operator
to the eigenstructure of a limit covariance operator is proved. In particular, the
distance between the PCA decomposition of the limit random element and an empirical
finite-range PCA decomposition is controlled by concentration bounds. These results
ensure the theoretical validity for reducing the dimension of functional extremes. The
empirical validity is demonstrated by various experiments on simulated and real data.

One particularly compelling prospect is the development of an anomaly detection
method tailored to the functional setting. This method would hinge on our dimension
reduction results, with the anomaly score depending on the reconstruction error,
mirroring methodologies prevalent in finite-dimensional contexts Goix et al. (2017).
In addition, the flexible nature of our supervised approach, which quantifies the
"normalcy" of new observations in relation to a "normal" profile learned from our
PCA procedure, extends its applicability to diverse data analysis tasks, including
classification and clustering.

In numerous applications, such as audio and image compression, dimension reduction
is frequently achieved through the decomposition of data using wavelet bases rather
than PCA bases. This preference stems from the fact that, unlike PCA, signal approx-
imations utilizing wavelets are non-linear, providing greater flexibility in representing
the signal with fewer components (see Mallat (1999)). A promising direction for future
research is to explore the properties of wavelet decomposition for regularly varying
random functions, aiming to achieve more efficient representations of extreme values
at a lower cost.

A second project investigates regression tasks in extreme regions. In this context,
we have developed a suitable framework based on the novel assumption of regular
variation w.r.t. a component. Its validity is illustrated by several examples of regression
problems that fall within the scope of this working hypothesis. Properties of regression
functions in this framework are then investigated. Under the assumption of RV w.r.t. a
component assumption, we prove the existence of an optimal regression function in
extreme regions which is angular. Empirical guarantees on the finite-range counterpart
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of this regression function are proved by means of concentration inequalities. Based
on the developed results, a practical algorithmic approach, namely the ROXANE
algorithm, is constructed and its soundness is illustrated by numerical experiments.

As discussed throughout this part, several extensions of this work merit deeper in-
vestigation to further enhance the present study. First, we assume that the data are
regularly varying with the same RV index, a condition that may only hold after mar-
ginal standardization (2.9). In practice, however, this transformation is unknown,
and its empirical counterpart (2.10) must be used, introducing bias. In the context of
binary classification, Clémençon et al. (2023) provide statistical guarantees concerning
the error related to this bias. Extending such results to the regression setting would
significantly complement this study, substantially improving the reliability of the ROX-
ANE algorithm. Additionally, adapting the ROXANE algorithm to high-dimensional
settings could broaden its applicability. This could be achieved by considering penal-
ized versions of the risks, which would also help mitigate potential overfitting of the
model. Finally, as highlighted in Remark 8.9, our concentration results are derived
using general inequalities. However, there are inequalities specifically suited for re-
gression problems that could potentially offer better convergence rates. Currently, the
convergence rate is of the order O(1/

√
k), but based on results in Györfi et al. (2002), a

more detailed study could yield an improved convergence rate of the order O(log(k)/k).

The last part of this manuscript is an applied study of extreme sea levels from tide-
gauges on the French Atlantic coast. The aim of the study is to capture the dependence
between extreme sea levels and skew surges at different sites, in order to allow the
prediction of values at a site, given extreme values at nearby sites. First, a regression
function is constructed using the ROXANE routine. The results of this predictive func-
tion are compared with a parametric approach which consists of fitting a Multivariate
Generalized Pareto density to the data and then obtaining a prediction by sampling
according to the conditional density. Both methods are compared and discussed in
detail.

Several extensions can be derived from this work. The main output of our prediction
procedure is the ability to reconstruct past extreme events at sites where no meas-
urements have been made. By investigating the bias introduced by considering point
estimates rather than true values, these estimates can be used to improve the precision
and reduce the uncertainty of inferences, such as the original inference of return peri-
ods, made at sites with limited records. Our methods suffer from poor performance
in non-extreme regions, which is to be expected, as mentioned above. The reason
for this is that the models cannot distinguish observations with two extreme values
from observations with only one extreme value. We believe that a more detailed study,
including wind-related variables, could solve this problem.
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10.1 Motivations

Le 1er février 1953, une tempête dévastatrice a frappé l’Europe du Nord, touchant les
Pays-Bas et le Royaume-Uni. La tempête a submergé la plupart des défenses côtières,
provoquant une inondation sans précédent qui a coûté la vie à plus de 2000 personnes,
dont plus de 1800 juste aux Pays-Bas. Suite à ce tragique événement, le gouvernement
néerlandais s’est posé une question cruciale : quelle hauteur devraient atteindre les
nouvelles digues afin de prévenir de futures catastrophes de cette ampleur à moindre
coût? La réponse repose sur la détermination des niveaux de mer maximaux pouvant
être atteints au cours des cent ou mille prochaines années. Les méthodes statistiques
traditionnelles ne suffisent pas à répondre à ce problème, car elles nécessitent de faire
des inférences sur une période plus longue que les données d’observation disponibles.

La théorie des valeurs extrêmes fournit les outils statistiques nécessaires pour analyser
ce type d’événements rares. Cette théorie se concentre sur la compréhension des
événements de faible probabilité qui se situent en dehors du cœur d’une distribution,
mais qui jouent une importance cruciale dans de nombreux domaines. Ces événements,
bien qu’étant hors du centre de masse de la distribution, peuvent être essentiels dans
divers domaines pratiques, qu’il s’agisse de la gestion des risques en finance ou en
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Figure 10.1: Inondation de 1953 en mer du Nord, 1953 (photo de Watersnoodmuseum).

assurance, de la modélisation des événements extrêmes en climatologie (comme les
fortes précipitations ou les vagues de chaleur), ou encore de la prévision des niveaux
extrêmes de pollution de l’air ou des surcharges du trafic sur un réseau en sciences de
la santé ou des télécommunications.

Dans cette thèse, nous proposons une étude à l’intersection de la théorie des valeurs
extrêmes et de l’apprentissage statistique, une branche des statistiques dédiée à la
prédiction et à la modélisation des structures dans les données. Notre attention se
concentre sur deux domaines principaux de l’apprentissage statistique : l’analyse
des données fonctionnelles et la régression. L’analyse des données fonctionnelles
concerne les données sous forme de fonctions, dépendant de variables continues
comme le temps ou l’espace. Avec les avancées technologiques des capteurs, qui
fournissent des mesures massives et de plus en plus fines, il est devenu essentiel de
modéliser les extrêmes fonctionnels, tels que les surcharges énergétiques ou les fortes
précipitations au cours d’une période. La régression, l’une des tâches fondamentales
de l’apprentissage statistique, consiste à apprendre des fonctions de prédiction à partir
d’exemples labellisés pour faire des prédictions sur de nouvelles données non labellisés.
Bien que ces fonctions prédictives ciblent généralement leurs performances sur le cœur
des données, il est crucial dans de nombreuses applications de développer des modèles
qui traitent spécifiquement aux exemples situés en dehors du cœur de la distribution,
en particulier ceux de nature extrême.

10.2 État de l’art

La théorie des valeurs extrêmes (Extreme Value Theory, EVT) et l’apprentissage stat-
istique sont deux branches des statistiques qui ont été activement étudiées pendant de
nombreuses décennies. L’EVT se concentre sur la modélisation des événements rares,
tandis que l’apprentissage statistique englobe des méthodes permettant d’apprendre
des comportements et des caractéristiques à partir des données. Récemment, un intérêt
croissant s’est manifesté pour l’application des outils d’apprentissage statistique à
l’étude des extrêmes, en particulier dans des contextes d’apprentissage non supervisé.
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Parmi les exemples figurent la réduction de dimension à l’aide de techniques de clus-
tering dans plusieurs sous-espaces Goix et al. (2016, 2017); Chiapino et al. (2019);
Simpson et al. (2020); Meyer and Wintenberger (2021, 2023), ainsi que l’analyse en
composantes principales (ACP) Cooley and Thibaud (2019); Drees and Sabourin (2021).
Centrale dans Chapitre 6, la réduction de dimension pour les extrêmes est présentée
en détails dans Section 10.2.2. En outre, des études notables ont été réalisées dans les
méthodes de clustering Janßen and Wan (2020); Vignotto et al. (2021), les modèles
graphiques Engelke and Hitz (2020), et avec des applications comme la détection
d’anomalies Chiapino et al. (2020); Vignotto and Engelke (2020) (voir Section 10.2.2
pour des références supplémentaires).

