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Pr. Jean-Charles Delvenne Université Catholique de Louvain (Reviewer)
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Résumé

Nous nous sommes intéressés aux problèmes de la théorie du contrôle de systèmes
complexes. Nous avons abordé le lien entre la commandabilité ou l’observabilité
d’un système dynamique complexe et les concepts de la théorie de l’information. Le
modèle choisi pour les applications numériques est un modèle dynamique de vote
défini sur un graphe ”scale free” qui représente les liens sociaux entre agents.
La causalité temporelle entre les comportements (états) des agents dans ces systèmes
a pu être quantifiée par la notion d’information mutuelle décalée dans le temps. Nous
avons également défini la multi-information décalée dans le temps qui permet de quan-
tifier l’influence d’un agent sur l’ensemble des agents du système.
Cela nous a offert un moyen d’orienter les actions pour faire tendre le système vers un
état souhaité. Nous avons également souligné l’importance du bruit lors de la com-
mande du système, et montré que le rayon d’action d’un agent, caractérisé par une
longueur de contrôle, était limité. Nous avons fait le lien entre cette limite et la notion
de capacité d’un canal de transmission en théorie de l’information.
Ensuite, nous avons montré que l’information mutuelle décalée dans le temps nous
permettait de retrouver la topologie du graphe des interactions au sein du système
à partir de la mesure du comportement individuel des agents au cours du temps.
Nous nous sommes également intéressés à la détection de changement de topologie du
système, en calculant l’information décalée dans le temps sur une fenêtre temporelle
glissante.
La théorie de l’information nous a permis également de déterminer une décomposition
du système en communautés définies sur la base de l’information mutuelle entre
agents. La partition du système obtenue a permis d’envisager une réduction du système
par agrégation de ces communautés. Cette réduction a été testée sur des automates cel-
lulaires 1D, puis généralisée au cas d’un automate probabiliste défini sur un graphe
quelconque. Nous avons utilisé l’information mutuelle pour qualifier la qualité de
cette réduction.

Mots clefs

Systèmes dynamiques complexes, théorie de l’information, modèle probabiliste, théorie
du contrôle , graphes, communautés, modèle de vote, automates cellulaires, réduction.
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Abstract

In this thesis, we focused on the problems of control theory in the context of complex
systems. We addressed the link between the controllability or observability of a com-
plex system and information-theoretic concepts. The model chosen for the numerical
applications is a voter model based on the representation of social links (influence) in
a scale-free graph. We first looked at the temporal causality between agents in these
systems, which could be quantified by the delayed mutual information defined in this
thesis. We defined the delayed multi-information, which quantifies the influence of
an agent on the whole system. This approach provided us with a mean of directing
actions to move the system towards a desired state. We have also highlighted the im-
portance of noise in this control process, and shown that an agent’s radius of action
is limited and characterized by a control distance. We linked this control limit to the
notion of transmission channel capacity as it is defined in information theory.
The delayed mutual information also allowed us, without a priori knowledge on the
system topology, to obtain structural information about the network: we were able
to recover the topology of the interconnection graph from the evolution of the agents’
states. This approach allows to detect changes in system topology over time, by calcu-
lating the delayed mutual information over a sliding time window. Finally, information
theory enabled us to determine a decomposition of the system into communities. The
resulting partition of the system into communities suggests a reduction by agregation
of the system. The principle of this reduction was first presented and tested on 1D
cellular automata (CA), and then generalized to probablistic CA defined on a graph.
We used mutual information itself to assess the quality of the reduction.

keywords

Complex dynamical systems, information theory, probabilistic models, control theory,
Mutual and multi-information, graph, communities, voter model, Cellular Automata,
coarse-graining
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tu as su gérer parfaitement. Bastien, je te remercie pour tous tes conseils éclairés, ton
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Notations

Symbol Description

N set of natural integers
Z set of integers
R set of real numbers
C set of complex numbers
⌊x⌋ Lower integer part of x
Jp; qK set of integers {p, p+ 1, ..., q}
Mp,q(R) or Rp×q Set of real matrices with p rows and q columns
Mn(R) or Rn×n Set of real matrices with n rows and n columns
AT the transpose of the matrix A.
[A1;A2; . . . ;Ap] The matrix obtained by concatenating the matrices A1, A2, ..., Ap

0n,p The null matrix with n rows and p columns.
x1:n The vector (x1, x2, ...xn)

G = (V,E) G is a graph, V the set of vertices, E the set of edges.
px P(X = x).
pxy P((X,Y ) = (x, y)).
PA(B) or P (A|B) The probability of event A knowing B

Kn A complete graph of order n.
Cn A circular graph of order n.
d(x) degree of the vertex x.
δ(G) diameter of the graph G.
H(X) Entropy of the random variable X .
H(X1, X2, ..., Xn) Mutual entropy of the vector of random variables X = (X1, ...Xn) .
H2(ϵ) Binary entropy with parameter epsilon, i.e. −ϵ log ϵ− (1− ϵ) log(1− ϵ).
H(X|Y ) Conditional Entropy of the random variable X knowing Y .
I(X,Y ) Mutuel information of the random variables X and Y .
wi,j(t, τ) τ -delayed Mutual information of agents i and j at the moment t.
wi(t, τ) τ -delayed Mutual multi-information of the agent i at the moment t.
L2(I, J) set of functions f : I → J such that ||f ||2 is integrable on I .
Σ = (A,B,C) system defined by the functions or matrices A,B and C .
ϕ(u, x0, t) state of the system at the moment t with the initial state x0.
W c Grammian Controllability.
W o Grammian Observability.
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1 | Introduction

The aim of this thesis is to show that information theory offers tools for determining
solutions to certain problems in control theory. Claude Shannon, the founder of infor-
mation theory, used probabilities to quantify information in order to provide tools in
the field of telecommunications. The first applications of this probabilistic modelling
were in information coding, data compression and cryptography [93], [64], [46], [92].
Information theory also makes it possible to quantify the causal relationships between
data. Determining the actions that enable a system to be controlled requires a good
knowledge of these causal links. The knowledge of both the network topology and the
laws governing the dynamics are useful for the control of complex systems. As we
will show, information theory offers the means to take these two factors into account.

Control theory is a well-established field, based on several mathematically well-defined
concepts. Controllability and observability are introduced by Kalmann [48] [47] in the
case of a finite-dimensional linear system. Controllability and its dual form, observ-
ability, are major subjects of study in control theory. From a practical point of view,
these concepts, when it is not easy to define it formally due to the complexity of the
dynamics, can be defined through numerical and optimization procedures. For exam-
ple, the cost of control, usually expressed with Grammians, is related to the energy
required to control a system and can be computed by numerical methods for discrete
non-linear systems, based on their physical interpretation (see, for example, the eco-
nomic model described in [89]). In this thesis, we were interested in investigating
issues related to the controllability and observability of complex systems. Their large
size and their non-linear dynamics make them challenging to analyze. We made use of
a simple voter model throughout the thesis to get empirical results through simulations
and to give us some intuition for this analysis.

When dealing with the observability/controllability of complex systems, at least two
approaches have been considered. In the first one, dealing with large unstructured
(although often sparse) dynamical systems, numerical algebra techniques have been
developed either for the reduction of the systems or for the development of suitable
observability/controllability analysis tools [4], [9]. In this approach, only numerical
results are obtained and they may not be easily related to the structural properties of the
considered complex system (a.o. the interaction topology). The second approach has
been initiated by Siljak [99] and work has been continued by Lin and his co-authors
[56]. In this approach, structural dynamical properties, including observability and
controllability, are defined as properties which are satisfied for almost all numerical

3
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values of the parameters in the model, that is properties which are essentially depend-
ing on the system interconnection topology. A graph describing the structure of the
interaction between the nodes of the system (sometimes referred to as the inference
diagram) is then defined and control properties are related to graph theoretic proper-
ties which may be decided using existing efficient graph algorithms (see [100] for an
introductive textbook). Recent surveys of the results obtained with this approach are
[58], [61] or [59], for specific aspects related to large complex networks.

Although suitable for complex systems and providing results on structural dynamical
properties, the graph theoretic approach exhibits several limitations which still need
to be overcome. Three of them are related respectively to the existence (in many
application examples) of constraints on the control perturbations and variations in the
system interconnection topology.

In this thesis, to study complex systems, we focused on the causal links in the network.
The main difficulty encountered when trying to use the standard tools of probability
theory to quantify the causal influence of one entity on another is due to “confusion”.
Suppose that A has a direct influence on B and C, causing these agents to act in a cor-
related manner. This correlation is easy to detect, but when it comes to interpreting it,
it can be attributed either to B’s direct influence on C, or to the existence of a common
ancestor influencing both (this situation, which is the true one in our example, is called
confusion). Of course, direct influence and confusion can coexist in even moderately
complicated systems, making the situation even more difficult to disentangle. While
some authors have proposed to develop a ”causal calculus” that takes causal order-
ing into account [40], more energy has been devoted to capturing causal relationships
using “classical” tools by defining refined versions of correlation measures [96]. In
particular, many of these proposals use quantities introduced mainly in information
theory, such as ”mutual information” and ”transfer entropy” [96].

Information theory thus offers tools for quantifying causal relationships between data.
By observing the system behavior over time, we will show that the delayed mutual
information between a variable and the rest of the system is strongly correlated with
the ability of that variable to control the system, at least for the well-known voter
model with-noise. Importantly, this measure of information can be applied without
any knowledge of the rules governing system dynamics or interaction topology, “sim-
ply” observing the agents’ state. This study suggests that the degrees of freedom of a
complex dynamical system can be classified according to their level of influence, mea-
sured from delayed multi information. The level of influence of a given state variable
can be used to determine the set of most important variables governing the temporal
evolution of a system. In particular, we will show that the behavior of the most influen-
tial variables provides an early warning signal in the voter model. Previously existing
results give negative answers about the possibility to control a system only based on
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the structure of the underlying interactions, without considering constraints on cost of
the control and the role of noise. We have therefore analyzed the impact of noise on
the influence of a given state variable and showed that the delayed multi-information
decreases with noise similarly to the reachability Gramians (a usual control measure)
until practical controllability is lost.

We were also interested in complex systems whose topology evolves over time. This
is a problem that appears in many practical situations where some links are created,
while others disappear. For example, in market systems, the topology naturally varies
according to the evolution of interactions between social (e.g. economic) agents. In
complex control systems, the temporal aspect often stems from technological choices,
for example when dynamic routing protocols are used (ad hoc wireless sensor/actuator
networks) or because reconfigurations based on discrete events are required (fault-
tolerant control). Structural controllability and observability are clearly affected by
these changes in the interconnection topology. The problem of inferring the topologi-
cal structure of systems from their measured outputs has already been studied in [42],
[1] [102], [89], mostly for small dynamic Boolean networks. In this thesis, we pro-
pose to use delayed mutual information computed on sliding time window in order
to detect topology changes for large systems more general than boolean networks. In
order to study a way of controlling a system, we’re interested in a classic problem: de-
termining a community partition of the graph representing the network. Our approach
is a little different from conventional methods, in that the elements of the partition we
construct are linked to the dynamics of the system and do not depend solely on the
topology. We will define these influence community sets to differentiate them from
the classical notion of communities.

Finally, we also considered the problem of coarse-graining complex systems. The
goal was to explore the possibility to simplify the dynamics, by reducing the number
of degrees of freedom. We had in mind the possibility to consider the control of a
reduced system as a good approximation of the control of the full system. For this
purpose, the most popular reduction methods in the literature are generally based on
matrix decomposition algorithms and projections that preserve certain properties of
the system (see for example [4]). We rather focused on reduction by aggregation
methods more specifically adapted to complex systems where information is available
only on the system topology and local dynamics. We first considered, as an illustration
example, a voter model defined on a periodic one-dimensional topology (with only
nearest neighbors interactions), then generalized the investigations to systems defined
on graphs. We proposed a reduction method based on the partitioning of the graph into
communities, defined with respect to delayed mutual information. We then analyzed
whether the coarse-grained model is a good approximation of the original one and
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what good approximation means in this context.

Organization of the manuscrit

The manuscript is organized in 6 Chapters including introduction (chapter 1) and con-
clusion (chapter 6).

Chapter 1 presents the context of the thesis. Chapter 2 introduces some basic concepts
necessary for a good understanding of the thesis. Personal contributions are presented
in chapters 3, 4 and 5. Finally, chapter 6 presents the conclusion of the work and the
future prospects.

Chapter 2 lays the foundations for understanding the other chapters. We begin by
presenting complex systems and their representation by graphs. In the first section,
we give some basic notions of graphs and discuss the tools that allow graphs to be
studied structurally. In the following section, we define some principles of control
theory: controllability, reachability and observability. We give the Kalman criteria.
We also discuss the problems associated with large systems, which require an in-
depth study of the structure of these networks in order to control them, and sometimes
to simplify them. To conclude this chapter, we present elements of Claude Shannon’s
information theory, which we will use in the following chapters to propose ways of
controlling complex systems.

In chapter 3, we make the link between controllability and information theory. After
addressing the notion of causality, we define delayed mutual information, which en-
ables us to quantify the temporal causality between two events, and present the means
of calculating it by sampling : we observe the behavior of the system to obtain our
samples, and then we use sampling method to obtain the probability which allows us
to calculate the mutual information.1 We then define the voter model, which will be
used as the running example throughout the thesis. The chapter ends with the first
results obtained on this voter model, related to the influence of the agents (nodes) and
its relation with control.

In chapter 4, we focus on system topology. We show that by observing the behavior of
the system, and by calculating the delayed mutual information and multi-information,
we are able to recover the overall structure of the system. We also show that it is
possible to detect topology changes over time. Finally, we see that information theory
allows us to obtain an original way of decomposing a graph representing a system into
communities of influence.

In chapter 5, we present a method for simplifying a system by coarse graining. We first

1We also define multi-information, which allows us to quantify the influence of an agent on the whole
dynamical complex system. As we shall see in the definition of a complex system ( def. 2.1.1, an agent is
the name often given to a component of the system.
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apply this simplification to deterministic cellular automata, and then apply it to a prob-
abilistic system: the 1D voter model. Using mutual information, we quantify the error
induced by the reduction of the system. We conclude the chapter with the application
of the proposed coarse-graining method to the the example of a voter model defined
on a scale-free graph, using the community of influence decomposition obtained in
the previous chapter.





2 | Basic concepts

2.1 Dynamical complex systems on graphs

2.1.1 Complex systems

Definition

Complex systems are used as models in many disciplines: biology, physics, chemistry,
human sciences (linguistics, economics, sociology, psychology, etc.) or computer
science. We can give as classical examples of complex systems the economy and
financial markets, the brain, road traffic, the Internet and ecosystems. It is difficult to
give a precise technical definition of what complex systems are. We will therefore use
the following definition, which covers the main characteristics of complex systems as
outlined by Ladyman and Lambert in their paper ”What is a complex system?” ([53]).

Definition 2.1.1. Complex systems are composed of a large number of components,
often named agents, that can be heterogeneous. There are many interactions between
the components and these interactions are non-linear and lead the system to have be-
haviors that cannot be trivially inferred from the behavior of an isolated agent.

According to Newman [76], complex systems theory is divised into two approaches,
each of them with specific methodology:

• the creation and study of simplified models can use of dynamical systems the-
ory, game theory, information theory, cellular automata, networks, computa-
tional complexity theory, and numerical methods. These approximate models
do not provide the exact behavior of the system, but rather focus on the most
important data (reducing the computation time required for simulations).

• the creation of more comprehensive and realistic models. This approach use
quite often uses Monte Carlo method or agent-based simulation methods.

The idea of the complexity of a system may be linked to different characteristics such
as non-linear interactions, multiple interactions between many different components,
a system or component that by design or function or both is difficult to understand
and verify, the size of the system. These characteristics have for consequence the
unpredictability of the behavior of the system. This unpredictability is related to the
difficulty of calculating states over time, either because of the large size of the system

9
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or because of the dynamics. In the paper ”What is a complex system” [53], Ladyman
and Lambert propose to quantify complexity using entropy, which is an information
theoretic metric that quantifies unpredictability. On the other hand, complex systems
have a sophisticated internal causal architecture that stores and processes information.
Information theory seems thus seems a natural approach to study these complex sys-
tem [32]. Some concepts from information theory will be presented in section 2.3.
To model the causal structure in complex systems, we will also use another field of
mathematics: graph theory [73].

Graph theory to analyze complex systems

Graph theory offers methods to describe the structure and analyze complex systems.
Graphs are defined by nodes and links between them. Links can represent physical
relationships between nodes or represent causal links between node states.
For example in [103], Spulber represents the brain by a graph where the nodes are the
neuronal elements (neurons) that are linked by edges representing physical connec-
tions (synapses). Becq et al present a method for the estimation of oriented graphs of
connectivity between signals from different areas of the brain [3].
In the field of economics, graphs are also used to represent complex systems that allow
us to model economic relationships. For example, in the 1970s, as part of the Club
of Rome’s research program, an attempt to describe the world system was proposed,
called the world3 model [67], [90] . This model simulates the interactions between
world population, industrial growth and food production within the limits of the earth
ecosystem. There are 315 variables divided into 5 subsystems: population, capital,
pollution, agriculture, non renewable resources. The evolution of these parameters is
characterized by differential equations. Figure 2.1 shows us a graph representing the
interactions between the sub-systems, and indicates the exogenous variables in each
sub-system that originate from the other sub-systems. For example, we can see in
this figure that the variable IO (Industrial Output), which is the quantity of produc-
tion of material, variable from the sub-system capital, influences the values of certain
variables in the agriculture sub-system, and that the world population (POP) has an
influence on variables in all the sub-systems. The list of variables and the equations
that define the dynamics of the world3 model are detailed in the paper [30].
From the simulations of this model, Meadows et al proposed a report on the limits of
growth ([66]).

The last example we will present is the epidemic propagation model. It can be repre-
sented by a graph where each node is a person and the physical links between people
that allow contamination of a healthy person by an infected person are represented by
the edges. In the case of the SIR model, there are 3 possible states for each vertex: S
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Figure 2.1 – Interaction between world3 model subsystems: the valuations of incoming
arcs are the exogenous variables of the subsystems that influence them.

(Susceptible) , I (Infected) or R (Recovered).
Knowing the epidemic’s propagation dynamics, the model can be used to simulate its
spread, testing scenarios (containment, detection, vaccination) in an attempt to limit
its spread.

We have just presented three examples, but the fields of application are very diverse
(automobile traffic [95], [8], biology [50], economics [19], [35], ...).
In the next section, we define the concept of graphs and present graph-theoretic tools
used to study the structure of complex systems. This structural analysis enables us
to predict and understand system behavior. It is also important when it comes to
controlling the system.

2.1.2 Dynamical systems on graphs

We will start this section by defining undirected graphs, followed by directed graphs:

Definition 2.1.2. An undirected graph is a pair G = (V,E) with V is a non empty
finite set of elements called vertices and E is a set of pairs of elements of V , called
edges.
Let V = {x1, x2, ..., xn} and E = {{x, y}, (x, y) ∈ E2 and {x, y} is an edge}
x and y are neighbors or adjacent if {x, y} is a edge of G.
We note:
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• Nx the set of neighbors of x i.e. Nx = {y ∈ V, {x, y} ∈ E}.

• Ex the set of edges at x i.e. Ex = {{x, y}, y ∈ V and {x, y} ∈ E}.

Figure 2.2 – Undirected graph G = (V,E) with V = {a, b, c, d, e} and E =

{{a, b}, {a, d}, {b, d}, {b, c}, {d, e}}

Definition 2.1.3. The order of a graph is its number |V | of vertices.
The size of a graph is its number |E| of edges.

In directed graphs, edges are ordered pairs rather than pairs.

Definition 2.1.4. A directed graph is a pair G = (V,E) with V is a non empty finite
set of elements called vertices and E is a set of elements of V , called edges.
Let V = {x1, x2, ..., xn} and E = {(x, y), (x, y) ∈ E2 and (x, y) is an edge}
(x, y) ∈ E if and only if there is an edge from x to y.
x and y are neighbors or adjacent if (x, y) is a edge of G.

The edges of oriented graphs are also called arcs or directed links.

Figure 2.3 – Directed graph G = (V,E)

with V = {x, y, z} and E = {(x, y), (x, z), (z, x), (z, y), (y, y)}
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In this thesis, we will generally consider undirected graphs, except in section 3.3.2
where we study a 1D voter model. Whenever we talk about a graph G = (V,E), by
default this means, it is an undirected graph.

Definition 2.1.5. Let be G = (V,E) a graph.
The degree of a vertex x, noted d(x) or dG(x) is the number |Ex| of edges at x.

We can represent a graph G by the lists of the neighbors of each vertex or by a matrix
called the adjacency matrix of G.

Definition 2.1.6. The adjacency matrix of the graph G = (V,E) with V = {x1, x2, ..., xn}
is a Boolean matrix M defined by :

mi,j =

1 if {xi, xj} ∈ E

0 otherwise

In the case of a complex system whose topology is represented by a graph G = (V,E),
we study the behavior of the states of each vertex (or agent) over time. Let si(t) be
the state of agent i at time t. A frequent case, this state depends both on the graph
(topology) and on the states of all the vertices at previous time. In the discrete-time
case, the system dynamics may be characterized by a transition function fG (stationary
state-space model) such thatX(t+ 1) = fG(X(t))

X(0) = X0

(2.1.1)

where X(t) =


s1(t)

...
sn(t)


The equation 2.1.1 is called the global state equation of the system. It enables us to
study the behavior of the system. It defines the system dynamics, so that we can study
the system behavior, run simulations, observe the system, find a way to control it, i.e.
bring the system to a desired state, and determine its transient regime.
In some cases, the state equations are only defined ”locally” by giving an agent state
evolution as a function of the states of its neighbors. In this case, the dynamics of the
system is be characterized for each agent i by a function fi such that

si(t+ 1) = fi

(
(sj(t))j∈Ni

)
(2.1.2)

where Ni is the set of neighbors of the agent i .
For instance, a node (or agent) state can be the measurement of electrical activity in an
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electroencephalogram in the brain areas. For the epidemic spread model, the possible
state value for each agent can be susceptible, infected or recovered. In economic
models, states can be parameter values, such as a country’s GDP, the value of a stock,
etc. The states in the world 3 model are the values of all the data taken into account in
the model: population, agricultural production, industrial output, persistent pollution
index, Industrial Capital Output Ratio, etc.

The topology of the graph itself may evolve with time: edges and vertices may appear
or disappear.

In this case, the system’s dynamics is described with the dynamical graph: G(t) =

(V,E(t)) and the global state equation:

X(t+ 1) = f(X(t), G(t)) (2.1.3)

In section 4.3, we will present a way of detecting changes in system topology (appear-
ance and disappearance of edges), by observing the system behavior.

In the case of a large graph, it may be necessary or desirable to determine a simplifica-
tion of the system dynamics (complexity issues, lack of data). This problem is related
to graph agregation and system reduction. It will be seen in section 5.2.

Graph theory offers also helps to solve some control and observability. In the follow-
ing chapter, we present some results related to control theory and graphs.

2.1.3 Concepts about graphs

Generalities about graphs

As we’ll see later, the behavior of the dynamics of a complex system represented by a
graph is highly dependent on the structure of that graph. Thus, it is important to know
the graph topology. We will investigate two particular topologies: the complete graph
and the circular graph (see figure 2.4), for the sake of illustration.

Definition 2.1.7. Let (V,E) a graph with V = {x1, x2, ..., xn}.

1. (V,E) is complete if ∀(x, y) ∈ V 2, such as x ̸= y {x, y} ∈ E i.e. all possible
edges (but self-edges) are in E. We note Kn a complete graph of order n.