Dans un cadre supervisé, la littérature se concentre principalement sur la prédiction
des valeurs extrêmes de la variable cible Y Aghbalou et al. (2024a) ou sur la régression
quantile extrême via des méthodes comme le gradient boosting Velthoen et al. (2023)
ou les forêts aléatoires Gnecco et al. (2024).

À notre connaissance, le seul travail qui traite de la prédiction d’une variable cible
Y basée sur les valeurs extrêmes de la variable d’entrée X1 est celui de Jalalzai et al.
(2018). Cette étude développe un cadre probabiliste pour la classification binaire avec
des covariables extrêmes basé sur l’étude du risque empirique, en supposant que les
distributions conditionnelles de X sachant Y = ±1 sont à variation régulière (Regular
Variation, RV) (voir Chapitre 2 pour plus de détails). Les auteurs construisent ensuite
une fonction de régression adaptée au problème d’estimation du risque empirique
ming Lt(g) = P(Y , g(X) | |X| ≥ t) pour une certaine norme | · |. Partie III de cette thèse
vise à étendre ces résultats au problème de régression, en établissant des conditions
suffisantes et raisonnables pour traiter de la régression avec une sortie continue et une
fonction de perte appropriée. Plus précisément, nous cherchons à étendre les garanties
statistiques non asymptotiques fournies pour les classificateurs extrêmes aux fonctions
de régression extrêmes.

Les développements récents dans les inégalités de concentration pour les extrêmes sont
à souligner. À notre connaissance, les premières de ce genre sont dues à Boucheron and
Thomas (2012) (voir aussi Boucheron and Thomas (2015)), qui prouvent des bornes
de concentration pour les statistiques d’ordre extrême. Une autre approche pionnière,
qui a influencé de nombreuses études ultérieures, est celle de Goix et al. (2015), qui
présente des inégalités de concentration générales pour des événements de faible
probabilité et les applique à des contextes de classification. Ces résultats forment la
base des travaux non asymptotiques de Jalalzai et al. (2018). En outre, les auteurs de
Clémençon et al. (2023) fournissent des bornes statistiques concernant l’utilisation de
la standardisation empirique des marginales (voir Équation (2.10) et Remarque 7.3
pour plus de détails) au lieu de la vraie standardisation des marginales (inconnue) dans
la procédure de classification. Les inégalités de concentration sont également utilisées
pour des problèmes de validation croisée extrême Aghbalou et al. (2023) (également
basés sur Goix et al. (2015)) et pour la classification déséquilibrée Aghbalou et al.
(2024b), où la classe minoritaire correspond aux données extrêmes. Des inégalités de
concentration générales, issues de la théorie de Vapnik-Chervonenkis (VC), pour les
extrêmes ont également été développées dans Lhaut et al. (2022) et Lhaut and Segers

1Pour plus de clarté, tout au long de cette thèse, les quantités multivariées sont mises en gras lorsque
nécessaire, par exemple x ∈ R

d , afin de distinguer les observations d’échantillons des coordonnées
vectorielles. Les quantités univariées ou définies dans un espace de Hilbert sont notées de manière
traditionnelle, telles que x ∈R ou h ∈H, aucune confusion n’étant susceptible de survenir dans ces cas.
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(2021). Dans Chapitre 6, les inégalités de concentration sont utilisées pour contrôler
l’erreur de reconstruction liée à la décomposition en composantes principales (ACP)
d’un élément aléatoire extrême dans un espace de Hilbert, ainsi que pour encadrer la
déviation maximale entre un risque de régression extrême et son équivalent empirique
dans Chapitre 8. Plus de détails sur les inégalités de concentration peuvent être trouvés
dans Chapitre 4.

Dans le reste de cette section, nous approfondissons deux axes de recherche particulière-
ment actifs à l’intersection de l’apprentissage statistique et de l’EVT. Section 10.2.1
discute des approches fonctionnelles pour l’EVT, en couvrant spécifiquement la théorie
générale dans les espaces métriques généraux et dans l’espace des fonctions continues
sur [0,1]. Dans Section 10.2.2, des techniques de réduction de dimension, telles que le
clustering ou l’ACP, pour les extrêmes sont présentées, avec un focus particulier sur la
détection d’anomalies. Enfin, une dernière section examine les recherches existantes
dans un domaine clé d’application de l’EVT : la modélisation des niveaux de mer
extrêmes et l’estimation cruciale des périodes de retour.

10.2.1 Extrêmes fonctionnels

L’omniprésence des capteurs fournissant des mesures de plus en plus précises et
massives de quantités dépendant du temps ou de l’espace a mis en évidence l’importance
de comprendre les données continues, connues sous le nom de données fonctionnelles.
L’analyse des données fonctionnelles (Functional Data Analysis, FDA) est une branche
des statistiques qui étudie les données de dimension infinie et suscite l’intérêt de la
recherche depuis de nombreuses années. Les livres Hsing and Eubank (2015), Horváth
and Kokoszka (2012) et Ramsay and Silverman (2005) offrent une vue d’ensemble
complète de ce domaine, allant des bases théoriques aux diverses applications de la
FDA. La disponibilité croissante de données de nature fonctionnelle ouvre de nouvelles
voies de recherche, notamment l’étude des extrêmes fonctionnels. Cette thématique
est un domaine bien établi et actif en statistique spatiale, comme le souligne la récente
synthèse de Huser and Wadsworth (2022).

La plupart des études existantes sur les extrêmes fonctionnels se concentrent sur
le cas continu, dans la lignée des travaux fondateurs sur les processus max-stables
(De Haan (1984); De Haan and Ferreira (2006)) : les objets aléatoires étudiés sont
des fonctions aléatoires dans l’espace C[0,1], i.e., l’espace des fonctions continues sur
[0,1] muni de la norme du supremum. Dans le cadre des Dépassement au dessus
d’un Seuil (Peaks-over-Threshold, PoT), l’intérêt se porte sur la distribution limite des
observations normalisées, conditionnellement au fait que leur norme dépasse un seuil,
lorsque ce seuil tend vers l’infini. L’extrémalité d’une observation est mesurée par sa
norme du supremum. Le processus limite résultant dans ce contexte est un processus
de Pareto généralisé (voir par exemple Ferreira and de Haan (2014)). Contrairement
à la dimension finie, la définition des extrêmes dans les espaces de dimension infinie
nécessite de choisir une norme spécifique en raison de la non-équivalence des normes.
Ce choix revêt une importance pratique significative ; par exemple, pour évaluer les
risques d’inondation, il peut être plus pertinent d’analyser les précipitations totales
quotidiennes plutôt que les précipitations maximales journalières sur une courte
période. Cet important choix de la norme motive les recherches de Dombry and Ribatet
(2015), qui proposent des définitions alternatives des événements extrêmes via une
fonction de coût homogène, conduisant à la naissance des processus r-Pareto. Des
détails supplémentaires et des définitions précises sur les extrêmes dans C[0,1] sont
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fournis dans Section 2.2.2.

Quelques exceptions au cas continu existent. Par exemple, l’espace fonctionnel de
Skorokhod D[0,1] muni de la topologie J1 a été étudié dans plusieurs travaux (voir
Davis and Mikosch (2008); Hult and Lindskog (2005) et les références citées), et les
fonctions semi-continues supérieures munies de la topologie de Fell sont examinées
dans Resnick and Roy (1991); Molchanov and Strokorb (2016); Sabourin and Segers
(2017); Samorodnitsky and Wang (2019).

Une hypothèse classique en EVT adaptée au cadre PoT consiste à supposer que la RV
de la variable aléatoire observée X, c’est-à-dire que la distribution normalisée t−1X,
conditionnellement au dépassement de sa norme au-delà d’un seuil ∥X∥ ≥ t, converge
vers une certaine variable aléatoire limite X∞ lorsque le seuil tend vers l’infini, i.e.,
L(t−1X | ∥X∥ ≥ t)→L(X∞) lorsque t→ +∞ (voir les livres Resnick (1987, 2007) pour
une présentation exhaustive de la variation régulière dans le cas multivarié). Hult
and Lindskog (2006b) étendent la notion de RV, initialement définie dans un espace
euclidien, aux mesures sur des espaces métriques complets et séparables. Dans ce
contexte, les auteurs caractérisent la RV d’un élément aléatoire X par deux conditions :
la RV de sa norme ∥X∥ et la convergence en distribution de son angle Θ = ∥X∥−1X étant
donné que ∥X∥ dépasse un seuil ∥X∥ ≥ t vers un élément angulaire limite Θ∞ lorsque
le seuil tend vers l’infini, L(Θ | ∥X∥ ≥ t)→L(Θ∞) lorsque t→ +∞ (voir par exemple
Segers et al. (2017); Davis and Mikosch (2008)).

Alors que la théorie RV a été largement étudiée dans C[0,1] et repose sur des bases
théoriques solides dans les espaces métriques généraux, elle a reçu beaucoup moins
d’attention dans L2[0,1], l’espace des fonctions réelles de carré intégrable sur [0,1],
et plus généralement dans les espaces de Hilbert séparables. Nous proposons dans
Chapitre 5 de formaliser ce concept grâce aux résultats Hult and Lindskog (2006b).

Un des principaux intérêts de travailler dans un espace de Hilbert séparable réside dans
la décomposition en composantes principales d’un élément aléatoire (voir Section 3.3
de Chapitre 3 pour plus de détails). L’analyse des valeurs extrêmes (Extreme Value
Analysis, EVA) de l’ACP fonctionnelle avec des fonctions aléatoires à valeurs dans
L2[0,1] a déjà été étudiée dans la littérature, mais sous des perspectives assez différentes,
laissant certaines questions sans réponse. Dans Kokoszka and Xiong (2018), les auteurs
supposent la RV des scores d’une décomposition en composantes principales (i.e.,
les coordonnées aléatoires des observations projetées sur une famille orthogonale
de L2[0,1]) et examinent le comportement extrême de leurs équivalents empiriques.
Dans Kokoszka et al. (2019) et Kokoszka and Kulik (2023), la RV est supposée, et
divers résultats de convergence concernant les opérateurs de covariance empiriques
de la fonction aléatoire X (et non de sa composante angulaire Θ) sont établis, sous
la condition que l’indice de RV appartienne à un intervalle restreint, respectivement
2 < α < 4 et 0 < α < 2. Dans Kim and Kokoszka (2022), la dépendance extrémale entre
les scores de la PCA fonctionnelle de X est étudiée. Ils démontrent à cette occasion que
la RV dans L2[0,1] implique la RV multivariée des projections de dimension finie de
X. Cependant, la réciproque de cette affirmation conditionnelle n’est pas examinée.
Kim and Kokoszka (2024) généralisent la notion de coefficient de corrélation pour les
extrêmes fonctionnels.

Les travaux mentionnés impliquent la PCA des extrêmes des fonctions aléatoires à
valeurs dans L2[0,1], d’une manière ou d’une autre, mais il y a eu peu d’étude de la
décomposition en composantes principales d’un élément à variation régulière. Dans
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Chapitre 6, sous l’hypothèse de RV de X, nous proposons d’étudier la convergence de
l’ACP associée à Θ vers l’ACP de Θ∞. Ici, la valeur de l’indice de RV est sans importance,
car l’ACP que nous considérons est celle de la composante angulaire Θ des fonctions
aléatoires.

10.2.2 Réduction de dimension pour extrêmes

Les améliorations des dispositifs d’acquisition de données ont entraîné une augment-
ation de la disponibilité de mesures massives, ce qui motive le développement des
statistiques pour les données fonctionnelles tout en présentant quelques défis. D’une
part, la disponibilité accrue des données permet des études plus précises. D’autre part,
l’analyse de données de grande dimension pose des difficultés dues à l’identification
des parties informatives et aux lourdes exigences computationnelles dans le traite-
ment de ces données dans des tâches complexes d’apprentissage automatique. Cette
ambivalence en statistique des grandes dimensions est souvent désignée sous le nom
de "malédiction de la dimensionnalité" (Giraud (2021)). Dans des domaines tels que
les neurosciences et le traitement d’images, où les dimensions des données peuvent
exploser, il devient crucial de réduire la dimension pour ne conserver que l’essence des
données.

Ces dernières années, les problèmes d’extrêmes en grande dimension ont suscité un
intérêt croissant. Du fait que l’EVA se concentre sur une partie restreinte des données,
la taille effective de l’ensemble de données utilisé pour l’inférence peut être relat-
ivement limitée, soulignant l’importance des techniques de réduction de dimension
adaptées aux contextes extrêmes. Une ligne de recherche active concerne la réduc-
tion de dimension non supervisée, pour laquelle diverses méthodes ont été proposées
ces dernières années, certaines garnies de garanties statistiques non asymptotiques
reposant sur des inégalités de concentration appropriées. Parmi ces stratégies, on
peut citer l’identification d’un support parcimonieux pour la distribution limite des
observations extrêmes renormalisés (Goix et al. (2017); Simpson et al. (2020); Meyer
and Wintenberger (2021); Drees and Sabourin (2021); Cooley and Thibaud (2019);
Medina et al. (2021)), la modélisation par la théorie des graphes et l’inférence causale
basées sur la notion d’indépendance conditionnelle dans les queues (Hitz and Evans
(2016); Segers (2020); Gnecco et al. (2021)), ou encore le clustering (Chautru (2015);
Janßen and Wan (2020); Chiapino et al. (2020)), voir également l’article de synthèse
Engelke and Ivanovs (2021). Dans ces travaux, la dimension de l’espace de l’échantillon,
bien que potentiellement élevée, est finie, et la réduction de dimension constitue une
étape clé, voire l’objectif principal, de l’analyse.

L’EVA caractérise le comportement des données extrêmes, qui se situent loin du centre
de masse de la distribution. Cela rend les outils d’EVA naturellement adaptés au
développement de procédures de détection d’anomalies, car les observations anormales
se trouvent également en dehors du centre de masse de la distribution. La réduction de
dimension pour les extrêmes vise à découvrir des régions qui capturent l’essence des
grandes données. Des algorithmes tels que DAMEX (Goix et al. (2016, 2017)) et CLEF
(Chiapino et al. (2020); Chiapino and Sabourin (2016)) identifient des sous-espaces
où les composantes du vecteur observé peuvent être grandes ensemble. Une anomalie
est ainsi détectée lorsque des points de données ne se trouvent pas dans ces sous-
espaces malgré une grande norme. Une autre approche caractérise les observations
anormales comme celles se trouvant en dehors des MV-sets extrêmes (qui peuvent être
recherchés parmi les espaces résultats des algorithmes CLEF ou DAMEX), qui sont de
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petits volumes mais de grandes masses (Thomas et al. (2017)).

Une technique classique de réduction de dimension en traitement du signal consiste
à décomposer les données sur une base choisie en fonction du problème, puis à ne
conserver que les composantes les plus importantes. Parmi les bases usuelles figurent
les bases de Fourier (Exemple 3.4) et les bases d’ondelettes. Le lecteur est invité
à consulter le livre complet et facile à lire Mallat (1999) pour plus de détails sur
le traitement du signal. Les propriétés bénéfiques de ces bases sont nombreuses et
variées, mais choisir une base précise adaptée à un problème peut parfois s’apparenter
à chercher une aiguille dans une botte de foin. Ainsi, pour les tâches où la structure
des données est linéaire, ou nécessite une réduction de dimension efficace sans perte
d’informations importantes, l’ACP peut être particulièrement avantageuse. L’ACP
détermine automatiquement un ensemble de composantes orthogonales capturant
un maximum de la variance des données, fournissant une représentation simplifiée
souvent bien alignée avec la structure sous-jacente des données (voir Mallat (1999)
pour une comparaison entre l’ACP, les bases de Fourier et les bases d’ondelettes, ainsi
que Hsing and Eubank (2015) ou Section 3.3 pour des notions de base sur l’ACP).