2. (V,E) is circular if ∀i ∈ J1;n− 1K, {xi, xi+1} ∈ E and {x1, xn} ∈ E.
We note Cn a circular graph of order n.

In figure 2.4, we can see a complete graph and a circular graph with n = 5.
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Figure 2.4 – K5 and C5

It’s easy to imagine that, for similar local dynamics, the global dynamical behavior
will be very different for these two graphs. For example, with the dynamic defined by:

si(t+ 1) ≡
∑
j∈Ni

sj(t) mod 2 (2.1.4)

if the initial state of the system is (s1(0), s2(0), ..., s5(0)) = (1, 1, 0, 0, 1), we have:

• for K5, ∀t ⩾ 1, (s1(t), s2(t)..., s5(t)) = (0, 0, 1, 1, 0)

• for C5, ∀t ∈ N,


(s1(3t+ 1), s2(3t+ 1), ..., s5(3t+ 1)) = (0, 1, 1, 1, 1)

(s1(3t+ 2), s2(3t+ 2)..., s5(3t+ 2)) = (0, 1, 0, 0, 1)

(s1(3t+ 3), s2(3t+ 3)..., s5(3t+ 3)) = (0, 0, 1, 1, 0)

We can see that in these two cases, with the same local dynamics (which implies only
the sum of neighbors state) the behavior is different.

2.1.4 Connectivity, paths, distance and components

For observability and controllability, the notions of paths and connectedness are im-
portant.

Definition 2.1.8. A path of a graph G = (V,E) is a sequence (α0, e1, α1, e2..., ek, αk)

where k ∈ N∗, (α0, α1, ..., αk) is a sequence of elements of V , (e1, e2, ..., ek) is a se-
quence of elements of E, and ∀i ∈ J1; kK, ei = {αi−1, αi}
The length of this path is the integer k. We can note ℓ(α0, e1, α1, e2..., ek, αk) = k

A path is a walk if the vertices α0, α1, ..., αk are two by two distinct.
The distance between two vertices x and y is the minimum length of the paths con-
necting these two vertices. We note this integer d(x, y).

Now, we can define a connected graph:
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Definition 2.1.9. G is a connected graph if between any pairs of vertices, there exists
a path.

This concept of connected graph allows us to define the notion of connected compo-
nent in a graph.

Definition 2.1.10. Let G = (V,E) be a graph. A component G1 of G is a maximal
connected subgraph in G which is maximal with respect to the inclusion order (there
is no connected subgraph strictly containing G1).

Remark 2.1.11. In a connected graph G, the only connected component is G.

For any graph, there is a connected subgraph partition. If a complex system is rep-
resented by a non-connected graph, we will not be able to control the system from a
single vertex. In this case, it is necessary to consider a local control for each subgraph
of the partition independently. For this reason, in this thesis, we will only consider
connected graphs.

Definition 2.1.12. Let be G = (V,E) a connected graph, the diameter of G is a
positive integer, defined by δ(G) = max

(x,y)∈V 2
d(x, y)

The diameter plays an important role in control systems, because the influence of one
node on the others depends on the distance separating it from them. The diameter is
therefore an important parameter in control cost.
On the other hand, the topological study of a graph makes it possible to identify those
agents who have a strategic location and should have the greatest influence.

Graph metrics

We are now going to define some measure of vertices relative importance (see e.g.
Newman’s book ”Networks” [76] for details).

Definition 2.1.13. The Clustering coefficient for node i is defined as:

Ci =
(number of pairs neighbors of i that are connected)

(number of pairs of neighbors of i)
(2.1.5)

We can write:

Ci =
2|Ti|

ki(ki − 1)
(2.1.6)

with ki = d(i) is the degree of i, Ti = {{i, j, k},
(
{i, j}, {j, k}, {k, i}

)
∈ E3}

The clustering coefficient of a node, is a measure of the interconnections of its neigh-
bors.



17 2.1. Dynamical complex systems on graphs

Definition 2.1.14. In a connected graph with n nodes, closeness centrality is a mea-
sure of the inverse of the average shortest distance from each vertex to each other
vertex.
Let G = (V,E) a connected graph, the closeness centrality of vertex i is the real value
cc(i) defined by :

cc(i) =
n

n∑
j=1

d(i, j)

(2.1.7)

This quantity enables us to identify the vertices that have a central position in the
graph. This position has a role to play in the influence that an agent can have on the
system. Identifying central vertices is therefore an important element in controlling a
system, as the influence of each vertex on the others depends on the distance between
them. But this is not the only element to be studied: the number of neighbors is also
important, (i.e. the degree), and is a criterion for choosing which vertices to force to
achieve a desired system state. The number of routes through a given vertex also plays
an important role in this choice. It is quantified by betweenesss centrality.

Definition 2.1.15. The Betweenness centrality of a node k is a real value ∆(k) defined
by

∆(k) =
∑

i ̸=j,i ̸=k,j ̸=k

σij(k)

σij
(2.1.8)

where σij is the number of shortest paths between i and j, and σij(k) is the number
of these paths that pass through k.

2.1.5 Community, modularity

The notion of community is an important concept when studying a complex system
modelled by a graph. Communities are of interest to simplify a large system (reduc-
tion or coarse graining), and to suggest a strategy when trying to control a system.
For dynamical systems, the knowledge of the community structure is very useful: it
makes it easier to study the behavior of the network (for instance to control or to ob-
serve it) because we can decompose these problems into smaller problems defined on
the communities subgraphs. Despite its importance, there is non unique and formal
definition of community. In some cases, the communities are not disjoint two by two.
For example, in social networks, a person can belong to different communities. In
other cases, the set of communities is a partition of the set of vertices in the graph.
This is the case we will consider in this thesis. In the literature (for example [117],
[10], [14]), a community is often (informally) defined as a dense sub-graph weakly
linked to the rest of the graph. This idea is illustrated in figure 2.5 for the partition of
a graph into 7 disjoint communities.
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Figure 2.5 – Example of a graph partitioned into 7 communities. Nodes of the same
color belong to the same community

For a given graph, there are several possible community partitions. To evaluate these
different partitions, we need a function that assesses their quality. The most widely
used quality function is the modularity.

Definition 2.1.16 (Newman and Girvan [74]). Let G = (V,E) be a graph and M its
adjacency matrix, the modularity of a partition C = {c1, c2, ..., cp} is the real value Q

defined by:

Q =
1

2m

∑
i,j

(
mi,j −

kikj
2m

)
δ(ci, cj) (2.1.9)

where m is the total number of edges of the graph, mi,j is the coefficient (i, j) of the
adjacency matrix, ki is the degree of agent i, ci = {1, 2, ...p} is a label specifying the
community of node i, p is the number of communities and δ is the Kronecker symbol,
we have

δ(ci, cj) =

1 if ci = cj i.e. i and j are in the same community

0 otherwise

This notion of modularity is a mean of giving a formal definition of communities in
the case where the set of communities is a partition of vertices, and when the number
of communities is fixed. In this case, we can say that the p communities are the p
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subsets that form a partition of the set and maximize the modularity. But there are
other possible definitions of communities. Fortunato [34] identifies three variants of
definitions: the locally oriented definition, the globally oriented definition and the one
based on node similarity. In the first variant, the intrinsic quality of each community
taken separately and independently of the whole graph is evaluated. The second vari-
ant assigns a quality criterion to the entire graph to check that the set of communities
is coherent as a whole. The third variant is based on the notion of node similarity. To
determine communities, we will use the second approach because it’s well suited to
the scale-free graphs we will be considering (these graphs have hubs).

The determination of communities has taken on a very important role in research with
the development of social networks. But, as there is no formal universal definition of
communities, there are many different ways of determining them.

Girvan and Newman [39] and Raddicchi [88] proposed an algorithm that uses edge
betweenness as a metric to identify the boundaries of communities. Boccaletti et al.
[11] show how to combine topological and dynamic information in order to identify
the community structure of a graph. Karrer et al. [51] propose a method to measure
the robustness of a community structure with small perturbations.
In section 4.4, we present an original method for determining communities by study-
ing the influence of the nodes on the system, without knowing the interaction topol-
ogy in the system. In our case, we want to define a network partition to facilitate
system control. Consequently, the communities we build depend on the dynamics of
the system. This means that the notion of community we’re considering is somewhat
different from conventional definitions. So we will use a different name: community
of influence. We will see that these notions of communities can coincide for certain
dynamics.
Most methods for constructing a community partition are static and use only the topol-
ogy of the system, such as the Louvain method [10] which maximizes modularity. We
propose a different approach, which in some respects resembles the random walk
method based on Markov stability described in the papers [83], [27], [17]. In both
cases, communities are determined using the dynamics defined on the network.

One aim of the partitioning of a system into communities is to obtain simplified system
dynamics. The concept of a graph community is expected to enable us to reduce the
system by agregation and consider each community, which are generally of different
sizes, as a supernode. These supernodes are obtained by merging the nodes of each
community. We define a new graph where the new nodes are these supernodes, and
we define the states of these supernodes as functions of the states of the nodes in these
communities. This involves determining the dynamics of the simplified system for the
states of these supernodes. The reduction may greatly reduce the computational cost,
but introduce an error between the real system and the simplified system, which we
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need to be able to evaluate. In the section 5.2, we look at this problem.

2.1.6 Graph representation for complex systems

There are several approaches to generate graphs that can model complex systems. In
this section we will present three specific networks: the Erdös-Rényi random net-
works, small world networks and Barábasi scale-free networks. We are only going to
present the intuitive ideas behind models which generate these three kind of graphs.
First, we will present the model established in 1959 by Paul Erdös and Alfréd Rényi.
We will introduce this model because it was one of the first random graphs to appear
in the 50s and has been the most widely studied. This network model is very simple.
In many branches of the social sciences it is necessary to have more elaborate mod-
els. We will introduce therefore the Watts and Strogatz’s small-world graphs. These
small-world networks have their origins in an experiment by Milgram, whose aim was
to demonstrate that everyone can be linked to any other individual by a short chain of
social relations. Finally, we’ll look at another type of model: preferential attachment
graphs. The principle behind these randomized graphs is that as the graph grows, each
node added is preferentially linked to nodes of greater degree.

Erdős-Rényi model

This first theoretical model was defined by Paul Erdős and Alfréd Rényi [31] in 1960.
This model is characterized by a graph Gn,p with n is the number of vertices, and p is
the probability that each pair of vertices {xi, xj} is an edge. With this construction,
we obtain a uniform distribution of edges between pairs of graph vertices. The degree
of each vertex thus follows a binomial distribution of parameter (n, p).

Small world graph of Watts and Strogatz

A small-world network is a type of graph in which most nodes are not direct neighbors
of one another, but most nodes can be reached from every other by a small number
of hops [110]. The concept of small world comes from Milgram’s work [68] in the
60’s. Milgram was a social psychologist who took up the concept of the 6 degrees of
separation invented by a Hungarian writer. This theory states that each of us on earth
can be connected to another person by following a chain of acquaintances containing
no more than 6 people. Milgram conducted several social experiments to measure the
diameter of social networks. His work led to the conclusion that the world was made
up of several small worlds.
Watts and Strogatz published a paper [110] in 1998 that proposes a model for small
world graphs. This model represents social networks where close relationships are
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Figure 2.6 – Example of an Erdős-Rényi graph with n = 100 and p = 0.1

privileged, i.e. each person has mainly social links with geographical neighbors, and
a few more distant social links. A graph is said to be a small world if the shortest path
between two nodes has an average logarithmic length equal to the number of vertices.

Watts and Strogatz small world graphs are defined from 3 parameters (n,m, p). The
natural numbers n and m are respectively the order of the graph and the half order of
each node’s small world, and p is the probability of redeployment of each initial edge
(p ∈]0; 1[).
The original Watts and Strogatz model starts with a ring graph of n vertices in which
each vertex is symmetrically connected to its 2m nearest neighbors. Then, the con-
nections previously created between neighbors are rewired with probability p, to con-
nects to a randomly chosen vertex, avoiding self-connections, and typically creates
shortcuts between distant parts of the ring. The parameter p therefore tunes the level
of randomness present in the graph, keeping the number of edges constant. With
this construction, the rewiring process does not change the average degree which is
k = 2m. According to Watts and Strogatz, only a very small percentage of random
”shortcuts” is needed for this model to be a small world. So we need to choose a
value of p small enough to have few shortcuts. Figure 2.7 shows the different steps of
construction of the small world model of Watts and Strogatz. There are many other
models that give small world graphs, for example Barábasi and Albert’s model, which
we will now describe.
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Figure 2.7 – Generation of a small world graph with a Watts-Strogatz model. Step
1 : generate a ring graph. Step 2: add the vertices that connect the nodes with the
2m nearest neighbours. in this case, m = 3, for exemple for the node 5, it is already
connected to nodes 4 and 6, we add the links with 2, 3, 7 and 8. Step 3: for each
existing edge (i, j), it is removed with a probability p. Rewiring is done by replacing
(i, j) with (i, k) where k is chosen uniformly at random from all possible nodes while
avoiding self-loops.

Scale free graph

In the 1970s, Price became interested in the citation network of scientific papers. He
proposed a model in 1976 [87]. Price’s idea was that the number of new citations a
paper receives was proportional to the number of citations it had previously received.
The same behavior can be observed for other growing networks, such as the World
Wide Web. This model was a growing network of papers represented by a directed
graph with a preferential attachment. The nodes of the graph are the published papers,
and (a, b) is an arc when a has cited b. The result is a graph with preferential attach-
ment, if a new paper will tend to preferentially quote papers with the highest incoming
degree. The model obtained from this study was a network represented by a directed
graph with a preferential attachment.
Price’s model generates a power law degree distribution. There is a strictly positive
real number λ such that P (k) ∼ k−λ, where P (k) is the distribution of degree. It
is obtained by first counting the number of edges adjacent to each node, and then
dividing this number by the total number of nodes (frequencies of nodes of degree
k). When the degree distribution of a graph follows a power law, it is said to be a
scale-free graph. The description of this model can be found in Mark Newman’s book
Networks [72].
In 1990s Barábasi and Albert [5] have proposed a model based on the same idea of
preferential attachment as Price’s, except that the edges are non-oriented. In their
model, nodes are added one by one, and each node preferably connects to a set of
existing nodes. This model is represented by an undirected graph and the degree dis-
tribution is a power of degrees with λ = 3 (the proof of this result is in the Newman’s
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book [72]). The Barábasi-Albert model are reference network with hubs and quite
often a good representation of social networks.
These scale free graphs are defined from 3 integer values (n, k,m). The number n is
the order of the graph, k is the order of the initial graph and m is the number of links
created for each node added when we generate the graph. To obtain a scale free graph
of Barábasi and Albert, in the beginning, we start with complete graph of k nodes.
Then we add the vertices one by one. Each new vertex is connected to m existing
vertices with a probability that is proportional to the degrees of the existing vertices.
The probability pi that the new node is connected to node i is therefore:

pi =
ki∑
j

kj
(2.1.10)

where ki is the current degree of the node i. In figure 2.8, we can see a description
of the different steps of the construction of this scale free graph, and in figure 2.9, we
have an example of a Barábasi and Albert graph with n = 100. In the section 3.2, ,
we use this model to represent the social network of a voter model (see Fig. 3.2).

Figure 2.8 – Generation of a scale free graph. Step 1: we build a complete graph
of order k, here k = 3 . Step 2: we add a vertex, we connect it to m existing nodes
with probability 1/k. Here m = 2 Step 3, 4, ... n: we add a vertex, we connect it to m

existing nodes with probabilities pi = ki/(
∑

j kj) where ki is the current degree of node
i. In this case, when we add the edge 5, we have p1 = 3/10, p2 = 2/10, p3 = 3/10,

and p4 = 2/10.
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Figure 2.9 – Example of scale free graph with N = 100, k = 4 and m = 3

2.2 Reachability and observability of control complex
systems

2.2.1 Introduction

Control theory is a branch of applied mathematics concerned with the control of dy-
namical systems. It studies the possibility of acting on a time-dependent dynamic
system, in order to duve it at a desired configuration. Controllability and observabil-
ity were introduced by Kalman [48] , [47] in the case of a finite-dimensional linear
systems, and his results are now the basis of control theory. There are many fields of
application for control theory, including physics, chemistry, thermodynamics, aero-
nautics, computer science, biology, medicine, economics, etc. The aim of this chapter
is to present some general principles of control theory. We will start first with a gen-
eral study of linear systems, then we will consider the special case of large scale
systems (linear or non-linear). We will introduce the subject with continuous-time
systems, which are the most usual use in control, and then concentrate on discrete-
time systems, having exclusively used this type of model in this thesis. We will start
by defining the notions of controllability, reachability and observability. Then we will
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present some general results for linear discrete-time systems. Finally, we will look to
the problem of large-scale systems, for which it is difficult to apply the general prin-
ciples of control theory, the complexity of the calculations and the size of the systems
being limiting factors. Antoulas [4] became interested in this problem: he introduced
an approximation method for model reduction of large-scale dynamical systems. This
is a projection method which combines aspects of the Singular Value Decomposi-
tion (SVD) and Krylov based reduction methods. SVD is a three-matrix factorization
based on the algebraic and geometric properties of linear transformations. Kryvlov’s
method allows us to find solutions to the controllability and observability problems
presented in this chapter using properties of linear algebra. To control a large sys-
tem, Siljak [100] has a different approach based on linear algebra. Using structural
results from networks: he proposed to decompose it into sub-systems, and from these
determines a decentralized control method.

2.2.2 General principles of control theory

Mathematical system modeling

Many dynamical systems are described by a differential equation of the form:

ẋ(t) = F (t, (x(t))

x(t0) = x0

(2.2.1)

with
x(t), the state vector of the system.
ẋ, the time derivative the time of the state vector x(t)
x0, the initial state vector.
F , the model, a vector field, which explicitely depends on t when the dynamics can
change over time. Let X be the state vector space, ∀t, x(t) ∈ X.
System 2.2.1 is an uncontrolled system. In control theory, we wish to act on the
system. The equation representing the system dynamics becomes:

ẋ(t) = F (t, (x(t), u(t))

x(t0) = x0

(2.2.2)

where, the vector u(t) denotes the control at time t. We select u(t) to modify the state
vector x(t) and orient it towards a desired state.
In the discrete-time case, the system can be represented by the following equations:
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x(k + 1) = f(x(k), u(k))

x(0) = x0

(2.2.3)

with x(k) ∈ Rn is the state vector and u(k) ∈ Rm is the control input.

Reachability, Controllability, and Observability

In this section, we present the concepts of controllability, reachability and observabil-
ity. We will start by defining the notion of energy, which is an important concept in
control theory: it allows us to quantify the cost of controlling a system, to quantify the
information we can obtain about system states from observations.

Definition 2.2.1. In the continous-time system case, let f a function from I ⊂ R to
K with K = R or C.
We say that f has finite energy if f ∈ L2(I,K) and in this case we can define the
energy of f as the real number ||f ||2 defined by

||f ||2 =

∫
I

|f(t)|2dt (2.2.4)

For a discrete-time system, let (xk)k∈J with J ⊂ N a sequence, we say that (xn) has
finite energy if (xk)k∈J ∈ ℓ2(J,K) i.e.

∑
|xk|2 is a convergent series and the energy

is the real number denoted ||x||2 defined by:

||x||2 =
∑
k∈J

|xk|2 (2.2.5)

For the definition of reachability, controllability, and observability we follow Antoulas
[4].

Reachability Let Σ be a dynamical system whose dynamics is defined by 2.2.2.
Let ϕ(u, x0, t) denote the state of the system reached at time t from the initial state
x0, under the influence of the input u(τ) for τ ∈ [0, t].
Let X be the state place.

The problem of reachability consists in finding the set of all final states x1 reachable
from a given initial state x0 at time t0 by with the appropriate input u.

Definition 2.2.2. A state x1 is reachable from the state x0 if there exists an input
function u of finite energy, and a time t1 finite such that:

x1 = ϕ(u, x0, t1)
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The reachable subspace Xr ⊂ X is the set containing all reachable states of Σ.
The system Σ is completely reachable from x0 if Xr = X.

According to the definition 2.2.1, for u(t) to have finite energy, we must have u ∈
L2([t0; t1].

For discrete-time systems, we have the following similar definition

Definition 2.2.3. For the system Σ defined by the equation 2.2.3, a state x1 is reach-
able from the state x0, if there exist a time n and input control vectors

u = (u(0), u(1), ..., u(n− 1))

such that
x1 = ϕ(u, x0, n)

where ϕ(u, x0, n) denote the state of the system at time t reache from the initial state
x0, with the input (u(0), u(1), u(2), ..., u(n− 1).

System Σ defined by the equation 2.2.3 is said to be reachable from x0 if any state is
reachable from x0.

Controllability The problem of controllability consists in finding the set of all
initial states x0 that are controllable to a final state x1.

Definition 2.2.4. A state x0 = x(t0) (x0 ∈ X) is controllable to the state x1 if there
exist an input function u(t) of finite energy, and a time t1 finite such as :

ϕ(u, x0, t1) = x1

The controllable subspace Xc ⊂ Σ is the set of all controllable state.
The system Σ is completely controllable

x0 and x1

For discrete-time systems, we have:

Definition 2.2.5. For a system Σ defined by the equation 2.2.3, a state x0 = x(0) is
controllable to the state x1, if there exist a time n and input sequence

u = (u(0), u(1), ..., u(n− 1))

such that
ϕ(u, 0, n) = x1
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Definition 2.2.6. System Σ defined by the equation 2.2.3 is said to be controllable to
x1 if any state is controllable to x1.

Remark 2.2.7. The notion of reachability is stronger than that of controllability. In
the continuous case, these 2 notions are equivalent (see [4]).

Observability Since the state of the system is often not directly measurable or ob-
servable, we introduce the notion of an output equation.

y(t) = C(x(t)) (2.2.6)

where y(t) denotes the vector of ”measured” values with usually depend on the state
vector x(t).
Typically, we put some sensors that allow us to study the system through measurement.

Definition 2.2.8. The dynamical system Σ defined by the equation 2.2.2 is said to
be observable if, for any state x0 ∈ Rn, there exists a finite time t1 and a control
u ∈ L2([t0; t1]) such that knowledge of y(t) for t ∈ [0; t1] enables the initial state x0

to be determined.

We have x1 = ϕ(u, x0, t1). The observation problem reduces to given C(x1), we can
find x0 For a discrete-time linear system, we have:

Definition 2.2.9. The dynamical system Σ defined by the equation 2.2.3 is said to be
observable if, for any state x0 ∈ Rn, there exists a finite time n such that knowledge
of y(n) enables the initial state x0 to be determined.

2.2.3 Linear dynamical system

In the linear case, the system dynamics are described by the following differential
system: 

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

x(0) = x0

(2.2.7)

where x ∈ Rn, y ∈ Rp, A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n with (n,m, p) ∈ N3

such as m ⩽ n and u ∈ L2([0;T ],Rm).
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In this thesis, we will focus on discrete-time systems1. The following equations de-
scribe the state-space model of a discrete-time linear control system Σ:

xk+1 = Axk +Buk

yk = Cxk

x0 ∈ Rn

(2.2.8)

where x ∈ Rn, y ∈ Rp A ∈ Rn×n, B ∈ Rn×m, uk ∈ Rm et C ∈ Rp×n

Thus the linear dynamical system Σ is characterized by the matrices A,B and C. We
note Σ = (A,B,C). Σ is represented in figure 2.10 together with an output feedback
linear controller K.