Plusieurs travaux ont appliqué l’ACP à l’EVA au fil des années. Dans les contextes de
dimension infinie, des études telles que Kokoszka and Xiong (2018); Kokoszka et al.
(2019); Kokoszka and Kulik (2023); Kim and Kokoszka (2022) ont exploré l’ACP pour
les extrêmes fonctionnels, mais aucune ne propose une méthode applicative de l’ACP
spécifiquement aux données extrêmes. Ces travaux ont déjà été mentionnés et présentés
dans la section précédente. À notre connaissance, seuls deux travaux impliquent une
ACP pour les extrêmes en dimension finie. Dans Cooley and Thibaud (2019), les
auteurs proposent une ACP d’une matrice composée de coefficients de dépendance en
queue de distribution par paires d’un vecteur aléatoire à valeurs positives et à variation
régulière, résultant d’une transformation d’un vecteur aléatoire à variation régulière
à valeurs dans tout l’espace ambiant. Dans Drees and Sabourin (2021), les auteurs
étudient les relations entre l’ACP de l’angle aléatoire Θ, la composante angulaire
d’un vecteur aléatoire régulièrement variable à valeurs dans Rd , et l’ACP de sa limite
extrême Θ∞, puisque la variation régulière de X implique L(Θ | ∥X∥ ≥ t) → L(Θ∞)
lorsque t→ +∞. Un argument clé de leur preuve est que Θ appartient à la sphère unité
de R

d , qui est un ensemble compact. En vertu du lemme de Riesz, leurs techniques de
preuve ne peuvent pas être étendues aux espaces de dimension infinie, bien que les
objets mathématiques impliqués dans cet article soient définis mutatis mutandis dans
un espace de Hilbert séparable général. L’objectif de Chapitre 6 est d’étendre leurs
résultats aux espaces non finis-dimensionnels en contournant l’argument de compacité
en prouvant que la structure propre de Θ converge vers la structure propre de Θ∞ sous
l’hypothèse de variation régulière de l’élément aléatoire X dans un espace de Hilbert
séparable.

10.2.3 Théorie des valeurs extrêmes pour l’étude des niveaux de mer

Les niveaux de mer peuvent être décomposés en une composante déterministe liée aux
marées et une composante stochastique, correspondant aux surcotes. Les surcotes sont
définies comme les différences instantanées entre les marées astronomiques prédites et
les niveaux de mer observés. Les surcotes importantes sont causées par des pressions
atmosphériques basses et des vents forts (en intensité ou en direction). Lorsque ces con-
ditions météorologiques coïncident avec les niveaux élevés des marées de vive-eau, elles
peuvent entraîner des inondations dévastatrices. Un exemple notable est l’inondation
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de la mer du Nord de 1953, connue aux Pays-Bas sous le nom de Watersnoodramp, qui
a causé plus de 2000 morts en Europe du Nord (McRobie et al. (2005)). Étudier ces
événements pour en déduire leur intensité et leur fréquence constitue donc un défi
crucial pour la surveillance des risques côtiers, afin de prévenir des pertes humaines
et matérielles importantes (Genovese and Przyluski (2013); Chadenas et al. (2014);
Karamouz et al. (2019)). Cette tâche est d’autant plus importante compte tenu du
réchauffement climatique, qui augmente à la fois la fréquence et l’amplitude de ces
événements extrêmes (voir Seneviratne et al. (2021)).

L’étude des niveaux de mer extrêmes est un domaine de recherche actif depuis des
décennies. Un concept central dans ce domaine est l’inférence des niveaux de retour,
qui correspondent aux niveaux maximaux attendus sur une période donnée (l’"inverse"
de la période de retour, tel que détaillé dans Coles et al. (2001)). Deux études pionnières
dans ce domaine sont Lennon et al. (1963) et Suthons (1963), qui utilisent les méthodes
des maxima annuels pour les estimer. Comme s’appuyer uniquement sur les maxima
annuels limite la quantité de données utilisables, de nouvelles méthodes pour les
extrêmes ont été développées. Smith (1986) et Tawn (1988) introduisent l’utilisation
des r-maxima annuels, tandis que Davison and Smith (1990) sont les premiers à
considérer les dépassements d’un seuil comme des extrêmes. Ces études utilisent
des méthodes directes, qui consistent à analyser directement les niveaux marins sans
prendre en compte leur structure en composantes déterministe et stochastique.

Les méthodes indirectes consistent à analyser séparément les composantes de marée
et de surcote. Ces méthodes sont souvent préférées aux approches directes car elles
nécessitent moins de données pour mener efficacement une étude des valeurs extrêmes.
Les méthodes de convolution, par exemple, permettent de considérer les niveaux de
mer extrêmes en combinant les surcotes extrêmes avec les niveaux marins extrêmes.
Comme souligné dans Dixon and Tawn (1999), les méthodes directes peuvent in-
troduire des erreurs supplémentaires d’estimation. Des travaux précurseurs dans ce
domaine incluent Pugh and Vassie (1978) et Pugh and Vassie (1980), qui ont introduit
la méthode des probabilités conjointes pour combiner les surcotes aux niveaux de mer
par convolution. Cependant, ces études supposaient que les surcotes horaires étaient
indépendantes, une hypothèse jugée irréaliste par Tawn et al. (1989). Pour résoudre ce
problème, Tawn (1992) ont proposé une méthode révisée des probabilités conjointes,
intégrant l’indice extrémal (Leadbetter (1982)) pour tenir compte de la dépendance
temporelle. Pour une comparaison complète entre les méthodes directes et indirectes,
voir Haigh et al. (2010).

Modéliser la dépendance marée-surcote dans les méthodes indirectes peut s’avérer
difficile (Idier et al. (2012)). Par conséquent, les surcotes de pleine mer, définies comme
la différence entre les niveaux de mer maximaux observés pendant une marée et les
niveaux de mer astronomiques maximaux pendant cette même marée, sont souvent
utilisées à la place. Cette approche présente l’avantage que les hautes marées n’ont
généralement pas d’impact sur les surcotes de pleine mer (voir Williams et al. (2016)).
Dans cette optique, Batstone et al. (2013) ont proposé la méthode des probabilités
conjointes des surcotes de pleine mer pour contourner la modélisation de l’interaction
marée-surcote. Notons que l’indépendance entre la marée haute et la surcote de pleine
mer a été empiriquement prouvée pour la plupart des stations côtières françaises, à
l’exception de la station de Saint-Malo (voir Kergadallan et al. (2014); Kergadallan
(2022)).
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Toutes les méthodes mentionnées ci-dessus sont appliquées individuellement à chaque
station de mesure, appelée marégraphe, ignorant la dépendance spatiale entre les sta-
tions. Cela peut représenter une limitation importante, car la survenue d’un événement
extrême en un lieu augmente la probabilité d’un autre événement extrême à une sta-
tion voisine. La communauté des valeurs extrêmes s’intéresse depuis longtemps à la
modélisation de la structure de dépendance multivariée. La littérature dans ce do-
maine se concentre généralement sur des modèles pour des données asymptotiquement
dépendantes ou indépendantes. La dépendance asymptotique est évaluée à l’aide de la
mesure de dépendance (Coles et al. (1999)). De manière générale, les extrêmes dans
des régimes asymptotiquement indépendants ont tendance à se produire séparément,
tandis que les extrêmes dans des régimes asymptotiquement dépendants ont tendance
à se produire simultanément. Pour les données asymptotiquement dépendantes, le
travail fondateur est le célèbre modèle conditionnel de Heffernan and Tawn (2004),
qui caractérise la distribution d’un vecteur aléatoire étant donné qu’une de ses com-
posantes est extrême. Ce travail a été affiné au fil des ans, donnant lieu à de nombreux
modèles conditionnels, tels que ceux proposés par Keef et al. (2013), Tawn et al. (2018)
et Shooter et al. (2021).

Bien que certains des modèles mentionnés ci-dessus s’appliquent également aux don-
nées asymptotiquement indépendantes, d’autres modèles sont mieux adaptés pour
capturer des connexions fortes entre les composantes, comme le modèle hiérarchique
max-stable de Reich and Shaby (2012), le processus généralisé de Pareto de Ferreira
and de Haan (2014), et la distribution multivariée généralisée de Pareto de Rootzén and
Tajvidi (2006) (voir aussi Kiriliouk et al. (2019); Rootzén et al. (2018)). Cette liste de
modèles de valeurs extrêmes multivariées n’est pas exhaustive, compte tenu du nombre
important de modèles existants. Des références supplémentaires incluent Davison et al.
(2012); Huser and Wadsworth (2022) pour les avancées dans les extrêmes spatiaux,
Engelke and Ivanovs (2021) pour les structures parcimonieuses, Hao et al. (2018) pour
les extrêmes composés, et de Carvalho and Ramos (2012) pour les données bivariées
asymptotiquement indépendantes.

10.3 Résumé des contributions

Cette section vise à résumer les principaux résultats de la thèse, en laissant la motiva-
tion et la mise en contexte à Section 10.2 ainsi qu’aux sections introductives de chaque
chapitre.

Chapitre 5 se concentre sur la caractérisation de la variation régulière dans un espace
de Hilbert. Chapitre 6 s’appuie sur le formalisme introduit en Chapitre 5 pour établir
la consistance et fournir des garanties statistiques pour l’ACP d’éléments à variation
régulière dans un espace de Hilbert. Les travaux des chapitres 5 et 6 ont été publiés dans
le journal Stochastic Processes and their Applications (voir Clémençon et al. (2024)). Les
principaux résultats de ces recherches sont résumés dans les sections 10.3.1 et 10.3.2.

Chapitre 7 propose un nouveau cadre de variation régulière, appelé variation régulière
par rapport à une composante, essentiel à la formalisation d’un cadre de régression
pour les extrêmes. Dans Chapitre 8, nous développons des résultats pour la régression
en contexte extrême, prouvant l’optimalité d’une fonction de régression dépendant
uniquement de l’angle des covariables, la consistance de cet estimateur, ainsi que des
garanties statistiques sur l’erreur associée à cet estimateur. Les travaux des chapitres 7
et 8 ont fait l’objet d’une pré-publication Huet et al. (2023), actuellement en cours
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d’examen dans une revue évaluée par les pairs. Un résumé des principaux résultats est
fourni aux sections 10.3.3 et 10.3.4.

Partie IV propose deux approches pour la prédiction des niveaux de mer extrêmes : la
première repose sur le cadre de régression développé dans Chapitre 8, et la seconde sur
un modèle de Pareto multivariée généralisé. Les travaux de Chapitre 9 font l’objet d’une
soumission en cours dans une revue scientifique et sont résumés en Section 10.3.5.

10.3.1 Variation régulière dans un espace de Hilbert

Chapitre 5 a pour objectif principal de développer un cadre probabiliste général pour
les extrêmes d’éléments à variation régulière dans un espace de Hilbert séparable H,
tel que l’espace L2[0,1], qui est l’espace de Hilbert des fonctions à valeurs réelles, de
carré intégrables sur [0,1]. Ce cadre peut être immédiatement généralisé à d’autres
domaines compacts, tels que des domaines spatiaux.

Dans ce travail, nous nous plaçons dans le contexte général de la variation régulière
(RV) défini par la convergence M0 introduite dans Hult and Lindskog (2006b), et
nous concentrons notre analyse sur des fonctions aléatoires à valeurs dans l’espace
de Hilbert L2[0,1]. Cet espace a reçu beaucoup moins d’attention dans la théorie des
valeurs extrêmes (EVT) par rapport aux espaces de fonctions continues, semi-continues
ou càdlàg. L’un des principaux avantages du cadre proposé, en plus de permettre des
fonctions discontinues, est de préparer le terrain pour une réduction de dimension
des observations par l’intermédiaire de l’ACP fonctionnelle appliquée à la composante
angulaire Θ (voir Chapitre 6).

Plusieurs questions se posent dans ce contexte. Tout d’abord, dans le cas d’observations
fonctionnelles, le choix de la norme (et donc de l’espace fonctionnel) n’est pas anodin,
car toutes les normes ne sont pas équivalentes. Par exemple, il n’y a aucune raison pour
que la variation régulière dans un espace fonctionnel (comme C[0,1]) soit équivalente
à celle dans un espace plus grand tel que L2[0,1]. Par ailleurs, un problème récurrent
dans le contexte de la convergence faible des processus stochastiques est de vérifier
les conditions de tension, en plus de la convergence faible des projections finies, afin
d’assurer la convergence faible du processus dans son ensemble. Les variables aléatoires
à valeurs dans un espace de Hilbert ne font pas exception à cette règle (voir par exemple
Chapitre 1.8 dans van der Vaart and Wellner (1996)). Une question naturelle à poser est
alors : "Quelles conditions concrètes sur les composantes angulaire et radiale (Θ, |X |),
dans un cadre PoT, peuvent être vérifiées dans des exemples génératifs spécifiques ou
même sur des données réelles, et sont suffisantes pour assurer la tension et donc la RV
globale ?"

Pour répondre à ces questions, nous proposons une description complète de la notion
de RV dans un espace de Hilbert séparable, s’inscrivant dans le cadre de Hult and
Lindskog (2006b). Plus précisément, nous proposons des caractérisations de la RV
impliquant des conditions sur les projections finies et les moments de la variable
angulaire Θ via le résultat important suivant (Théorème 5.8 dans Chapitre 5).

Theorem. Soit X un élément aléatoire dans H et soit Θt un élément aléatoire dans H

distribué sur la sphère S selon la loi conditionnelle PΘ,t := L(X/∥X∥ | ∥X∥ ≥ t). Soit PΘ,∞
une mesure de probabilité sur (S,B(S)) et soit Θ∞ un élément aléatoire distribué selon PΘ,∞.
Les énoncés suivants sont équivalents
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1. X est à variation régulière avec indice α et limite angulaire limite PΘ,∞, telle que
PΘ,t

w−→ PΘ,∞.

2. ∥X∥ est à variation régulière dans R avec indice α, et

∀h ∈H,⟨Θt ,h⟩
w−→ ⟨Θ∞,h⟩ as t→ +∞.

3. ∥X∥ est à variation régulière dans R avec indice α, et

∀N ≥ 1,πN (Θt)
w−→ πN (Θ∞) as t→ +∞,

avec πN : H→R
N la projection sur les N premiers éléments de la base (ei)i≥1.

Pour valider ces résultats, nous fournissons plusieurs exemples d’éléments aléatoires à
variation régulière dans H, tels que les sommes aléatoires

∑D
i=1ZiAi , où les Zi sont des

variables aléatoires réelles à variation régulière, les Ai sont des éléments aléatoires dans
H et D est une constante ou une variable aléatoire d’espérance finie (propositions 5.1
et 5.2). Nous soulignons la nécessité des conditions de tension pour obtenir une RV
globale, en construisant un élément aléatoire dans H ayant des projections finies
et une norme à variation régulière, mais qui n’est pas à variation régulière dans H

(Proposition 5.4).

Dans la section finale, nous discutons des relations entre la RV dans C[0,1] et dans
L2[0,1]. Nous démontrons que la RV dans C[0,1] implique la RV dans L2[0,1] et que les
variables aléatoires limites dans ces deux cadres peuvent être reliées par une formule
explicite (résultats de Dombry and Ribatet (2015), Proposition 5.9). L’inverse n’est
cependant pas vrai : nous construisons un exemple d’une fonction aléatoire à variation
régulière dans L2[0,1] qui n’est pas à variation régulière dans C[0,1] (Proposition 5.10).

10.3.2 ACP pour extrêmes fonctionnels

Dans Chapitre 5, une caractéristique majeure du cadre proposé est la possibilité
de projeter les observations sur un espace fonctionnel de dimension finie via une
modification de l’ACP fonctionnelle standard, adaptée pour traiter des observations
à queues lourdes, pour lesquelles les moments d’ordre supérieur (ou même d’ordre
premier) peuvent ne pas exister. Cette technique de réduction de dimension étend le
travail de Drees and Sabourin (2021), qui a appliqué l’ACP dans en dimension finie et
a dérivé des garanties non-asymptotique pour les sous-espaces propres de l’opérateur
de covariance empirique pour Θ. Cependant, les techniques utilisées par Drees and
Sabourin (2021) ne peuvent pas être directement appliquées ici, car elles reposent sur
la compacité de la sphère unité dans Rd , tandis que la sphère unité dans un espace de
Hilbert de dimension infinie n’est pas compacte.