Figure 2.10 – Schema of a linear system Σ = (A,B,C). K is used to modify the
control according to observed values to achieve a desired state: u(k + 1) = Ky(k)

The state of the system xk corresponding to the control (ui)0⩽i⩽k−1 is:

xk = Akx0 +

k−1∑
i=0

Ak−1−iBui (2.2.9)

From the equation 2.2.9, we can define the controllability matrix:

Definition 2.2.10. The controllability matrix of the system 2.2.8 is the matrix Cn ∈
Rn×n2

defined by:
Cn = [A;AB;A2B; . . . ;An−1B]

Theorem 2.2.11 (Kalman’s criterion of controllability). The system is controllable if
and only if the rank of the controllability matrix is maximal, i.e. rank(Cn) = n

1In the book [26] the link from the continuous-time equation system to the discrete-time case is devel-
oped.



Chapter 2. Basic concepts 30

When the system 2.2.8 is controllable, we also say equivalently that the pair (A,B) is
controllable.
Controllability means that we have sufficient freedom to influence the system’s be-
havior and achieve any desired state by choosing input values appropriately.

Observabilility We consider the discrete-time linear control system represented by
the system 2.2.8. According the equations 2.2.8 and 2.2.9, we get:

yk = CAkx0 +

k−1∑
i=0

CAk−1−iBui (2.2.10)

Definition 2.2.12. The observability matrix of the system 2.2.8 is the matrix On ∈
Rnm×n defined by:

On =



C

CA

CA2

...
CAn−1


Theorem 2.2.13 (Kalman’s criterion of observability). The system is observable if
and only if the rank of the observability matrix is maximal, i.e. rank(On) = n

When the system 2.2.8 is observable, we also say that the pair (A,C) is observable.

The Kalman’s criterion allow to check wether the systems is controllable (resp. ob-
servable) or not. However, it does not account for how much effort is needed to do so.
For example, Razakanirina and Chopard [89] modelled a credit market and showed
that during a period of market instability, it is possible to return to a certain stability,
but this requires:

• either to wait a long time.

• or exponential growing amounts of money.

To quantify this control cost, we may use the Grammian that we are going to define
now.

Grammians

To define the Grammians, we need define the notion of a stability.
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We are now going to define particular state vectors that are an important role in the
study of control systems: steady states or equilibrim state. To determine these vectors,
it is necessary not to excite the system, so they are defined with a constant control
vector:

Definition 2.2.14. The steady state defined with a constant control uc is the state
vector Xeq that satisfies the fixed point equation:

Xeq = AXeq +Buc

Definition 2.2.15. The system 2.2.3 is stable if exists a state x such as:

∀ϵ > 0, ∃η > 0, ||x(0)− x|| < η ⇒ ∀k ∈ N, ||x(k)− x|| < ϵ

The system 2.2.3 is asymptotically stable if a state x exists such as lim
k→+∞

x(k) = x,

i.e.:

∀ϵ > 0, ∃k0, ∀k ⩾ k0, ||x(k)− x|| < ϵ

The equilibrium state is globality asympotically stable if for all initial state x0,
lim

k→+∞
x(k) = x

The following theorem characterizes this notion of asymptotic stability for linear
discrete-time system.

Theorem 2.2.16. The system 2.2.8 is asymptocally stable if all the eigenvalues of the
matrix A are strictly less than 1 or less than 1 and any eigenvalues on the unit circle
have multiplicity one.

This theorem is a consequence of the equation 2.2.9.

We define hereafter observability and controllability Grammians for asymptotically
stable linear discrete-time system of the form 2.2.8.

Definition 2.2.17. The Controllability Grammian W c and the Observability Gram-
mian W o, also called grammian matrices, are respectively defined by

W c =

+∞∑
k=0

(
AkBBT (AT )k

)
(2.2.11)

W o =

+∞∑
k=0

(
(AT )kCTCAk

)
(2.2.12)
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The Controllability Grammian W c is related to the minimum energy of the control
signal (uk) required to stear the state from an initial state x0 = 0 to a final state xf on
an infinite time horizon.
This minimum energy of the input sequence (uk) may be computed as:

||u||2 = lim
n→∞

n∑
k=0

|uk|2 (2.2.13)

= lim
n→∞

n∑
k=0

uT
k uk (2.2.14)

= xT
f (W

c)−1xf (2.2.15)

On the other hand, the energy for some output signal (yk) is:

||y||2 = lim
n→∞

n∑
k=0

|yk|2 (2.2.16)

= lim
n→∞

n∑
k=0

yTk yk (2.2.17)

= lim
n→∞

n∑
k=0

xT
0 (A

T )kCTCAkx0 (2.2.18)

= xT
0 W

ox0 (2.2.19)

From this energitical interpretation, it may be seen that Grammians provide both nec-
essary and sufficient conditions for observability or controllability, and, in the same
time indicate how much controllable or observable are the nodes in the state space.

Theorem 2.2.18. Assume system 2.2.8 is asymptotically stable. Then

• The pair (A,B) is controllable if and only if the controllability Grammian W c

is positive definite.

• The pair (A,C) is observable if and only if the observability Grammian W o is
positive definite.

Expressions 2.2.11 and 2.2.12 are difficult to use for calculating Grammians. The
following theorem provide Lyapunov equations which may be solved to obtain nu-
merically the Grammians:

Theorem 2.2.19. The controllability grammian W c and the observability Grammian
W o are the respective semi-definite positive solutions of the Lyapunov equations:

−W c +AW cAT = −BBT (2.2.20)

−W o +ATW oA = −CTC (2.2.21)
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Example

We now present an example of a discrete linear system. A shepherd manages a number
of sheep in his herd. Let xa(k) be the number of hundred of sheep with age a ∈
{1, 2, 3+}
Each year, wolves decimate 30 percent of the flock, and 10 percent of the sheep aged
3 (and over) die of old age.
Sheep aged 1 year do not reproduce, sheep aged two years have an average of 0.6
lambs and those aged 3 years and over have an average of 0.4 lambs.
The shepherd buys or sells sheep aged 3 and over.
The control uk is the number of hundred of sheep bought, or sold (uk < 0).
The output yk is the total number of hundred of sheep in the herd.

The state of the herd is represented by the following system of equations:
x1(k + 1) = 0.6x2(k) + 0.4x3(k)

x2(k + 1) = 0.7x1(k)

x3(k + 1) = 0.7x2(k) + 0.6x3(k) + u(k)

y(k) = x1(k) + x2(k) + x3(k)

(2.2.22)

Let X(k) =
(
x1(k) x2(k) x3(k)

)T
.

At the initial moment, the shepherd has 100 sheep of each age, X(0) =
(
1 1 1

)T
.

The system of equations 2.2.22 can be written as:X(k + 1) = AX(k) +Buk

Y (k) = CX(k)
(2.2.23)

with A =

 0 3/5 2/5

7/10 0 0

0 7/10 3/5

, B =

0

0

1

 and C =
(
1 1 1

)
.

The controllability matrix is:

C2 = [A,AB,A2B] =

 0 3/5 2/5 2/5 6/25

7/10 0 0 0 7/25

0 7/10 3/5 3/5 9/25


The rank of this matrix is 3, so the system is reachable.
And the observability matrix is:

O2 =

 A

CA

CA2

 =


0 4/5 2/5

9/10 0 0

0 9/10 3/5

9/10 17/10 1

153/100 81/50 24/50
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Its rank is also 3, so the system is observable.
The eigenvalues of A are λ1 ≃ 0.973, λ2 ≃ −0.490 and λ3 ≃ 0.117.
as the eigenvalues are strictly less than 1, according the theorem 2.2.16 , the system is
asymptotically stable.
By solving the Lyapunov equations 2.2.20 and 2.2.21, we obtain the controllability
Grammian W c and the observability Grammian W o:

W c =

1.745 1.154 2.390

1.154 0.855 1.569

3.390 1.569 4.276

 (2.2.24)

W o =

14.699 20.169 15.817

20.169 27.957 21.832

15.817 21.832 17.100

 (2.2.25)

Using the equation 2.2.19, the energy by observing is:

E = ||y||2 = X(0)TW 0X(0) = 175.392

Let’s now consider that we can only observe the number of sheep in one age class of
the flock. If it’s the number of sheep aged 1 year, we have C1 = (1 0 0). Similarly
we have C2 = (0 1 0) and C3 = (0 0 1) respectively for sheep aged 2 years, and
those aged 3 years and over. For these 3 cases, we obtain the following Gramians and
observability energy

W o
1 =

2.474 1.933 1.502

1.933 3.007 2.288

1.502 2.288 1.745

 and E1 = 14.699 (2.2.26)

W o
2 =

1.212 0.947 0.736

0.947 2.474 1.121

0.736 1.121 0.855

 and E2 = 27.957 (2.2.27)

W o
3 =

2.619 3.533 2.745

3.533 5.344 4.182

2.745 4.182 4.276

 and E3 = 17.010 (2.2.28)

The results obtained suggest that it is preferable to know the total number of animals
in the herd: in fact, this observation has the highest energy of the 4 proposed, which
means that less effort will be required to find the number of animals in each age class.
If only one of the 3 age classes is known, for the same reason, we’d rather observe the
number of 2-year-old sheep.
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2.2.4 Structural approach for control systems

The structural study of the system allows us to orientate the strategy to be followed to
control a system, for instance in choosing actuators and sensors locations. The topo-
logical structure of the graph representing the links between its state variables input
and output has an important role in this strategy. This approach to structural con-
trollability was introduced by Lin in 1974 [56]. In this paper, he defines the concept
of structural controllability and proposes some results in the linear case. Commault
and Dion have proposed numerous results about this subject, including the following
articles [22], [23], [28]. Liu, Slotine and Barábasi are also interested in the theory
of structural controllability, including the case of non-linear systems [58], [59], [61],
[60]. In particular, they emphasise the importance of knowing the degree distribution.
Knowledge of the structure is all the more important when the parameters of the sys-
tem and the values of A are not known, or when the system is non-linear. Indeed, in
these cases, it is not possible to obtain the states over time or the computations may be
complicated to obtain them. Knowledge of the graph structure allows their to deter-
mine the nodes that should be influential, as well as those that have a minor role in the
dynamics of the system due to their position in the graph (regardless of the numerical
values for model parameters).

Gao et al. [37] study the impact of topology on the effectiveness of target control2.
They present methods for determining pilot nodes for control when the network struc-
ture is perfectly known. They show that degree heterogeneous networks are target
controllable with higher efficiency than homogeneous networks and that the structure
of many real-world networks are suitable for efficient target control. For directed tree
networks, they prove that one node can control a set of target nodes if the path length
to each target node is unique. This example confirms that knowledge of the graph
structure plays a very important role in controlling a system.

Large system

In the literature, we find several definitions of large systems. These definitions are
based on the variety of these systems and the objectives for their study (control, in-
trinsic characteristics of the system, etc.). According to Siljak [100], a ”large system”
is a system which, for conceptual or numerical reasons, requires decomposition into
a number of interconnected sub-systems. For Mansouri et al. [62] a large system is
a system that we choose to see as a set of interacting subsystems, for reasons of re-
liability, flexibility, robustness, cost, etc. Claveau [21] considers that a large system
is characterized by a large number of dynamics, but also a large number of input and

2by target control, they mean efficient control of a preselected subset of nodes
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output variables.
These systems are often described using an extended spatial representation.
There is no accurate and universal definition of a large system, among others du to
the variety of topologies of these systems. In most cases, the global mathematical
state space model is not convenient for solving control problems and it is necessary to
implement a method of decomposition and/or reduction. We will briefly review two
different approaches. The first is based on a structural study of the system in order to
break it down into sub-systems. Following Siljak [99], [100],[101], a ”large system”
is then broken down into a finite number of interconnected sub-systems. This de-
composition into sub-systems leads to decentralized approaches for control problems.
The second approach proposes a reduction of the system without using information
on the network topology. This approach reduces the dynamics. Antoulas [4] presents
different methods using results from linear algebra, following this second approach.

Decentralized control and decomposition into interconnected subsystems Cen-
tralization and decentralization are two types of structure that can be found in gov-
ernment and management. Centralization of authority means that power and decision-
making is reserved exclusively for a central authority. In automation, most approaches
are based on a centralized control model. Siljak [99],[100] [101] has proposed a de-
centralized approach in the case of a large system . This approach requires a structural
study of the system in order to break it down into sub-systems. In this decomposition,
we can simplify the system by neglecting certain interactions between sub-systems,
and by truncating certain links.
In the case of linear systems, we can consider the following two types of decomposi-
tion: models relating to dynamically decoupled systems and models relating to output-
decoupled dynamic system, i.e. a system whose dynamic equations are coupled, but
whose observations are strictly local. In the first case, if we have N sub-systems, the
system is represented by the following equation system

∀i ∈ J1;NK, Eixi(k + 1) = Ai,ixi(k) +Biu(k)

Y (k) = CX(k)
(2.2.29)

In the second case, we have a system whose dynamical equations are coupled but
whose observations are strictly local. It is represented by:


∀i ∈ J1; pK, Eixi(k + 1) = Ai,ixi(k) +Biu(k) +

N∑
j=1,j ̸=i

Ai,jxj(t)

Yi(k) = CiXi(k)

(2.2.30)



37 2.2. Reachability and observability of control complex systems

With
Xi ∈ Rni , the state vector of the sub-system i

Ai,i ∈ Rni×ni , matrix of the dynamic of the sub-system i

Ai,j ∈ Rni×nj , matrix of the interconnection of sub-systems i and j

Bi ∈ Rm×ni ,

Ei ∈ Rni×ni ,
Yi ∈ Rni , the control vector of the sub-system i

ni is the size of the sub system i.
Once we have the subsystems, we can move on to a simpler form of local control.
One of the most fundamental problems in control theory is stabilization. In the case
of decentralized control of interconnected systems, it is generally necessary for the
overall closed-loop system to be stable, but also for the closed-loop subsystems to
be autonomous. Furthermore, stability is desirable even when disturbances occur at
the interconnections between the subsystems. This type of robust stability is called
connective stability. Connective stability is then a technique that guarantees the local
stability of each sub-system and the global stability of the overall system, while taking
into account the interactions of the sub-blocks. The study of the connective stability of
interconnected systems consists in ensuring the stability of the global system, which
consequently ensures the stability of all the sub-systems.

Model reduction We will now discuss the second approach, which is based on a
simplification of the system dynamics. For large dynamical systems, it is very difficult
to define a control law. Numerical determination of a solution (even an approximate
one) to a complex system requires significant computing ressources. Large size im-
plies problems due to the limits of memory space, computing capacity and precision.
Model reduction is therefore necessary. Reducing a model aims at limiting the num-
ber of variables while remaining faithful to the initial model. By reducing the size of
the problems, we achieve a smaller computational complexity, more stable numerical
calculation algorithms and, a fortiori, shorter simulation calculation times. Antoulas
[4] was interested in this problem of system reduction.
According to him, there are three main classes of efficient reduction methods for large
scale linear systems:

• those based on Singular Value Decomposition (SVD).

• those based on Krylov’s method.

• mixed iterative methods combining certain aspects of a of the two previous ones.

Whatever numerical linear algebra methods are used, the general purpose of the reduc-
tion methods is to project the dynamics onto a low dimensional subspace in the state
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space, while retaining the more controllable and observable modes (see, for instance
balanced realizations and truncations methods in [4]).

This reduction is also relevant for non-linear systems, where the complex behavior
of the system requires calculation algorithms whose convergence is not guaranteed.
However, in the non-linear case, there are mostly empirical methods such as PDD.

It is important to define the projection that will allow the least information to be lost.
Antoulas suggests using the orthogonal eigenvalue decomposition method, known as
principal component analysis and singular value decomposition (SVD). These meth-
ods are described in his book Approximation of Large-Scale Dynamical Systems [4].
Orthogonal eigenvalue decomposition is a data analysis method that enables us to
propose a reduction of a high-dimensional system by a much lower dimension.

As for Krylov methods, these are iterative methods consisting in projecting the ini-
tial problem onto a sequence of Krylov subspaces, transforming the problem into a
reduced-size problem that can be solved by direct methods and whose solution is an
approximation of the solution of the initial problem.

2.2.5 Conclusion

In this chapter, we have presented the main problems related to reachability and ob-
servability for complex control systems in the linear case. It is difficult to predict the
behavior of a large, complex system for several reasons. Firstly, complex systems
often exhibit emergent properties, i.e. behaviors or characteristics that result from
interactions between system components. On the other hand, the topology of large
complex systems can sometimes change over time due to internal dynamics and ex-
ternal influences, making it difficult to capture a static snapshot or accurately predict
future states. Simulating or modeling large complex systems often requires significant
computational power.
We have seen two different approaches. The first is based on numerical algebra meth-
ods for the reduction of large scale scale dynamical systems. These simplifications do
not require the use of network topology information. The second is based on structural
approach and decomposition methods. It makes use of the knowledge on the network
topology, but it doesn’t take into account quantitative information on the dynamics and
does not provide any information on the control cost. It is therefore unable to manage
control cost constraints. In this thesis, we propose to use information theoretic tools to
solve these problems. We will see that these tools allow us to determine the structure
of the system by studying its behaviour without knowing its topology. We will also
see that we can obtain means of quantifying the control cost.
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2.3 Some basic concepts from information theory

2.3.1 Introduction

The aim of this section is to present some concepts from the theory of information.
In 1948, Claude Shannon presented the foundations of this in his article ”A Mathe-
matical Theory of Communication” [98]. It is a probabilistic theory that has provided
tools for quantifying information, evaluating the performance of information systems.
Since the 1950s, information theory has undergone considerable development and has
been applied in many fields. In the same period, Wiener also worked on the concept of
information, his results were published in 1948 in the book ”Cybernetics, or Control
and communication in the animal and the machine” [112]. The measures of infor-
mation proposed by Shannon and Wiener are equivalent. In this chapter, the results
concerning entropy and mutual information are given without proof but it is possible
to find them in the books ”Elements of Information Theory” from Cover [25] and
”Théorie de l’information et du codage” from Rioul [93].

2.3.2 Quantity of information

We begin by presenting the measurement of the quantity of information. In this sec-
tion, we consider (Ω,A,P) a probabilized space, Ω is a set named univers, B is a
tribu, and P is a probability. To quantify the information of an event A ∈ A, the
chosen measure I(A) was constructed to satisfy these 3 requirements:

• If P(A) = 1 then I(A) = 0 (learning that a certain event has occurred does not
provide information).

• The information decreases as a function of the probability of the event.

• If A and B are independent events then I(A ∩B) = I(A) + I(B)

The following definition has been presented to meet these requirements [91]:

Definition 2.3.1. Let A be an event, the information of A is the quantity I(A) defined
by

I(A) = − log(P(A))

The choice of the base for the logarithm is arbitrary. We will use the base 2, which is
a natural choice when the information is measured in bits.
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2.3.3 Entropy

Let (Ω,A) be a probabilistic space, Ω is a set named univers, A is a tribu, a set of
evenements.
We will now define the entropy of a random variable. This measure is a way of quanti-
fying disorder, i.e. quantifying the unpredictability of the values taken by this random
variable.

Definition 2.3.2. Let X be a discrete random variable with a distribution
(
p(x)

)
x∈E

,
where E is the set of values taken by X (X(Ω) = E), the entropy of X is a number
H(X) which is the average information of events {X = x}, i.e. H(X) is defined by

H(X) = −
∑
x∈E

p(x) log(p(x))

with the convention 0× log(0) = 0

Property 1. Let X be a discrete random variable with a distribution
(
p(x)

)
x∈E

and
E = {x1, x2, ..., xn}, we have:

1. H(X) ≥ 0

2. H(X) ≤ log(n)

3. If X is uniformly distributed over {x1, x2, ..., xn} then H(X) = log(n)

In this case, the uncertainty about the value of X is maximal.

Joint entropy, conditional entropy

Definition 2.3.3. Let X and Y be two discrete random variables with joint distribution
p(x, y). The joint entropy of X and Y is defined as the entropy of the pair (X,Y ):

H(X,Y ) = −
∑
x

∑
y

p(x, y) log(p(x, y)) (2.3.1)

The definition of a pair of random variables will enable us to define the conditional
entropy. We saw above the definition of the entropy of a random variable, which
measures the uncertainty of the values taken by this random variable. The uncertainty
of a random variable Y knowing the value of another random variable X may be
measured by the conditional entropy.

Definition 2.3.4. Consider two discrete random variables X and Y with joint distri-
bution p(x, y), the conditional entropy of Y knowing X is defined as

H(Y |X) = −
∑
x

p(x)H(Y |X = x) (2.3.2)
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H(Y |X) = −
∑
x

p(x)H(Y |X = x) (2.3.3)

= −
∑
x

p(x)
∑
y

p(y|x) log p(y|x) (2.3.4)

= −
∑
x

∑
y

p(x)p(y|x) log p(y|x) (2.3.5)

= −
∑
x

∑
y

p(x, y) log(p(y|x)) (2.3.6)

We have the following bound of H(X|Y ).

Theorem 2.3.5. Let X and Y denote two discrete random variables. We have:

H(X|Y ) ⩽ H(X)

with equality if and only if X and Y are independent.

The definition of the joint entropy can be generalized with n random variables X1, ..., Xn,

Definition 2.3.6. Let be (X1, X2, ..., Xn) n discrete random variables with joint dis-
tribution p(x1, x2, ..., xn). The joint entropy of (X1, X2, ..., Xn) is defined as the
entropy of the vector (X1, X2, ..., Xn):

H(X1, X2, ..., Xn) = −
∑

x1,x2,...,xn

p(x1, x2, ...xn) log(p(x1, x2, ...xn)) (2.3.7)

Generalizing the conditional entropy, we obtain these following theorem:

Theorem 2.3.7. (Chain rules for entropy) Let X1, X2, ..., Xn n random variables then

H(X1, X2, ..., Xn) =

n∑
i=1

H(Xi|Xi−1, ..., X1) (2.3.8)

H(X1, X2, ..., Xn) ⩽
n∑

i=1

H(Xi) (2.3.9)

with equality if and only if Xi is independent of (Xi−1, Xi−2, ...X1) for all i (i.e. if
and only if the Xi are independant).

2.3.4 Mutual information

To measure the dependance between two random variables X and Y the idea is to
compare the entropy H(X) and the conditional entropy H(X|Y ), or by symmetry,
H(Y ) and H(Y |X). Therefore, we are interested in the values H(X)−H(X|Y ) and
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H(Y )−H(Y |X). Using 2.3.2 and 2.3.4, we obtain that these values are equal. This
quantity is called mutual information. It can also be defined as the Kullback-Leibler
divergence, i.e. the ”distance” between the distribution p(x, y) and p(x) × p(y) as
follow.

Definition 2.3.8. Let X and Y be two discrete random variables with joint distribution
p(x, y) and marginals p(x) and p(y). The mutual information between X and Y is
defined as :

I(X,Y ) =
∑
x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
(2.3.10)

Relationships between mutual information, entropy, joint entropy and conditional en-
tropy, are collected in the following theorem and represented in figure (2.11).

Theorem 2.3.9.

H(X;Y ) = H(X) +H(Y |X) (2.3.11)

= H(Y ) +H(X|Y ) (2.3.12)

I(X;Y ) = H(X)−H(X|Y ) (2.3.13)

I(X;Y ) = H(Y )−H(Y |X) (2.3.14)

I(X;Y ) = H(X) +H(Y )−H(X;Y ) (2.3.15)

Figure 2.11 – Relationships between mutual information, entropy, joint entropy and
conditional entropy

In the case where we consider the mutual information between a random variable Y

and a vector (X1, X2, ..., Xn) , we have a chain rule for information:
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Property 2.

I((X1, ..., Xn);Y ) =

n∑
i=1

I(Xi;Y |(Xi−1, ..., X1)) (2.3.16)

In complex systems, multi-information makes it possible to study the influence of an
agent’s state on the overall state of the system. Later on, we will use this notion to
bring the system to a desired state at minimum cost.

2.3.5 Capacity of a channel

A communication chain (see Fig (2.12)) includes a discrete source. This source gen-
erates a message constituted by a sequence of symbols {x1, x2, ..., xn}, each of them
belonging to an alphabet. The source is characterized by the random variable X .
When a message goes through such a channel, it’s routed between its input and its
output. The last element of the chain of transmission is the receiver. The random
variable Y characterizes the received message constituted by a sequence of symbols
{y1, y2, ..., yp}. This alphabet may be different from the alphabet of the source mes-
sage.
The channel itself is represented by transition matrix A which allows us to obtain the
output distribution knowing the input distribution :

A =


p(y1|x1) p(y1|x2) . . . p(y1|xn)

p(y2|x1) . . . . . . p(y2|xn)
...

...
p(yp|x1) . . . . . . p(yp|xn)


The capacity of the channel is the maximum of the mutual information between the
input and output messages, where the maximization is with respect to the input distri-
bution. We have the following definition :

Figure 2.12 – A communication chain

Definition 2.3.10. The capacity of the channel is the real C defined by

C = max
PX

I(X,Y ) (2.3.17)

where PX is the probability distribution of the source
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The capacity of a channel is the upper limit of the information rate that can be reliably
transmitted over that communication channel. This corresponds to the maximum in-
formation data rate that can pass through the channel.
In the case of a symmetric binary channel with an error probability ϵ, the transition
matrix is

A =

(
1− ϵ ϵ

ϵ 1− ϵ

)

We note

(
p(x0)

p(x1)

)
=

(
P (X = 0)

P (X = 1)

)
and

(
p(y0)

p(y1)

)
=

(
P (Y = 0)

P (Y = 1)

)
.

We take any input probability distribution

(
p(x0)

p(x1)

)
=

(
α

1− α

)
We have (

p(y0)

p(y1)

)
= A

(
α

1− α

)
=

(
ϵ+ (1− 2α)ϵ

(1− ϵ)− (1− 2α)ϵ

)
(2.3.18)

Thus
H(Y ) = H2(ϵ+ (1− 2ϵ)α) (2.3.19)

On the other hand

H(Y |X) = −
1∑

i=0

1∑
j=0

p(yj |xi)p(xi) log(p(yj |xi)) (2.3.20)

= −(1− ϵ)α log(1− ϵ)− ϵ(1− α) log(1− ϵ) (2.3.21)

− ϵα log(ϵ)− (1− ϵ)(1− α) log(1− ϵ) (2.3.22)

= −ϵ log(ϵ)− (1− ϵ) log(1− ϵ) (2.3.23)

= H2(ϵ) (2.3.24)

According to the theorem 2.3.15 and the equation above, we have:

I(X,Y ) = H(Y )−H(Y |X) (2.3.25)

= H2(ϵ+ (1− 2ϵ)α)−H2(ϵ) (2.3.26)

As the capacity of the channel is C = max
α∈[0;1]

I(X,Y ),

we have C = maxα∈[0;1]

(
H2(ϵ+ (1− 2ϵ)α)

)
−H2(ϵ)

For α =
1

2
, we have I(X,Y ) = H2(

1

2
)−H2(ϵ)

The channel capacity is therefore:

C = 1−H2(ϵ) (2.3.27)

For a symmetric binary channel, when we have C = 1 this means that there are no
transmission errors; when C = 0, the output data cannot be used to deduce the input
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data.
In information theory, capacity is a value that allows us to quantify the loss of in-
formation in messages passing through a transmission channel. It is therefore a very
important tool when choosing the construction of corrector codes for transmitting in-
formation. In the study of controllability problems, this notion of capacity can be very
useful. It allows us to quantify our level of control of a system by forcing an agent. As
capacity corresponds to the maximum threshold of information that can pass through
an information channel between 2 agents, by forcing the state of one agent, we know
how we can influence the states of the other agents.

In the next chapter, we will present the link between information theory and the con-
trollability of systems. First, we will define the delayed mutual information, which
will allow us to detect causal links between the states of different agents in a system.





3 |Observability of a complex sys-
tem: link with information the-
ory

3.1 Introduction and review

3.1.1 The concept of Causality

The concept of causality and the characterization of influence are very important in
many areas of science [84]. In the theory of control, it is fundamental to know which
variable to modify in a complex system in order to obtain a desired state. It is neces-
sary to identify the causal structure of a dynamical complex system in order to better
understand its dynamical behavior. In particular, it reveals how the different degrees
of freedom of a system influence each other. Once we have the causal model of the
system, it allows us to represent qualitative information and evaluate the influence of
a relevant variable on the overall performance of the system. Such a qualitative rep-
resentation format was developed by Pearl [85] in the context of the theory of causal
models.
The notion of causality has been raised by philosophers since antiquity. It’s still diffi-
cult to define, and it is important not to confuse causality with correllation. Two events
can have common causes, without there being a causal link between them. In many
scientific fields, the theory of probabilities is used to characterize causality.
Suppes [105] did describe in 1970 the probabilistic notion of causality as follows: An
event A is a cause of event B if :

• A occurs before B

• the probability of A is non-zero

• the probability of B knowing A is greater than the probability of B

This definition is unsatisfactory because, with probabilities, we can detect the correla-
tion between events but not necessarily the causality.
Granger [40], [41], based on work by Wiener [111] in 1956, was the first to propose
a practical, operational definition of causality based on prediction improvement. The

47
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concept of Granger causality is a characterization of causality between sequences of
data with a time lag. This characterization has been widely used in economics since
the 1960s. In recent years, Granger’s concept of causality has become very popular in
neuroscience, as a way of determining the causal links between different brain areas.
[97], [104].
In this thesis, our objective in causal modeling is not only to determine a cause and
effect relationship, but also to measure or quantify the intensity of this relationship.
Information theory offers tools to evaluate the intensity of this causality.

3.1.2 Controllability and information theory

Schreiber [96] defined a measure using the notion of mutual information which he
named transfer entropy, and which took into account the time lag between variables
variations. This tool allows us to determine the Granger Causality and has been used
in many fields. For example, in neurosciences, Amblard et al [2], [3] show that trans-
fer entropy can be used to assess Granger causality graphs of stochastic processes.
Becq and Amblard use it to detect Granger causality graphs in the analysis of elec-
troencephalographic signals [7] .

3.1.3 Measure of the influence: Delayed Mutual Information

We used a tool similar to transfer entropy that we named delayed mutual information,
inspired by the work of Gregor Chliamovitch [20].

Let us consider a set of random variables Xi(t) associated with agent i of a complex
system, taking values in a set E. For instance, Xi(t) = si(t) means that the state of
agent i at time t takes the particular value si(t) ∈ E

To measure the influence between agents i and j, we define the τ -delayed mutual
information wi,j : it’s the mutual information (see the definition 2.3.8) between the
random variables Xi(t) and Xj(t+ τ).

Definition 3.1.1. The τ -delayed mutual information between agents i and j at time t

is:

wi,j(t, τ) = I(Xi(t), Xj(t+ τ)) (3.1.1)

=
∑

(x,y)∈E2

pxy log
( pxy
pxpy

)
(3.1.2)

with
pxy = P(Xi(t) = x,Xj(t+ τ) = y)

px = P(Xi(t) = x) and py = P(Xj(t+ τ) = y)
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We notice that delayed mutual information is not a reflexive value (generally wi,j(t, τ) ̸=
wj,i(t, τ)).

We will use the delayed mutual information wi,j(t, τ) to quantify the influence of the
value of Xi at time t on the value of Xj at time t+ τ . To know the influence of Xi on
the system shifted by time τ , we need to determine the mutual information between
Xi and a measure which globally characterizes the state of the system.

3.1.4 Measure of the influence of one agent on the whole system:
Delayed Multi-Information

Let Y (t) be a random variable which characterizes the state of the system at the time
t. We also define the τ -delayed multi-information wi to measure the influence of the
agent i on the system.

Definition 3.1.2. The τ -delayed multi-information of an agent i at the time t is:

wi(t, τ) = I(Xi(t), Y (t+ τ)) (3.1.3)

We can take for instance:

Y (t+ τ) =
∑
k

Xk(t+ τ) (3.1.4)

When the values of the random variable Xi are Boolean, Y in 3.1.4 gives the number
of agents with the property X(t + τ) = 1. In that case, the multi-information allows
us to identify the most influential agents on the system, and possibility those agents to
force in order to control the overall system.

3.1.5 Calculation of the mutual information

To compute the mutual information, it is necessary to know the probability distribu-
tions of the 2 random variables and the joint law: the probability distributions of Xi(t)

and Xj(t+ τ) (resp. Xi(t) and Y (t+ τ)) together with their joint distribution for the
delayed mutual information (resp. the delayed multi-information). If these distribu-
tions are unknown, it is possible to obtain them by sampling, either in simulation or
by observing the behavior of the system. When the samples obtained are sequences of
independent random variables with the same law which admits a moment of order 2,
we can use the central limit theorem. It gives us the accuracy of these probability esti-
mations as a function of the sample size. In the sequel, we will consider set averages
of values obtained in many simulations. Since these simulations will be independent,
the sample values will be independent as well.
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If we don’t know the dynamics of the system or if these dynamics don’t allow the
calculation of these distributions, we can use the central limit theorem to obtain ap-
proximate values of these probability laws. We observe the behavior of the system,
and we note at each simulation the values of the state at time t and t + τ . We thus
obtain a sample of values which allows us to know approximate values of the proba-
bilities of the law of the random variable considered. We can evaluate the precision of
these values in function of N , the size of the sample.
We consider an attribute of the members of a population which appears with prob-
ability p. For a sample of size N drawn in this population, let Fn be the random
variable equal to the proportion of those elements having this attribute. According to
the Moivre-Laplace theorem, the random variable FN−p√

p(1−p)/N
converges in distribu-

tion to a Gaussian distribution: FN−p√
p(1−p)/N

−→
n→+∞

Y .

Therefore we may choose the size N of the sample according to the desired accur-
racy and risk for the values of the marginal and joint distributions. To compute the
τ -delayed mutual information , we then run N simulations between the instants t and
t+ τ , we obtain the states S(i, δ) value of the random variable Xi at the instant δ. We
initialize to 0 the matrix Np,q , and we apply algorithm 1.
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Algorithm 1 Compute τ -delayed Mutual Information
M the model
N is the number of simulations.
n is the number of agents.
SIMULATION is a procedure that executes a simulation and returns the list of agent
states at each time.

1: procedure IM=MUTUAL(M,N )
2: for k from 1 to p do
3: for ℓ from 1 to q do
4: Nk,ℓ ← 0n,n ▷ The coefficients of Nk,ℓ are the number of time

where we have the couple of state (k, ℓ)

5: end for
6: end for
7: for p from 1 to N do ▷ Run the procedure which execute simulations
8: S ← SIMULATION(Model, t, t+ τ) ▷ S is the array of states at the

instant t and t+ τ

9: for i from 1 to n do
10: for j from 1 to n do
11: k ← S(i, t)

12: ℓ← S(j, t)

13: Nk,ℓ(i, j) = Nk,ℓ(i, j) + 1

14: end for
15: end for
16: end for
17: for i from 1 to n do
18: for j from 1 to n do

19: IM(i, j)←
p∑

k=0

q∑
ℓ=0

Nk,ℓ(i, j)

N
log
( N ×Nk,ℓ(i, j)∑p

r=0 N
r,ℓ(i, j)

)
20: end for
21: end for
22: Return IM

23: end procedure

The complexity of this algorithm is O(N × t× n2). The coefficients i, j of Np,q are
the number of times the states of agent pair of agents i and j are equal to (p, q) at
respective times t and t+ τ .
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3.2 The voter model

3.2.1 Introduction

In this chapter, we present the model we have used to verify that information theory
offers tools that can be effective in enabling us to approach solutions to the problems
of controllability and observability.
We chose the voter model because it is a fairly simple model but with enough richness
to be not trivial.
Moreover, it offers a variety of behaviors, it applies to all types of states of a system
and may be applied for all topologies.
It is also close to other models, such as the epidemic models or neural circuits for
instance.
Castellano et al [18] defines a q-voter model in which an agent votes like its neigh-
bors if the opinion is unanimous; otherwise the vote is random. This model is used
by Nyczka et al. [78],[79]. In their paper, They study how different types of non-
conformity, introduced at the microscopic level, manifest themselves at the corporate
level. Our model is closer to those by Mobilia et al. [70] or Masuda [63] because, in
these models, agent’s vote depends on his neighbor’s majority vote. Brede et al. [15]
and Kuhlman et al. [52] propose a model where an agent randomly chooses one of its
neighbors, and decides to vote like him the next time. With this dynamics, Kuhlman
et al. study the effect of controlling the vote of some agents on the system for different
graphs. In the literature, there are many articles that deal with the effects of zealots, an
agent that does not change its vote, as defined by Mauro Mobilia [69], or inflexible as
defined by Galam and Jacobs [36]. For instance, in [70],[69] Mobilia et al. study the
role of zealots on the result of a vote and Masuda [63] showed the link between the
role of zealots and their degree (the higher the zealot’s degree, the more influence).
Morone et al. [71] have propose a numerical method to find these zealots by using
the adjacency matrix of the graph.
We will now describe the dynamics of the voter model used for the simulations in the
next section.

3.2.2 Description of the Voter Model

In the voter model that we have chosen for our investigations, a binary agent occupies
each node of a network. The dynamics is specified by assuming that each agent i
looks at every other agent in its neighborhood, and counts the percentage ρi of those
which are in the state +1 (in case an agent is linked to itself, it belongs to its own
neighborhood). A function f is specified such that 0 ≤ f(ρi) ≤ 1 and gives the
probability for agent i to be in state +1 at the next iteration. For instance, if f is
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chosen as f(ρ) = ρ, an agent for which all neighbors are in state +1 will turn into
state +1 with certainty. The update is performed synchronously over all n agents.
Formally, the dynamics of the voter model can be express as

si(t+ 1) =

{
1 with probability f(ρi(t))

0 with probability 1− f(ρi(t))
(3.2.1)

where si(t) ∈ {0, 1} is the state of agent i at iteration t, and

ρi(t) =
1

|Ni|
∑
j∈Ni

sj(t). (3.2.2)

The set Ni is the set of agents j that are neighbors of agent i, as specified by the
network topology. The global density of all n agents with opinion 1 is obtained as

ρ(t) =
1

n

n∑
i=1

si(t) (3.2.3)

The dynamics of the system may also depends on the noise value ϵ which is the prob-
ability that the agent takes a decision different from the majority of its neighborhood.
In what follows, we will use a particular function f : (see Fig. 3.1)

f(ρ, ϵ) = (1− ϵ)ρ+ ϵ(1− ρ) = (1− 2ϵ)ρ+ ϵ (3.2.4)

Let Yi(t) be the random variable equal to 1 when agent i’s neighbors vote majority 1
and 0 otherwise at time t.

According to the law of total probability, the probability pi that agent i votes +1 is

pi(t+ 1) = P(Xi(t+ 1) = 1)

= PYi(t)=1(Xi(t+ 1) = 1)P(Yi(t) = 1) + PYi(t)=0(Xi(t+ 1) = 1)P(Yi(t) = 0)

= (1− ϵ)pVi
(t) + ϵ(1− pVi

(t))

= (1− 2ϵ)pVi
(t) + ϵ

where pVi
(t) is the probability that the majority of neighbors of agent i vote 1 at time

t (pVi(t) = P(Yi(t) = 1)).
We limit the noise ϵ in the range 0 ≤ ϵ ≤ 1/2. The upper value ϵ = 1/2 corresponds
to a blind vote, with probability 1/2 for each outcome.

3.2.3 Representation of the social network

To illustrate the behavior of this model, we consider a scale-free graph G [6], to model
a social network, as proposed by Newman et al. in the paper Random graph models
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Figure 3.1 – The probablility f(ρ) used in this study. The noise ϵ is visible as the values
of f(0) and 1− f(1).

of social networks [77]. In a scale-free network, a small number of nodes have many
connections. In a social network, these nodes are the most popular people, the ones
with the highest number of social links, they are the hubs of the graph. The nodes
typically have very few connections. The majority of voters are represented by these
nodes. The scale free graph structure is based on communities built around a hub (see
the paper by Wu et al. [116]). We use the algorithm from Barabási-Albert detailed in
the paper Bollobás et al. [13], to generate a random scale-free graph. In figure 3.2, we
can see a graph of order 100 generated with this algorithm.

3.2.4 Simulation

Simulations for the voter model are performed using algorithm 2 presented here after.
The input values are the adjacency matrix, the noise and the duration of the simulation.
The output value is the state matrix S = (si,j) with si,j the state of the agent i at the
time j. Figure 3.3 shows the corresponding density of agents with opinion 1, as a
function of time. We can see that there is a lot of fluctuations due to the fact that
states “all 0’s” or “all 1’s” are no longer absorbing states when ϵ ̸= 0. As can be seen
on these figures, the amplitudes of the fluctuations are smaller for larger graph sizes
(regularization of the average density of agents with opinion 1 with the size of the
sampling).
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Algorithm 2 Simulation of the Voter Model
Input variables are:
A the adjacency matrix of the graph that represent the system.
ϵ the noise.
t the duration (time interval) for the simulation..
Output variable is:
S the list of states of each agent at each time.

1: procedure S=SIMULATION(A, ϵ, t)
2: n← size(A, 1) ▷ n the number of rows in A (number of agents)

3: deg ← A


1
...
1

 ▷ agents degree vector

4: S ← 0n,t ▷ S is the matrix of states
5: */ we randomly initialize the vote of each agent at time 1
6: for k from 1 to n do
7: S(i, 1) = Random(0, 1) < 0.5 ▷ Random(0,1): uniform law on [0; 1]

8: end for
9: for j from 2 to t do

10: V ← A× S(:, j − 1) ▷ vector V : number of neighbors who vote 1
11: for i from 1 to n do
12: ρ← V (i, j)/deg(i)

13: S(i, j) = Random(0, 1) < (1− 2ϵ)ρ+ ϵ

14: end for
15: end for
16: Return S

17: end procedure
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Figure 3.2 – A scale-free graph of order 100. Blue vertices have a degree greater than
10, green vertices have a degree between 7 and 10

3.3 Results with the voter model

3.3.1 Characterization of the influence of an agent

In this study we would like to characterize how the opinion of one agent influences
that of its neighbors and that of the entire system. We will first propose an approach
based on information theory, and then measure the influence directly by forcing (or
controlling) the opinion of one agent. We will show that both characterizations are
strongly correlated. The information theoretic quantities that will be considered are
the time-delayed mutual information and the time-delayed multi-information. The
idea is to consider a time delay large enough to capture the causal effect of one element
on another.
First, we present the results obtained for detecting the influential agents of the system
for a voter model where the social network is defined by a scale-free graph. Next, we
consider a 1D voter model that allows us to define a value called the control length,
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Figure 3.3 – Plot of the time evolution of the density of opinion 1 with noise ϵ = 0.001

and n = 200 agents (left) or n = 2000 agents (right).

which enables us to evaluate an agent’s radius of influence. Finally, in the case of this
1D voter model, we relate the results obtained to the general results of control theory
presented in chapter 2.2.

Delayed mutual- and multi-information

Let us consider a set of random variables Xi(t) associated with each agent i, taking
their values in a set A. For instance, Xi(t) = si(t) would be the opinion of agent i at
iteration t.
To measure the influence between agents i and j, we use the τ -delayed mutual in-
formation wi,j (see definition 2.3.8). As explained in Chapter 2, the delayed mutual
information wi,j(t, τ) quantifies the influence of the vote of agent i at time t on the
vote of the agent j at time t+ τ .

We also use the τ -delayed multi-information wi(t, τ) to measure the influence of the
vote of agent i at instant t on the sum of the vote of the others at instant t + τ (see
definition 3.1.3).

Non-intrusive characterisation of the node influence: the delayed multi-information

We wish to calculate the multi-information to identify the most influential agents in
the system. We take a scale free graph of order 50 to represent a social network (see
figure 3.4). Using the voting dynamics defined in subsection 3.2.2, we calculate the
multi-information by sampling, as described in subsection 3.1.5. Figure. 3.5 shows
wi(100, 2) in a stationary regime, where the origin of time is arbitrary. We observe
that some agents exhibit a more pronounced peak of multi-information towards the
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Figure 3.4 – Graph G of the social network from the example in subsection 3.3.1

rest of the system, suggesting that the opinion of these agents may affect more the
global opinion of all agents. Note that this results is obtained only by probing the
systems, without modifying any of its components. For this reason, we describe this
approach as “non-intrusive”. The algorithms used throughout this section to numeri-
cally evaluate the delayed mutual- and multi-informations in the voter model example
are described in the section 3.1.5.

As we can see in Figure 3.6, the influence of each agent decreases strongly as the
noise increases. We deduce that with a high noise it will be difficult to control the
system. Brede et al. [15] obtained similar results about the effect of the noise on the
control.

Intrusive characterization: forcing

In this subsection, we consider another way to measure the influence of an agent on
the system. We call this approach “intrusive” as it implies a perturbation, and is no
longer just an observation.

To measure the influence of agent i, its opinion is forced to a chosen value, for instance
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Figure 3.5 – τ -delayed multi-information wi(100, 2) as a function of i, for graph G with
n = 50 agents and noise level ϵ = 0.001.

Figure 3.6 – τ -delayed multi-information wi(100, 2) as a function of i, for graph G of
the figure 3.2 with n = 50 agents and with different noise level ϵ = 0.0001 (black curve),
ϵ = 0.001 (blue curve), ϵ = 0.01 (green curve) and ϵ = 0.05 (red curve).
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the value 1. As a result the density (3.2.3) of opinion 1 in the system

ρi(t) =
1

n

n∑
j=1

sj(t) (3.3.1)

can be averaged over a large number N of independent realizations, to give a quantity
⟨ρi(t)⟩, where the subscript i indicate which agent has been forced to 1. If t is large
enough, ⟨ρi⟩ no longer depends on t.
The influence can be measured in stationary regime, or from the initial state where all
agents are initialized uniformly to 0 or 1 with probability 1/2, respectively.
The color representations of the graphs (Figures 3.7 and 3.8) show that the multi-
information gives some information about the controllability of the system. In the
case the multi-information is calculated from the initial state, these figures emphasize
the link between the multi-information and the influence of an agent. We can then
identify the agents that allow the best control of the system when their vote is forced.
With the multi-information, we get the same results as Masuda [63]: choosing hubs as
zealots is a good strategy to control the system and the effect of the control is strongly
correlated with the hub’s degree.
The measurement obtained in the steady state for the delayed multi-information is
different from that observed in the transient regime. Low-impact agents can get a
high multi-information by being a proxy of an influential neighbor. In this case, the
multi-information evaluates the observability rather than the controllability, i.e. the
state of this agent with little influence informs us about the state of the system, which
is strongly influenced by its neighbor, which is a hub.

3.3.2 The 1D voter model

The previous section gave an illustration of the link between influence defined by
intrusive forcing and the influence measured by observing the time-delayed multi-
information. In this section, we propose an analytical mean field solution of the voter
model, in a one-dimensional topology. This solution will formally specify the previ-
ously observed link. In particular we will introduce a characteristic control length.

Presentation

We consider the case of n voters organized along a line so that voter i looks at voter
i− 1 and itself to take its decision. This system can be modeled by the directed graph
shown in figure 3.9.