L’extension naturelle de la matrice de covariance des angles extrêmes Ct,Rd = E[ΘΘ⊤ |
∥X∥ > t] dans Drees and Sabourin (2021), lorsque X ∈Rd , est l’opérateur de covariance
Ct = E[Θ ⊗Θ | ∥X∥ > t] pour X ∈ H, comme expliqué dans les sections 3.1 et 3.3
du Chapitre 3. Sous l’hypothèse de RV pour X, où la distribution angulaire de Θ

converge, i.e., PΘ,t := L(Θ | ∥X∥ > t)→L(Θ∞) = PΘ,∞, une question naturelle se pose : la
structure propre de Ct converge-t-elle quand t→ +∞ vers celle de C∞ = E[Θ∞ ⊗Θ∞],
où Θ∞ ∼ PΘ,∞ ? De plus, les résultats de concentration pour les sous-espaces propres
empiriques dans Drees and Sabourin (2021) peuvent-ils être étendus au cadre des
espaces de Hilbert de dimension infinie ?
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Theorem. La convergence suivante en norme Hilbert-Schmidt est vérifiée,

∥Ct −C∞∥HS(H)→ 0,

quand t→ +∞.

En utilisant le Théorème 3 de Zwald and Blanchard (2005) (Théorème 3.19) et le
théorème de Weyl (Théorème 3.11), nous prouvons que les valeurs propres et les sous-
espaces propres de Ct convergent vers ceux de C∞ lorsque t→ +∞ (Corollaire 6.3).

Ensuite, nous étudions la convergence de l’opérateur de covariance empirique associé à
la distribution de PΘ,t. Supposons que nous observons n ≥ 1 réalisations indépendantes
X1, ...,Xn de la fonction aléatoire X. Nous cherchons à estimer l’opérateur de covariance
sous-asymptotique associé à un seuil radial tn,k, qui est un quantile de la variable
radiale ∥X∥ au niveau 1− k/n, défini par:

Ĉk :=
1
k

n∑
i=1

Θi ⊗Θi1{∥Xi∥ ≥ t̂n,k},

où t̂n,k est la kème plus grande norme parmi les ∥Xi∥’s, i.e., la version empirique de tn,k .
Nous fournissons des garanties statistiques sous forme d’inégalités de concentration
concernant la norme de Hilbert-Schmidt de l’erreur d’estimation. Les termes principaux
des bornes impliquent le nombre k ≤ n des statistiques d’ordre extrême utilisées
pour calculer l’estimateur. Plus précisément, nous présentons le résultat suivant
(Théorème 6.8 du Chapitre 6)

Theorem. Soit δ ∈ (0,1). Avec probabilité plus grande que 1− δ, on a

∥Ĉk −Ctn,k∥HS(H) ≤ C(δ)/
√
k + +o(1/

√
k),

avec C(δ) une constante dépendent seulement de δ.

Ces bornes, combinées avec la variation régulière de la fonction aléatoire observée X,
assurent la consistance de la procédure d’estimation empirique, comme indiqué dans
Corollaire 6.10 du Chapitre 6.

Enfin, nous présentons des résultats expérimentaux sur des données réelles et sim-
ulées. Plus précisément, nous analysons un ensemble de données sur la demande
électrique et des données simulées, comme détaillé dans Chapitre 5. Ces expériences
montrent la pertinence du cadre de réduction de dimension proposé, en comparant ses
performances avec l’ACP standard appliquée à l’échantillon complet (non limité aux
observations extrêmes). Les résultats mettent en évidence l’utilité du cadre proposé
dans les applications pratiques, en particulier lorsqu’il s’agit de données à queues
lourdes.

10.3.3 Un cadre de variation régulière pour la régression dans les extrêmes

Dans Chapitre 7, nous introduisons un cadre probabiliste, en particulier la variation
régulière par rapport à une composante, pour la régression dans les extrêmes extrêmes.
Nous proposons également une approche algorithmique dédiée, qui est analysée plus
en détail dans Chapitre 8.
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Pour motiver l’analyse qui suit, l’algorithme Regression On eXtreme ANglEs (ROXANE)
est introduit au début de Partie III. Cette méthode traite du problème de régression pour
la paire entrée/sortie (X,Y ) ∈Rd ×R dans les régions extrêmes, spécifiquement lorsque
∥X∥ ≫ 1. L’objectif principal de l’algorithme est de minimiser un risque quadratique
extrême empirique en utilisant uniquement l’angle de la variable d’entrée X/∥X∥. Cela
est réalisé sans perte d’information sous une hypothèse spécifique de variation régulière
(RV), comme justifié dans Chapitre 8. Pour simplifier, nous supposons que la sortie est
bornée, i.e., il existe un M > 0 tel que Y ∈ I := [−M,M].

Notre hypothèse centrale, qui justifie l’algorithme ROXANE, est la variation régulière
par rapport à la première composante de (X,Y ). Cette hypothèse de RV modifiée, où
l’extrémalité du vecteur aléatoire est définie uniquement par rapport à la variable
d’entrée, est détaillée dans la définition suivante (Hypothèse 7.2 dans Chapitre 7). Soit
E := R

d\{0}.

Definition (Variation régulière par rapport à la première composante). Un vecteur
aléatoire (X,Y ) ∈O := E × I est à variation régulière par rapport à la première composante
avec indice α > 0, si il existe une fonction à variation régulière b avec indice α et une mesure
Borélienne non nulle µ sur O, sur tout Borel de O à distance positive de C = {0} × I , tels que

lim
t→+∞

b(t)P
(
t−1X ∈ A,Y ∈ C

)
= µ(A×C),

pour tout A ∈ B(E) à distance positive de zéro et C ∈ B(I) tels que µ(∂(A×C)) = 0.

Cette hypothèse est un cas particulier de la théorie développée dans Lindskog et al.
(2014) pour les mesures à variation régulière sur des espaces métriques séparables
avec un ensemble fermé C retiré ; dans notre contexte, C = {0} × I . Nous clarifions
cette connexion dans Section 7.5 avec des énoncés équivalents de RV par rapport à
la première composante. Les implications similaires à celles de la RV classique sont
démontrées après Hypothèse 7.2, telles que l’homogénéité d’ordre −α de la mesure
limite µ par rapport à la première composante, ce qui mène à une décomposition de la
mesure :

µ({X ∈ E : ∥x∥ ≥ r,θ(x) ∈ B} ×C) = r−αΦ(B×C),

avec θ(x) := x/∥x∥ et pour tout C ∈ B(I),B ∈ B(S), r > 0. Cela engendre l’existence d’une
paire de variables aléatoires limite (X∞,Y∞)

L(t−1X,Y | ∥X∥ ≥ t)→L(X∞,Y∞),

lorsque t→ +∞. Nous supposons également la convergence de la fonction de régression
de Bayes f ∗(X) = E[Y | X] vers la fonction limite de régression de Bayes E[Y∞ | X∞] qui
satisfait (Hypothèse 7.5)

E

[
|f ∗(X)− f ∗P∞(X)| | ∥X∥ ≥ t

]
→ 0. (10.1)

Trois conditions impliquant cette hypothèse, telles que la convergence uniforme des
densités proposées dans De Haan and Resnick (1987), sont fournies pour soutenir la
validité d’Équation (10.1) (Proposition 7.6 dans Chapitre 7).

Enfin, nous proposons quatre scénarios pratiques qui satisfont toutes les hypothèses de
Section 7.4, y compris un exemple adapté à la prédiction d’une composante extrême
manquante dans un vecteur aléatoire à variation régulière (Proposition 7.10 dans
Chapitre 7).
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10.3.4 Régression dans les extrêmes

Chapitre 8 a pour objectif de développer un cadre de régression dans des régions où
les covariables extrêmes, en s’appuyant sur les hypothèses discutées en Chapitre 7,
telles que la RV par rapport à la première composante du couple d’entrée/sortie (X,Y ).
L’objectif fondamental est de justifier l’algorithme ROXANE, i.e., de prouver qu’une
fonction de régression peut être construite de manière optimale dans les régions
extrêmes, en utilisant uniquement l’angle de la variable d’entrée.