Chain network have been already studied. Brede et al. [16] has demonstrated that
the influence of indirect control on an agent decreases with the distance from the
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Figure 3.7 – Scale free graph colored as a function of the values of the influence (left)
and the τ -delay multi-information (right), for τ = 4. In this case, the multi-information is
computed during the transient dynamics.

controlled agent when there is noise. Let’s take a closer look at the link between
influence and distance.
Agent i = 0 has no left neighbor and will have a controlled dynamics. For instance
its opinion will be always forced to 1. The other agents are initialized randomly in
{0, 1}.
Since agent 1 is looking at agent 0, its next state will likely to be 1. And so on for
agent 2, 3, . . . , n. Intuitively, we could expect that the entire system will become 1,
due to the control imposed by agent 1. But noise is changing this conclusion.
If pi(t) is the probability that agent i is 1 at time t, we can write the equation

pi(t+ 1) = pi(t)W1→1(t) + (1− pi(t))W0→1(t) (3.3.2)

where Wa→b is the probability that the state evolves from a to b at the next time step.
The probability for an agent to vote 1 is f(ρ) = (1 − 2ϵ)ρ + ϵ as we see in the
subsection 3.2.2. In the case 1D, for the agent i, ρ can only take the value 0 (when
si−1(t) = si(t) = 0), 1/2 (when si−1(t) = 1 and si(t) = 0 or when si−1(t) + 0 and
si(t) = 1) and 1 (when si−1(t) = si(t) = 1), Hence,

W0→1 = pi−1(t)f(1/2) + (1− pi−1(t))f(0)

W1→1 = pi−1(t)f(1) + (1− pi−1(t))f(1/2)

(3.3.3)

Before attempting to solve the above system analytically, we can observe its behavior
numerically. We can see in figure 3.10 that without noise (ϵ = 0), the entire system is
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Figure 3.8 – Scale free graph colored as a function of the values of the influence (left)
and the τ -delay multi-information (right), for τ = 4. In this case, the multi-information is
computed when the system is in a steady state regime.

Figure 3.9 – Graph of the 1D voter model. This directed graph indicates that an agent’s
vote depends on his own vote and on the vote of the one before him in the line.

indeed controlled by the left-most agent whose state is always 1. But, as soon as the
noise is increased (ϵ = 0.01) the control is not effective anymore. There is a critical
noise ϵ = ϵc(n) below which a system of size n can be controlled by the first node,
and above which the influence of the driving node is diluted by the noise.

Figure 3.11 shows the density of agents with opinion 1, as a function of time, for
different intensities of noise, ϵ. We observe in this figure the effect of the system size.
For smaller systems, the effect of controlling agent i = 1 is more effective than for
larger n.

Probability distribution of opinions

We can determine the probability distribution in the case of the linear voter model.
From 3.3.2 and 3.3.3. We have

pi(t+ 1) = pi(t)W1→1(t) + (1− pi(t))W0→1(t)

= pi(t)(W1→1(t)−W0→1(t)) +W0→1(t)
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Figure 3.10 – Space-time diagram for the evolution of the state of a linear 1D voter
model with n = 500 agents. Line t of the figure depicts the configuration of the n

agents’votes at iteration t. We can see the first 500 iterations. Left: ϵ = 0. Right:
ϵ = 0.01 .

with

W1→1(t) = pi−1(t)f(1) + (1− pi−1(t))f(1/2)

= pi−1(t)(1− ϵ) + (1− pi−1(t))
1

2

and

W0→1(t) = pi−1(t)f(1/2) + (1− pi−1(t))f(0)

= pi−1(t)
1

2
+ (1− pi−1(t))ϵ

Therefore,

pi(t+ 1) =

(
1

2
− ϵ

)
pi(t) +

(
1

2
− ϵ

)
pi−1(t) + ϵ (3.3.4)

As p0(t) = 1, we obtain

p1(t+ 1) =

(
1

2
− ϵ

)
p1(t) +

1

2
(3.3.5)

Let P (t) be the vector of probabilities

P (t) =


p1(t)

p2(t)
...

pn(t)
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Figure 3.11 – Density of agents with value 1 as a function of time, for different noise
levels, and two different system sizes, n = 500 and n = 50. The dashed lines are the
predictions of the mean field analytical approach, see eq. (3.3.17).

3.3.4 can be expressed in a matrix form

P (t+ 1) = AP (t) +B (3.3.6)

with

A = (
1

2
− ϵ)



1 0 . . . . . . 0

1 1 0
. . .

...

0 1 1
. . . 0

...
. . . . . . 0

0 . . . 0 1 1


and

B =


1/2

ϵ
...
ϵ


This equation can be solved recursively:

P (t) = AtP (0) +
( t−1∑
j=0

Aj
)
B (3.3.7)



65 3.3. Results with the voter model

Now, we compute power matrices Aj . We have A = In + C with

C =



0 0 . . . . . . 0

1 0 0
. . .

...

0 1 0
. . . 0

...
. . . . . . 0

0 . . . 0 1 0



C is a nilpotent matrix and ∀j ∈ N, Aj =

j∑
p=0

(
j

p

)
Cp.

Therefore, for j ⩾ n− 1:

Aj = (
1

2
− ϵ)j



1 0 . . . . . . 0(
j
1

) . . . . . .
...(

j
2

) . . . . . . . . .
...

...
. . . . . . . . . 0(

j
n−1

)
. . .

(
j
2

) (
j
1

)
1


(3.3.8)

and for j < n− 1:

Aj = (
1

2
− ϵ)j



1 0 . . . . . . . . . . . . . . . 0(
j
1

)
1

. . .
...(

j
2

) (
j
1

) . . . . . .
...

...
(
j
2

) . . . . . . . . .
...(

j
j

) . . . . . . . . .
...

0
. . . . . . . . . . . . 0

...
...

. . . . . . . . . . . . . . . 0

0 . . . 0
(
j
j

)
. . .

(
j
2

) (
j
1

)
1



(3.3.9)

Stationary probability distribution

Let Π be the equilibrium distribution of the system, i.e. from the relation 3.3.6, the
distribution such that AΠ + B = Π This distribution is also called the stationary
distribution of the system

Π =


π1

π2

...
πn
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we have:

AΠ+B = Π⇔


(
1

2
+ ϵ)π1 =

1

2

∀i ∈ J2;nK, πi =
1− 2ϵ

1 + 2ϵ
πi−1 +

2ϵ

1 + 2ϵ

(3.3.10)

It is an arithmetic-geometric sequence which can be solved for all agents i as
π1 =

1

1 + 2ϵ

πi =
1

2
+
(1− 2ϵ

1 + 2ϵ

)i−1

(π1 −
1

2
)

(3.3.11)

with

π1 −
1

2
=

1

2

(
1− 2ϵ

1 + 2ϵ

)
Further, we can write equation ( 3.3.11) as

πi =
1

2

[
1 +

(
1− 2ϵ

1 + 2ϵ

)i
]

=
1

2
+

1

2
exp

[
−i ln

(
1 + 2ϵ

1− 2ϵ

)]
=

1

2
+

1

2
exp

[
− i

ℓc

]
(3.3.12)

where ℓc is defined as

ℓc =
1

ln
(

1+2ϵ
1−2ϵ

) (3.3.13)

and referred to as the control length as it gives a value for i above which the exponen-
tial falls quickly to zero. It is a characteristic distance from the controlled agent where
its influence starts to fade.
We see that, when ϵ approaches 1/2, the length of control ℓc converges to 0, which
corresponds to a total loss of the controllability of the system. Figure 3.12 shows that
ℓc decreases very quickly to 0 when ϵ increases to 1/2.

3.3.3 Average vote of the system

In stationary regime, we can calculate the average density of agents with vote 1.

S =
1

n

n∑
i=1

πi

when n is the number of ”free” agents.
According to (3.3.12), we have

S =
1

n

[
n

2
+

1

2

n∑
i=1

(
1− 2ϵ

1 + 2ϵ

)i
]

(3.3.14)
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Figure 3.12 – Control length ℓc as a function of the noise ϵ, according to equa-
tion (3.3.13).

When ϵ ̸= 0, we have

n∑
i=1

(
1− 2ϵ

1 + 2ϵ

)i

=

(
1− 2ϵ

1 + 2ϵ

) n−1∑
i=0

(
1− 2ϵ

1 + 2ϵ

)i

(3.3.15)

=

(
1− 2ϵ

1 + 2ϵ

) 1−
(

1−2ϵ
1+2ϵ

)n
1−

(
1−2ϵ
1+2ϵ

)
(3.3.16)

and we obtain

S =
1

2
+

1

2n

(1− 2ϵ

1 + 2ϵ

) 1−
(

1−2ϵ
1+2ϵ

)n
1−

(
1−2ϵ
1+2ϵ

)


=
1

2
+

1

2n

(
1− 2ϵ

4ϵ

)[
1−

(
1− 2ϵ

1 + 2ϵ

)n]
(3.3.17)

In Figure 3.11, we see that the simulations are in agreement with this theoretical re-
sult. Indeed, the density of agents who vote 1 oscillates around the mean value S

represented by the dashed lines in this figure.
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Figure 3.13 – Delayed mutual information, wi,j(τ), as a function of agent j, for different
values of i. The different colored curves correspond to i = 1, 2, 5, 10, 20 et 40, from
dark blue to yellow, respectively. The vote of agent i = 0 is forced to 1 and the noise is
ϵ = 0.01. The delay is τ = 1 (left panel), τ = 3 (middle panel) and τ = 5 (right panel).

Delayed mutual information

In this section we compute the influence of an agent based on the τ -delayed mutual
information, wi,j(τ), between agents i and j, as defined in eq. (3.1.2). These values
are obtained by a sampling of the simulation of the 1D voter model, with n = 50

agents. Measurements are performed when the system has reached a stationary state,
that is after t iterations such that all the probabilities AtP (0), corresponding to the
free dynamics in equation 3.3.7, are smaller than a certain threshold. In our case, we
take the threshold at 10−4.

In Fig. 3.13, we notice that the mutual information wi,j(τ) is zero if j < i, has a
plateau for j < i+ τ , shows a peak for j = i+ τ , and decreases for j > i+ τ . This
observation reflects the fact that agent i can only influence agents on its right as the
voting decision of an agent is based on the state of its left neighbor. The plateau shows
the influence of the past j − i iterations. The influence of i over j is maximum for
j = i + τ as it takes τ iterations for the vote of i to travel from i to j. For j > i + τ

the influence is not null, as we are in a steady-state regime.
The results that we have are consistent with those that Brede et al. [16] obtained re-
cently when they studied the dependence between the vote of the first agent and that of
the others. They computed analytically the dependance of the average stationary vote
of a node on a distance i to the node controlled, and observed that this dependence
decreases exponentially with i, as it is the case for the mutual information.
In Fig. 3.14 shows the behavior of the delayed mutual information wi,j(j − i) as a
function of j. It suggests the following relationship

∀j > i, wi,j(j − i) = αi exp [−λi(j − i)] (3.3.18)

where αi and λi depend on the noise level, ϵ.
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Figure 3.14 – Delayed mutual information wi,j(j − i) as a function of j, for agents
i = 1, 2 5, 10, 20 and 30 (curves from left to right, respectively). The vote of agent
i = 0 is forced to 1 and the noise is ϵ = 0.001 (left panel), ϵ = 0.01 (middle panel) and
ϵ = 0.05 (right panel).

The correlation coefficients between ln(wi,j(j − i)) and j, for different values of the
noise, are found to be between −1 and −0.99, thus confirming the relation proposed
in equation (3.3.18). The value of αi and λi can be determined with a least squares
method.
Consequently, the value of the delayed mutual information wi,j(j − i) decreases
quickly as j departs from i. This reflects the difficulty to control agent j from agent i.
This interpretation is confirmed by Fig. 3.15 which shows the relation between the
values of λ ≡ λ1 and the control length ℓc defined in equation (3.3.13). Each point in
this figure corresponds to a different value of the noise. The relation can be fitted by

λ(ϵ) = a
1

ℓc(ϵ)
+ b (3.3.19)

with a = 0.973 and b = −0.003, independent of the value of ϵ. The coefficient of
correlation is 0.997, in agreement with the proposed linear link between λ and 1/ℓc.

Noise and information capacity

By evaluating the mutual information, we found that the cost of control increases
greatly when the noise increases. This result can be related to the notion of capacity,
as defined in the standard theory of information. In the linear voter model, agent i+1

can be considered as a channel of communication where the input message is the vote
of agent i at time t and the output message is the vote of agent i + 2 at time t + 2.
n this sub-section, we consider that an agent’s vote depends only on that of the agent
preceding it in the line.
The information channel capacity C2 is defined as (see [25])

C2 = sup
PXi

I(Xi(t), Xi+2(t+ 2)) (3.3.20)

The capacity value is the maximum amount of information that can pass through the
channel.
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Figure 3.15 – λ as a function of 1/ ℓc

Let Pi(t) be the probability distribution of the state of agent i at time t, we have:

Pi(t) =

(
P(Xi(t) = 1)

P(Xi(t) = 0)

)

we haveP(Xi+1(t+ 1) = 1) = (1− ϵ)P(Xi(t) = 1) + ϵP(Xi(t) = 0)

P(Xi+1(t+ 1) = 0) = ϵP(Xi(t) = 1) + (1− ϵ)P(Xi(t) = 0)

Figure 3.16 – Evolution of the density of vote 1 during the time when only the vote of

the agent 1 is forced to 1 (blues curves) and when every vote of the agents j ∝ ⌊ 1
λ
⌋ is

forced to 1 (greens curves). left ϵ = 0.001. middle :ϵ = 0.01, right: ϵ = 0.05.
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Agent

Figure 3.17 – The coefficient of correlation between wi,j(j − i) and i with different
noise ϵ = 0.001, 0.01 and 0.05.

which we write as
Pi+1(t+ 1) = APi(t)

with A =

(
1− ϵ ϵ

ϵ 1− ϵ

)
Therefore,

Pi+2(t+ 2) = A2Pi(t)

where

A2 =

(
(1− ϵ)2 + ϵ2 2ϵ(1− ϵ)

2ϵ(1− ϵ) (1− ϵ)2 + ϵ2

)
(3.3.21)

=

(
1− 2ϵ(1− ϵ) 2ϵ(1− ϵ)

2ϵ(1− ϵ) 1− 2ϵ(1− ϵ)

)
(3.3.22)

(3.3.23)

This corresponds to a binary symmetric channel (BSC), with a probability of error

pe = 2ϵ(1− ϵ)

In the section 2.3, we have described this channel, and we show that the capacity of a
binary symmetric channel with a probability of error pe is

C = 1−H2(pe) (3.3.24)
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with H2(pe) = −pe log2(pe)− (1− pe) log2(1− pe)

Therefore

C2 = 1−H2(2ϵ(1− ϵ)) (3.3.25)

Now, we consider all the agents from i+ 1 to i+m− 1 as a communication channel
between agents i et i+m. We denote Cm the capacity of this channel (it depends only
on m, the length of the channel). Following the same derivation as before, we obtain

Pi+m(t+m) = AmPi(t)

Since A is a symmetric matrix it can be cast in a diagonal form with an orthonormal
basis. The eigenvalues are λ1 = 1 and λ2 = 1− 2ϵ. Thus, Am can be expressed as

Am = PT

(
1 0

0 (1− 2ϵ)m

)
P

with P =
1√
2

(
1 1

1 −1

)
Thus

Am =
1

2

(
1 + (1− 2ϵ)m 1− (1− 2ϵ)m

1− (1− 2ϵ)m 1 + (1− 2ϵ)m

)

and we obtain a symmetric binary channel of length m with a probability of error

ϵm =
1

2
(1− (1− 2ϵ)m)

Therefore, the capacity of this channel is

Cm = 1 + ϵm log2(ϵm) + (1− ϵm) log2(1− ϵm)

We know that the capacity is an upper bound of the mutual information. In Fig-
ure 3.18, the capacity Cm is shown as a function of its length m, for different values
of the noise. The fact that the capacity Cm decreases with m and with the noise, gives
another confirmation of the increasing difficulty to control agent i+m by forcing the
vote of agent i.
This notion of capacity is another mean of evaluating the effort required to control
the system, giving us information on the maximum efficiency to force an agent’s in
order to influence its closest neighbors vote. It is therefore a way of measuring the
cost of control, i.e. evaluating the number of agents whose vote must be forced. The
figure 3.18 shows that this cost increases rapidly as a function of the noise, as we
can see that the maximum influence of an agent’s vote, for noise ϵ = 0.05, decreases
exponentially.
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Observability analysis in the case of a 1D voter model

The linear voter model analysis given above may be interpreted in terms of reachabil-
ity or observability Gramians that we introduced in section 2.2.
Such a quantitative information is requested when trying to understand the effects of
the distance or noise on the reachability and observability of network systems. Nu-
merous observability or controllability metrics have defined [82], including the reach-
ability and observability Gramians which are measures for the control or observation
energies and which are analyzed hereafter. The computation of the reachability Grami-
ans in the case of target control problems - where inputs are designed to manipulate
a group of target nodes rather than the whole network - is the subject of some recent
papers [108, 107]. Qualitative properties and bounds for their eigenvalues have been
established [94]. These results apply for general interconnexion topologies and many
diffusive dynamical processes, hence also for most voter models. However, in the case
of very simple topologies and dynamics - such as in the case of the 1D voter model
investigated in this section - it is possible to compute analytically the observability
matrix and Gramian and deduce analytical results on the decay of the output signal
energy, with the control length and with the noise. It is proved hereafter that one
recovers then exactly the behavior exhibited by the delayed mutual information.
Let us consider as previously a 1D topology with n+1 voting agents. In section 3.3.2,
we mostly considered the case where agent was forced to vote 1. Here we consider
a more general case. For l,m ∈ {0, . . . , n}, forcing the vote of agent l is considered
as the control action, while observing the vote of agent m is considered as the output
measurement. Since we are interested in the deviation from 1/2 of the probability to
vote 1 (thus measuring the influence of a forcing action), we define these deviations
as state space variables

p̃i(t) = pi(t)−
1

2
∈
[
−1

2
;
1

2

]
(3.3.26)

for all t ≥ 0 and i ∈ {0, . . . , n}. We will consider in the sequel, with no loss of
generality, a forcing of agent 0 vote and an observation of agent n vote, since the
influence in the considered linear voter is unidirectional (from left to right). Therefore,
the input variable, ũ, and output variable, ỹ, will be defined as

ũ(t) = p0(t)−
1

2
; ỹ(t) = pn(t)−

1

2
(3.3.27)

Using these state space, input and output variables, the dynamical voter model (3.3.6)
transforms into the state space system

p̃(t+ 1) = Ap̃(t) + bũ(t) (3.3.28)

ỹ(t) = cT p̃(t)
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with the state vector p̃(t) = [p̃1(t), . . . , p̃n(t)]
T ∈ Rn and the internal dynamics

matrix (generator) A defined as

A =

(
1

2
− ϵ

)


1 0 . . . . . . 0

1 1 0 . . . 0

0 1 1
. . . 0

...
. . . . . . . . . 0

0 . . . 0 1 1


(3.3.29)

The control column matrix b and observation row matrix cT are defined respectively
as

b =

(
1

2
− ϵ

)
1

0
...
0

 and cT =
(
0 . . . 0 1

)
(3.3.30)

For any time t ≥ 0, any initial probability distribution p̃(0) := p̃0 ∈
[
− 1

2 ;
1
2

]n
and

any control (forcing) signal values ũ(t) ∈
[
− 1

2 ;
1
2

]
, the solution ϕ (ũ; p̃0; t) of the

state space equations (3.3.28) may be written

ϕ (ũ; p̃0; t) = Atp̃0 +

t−1∑
j=0

A(t−1)−jbũ(j) (3.3.31)

Note that the matrix A has a unique eigenvalue λ(A) = (12 − ϵ), with multiplicity
n and such that |λ(A)| < 1 (since the noise ϵ satisfies 0 ≤ ϵ < 1

2 ). Therefore the
trajectory (3.3.31) is bounded when t→∞ and the dynamical system (3.3.28) is said
stable.
A nonzero state p̃ ∈

[
− 1

2 ;
1
2

]n
is said unobservable if the corresponding output can

not be distinguished from the output associated with the zero state, that is if

y(t) = cTϕ (0; p̃; t) = 0 (3.3.32)

for all t ≥ 0 (in the observability analysis, only the free response dynamics is analyzed
and ũ is set to zero). The whole state space system (3.3.28) is said observable if the set
of unobservable states reduces to {0}. With the solution (3.3.31) and Cayley theorem,
it is easy to prove that this is the case if and only if the observability matrix

On =
[
c ; AT c ; . . . ; (An−1)T c

]T
(3.3.33)

is full rank or when the infinite observability Gramian

W o = lim
n→∞

OT
nOn =

∞∑
k=0

(Ak)T ccTAk (3.3.34)
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is strictly positive definite.

The infinite observability Gramian gives additionnal quantitative information about
how much the system or a particular state is observable. Indeed, the largest observa-
tion energy (i.e. the maximum energy for the output signal) is reached when t → ∞
and equals

∥ỹ∥22 = lim
t→∞

t∑
k=0

|ỹ(k)|2 = p̃TW op̃ (3.3.35)

for any given state space trajectory ϕ (0; p̃; t). Therefore, with the appropriate change
of state space coordinates, the components of the initial condition (or subspaces) may
be re-ordered, from the less to the most observable ones. If some of the infinite horizon
observability Gramian eigenvalue are zero, then the corresponding vector spaces are
unobservable. If some of these eigenvalues are small, then initial conditions variations
in the corresponding subspaces will cause low energy variations in the output signal.

In the 1D voter model example, we will analyze to effect of considering the initial
probability distribution

p̃ = [1, 0, . . . , 0]
T ∈ Rn+1 (3.3.36)

on the vote of agent n + 1, by measuring the corresponding observation energy. We
will consider a long range time horizon k > n for which the influence of the initial
state of agent 1 has reached agent n+1 in the line. The last row of matrix Ak may be
written (see 3.3.8 and 3.3.9):

Ak
(n+1,·) =


( 12 − ϵ)k

[(
k
n

) (
k

n−1

)
. . .

(
k
2

)
k 1
]

when k ≥ n

( 12 − ϵ)k
[
0 . . . 0

(
k
k

)
. . .

(
k
2

)
k 1
]

when k < n

(3.3.37)

According to definition (3.3.34), since we are measuring the vote of agent n + 1, we
get for the components of the infinite observability Gramian

W o
i,j =

∞∑
k=0

Ak
(n+1,i)A

k
(n+1,j) (3.3.38)

for all i, j ∈ {1, . . . , n}. Measuring the influence of the initial vote of agent 1, we
start with the initial probability distribution (3.3.36) and get, for the agent n + 1, the
observation energy

∥ỹ∥22 =

∞∑
k=0

(
Ak

(n+1,1)

)2
=

∞∑
k=0

(
1

2
− ϵ)2k

(
Ak

(n+1,1)

)2
(3.3.39)
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With equation (3.3.37), one gets

∥ỹ∥22 =

∞∑
k=n

(
1

2
− ϵ)2k

(
k

n

)2

(3.3.40)

=
1

(n!)2
(
1

2
− ϵ)2n

∞∑
p=0

(
1

2
− ϵ)2p

(
(p+ n)!

p!

)2

Using the lower bound

(p+ 1)n <
(p+ n)!

p!
(3.3.41)

one gets
1

((n− 1)!)2
(
1

2
− ϵ)2n

4(3− 2ϵ)

(1 + 2ϵ)3
< ∥ỹ∥22 (3.3.42)

On the other hand, since
∞∑
p=0

(
1

2
− ϵ)2p

(
(p+ n)!

p!

)2

≤

( ∞∑
p=0

(
1

2
− ϵ)p

(p+ n)!

p!

)2

=

∑
k≥n

(
1

2
− ϵ)k−nk(k − 1) . . . (k − (n− 1))

2

=

(
n!2n+1

(1 + 2ϵ)n+1

)2

(3.3.43)

we get the following upper bound for the observation energy

∥ỹ∥22 <
4(1− 2ϵ)2n

(1 + 2ϵ)2n+2
(3.3.44)

It is worthwhile to notice how this upper bound behaves with the number of agents
along the line and with the noise ϵ. For instance, the upper bound (3.3.44) decreases
with the number of agents and the corresponding observation energy is divided by two
when k supplementary agents are added in the line, with

k ≥ 1

2

1

log2

(
1+2ϵ
1−2ϵ

) =
ℓc
2

(3.3.45)

When the noise increases, the observation energy upper bound decreases

∥ỹ∥22 = O
(
(1− 2ϵ)2n

)
→ 0 as ϵ→

(
1

2

)−

(3.3.46)

The lower bound (3.3.42) decreases similarly, with the same order, when the noise
decreases. However it decreases much faster with the number of agents in the voter
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line since this lower bound for the observation energy is divided by
(
1−2ϵ
2n

)2
when

only one agent is added to the n previous ones.

Remark 3.3.1. Note that we performed the observability analysis on the 1D voter
model. We could as well develop the dual reachability analysis for the same example.
In this analysis, the initial condition is assumed to be zero and one analyzes the forced
solution of the state space model (3.3.28).

A reachability Gramian analysis may be used to compute the forcing of agent 1 with
minimal energy requested to reach a state p̃ where all agents in the line vote 1. How-
ever, the calculations are much more involved than those performed for observability
analysis.
With the solution (3.3.31) and Cayley theorem, it is easy to prove that system is con-
trollable if and only if the reachability matrix

Cn =
[
b ; Ab ; . . . ; (An−1)b

]
(3.3.47)

is full rank or when the infinite reachability Gramian

W c = lim
n→∞

CnCTn =

∞∑
k=0

AkbbT (Ak)T (3.3.48)

is strictly positive definite.
The infinite reachability Gramian gives additionnal quantitative information about
how much we can control the system or how much a particular state is controllable. In-
deed, the lowest control energy (i.e. the minimal energy requiered to steer the system
from state 0 to xr) is reached when t→∞ and equals

xr
T (W c)−1xr (3.3.49)

According to definition (3.3.48), we get for the components of the infinite reachabili-
bility Gramian

W c
i,j = (

1

2
− ϵ)2

∞∑
k=0

Ak
(1,i)A

k
(1,j) (3.3.50)

In the equations (3.3.8) and (3.3.9), we have for the first column of matrix Ak:

Ak
(n+1,·) =


( 12 − ϵ)k

[
1 k

(
k
2

)
. . .

(
k

n−1

) (
k
n

)]T
when k ≥ n

( 12 − ϵ)k
[
1 k

(
k
2

)
. . .

(
k
k

)
0 . . . 0

]T
when k < n

(3.3.51)

To calculate the control energy, we need to determine the inverse Grammian of con-
trollability. For a given value of n, we’ll use numerical methods to determine W−1

c ,
and thus deduce this energy.
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3.4 Conclusion

In this chapter, we have defined the delayed mutual information and the multi-information,
and presented means of calculating them by observing the behavior of a system. The
results obtained with the voter model show that these concepts are suitable tools for
tackling observability or reachability problems. We showed that time delayed mutual-
and multi-informations are promising tools to better grasp the behavior of a dynami-
cal system defined on a complex network. In particular they can be used to determine
the most influential or observable agents. This knowledge can be obtained without
perturbing the system, by just probing its behavior.
We claim that influential nodes are those that are the most interesting to control or
monitor to (i) force a system to reach a given target, or (ii) to have a proxy giving an
information on the state of the entire system.
We illustrated our approach with a simple stochastic dynamical model on a graph, the
so-called voter model, where agents iteratively adapt their opinion to that of the ma-
jority of their neighbors, with however a given noise level. We first discussed the case
of a general scale-free topology, where only numerical results can be obtained. Then
we consider a 1D topology for which analytical results can be obtained. There, we rig-
orously showed that the influence of an agent on the entire system can be equivalently
measured by actually forcing its behavior, or, in a non-intrusive way, by measuring the
time delayed multi-information of this agent with respect to the rest of the system. In
particular, we proposed the concept of control length, which indicates a characteristic
distance above which the influence of a controlled agent fades exponentially.
The link with classical control theory has been proposed and the control length has
been related to the observability Gramian, thus indicating that the observation be-
comes intractable at large distance. The importance of the noise is clearly shown as
being a central element in the possibility of observing or controlling a system, as op-
posed to some claim in the literature that existence of causality paths was sufficient to
achieve control [58].
As an additional link of our approach to existing concepts, we showed that control-
lability can also be considered in the framework of the capacity of a communication
channel, as defined in information theory by Shannon. We showed that this capacity
drops as agent are separated by a distance above the control length. In the next chapter
we will look at the structural study of a system using information theory.
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Figure 3.18 – Capacity Cm of the channel between agent i and i+m, as a function of
m, for different noise levels ϵ.





4 | Topology of a system

4.1 Introduction and review

The knowledge of the interconnection topology of a complex network is important in
order to have results on structural observability and reachability, as discussed in [58],
[61]. In the section 2.2.4, we presented some results on the subject.

In this chapter we consider the concept of causality as a way to obtain the interaction
topology among the variables of complex dynamical systems.

The structural analysis of complex systems dynamics and input-output properties has
a long history. Approaches have been developed which make use of interconnection
graph or ”inference diagram”, describing the existing (analytical) relations between
a priori given input, state and output variables [56], [100]. Such approaches give
structural results on controllability and observability, together with efficient graph al-
gorithms. Some recent results on structural reachability and observability using this
approach are presented in [58], [61]. They require a priori knowledge of the system
interconnection topology. When trying to isolate the most influential or measurable
nodes in some complex system, this information is often missing or incomplete. Be-
sides, these results on reachability and observability only conclude to some existing
causal relation between the considered sets of variables, but not how much the dynam-
ics of a node may be measured or controlled from another node.
In many practical situations, the topological structure of a complex network is un-
known or uncertain although it plays a pivotal role in its dynamic and control. There-
fore, exploring the underlying topology of a complex network has been explored in
many papers and some articles propose an information theoretic approach. In neu-
roscience, for example in the papers [7] and [3], the authors were interested in con-
structing the graph of interactions between the areas of the brain applied to encephalo-
gram analysis. They identified the topology of this complex system using the transfer
entropy [96] and the Granger causality concept [41]. Wilmer et al. [113] used a
time-delayed mutual information for detecting nonlinear synchronization in electro-
physiological data.

In this chapter, we investigate first in section 4.2 how the delayed mutual information
approach may be used to reconstruct the interconnection topology (for instance the
adjacency matrix of the interconnection graph). Our goal is to develop an approach
which is only based on the sampling of the state dynamics and could be applied online,

81
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for instance with a moving time frame, for the computation of the mutual information.

Then, in section 4.3 the problem of a change of the interaction topology during time is
investigated. The goal is to detect structural modifications in a dynamical system de-
fined on a graph, by simply observing its state variables. To this end, we compute the
delayed mutual-information on sliding time-windows and study whether this quantity
can alert us of a change in the structure of the system.

Ideally the approach should be effective when changes occur in the topology, mak-
ing us able to detect theses changes and reconstruct quickly the new system topology.
We will consider - as an illustration example - a probabilistic voter model where the
vote dynamics is defined on a scale-free graph representing somehow the influence
between agents in a social network.
The quantitative nature of the mutual information and multi-information suggests a
new way to define groups or communities in the complex system, based on the infor-
mation flux between these communities. Partitioning is a traditional problem when
developping decentralized approach for the estimation, control or diagnosis purpose
(see for instance [80]).

This chapter is organized as follows: section 4.2 indicates how we used our approaches
to reconstruct the interconnection topology of a complex system. In section 4.3,
we discuss how the delayed mutual-information can be measured in a time sliding-
window and how this leads to the identification of dynamical topology changes. Fi-
nally, in section 4.4, We will propose in section 4.4 a partitioning algorithm based on
this idea and apply it on the examle of the voter model. This partitioning will be the
basis for the coarse graining approach developped in chapter 5.

4.2 Identification of the topology

4.2.1 1-Delayed Mutual Information and adjacency matrix

In this subsection, we consider a dynamical complex system whose topology is un-
known. The goal is to determine the links between the agents by studying the behavior
of the system. The nodes of the graph are known, but the edges are unknown. We ob-
serve the state of all agents at each time. This data enable us to identify causal links
between agents, which depend on the system dynamics. We wish to construct a graph
representing the influence between agents of the system dynamics based on the mutual
information between agent’s states.

We have seen in the chapter 3 that the delayed mutual information allows us to quan-
tify the influence of an agent on the others. To determine the list of neighbors of an
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agent, we need to know its influence on all the other agents with a delay of one time
step, and reciprocally the influence of each agent on the one we consider.
Thus, to decide that i and j are neighbors (or not), we will use the values of the
1−delayed mutual information wi,j(t, 1) and wj,i(t, 1). We define a threshold Ti

depending on the mean value and the standard deviation of the delayed mutual infor-
mation

(
wi,j(t, 1)

)
, but also depending on the value of the multi-information wi(t, τ)

of agent i. Indeed, this threshold must be different in the case where one of the agents
is a hub because a hub can have a significant influence on agents at a distance of 2 or
more. The multi-information allows us to detect the hubs, as we have seen in subsec-
tion 3.3.1.
If wi,j(t, 1) or wj,i(t, 1) are greater than the threshold Ti or Tj , it will be assumed
that there is a link between i and j. The overall adjacency matrix of the graph will be
reconstructed by examining all pairs (i, j).

4.2.2 Topology of the voter model

In this section, we are interested in the identification of the topology of a voter model
with 50 agents. The social network is defined by the graph G represented in figure 4.2.
We observe the states of all agents at each instant. The edges of the graph representing
the social links are unknown. We wish to determine these edges by observing the
behavior of states over time. We will use to use our information metrics to construct
this unknown interaction topology. We can see in figure 4.1 the values of the 1-delayed
mutual information wi,j(t, 1) (see definition 2.3.8) between an agent (for example, in
this figure, we have i = 42) and all the others in the system. These values were
calculated by sampling, when the system has reached its stationary regime. In this
case, the highest values of wi,j(1, 1) are obtained for the neighbors of agent i. For
the example of node i = 42 we observed a peak for agents 15, 36, 42, 44 which are
indeed neighbors of agent 42 as we can see in figure 4.2.
Thus, we can use the 1-delayed Mutual information to get the edges of a graph. For
each agent i, we fixed a threshold Ti for wi,j(t, 1) that indicates if j is a neighbor of i
or not. This threshold is defined as

Ti = µi + aiσi

where µi is the mean of the values of the 1-delayed mutual information between agent
i and the others agents, and σi is the standard deviation of these values.
There are two possible values for ai according to the following criteria

ai =

a if wi(t, τ) > α+
1

2
β

b otherwise
(4.2.1)
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1-delayed mutual information of the agent 42

Figure 4.1 – 1-Delayed mutual information between agent i = 42 and the rest of the
system. Peaks are visible for the neighbors of i.

Figure 4.2 – Graph G of the social network from the example in section 4.2.2
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where wi(t, τ) is agent i’s τ−delayed multi-information at time t, as defined in equa-
tion (3.1.2). The value of t is chosen to be in the stationary regime and τ must be large
enough to allow its influence so spread to all the other agents. The values α and β are
respectively the average and the standard deviation of wi(t, τ) over i.
The values of (a, b) were determined from an example by optimizing the error rate:
√

we took all pairs of (a, b) values between 0 and 1 with a step of 0.1 with a < b.
√

With these values, we compared the mutual information with the thresholds,
and obtained graphs G′

k.
√

We compared Gk and G′
k by calculating the error rate rk(a, b) defined by

rk(a, b) =
∆(Mk(a, b), Ak)

n2

where ∆(Mk(a, b), A) is the Hamming distance namely the number of values
that differ between Ak, the adjacency matrix of Gk and Mk(a, b) the adjacency
matrix of G′

k. n is the number of agents in the graph.
√

(0.7, 0.2) is the pair of values of (a, b) for which the error rate over is the lowest.

Next, we randomly generated 20 scale-free graphs (Gk)1⩽k⩽20, and with the couple
of values found, the average error rate obtained is 0.9% and the standard deviation is
0.0026 for these 20 graphs.
The estimation of the adjacency matrix, denoted M = (mi,j)1⩽i,j⩽n, is defined by :

mi,j =

1 if wi,j(t, 1) > Ti or wj,i(t, 1) > Tj

0 otherwise

In other words, when wi,j(1) > Ti or wj,i(1) > Tj , it is assumed that agents i and j

are neighbors.

For example, figure 4.3 shows the graph that is reconstructed by this procedure, and
compares it to the original graph. In this case, the error rate is r = 1.3%. An even
better result is obtained when 1-delayed mutual information is computed during the
initial transient regime (see figure 4.4). The error rate is then r = 0.24%. In the
transient regime the results are probably better because the 1−delayed mutual infor-
mation really probes the direct influences. During the stationary regime, in contrast
long range influences may blur the detection. To provoke such a transient regime,
one may disrupt the system by temporarily increasing the noise, while calculating the
mutual information. In this example, just 3 edges are missing as we can see in figure
4.4. It seems that these links are not detected because one of the vertices is strongly
influenced by another neighbor.
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Figure 4.3 – Graph built with the 1-delayed mutual information calculated when the
system is in a stationary regime. The dashed red edges are the ones that have not
been found, and the solid pink edges are those that were wrongly added.
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Figure 4.4 – Graph built with the 1-delayed mutual information computed when the
system evolves from its initial state. The red edges are the ones that have not been
found.
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4.3 Change detection

In this section, we are interested in a complex system whose topology changes over
time. The goal is to detect these changes by studying the behavior of the states of each
vertex. We have seen in the previous chapter that the 1-delayed mutual information
allows us to determine the topology of the system. To determine the changes of topol-
ogy in real time, we evaluate this mutual information on a sliding time window. In a
first step, the computational method is presented, and then the results obtained in the
case of the voter model are shown.

4.3.1 The delayed mutual information computed on sliding time
window

We compute delayed mutual information wij(t, τ) at time t = t0 by sampling si(t−τ)
and sj(t) (the states of agents i and j respectively at instants t− τ and t) on a sliding
window t ∈ [t0 −∆ + 1, t0] with width ∆. During this time interval, we record the
pairs

(
si(t − τ), sj(t)

)
of the states of vertices i and j with a time delay τ = 1 in

arrays of integers Nk,ℓ where k and ℓ describe the set of states. The coefficient Npq
i,j

of this array is the number of time that Si(t − τ) = k and Sj(t) = l. According to
the definition (2.3.8), the estimation of the 1−delayed mutual information on the time
interval [t0 −∆+ 1, t0] is given by

wi,j(t0, τ) =
∑
p

∑
q

Npq
i,j

∆
log

( Npq
i,j/∆(∑

r N
pr
i,j/∆

)(∑
r N

rq
i,j/∆

))
=
∑
p

∑
q

Npq
i,j

∆
log

( ∆×Npq
i,j(∑

r N
pr
i,j

)(∑
r N

rq
i,j

))

In the boolean case, we have only 4 arrays : N00, N01, N10 and N11. This leads to
the following quantities:

N00
i,j(t0) =

∆∑
k=0

s̄i(t0 − k − 1)× s̄j(t0 − k)

N01
i,j(t0) =

∆∑
k=0

s̄i(t0 − k − 1)× sj(t0 − k)

N10
i,j(t0) =

∆∑
k=0

si(t0 − k − 1)× s̄j(t0 − k)

N11
i,j(t0) =

∆∑
k=0

si(t0 − k − 1)× sj(t0 − k)
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with s̄i(t) = 1− si(t). Therefore we have :

wi,j(t0, τ) =
N00

i,j

∆
log

( ∆×N00
i,j

(N00
i,j +N01

i,j)(N
00
i,j +N10

i,j)

)
+

N01
i,j

∆
log

( ∆×N01
i,j

(N01
i,j +N00

i,j)(N
01
i,j +N11

i,j)

)
+

N10
i,j

∆
log

( ∆×N10
i,j

(N10
i,j +N11

i,j)(N
10
i,j +N00

i,j)

)
+

N11
i,j

∆
log

( ∆×N11
i,j

(N11
i,j +N10

i,j)(N
11
i,j +N01

i,j)

)
The choice of the value of ∆ is a trade-off between two contradictory constraints:

• It must be large enough so that the approximations of the probabilities calcu-
lated on the samples of size ∆ are not too far from the actual values.

• it must not be too large so that the changes can be detected as soon as possible.

4.3.2 Topology change detection with the voter model dynamics

Detection changes between 2 agents

We consider a graph with n = 500 agents, whose topology is modified over time
in a prescribed way. The 1-delayed mutual information is computed using a sliding-
window with ∆ = 300. Figure 4.5 shows the time evolution of wi,j(t) between two
selected vertices of low degrees on one side and between two selected hubs (vertices
of high degrees) on the other side. Between these pairs of vertices an edge was alter-
natively added and removed every 2000 time steps. In the case of low degree vertices,
we see that the value of wi,j informs us of this change of topology. On the other
hand, when the changes occur between the two hubs, wi,j(t, 1) does not detect them.
However, in this case, it was found that the corresponding edge does not have a great
influence on the system dynamics as we can see in figure 4.5 (right).
If the link is modified between a vertex i of low degree and a hub j, wi,j hardly detects
this change, as seen in Fig. 4.6 (right). This is expected as a terminal node does not
influence a hub. But this change can be detected by measuring the opposite delayed
mutual-information, wj,i, (see Fig 4.6, left panel), reflecting the fact that the hub does
influence a neighboring vertex.
As we saw just before, the 1-delayed mutual information on a sliding window seems
to be a good metric to detect when the link between 2 nodes appears or disappears. To
confirm that, we made simulations where the topology of the graph changes randomly
over time. At each moment, we have a probability p that there is a change. Then,
if there is a change, we randomly choose a pair of nodes: either we add an edge,
or we remove it. For example, with a scale free graph of order n = 500 and with
a probability of change p = 0, 01 we had 54 changes during a simulation over a
duration of 6000 iterations. In this simulation all changes have been detected because
we have no changes between 2 hubs. For each pair of nodes i and j, we computed
the 1−delayed mutual information on a sliding window of size 100. When these 2
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Figure 4.5 – Plots of the 1-delayed mutual information between two vertices of low
degree (left) and between two hubs (right) during a change of topology between these
vertices at times 2000, 4000, 6000, 8000. The parameters of the simulation are ϵ =

0.01, n = 500, ∆ = 300.

values exceed and remain above a threshold, we assume that a new edge has appeared.
And when these values become lower than the threshold, we assume that an edge has
disappeared. With this method, the average time to detect changes is 160 iterations
with a standard deviation of 110.

4.3.3 Conclusions

In this section, we have described a way to detect topology changes in a dynamical
system on a graph, such as the voter model. Detecting structural changes is important
as it can provide an early warning of tipping points. We expect that our approach
can be applied to many other complex systems. The 1-delayed mutual information
computed on a sliding-window was used to identify the possible changes of topology.
We saw that this quantity allows us to detect whether an edge is added or removed
between two vertices of low degree, or between a hub and a vertex of low degree.
Between two hubs this method is not effective, but the actual presence or lack of a link
between them does not affect much the global behavior of the system. As we’ll see in
the next section, each hub can be seen as a seed that characterizes its community, so we
can assume that its state depends mainly on the states of the nodes in its community,
so its vote is unlikely to be influenced by another hub, which would be its neighbor
and which would also vote like the members of its community.
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Figure 4.6 – Left: plot of the 1-delayed mutual information between a hub and a low
degree vertex. Right: plot of the 1-delayed mutual information between the low degree
vertex and the hub. The parameters of the simulation are ϵ = 0.01, n = 500, ∆ = 300.

4.4 Detection of communities with information theory

4.4.1 Introduction

The existence and structure of communities in a graph is an important concept in the
analysis of social networks. Several definitions of communities exist. As we have
seen in subsection 2.1.5, the definition of community most often used is: communities
as sub-graphs with dense internal connections and sparse connections between these
sub-graphs. Our approach is different: we define communities based on system dy-
namics, which we call communities of influence.
Papadoulos [81], Liu et al.[57], Zhang [118], Fortunato [33] and Newman [74] present
in their paper different algorithms for finding communities. They use modularity (see
definition 2.1.16) to define communities.
We want to determine a partition of a complex network into communities to determine
a reduction of the system. The goal of this reduction is to facilitate the system control.
For this reason, we define the notion of community in a specific way. Communities
should enable us to control the system, therefore they must be built from the dynam-
ics and not from the topology only. In our case, communities will be identified by
those nodes which have an important role in the system dynamics, and called here-
after influencers (see [86]). Communities will be built around influencers which have
a significant impact on the system behavior. For instance, opinion leaders in social
networks, are capable of influencing the public’s point of view on certain topics.[109].

Since we are using scale-free graphs as models for social networks, we have adopted
a seed-centric approach for communities (see [49]). Communities will be built around
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seeds, which are the influencers of the graph.
In this chapter, we will present an original method based on the observation of the be-
havior of the dynamical complex system to find influencers and their community. We
will use delayed multi-information to determine these seeds, and then define a notion
of proximity based on delayed mutual information to build communities around seeds.
As in the dynamics of the voter model, the state of a node will depend generally on its
neighbors state.
We will use the modularity (see the definition 2.1.16), frequently used to evaluate the
quality of partitioning and we will compare our partitions with those obtained by some
construction methods using only the system topology: the Louvain algorithm, method
that maximizes modularity. To evaluate the quality of our partitions, we will also use
Markov Stability, a value that quantifies the time spent by a random walker within
communities before moving on to another part of the network. Finally, we will apply
our algorithm to a dynamics where the state of a node does not depend directly on its
neighborhood to underline the difference between these methods.

4.4.2 Community detection

The purpose of this section is to present a simple method to create a partitioning of
the agents of a complex system into the type of communities described above, using
information theory tools.
In a first step, we determine the most influential agents which we have named influ-
encers.
We have seen in section 3.1.4 that the delayed multi-information can determine these
agents. They will be the seeds of our community partitioning. If we want to partition
the agents into k communities, we choose for the seeds the k nodes with the largest
multi-information values.
Then, to build the community for each of these seeds agents, we use a proximity notion

Definition 4.4.1. Let G = (V,E) be a graph, the proximity p(i, j) between two nodes
i and j is defined as

p(i, j) =
1

r

r∑
τ=1

ωi,j(1, τ) (4.4.1)

where r is an approximation of the radius of the graph G.

Remark 4.4.2. Generally, p(i, j) ̸= p(j, i)

This notion of proximity in terms of influence between agents i and j is thus calcu-
lated by averaging the delayed-mutual information. As this value takes into account
the delayed-mutual information for different τ values, even for nodes far from all
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seeds it’s possible to determine the closest seed in terms of influence.
In the case where we have a scale free graph, we can use for the radius r the asymp-
totical 1

2
log(n)

log(log(n)) where n is the order of the graph (see Bollobas [12], based on
the notions of influencers and proximity, we can now define communities in terms of
system dynamics:

Definition 4.4.3. Let {s1, ...sk} be a set of k influencers in a complex system. For
any i ∈ {1, 2, ...k}, the community of si is the set of agents Ci whose state over
time depends more on si than on all other influencers, i.e. x ∈ Ci if and only if the
influencer closest to x is si in the sense of the proximity (4.4.1).
(Ci)1⩽i⩽k is a partition of the set of agents in the system.