La régression est un problème prédictif essentiel en apprentissage statistique, couvrant
une grande variété d’applications. Dans le cadre classique, le problème d’apprentissage
prédictif consiste à construire, à partir d’un ensemble de données d’apprentissage
Dn = {(X1,Y1), ; . . . , ; (Xn,Yn)}, composé de n ≥ 1 copies indépendantes de deux variables
aléatoires (X,Y ) ∈Rd ×R, une fonction f : X →R permettant de produire une "bonne"
prédiction f (X) de Y , en minimisant le risque quadratique

RP (f ) = E

[
(Y − f (X))2

]
(10.2)

aussi proche que possible de la fonction de régression de Bayes f ∗(X) = E[Y | X], qui
minimise (10.2).

Une stratégie naturelle consiste à résoudre le problème de minimisation du risque
empirique (Empirical Risk Minimization, ERM) minf ∈F RP̂n

(f ), où F est une classe de
fonctions suffisamment riche pour inclure une bonne approximation de f ∗ et P̂n est
une version empirique de P basée sur Dn.

Ce chapitre s’intéresse à la régression dans les régions extrêmes, lorsque la variable
d’entrée est extrême. Les covariables sont considérées comme extrêmes lorsque leur
norme ∥X∥ dépasse un seuil (asymptotiquement) grand t > 0 (voir Chapitre 7). Le choix
de la norme dépend généralement du contexte applicatif.

Le seuil t dépend des observations, car "grand" doit être compris relativement à la
majorité des données observées. Par conséquent, les observations extrêmes sont rares
et sous-représentées dans l’ensemble d’apprentissage, ce qui signifie que les erreurs
de prédiction dans les régions extrêmes ont généralement un impact négligeable sur
l’erreur globale de régression de f̂ . En effet, la loi des probabilités totales donne :

RP (f ) = P(∥X∥ ≥ t)E
[
(Y − f (X))2 | ∥X∥ ≥ t

]
+P(∥X∥ < t)E

[
(Y − f (X))2 | ∥X∥ < t

]
.

Cette décomposition met en évidence un terme d’erreur conditionnelle relatif aux
dépassements de ∥X∥ au-delà de t, que nous appelons le risque quadratique conditionnel
(ou simplement risque conditionnel) :

Rt(f ) := E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
.

Le but de l’analyse qui suit est de construire une fonction prédictive f̂ qui minimise
(approximativement) Rt(f ) pour tout t > t0, où t0 est un seuil élevé. Il est important de
noter qu’un estimateur du minimiseur de Rt peut ne pas être adapté pour minimiser
Rt′ lorsque t′ > t. Pour garantir des performances robustes d’extrapolation, nous visons
à obtenir une fonction prédictive f̂ qui minimise le risque quadratique conditionnel
asymptotique défini par :

R∞(f ) := limsup
t→+∞

Rt(f ) = limsup
t→+∞

E

[
(Y − f (X))2 | ∥X∥ ≥ t

]
.
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Ainsi, l’objectif est d’établir des liens entre les risques Rt et R∞ ainsi que leurs min-
imiseurs respectifs, en s’appuyant sur les propriétés avantageuses de l’hypothèse de RV.
Le théorème suivant (Théorème 8.2 dans Chapitre 8) fournit les premières motivations
pour l’algorithme ROXANE. Soit θ(x) = x/ |x|.

Theorem. Sous les hypothèses 7.1, 7.2 et 7.5, les deux assertions suivantes sont vraies :

1. Quand t→ +∞, la valeur minimale de Rt converge vers celle de R∞, i.e., inff Rt(f )→
inff R∞(f ).

2. L’infimum de R∞ sur toutes les fonctions mesurables est égal à son infimum sur toutes
les fonctions mesurables angulaires, i.e., inff R∞(f ) = infhR∞(h ◦θ).

L’utilisation de la RV par rapport à la première composante est cruciale pour prouver ce
résultat. Ce concept clé permet de relier les deux risques, Rt et R∞, et montre la nature
angulaire d’un minimiseur de R∞. Par conséquent, il est raisonnable de restreindre la
recherche d’un minimiseur dans les régions extrêmes aux fonctions angulaires, comme
le suggère l’algorithme ROXANE.

Notre stratégie consiste à résoudre le problème d’optimisation ERM associé à minh∈HRtn,k (h◦
θ), où tn,k est un quantile de la variable radiale |X| au niveau 1−k/n. Pour ce faire, nous
considérons sa version empirique :

R̂k(f ) =
1
k

n∑
i=1

(Yi − f (Xi))
2
1{∥Xi∥ ≥ t̂n,k},

où t̂n,k est la k-ième plus grande norme parmi les |Xi|’s, servant de contrepartie em-
pirique du quantile tn,k. Comme pour l’ERM classique, nous analysons la minimisation
du risque empirique sur une classe de fonctions à complexité contrôlée. Soit H une
classe de fonctions continues, réelles, angulaires et uniformément bornées par M:
f ∈ C(S, I). Pour valider pleinement la stratégie empirique de l’algorithme ROXANE,
nous fournissons une borne non asymptotique sur la déviation maximale entre Rtn,k et
R̂k sur H, comme indiqué dans le théorème suivant (Théorème 8.4 dans Chapitre 8).

Theorem. Supposons que les hypothèses 7.1 et 8.3 soient satisfaites. Soit δ ∈ (0,1). Avec
une probabilité supérieure à 1− δ :

sup
h∈H

∣∣∣∣R̂k(h ◦θ)−Rtn,k (h ◦θ)
∣∣∣∣ ≤ C(H,M,δ)/

√
k + o(1/

√
k),

où C(H,M,δ) est une constante dépendant de H,M et δ.

En outre, avec une hypothèse supplémentaire sur la classe H, qui est satisfaite en
particulier par les fonctions issues de régression avec pénalisation Ridge ou Lasso con-
traintes (voir Remarque 8.6 dans Chapitre 8), nous montrons que le biais suph∈H |Rtn,k (h◦
θ)−R∞(h ◦ θ)| converge vers zéro lorsque n→ +∞ (Proposition 8.5 dans Chapitre 8).
Cela conduit à un contrôle maximal de l’excès de risque R∞ d’une fonction de régression
produite par l’algorithme ROXANE (Corollaire 8.8 dans Chapitre 8).
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Figure 10.2: Prédictions des niveaux de mer à la station de Port-Tudy pour l’année
1999. La courbe rouge représente les valeurs réelles du jeu de test ; la courbe orange
représente les valeurs prédites par la procédure ROXANE avec l’algorithme OLS ; la
courbe bleue représente les valeurs prédites par la procédure MGP avec des intervalles
de prédictions bootstrap de niveau 95% (bleu clair).

10.3.5 Modélisation et prédiction de niveaux de mer extrêmes

Chapitre 9 se concentre sur la prédiction des niveaux de mer extrêmes et des sur-
cotes aux marégraphes situés le long de la côte atlantique française. Nous proposons
d’apprendre la structure de dépendance spatiale des observations extrêmes entre
différentes stations sur leur plage temporelle commune. Ce modèle appris est en-
suite utilisé pour reconstruire les niveaux de mer et les surcotes aux stations avec des
enregistrements historiques limités, à partir des observations extrêmes de stations
voisines disposant d’enregistrements temporels plus étendus. En particulier, nous
visons à prédire les valeurs à la station de Port-Tudy à partir des valeurs extrêmes
mesurées aux stations de Brest et Saint-Nazaire (voir Figure 9.1). Une observation est
déclarée extrême si au moins une de ses composantes est extrême, car un seul niveau
de la mer élevé ou une surcote importante peut provoquer une inondation à la station,
indépendamment des conditions aux autres stations. Nous décrivons deux procédures
différentes pour apprendre la structure de dépendance extrême.

Dans la première méthode, nous ajustons une distribution extrême appropriée aux
données. Compte tenu de la dépendance asymptotique clairement observée dans
les données (voir Figures 9.3 et 9.4), nous modélisons les observations à l’aide d’une
distribution Multivariate Generalized Pareto (MGP) H (Rootzén and Tajvidi (2006);
Rootzén et al. (2018)), définie comme suit :

H(x) =
logG(x∧ 0)− logG(x)

logG(0)
,

où G est une distribution multivariée de valeurs extrêmes (Définition 2.10). En par-
ticulier, nous suivons la procédure de modélisation paramétrique proposée par Kirili-
ouk et al. (2019), en tirant parti de la décomposition de la distribution MGP (2.14). Les
prédictions finales sont obtenues en moyennant des simulations générées à partir de la
densité conditionnelle apprise, conditionnellement aux deux valeurs d’entrée.