To build communities, for each agent j who is not an influencer, we determine its
community, which is that of seed agent i∗ , such as

i∗ = argmax
i∈I

p(i, j) (4.4.2)

where I is the set of seed agents (influencers).

4.4.3 Detection of the communities of influence in the voter model

We are going to test the algorithm described in the previous section in the case of the
voter model described in the section 3.2. First we take a social network structure for
which the expected decomposition into communities is obvious: a circular graph of 5
complete subgraph (see figure 4.7).
The value of the 3−delayed multi-information obtained for agents 1, 11, 21, 31, 41 and
51 is 0.0054 and for the other agents we obtained the value 0.0035. The 3−delayed
multi-information allows to detect the influencers of the system. Then, the proposed
algorithm in the previous section gives us the expected partition in which the commu-
nities correspond to the cliques.
Now we take a scale free graph of order 50. We obtained the communities that can be
seen in figures 4.8 which shows a coherent partitioning into communities. A graph is
considered to have a significant community structure when a partition obtains a mod-
ularity score greater than 0.3 (see [44]). The computation of the modularity values Q
in table 4.4.4 confirms the visual aspect. For our example of graph, we can see that we
are close to the best possible modularity values obtained with the Louvain algorithm.
For the dynamic of this voter model, we can see that the communities of influence
almost correspond to the topological communities obtained with a standard algorithm.

The number of communities can be chosen judiciously according to the values of the
multi-information. In this example, in table 4.1, we can see the largest values for the
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Figure 4.7 – Left: ring graph of 5 complete subgraph of order 10. Right: a complete
subgraph Ki of order 10, the vertices of this subgraph are numbered from 10i + 1 to
10i+ 10

3−delayed multi-information. The chosen delay (τ = 3) is approximately equal to
the radius of the graph.

In our case, the largest value of the multi-information is approximately three times
larger than the second. This value corresponds to the largest community. According
to the values obtained, we can see that when we have 3 communities, it corresponds to
39.2% of the sum of the values of the multi-information. This decomposition seems
optimal, since when the following influencers are added, the share of influence in-
creases little.

We applied our algorithm for the scale-free graph G1 shown in figure 2.5. This graph
has the particularity of having three agents that have a much greater influence than
the other agents, as it may be seen from the largest values of the multi-information in
table 4.1.

In figure 4.9, we have the partitions obtained for 3 or 6 communities, we can see that
from the 4th most influential node, the cardinals of the communities associated with
these influencers are small. In this case we will prefer the partition into 3 communities
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Figure 4.8 – Partition of the graph in 3, 4 and 6 communities obtained with the seeds
which are, in descending order of multi-information, agents 0, 11, 6, 14, 5, 13

because the 4th influencer in the multi-information sense has a much smaller influence
than the first three ones.

4.4.4 Comparaison of the communities obtained

To compare the communities obtained with our method, we are interested in two tools:
modularity (see definition 2.1.16) and autocorrelation, which we will present bellow
in this section.
First, we built the decomposition of this system using the Louvain algorithm [38] in
which the communities are obtained by maximizing the modularity. In figure 4.10,
we can see the decompositions obtained with this algorithm. This method uses only
the topology of the graph, contrarily to the algorithm presented above which builds
the communities from the influence of the agents, and which takes also into account
the local dynamics. We can notice that there are just a few differences between the
partitions obtained with the 2 methods. In figure 4.10, agents belongs to different com-
munities in the 2 methods are surrounded by a circle with the color of their community
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i 0 11 6 14 5 13

wi(1, 3) 0.047 0.0166 0.0162 0.010 0.0085 0.069
wi(1, 3)∑
j

wj(1, 3)
23% 8.20% 8.03% 5.02% 4.21% 3.43%

∑
j|wj⩽wi

wj(1, 3)∑
wj

wj(1, 3)
23% 31.7% 39.20% 44.22% 48.43% 51.86%

Table 4.1 – 3−delayed multi-information of the most influencers and the percentage of
influence they have on the system

Figure 4.9 – Partition of graph G1 in 3 and 6 communities.

in the first method.

In table 4.4.4, we can compare the maximum values of the modularity QM for the
studied graph and the values Q obtained with our method based on the influence of
the agents. We can see that the values are close, even though with the first method
communities are built also from the dynamic, and in second from the structure only.

Markov Stability [27], [54], allows to evaluate the quality of a community partition
in terms of the persistence of Markov dynamics inside the communities. The greater
the Markov stability, the less likely it is that a random walker in the graph will escape
from a community.

Let be an undirected graph G of order n , with adjacency matrix A. We consider a
community partition C = {c1, c2, ..., ck} characterized by a matrix H ∈ Mn,k(R)
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Figure 4.10 – Partition of graph in 3, 4 and 6 communities obtained with the algorithm
of Louvain [38], [75] that maximizes the value of the modularity.

defined by

Hi,j =

1 if the nodes i belongs to the community cj

0 otherwise

Let d = (d1, d2, ..., dn) be the degree vector, and D = diag(d) the degree diagonal

matrix and m is the number of edges. We have m =

∑n
i=1 di
2

.
We define a discrete-time Markov process by the following dynamics:

Xt+1 = XtM (4.4.3)

with M = D−1A and Xt = p1(t), p2(t), ..., pn(t)) with pi(t) is the probability that
the random walker is on node i at time t

For this Markov process, we define the clustered autocovariance matrix R(t) at the
time t as:

R(t) = HT (ΠP (t)− πTπ)H (4.4.4)
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Table 4.2 – Modularity for different partitioning.
Number of communities 3 4 6

Q 0.3607 0.4208 0.4382

QM 0.4046 0.4594 0.5010

with π = dT /(2m) the stationary probability distribution of the system, Π = diag(π)

and P (t) = M t.
The Markov Stability is the trace of this matrix:

MSt(H) = trace(R(t)) (4.4.5)

The Markov stability value indicates how long a random walk remains confined within
the communities defined by a specific network partition. A high stability value means
that the random walk remains within the communities for a long time before spreading
to other parts of the network. We need therefore to find the partition that maximizes
MSt(H). It is an NP-hard problem ([55], [65]).

In our case we use Markov stability to evaluate the quality of the network structure
with the partitions that we have obtained with our algorithm and with Louvain’s al-
gorithm. The corresponding Markov stability values MS1 and MS2 with t = 10 or
t = 100 are given in table 4.4.4.

Table 4.3 – Markov Stability for different partitioning with t = 10.
Number of communities 3 4 6

MS1 0.0692 0.0804 0.0.0878

MS2 0.0702 0.084 0.0951

Table 4.4 – Markov Stability for different partitioning with t = 50.
Number of communities 3 4 6

MS1 0.0058 0.0066 0.0091

MS2 0.00049 0.014 0.0019

In the short term (small t value), a high stability value means that small local commu-
nities are well defined. In the long term (large t value), a high stability value indicates
that larger community structures remain coherent over longer periods.
The values obtained confirm the results obtained above for modularity.
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As already mentionned, the construction of our communities depends also on the dy-
namics of the system (and not only on the topology). The motivation of this decom-
position is to determine a simplification of the network in order to be able to control it
more simply. The communities obtained may therefore differ from those obtained by
methods based on topology only. For example, let us consider that an agent’s vote at
time t + 2 depends on the votes of its first neighbors and second neighbors at time t,
according to the same transition function f defined by equation 3.2.4. In this case we
have:

si(t+ 2) =

1 with probability f(ρi(t))

0 with probability 1− f(ρi(t))
(4.4.6)

with
ρi(t) =

1

|Di|
∑
j∈Di

sj(t) (4.4.7)

The set Di is the set of first and second neighbors of agents i. on figure 4.11, we have
a partition into 3 communities with this dynamic. We can see that it is very different
from those obtained from the topology with Louvain algorithm.

Figure 4.11 – Partition of the graph in 3 communities obtained with our algorithm when
an agent’s vote depends on the votes of its neighbors and second neighbors.

Consider now another example, where we replace the transition function in equation
3.2.4 with :

f(ρ) = a(ρ− 1/2)2 + ϵ (4.4.8)
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where a = 4(1 − 2ϵ), with the transition function, we have f(0) = f(1) = 1 − ϵ

and f(1/2) = ϵ In this case, an agent will tend to vote 1 when his neighbors agree,
and 0 when the neighbors’ vote is equally distributed. As can be seen from the figure
4.12, the communities of influence obtained with this dynamic do not correspond
at all to the communities based on the topology. For this partition, the modularity
value is Q = −0.046. This confirms that the communities of influence we have are
topologically unsatisfactory.

Figure 4.12 – Partition of the graph in 3 communities obtained with our algorithm when
with the transition f(ρ) = 4(1− 2ϵ)(ρ− 1/2)2 + ϵ.

4.5 Conclusion

In this chapter, we have seen that mutual information is a tool that can be used to
study the structure of a complex system. In the case of the voter model, observation
of the system’s behavior has enabled us to calculate the delayed mutual information
between the agents, i.e. the influence of the agents in relation to each other. Initially,
these values, using a heuristic method, were used to find the toplogy of the system. We
then looked at a system whose topology changed over time. By calculating the mutual
information in real time over a sliding time window, we showed that we were able to
determine the modified links that are important with respect to the system dynamics.
Finally we have proposed an original and simple algorithm using delayed mutual in-
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formation and delayed multi-information to find a partition of the graph into com-
munities. We can build communities by evaluating the influence of agents. These in
complex systems can be considered as super agents. Communities may be considered
as super-agents and the system dynamics may be reduced, by aggregation, to the dy-
namics of these super agents. This reduction approach, useful for large-scale complex
system control problems, is the subject of chapter 5.





5 | System reduction

5.1 Introduction and review

Many systems of interest to scientists are made up of a large number of interacting
components, whose detailed behavior can prove complicated when we wish to observe
the system on a larger scale. For instance a fluid is made of many molecules but
such a fine grain description is not tractable if one is interested in local macroscopic
properties such as pressure, velocity or temperature.

In the realm of complex systems, it is an interesting question to understand when and
how a system can be reduced by projecting the fine degree of freedom. We are for
instance concerned with the question of the reachability of a complex system, namely
our ability to act on it to force its behavior towards a desired objective. Dealing with a
large number of degrees of freedom makes this question very challenging, both math-
ematically and numerically. Therefore, there is a great interest to consider the control
of a reduced system as a good approximation of the control of the full system. It is
worthwhile to note that the problem has already been investigated in the control com-
munity, but mainly for the reduction of large scale unstructured linear systems, i.e.
described by a large set of differential (or difference) equations. The proposed reduc-
tion methods then rely usually on matrix decomposition algorithms and projections
which preserve some system properties such as reachability (see for instance [4] for a
textbook on this approach). However these methods do not apply (in general) to non-
linear systems and do not make use of the information on the interaction topology (or
structure) of the system. In this chapter, we would rather consider reduction methods
more specifically adapted to complex systems, relying on local dynamics and local
interactions topology (agents neighborhood).

The typical problem we have in mind is a stochastic dynamical system on a graph,
where each node is an agent that can have a finite number of possible states. Below
we will use our version of the voter model ( see chapter 3.2). From a general point
of view, our goal is to act on some agent, to impose their state so as to produce a de-
sired global response (e.g. when all agents reach the same state). Intuitively, it seems
reasonable to assume that the behavior of the system could be obtained by a reduced
number of representative agents that aggregate agents into groups that can be commu-
nities.

In what follows, we first explore the above question in a simplified topology of agents,

103
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namely a periodic one-dimensional system, with only nearest neighbors interactions
and two possible states. Such a system corresponds to a probabilistic Cellular Automa-
ton (CA). In short, we want to build ”supercells” that aggregate cells of the original
system, and see whether we are able to express an evolution rule for a global property
of these supercells, for instance the state of the majority of the internal cells. First, in
the case of cellular automata, we chose to group the cells by 3, which makes it easy to
apply the majority rule to the supercells obtained. Secondly, we also propose a reduc-
tion of the voter model where the social network is represented by a scale-free graph.
In this case, the super cells are the communities identified in the previous chapter.

The process of coarse graining a CA has been addressed by a few authors (see for
instance [45, 29, 24]). The main difference of the present approach is that we consider
probabilisitc rules for which any projection of the state of a supercell to {0, 1} is
possible and will give rise to a new probabilistic rule. In the case of deterministic CA
as addressed in the literature [114], the challenge is to find whether a projection exists
so that the coarse-grained CA is still a deterministic CA. Here, the questions are rather
to decide whether the coarse-grained probabilistic CA is a good approximation of the
original one (deterministic or probabilistic) and what good approximation means in
this context.
The chapter is organised as follows. First we develop the formalism for coarse grain-
ing a probabilistic CA, and we discuss its applicability in practical cases. Then, we
consider the specific case of a CA voter model, its reduction and our capability to
design a control strategy on the coarse grained model that would produced the same
effect as on the fully resolved CA. We conclude the discussion with open questions
and tentative approaches to address them.

5.2 Reduction of Cellular Automata

5.2.1 Problem formulation

The goal of this section is to provide a general framework to define what we mean
by the coarse graining of a CA, or its reduction. We start from a general formulation
of a 1D CA model. It is well known that the deterministic, elementary CAs can be
specified using the numbering scheme proposed by Wolfram [115]. All possible input
configurations are listed and the set of corresponding output is interpreted as a number
characterizing the rule of CA. This is sketched below for a two-state, radius 1 rule
110110002 = 21610:

111︸︷︷︸
1

110︸︷︷︸
1

101︸︷︷︸
0

100︸︷︷︸
1

011︸︷︷︸
1

010︸︷︷︸
0

001︸︷︷︸
0

000︸︷︷︸
0

(5.2.1)
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The output p = 0 or p = 1 can be interpreted as the probability p that the site si(t +

1) = 1 provided the values si−1sis1+1 at the previous time t. Therefore, using the
same approach, we can define a stochastic k = 3 states and r = 1 radius as

111︸︷︷︸
p7

110︸︷︷︸
p6

101︸︷︷︸
p5

100︸︷︷︸
p4

011︸︷︷︸
p3

010︸︷︷︸
p2

001︸︷︷︸
p1

000︸︷︷︸
p0

(5.2.2)

where pℓ is the probability that configuration ℓ = si−1sisi+1 is 1 at the next iteration.
Therefore any 1D r = 1, k = 3 CA, whether stochastic or deterministic can be
specified by the vector

p = (p7, p6, p5, p4, p3, p2, p1, p0)

with pi ∈ [0, 1].
Note that the number of probabilities pi can be reduced if the rule has symmetries or
additional properties. For instance, for the so-called totalistic rules, where the outcome
depends only on the sum of the state of the neighborhood, p6 = p5 = p3, p4 = p2 =

p1, and only four components are needed to specify the rule, e.g. p7, p6, p4 and p0.
The number of components of p is also reduced if the rule is symmetric by permuting
the left and right neighbors, or by the transformation 0↔ 1.
The reason why we are introducing this representation is that the coarse graining pro-
cedure that we will present transforms a probability vector p into another one, p′, by
adding noise. The difference between p and p′ indicates how the coarse grained rule
differs from the original one. Our formalism allows us to consider both deterministic
and stochastic rule within the same framework.

5.2.2 Coarse Graining procedure

Our coarse graining procedure is based on several steps that we illustrate on a r = 1

CA whose evolution rule is defined through the transition function (or conditional
probability)

P (si(t+ 1)|si−1(t), si(t), si+1(t)) (5.2.3)

Generalization to a larger neighborhood or to any kind of interaction graph is left for
further investigations. In subsection 5.2.3, we will focus on a scale-free graph.
Figure 5.1 sketches the process. The cells are grouped into super cells of size 3. A
given configuration of 3 such supercells produces one configuration of the central
super-cell after 3 iterations of the fine-grained original CA (operation T ). This super-
cell state can then be reduced to w ∈ {0, 1} according to some projection F . The
question is then to determine the rule TCG that would lead to the same result by
directly projecting the initial super-cells states. As suggested in Fig. 5.1, there might
be different sets of super-cells that have the same projection x, y, z, but a different
projected output w. This variability can be considered as a probabilisitic component
of the reduced CA. Below we detail the steps required for the coarse grainng.
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a3a2a1 a6a5a4 a9a8a7

T

d6d5d4

zyx

F F F

w

F

TCG

a3’a2’a1’ a6’a5’a4’ a9’a8’a7’

T

d6’d5’d4’

F F F

w’

F

{

Figure 5.1 – Schematic illustration of the coarse graining procedure for stochastic CA
with radius 1.

(1) extension of the CA rule by combining several time steps on the correspond-
ing extended neighborhood. For instance, a r = 1, CA, iterated 3 times required
the knowledge of the state, a1 . . . a9, of 9 consecutive cells and determines the state,
d4 d5, d6, of 3 cells as illustrated in the following example

t = 0 : a1 a2 a3 a4 a5 a6 a7 a8 a9

t = 1 : b2 b3 b4 b5 b6 b7 b8

t = 2 : c3 c4 c5 c6 c7

t = 3 : d4 d5 d6

(5.2.4)

We have T (a1, a2, ...., a8, a9) = (d4, d5, d6).
Wolfram’s rules, such as rule 216 described above in 5.2.1 , allow us to determin-
istically obtain the values bi at time 1 knowing ai−1ai and ai+1 at time 0 for i ∈
{2, 3, ..., 8}, the values ci at time 2 knowing bi−1bi and bi+1 at time 1 for i ∈ {3, 5, ..., 6},
and finally the values di at time 3 knowing ci−1ci and ci+1 at time 0 for i ∈ {4, 5, 6}.
The lookup table corresponding to this extension amounts to computing the condi-
tional probability

P (d4, d5, d6|a1, a2, a3, a4, a5, a6, a7, a8, a9) (5.2.5)

Such quantities can be obtained from the original rule, namely relation (5.2.3). First
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we notice that conditional probability (5.2.5) can be expressed as

P (d4, d5, d6|a1, a2, a3, a4, a5, a6, a7, a8, a9) =∑
c3,...,c7,b2...b8

P (d4, d5, d6|c3, c4, c5, c6, c7)×

P (c3, c4, c5, c6, c7|b2, b3, b4, b5, b6, b7, b8)×

P (b2, b3, b4, b5, b6, b7, b8|a1, a2, a3, a4, a5, a6, a7, a8, a9) (5.2.6)

Each of these terms can be obtained from the original CA rule as, for instance for
P (b|a),

P (b2, b3, b4, b5, b6, b7, b8|a1, a2, a3, a4, a5, a6, a7, a8, a9) =

P (b2|a1, a2, a3)× P (b3|a2, a3, a4)×

P (b4|a3, a4, a4)× P (b5|a4, a5, a6)×

P (b6|a5, a6, a7)× P (b7|a6, a7, a8)×

P (b8|a7, a8, a9) (5.2.7)

because, for each cell i, the CA rule is applied independently (new random numbers
are drawn for a stochastic rule) and can be computed explicitly with eq. (5.2.3). A
similar expression holds for P (c|b). Expression (5.2.6) together with (5.2.7) is analyt-
ically heavy but can easily be computed numerically from the original CA rule (5.2.3).
In case the original CA is with two states {0, 1}, one has, using representation (5.2.2),
that

P (1|xyz) = pxyz P (0|xyz) = 1− pxyz (5.2.8)

where the notation xyz means the binary number obtained with bits x, y and z. Note
the transformation proposed here is exact and contains no approximation. Using the
extended rule P (d|a) simply reduces the number of iterations by 3 compared to the
original rule. This transformation is denoted T in Fig. 5.1.

(2) Projection of the extended CA rule: this step of the procedure consists in a
projection of the extended CA on a reduced one. First one notices that we can group
the 9 cells of the extended CA in 3 super-cells. If the original CA has two states, 0
and 1, the super-cells have 3 bits, that is 8 possible states.
We will now define a projection F from these 8 states to {0, 1} so that the projected
states take the same values 0 and 1 as the original CA (see Fig. 5.1, left, where it is
shown that two different state vectors a and a′ for 9 contiguous cells are projected
through F on the same state (x, y, z) for the three corresponding super-cells).
A simple choice for F , in the case of super-cells with 3-bit states, is the majority rule

F (x, y, z) =

{
1 if x+ y + z ≥ 2

0 otherwise
(5.2.9)
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This choice will be used in the sequel of the chapter, although the proposed reduction
method may be applied using any map F with values in {0, 1}. The reduced, or coarse
grained, CA is then defined by the transition probabilities P (w|xyz) given by

P (w|xyz) = P (F (d4:6) = w|F (a1:3) = x, F (a4:6) = y, F (a7:9) = z) (5.2.10)

where αp:q = (αp, αp+1, . . . , αq). It is represented as the transition TCG in figure 5.1.
These transition probabilities may be written with the joint probability distribution
P (d, a) as

P (w|xyz) = P (w, xyz)

P (xyz)
(5.2.11)

=


∑

F (d4d5d6) = w

F (a1a2a3) = x

F (a4a5a6) = y

F (a7a8a9) = z

P (d, a)




∑

F (a′
1a′

2a′
3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)


−1

(5.2.12)

where a is short for a1, a2 . . . a9, a′ is short for a′1, a
′
2, . . . a

′
9 and d is short for

d4, d5, d6. Expressing the joint probability P (d, a) as P (d|a)P (a) gives

P (w|xyz) =
∑

F (d4d5d6) = w

F (a1a2a3) = x

F (a4a5a6) = y

F (a7a8a9) = z

P (d|a)

 P (a)∑
F (a′

1a′
2a′

3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)


 (5.2.13)

The term P (d|a) is known from the previous step, but the term

P (a)∑
F (a′

1a′
2a′

3) = x

F (a′
4a′

5a′
6) = y

F (a′
7a′

8a′
9) = z

P (a′)
(5.2.14)

is unknown as the probability to get the sequence a may depend on the history of the
evolution. This probability can be, for instance, estimated by sampling. However, as-
suming that all configurations are equally likely, (5.2.14) can be obtained easily with
combinatorial arguments. This is done in the next section for a deterministic CA ex-
ample which is known to have a uniform configurations distribution. In section 5.2.3,
a probabilistic voter model will be reduced. In this latter example, on the contrary, it
is shown both through numerical (empirical) experiments and from adjacency matrix
analysis, that the configurations may not be considered as uniformly distributed. In
that case, a corresponding weighted reduction has to be proposed.
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Illustrative deterministic examples

To illustrate the proposed reduction approach, we first approximated the elemen-
tary deterministic chaotic Wolfram rule 30 by a stochastic coarse-grained CA. We
assume that the probabilities P (a) are uniformly distributed for all configurations
a = (a1, a2, . . . , a9) We apply the coarse graining approach, we obtain the following
probabilities:

p0 = 0.6562 , p1 = 0.5469 , p2 = 0.6719 , p3 = 0.7344 ,

p4 = 0.3438 , p5 = 0.4531 , p6 = 0.3281 , p7 = 0.2656
(5.2.15)

Figure 5.2 illustrates the space-time diagram for the exact and approximated block-
wise models, starting from the same arbitrary initial configuration. We may notice
that, qualitatively, the behaviors of the exact projected model (deterministic) and the
coarse-grained approximated model (stochastic) look very similar. Among others,
they both exhibit typical patterns issued from the chaotic dynamics. We would like
to propose a quantitative comparison of systems with delayed mutual information to
evaluate the influence of blocks on each other, the method used will be detailed below.
However, in this case, the values of the delayed mutual information between neigh-
boring blocks are so low that it is impossible to use it as a quantitative measure of the
reduction error. The mutual information values obtained by sampling are below the
absolute stochastic error bound obtained with the central-limit theorem and therefore
not meaningful. On the other hand, it is also unclear – in the case of rule 30 – whether
or not the choice of the majority projection for the projection F is optimal (or simply
meaningful). We may conjecture that the optimal choice for this projection function
depends on the specific chosen rule.
Let us now consider another example: Wolfram rule 232.
Rule 232 is a deterministic CA which follows the majority rule. For this rule, we
can test the assumption that the probabilities P (a) are uniformly distributed for all
configurations a = (a1, a2, . . . , a9). We will make use, for the projection F , of the
majority rule (5.2.9), which is the more natural choice in this example. It is then quite
straightforward to prove that the probabilities (5.2.14) are all equal to 1/64. Accord-
ing to expression (5.2.13), to obtain probabilities pi, we need to compute P (d | a).
These values are deduced from 5.2.6, 5.2.7 and from the rule 232. We then obtain the
following (reduced) transition probabilities for the stochastic approximation:

p0 = 0 , p1 = 0.0312 , p2 = 0.8594 , p3 = 0.96688 ,

p4 = 0.0312 , p5 = 0.1406 , p6 = 0.9688 , p7 = 1
(5.2.16)

In order to analyze the error between the exact and coarse-grained dynamics for the
blocks, we computed wi,i the 1-delayed mutual information between a block of 3 cells
and itself, and then wi,i+1(1, 1) the 1-delayed mutual information between the same
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Figure 5.2 – Left: Space time diagram for Wolfram rule 30, computed block-wise for
blocks of 3 consecutive agents. The individual cell state values are computed exactly
(using rule 30). Then the block state values (black/white) are determined according to
the majority projection F . The initial configuration is arbitrary. Right: the same block
state values are represented for the proposed coarse-grained elementary stochastic
cellular automaton with probabilities given in (5.2.15).