Dans la seconde approche, nous utilisons la procédure de régression proposée dans
Partie III (Huet et al. (2023)), conçue pour des problèmes de prédiction de valeurs
extrêmes où l’extrémalité est mesurée par rapport aux covariables — ici, les valeurs
des stations disposant de longues séries temporelles. Nous apprenons une fonction de
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prédiction à l’aide de l’algorithme ROXANE (Algorithme 7.1) sur la période commune
des données, afin de prédire les valeurs aux stations de sortie à partir des valeurs
extrêmes aux stations d’entrée.

Les deux procédures nécessitent une mise à l’échelle des observations marginales sur
une échelle commune : des échelles exponentielles unitaires pour la procédure MGP
et des distributions de Pareto unitaires pour la procédure ROXANE. Conformément
à Legrand et al. (2023), nous utilisons une distribution Extended Generalized Pareto
(EGP) comme modèle marginal pour répondre aux différentes exigences décrites dans
l’introduction de Chapitre 9. Plus précisément, nous considérons le modèle EGPD3 de
Papastathopoulos and Tawn (2013) dont la fonction de répartition est donnée par :

Fσ,ξ,κ(x) =

1−
(
1 +

ξx
σ

)−1/ξκ,
avec σ > 0, ξ ∈R, κ ∈R et x ∈ [0,+∞[ si ξ ≥ 0 et x ∈ [0,−σ/ξ] sinon.

Les procédures de prédiction multivariées sont synthétisées dans deux algorithmes, Al-
gorithme 9.2 et Algorithme 9.3. En complément des étapes de prétraitement marginal,
l’Algorithme 9.1 introduit une nouvelle méthode pour sélectionner des seuils adaptés
dans les études de valeurs extrêmes, basée sur les propriétés de la distribution EGP.

Les méthodes proposées sont appliquées aux données des niveaux de mer, et leurs
performances sont évaluées par rapport à la racine carrée de l’erreur quadratique moy-
enne (RMSE) et d’erreur absolue moyenne (MAE) sur un jeu de données test constitué
des premières observations extrêmes. Les deux procédures de prédiction multivariée
donnent des résultats concluants et significatifs pour les praticiens, chacune présentant
des avantages distincts : l’une fournit de meilleures estimations ponctuelles, tandis
que l’autre offre un modèle génératif robuste. En particulier, Figure 10.2 donne une
évaluation visuelle de la qualité des prédictions des deux méthodes (Table 9.3) et Fig-
ure 9.5 présente des QQ-plots pour une validation supplémentaire. Enfin, des études
similaires menées pour les stations de Concarneau et Le Crouesty sont présentées en
Annexe 9.A.
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10.4 Plan de la thèse

Le manuscrit de thèse est organisé comme suit.

Chapitre 1 fournit un résumé de l’état de l’art ainsi que des contributions de cette
thèse.

Partie I introduit les prérequis nécessaires à la compréhension et à la démonstration
des résultats de la thèse.

Chapitre 2 traite des notions fondamentales de la théorie des valeurs extrêmes,
depuis les extrêmes univariés jusqu’aux extrêmes dans des espaces de dimension
infinie, en passant par les extrêmes multivariés.

Chapitre 3 aborde les concepts de l’analyse des données fonctionnelles, y compris
les opérateurs et la théorie des probabilités dans les espaces de Hilbert.

Chapitre 4 présente les bases de l’apprentissage statistique, en mettant par-
ticulièrement l’accent sur ses applications aux extrêmes.

Partie II concerne les extrêmes hilbertiens.

Chapitre 5 développe la théorie de la variation régulière dans les espaces de
Hilbert séparables.

Chapitre 6 utilise les principes de Chapitre 5 pour établir des résultats de consist-
ance et de concentration pour l’analyse en composantes principales d’extrêmes
fonctionnels.

Partie III étudie la tâche de régression dans les régions extrêmes.

Chapitre 7 propose un nouveau cadre de variation régulière permettant de traiter
les extrêmes par rapport à certaines composantes.

Chapitre 8 exploite le cadre de Chapitre 7 pour développer un nouveau cadre
adapté à la régression dans les régions extrêmes.

Partie IV est une application à la reconstruction des niveaux de mer extrêmes.

Chapitre 9 applique la procédure de régression pour les extrêmes de Chapitre 8
ainsi qu’une procédure de modélisation des extrêmes aux données de niveaux
de mer extrêmes provenant des marégraphes situés le long de la côte atlantique
française.

Le manuscrit se termine par une discussion sur les conclusions générales et les per-
spectives des résultats développés dans cette thèse, suivie d’une section d’annexes
comprenant des démonstrations techniques et d’une introduction en français.

Le contenu de cette thèse repose sur les travaux suivants :
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Partie II : Clémençon, S., Huet, N., et Sabourin, A., (2024) Regular Variation
in Hilbert Spaces and Principal Component Analysis for Functional Extremes,
Stochastic Processes and their Applications, 174, 104375 ;

Partie III : Huet, N., Clémençon, S., et Sabourin, A., (2024) On Regression in
Extreme Regions, arXiv:2303.03084 (soumis).
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Titre : Apprentissage Statistique des Extrêmes Multivariés et Fonctionels

Mots clés : Théorie des Valeurs Extrêmes, Apprentissage Statistique, Analyse des Données Fonctionnelles

Résumé : Dans un monde où le réchauffement cli-
matique provoque de plus en plus de phénomènes
météorologiques extrêmes d’ampleurs croissantes,
cette thèse explore la modélisation des événements
extrêmes à travers des méthodes statistiques enri-
chies par l’apprentissage statistique. Elle se divise en
deux grandes parties.
Dans un premier temps, les extrêmes fonctionnels
sont étudiés, c’est-à-dire les extrêmes de données
dépendant explicitement d’une variable continue
comme le temps. Nous travaillons dans un espace de
Hilbert séparable, avec un focus sur l’espace L2[0, 1].
Des résultats sur la variation régulière, hypothèse
fondamentale en théorie des valeurs extrêmes, sont
développés, et des caractérisations ainsi que des
exemples non triviaux sont présentés. De plus, une

méthode de réduction de dimension adaptée aux
données fonctionnelles extrêmes est proposée, avec
des garanties probabilistes et statistiques. Dans un
second temps, nous développons un cadre probabi-
liste pour la régression dans des régions où la va-
riable d’entrée est extrême, contrairement aux ap-
proches classiques qui se concentrent sur les régions
où la variable de sortie est extrême. Des résultats sur
les risques et les fonctions de régression dans les
régions extrêmes, ainsi qu’un algorithme adapté, sont
établis. Ce dernier est comparé à des méthodes clas-
siques et appliqué à la prédiction des extrêmes ma-
ritimes en Bretagne, où nous cherchons à compléter
les données extrêmes passées pour réduire les incer-
titudes liées à certaines estimations.

Title : Statistical Learning of Multivariate and Functional Extremes

Keywords : Extreme Value Theory, Statistical Learning, Functional Data Analysis

Abstract : In a world where climate change is cau-
sing more and more extreme weather events of in-
creasing magnitude, this thesis explores the modeling
of extreme events through statistical methods enhan-
ced by statistical learning. It is divided into two main
parts. First, functional extremes are studied, that is,
the extremes of data explicitly dependent on a conti-
nuous variable such as time. We work in a separable
Hilbert space, with a focus on the space L2[0, 1]. Re-
sults on regular variation, a fundamental hypothesis in
extreme value theory, are developed, along with cha-
racterizations and non-trivial examples. Additionally,
a dimensionality reduction method tailored to functio-

nal extreme data is proposed, with probabilistic and
statistical guarantees. In the second part, we deve-
lop a probabilistic framework for regression in regions
where the input variable is extreme, in contrast to clas-
sic approaches that focus on regions where the output
variable is extreme. Results on risks and regression
functions in extreme regions, as well as an adapted
algorithm, are established. This algorithm is compa-
red to classical methods and applied to the prediction
of extreme sea levels in Brittany, where the goal is to
reconstruct past extreme data to reduce uncertainties
associated with certain estimates.
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