Figure 5.3 – Left: Space time diagram for Wolfram rule 232, computed block-wise for
blocks of 3 consecutive agents. The individual cell state values are computed exactly
(using rule 232). Then the block state values (black/white) are determined according
to the majority projection F . The initial configuration is arbitrary. Right: the same block
state values are represented for the proposed coarse-grained elementary stochastic
cellular automaton with probabilities given in (5.2.16).
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block at the time t = 1 and its (right) neighbor. For the exact block-wise model, we
have obtained:

wi,i(1, 1) = 0.71 wi,i+1(1, 1) = 0.004

while, for the coarse-grained approximation, we obtained:

wi,i(1, 1) = 0.67 wi,i+1(1, 1) = 0.004

By calculating these values, we can see that the coarse-grained stochastic model ob-
tained with the majority projection F is fairly representative of rule 232, provided we
are interested in the dynamic representation of the mutual influence between blocks.
Therefore, from the control point of view, the stochastic reduced model seems sat-
isfying because the influence of one block on another, quantified by delayed-mutual
information, seems to be preserved. However, when we look at figure 5.3 – which
illustrates a scenario where no agent or block are forced (uncontrolled case) – we may
observe that the exact coarse grained deterministic and approximated stochastic CA
have qualitatively different behaviors. In particular, stochastic variations in the coarse-
grained approximated CA may have a significant long range effect on the states of the
neighboring cells.

A systematic study of the proposed reduction approach for all elementary Wolfram
CAs, with specific projection functions for each of the rules, and suitable metrics to
analyze the error dynamics, is still needed and left for future research. This method,
which approaches determinist automata with stochastic automata, may prove unsuit-
able, as in the case of rule 232, where a constant stationary state is obtained. For rule
30, on the other hand, the chaotic character is preserved. This work was initially moti-
vated by control applications where the mutual information is an appropriate measure
to evaluate whether or not the approximate system may be used for control design (see
section 3.3). Besides, the proposed coarse-grained method was developed to approxi-
mate stochastic CAs such as the voter model which is the object of the next section.

5.2.3 The reduced voter model

Description of the model

We will now apply the reduction method to the voter model defined in section 3.2.
This agent-based model may be defined on a graph of arbitrary topology. For the
sake of convenience, we repeat here the model, binary agent occupies each node of
the network. The dynamics is specified by assuming that each agent i looks at every
other agent in its neighborhood, and counts the percentage ρi of those agents which
are in state +1 (in case an agent is linked to itself, it obviously belongs to its own
neighborhood). A function f , with 0 ≤ f(ρi) ≤ 1, gives the probability for agent i to
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be in state +1 at the next iteration. For instance, if f would be chosen as f(ρ) = ρ,
an agent for which all neighbors are in state +1 will turn into state +1 with certainty.
The update is performed synchronously over all n agents. Formally, this dynamics for
the voter model was described in section 3.2.

In this section, we first apply the method seen previously with CAs to the 1D voter
model: in this case, we also obtain super cells by grouping 3 agents, and we also
use the majority rule for projection. We will determine the transition function of the
reduced model, and use mutual information to compare the projected model with re-
duced model. Finally, we will reduce the voter model defined on a scale-free graph.
We will use the community partitioning found in section 2 (just the case with 3 com-
munities). Each community will be merged to form super cells.

Transition probabilities for a circular graph voter model

We will consider a voter model where each agent has only left and right neighbors.
To avoid boundary effects, we will make use of a circular graph of order n for the
network topology. The expression for ρi is then

ρ1 =
sn(t) + s1(t) + s2(t)

3
(5.2.17)

ρi =
si−1(t) + si(t) + si+1(t)

3
, i ∈ {2, . . . , n− 1} (5.2.18)

ρn =
sn−1(t) + sn(t) + s1(t)

3
(5.2.19)

where si(t) denotes the state of agent i at time t. Following the coarse graining pro-
cedure defined in section 5.2.2, we make groups of 3 cells defined as “super-agents”.
The Boolean state Si(t) of the super-agent i is defined by :

Si(t) =

1 if s3i+1(t) + s3i+2(t) + s3i+3(t) ⩾ 2

0 otherwise
(5.2.20)

Following the notations of figure (5.1), we define the coarse-grained transition prob-
ability P (w|xyz) as the probability that Si(t + 1) = 1 knowing that the values of
Si−1(t), Si(t) and Si+1(t) are respectively x, y and z. These coarse-grained tran-
sition probabilities for super-agents may be computed according to (5.2.12) and the
resulting probabilistic cellular automaton may be represented using the notation intro-
duced in (5.2.2). For instance, with a noise ϵ = 0.01, we obtain

p = (p7, p6, p5, p4, p3, p2, p1, p0)

= (0.9512, 0.7898, 0.3836, 0.2108, 0.7838, 0.6111, 0.2116, 0.0501)
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The transition function

We compute the values of P (1|xyz), defined by expression (5.2.12), through intensive
simulations with the original CA, for different noise values ϵ. Our hope is that the
reduced model can also be described as a 1D voter model. Therefore, we look for a
transition function g : ρ 7→ P(Si(t + 3) = 1) having an expression similar to f(ρ),
namly g(ρ) = (1−2ϵ1)ρ+ϵ1, with ρ depending on Si−1(t), Si(t) and Si+1(t), for the
reduced system which is affine as is the transition function f , of the original system
(3.2.4). However, we observe that when choosing

ρ =
Si−1(t) + Si(t) + Si+1(t)

3

the function g is not affine. It is therefore useful to consider weights for the values
of the block states in the expression of ρ. With the values of P (1|xyz) found by
sampling, we determine the values α and ϵ1 in the reduced transition function with
weight ratio: g(ρ) = (1− 2ϵ1)ρ+ ϵ1

ρ = αSi−1(t) + (1− 2α)Si(t) + αSi+1(t)
(5.2.21)

In figure 5.4 (right part), g is computed for several values of ϵ and evaluated for ρ ∈
{0, α, 2α, 1− 2α, 1− α, 1}. We can see in figure 5.4 (left part) that, for small values
of ϵ, ϵ1 grows linearly with ϵ (the correlation coefficient is 0.99 for values of ϵ ∈
[0; 0.05]). Using the least squares method, we obtain

ϵ1 = 3.667ϵ+ 0.0106 (5.2.22)

Intuitively, we might think that the value of ϵ1 includes additional noise introduced by
the reduction. The need to weight state values Si is due to the fact that the state of
a block (or super-agent) at time t + 3 is more influenced by its own state at time t,
than by the state of its 2 neighboring blocks. The interactions between the agents can
be represented by a causality graph. Its adjacency matrix is, in the case of a periodic
(circular) topology:

A =



1 1 0 . . . . . . 0 1

1 1 1 0 0

0
. . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...

0
. . . . . . . . . 1

1 0 . . . . . . 0 1 1
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Figure 5.4 – Left : ϵ1 as a function of ϵ. Right : g(ρ) with different noises : ϵ =

0(red curve), 0.03 (green curve), 0.07 (yellow curve) and 0, 1 (purple curve), values
calculated for ρ ∈ {0, α, 2α, 1− 2α, 1− α, 1}

The number of causal paths between 2 agents after 1, 2 or 3 iterations is then given by
the coefficients of the matrix B = A+A2 +A3. We have:

B =



C D 03,3 03,3 D

D C D 03,3 03,3

03,3
. . . . . .

...
...

. . . . . . . . . . . . 03,3
...

. . . . . . D C D

D O3,3
. . . . . . . . . D C


with

C =

1 4 9

0 1 4

0 0 1

 , D =

9 11 9

4 9 11

1 4 9

 , 03,3 =

0 0 0

0 0 0

0 0 0


We may therefore define a parameter b to characterize the influence of the vote of a
block of cells at time t on the vote of the same block at time t + 3 by considering
causal paths between agents. We thus consider the ratio of the number of causal paths
between the agents in the block to the number of causal paths that exist between the
agents in the block and all the agents that will infuence them between instants t and
t+3. These numbers are the coefficients of matrices B and C, so we have:

b =

∑
di,j∑

ci,j + 2
∑

di,j
=

67

107
≈ 0.626



115 5.2. Reduction of Cellular Automata

Similarly, we may define the corresponding influence parameter a for the vote of the
two neighbouring blocks at time t on the vote of the central block at time t+ 3:

a =

∑
ci,j∑

ci,j + 2
∑

di,j
=

20

107
≈ 0.187

Note that these weighting parameters are derived directly from the interaction graph
and do not require sampling to be estimated, contrarily to the estimation of the proba-
bilities in the coarse-grained configuration space by simulations.
For all considered values of ϵ, we obtained by sampling for α a mean value of 0.182
and a standard deviation of 0.0028. It may be noticed that these values are very close
to the value of a obtained with the matrix B only. Therefore we conjecture that the
weights computed from the adjacency matrix B (hence the value of α) give an accurate
approximation of the “real” weights which could be computed from the estimation of
the coarse-grained configuration probabilities through an intensive simulation effort.
For the rest of the simulations in the chapter, we will choose α = 0.182.

5.2.4 Coarse-grained dynamics error analysis

Delayed mutual information

To measure the error between the exact and approximated supercell dynamics, we will
compute a metric based on the mutual information between these supercells. Roughly
speaking, we will consider that the proposed coarse-grained reduced model described
in section 5.2.3 is a good approximation of the real system, when the influence of
the vote of a block at some time, on the votes of its neighbouring blocks and itself at
subsequent times, are similar, both for the reduced and the exact models.

Influence of a block on itself and its neighboring blocks at subsequent times

For the exact block dynamics, we consider the random variables

Xi(t) = Si(t) (5.2.23)

where Si(t) is the supercell state for block i at time t such as defined in equation
( 5.2.20). We compute the mutual information wi,i(t, 3), wi,i+1(t, 3) and wi,i+2(t, 3)

which evaluate the influence of block i at time t, on the state at time t+ 3 of the three
consecutive blocks i, i+ 1 and i+ 2 in a steady state.
For the reduced block dynamics, we consider the random variables Yi(t) which de-
notes the state of block i at time t computed with the simplified dynamics, as detailed
in subsection 5.2.3. For different noise values, we compute the values of wi,i+k(t, 3)

and w′
i,i+k(t, 3) (with k = 0, 1 and 2) which are the mutual information between the
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blocks i and i+ k respectively for the exact system and the reduced system. To com-
pute these values, we need to know the different probabilities of the laws of random
variables Yi(t) and Yi+k(t+ 3) and their joint law. These different probabilities p are
obtained by sampling. As the sample size is 105 (the number of simulation runs), ac-
cording to the central limit theorem, the obtained values are with a precision of 0.003
at risk 5% i.e. for each probability p, the estimate p′ obtained by sampling verifies
P(p ∈ [p′ − 0.003; p′ + 0.003]) ⩾ 0.95. The values calculated for different noises are
in the table 5.1.

Table 5.1 – Mutuel information between neighbor blocks.
Noises ϵ 0.01 0.02 0.03 0.04 0.05

wi,i(t, 3) 0.36 0.24 0.17 0.13 0.10

w′
i,i(t, 3) 0.39 0.29 0.22 0.16 0.13

wi,i+1(t, 3) 0.15 0.08 0.05 0.031 0.02

w′
i,i+1(t, 3) 0.13 0.07 0.04 0.027 0.02

wi,i+2(t, 3) 0.03 0.01 0.004 0.002 0.001

w′
i,i+2(t, 3) 0.03 0.008 0.003 0.001 0.0004

The influences between the blocks are consistent within 10% for the simplified and
exact models. We can deduce that the proposed reduction offers a coarse-grained
model that is a good approximation of the original model. It should be noticed that
the relative difference between the values of the mutual information of the 2 models
increases with the noise. However, in the case of a very important noise, the mutual
information decreases rapidly with the distance and the influence of an agent on the
behavior of agent outside its own block may be very low.

5.3 Simplification in the case of a scale free graph

5.3.1 Communities of the graph

Now, we consider the voter model where social interaction are represented by a scale
free graph. The dynamics of this complex system is the same as presented in section
5.2.3. We will use the community partition determined in section 4.4 (see figure 5.5)
to do a simplification of the system. Each community will be considered as a super
cell. The dynamics of the simplified system is described in the following section

Projection using the communities

We simplify the model with the communities of figure 5.5, considering a complete
graph where the nodes are the communities, see the figure 5.6.
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Figure 5.5 – Partition of a scale free graph with 3 communities denoted by the colors.

We have a model with 3 nodes, and we have the states are x1x2x3 with

xi =

1 if the community i votes 1 in majority

0 if the community i votes 0 in majority
(5.3.1)

Let Xi(t), for i = 1, 2 or 3, be the random variable which is equal to the state of the
community i.
We note py1y2y3|x1x2x3

the conditionnal probability of the state of the system at time
t+ τ knowing the state of the system at time t, i.e.

py1y2y3|x1x2x3
= P (X1:3(t+ τ) = y1:3 | X1:3(t) = x1:3) (5.3.2)

where:

X1:3(t) =
(
X1(t), X2(t), X3(t)

)
y1:3 = (y1, y2, y3) and x1:3 = (x1, x2, x3)

We take as value of τ , the radius of the graph, which 3 in our example 5.5. We saw in
section 4.4.2 that a partition with 3 communities was well suited to our example. So
our reduced model is composed of 3 super cells. The transition matrix of this model
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Figure 5.6 – Graph where the nodes are the communities

is

P =


p000|000 p000|001 . . . p000|111

p001|000 p001|001 p000|000 p001|111
...

. . .
...

p111|000 p111|001 . . . p111|111


We compute the values py1y2y3|x1x2x3

by simulation. For this purpose we count

• the number of times that we go to the state x1x2x3, for any X1, X2, X3

• the number of times ny1y2y3|x1x2x3
that the transition between these two states,

is observed.

Thus we have :

py1y2y3|x1x2x3
=

ny1y2y3|x1x2x3

nx1x2x3

(5.3.3)

With 107 transitions, we have obtained the transition probability matrix :

P =



0.981 0.0035 0.0064 0.0004 0.0071 0.0004 0.0002 0.0006

0.1908 0.4898 0.0273 0.1060 0.0280 0.1215 0.0063 0.02998

0.2328 0.01698 0.5367 0.064 0.0308 0.0033 0.0958 0.0191

0.018 0.071 0.0711 0.5010 0.0052 0.0312 0.0228 0.2789

0.2603 0.0218 0.0292 0.0054 0.5131 0.0622 0.08953 0.01816

0.0189 0.084 0.0050 0.0296 0.07253 0.5050 0.0218 0.2622

0.0270 0.0057 0.1117 0.0270 0.1060 0.0220 0.5230 0.17730

0.0007 0.0004 0.0004 0.0054 0.0004 0.0052 0.0034 0.9844
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The τ delayed mutual information between Xi(t) and Xj(t+ τ) is defined by

I(i, j) =

1∑
x=0

1∑
y=0

pxy log2

( pxy
pxpy

)
(5.3.4)

With ∀(i, j) ∈ {1, 2, 3}
pxy = P(Xi(t) = x∩Xj(t+τ) = y) px = P(Xi(t) = x) py = P(Xi(t+τ) = y)

We have
px =

∑
x1,x2,x3|xi=x

px1x2x3(t) , py =
∑

y1,y2,y3|yj=y

py1y2y3
(t+ τ) and

pxy =
∑

y1,y2,y3|yj=y

∑
x1,x2,x3|xi=x

py1y2y3|x1x2x3
px (5.3.5)

If we don’t force the state of any nodes, we assume that the values of x and y are

uniformly distributed, so we take px = py =
1

8
.

With these transition probabilities and probability distributions, we may compute the
τ−mutual information matrix M ′ =

(
I(i, j)

)
1⩽i,j⩽3

between any pair of super agent.
In a stationary regime with the delay τ = 3 and a noise ϵ = 0.001. We obtain:

M1 =

0.792 0.731 0.731

0.730 0.744 0.709

0.728 0.708 0.735


We can compare these values with theses of the delayed-mutual information between
the state of the communities in the case of the original system. We used the same
delay and the same noise and computed the latter values by sampling with a sample
size N = 107.

M =

0.826 0.747 0.750

0.747 0.796 0.722

0.746 0.720 0.785


According to the central limit theorem, with a sample of size N = 105, we obtain
values approximated to within 0.03 at a risk of 5%. Thus, We can see that the de-
layed influence between communities are similar in the case of the real system and the
reduced system.

5.4 Conclusions

Our goal was to explore the possibility to simplify (stochastic) complex systems on
graphs by reducing the number of degrees of freedom, while keeping the essential dy-
namical features. We believe that the originality of the proposed method is that it can
be applied for any projection function and any probabilistic or deterministic CAs. In
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our theoretical framework an important aspect to correctly build the simplified system
is to have hypotheses on the probability distribution of all possible configurations. In
the case of the voter model, where we determined the reduced system from a statis-
tical analysis of the real one, we observed that coarse grained agents may have to be
defined with a weighted average of the real ones. Anyway, the examples we showed
in this chapter suggest that system reduction is a possible avenue, in particular with
the objective of controllability. However, numerous issues need to be investigated: the
evaluation of the information loss in the reduction, the comparisons of the stationary
probability distributions, etc. Another question is how to best define the blocks or
super-agents for the system reduction. When applying the reduction on a dynamical
system defined on a graph, a natural way could be to consider the partitions associated
with graph communities.



6 |Conclusion and prospects

Conclusion

In this thesis, we set out to show that information theory offers tools for studying
complex systems, and that these tools provide an answer to the problem of reachability
and observability in control theory. To illustrate the approach, we used a voter model
which is defined by fairly simple dynamics but still is representative of many complex
systems.

First, we defined delayed information and multi-information inspired by the mutual
transfer in Schreiber [96]. We have shown that these quantities make it possible to
quantify the influence and determine the causal relationships between agent’s state
(vote) over time. Multi-information allowed us to determine which agents had the
most influence on the system, and we were able to control the system while limiting
the cost of control.

Next, we saw in the case of a system with an unknown topology that we were able
to reconstruct the causal graph by observing its behavior over time. Besides, we also
showed that the mutual information calculated over a sliding time window could be
used to detect changes in the topology that had an influence on the state of the system.
More precisely, the 1-delayed mutual information computed on a sliding-window was
used to identify the possible changes of connectivity. We saw that this quantity allows
us to detect whether an edge is added or removed between two vertices of low degree,
or between a hub and a vertex of low degree. Between two hubs this method is not
effective, but the actual presence or absence of a link between them does not affect
much the global behavior of the system. Detecting structural changes is important as
it can provide an early warning of tipping points. We expect that our approach can be
applied to many other complex systems beyond the voter model.

Finally, we have used information theory to propose a method for decomposing the
system into a partition of communities of influence subsets of agents strongly linked
by dynamic. This partition is then used to simplify large complex systems. Our goal
was to explore the possibility to simplify stochastic complex systems on graphs by
reducing the number of degrees of freedom, while keeping the essential dynamical
features. An important aspect to correctly build the simplified system is the probability
distribution of all possible configurations in the original model. In the case of the
voter model, where we determined the reduced system from a statistical analysis of
the real one, we observed that coarse grained agents may have to be defined with a
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weighted average of the real ones. The corresponding weights may be obtained by
using information on the graph topology.

We believe that the originality of the proposed reduction method is that it can be
applied for any projection function and any probabilistic CAs. We first looked at a
cellular automaton that follows Wolfram’s rules, and then at a 1D voting system on a
ring (1D topology). Mutual information was used to check that the simplified model
behaves like the original one and enabled us to validate the reduction method. This
method was then generalised to any graph, using communities defined from mutual
information and identified as super agents in the reduced model. The investigated
examples suggest that system reduction based on mutual information analysis is a
possible avenue for the reduction of large scale systems, in particular with a control
objective in mind.

Generally speaking we may conclude that information theory is well suited to solve
some control problems for complex systems. It allows us to carry out a structural
analysis and provides indicators that can facilitate the investigation of these control
problems.

Prospects

The work carried out in this thesis can be extended in various directions.

Firstly, we would like to apply the results obtained on the voter model to the world3
model. The World3 model is a system dynamics model for computer simulation of
interactions between population, industrial growth, food production and limits in the
ecosystems of the earth [66, 43]. The dynamics of this model are defined by several
differential equations whose functions are the various parameters of the model as a
function of time. From these differential equations, it is not easy to assess the influ-
ence of each parameter on the others. Using delayed mutual information, we would
like to quantify these influences in order to determine which actions would be most
effective in achieving the desired objectives. For example, if we want to reduce pol-
lution, we can identify which parameters need to be modified to achieve the desired
effect quickly. The evaluation of causality should also enable us to propose a model
reduction that will simplify our study.

Regarding model reduction, numerous issues still need to be investigated such as the
evaluation of the information loss in the reduction or the comparisons of the station-
ary probability distributions. Another question is how to best define the blocks or
super-agents for the system reduction. In our approach, these blocks are communities
defined with respect to the higher multi-information (seeds) and mutual information.
However, there are many other ways to define communities and a comparative study
is still needed.
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We have shown that it is possible to detect changes in the topology or in the dynamical
behavior of a system over time using information-theoretic tools. This could be the
basis for the definition of early warnings. For instance, economic models and changes
in the topology or in the agents’ state instantaneous behavior could be used to alert us
about the risk of a looming economic crisis.
Another area of extension concerns the estimation problem. In many practical situ-
ations, we are not able to measure the whole state at all times. In such situations,
hidden Markov chains could be used to recover the missing data from the available
measurements. Information theoretic tools such as those presented in this thesis could
be used to test the feasability (observability) or help in the estimation.
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